3

% WILLIAM & MARY
CHARTERED 1693 W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2010

Application of information theory and statistical learning to
anomaly detection

Steven Gianvecchio
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

b Part of the Computer Sciences Commons

Recommended Citation

Gianvecchio, Steven, "Application of information theory and statistical learning to anomaly detection'
(2010). Dissertations, Theses, and Masters Projects. William & Mary. Paper 1539623563.
https://dx.doi.org/doi:10.21220/s2-8c4b-sg87

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at
W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an
authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623563&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623563&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-8c4b-sg87
mailto:scholarworks@wm.edu

Application of Information Theory and Statistical Learning to Anomaly Detection

Steven Gianvecchio

Rochester, New York

Master of Science, Coliege of William and Mary, 2006
Bachelor of Science, State University of New York at Brockport, 2001

A Dissertation presented to the Graduate Faculty
of the College of William and Mary in Candidacy for the Degree of
Doctor of Philosophy

Department of Computer Science

The College of William and Mary
May 2010

APPROVAL PAGE

This Dissertation is submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

Steven Gianvecchio

Approved by the Committee, April 2010
= . 7

Committee Chair
Associate Professor Haining Wang, Computer Science
The College of William and Mary

AsSociate Professor Phil Kearns, Computer Science
The College of William and Mary

LA —

Professor Evgenia"Smirni, Computer Science
The College of William and Mary

A ifhsn Wowr
Associate Professor Weizhen Mao, Computer Science
The College of William and Mary

Professor Chi-Kwong Li, Mathematics
The College of William and Mary
s

ABSTRACT PAGE

In today’s highly networked world, computer intrusions and other attacks area constant
threat. The detection of such attacks, especially attacks that are new or previously
unknown, is important to secure networks and computers. A major focus of current
research efforts in this area is on anomaly detection.

In this dissertation, we explore applications of information theory and statistical learning to
anomaly detection. Specifically, we look at two difficult detection problems in network and
system security, (1) detecting covert channels, and (2) determining if a user is a human or
bot. We link both of these problems to entropy, a measure of randomness, information
content, or complexity, a concept that is central to information theory. The behavior of bots
is low in entropy when tasks are rigidly repeated or high in entropy when behavior is
pseudo-random. In contrast, human behavior is complex and medium in entropy. Similarly,
covert channels either create regularity, resulting in low entropy, or encode exira
information, resulting in high entropy. Meanwhile, legitimate traffic is characterized by
complex interdependencies and moderate entropy. In addition, we utilize statistical learning
algorithms, Bayesian learning, neural networks, and maximum likelihood estimation, in
both modeling and detecting of covert channels and bots.

Our results using entropy and statistical learning techniques are excellent. By using
entropy to detect covert channels, we detected three different covert timing channels that
were not detected by previous detection methods. Then, using entropy and Bayesian
learning to detect chat bots, we detected 100% of chat bots with a false positive rate of
only 0.05% in over 1400 hours of chat traces. Lastly, using neural networks and the idea of
human observational proofs to detect game bots, we detected 99.8% of game bots with no
false positives in 95 hours of traces. Our work shows that a combination of entropy
measures and statistical learning algorithms is a powerful and highly effective tool for
anomaly detection.

Table of Contents

Acknowledgments
List of Tables
List of Figures

1 Introduction

2 Designing and Modeling Covert Timing Channels

2.1 Background e
2.1.1 Basic Communication Concepts
2.1.2 Base CasesinDesign

2.1.2.1 Optimal Capacity Channel
2.1.2.2 Fixed-Average Packet Rate Channel

22 TheFramework L o
2.2.1 Model-Based Channel Capacity
2.2.2 Implementation Details

2.3 Experimental Evaluation. 0L

iv

xi

xii

xiv

2.3.1 Experimental Setup 21
2.3.1.1 Testing Scenarios 21

23.1.2 Building MB-HTTP 23

2.3.1.3 Formulating OPCand FPR 23

232 Capaclty 24
2.3.2.1 Empirical Capacity 26

2.3.3 Detection Resistance, 28
23.3.1 ShapeTests 29

2.3.3.2 Regularity Tests 31

24 Conclusion e e 33
3 Detecting Covert Timing Channels 35
3.1 Imtroduction. 35
3.2 Background And Related Work, 37
3.2.1 Covert Timing Channels 38
3.2.1.1 IP Covert Timing Channel 39

3.2.1.2 Time-Replay Covert Timing Channel 39

3.2.1.3 Model-Based Covert Timing Channel 40

3214 JitterBug oo oo 40

3.2.1.5 Other Covert Timing Channels 41

3.2.1.6 Timing-Based Watermarks 42

322 Detection Tests oo 43
3.2.21 Kolmogorov-Smirnov Test 43

3222 Regularity Test. 44

3.2.2.3 Other Detection Tests 45
3.3 Entropy Measurest 45
3.3.1 Entropy and Conditional Entropy 46
3.3.2 Corrected Conditional Entropy 47
3.3.3 Binning Strategies L. 49
3.3.4 Implementation Details 51
3.4 Experimental Evaluation, 53
3.4.1 Experimental Setup L. 54
34.1.1 Dataset o oo e 95
3.4.1.2 Detection Methodology 57
3.4.2 Experimental Results 59
3421 IPCTC 59
3422 TRCTC........ 62
3423 MBCTC, 64
3.4.24 JitterBugo 66
3.4.2.5 All Channels - Variable Sample Size 70

343 Discussion L e 73 .
3.5 Potential Countermeasures 74
3.6 Conclusion and Future Work 76
4 Measurement and Classification of Chat Bots 78
4.1 Background and Related Work 80

vi

4.1.1 Chat Systems e 80
412 ChatBots. 81
413 Related Work Lo 83
4.2 Measurement L. e 85
4.2.1 Log-Based Classification 86
422 Analysis e 87
4221 Humans. 89

4222 PeriodicBots. 0 90

4223 RandomBots. 91

4224 ResponderBots 93

4225 ReplayBots 95

4.3 Classification System e 96
4.3.1 Entropy Classifier 97
4.3.1.1 Entropy Measures, 98

4.3.2 Machine Learning Classifier 100
4.4 Experimental Evaluation 102
4.4.1 Experimental Setup 103
4.4.2 Experimental Results 104
4.42.1 Entropy Classifier 104

4.4.2.2 Supervised and Hybrid Machine Learning Classifiers . 106

4.5 Conclusion e e e e 108

5 Detecting Online Game Bots 110

vii

5.1

5.2

5.3

5.4

5.5

5.6

Background 114

511 GameBots e 114
5.1.2 Game Playing Behaviors 115
Game Playing Characterization 117
52.1 TheGliderBot 117
5.2.2 Input Data Collection 118
5.2.3 Game Playing Input Analysis 120
HOP System i i e 124
5.3.1 Client-Side Exporter 125
5.3.2 Server-Side Analyzer 125

5.3.2.1 Neural Network Classification 126

5.3.2.2 Decision Making 128
5.3.3 Performance Impact and Scalability 129
Experiments. e 129
54.1 Experimental Setup 131
54.2 Detection Results 131
5.4.3 Detection of Other Game Bots 135
544 System Overhead 136
Related Work o 137
55.1 Anti-Cheating 138
5.5.2 Behavioral Biometrics 0 o o L. 140
Conclusion 141

viii

6 Conclusions and Future Work

6.1 Future Work

A Chat Bot Examples

A.0.1 ResponseExample

A.0.2 Synonym Example,

A.0.3 Padding Example

Bibliography

Vita

ix

143

145

147

147

147

148

149

160

To Mom, Dad, Cheryl, Michelle, and Mike.

“Little by little, one travels far.” — J.R.R. Tolkien

ACKNOWLEDGMENTS

This thesis would not have been possible without the assistance and support of
many people. I would like to first and foremost extend my deepest appreciation to
my research advisor, Haining Wang, for his constant help and guidance with my
research. His focus on important research problems and high quality research has
greatly impacted my research and career development.

I would like to thank Phil Kearns, Evgenia Smirni, Weizhen Mao, and Chi-Kwong
Li for serving on my thesis committee and for their valuable comments, suggestions,
and feedback. I would also like to thank the staff of the Department of Computer
Science for all of their assistance. In particular, I would like to especially thank
Vanessa Godwin and Jacqulyn Johnson.

I would also like to express my appreciation to various friends, fellow graduate
students, and research collaborators that helped with different stages of my research,
Mengjun Xie, Zhenyu Wu, Sushil Jajodia, Zi Chu, Aaron Polaski, Sathish Indika, Lee
McDaniel, and others. I feel very fortunate to have worked with such brilliant people.

Last, and most important, I would like to extend my deepest gratitude to my
parents, Tom and Lorraine, and to my brother and sisters, Mike, Cheryl, and Michelle,
for their support and encouragement over the years while I completed my Ph.D.

studies.

xi

List of Tables

21

2.2

2.3

24

2.5

2.6

2.7

2.8

2.9

3.1

3.2

3.3

3.4

3.5

3.6

Scores for Models of HTTP Inter-Packet Delays
Network Conditions for Test Scenarios
Mean Packets/Second and Inter-Packet Delay for OPC
Theoretical Capacity for Covert Timing Channels
Empirical Capacity for Covert Timing Channels.
Mean and Standard Deviation of Kolmogorov-Smirnov Test Scores . .
False Positive and True Positive Rates for Kolmogorov-Smirnov Test .
Mean of Regularity Test Scores

False Positive and True Positive Rates for Regularity Test

IPCTC Test SCores v v v v v v i e it e e e e
IPCTC Detection Rates
TRCTC Test Scores o o v v v v i e e e e
TRCTC Detection Rates
MBCTC Test Scores v v v v v v v i e e e

MBCTC Detection Rates o . o v v v v it e e e e e

xii

3.7

3.8

4.1

4.2

4.3

5.1

5.2

5.3

JitterBug Test Scores 70

JitterBug Detection Rates 70
Message Composition of Chat Bot and Human Datasets 100
True Positive and Negative Rates for Entropy Classifier 102

True Positive and Negative Rates for Machine Learning and Hybrid

Classifiers v e e e e 107

Definitions of User-Input Actions 118
True Positive and Negative Rates vs. Thresholds and # of Accumulated
Outputs o e e e 130

True Positive Ratesfor Bots 133

xdii

List of Figures

2.1

2.2

2.3

3.1

3.2

3.3

34

3.5

3.6

3.7

3.8

3.9

4.1

4.2

Framework for Model-Based Covert Timing Channels. 15

Empirical Capacity and Bit Error Rates for WAN E-E and WAN E-W 27

Distribution of Kolmogorov-Smirnov Test Scores 30
IPCTC/TRCTC/MBCTC Scenarioo v v v v v oot 38
JitterBug Scenario 38
Equiprobable Binning of Exponential Data 50
CCE Performance o v v it 53
Distribution of CCE Test Scores for TRCTC 64
Distribution of CCE Test Scores for MBCTC 67
Distribution of EN Test Scores for JitterBug 71
EN True Positive Rate vs. Sample Size 74
CCE True Positive Rate vs. Sample Size 75

Distribution of Human Inter-Message Delay (a) and Message Size (b) . 89

Distribution of Periodic Bot Inter-Message Delay (a) and Message Size

xiv

4.3 Distribution of Random Bot Inter-Message Delay (a) and Message Size

(B) . 92
4.4 Distribution of Responder Bot Inter-Message Delay (a) and Message

Size (b) o 93
4.5 Distribution of Replay Bot Inter-Message Delay (a) and Message Size (b) 93
4.6 Classification System Diagram 96
5.1 Keystroke Inter-arrival Time Distribution 119
5.2 Keystroke Duration Distribution 119
5.3 Average Speed vs. Displacement for Point-and-Click 120
5.4 Drag-and-Drop Duration Distribution 120
5.5 Point-and-Click and Drag-and-Drop Movement Efficiency Distribution 121
5.6 Average Velocity for Point-and-Click 121
5.7 Overview of the HOP System 124
5.8 A Cascade Neural Network 128
5.9 True Positive and Negative Rates vs. # of Accumulated Actions and

#FofNodes 130
5.10 Decision Time Distribution 134

XV

Application of Information Theory and

Statistical Learning to Anomaly Detection

Chapter 1

Introduction

As the world continues to become increasingly connected, the number of computer
intrusions and other attacks continues to grow. As the number of attacks grows, a
shift in hackers’ motivation from “hacking for-fun” to “hacking for-profit” has made
attacks more sophisticated and more dangerous than ever. Indeed, in 2008, reports
show that the volume of malware grew almost three-fold [78] and attacks against
US government networks increased by 39.7% [37]. With the threat of attack rising,
detecting attacks—especially attacks that are new and previously unknown—is critical
in securing networks and computers.

In light of this trend, a major focus of current research efforts is on anomaly
detection. The term anomaly detection refers to detecting patterns (called anomalies)
that fall outside of the normal behavior in a system. The main benefit of anomaly
detection is in detecting novel or so-called “zero-day” attacks, which other detection
methods often fail to detect. As systems are most vulnerable to unknown attacks,

anomaly detection is a critical component in securing systems against them. The

main downside to anomaly detection is false alarms, i.e., anomalies that are not real
threats.

In this dissertation, we explore different applications of information theory and
statistical learning to anomaly detection. With statistical learning often being a form
of information extraction, information theory and statistical learning are closely re-
lated. Specifically, this dissertation addresses two challenging detection problems from
network and system security, (1) detecting covert channels, and (2} determining if a
user is a human or a bot. While covert channels are a classic problem, dating back
to at least the 1970s, bots are a very new problem, only from the last decade or
so. Although two very distinct problems, both can be linked to entropy—a measure
of randomness, information content, or complexity—a central concept in information
theory. In two separate studies, detailed in Chapters 3 and 4, we are able to link
covert channels and bots to entropy. The behavior of bots is low in entropy when
their tasks are rigidly repeated or high in entropy when components of their behavior
are randomized. By comparison, the behavior of humans is complex and medium in
entropy. In other words, bots are simple and predictable, whereas humans are much
more complicated. Likewise, covert channels either increase regularity, resulting in
lower entropy, or add additional information, resulting in higher entropy. At the
same time, legitimate (non-covert) traffic is characterized by complex interdependen-
cies and moderate entropy. In short, both bots and covert channels can be described
by either high or low entropy. Additionally, we utilize statistical learning, including

Bayesian learning, neural networks, and maximum likelihood estimation, to address

both problems.

To develop better anomaly detection techniques, especially for covert channels and
bots, we investigate different ways of using entropy measures and statistical learning
techniques, both separate and in combination, for modeling and detecting of covert
channels and bots. For covert channels, we design a covert timing channel, and model,
simulate, and test three different covert timing channels, and then, we propose an
entropy-based approach for detecting covert timing channels. For bots, we start by
performing a large-scale measurement study of chat bots, and then, we propose a
hybrid classification system, based on entropy and statistical learning for detecting
chat bots. In addition, we characterize game playing in a popular online game, and
then, we propose a game bot defense system, based on statistical learning and the
idea of human observational proofs for detecting online game bots. Our research
contributions are summarized as follows:

1) Designing and Modeling Covert Timing Channels

The exploration of advanced covert timing channel design is important to under-
stand and defend against covert timing channels. This chapter introduces a new class
of covert timing channels, called model-based covert timing channels, which exploit
the statistical properties of legitimate network traffic to evade detection in an effective
manner. We design and implement an automated framework for building model-based
covert timing channels. The framework consists of four main components: filter, an-
alyzer, encoder, and transmitter. The filter characterizes the features of legitimate

network traffic, and the analyzer fits the observed traffic behavior to a model. Then,

the encoder and transmitter use the model to generate covert traffic and blend with
legitimate network traffic. The framework is lightweight, and the overhead induced by
model fitting is negligible. To validate the effectiveness of the proposed framework, we
conduct a series of experiments in LAN and WAN environments. The experimental
results show that model-based covert timing channels provide a significant increase in
detection resistance with only a minor loss in capacity.
2) Detecting Covert Timing Channels

The detection of covert timing channels is of increasing interest in light of recent
practice on the exploitation of covert timing channels over the Internet. However, due
to the high variation in legitimate network traffic, detecting covert timing channels is
a challenging task. The existing detection schemes are ineffective to detect most of
the covert timing channels known to the security community. This chapter introduces
a new entropy-based approach to detecting various covert timing channels. Our new
approach is based on the observation that the creation of a covert timing channel
has certain effects on the entropy of the original process, and hence, a change in
the entropy of a process provides a critical clue for covert timing channel detection.
Exploiting this observation, we investigate the use of entropy and conditional entropy
in detecting covert timing channels, Our experimental results show that our entropy-
based approach is sensitive to the current covert timing channels, and is capable of
detecting them in an accurate manner.
3) Measurement and Classification of Chat Bots

The abuse of chat services by automated programs, known as chat bots, poses a

serious threat to Internet users. Chat bots target popular chat networks to distribute
spam and malware. In this chapter, we first conduct a series of measurements on
a large commercial chat network. OQur measurements capture a total of 14 different
types of chat bots ranging from simple to advanced. Moreover, we observe that
human behavior is more complex than bot behavior. Based on the measurement
study, we propose a classification system to accurately distinguish chat bots from
human users. The proposed classification system consists of two components: (1) an
entropy-based classifier and (2) a machine-learning-based classifier. The two classifiers
complement each other in chat bot detection. The entropy-based classifier is more
accurate to detect unknown chat bots, whereas the machine-learning-based classifier
is faster to detect known chat bots. Our experimental evaluation shows that the
proposed classification system is highly effective in differentiating bots from humans.
4) Detecting Online Game Bots

The abuse of online games by automated programs, known as game bots, for gain-
ing unfair advantages has plagued millions of participating players with escalating
severity in recent years. The current methods for distinguishing bots and humans
are based on human interactive proofs (HIPs), such as CAPTCHAs. However, HIP-
based approaches have inherent drawbacks. In particular, they are too obtrusive to
be tolerated by human players in a gaming context. In this chapter, we propose a
non-interactive approach based on human observational proofs (HOPs) for continu-
ous game bot detection. HOPs differentiate bots from human players by passively

monitoring input actions that are difficult for current bots to perform in a human-like

manner. We collect a series of user-input traces in one of the most popular online
games, World of Warcraft. Based on the traces, we characterize the game playing
behaviors of bots and humans. Then, we develop a HOP-based game bot defense
system that analyzes user-input actions with a cascade-correlation neural network to
distinguish bots from humans. The HOP system is effective in capturing current game
bots, which raises the bar against game exploits and forces a determined adversary to
build more complicated game bots for detection evasion in the future.

