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ABSTRACT PAGE 

In today's highly networked world, computer intrusions and other attacks area constant 
threat. The detection of such attacks, especially attacks that are new or previously 
unknown, is important to secure networks and computers. A major focus of current 
research efforts in this area is on anomaly detection. 

In this dissertation, we explore applications of information theory and statistical learning to 
anomaly detection. Specifically, we look at two difficult detection problems in network and 
system security, (1) detecting covert channels, and (2) determining if a user is a human or 
bot. We link both of these problems to entropy, a measure of randomness, information 
content, or complexity, a concept that is central to information theory. The behavior of bats 
is low in entropy when tasks are rigidly repeated or high in entropy when behavior is 
pseudo-random. In contrast, human behavior is complex and medium in entropy. Similarly, 
covert channels either create regularity, resulting in low entropy, or encode extra 
information, resulting in high entropy. Meanwhile, legitimate traffic is characterized by 
complex interdependencies and moderate entropy. In addition, we utilize statistical learning 
algorithms, Bayesian learning, neural networks, and maximum likelihood estimation, in 
both modeling and detecting of covert channels and bats. 

Our results using entropy and statistical learning techniques are excellent. By using 
entropy to detect covert channels, we detected three different covert timing channels that 
were not detected by previous detection methods. Then, using entropy and Bayesian 
learning to detect chat bats, we detected 1 00% of chat bats with a false positive rate of 
only 0.05% in over 1400 hours of chat traces. Lastly, using neural networks and the idea of 
human observational proofs to detect game bats, we detected 99.8% of game bats with no 
false positives in 95 hours of traces. Our work shows that a combination of entropy 
measures and statistical learning algorithms is a powerful and highly effective tool for 
anomaly detection. 
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Application of Information Theory and 

Statistical Learning to Anomaly Detection 



Chapter 1 

Introduction 

As the world continues to become increasingly connected, the number of computer 

intrusions and other attacks continues to grow. As the number of attacks grows, a 

shift in hackers' motivation from "hacking for-fun" to "hacking for-profit" has made 

attacks more sophisticated and more dangerous than ever. Indeed, in 2008, reports 

show that the volume of malware grew almost three-fold [78] and attacks against 

US government networks increased by 39.7% [37]. With the threat of attack rising, 

detecting attacks---especially attacks that are new and previously unknown-is critical 

in securing networks and computers. 

In light of this trend, a major focus of current research efforts is on anomaly 

detection. The term anomaly detection refers to detecting patterns (called anomalies) 

that fall outside of the normal behavior in a system. The main benefit of anomaly 

detection is in detecting novel or so-called "zero-day" attacks, which other detection 

methods often fail to detect. As systems are most vulnerable to unknown attacks, 

anomaly detection is a critical component in securing systems against them. The 
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main downside to anomaly detection is false alarms, i.e., anomalies that are not real 

threats. 

In this dissertation, we explore different applications of information theory and 

statistical learning to anomaly detection. With statistical learning often being a form 

of information extraction, information theory and statistical learning are closely re­

lated. Specifically, this dissertation addresses two challenging detection problems from 

network and system security, (1) detecting covert channels, and (2) determining if a 

user is a human or a bot. While covert channels are a classic problem, dating back 

to at least the 1970s, bots are a very new problem, only from the last decade or 

so. Although two very distinct problems, both can be linked to entropy-a measure 

of randomness, information content, or complexity-a central concept in information 

theory. In two separate studies, detailed in Chapters 3 and 4, we are able to link 

covert channels and bots to entropy. The behavior of hots is low in entropy when 

their tasks are rigidly repeated or high in entropy when components of their behavior 

are randomized. By comparison, the behavior of humans is complex and medium in 

entropy. In other words, bots are simple and predictable, whereas humans are much 

more complicated. Likewise, covert channels either increase regularity, resulting in 

lower entropy, or add additional information, resulting in higher entropy. At the 

same time, legitimate (non-covert) traffic is characterized by complex interdependen­

cies and moderate entropy. In short, both hots and covert channels can be described 

by either high or low entropy. Additionally, we utilize statistical learning, including 

Bayesian learning, neural networks, and maximum likelihood estimation, to address 
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both problems. 

To develop better anomaly detection techniques, especially for covert channels and 

bots, we investigate different ways of using entropy measures and statistical learning 

techniques, both separate and in combination, for modeling and detecting of covert 

channels and bots. For covert channels, we design a covert timing channel, and model, 

simulate, and test three different covert timing channels, and then, we propose an 

entropy-based approach for detecting covert timing channels. For bots, we start by 

performing a large-scale measurement study of chat bots, and then, we propose a 

hybrid classification system, based on entropy and statistical learning for detecting 

chat bots. In addition, we characterize game playing in a popular online game, and 

then, we propose a game bot defense system, based on statistical learning and the 

idea of human observational proofs for detecting online game bots. Our research 

contributions are summarized as follows: 

1) Designing and Modeling Covert Timing Channels 

The exploration of advanced covert timing channel design is important to under­

stand and defend against covert timing channels. This chapter introduces a new class 

of covert timing channels, called model-based covert timing channels, which exploit 

the statistical properties of legitimate network traffic to evade detection in an effective 

manner. We design and implement an automated framework for building model-based 

covert timing channels. The framework consists of four main components: filter, an­

alyzer, encoder, and transmitter. The filter characterizes the features of legitimate 

network traffic, and the analyzer fits the observed traffic behavior to a model. Then, 
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the encoder and transmitter use the model to generate covert traffic and blend with 

legitimate network traffic. The framework is lightweight, and the overhead induced by 

model fitting is negligible. To validate the effectiveness of the proposed framework, we 

conduct a series of experiments in LAN and WAN environments. The experimental 

results show that model-based covert timing channels provide a significant increase in 

detection resistance with only a minor loss in capacity. 

2} Detecting Covert Timing Channels 

The detection of covert timing channels is of increasing interest in light of recent 

practice on the exploitation of covert timing channels over the Internet. However, due 

to the high variation in legitimate network traffic, detecting covert timing channels is 

a challenging task. The existing detection schemes are ineffective to detect most of 

the covert timing channels known to the security community. This chapter introduces 

a new entropy-based approach to detecting various covert timing channels. Our new 

approach is based on the observation that the creation of a covert timing channel 

has certain effects on the entropy of the original process, and hence, a change in 

the entropy of a process provides a critical clue for covert timing channel detection. 

Exploiting this observation, we investigate the use of entropy and conditional entropy 

in detecting covert timing channels. Our experimental results show that our entropy­

based approach is sensitive to the current covert timing channels, and is capable of 

detecting them in an accurate manner. 

3} Measurement and Classification of Chat Bots 

The abuse of chat services by automated programs, known as chat bats, poses a 
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serious threat to Internet users. Chat bots target popular chat networks to distribute 

spam and malware. In this chapter, we first conduct a series of measurements on 

a large commercial chat network. Our measurements capture a total of 14 different 

types of chat bots ranging from simple to advanced. Moreover, we observe that 

human behavior is more complex than bot behavior. Based on the measurement 

study, we propose a classification system to accurately distinguish chat bots from 

human users. The proposed classification system consists of two components: (1) an 

entropy-based classifier and (2) a machine-learning-based classifier. The two classifiers 

complement each other in chat bot detection. The entropy-based classifier is more 

accurate to detect unknown chat bots, whereas the machine-learning-based classifier 

is faster to detect known chat bots. Our experimental evaluation shows that the 

proposed classification system is highly effective in differentiating bots from humans. 

4) Detecting Online Game Bats 

The abuse of online games by automated programs, known as game bots, for gain­

ing unfair advantages has plagued millions of participating players with escalating 

severity in recent years. The current methods for distinguishing bots and humans 

are based on human interactive proofs (HIPs), such as CAPTCHAs. However, HIP­

based approaches have inherent drawbacks. In particular, they are too obtrusive to 

be tolerated by human players in a gaming context. In this chapter, we propose a 

non-interactive approach based on human observational proofs (HOPs) for continu­

ous game bot detection. HOPs differentiate bots from human players by passively 

monitoring input actions that are difficult for current bots to perform in a human-like 
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manner. We collect a series of user-input traces in one of the most popular online 

games, World of Warcraft. Based on the traces, we characterize the game playing 

behaviors of bots and humans. Then, we develop a HOP-based game bot defense 

system that analyzes user-input actions with a cascade-correlation neural network to 

distinguish bots from humans. The HOP system is effective in capturing current game 

bots, which raises the bar against game exploits and forces a determined adversary to 

build more complicated game bots for detection evasion in the future. 

The remainder of this dissertation is organized as follows. Chapter 2 covers mod­

eling covert timing channels in terms of capacity and introduces model-based covert 

timing channels. Chapter 3 describes other covert timing channels and related detec­

tion methods, and details our entropy-based approach to detection. Chapter 4 details 

our chat bot measurements and our hybrid classification system. Chapter 5 describes 

our game bot measurements and our HOP-based game bot defense system. Lastly, in 

Chapter 6 we conclude and outline possible directions for our future work. 
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Chapter 2 

Designing and Modeling Covert 

Timing Channels 

A covert channel is a "communication channel that can be exploited by a process 

to transfer information in a manner that violates a system's security policy" [31]. 

There are two types of covert channels: covert storage channels and covert timing 

channels. A covert storage channel manipulates the contents of a storage location 

(e.g., disk, memory, packet headers, etc.) to transfer information. A covert timing 

channel manipulates the timing or ordering of events (e.g., disk accesses, memory 

accesses, packet arrivals, etc.) to transfer information. The focus of this chapter is on 

covert timing channels. 

The potential damage of a covert timing channel is measured in terms of its capac­

ity. The capacity of covert timing channels has been increasing with the development 

of high-performance computers and high-speed networks. While covert timing chan-
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nels studied in the 1970s could transfer only a few bits per second [70], covert timing 

channels in modern computers can transfer several megabits per second [125]. To 

defend against covert timing channels, researchers have proposed various methods to 

detect and disrupt them. The disruption of covert timing channels manipulates traffic 

to slow or stop covert timing channels [42, 62, 61, 63, 48]. The detection of covert tim­

ing channels mainly uses statistical tests to differentiate covert traffic from legitimate 

traffic [12, 13, 19, 110, 44]. Such detection methods are somewhat successful, because 

most existing covert timing channels cause large deviations in the timing behavior 

from that of normal traffic, making them relatively easy to detect. 

