
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2010

Application of information theory and statistical learning to Application of information theory and statistical learning to

anomaly detection anomaly detection

Steven Gianvecchio
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Gianvecchio, Steven, "Application of information theory and statistical learning to anomaly detection"
(2010). Dissertations, Theses, and Masters Projects. William & Mary. Paper 1539623563.
https://dx.doi.org/doi:10.21220/s2-8c4b-sg87

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at
W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an
authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623563&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623563&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-8c4b-sg87
mailto:scholarworks@wm.edu

Application of Information Theory and Statistical Learning to Anomaly Detection

Steven Gianvecchio

Rochester, New York

Master of Science, College of William and Mary, 2006

Bachelor of Science, State University of New York at Brockport, 2001

A Dissertation presented to the Graduate Faculty
of the College of William and Mary in Candidacy for the Degree of

Doctor of Philosophy

Department of Computer Science

The College of William and Mary
May 2010

APPROVAL PAGE

This Dissertation is submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

Steven Gianvecchio

Approved by the Committee, April 20 .0

Committee Chair
Associate Professor Haining Wang, Computer Science

T 7Z:dMary
A ociate Professor Phil Kearns, Computer Science

The College of William and Mary

Professor Evgenia Smirni, Computer Science
The College of William and Mary

Associate Professor Weizhen Mao, Computer Science
The College of William and Mary

Professor Chi-Kyvc)n Li, Mathematics
The College pf w; liam and Mary

'-._.)

ABSTRACT PAGE

In today's highly networked world, computer intrusions and other attacks area constant
threat. The detection of such attacks, especially attacks that are new or previously
unknown, is important to secure networks and computers. A major focus of current
research efforts in this area is on anomaly detection.

In this dissertation, we explore applications of information theory and statistical learning to
anomaly detection. Specifically, we look at two difficult detection problems in network and
system security, (1) detecting covert channels, and (2) determining if a user is a human or
bot. We link both of these problems to entropy, a measure of randomness, information
content, or complexity, a concept that is central to information theory. The behavior of bats
is low in entropy when tasks are rigidly repeated or high in entropy when behavior is
pseudo-random. In contrast, human behavior is complex and medium in entropy. Similarly,
covert channels either create regularity, resulting in low entropy, or encode extra
information, resulting in high entropy. Meanwhile, legitimate traffic is characterized by
complex interdependencies and moderate entropy. In addition, we utilize statistical learning
algorithms, Bayesian learning, neural networks, and maximum likelihood estimation, in
both modeling and detecting of covert channels and bats.

Our results using entropy and statistical learning techniques are excellent. By using
entropy to detect covert channels, we detected three different covert timing channels that
were not detected by previous detection methods. Then, using entropy and Bayesian
learning to detect chat bats, we detected 1 00% of chat bats with a false positive rate of
only 0.05% in over 1400 hours of chat traces. Lastly, using neural networks and the idea of
human observational proofs to detect game bats, we detected 99.8% of game bats with no
false positives in 95 hours of traces. Our work shows that a combination of entropy
measures and statistical learning algorithms is a powerful and highly effective tool for
anomaly detection.

Table of Contents

Acknowledgments

List of Tables

List of Figures

1 Introduction

2 Designing and Modeling Covert Timing Channels

2.1

2.2

2.3

Background

2.1.1

2.1.2

Basic Communication Concepts .

Base Cases in Design

2.1.2.1

2.1.2.2

Optimal Capacity Channel

Fixed-Average Packet Rate Channel .

The :Framework

2.2.1

2.2.2

Model-Based Channel Capacity .

Implementation Details

Experimental Evaluation

iv

xi

xii

xiv

2

8

11

11

12

13

14

15

19

20

21

2.4

2.3.1

2.3.2

2.3.3

Experimental Setup

2.3.1.1 Testing Scenarios

2.3.1.2

2.3.1.3

Capacity

2.3.2.1

Building MB-HTTP

Formulating OPC and FPR .

Empirical Capacity

Detection Resistance .

2.3.3.1

2.3.3.2

Shape Tests

Regularity Tests

Conclusion .

3 Detecting Covert Timing Channels

3.1 Introduction

3.2 Background And Related Work

3.2.1

3.2.2

Covert Timing Channels .

3.2.1.1

3.2.1.2

3.2.1.3

3.2.1.4

3.2.1.5

3.2.1.6

IP Covert Timing Channel

Time-Replay Covert Timing Channel

Model-Based Covert Timing Channel

JitterBug

Other Covert Timing Channels .

Timing-Based Watermarks

Detection Tests

3.2.2.1 Kolmogorov-Smirnov Test .

v

21

21

23

23

24

26

28

29

31

33

35

35

37

38

39

39

40

40

41

42

43

43

3020202 Regularity Test 0 0 0 0

3020203 Other Detection Tests

303 Entropy Measures 0 0 0 0 0 0 0 0 0 0 0 0

3o4

30301

30302

30303

3o3o4

Entropy and Conditional Entropy

Corrected Conditional Entropy

Binning Strategies 0 0 0

Implementation Details

Experimental Evaluation 0 0

3.401 Experimental Setup

3.401.1

3.4ol.2

Dataset 0 0

Detection Methodology

3.402 Experimental Results

3o4o3

3040201 IPCTC 0

3.40202

3.40203

3.4o2o4

3040205

TRCTCo

MBCTC

JitterBug

All Channels- Variable Sample Size

Discussion 0 0 0 0 0 0

3o5 Potential Countermeasures

306 Conclusion and Future Work

4 Measurement and Classification of Chat Bots

401 Background and Related Work 0 0 0 0 0 0 0 0 0

vi

44

45

45

46

47

49

51

53

54

55

57

59

59

62

64

66

70

73

74

76

78

80

4.2

4.1.1

4.1.2

4.1.3

Chat Systems .

Chat Bots ...

Related Work .

Measurement

4.2.1

4.2.2

Log-Based Classification

Analysis

4.2.2.1 Humans .

4.2.2.2 Periodic Bots .

4.2.2.3

4.2.2.4

Random Bots .

Responder Bots

4.2.2.5 Replay Bots

4.3 Classification System ...

4.3.1 Entropy Classifier

4.3.1.1 Entropy Measures

4.3.2 Machine Learning Classifier

4.4 Experimental Evaluation ..

4.4.1

4.4.2

Experimental Setup

Experimental Results

4.4.2.1 Entropy Classifier

80

81

83

85

86

87

89

90

91

93

95

96

97

98

100

102

103

104

104

4.4.2.2 Supervised and Hybrid Machine Learning Classifiers . 106

4.5 Conclusion . 108

5 Detecting Online Game Bots 110

vii

501 Background 0 0 0 0

501.1

501.2

Game Bots

Game Playing Behaviors 0

502 Game Playing Characterization

50201 The Glider Bot 0 0 0 o

50202 Input Data Collection

50203 Game Playing Input Analysis

503 HOP System 0 0 0 0 o 0 0 o

5.4

50301

50302

50303

Client-Side Exporter

Server-Side Analyzer

5030201

5030202

Neural Network Classification

Decision Making o o 0 0 0 0

Performance Impact and Scalability

Experiments 0 0 0 0 0 0 0 0 0

5.401

50402

5.403

5o4o4

Experimental Setup

Detection Results 0 0

Detection of Other Game Bots

System Overhead 0

505 Related Work 0 0 0 0 0

5o6

50501

50502

Anti-Cheating

Behavioral Biometrics

Conclusion 0 0 0 0 0 0 0 0 0 0

viii

114

114

115

117

117

118

120

124

125

125

126

128

129

129

131

131

135

136

137

138

140

141

6 Conclusions and Future Work

6.1 Future Work

A Chat Bot Examples

A.0.1 Response Example

A.0.2 Synonym Example

A.0.3 Padding Example .

Bibliography

Vita

ix

143

145

147

147

147

148

149

160

To Mom, Dad, Cheryl, Michelle, and Mike.

"Little by little, one travels far." - J .R.R. Tolkien

X

ACKNOWLEDGMENTS

This thesis would not have been possible without the assistance and support of

many people. I would like to first and foremost extend my deepest appreciation to

my research advisor, Raining Wang, for his constant help and guidance with my

research. His focus on important research problems and high quality research has

greatly impacted my research and career development.

I would like to thank Phil Kearns, Evgenia Smirni, Weizhen Mao, and Chi-Kwong

Li for serving on my thesis committee and for their valuable comments, suggestions,

and feedback. I would also like to thank the staff of the Department of Computer

Science for all of their assistance. In particular, I would like to especially thank

Vanessa Godwin and Jacqulyn Johnson.

I would also like to express my appreciation to various friends, fellow graduate

students, and research collaborators that helped with different stages of my research,

Mengjun Xie, Zhenyu Wu, Sushil Jajodia, Zi Chu, Aaron Polaski, Sathish Indika, Lee

McDaniel, and others. I feel very fortunate to have worked with such brilliant people.

Last, and most important, I would like to extend my deepest gratitude to my

parents, Tom and Lorraine, and to my brother and sisters, Mike, Cheryl, and Michelle,

for their support and encouragement over the years while I completed my Ph.D.

studies.

xi

List of Tables

2.1 Scores for Models of HTTP Inter-Packet Delays .

2.2 Network Conditions for Test Scenarios

2.3 Mean Packets/Second and Inter-Packet Delay for OPC .

2.4

2.5

Theoretical Capacity for Covert Timing Channels .

Empirical Capacity for Covert Timing Channels . .

17

22

24

25

28

2.6 Mean and Standard Deviation of Kolmogorov-Smirnov Test Scores 29

2. 7 False Positive and True Positive Rates for Kolmogorov-Smirnov Test 30

2.8

2.9

Mean of Regularity Test Scores

False Positive and True Positive Rates for Regularity Test

3.1 IPCTC Test Scores ...

3.2 IPCTC Detection Rates

3.3 TRCTC Test Scores ..

3.4 TRCTC Detection Rates.

3.5 MBCTC Test Scores . . .

3.6 MBCTC Detection Rates

xii

32

33

62

62

63

64

66

66

307

308

4o1

402

JitterBug Test Scores

JitterBug Detection Rates

Message Composition of Chat Bot and Human Datasets

True Positive and Negative Rates for Entropy Classifier

70

70

100

102

4o3 True Positive and Negative Rates for Machine Learning and Hybrid

Classifiers 0 107

501 Definitions of User-Input Actions o 0 0 0 0 0 0 o o 0 0 0 0 0 0 o 0 0 0 0 0 118

502 True Positive and Negative Rates vso Thresholds and# of Accumulated

Outputs 0 0 0 0 0 o o o 0 0 0 o

5o3 True Positive Rates for Bots 0

xiii

130

133

List of Figures

2.1 Framework for Model-Based Covert Timing Channels. 15

2.2 Empirical Capacity and Bit Error Rates for WAN E-E and WAN E-W 27

2.3 Distribution of Kolmogorov-Smirnov Test Scores 30

3.1 IPCTC/TRCTC/MBCTC Scenario.

3.2 JitterBug Scenario

3.3 Equiprobable Binning of Exponential Data

3.4 CCE Performance

3.5 Distribution of CCE Test Scores for TRCTC

3.6 Distribution of CCE Test Scores for MBCTC

3.7 Distribution of EN Test Scores for JitterBug.

3.8 EN True Positive Rate vs. Sample Size ..

3.9 CCE True Positive Rate vs. Sample Size .

38

38

50

53

64

67

71

74

75

4.1 Distribution of Human Inter-Message Delay (a) and Message Size (b). 89

4.2 Distribution of Periodic Bot Inter-Message Delay (a) and Message Size

(b) 0 90

xiv

4.3 Distribution of Random Bot Inter-Message Delay (a) and Message Size

(b) . 92

4.4 Distribution of Responder Bot Inter-Message Delay (a) and Message

Size (b) . 93

4.5 Distribution of Replay Bot Inter-Message Delay (a) and Message Size (b) 93

4.6 Classification System Diagram . 96

5.1

5.2

5.3

5.4

Keystroke Inter-arrival Time Distribution

Keystroke Duration Distribution

Average Speed vs. Displacement for Point-and-Click

Drag-and-Drop Duration Distribution

119

119

120

120

5.5 Point-and-Click and Drag-and-Drop Movement Efficiency Distribution 121

5.6

5.7

5.8

Average Velocity for Point-and-Click

Overview of the HOP System

A Cascade Neural Network .

5.9 True Positive and Negative Rates vs. # of Accumulated Actions and

#of Nodes

5.10 Decision Time Distribution

XV

121

124

128

130

134

Application of Information Theory and

Statistical Learning to Anomaly Detection

Chapter 1

Introduction

As the world continues to become increasingly connected, the number of computer

intrusions and other attacks continues to grow. As the number of attacks grows, a

shift in hackers' motivation from "hacking for-fun" to "hacking for-profit" has made

attacks more sophisticated and more dangerous than ever. Indeed, in 2008, reports

show that the volume of malware grew almost three-fold [78] and attacks against

US government networks increased by 39.7% [37]. With the threat of attack rising,

detecting attacks---especially attacks that are new and previously unknown-is critical

in securing networks and computers.

In light of this trend, a major focus of current research efforts is on anomaly

detection. The term anomaly detection refers to detecting patterns (called anomalies)

that fall outside of the normal behavior in a system. The main benefit of anomaly

detection is in detecting novel or so-called "zero-day" attacks, which other detection

methods often fail to detect. As systems are most vulnerable to unknown attacks,

anomaly detection is a critical component in securing systems against them. The

2

main downside to anomaly detection is false alarms, i.e., anomalies that are not real

threats.

In this dissertation, we explore different applications of information theory and

statistical learning to anomaly detection. With statistical learning often being a form

of information extraction, information theory and statistical learning are closely re

lated. Specifically, this dissertation addresses two challenging detection problems from

network and system security, (1) detecting covert channels, and (2) determining if a

user is a human or a bot. While covert channels are a classic problem, dating back

to at least the 1970s, bots are a very new problem, only from the last decade or

so. Although two very distinct problems, both can be linked to entropy-a measure

of randomness, information content, or complexity-a central concept in information

theory. In two separate studies, detailed in Chapters 3 and 4, we are able to link

covert channels and bots to entropy. The behavior of hots is low in entropy when

their tasks are rigidly repeated or high in entropy when components of their behavior

are randomized. By comparison, the behavior of humans is complex and medium in

entropy. In other words, bots are simple and predictable, whereas humans are much

more complicated. Likewise, covert channels either increase regularity, resulting in

lower entropy, or add additional information, resulting in higher entropy. At the

same time, legitimate (non-covert) traffic is characterized by complex interdependen

cies and moderate entropy. In short, both hots and covert channels can be described

by either high or low entropy. Additionally, we utilize statistical learning, including

Bayesian learning, neural networks, and maximum likelihood estimation, to address

3

both problems.

To develop better anomaly detection techniques, especially for covert channels and

bots, we investigate different ways of using entropy measures and statistical learning

techniques, both separate and in combination, for modeling and detecting of covert

channels and bots. For covert channels, we design a covert timing channel, and model,

simulate, and test three different covert timing channels, and then, we propose an

entropy-based approach for detecting covert timing channels. For bots, we start by

performing a large-scale measurement study of chat bots, and then, we propose a

hybrid classification system, based on entropy and statistical learning for detecting

chat bots. In addition, we characterize game playing in a popular online game, and

then, we propose a game bot defense system, based on statistical learning and the

idea of human observational proofs for detecting online game bots. Our research

contributions are summarized as follows:

1) Designing and Modeling Covert Timing Channels

The exploration of advanced covert timing channel design is important to under

stand and defend against covert timing channels. This chapter introduces a new class

of covert timing channels, called model-based covert timing channels, which exploit

the statistical properties of legitimate network traffic to evade detection in an effective

manner. We design and implement an automated framework for building model-based

covert timing channels. The framework consists of four main components: filter, an

alyzer, encoder, and transmitter. The filter characterizes the features of legitimate

network traffic, and the analyzer fits the observed traffic behavior to a model. Then,

4

the encoder and transmitter use the model to generate covert traffic and blend with

legitimate network traffic. The framework is lightweight, and the overhead induced by

model fitting is negligible. To validate the effectiveness of the proposed framework, we

conduct a series of experiments in LAN and WAN environments. The experimental

results show that model-based covert timing channels provide a significant increase in

detection resistance with only a minor loss in capacity.

2} Detecting Covert Timing Channels

The detection of covert timing channels is of increasing interest in light of recent

practice on the exploitation of covert timing channels over the Internet. However, due

to the high variation in legitimate network traffic, detecting covert timing channels is

a challenging task. The existing detection schemes are ineffective to detect most of

the covert timing channels known to the security community. This chapter introduces

a new entropy-based approach to detecting various covert timing channels. Our new

approach is based on the observation that the creation of a covert timing channel

has certain effects on the entropy of the original process, and hence, a change in

the entropy of a process provides a critical clue for covert timing channel detection.

Exploiting this observation, we investigate the use of entropy and conditional entropy

in detecting covert timing channels. Our experimental results show that our entropy

based approach is sensitive to the current covert timing channels, and is capable of

detecting them in an accurate manner.

3} Measurement and Classification of Chat Bots

The abuse of chat services by automated programs, known as chat bats, poses a

5

serious threat to Internet users. Chat bots target popular chat networks to distribute

spam and malware. In this chapter, we first conduct a series of measurements on

a large commercial chat network. Our measurements capture a total of 14 different

types of chat bots ranging from simple to advanced. Moreover, we observe that

human behavior is more complex than bot behavior. Based on the measurement

study, we propose a classification system to accurately distinguish chat bots from

human users. The proposed classification system consists of two components: (1) an

entropy-based classifier and (2) a machine-learning-based classifier. The two classifiers

complement each other in chat bot detection. The entropy-based classifier is more

accurate to detect unknown chat bots, whereas the machine-learning-based classifier

is faster to detect known chat bots. Our experimental evaluation shows that the

proposed classification system is highly effective in differentiating bots from humans.

4) Detecting Online Game Bats

The abuse of online games by automated programs, known as game bots, for gain

ing unfair advantages has plagued millions of participating players with escalating

severity in recent years. The current methods for distinguishing bots and humans

are based on human interactive proofs (HIPs), such as CAPTCHAs. However, HIP

based approaches have inherent drawbacks. In particular, they are too obtrusive to

be tolerated by human players in a gaming context. In this chapter, we propose a

non-interactive approach based on human observational proofs (HOPs) for continu

ous game bot detection. HOPs differentiate bots from human players by passively

monitoring input actions that are difficult for current bots to perform in a human-like

6

manner. We collect a series of user-input traces in one of the most popular online

games, World of Warcraft. Based on the traces, we characterize the game playing

behaviors of bots and humans. Then, we develop a HOP-based game bot defense

system that analyzes user-input actions with a cascade-correlation neural network to

distinguish bots from humans. The HOP system is effective in capturing current game

bots, which raises the bar against game exploits and forces a determined adversary to

build more complicated game bots for detection evasion in the future.

The remainder of this dissertation is organized as follows. Chapter 2 covers mod

eling covert timing channels in terms of capacity and introduces model-based covert

timing channels. Chapter 3 describes other covert timing channels and related detec

tion methods, and details our entropy-based approach to detection. Chapter 4 details

our chat bot measurements and our hybrid classification system. Chapter 5 describes

our game bot measurements and our HOP-based game bot defense system. Lastly, in

Chapter 6 we conclude and outline possible directions for our future work.

7

Chapter 2

Designing and Modeling Covert

Timing Channels

A covert channel is a "communication channel that can be exploited by a process

to transfer information in a manner that violates a system's security policy" [31].

There are two types of covert channels: covert storage channels and covert timing

channels. A covert storage channel manipulates the contents of a storage location

(e.g., disk, memory, packet headers, etc.) to transfer information. A covert timing

channel manipulates the timing or ordering of events (e.g., disk accesses, memory

accesses, packet arrivals, etc.) to transfer information. The focus of this chapter is on

covert timing channels.

The potential damage of a covert timing channel is measured in terms of its capac

ity. The capacity of covert timing channels has been increasing with the development

of high-performance computers and high-speed networks. While covert timing chan-

8

nels studied in the 1970s could transfer only a few bits per second [70], covert timing

channels in modern computers can transfer several megabits per second [125]. To

defend against covert timing channels, researchers have proposed various methods to

detect and disrupt them. The disruption of covert timing channels manipulates traffic

to slow or stop covert timing channels [42, 62, 61, 63, 48]. The detection of covert tim

ing channels mainly uses statistical tests to differentiate covert traffic from legitimate

traffic [12, 13, 19, 110, 44]. Such detection methods are somewhat successful, because

most existing covert timing channels cause large deviations in the timing behavior

from that of normal traffic, making them relatively easy to detect.

In this chapter, we introduce model-based covert timing channels, which endeavor

to evade detection by modeling and mimicking the statistical properties of legitimate

traffic. We design and develop a framework for building model-based covert timing

channels, in which hidden information is carried through pseudo-random values gen

erated from a distribution function. We use the inverse distribution function and

cumulative distribution function for encoding and decoding. The framework includes

four components, filter, analyzer, encoder, and transmitter. The filter profiles the

legitimate traffic, and the analyzer fits the legitimate traffic behavior to a model.

Then, based on the model, the encoder chooses the appropriate distribution functions

from statistical tools and traffic generation libraries to create covert timing channels.

The distribution functions and their parameters are determined by automated model

fitting. The process of model fitting proves very efficient and the induced overhead

is minor. Lastly, the transmitter generates covert traffic and blends with legitimate

9

traffic.

The two primary design goals of covert timing channels are high capacity and

detection resistance. To evaluate the effectiveness of the proposed framework, we per

form a series of LAN and WAN experiments to measure the capacity and detection

resistance of our model-based covert timing channel. We estimate the capacity with

a model and then validate the model with real experiments. Our experimental results

show that the capacity is close to that of an optimal covert timing channel that trans

mits in a similar condition. In previous research, it is shown that the shape [12, 13]

and regularity [19, 110] of network traffic are important properties in the detection of

covert timing channels. We evaluate the detection resistance of the proposed frame

work using shape and regularity tests. The experimental results show that both tests

fail to differentiate the model-based covert traffic from legitimate traffic. Overall,

our model-based covert timing channel achieves strong detection resistance and high

capacity.

There is an arms race between covert timing channel design and detection. To

maintain the lead, researchers need to continue to improve detection methods and

investigate new attacks. The goal of this work is to increase the understanding of more

advanced covert timing channel design. Our demonstration of model-based covert

timing channels motivates the development of a more advanced detection method

based on entropy, which is discussed in Chapter 3.

10

2.1 Background

In this section, we describe basic communication concepts and relate them to covert

timing channels. Then, based on these concepts, we formulate two base cases in covert

timing channel design. The basic problem of communication, producing a message at

one point and reproducing that message at another point, is the same for both overt

and covert channels, although covert channels must consider the additional problem

of hiding communication.

2.1.1 Basic Communication Concepts

The capacity of a communication channel is the maximum rate that it can reliably

transmit information. The capacity of a covert timing channel is measured in bits per

time unit [88]. The capacity in bits per time unit Ct is defined as:

I(X; Y)
Ct = m_:x E(X) ,

where X is the transmitted inter-packet delays or input distribution, Y is the received

inter-packet delays or output distribution, I(X; Y) is the mutual information between

X andY, and E(X) is the expected time of X.

The mutual information measures how much information is carried across the

channel from X toY. The mutual information I(X; Y) is defined as:

!I: I: P(y I x)P(x)logp;(~)~~l), (discrete)
I(X;Y) = X y

j [P(y I x)P(x)logp;(~)~~l) dx dy, (continuous)

11

The noise, represented by the conditional probability in the above definitions, is

defined as:

P(y I x) = fnoise(y,x),

where !noise is the noise probability density function, xis the transmitted inter-packet

delays, and y is the received inter-packet delays.

The noise distribution !noise is the probability that the transmitted inter-packet

delay x results in the received inter-packet delay y. The specific noise distribution for

inter-packet delays is detailed in Section 2.3.2.

2.1.2 Base Cases in Design

The two main goals of covert timing channel design are high capacity and detection

resistance. There are few examples of practical implementations of covert timing

channels in the literature, so we begin to explore the design space in terms of both

capacity and detection resistance. The focus of our model-based covert timing channel

is to achieve high detection resistance. In the following section, we formulate two base

cases in covert channel design as comparison to the model-based covert timing channel.

The first case, optimal capacity, transmits as much information as possible, sending

hundreds or more packets per second. Such a design might not be able to achieve covert

communication, but is useful as a theoretical upper bound. The second case, fixed

average packet rate, sends packets at a specific fixed average packet rate, encoding

as much information per packet as possible. The fixed average packet rate is mainly

determined by the packet rate of legitimate traffic.

12

2.1.2.1 Optimal Capacity Channel

The first design, OPtimal Capacity (OPC), uses the discrete input distribution that

transmits information as fast as possible. The optimal capacity is dependent on the

optimal distance between two symbols. The first symbol is (approximately) zero and

the second symbol is non-zero, so the use of more symbols (i.e., four or eight) will

introduce more non-zero symbols and decrease the symbol rate. The use of smaller

distances between the two symbols increases the symbol rate and the error rate. The

optimal distance is the point at which the increase in error rate balances the increase

in symbol rate.

The code operates based on two functions. The encode function is defined as:

!0,
Fencode(s) = ds =

d,

s=O

s=l

where s is a symbol, d8 is an inter-packet delay with a hidden symbol s, and dis the

optimal distance between the two symbols. The decode function is defined as:

where d8 is an inter-packet delay with a hidden symbol s.

Channel Capacity: The channel capacity of OPC is dependent on the optimal input

distribution and noise. The input distribution is defined as:

13

p, X =d

P(x) = 1- p, x = 0

0, otherwise

where p is the probability of the symbol s = 1, and 1 - p is the probability of the

symbols= 0.

Therefore, the capacity of OPC is the maximum of the mutual information with

respect to the parameters d and p of the input distribution over the expected time

d·p:

1 "" P(y I x)P(x)
Ct = IIJ~ d. p ~ ~ P(y I x)P(x)log P(x)P(y) .

X y

2.1.2.2 Fixed-Average Packet Rate Channel

The second design, Fixed-average Packet Rate (FPR), uses the input distribution that

encodes as much information per packet as possible with a constraint on the average

cost of symbols. The cost is measured in terms of the time required for symbol

transmission. Therefore, the optimal input distribution is subject to the constraint

on the average packet rate, i.e., the cost of symbol transmission.

The optimal input distribution for FPR is computed with the Arimoto-Blahut al-

gorithm generalized for cost constraints [14]. The Arimoto-Blahut algorithm computes

the optimal input distribution for capacity in bits per channel usage. The capacity in

14

bits per channel usage Cu is defined as:

Cu =max I(X; Y).
X

In general, Cu and Ct do not have the same input distribution X. However, if

the input distribution is constrained so that E(X) = c (where cis a constant), then

the optimal input distribution X is optimal for both Cu and Ct, and Cu = Ct ·c.

Thus, FPR transmits as much information per packet (channel usage) and per second

(time unit) as possible with a fixed average packet rate. We use the Arimoto-Blahut

algorithm to compute the optimal input distribution for FPR. The capacity results

for FPR, based on the Arimoto-Blahut algorithm, are detailed in Section 2.3.

2.2 The Framework

The covert timing channel framework, as shown in Figure 2.1, is a pipeline that

filters and analyzes legitimate traffic then encodes and transmits covert traffic. As

the output of the pipeline, the covert traffic mimics the observed legitimate traffic,

making it easy to evade detection. The components of the framework include filter,

analyzer, encoder, and transmitter, which are detailed in the following paragraphs.

Figure 2.1: Framework for Model-Based Covert Timing Channels.

LEGIT
-TRAFFIC

MODELS: ·INPUT·

EXPONENTIAL, GAMMA,

PARETO, LOGNORMAL,

POISSON, WEI BULL, ..

RANDOM NUMBER

MESSAGE TERMS·
!PO-INTER-PACKET DELAY

FILTER f----LE-G-IT--.1 ANALVZER f---M
0
-D-El----+i ENCODER f--CO-V-ER-T -.1 TRANSMITTER ~~::~6__,..