The remainder of this dissertation is organized as follows. Chapter 2 covers mod-
eling covert timing channels in terms of capacity and introduces model-based covert
timing channels. Chapter 3 describes other covert timing channels and related detec-
tion methods, and details our entropy-based approach to detection. Chapter 4 details
our chat bot measurements and our hybrid classification system. Chapter 5 describes
our game bot measurements and our HOP-based game bot defense system. Lastly, in

Chapter 6 we conclude and outline possible directions for our future work.

Chapter 2

Designing and Modeling Covert

Timing Channels

A covert channel is a “communication channel that can be exploited by a process
to transfer information in a manner that violates a system’s security policy” [31].
There are two types of covert channels: covert storage channels and covert timing
channels. A covert storage channel manipulates the contents of a storage location
(e.g., disk, memory, packet headers, etc.) to transfer information. A covert timing
channel manipulates the timing or ordering of events (e.g., disk accesses, memory
accesses, packet arrivals, etc.) to transfer information. The focus of this chapter is on
covert timing channels.

The potential damage of a covert timing channel is measured in terms of its capac-
ity. The capacity of covert timing channels has been increasing with the development

of high-performance computers and high-speed networks. While covert timing chan-

nels studied in the 1970s could transfer only a few bits per second [70], covert timing
channels in modern computers can transfer several megabits per second [125]. To
defend against covert timing channels, researchers have proposed various methods to
detect and disrupt them. The disruption of covert timing channels manipulates traffic
to slow or stop covert timing channels [42, 62, 61, 63, 48]. The detection of covert tim-
ing channels mainly uses statistical tests to differentiate covert traffic from legitimate
traffic [12, 13, 19, 110, 44]. Such detection methods are somewhat successful, because
most existing covert timing channels cause large deviations in the timing behavior
from that of normal traffic, making them relatively easy to detect.

In this chapter, we introduce model-based covert timing channels, which endeavor
to evade detection by modeling and mimicking the statistical properties of legitimate
traffic. We design and develop a framework for building model-based covert timing
channels, in which hidden information is carried through pseudo-random values gen-
erated from a distribution function. We use the inverse distribution function and
cumulative distribution function for encoding and decoding. The framework includes
four components, filter, analyzer, encoder, and transmitter. The filter profiles the
legitimate traffic, and the analyzer fits the legitimate traffic behavior to a model.
Then, based on the model, the encoder chooses the appropriate distribution functions
from statistical tools and traffic generation libraries to create covert timing channels.
The distribution functions and their parameters are determined by automated model
fitting. The process of model fitting proves very efficient and the induced overhead

is minor. Lastly, the transmitter generates covert traffic and blends with legitimate

traffic.

The two primary design goals of covert timing channels are high capacity and
detection resistance. To evaluate the effectiveness of the proposed framework, we per-
form a series of LAN and WAN experiments to measure the capacity and detection
resistance of our model-based covert timing channel. We estimate the capacity with
a model and then validate the model with real experiments. Our experimental results
show that the capacity is close to that of an optimal covert timing channel that trans-
mits in a similar condition. In previous research, it is shown that the shape [12, 13]
and regularity [19, 110] of network traffic are important properfies in the detection of
covert timing channels. We evaluate the detection resistance of the proposed frame-
work using shape and regularity tests. The experimental results show that both tests
fail to differentiate the model-based covert traffic from legitimate traffic. Overall,
our model-based covert timing channel achieves strong detection resistance and high
capacity.

There is an arms race between covert timing channel design and detection. To
maintain the lead, researchers need to continue to improve detection methods and
investigate new attacks. The goal of this work is to increase the understanding of more
advanced covert timing channel design. Our demonstration of model-based covert
timing channels motivates the development of a more advanced detection method

based on entropy, which is discussed in Chapter 3.

10

2.1 Background

In this section, we describe basic communication concepts and relate them to covert
timing channels. Then, based on these concepts, we formulate two base cases in covert
timing channel design. The basic problem of communication, producing a message at
one point and reproducing that message at another point, is the same for both overt
and covert channels, although covert channels must consider the additional problem

of hiding communication.

2.1.1 Basic Communication Concepts

The capacity of a communication channel is the maximum rate that it can reliably
transmit information. The capacity of a covert timing channel is measured in bits per

time unit [88]. The capacity in bits per time unit C; is defined as:

where X is the transmitted inter-packet delays or input distribution, Y is the received
inter-packet delays or output distribution, 7(X;Y") is the mutual information between
X and Y, and E(X) is the expected time of X.

The mutual information measures how much information is carried across the

channel from X to Y. The mutual information I(X;Y") is defined as:

<[]

> Py | z)P(2)log U (discrete)
I(X;Y) = ¥

P(z)P(y)

S,

J Py | 2)P(2)log ZURLE) 45 gy (continuous)
Y

11

The noise, represented by the conditional probability in the above definitions, is

defined as:

Py | 2) = froise(y,),

where f,,0;s¢ is the noise probability density function, x is the transmitted inter-packet
delays, and y is the received inter-packet delays.

The noise distribution f,se is the probability that the transmitted inter-packet
delay xz results in the received inter-packet delay y. The specific noise distribution for

inter-packet delays is detailed in Section 2.3.2.

2.1.2 Base Cases in Design

The two main goals of covert timing channel design are high capacity and detection
resistance. There are few examples of practical implementations of covert timing
channels in the literature, so we begin to explore the design space in terms of both
capacity and detection resistance. The focus of our model-based covert timing channel
is to achieve high detection resistance. In the following section, we formulate two base
cases in covert channel design as comparison to the model-based covert timing channel.

The first case, optimal capacity, transmits as much information as possible, sending
hundreds or more packets per second. Such a design might not be able to achieve covert
communication, but is useful as a theoretical upper bound. The second case, fixed
average packet rate, sends packets ét a specific fixed average packet rate, encoding
as much information per packet as possible. The fixed average packet rate is mainly

determined by the packet rate of legitimate traffic.

12

2.1.2.1 Optimal Capacity Channel

The first design, OPtimal Capacity (OPC), uses the discrete input distribution that
transmits information as fast as possible. The optimal capacity is dependent on the
optimal distance between two symbols. The first symbol is (approximately) zero and
the second symbol is non-zero, so the use of more symbols (i.e., four or eight) will
introduce more non-zero symbols and decrease the symbol rate. The use of smaller
distances between the two symbols increases the symbol rate and the error rate. The
optimal distance is the point at which the increase in error rate balances the increase
in symbol rate.

The code operates based on two functions. The encode function is defined as:

Fencode(s) =ds =

where s is a symbol, d, is an inter-packet delay with a hidden symbol s, and d is the

optimal distance between the two symbols. The decode function is defined as:

0, dy<3d
Fdecode(ds) =85=

L

where d; is an inter-packet delay with a hidden symbol s.

Channel Capacity: The channel capacity of OPC is dependent on the optimal input

distribution and noise. The input distribution is defined as:

13

Y z=d

P(z) = 1—p, z=0

0, otherwise
\

where p is the probability of the symbol s = 1, and 1 — p is the probability of the
symbol s = 0.
Therefore, the capacity of OPC is the maximum of the mutual information with

respect to the parameters d and p of the input distribution over the expected time

d-p:

Ply| 2)P(z)

Cy = max—ZZP | z) P(z)log—=—~———+ PE)P)

dp d
2.1.2.2 Fixed-Average Packet Rate Channel

The second design, Fixed-average Packet Rate (FPR), uses the input distribution that
encodes as much information per packet as possible with a constraint on the average
cost of symbols. The cost is measured in terms of the time required for symbol
transmission. Therefore, the optimal input distribution is subject to the cénstraint
on the average packet rate, i.e., the cost of symbol transmission.

The optimal input distribution for FPR is computed with the Arimoto-Blahut al-
gorithm generalized for cost constraints [14]. The Arimoto-Blahut algorithm computes

the optimal input distribution for capacity in bits per channel usage. The capacity in

14

bits per channel usage C, is defined as:
Cy = max I(X;Y).

In general, C, and C; do not have the same input distribution X. However, if
the input distribution is constrained so that E(X) = ¢ (where ¢ is a constant), then
the optimal input distribution X is optimal for both C, and C}, and C, = C - c.
Thus, FPR transmits as much information per packet (channel usage) and per second
(time unit) as possible with a fixed average packet rate. We use the Arimoto-Blahut
algorithm to compute the optimal input distribution for FPR. The capacity results

for FPR, based on the Arimoto-Blahut algorithm, are detailed in Section 2.3.

2.2 The Framework

The covert timing channel framework, as shown in Figure 2.1, is a pipeline that
filters and analyzes legitimate traffic then encodes and transmits covert traffic. As
the output of the pipeline, the covert traffic mimics the observed legitimate traffic,
making it easy to evade detection. The components of the framework include filter,

analyzer, encoder, and transmitter, which are detailed in the following paragraphs.

Figure 2.1: Framework for Model-Based Covert Timing Channels.

MODELS: -INPUT:
EXPONENTIAL, GAMMA, RANDOM NUMBER
PARETO, LOGNORMAL, MESSAGE TERMS:
POISSON, WEIBULL. . IPD ~ INTER-PACKET DELAY
) .,
— T ¥ FWLTER ANALYZER ENCODER TRANSMITTER (—SOVERT
LEGIT MODEL COVERT
e —
1PDs 1PDs

The filter monitors the background traffic and singles out the specific type of

15

traffic to be mimicked. The more specific application traffic the filter can identify
and profile, the better model we can have for generating covert traffic. For example,
FTP is an application protocol based on TCP, but generating a series of inter-packet
delays based on a model of all TCP traffic would be a poor model for describing
FTP behaviors. Once the specified traffic is filtered, the traffic is further classified
into individual flows based on source and destination IP addresses. The filter then
calculates the inter-packet delay between subsequent pair of packets from each flow,
and forwards the results to the analyzer.

The analyzer fits the inter-packet delays in sets of 100 packets with the Expo-
nential, Gamma, Pareto, Lognormal, Poisson, and Weibull distributions. The fitting
process uses maximum likelihood estimation (MLE) to determine the parameters for
each model. The model with the smallest root mean squared error (RMSE), which
measures the difference between the model and the estimated distribution, is chosen
as the traffic model. The model selection is automated. Other than the set of models
provided to the analyzer, there is no human input. The models are scored based on
root mean squared errors, as shown in Table 2.1. The model with the lowest root
mean squared error is the closest to the data being modeled. Since most types of
network traffic are non-stationary [22], the analyzer supports piecewise modeling of
non-stationary processes by adjusting the parameters of the model after each set of
100 covert inter-packet delays. The analyzer refits the current model with new sets
of 100 packets to adjust the parameters. The analyzer can take advantage of a larger

selection of models to more accurately model different types of application traffic. For

16

Table 2.1: Scores for Models of HTTP Inter-Packet Delays

model parameters root mean squared error
Weibull 0.0794, 0.2627 0.0032
Gamma 0.1167, 100.8180 0.0063
Lognormal -4.3589, 3.5359 0.0063
Pareto 3.6751, 0.0018 0.0150
Poisson 11.7611 0.0226
Exponential 11.7611 0.0294

example, if we know that the targeted traffic is well-modeled as an Erlang distribution,
we will add this distribution to the set of models. For each of the current models, the
computational overhead is less than 0.1 milliseconds and the storage overhead for the
executable is less than 500 bytes, so the induced resource consumption for supporting
additional models is not an issue.

The filter and analyzer can be run either offline or online. In the offline mode,
the selection of the model and parameters is based on traffic samples. The offline
mode consumes less resources, but the model might not represent the current network
traffic behavior well. In the online mode, the selection of the model and parameters is
based on live traffic. The online mode consumes more resources and requires that the
model and parameters be transmitted to the decoder with the support of a startup
protocol, but the model better represents the current network traffic behavior. The
startup protocol is a model determined in advance, and is used to transmit the online
model (1 byte) and parameters (4-8 bytes) to the decoder.

The encoder generates random covert inter-packet delays that mimic legitimate

inter-packet delays. The input to the encoder includes the model, the message, and

17

a sequence of random numbers. Its output is a sequence of covert random inter-
packet delays. The message to be sent is separated into symbols. The symbols map
to different random timing values based on a random code that distributes symbols
based on the model.

Using a sequence of random numbers ry, rg, ..., Ty., we transform the discrete

symbols into continuous ones. The continuization function is
s
Fcontinuize(s) = ('[—S"|' + ’f‘) mod 1 = rg,

where S is the set of possible symbols, s is a symbol and r is a Uniform(0,1) random

variable. The corresponding discretization function is:
Fdiscretize("'s) :] S [({rs — r)mod 1) =8,

where r; is a Uniform(0,1) random variable with a hidden symbol s.

The encoder and decoder start with the same seed and generate the same sequence
of random numbers, ry, 72, ..., 7. To maintain synchronization, the encoder and de-
coder associate the sequence of symbols with TCP sequence numbers, i.e., s; with
the first TCP sequence number, sy with the second TCP sequence number, and so
on. ! Therefore, both the encoder and decoder have the same values of r through the
sequence of symbols. The inverse distribution function F;;del takes a Uniform(0,1)

random number as input and generates a random variable from the selected model

'With this mechanism, repacketization can cause synchronization problems, so other mechanisms
such as “bit stuffing” {110] could be useful for synchronization.

18

as output. The sequence of transformed random numbers 7y, 742, ..., Tsn is used
with the inverse distribution function to create random covert inter-packet delays

ds1, ds2, ..., dgn. The encode function is:

Fencode = F_l ('rs) =ds,

model

where F;;del is the inverse distribution function of the selected model. The decode
function is:
Fiecode = Frmodet(ds) = 7s,
where Fo4er is the cumulative distribution function of the selected model, and d; is
a random covert inter-packet delay with a hidden symbol s.
The transmitter sends out packets to produce the random covert inter-packet de-
lays dg1, ds2, ..., dsn. The receiver then decodes and discretizes them to recover the

original symbols si, $2, ..., Sp.

2.2.1 Model-Based Channel Capacity

The model-based channel capacity is also dependent on the input distribution and

noise. The input distribution is defined as:

P(:E) = fmodel(m)

where f0der 18 the probability density function of the selected model.
Therefore, the capacity of the model-based channel is the mutual information over

the expected time E(X):

19

1 AP (o LW 2)P(@)
Ci= 51)[J Ply | 2)P(e)ogprste .

2.2.2 Implementation Details

We implement the proposed framework using C and MATLAB in Unix/Linux environ-
ments. The components run as user-space processes, while access to tcpdump is re-
quired. The filter is written in C and runs tcpdump with a user-specified filtering
expression to read the stream of packets. The filter processes the traffic stream and
computes the inter-packet delays based on the packet timestamps. The analyzer is
written in MATLAB and utilizes the fitting functions from the statistics toolbox for
maximum likelihood estimation.

The encoder is written in C, and uses random number generation and random
variable models from the Park-Leemis [71] simulation C libraries. The transmitter is
also written in C, with some inline assembly, and uses the Socket API. The timing
mechanism used is the Pentium CPU Time-Stamp Counter, which is accessed by
calling the RDTSC (Read Time-Stamp Counter) instruction. The RDTSC instruction
has excellent resolution and low overhead, but must be calibrated to be used as a
general purpose timing mechanism. The usleep and nanosleep functions force a
context switch, which delays the packet transmission with small inter-packet delays,

so these functions are not used.

20

2.3 Experimental Evaluation

In this section, we evaluate the effectiveness of a model-based covert timing channel
built from our framework. The OPC and FPR covert timing channels, discussed in
Section 2.1, are used as points of comparison. In particular, we examine the capacity

and detection resistance of each covert timing channel.

2.3.1 Experimental Setup

The defensive perimeter of a network, composed of firewalls and intrusion detection
systems, is responsible for protecting the network. Typically, only a few specific ap-
plication protocols, such as HT'TP and SMTP, are commonly allowed to pass through
the defensive perimeter. We utilize outgoing HTTP inter-packet delays as the medium
to build model-based covert timing channels, due to the wide acceptance of HTTP
traffic for crossing the network perimeter. We refer to the model-based HTTP covert

timing channel as MB-HTTP.