In this chapter, we introduce model-based covert timing channels, which endeavor 

to evade detection by modeling and mimicking the statistical properties of legitimate 

traffic. We design and develop a framework for building model-based covert timing 

channels, in which hidden information is carried through pseudo-random values gen­

erated from a distribution function. We use the inverse distribution function and 

cumulative distribution function for encoding and decoding. The framework includes 

four components, filter, analyzer, encoder, and transmitter. The filter profiles the 

legitimate traffic, and the analyzer fits the legitimate traffic behavior to a model. 

Then, based on the model, the encoder chooses the appropriate distribution functions 

from statistical tools and traffic generation libraries to create covert timing channels. 

The distribution functions and their parameters are determined by automated model 

fitting. The process of model fitting proves very efficient and the induced overhead 

is minor. Lastly, the transmitter generates covert traffic and blends with legitimate 
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traffic. 

The two primary design goals of covert timing channels are high capacity and 

detection resistance. To evaluate the effectiveness of the proposed framework, we per­

form a series of LAN and WAN experiments to measure the capacity and detection 

resistance of our model-based covert timing channel. We estimate the capacity with 

a model and then validate the model with real experiments. Our experimental results 

show that the capacity is close to that of an optimal covert timing channel that trans­

mits in a similar condition. In previous research, it is shown that the shape [12, 13] 

and regularity [19, 110] of network traffic are important properties in the detection of 

covert timing channels. We evaluate the detection resistance of the proposed frame­

work using shape and regularity tests. The experimental results show that both tests 

fail to differentiate the model-based covert traffic from legitimate traffic. Overall, 

our model-based covert timing channel achieves strong detection resistance and high 

capacity. 

There is an arms race between covert timing channel design and detection. To 

maintain the lead, researchers need to continue to improve detection methods and 

investigate new attacks. The goal of this work is to increase the understanding of more 

advanced covert timing channel design. Our demonstration of model-based covert 

timing channels motivates the development of a more advanced detection method 

based on entropy, which is discussed in Chapter 3. 
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2.1 Background 

In this section, we describe basic communication concepts and relate them to covert 

timing channels. Then, based on these concepts, we formulate two base cases in covert 

timing channel design. The basic problem of communication, producing a message at 

one point and reproducing that message at another point, is the same for both overt 

and covert channels, although covert channels must consider the additional problem 

of hiding communication. 

2.1.1 Basic Communication Concepts 

The capacity of a communication channel is the maximum rate that it can reliably 

transmit information. The capacity of a covert timing channel is measured in bits per 

time unit [88]. The capacity in bits per time unit Ct is defined as: 

I(X; Y) 
Ct = m_:x E(X) , 

where X is the transmitted inter-packet delays or input distribution, Y is the received 

inter-packet delays or output distribution, I(X; Y) is the mutual information between 

X andY, and E(X) is the expected time of X. 

The mutual information measures how much information is carried across the 

channel from X toY. The mutual information I(X; Y) is defined as: 

!I: I: P(y I x)P(x)logp;(~)~~l), (discrete) 
I(X;Y) = X y 

j [ P(y I x)P(x)logp;(~)~~l) dx dy, (continuous) 

11 



The noise, represented by the conditional probability in the above definitions, is 

defined as: 

P(y I x) = fnoise(y,x), 

where !noise is the noise probability density function, xis the transmitted inter-packet 

delays, and y is the received inter-packet delays. 

The noise distribution !noise is the probability that the transmitted inter-packet 

delay x results in the received inter-packet delay y. The specific noise distribution for 

inter-packet delays is detailed in Section 2.3.2. 

2.1.2 Base Cases in Design 

The two main goals of covert timing channel design are high capacity and detection 

resistance. There are few examples of practical implementations of covert timing 

channels in the literature, so we begin to explore the design space in terms of both 

capacity and detection resistance. The focus of our model-based covert timing channel 

is to achieve high detection resistance. In the following section, we formulate two base 

cases in covert channel design as comparison to the model-based covert timing channel. 

The first case, optimal capacity, transmits as much information as possible, sending 

hundreds or more packets per second. Such a design might not be able to achieve covert 

communication, but is useful as a theoretical upper bound. The second case, fixed 

average packet rate, sends packets at a specific fixed average packet rate, encoding 

as much information per packet as possible. The fixed average packet rate is mainly 

determined by the packet rate of legitimate traffic. 
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2.1.2.1 Optimal Capacity Channel 

The first design, OPtimal Capacity (OPC), uses the discrete input distribution that 

transmits information as fast as possible. The optimal capacity is dependent on the 

optimal distance between two symbols. The first symbol is (approximately) zero and 

the second symbol is non-zero, so the use of more symbols (i.e., four or eight) will 

introduce more non-zero symbols and decrease the symbol rate. The use of smaller 

distances between the two symbols increases the symbol rate and the error rate. The 

optimal distance is the point at which the increase in error rate balances the increase 

in symbol rate. 

The code operates based on two functions. The encode function is defined as: 

!0, 
Fencode(s) = ds = 

d, 

s=O 

s=l 

where s is a symbol, d8 is an inter-packet delay with a hidden symbol s, and dis the 

optimal distance between the two symbols. The decode function is defined as: 

where d8 is an inter-packet delay with a hidden symbol s. 

Channel Capacity: The channel capacity of OPC is dependent on the optimal input 

distribution and noise. The input distribution is defined as: 
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p, X =d 

P(x) = 1- p, x = 0 

0, otherwise 

where p is the probability of the symbol s = 1, and 1 - p is the probability of the 

symbols= 0. 

Therefore, the capacity of OPC is the maximum of the mutual information with 

respect to the parameters d and p of the input distribution over the expected time 

d·p: 

1 "" P(y I x)P(x) 
Ct = IIJ~ d. p ~ ~ P(y I x)P(x)log P(x)P(y) . 

X y 

2.1.2.2 Fixed-Average Packet Rate Channel 

The second design, Fixed-average Packet Rate (FPR), uses the input distribution that 

encodes as much information per packet as possible with a constraint on the average 

cost of symbols. The cost is measured in terms of the time required for symbol 

transmission. Therefore, the optimal input distribution is subject to the constraint 

on the average packet rate, i.e., the cost of symbol transmission. 

The optimal input distribution for FPR is computed with the Arimoto-Blahut al-

gorithm generalized for cost constraints [14]. The Arimoto-Blahut algorithm computes 

the optimal input distribution for capacity in bits per channel usage. The capacity in 
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bits per channel usage Cu is defined as: 

Cu =max I(X; Y). 
X 

In general, Cu and Ct do not have the same input distribution X. However, if 

the input distribution is constrained so that E(X) = c (where cis a constant), then 

the optimal input distribution X is optimal for both Cu and Ct, and Cu = Ct ·c. 

Thus, FPR transmits as much information per packet (channel usage) and per second 

(time unit) as possible with a fixed average packet rate. We use the Arimoto-Blahut 

algorithm to compute the optimal input distribution for FPR. The capacity results 

for FPR, based on the Arimoto-Blahut algorithm, are detailed in Section 2.3. 

2.2 The Framework 

The covert timing channel framework, as shown in Figure 2.1, is a pipeline that 

filters and analyzes legitimate traffic then encodes and transmits covert traffic. As 

the output of the pipeline, the covert traffic mimics the observed legitimate traffic, 

making it easy to evade detection. The components of the framework include filter, 

analyzer, encoder, and transmitter, which are detailed in the following paragraphs. 

Figure 2.1: Framework for Model-Based Covert Timing Channels. 

LEGIT 
-TRAFFIC 

MODELS: ·INPUT· 

EXPONENTIAL, GAMMA, 

PARETO, LOGNORMAL, 

POISSON, WEI BULL, .. 

RANDOM NUMBER 

MESSAGE TERMS· 
!PO-INTER-PACKET DELAY 

FILTER f----LE-G-IT--.1 ANALVZER f---M
0
-D-El----+i ENCODER f--CO-V-ER-T -.1 TRANSMITTER ~~::~6__,.. 

IPDs IPOs 

The filter monitors the background traffic and singles out the specific type of 
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traffic to be mimicked. The more specific application traffic the filter can identify 

and profile, the better model we can have for generating covert traffic. For example, 

FTP is an application protocol based on TCP, but generating a series of inter-packet 

delays based on a model of all TCP traffic would be a poor model for describing 

FTP behaviors. Once the specified traffic is filtered, the traffic is further classified 

into individual flows based on source and destination IP addresses. The filter then 

calculates the inter-packet delay between subsequent pair of packets from each flow, 

and forwards the results to the analyzer. 

The analyzer fits the inter-packet delays in sets of 100 packets with the Expo­

nential, Gamma, Pareto, Lognormal, Poisson, and Weibull distributions. The fitting 

process uses maximum likelihood estimation (MLE) to determine the parameters for 

each model. The model with the smallest root mean squared error (RMSE), which 

measures the difference between the model and the estimated distribution, is chosen 

as the traffic model. The model selection is automated. Other than the set of models 

provided to the analyzer, there is no human input. The models are scored based on 

root mean squared errors, as shown in Table 2.1. The model with the lowest root 

mean squared error is the closest to the data being modeled. Since most types of 

network traffic are non-stationary [22], the analyzer supports piecewise modeling of 

non-stationary processes by adjusting the parameters of the model after each set of 

100 covert inter-packet delays. The analyzer refits the current model with new sets 

of 100 packets to adjust the parameters. The analyzer can take advantage of a larger 

selection of models to more accurately model different types of application traffic. For 
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Table 2.1: Scores for Models of HTTP Inter-Packet Delays 

model parameters root mean squared error 
Wei bull 0.0794, 0.2627 0.0032 
Gamma 0.1167, 100.8180 0.0063 
Lognormal -4.3589, 3.5359 0.0063 
Pareto 3.6751, 0.0018 0.0150 
Poisson 11.7611 0.0226 
Exponential 11.7611 0.0294 

example, if we know that the targeted traffic is well-modeled as an Erlang distribution, 

we will add this distribution to the set of models. For each of the current models, the 

computational overhead is less than 0.1 milliseconds and the storage overhead for the 

executable is less than 500 bytes, so the induced resource consumption for supporting 

additional models is not an issue. 

The filter and analyzer can be run either offline or online. In the offline mode, 

the selection of the model and parameters is based on traffic samples. The offline 

mode consumes less resources, but the model might not represent the current network 

traffic behavior well. In the online mode, the selection of the model and parameters is 

based on live traffic. The online mode consumes more resources and requires that the 

model and parameters be transmitted to the decoder with the support of a startup 

protocol, but the model better represents the current network traffic behavior. The 

startup protocol is a model determined in advance, and is used to transmit the online 

model ( 1 byte) and parameters ( 4-8 bytes) to the decoder. 