IPDs IPOs

The filter monitors the background traffic and singles out the specific type of

15

traffic to be mimicked. The more specific application traffic the filter can identify

and profile, the better model we can have for generating covert traffic. For example,

FTP is an application protocol based on TCP, but generating a series of inter-packet

delays based on a model of all TCP traffic would be a poor model for describing

FTP behaviors. Once the specified traffic is filtered, the traffic is further classified

into individual flows based on source and destination IP addresses. The filter then

calculates the inter-packet delay between subsequent pair of packets from each flow,

and forwards the results to the analyzer.

The analyzer fits the inter-packet delays in sets of 100 packets with the Expo

nential, Gamma, Pareto, Lognormal, Poisson, and Weibull distributions. The fitting

process uses maximum likelihood estimation (MLE) to determine the parameters for

each model. The model with the smallest root mean squared error (RMSE), which

measures the difference between the model and the estimated distribution, is chosen

as the traffic model. The model selection is automated. Other than the set of models

provided to the analyzer, there is no human input. The models are scored based on

root mean squared errors, as shown in Table 2.1. The model with the lowest root

mean squared error is the closest to the data being modeled. Since most types of

network traffic are non-stationary [22], the analyzer supports piecewise modeling of

non-stationary processes by adjusting the parameters of the model after each set of

100 covert inter-packet delays. The analyzer refits the current model with new sets

of 100 packets to adjust the parameters. The analyzer can take advantage of a larger

selection of models to more accurately model different types of application traffic. For

16

Table 2.1: Scores for Models of HTTP Inter-Packet Delays

model parameters root mean squared error
Wei bull 0.0794, 0.2627 0.0032
Gamma 0.1167, 100.8180 0.0063
Lognormal -4.3589, 3.5359 0.0063
Pareto 3.6751, 0.0018 0.0150
Poisson 11.7611 0.0226
Exponential 11.7611 0.0294

example, if we know that the targeted traffic is well-modeled as an Erlang distribution,

we will add this distribution to the set of models. For each of the current models, the

computational overhead is less than 0.1 milliseconds and the storage overhead for the

executable is less than 500 bytes, so the induced resource consumption for supporting

additional models is not an issue.

The filter and analyzer can be run either offline or online. In the offline mode,

the selection of the model and parameters is based on traffic samples. The offline

mode consumes less resources, but the model might not represent the current network

traffic behavior well. In the online mode, the selection of the model and parameters is

based on live traffic. The online mode consumes more resources and requires that the

model and parameters be transmitted to the decoder with the support of a startup

protocol, but the model better represents the current network traffic behavior. The

startup protocol is a model determined in advance, and is used to transmit the online

model (1 byte) and parameters (4-8 bytes) to the decoder.

The encoder generates random covert inter-packet delays that mimic legitimate

inter-packet delays. The input to the encoder includes the model, the message, and

17

a sequence of random numbers. Its output is a sequence of covert random inter-

packet delays. The message to be sent is separated into symbols. The symbols map

to different random timing values based on a random code that distributes symbols

based on the model.

Using a sequence of random numbers r 1 , r2, ... , rn., we transform the discrete

symbols into continuous ones. The continuization function is

8
Fcontinuize(8) = (fSl + r) mod 1 = rs,

where Sis the set of possible symbols, 8 is a symbol and r is a Uniform(0,1) random

variable. The corresponding discretization function is:

Fdiscretize(rs) =I S I ·((rs- r)mod 1) = 8,

where r8 is a Uniform(0,1) random variable with a hidden symbol 8.

The encoder and decoder start with the same seed and generate the same sequence

of random numbers, r 1, r2, ... , rn. To maintain synchronization, the encoder and de-

coder associate the sequence of symbols with TCP sequence numbers, i.e., 8 1 with

the first TCP sequence number, 82 with the second TCP sequence number, and so

on. 1 Therefore, both the encoder and decoder have the same values of r through the

sequence of symbols. The inverse distribution function F;;_~el takes a Uniform(0,1)

random number as input and generates a random variable from the selected model

1 With this mechanism, repacketization can cause synchronization problems, so other mechanisms
such as "bit stuffing" [110] could be useful for synchronization.

18

as output. The sequence of transformed random numbers r81 , r82 , ... , rsn is used

with the inverse distribution function to create random covert inter-packet delays

d8 1, d8 2, ... , dsn· The encode function is:

where F~;del is the inverse distribution function of the selected model. The decode

function is:

where Fmodel is the cumulative distribution function of the selected model, and d8 is

a random covert inter-packet delay with a hidden symbol s.

The transmitter sends out packets to produce the random covert inter-packet de

lays d8 1, d8 2, ... , dsn· The receiver then decodes and discretizes them to recover the

original symbols s1, s2, ... , Sn·

2.2.1 Model-Based Channel Capacity

The model-based channel capacity is also dependent on the input distribution and

noise. The input distribution is defined as:

P(x) = fmodel(x)

where !model is the probability density function of the selected model.

Therefore, the capacity of the model-based channel is the mutual information over

the expected time E(X):

19

1 J J P(y I x)P(x)
Ct = E(X) P(y I x)P(x)log P(x)P(y) .

X y

2.2.2 Implementation Details

We implement the proposed framework using C and MATLAB in Unix/Linux environ-

ments. The components run as user-space processes, while access to tcpdump is re-

quired. The filter is written in C and runs tcpdump with a user-specified filtering

expression to read the stream of packets. The filter processes the traffic stream and

computes the inter-packet delays based on the packet timestamps. The analyzer is

written in MATLAB and utilizes the fitting functions from the statistics toolbox for

maximum likelihood estimation.

The encoder is written in C, and uses random number generation and random

variable models from the Park-Leemis [71] simulation C libraries. The transmitter is

also written in C, with some inline assembly, and uses the Socket API. The timing

mechanism used is the Pentium CPU Time-Stamp Counter, which is accessed by

calling the RDTSC (Read Time-Stamp Counter) instruction. The RDTSC instruction

has excellent resolution and low overhead, but must be calibrated to be used as a

general purpose timing mechanism. The usleep and nanosleep functions force a

context switch, which delays the packet transmission with small inter-packet delays,

so these functions are not used.

20

2.3 Experimental Evaluation

In this section, we evaluate the effectiveness of a model-based covert timing channel

built from our framework. The OPC and FPR covert timing channels, discussed in

Section 2.1, are used as points of comparison. In particular, we examine the capacity

and detection resistance of each covert timing channel.

2.3.1 Experimental Setup

The defensive perimeter of a network, composed of firewalls and intrusion detection

systems, is responsible for protecting the network. Typically, only a few specific ap

plication protocols, such as HTTP and SMTP, are commonly allowed to pass through

the defensive perimeter. We utilize outgoing HTTP inter-packet delays as the medium

to build model-based covert timing channels, due to the wide acceptance of HTTP

traffic for crossing the network perimeter. We refer to the model-based HTTP covert

timing channel as MB-HTTP.

2.3.1.1 Testing Scenarios

There are three different testing scenarios in our experimental evaluation. The first

scenario is in a LAN environment, a medium-size campus network with subnets for

administration, departments, and residences. The LAN connection is between two ma

chines, located in different subnets. The connection passes through several switches,

the routers inside the campus network, and a firewall device that protects each sub

net. The other two scenarios are in WAN environments. The first WAN connection is

21

between two machines, both are on the east coast of the United States but in different

states. One is on a residential cable network and the other is on a medium-size cam-

pus network. The second WAN connection is between two machines on the opposite

coasts of the United States, one on the east coast and the other on the west coast.

Both machines are on campus networks.

Table 2 2· Network Conditions for Test Scenarios
LAN WAN E-E WANE-W

distance 0.3 miles 525 miles 2660 miles
RTT 1.766ms 59.647ms 87.236ms
IPDV 2.5822e-05 2.4124e-03 2.1771e-04
hops 3 18 13

IPDV - inter-packet delay variation

The network conditions for different experiment scenarios are summarized in Table

2.2. The two-way round-trip time (RTT) is measured using the ping command. We

compute the one-way inter-packet delay variation based on the delays between packets

leaving the source and arriving at the destination. The inter-packet delay variations

of the three connections span three orders of magnitude, from 1 x 10-3 to 1 x 10-5 .

The LAN connection has the lowest inter-packet delay variation and the two WAN

connections have higher inter-packet delay variation, as expected. The WAN E-E

connection is shorter and has smaller RTT time than the WAN E-W connection.

However, WAN E-E has higher inter-packet delay variation than WAN E-W, due

to more traversed hops. This implies that the inter-packet delays variation is more

sensitive to the number of hops than the physical distance and RTT between two

machines.

22

2.3.1.2 Building MB-HTTP

We install the components of the framework on the testing machines. The filter dis

tinguishes the outgoing HTTP traffic from background traffic. The analyzer observes

10 million HTTP inter-packet delays, then fits the HTTP inter-packet delays to the

models, as described in Section 2.2. The fitting functions use maximum likelihood

estimation (MLE) to determine the parameters for each model. The model with the

best root mean squared error (RMSE), a measure of the difference between the model

and the distribution being estimated, is chosen as the traffic model.

For the HTTP inter-packet delays, the analyzer selects the Weibull distribution

based on the root mean squared error. Note that HTTP inter-packet delays have been

shown to be well approximated by a Weibull distribution [22]. The Weibull probability

distribution function is:

The parameters, which vary for each set of 100 packets, have a mean scale parameter

A of 0.0371 and a mean shape parameter k of 0.3010. With these parameters, the

mean inter-packet delay is 0.3385, approximately 3 packets per second.

2.3.1.3 Formulating OPC and FPR

The average packet rate for FPR is fixed at 0_3185 = 2.954 packets per second, based

on the average packet rate of HTTP traffic. We use the Arimoto-Blahut algorithm

to compute the optimal input distribution, with the average packet rate of 2.954 as

23

Table 2.3: Mean Packets/Second and Inter-Packet Delay for OPC
LAN WANE-E WANE-W

channel PPS I IPD PPS I IPD PPS I IPD
OPC 12,777.98 I 7.87e-05 137.48 I 7.31e-03 1,515.56 I 6.63e-04

PPS- mean packets per second, IPD- mean inter-packet delay

the cost constraint. The optimal input distribution balances high cost symbols with

low probabilities and low cost symbols with high probabilities, such that the average

cost constraint is satisfied. The constraint can be satisfied for infinitely large symbols

with infinitely small probabilities, and hence, the optimal input distribution decays

exponentially to infinity. The results of the Arimoto-Blahut algorithm, as the number

of intervals increases, reduce to an Exponential distribution with an inverse scale

parameter of>.= 2.954. The Exponential probability distribution function is:

We compute the optimal distance between packets for OPC based on the noise

distribution. The optimal distance between packets and the average packet rate for

OPC is shown in Table 2.3. For connections with higher inter-packet delay variation,

OPC increases the time elapse between packets to make the inter-packet delays easier

to distinguish, and, as a result, lowers the average number of packets per second.

2.3.2 Capacity

The definition of capacity allows us to estimate the capacity of each covert timing

channel based on the network conditions of each connection. In previous research [138],

24

the inter-packet delay differences have been shown to be well-modeled by a Laplace

distribution. The probability density function of the Laplace distribution is:

The setting of the scale parameter b is based on the inter-packet delay variation

for each connection. The variation of the Laplace distribution is a 2 = 2b2 • Therefore,

we set b to:

where a 2 is the inter-packet delay variation for each connection.

Table 2.4: Theoretical Capacity for Covert Timing Channels
LAN WANE-E WANE-W

channel CPP CPS CPP CPS CPP CPS
MB-HTTP 9.39 27.76 4.12 12.19 6.84 20.21

FPR 12.63 37.32 6.15 18.17 9.59 28.35
OPC 0.50 6395.39 0.50 68.80 0.50 758.54
CPP - capacity per packet, CPS - capacity per second

The results, in terms of capacity per packet and capacity per second, are shown

in Table 2.4. While OPC has the highest capacity, it is the least efficient in terms

of capacity per packet. Furthermore, with the large number of packets per second, it

can be easily detected by most intrusion detection systems.

The capacity of MB-HTTP is 67% to 74% of that of FPR, with larger differences

for connections with high inter-packet delay variation than for those with low inter-

packet delay variation. The Weibull distribution has a larger proportion of very small

25

values than the Exponential distribution. As a result, MB-HTTP uses more small

values than FPR and benefits more from lower inter-packet delay variation.

The theoretical capacity is somewhat optimistic. The model only considers the

noise introduced after packets leave the transmitter. With the real covert timing

channels, noise is introduced before packets leave the transmitter. The transmitter

is sometimes not able to transmit at the appropriate times, due to slow processing,

context switches, etc. Thus, the actual distance between packets can increase or

decrease from the intended distance as the packets are transmitted.

2.3.2.1 Empirical Capacity

To evaluate the channel capacity in practice, we run covert timing channels on each

connection. The channels are configured to transmit 16,000 random bits of informa

tion. For FPR and MB-HTTP, the number of bits encoded per packet is set to 16

(i.e., 216 = 65,536 different values), while OPC transmits a single bit per packet.

During these tests, we measure the bit error rate of each covert timing channel from

the most significant bit to the least significant bit of each packet. The most significant

bit represents a large part of the inter-packet delay, where the least significant bit

represents a small part of the inter-packet delay. While flipping the most significant

bit causes a difference in seconds or tenths of seconds, changing the least significant

bit means a difference only in milliseconds or microseconds. In other words, the higher

the number of bits encoded per packet, the smaller the precision of the lowest order

bits. Interestingly, encoding at 16 bits per packet and decoding at 8 bits per packet

26

Figure 2.2: Empirical Capacity and Bit Error Rates for WAN E-E and WAN E-W
WAH E-E empirical capec1ty WAN E-E bit error rates

~ 0.8 f,'-~-;::-------------1

i 3 0.6 -1-',~-~------------i

~ 04 t----"c----'x----------i ..
io2t---~~-~---------j:

!
~----~~~~~~--·----
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

bit

WAH E-W empirical capacity

:/} 0.8 t----'o.-------''c--------i

l B o.8 t----',-----..,.--------1

~ 04 t-----"'"'-.,.----~-----i ..
li 0.2 +-------~ i~--'c-----i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

bit

f* FPR ,. MB-HTIP I

0.5 ,-·-···-·····································'::":~~~""=~~-···1111·1

~ 0.3 +----,....,.... 00'---f------

5 0.2 t----?---+-----------1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

bH

WAN E-W bit error rates

0.5

~ 0.3 t----------..-~-"'-+--------1

5 0.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

bit

produces the most significant 8 bits of the 16 bit code.

To determine the transmission rate with error correction, we measure the empirical

capacity of each bit as a binary symmetric channel. The binary symmetric channel is

a special case where the channel has two symbols of equal probability. The capacity

of a binary symmetric channel is:

C = I(X;Y) = 1- (p logp+q logq),

where p is the probability of a correct bit and q 1 - p is the probability of an

incorrect bit.

The empirical capacity and bit error rate for each bit, from the most significant to

the least significant, are shown in Figure 2.2. The empirical capacity per bit degrades

as the bit error rates increase. The total capacity of the channel is the summation

27

of the capacity for each bit. For MB-HTTP, the bit error rate increases somewhat

linearly. For FPR, the bit error rate accelerates gradually, eventually overtaking the

bit error rates of MB-HTTP, though at this point the capacity per bit is insignificant.

Table 2.5: Empirical Capacity for Covert Timing Channels
LAN WANE-E WANE-W

channel ECPP ECPS ECPP ECPS ECPP ECPS
MB-HTTP 6.74 19.93 2.15 6.35 5.18 15.31

FPR 10.95 32.35 4.63 13.67 9.37 27.69
OPC 0.85 10,899.62 0.66 91.28 0.98 1,512.53

ECPP - empirical capacity per packet, ECPS - empirical capacity per second

The empirical capacity of each covert timing channel is shown in Table 2.5. The

empirical capacity of MB-HTTP is still about 46% to 61% of that of FPR, somewhat

lower than the case in the theoretical model. This is because a larger proportion of

MB-HTTP traffic has small inter-packet delays than that of FPR, and small inter-

packet delays are more sensitive to noise caused by transmission delays (i.e., slow

processing, context switches, etc.) than large inter-packet delays, which is not repre-

sented in the theoretical model.

2.3.3 Detection Resistance

The detection resistance, as described in Section 2.1, is estimated based on the shape

and regularity tests. To examine the shape of the distribution, we use the Kolmogorov-

Smirnov test [36], which is a non-parametric goodness-of-fit test. To examine the

regularity of the traffic, we use the regularity test [19], which studies the variance of

the traffic pattern. In this section, we detail these two tests and show the detection

resistance of MB-HTTP against both tests.

28

2.3.3.1 Shape Tests

The two-sample Kolmogorov-Smirnov test determines whether or not two samples

come from the same distribution. The Kolmogorov-Smirnov test is distribution free,

meaning the test is not dependent on a specific distribution. Thus, it is applicable to

a variety of types of traffic with different distributions. The Kolmogorov-Smirnov test

statistic measures the maximum distance between two empirical distribution func-

tions.

KSTEST =max I S1(x)- S2(x) I,

where sl and 82 are the empirical distribution functions of the two samples.

In our experiments, we test a large set of legitimate inter-packet delays against a

sample of either covert or legitimate inter-packet delays. The large set is a training

set of 10,000,000 HTTP inter-packet delays. The training set is used to represent the

normal behavior of the HTTP protocol.

The test score by comparing the two sets is used to determine if the sample is

covert or legitimate. A small score indicates that the behavior is close to normal.

However, if the test score is large, i.e., the sample does not fit the normal behavior of

the protocol, it indicates a potential covert timing channel.

Table 2.6: Mean and Standard Deviation of Kolmogorov-Smirnov Test Scores
LEGIT-HTTP MB-HTTP FPR OPC

sample size mean stdev mean stdev mean stdev mean stdev
100x 2,000 .193 .110 .196 .093 .925 .002 .999 .000
100x 10,000 .141 .103 .157 .087 .925 .001 .999 .000
100x 50,000 .096 .088 .122 .073 .924 .000 .999 .000
lOOx 250,000 .069 .066 .096 .036 .924 .000 .999 .000

29

Figure 2.3: Distribution of Kolmogorov-Smirnov Test Scores
scores for 100x 2.000 packets scores for 100x 10,000 packets

0.35 ! 0.35

0.3t------tlr---------j 0.3

0.25 t-------,n---lf----------1
i 0.2+------1 -.----------151 f 0.15 t---rl---1

0.1

0.06

0.5

0.<5

o.•
c 0.35

-€ 0.3

8. 0.25

[0.2
0.15

0.1

0.05

1----
~

~

~ ----1
~

=r
~ • ~

• • r:JI n

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.6 -.....

I

!

0.7

0.6

0.5

0 ••

02

0.1

•
=i _J

ll Ill
~ ~ ~ u ~ ~ = u ~ u ,

I

I

l
I
I

I

The Kolmogorov-Smirnov test is run 100 times for each of 2,000, 10,000, 50,000,

and 250,000 packet samples of legitimate and covert traffic from each covert timing

channel. The mean and standard deviation of the test scores are shown in Table 2.6.

For FPR and OPC, the mean scores are over 0.90 and the standard deviations are

extremely low, indicating that the test can reliably differentiate both covert timing

channels from normal HTTP traffic. By contrast, the mean scores for MB-HTTP

samples are very close to those of legitimate samples. The mean scores are for 100

tests, which in total include as many as 25 million (250,000 x 100) inter-packet delays.

The distribution of individual test scores is illustrated in Figure 2.3.

Table 2. 7: False Positive and True Positive Rates for Kolmogorov-Smirnov Test
LEGIT MB-HTTP FPR OPC

sample size cutoff false pos. true pos. true pos. true pos.
100x 2,000 KSTEST ~ .66 .01 .01 1.00 1.00

100x 10,000 KSTEST ~ .65 .01 .01 1.00 1.00
100x 50,000 KSTEST ~ .41 .01 .01 1.00 1.00
100x 250,000 KSTEST ~ .21 .01 .02 1.00 1.00

30

The detection resistance based on the Kolmogorov-Smirnov test is shown in Table

2.7. The targeted false positive rate is 0.01. To achieve this false positive rate, the

cutoff scores-the scores that decide whether samples are legitimate or covert-are

set at the 99th percentile of legitimate sample scores. The true positive rates, based

on the cutoff scores, are then shown for each covert timing channel. Since the true

positive rates in all 100 tests are 1.00, the Kolmogorov-Smirnov test detects FPR and

OPC easily. However, the true positive rates for MB-HTTP are approximately the

same as the false positive rates. The Kolmogorov-Smirnov test cannot differentiate

between MB-HTTP and legitimate samples. Such a result can be explained based

on the distribution of individual test scores, which is shown in Figure 2.3. While

the mean scores of MB-HTTP traffic in Table 2.6 are slightly higher than those of

LEGIT-HTTP, the distributions of individual scores overlap so that the false positive

rate and true positive rate are approximately equal.

2.3.3.2 Regularity Tests

The regularity test [19] determines whether the variance of the inter-packet delays is

relatively constant or not. This test is based on the observation that for most types

of network traffic, the variance of the inter-packet delays changes over time. With

covert timing channels, the code used to transmit data is a regular process and, as a

result, the variance of the inter-packet delays remains relatively constant over time.

In our experiments, we test the regularity of a sample of either covert or legitimate

inter-packet delays. The sample is separated into sets of winter-packet delays. Then,

31

for each set, the standard deviation of the set Ui is computed. The regularity is the

standard deviation of the pairwise differences between each ui and Uj for all sets i < j.

regularity= ST DEV(I ui- Uj I, i < j, 'Vi, j)
!Ji

The regularity test is run 100 times for 2,000 packet samples of legitimate and covert

samples from each covert timing channel. The window sizes of w = 100 and w = 250

are used. The mean regularity scores are shown in Table 2.8. If the regularity is small,

the sample is highly regular, indicating a potential covert timing channel.

Table 2.8: Mean of Regularity Test Scores
sample size LEGIT-HTTP MB-HTTP FPR OPC

lOOx 2,000 w=100 43.80 38.21 0.34 0.00
lOOx 2,000 w=250 23.74 22.87 0.26 0.00

The mean regularity scores for OPC are 0.0 for both tests, indicating regular

behavior. There are two values, each with 0.5 probability. Therefore, the standard

deviation within sets is small u = 0.5d = 3.317e - 4, and there is no detectable

change in the standard deviation between sets. The mean regularity score for FPR

is small as well, showing that the test is able to detect the regular behavior. While

the standard deviation of FPR, which is based on the Exponential distribution, is

u = >. = 0.3385, the code is a regular process, so the variance of the inter-packet

delays remains relatively constant.

The mean regularity scores for MB-HTTP are close to those of legitimate samples.

This is because the parameters are recalibrated after each set of 100 packets, as

described in Section 2.2. The parameters of the distribution determine the mean and

32

standard deviation, so adjusting the parameters changes the variance after each set

of 100 inter-packet delays. As a result, like legitimate traffic, the variance of the

inter-packet delays appears irregular.

Table 2.9: False Positive and True Positive Rates for Regularity Test
LEGIT MB-HTTP FPR OPC

sample size cutoff false pos. true pos . true pos. true pos.
lOOx 2,000 w=lOO reg.::::; 6.90 . 01 .00 1.00 1.00
lOOx 2,000 w=250 reg.::::; 5.20 .01 .00 1.00 1.00

The detection resistance based on the regularity test is shown in Table 2.9. The

targeted false positive rate is 0.01. The cutoff scores are set at the 1st percentile of

legitimate sample scores, in order to achieve this false positive rate. The true positive

rates, based on the cutoff scores, are then shown for each covert timing channels. The

regularity test is able to detect FPR and OPC in all 100 tests. The resulting true

positive rates for MB-HTTP are approximately the same as the false positive rate.

Basically, the test is no better than random guessing at detecting MB-HTTP.

2.4 Conclusion

We introduced model-based covert timing channels, which mimic the observed behav-

ior of legitimate network traffic to evade detection. We presented a framework for

building such model-based covert timing channels. The framework consists of four

components: filter, analyzer, encoder, and transmitter. The filter characterizes the

specific features of legitimate traffic that are of interest. The analyzer fits the traffic to

several models and selects the model with the best fit. The encoder generates random

33

covert inter-packet delays that, based on the model, mimic the legitimate traffic. The

transmitter then manipulates the timing of packets to create the model-based covert

timing channel.

Using channel capacity and detection resistance as major metrics, we evaluated

the proposed framework in both LAN and WAN environments. Our capacity results

suggest that model-based covert timing channels work efficiently even in the coast

to-coast scenario. Our detection resistance results show that, for both shape and

regularity tests, covert traffic is sufficiently similar to legitimate traffic that current

detection methods cannot differentiate them. In contrast, the Kolmogorov-Smirnov

and regularity tests easily detect FPR and OPC.

34

Chapter 3

Detecting Covert Timing

Channels

3.1 Introduction

As an effective way to exfiltrate data from a well-protected network, a covert timing

channel manipulates the timing or ordering of network events (e.g., packet arrivals)

for secret information transfer over the Internet, even without compromising an end

host inside the network. On the one hand, such information leakage caused by a

covert timing channel poses a serious threat to Internet users. Their secret credentials

like passwords and keys could be stolen through a covert timing channel without

much difficulty. On the other hand, detecting covert timing channels is a well-known

challenging task in the security community.

In general, the detection of covert timing channels uses statistical tests to differ

entiate covert traffic from legitimate traffic. However, due to the high variation in

35

legitimate network traffic, detection methods based on standard statistical tests are

not accurate and robust in capturing a covert timing channel. Although there have

been recent research efforts on detecting covert timing channels over the Internet

[18, 19, 110, 75, 45], some detection methods are designed to target one specific covert

timing channel and therefore fail to detect other types of covert timing channels; the

other detection methods are broader in detection but are over-sensitive to the high

variation of network traffic. In short, none of the previous detection methods are

effective at detecting a variety of covert timing channels.

In this chapter, we propose a new entropy-based approach to detecting covert

timing channels. The entropy of a process is a measure of uncertainty or information

content, a concept that is of great importance in information and communication

theory [111]. While entropy has been used in covert timing channel capacity analysis,

it has never been used to detect covert timing channels. We observe that a covert

timing channel cannot be created without causing some effects on the entropy of the

original process1 . Therefore, a change in the entropy of a process provides a critical

clue for covert timing channel detection.

More specifically, we investigate the use of entropy and conditional entropy in

detecting covert timing channels. For finite samples, the exact entropy rate of a

process cannot be measured and must be estimated. Thus, we estimate the entropy

rate with the corrected conditional entropy, a measure used on biological processes

[101]. The corrected conditional entropy is designed to be accurate with limited data,

1 This observation applies to complex processes, like network traffic, but not to simple independent
and identically distributed processes (20].

36

which makes it excellent for small samples of network data. To evaluate our new

entropy-based approach, we conduct a series of experiments to validate whether our

approach is capable of differentiating covert traffic from legitimate traffic. We perform

the fine-binned estimation of entropy and the coarse-binned estimation of corrected

conditional entropy for both covert and legitimate samples. We then determine false

positive and true positive rates for both types of estimations. Our experimental

results show that the combination of entropy and corrected conditional entropy is

very effective in detecting covert timing channels.

3.2 Background And Related Work

To defend against covert timing channels, researchers have proposed different solu

tions to detect, disrupt, and eliminate covert traffic. The disruption of covert timing

channels adds random delays to traffic, which reduces the capacity of covert timing

channels but degrades system performance as well. The detection of covert timing

channels is accomplished using statistical tests to differentiate covert traffic from le

gitimate traffic. While the focus of earlier work is on disrupting covert timing channels

[48, 58, 62, 61, 63] or on eliminating them in the design of systems [1, 65, 66], more

recent research has begun to investigate the design and detection of covert timing chan

nels [18, 19, 110, 75, 76, 45, 109]. In the following subsections, we give an overview of

recent research on covert timing channels and detection tests.

37

3.2.1 Covert Timing Channels

There are two types of covert timing channels: active and passive. In terms of covert

timing channels, active refers to covert timing channels that generate additional traffic

to transmit information, while passive refers to covert timing channels that manipulate

the timing of existing traffic. In general, active covert timing channels are faster, but

passive covert timing channels are more difficult to detect. On the other hand, active

covert timing channels often require a compromised machine, whereas passive covert

timing channels, if creatively positioned, do not. The majority of the covert timing

channels discussed in this section are active covert timing channels, except where

stated otherwise.