2.3.1.1 Testing Scenarios

There are three different testing scenarios in our experimental evaluation. The first
scenario is in a LAN environment, a medium-size campus network with subnets for
administration, departments, and residences. The LAN connection is between two ma-
chines, located in different subnets. The connection passes through several switches,
the routers inside the campus network, and a firewall device that protects each sub-

net. The other two scenarios are in WAN environments. The first WAN connection is

21

between two machines, both are on the east coast of the United States but in different
states. One is on a residential cable network and the other is on a medium-size cam-
pus network. The second WAN connection is between two machines on the opposite
coasts of the United States, one on the east coast and the other on the west coast.

Both machines are on campus networks.

Table 2.2: Network Conditions for Test Scenarios
LAN WAN E-E | WAN E-W
distance | 0.3 miles 525 miles | 2660 miles
RTT 1.766ms 59.647ms 87.236ms
IPDV | 2.5822¢-05 | 2.4124e-03 | 2.1771e-04
hops 3 18 13
IPDV - inter-packet delay variation

The network conditions for different experiment scenarios are summarized in Table
2.2. The two-way round-trip time (RTT) is measured using the ping command. We
compute the one-way inter-packet delay variation based on the delays between packets
leaving the source and arriving at the destination. The inter-packet delay variations
of the three connections span three orders of magnitude, from 1 x 1073 to 1 x 1075.
The LAN connection has the lowest inter-packet delay variation and the two WAN
connections have higher inter-packet delay variation, as expected. The WAN E-E
connection is shorter and has smaller RTT time than the WAN E-W connection.
However, WAN E-E has higher inter-packet delay variation than WAN E-W, due
to more traversed hops. This implies that the inter-packet delays variation is more
sensitive to the number of hops than the physical distance and RTT between two

machines.

22

2.3.1.2 Building MB-HTTP

We install the components of the framework on the testing machines. The filter dis-
tinguishes the outgoing HTTP traffic from background traffic. The analyzer observes
10 million HTTP inter-packet delays, then fits the HTTP inter-packet delays to the
models, as described in Section 2.2. The fitting functions use maximum likelihood
estimation (MLE) to determine the parameters for each model. The model with the
best root mean squared error (RMSE), a measure of the difference between the model
and the distribution being estimated, is chosen as the traffic model.

For the HTTP inter-packet delays, the analyzer selects the Weibull distribution
based on the root mean squared error. Note that HTTP inter-packet delays have been
shown to be well approximated by a Weibull distribution [22]. The Weibull probability

distribution function is:
B E 1= (3)"
f(xv)Hk):X(X) e A

The parameters, which vary for each set of 100 packets, have a mean scale parameter
A of 0.0371 and a mean shape parameter k& of 0.3010. With these parameters, the

mean inter-packet delay is 0.3385, approximately 3 packets per second.

2.3.1.3 Formulating OPC and FPR

The average packet rate for FPR is fixed at ﬁ = 2.954 packets per second, based
on the average packet rate of HTTP traffic. We use the Arimoto-Blahut algorithm

to compute the optimal input distribution, with the average packet rate of 2.954 as

23

Table 2.3: Mean Packets/Second and Inter-Packet Delay for OPC
LAN WAN E-E WAN E-W
channel PPS IPD PPS IPD PPS 1PD
OPC | 12,777.98 | 7.87e-05 | 137.48 | 7.31e-03 | 1,515.56 | 6.63e-04
PPS - mean packets per second, IPD - mean inter-packet delay

the cost constraint. The optimal input distribution balances high cost symbols with
low probabilities and low cost symbols with high probabilities, such that the average
cost constraint is satisfied. The constraint can be satisfied for infinitely large symbols
with infinitely small probabilities, and hence, the optimal input distribution decays
exponentially to infinity. The results of the Arimoto-Blahut algorithm, as the number
of intervals increases, reduce to an Exponential distribution with an inverse scale

parameter of A = 2.954. The Exponential probability distribution function is:

f@,) = e 2,

We compute the optimal distance between packets for OPC based on the noise
distribution. The optimal distance between packets and the average packet rate for
OPC is shown in Table 2.3. For connections with higher inter-packet delay variation,
OPC increases the time elapse between packets to make the inter-packet delays easier

to distinguish, and, as a result, lowers the average number of packets per second.

2.3.2 Capacity

The definition of capacity allows us to estimate the capacity of each covert timing

channel based on the network conditions of each connection. In previous research [138],

24

the inter-packet delay differences have been shown to be well-modeled by a Laplace

distribution. The probability density function of the Laplace distribution is:

1 _jz—p
Flab) = g

The setting of the scale parameter b is based on the inter-packet delay variation
for each connection. The variation of the Laplace distribution is 02 = 2b%. Therefore,

we set b to:

1
b=14/50%
2
where o2 is the inter-packet delay variation for each connection.

Table 2.4: Theoretical Capacity for Covert Timing Channels
LAN WAN E-E WAN E-W
channel CpPP CPS | CPP | CPS [CPP | CPS
MB-HTTP | 9.39 27.76 | 4.12 1 1219 | 6.84 | 20.21
FPR 12.63 | 37.32 | 6.15 | 18.17 | 9.59 | 28.35
0] @ 0.50 | 6395.39 | 0.50 | 68.80 | 0.50 | 758.54
CPP - capacity per packet, CPS - capacity per second

The results, in terms of capacity per packet and capacity per second, are shown
in Table 2.4. While OPC has the highest capacity, it is the least efficient in terms
of capacity per packet. Furthermore, with the large number of packets per second, it
can be easily detected by most intrusion detection systems.

The capacity of MB-HTTP is 67% to 74% of that of FPR, with larger differences
for connections with high inter-packet delay variation than for those with low inter-

packet delay variation. The Weibull distribution has a larger proportion of very small

25

values than the Exponential distribution. As a result, MB-HTTP uses more small
values than FPR and benefits more from lower inter-packet delay variation.

The theoretical capacity is somewhat optimistic. The model only considers the
noise introduced after packets leave the transmitter. With the real covert timing
channels, noise is introduced before packets leave the transmitter. The transmitter
is sometimes not able to transmit at the appropriate times, due to slow processing,
context switches, etc. Thus, the actual distance between packets can increase or

decrease from the intended distance as the packets are transmitted.

2.3.2.1 Empirical Capacity

To evaluate the channel capacity in practice, we run covert timing channels on each
connection. The channels are configured to transmit 16,000 random bits of informa-
tion. For FPR and MB-HTTP, the number of bits encoded per packet is set to 16
(i.e., 216 = 65,536 different values), while OPC transmits a single bit per packet.
During these tests, we measure the bit error rate of each covert timing channel from
the most significant bit to the least significant bit of each packet. The most significant
bit represents a large part of the inter-packet delay, where the least significant bit
represents a small part of the inter-packet delay. While flipping the most significant
bit causes a difference in seconds or tenths of seconds, changing the least significant
bit means a difference only in milliseconds or microseconds. In other words, the higher
the number of bits encoded per packet, the smaller the precision of the lowest order

bits. Interestingly, encoding at 16 bits per packet and decoding at 8 bits per packet

26

Figure 2.2: Em‘ﬂﬁigﬂ Capacity and Bit Error Rates fvovl; WAN E-E and WAN E-W

mpirical capacity N E-E bit ervor rates
& FPR_# MB-HTTP —& FPR % MB-HTTP

14
@
z

empirical capacity
o o
POIY
A
error rate
°
®
N
&

o
Ny
-
3
Ve

1 2 3 4 5 6 7 8 8 1 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 93 14 15 16
bit bit
WAN E-W empirical capacity WAN E-W bit error rates
A FPR & WEHTTE
1 05
™
S A
208 S 04 £.3
S R
g N] w”
g os < % 03 e
s W \ S - /(
3 04 L3 1Y) e
£ L His e
5 LN L
€ LN L
602 e 01 4
i \k - M/‘
o s o P "
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
bit bit

produces the most significant 8 bits of the 16 bit code.

To determine the transmission rate with error correction, we measure the empirical
capacity of each bit as a binary symmetric channel. The binary symmetric channel is
a special case where the channel has two symbols of equal probability. The capacity

of a binary symmetric channel is:

C=I(X;Y)=1~-(plogp+qlogg),

where p is the probability of a correct bit and ¢ = 1 — p is the probability of an
incorrect bit.

The empirical capacity and bit error rate for each bit, from the most significant to
the least significant, are shown in Figure 2.2. The empirical capacity per bit degrades

as the bit error rates increase. The total capacity of the channel is the summation

27

of the capacity for each bit. For MB-HTTP, the bit error rate increases somewhat
linearly. For FPR, the bit error rate accelerates gradually, eventually overtaking the

bit error rates of MB-HTTP, though at this point the capacity per bit is insignificant.

Table 2.5: Empirical Capacity for Covert Timing Channels

LAN WAN E-E WAN E-W
channel ECPP ECPS ECPP | ECPS | ECPP ECPS
MB-HTTP | 6.74 19.93 2.15 6.35 5.18 15.31
FPR 10.95 32.35 4.63 13.67 | 9.37 27.69
OPC 0.85 |10,899.62 | 0.66 | 91.28 [0.98 1,512.53
ECPP - empirical capacity per packet, ECPS - empirical capacity per second

The empirical capacity of each covert timing channel is shown in Table 2.5. The
empirical capacity of MB-HTTP is still about 46% to 61% of that of FPR, somewhat
lower than the case in the theo.retical model. This is because a larger proportion of
MB-HTTP traffic has small inter-packet delays than that of FPR, and small inter-
packet delays are more sensitive to noise caused by transmission delays (i.e., slow
processing, context switches, etc.) than large inter-packet delays, which is not repre-

sented in the theoretical model.

2.3.3 Detection Resistance

The detection resistance, as described in Section 2.1, is estimated based on the shape
and regularity tests. To examine the shape of the distribution, we use the Kolmogorov-
Smirnov test [36], which is a non-parametric goodness-of-fit test. To examine the
regularity of the traffic, we use the regularity test [19], which studies the variance of
the traffic pattern. In this section, we detail these two tests and show the detection

resistance of MB-HT'TP against both tests.

28

2.3.3.1 Shape Tests

The two-sample Kolmogorov-Smirnov test determines whether or not two samples
come from the same distribution. The Kolmogorov-Smirnov test is distribution free,
meaning the test is not dependent on a specific distribution. Thus, it is applicable to
a variety of types of traffic with different distributions. The Kolmogorov-Smirnov test
statistic measures the maximum distance between two empirical distribution func-

tions.

KSTEST = max | Sy(x) — Sa(z) |,

where S; and Sy are the empirical distribution functions of the two samples.

In our experiments, we test a large set of legitimate inter-packet delays against a
sample of either covert or legitimate inter-packet delays. The large set is a training
set of 10,000,000 HTTP inter-packet delays. The training set is used to represent the
normal behavior of the HT'TP protocol.

The test score by comparing the two sets is used to determine if the sample is
covert or legitimate. A small score indicates that the behavior is close to normal.
However, if the test score is large, i.e., the sample does not fit the normal behavior of

the protocol, it indicates a potential covert timing channel.

Table 2.6: Mean and Standard Deviation of Kolmogorov-Smirnov Test Scores
LEGIT-HTTP | MB-HTTP FPR OPC
sample size | mean | stdev | mean | stdev | mean | stdev | mean | stdev
100x 2,000 193 110 196 | 093 | 925 | .002 | .999 | .000
100x 10,000 | .141 .103 157 | 087 | .925 | .001 | .999 | .000
100x 50,000 | .096 .088 122 | 073 | 924 | .000 | .999 | .000
100x 250,000 | .069 .066 096 | .036 | .924 | .000 | .999 | .000

29

Figure 2.3: Distribution of Kolmogorov-Smirnov Test Scores
scorss for 100x 2,000 packets scores for 100x 10,000 packets

DLEGIT-HTTP WMB-HTTP OLEGIT-HTTP WMB-HTTP

X
[DLEGIT-HTTP @MB-HTTP

035 ——| 05
§
g 0 04
g 025
£ o0z 03
s
0.15 02
0.1 '
0.05 0.
0 —mm [T 0 CW o
005 01 015 02 025 03 035 04 045 05 005 01 015 02 025 03 035 04 045 05
test score tost score

The Kolmogorov-Smirnov test is run 100 times for each of 2,000, 10,000, 50,000,
and 250,000 packet samples of legitimate and covert traffic from each covert timing
channel. The mean and standard deviation of the test scores are shown in Table 2.6.
For FPR and OPC, the mean scores are over 0.90 and the standard deviations are
extremely low, indicating that the test can reliably differentiate both covert timing
channels from normal HTTP traffic. By contrast, the mean scores for MB-HTTP
samples are very close to those of legitimate samples. The mean scores are for 100
tests, which in total include as many as 25 million (250,000 x 100) inter-packet delays.

The distribution of individual test scores is illustrated in Figure 2.3.

Table 2.7: False Positive and True Positive Rates for Kolmogorov-Smirnov Test

LEGIT | MB-HTTP FPR OPC
sample size cutoff false pos. | true pos. | true pos. | true pos.
100x 2,000 | KSTEST > .66 .01 .01 1.00 1.00
100x 10,000 | KSTEST > .65 .01 .01 1.00 1.00
100x 50,000 | KSTEST > 41 .01 .01 1.00 1.00

100x 250,000 | KSTEST > .21 .01 .02 1.00 1.00

30

The detection resistance based on the Kolmogorov-Smirnov test is shown in Table
2.7. The targeted false positive rate is 0.01. To achieve this false positive rate, the
cutoff scores—the scores that decide whether samples are legitimate or covert—are
set at the 99th percentile of legitimate sample scores. The true positive rates, based
on the cutoff scores, are then shown for each covert timing channel. Since the true
positive rates in all 100 tests are 1.00, the Kolmogorov-Smirnov test detects FPR and
OPC easily. However, the true positive rates for MB-HTTP are approximately the
same as the false positive rates. The Kolmogorov-Smirnov test cannot differentiate
between MB-HTTP and legitimate samples. Such a result can be explained based
on the distribution of individual test scores, which is shown in Figure 2.3. While
the mean scores of MB-HTTP traffic in Table 2.6 are slightly higher than those of
LEGIT-HTTP, the distributions of individual scores overlap so that the false positive

rate and true positive rate are approximately equal.

2.3.3.2 Regularity Tests

The regularity test [19] determines whether the variance of the inter-packet delays is
relatively constant or not. This test is based on the observation that for most types
of network traffic, the variance of the inter-packet delays changes over time. With
covert timing channels, the code used to transmit data is a regular process and, as a
result, the variance of the inter-packet delays remains relatively constant over time.
In our experiments, we test the regularity of a sample of either covert or legitimate

inter-packet delays. The sample is separated into sets of w inter-packet delays. Then,

31

for each set, the standard deviation of the set o; is computed. The regularity is the
standard deviation of the pairwise differences between each o; and o; for all sets i < j.

| o5 — 0 |

1

regularity = STDEV(i< 4,4,)
The regularity test is run 100 times for 2,000 packet samples of legitimate and covert
samples from each covert timing channel. The window sizes of w = 100 and w = 250

are used. The mean regularity scores are shown in Table 2.8. If the regularity is small,

the sample is highly regular, indicating a potential covert timing channel.

Table 2.8: Mean of Regularity Test Scores
sample size LEGIT-HTTP | MB-HTTP | FPR | OPC
100x 2,000 w=100 43.80 38.21 0.34 | 0.00
100x 2,000 w=250 23.74 22.87 0.26 | 0.00

The mean regularity scores for OPC are 0.0 for both tests, indicating regular
behavior. There are two values, each with 0.5 probability. Therefore, the standard
deviation within sets is small ¢ = 0.5d = 3.317e — 4, and there is no detectable
change in the standard deviation between sets. The mean regularity score for FPR
is small as well, showing that the test is able to detect the regular behavior. While
the standard deviation of FPR, which is based on the Exponential distribution, is
o = A = 0.3385, the code is a regular process, so the variance of the inter-packet
delays remains relatively constant.

The mean regularity scores for MB-HT'TP are close to those of legitimate samples.
This is because the parameters are recalibrated after each set of 100 packets, as

described in Section 2.2. The parameters of the distribution determine the mean and

32

standard deviation, so adjusting the parameters changes the variance after each set
of 100 inter-packet delays. As a result, like legitimate traffic, the variance of the

inter-packet delays appears irregular.

Table 2.9: False Positive and True Positive Rates for Regularity Test

LEGIT | MB-HTTP FPR OPC

sample size cutoff false pos. | true pos. | true pos. | true pos.
100x 2,000 w=100 | reg. < 6.90 .01 .00 1.00 1.00
100x 2,000 w=250 | reg. < 5.20 .01 .00 1.00 1.00

The detection resistance based on the regularity test is shown in Table 2.9. The
targeted false positive rate is 0.01. The cutoff scores are set at the 1st percentile of
legitimate sample scores, in order to achieve this false positive rate. The true positive
rates, based on the cutoff scores, are then shown for each covert timing channels. The
regularity test is able to detect FPR and OPC in all 100 tests. The resulting true
positive rates for MB-HTTP are approximately the same as the false positive rate.

Basically, the test is no better than random guessing at detecting MB-HTTP.