The encoder generates random covert inter-packet delays that mimic legitimate 

inter-packet delays. The input to the encoder includes the model, the message, and 
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a sequence of random numbers. Its output is a sequence of covert random inter-

packet delays. The message to be sent is separated into symbols. The symbols map 

to different random timing values based on a random code that distributes symbols 

based on the model. 

Using a sequence of random numbers r 1 , r2, ... , rn., we transform the discrete 

symbols into continuous ones. The continuization function is 

8 
Fcontinuize(8) = ( fSl + r) mod 1 = rs, 

where Sis the set of possible symbols, 8 is a symbol and r is a Uniform(0,1) random 

variable. The corresponding discretization function is: 

Fdiscretize(rs) =I S I ·((rs- r)mod 1) = 8, 

where r8 is a Uniform(0,1) random variable with a hidden symbol 8. 

The encoder and decoder start with the same seed and generate the same sequence 

of random numbers, r 1, r2, ... , rn. To maintain synchronization, the encoder and de-

coder associate the sequence of symbols with TCP sequence numbers, i.e., 8 1 with 

the first TCP sequence number, 82 with the second TCP sequence number, and so 

on. 1 Therefore, both the encoder and decoder have the same values of r through the 

sequence of symbols. The inverse distribution function F;;_~el takes a Uniform(0,1) 

random number as input and generates a random variable from the selected model 

1 With this mechanism, repacketization can cause synchronization problems, so other mechanisms 
such as "bit stuffing" [110] could be useful for synchronization. 
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as output. The sequence of transformed random numbers r81 , r82 , ... , rsn is used 

with the inverse distribution function to create random covert inter-packet delays 

d8 1, d8 2, ... , dsn· The encode function is: 

where F~;del is the inverse distribution function of the selected model. The decode 

function is: 

where Fmodel is the cumulative distribution function of the selected model, and d8 is 

a random covert inter-packet delay with a hidden symbol s. 

The transmitter sends out packets to produce the random covert inter-packet de­

lays d8 1, d8 2, ... , dsn· The receiver then decodes and discretizes them to recover the 

original symbols s1, s2, ... , Sn· 

2.2.1 Model-Based Channel Capacity 

The model-based channel capacity is also dependent on the input distribution and 

noise. The input distribution is defined as: 

P(x) = fmodel(x) 

where !model is the probability density function of the selected model. 

Therefore, the capacity of the model-based channel is the mutual information over 

the expected time E(X): 
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1 J J P(y I x)P(x) 
Ct = E(X) P(y I x)P(x)log P(x)P(y) . 

X y 

2.2.2 Implementation Details 

We implement the proposed framework using C and MATLAB in Unix/Linux environ-

ments. The components run as user-space processes, while access to tcpdump is re-

quired. The filter is written in C and runs tcpdump with a user-specified filtering 

expression to read the stream of packets. The filter processes the traffic stream and 

computes the inter-packet delays based on the packet timestamps. The analyzer is 

written in MATLAB and utilizes the fitting functions from the statistics toolbox for 

maximum likelihood estimation. 

The encoder is written in C, and uses random number generation and random 

variable models from the Park-Leemis [71] simulation C libraries. The transmitter is 

also written in C, with some inline assembly, and uses the Socket API. The timing 

mechanism used is the Pentium CPU Time-Stamp Counter, which is accessed by 

calling the RDTSC (Read Time-Stamp Counter) instruction. The RDTSC instruction 

has excellent resolution and low overhead, but must be calibrated to be used as a 

general purpose timing mechanism. The usleep and nanosleep functions force a 

context switch, which delays the packet transmission with small inter-packet delays, 

so these functions are not used. 
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2.3 Experimental Evaluation 

In this section, we evaluate the effectiveness of a model-based covert timing channel 

built from our framework. The OPC and FPR covert timing channels, discussed in 

Section 2.1, are used as points of comparison. In particular, we examine the capacity 

and detection resistance of each covert timing channel. 

2.3.1 Experimental Setup 

The defensive perimeter of a network, composed of firewalls and intrusion detection 

systems, is responsible for protecting the network. Typically, only a few specific ap­

plication protocols, such as HTTP and SMTP, are commonly allowed to pass through 

the defensive perimeter. We utilize outgoing HTTP inter-packet delays as the medium 

to build model-based covert timing channels, due to the wide acceptance of HTTP 

traffic for crossing the network perimeter. We refer to the model-based HTTP covert 

timing channel as MB-HTTP. 

2.3.1.1 Testing Scenarios 

There are three different testing scenarios in our experimental evaluation. The first 

scenario is in a LAN environment, a medium-size campus network with subnets for 

administration, departments, and residences. The LAN connection is between two ma­

chines, located in different subnets. The connection passes through several switches, 

the routers inside the campus network, and a firewall device that protects each sub­

net. The other two scenarios are in WAN environments. The first WAN connection is 
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between two machines, both are on the east coast of the United States but in different 

states. One is on a residential cable network and the other is on a medium-size cam-

pus network. The second WAN connection is between two machines on the opposite 

coasts of the United States, one on the east coast and the other on the west coast. 

Both machines are on campus networks. 

Table 2 2· Network Conditions for Test Scenarios 
LAN WAN E-E WANE-W 

distance 0.3 miles 525 miles 2660 miles 
RTT 1.766ms 59.647ms 87.236ms 
IPDV 2.5822e-05 2.4124e-03 2.1771e-04 
hops 3 18 13 

IPDV - inter-packet delay variation 

The network conditions for different experiment scenarios are summarized in Table 

2.2. The two-way round-trip time (RTT) is measured using the ping command. We 

compute the one-way inter-packet delay variation based on the delays between packets 

leaving the source and arriving at the destination. The inter-packet delay variations 

of the three connections span three orders of magnitude, from 1 x 10-3 to 1 x 10-5 . 

The LAN connection has the lowest inter-packet delay variation and the two WAN 

connections have higher inter-packet delay variation, as expected. The WAN E-E 

connection is shorter and has smaller RTT time than the WAN E-W connection. 

However, WAN E-E has higher inter-packet delay variation than WAN E-W, due 

to more traversed hops. This implies that the inter-packet delays variation is more 

sensitive to the number of hops than the physical distance and RTT between two 

machines. 
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2.3.1.2 Building MB-HTTP 

We install the components of the framework on the testing machines. The filter dis­

tinguishes the outgoing HTTP traffic from background traffic. The analyzer observes 

10 million HTTP inter-packet delays, then fits the HTTP inter-packet delays to the 

models, as described in Section 2.2. The fitting functions use maximum likelihood 

estimation (MLE) to determine the parameters for each model. The model with the 

best root mean squared error (RMSE), a measure of the difference between the model 

and the distribution being estimated, is chosen as the traffic model. 

For the HTTP inter-packet delays, the analyzer selects the Weibull distribution 

based on the root mean squared error. Note that HTTP inter-packet delays have been 

shown to be well approximated by a Weibull distribution [22]. The Weibull probability 

distribution function is: 

The parameters, which vary for each set of 100 packets, have a mean scale parameter 

A of 0.0371 and a mean shape parameter k of 0.3010. With these parameters, the 

mean inter-packet delay is 0.3385, approximately 3 packets per second. 

2.3.1.3 Formulating OPC and FPR 

The average packet rate for FPR is fixed at 0_3185 = 2.954 packets per second, based 

on the average packet rate of HTTP traffic. We use the Arimoto-Blahut algorithm 

to compute the optimal input distribution, with the average packet rate of 2.954 as 
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Table 2.3: Mean Packets/Second and Inter-Packet Delay for OPC 
LAN WANE-E WANE-W 

channel PPS I IPD PPS I IPD PPS I IPD 
OPC 12,777.98 I 7.87e-05 137.48 I 7.31e-03 1,515.56 I 6.63e-04 

PPS- mean packets per second, IPD- mean inter-packet delay 

the cost constraint. The optimal input distribution balances high cost symbols with 

low probabilities and low cost symbols with high probabilities, such that the average 

cost constraint is satisfied. The constraint can be satisfied for infinitely large symbols 

with infinitely small probabilities, and hence, the optimal input distribution decays 

exponentially to infinity. The results of the Arimoto-Blahut algorithm, as the number 

of intervals increases, reduce to an Exponential distribution with an inverse scale 

parameter of>.= 2.954. The Exponential probability distribution function is: 

We compute the optimal distance between packets for OPC based on the noise 

distribution. The optimal distance between packets and the average packet rate for 

OPC is shown in Table 2.3. For connections with higher inter-packet delay variation, 

OPC increases the time elapse between packets to make the inter-packet delays easier 

to distinguish, and, as a result, lowers the average number of packets per second. 

2.3.2 Capacity 

The definition of capacity allows us to estimate the capacity of each covert timing 

channel based on the network conditions of each connection. In previous research [138], 
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the inter-packet delay differences have been shown to be well-modeled by a Laplace 

distribution. The probability density function of the Laplace distribution is: 

The setting of the scale parameter b is based on the inter-packet delay variation 

for each connection. The variation of the Laplace distribution is a 2 = 2b2 • Therefore, 

we set b to: 

where a 2 is the inter-packet delay variation for each connection. 

Table 2.4: Theoretical Capacity for Covert Timing Channels 
LAN WANE-E WANE-W 

channel CPP CPS CPP CPS CPP CPS 
MB-HTTP 9.39 27.76 4.12 12.19 6.84 20.21 

FPR 12.63 37.32 6.15 18.17 9.59 28.35 
OPC 0.50 6395.39 0.50 68.80 0.50 758.54 
CPP - capacity per packet, CPS - capacity per second 

The results, in terms of capacity per packet and capacity per second, are shown 

in Table 2.4. While OPC has the highest capacity, it is the least efficient in terms 

of capacity per packet. Furthermore, with the large number of packets per second, it 

can be easily detected by most intrusion detection systems. 

The capacity of MB-HTTP is 67% to 74% of that of FPR, with larger differences 

for connections with high inter-packet delay variation than for those with low inter-

packet delay variation. The Weibull distribution has a larger proportion of very small 
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values than the Exponential distribution. As a result, MB-HTTP uses more small 

values than FPR and benefits more from lower inter-packet delay variation. 