Figure 3.1: IPCTC/TRCTC/MBCTC Scenario

COMPROMISED
MACHINE

COVERT
TIMING

CHANNEL ------· ~----
FIREWALL/

IDS

Figure 3.2: JitterBug Scenario

w
c:=JI 0

•
COMPROMISED
INPUT DEVICE

COVERT
TIMING

CHANNEL ------

38

I 1
I --l r I--

I
I I

FIREWALL/
IDS

3.2.1.1 IP Covert Timing Channel

Cabuk et al. [19] developed the first IP covert timing channel, which we refer to as

IPCTC, and investigated a number of design issues. A scenario where IPCTC can be

used is illustrated in Figure 3.1. In this scenario, a machine is compromised, and the

defensive perimeter, represented as a perimeter firewall or intrusion detection system,

monitors communication with the outside. Therefore, a covert timing channel can

be used to pass through the defensive perimeter undetected. IPCTC uses a simple

interval-based encoding scheme to transmit information. IPCTC transmits a 1-bit by

sending a packet during an interval and transmits a O-bit by not sending a packet

during an interval. A major advantage to this scheme is that when a packet is lost, a

bit is flipped but synchronization is not affected. The timing-interval t and the number

of O-bits between two 1-bits determines the distribution of IPCTC inter-packet delays.

It is interesting to note that if the pattern of bits is uniform, the distribution of inter

packet delays is close to a Geometric distribution. To avoid creating a pattern of

inter-packet delays at multiples of a single t, the timing-interval t is rotated among

different values.

3.2.1.2 Time-Replay Covert Timing Channel

Cabuk [18] later designed a more advanced covert timing channel based on a replay

attack, which we refer to as TRCTC. TRCTC uses a sample of legitimate traffic Sin

as input and replays Sin to transmit information. Sin is partitioned into two equal

bins So and S1 by a value tcutoff· TRCTC transmits a 1-bit by randomly replaying

39

an inter-packet delay from bin S1 and transmits a O-bit by randomly replaying an

inter-packet delay from bin S0 . Thus, as Sin is made up of legitimate traffic, the

distribution of TRCTC traffic is approximately equal to the distribution of legitimate

traffic.

3.2.1.3 Model-Based Covert Timing Channel

Gianvecchio et al. [45] developed an automated framework for building model-based

covert timing channels, which we refer to as MBCTC, to mimic legitimate traffic.

MBCTC fits a sample of legitimate traffic to several models, such as Exponential

or Weibull, and selects the model with the best fit. MBCTC then uses the inverse

distribution function and cumulative distribution function for the selected model as

encoding and decoding functions. Based on the inverse transform method for variate

generation [71], MBCTC transmits by generating pseudo-random inter-packet delays

with hidden information embedded. Thus, as the distribution of the pseudo-random

inter-packet delays is determined by the model that approximates legitimate traffic,

the distribution of MBCTC is close to that of legitimate traffic. To better model

changes in the traffic, MBCTC refits the model in sets of 100 packets.

3.2.1.4 JitterBug

Shah et al. [110] developed a keyboard device called JitterBug that slowly leaks typed

information over the network. JitterBug is a passive covert timing channel, so new

traffic is not created to transmit information. JitterBug demonstrates how a passive

covert timing channel can be positioned so that the target machine does not need

40

to be compromised. A scenario where JitterBug can be used is illustrated in Figure

3.2. In this scenario, an input device is compromised, and the attacker is able to

leak typed information over the network. JitterBug operates by creating small delays

in keypresses to affect the inter-packet delays of a networked application. JitterBug

transmits a 1-bit by increasing an inter-packet delay to a value modulo w milliseconds

and transmits a O-bit by increasing an inter-packet delay to a value modulo f~l

milliseconds. The timing-window w determines the maximum delay that JitterBug

adds to an inter-packet delay. For small values of w, the distribution of JitterBug

traffic is very similar to that of the original legitimate traffic. To avoid creating a

pattern of inter-packet delays at multiples of W and r~l, a random sequence Si is

subtracted from the original inter-packet delay before the modulo operation.

3.2.1.5 Other Covert Timing Channels

Berk et al. [13] implemented a simple binary covert timing channel based on the

Arimoto-Blahut algorithm, which computes the input distribution that maximizes the

channel capacity [?, 14]. L uo et al. [75] designed a combinatorics-based scheme, called

Cloak, to transmit information in the ordering of packets within different flows. Cloak

can be considered as a storage and timing channel, as the encoding methods require

packets and/or flows to be distinguishable by their contents. The same authors also

proposed a covert timing channel based on the timing of TCP bursts [76]. Similar to

Cloak, El-Atawy et al. [38] built a covert timing channel based on packet ordering and

showed how code selection can make this technique effective at evading packet order

41

metrics. Sellke et. al [109] showed that with i.i.d. traffic as cover, it is theoretically

possible to create "provably secure" covert timing channels, i.e., covert timing channels

that are computationally non-detectable. The same basic proof as [109] can be used to

show that TRCTC is computationally non-detectable for i.i.d. cover traffic when its

input messages are XOR'd with cryptographically-secure random numbers. Although

not a covert timing channel, Giffin et al. [47] showed that low-order bits of the TCP

timestamp can be exploited to create a covert storage channel, which is related to

timing channels due to the shared statistical properties of timestamps and packet

timing.

3.2.1.6 Timing-Based Watermarks

A number of efforts have investigated timing-based watermarking systems [124, 122,

97, 123, 136, 55], which are related to covert timing channels. A timing-based water

marking system is basically a side-channel that is augmented by a low-capacity covert

timing channel. Wang et al. [122] proposed a method for watermarking inter-packet

delays to track anonymous peer-to-peer voice-over-IP (VoiP) calls. More recently,

Houmansadr et. al [55] proposed a subtle watermark called RAINBOW that is non

blind, i.e., it records both incoming and outgoing flows, allowing it to differentiate

flows by adding only small delays. By doing so, RAINBOW is able to evade sev

eral detection tests, including entropy-based methods. However, the assumptions of

timing-based watermarking systems, like RAINBOW, are quite different than those

of covert timing channels. The entropy, if any, that is added by a watermarking sys-

42

tern can be very small. For example, if a set of flows are naturally differentiable,

a watermarking system need not add any delays to differentiate them. Generally,

timing-based watermarking systems are passive timing channels in that new traffic

is not created. Such systems again demonstrate how a passive timing channel can

be positioned so that the target, i.e., the anonymizing network, does not need to be

compromised.

3.2.2 Detection Tests

There are two broad classes of detection tests: shape tests and regularity tests. The

shape of traffic is described by first-order statistics, e.g., mean, variance, and distri

bution. The regularity of traffic is described by second or higher-order statistics, e.g.,

correlations in the data. Note that in previous research the term regularity is some

times used to refer to frequency-domain regularity [19, 110], whereas here we use this

term exclusively to refer to time-domain regularity, i.e., the regularity of a process

over time.

3.2.2.1 Kolmogorov-Smirnov Test

Peng et al. [97] showed that the Kolmogorov-Smirnov test is effective to detect wa

termarked inter-packet delays, a form of timing channel [124]. The watermarked

inter-packet delays are shown to have a distribution that is the sum of a normal and

a uniform distribution. Thus, the Kolmogorov-Smirnov test can be used to deter

mine if a sample comes from the appropriate distribution. The Kolmogorov-Smirnov

test determines whether or not two samples (or a sample and a distribution) differ.

43

The use of the Kolmogorov-Smirnov test to detect covert timing channels is described

in more detail in Section 3.4.1.2. The Kolmogorov-Smirnov test is distribution free,

i.e., the test is not dependent on a specific distribution. Thus, the Kolmogorov

Smirnov test is applicable to different types of traffic with different distributions.

The Kolmogorov-Smirnov test statistic measures the maximum distance between two

empirical distribution functions:

KSTEST =max I St(x)- S2(x) I, (3.1)

where St and 82 are the empirical distribution functions of the two samples.

3.2.2.2 Regularity Test

Cabuk et al. [19] investigated a method of detecting covert timing channels based

on regularity. This detection method, referred to as the regularity test, determines

whether or not the variance of the inter-packet delays is relatively constant. This

detection test is based on the fact that for most network traffic, the variance of the

inter-packet delays changes over time, whereas with covert timing channels, if the

encoding scheme does not change over time, then the variance of the inter-packet

delays remains relatively constant. The use of the regularity test to detect covert

timing channels is discussed in more detail in Section 3.4.1.2. For the regularity test,

a sample is separated into sets of w inter-packet delays. Then, for each set, the

standard deviation of the set ai is computed. The regularity is the standard deviation

44

of the pairwise differences between each ai and aj for all sets i < j.

regularity= STDEV (' ai ~i aj I, i < j, Vi,j) (3.2)

3.2.2.3 Other Detection Tests

Cabuk et al. [19) investigated a second method of detecting covert timing channels,

referred to as E-similarity, based on measuring the proportion of similar inter-packet

delays. The E-similarity test is based on the fact that IPCTC creates clusters of similar

inter-packet delays at multiples of the timing-interval. Luo et al. [75) developed a

detection method that targets the Cloak channel by measuring the intervals between

acknowledgment and data packets. While both detection methods are effective at

detecting the specific covert timing channels for which they are designed, namely

IPCTC and Cloak, their respective scopes of detection are very limited. In comparison

with more generic detection methods, they are less effective at detecting other types

of covert timing channels. Berk et al. [13) used a simple mean-max ratio to test for

bimodal or multimodal distributions that could be induced by binary or multi-symbol

covert timing channels.

3.3 Entropy Measures

In this section, we first describe entropy, conditional entropy, and corrected conditional

entropy, and then explain how these measures relate to first-order statistics, second

or higher-order statistics, and the regularity or complexity of a process. Finally, we

45

present the design and implementation of the proposed scheme to detect covert timing

channels, based on the concept of entropy.

3.3.1 Entropy and Conditional Entropy

The entropy rate, which is the average entropy per random variable, can be used as

a measure of complexity or regularity [101, 105]. The entropy rate is defined as the

conditional entropy of a sequence of infinite length. The entropy rate is upper-bounded

by the entropy of the first-order probability density function or first-order entropy. A

simple independent and identically distributed (i.i.d.) process has an entropy rate

equal to the first-order entropy. A highly complex process has a high entropy rate,

but less than the first-order entropy. A highly regular process has a low entropy rate,

zero for a rigid periodic process, i.e., a repeated pattern.

A random process X = {Xi} is defined as an indexed sequence of random variables.

To give the definition of the entropy rate of a random process, we first define the

entropy of a sequence of random variables as:

H(Xl, ... ,Xm)=- L P(xl, ... ,xm)logP(xl, ... ,xm), (3.3)
X1, ... ,Xm

where P(xb ... ,xm) is the joint probability P(X1 = x1, ... , Xm = Xm)·

Then, from the entropy of a sequence of random variables, we define the conditional

entropy of a random variable given a previous sequence of random variables as:

46

Lastly, the entropy rate of a random process is defined as:

H(X) = lim H(Xm I xl, ... , Xm-l)·
m-+oo

(3.5)

The entropy rate is the conditional entropy of a sequence of infinite length and,

therefore, cannot be measured for finite samples. Thus, we estimate the entropy rate

with the conditional entropy of finite samples. It is also important to note that the

definition of entropy rate is for stationary stochastic processes [27] and the extent

to which measured data is non-stationary could affect the accuracy of entropy rate

estimates.

3.3.2 Corrected Conditional Entropy

The exact entropy rate cannot be measured for finite samples and must be estimated.

In practice, we replace probability density functions with empirical probability density

functions based on the method of histograms. The data is binned in Q bins. The

specific binning strategy being used is important to the overall effectiveness of the

test and is discussed in Section 3.3.3. The empirical probability density functions

are determined by the proportions of patterns in the data, i.e., the proportion of a

pattern is the probability of that pattern. Here a pattern is defined as a sequence

of bin numbers. The estimates of the entropy or conditional entropy, based on the

empirical probability density functions, are represented as: EN and CE, respectively.

There is a problem with the estimation of CE(Xm I X 1, ... , Xm-l) for some values

of m. The conditional entropy tends to zero as m increases, due to limited data. If a

47

specific pattern of length m - 1 is found only once in the data, then the extension of

this pattern to length m will also be found only once. Therefore, the length m pattern

can be predicted by the length m - 1 pattern, and the length m and m - 1 patterns

cancel out. If no pattern of length m is repeated in the data, then CE(Xm I Xm-d

is zero, even for i.i.d. processes.

To solve the problem of limited data, without fixing the length of m, we use

the corrected conditional entropy (CCE) [101]. The corrected conditional entropy is

defined as:

CCE(Xm I XI, ... , Xm-d = CE(Xm I XI, ... , Xm-d + perc(Xm) · EN(XI), (3.6)

where perc(Xm) is the percentage of unique patterns of length m and EN(XI) is the

entropy with m fixed at one, i.e., only the first-order entropy.

The estimate of the entropy rate is the minimum of the corrected conditional en

tropy over different values of m. The minimum of the corrected conditional entropy

is considered to be the best estimate of the entropy rate with the available data.

The corrected conditional entropy has a minimum, because the conditional entropy

decreases while the corrective term increases. The corrected conditional entropy has

been mainly used on biological data, such as electrocardiogram [101] and electroen

cephalogram data [105]. Although not related to our work, it is interesting to see

how such a measure can differentiate the states of complex biological processes. For

example, with the electroencephalogram, an increase in the entropy rate indicates a

48

decrease in the depth of anesthesia, i.e., the subject is becoming more conscious.

3.3.3 Binning Strategies

The strategy of binning the data is critical to the overall effectiveness of the test.

The binning strategy mainly decides: (1) how the data is partitioned and (2) the

bin granularity or the number of bins Q. In previous work, partitioning data into

equiprobable bins seems to be most effective [101, 105]. The use of equiprobable bins

is illustrated in Figure 3.3, showing the partitioning of Exponential data into bins of

equal area. The bins, numbered 1 through 5, are small in width when the proportion

of values is high and large in width when the proportion of values is low. Thus, while

the bins have different widths, the total area of each bin is equal. The bin number for

a value can then be determined based on the cumulative distribution function:

bin= lF(x) * QJ, (3.7)

where F is the cumulative distribution function and x is the value to be binned.

The bin numbers can also be determined based on ranges, e.g., 0.0 < bin1 :::; 0.22,

0.22 < bin2 :::; 0.51, 0.51 < bin3 :::; 0.91, and so on, which requires a search of the

ranges to determine the correct bin number for a value. Meanwhile, the cumula

tive distribution function can determine the correct bin in constant time, which is

important for performance when the number of bins is large.

The choice of the number of bins offers a tradeoff. While a larger number of bins

retains more information about the distribution of the data, it increases the number

49

Figure 3.3: Equiprobable Binning of Exponential Data
1

0.9

0.8

0.7

§ 0.6
t: g_ 0.5

§_ 0.4

0.3

0.2

0.1

3

4

5
o~_L~~~L-~~---===~~

0 0.5 1.5 2 2.5 3 3.5 4

value

of possible patterns Qm and, thus, limits the ability of the test to recognize longer

patterns due to the limited data. In contrast, a small number of bins captures less

information about the distribution, but is better able to measure the regularity of the

data. Therefore, as both strategies have advantages and disadvantages, we use both

coarse-grain and fine-grain binning.

To determine the best choice of Q for coarse-grain binning, we run tests on cor-

related and uncorrelated samples for Q = 2 through 10. The correlated samples are

100 traces of 2,000 HTTP inter-packet delays. The uncorrelated samples are random

permutations of the correlated samples. We then count the number of uncorrelated

samples with scores that overlap with the scores of correlated samples. There is no

overlap for the values of Q = 5 to 8. Therefore, to retain the ability of the test

to recognize longer patterns and measure regularity, we use Q = 5 for coarse-grain

binning.

It is much simpler to determine the best choice of Q for fine-grain binning. With

50

increasing values of Q, the number of possible patterns Qm becomes much larger than

the size of the sample being tested. At this point, the test scores are dominated by

the estimate of the entropy for length one. Then, as we increase the value of Q, the

bins continue to become more precise, leading to a better estimate of the entropy for

length one than that for smaller values of Q. Therefore, as Q can be made arbitrarily

precise, we use Q = 216 = 65,536 for fine-grain binning.

3.3.4 Implementation Details

Our design goal is to be effective in detection and efficient in terms of run-time and

storage. The efficiency of tests is particularly important if tests are conducted in

real-time for online processing of data. Thus, we are careful to optimize our imple

mentation for performance. We implement the corrected conditional entropy in the

C programming language. The patterns are represented as nodes in a Q-ary tree of

height m. The nodes of the tree include pattern counts and links to the nodes with

longer patterns. The level of the tree corresponds to the length of patterns. The

children of the root are the patterns of length 1. The leaf nodes are the patterns of

length m.

To add a new pattern of length m to the tree, we move down the tree towards

the leaves, updating the counts of the intermediate nodes and creating new nodes.

Thus, when we reach the bottom of the tree, we have counted both the new pattern

and all of its sub-patterns. After all patterns of length m are added, we perform a

breadth-first traversal. The breadth-first traversal computes the corrected conditional

51

entropy at each level and terminates when the minimum is obtained. If the breadth

first traversal reaches the bottom of the tree without having the minimum, then we

must increase m and continue.

The time and space complexities are O(n · m), where n is the size of the sample, if

we assume a priori knowledge of the distribution and use the cumulative distribution

function to determine the correct bin for each value in constant time. Otherwise, the

time complexity increases to O(n · m ·log(Q)). In practice, running our program on

a sample of size 2,000 with Q = 5 and a pattern of length 10 on our test machine,

an Intel Pentium D 3.4Ghz, takes 16 milliseconds. However, small changes in the

implementation can have significant impact on performance.

To demonstrate this, we evaluate the computation overhead of our implementation

and that of a previous implementation [105]. The computation time of both imple

mentations with increasing pattern length is shown in Figure 3.4. For small values

of m, our computation time is slightly longer, because of the overhead of creating

our data structure. However, as m increases, the previous implementation increases

quadratically, whereas our implementation increases linearly. The quadratic growth

is caused by the separate processing of patterns of different lengths, i.e., the patterns

of length 1, then the patterns of length 2, and so on, which introduces a quadratic

term due to the summation of the pattern lengths: 2:::~ 1 i = m2;{m.

52

Figure 3.4: CCE Performance
128 ~-..------,----,-----.---,--...,....-----,

newCCE ~
64 old CCE

Ql
E . ..,
c

4

0 2
ii
:;
a.

~ 0.5

0.25
___________ --------··""·--------···""···········

0.125 '----"-----'----'---'-----'-----'-----'
1 2 3 4 5 6 7 8

pattern length

3.4 Experimental Evaluation

In this section, we validate the effectiveness of our proposed approach through a

series of experiments. The focus of these experiments is to determine if our entropy-

based methods (entropy and corrected conditional entropy) are able to detect covert

timing channels. We test our entropy-based methods against four covert timing chan-

nels: IPCTC [19], TRCTC [18], MBCTC [45] and JitterBug [110]. Furthermore, we

compare our entropy-based methods to two other detection tests: the Kolmogorov-

Smirnov test and the regularity test [19].

The purpose of a detection test is to differentiate covert traffic from legitimate

traffic. The performance of a detection test can be measured based on false positive

and true positive rates, with low false positive rate and high true positive rate being

ideal. In practice, because of the large variation in legitimate network traffic, it is

important that tests work well for typical traffic and occasional outliers. If a detection

test gives test scores with significant overlap between legitimate and covert samples,

53

then it fails on detection. Therefore, the mean, variance, and distribution of test

scores are critical metrics to the performance of a detection test.

3.4.1 Experimental Setup

The defensive perimeter of a network, made up of firewalls and intrusion detection

systems, is designed to protect the network from malicious traffic. Typically, only a few

specific application protocols, such as HTTP and SMTP, although heavily monitored,

are allowed to pass through the defensive perimeter. In addition, other protocols,

such as SSH, might be permitted to cross the perimeter but only to specific trusted

destinations.

We now consider the scenarios discussed in Section 3.2. In the first scenario, which

relates to IPCTC, TRCTC and MBCTC, a compromised machine uses a covert timing

channel to communicate with a machine outside the network. For IPCTC, TRCTC

and MBCTC, we utilize outgoing HTTP inter-packet delays as the medium, due to

the wide acceptance of HTTP for crossing the network perimeter and the high volume

of HTTP traffic. In the second scenario, which relates to JitterBug, a compromised

input device uses a covert timing channel to leak typed information over the traffic of

a networked application. For JitterBug, we utilize outgoing SSH inter-packet delays

as the medium, based on the original design [110] and the high volume of keystrokes

in interactive network applications.

54

3.4.1.1 Dataset

The covert and legitimate samples that we use for our experiments are from two

datasets: (1) HTTP traces we collected on a medium-size campus network and (2) a

dataset obtained from the University of North Carolina at Chapel Hill (UNC). In total,

we have 12GB of tcpdump packet header traces (HTTP protocol) that we collected

and 79GB of tcpdump packet header traces (all protocols) from the UNC dataset [?].

In our experiments, we use several subsets of the two datasets, including:

• HTTP training set: 200,000 HTTP packets

• HTTP test set: 200,000 HTTP packets

• TRCTC test set: 200,000 HTTP packets

• MBCTC test set: 200,000 HTTP packets

• SSH training set: 200,000 SSH packets

• SSH test set: 200,000 HTTP packets

• JitterBug test set: 200,000 SSH packets

The packets in each dataset are grouped into flows. The flows represent outgoing

traffic from a host to a specific port, e.g., port 80 for HTTP or port 22 for SSH. The

flows are based on a 3-tuple of source host, destination port, and protocol, rather

than a 5-tuple of source address, source port, destination address, destination port,

and protocol. The subsets contain 100 samples and each sample has 2,000 packets

from a flow.

55

In our experiments, we test a number of covert samples, which are generated from

these subsets and from the encoding methods for IPCTC, TRCTC, MBCTC, and

JitterBug. The covert timing channels are configured with the recommended settings

from their original works, and we use the most advanced version if multiple versions of

a covert timing channel are available. Specifically, IPCTC rotates the timing-interval

t amongst 40ms, 60ms and 80ms; TRCTC is the BMC type; and JitterBug subtracts

the random sequence si before the modulo operation. The input messages transmitted

in our tests are random bits generated by a pseudo-random number generator. For

TRCTC, we generate the covert samples from a set of 200,000 legitimate HTTP

inter-packet delays. For MBCTC, we generate the covert samples from a model that

is selected by fitting multiple models to a set of 200,000 legitimate HTTP inter-packet

delays. For JitterBug, we generate the covert samples from a set of 200,000 legitimate

SSH inter-packet delays. A test machine replays the set of 200,000 SSH inter-packet

delays and adds JitterBug delays. Note that our version of JitterBug is implemented

in software. A monitoring machine on the campus backbone then collects a trace

of the JitterBug traffic, which adds network delays after the addition of JitterBug

delays. Since the monitoring machine is only four hops away from the test machine,

with a RTT of 0.3ms, the added network delays are small. This JitterBug scenario is

illustrated in Figure 3.2, where a defensive perimeter monitors outgoing traffic.

The training sets of legitimate traffic are useful for some of the detection tests. The

Kolmogorov-Smirnov test uses the training sets to represent the behavior of legitimate

traffic. The Kolmogorov-Smirnov test then measures the distance between the test

56

sample and the training set. The entropy and corrected conditional entropy tests use

the training sets to determine the range of each bin, based on equiprobable binning.

These tests do not require a priori binning, but doing so improves performance, as

the data does not need to be partitioned online.

3.4.1.2 Detection Methodology

In our experiments, we run detection tests on samples of covert and legitimate traffic.

We use the resulting test scores to determine if a sample is covert or legitimate as

follows. First, we set the targeted false positive rate at 0.01. To achieve this false

positive rate, the cutoff scores-the scores that decide whether a sample is legitimate

or covert-are set at the 99th or 1st percentile (high scores or low scores for differ

ent tests) of legitimate sample scores from the HTTP or SSH training set. Then,

samples with scores worse than the cutoff are identified as covert, while samples with

scores better than the cutoff are identified as legitimate. The false positive rate is the

proportion of legitimate samples in the test set that are wrongly identified as covert,

while the true positive rate is the proportion of covert samples in the test set that are

correctly identified as covert.

Considering the properties of the detection tests, we can classify them as tests of

shape or regularity. The shape of traffic is described by first-order statistics, and the

regularity of traffic is described by second or higher-order statistics. The Kolmogorov

Smirnov test and entropy test are tests of shape, while the regularity test and corrected

conditional entropy test are tests of regularity. The test scores are interpreted as

57

follows.

In the Kolmogorov-Smirnov test, we measure the distance between the test sample

and the training set that represents legitimate behavior. Thus, if the test score is small,

it implies that the sample is close to the normal behavior. However, if the sample does

not fit the normal behavior well, the test score will be large, indicating the possible

occurrence of a covert timing channel. By contrast, in the regularity test, we measure

the standard deviation of the normalized standard deviations of sets of 100 packets.

If the regularity score is low, then the sample is highly regular, indicating the possible

existence of a covert timing channel.

The entropy test estimates the first-order entropy, whereas the corrected condi

tional entropy test estimates the higher-order entropy. The entropy test is based on

the same algorithm as the corrected conditional entropy test, except that the correc

tive term is not added. The corrected conditional entropy test uses Q = 5, whereas

the entropy test uses Q = 65, 536 and m fixed at one. If the entropy test score is

low, it suggests a possible covert timing channel, because the sample does not fit the

appropriate distribution. If the conditional entropy test score is lower or higher than

the cutoff scores, it suggests a possible covert timing channel. When the conditional

entropy test score is low, the sample is highly regular. When the conditional entropy

test score is high, near the first-order entropy, the sample shows a lack of correlations.

58

3.4.2 Experimental Results

In the following, we present our experimental results in detail. The four detection

tests are: the Kolmogorov-Smirnov test, regularity test, entropy test, and corrected

conditional entropy test. The four covert timing channels are: IPCTC, TRCTC,

MBCTC, and JitterBug. The experiments are organized by covert timing channels,

which are ordered in terms of increasing detection difficulty.

3.4.2.1 IPCTC

Our first set of experiments investigates how the detection tests perform against

IPCTC [19]. IPCTC is the simplest among the three covert timing channels be

ing tested and the easiest to detect, because it exhibits abnormality in both shape

and regularity. The abnormal shape of IPCTC is caused by the encoding scheme.

The encoding scheme encodes a 1-bit by transmitting a packet during an interval, and

encodes a O-bit with no packet transmission. Thus, the number of O-bits between two

1-bits determines the inter-packet delays. If the bit sequence is random, then we can

view the bit sequence as a series of Bernoulli trials and, thus, the inter-packet delays

approximate a Geometric distribution. The timing-interval tis rotated among 40 mil

liseconds, 60 milliseconds, and 80 milliseconds after each 100 packets, as suggested

by Cabuk et al. [19], to avoid creating a regular pattern of inter-packet delays at

multiples of a single t. However, this instead creates a regular pattern of inter-packet

delays at multiples of 20 milliseconds. The regularity of IPCTC is due to the lack of

significant correlations between inter-packet delays. That is, the inter-packet delays

59

are determined by the bit sequence being encoded, not by the previous inter-packet

delays.

We run each detection test 100 times for 2,000 packet samples of both legitimate

traffic and IPCTC traffic. The mean and standard deviation of the test scores are

shown in Table 3.1. The detection tests all achieve lower average scores for IPCTC

than those for legitimate traffic. The regularity test has a very high standard deviation

for legitimate traffic, which suggests that this test is sensitive to variations in the

behavior of legitimate traffic. The corrected conditional entropy test has a mean

score for covert traffic that appears somewhat close to that of legitimate traffic, 1.96

for legitimate and 2.21 for covert. However, in relative terms, these scores are not

that close, since the standard deviation of the corrected conditional entropy test is

relatively low. The mean score for IPCTC is much closer to the maximum entropy

than to the mean score of legitimate traffic. The maximum entropy is the most uniform

possible distribution [27]. The maximum entropy for Q = 5 is:

H(X) = Q ·~log(~)= 5 ·~log(~)~ 2.3219 (3.8)

The corrected conditional entropy score is bounded from above by the first-order

entropy. The first-order entropy is then bounded from above by the maximum entropy.

Therefore, the corrected conditional entropy scores for IPCTC are close to the highest

values possible.