2.4 Conclusion

We introduced model-based covert timing channels, which mimic the observed behav-
ior of legitimate network traffic to evade detection. We presented a framework for
building such model-based covert timing channels. The framework consists of four
components: filter, analyzer, encoder, and transmitter. The filter characterizes the
specific features of legitimate traffic that are of interest. The analyzer fits the traffic to

several models and selects the model with the best fit. The encoder generates random

33

covert inter-packet delays that, based on the model, mimic the legitimate traffic. The
transmitter then manipulates the timing of packets to create the model-based covert
timing channel.

Using channel capacity and detection resistance as major metrics, we evaluated
the proposed framework in both LAN and WAN environments. Our capacity results
suggest that model-based covert timing channels work efficiently even in the coast-
to-coast scenario. Our detection resistance results show that, for both shape and
regularity tests, covert traffic is sufficiently similar to legitimate traffic that current
detection methods cannot differentiate them. In contrast, the Kolmogorov-Smirnov

and regularity tests easily detect FPR and OPC.

34

Chapter 3

Detecting Covert Timing

Channels

3.1 Introduction

As an effective way to exfiltrate data from a well-protected network, a covert timing
channel manipulates the timing or ordering of network events (e.g., packet arrivals)
for secret information transfer over the Internet, even without compromising an end-
host inside the network. On the one hand, such information leakage caused by a
covert timing channel poses a serious threat to Internet users. Their secret credentials
like passwords and keys could be stolen through a covert timing channel without
much difficulty. On the other hand, detecting covert timing channels is a well-known
challenging task in the security community.

In general, the detection of covert timing channels uses statistical tests to differ-

entiate covert traffic from legitimate traffic. However, due to the high variation in

35

legitimate network traffic, detection methods based on standard statistical tests are
not accurate and robust in capturing a covert timing channel. Although there have
been recent research efforts on detecting covert timing channels over the Internet
[18, 19, 110, 75, 45], some detection methods are designed to target one specific covert
timing channel and therefore fail to detect other types of covert timing channels; the
other detection methods are broader in detection but are over-sensitive to the high
variation of network traffic. In short, none of the previous detection methods are
effective at detecting a variety of covert timing channels.

In this chapter, we propose a new entropy-based approach to detecting covert
timing channels. The entropy of a process is a measure of uncertainty or information
content, a concept that is of great importance in information and communication
theory [111]. While entropy has been used in covert timing channel capacity analysis,
it has never been used to detect covert timing channels. We observe that a covert
timing channel cannot be created without causing some effects on the entropy of the
original process!. Therefore, a change in the entropy of a process provides a critical
clue for covert timing channel detection.

More specifically, we investigate the use of entropy and conditional entropy in
detecting covert timing channels. For finite samples, the exact entropy rate of a
process cannot be measured and must be estimated. Thus, we estimate the entropy
rate with the corrected conditional entropy, a measure used on biological processes

[101]. The corrected conditional entropy is designed to be accurate with limited data,

!This observation applies to complex processes, like network traffic, but not to simple independent
and identically distributed processes [20].

36

which makes it excellent for small samples of network data. To evaluate our new
entropy-based approach, we conduct a series of experiments to validate whether our
approach is capable of differentiating covert traffic from legitimate traffic. We perform
the fine-binned estimation of entropy and the coarse-binned estimation of corrected
conditional entropy for both covert and legitimate samples. We then determine false
positive and true positive rates for both types of estimations. Our experimental
results show that the combination of entropy and corrected conditional entropy is

very effective in detecting covert timing channels.

3.2 Background And Related Work

To defend against covert timing channels, researchers have proposed different solu-
tions to detect, disrupt, and eliminate covert traffic. The disruption of covert timing
channels adds random delays to traffic, which reduces the capacity of covert timing
channels but degrades system performance as well. The detection of covert timing
channels is accomplished using statistical tests to differentiate covert traffic from le-
gitimate traffic. While the focus of earlier work is on disrupting covert timing channels
[48, 58, 62, 61, 63] or on eliminating them in the design of systems [1, 65, 66], more
recent research has begun to investigate the design and detection of covert timing chan-
nels [18, 19, 110, 75, 76, 45, 109]. In the following subsections, we give an overview of

recent research on covert timing channels and detection tests.

37

3.2.1 Covert Timing Channels

There are two types of covert timing channels: active and passive. In terms of covert
timing channels, active refers to covert timing channels that generate additional traffic
to transmit information, while passive refers to covert timing channels that manipulate
the timing of existing traffic. In general, active covert timing channels are faster, but
passive covert timing channels are more difficult to detect. On the other hand, active
covert timing channels often require a compromised machine, whereas passive covert
timing channels, if creatively positioned, do not. The majority of the covert timing
channels discussed in this section are active covert timing channels, except where

stated otherwise.

Figure 3.1: IPCTC/TRCTC/MBCTC Scenario

COVERT
TIMING 1 I
CHANNEL |
o E W S W e - - e
1 [
l
]
COMPROMISED FIREWALL /
MACHINE IDS

Figure 3.2: JitterBug Scenario
COVERT
TIMING | I

1 [

|
[
FIREWALL /
IDS

yi

COMPROMISED
INPUT DEVICE

38

3.2.1.1 1IP Covert Timing Channel

Cabuk et al. [19] developed the first IP covert timing channel, which we refer to as
IPCTC, and investigated a number of design issues. A scenario where IPCTC can be
used is illustrated in Figure 3.1. In this scenario, a machine is compromised, and the
defensive perimeter, represented as a perimeter firewall or intrusion detection system,
monitors communication with the outside. Therefore, a covert timing channel can
be used to pass through the defensive perimeter undetected. IPCTC uses a simple
interval-based encoding scheme to transmit information. IPCTC transmits a 1-bit by
sending a packet during an interval and transmits a 0-bit by not sending a packet
during an interval. A major advantage to this scheme is that when a packet is lost, a
bit is flipped but synchronization is not affected. The timing-interval ¢ and the number
of 0-bits between two 1-bits determines the distribution of IPCTC inter-packet delays.
It is interesting to note that if the pattern of bits is uniform, the distribution of inter-
packet delays is close to a Geometric distribution. To avoid creating a pattern of
inter-packet delays at multiples of a single ¢, the timing-interval ¢ is rotated among

different values.

3.2.1.2 Time-Replay Covert Timing Channel

Cabuk [18] later designed a more advanced covert timing channel based on a replay
attack, which we refer to as TRCTC. TRCTC uses a sample of legitimate traffic S,
as input and replays Sj, to transmit information. Sj, is partitioned into two equal

bins So and S by a value teyor. TRCTC transmits a 1-bit by randomly replaying

39

an inter-packet delay from bin S; and transmits a 0-bit by randomly replaying an
inter-packet delay from bin S;. Thus, as Sj, is made up of legitimate traffic, the
distribution of TRCTC traffic is approximately equal to the distribution of legitimate

traffic.

3.2.1.3 Model-Based Covert Timing Channel

Gianvecchio et al. [45] developed an automated framework for building model-based
covert timing channels, which we refer to as MBCTC, to mimic legitimate traffic.
MBCTC fits a sample of legitimate traffic to several models, such as Exponential
or Weibull, and selects the model with the best fit,. MBCTC then uses the inverse
distribution function and cumulative distribution function for the selected model as
encoding and decoding functions. Based on the inverse transform method for variate
generation [71], MBCTC transmits by generating pseudo-random inter-packet delays
with hidden information embedded. Thus, as the distribution of the pseudo-random
inter-packet delays is determined by the model that approximates legitimate traffic,
the distribution of MBCTC is close to that of legitimate traffic. To better model

changes in the traffic, MBCTC refits the model in sets of 100 packets.

3.2.1.4 JitterBug

Shah et al. [110] developed a keyboard device called JitterBug that slowly leaks typed
information over the network. JitterBug is a passive covert timing channel, so new
traffic is not created to transmit information. JitterBug demonstrates how a passive

covert timing channel can be positioned so that the target machine does not need

40

to be compromised. A scenario where JitterBug can be used is illustrated in Figure
3.2. In this scenario, an input device is compromised, and the attacker is able to
leak typed information over the network. JitterBug operates by creating small delays
in keypresses to affect the inter-packet delays of a networked application. JitterBug
transmits a 1-bit by increasing an inter-packet delay to a value modulo w milliseconds
and transmits a 0-bit by increasing an inter-packet delay to a value modulo [%'l
milliseconds. The timing-window w determines the maximum delay that JitterBug
adds to an inter-packet delay. For small values of w, the distribution of JitterBug
traffic is very similar to that of the original legitimate traffic. To avoid creating a
pattern of inter-packet delays at multiples of w and [%], a random sequence s; is

subtracted from the original inter-packet delay before the modulo operation.

3.2.1.5 Other Covert Timing Channels

Berk et al. [13] implemented a simple binary covert timing channel based on the
Arimoto-Blahut algorithm, which computes the input distribution that maximizes the
channel capacity [?, 14]. Luo et al. [75] designed a combinatorics-based scheme, called
Cloak, to transmit information in the ordering of packets within different flows. Cloak
can be considered as a storage and timing channel, as the encoding methods require
packets and/or flows to be distinguishable by their contents. The same authors also
proposed a covert timing channel based on the timing of TCP bursts [76]. Similar to
Cloak, El-Atawy et al. [38] built a covert timing channel based on packet ordering and

showed how code selection can make this technique effective at evading packet order

41

metrics. Sellke et. al [109] showed that with ii.d. traffic as cover, it is theoretically
possible to create “provably secure” covert timing channels, i.e., covert timing channels
that are computationally non-detectable. The same basic proof as [109] can be used to
show that TRCTC is computationally non-detectable for i.i.d. cover traffic when its
input messages are XOR’d‘ with cryptographically-secure random numbers. Although
not a covert timing channel, Giffin et al. [47] showed that low-order bits of the TCP
timestamp can be exploited to create a covert storage channel, which is related to
timing channels due to the shared statistical properties of timestamps and packet

timing.

3.2.1.6 Timing-Based Watermarks

A number of efforts have investigated timing-based watermarking systems [124, 122,
97, 123, 136, 55], which are related to covert timing channels. A timing-based water-
marking system is basically a side-channel that is augmented by a low-capacity covert
timing channel. Wang et al. [122] proposed a method for watermarking inter-packet
delays to track anonymous peer-to-peer voice-over-IP (VoIP) calls. More recently,
Houmansadr et. al [55] proposed a subtle watermark called RAINBOW that is non-
blind, i.e., it records both incoming and outgoing flows, allowing it to differentiate
flows by adding only small delays. By doing so, RAINBOW is able to evade sev-
eral detection tests, including entropy-based methods. However, the assumptions of
timing-based watermarking systems, like RAINBOW, are quite different than those

of covert timing channels. The entropy, if any, that is added by a watermarking sys-

42

tem can be very small. For example, if a set of flows are naturally differentiable,
a watermarking system need not add any delays to differentiate them. Generally,
timing-based watermarking systems are passive timing channels in that new traffic
is not created. Such systems again demonstrate how a passive timing channel can
be positioned so that the target, i.e., the anonymizing network, does not need to be

compromised.

3.2.2 Detection Tests

There are two broad classes of detection tests: shape tests and regularity tests. The
shape of traffic is described by first-order statistics, e.g., mean, variance, and distri-
bution. The regularity of traffic is described by second or higher-order statistics, e.g.,
correlations in the data. Note that in previous research the term regularity is some-
times used to refer to frequency-domain regularity [19, 110], whereas here we use this
term exclusively to refer to time-domain regularity, i.e., the regularity of a process

over time.

3.2.2.1 Kolmogorov-Smirnov Test

Peng et al. [97] showed that the Kolmogorov-Smirnov test is effective to detect wa-
termarked inter-packet delays, a form of timing channel [124]. The watermarked
inter-packet delays are shown to have a distribution that is the sum of a normal and
a uniform distribution. Thus, the Kolmogorov-Smirnov test can be used to deter-
mine if a sample comes from the appropriate distribution. The Kolmogorov-Smirnov

test determines whether or not two samples (or a sample and a distribution) differ.

43

The use of the Kolmogorov-Smirnov test to detect covert timing channels is described
in more detail in Section 3.4.1.2. The Kolmogorov-Smirnov test is distribution free,
i.e., the test is not dependent on a specific distribution. Thus, the Kolmogorov-
Smirnov test is applicable to different types of traffic with different distributions.
The Kolmogorov-Smirnov test statistic measures the maximum distance between two

empirical distribution functions:

KSTEST = max | Si{z) — Sa(z) |, (3.1)

where S7 and S; are the empirical distribution functions of the two samples.

3.2.2.2 Regularity Test

Cabuk et al. [19] investigated a method of detecting covert timing channels based
on regularity. This detection method, referred to as the regularity test, determines
whether or not the variance of the inter-packet delays is relatively constant. This
detection test is based on the fact that for most network traffic, the variance of the
inter-packet delays changes over time, whereas with covert timing channels, if the
encoding scheme does not change over time, then the variance of the inter-packet
delays remains relatively constant. The use of the regularity test to detect covert
timing channels is discussed in more detail in Section 3.4.1.2. For the regularity test,
a sample is separated into sets of w inter-packet delays. Then, for each set, the

standard deviation of the set ¢; is computed. The regularity is the standard deviation

44

of the pairwise differences between each o; and o; for all sets i < j.

regularity = STDEV (m%—l,i < 7, Vi,j> (3.2)
i

3.2.2.3 Other Detection Tests

Cabuk et al. [19] investigated a second method of detecting covert timing channels,
referred to as e-similarity, based on measuring the proportion of similar inter-packet
delays. The e-similarity test is based on the fact that IPCTC creates clusters of similar
inter-packet delays at multiples of the timing-interval. Luo et al. [75] developed a
detection method that targets the Cloak channel by measuring the intervals between
acknowledgment and data packets. While both detection methods are effective at
detecting the specific covert timing channels for which they are designed, namely
IPCTC and Cloak, their respective scopes of detection are very limited. In comparison
with more generic detection methods, they are less effective at detecting other types
of covert timing channels. Berk et al. [13] used a simple mean-max ratio to test for
bimodal or multimodal distributions that could be induced by binary or multi-symbol

covert timing channels.

3.3 Entropy Measures

In this section, we first describe entropy, conditional entropy, and corrected conditional
entropy, and then explain how these measures relate to first-order statistics, second

or higher-order statistics, and the regularity or complexity of a process. Finally, we

45

present the design and implementation of the proposed scheme to detect covert timing

channels, based on the concept of entropy.

3.3.1 Entropy and Conditional Entropy

The entropy rate, which is the average entropy per random variable, can be used as
a measure of complexity or regularity {101, 105]. The entropy rate is defined as the
conditional entropy of a sequence of infinite length. The entropy rate is upper-bounded
by the entropy of the first-order probability density function or first-order entropy. A
simple independent and identically distributed (i.i.d.) process has an entropy rate
equal to the first-order entropy. A highly complex process has a high entropy rate,
but less than the first-order entropy. A highly regular process has a low entropy rate,
zero for a rigid periodic process, i.e., a repeated pattern.

A random process X = {X;} is defined as an indexed sequence of random variables.
To give the definition of the entropy rate of a random process, we first define the

entropy of a sequence of random variables as:

H(X1, . Xp) == Y P(®1,.:,%m) l0g P(T1, 00, Tm), (3.3)
X1,00Xm

where P(z1,...,Zm) is the joint probability P(X; = 21, ..., Xm = Tm)-
Then, from the entropy of a sequence of random variables, we define the conditional

entropy of a random variable given a previous sequence of random variables as:

H(Xp | X1y ooy Xone1) = H(X1, e, Xm) — H(X1, ooy Xn1). (3.4)

46

Lastly, the entropy rate of a random process is defined as:

H(X) = lim H(Xm | X1, Xm—1). (3.5)

m—00

The entropy rate is the conditional entropy of a sequence of infinite length and,
therefore, cannot be measured for finite samples. Thus, we estimate the entropy rate
with the conditional entropy of finite samples. It is also important to note that the
definition of entropy rate is for stationary stochastic processes [27] and the extent
to which measured data is non-stationary could affect the accuracy of entropy rate

estimates.

3.3.2 Corrected Conditional Entropy

The exact entropy rate cannot be measured for finite samples and must be estimated.
In practice, we replace probability density functions with empirical probability density
functions based on the method of histograms. The data is binned in @ bins. The
specific binning strategy being used is important to the overall effectiveness of the
test and is discussed in Section 3.3.3. The empirical probability density functions
are determined by the proportions of patterns in the data, i.e., the proportion of a
pattern is the probability of that pattern. Here a pattern is defined as a sequence
of bin numbers. The estimates of the entropy or conditional entropy, based on the
empirical probability density functions, are represented as: EN and C'E, respectively.

There is a problem with the estimation of CE(X,, | X1, ..., Xm—1) for some values

of m. The conditional entropy tends to zero as m increases, due to limited data. If a

47

specific pattern of length m — 1 is found only once in the data, then the extension of
this pattern to length m will also be found only once. Therefore, the length m pattern
can be predicted by the length m — 1 pattern, and the length m and m — 1 patterns
cancel out. If no pattern of length m is repeated in the data, then CE(Xp, | Xm-1)
is zero, even for i.i.d. processes.

To solve the problem of limited data, without fixing the length of m, we use
the corrected conditional entropy (CCE) [101]. The corrected conditional entropy is

defined as:

CCE(Xpm | X150y Xme1) = CE(Xpn | X1, .00, Xm—1) + perc(Xpm) - EN(X1), (3.6)

where perc(X,,) is the percentage of unique patterns of length m and EN (X)) is the
entropy with m fixed at one, i.e., only the first-order entropy.