The theoretical capacity is somewhat optimistic. The model only considers the 

noise introduced after packets leave the transmitter. With the real covert timing 

channels, noise is introduced before packets leave the transmitter. The transmitter 

is sometimes not able to transmit at the appropriate times, due to slow processing, 

context switches, etc. Thus, the actual distance between packets can increase or 

decrease from the intended distance as the packets are transmitted. 

2.3.2.1 Empirical Capacity 

To evaluate the channel capacity in practice, we run covert timing channels on each 

connection. The channels are configured to transmit 16,000 random bits of informa­

tion. For FPR and MB-HTTP, the number of bits encoded per packet is set to 16 

(i.e., 216 = 65,536 different values), while OPC transmits a single bit per packet. 

During these tests, we measure the bit error rate of each covert timing channel from 

the most significant bit to the least significant bit of each packet. The most significant 

bit represents a large part of the inter-packet delay, where the least significant bit 

represents a small part of the inter-packet delay. While flipping the most significant 

bit causes a difference in seconds or tenths of seconds, changing the least significant 

bit means a difference only in milliseconds or microseconds. In other words, the higher 

the number of bits encoded per packet, the smaller the precision of the lowest order 

bits. Interestingly, encoding at 16 bits per packet and decoding at 8 bits per packet 
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Figure 2.2: Empirical Capacity and Bit Error Rates for WAN E-E and WAN E-W 
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produces the most significant 8 bits of the 16 bit code. 

To determine the transmission rate with error correction, we measure the empirical 

capacity of each bit as a binary symmetric channel. The binary symmetric channel is 

a special case where the channel has two symbols of equal probability. The capacity 

of a binary symmetric channel is: 

C = I(X;Y) = 1- (p logp+q logq), 

where p is the probability of a correct bit and q 1 - p is the probability of an 

incorrect bit. 

The empirical capacity and bit error rate for each bit, from the most significant to 

the least significant, are shown in Figure 2.2. The empirical capacity per bit degrades 

as the bit error rates increase. The total capacity of the channel is the summation 
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of the capacity for each bit. For MB-HTTP, the bit error rate increases somewhat 

linearly. For FPR, the bit error rate accelerates gradually, eventually overtaking the 

bit error rates of MB-HTTP, though at this point the capacity per bit is insignificant. 

Table 2.5: Empirical Capacity for Covert Timing Channels 
LAN WANE-E WANE-W 

channel ECPP ECPS ECPP ECPS ECPP ECPS 
MB-HTTP 6.74 19.93 2.15 6.35 5.18 15.31 

FPR 10.95 32.35 4.63 13.67 9.37 27.69 
OPC 0.85 10,899.62 0.66 91.28 0.98 1,512.53 

ECPP - empirical capacity per packet, ECPS - empirical capacity per second 

The empirical capacity of each covert timing channel is shown in Table 2.5. The 

empirical capacity of MB-HTTP is still about 46% to 61% of that of FPR, somewhat 

lower than the case in the theoretical model. This is because a larger proportion of 

MB-HTTP traffic has small inter-packet delays than that of FPR, and small inter-

packet delays are more sensitive to noise caused by transmission delays (i.e., slow 

processing, context switches, etc.) than large inter-packet delays, which is not repre-

sented in the theoretical model. 

2.3.3 Detection Resistance 

The detection resistance, as described in Section 2.1, is estimated based on the shape 

and regularity tests. To examine the shape of the distribution, we use the Kolmogorov-

Smirnov test [36], which is a non-parametric goodness-of-fit test. To examine the 

regularity of the traffic, we use the regularity test [19], which studies the variance of 

the traffic pattern. In this section, we detail these two tests and show the detection 

resistance of MB-HTTP against both tests. 
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2.3.3.1 Shape Tests 

The two-sample Kolmogorov-Smirnov test determines whether or not two samples 

come from the same distribution. The Kolmogorov-Smirnov test is distribution free, 

meaning the test is not dependent on a specific distribution. Thus, it is applicable to 

a variety of types of traffic with different distributions. The Kolmogorov-Smirnov test 

statistic measures the maximum distance between two empirical distribution func-

tions. 

KSTEST =max I S1(x)- S2(x) I, 

where sl and 82 are the empirical distribution functions of the two samples. 

In our experiments, we test a large set of legitimate inter-packet delays against a 

sample of either covert or legitimate inter-packet delays. The large set is a training 

set of 10,000,000 HTTP inter-packet delays. The training set is used to represent the 

normal behavior of the HTTP protocol. 

The test score by comparing the two sets is used to determine if the sample is 

covert or legitimate. A small score indicates that the behavior is close to normal. 

However, if the test score is large, i.e., the sample does not fit the normal behavior of 

the protocol, it indicates a potential covert timing channel. 

Table 2.6: Mean and Standard Deviation of Kolmogorov-Smirnov Test Scores 
LEGIT-HTTP MB-HTTP FPR OPC 

sample size mean stdev mean stdev mean stdev mean stdev 
100x 2,000 .193 .110 .196 .093 .925 .002 .999 .000 
100x 10,000 .141 .103 .157 .087 .925 .001 .999 .000 
100x 50,000 .096 .088 .122 .073 .924 .000 .999 .000 
lOOx 250,000 .069 .066 .096 .036 .924 .000 .999 .000 
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Figure 2.3: Distribution of Kolmogorov-Smirnov Test Scores 
scores for 100x 2.000 packets scores for 100x 10,000 packets 
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The Kolmogorov-Smirnov test is run 100 times for each of 2,000, 10,000, 50,000, 

and 250,000 packet samples of legitimate and covert traffic from each covert timing 

channel. The mean and standard deviation of the test scores are shown in Table 2.6. 

For FPR and OPC, the mean scores are over 0.90 and the standard deviations are 

extremely low, indicating that the test can reliably differentiate both covert timing 

channels from normal HTTP traffic. By contrast, the mean scores for MB-HTTP 

samples are very close to those of legitimate samples. The mean scores are for 100 

tests, which in total include as many as 25 million (250,000 x 100) inter-packet delays. 

The distribution of individual test scores is illustrated in Figure 2.3. 

Table 2. 7: False Positive and True Positive Rates for Kolmogorov-Smirnov Test 
LEGIT MB-HTTP FPR OPC 

sample size cutoff false pos. true pos. true pos. true pos. 
100x 2,000 KSTEST ~ .66 .01 .01 1.00 1.00 

100x 10,000 KSTEST ~ .65 .01 .01 1.00 1.00 
100x 50,000 KSTEST ~ .41 .01 .01 1.00 1.00 
100x 250,000 KSTEST ~ .21 .01 .02 1.00 1.00 
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The detection resistance based on the Kolmogorov-Smirnov test is shown in Table 

2.7. The targeted false positive rate is 0.01. To achieve this false positive rate, the 

cutoff scores-the scores that decide whether samples are legitimate or covert-are 

set at the 99th percentile of legitimate sample scores. The true positive rates, based 

on the cutoff scores, are then shown for each covert timing channel. Since the true 

positive rates in all 100 tests are 1.00, the Kolmogorov-Smirnov test detects FPR and 

OPC easily. However, the true positive rates for MB-HTTP are approximately the 

same as the false positive rates. The Kolmogorov-Smirnov test cannot differentiate 

between MB-HTTP and legitimate samples. Such a result can be explained based 

on the distribution of individual test scores, which is shown in Figure 2.3. While 

the mean scores of MB-HTTP traffic in Table 2.6 are slightly higher than those of 

LEGIT-HTTP, the distributions of individual scores overlap so that the false positive 

rate and true positive rate are approximately equal. 

2.3.3.2 Regularity Tests 

The regularity test [19] determines whether the variance of the inter-packet delays is 

relatively constant or not. This test is based on the observation that for most types 

of network traffic, the variance of the inter-packet delays changes over time. With 

covert timing channels, the code used to transmit data is a regular process and, as a 

result, the variance of the inter-packet delays remains relatively constant over time. 

In our experiments, we test the regularity of a sample of either covert or legitimate 

inter-packet delays. The sample is separated into sets of winter-packet delays. Then, 
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for each set, the standard deviation of the set Ui is computed. The regularity is the 

standard deviation of the pairwise differences between each ui and Uj for all sets i < j. 

regularity= ST DEV( I ui- Uj I, i < j, 'Vi, j) 
!Ji 

The regularity test is run 100 times for 2,000 packet samples of legitimate and covert 

samples from each covert timing channel. The window sizes of w = 100 and w = 250 

are used. The mean regularity scores are shown in Table 2.8. If the regularity is small, 

the sample is highly regular, indicating a potential covert timing channel. 

Table 2.8: Mean of Regularity Test Scores 
sample size LEGIT-HTTP MB-HTTP FPR OPC 

lOOx 2,000 w=100 43.80 38.21 0.34 0.00 
lOOx 2,000 w=250 23.74 22.87 0.26 0.00 

The mean regularity scores for OPC are 0.0 for both tests, indicating regular 

behavior. There are two values, each with 0.5 probability. Therefore, the standard 

deviation within sets is small u = 0.5d = 3.317e - 4, and there is no detectable 

change in the standard deviation between sets. The mean regularity score for FPR 

is small as well, showing that the test is able to detect the regular behavior. While 

the standard deviation of FPR, which is based on the Exponential distribution, is 

u = >. = 0.3385, the code is a regular process, so the variance of the inter-packet 

delays remains relatively constant. 

The mean regularity scores for MB-HTTP are close to those of legitimate samples. 

This is because the parameters are recalibrated after each set of 100 packets, as 

described in Section 2.2. The parameters of the distribution determine the mean and 

32 



standard deviation, so adjusting the parameters changes the variance after each set 

of 100 inter-packet delays. As a result, like legitimate traffic, the variance of the 

inter-packet delays appears irregular. 

Table 2.9: False Positive and True Positive Rates for Regularity Test 
LEGIT MB-HTTP FPR OPC 

sample size cutoff false pos. true pos . true pos. true pos. 
lOOx 2,000 w=lOO reg.::::; 6.90 . 01 .00 1.00 1.00 
lOOx 2,000 w=250 reg.::::; 5.20 .01 .00 1.00 1.00 

The detection resistance based on the regularity test is shown in Table 2.9. The 

targeted false positive rate is 0.01. The cutoff scores are set at the 1st percentile of 

legitimate sample scores, in order to achieve this false positive rate. The true positive 

rates, based on the cutoff scores, are then shown for each covert timing channels. The 

regularity test is able to detect FPR and OPC in all 100 tests. The resulting true 

positive rates for MB-HTTP are approximately the same as the false positive rate. 