As shown in Table 3.2, the detection rates for IPCTC (i.e. true positive rates for

detecting IPCTC) are 1.0 for all tests except the regularity test, whose detection rate

60

is only 0.54. The regularity test measures sets of 100 packets and the timing-interval

t is rotated after each set of 100 packets, so the regularity test observes three distinct

variances and accurately measures the regularity of IPCTC. The problem though is not

measuring IPCTC, but measuring legitimate traffic. The very high standard deviation

of the regularity test against legitimate traffic makes it impossible to differentiate

IPCTC from legitimate samples without a higher false positive rate. Moreover, if we

increase the timing-interval t to greater than 100 packets, the regularity test observes a

different number of packets for each t value within each window, as the sets oft packets

overlap with the window at different points, making the test less reliable. However,

if we decrease the timing-interval t to much less than 100 packets, the regularity test

observes a similar number of packets for each t value within each window and the

variance for each window is similar, which makes the test more reliable.

Still, the main problem with the regularity test is its high standard deviation for

legitimate traffic. The regularity test is very sensitive to outliers in legitimate traffic.

For example, if O"i is very small, due to a sequence of similar inter-packet delays,

and O"j is average or larger, then lu;;;uil is very large, especially for the values of O"i

close to zero, which are not uncommon. In fact, one such outlier in a sample is more

than sufficient to make a covert sample appear to be a legitimate sample. The high

variance of the regularity test demonstrates that it is important to examine more than

the average test score, since the variance and distribution of test scores are critical to

the successful detection of covert timing channels.

61

Table 3 1· IPCTC Test Scores ..
HTTP-TEST IPCTC

test mean stdev mean stdev
KSTEST 0.180 0.077 0.708 0.000
regularity 35.726 36.635 0.330 0.056

EN 10.454 0.152 6.250 0.028
CCE 1.964 0.149 2.216 0.013

Table 3 2· IPCTC Detection Rates ..
HTTP-TEST IPCTC

test false positive true positive
KSTEST ~ 0.36 .00 1.00
regularity ~ 0.41 .01 .54
EN~ 8.56 .01 1.00

CCE ~ 2.16 .01 1.00

3.4.2.2 TRCTC

Our second set of experiments investigates how our detection tests perform against

TRCTC [18]. TRCTC is a more advanced covert timing channel that makes use of a

replay attack. TRCTC replays a set of legitimate inter-packet delays to approximate

the behavior of legitimate traffic. Thus, TRCTC has approximately the same shape

as legitimate traffic, but exhibits abnormal regularity, like IPCTC. The regularity

of TRCTC, like IPCTC, is due to the lack of significant correlations between inter-

packet delays. Although TRCTC replays inter-packet delays, the replay is in random

order, as determined by the bit sequence that is being encoded, thus breaking the

correlations in the original inter-packet delays.

We run each detection test 100 times for 2,000 packet samples of both legitimate

traffic and TRCTC traffic. The mean and standard deviation of the test scores are

shown in Table 3.3. The test scores for TRCTC and legitimate traffic are approx-

62

imately equal for the Kolmogorov-Smirnov and entropy tests. These tests strictly

measure first-order statistics, and, as such, are not able to detect TRCTC. The reg-

ularity test achieves a much lower average score for TRCTC than that for legitimate

traffic, which is due to the similar variance between groups of packets in TRCTC.

However, the standard deviation of the regularity test is again very high for legiti-

mate traffic and, this time, is high for covert traffic as well. At the same time, the

corrected conditional entropy test gives similar results to those for IPCTC. The cor-

rected conditional entropy test has a mean score for TRCTC that appears somewhat

close to that of legitimate, 1.96 for legitimate and 2.21 for covert. However, if we ex-

amine the distribution of test scores for TRCTC and legitimate traffic, as illustrated

in Figure 3.5, then we can see that, although some scores are in adjacent bins, there

is no overlap between the distributions. Furthermore, the distribution of legitimate

test scores is strongly skewed to the left, away from the distribution of TRCTC test

scores. The detection rates for TRCTC, as shown in Table 3.4, are very low (0.04 or

less) for all the detection tests except the corrected conditional entropy test, which

has a detection rate of 1.0. The corrected conditional entropy test scores of TRCTC

are again close to the maximum entropy, therefore the corrected conditional entropy

test is successful in detecting TRCTC.

Table 3 3· TRCTC Test Scores ..
HTTP-TEST TRCTC

test mean stdev mean stdev
KSTEST 0.180 0.077 0.180 0.077
regularity 35.726 36.635 7.845 9.324

EN 10.454 0.152 10.454 0.152
CCE 1.964 0.149 2.217 0.012

63

Table 3 4· TRCTC Detection Rates • 0

HTTP-TEST TRCTC
test false positive true positive

KSTEST ~ 0.36 .00 .01
regularity :::; 0.41 .01 .04

EN :S 8.56 .01 .02
CCE ~ 2.16 .01 1.00

Figure 3.5: Distribution of CCE Test Scores for TRCTC

0.8

§ 0.6
:e
8.
K o.4

0.2

3.4.2.3 MBCTC

TRCTC-

1.2 1.4 1.6 1.8 2 2.2 2.4

score

Our third set of experiments investigates how our detection tests perform against

MBCTC [45]. MBCTC is a more advanced covert timing channel that exploits traffic

modeling to mimic legitimate traffic. The traffic model is determined by using maxi-

mum likelihood estimation (MLE) to determine model parameters and then selecting

the model with the lowest root mean squared error (RMSE) from several models. The

model selected for legitimate HTTP traffic is Weibull with a mean scale parameter .\

of 0.125 and a mean shape parameter k of 0.426. With these parameters, the mean

inter-packet delay is 0.3524, approximately 3 packets per second. The model is then

refitted in sets of 100 packets to better model changes in the traffic over time. Thus,

64

MBCTC has a similar shape to legitimate traffic, due to modeling the distribution,

and a similar regularity for sets of 100 packets or more, due to the refitting process.

We run each detection test 100 times for 2,000 packet samples of both legitimate

traffic and MBCTC traffic. The mean and standard deviation of the test scores are

shown in Table 3.5. The test scores of MBCTC are higher than those of legitimate

traffic for the Kolmogorov-Smirnov test, though less than the standard deviation, due

to the model being very close but not a perfect fit. The regularity test achieves a

lower average score for MBCTC than that of legitimate traffic, though the standard

deviation is again very high for legitimate traffic and covert traffic. The entropy test

scores of MBCTC are higher on average than those of legitimate traffic, indicating that

MBCTC traffic is consistently a somewhat close fit to the legitimate traffic distribu

tion. The corrected conditional entropy test scores are significantly lower for MBCTC

than for legitimate traffic. However, when we examine the distribution of test scores

for MBCTC and legitimate traffic, as illustrated in Figure 3.6, we can see that there

is a slight overlap between the distributions. This shows that the refitting process

used by MBCTC, i.e., changing the model after each set of 100 packets, is relatively

successful, but not sufficient to capture the true regularity of legitimate traffic. In

particular, MBCTC traffic is more regular over time than legitimate traffic, i.e., the

sequences of inter-packet delays are more predictable. For example, if a burst occurs,

then the expected value of the model will be small and MBCTC will generate a larger

portion of small inter-packet delays for the next 100 inter-packet delays. As a result,

small inter-packet delays will be more likely to be followed by small inter-packet de-

65

lays in MBCTC traffic than in legitimate traffic, which results in lower scores for the

corrected conditional entropy test. The detection rates of MBCTC, as shown in Table

3.4, are very low (0.04 or less) for all the detection tests except the entropy test and

the corrected conditional entropy test. The entropy test is able to sometimes detect

MBCTC, with a detection rate of 0.55. The corrected conditional entropy test is very

successful in detecting MBCTC, with a detection rate of 0.95.

Table 3 5· MBCTC Test Scores ..
HTTP-TEST MBCTC

test mean stdev mean stdev
KSTEST 0.180 0.077 0.208 0.073
regularity 35.726 36.635 18.440 22.605

EN 10.454 0.152 10.739 0.078
CCE 1.964 0.149 1.156 0.223

Table 3 6· MBCTC Detection Rates ..
HTTP-TEST MBCTC

test false positive true positive
KSTEST ?': 0.36 .00 .03
regularity ~ 0.41 .01 .02

EN?': 10.74 .01 .55
CCE ~ 1.50 .00 .95

3.4.2.4 JitterBug

Our fourth set of experiments investigates how our detection tests perform against

JitterBug [110]. JitterBug is a passive covert timing channel, so no additional traffic

is generated to transmit information. Instead, JitterBug manipulates the inter-packet

delays of existing legitimate traffic. The timing-window w, which determines the

maximum delay that JitterBug adds, is set at 20 milliseconds, as suggested by Shah

66

Figure 3.6: Distribution of CCE Test Scores for MBCTC

0.5 ~~=-....---.------,---,-----.----,---,

0.4

§ 0.3
t
0 a.
K o.2

0.1

0

--

0.8 1.2 1.4 1.6 1.8 2 2.2

score

et al. [110]. The average inter-packet delay of the original SSH traffic is 1.264 seconds,

whereas, with JitterBug, the average inter-packet delay is 1.274 seconds. In addition,

while 10 milliseconds on average might be noticeable with other protocols, SSH traffic

has a small proportion of short inter-packet delays, i.e., only about 20% of inter-packet

delays are less than 30ms in the training set. Therefore, because of having legitimate

traffic as a base and only slightly increasing the inter-packet delays, JitterBug is able

to retain much of the original correlation from the legitimate traffic. Moreover, by

slightly increasing the inter-packet delays, JitterBug only slightly affects the original

shape. Thus, JitterBug has similar shape and regularity to legitimate traffic.

Also JitterBug is very difficult to detect for several other reasons. From a practical

perspective, the machine itself has not been compromised, so conventional host-based

intrusion detection methods fail. Moreover, the traffic is encrypted, so the contents

of the packets cannot be used to predict the appropriate behavior. Additionally, the

position of JitterBug, between the machine and the human, further complicates detec-

67

tion because of the variation in human behavior, i.e., different typing characteristics.

However, as JitterBug is a covert timing channel and transmits information, there is

some affect on the entropy of the original process.

We run each detection test 100 times for 2,000 packet samples of both legitimate

traffic and JitterBug traffic. The mean and standard deviation of the test scores are

shown in Table 3.7. The test scores for JitterBug and legitimate traffic are close to

each other for all the tests except the entropy test. If we examine the distribution

of entropy test scores for JitterBug and legitimate traffics, as illustrated in Figure

3.5, we can see that the distributions of JitterBug and legitimate test scores are quite

distinct. The detection rates for JitterBug shown in Table 3.8, are very low (0.04 or

less) for all the detection tests except the entropy test, which has a detection rate

of 1.0. Note that the other tests do detect some difference between JitterBug and

legitimate traffic, but the differences are so small that it is impossible for these tests

to differentiate JitterBug from legitimate traffic without a much higher false positive

rate. Although the corrected conditional entropy test is successful at detecting all

the other covert timing channels, it is unable to detect JitterBug. The corrected

conditional entropy test bins the data into Q = 5 bins. For SSH traffic, the typical bin

ranges (based on equiprobable binning) are 0.0 < bin1 ::::; 0.032, 0.032 < bin2 ::::; 0.088,

0.088 < bin3 ::::; 0.160, 0.160 < bin4 ::::; 0.305, and 0.305 < bin5. JitterBug adds a

maximum of 20ms (lOms on average) to the inter-packet delays, so the bin numbers for

inter-packet delays are rarely changed. Therefore, the corrected conditional entropy

scores of JitterBug traffic are close to those of the original legitimate SSH traffic. In

68

short, the corrected conditional entropy test is simply insensitive to small changes in

the distribution.

In contrast, the entropy test is able to detect JitterBug. The entropy test uses a

large number of bins, with bin widths determined by the distribution of legitimate traf

fic. The entropy test measures how uniformly the inter-packet delays are distributed

into the bins, and how uniformly the inter-packet delays fit the legitimate traffic dis

tribution. JitterBug creates small changes throughout the distribution. Since these

changes fall within the variance that is typical of legitimate traffic, the tests that

measure the maximum distance, like the Kolmogorov-Smirnov test, fail to detect the

changes. However, the entropy test is sensitive to such changes throughout the distri

bution. JitterBug increases the inter-packet delays and, due to the rotating window,

redistributes the inter-packet delays in an Equilikely distribution. However, the in

creases do not follow the legitimate distribution, leading to slight increases or decreases

in the proportion of inter-packet delays for different bins. The entropy test measures

how evenly the inter-packet delays are distributed into the bins, with the legitimate

traffic distribution resulting in the most even or uniform distribution of bins and the

most entropy, since the bins are sized to be equiprobable for the legitimate distribu

tion. Therefore, the entropy test score for JitterBug is lower than that for legitimate

traffic, which can be easily detected.

69

Table 3. 7: JitterBug Test Scores
SSH-TEST JitterBug

test mean stdev mean stdev
KSTEST .270 .133 .273 .123
regularity 6.230 5.847 6.038 5.624

EN 10.663 0.374 8.199 0.720
CCE 1.779 0.261 1.837 0.220

Table 3.8: JitterBug Detection Rates
SSH-TEST JitterBug

test false positive true positive
KSTEST 2: 0.60 .02 .03
regularity :::; 0.15 .03 .03

EN:::; 8.84 .01 1.00
CCE 2: 2.16 .01 .04

3.4.2.5 All Channels - Variable Sample Size

Our last set of experiments investigates how our detection tests perform with different

sample sizes against all four covert timing channels, IPCTC, TRCTC, MBCTC, and

JitterBug. We vary sample sizes from 500 to 2,000 inter-packet delays for the entropy

test and the corrected conditional entropy test. The sample size is important because

it determines the amount of time it takes to detect a covert timing channel, and

thus, the amount of information that a covert timing channel can transmit before it

is detected. Of course, the faster a covert timing channel can be detected, the less

information it can transmit. However, there is a tradeoff between detection speed and

detection accuracy. While a smaller sample size means faster detection, it tends to be

less accurate compared to larger sample sizes.

The true positive rates for the entropy test against IPCTC, TRCTC, MBCTC,

and JitterBug with 500 to 2,000 inter-packet delays are shown in Figure 3.8. The

70

Figure 3. 7: Distribution of EN Test Scores for JitterBug

c
0
t:
0 a. e a.

0.7 r---.------.-----.---.---,,--..,.--..,----,

0.6

0.5

0.4

0.3

0.2

0.1

0
4

-JitterBug --

5 6 7 8 9 10 11 12

score

true positive rates degrade at different rates in different covert timing channels. On

one extreme, for IPCTC there is no decrease in true positive rate and it is easily

detected with as little as 500 inter-packet delays. The pattern of IPCTC is obvious,

so there is no need for a large amount of data. On the other extreme, the true positive

rates of JitterBug degrade more rapidly with the decrease of sample size, and it is

difficult to detect JitterBug with less than 1,600 inter-packet delays. JitterBug is more

subtle. It adds only small delays and has a relatively low capacity, so its inter-packet

delays are indistinguishable from normal without more traffic. In the middle, the true

positive rates of MBCTC degrade gradually with the decrease of sample size, starting

at 0.55 and ending at 0.14, showing approximately a linear relationship between its

true positive rate and its sample size. Lastly, TRCTC is not detected by the entropy

test, so its true positive rates remain close to zero.

The true positive rates for the corrected conditional entropy test against IPCTC,

TRCTC, MBCTC, and Jitterbug with 500 to 2,000 inter-packet delays are shown in

71

Figure 3.9. IPCTC and TRCTC demonstrate a similar trend in their true positive

rates. Both have true positive rates close to 1.0 with more than 700 inter-packet delays

and then degrade quickly with the decrease of sample size. As neither covert timing

channel attempts to capture inter-dependencies between inter-packet delays, this likely

indicates that the minimum sample size required by the corrected conditional entropy

test for accurate detection is around 700. The true positive rates of MBCTC again

decline gradually with the decrease of sample size, starting at 0.95 and ending at 0.27,

similar to the corresponding entropy test results. JitterBug is not detected by the

corrected conditional entropy test, so its true positive rates are close to zero for all

sample sizes.

Overall, combining the results of both tests, we can see that IPCTC and TRCTC

are easier to be detected than MBCTC and Jitterbug when sample size is small.

IPCTC and TRCTC can be accurately detected at the true positive rates of 1.0,

with as little as 500 inter-packet delays and 1,000 inter-packet delays, respectively.

MBCTC and JitterBug are much more difficult to detect, and they require close to

2,000 inter-packet delays or more for accurate detection. These results are attributed

to the fact that MBCTC and JitterBug effectively capture both traffic shape and traffic

regularity, while TRCTC only captures traffic shape and IPCTC captures neither of

these two properties.

72

3.4.3 Discussion

The detection tests that we present are all able to detect some covert timing chan

nels under certain conditions. However, the previous methods fail for detecting most

of the tested covert timing channels. One major reason lies in the high variation of

legitimate traffic. For example, the regularity test exhibits obvious weakness in this

regard. Interestingly, the regularity test is the only test, other than the corrected

conditional entropy test, that achieves lower average scores for all the covert tim

ing channels. However, due to the high standard deviation of the regularity test in

measuring legitimate traffic, the regularity test is not an effective detection method.

The other main reason lies in the properties of covert traffic. For example, while the

Kolmogorov-Smirnov test is better able to deal with legitimate traffic variation, it has

problems with covert timing channels whose distribution is very close to that of legiti

mate traffic. The Kolmogorov-Smirnov test measures the maximum distance between

the two distributions, rather than measuring differences throughout the distribution.

Thus, when the distribution of covert traffic is very close to that of legitimate traffic,

the variance of the test scores is sufficiently large so that the test cannot differentiate

covert traffic from legitimate traffic.

Our entropy-based approach proves more effective than previous schemes. Based

on the advantages of different binning strategies, we make use of both entropy and

corrected conditional entropy for detecting covert timing channels. The entropy test

is sensitive to small changes throughout the distribution. However, for a covert timing

channel whose distribution is nearly identical to that of legitimate traffic, the entropy

73

test fails. By contrast, the corrected conditional entropy test measures the regularity

or complexity of the traffic, rather than the distribution. Thus, it is effective to

detect such a covert timing channel. However, if the original correlations of traffic are

retained and the distribution is changed, then the conditional entropy test fails; but

the entropy test works in this scenario by detecting slight changes in the distribution.

Therefore, when both tests are combined, our entropy-based approach is effective in

detecting all the tested covert timing channels.

Figure 3.8: EN True Positive Rate vs. Sample Size

0.8

g!
~ 0.6
8.
CD .s 0.4

0.2

IPCTC -11-
TRCTC
MBCTC

JitterBug v

0 L-~~d~----~~--~~*~· ~~--~~~~-J·
400 600 800 1000 1200 1400 1600 1800 2000

sample size

3.5 Potential Countermeasures

In this section, we discuss possible countermeasures that could be used to harden

covert timing channels against our entropy-based approach. Our discussion focuses on

TRCTC, MBCTC and JitterBug. TRCTC and MBCTC are detected by the corrected

conditional entropy test and JitterBug is detected by the entropy test.

74

Figure 3.9: CCE True Positive Rate vs. Sample Size

0.8

~
~ 0.6
0 a.
Q)

E oA

0.2
·-..

..•.
..... -· -

.....

IPCTC
TRCTC
MBCTC •··

JitterBug · v

0 L-~~--~~~~~~~~~~~~~~~~
400 600 800 1 000 1200 1400 1600 1800 2000

sample size

In an attempt to evade the corrected conditional entropy test, TRCTC could be

redesigned to replay longer correlated sequences of inter-packet delays. The corrected

conditional entropy test could counter this technique for short sequences by increasing

the minimum pattern length. Of course, with increasing sequence length, the corrected

conditional entropy test would lose its capability to measure regularity, because of the

issues discussed in Section 3.3, unless the sample size were increased. However, this

is not a significant threat, because replaying long correlated sequences of inter-packet

delays would greatly reduce the capacity of TRCTC. In an attempt to evade the

corrected conditional entropy test, MBCTC could be changed to refit the model more

frequently so as to better capture the regularity of traffic. Moreover, MBCTC could

be redesigned to model conditional distributions to better capture inter-dependencies

in traffic.

In an attempt to evade the entropy test, JitterBug could be reconfigured to use a

smaller timing-window w. Eventually, as w becomes smaller, the entropy test would

75

need a larger sample size to detect the JitterBug. However, using a smaller timing

window would, similar to our discussion of TRCTC, reduce the capacity of JitterBug.

Additionally, JitterBug could be changed to transmit packets at more precise timing

than milliseconds, as the millisecond-level precision could create a detectable pattern

when the network delays are small. As another alternative, since a large number of

inter-packet delays are required to detect JitterBug, JitterBug could attempt to trans

mit with fewer inter-packet delays than the minimum required for the entropy test.

However, there is a problem with this approach. JitterBug uses forward error correc

tion with repeated transmissions. This mechanism provides reliable communication

even if packets are lost or some of the perturbed keystrokes go to a non-network appli

cation, neither of which can be detected by a JitterBug embedded in the keyboard. By

reducing the number of repetitions, JitterBug could evade detection, but could also

fail to deliver its message. It remains an open question whether these countermeasures

would be practical.

3.6 Conclusion and Future Work

In this chapter, we introduced an entropy-based technique to detect covert-timing

channels by employing both entropy and corrected conditional entropy. We designed

and implemented the proposed entropy-based detection tool. The development of

this tool addresses a number of non-trivial design issues, including efficient use of

data structures, data partition, bin granularity, and pattern length. We observed

that as bin granularity increases, entropy estimates become more precise, whereas

76

corrected conditional entropy estimates become less precise. Therefore, based on this

observation, we utilized the fine-binned entropy estimation and the coarse-binned

corrected conditional entropy estimation for covert timing channel detection.

We then applied our entropy-based techniques for detecting covert timing channels.

The corrected conditional entropy test is able to detect the covert timing channels with

abnormal regularity, while the entropy test is able to detect the covert timing channels

with abnormal shape. Our experimental results show that the combination of entropy

and corrected conditional entropy is capable of detecting a variety of covert timing

channels. In contrast, for a covert timing channel whose distribution is close to that

of legitimate traffic, all the previous detection methods fail.

There are a number of possible directions for our future work. We plan to fur

ther investigate the possible countermeasures that could be used by attackers to evade

entropy-based detection. We also plan to explore the connection between our entropy

based detection methods and the entropy that relates to covert timing channel capac

ity. We believe that the exploration could lead to better detection methods or lower

overall bounds on the capacity of covert timing channels.

77

Chapter 4

Measurement and Classification

of Chat Bots

Internet chat is a popular application that enables real-time text-based communica

tion. Millions of people around the world use Internet chat to exchange messages and

discuss a broad range of topics on-line. Internet chat is also a unique networked appli

cation, because of its human-to-human interaction and low bandwidth consumption

[32]. However, the large user base and open nature of Internet chat make it an ideal

target for malicious exploitation.

The abuse of chat services by automated programs, known as chat bats, poses

a serious threat to on-line users. Chat bots have been found on a number of chat

systems, including commercial chat networks, such as AOL [99, 56], Yahoo! [98, 68,

112, 85, 84] and MSN [57), and open chat networks, such as IRC and Jabber. There

are also reports of bots in some non-chat systems with chat features, including online

78

games, such as World of Warcraft [28, 107] and Second Life [93]. Chat bots exploit

these on-line systems to send spam, spread malware, and mount phishing attacks.

So far, the efforts to combat chat bots have focused on two different approaches:

(1) keyword-based filtering and (2) human interactive proofs. The keyword-based

message filters, used by third party chat clients [131, 134], suffer from high false

negative rates because bot makers frequently update chat bots to evade published

keyword lists. The use of human interactive proofs, such as CAPTCHAs [3], is also

ineffective because bot operators assist chat bots in passing the tests to log into chat

rooms [85, 84]. In August 2007, Yahoo! implemented CAPTCHA to block bots from

entering chat rooms, but bots are still able to enter chat rooms in large numbers.

There are online petitions against both AOL and Yahoo! [99, 98], requesting that the

chat service providers address the growing bot problem. While on-line systems are

besieged with chat bots, no systematic investigation on chat bots has been conducted.

The effective detection system against chat bots is in great demand but still missing.

In the chapter, we first perform a series of measurements on a large commercial

chat network, Yahoo! chat, to study the behaviors of chat bots and humans in on-line

chat systems. Our measurements capture a total of 14 different types of chat bots. The

different types of chat bots use different triggering mechanisms and text obfuscation

techniques. The former determines message timing, and the latter determines message

content. Our measurements also reveal that human behavior is more complex than

bot behavior, which motivates the use of entropy rate, a measure of complexity, for

chat bot classification. Based on the measurement study, we propose a classification

79

system to accurately distinguish chat hots from humans. There are two main compo

nents in our classification system: (1) an entropy classifier and (2) a machine-learning

classifier. Based on the characteristics of message time and size, the entropy classifier

measures the complexity of chat flows and then classifies them as bots or humans.

In contrast, the machine-learning classifier is mainly based on message content for

detection. The two classifiers complement each other in chat bot detection. While the

entropy classifier requires more messages for detection and, thus, is slower, it is more

accurate to detect unknown chat bots. Moreover, the entropy classifier helps train the

machine-learning classifier. The machine learning classifier requires less messages for

detection and, thus, is faster, but cannot detect most unknown hots. By combining

the entropy classifier and the machine-learning classifier, the proposed classification

system is highly effective to capture chat hots, in terms of accuracy and speed. We

conduct experimental tests on the classification system, and the results validate its

efficacy on chat bot detection.

4.1 Background and Related Work

4.1.1 Chat Systems

Internet chat is a real-time communication tool that allows on-line users to commu

nicate via text in virtual spaces, called chat rooms or channels. There are a number

of protocols that support chat [59], including IRC, Jabber/XMPP, MSN/WLM (Mi

crosoft), OSCAR (AOL), and YCHT/YMSG (Yahoo!). The users connect to a chat

server via chat clients that support a certain chat protocol, and they may browse

80

and join many chat rooms featuring a variety of topics. The chat server relays chat

messages to and from on-line users. A chat service with a large user base might em

ploy multiple chat servers. In addition, there are several multi-protocol chat clients,

such as Pidgin (formerly GAIM) and 'Irillian, that allow a user to join different chat

systems.

Although IRC has existed for a long time, it has not gained mainstream popularity.

This is mainly because its console-like interface and command-line-based operation are

not user-friendly. The recent chat systems improve user experience by using graphic

based interfaces, as well as adding attractive features such as avatars, emoticons, and

audio-video communication capabilities. Our study is carried out on the Yahoo! chat

network, one of the largest and most popular commercial chat systems.

Yahoo! chat uses proprietary protocols, in which the chat messages are transmitted

in plain-text, while commands, status and other meta data are transmitted as encoded

binary data. Unlike those on most IRC networks, users on the Yahoo! chat network

cannot create chat rooms with customized topics because this feature is disabled by

Yahoo! to prevent abuses [82]. In addition, users on Yahoo! chat are required to pass

a CAPTCHA word verification test in order to join a chat room. This recently-added

feature is to guard against a major source of abuse-hots.

4.1.2 Chat Bots

The term bot, short for robot, refers to automated programs, that is, programs that

do not require a human operator. A chat bot is a program that interacts with a chat

81

service to automate tasks for a human, e.g., creating chat logs. The first-generation

chat bots were designed to help operate chat rooms, or to entertain chat users, e.g.,

quiz or quote hots. However, with the commercialization of the Internet, the main

enterprise of chat bots is now sending chat spam. Chat bots deliver spam URLs via

either links in chat messages or user profile links. A single bot operator, controlling

a few hundred chat hots, can distribute spam links to thousands of users in different

chat rooms, making chat bots very profitable to the bot operator who is paid per-click

through affiliate programs. Other potential abuses of bots include spreading malware,

phishing, booting, and similar malicious activities.

A few countermeasures have been used to defend against the abuse of chat bots,

though none of them are very effective. On the server side, CAPTCHA tests are

used by Yahoo! chat in an effort to prevent chat hots joining chat rooms. However,

this defense becomes ineffective as chat bots bypass CAPTCHA tests with human

assistance. We have observed that bots continue to join chat rooms and sometimes

even become the majority members of a chat room after the deployment of CAPTCHA

tests. Third-party chat clients filter out chat bots, mainly based on key words or key

phrases that are known to be used by chat bots. The drawback with this approach is

that it cannot capture those unknown or evasive chat bots that do not use the known

key words or phrases.