The estimate of the entropy rate is the minimum of the corrected conditional en-
tropy over different values of m. The minimum of the corrected conditional entropy
is considered to be the best estimate of the entropy rate with the available data.
The corrected conditional entropy has a minimum, because the conditional entropy
decreases while the corrective term increases. The corrected conditional entropy has
been mainly used on biological data, such as electrocardiogram [101] and electroen-
cephalogram data [105]. Although not related to our work, it is interesting to see
how such a measure can differentiate the states of complex biological processes. For

example, with the electroencephalogram, an increase in the entropy rate indicates a

48

decrease in the depth of anesthesia, i.e., the subject is becoming more conscious.

3.3.3 Binning Strategies

The strategy of binning the data is critical to the overall effectiveness of the test.
The binning strategy mainly decides: (1) how the data is partitioned and (2) the
bin granularity or the number of bins @. In previous work, partitioning data into
equiprobable bins seems to be most effective [101, 105]. The use of equiprobable bins
is illustrated in Figure 3.3, showing the partitioning of Exponential data into bins of
equal area. The bins, numbered 1 through 5, are small in width when the proportion
of values is high and large in width when the proportion of values is low. Thus, while
the bins have different widths, the total area of each bin is equal. The bin number for

a value can then be determined based on the cumulative distribution function:

bin = | F(z)* Q], (3.7)

where F' is the cumulative distribution function and z is the value to be binned.
The bin numbers can also be determined based on ranges, e.g., 0.0 < bin; < 0.22,
0.22 < biny < 0.51, 0.51 < bing < 0.91, and so on, which requires a search of the
ranges to determine the correct bin number for a value. Meanwhile, the cumula-
tive distribution function can determine the correct bin in constant time, which is
important for performance when the number of bins is large.
The choice of the number of bins offers a tradeoff. While a larger number of bins

retains more information about the distribution of the data, it increases the number

49

Figure 3.3: Equiprobable Binning of Exponential Data
1 T T T T T T T

09 r
08y
0.7
06 r
05
04 r
03r
02r
01}

0

proportion

0 0.5 1 1..5 2 2‘.5 3 3‘.5 4

value
of possible patterns Q™ and, thus, limits the ability of the test to recognize longer
patterns due to the limited data. In contrast, a small number of bins captures less
information about the distribution, but is better able to measure the regularity of the
data. Therefore, as both strategies have advantages and disadvantages, we use both
coarse-grain and fine-grain binning.

To determine the best choice of @ for coarse-grain binning, we run tests on cor-
related and uncorrelated samples for @ = 2 through 10. The correlated samples are
100 traces of 2,000 HT'TP inter-packet delays. The uncorrelated samples are random
permutations of the correlated samples. We then count the number of uncorrelated
samples with scores that overlap with the scores of correlated samples. There is no
overlap for the values of = 5 to 8. Therefore, to retain the ability of the test
to recognize longer patterns and measure regularity, we use @ = 5 for coarse-grain
binning.

It is much simpler to determine the best choice of) for fine-grain binning. With

50

increasing values of @, the number of possible patterns Q™ becomes much larger than
the size of the sample being tested. At this point, the test scores are dominated by
the estimate of the entropy for length one. Then, as we increase the value of @, the
bins continue to become more precise, leading to a better estimate of the entropy for
length one than that for smaller values of (). Therefore, as () can be made arbitrarily

precise, we use @ = 216 = 65,536 for fine-grain binning.

3.3.4 Implementation Details

Our design goal is to be effective in detection and efficient in terms of run-time and
storage. The efficiency of tests is particularly important if tests are conducted in
real-time for online processing of data. Thus, we are careful to optimize our imple-
mentation for performance. We implement the corrected conditional entropy in the
C programming language. The patterns are represented as nodes in a Q-ary tree of
height m. The nodes of the tree include pattern counts and links to the nodes with
longer patterns. The level of the tree corresponds to the length of patterns. The
children of the root are the patterns of length 1. The leaf nodes are the patterns of
length m.

To add a new pattern of length m to the tree, we move down the tree towards
the leaves, updating the counts of the intermediate nodes and creating new nodes.
Thus, when we reach the bottom of the tree, we have counted both the new pattern
and all of its sub-patterns. After all patterns of length m are added, we perform a

breadth-first traversal. The breadth-first traversal computes the corrected conditional

51

entropy at each level and terminates when the minimum is obtained. If the breadth-
first traversal reaches the bottom of the tree without having the minimum, then we
must increase m and continue.

The time and space complexities are O(n-m), where n is the size of the sample, if
we assume a priori knowledge of the distribution and use the cumulative distribution
function to determine the correct bin for each value in constant time. Otherwise, the
time complexity increases to O(n - m -log(®)). In practice, running our program on
a sample of size 2,000 with @ = 5 and a pattern of length 10 on our test machine,
an Intel Pentium D 3.4Ghz, takes 16 milliseconds. However, small changes in the
implementation can have significant impact on performance.

To demonstrate this, we evaluate the computation overhead of our implementation
and that of a previous implementation [105]. The computation time of both imple-
mentations with increasing pattern length is shown in Figure 3.4. For small values
of m, our computation time is slightly longer, because of the overhead of creating
our data structure. However, as m increases, the previous implementation increases
quadratically, whereas our implementation increases linearly. The quadratic growth
is caused by the separate processing of patterns of different lengths, i.e., the patterns
of length 1, then the patterns of length 2, and so on, which introduces a quadratic

2
;. m+m
1= 3 -

term due to the summation of the pattern lengths: » /v,

52

Figure 3.4: CCE Performance

128 . : .
new CCE ——

__e4} old CCE -~ A
%)
S 32t =
g 16 |

X
z °f "
| / *
s 2t y]
i
3 17
E o5l
[&]

0.25 | .

0.125

pattern length

3.4 Experimental Evaluation

In this section, we validate the effectiveness of our proposed approach through a
series of experiments. The focus of these experiments is to determine if our entropy-
based methods (entropy and corrected conditional entropy) are able to detect covert
timing channels. We test our entropy-based methods against four covert timing chan-
nels: IPCTC [19], TRCTC [18], MBCTC [45] and JitterBug [110]. Furthermore, we
compare our entropy-based methods to two other detection tests: the Kolmogorov-
Smirnov test and the regularity test [19].

The purpose of a detection test is to differentiate covert traffic from legitimate
traffic. The performance of a detection test can be measured based on false positive
and true positive rates, with low false positive rate and high true positive rate being
ideal. In practice, because of the large variation in legitimate network traffic, it is
important that tests work well for typical traffic and occasional outliers. If a detection

test gives test scores with significant overlap between legitimate and covert samples,

53

then it fails on detection. Therefore, the mean, variance, and distribution of test

scores are critical metrics to the performance of a detection test.

3.4.1 Experimental Setup

The defensive perimeter of a network, made up of firewalls and intrusion detection
systems, is designed to protect the network from malicious traffic. Typically, only a few
specific application protocols, such as HTTP and SMTP, although heavily monitored,
are allowed to pass through the defensive perimeter. In addition, other protocols,
such as SSH, might be permitted to cross the perimeter but only to specific trusted
destinations.

‘We now consider the scenarios discussed in Section 3.2. In the first scenario, which
relates to IPCTC, TRCTC and MBCTC, a compromised machine uses a covert timing
channel to communicate with a machine outside the network. For IPCTC, TRCTC
and MBCTC, we utilize outgoing HTTP inter-packet delays as the medium, due to
the wide acceptance of HT'TP for crossing the network perimeter and the high volume
of HTTP traffic. In the second scenario, which relates to JitterBug, a compromised
input device uses a covert timing channel to leak typed information over the traffic of
a networked application. For JitterBug, we utilize outgoing SSH inter-packet delays
as the medium, based on the original design [110] and the high volume of keystrokes

in interactive network applications.

54

3.4.1.1 Dataset

The covert and legitimate samples that we use for our experiments are from two
datasets: (1) HTTP traces we collected on a medium-size campus network and (2) a
dataset obtained from the University of North Carolina at Chapel Hill (UNC). In total,
we have 12GB of tcpdump packet header traces (HTTP protocol) that we collected
and 79GB of tcpdump packet header traces (all protocols) from the UNC dataset [?].

In our experiments, we use several subsets of the two datasets, including:

e HTTP training set: 200,000 HTTP packets

HTTP test set: 200,000 HTTP packets

TRCTC test set: 200,000 HTTP packets

e MBCTC test set: 200,000 HTTP packets

SSH training set: 200,000 SSH packets

SSH test set: 200,000 HTTP packets

JitterBug test set: 200,000 SSH packets

The packets in each dataset are grouped into flows. The flows represent outgoing
traffic from a host to a specific port, e.g., port 80 for HT'TP or port 22 for SSH. The
flows are based on a 3-tuple of source host, destination port, and protocol, rather
than a 5-tuple of source address, source port, destination address, destination port,
and protocol. The subsets contain 100 samples and each sample has 2,000 packets

from a flow.

55

In our experiments, we test a number of covert samples, which are generated from
these subsets and from the encoding methods for IPCTC, TRCTC, MBCTC, and
JitterBug. The covert timing channels are configured with the recommended settings
from their original works, and we use the most advanced version if multiple versions of
a covert timing channel are available. Specifically, IPCTC rotates the timing-interval
t amongst 40ms, 60ms and 80ms; TRCTC is the BMC type; and JitterBug subtracts
the random sequence s; before the modulo operation. The input messages transmitted
in our tests are random bits generated by a pseudo-random number generator. For
TRCTC, we’generate the covert samples from a set of 200,000 legitimate HTTP
inter-packet delays. For MBCTC, we generate the covert samples from a model that
is selected by fitting multiple models to a set of 200,000 legitimate HTTP inter-packet
delays. For JitterBug, we generate the covert samples from a set of 200,000 legitimate
SSH inter-packet delays. A test machine replays the set of 200,000 SSH inter-packet
delays and adds JitterBug delays. Note that our version of JitterBug is implemented
in software. A monitoring machine on the campus backbone then collects a trace
of the JitterBug traffic, which adds network delays after the addition of JitterBug
delays. Since the monitoring machine is only four hops away from the test machine,
with a RTT of 0.3ms, the added network delays are small. This JitterBug scenario is
illustrated in Figure 3.2, where a defensive perimeter monitors outgoing traffic.

The training sets of legitimate traffic are useful for some of the detection tests. The
Kolmogorov-Smirnov test uses the training sets to represent the behavior of legitimate

traffic. The Kolmogorov-Smirnov test then measures the distance between the test

56

sample and the training set. The entropy and corrected conditional entropy tests use
the training sets to determine the range of each bin, based on equiprobable binning.
These tests do not require a priori binning, but doing so improves performance, as

the data does not need to be partitioned online.

3.4.1.2 Detection Methodology

In our experiments, we run detection tests on samples of covert and legitimate traffic.
We use the resulting test scores to determine if a sample is covert or legitimate as
follows. First, we set the targeted false positive rate at 0.01. To achieve this false
positive rate, the cutoff scores—the scores that decide whether a sample is legitimate
or covert—are set at the 99th or 1lst percentile (high scores or low scores for differ-
ent tests) of legitimate sample scores from the HTTP or SSH training set. Then,
samples with scores worse than the cutoff are identified as covert, while samples with
scores better than the cutoff are identified as legitimate. The false positive rate is the
proportion of legitimate samples in the test set that are wrongly identified as covert,
while the true positive rate is the proportion of covert samples in the test set that are
correctly identified as covert.

Considering the properties of the detection tests, we can classify them as tests of
shape or regularity. The shape of traffic is described by first-order statistics, and the
regularity of traffic is described by second or higher-order statistics. The Kolmogorov-
Smirnov test and entropy test are tests of shape, while the regularity test and corrected

conditional entropy test are tests of regularity. The test scores are interpreted as

57

follows.

In the Kolmogorov-Smirnov test, we measure the distance between the test sample
and the training set that represents legitimate behavior. Thus, if the test score is small,
it implies that the sample is close to the normal behavior. However, if the sample does
not fit the normal behavior well, the test score will be large, indicating the possible
occurrence of a covert timing channel. By contrast, in the regularity test, we measure
the standard deviation of the normalized standard deviations of sets of 100 packets.
If the regularity score is low, then the sample is highly regular, indicating the possible
existence of a covert timing channel.

The entropy test estimates the first-order entropy, whereas the corrected condi-
tional entropy test estimates the higher-order entropy. The entropy test is based on
the same algorithm as the corrected conditional entropy test, except that the correc-
tive term is not added. The corrected conditional entropy test uses Q = 5, whereas
the entropy test uses Q = 65,536 and m fixed at one. If the entropy test score is
low, it suggests a possible covert timing channel, because the sample does not fit the
appropriate distribution. If the conditional entropy test score is lower or higher than
the cutoff scores, it suggests a possible covert timing channel. When the conditional
entropy test score is low, the sample is highly regular. When the conditional entropy

test score is high, near the first-order entropy, the sample shows a lack of correlations.

58

3.4.2 Experimental Results

In the following, we present our experimental results in detail. The four detection
tests are: the Kolmogorov-Smirnov test, regularity test, entropy test, and corrected
conditional entropy test. The four covert timing channels are: IPCTC, TRCTC,
MBCTC, and JitterBug. The experiments are organized by covert timing channels,

which are ordered in terms of increasing detection difficulty.

3.4.2.1 IPCTC

Our first set of experiments investigates how the detection tests perform against
IPCTC [19]. IPCTC is the simplest among the three covert timing channels be-
ing tested and the easiest to detect, because it exhibits abnormality in both shape
and regularity. The abnormal shape of IPCTC is caused by the encoding scheme.
The encoding scheme encodes a 1-bit by transmitting a packet during an interval, and
encodes a 0-bit with no packet transmission. Thus, the number of 0-bits between two
1-bits determines the inter-packet delays. If the bit sequence is random, then we can
view the bit sequence as a series of Bernoulli trials and, thus, the inter-packet delays
approximate a Geometric distribution. The timing-interval ¢ is rotated among 40 mil-
liseconds, 60 milliseconds, and 80 milliseconds after each 100 packets, as suggested
by Cabuk et al. [19], to avoid creating a regular pattern of inter-packet delays at
multiples of a single ¢. However, this instead creates a regular pattern of inter-packet
delays at multiples of 20 milliseconds. The regularity of IPCTC is due to the lack of

significant correlations between inter-packet delays. That is, the inter-packet delays

59

are determined by the bit sequence being encoded, not by the previous inter-packet
delays.

We run each detection test 100 times for 2,000 packet samples of both legitimate
traffic and IPCTC traffic. The mean and standard deviation of the test scores are
shown in Table 3.1. The detection tests all achieve lower average scores for IPCTC
than those for legitimate traffic. The regularity test has a very high standard deviation
for legitimate traffic, which suggests that this test is sensitive to variations in the
behavior of legitimate traffic. The corrected conditional entropy test has a mean
score for covert traffic that appears somewhat close to that of legitimate traffic, 1.96
for legitimate and 2.21 for covert. However, in relative terms, these scores are not
that close, since the standard deviation of the corrected conditional entropy test is
relatively low. The mean score for IPCTC is much closer to the maximum entropy
than to the mean score of legitimate traffic. The maximum entropy is the most uniform
possible distribution [27]. The maximum entropy for Q = 5 is:

HX)=Q- %log (%) =5 %log (%) ~ 2.3219 (3.8)

The corrected conditional entropy score is bounded from above by the first-order
entropy. The first-order entropy is then bounded from above by the maximum entropy.
Therefore, the corrected conditional entropy scores for IPCTC are close to the highest
values possible.

As shown in Table 3.2, the detection rates for IPCTC (i.e. true positive rates for

detecting IPCTC) are 1.0 for all tests except the regularity test, whose detection rate

60

is only 0.54. The regularity test measures sets of 100 packets and the timing-interval
t is rotated after each set of 100 packets, so the regularity test observes three distinct
variances and accurately measures the regularity of IPCTC. The problem though is not
measuring IPCTC, but measuring legitimate traffic. The very high standard deviation
of the regularity test against legitimate traffic makes it impossible to differentiate
IPCTC from legitimate samples without a higher false positive rate. Moreover, if we
increase the timing-interval ¢ to greater than 100 packets, the regularity test observes a
different number of packets for each t value within each window, as the sets of ¢ packets
overlap with the window at different points, making the test less reliable. However,
if we decrease the timing-interval ¢ to much less than 100 packets, the regularity test
observes a similar number of packets for each ¢ value within each window and the
variance for each window is similar, which makes the test more reliable.

Still, the main problem with the regularity test is its high standard deviation for
legitimate traffic. The regularity test is very sensitive to outliers in legitimate traffic.
For example, if o; is very small, due to a sequence of similar inter-packet delays,
and o; is average or larger, then @;:T”J—l is very large, especially for the values of o;
close to zero, which are not uncommon. In fact, one such outlier in a sample is more
than sufficient to make a covert sample appear to be a legitimate sample. The high
variance of the regularity test demonstrates that it is important to examine more than
the average test score, since the variance and distribution of test scores are critical to

the successful detection of covert timing channels.