Basically, the test is no better than random guessing at detecting MB-HTTP. 

2.4 Conclusion 

We introduced model-based covert timing channels, which mimic the observed behav-

ior of legitimate network traffic to evade detection. We presented a framework for 

building such model-based covert timing channels. The framework consists of four 

components: filter, analyzer, encoder, and transmitter. The filter characterizes the 

specific features of legitimate traffic that are of interest. The analyzer fits the traffic to 

several models and selects the model with the best fit. The encoder generates random 
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covert inter-packet delays that, based on the model, mimic the legitimate traffic. The 

transmitter then manipulates the timing of packets to create the model-based covert 

timing channel. 

Using channel capacity and detection resistance as major metrics, we evaluated 

the proposed framework in both LAN and WAN environments. Our capacity results 

suggest that model-based covert timing channels work efficiently even in the coast­

to-coast scenario. Our detection resistance results show that, for both shape and 

regularity tests, covert traffic is sufficiently similar to legitimate traffic that current 

detection methods cannot differentiate them. In contrast, the Kolmogorov-Smirnov 

and regularity tests easily detect FPR and OPC. 
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Chapter 3 

Detecting Covert Timing 

Channels 

3.1 Introduction 

As an effective way to exfiltrate data from a well-protected network, a covert timing 

channel manipulates the timing or ordering of network events (e.g., packet arrivals) 

for secret information transfer over the Internet, even without compromising an end­

host inside the network. On the one hand, such information leakage caused by a 

covert timing channel poses a serious threat to Internet users. Their secret credentials 

like passwords and keys could be stolen through a covert timing channel without 

much difficulty. On the other hand, detecting covert timing channels is a well-known 

challenging task in the security community. 

In general, the detection of covert timing channels uses statistical tests to differ­

entiate covert traffic from legitimate traffic. However, due to the high variation in 
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legitimate network traffic, detection methods based on standard statistical tests are 

not accurate and robust in capturing a covert timing channel. Although there have 

been recent research efforts on detecting covert timing channels over the Internet 

[18, 19, 110, 75, 45], some detection methods are designed to target one specific covert 

timing channel and therefore fail to detect other types of covert timing channels; the 

other detection methods are broader in detection but are over-sensitive to the high 

variation of network traffic. In short, none of the previous detection methods are 

effective at detecting a variety of covert timing channels. 

In this chapter, we propose a new entropy-based approach to detecting covert 

timing channels. The entropy of a process is a measure of uncertainty or information 

content, a concept that is of great importance in information and communication 

theory [111]. While entropy has been used in covert timing channel capacity analysis, 

it has never been used to detect covert timing channels. We observe that a covert 

timing channel cannot be created without causing some effects on the entropy of the 

original process1 . Therefore, a change in the entropy of a process provides a critical 

clue for covert timing channel detection. 

More specifically, we investigate the use of entropy and conditional entropy in 

detecting covert timing channels. For finite samples, the exact entropy rate of a 

process cannot be measured and must be estimated. Thus, we estimate the entropy 

rate with the corrected conditional entropy, a measure used on biological processes 

[101]. The corrected conditional entropy is designed to be accurate with limited data, 

1 This observation applies to complex processes, like network traffic, but not to simple independent 
and identically distributed processes (20]. 

36 



which makes it excellent for small samples of network data. To evaluate our new 

entropy-based approach, we conduct a series of experiments to validate whether our 

approach is capable of differentiating covert traffic from legitimate traffic. We perform 

the fine-binned estimation of entropy and the coarse-binned estimation of corrected 

conditional entropy for both covert and legitimate samples. We then determine false 

positive and true positive rates for both types of estimations. Our experimental 

results show that the combination of entropy and corrected conditional entropy is 

very effective in detecting covert timing channels. 

3.2 Background And Related Work 

To defend against covert timing channels, researchers have proposed different solu­

tions to detect, disrupt, and eliminate covert traffic. The disruption of covert timing 

channels adds random delays to traffic, which reduces the capacity of covert timing 

channels but degrades system performance as well. The detection of covert timing 

channels is accomplished using statistical tests to differentiate covert traffic from le­

gitimate traffic. While the focus of earlier work is on disrupting covert timing channels 

[48, 58, 62, 61, 63] or on eliminating them in the design of systems [1, 65, 66], more 

recent research has begun to investigate the design and detection of covert timing chan­

nels [18, 19, 110, 75, 76, 45, 109]. In the following subsections, we give an overview of 

recent research on covert timing channels and detection tests. 

37 



3.2.1 Covert Timing Channels 

There are two types of covert timing channels: active and passive. In terms of covert 

timing channels, active refers to covert timing channels that generate additional traffic 

to transmit information, while passive refers to covert timing channels that manipulate 

the timing of existing traffic. In general, active covert timing channels are faster, but 

passive covert timing channels are more difficult to detect. On the other hand, active 

covert timing channels often require a compromised machine, whereas passive covert 

timing channels, if creatively positioned, do not. The majority of the covert timing 

channels discussed in this section are active covert timing channels, except where 

stated otherwise. 

Figure 3.1: IPCTC/TRCTC/MBCTC Scenario 
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3.2.1.1 IP Covert Timing Channel 

Cabuk et al. [19] developed the first IP covert timing channel, which we refer to as 

IPCTC, and investigated a number of design issues. A scenario where IPCTC can be 

used is illustrated in Figure 3.1. In this scenario, a machine is compromised, and the 

defensive perimeter, represented as a perimeter firewall or intrusion detection system, 

monitors communication with the outside. Therefore, a covert timing channel can 

be used to pass through the defensive perimeter undetected. IPCTC uses a simple 

interval-based encoding scheme to transmit information. IPCTC transmits a 1-bit by 

sending a packet during an interval and transmits a O-bit by not sending a packet 

during an interval. A major advantage to this scheme is that when a packet is lost, a 

bit is flipped but synchronization is not affected. The timing-interval t and the number 

of O-bits between two 1-bits determines the distribution of IPCTC inter-packet delays. 

It is interesting to note that if the pattern of bits is uniform, the distribution of inter­

packet delays is close to a Geometric distribution. To avoid creating a pattern of 

inter-packet delays at multiples of a single t, the timing-interval t is rotated among 

different values. 

3.2.1.2 Time-Replay Covert Timing Channel 

Cabuk [18] later designed a more advanced covert timing channel based on a replay 

attack, which we refer to as TRCTC. TRCTC uses a sample of legitimate traffic Sin 

as input and replays Sin to transmit information. Sin is partitioned into two equal 

bins So and S1 by a value tcutoff· TRCTC transmits a 1-bit by randomly replaying 
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an inter-packet delay from bin S1 and transmits a O-bit by randomly replaying an 

inter-packet delay from bin S0 . Thus, as Sin is made up of legitimate traffic, the 

distribution of TRCTC traffic is approximately equal to the distribution of legitimate 

traffic. 

3.2.1.3 Model-Based Covert Timing Channel 

Gianvecchio et al. [45] developed an automated framework for building model-based 

covert timing channels, which we refer to as MBCTC, to mimic legitimate traffic. 

MBCTC fits a sample of legitimate traffic to several models, such as Exponential 

or Weibull, and selects the model with the best fit. MBCTC then uses the inverse 

distribution function and cumulative distribution function for the selected model as 

encoding and decoding functions. Based on the inverse transform method for variate 

generation [71], MBCTC transmits by generating pseudo-random inter-packet delays 

with hidden information embedded. Thus, as the distribution of the pseudo-random 

inter-packet delays is determined by the model that approximates legitimate traffic, 

the distribution of MBCTC is close to that of legitimate traffic. To better model 

changes in the traffic, MBCTC refits the model in sets of 100 packets. 

3.2.1.4 JitterBug 

Shah et al. [110] developed a keyboard device called JitterBug that slowly leaks typed 

information over the network. JitterBug is a passive covert timing channel, so new 

traffic is not created to transmit information. JitterBug demonstrates how a passive 

covert timing channel can be positioned so that the target machine does not need 
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to be compromised. A scenario where JitterBug can be used is illustrated in Figure 

3.2. In this scenario, an input device is compromised, and the attacker is able to 

leak typed information over the network. JitterBug operates by creating small delays 

in keypresses to affect the inter-packet delays of a networked application. JitterBug 

transmits a 1-bit by increasing an inter-packet delay to a value modulo w milliseconds 

and transmits a O-bit by increasing an inter-packet delay to a value modulo f~l 

milliseconds. The timing-window w determines the maximum delay that JitterBug 

adds to an inter-packet delay. For small values of w, the distribution of JitterBug 

traffic is very similar to that of the original legitimate traffic. To avoid creating a 

pattern of inter-packet delays at multiples of W and r~l, a random sequence Si is 

subtracted from the original inter-packet delay before the modulo operation. 

3.2.1.5 Other Covert Timing Channels 

Berk et al. [13] implemented a simple binary covert timing channel based on the 

Arimoto-Blahut algorithm, which computes the input distribution that maximizes the 

channel capacity [?, 14]. L uo et al. [75] designed a combinatorics-based scheme, called 

Cloak, to transmit information in the ordering of packets within different flows. Cloak 

can be considered as a storage and timing channel, as the encoding methods require 

packets and/or flows to be distinguishable by their contents. The same authors also 

proposed a covert timing channel based on the timing of TCP bursts [76]. Similar to 

Cloak, El-Atawy et al. [38] built a covert timing channel based on packet ordering and 

showed how code selection can make this technique effective at evading packet order 
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metrics. Sellke et. al [109] showed that with i.i.d. traffic as cover, it is theoretically 

possible to create "provably secure" covert timing channels, i.e., covert timing channels 

that are computationally non-detectable. The same basic proof as [109] can be used to 

show that TRCTC is computationally non-detectable for i.i.d. cover traffic when its 

input messages are XOR'd with cryptographically-secure random numbers. Although 

not a covert timing channel, Giffin et al. [47] showed that low-order bits of the TCP 

timestamp can be exploited to create a covert storage channel, which is related to 

timing channels due to the shared statistical properties of timestamps and packet 

timing. 