82

4.1.3 Related Work

Dewes et al. [32] conducted a systematic measurement study of IRC and Web-chat

traffic, revealing several statistical properties of chat traffic. (1) Chat sessions tend

to last for a long time, and a significant number of IRC sessions last much longer

than Web-chat sessions. (2) Chat session inter-arrival time follows an exponential

distribution, while the distribution of message inter-arrival time is not exponential.

(3) In terms of message size, all chat sessions are dominated by a large number of

small packets. (4) Over an entire session, typically a user receives about 10 times as

much data as he sends. However, very active users in Web-chat and automated scripts

used in IRC may send more data than they receive.

There is considerable overlap between chat and instant messaging (IM) systems, in

terms of protocol and user base. Many widely used chat systems such as IRC predate

the rise of IM systems, and have great impact upon the IM system and protocol

design. In return, some new features that make the IM systems more user-friendly

have been back-ported to the chat systems. For example, IRC, a classic chat system,

implements a number of IM-like features, such as presence and file transfers, in its

current versions. Some messaging service providers, such as Yahoo!, offer both chat

and IM accesses to their end-user clients. With this in mind, we outline some related

work on IM systems. Liu et al. [73] explored client-side and server-side methods

for detecting and filtering IM spam or spim. However, their evaluation is based on

a corpus of short e-mail spam messages, due to the lack of data on spim. In [77],

Mannan et al. studied IM worms, automated malware that spreads on IM systems

83

using the IM contact list. Leveraging the spreading characteristics of IM malware,

Xie et al. [130] presented an IM malware detection and suppression system based on

the honeypot concept.

Botnets consist of a large number of slave computing assets, which are also called

"hots". However, the usage and behavior of hots in botnets are quite different from

those of chat hots. The hots in botnets are malicious programs designed specifically to

run on compromised hosts on the Internet, and they are used as platforms to launch a

variety of illicit and criminal activities such as credential theft, phishing, distributed

denial-of-service attacks, etc. In contrast, chat hots are automated programs designed

mainly to interact with chat users by sending spam messages and URLs in chat rooms.

Although having been used by botnets as command and control mechanisms [49, 4],

IRC and other chat systems do not play an irreplaceable role in botnets. In fact, due

to the increasing focus on detecting and thwarting IRC-based botnets (30, 52, 53],

recently emerged botnets, such as Phatbot, Nugache, Slapper, and Sinit, show a

tendency towards using P2P-based control architectures [123].

Chat spam shares some similarities with email spam. Like email spam, chat

spam contains advertisements of illegal services and counterfeit goods, and solicits

human users to click spam URLs. Chat hots employ many text obfuscation tech

niques used by email spam such as word padding and synonym substitution. Since

the detection of email spam can be easily converted into the problem of text clas

sification, many content-based filters utilize machine-learning algorithms for filtering

email spam. Among them, Bayesian-based statistical approaches [51, 135, 17, 137, 72]

84

have achieved high accuracy and performance. Although very successful, Bayesian

based spam detection techniques still can be evaded by carefully crafted messages

[128, 74, 64].

4.2 Measurement

In this section, we detail our measurements on Yahoo! chat, one of the most popular

commercial chat services. The focus of our measurements is on public messages posted

to Yahoo! chat rooms. The logging of chat messages is available on the standard

Yahoo! chat client, as well as most third party chat clients. Upon entering chat, all

chat users are shown a disclaimer from Yahoo! that other users can log their messages.

However, we consider the contents of the chat logs to be sensitive, so we only present

fully-anonymized statistics.

Our data was collected between August and November of 2007. In late August,

Yahoo! implemented a CAPTCHA check on entering chat rooms [85, 7], creating

technical problems that made their chat rooms unstable for about two weeks [5, 6].

At the same time, Yahoo! implemented a protocol update, preventing most third

party chat clients, used by a large proportion of Yahoo! chat users, from accessing the

chat rooms. In short, these upgrades made the chat rooms difficult to be accessed for

both chat bots and humans. In mid to late September, both chat bot and third party

client developers updated their programs. By early October, chat bots were found in

Yahoo! chat [84], possibly bypassing the CAPTCHA check with human assistance.

Due to these problems and the lack of chat bots in September and early October, we

85

perform our analysis on August and November chat logs. In August and November,

we collected a total of 1,440 hours of chat logs. There are 147 individual chat logs

from 21 different chat rooms. The process of reading and labeling these chat logs

required about 100 hours. To the best of our knowledge, we are the first in the large

scale measurement and classification of chat bots.

4.2.1 Log-Based Classification

In order to characterize the behavior of human users and that of chat bots, we need

two sets of chat logs pre-labeled as bots and humans. To create such datasets, we

perform log-based classification by reading and labeling a large number of chat logs.

The chat users are labeled in three categories: human, bot, and ambiguous.

The log-based classification process is a variation of the Thring test. In a standard

Thring test [118], the examiner converses with a test subject (a possible machine)

for five minutes, and then decides if the subject is a human or a machine. In our

classification process, the examiner observes a long conversation between a test subject

(a possible chat bot) and one or more third parties, and then decides if the subject

is a human or a chat bot. In addition, our examiner checks the content of URLs

and typically observes multiple instances of the same chat bot, which further improve

our classification accuracy. Moreover, given that the best practice of current artificial

intelligences [116] can rarely pass a non-restricted Thring test, our classification of

chat bots should be very accurate.

Although a Thring test is subjective, we outline a few important criteria. The

86

main criterion for being labeled as human is a high proportion of specific, intelligent,

and human-like responses to other users. In general, if a user's responses suggest

more advanced intelligence than current state-of-the-art AI [116], then the user can

be labeled as human. The ambiguous label is reserved for non-English, incoherent,

or non-communicative users. The criteria for being classified as bot are as follows.

The first is the lack of the intelligent responses required for the human label. The

second is the repetition of similar phrases either over time or from other users (other

instances of the same chat bot). The third is the presence of spam or malware URLs

in messages or in the user's profile.

4.2.2 Analysis

In total, our measurements capture 14 different types of chat bots. The different types

of chat bots are determined by their triggering mechanisms and text obfuscation

schemes. The former relates to message timing, and the latter relates to message

content. The two main types of triggering mechanisms observed in our measurements

are timer-based and response-based. A timer-based bot sends messages based on a

timer, which can be periodic (i.e., fixed time intervals) or random (i.e., variable time

intervals). A response-based bot sends messages based on programmed responses to

specific content in messages posted by other users.

There are many different kinds of text obfuscation schemes. The purpose of text

obfuscation is to vary the content of messages and make bots more difficult to rec

ognize or appear more human-like. We observed four basic text obfuscation methods

87

that chat hots use to evade filtering or detection. First, chat bots introduce random

characters or space into their messages, similar to some spam e-mails. Second, chat

bots use various synonym phrases to avoid obvious keywords. By this method, a

template with several synonyms for multiple words can lead to thousands of possible

messages. Third, chat bots use short messages or break up long messages into multiple

messages to evade message filters that work on a message-by-message basis. Fourth,

and most interestingly, chat bots replay human phrases entered by other chat users.

According to our observation, the main activity of chat bots is to send spam links

to chat users. There are two approaches that chat bots use to distribute spam links in

chat rooms. The first is to post a message with a spam link directly in the chat room.

The second is to enter the spam URL in the chat bot's user profile and then convince

the users to view the profile and click the link. Our logs also include some examples

of malware spreading via chat rooms. The behavior of malware-spreading chat bots

is very similar to that of spam-sending chat bots, as both attempt to lure human

users to click links. Although we did not perform detailed malware analysis on links

posted in the chat rooms and Yahoo! applies filters to block links to known malicious

files, we found several worm instances in our data. There are 12 W32.1maut.AS [114]

worms appeared in the August chat logs, and 23 W32.Imaut.AS worms appeared in

the November chat logs. The November worms attempted to send malicious links

but were blocked by Yahoo! (the malicious links in their messages being removed),

however, the August worms were able to send out malicious links.

The focus of our measurements is mainly on short term statistics, as these statistics

88

are most likely to be useful in chat bot classification. The two key measurement

metrics in this study are inter-message delay and message size. Based on these two

metrics, we profile the behavior of human and that of chat bots. Among chat bots, we

further divide them into four different groups: periodic bots, random bots, responder

bots, and replay bots. With respect to these short-term statistics, human and chat

bots behave differently, as shown below.

4.2.2.1 Humans

PMF for Human PMF for Human
10-1

~
0.06

~
·'· +++·i

10-a.;. 0.05

~10-3

:0

"' .c
£ 10-.f

10-5

10"'
10° 10' 10' 10' 10' 100 150 200 250 300 350

Inter-Message Delay (seconds) Message Size (bytes)

(a) (b)

Figure 4.1: Distribution of Human Inter-Message Delay (a) and Message Size (b)

Figure 4.1 shows the probability distributions of human inter-message delay and

message size. Since the behavior of humans is persistent, we only draw the probability

mass function (pmf) curves based on the August data. The previous study on Internet

chat systems [32] observed that the distribution of inter-message delay in chat systems

was heavy tailed. In general our measurement result conforms to that observation.

The body part of the pmf curve in Figure 4.1 (a) (log-log scale) can be linearly fitted,

indicating that the distribution of human inter-message delays follows a power law.

89

PMF for Periodic Bets PMF for Periodic Bois
10' 0.08

CJ;] 0.07 ug

10-1'

+,
0.06

~10-2 "t ~0.05

:c :c
.l'l ~ 0.04

+ £ 10-3 ~ +
a.. 0.03

10"'
1·1+Ht<-··-:l>J ••·+!·<Jtl· .. ! ;; '

10-5

10° 10' 10' 10' 10' ~ct20Ct" 250
Inter-Message Delay (seconds)

(a) (b)

Figure 4.2: Distribution of Periodic Bot Inter-Message Delay (a) and Message Size
(b)

In other words, the distribution is heavy tailed. We also find that the pmf curve of

human message size in Figure 4.1 (b) can be well fitted by an exponential distribution

with >. = 0.034 after excluding the initial spike.

4.2.2.2 Periodic Bots

A periodic bot posts messages mainly at regular time intervals. The delay periods of

periodic bots, especially those bots that use long delays, may vary by several seconds.

The variation of delay period may be attributed to either transmission delay caused

by network traffic congestion or chat server delay, or message emission delay incurred

by system overloading on the bot hosting machine. The posting of periodic messages

is a simple but effective mechanism for distributing messages, so it is not surprising

that a substantial portion of chat bots use periodic timers.

We display the probability distributions of inter-message delay and message size

for periodic bots in Figure 4.2. We use '+' for displaying August data and '•' for

90

November data. The distributions of periodic bots are distinct from those of humans

shown in Figure 4.1. The distribution of inter-message delay for periodic bots clearly

manifests the timer-triggering characteristic of periodic bots. There are three clusters

with high probabilities at time ranges [30-50], [100-110], and [150-170]. These clus

ters correspond to the November periodic bots with timer values around 40 seconds

and the August periodic bots with timer values around 105 and 160 seconds, respec

tively. The message size pmf curve of the August periodic bots shows an interesting

bell shape, much like a normal distribution. After examining message contents, we

find that the bell shape may be attributed to the message composition method some

August bots used. As shown in Appendix A, some August periodic bots compose a

message using a single template. The template has several parts and each part is as

sociated with several synonym phrases. Since the length of each part is independent

and identically distributed, the length of whole message, i.e., the sum of all parts,

should approximate a normal distribution. The November bots employ a similar com

position method, but use several templates of different lengths. Thus, the message

size distribution of the November periodic bots reflects the distribution of the lengths

of the different templates, with the length of each individual template approximating

a normal distribution.

4.2.2.3 Random Bots

A random bot posts messages at random time intervals. The random bots in our data

used different random distributions, some discrete and others continuous, to generate

91

PMF for Random Bats
10° r-~~~~-~~~~-===

~

10_.

10-''-:--~~-'--;-----'-:;------'--;--........J
10° 101 102 10

3
104

Inter-Message Delay (seconds)

(a)

PMF for Random Bats
o.osr-~~--------===

0.07 +

0.06
-~·

(b)

Nov
Aug

250

Figure 4.3: Distribution of Random Bot Inter-Message Delay (a) and Message Size
(b)

inter-message delays. The use of random timers makes random bots appear more

human-like than periodic bots. In statistical terms, however, random bots exhibit

quite different inter-message delay distributions than humans.

Figure 4.3 depicts the probability distributions of inter-message delay and message

size for random bots. Compared to periodic bots, random bots have more dispersed

timer values. In addition, the August random bots have a large overlap with the

November random bots. The points with high probabilities (greater than 10-2) in

the time range [30-90] in Figure 4.3 (a) represent the August and November random

bots that use a discrete distribution of 40, 64, and 88 seconds. The wide November

cluster with medium probabilities in the time range [40-130] is created by the Novem-

ber random bots that use a uniform distribution between 45 and 125 seconds. The

probabilities of different message sizes for the August and November random bots are

mainly in the size range [0-50]. Unlike periodic bots, most random bots do not use

template or synonym replacement, but directly repeat messages. Thus, as their mes-

92

~ :c
"' .0 e
II.

PMF for Respond Bots
to-•,-~-~---~--~~===

~

10-2

10-l

+

·H!fllllll-!!-i··•·
·ft-ff·

10~7-----~~-----7------~----~
10° 101 10

2
103 104

Inter-Message Delay (seconds)

(a)

PMF for Respond Bois
o.oa,----,:-=---~=---r;==""'

~
0.07

0.06

~0.05

:c E o.04

e
a.. 0.03

(b)

Figure 4.4: Distribution of Responder Bot Inter-Message Delay (a) and Message Size
(b)

PMF for Replay Bois PMF for Replay Bots
0.14,-----=----=------;===

~
0.06,-----=--=-=-----:o===:ol

c:::::B
0.12 0.05

0.1
0.04

~ :c _g 0.03

e
II.

0.02
0.04

0.02
O.D1 ,

•.
0o''-<,_,.,,"''"2'o.., ·· -·:a"'~-" so 1oo 120

00~-· ---::':50~--"~ ~:':~:~'-'··~·~cc"\j""''II'H~~~;~, ~ ·" . 2()~- -·---2W.
300

Inter-Message Delay (seconds) Message Size (bytes)

(a) (b)

Figure 4.5: Distribution of Replay Bot Inter-Message Delay (a) and Message Size
(b)

sages are selected from a database at random, the message size distribution reflects

the proportion of messages of different sizes in the database.

4.2.2.4 Responder Bots

A responder bot sends messages based on the content of messages in the chat room.

For example, a message ending with a question mark may trigger a responder bot to

send a vague response with a URL, as shown in Appendix A. The vague response,

93

in the context, may trick human users into believing that the responder is a human

and further clicking the link. Moreover, the message triggering mechanism makes

responder hots look more like humans in terms of timing statistics than periodic or

random hots.

To gain more insights into responder bots, we managed to obtain a configuration

file for a typical responder bot [119]. There are a number of parameters for making

the responder bot mimic humans. The bot can be configured with a fixed typing rate,

so that responses with different lengths take different time to "type." The bot can

also be set to either ignore triggers while simulating typing, or rate-limit responses.

In addition, responses can be assigned with probabilities, so that the responder bot

responds to a given trigger in a random manner.

Figure 4.4 shows the probability distributions of inter-message delay and message

size for responder hots. Note that only the distribution of the August responder

hots is shown due to the small number of responder hots found in November. Since

the message emission of responder hots is triggered by human messages, theoretically

the distribution of inter-message delays of responder hots should demonstrate certain

similarity to that of humans. Figure 4.4 (a) confirms this hypothesis. Like Figure

4.1 (a), the pmf of responder bots (excluding the head part) in log-log scale exhibits

a clear sign of a heavy tail. But unlike human messages, the sizes of responder bot

messages vary in a much narrower range (between 1 and 160). The bell shape of

the distribution for message size less than 100 indicates that responder hots share

a similar message composition technique with periodic bots, and their messages are

94

composed as templates with multiple parts, as shown in Appendix A.

4.2.2.5 Replay Bots

A replay bot not only sends its own messages, but also repeats messages from other

users to appear more like a human user. In our experience, replayed phrases are

related to the same topic but do not appear in the same chat room as the original

ones. Therefore, replayed phrases are either taken from other chat rooms on the same

topic or saved previously in a database and replayed.

The use of replayed phrases in a crowded or "noisy" chat room does, in fact,

make replay bots look more like human to inattentive users. The replayed phrases are

sometimes nonsensical in the context of the chat, but human users tend to naturally

ignore such statements. When replay bots succeed in fooling human users, these users

are more likely to click links posted by the bots or visit their profiles. Interestingly,

replay bots sometimes replay phrases uttered by other chat bots, making them very

easy to be recognized. The use of replay is potentially effective in thwarting detection

methods, as detection tests must deal with a combination of human and bots phrases.

By using human phrases, replay bots can easily defeat keyword-based message filters

that filter message-by-message, as the human phrases should not be filtered out.

Figure 4.5 illustrates the probability distributions of inter-message delay and mes

sage size for replay bots. In terms of inter-message delay, a replay bot is just a

variation of a periodic bot, which is demonstrated by the high spike in Figure 4.5

(a). By using human phrases, replay bots successfully mimic human users in terms

95

Figure 4.6: Classification System Diagram

of message size distribution. The message size distribution of replay hots in Figure

4.5 (b) largely resembles that of human users, and can be fitted by an exponential

distribution with ,\ = 0.028.

4.3 Classification System

This section describes the design of our chat bot classification system. The two main

components of our classification system are the entropy classifier and the machine

learning classifier. The basic structure of our chat bot classification system is shown in

Figure 4.6. The two classifiers, entropy and machine learning, operate concurrently to

process input and make classification decisions, while the machine learning classifier

relies on the entropy classifier to build the bot corpus. The entropy classifier uses

entropy and corrected conditional entropy to score chat users and then classifies them

as chat bots or humans. The main task of the entropy classifier is to capture new chat

hots and add them to the chat bot corpus. The human corpus can be taken from a

database of clean chat logs or created by manual log-based classification, as described

in Section 5.2. The machine learning classifier uses the bot and human corpora to

96

learn text patterns of bots and humans, and then it can quickly classify chat bots

based on these patterns. The two classifiers are detailed as follows.

4.3.1 Entropy Classifier

The entropy classifier makes classification decisions based on entropy and entropy

rate measures of message sizes and inter-message delays for chat users. If either the

entropy or entropy rate is low for these characteristics, it indicates the regular or

predictable behavior of a likely chat bot. If both the entropy and entropy rate is

high for these characteristics, it indicates the irregular or unpredictable behavior of a

possible human.

To use entropy measures for classification, we set a cutoff score for each entropy

measure. If a test score is greater than or equal to the cutoff score, the chat user

is classified as a human. If the test score is less than the cutoff score, the chat user

is classified as a chat bot. The specific cutoff score is an important parameter in

determining the false positive and true positive rates of the entropy classifier. On the

one hand, if the cutoff score is too high, then too many humans will be misclassified as

bots. On the other hand, if the cutoff score is too low, then too many chat bots will be

misclassified as humans. Due to the importance of achieving a low false positive rate,

we select the cutoff scores based on human entropy scores to achieve a targeted false

positive rate. The specific cutoff scores and targeted false positive rates are described

in Section 5.4.

97

4.3.1.1 Entropy Measures

The entropy rate, which is the average entropy per random variable, can be used as

a measure of complexity or regularity [101, 105, 44]. The entropy rate is defined as

the conditional entropy of a sequence of infinite length. The entropy rate is upper-

bounded by the entropy of the first-order probability density function or first-order

entropy. A independent and identically distributed (i.i.d.) process has an entropy rate

equal to its first-order entropy. A highly complex process has a high entropy rate,

while a highly regular process has a low entropy rate.

A random process X = {Xi} is defined as an indexed sequence of random variables.

To give the definition of the entropy rate of a random process, we first define the

entropy of a sequence of random variables as:

L P(x1, ... , Xm) log P(x1, ... , Xm),
X1, ... ,Xm

where P(x1, ... , Xm) is the joint probability P(X1 = x1, ... , Xm = Xm)·

Then, from the entropy of a sequence of random variables, we define the conditional

entropy of a random variable given a previous sequence of random variables as:

Lastly, the entropy rate of a random process is defined as:

Since the entropy rate is the conditional entropy of a sequence of infinite length,

98

it cannot be measure for finite samples. Thus, we estimate the entropy rate with the

conditional entropy of finite samples. In practice, we replace probability density func

tions with empirical probability density functions based on the method of histograms.

The data is binned in Q bins of approximately equal probability. The empirical prob

ability density functions are determined by the proportions of bin number sequences

in the data, i.e., the proportion of a sequence is the probability of that sequence.

The estimates of the entropy and conditional entropy, based on empirical probability

density functions, are represented as: EN and CE, respectively.

There is a problem with the estimation of CE(Xm I X1, ... , Xm-d for some values

of m. The conditional entropy tends to zero as m increases, due to limited data. If a

specific sequence of length m - 1 is found only once in the data, then the extension

of this sequence to length m will also be found only once. Therefore, the length

m sequence can be predicted by the length m - 1 sequence, and the length m and

m- 1 sequences cancel out. If no sequence of length m is repeated in the data, then

CE(Xm I X1, ... ,Xm-d is zero, even for i.i.d. processes.

To solve the problem of limited data, without fixing the length of m, we use the

corrected conditional entropy [101] represented as CC E. The corrected conditional

entropy is defined as:

where perc(Xm) is the percentage of unique sequences of length m and EN(Xl) is

the entropy with m fixed at 1 or the first-order entropy.

99

Table 4.1: Message Composition of Chat Bot and Human Datasets
AUG. BOTS NOV. BOTS HUMANS

periodic I random I responder periodic I random I replay human
#of msgs. 25,258 1 13,998 1 6,160 10,639 1 22,820 1 8,054 342,696

The estimate of the entropy rate is the minimum of the corrected conditional

entropy over different values of m. The minimum of the corrected conditional entropy

is considered to be the best estimate of the entropy rate from the available data.

4.3.2 Machine Learning Classifier

The machine learning classifier uses the content of chat messages to identify chat bots.

Since chat messages (including emoticons) are text, the identification of chat bots can

be perfectly fitted into the domain of machine learning text classification. Within

the machine learning paradigm, the text classification problem can be formalized as

f : T x C ____, {0, 1}, where f is the classifier, T = {t1, t2, ... , tn} is the texts to be

classified, and C = {cl,c2, ... ,ck} is the set of pre-defined classes [108]. Value 1 for

f (ti, Cj) indicates that text ti is in class c1 and value 0 indicates the opposite decision.

There are many techniques that can be used for text classification, such as nai:ve Bayes,

support vector machines, and decision trees. Among them, Bayesian classifiers have

been very successful in text classification, particularly in email spam detection. Due to

the similarity between chat spam and email spam, we choose Bayesian classification

for our machine learning classifier for detecting chat bots. We leave study on the

applicability of other types of machine learning classifiers to our future work.

Within the framework of Bayesian classification, identifying if chat message M is

issued by a bot or human is achieved by computing the probability of M being from a

100

bot with the given message content, i.e., P(C = botiM). If the probability is equal to

or greater than a pre-defined threshold, then message M is classified as a bot message.

According to Bayes theorem,

p b M _ P(Mibot)P(bot) _ P(Mibot)P(bot)
(otl) - P(M) - P(Mibot)P(bot) + P(Mihuman)P(human) ·

A message Misdescribed by its feature vector (ft, h, ... , fn)· A feature f is a single

word or a combination of multiple words in the message. To simplify computation,

in practice it is usually assumed that all features are conditionally independent with

each other for the given category. Thus, we have

n
P(bot) fi P(filbot)

P(botiM) = n i==l n

P(bot) fi P(fiibot) + P(human) fi P(fiihuman)
i==l i==l

The value of P(botiM) may vary in different implementations (see [51, 137] for im-

plementation details) of Bayesian classification due to differences in assumption and

simplification.

Given the abundance of implementations of Bayesian classification, we directly

adopt one implementation, namely CRM 114[135], as our machine learning classifica-

tion component. CRM 114 is a powerful text classification system that has achieved

very high accuracy in email spam identification. The default classifier of CRM 114,

OSB (Orthogonal Sparse Bigram), is a type of Bayesian classifier. Different from

common Bayesian classifiers which treat individual words as features, OSB uses word

pairs as features instead. OSB first chops the whole input into multiple basic units

101

with five consecutive words in each unit. Then, it extracts four word pairs from

each unit to construct features, and derives their probabilities. Finally, OSB applies

Bayes theorem to compute the overall probability that the text belongs to one class

or another.

4.4 Experimental Evaluation

In this section, we evaluate the effectiveness of our proposed classification system.

Our classification tests are based on chat logs collected from the Yahoo! chat system.

We test the two classifiers, entropy-based and machine-learning-based, against chat

bots from August and November datasets. The machine learning classifier is tested

with fully-supervised training and entropy-classifier-based training. The accuracy of

classification is measured in terms of false positive and false negative rates. The false

positives are those human users that are misclassified as chat bots, while the false

negatives are those chat bots that are misclassified as human users. The speed of

classification is mainly determined by the minimum number of messages that are re-

quired for accurate classification. In general, a high number means slow classification,

whereas a low number means fast classification.

Table 4.2: True Positive and Negative Rates for Entropy Classifier
AUG. BOTS NOV. BOTS HUMANS

periodic random responder periodic random replay human
test true pos. true pos. true pos. true pos. true pos. true pos. false pos.

EN(imd) 121/121 68/68 1/30 51/51 109/109 40/40 7/1713
CCE(imd) 121/121 49/68 4/30 51/51 109/109 40/40 11/1713

EN(ms) 92/121 7/68 8/30 46/51 34/109 0/40 7/1713
CCE(ms) 77/121 8/68 30/30 51/51 6/109 0/40 11/1713

OVERALL 121/121 68/68 30/30 51/51 109/109 40/40 17/1713

102

4.4.1 Experimental Setup

The chat logs used in our experiments are mainly in three datasets: (1) human chat

logs from August 2007, (2) bot chat logs from August 2007, and (3) bot chat logs

from November 2007. In total, these chat logs contain 342,696 human messages and

87,049 bot messages. In our experiments, we use the first half of each chat log, human

and bot, for training our classifiers and the second half for testing our classifiers. The

composition of the chat logs for the three datasets is listed in Table 4.1.

The entropy classifier only requires a human training set. We use the human

training set to determine the cutoff scores, which are used by the entropy classifier to

decide whether a test sample is a human or bot. The target false positive rate is set

at 0.01. To achieve this false positive rate, the cutoff scores are set at approximately

the 1st percentile of human training set scores. Then, samples that score higher than

the cutoff are classified as humans, while samples that score lower than the cutoff are

classified as bots. The entropy classifier uses two entropy tests: entropy and corrected

conditional entropy. The entropy test estimates first-order entropy, and the corrected

conditional entropy estimates higher-order entropy or entropy rate. The corrected

conditional entropy test is more precise with coarse-grain bins, whereas the entropy

test is more accurate with fine-grains bins [44]. Therefore, we use Q = 5 for the

corrected conditional entropy test and Q = 256 with m fixed at 1 for the entropy test.

We run classification tests for each bot type using the entropy classifier and ma

chine learning classifier. The machine learning classifier is tested based on fully

supervised training and then entropy-based training. In fully-supervised training,

103

the machine learning classifier is trained with manually labeled data, as described

in Section 5.2. In entropy-based training, the machine learning classifier is trained

with data labeled by the entropy classifier. For each evaluation, the entropy classifier

uses samples of 100 messages, while the machine learning classifier uses samples of 25

messages.

4.4.2 Experimental Results

We now present the results for the entropy classifier and machine learning classifier.

The four chat bot types are: periodic, random, responder, and replay. The classifi

cation tests are organized by chat bot type, and are ordered by increasing detection

difficulty.

4.4.2.1 Entropy Classifier

The detection results of the entropy classifier are listed in Table 4.2, which includes

the results of the entropy test (EN) and corrected conditional entropy test (CCE) for

inter-message delay (imd), and message size (ms). The overall results for all entropy

based tests are shown in the final row of the table. The true positives are the total

unique bot samples correctly classified as hots. The false positives are the total unique

human samples mistakenly classified as hots.