61

Table 3.1: IPCTC Test Scores
HTTP-TEST IPCTC

test mean | stdev | mean | stdev
KSTEST | 0.180 | 0.077 | 0.708 | 0.000
regularity | 35.726 | 36.635 | 0.330 | 0.056
EN 10.454 | 0.152 | 6.250 | 0.028
CCE 1.964 | 0.149 | 2.216 | 0.013

Table 3.2: IPCTC Detection Rates
HTTP-TEST IPCTC
test false positive | true positive
KSTEST > 0.36 .00 1.00
regqularity < 0.41 .01 .54
EN < 8.56 .01 1.00
CCE > 2.16 .01 1.00

3.4.2.2 TRCTC

Our second set of experiments investigates how our detection tests perform against
TRCTC [18]. TRCTC is a more advanced covert timing channel that makes use of a
replay attack. TRCTC replays a set of legitimate inter-packet delays to approximate
the behavior of legitimate traffic. Thus, TRCTC has approximately the same shape
as legitimate traffic, but exhibits abnormal regularity, like IPCTC. The regularity
of TRCTC, like IPCTC, is due to the lack of significant correlations between inter-
packet delays. Although TRCTC replays inter-packet delays, the replay is in random
order, as determined by the bit sequence that is being encoded, thus breaking the
correlations in the original inter-packet delays.

We run each detection test 100 times for 2,000 packet samples of both legitimate
traffic and TRCTC traffic. The mean and standard deviation of the test scores are

shown in Table 3.3. The test scores for TRCTC and legitimate traffic are approx-

62

imately equal for the Kolmogorov-Smirnov and entropy tests. These tests strictly
measure first-order statistics, and, as such, are not able to detect TRCTC. The reg-
ularity test achieves a much lower average score for TRCTC than that for legitimate
traffic, which is due to the similar variance between groups of packets in TRCTC.
However, the standard deviation of the regularity test is again very high for legiti-
mate traffic and, this time, is high for covert traffic as well. At the same time, the
corrected conditional entropy test gives similar results to those for IPCTC. The cor-
rected conditional entropy test has a mean score for TRCTC that appears somewhat
close to that of legitimate, 1.96 for legitimate and 2.21 for covert. However, if we ex-
amine the distribution of test scores for TRCTC and legitimate traffic, as illustrated
in Figure 3.5, then we can see that, although some scores are in adjacent bins, there
is no overlap between the distributions. Furthermore, the distribution of legitimate
test scores is strongly skewed to the left, away from the distribution of TRCTC test
scores. The detection rates for TRCTC, as shown in Table 3.4, are very low (0.04 or
less) for all the detection tests except the corrected conditional entropy test, which
has a detection rate of 1.0. The corrected conditional entropy test scores of TRCTC
are again close to the maximum entropy, therefore the corrected conditional entropy

test is successful in detecting TRCTC.

Table 3.3: TRCTC Test Scores
HTTP-TEST TRCTC

test mean | stdev | mean | stdev
KSTEST | 0.180 | 0.077 | 0.180 { 0.077
regularity | 35.726 | 36.635 | 7.845 | 9.324
EN 10.454 | 0.152 | 10.454 | 0.152
CCE 1.964 | 0.149 | 2.217 | 0.012

63

Table 3.4: TRCTC Detection Rates

HTTP-TEST TRCTC
test false positive | true positive
KSTEST > 0.36 .00 .01
regularity < 0.41 .01 .04
EN < 8.56 .01 .02
CCE > 2.16 .01 1.00

Figure 3.5: Distribution of CCE Test Scores for TRCTC
1

LEGIT mmmm
TRCTC o
08|
5 06}
b =4
[o]
g
S 04
02

1 12 14 16 18 2 22 24
score

3.4.2.3 MBCTC

Our third set of experiments investigates how our detection tests perform against
MBCTC [45]. MBCTC is a more advanced covert timing channel that exploits traffic
modeling to mimic legitimate traffic. The traffic model is determined by using maxi-
mum likelihood estimation (MLE) to determine model parameters and then selecting
the model with the lowest root mean squared error (RMSE) from several models. The
model selected for legitimate HTTP traffic is Weibull with a mean scale parameter A
of 0.125 and a mean shape parameter k of 0.426. With these parameters, the mean
inter-packet delay is 0.3524, approximately 3 packets per second. The model is then

refitted in sets of 100 packets to better model changes in the traffic over time. Thus,

64

MBCTC has a similar shape to legitimate traffic, due to modeling the distribution,
and a similar regularity for sets of 100 packets or more, due to the refitting process.
‘We run each detection test 100 times for 2,000 packet samples of both legitimate
traffic and MBCTC traffic. The mean and standard deviation of the test scores are
shown in Table 3.5. The test scores of MBCTC are higher than those of legitimate
traflic for the Kolmogorov-Smirnov test, though less than the standard deviation, due
to the model being very close but not a perfect fit. The regularity test achieves a
lower average score for MBCTC than that of legitimate traffic, though the standard
deviation is again very high for legitimate traffic and covert traffic. The entropy test
scores of MBCTC are higher on average than those of legitimate traffic, indicating that
MBCTC traffic is consistently a somewhat close fit to the legitimate traffic distribu-
tion. The corrected conditional entropy test scores are significantly lower for MBCTC
than for legitimate traffic. However, when we examine the distribution of test scores
for MBCTC and legitimate traffic, as illustrated in Figure 3.6, we can see that there
is a slight overlap between the distributions. This shows that the refitting process
used by MBCTC, i.e., changing the model after each set of 100 packets, is relatively
successful, but not sufficient to capture the true regularity of legitimate traffic. In
particular, MBCTC traffic is more regular over time than legitimate traffic, i.e., the
sequences of inter-packet delays are more predictable. For example, if a burst occurs,
then the expected value of the model will be small and MBCTC will generate a larger
portion of small inter-packet delays for the next 100 inter-packet delays. As a result,

small inter-packet delays will be more likely to be followed by small inter-packet de-

65

lays in MBCTC traffic than in legitimate traflic, which results in lower scores for the
corrected conditional entropy test. The detection rates of MBCTC, as shown in Table
3.4, are very low (0.04 or less) for all the detection tests except the entropy test and
the corrected conditional entropy test. The entropy test is able to sometimes detect
MBCTC, with a detection rate of 0.55. The corrected conditional entropy test is very

successful in detecting MBCTC, with a detection rate of 0.95.

Table 3.5: MBCTC Test Scores
HTTP-TEST MBCTC

test mean | stdev | mean | stdev
KSTEST | 0.180 | 0.077 | 0.208 | 0.073
regularity | 35.726 | 36.635 | 18.440 | 22.605
EN 10.454 | 0.152 | 10.739 | 0.078
CCFE 1.964 | 0.149 | 1.156 | 0.223 |

Table 3.6: MBCTC Detection Rates

HTTP-TEST MBCTC
test false positive | true positive
KSTEST > 0.36 .00 .03
regularity < 0.41 .01 .02
EN >10.74 .01 .55
CCE <1.50 .00 .95

3.4.2.4 JitterBug

Our fourth set of experiments investigates how our detection tests perform against
JitterBug [110]. JitterBug is a passive covert timing channel, so no additional traffic
is generated to transmit information. Instead, JitterBug manipulates the inter-packet
delays of existing legitimate traffic. The timing-window w, which determines the

maximum delay that JitterBug adds, is set at 20 milliseconds, as suggested by Shah

66

Figure 3.6: Distribution of CCE Test Scores for MBCTC
0.5

T T T

LEGIT emmmm
MBCTC memem

04 |

03

proportion

0.2t

0.1 r

0.8 1 1.2 14 186 18 2 22
score

et al. {110]. The average inter-packet delay of the original SSH traffic is 1.264 seconds,
whereas, with JitterBug, the average inter-packet delay is 1.274 seconds. In addition,
while 10 milliseconds on average might be noticeable with other protocols, SSH traffic
has a small proportion of short inter-packet delays, i.e., only about 20% of inter-packet
delays are less than 30ms in the training set. Therefore, because of having legitimate
traffic as a base and only slightly increasing the inter-packet delays, JitterBug is able
to retain much of the original correlation from the legitimate traffic. Moreover, by
slightly increasing the inter-packet delays, JitterBug only slightly affects the original
shape. Thus, JitterBug has similar shape and regularity to legitimate traffic.

Also JitterBug is very difficult to detect for several other reasons. From a practical
perspective, the machine itself has not been compromised, so conventional host-based
intrusion detection methods fail. Moreover, the traffic is encrypted, so the contents
of the packets cannot be used to predict the appropriate behavior. Additionally, the

position of JitterBug, between the machine and the human, further complicates detec-

67

tion because of the variation in human behavior, i.e., different typing characteristics.
However, as JitterBug is a covert timing channel and transmits information, there is
some affect on the entropy of the original process.

We run each detection test 100 times for 2,000 packet samples of both legitimate
traffic and JitterBug traffic. The mean and standard deviation of the test scores are
shown in Table 3.7. The test scores for JitterBug and legitimate traffic are close to
each other for all the tests except the entropy test. If we examine the distribution
of entropy test scores for JitterBug and legitimate traffics, as illustrated in Figure
3.5, we can see that the distributions of JitterBug and legitimate test scores are quite
distinct. The detection rates for JitterBug shown in Table 3.8, are very low (0.04 or
less) for all the detection tests except the entropy test, which has a detection rate
of 1.0. Note that the other tests do detect some difference between JitterBug and
legitimate traffic, but the differences are so small that it is impossible for these tests
to differentiate JitterBug from legitimate traffic without a much higher false positive
rate. Although the corrected conditional entropy test is successful at detecting all
the other covert timing channels, it is unable to detect JitterBug. The corrected
conditional entropy test bins the data into @@ = 5 bins. For SSH traffic, the typical bin
ranges (based on equiprobable binning) are 0.0 < bin; < 0.032, 0.032 < biny < 0.088,
0.088 < bing < 0.160, 0.160 < bing < 0.305, and 0.305 < bins. JitterBug adds a
maximum of 20ms (10ms on average) to the inter-packet delays, so the bin numbers for
inter-packet delays are rarely changed. Therefore, the corrected conditional entropy

scores of JitterBug traffic are close to those of the original legitimate SSH traffic. In

68

short, the corrected conditional entropy test is simply insensitive to small changes in
the distribution.

In contrast, the entropy test is able to detect JitterBug. The entropy test uses a
large number of bins, with bin widths determined by the distribution of legitimate traf-
fic. The entropy test measures how uniformly the inter-packet delays are distributed
into the bins, and how uniformly the inter-packet delays fit the legitimate traffic dis-
tribution. JitterBug creates small changes throughout the distribution. Since these
changes fall within the variance that is typical of legitimate traffic, the tests that
measure the maximum distance, like the Kolmogorov-Smirnov test, fail to detect the
changes. However, the entropy test is sensitive to such changes throughout the distri-
bution. JitterBug increases the inter-packet delays and, due to the rotating window,
redistributes the inter-packet delays in an Equilikely distribution. However, the in-
creases do not follow the legitimate distribution, leading to slight increases or decreases
in the proportion of inter-packet delays for different bins. The entropy test measures
how evenly the inter-packet delays are distributed into the bins, with the legitimate
traffic distribution resulting in the most even or uniform distribution of bins and the
most entropy, since the bins are sized to be equiprobable for the legitimate distribu-
tion. Therefore, the entropy test score for JitterBug is lower than that for legitimate

traffic, which can be easily detected.

69

Table 3.7: JitterBug Test Scores
SSH-TEST JitterBug
test mean | stdev | mean | stdev
KSTEST | .270 133 1 273 | 123
regularity | 6.230 | 5.847 | 6.038 | 5.624
EN 10.663 | 0.374 | 8.199 | 0.720
CCE 1.779 | 0.261 | 1.837 | 0.220

Table 3.8: JitterBug Detection Rates

SSH-TEST JitterBug
test false positive | true positive
KSTEST > 0.60 .02 .03
regularity < 0.15 .03 .03
EN <8.84 .01 1.00
CCE > 2.16 01 .04

3.4.2.5 All Channels - Variable Sample Size

Our last set of experiments investigates how our detection tests perform with different
sample sizes against all four covert timing channels, IPCTC, TRCTC, MBCTC, and
JitterBug. We vary sample sizes from 500 to 2,000 inter-packet delays for the entropy
test and the corrected conditional entropy test. The sample size is important because
it determines the amount of time it takes to detect a covert timing channel, and
thus, the amount of information that a covert timing channel can transmit before it
is detected. Of course, the faster a covert timing channel can be detected, the less
information it can transmit. However, there is a tradeoff between detection speed and
detection accuracy. While a smaller sample size means faster detection, it tends to be
less accurate compared to larger sample sizes.

The true positive rates for the entropy test against IPCTC, TRCTC, MBCTC,

and JitterBug with 500 to 2,000 inter-packet delays are shown in Figure 3.8. The

70

Figure 3.7: Distribution of EN Test Scores for JitterBug
0.7

'LEGIT eemmmm
JitterBug e

06

057+

04 r

0.3 r

proportion

02 ¢t

01t

true positive rates degrade at different rates in different covert timing channels. On
one extreme, for IPCTC there is no decrease in true positive rate and it is easily
detected with as little as 500 inter-packet delays. The pattern of IPCTC is obvious,
so there is no need for a large amount of data. On the other extreme, the true positive
rates of JitterBug degrade more rapidly with the decrease of sample size, and it is
difficult to detect JitterBug with less than 1,600 inter-packet delays. JitterBug is more
subtle. It adds only small delays and has a relatively low capacity, so its inter-packet
delays are indistinguishable from normal without more traffic. In the middle, the true
positive rates of MBCTC degrade gradually with the decrease of sample size, starting
at 0.55 and ending at 0.14, showing approximately a linear relationship between its
true positive rate and its sample size. Lastly, TRCTC is not detected by the entropy
test, so its true positive rates remain close to zero.

The true positive rates for the corrected conditional entropy test against IPCTC,

TRCTC, MBCTC, and Jitterbug with 500 to 2,000 inter-packet delays are shown in

71

Figure 3.9. IPCTC and TRCTC demonstrate a similar trend in their true positive
rates. Both have true positive rates close to 1.0 with more than 700 inter-packet delays
and then dégrade quickly with the decrease of sample size. As neither covert timing
channel attempts to capture inter-dependencies between inter-packet delays, this likely
indicates that the minimum sample size required by the corrected conditional entropy
test for accurate detection is around 700. The true positive rates of MBCTC again
decline gradually with the decrease of sample size, starting at 0.95 and ending at 0.27,
similar to the corresponding entropy test results. JitterBug is not detected by the
corrected conditional entropy test, so its true positive rates are close to zero for all
sample sizes.

Overall, combining the results of both tests, we can see that IPCTC and TRCTC
are easier to be detected than MBCTC and Jitterbug when sample size is small.
IPCTC and TRCTC can be accurately detected at the true positive rates of 1.0,
with as little as 500 inter-packet delays and 1,000 inter-packet delays, respectively.
MBCTC and JitterBug are much more difficult to detect, and they require close to
2,000 inter-packet delays or more for accurate detection. These results are attributed
to the fact that MBCTC and JitterBug effectively capture both traffic shape and traffic
regularity, while TRCTC only captures traffic shape and IPCTC captures neither of

these two properties.

72

3.4.3 Discussion

The detection tests that we present are all able to detect some covert timing chan-
nels under certain conditions. However, the previous methods fail for detecting most
of the tested covert timing channels. One major reason lies in the high variation of
legitimate traffic. For example, the regularity test exhibits obvious weakness in this
regard. Interestingly, the regularity test is the only test, other than the corrected
conditional entropy test, that achieves lower average scores for all the covert tim-
ing channels. However, due to the high standard deviation of the regularity test in
measuring legitimate traffic, the regularity test is not an effective detection method.

The other main reason lies in the properties of covert traffic. For example, while the
Kolmogorov-Smirnov test is better able to deal with legitimate traffic variation, it has
problems with covert timing channels whose distribution is very close to that of legiti-
mate traffic. The Kolmogorov-Smirnov test measures the maximum distance between
the two distributions, rather than measuring differences throughout the distribution.
Thus, when the distribution of covert traffic is very close to that of legitimate traffic,
the variance of the test scores is sufficiently large so that the test cannot differentiate
covert traffic from legitimate traffic.

Our entropy-based approach proves more effective than previous schemes. Based
on the advantages of different binning strategies, we make use of both entropy and
corrected conditional entropy for detecting covert timing channels. The entropy test
is sensitive to small changes throughout the distribution. However, for a covert timing

channel whose distribution is nearly identical to that of legitimate traffic, the entropy

73

test fails. By contrast, the corrected conditional entropy test measures the regularity
or complexity of the traffic, rather than the distribution. Thus, it is effective to
detect such a covert timing channel. However, if the original correlations of traffic are
retained and the distﬁbution is changed, then the conditional entropy test fails; but
the entropy test works in this scenario by detecting slight changes in the distribution.
Therefore, when both tests are combined, our entropy-based approach is effective in

detecting all the tested covert timing channels.

Figure 3.8: EN True Positive Rate vs. Sample Size
1| =sw—waan8 8888880 ~

03 IPCTC —w— .
° TRCTC -+ hd
2 MBCTC -
F 06 JitterBug - v - 1
g POy SN S
© Y o
204t M@-::tt"* .

02+t A‘A:‘

400 600 800 1000 1200 1400 1600 1800 2000
sample size

3.5 Potential Countermeasures

In this section, we discuss possible countermeasures that could be used to harden
covert timing channels against our entropy-based approach. Our discussion focuses on
TRCTC, MBCTC and JitterBug. TRCTC and MBCTC are detected by the corrected

conditional entropy test and JitterBug is detected by the entropy test.