3.2.1.6 Timing-Based Watermarks 

A number of efforts have investigated timing-based watermarking systems [124, 122, 

97, 123, 136, 55], which are related to covert timing channels. A timing-based water­

marking system is basically a side-channel that is augmented by a low-capacity covert 

timing channel. Wang et al. [122] proposed a method for watermarking inter-packet 

delays to track anonymous peer-to-peer voice-over-IP (VoiP) calls. More recently, 

Houmansadr et. al [55] proposed a subtle watermark called RAINBOW that is non­

blind, i.e., it records both incoming and outgoing flows, allowing it to differentiate 

flows by adding only small delays. By doing so, RAINBOW is able to evade sev­

eral detection tests, including entropy-based methods. However, the assumptions of 

timing-based watermarking systems, like RAINBOW, are quite different than those 

of covert timing channels. The entropy, if any, that is added by a watermarking sys-
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tern can be very small. For example, if a set of flows are naturally differentiable, 

a watermarking system need not add any delays to differentiate them. Generally, 

timing-based watermarking systems are passive timing channels in that new traffic 

is not created. Such systems again demonstrate how a passive timing channel can 

be positioned so that the target, i.e., the anonymizing network, does not need to be 

compromised. 

3.2.2 Detection Tests 

There are two broad classes of detection tests: shape tests and regularity tests. The 

shape of traffic is described by first-order statistics, e.g., mean, variance, and distri­

bution. The regularity of traffic is described by second or higher-order statistics, e.g., 

correlations in the data. Note that in previous research the term regularity is some­

times used to refer to frequency-domain regularity [19, 110], whereas here we use this 

term exclusively to refer to time-domain regularity, i.e., the regularity of a process 

over time. 

3.2.2.1 Kolmogorov-Smirnov Test 

Peng et al. [97] showed that the Kolmogorov-Smirnov test is effective to detect wa­

termarked inter-packet delays, a form of timing channel [124]. The watermarked 

inter-packet delays are shown to have a distribution that is the sum of a normal and 

a uniform distribution. Thus, the Kolmogorov-Smirnov test can be used to deter­

mine if a sample comes from the appropriate distribution. The Kolmogorov-Smirnov 

test determines whether or not two samples (or a sample and a distribution) differ. 
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The use of the Kolmogorov-Smirnov test to detect covert timing channels is described 

in more detail in Section 3.4.1.2. The Kolmogorov-Smirnov test is distribution free, 

i.e., the test is not dependent on a specific distribution. Thus, the Kolmogorov­

Smirnov test is applicable to different types of traffic with different distributions. 

The Kolmogorov-Smirnov test statistic measures the maximum distance between two 

empirical distribution functions: 

KSTEST =max I St(x)- S2(x) I, (3.1) 

where St and 82 are the empirical distribution functions of the two samples. 

3.2.2.2 Regularity Test 

Cabuk et al. [19] investigated a method of detecting covert timing channels based 

on regularity. This detection method, referred to as the regularity test, determines 

whether or not the variance of the inter-packet delays is relatively constant. This 

detection test is based on the fact that for most network traffic, the variance of the 

inter-packet delays changes over time, whereas with covert timing channels, if the 

encoding scheme does not change over time, then the variance of the inter-packet 

delays remains relatively constant. The use of the regularity test to detect covert 

timing channels is discussed in more detail in Section 3.4.1.2. For the regularity test, 

a sample is separated into sets of w inter-packet delays. Then, for each set, the 

standard deviation of the set ai is computed. The regularity is the standard deviation 
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of the pairwise differences between each ai and aj for all sets i < j. 

regularity= STDEV (' ai ~i aj I, i < j, Vi,j) (3.2) 

3.2.2.3 Other Detection Tests 

Cabuk et al. [19) investigated a second method of detecting covert timing channels, 

referred to as E-similarity, based on measuring the proportion of similar inter-packet 

delays. The E-similarity test is based on the fact that IPCTC creates clusters of similar 

inter-packet delays at multiples of the timing-interval. Luo et al. [75) developed a 

detection method that targets the Cloak channel by measuring the intervals between 

acknowledgment and data packets. While both detection methods are effective at 

detecting the specific covert timing channels for which they are designed, namely 

IPCTC and Cloak, their respective scopes of detection are very limited. In comparison 

with more generic detection methods, they are less effective at detecting other types 

of covert timing channels. Berk et al. [13) used a simple mean-max ratio to test for 

bimodal or multimodal distributions that could be induced by binary or multi-symbol 

covert timing channels. 

3.3 Entropy Measures 

In this section, we first describe entropy, conditional entropy, and corrected conditional 

entropy, and then explain how these measures relate to first-order statistics, second 

or higher-order statistics, and the regularity or complexity of a process. Finally, we 
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present the design and implementation of the proposed scheme to detect covert timing 

channels, based on the concept of entropy. 

3.3.1 Entropy and Conditional Entropy 

The entropy rate, which is the average entropy per random variable, can be used as 

a measure of complexity or regularity [101, 105]. The entropy rate is defined as the 

conditional entropy of a sequence of infinite length. The entropy rate is upper-bounded 

by the entropy of the first-order probability density function or first-order entropy. A 

simple independent and identically distributed (i.i.d.) process has an entropy rate 

equal to the first-order entropy. A highly complex process has a high entropy rate, 

but less than the first-order entropy. A highly regular process has a low entropy rate, 

zero for a rigid periodic process, i.e., a repeated pattern. 

A random process X = {Xi} is defined as an indexed sequence of random variables. 

To give the definition of the entropy rate of a random process, we first define the 

entropy of a sequence of random variables as: 

H(Xl, ... ,Xm)=- L P(xl, ... ,xm)logP(xl, ... ,xm), (3.3) 
X1, ... ,Xm 

where P(xb ... ,xm) is the joint probability P(X1 = x1, ... , Xm = Xm)· 

Then, from the entropy of a sequence of random variables, we define the conditional 

entropy of a random variable given a previous sequence of random variables as: 
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Lastly, the entropy rate of a random process is defined as: 

H(X) = lim H(Xm I xl, ... , Xm-l)· 
m-+oo 

(3.5) 

The entropy rate is the conditional entropy of a sequence of infinite length and, 

therefore, cannot be measured for finite samples. Thus, we estimate the entropy rate 

with the conditional entropy of finite samples. It is also important to note that the 

definition of entropy rate is for stationary stochastic processes [27] and the extent 

to which measured data is non-stationary could affect the accuracy of entropy rate 

estimates. 

3.3.2 Corrected Conditional Entropy 

The exact entropy rate cannot be measured for finite samples and must be estimated. 

In practice, we replace probability density functions with empirical probability density 

functions based on the method of histograms. The data is binned in Q bins. The 

specific binning strategy being used is important to the overall effectiveness of the 

test and is discussed in Section 3.3.3. The empirical probability density functions 

are determined by the proportions of patterns in the data, i.e., the proportion of a 

pattern is the probability of that pattern. Here a pattern is defined as a sequence 

of bin numbers. The estimates of the entropy or conditional entropy, based on the 

empirical probability density functions, are represented as: EN and CE, respectively. 

There is a problem with the estimation of CE(Xm I X 1, ... , Xm-l) for some values 

of m. The conditional entropy tends to zero as m increases, due to limited data. If a 
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specific pattern of length m - 1 is found only once in the data, then the extension of 

this pattern to length m will also be found only once. Therefore, the length m pattern 

can be predicted by the length m - 1 pattern, and the length m and m - 1 patterns 

cancel out. If no pattern of length m is repeated in the data, then CE(Xm I Xm-d 

is zero, even for i.i.d. processes. 

To solve the problem of limited data, without fixing the length of m, we use 

the corrected conditional entropy (CCE) [101]. The corrected conditional entropy is 

defined as: 

CCE(Xm I XI, ... , Xm-d = CE(Xm I XI, ... , Xm-d + perc(Xm) · EN(XI), (3.6) 

where perc(Xm) is the percentage of unique patterns of length m and EN(XI) is the 

entropy with m fixed at one, i.e., only the first-order entropy. 

The estimate of the entropy rate is the minimum of the corrected conditional en­

tropy over different values of m. The minimum of the corrected conditional entropy 

is considered to be the best estimate of the entropy rate with the available data. 

The corrected conditional entropy has a minimum, because the conditional entropy 

decreases while the corrective term increases. The corrected conditional entropy has 

been mainly used on biological data, such as electrocardiogram [101] and electroen­

cephalogram data [105]. Although not related to our work, it is interesting to see 

how such a measure can differentiate the states of complex biological processes. For 

example, with the electroencephalogram, an increase in the entropy rate indicates a 
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decrease in the depth of anesthesia, i.e., the subject is becoming more conscious. 

3.3.3 Binning Strategies 

The strategy of binning the data is critical to the overall effectiveness of the test. 

The binning strategy mainly decides: (1) how the data is partitioned and (2) the 

bin granularity or the number of bins Q. In previous work, partitioning data into 

equiprobable bins seems to be most effective [101, 105]. The use of equiprobable bins 

is illustrated in Figure 3.3, showing the partitioning of Exponential data into bins of 

equal area. The bins, numbered 1 through 5, are small in width when the proportion 

of values is high and large in width when the proportion of values is low. Thus, while 

the bins have different widths, the total area of each bin is equal. The bin number for 

a value can then be determined based on the cumulative distribution function: 

bin= lF(x) * QJ, (3.7) 

where F is the cumulative distribution function and x is the value to be binned. 

The bin numbers can also be determined based on ranges, e.g., 0.0 < bin1 :::; 0.22, 

0.22 < bin2 :::; 0.51, 0.51 < bin3 :::; 0.91, and so on, which requires a search of the 

ranges to determine the correct bin number for a value. Meanwhile, the cumula­

tive distribution function can determine the correct bin in constant time, which is 

important for performance when the number of bins is large. 

The choice of the number of bins offers a tradeoff. While a larger number of bins 

retains more information about the distribution of the data, it increases the number 
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Figure 3.3: Equiprobable Binning of Exponential Data 
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of possible patterns Qm and, thus, limits the ability of the test to recognize longer 

patterns due to the limited data. In contrast, a small number of bins captures less 

information about the distribution, but is better able to measure the regularity of the 

data. Therefore, as both strategies have advantages and disadvantages, we use both 

coarse-grain and fine-grain binning. 

To determine the best choice of Q for coarse-grain binning, we run tests on cor-

related and uncorrelated samples for Q = 2 through 10. The correlated samples are 

100 traces of 2,000 HTTP inter-packet delays. The uncorrelated samples are random 

permutations of the correlated samples. We then count the number of uncorrelated 

samples with scores that overlap with the scores of correlated samples. There is no 

overlap for the values of Q = 5 to 8. Therefore, to retain the ability of the test 

to recognize longer patterns and measure regularity, we use Q = 5 for coarse-grain 

binning. 