Periodic Bots: As the simplest group of hots, periodic hots are the easiest

to detect. They use different fixed timers and repeatedly post messages at regular

intervals. Therefore, their inter-message delays are concentrated in a narrower range

than those of humans, resulting in lower entropy than that of humans. The inter-

104

message delay EN and CCE tests detect 100% of all periodic bots in both August

and November datasets. The message size EN and CCE tests detect 76% and 63% of

the August periodic bots, respectively, and 90% and 100% of the November periodic

bots, respectively. These slightly lower detection rates are due to a small proportion of

humans with low entropy scores that overlap with some periodic bots. These humans

post mainly short messages, resulting in message size distributions with low entropy.

Random Bots: The random bots use random timers with different distributions.

Some random hots use discrete timings, e.g., 40, 64, or 88 seconds, while the others

use continuous timings, e.g., uniformly distributed delays between 45 and 125 seconds.

The inter-message delay EN and CCE tests detect 100% of all random bots, with

one exception: the inter-message delay CCE test against the August random hots

only achieves 72% detection rate, which is caused by the following two conditions: (1)

the range of message delays of random hots is close to that of humans; (2) sometimes

the randomly-generated delay sequences have similar entropy rate to human patterns.

The message size EN and CCE tests detect 31% and 6% of August random bots,

respectively, and 7% and 8% of November random bots, respectively. These low

detection rates are again due to a small proportion of humans with low message

size entropy scores. However, unlike periodic bots, the message size distribution of

random bots is highly dispersed, and thus, a larger proportion of random bots have

high entropy scores, which overlap with those of humans.

Responder Bots: The responder bots are among the advanced bots, and they

behave more like humans than random or periodic bots. They are triggered to post

105

messages by certain human phrases. As a result, their timings are quite similar to

those of humans.

The inter-message delay EN and CCE tests detect very few responder hots, only

3% and 13%, respectively. This demonstrates that human-message-triggered respond

ing is a simple yet very effective mechanism for imitating the timing of human inter

actions. However, the detection rate for the message size EN test is slightly better

at 27%, and the detection rate for the message size CCE test reaches 100%. While

the message size distribution has sufficiently high entropy to frequently evade the EN

test, there is some dependence between subsequent message sizes, and thus, the CCE

detects the low entropy pattern over time.

Replay Bots: The replay hots also belong to the advanced and human-like hots.

They use replay attacks to fool humans. More specifically, the hots replay phrases they

observed in chat rooms. Although not sophisticated in terms of implementation, the

replay hots are quite effective in deceiving humans as well as frustrating our message

size-based detections: the message size EN and CCE tests both have detection rates

of 0%. Despite their clever trick, the timing of replay hots is periodic and easily

detected. The inter-message delay EN and CCE tests are very successful at detecting

replay hots, both with 100% detection accuracy.

4.4.2.2 Supervised and Hybrid Machine Learning Classifiers

The detection results of the machine learning classifier are listed in Table 4.3. Table

4.3 shows the results for the fully-supervised machine learning (SupML) classifier

106

Table 4.3: True Positive and Negative Rates for Machine Learning and Hybrid Clas
sifiers

AUG. BOTS NOV. BOTS HUMANS
periodic random responder periodic random replay human

test true pas. true pas. true pas. true pas. true pas. true pas. false pas.
SupML 121/121 68/68 30/30 14/51 104/109 1/40 0/1713

SupM £retrained 121/121 68/68 30/30 51/51 109/109 40/40 0/1713
EntML 121/121 68/68 30/30 51/51 109/109 40/40 1/1713

and entropy-trained machine learning (EntM L) classifier, both trained on the Au-

gust training datasets, and the fully-supervised machine learning (SupM Lretrained)

classifier trained on August and November training datasets.

Periodic Bots: For the August dataset, both SupM L and EntM L classifiers

detect 100% of all periodic bots. For the November dataset, however, the SupM L

classifier only detects 27% of all periodic bots. The lower detection rate is due to

the fact that 62% of the periodic bot messages in November chat logs are gener-

ated by new bots, making the SupM L classifier ineffective without re-training. The

SupM Lretrained classifier detects 100% of November periodic bots. The EntM L

classifier also achieves 100% for the November dataset.

Random Bots: For the August dataset, both SupM L and EntM L classifiers

detect 100% of all random bots. For the November dataset, the SupM L classifier

detects 95% of all random bots, and the SupM Lretrained classifier detects 100% of

all random bots. Although 52% of the random bots have been upgraded according to

our observation, the old training set is still mostly effective because certain content

features of August random bots still appear in November. The EntM L classifier again

achieves 100% detection accuracy for the November dataset.

107

Responder Bots: We only present the detection results of responder bots for

the August dataset, as the number of responder bots in the November dataset is very

small. Although responder hots effectively mimic human timing, their message con

tents are only slightly obfuscated and are easily detected. The SupM L and EntM L

classifiers both detect 100% of all responder hots.

Replay Bots: The replay bots only exist in the November dataset. The SupM L

classifier detects only 3% of all replay bots, as these bots are newly introduced in

November. The SupM Lretrained classifier detects 100% of all replay bots. The

machine learning classifier reliably detects replay bots in the presence of a substantial

number of replayed human phrases, indicating the effectiveness of machine learning

techniques in chat bot classification.

4.5 Conclusion

This chapter first presents a large-scale measurement study on Internet chat. We

collected two-month chat logs for 21 different chat rooms from one of the top Internet

chat service providers. From the chat logs, we identified a total of 14 different types

of chat hots and grouped them into four categories: periodic bots, random hots,

responder hots, and replay hots. Through statistical analysis on inter-message delay

and message size for both chat bots and humans, we found that chat bots behave very

differently from human users. More specifically, chat bots exhibit certain regularities

in either inter-message delay or message size. Although responder bots and replay

bots employ advanced techniques to behave more human-like in some aspects, they

108

still lack the overall sophistication of humans.

Based on the measurement study, we further proposed a chat bot classification

system, which utilizes entropy-based and machine-learning-based classifiers to accu

rately detect chat bots. The entropy-based classifier exploits the low entropy charac

teristic of chat bots in either inter-message delay or message size, while the machine

learning-based classifier leverages the message content difference between humans and

chat bots. The entropy-based classifier is able to detect unknown bots, including

human-like bots such as responder and replay bots. However, it takes a relatively

long time for detection, i.e., a large number of messages are required. Compared to

the entropy-based classifier, the machine-learning-based classifier is much faster, i.e.,

a small number of messages are required. In addition to bot detection, a major task of

the entropy-based classifier is to build and maintain the bot corpus. With the help of

bot corpus, the machine-learning-based classifier is trained, and consequently, is able

to detect chat bots quickly and accurately. Our experimental results demonstrate

that the hybrid classification system is fast in detecting known bots and is accurate

in identifying previously-unknown bots.

109

Chapter 5

Detecting Online Game Bots

The online gaming market has experienced rapid growth for the past few years. In

2008, online gaming revenues were estimated at $7.6 billion world-wide [81]. The

most profitable online games are subscription-based massive multiplayer online games

(MMOGs), such as World of Warcraft. In 2008, World of Warcraft reached 11.5

million subscribers [16]. Each subscriber has to pay as much as $15 per month. It

is no surprise that MMOGs make up about half of online gaming revenues [81]. As

MMOGs gain in economic and social importance, it has become imperative to shield

MMOGs from malicious exploits for the benefit of on-line game companies and players.

Currently the most common form of malicious exploit and the most difficult to

thwart, is the use of game bots to gain unfair advantages. Game bots have plagued

most of the popular MMOGs, including World of Warcraft [80, 104, 129, 100, 95],

Second Life [92], and Ultima Online [40, 113], and some non-MMOGs such as Diablo 2

[33]. The primary goal of game bots is to amass game currency, items, and experience.

110

Interestingly, game currency can be traded for real currency1, making cheating a

profitable enterprise. Since MMOGs are small economies, a large influx of game

currency causes hyper-inflation, hurting all players. Thus, the use of game bots is

a serious problem for not only giving some players unfair advantages but also for

creating large imbalances in game economies as a whole. With a large investment in

development costs, game service providers consider anti-cheating mechanisms a high

priority.

The existing methods for combating bots are not successful in the protection of

on-line games. The approaches based on human interactive proofs (HIPs), such as

CAPTCHAs, are the most commonly used to distinguish bots from humans. However,

the inherent interactive requirement makes HIP-based approaches inadequate to apply

in MMOGs. In particular, multiple tests are needed throughout a game session to

block the login of bots; otherwise, a malicious player can pass the one-time test and log

a bot into the game. Although multiple tests can foil the malicious player's attempt for

bot login, they are too obtrusive and distractive for a regular player to tolerate as well.

A different approach, taken by some game companies, makes use of a process monitor

to scan for known bot or cheat programs running on a player's computer. Blizzard,

the makers of World of Warcraft, developed such a system called the Warden that

scans processes and sends information back to their servers. A number of similar

anti-cheat systems have been built for other games [39, 120, 94, 35]. However, this

scan-based approach has proven ineffective, and even worse, raises privacy concerns.

1The exchange rate for World of Warcraft is 1,000 gold to $11.70 as of July 25th, 2009 [117].

111

The Electronic Frontier Foundation views the Warden as spyware [79].

Besides technical approaches, Blizzard has pursued legal action against bot makers

[9], claiming over $1 million per year in additional operating costs caused by game

bots in their lawsuit [15]. Moreover, Blizzard has banned thousands of accounts for

cheating [21], yet many players continue cheating via bots and slip through the cracks

[95, 100].

In this chapter, we introduce an approach based on human observational proofs

(HOPs) to capture game bots. HOPs offer two distinct advantages over HIPs. First,

HOPs provide continuous monitoring throughout a session. Second, HOPs are non

interactive, i.e., no test is presented to a player, making HOPs completely non

obtrusive. The use of HOPs is mainly motivated by the problems faced by HIPs

and methods used in behavioral biometric systems [96, 103, 43, 2]. Similar behavior

based approaches have been used in many previous intrusion detection systems [46, ? ,

67, 102, 121]. We collect a series of user-input measurements from a popular MMOG,

World of Warcraft, to study the behaviors of current game bots and humans. While

human players visually recognize objects on the screen and physically control the

mouse and keyboard, game bots synthetically generate mouse and keyboard events

and cannot directly recognize most objects. Our measurement results clearly show

the fundamental differences between current game bots and humans in how certain

tasks are performed in the game. Passively observing these differences, HOPs provide

an effective way to detect current game bots.

Based on HOPs, we design and develop a game bot defense system that analyzes

112

user-input data to differentiate game bots from human players in a timely manner.

The proposed HOP system consists of two major components: a client-side exporter

and a server-side analyzer. The exporter is responsible for sending a stream of user

input actions to the server. The analyzer then processes the user-input stream and

decides whether the client is operated by a bot or a human. The core of the analyzer

is a cascade neural network that "learns" the behaviors of normal human players, as

neural networks are known to perform well with user-input data [2, 90, 91]. Note

that the latest MMOGs virtually all support automatic updates, so the deployment

of the client-side exporter is not an issue. Moreover, the overhead at the client side is

negligible and the overhead at the server side is small and affordable in terms of CPU

and memory consumptions even with thousands of players per server. To validate the

efficacy of our defense system, we conduct experiments based on user-input traces of

bots and humans. The HOP system is able to capture 99.80% of current game bots

for World of Warcraft within 39.60 seconds on average.

It is an arms race between game exploits and their countermeasures. Once highly

motivated bot developers know the HOP approach, it is possible for them to create

more advanced game bots to evade the HOP system. However, the purpose of the

HOP system is to raise the bar against game exploits and force a determined bot

developer to spend significant time and effort in building next-generation game bots

for detection evasion. Note that, to operate the game in a human-like manner, game

bots have to process complex visuals and model different aspects of human-computer

interaction and behavior, which we believe is non-trivial to succeed.

113

5.1 Background

In this section, we first briefly present the evolution of game bots. Then, we de

scribe the game playing behaviors of human players and game bots, respectively, and

highlight their differences in a qualitative way.

5.1.1 Game Bots

A variety of exploits have appeared in the virtual game world for fun, for win, and for

profit. Among these game exploits, game bots are regarded as the most commonly

used and difficult-to-handle exploit. The earliest game bots were developed for the first

generation MMOGs such as Ultima Online [113]. Even at that time, bot operators

were already quite sophisticated, creating small server farms to run their bots [40,

113]. At the early era of game bots, most of bot programmers wrote their own game

clients. However, as a countermeasure, game companies often update games, breaking

operations of those custom game clients. Bot programmers were forced to update

their game clients, keeping up with the latest game version. This cycle proves to be

very tedious for game bot programmers. Moreover, the complexity of game clients

has grown continuously, making it increasingly difficult to develop and maintain a

standalone custom game client.

The arms race between game vendor and bot developer has led to the birth of an

interesting type of game bots that, much like humans, play games by reading from

screen and using the mouse and keyboard. These advanced bots operate the standard

game client by simply sending mouse and keyboard events, reading certain pixels from

114

the screen, and possibly reading a few key regions in the memory address space of the

game application. Most bots are equipped with macro scripting capabilities, similar to

programs like Autolt [10], which enables bots to be easily reprogrammed and quickly

adapted to the changes made by game companies.

5.1.2 Game Playing Behaviors

MMOGs, such as World of Warcraft, entertain players by providing a large degree

of freedom in terms of actions a player can perform. In the game world, a player

controls a virtual character (avatar) to explore the landscape, fight monsters, complete

quests and interact with other players. In addition, a player can further customize

the character by learning skills and purchasing items (such as armor, weapons, and

even pets) with virtual currency. Each game activity requires a player to interact

with the game in a different fashion. As a result, it is expected that the inputs of

a human player will exhibit burstiness with strong locality and the input contents

vary significantly for different tasks through game play. However, when a bot is used

to play the game, its main purpose is to gain rewards (level and virtual currency)

without human intervention by automating and repeating simple actions (such as

killing monsters). Being much less sophisticated than human, bot actions would show

regular patterns and limited varieties.

Besides the high-level behavioral differences, humans and hots also interact with

the game very differently, despite that both interact with the game via mouse and

keyboard. As biological entities, humans perceive the graphical output of the game

115

optically, and feed input to the game by physically operating devices such as keyboard

and mouse. In contrast, bots are computer programs that have no concept of vision

and are not bounded by mechanical physics. While bots can analyze game graphics,

it is computationally expensive. To avoid this computation cost, whenever possible,

bots attempt to obtain necessary information, such as the locations of the avatar,

monsters and other characters, and the properties (health, level, etc.) of the avatar,

by reading the memory of the game program.

In general, bots control the avatar by simulating input from devices via OS API

calls, such as setting key press state or repositioning mouse cursor. The techniques

used by bots are often crude, but in most cases, quite effective. For example, without

reading the graphics or scanning the terrain, a bot can navigate to a target location

by knowing just two coordinates-the current location of the avatar and that of the

target. The bot then tries to approach the target location by steering the avatar to go

forward, left and right, and then checks its progress by polling the two coordinates.

If the avatar location does not change in a given amount of time, the bot assumes

that an obstacle (trees, fences, steep terrain, etc.) is in the way and tries to navigate

around it by moving backward a few steps, turning left or right, and going forward.

Occasionally, graphics analysis can be useful, such as when picking up items on the

ground. The bot can again handle this situation in a simple and efficient manner by

exploiting the game user interface. When the cursor is placed on top of an object, the

game would display a small information window on the lower-right corner. Thus, the

bot moves the mouse cursor in grid patterns, and relies on the change of pixel colors

116

on the lower-right corner of the screen to know if it has found the object.

5.2 Game Playing Characterization

In this section, we examine how bots and humans behave in the game, in order to

have a deep understanding of the differences between humans and bots. Based on

our game measurements, we quantitatively characterize the game playing behaviors

of human players and bots, respectively. The behavioral differences between bots and

humans form the basis for our HOP-based system.

5.2.1 The Glider Bot

We select the Glider bot [80] as the sample game bot for our research. The Glider bot

is a very popular game bot for World of Warcraft. It runs concurrently with the game

client, but requires system administrator privileges. This escalated privilege helps

the Glider bot to circumvent the Warden anti-bot system, and enables it to access

the internal information of the game client via cross-process-address-space reading.

It operates by using a "profile"-a set of configurations including several waypoints

(map coordinates in the game world) and options, such as levels of monsters to fight.

When in operation, the game bot controls the avatar to repeatedly run between the

given waypoints, search and fight monsters that match the given criteria, and collect

bonus items after winning fights.

117

Table 5.1: Definitions of User-Input Actions
Action Definition

Keystroke The press and release bf a key.
A series of continuous mouse
cursor position changes with no

Point
mouse button pressed; the time-
stamps for each pair of cursor
position changes are no more
than 0.4 seconds apart.

Pause
A period of 0.4 seconds or longer
with no actions.
The press and release of a mouse

Click
button; the cursor travels no more
than 10 pixels between the press
and release.

Point-and-Click
A point followed by a click within
0.4 seconds.
The press and release of a mouse

Drag-and-Drop
button; the cursor travels more
than 10 pixels between the press
and release.

5.2.2 Input Data Collection

We collect player input data for both human and bot using an external program in

a non-intrusive manner, i.e., no modification to the game client program. The input

data collection program, a modified version of RUI [69], runs concurrently with the

game, polling and recording the keyboard and mouse input device status with clock

resolution close to 0.015625 second (approximate 64 times/sec). Each input event,

such as key press or cursor position change, is recorded along with a time stamp

relative to the starting time of the recording.

We invite 30 different human players to play World of Warcraft and collect 55 hours

of their user-input traces. Correspondingly, we run the game bot with 10 different

118

0.18 .--~~-~-~---~--,

0.16

0.14

" 0.12
0
'E 0.1
0 e- 0.08

... 0.06

0.04

0.02

6 8 10 12 14
Interval (sec.)

(a) Bot

0,07 .-~-~-~---~-~----.

0.06

0.05

" ·€ 0.04

~ 0,03 ...
0.02

0.01

4 6 8 10 12 14
Interval (sec.)

(b) Human

Figure 5.1: Keystroke Inter-arrival Time Distribution

" 0

·~
0.
8 ...

0.3 .--~-~-~--~-~--,

0.25

0.2

0.15

0.1

0.05 l
0_.._ ___ ~-~--~~-~-~

0
Duration (sec.)

(a) Bot

§
·~

"' 8 ...

0.09 .----~-~---~--..------,

0.08

0,07

0.06

0.05

0.04

0,03

0.02

0.01

2 3 4
Duration (sec.)

(b) Human

Figure 5.2: Keystroke Duration Distribution

profiles in 7 locations in the game world for 40 hours and collect its input traces. The

10 profiles are bot configurations with different sets of waypoints that the bot follows

while farming, i.e., killing monsters and gathering treasure. The profiles are setup

in 7 locations with different monster levels (from levels 1 to 40), monster densities

(sparse to dense), and different obstacles (barren plains to forest with lots of small

trees). The game bot profiles are half run with a warrior and half run with a mage.

These two bot characters range from level 1 to over 30 in the traces.

We conduct post processing on the input trace data to extract information with

regard to high-level user-input actions. For example, we pair up a key press event

with a subsequent key release event of the same key to form a keystroke action; we

119

5000 r-----~-~--~-~----,

4000

~
~ 3000
><
<::
il 2000
8.
"' 1000

200 400 600 800 1000 I 200
Displacement (px.)

(a) Bot

4000
u
" ~ 3000

8
13 2000
8.
"' 1000

200 400 600 800 1000 I 200
Displacement (px.)

(b) Human

Figure 5.3: Average Speed vs. Displacement for Point-and-Click

0.6 ,-;--~--~--~--~-----,

0.5

c 0.4
0
'€
8. 0.3
e .,.

0.2

0.1

0 l
0 3

Duration (sec.)

(a) Bot

0.18 .---~--~--~--~-----,

0.16

0.14

g 0.12

·~ 0.1

8 0.08

.,. 0.06

0.04

o.m L
0

0
Duration (sec.)

(b) Human

Figure 5.4: Drag-and-Drop Duration Distribution

gather a continuous sequence of cursor position change events to form a point action

(mouse movement action). Table 5.1 gives a complete list of high level actions we

derive and their corresponding definitions.

5.2.3 Game Playing Input Analysis

We analyze the Glider bot and human keyboard and mouse input traces with re-

spect to timing patterns (duration and inter-arrival time) and kinematics (distance,

displacement, and velocity). Our bot analysis below is limited to the current game

bots.

120

0.9 .---~--~--~-----..,..,

0.8

0.7

" 0.6
.9 5 0.5

g 0.4

"" 0.3
0.2

0.1

oL--~--~--~--~--..u
0 0.2 0.4 0.6 0.8

Efficiency

(a) Bot

0.16 .---~----------~

0.14

0.12

" l 0°~~
£ 0.06

0.04

O.Q2

0~--------------0 0.2 0.4 0.6 0.8
Efficiency

(b) Human

Figure 5.5: Point-and-Click and Drag-and-Drop Movement Efficiency Distribution

I
1200

1200-

1200.:...

(a) Bot

':···+ ···l
.. &00 1200

Speed (px./scc.)
1200

I

800

1200-

800:

400~

800-

1200-·

(b) Human

Figure 5.6: Average Velocity for Point-and-Click

.. ··I
&00 1200

_Speed (px./sec.)

Two keyboard usage metrics for human and bot are presented in Figures 5.1 and

5.2, respectively. Both figures are clipped for better presentation, and the trailing

data clipped away contribute less than 3% of the total for either human or bot.

Figure 5.1 shows the distribution of keystroke inter-arrival time, i.e., the interval

between two consecutive key presses, with a bin resolution of 0.1 seconds. There are

two major differences between the bots and humans. First, the bot issues keystrokes

significantly faster than humans. While 16.2% of consecutive keystrokes by the bot

are less than 0.1 second apart, only 3.2% of human keystrokes are that fast. This

121

is because human players have to initiate keystroke action by physical movement

of fingers, and hence, pressing keys at such high frequency would be very tiring.

Second, the keystrokes of the bot exhibit obvious periodic patterns. The empirical

probabilities of the bot pressing a key every 1 or 5.5 seconds are significantly higher

than their neighbor intervals, which provides us some insights into the internals of the

bot: it uses periodic timers to poll the status of the avatar (i.e., current coordinate),

and issue keyboard commands accordingly (e.g., bypass possible obstacles by turning

left/right and jumping). However, for human players, their keystroke intervals follow a

Pareto distribution, which matches the conclusions of previous research [127]. Figure

5.2 shows the distribution of keystroke durations, with the bin resolution of 0.03

second. These figures reassures our previous observations: the bot presses keys with

much shorter duration--over 36.9% of keystrokes are less than 0.12 seconds long, while

only 3.9% of human keystrokes are completed within such a duration; the bot exhibits

the periodic keyboard usage pattern-keystrokes with around 0.25 second duration

are significantly more than its neighbor durations.

Figure 5.3 shows the relationship between the mouse speed and the displacement

between the origin and target coordinates for the point-and-click. Less than 0.1%

of the total data points for either human or bot are clipped away. The hots exhibit

two very unique features. First, unlike human players, who move the mouse with very

dynamic speed at all displacement lengths, the bots tend to move the mouse at several

fixed speeds for each displacement, and the speed increases linearly as displacement

lengthens. This feature implies that, again, the bots use several fixed length timers for

122

mouse movements. Second, we also observe that the bots make a significant amount

of high speed moves with zero displacement, that is, after a series of fast movements,

the cursor is placed back exactly at its origin. Such a behavior is absent in the human

data, because it is physically difficult and unnecessary.

Figure 5.4 shows the distribution of mouse drag-and-drop duration, with the bin

resolution of 0.03 second. For the bots, 100% of actions are accomplished within 0.3

second. However, for human players, only 56.6% of drag-and-drop actions finish

within the same time window; over-one-second actions contribute 25.5% of the total,

within which, about 0.8% of actions are more than 5 seconds long, and are thus clipped

away from the figure.

Figure 5.5 illustrates the distribution of mouse movement efficiency for point-and

click and drag-and-drop. We define movement efficiency as the ratio between the

cursor displacement and the traversed distance over a series of movements. In other

words, the closer the cursor movement is to a straight line between the origin and

target coordinates, the higher the movement efficiency. Note that, while the bin

width is 0.02, the last bin only contains the actions with efficiency of 1.0. Bots

exhibit significant deviation from human players on this metric: 81.7% of bot mouse

movements have perfect efficiency, compared to that only 14.1% of human mouse

movements are equally efficient. Aside from 3.8% of mouse movements with efficiency

less than 0.02 (most of which are zero efficiency moves, due to the cursor being placed

back to the origin), a bot rarely moves the mouse with other efficiencies. However,

for human players, the observed probability of mouse movement efficiency follows an

123

Action
Accumulator

Output
Accumulator

Figure 5. 7: Overview of the HOP System

exponential distribution.

Bot?

Human?

Finally, Figure 5.6 presents the relationship between the average mouse move speed

and the direction of the target coordinate, plotted in polar coordinate with angular

resolution of 10 degrees (n/36). Each arrow represents the average velocity vector

of mouse movements whose target position is ±5 degrees in its direction. For the

bots, there is no evident correlation between the speed and the direction. In con-

trast, for human players, there is a clear diagonal, symmetric, and bounded movement

pattern: diagonal movements are generally faster than horizontal and vertical move-

ments, upward movements are slightly faster than downward movements, and leftward

movements are slightly faster than rightward movements; overall, the movement speed

is bounded to a certain value. The diagonal and symmetric pattern is attributed to

the human hand physiology, and the speed boundary is due to the physical constraint

of human arms.

5.3 HOP System

In this section, we describe the design of our proposed HOP system. The HOP system

consists of client-side exporters and a server-side analyzer. Each client-side exporter

collects and sends a stream of user-input actions taken at a game client to the game

124

server. The server-side analyzer then processes each input stream and decides whether

the corresponding client is operated by a bot or a human player. Figure 5.7 illustrates

the high-level structure of the HOP system.

5.3.1 Client-Side Exporter

Since each game client already receives raw user-input events, the client-side exporter

simply uses the available information to derive input actions, i.e., keystroke, point,

click, and drag-and-drop, and sends them back to the server along with regular

game-related data. Ideally, the client-side exporter should be implemented as an

integral part of the game executable or existing anti-cheat systems [39, 120, 94, 35].

For the prototype of our HOP system, we implement it as a standalone external

program, as we do not have source code access to the World of Warcraft.

5.3.2 Server-Side Analyzer

The server-side analyzer is composed of two major components: the user-input action

classifier and the decision maker. The work-flow of the server-side analyzer is as fol

lows. For each user-input action stream, the system first stores consecutive actions

into the action accumulator. A configurable number of actions form an action block,

and each action block is then processed by the classifier. The output of the classifier

contains the classification score for the corresponding action block, i.e., how close the

group of actions look to those of a bot, and is stored into the output accumulator.

Finally, when the output accumulator aggregates a configurable amount of neural net

work output, the decision maker makes a judgment. Each judgment reflects whether

125

the player is possibly operated by a bot since the last judgment. The output accu

mulator is refreshed after each decision is made. The analyzer continuously processes

user-input actions throughout each user's game session.

5.3.2.1 Neural Network Classification

We employ artificial neural networks for user-input action classification due to the

following two reasons. First, neural networks are especially appropriate for solving

pattern recognition and classification problem involving a large number of parameters

with complex inter-dependencies. The effectiveness of neural networks with user-input

data classification has already been demonstrated in behavioral biometric identifica

tion systems [2, 90, 91]. Second, neural networks are not simple functions of their

inputs and outputs. While the detection methods based solely on those metrics with

clearly defined equations are susceptible to inverse function attacks, neural networks,

often described as a "black box", are more difficult to attack. Note that our HOP

system is not necessarily tied to neural networks, and we will consider other classi

fication methods, such as support vector machines (SVMs) or decision trees, in our

future work.

The neural network we build for the HOP system is a cascade-correlation neural

network, a variant of feed-forward neural networks that use the idea of cascade train

ing [41]. Unlike standard multi-layer back-propagation (BP) perceptron networks, a

cascade correlation neural network does not have a fixed topology, but rather is built

from the ground up. Initially, the neural network only consists of the inputs directly

126

connected to the output neuron. During the training of the neural network, a group

of neurons are created and trained separately, and the best one is inserted into the

network. The training process continues to include new neurons into the network,

until the neural network reaches its training target or the size of the network reaches

a pre-defined limit.