74

Figure 3.9: CCE True Positive Rate vs. Sample Size

1t ..A..:v:«—?t\m.% zfﬂw% ' nm:'? —

0.8 k"v‘w‘
2 A
2
2067
g
2 IPCTC —&—
2 04r¢ TRCTC - - |
] MBCTC - #eem

JitterBug - —»~
0.2+
T g O

0 -
400 600 800 1000 1200 1400 1600 1800 2000
sample size

In an attempt to evade the corrected conditional entropy test, TRCTC could be
redesigned to replay longer correlated sequences of inter-packet delays. The corrected
conditional entropy test could counter this technique for short sequences by increasing
the minimum pattern length. Of course, with increasing sequence length, the corrected
conditional entropy test would lose its capability to measure regularity, because of the
issues discussed in Section 3.3, unless the sample size were increased. However, this
is not a significant threat, because replaying long correlated sequences of inter-packet
delays would greatly reduce the capacity of TRCTC. In an attempt to evade the
corrected conditional entropy test, MBCTC could be changed to refit the model more
frequently so as to better capture the regularity of traffic. Moreover, MBCTC could
be redesigned to model conditional distributions to better capture inter-dependencies
in traffic.

In an attempt to evade the entropy test, JitterBug could be reconfigured to use a

smaller timing-window w. Eventually, as w becomes smaller, the entropy test would

75

need a larger sample size to detect the JitterBug. However, using a smaller timing-
window would, similar to our discussion of TRCTC, reduce the capacity of JitterBug.
Additionally, JitterBug could be changed to transmit packets at more precise timing
than milliseconds, as the millisecond-level precision could create a detectable pattern
when the network delays are small. As another alternative, since a large number of
inter-packet delays are required to detect JitterBug, JitterBug could attempt to trans-
mit with fewer inter-packet delays than the minimum required for the entropy test.
However, there is a problem with this approach. JitterBug uses forward error correc-
tion with repeated transmissions. This mechanism provides reliable communication
even if packets are lost or some of the perturbed keystrokes go to a non-network appli-
cation, neither of which can be detected by a JitterBug embedded in the keyboard. By
reducing the number of repetitions, JitterBug could evade detection, but could also
fail to deliver its message. It remains an open question whether these countermeasures

would be practical.

3.6 Conclusion and Future Work

In this chapter, we introduced an entropy-based technique to detect covert-timing
channels by employing both entropy and corrected conditional entropy. We designed
and implemented the proposed entropy-based detection tool. The development of
this tool addresses a number of non-trivial design issues, including efficient use of
data structures, data partition, bin granularity, and pattern length. We observed

that as bin granularity increases, entropy estimates become more precise, whereas

76

corrected conditional entropy estimates become less precise. Therefore, based on this
observation, we utilized the fine-binned entropy estimation and the coarse-binned
corrected conditional entropy estimation for covert timing channel detection.

‘We then applied our entropy-based techniques for detecting covert timing channels.
The corrected conditional entropy test is able to detect the covert timing channels with
abnormal regularity, while the entropy test is able to detect the covert timing channels
with abnormal shape. Our experimental results show that the combination of entropy
and corrected conditional entropy is capable of detecting a variety of covert timing
channels. In contrast, for a covert timing channel whose distribution is close to that
of legitimate traffic, all the previous detection methods fail.

There are a number of possible directions for our future work. We plan to fur-
ther investigate the possible countermeasures that could be used by attackers to evade
entropy-based detection. We also plan to explore the connection between our entropy-
based detection methods and the entropy that relates to covert timing channel capac-
ity. We believe that the exploration could lead to better detection methods or lower

overall bounds on the capacity of covert timing channels.

77

Chapter 4

Measurement and Classification

of Chat Bots

Internet chat is a popular application that enables real-time text-based communica-
tion. Millions of people around the world use Internet chat to exchange messages and
discuss a broad range of topics on-line. Internet chat is also a unique networked appli-
cation, because of its human-to-human interaction and low bandwidth consumption
[32]. However, the large user base and open nature of Internet chat make it an ideal
target for malicious exploitation.

The abuse of chat services by automated programs, known as chat bots, poses
a serious threat to on-line users. Chat bots have been found on a number of chat
systems, including commercial chat networks, such as AOL [99, 56], Yahoo! [98, 68,
112, 85, 84) and MSN [57], and open chat networks, such as IRC and Jabber. There

are also reports of bots in some non-chat systems with chat features, including online

78

games, such as World of Warcraft [28, 107] and Second Life [93]. Chat bots exploit
these on-line systems to send spam, spread malware, and mount phishing attacks.
So far, the efforts to combat chat bots have focused on two different approaches:
(1) keyword-based filtering and (2) human interactive proofs. The keyword-based
message filters, used by third party chat clients [131, 134], suffer from high false
negative rates because bot makers frequently update chat bots to evade published
keyword lists. The use of human interactive proofs, such as CAPTCHAs [3], is also
ineffective because bot operators assist chat bots in passing the tests to log into chat
rooms [85, 84]. In August 2007, Yahoo! implemented CAPTCHA to block bots from
entering chat rooms, but bots are still able to enter chat rooms in large numbers.
There are online petitions against both AOL and Yahoo! [99, 98], requesting that the
chat service providers address the growing bot problem. While on-line systems are
besieged with chat bots, no systematic investigation on chat bots has been conducted.
The effective detection system against chat bots is in great demand but still missing.
In the chapter, we first perform a series of measurements on a large commercial
chat network, Yahoo! chat, to study the behaviors of chat bots and humans in on-line
chat systems. Our measurements capture a total of 14 different types of chat bots. The
different types of chat bots use different triggering mechanisms and text obfuscation
techniques. The former determines message timing, and the latter determines message
content. Our measurements also reveal that human behavior is more complex than
bot behavior, which motivates the use of entropy rate, a measure of complexity, for

chat bot classification. Based on the measurement study, we propose a classification

79

system to accurately distinguish chat bots from humans. There are two main compo-
nents in our classification system: (1) an entropy classifier and (2) a machine-learning
classifier. Based on the characteristics of message time and size, the entropy classifier
measures the complexity of chat flows and then classifies them as bots or humans.
In contrast, the machine-learning classifier is mainly based on message content for
detection. The two classifiers complement each other in chat bot detection. While the
entropy classifier requires more messages for detection and, thus, is slower, it is more
accurate to detect unknown chat bots. Moreover, the entropy classifier helps train the
machine-learning classifier. The machine learning classifier requires less messages for
detection and, thus, is faster, but cannot detect most unknown bots. By combining
the entropy classifier and the machine-learning classifier, the proposed classification
system is highly effective to capture chat bots, in terms of accuracy and speed. We
conduct experimental tests on the classification system, and the results validate its

efficacy on chat bot detection.

4.1 Background and Related Work

4.1.1 Chat Systems

Internet chat is a real-time communication tool that allows on-line users to commu-
nicate via text in virtual spaces, called chat rooms or channels. There are a number
of protocols that support chat [59], including IRC, Jabber/XMPP, MSN/WLM (Mi-
crosoft), OSCAR (AOL), and YCHT/YMSG (Yahoo!). The users connect to a chat

server via chat clients that support a certain chat protocol, and they may browse

80

and join many chat rooms featuring a variety of topics. The chat server relays chat
messages to and from on-line users. A chat service with a large user base might em-
ploy multiple chat servers. In addition, there are several multi-protocol chat clients,
such as Pidgin (formerly GAIM) and Trillian, that allow a user to join different chat
systems.

Although IRC has existed for a long time, it has not gained mainstream popularity.
This is mainly because its console-like interface and command-line-based operation are
not user-friendly. The recent chat systems improve user experience by using graphic-
based interfaces, as well as adding attractive features such as avatars, emoticons, and
audio-video communication capabilities. Our study is carried out on the Yahoo! chat
network, one of the largest and most popular commercial chat systems.

Yahoo! chat uses proprietary protocols, in which the chat messages are transmitted
in plain-text, while commands, status and other meta data are transmitted as encoded
binary data. Unlike those on most IRC networks, users on the Yahoo! chat network
cannot create chat rooms with customized topics because this feature is disabled by
Yahoo! to prevent abuses [82]. In addition, users on Yahoo! chat are required to pass
a CAPTCHA word verification test in order to join a chat room. This recently-added

feature is to guard against a major source of abuse—bots.

4.1.2 Chat Bots

The term bot, short for robot, refers to automated programs, that is, programs that

do not require a human operator. A chat bot is a program that interacts with a chat

81

service to automate tasks for a human, e.g., creating chat logs. The first-generation
chat bots were designed to help operate chat rooms, or to entertain chat users, e.g.,
quiz or quote bots. However, with the commercialization of the Internet, the main
enterprise of chat bots is now sending chat spam. Chat bots deliver spam URLs via
either links in chat messages or user profile links. A single bot operator, controlling
a few hundred chat bots, can distribute spam links to thousands of users in different
chat rooms, making chat bots very profitable to the bot operator who is paid per-click
through affiliate programs. Other potential abuses of bots include spreading malware,
phishing, booting, and similar malicious activities.

A few countermeasures have been used to defend against the abuse of chat bots,
though none of them are very effective. On the server side, CAPTCHA tests are
used by Yahoo! chat in an effort to prevent chat bots joining chat rooms. However,
this defense becomes ineffective as chat bots bypass CAPTCHA tests with human
assistance. We have observed that bots continue to join chat rooms and sometimes
even become the majority members of a chat room after the deployment of CAPTCHA
tests. Third-party chat clients filter out chat bots, mainly based on key words or key
phrases that are known to be used by chat bots. The drawback with this approach is
that it cannot capture those unknown or evasive chat bots that do not use the known

key words or phrases.

82

4.1.3 Related Work

Dewes et al. [32] conducted a systematic measurement study of IRC and Web-chat
traffic, revealing several statistical properties of chat traffic. (1) Chat sessions tend
to last for a long time, and a significant number of IRC sessions last much longer
than Web-chat sessions. (2) Chat session inter-arrival time follows an exponential
distribution, while the distribution of message inter-arrival time is not exponential.
(3) In terms of message size, all chat sessions are dominated by a large number of
small packets. (4) Over an entire session, typically a user receives about 10 times as
much data as he sends. However, very active users in Web-chat and automated scripts
used in IRC may send more data than they receive.

There is considerable overlap between chat and instant messaging (IM) systems, in
terms of protocol and user base. Many widely used chat systems such as IRC predate
the rise of IM systems, and have great impact upon the IM system and protocol
design. In return, some new features that make the IM systems more user-friendly
have been back-ported to the chat systems. For example, IRC, a classic chat system,
implements a number of IM-like features, such as presence and file transfers, in its
current versions. Some messaging service providers, such as Yahoo!, offer both chat
and IM accesses to their end-user clients. With this in mind, we outline some related
work on IM systems. Liu et al. [73] explored client-side and server-side methods
for detecting and filtering IM spam or spim. However, their evaluation is based on
a corpus of short e-mail spam messages, due to the lack of data on spim. In [77],

Mannan et al. studied IM worms, automated malware that spreads on IM systems

83

using the IM contact list. Leveraging the spreading characteristics of IM malware,
Xie et al. [130] presented an IM malware detection and suppression system based on
the honeypot concept.

Botnets consist of a large number of slave computing assets, which are also called
“bots”. However, the usage and behavior of bots in botnets are quite different from
those of chat bots. The bots in botnets are malicious programs designed specifically to
run on compromised hosts on the Internet, and they are used as platforms to launch a
variety of illicit and criminal activities such as credential theft, phishing, distributed
denial-of-service attacks, etc. In contrast, chat bots are automated programs designed
mainly to interact with chat users by sending spam messages and URLs in chat rooms.
Although having been used by botnets as command and control mechanisms [49, 4],
IRC and other chat systems do not play an irreplaceable role in botnets. In fact, due
to the increasing focus on detecting and thwarting IRC-based botnets [30, 52, 53],
recently emerged botnets, such as Phatbot, Nugache, Slapper, and Sinit, show a
tendency towards using P2P-based control architectures {123].

Chat spam shares some similarities with email spam. Like email spam, chat
spam contains advertisements of illegal services and counterfeit goods, and solicits
human users to click spam URLs. Chat bots employ many text obfuscation tech-
niques used by email spam such as word padding and synonym substitution. Since
the detection of email spam can be easily converted into the problem of text clas-
sification, many content-based filters utilize machine-learning algorithms for filtering

email spam. Among them, Bayesian-based statistical approaches [51, 135, 17, 137, 72|

84

have achieved high accuracy and performance. Although very successful, Bayesian-
based spam detection techniques still can be evaded by carefully crafted messages

[128, 74, 64].

4.2 Measurement

In this section, we detail our measurements on Yahoo! chat, one of the most popular
commercial chat services. The focus of our measurements is on public messages posted
to Yahoo! chat rooms. The logging of chat messages is available on the standard
Yahoo! chat client, as well as most third party chat clients. Upon entering chat, all
chat users are shown a disclaimer from Yahoo! that other users can log their messages.
However, we consider the contents of the chat logs to be sensitive, so we only present
fully-anonymized statistics.

Our data was collected between August and November of 2007. In late August,
Yahoo! implemented a CAPTCHA check on entering chat rooms [85, 7], creating
technical problems that made their chat rooms unstable for about two weeks [5, 6].
At the same time, Yahoo! implemented a protocol update, preventing most third
party chat clients, used by a large proportion of Yahoo! chat users, from accessing the
chat rooms. In short, these upgrades made the chat rooms difficult to be accessed for
both chat bots and humans. In mid to late September, both chat bot and third party
client developers updated their programs. By early October, chat bots were found in
Yahoo! chat [84], possibly bypassing the CAPTCHA check with human assistance.

Due to these problems and the lack of chat bots in September and early October, we

85

perform our analysis on August and November chat logs. In August and November,
we collected a total of 1,440 hours of chat logs. There are 147 individual chat logs
from 21 different chat rooms. The process of reading and labeling these chat logs
required about 100 hours. To the best of our knowledge, we are the first in the large

scale measurement and classification of chat bots.

4.2.1 Log-Based Classification

In order to characterize the behavior of human users and that of chat bots, we need
two sets of chat logs pre-labeled as bots and humans. To create such datasets, we
perform log-based classification by reading and labeling a large number of chat logs.
The chat users are labeled in three categories: human, bot, and ambiguous.

The log-based classification process is a variation of the Turing test. In a standard
Turing test [118], the examiner converses with a test subject (a possible machine)
for five minutes, and then decides if the subject is a human or a machine. In our
classification process, the examiner observes a long conversation between a test subject
(a possible chat bot) and one or more third parties, and then decides if the subject
is a human or a chat bot. In addition, our examiner checks the content of URLs
and typically observes multiple instances of the same chat bot, which further improve
our classification accuracy. Moreover, given that the best practice of current artificial
intelligences [116] can rarely pass a non-restricted Turing test, our classification of
chat bots should be very accurate.

Although a Turing test is subjective, we outline a few important criteria. The

86

main criterion for being labeled as human is a high proportion of specific, intelligent,
and human-like responses to other users. In general, if a user’s responses suggest
more advanced intelligence than current state-of-the-art Al [116], then the user can
be labeled as human. The ambiguous label is reserved for non-English, incoherent,
or non-communicative users. The criteria for being classified as bot are as follows.
The first is the lack of the intelligent responses required for the human label. The
second is the repetition of similar phrases either over time or from other users (other
instances of the same chat bot). The third is the presence of spam or malware URLs

in messages or in the user’s profile.

4.2.2 Analysis

In total, our measurements capture 14 different types of chat bots. The different types
of chat bots are determined by their triggering mechanisms and text obfuscation
schemes. The former relates to message timing, and the latter relates to message
content. The two main types of triggering mechanisms observed in our measurements
are timer-based and response-based. A timer-based bot sends messages based on a
timer, which can be periodic (i.e., fixed time intervals) or random (i.e., variable time
intervals). A response-based bot sends messages based on programmed responses to
specific content in messages posted by other users.

There are many different kinds of text obfuscation schemes. The purpose of text
obfuscation is to vary the content of messages and make bots more difficult to rec-

ognize or appear more human-like. We observed four basic text obfuscation methods

87

that chat bots use to evade filtering or detection. First, chat bots introduce random
characters or space into their messages, similar to some spam e-mails. Second, chat
bots use various synonym phrases to avoid obvious keywords. By this method, a
template with several synonyms for multiple words can lead to thousands of possible
messages. Third, chat bots use short messages or break up long messages into multiple
messages to evade message filters that work on a message-by-message basis. Fourth,
and most interestingly, chat bots replay human phrases entered by other chat users.

According to our observation, the main activity of chat bots is to send spam links
to chat users. There are two approaches that chat bots use to distribute spam links in
chat rooms. The first is to post a message with a spam link directly in the chat room.
The second is to enter the spam URL in the chat bot’s user profile and then convince
the users to view the profile and click the link. Our logs also include some examples
of malware spreading via chat rooms. The behavior of malware-spreading chat bots
is very similar to that of spam-sending chat bots, as both attempt to lure human
users to click links. Although we did not perform detailed malware analysis on links
posted in the chat rooms and Yahoo! applies filters to block links to known malicious
files, we found several worm instances in our data. There are 12 W32.Imaut.AS [114]
worms appeared in the August chat logs, and 23 W32.Imaut.AS worms appeared in
the November chat logs. The November worms attempted to send malicious links
but were blocked by Yahoo! (the malicious links in their messages being removed),
however, the August worms were able to send out malicious links.