It is much simpler to determine the best choice of Q for fine-grain binning. With 
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increasing values of Q, the number of possible patterns Qm becomes much larger than 

the size of the sample being tested. At this point, the test scores are dominated by 

the estimate of the entropy for length one. Then, as we increase the value of Q, the 

bins continue to become more precise, leading to a better estimate of the entropy for 

length one than that for smaller values of Q. Therefore, as Q can be made arbitrarily 

precise, we use Q = 216 = 65,536 for fine-grain binning. 

3.3.4 Implementation Details 

Our design goal is to be effective in detection and efficient in terms of run-time and 

storage. The efficiency of tests is particularly important if tests are conducted in 

real-time for online processing of data. Thus, we are careful to optimize our imple­

mentation for performance. We implement the corrected conditional entropy in the 

C programming language. The patterns are represented as nodes in a Q-ary tree of 

height m. The nodes of the tree include pattern counts and links to the nodes with 

longer patterns. The level of the tree corresponds to the length of patterns. The 

children of the root are the patterns of length 1. The leaf nodes are the patterns of 

length m. 

To add a new pattern of length m to the tree, we move down the tree towards 

the leaves, updating the counts of the intermediate nodes and creating new nodes. 

Thus, when we reach the bottom of the tree, we have counted both the new pattern 

and all of its sub-patterns. After all patterns of length m are added, we perform a 

breadth-first traversal. The breadth-first traversal computes the corrected conditional 
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entropy at each level and terminates when the minimum is obtained. If the breadth­

first traversal reaches the bottom of the tree without having the minimum, then we 

must increase m and continue. 

The time and space complexities are O(n · m), where n is the size of the sample, if 

we assume a priori knowledge of the distribution and use the cumulative distribution 

function to determine the correct bin for each value in constant time. Otherwise, the 

time complexity increases to O(n · m ·log(Q)). In practice, running our program on 

a sample of size 2,000 with Q = 5 and a pattern of length 10 on our test machine, 

an Intel Pentium D 3.4Ghz, takes 16 milliseconds. However, small changes in the 

implementation can have significant impact on performance. 

To demonstrate this, we evaluate the computation overhead of our implementation 

and that of a previous implementation [105]. The computation time of both imple­

mentations with increasing pattern length is shown in Figure 3.4. For small values 

of m, our computation time is slightly longer, because of the overhead of creating 

our data structure. However, as m increases, the previous implementation increases 

quadratically, whereas our implementation increases linearly. The quadratic growth 

is caused by the separate processing of patterns of different lengths, i.e., the patterns 

of length 1, then the patterns of length 2, and so on, which introduces a quadratic 

term due to the summation of the pattern lengths: 2:::~ 1 i = m2;{m. 
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Figure 3.4: CCE Performance 
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3.4 Experimental Evaluation 

In this section, we validate the effectiveness of our proposed approach through a 

series of experiments. The focus of these experiments is to determine if our entropy-

based methods (entropy and corrected conditional entropy) are able to detect covert 

timing channels. We test our entropy-based methods against four covert timing chan-

nels: IPCTC [19], TRCTC [18], MBCTC [45] and JitterBug [110]. Furthermore, we 

compare our entropy-based methods to two other detection tests: the Kolmogorov-

Smirnov test and the regularity test [19]. 

The purpose of a detection test is to differentiate covert traffic from legitimate 

traffic. The performance of a detection test can be measured based on false positive 

and true positive rates, with low false positive rate and high true positive rate being 

ideal. In practice, because of the large variation in legitimate network traffic, it is 

important that tests work well for typical traffic and occasional outliers. If a detection 

test gives test scores with significant overlap between legitimate and covert samples, 
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then it fails on detection. Therefore, the mean, variance, and distribution of test 

scores are critical metrics to the performance of a detection test. 

3.4.1 Experimental Setup 

The defensive perimeter of a network, made up of firewalls and intrusion detection 

systems, is designed to protect the network from malicious traffic. Typically, only a few 

specific application protocols, such as HTTP and SMTP, although heavily monitored, 

are allowed to pass through the defensive perimeter. In addition, other protocols, 

such as SSH, might be permitted to cross the perimeter but only to specific trusted 

destinations. 

We now consider the scenarios discussed in Section 3.2. In the first scenario, which 

relates to IPCTC, TRCTC and MBCTC, a compromised machine uses a covert timing 

channel to communicate with a machine outside the network. For IPCTC, TRCTC 

and MBCTC, we utilize outgoing HTTP inter-packet delays as the medium, due to 

the wide acceptance of HTTP for crossing the network perimeter and the high volume 

of HTTP traffic. In the second scenario, which relates to JitterBug, a compromised 

input device uses a covert timing channel to leak typed information over the traffic of 

a networked application. For JitterBug, we utilize outgoing SSH inter-packet delays 

as the medium, based on the original design [110] and the high volume of keystrokes 

in interactive network applications. 
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3.4.1.1 Dataset 

The covert and legitimate samples that we use for our experiments are from two 

datasets: (1) HTTP traces we collected on a medium-size campus network and (2) a 

dataset obtained from the University of North Carolina at Chapel Hill (UNC). In total, 

we have 12GB of tcpdump packet header traces (HTTP protocol) that we collected 

and 79GB of tcpdump packet header traces (all protocols) from the UNC dataset [?]. 

In our experiments, we use several subsets of the two datasets, including: 

• HTTP training set: 200,000 HTTP packets 

• HTTP test set: 200,000 HTTP packets 

• TRCTC test set: 200,000 HTTP packets 

• MBCTC test set: 200,000 HTTP packets 

• SSH training set: 200,000 SSH packets 

• SSH test set: 200,000 HTTP packets 

• JitterBug test set: 200,000 SSH packets 

The packets in each dataset are grouped into flows. The flows represent outgoing 

traffic from a host to a specific port, e.g., port 80 for HTTP or port 22 for SSH. The 

flows are based on a 3-tuple of source host, destination port, and protocol, rather 

than a 5-tuple of source address, source port, destination address, destination port, 

and protocol. The subsets contain 100 samples and each sample has 2,000 packets 

from a flow. 
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In our experiments, we test a number of covert samples, which are generated from 

these subsets and from the encoding methods for IPCTC, TRCTC, MBCTC, and 

JitterBug. The covert timing channels are configured with the recommended settings 

from their original works, and we use the most advanced version if multiple versions of 

a covert timing channel are available. Specifically, IPCTC rotates the timing-interval 

t amongst 40ms, 60ms and 80ms; TRCTC is the BMC type; and JitterBug subtracts 

the random sequence si before the modulo operation. The input messages transmitted 

in our tests are random bits generated by a pseudo-random number generator. For 

TRCTC, we generate the covert samples from a set of 200,000 legitimate HTTP 

inter-packet delays. For MBCTC, we generate the covert samples from a model that 

is selected by fitting multiple models to a set of 200,000 legitimate HTTP inter-packet 

delays. For JitterBug, we generate the covert samples from a set of 200,000 legitimate 

SSH inter-packet delays. A test machine replays the set of 200,000 SSH inter-packet 

delays and adds JitterBug delays. Note that our version of JitterBug is implemented 

in software. A monitoring machine on the campus backbone then collects a trace 

of the JitterBug traffic, which adds network delays after the addition of JitterBug 

delays. Since the monitoring machine is only four hops away from the test machine, 

with a RTT of 0.3ms, the added network delays are small. This JitterBug scenario is 

illustrated in Figure 3.2, where a defensive perimeter monitors outgoing traffic. 

The training sets of legitimate traffic are useful for some of the detection tests. The 

Kolmogorov-Smirnov test uses the training sets to represent the behavior of legitimate 

traffic. The Kolmogorov-Smirnov test then measures the distance between the test 
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sample and the training set. The entropy and corrected conditional entropy tests use 

the training sets to determine the range of each bin, based on equiprobable binning. 

These tests do not require a priori binning, but doing so improves performance, as 

the data does not need to be partitioned online. 

3.4.1.2 Detection Methodology 

In our experiments, we run detection tests on samples of covert and legitimate traffic. 

We use the resulting test scores to determine if a sample is covert or legitimate as 

follows. First, we set the targeted false positive rate at 0.01. To achieve this false 

positive rate, the cutoff scores-the scores that decide whether a sample is legitimate 

or covert-are set at the 99th or 1st percentile (high scores or low scores for differ­

ent tests) of legitimate sample scores from the HTTP or SSH training set. Then, 

samples with scores worse than the cutoff are identified as covert, while samples with 

scores better than the cutoff are identified as legitimate. The false positive rate is the 

proportion of legitimate samples in the test set that are wrongly identified as covert, 

while the true positive rate is the proportion of covert samples in the test set that are 

correctly identified as covert. 

Considering the properties of the detection tests, we can classify them as tests of 

shape or regularity. The shape of traffic is described by first-order statistics, and the 

regularity of traffic is described by second or higher-order statistics. The Kolmogorov­

Smirnov test and entropy test are tests of shape, while the regularity test and corrected 

conditional entropy test are tests of regularity. The test scores are interpreted as 
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follows. 

In the Kolmogorov-Smirnov test, we measure the distance between the test sample 

and the training set that represents legitimate behavior. Thus, if the test score is small, 

it implies that the sample is close to the normal behavior. However, if the sample does 

not fit the normal behavior well, the test score will be large, indicating the possible 

occurrence of a covert timing channel. By contrast, in the regularity test, we measure 

the standard deviation of the normalized standard deviations of sets of 100 packets. 

If the regularity score is low, then the sample is highly regular, indicating the possible 

existence of a covert timing channel. 

The entropy test estimates the first-order entropy, whereas the corrected condi­

tional entropy test estimates the higher-order entropy. The entropy test is based on 

the same algorithm as the corrected conditional entropy test, except that the correc­

tive term is not added. The corrected conditional entropy test uses Q = 5, whereas 

the entropy test uses Q = 65, 536 and m fixed at one. If the entropy test score is 

low, it suggests a possible covert timing channel, because the sample does not fit the 

appropriate distribution. If the conditional entropy test score is lower or higher than 

the cutoff scores, it suggests a possible covert timing channel. When the conditional 

entropy test score is low, the sample is highly regular. When the conditional entropy 

test score is high, near the first-order entropy, the sample shows a lack of correlations. 
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3.4.2 Experimental Results 

In the following, we present our experimental results in detail. The four detection 

tests are: the Kolmogorov-Smirnov test, regularity test, entropy test, and corrected 

conditional entropy test. The four covert timing channels are: IPCTC, TRCTC, 

MBCTC, and JitterBug. The experiments are organized by covert timing channels, 

which are ordered in terms of increasing detection difficulty. 