Figure 5.8 illustrates the general construction of the cascade-correlation neural

network. There are eight input values for each user-input action, including seven

action metric parameters and a bias value that is used to differentiate the type of

action, e.g., keyboard action or mouse action. The neural network takes input from

all actions in an action block. The connections between the input node and neurons,

and among neurons, are represented by intersections between a horizontal line and a

vertical line. The weight of each connection is shown as a square over the intersection,

where larger size indicates heavier weight.

The seven action metric parameters are: action duration, mouse travel distance,

displacement, efficiency, speed, angle of displacement, and virtual key (a numeric

value corresponding to a keyboard key or a mouse button). The speed and efficiency

are derived parameters from the basic parameters, such as duration, distance and

displacement. These derived parameters are used mainly to help the neural network

capture the inherent association between input parameters, reduce the network com

plexity, and thus, speedup the training process. The number of actions in an action

block directly affects the total amount of input data to the neural network. Increasing

the block size provides the neural network with more context information and can, up

127

Duration o-----i!t-+---+--c'-+--
Distan~~ c~------1---- ····-···-·····--···)Action 1

Bias o-----$--$----l!l---+---lf---

gi~:~~:
0

0
--_-___ -__ -_-"""+ .. -+----l!t-····--....... --+l-: -..... -l ... t-:··-------...... -.•....) Action 2

Bias o------111--$--tll---+i'---ll!--

..• ······

Figure 5.8: A Cascade Neural Network

to a certain point, further improve the classification accuracy of the trained network.

However, too many input actions can also increase the overall complexity of the neural

network and slow down the training process.

5.3.2.2 Decision Making

The decision maker refers to using accumulated output from the neural network to

determine whether the corresponding user-input data is likely from a bot or a human

player. Different algorithms can be applied to consolidate accumulated classifications.

We employ a simple "voting" scheme: if the majority of the neural network output

classifies the user-input actions as those of a bot, the decision will be that the game

is operated by a bot, and vice versa. The decision process is a summary of the clas-

sifications of user-input actions over a period of time. While individual classification

cannot be 100% correct, the more accumulated output, the more confidence we have

in the decision. On the other hand, the more accumulated output, the more user-

input actions are required, which translates to more data storage and longer time for

decision making.

128

5.3.3 Performance Impact and Scalability

The nature of MMOGs dictates our design of the HOP system to be scalable and

light-weight, limiting performance impacts on game clients and the server. At the

client side, the system resource consumed by the collection of user-input actions is

minor. In addition to the system resource of a game client, an MMOG player's

gaming experience also depends on network performance. Since the user-input actions

are short messages, 16 bytes of data per user-input action, the additional bandwidth

consumption induced by the client-side exporter is negligible. The presence of the

exporter thus is imperceptible for end users. At the server side, the scalability is

critical to the success of our HOP system. The server-side analyzer is very efficient

in terms of memory and CPU usage, which is shown in Section 5.4.4. The size of

additional memory consumed per player is comparable to the size of the player's

avatar name. A single processor core is capable of processing tens of thousands of

users simultaneously in real-time. Therefore, the HOP system is scalable to the heavy

workload at a game server.

5.4 Experiments

In this section, we evaluate the efficacy of our HOP system through a series of exper

iments, in terms of detection accuracy, detection speed, and system overhead. The

metrics we use for detection accuracy include true positive rate and true negative rate.

The true positive rate is the percentage of hots that are correctly identified, while the

true negative rate is the percentage of humans that are correctly identified. The de-

129

0.98

~
~ 0.97

:~
0

0.. 0.96

~
0.95

30 40 50

ofNodes
60

(a) True Positive Rate

70

o.99)If ,._ :r I:: ..
~:~ '/'::: :1':~:::1"~: .•. ;.\%" ·····

~ 0.96,.i

~ 0.95

·~ 0.94

~ 0.93

~ 0.92

~ 0.91

0.9

0.89

0.88 L_-~--~-_____t""="~=~~
20 30 40 50 60 70

ofNodes

(b) True Negative Rate

Figure 5.9: True Positive and Negative Rates vs. # of Accumulated Actions and #
of Nodes

tection speed is determined by the total number of actions needed to make decisions

and the average time cost per action. In general, the larger the number of actions

required for decisions and the higher the average time cost per action, the slower the

detection speed becomes.

Table 5.2: True Positive and Negative Rates vs. Thresholds and# of Accumulated
Outputs

Threshold
of Accumulated Outputs

1 3 5 7 9 11 13 15 17 19 21

0.25
0.978 0.995 0.997 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000
0.959 0.977 0.983 0.987 0.990 0.992 0.994 0.994 0.996 0.996 0.997

0.5
0.961 0.991 0.997 0.998 0.999 1.000 1.000 1.000 1.000 1.000 1.000
0.976 0.990 0.994 0.996 0.998 0.998 0.998 0.998 0.999 0.998 0.999

0.75
0.926 0.980 0.992 0.997 0.998 0.998 0.998 1.000 1.000 1.000 1.000
0.985 0.995 0.997 0.998 1.000 0.999 0.999 1.000 1.000 0.999 1.000

0.9
0.859 0.935 0.964 0.980 0.985 0.996 0.995 0.996 0.995 0.998 0.998
0.991 0.998 0.999 0.999 1.000 0.999 0.999 1.000 1.000 0.999 1.000

0.95
0.775 0.856 0.895 0.922 0.940 0.947 0.958 0.969 0.976 0.975 0.983
0.994 0.999 0.999 0.999 1.000 0.999 0.999 1.000 1.000 0.999 1.000

0.975
0.624 0.668 0.700 0.723 0.737 0.757 0.770 0.776 0.792 0.796 0.804
0.996 0.999 0.999 0.999 1.000 0.999 0.999 1.000 1.000 0.999 1.000

130

5.4.1 Experimental Setup

Our experiments are based on 95 hours of traces, including 55 hours of human traces

and 40 hours of game bot traces. In total, these traces contain 3,000,066 raw user

input events and 286,626 user-input actions, with 10 bot instances and 30 humans

involved. The 10 bot instances are generated by running the Glider bot with 10

different profiles. The human players are a diverse group, including men and women

with different ages and different levels of gaming experience. The more detailed trace

information has been given in Section 5.2.2.

The experiments are conducted using 10-fold cross validation. Each test is per

formed on a different human or bot that is left out of the training set for that test.

Therefore, to validate a given configuration, 20 different partitions are created, one for

each of the 10 bots and 10 sets of three humans. The partitions consist of a training

set of either 9 bots and 30 humans or 10 bots and 27 humans, and a test set of either

one bot or three humans. Thus, each test is performed on unknown data that the

system has not yet been trained on.

5.4.2 Detection Results

The HOP system has four configurable parameters: the number of actions per block,

the number of nodes, the threshold, and the number of outputs per output block. The

first two parameters mainly determine the size and complexity of the neural network,

while the second two parameters largely affect the detection performance of the entire

system. The threshold determines how a neural network output is interpreted: a

131

value over the threshold indicates a bot, while a value under the threshold indicates

a human. Note that humans have a value of 0.0 and bots have a value of 1.0 in the

training of the neural network.

We first configure the number of actions per block and the number of nodes. The

true positive and true negative rates with different numbers of actions and different

numbers of nodes are shown in Figure 5.9 (a) and (b), respectively. These tests are

performed with a default threshold of 0.5. The neural network becomes more accurate

as more actions are provided, but we see diminishing returns in accuracy as the number

of actions increases, e.g., going from 4 actions to 6 actions requires 50% more input

but only provides a relatively small increase in the overall accuracy.

In most cases, the binomial theorem predicts that combining three decisions for

the 4-action neural network should be more accurate than combining two decisions

for the 6- or 8-action neural networks. Therefore, we choose to use a neural network

with 4 actions as input, which gives true positive and negative rates of 0.971-0.977

and 0.959-0.973, respectively.

The overall true positive and negative rates do not always grow as the number of

nodes increases. At some points, increasing the number of nodes no longer improves

the true positive or negative rates and the neural network starts to over-fit the training

set. A neural network of 40 nodes provides a true positive rate of 0.976 and a true

negative rate of 0.961, which is the best combination of true positive and true negative

rates with 4 actions as input. Therefore, we set up the neural network based on this

configuration.

132

With the neural network configured, the threshold and the number of outputs per

block determine the overall performance of the system. The threshold can be increased

or decreased from the default value of 0.5 to bias the neural network towards bots or

humans, improving the true positive rate or the true negative rate, respectively. The

number of outputs per block affects both the detection accuracy and the detection

speed of the system. As the number of outputs per block increases, the detection

accuracy of the system increases, but the detection speed decreases as more neural

network outputs are needed to make decisions.

The true positive and negative rates with different thresholds and different num-

bers of outputs for hots and humans are listed in Table 5.2. The top number in each

cell is the true positive rate and the bottom number is the true negative rate. The

neural network has 40 nodes and takes 4 actions as input. There are a number of

settings that allow for a true positive or true negative rate of 1.0, though not both.

To avoid a false positive---mistaking a human for a bot, we prefer a high true negative

rate. The smallest number of outputs per block that achieves a true negative rate of

1.0 is 9 outputs per block with the threshold of 0.75, which gives a true positive rate

of 0.998.

Table 5.3: True Positive Rates for Bots

Bots

#1 1 #2 1 #3 1 #4 1 #5 1 #6 1 #7 1 #8 1 #9 1 #10
o.988 1 1.ooo 1 o.998 1 1.ooo 1 1.ooo 1 1.ooo 1 1.ooo 1 1.ooo 1 o.998 1 1.ooo

With the fully configured system (40 nodes, 4-action input, the threshold of 0. 75,

133

0.07 .-----~--~--~-~---,

0.06

0.05

" ·E o.04

~ 0.03
p..

0.02

0.01

20 40 60 80 100
Decision Time (sec.)

(a) Bot

0.07 ..---~--~----~---.

0.06

0.05

0.02

0.01

20 40 60 80 100
Decision T1me (sec.)

(b) Human

Figure 5.10: Decision Time Distribution

and 9 outputs per block), Table 5.3 lists the true positive and negative rates for each

of the individual bats in our traces. The true negative rates are 1.0 for all of the

humans, so none of the human players in our traces are misclassified as bats. The

true positive rates are between 0.988 and 1.000 for the bats in our traces, with the

average true positive rate of 0.998.

The detection speed of the system is a function of the total number of actions

required for decision making and the average time cost per action. The total number

of actions is 36 (i.e., 9 outputs x 4 actions per output). The time cost per action

varies. The average time cost per action, ignoring idle periods longer than 10 seconds,

is 1.10 seconds. If a player is idle, strictly speaking, no one is "operating" the game, so

no decision can be made. Of course, idle players (bats or humans) are not performing

any actions and should not be a concern. Based on the total number of actions and

the average time cost per action, Figure 5.10 illustrates the decision time distribution

for bats and humans. From the decision time distribution, we can see that our HOP

system is able to make decisions for capturing bats within 39.60 seconds on average.

Note that we perform the same experiments with BP neural networks and observe

134

that the cascade neural network is more accurate in bot classification than BP neural

networks that use incremental, quick propagation, or resilient propagation method.

5.4.3 Detection of Other Game Bots

To further test our HOP system, without retraining the neural network, we perform a

smaller experiment on a different game bot from a different game. While Diablo 2 is

not an MMOG, it has an MMOG-like economy (items may be traded with thousands

· of other players) and is also plagued by game bots. This set of experiments studies

MMBot, a popular free bot for Diablo 2 that is built using the Autolt scripting

language [10]. Similar to Glider, MMBot automates various tasks in the game to

accumulate treasure or experience. However, unlike Glider, MMBot does not read

the memory space of the game, but instead is based entirely on keyboard/mouse

automation, and pixel scanning. As Diablo 2 has a much different interface (top

down isometric view rather than first person view like World of Warcraft) and much

different controls, the purpose of these experiments is to test how general our system

is and to show that it is not limited to any specific bot or game.

We collect a total of 20 hours of Diablo 2 traces, both bot and human. We run

MMBot for 10 hours and have 5 humans play Diablo 2 for a total of 10 hours. We then

reuse our existing neural network (40 nodes, 4 action-input, 9 inputs per block) with

the adjusted threshold value to optimize our detection results. Without retraining,

the neural network achieves a true positive rate of 0.864 on the bot and a true negative

rate of 1.0 on the human players. This result shows that our HOP system is able to

135

capture certain invariants in the behavior of bots across different games and different

bot implementations, indicating the possible potential of HOP-based systems for other

applications.

5.4.4 System Overhead

Our proposed system at the server side (i.e., the server-side analyzer) is required

to process thousands of users simultaneously in real-time, so it must be efficient in

terms of memory and computation. Now we estimate the overhead of the analyzer

for supporting 5,000 users, far more than the regular workload of a typical World of

Warcraft server. The analyzer process, which includes the neural network, is profiled

using valgrind and consumes only 37 KBytes of memory during operation. The

prototype of our system is designed to use a single-thread multiple-client model with

time-multiplexing, and thus only one process is used. Of course, additional processes

could be used to process in parallel.

The primary memory requirement is to accommodate the accumulated user-input

actions and neural network outputs for each online user. A single user-input action

consumes 16 bytes, 4 bytes each for distance, duration, and displacement, and 2 bytes

each for virtual key and angle. A block of 4 user-input actions consumes 64 bytes.

A block of up to 16 neural network outputs requires 2 bytes as a bit-array. The per

user memory requirement is approximately 66 bytes, barely more than the maximum

length of account names on World of Warcraft, which is 64 bytes. If 66 bytes is scaled

to 5,000 online users, this is only 330 KBytes in total, which is negligible considering

136

that the game currently stores the position, level, health, and literally dozens of other

attributes and items for each user.

The computational overhead is also very low. The computation time for processing

all 95 hours of traces is measured using the Linux time command. The analyzer can

process the full set of traces, over 286,626 user-input actions, in only 385 milliseconds

on a Pentium 4 Xeon 3.0Ghz. In other words, the analyzer can process approximately

296 hours of traces per second using a single CPU. A server with 5,000 users would

generate approximately 1.38 hours of traces per second, a tiny fraction of the above

processing rate.

5.5 Related Work

Exploiting online games has attracted increasing interest in recent years. Yan et al.

[133] summarized commonly-used exploiting methods in online games and categorized

them along three dimensions: vulnerability, consequence, and exploiter. In addition,

they pointed out that fairness should be taken into account to understand game ex

ploits. Webb et al. (126] presented a different classification of game exploits. They

categorized 15 types of exploits into four levels: game, application, protocol, and in

frastructure, and discussed countermeasures for both client-server and peer-to-peer

architectures. Muttik [89] surveyed security threats emerging in MMOGs, and dis

cussed potential solutions to secure online games from multiple perspectives including

technology, economy, and human factor. Hoglund and McGraw [54] provided a com

prehensive coverage of game exploits in MMOGs, shedding light on a number of topics

137

and issues.

5.5.1 Anti-Cheating

With the ever-increasing severity of game exploits, securing online games has received

wide attention. The research work on anti-cheating generally can be classified into two

categories: game cheating prevention and game cheating detection. The former refers

to the mechanisms that deter game cheating from happening and the latter comprises

the methods that identify occurrences of cheating in a game. For MMOGs, a cheat

proof design, especially the design of the game client program and the communication

protocol, is essential to prevent most of game exploits from occurring. This is because

(1) the client program of an MMOG is under the full control of a game player and

(2) the communication at the client side might be manipulated for the advantage of

player.

The prevention of game exploits has been the subject of a number of works. Baugh

man et al. [8] uncovered the possibility of time cheats (e.g., look-ahead and suppress

correct cheats) through exploiting communication protocols for both centralized and

distributed online games, and designed a lockstep protocol, which tightly synchronizes

the message communication via two-phase commitment, to prevent cheats. Following

their work, a number of other time-cheat-resistant protocols [29, 34, 23] have been

developed. In [86], Monch et al. proposed a framework for preventing game client

programs from being tampered with. The framework employs mobile guards, small

pieces of code dynamically downloaded from the game server, to validate and protect

138

the game client. Yampolskiy et al. [132] devised a protection mechanism for online

card games, which embeds CAPTCHA tests in the cards by replacing the card face

with text. Besides software approaches, hardware-based approaches to countering

game exploits have also been proposed. Golle et al. [50] presented a special hardware

device that implements physical CAPTCHA tests. The device can prevent game bots

based on the premise that physical CAPTCHA tests such as pressing certain buttons

are too difficult for bots to resolve without human involvement.

In practice, it is extremely hard to eliminate all potential game exploits. Thus,

accurate and quick detection of game exploits is critical for securing on-line games.

Since game bots are a commonly-used exploit, a fair amount of research has focused on

detecting and countering them. Based on traffic analysis, Chen et al. [24] found that

the traffic generated by the official client differs from that generated by standalone bot

programs. Their approach, however, is not effective against recent game bots, as the

majority of current MMOG bots interact with official clients. In [25, 26], the difference

of movement paths between human players and bots in a first-person shooter (FPS)

game is revealed and then used for the development of trajectory-based detection

methods. However, it is unlikely that this type of detection method can achieve similar

speed and accuracy in MMOGs, because maps used in MMOGs are much larger than

those in FPS games and avatar trajectories in MMOGs are far more complicated.

Indeed, Mitterhofer et al. [83] used movement paths in World of Warcraft and their

method requires from 12 to 60 minutes to detect game bots. Thawonmas et al. [115]

introduced a behavior-based bot detection method, which relies on discrepancies in

139

action frequencies between human players and bots. However, compared to our work,

the metric used for their detection, action frequency, is coarse-grained and has low

discriminability, resulting in low detection ratio (0.36 recall ratio on average) and long

detection time (at least 15 minutes).

As game clients in general cannot be trusted, usually the detection decision is

made at servers. Schluessler et al. [106] presented a client-side detection scheme,

which detects input data generated by game bots by utilizing special hardware. The

hardware is used to provide a tamper-resistant environment for the detection module.

The detection module compares the input data generated by input devices (mouse

and keyboard) with those consumed by the game application and fires an alert once

a discrepancy is found.

5.5.2 Behavioral Biometrics

The idea of HOPs is largely inspired by behavioral biometrics based on keystroke

dynamics [60, 87, 11, 96] and mouse dynamics [2, 43, 103]. Analogous to handwritten

signatures, keystroke dynamics and mouse dynamics are regarded as unique to each

person. Therefore, their applications in user authentication and identification have

been extensively investigated [60, 87, 11, 96, 103, 43, 2]. Generating synthetic mouse

dynamics from real mouse actions has also been studied [90, 91]. In spite of the fact

that our system also utilizes the characteristics of keystroke and mouse dynamics, it

significantly differs from aforementioned biometric systems in that our system lever

ages the distinction on game play between human players and game bots, which is

140

reflected by keystroke and mouse dynamics, to distinguish human players from game

hots. In contrast, those biometric systems exploit the uniqueness of keystroke dynam

ics or mouse dynamics for identification, i.e., matching a person with his/her identity

on the basis of either dynamics.

5.6 Conclusion

In this chapter, we presented a game bot defense system that utilizes HOPs to detect

game bots. The proposed HOPs leverage the differences of game playing behaviors

such as keyboard and mouse actions between human players and game bots to identify

bot programs. Compared to conventional HIPs such as CAPTCHAs, HOPs are trans

parent to users and work in a continuous manner. We collected 95-hour user-input

traces from World of Warcraft. By carefully analyzing the traces, we revealed that

there exist significant differences between bots and humans in a variety of character

istics derived from game playing actions, which motivate the design of the proposed

HOP defense system.

The HOP defense system comprises a client-side exporter and a server-side ana

lyzer. The exporter is used to transmit a stream of user-input actions and the analyzer

is used to process the action stream to capture bots. The core of the analyzer is a

cascade-correlation neural network, which takes an action stream as input and deter

mines if the stream generator is a bot or a human player. We also employed a simple

voting algorithm to further improve detection accuracy. Based on the collected user

input traces, we conducted a series of experiments to evaluate the effectiveness of the

141

defense system under different configurations. Our results show that the system can

detect over 99% of current game hots with no false positives within a minute and the

overhead of the detection is negligible or minor in terms of induced network traffic,

CPU, and memory cost. As our detection engine only relies on user-input information,

our HOP system is generic to MMOGs.

142

Chapter 6

Conclusions and Future Work

This dissertation explores applications of information theory and statistical learning

to anomaly detection. Specifically, we address two very important and challenging

problems in network and system security, (1) detecting covert timing channels, and

(2) determining if a user is a human or a bot. For the first problem, we developed an

entropy-based approach for detecting covert timing channels. For the second problem,

we developed a hybrid classification system, based on entropy and statistical learning,

for detecting chat hots, and a game bot defense system, based on statistical learning,

for detecting game bots.

To detect covert timing channels, which could leak sensitive information from a

system or network, we first studied covert timing channel design, and modeled, sim

ulated, and tested different covert timing channels to better understand their charac

teristics. Based on the observation that the creation of a covert timing channel has

certain effects on the entropy of the original process, we developed an entropy-based

approach to detecting covert timing channels. We implemented our entropy-based

143

approach using entropy and corrected conditional entropy. Our experimental results

show that our entropy-based approach is sensitive to current covert timing channels

and capable of detecting them.

To defend against bots, which abuse various network applications, including chat,

online games, web sites, and so on, we developed two different detection systems for

bots in different network applications, chat and online games.

First, we conducted a large-scale measurement study on a major commercial chat

service, Yahoo! Chat, capturing over 1400 hours of chat logs. Based on the mea

surement study, we proposed a hybrid classification system to differentiate bots from

humans. The hybrid classification system consists of entropy-based (entropy and

corrected conditional entropy) and statistical-learning-based (Bayesian classification)

classifiers. The two classifiers complement each other in detection. The entropy

based classifier is more effective against unknown or zero-day chat bots, whereas the

statistical-learning-based classifier is faster against known chat hots. Our experimen

tal results show that the hybrid classification system is able to quickly classify known

chat bots and accurately classify previously unknown chat hots.

Second, we collect game play traces for a popular massive multiplayer online game,

World of Warcraft, capturing 95 hours of game play. The traces show various differ

ences between humans and bots in their user-input characteristics. In addition, we

observe that some actions with the game are difficult for hots to perform in a human

like manner due to the need to process complex visuals in real-time. Based on these

observations, we developed a HOP-based game bot defense system that analyzes user-

144

input actions and uses a cascade-correlation neural network to determine if users are

humans or bots. Our experimental results show that the HOP-based game bot defense

system is highly effective against current game bots, raising the bar for attackers.

6.1 Future Work

Our future work will pursue several extensions to our entropy-based approach to

detecting covert channels, our hybrid approach to detecting chat bots, and our sta

tistical learning and human-observational-proof-based approach to detecting online

game bots.

First, we will determine how our entropy-based approach and other detection

methods limit the capacity of covert timing channels. By measuring how detection

methods constrain capacity, we get a broader view of how detection methods enhance

overall covert timing channel defense. In addition, we believe that this further explo

ration will lead to better detection methods that further limit covert timing channel

capacities.

Second, we also will look at more advanced and human-like chat bots that could

evade our hybrid classification system. It is possible for more advanced chat bots

to look more human-like in their inter-message delay and message size statistics. By

combining the characteristics of responder bots and replay bots, a new bot could

take on the approximate inter-message delay and message size entropy of humans and

possibly evade our hybrid classification system.

Third, we also plan to extend our HOP-based detection system to other interactive

145

applications outside of online games. A number of interactive web applications, such as

social networking sites, blogs, and web-based e-mail services, all of which are plagued

by bots, could represent possible applications for such a system.

146

Appendix A

Chat Bot Examples

A.O.l Response Example

bot: user!, that's a damn good question.

bot: user!, To know more about Seventh-day Adventist; visit http://www.sda.org

bot: user2, no! don't leave me.

bot: user!, too much coffee tonight?

bot: user2, boy, you're just full of questions, aren't you?

bot: user2, lots of evidence for evolution can be found here http://www.talkorigins.org/faqs

In the above example, the bot uses a template with three parts to post links:

[username], [link description phrase] [link].

A.0.2 Synonym Example

bot: Allo Hunks! Enjoy Marjorie! Check My Free Pies

147

http://www.sda.org
http://www.talkorigins.org/faqs

bot: What's happening Guys! Marjorie Here! See more of me at My Free Pies

bot: Hi Babes! I am Marjorie! Rate My Live Cam

bot: Horny lover Guys! Marjorie at your service! Inspect My Site

bot: Mmmm Folks! Im Marjorie! View My Webpage

A.0.3 Padding Example

bot: anyone boredjn wanna chat?uklcss

bot: any guystfrom the US/Canada hereiqjss

bot: hiyafxqss

bot: ne1 hereqbored?fiqss

bot: ne guysmwanna chat? ciuneed some1 to make megsmile :-)pktpss

148

Bibliography

[1] JOHAN AGAT. Transforming out timing leaks. In Proceedings of the 2000 SIG
PLAN/SIGACT Symposium on Principles of Programming Languages, January
2000.

[2] AHMED AwAD E. AHMED AND IssA TRAORE. A new biometric technology
based on mouse dynamics. IEEE Trans. on Dependable and Secure Computing
(TDSC}, 4(3), 2007.

[3] L. VON AHN, M. BLUM, N. HOPPER, AND J. LANGFORD. CAPTCHA: Using
hard AI problems for security. In Proceedings of Eurocrypt, Warsaw, Poland,
May 2003.

[4] PAUL BACHER, THORSTEN HOLZ, MARKUS KOTTER, AND GEORG WICHER
SKI. Know your enemy: Tracking botnets, 2005. http: I /www. honeynet. org/
papers/bots [Accessed: Jan. 25, 2008].

[5] SARAH BACON. Chat rooms follow-up. http: I /www. ymessengerblog. com/
blog/2007 /08/21/chat-rooms-follow-up/ [Accessed: Jan. 25, 2008].

[6] SARAH BACON. Chat rooms update. http: I /www. ymessengerblog. com/blog/
2007 /08/24/chat-rooms-update-2/ [Accessed: Jan. 25, 2008].

[7] SARAH BACON. New entry process for chat
rooms. http://www.ymessengerblog.com/blog/2007/08/29/
new-entry-process-for-chat-rooms/ [Accessed: Jan. 25, 2008].

(8] NATHANIEL E. BAUGHMAN AND BRIAN NEIL LEVINE. Cheat-proof playout
for centralized and distributed online games. In Proceedings of the 20th IEEE
INFOCOM, Anchorage, AK, USA, April 2001.

[9] BBC NEWS STAFF. Legal battle over warcraft 'bot'. http: I /news. bbc. co.
uk/2/hi/technology/7314353. stm [Accessed: Jan. 30, 2009].

[10] JONATHAN BENNETT. Autolt: Automate and script windows tasks. http:
I /www. autoi t. com/ [Accessed: Apr. 20, 2009].

(11] FRANCESCO BERGADANO, DANIELE GUNETTI, AND CLAUDIA PICARDI. User
authentication through keystroke dynamics. ACM Trans. on Information and
System Security (TISSEC}, 5(4), 2002.

149

http://www.honeynet.org/
http://www.ymessengerblog.com/
http://www.ymessengerblog.com/blog/
http://www.ymessengerblog.com/blog/2007/08/29/
http://news.bbc.co
http://www.autoit.com/

[12] VINCENT BERK, ANNARITA GIANI, AND GEORGE CYBENKO. Covert chan
nel detection using process query systems. In Proceedings of FLOCON 2005,
September 2005.

[13] VINCENT BERK, ANNARITA GIANI, AND GEORGE CYBENKO. Detection of
covert channel encoding in network packet delays. Technical Report TR2005-
536, Dartmouth College, Computer Science, Hanover, NH., USA, August 2005.

[14] R. E. BLAHUT. Computation of channel capacity and rate-distortion functions.
IEEE Transactions on Information Theory, 18(4), July 1972.

[15] BLIZZARD ENTERTAINMENT. MDY industries, LLC., vs. Blizzard Entertain
ment, Inc., and Vivendi Games, Inc. http://gamepolitics.com/images/
legal/blizz-v-MDY. pdf [Accessed: Jan. 30, 2009].

[16] BLIZZARD ENTERTAINMENT. World of Warcraft subscriber base reaches 11.5
million worldwide. http: I I eu. blizzard. com/ en/press/081223. html [Ac
cessed: Jul. 24, 2009].