The focus of our measurements is mainly on short term statistics, as these statistics

88

are most likely to be useful in chat bot classification. The two key measurement
metrics in this study are inter-message delay and message size. Based on these two
metrics, we profile the behavior of human and that of chat bots. Among chat bots, we
further divide them into four different groups: periodic bots, random bots, responder
bots, and replay bots. With respect to these short-term statistics, human and chat

bots behave differently, as shown below.

4.2.2.1 Humans

" PMF for Human PMF for Human
10 — ; 0.06
‘ +_Aug
107 0.05
0.04
210 2
1 3
3 =003
o
o 10" &
0.02}
107
0.01
10 = [¥) ; 3 4—
10 10" 10° 10 10* 5 100 150 200 250 300 350
Inter-Message Delay (seconds) Message Size (bytes)

(a) (b)

Figure 4.1: Distribution of Human Inter-Message Delay (a) and Message Size (b)

Figure 4.1 shows the probability distributions of human inter-message delay and
message size. Since the behavior of humans is persistent, we only draw the probability
mass function (pmf) curves based on the August data. The previous study on Internet
chat systems [32] observed that the distribution of inter-message delay in chat systems
was heavy tailed. In general our measurement result conforms to that observation.
The body part of the pmf curve in Figure 4.1 (a) (log-log scale) can be linearly fitted,

indicating that the distribution of human inter-message delays follows a power law.

89

PMF for Periodic Bots

Probability

0~ e ﬁ& s
LR R

10" 10° 10°
Inter-Message Delay (seconds)

(a)

PMF for Periodic Bots

Probability
o
2

i

Nov
+ Aug

0 50 100 150
Message Size (bytes)

(b)

200

250

Figure 4.2: Distribution of Periodic Bot Inter-Message Delay (a) and Message Size

(b)

In other words, the distribution is heavy tailed. We also find that the pmf curve of
human message size in Figure 4.1 (b) can be well fitted by an exponential distribution

with A = 0.034 after excluding the initial spike.

4.2.2.2 Periodic Bots

A periodic bot posts messages mainly at regular time intervals. The delay periods of
periodic bots, especially those bots that use long delays, may vary by several seconds.
The variation of delay period may be attributed to either transmission delay caused
by network traffic congestion or chat server delay, or message emission delay incurred
by system overloading on the bot hosting machine. The posting of periodic messages
is a simple but effective mechanism for distributing messages, so it is not surprising
that a substantial portion of chat bots use periodic timers.

We display the probability distributions of inter-message delay and message size

for periodic bots in Figure 4.2. We use ‘+’ for displaying August data and ‘e’ for

90

November data. The distributions of periodic bots are distinct from those of humans
shown in Figure 4.1. The distribution of inter-message delay for periodic bots clearly
manifests the timer-triggering characteristic of periodic bots. There are three clusters
with high probabilities at time ranges [30-50], [100-110], and [150-170]. These clus-
ters correspond to the November periodic bots with timer values around 40 seconds
and the August periodic bots with timer values around 105 and 160 seconds, respec-
tively. The message size pmf curve of the August periodic bots shows an interesting
bell shape, much like a normal distribution. After examining message contents, we
find that the bell shape may be attributed to the message composition method some
August bots used. As shown in Appendix A, some August periodic bots compose a
message using a single template. The template has several parts and each part is as-
sociated with several synonym phrases. Since the length of each part is independent
and identically distributed, the length of whole message, i.e., the sum of all parts,
should approximate a normal distribution. The November bots employ a similar com-
position method, but use several templates of different lengths. Thus, the message
size distribution of the November periodic bots reflects the distribution of the lengths
of the different templates, with the length of each individual template approximating

a normal distribution.

4.2.2.3 Random Bots

A random bot posts messages at random time intervals. The random bots in our data

used different random distributions, some discrete and others continuous, to generate

91

PMF for Random Bots

Probability

« Novl]
+ Aug

10’ 10° 10°
Inter-Message Delay {(seconds)

(a)

Probability

PMF for Random Bots

Nov
-+ Aug

ST
et W

50 100 150 200 250
Message Size (bytes)

(b)

Figure 4.3: Distribution of Random Bot Inter-Message Delay (a) and Message Size

(b)

inter-message delays. The use of random timers makes random bots appear more
human-like than periodic bots. In statistical terms, however, random bots exhibit
quite different inter-message delay distributions than humans.

Figure 4.3 depicts the probability distributions of inter-message delay and message
size for random bots. Compared to periodic bots, random bots have more dispersed
timer values. In addition, the August random bots have a large overlap with the
November random bots. The points with high probabilities (greater than 1072) in
the time range [30-90] in Figure 4.3 (a) represent the August and November random
bots that use a discrete distribution of 40, 64, and 88 seconds. The wide November
cluster with medium probabilities in the time range [40-130] is created by the Novem-
ber random bots that use a uniform distribution between 45 and 125 seconds. The
probabilities of different message sizes for the August and November random bots are
mainly in the size range [0-50]. Unlike periodic bots, most random bots do not use

template or synonym replacement, but directly repeat messages. Thus, as their mes-

92

Probability

PMF for Respond Bots

R e

S R - 4

10’ 10° 10°
Inter-Message Delay (seconds)

(a)

Probability
°
g

PMF for Respond Bols

i

; T b
40 60 80 100 120 140 160 180
Message Size (bytes)

(b)

Figure 4.4: Distribution of Responder Bot Inter-Message Delay (a) and Message Size

(b)

Probability

0.14

PMF for Replay Bots

0.12

Nov,

20 40 60 80
Inter-Message Delay (seconds)

(a)

100 120

PMF for Replay Bots

0.06

0.05

0.04

Probability
o
8

0.02f=

Nov

50 100 150 200 250 300
Message Size (bytes)

(b)

Figure 4.5: Distribution of Replay Bot Inter-Message Delay (a) and Message Size

(b)

sages are selected from a database at random, the message size distribution reflects

the proportion of messages of different sizes in the database.

4.2.2.4 Responder Bots

A responder bot sends messages based on the content of messages in the chat room.

For example, a message ending with a question mark may trigger a responder bot to

send a vague response with a URL, as shown in Appendix A. The vague response,

in the context, may trick human users into believing that the responder is a human
and further clicking the link. Moreover, the message triggering mechanism makes
respopder bots look more like humans in terms of timing statistics than periodic or
random bots.

To gain more insights into responder bots, we managed to obtain a configuration
file for a typical responder bot {119]. There are a number of parameters for making
the responder bot mimic humans. The bot can be configured with a fixed typing rate,
so that responses with different lengths take different time to “type.” The bot can
also be set to either ignore triggers while simulating typing, or rate-limit responses.
In addition, responses can be assigned with probabilities, so that the responder bot
responds to a given trigger in a random manner.

Figure 4.4 shows the probability distributions of inter-message delay and message
size for responder bots. Note that only the distribution of the August responder
bots is shown due to the small number of responder bots found in November. Since
the message emission of responder bots is triggered by human messages, theoretically
the distribution of inter-message delays of responder bots should demonstrate certain
similarity to that of humans. Figure 4.4 (a) confirms this hypothesis. Like Figure
4.1 (a), the pmf of responder bots {excluding the head part) in log-log scale exhibits
a clear sign of a heavy tail. But unlike human messages, the sizes of responder bot
messages vary in a much narrower range (between 1 and 160). The bell shape of
the distribution for message size less than 100 indicates that responder bots share

a similar message composition technique with periodic bots, and their messages are

94

composed as templates with multiple parts, as shown in Appendix A.

4.2.2.5 Replay Bots

A replay bot not only sends its own messages, but also repeats messages from other
users to appear more like a human user. In our experience, replayed phrases are
related to the same topic but do not appear in the same chat room as the original
ones. Therefore, replayed phrases are either taken from other chat rooms on the same
topic or saved previously in a database and replayed.

The use of replayed phrases in a crowded or “noisy” chat room does, in fact,
make replay bots look more like human to inattentive users. The replayed phrases are
sometimes nonsensical in the context of the chat, but human users tend to naturally
ignore such statements. When replay bots succeed in fooling human users, these users
are more likely to click links posted by the bots or visit their profiles. Interestingly,
replay bots sometimes replay phrases uttered by other chat bots, making them very
easy to be recognized. The use of replay is potentially effective in thwarting detection
methods, as detection tests must deal with a combination of human and bots phrases.
By using human phrases, replay bots can easily defeat keyword-based message filters
that filter message-by-message, as the human phrases should not be filtered out.

Figure 4.5 illustrates the probability distributions of inter-message delay and mes-
sage size for replay bots. In terms of inter-message delay, a replay bot is just a
variation of a periodic bot, which is demonstrated by the high spike in Figure 4.5

(a). By using human phrases, replay bots successfully mimic human users in terms

95

ENTROPY
CLASSIFIER

INPUT BOT HUMAN CLASSIFY AS CLASSIFY AS
o—] CORPUS CORPUS @ A “crarsor | @ T human

MACHINE
LEARNING
CLASSIFIER

Figure 4.6: Classification System Diagram

of message size distribution. The message size distribution of replay bots in Figure
4.5 (b) largely resembles that of human users, and can be fitted by an exponential

distribution with A = 0.028.

4.3 Classification System

This section describes the design of our chat bot classification system. The two main
components of our classification system are the entropy classifier and the machine
learning classifier. The basic structure of our chat bot classification system is shown in
Figure 4.6. The two classifiers, entropy and machine learning, operate concurrently to
process input and make classification decisions, while the machine learning classifier
relies on the entropy classifier to build the bot corpus. The entropy classifier uses
entropy and corrected conditional entropy to score chat users and then classifies them
as chat bots or humans. The main task of the entropy classifier is to capture new chat
bots and add them to the chat bot corpus. The human corpus can be taken from a
database of clean chat logs or created by manual log-based classification, as described

in Section 5.2. The machine learning classifier uses the bot and human corpora to

96

learn text patterns of bots and humans, and then it can quickly classify chat bots

based on these patterns. The two classifiers are detailed as follows.

4.3.1 Entropy Classifier

The entropy classifier makes classification decisions based on entropy and entropy
rate measures of message sizes and inter-message delays for chat users. If either the
entropy or entropy rate is low for these characteristics, it indicates the regular or
predictable behavior of a likely chat bot. If both the entropy and entropy rate is
high for these characteristics, it indicates the irregular or unpredictable behavior of a
possible human.

To use entropy measures for classification, we set a cutoff score for each entropy
measure. If a test score is greater than or equal to the cutoff score, the chat user
is classified as a human. If the test score is less than the cutoff score, the chat user
is classified as a chat bot. The specific cutoff score is an important parameter in
determining the false positive and true positive rates of the entropy classifier. On the
one hand, if the cutoff score is too high, then too many humans will be misclassified as
bots. On the other hand, if the cutoff score is too low, then too many chat bots will be
misclassified as humans. Due to the importance of achieving a low false positive rate,
we select the cutoff scores based on human entropy scores to achieve a targeted false
positive rate. The specific cutoff scores and targeted false positive rates are described

in Section 5.4.

97

4.3.1.1 Entropy Measures

The entropy rate, which is the average entropy per random variable, can be used as
a measure of complexity or regularity [101, 105, 44]. The entropy rate is defined as
the conditional entropy of a sequence of infinite length. The entropy rate is upper-
bounded by the entropy of the first-order probability density function or first-order
entropy. A independent and identically distributed (i.i.d.} process has an entropy rate
equal to its first-order entropy. A highly complex process has a high entropy rate,
while a highly regular process has a low entropy rate. |

A random process X = {X;} is defined as an indexed sequence of random variables.
To give the definition of the entropy rate of a random process, we first define the
entropy of a sequence of random variables as:

H(X1, .0 Xm)= = Y. P(@1,,Zm)10g P(z1,.... Tm),
X1, Xm

where P(x1, ..., Tm) is the joint probability P(X; = z1,..., X;n = Zm)-

Then, from the entropy of a sequence of random variables, we define the conditional

entropy of a random variable given a previous sequence of random variables as:
H(Xp | X1, s Xm—1) = H X1, oo, X)) — H(X1, ooy Xim—1)-
Lastly, the entropy rate of a random process is defined as:

F(X) = lim H(Xm | le---me-—l)-

mM—>00

Since the entropy rate is the conditional entropy of a sequence of infinite length,

98

it cannot be measure for finite samples. Thus, we estimate the entropy rate with the
conditional entropy of finite samples. In practice, we replace probability density func-
tions with empirical probability density functions based on the method of histograms.
The data is binned in @ bins of approximately equal probability. The empirical prob-
ability density functions are determined by the proportions of bin number sequences
in the data, i.e., the proportion of a sequence is the probability of that sequence.
The estimates of the entropy and conditional entropy, based on empirical probability
density functions, are represented as: EN and CE, respectively.

There is a problem with the estimation of CE(X,, | X1, ..., Xm—1) for some values
of m. The conditional entropy tends to zero as m increases, due to limited data. If a
specific sequence of length m — 1 is found only once in the data, then the extension
of this sequence to length m will also be found only once. Therefore, the length
m sequence can be predicted by the length m — 1 sequence, and the length m and
m — 1 sequences cancel out. If no sequence of length m is repeated in the data, then
CE(X;, | X1,..., Xm—1) is zero, even for i.i.d. processes.

To solve the problem of limited data, without fixing the length of m, we use the
corrected conditional entropy [101] represented as CCE. The corrected conditional

entropy is defined as:

CCE(Xm | Xy, ---,Xm—l) = CE(Xm | Xl,---aXm——l) +perc(Xm) . EN(Xl),

where perc(X,,) is the percentage of unique sequences of length m and EN(X;) is

the entropy with m fixed at 1 or the first-order entropy.

99

Table 4.1: Message Composition of Chat Bot and Human Datasets
AUG. BOTS NOV. BOTS HUMANS

periodic | random | responder | periodic | random | replay human

of msgs. | 25,258 | 13,998 6,160 10,639 | 22,820 | 8,054 342,696

The estimate of the entropy rate is the minimum of the corrected conditional
entropy over different values of m. The minimum of the corrected conditional entropy

is considered to be the best estimate of the entropy rate from the available data.

4.3.2 Machine Learning Classifier

The machine learning classifier uses the content of chat messages to identify chat bots.
Since chat messages (including emoticons) are text, the identification of chat bots can
be perfectly fitted into the domain of machine learning text classification. Within
the machine learning paradigm, the text classification problem can be formalized as
f: T xC — {0,1}, where f is the classifier, T = {¢1,t2,...,t,} is the texts to be
classified, and C' = {c1,¢a,...,ck} is the set of pre-defined classes [108]. Value 1 for
f(t;, c;) indicates that text t; is in class ¢; and value 0 indicates the opposite decision.
There are many techniques that can be used for text classification, such as naive Bayes,
support vector machines, and decision trees. Among them, Bayesian classifiers have
been very successful in text classification, particularly in email spam detection. Due to
the similarity between chat spam and email spam, we choose Bayesian classification
for our machine learning classifier for detecting chat bots. We leave study on the
applicability of other types of machine learning classifiers to our future work.
Within the framework of Bayesian classification, identifying if chat message M is

issued by a bot or human is achieved by computing the probability of M being from a

100

bot with the given message content, i.e., P(C = bot|M). If the probability is equal to
or greater than a pre-defined threshold, then message M is classified as a bot message.

According to Bayes theorem,

P(M[bot)P(bot) P(M]bot)P(bot)

P(bot|M) = P(M) ~ P(M|bot)P(bot) + P(M|human)P(human)’

A message M is described by its feature vector (fi, fa, ..., fn). A feature f is a single
word or a combination of multiple words in the message. To simplify computation,
in practice it is usually assumed that all features are conditionally independent with

each other for the given category. Thus, we have

P(bot) 1 P(filbot)
P(bot|M) = =1

P(bot) ﬁ P(f;|bot) + P(human) ﬁ P(f¢|human)‘
i=1 i=1

The value of P(bot|M) may vary in different implementations (see {51, 137] for im-
plementation details) of Bayesian classification due to differences in assumption and
simplification.

Given the abundance of implementations of Bayesian classification, we directly
adopt one implementation, namely CRM 114(135], as our machine learning classifica-
tion component. CRM 114 is a powerful text classification system that has achieved
very high accuracy in email spam identification. The default classifier of CRM 114,
OSB (Orthogonal Sparse Bigram), is a type of Bayesian classifier. Different from
common Bayesian classifiers which treat individual words as features, OSB uses word

pairs as features instead. OSB first chops the whole input into multiple basic units

101

with five consecutive words in each unit. Then, it extracts four word pairs from
each unit to construct features, and derives their probabilities. Finally, OSB applies
Bayes theorem to compute the overall probability that the text belongs to one class

or another.

4.4 Experimental Evaluation

In this section, we evaluate the effectiveness of our proposed classification system.
Our classification tests are based on chat logs collected from the Yahoo! chat system.
We test the two classifiers, entropy-based and machine-learning-based, against chat
bots from August and November datasets. The machine learning classifier is tested
with fully-supervised training and entropy-classifier-based training. The accuracy of
classification is measured in terms of false positive and false negative rates. The false
positives are those human users that are misclassified as chat bots, while th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>