[17] JEREMY BLOSSER AND DAVID JOSEPHSEN. Scalable centralized bayesian spam
mitigation with bogofilter. In Proceedings of the 2004 USE NIX Systems Admin
istration Conference (LISA '04}, Atlanta, GA., USA, November 2004.

[18] SERDAR CABUK. Network Covert Channels: Design, Analysis, Detection, and
Elimination. PhD thesis, Purdue University, West Lafayette, IN., USA, Decem
ber 2006.

[19] SERDAR CABUK, CARLA BRODLEY, AND CLAY SHIELDS. IP covert timing
channels: Design and detection. In Proceedings of the 2004 ACM Conference
on Computer and Communications Security, October 2004.

[20] CHRISTIAN CACHIN. An information-theoretic model for steganography. Infor
mation and Computation, 192(1), 2004.

[21] PATRICK CALDWELL. Blizzard bans 59,000 WOW accounts. http: I /www.
gamespot. com/news/6154708.html [Accessed: Aug. 13, 2009].

[22] JIN CAo, WILLIAM S. CLEVELAND, DONG LIN, AND DoN X. SuN. On the
nonstationarity of internet traffic. In Proceedings of the 2001 ACM SIGMET
RICS/Performance, June 2001.

[23] BEI DI CHEN AND MUTHUCUMARU MAHESWARAN. A cheat controlled pro
tocol for centralized online multiplayer games. In Proceedings of the 3rd ACM
SIGCOMM NetGames, Portland, OR, USA, August 2004.

[24] KUAN-TA CHEN, JHIH-WEI JIANG, POLLY HUANG, HAO-HUA CHU, CHIN
LAUNG LEI, AND WEN-CHIN CHEN. Identifying MMORPG bots: A traffic
analysis approach. In Proceedings of the 2006 ACM SIGCHI International Con
ference on Advances in Computer Entertainment Technology (ACE'06}, June
2006.

150

http://gamepolitics.com/images/
http://eu.blizzard.com/en/press/081223.litml
http://www
http://gamespot.com/news/6154708.html

[25] KUAN-TA CHEN, ANDREW LIAO, HSING-KUO KENNETH PAO, AND HAO-HUA
CHu. Game bot detection based on avatar trajectory. In Proceedings of the 7th
International Conference on Entertainment Computing, Pittsburgh, PA, USA,
September 2008.

[26] KUAN-TA CHEN, HSING-Kuo KENNETH PAO, AND HONG-CHUNG CHANG.
Game bot identification based on manifold learning. In Proceedings of the 7th
ACM SIGCOMM NetGames, Worcester, MA, USA, October 2008.

[27] THOMAS M. COVER AND JOY A. THOMAS. Elements of information theory.
Wiley-Interscience, New York, NY., USA, 1991.

[28] DAN CRISLIP. Will Blizzard's spam-stopper re-
ally work? http: I /www. wowinsider. com/2007 /05/16/
will-blizzards-spam-stopper-really-work/ [Accessed: Dec. 25, 2007].

[29] ERIC CRONIN, BURTON FILSTRUP, AND SUGIH JAMIN. Cheat-proofing dead
reckoned multiplayer games (extended abstract). In Proceedings of the 2nd In
ternational Conference on Application and Development of Computer Games,
Hong Kong, China, January 2003.

[30] DAVID DAGON, GuOFEI Gu, CHRISTOPHER P. LEE, AND WENKE LEE. A
taxonomy of botnet structures. In Proceedings of the 2007 Annual Computer
Security Applications Conference (ACSAC'07}, Miami, FL., USA, December
2007.

[31] U.S. DEPARTMENT OF DEFENSE. 'frusted computer system evaluation criteria,
1985.

[32] C. DEWES, A. WICHMANN, AND A. FELDMANN. An analysis of Internet chat
systems. In Proceedings of the 2003 ACM/SIGCOMM Internet Measurement
Conference (IMC'03}, Miami, FL., USA, October 2003.

[33] DIABLO 2 GUIDE. D2 bots. http: I /www. diablo2guide. com/bets. php [Ac
cessed: Nov. 2, 2008].

[34] CHRIS GAUTHIER DICKEY, DANIEL ZAPPALA, VIRGINIA Lo, AND JAMES
MARR. Low latency and cheat-proof event ordering for peer-to-peer games.
In Proceedings of the 14th ACM NOSSDAV, Cork, Ireland, June 2004.

[35] DMW WORLD. DMW anti-cheat system. http://www.dmwworld.com/
viewfaq/show/374 [Accessed: Aug. 13, 2009].

[36] R. DUDA, P. HART, AND D. STORK. Pattern Classification. Wiley-Interscience,
New York, NY., USA, 2001.

[37] PETER EISLER. Reported raids on federal computer data soar, 2009. http:
//www.usatoday.com/news/washington/2009-02-16-cyber-attacks_N.htm
[Accessed: Apr. 15, 2009].

151

http://www.wowinsider.com/2007/05/16/
http://www.diablo2guide.com/bots.php
http://www.dmwworld.com/
http://www.usatoday.com/news/washington/2009-02-16-cyber-attacks_N.htm

(38] ADEL EL-ATAWY AND EHAB AL-SHAER. Building covert channels over the
packet reordering phenomenon. In Proceedings of the 2009 IEEE Conference on
Computer Communications, Rio de Janeiro, Brazil, April 2009.

[39] EVEN BALANCE INC. PunkBuster online countermeasures. http: I /www.
evenbalance. com [Accessed: Jul. 9, 2008].

(40] EXPLOITS R Us. Ultima Online bots and cheats. http: I /www. exploitsrus.
com/uo/bots .html [Accessed: Nov. 2, 2008].

[41] SCOTT E. FAHLMAN AND CHRISTIAN LEBIERE. The cascade-correlation learn
ing architecture. In Advances in Neural Information Processing Systems 2, 1990.

[42] GINA FISK, MIKE FISK, CHRISTOS PAPADOPOULOS, AND JOSH NEIL. Elimi
nating steganography in internet traffic with active wardens. In Proceedings of
the 2002 International Workshop on Information Hiding, October 2002.

[43] HuGo GAMBOA AND ANA FRED. A behavioral biometric system based on
human computer interaction. In Proceedings of SPIE: Biometric Technology for
Human Identification, volume 5404, 2004.

[44] STEVEN GIANVECCHIO AND RAINING WANG. Detecting covert timing chan
nels: An entropy-based approach. In Proceedings of the 2007 ACM Conference
on Computer and Communications Security (CCS'07}, Alexandria, VA., USA,
October 2007.

[45] STEVEN GIANVECCHIO, RAINING WANG, DUMINDA WIKESEKERA, AND
SuSHIL JAJODIA. Model-based covert timing channels: Automated modeling
and evasion. In Proceedings of the 2008 Symposium on Recent Advances in
Intrusion Detection, September 2008.

[46] STEVEN GIANVECCHIO, MENGJUN XIE, ZHENYU Wu, AND RAINING WANG.
Measurement and classification of humans and bots in internet chat. In Pro
ceedings of the 17th USENIX Security Symposium, San Jose, CA, USA, July
2008.

[47] JOHN GIFFIN, RACHEL GREENSTADT, PETER LITWACK, AND RICHARD TIB
BETTS. Covert messaging through TCP timestamps. In Proceedings of the 2002
International Workshop on Privacy Enhancing Technologies, April 2002.

[48] JAMES GILES AND BRUCE HAJEK. An information-theoretic and game-theoretic
study of timing channels. IEEE Transactions on Information Theory, 48(9),
September 2002.

[49] J. GOEBEL AND T. HOLZ. Rishi: Identify bot contaminated hosts by IRC
nickname evaluation. In Proceedings of the USENIX Workshop on Hot Topics
in Understanding Botnets (HotBots'07}, Cambridge, MA., USA, April 2007.

152

http://www
http://evenbalance.com
http://www.exploitsrus

[50] PHILIPPE GOLLE AND NICOLAS DUCHENEAUT. Preventing bots from playing
online games. Computers in Entertainment, 3(3), 2005.

[51] PAUL GRAHAM. A plan for spam, 2002. http: I /www .paulgraham. com/spam.
html [Accessed: Jan. 25, 2008].

[52] GUOFEI Gu, PHILLIP PORRAS, VINOD YEGNESWARAN, MARTIN FONG, AND
WENKE LEE. Bothunter: Detecting malware infection through IDS-driven di
alog correlation. In Pmceedings of the 2007 USENIX Security Symposium (Se
cu'rity'07), Boston, MA., USA, August 2007.

[53] GUOFEI Gu, JUNJIE ZHANG, AND WENKE LEE. BotSniffer: Detecting botnet
command and control channels in network traffic. In Pmceedings of the 2008
Annual Network and Distributed System Security Symposium (NDSS'OB), San
Diego, CA., USA, February 2008.

[54] GREG HOGLUND AND GARY MCGRAW. Exploiting Online Games: Cheating
Massively Distributed Systems. No Starch Press, 2007.

[55] AMIR HOUMANSADR, NEGAR KIYAVASH, AND NIKITA BORISOV. RAINBOW:
A robust and invisible non-blind watermark for network flows. In Pmceedings of
the 2009 !SOC Network and Distributed System Security Symposium, February
2009.

[56] JIM Hu. AOL: spam and chat don't mix. http://www.news.com/
AOL-Spam-and-chat-dont-mix/2100-1032_3-1024010. html [Accessed: Jan.
7, 2008].

[57] JIM Hu. Shutting of MSN chat rooms may open up IM. http:
//www.news.com/Shutting-of-MSN-chat-rooms-may-open-up-IM/
2100-1025_3-5082677 .html [Accessed: Jan. 7, 2008].

[58] WEI-MING Hu. Reducing timing channels with fuzzy time. In Pmceedings of
the 1991 IEEE Symposium on Security and Privacy, May 1991.

[59] RAYMOND B. JENNINGS III, ERICH M. NAHUM, DAVID P. OLSHEFSKI, DE
BANJAN SAHA, ZON-YIN SHAE, AND CHRIS WATERS. A study of internet
instant messaging and chat protocols. IEEE Network, Vol. 20(No. 4):16-21,
2006.

[60] RICK JOYCE AND GOPAL GUPTA. Identity authentication based on keystroke
latencies. Communications of the ACM, 33(2), 1990.

[61] M. H. KANG, I. S. MOSKOWITZ, AND D. C. LEE. A network version of the
pump. In Pmceedings of the 1995 IEEE Symposium on Security and Privacy,
May 1995.

153

http://www.paulgraham.com/spam
http://www.news.com/
http://www.news.com/Shutting-of-MSN-chat-rooms-may-open-up-IM/

[62] MYONG H. KANG AND IRA S. MOSKOWITZ. A pump for rapid, reliable, secure
communication. In Proceedings of the 1993 A CM Conference on Computer and
Communications Security, November 1993.

[63] MYONG H. KANG, IRA S. MOSKOWITZ, AND STANLEY CHINCHECK. The
pump: A decade of covert fun. In Proceedings of the 2005 Annual Computer
Security Applications Conference, December 2005.

[64] CHRISTOPH KARLBERGER, GNTHER BAYLER, CHRISTOPHER KRUEGEL, AND
EN GIN KIRDA. Exploiting redundancy in natural language to penetrate bayesian
spam filters. In Proceedings of the USENIX Workshop on Offensive Technologies,
Boston, MA., USA, August 2007.

[65] RICHARD A. KEMMERER. A practical approach to identifying storage and
timing channels. In Proceedings of the 1982 IEEE Symposium on Security and
Privacy, April 1982.

[66] RICHARD A. KEMMERER. A practical approach to identifying storage and tim
ing channels: Twenty years later. In Proceedings of the 2002 Annual Computer
Security Applications Conference, December 2002.

[67] E. KIRDA, c. KRUEGEL, G. BANKS, G. VIGNA, AND R. KEMMERER.
Behavior-based Spyware Detection. In Proceedings of the 15th USENIX Se
curity Symposium, Vancouver, Canada, August 2006.

[68] BRIAN KREBS. Yahoo! messenger network overrun by bots. http:
//blog.washingtonpost.com/securityfix/2007/08/yahoo_messenger_
network_overru. html [Accessed: Dec. 18, 2007].

[69] URMILA KUKREJA, WILLIAM E. STEVENSON, AND FRANK E. RITTER. RUI
recording user input from interfaces under Windows and Mac OS X. Behavior
Research Methods, Instruments, and Computers, 38(4):656-659, 2006.

[70] BUTLER W. LAMPSON. A note on the confinement problem. Communications
of the ACM, 16(10), October 1973.

[71] L.M. LEEMIS AND S. K. PARK. Discrete-Event Simulation: A First Course.
Prentice-Hall, Upper Saddle River, New Jersey, 2006.

[72] KANG LI AND ZHENYU ZHONG. Fast statistical spam filter by approximate
classifications. In Proceedings of 2006 ACM/SIGMETRICS International Con
ference on Measurement and Modeling of Computer Systems, St. Malo, France,
June 2006.

[73] ZHIJUN LIU, WEILl LIN, NA LI, AND D. LEE. Detecting and filtering instant
messaging spam - a global and personalized approach. In Proceedings of the
IEEE Workshop on Secure Network Protocols (NPSEC'05}, Boston, MA., USA,
November 2005.

154

[74] DANIEL LOWD AND CHRISTOPHER MEEK. Good word attacks on statistical
spam filters. In Proceedings of the 2005 Conference on Email and Anti-Spam
{CEAS'05), Mountain View, CA., USA, July 2005.

[75] XIAPU Luo, EDMOND W. W. CHAN, AND ROCKY K. C. CHANG. Cloak: A
ten-fold way for reliable covert communications. In Proceedings of 2009 European
Symposium on Research in Computer Security, September 2007.

[76] XIAPU LUO, EDMOND W. W. CHAN, AND ROCKY K. C. CHANG. TCP covert
timing channels: Design and detection. In Proceedings of 2008 Dependable Sys
tems and Networks, June 2008.

[77] MOHAMMAD MANNAN AND PAUL C. VAN OORSCHOT. On instant messaging
worms, analysis and countermeasures. In Proceedings of the ACM Workshop on
Rapid Malcode, Fairfax, VA., USA, November 2005.

[78] McAFEE. Mcafee virtual criminology report: Cybercrime versus cy-
berlaw, 2008. http://www.mcafee.com/us/research/criminology_report/
virtual_ criminology _report/ [Accessed: Apr. 15, 2009].

[79] CORYNNE McSHERRY. A new gaming feature? spyware. http: I /www. eff. org/
deeplinks/2005/10/new-gaming-feature-spyware [Accessed: Jul. 9, 2008].

[80] MDY INDUSTRIES. MMO glider. http: I /www. mmoglider. com/ [Accessed:
Nov. 2, 2008].

[81] WANDA MELONI. State of the game industry 2008. In GameOn Finance Con
ference, San Diego, CA, USA, October 2008.

[82] ELINOR MILLS. Yahoo! closes chat rooms over child sex concerns. http:
//www.news.com/Yahoo-closes-chat-rooms-over-/child-sex-concerns/
2100-1025_3-5759705 .html [Accessed: Jan. 27, 2008].

[83] STEFAN MITTERHOFER, CHRISTIAN PLATZER, CHRISTOPHER KRUEGEL, AND
ENGIN KIRDA. Server-side bot detection in massive multiplayer online games.
IEEE Security and Privacy, 7(3), May/June 2009.

[84] ASHISH MOHTA. Bots are back in Yahoo! chat rooms. http:
//www.technospot.net/blogs/bots-are-back-in-yahoo-chat-room/ [A~

cessed: Dec. 18, 2007].

[85] ASHISH MOHTA. Yahoo! chat adds CAPTCHA check to remove bots. http: I I
www.technospot.net/blogs/yahoo-chat-captcha-check-to-remove-bots/
[Accessed: Dec. 18, 2007].

[86] CHRISTIAN MONCH, GISLE GRIMEN, AND ROGER MIDTSTRAUM. Protect
ing online games against cheating. In Proceedings of the 5th ACM SIGCOMM
NetGames, Singapore, October 2006.

155

http://www.mcaf
http://www.mmoglider.com/
http://www.news.com/Yahoo-closes-chat-rooms-over-/child-sex-concerns/
http://www.technospot.net/blogs/bots-are-back-in-yahoo-chat-room/
http://www.technospot.net/blogs/yahoo-chat-captcha-check-to-remove-bots/

[87] FABIAN MONROSE AND AVIEL RUBIN. Authentication via keystroke dynamics.
In Proceedings of the 4th ACM CCS, Zurich, Switzerland, April 1997.

[88] IRA 8. MOSKOWITZ AND MYONG H. KANG. Covert channels- here to stay? In
Proceedings of the 1994 Annual Conference on Computer Assurance, June 1994.

[89] IGOR MUTTIK. Securing virtual worlds against real attacks. http:
//www.mcafee.com/us/local_content/white_papers/threat_center/
wp_online_gaming.pdf [Accessed: Nov. 2, 2008].

[90] AKIF NAZAR. Synthesis and simulation of mouse dynamics. Master's thesis,
University of Victoria, October 2007.

[91] AKIF NAZAR, ISSA TRAORE, AND AHMED AwAD E. AHMED. Inverse biometrics
for mouse dynamics. International Journal of Pattern Recognition and Artificial
Intelligence, 22(3) :461-495, 2008.

[92] PROKOFY NEVA. Bats back in the box. http: I /www. secondlifeherald. com/
slh/2006/11/bots_back_in_th.html [Accessed: Nov. 2, 2008].

[93] TATERU NINO. Linden Lab taking action against land-
hots. http://www.secondlifeinsider.com/2007/05/18/
linden-lab-taking-action-against-landbots/ [Accessed: Jan. 7, 2008].

[94] NPROTECT. nProtect GameGuard. http: I I eng. nprotect. com/nprotect_
game guard. htm [Accessed: Jul. 9, 2008].

[95] MASSIVELY MULTIPLAYER OWNED. World of Warcraft hots and programs fo
rum. http: I /www. mmowned. com/forums/hots-programs/ [Accessed: Jul. 21,
2009].

[96] ALEN PEACOCK, XIAN KE, AND MATTHEW WILKERSON. Typing patterns: A
key to user identification. IEEE Security and Privacy, 2(5), 2004.

[97] PAl PENG, PENG NING, AND DOUGLAS REEVES. On the secrecy of timing
based active watermarking trace-back techniques. In Proceedings of the 2006
IEEE Symposium on Security and Privacy, May 2006.

[98] PETITION ONLINE. Action against the Yahoo! bot problem petition. http:
I /www .petitiononline. com/ [Accessed: Dec. 18, 2007].

[99] PETITION ONLINE. AOL no more chat room spam petition. http: I /www.
peti tiononline. com/ [Accessed: Dec. 18, 2007].

[100] PmoX. PiroX Bot - World of Warcraft bot. http: I /www. piroxbots. com/
[Accessed: Jul. 25, 2009].

156

http://www.mcafee.com/us/local_content/white_papers/threat_center/
http://www.secondlifeherald.com/
http://www.secondlifeinsider.com/2007/05/18/
http://eng.nprotect.com/nprotect_
http://www.mmowned.com/forums/bots-programs/
http://www.petitiononline.com/
http://www
http://petitiononline.com/
http://www.piroxbots.com/

[101] A PORTA, G BASELLI, D LIBERATI, N MONTANO, c COGLIATI, T GNECCHI
RUSCONE, A MALLIANI, AND S CERUTTI. Measuring regularity by means of
a corrected conditional entropy in sympathetic outflow. Biological Cybernetics,
78(1), January 1998.

[102] MILA D. PREDA, MIHAl CHRISTODORESCU, SOMESH JHA, AND SAUMYA DE
BRAY. A semantics-based approach to malware detection. In Proceedings of the
34th ACM POPL, Nice, France, January 2007.

[103] MAJA PusARA AND CARLA E. BRODLEY. User re-authentication via mouse
movements. In Proceedings of the 2004 ACM Workshop on Visualization and
Data Mining for Computer Security, Washington, DC, USA, October 2004.

[104] RHABOT. Rhabot - World of Warcraft bot. http: I /www. rhabot. com/ [Ac
cessed: Nov. 2, 2008].

[105] ROMAN RoSIPAL. Kernel-Based Regression and Objective Nonlinear Measures
to Assess Brain Functioning. PhD thesis, University of Paisley, Paisley, Scot
land, UK, September 2001.

[106] TRAVIS SCHLUESSLER, STEPHEN GOGLIN, AND ERIK JOHNSON. Is a bot at
the controls?: Detecting input data attacks. In Proceedings of the 6th ACM
SIGCOMM NetGames, Melbourne, Australia, September 2007.

[107] MIKE SCHRAMM. Chat spam measures shut down multi-line
reporting add-ons. http: I /www. wowinsider. com/2007 /10/25/
chat-spam-measures-shut-down-multi-line-reporting-addons/ [Ac
cessed: Jan. 17, 2008].

[108] FABRIZIO SEBASTIAN!. Machine learning in automated text categorization.
ACM Computing Surveys, Vol. 34(No. 1):1-47, 2002.

[109] SARAH H. SELLKE, CHIH-CHUN WANG, AND SAURABH BACCHI. TCP /IP
timing channels: Theory to implementation. In Proceedings of the 2009 IEEE
Conference on Computer Communications, Rio de Janeiro, Brazil, April 2009.

[110] GAURAV SHAH, ANDRES MOLINA, AND MATT BLAZE. Keyboards and covert
channels. In Proceedings of the 2006 US EN IX Security Symposium, July-August
2006.

[111] C.E. SHANNON. A mathematical theory of communication. Bell System Tech
nical Journal, 27, July and October 1948.

[112] CHET SIMPSON. Yahoo! chat anti-spam resource center. http: I /www.
chatspam.org/ [Accessed: Sep. 25, 2007].

[113] SLASHDOT. Confessions of an Ultima Online gold farmer. http: I /slashdot.
org/games/05/01/26/1531210. shtml [Accessed: Jul. 9, 2008].

157

http://www.rhabot.com/
http://www.wowinsider.com/2007/10/25/
http://www
http://chatspam.org/
http://slashdot

[114] SYMANTEC SECURITY RESPONSE. W32.Imaut.AS worm.
//www.symantec.com/security_response/writeup.jsp?docid=
2007-080114-2713-99 [Accessed: Jan. 25, 2008].

http:

[115] RUCK THAWONMAS, YOSHITAKA KASHIFUJI, AND KuAN-TA CHEN. Detection
of MMORPG hots based on behavior analysis. In Proceedings of 5th ACM
International Conference on Advances in Computer Entertainment Technology
(ACE'08}, Yokohama, Japan, December 2008.

[116] THE ALICE ARTIFICIAL INTELLIGENCE FOUNDATION. ALICE(Artificial Lin
guistice Internet Computer Entity). http: I /www. alice bot. org/ [Accessed:
Jan. 25, 2008].

[117] THE MMO RPG EXCHANGE. World of Warcraft exchange. http://
themmorpgexchange. com/ [Accessed: Jul. 25, 2009].

[118] ALAN M. TURING. Computing machinery and intelligence. Mind, Vol. 59:433-
460, 1950.

[119] UBER-GEEK.COM. Yahoo! responder bot. http: I /www. uber-geek. com/bot.
html [Accessed: Jan. 18, 2008].

[120] VALVE CORPORATION. Valve anti-cheat system (VAC). https: //support.
steampowered. com/kb_article. php?p_faqid=370 [Accessed: Jul. 9, 2008].

[121) RAINING WANG, DANLU ZHANG, AND KANG G. SHIN. Detecting SYN flooding
attacks. In Proceedings of the 21st IEEE INFOCOM, New York, NY, USA, June
2002.

[122] XINYUAN WANG, SHIPING CHEN, AND SUSHIL JAJODIA. Tracking anonymous
peer-to-peer VoiP calls on the internet. In Proceedings of the 2005 ACM Con
ference on Computer and Communications Security, November 2005.

[123] XINYUAN WANG, SHIPING CHEN, AND SUSHIL JAJODIA. Network flow water
marking attack on low-latency anonymous communication systems. In Proceed
ings of the 2007 IEEE Symposium on Security and Privacy, Washington, DC,
USA, May 2007.

[124] XINYUAN WANG AND DOUGLAS S. REEVES. Robust correlation of encrypted
attack traffic through stepping stones by manipulation of interpacket delays. In
Proceedings of the 2003 A CM Conference on Computer and Communications
Security, October 2003.

[125] ZHENGHONG WANG AND RUBY LEE. Covert and side channels due to processor
architecture. In Proceedings of the 2006 Annual Computer Security Applications
Conference, December 2006.

158

http://www.Symantec.com/security_response/writeup.j
http://www.alicebot.org/
http://
http://themmorpgexchange.com/
http://Uber-Geek.COM
http://www.uber-geek.com/bot
https://support
http://steampowered.com/kb_article

[126] STEVEN DANIEL WEBB AND SIETENG SOH. Cheating in networked computer
games- a review. In Proceedings of the 2nd International Conference on Digital
Interactive Media in Entertainment and Arts, Perth, Australia, September 2007.

[127] WALTER WILLINGER, VERN PAXSON, AND MURAD S. TAQQU. Self-similarity
and heavy tails: Structural modeling of network traffic. In Statistical Techniques
and Applications, pages 27-53. Verlag, 1998.

[128] GREGORY L. WITTEL AND S. FELIX Wu. On attacking statistical spam filters.
In Proceedings of the 2004 Conference on Email and Anti-Spam (CEAS'04),
Mountain View, CA., USA, July 2004.

[129] WoW PANDA. ZoloFighter- World ofWarcraft bot. http://www.zolohouse.
com/wow/wowFighter/ [Accessed: Jul. 25, 2009].

[130] MENGJUN XIE, ZHENYU Wu, AND RAINING WANG. HoneyiM: Fast detec
tion and suppression of instant messaging malware in enterprise-like networks.
In Proceedings of the 2007 Annual Computer Security Applications Conference
(ACSAC'07), Miami Beach, FL, USA, December 2007.

[131 J YAHELITE.ORG. Yahelite chat client. http: I /www. yah elite. org/ [Accessed:
Jan. 8, 2008].

[132] ROMAN V. YAMPOLSKIY AND VENU GOVINDARAJU. Embedded non-interactive
continuous bot detection. Computers in Entertainment, 5(4), 2007.

[133] JEFF YAN AND BRIAN RANDELL. A systematic classification of cheating in on
line games. In Proceedings of the 4th ACM SIGCOMM NetGames, Hawthorne,
NY, USA, October 2005.

[134] YAZAKPRO.COM. Yazak pro chat client. http://www.yazakpro.com/ [Ac
cessed: Jan. 8, 2008].

[135] BILL YERAZUNIS. CRM114 - the controllable regex mutilator, 2003. http:
//crm114.sourceforge.net [Accessed: Jan. 25, 2008].

[136] WEI Yu, XINWEN Fu, STEVE GRAHAM, DONG XuAN, AND WEI ZHAO. Dsss
based flow marking technique for invisible traceback. In Proceedings of the 2007
IEEE Symposium on Security and Privacy, Washington, DC., USA, May 2007.

[137] JONATHAN A. ZDZIARSKI. Ending Spam: Bayesian Content Filtering and the
Art of Statistical Language Classification. No Starch Press, 2005.

[138] LI ZHENG, LIREN ZHANG, AND DONG Xu. Characteristics of network delay
and delay jitter and its effect on oice over IP (VoiP). In Proc. of the 2001 IEEE
International Conf. on Communications, June 2001.

159

http://www.zolohouse
http://YAHELITE.ORG
http://www.yahelite.org/
http://YazakPro.COM
http://www.yazakpro.com/
http://sourceforge.net

VITA

Steven Gianvecchio

Steven Gianvecchio received his B.S. in Computer Science from the State Univer

sity of New York at Brockport in 2001 and his M.S. in Computer Science from the

College of William and Mary in 2006. He started his Ph.D. in Computer Science at

the College of William and Mary in 2006. His research interests include networks,

distributed systems, network monitoring, intrusion detection, traffic modeling, and

covert channels. His current research focuses on information-theoretic and statistical

learning methods for addressing different problems in network and system security,

such as detecting covert channels or determining if users are humans or bots.

160

	Application of information theory and statistical learning to anomaly detection
	Recommended Citation

	ProQuest Dissertations