3.4.2.1 IPCTC 

Our first set of experiments investigates how the detection tests perform against 

IPCTC [19]. IPCTC is the simplest among the three covert timing channels be­

ing tested and the easiest to detect, because it exhibits abnormality in both shape 

and regularity. The abnormal shape of IPCTC is caused by the encoding scheme. 

The encoding scheme encodes a 1-bit by transmitting a packet during an interval, and 

encodes a O-bit with no packet transmission. Thus, the number of O-bits between two 

1-bits determines the inter-packet delays. If the bit sequence is random, then we can 

view the bit sequence as a series of Bernoulli trials and, thus, the inter-packet delays 

approximate a Geometric distribution. The timing-interval tis rotated among 40 mil­

liseconds, 60 milliseconds, and 80 milliseconds after each 100 packets, as suggested 

by Cabuk et al. [19], to avoid creating a regular pattern of inter-packet delays at 

multiples of a single t. However, this instead creates a regular pattern of inter-packet 

delays at multiples of 20 milliseconds. The regularity of IPCTC is due to the lack of 

significant correlations between inter-packet delays. That is, the inter-packet delays 
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are determined by the bit sequence being encoded, not by the previous inter-packet 

delays. 

We run each detection test 100 times for 2,000 packet samples of both legitimate 

traffic and IPCTC traffic. The mean and standard deviation of the test scores are 

shown in Table 3.1. The detection tests all achieve lower average scores for IPCTC 

than those for legitimate traffic. The regularity test has a very high standard deviation 

for legitimate traffic, which suggests that this test is sensitive to variations in the 

behavior of legitimate traffic. The corrected conditional entropy test has a mean 

score for covert traffic that appears somewhat close to that of legitimate traffic, 1.96 

for legitimate and 2.21 for covert. However, in relative terms, these scores are not 

that close, since the standard deviation of the corrected conditional entropy test is 

relatively low. The mean score for IPCTC is much closer to the maximum entropy 

than to the mean score of legitimate traffic. The maximum entropy is the most uniform 

possible distribution [27]. The maximum entropy for Q = 5 is: 

H(X) = Q ·~log(~)= 5 ·~log(~)~ 2.3219 (3.8) 

The corrected conditional entropy score is bounded from above by the first-order 

entropy. The first-order entropy is then bounded from above by the maximum entropy. 

Therefore, the corrected conditional entropy scores for IPCTC are close to the highest 

values possible. 

As shown in Table 3.2, the detection rates for IPCTC (i.e. true positive rates for 

detecting IPCTC) are 1.0 for all tests except the regularity test, whose detection rate 
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is only 0.54. The regularity test measures sets of 100 packets and the timing-interval 

t is rotated after each set of 100 packets, so the regularity test observes three distinct 

variances and accurately measures the regularity of IPCTC. The problem though is not 

measuring IPCTC, but measuring legitimate traffic. The very high standard deviation 

of the regularity test against legitimate traffic makes it impossible to differentiate 

IPCTC from legitimate samples without a higher false positive rate. Moreover, if we 

increase the timing-interval t to greater than 100 packets, the regularity test observes a 

different number of packets for each t value within each window, as the sets oft packets 

overlap with the window at different points, making the test less reliable. However, 

if we decrease the timing-interval t to much less than 100 packets, the regularity test 

observes a similar number of packets for each t value within each window and the 

variance for each window is similar, which makes the test more reliable. 

Still, the main problem with the regularity test is its high standard deviation for 

legitimate traffic. The regularity test is very sensitive to outliers in legitimate traffic. 

For example, if O"i is very small, due to a sequence of similar inter-packet delays, 

and O"j is average or larger, then lu;;;uil is very large, especially for the values of O"i 

close to zero, which are not uncommon. In fact, one such outlier in a sample is more 

than sufficient to make a covert sample appear to be a legitimate sample. The high 

variance of the regularity test demonstrates that it is important to examine more than 

the average test score, since the variance and distribution of test scores are critical to 

the successful detection of covert timing channels. 
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Table 3 1· IPCTC Test Scores .. 
HTTP-TEST IPCTC 

test mean stdev mean stdev 
KSTEST 0.180 0.077 0.708 0.000 
regularity 35.726 36.635 0.330 0.056 

EN 10.454 0.152 6.250 0.028 
CCE 1.964 0.149 2.216 0.013 

Table 3 2· IPCTC Detection Rates .. 
HTTP-TEST IPCTC 

test false positive true positive 
KSTEST ~ 0.36 .00 1.00 
regularity ~ 0.41 .01 .54 
EN~ 8.56 .01 1.00 

CCE ~ 2.16 .01 1.00 

3.4.2.2 TRCTC 

Our second set of experiments investigates how our detection tests perform against 

TRCTC [18]. TRCTC is a more advanced covert timing channel that makes use of a 

replay attack. TRCTC replays a set of legitimate inter-packet delays to approximate 

the behavior of legitimate traffic. Thus, TRCTC has approximately the same shape 

as legitimate traffic, but exhibits abnormal regularity, like IPCTC. The regularity 

of TRCTC, like IPCTC, is due to the lack of significant correlations between inter-

packet delays. Although TRCTC replays inter-packet delays, the replay is in random 

order, as determined by the bit sequence that is being encoded, thus breaking the 

correlations in the original inter-packet delays. 

We run each detection test 100 times for 2,000 packet samples of both legitimate 

traffic and TRCTC traffic. The mean and standard deviation of the test scores are 

shown in Table 3.3. The test scores for TRCTC and legitimate traffic are approx-
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imately equal for the Kolmogorov-Smirnov and entropy tests. These tests strictly 

measure first-order statistics, and, as such, are not able to detect TRCTC. The reg-

ularity test achieves a much lower average score for TRCTC than that for legitimate 

traffic, which is due to the similar variance between groups of packets in TRCTC. 

However, the standard deviation of the regularity test is again very high for legiti-

mate traffic and, this time, is high for covert traffic as well. At the same time, the 

corrected conditional entropy test gives similar results to those for IPCTC. The cor-

rected conditional entropy test has a mean score for TRCTC that appears somewhat 

close to that of legitimate, 1.96 for legitimate and 2.21 for covert. However, if we ex-

amine the distribution of test scores for TRCTC and legitimate traffic, as illustrated 

in Figure 3.5, then we can see that, although some scores are in adjacent bins, there 

is no overlap between the distributions. Furthermore, the distribution of legitimate 

test scores is strongly skewed to the left, away from the distribution of TRCTC test 

scores. The detection rates for TRCTC, as shown in Table 3.4, are very low (0.04 or 

less) for all the detection tests except the corrected conditional entropy test, which 

has a detection rate of 1.0. The corrected conditional entropy test scores of TRCTC 

are again close to the maximum entropy, therefore the corrected conditional entropy 

test is successful in detecting TRCTC. 

Table 3 3· TRCTC Test Scores .. 
HTTP-TEST TRCTC 

test mean stdev mean stdev 
KSTEST 0.180 0.077 0.180 0.077 
regularity 35.726 36.635 7.845 9.324 

EN 10.454 0.152 10.454 0.152 
CCE 1.964 0.149 2.217 0.012 
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Table 3 4· TRCTC Detection Rates • 0 

HTTP-TEST TRCTC 
test false positive true positive 

KSTEST ~ 0.36 .00 .01 
regularity :::; 0.41 .01 .04 

EN :S 8.56 .01 .02 
CCE ~ 2.16 .01 1.00 

Figure 3.5: Distribution of CCE Test Scores for TRCTC 
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Our third set of experiments investigates how our detection tests perform against 

MBCTC [45]. MBCTC is a more advanced covert timing channel that exploits traffic 

modeling to mimic legitimate traffic. The traffic model is determined by using maxi-

mum likelihood estimation (MLE) to determine model parameters and then selecting 

the model with the lowest root mean squared error (RMSE) from several models. The 

model selected for legitimate HTTP traffic is Weibull with a mean scale parameter .\ 

of 0.125 and a mean shape parameter k of 0.426. With these parameters, the mean 

inter-packet delay is 0.3524, approximately 3 packets per second. The model is then 

refitted in sets of 100 packets to better model changes in the traffic over time. Thus, 
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MBCTC has a similar shape to legitimate traffic, due to modeling the distribution, 

and a similar regularity for sets of 100 packets or more, due to the refitting process. 

We run each detection test 100 times for 2,000 packet samples of both legitimate 

traffic and MBCTC traffic. The mean and standard deviation of the test scores are 

shown in Table 3.5. The test scores of MBCTC are higher than those of legitimate 

traffic for the Kolmogorov-Smirnov test, though less than the standard deviation, due 

to the model being very close but not a perfect fit. The regularity test achieves a 

lower average score for MBCTC than that of legitimate traffic, though the standard 

deviation is again very high for legitimate traffic and covert traffic. The entropy test 

scores of MBCTC are higher on average than those of legitimate traffic, indicating that 

MBCTC traffic is consistently a somewhat close fit to the legitimate traffic distribu­

tion. The corrected conditional entropy test scores are significantly lower for MBCTC 

than for legitimate traffic. However, when we examine the distribution of test scores 

for MBCTC and legitimate traffic, as illustrated in Figure 3.6, we can see that there 

is a slight overlap between the distributions. This shows that the refitting process 

used by MBCTC, i.e., changing the model after each set of 100 packets, is relatively 

successful, but not sufficient to capture the true regularity of legitimate traffic. In 

particular, MBCTC traffic is more regular over time than legitimate traffic, i.e., the 

sequences of inter-packet delays are more predictable. For example, if a burst occurs, 

then the expected value of the model will be small and MBCTC will generate a larger 

portion of small inter-packet delays for the next 100 inter-packet delays. As a result, 

small inter-packet delays will be more likely to be followed by small inter-packet de-
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lays in MBCTC traffic than in legitimate traffic, which results in lower scores for the 

corrected conditional entropy test. The detection rates of MBCTC, as shown in Table 

3.4, are very low (0.04 or less) for all the detection tests except the entropy test and 

the corrected conditional entropy test. The entropy test is able to sometimes detect 

MBCTC, with a detection rate of 0.55. The corrected conditional entropy test is very 

successful in detecting MBCTC, with a detection rate of 0.95. 

Table 3 5· MBCTC Test Scores .. 
HTTP-TEST MBCTC 

test mean stdev mean stdev 
KSTEST 0.180 0.077 0.208 0.073 
regularity 35.726 36.635 18.440 22.605 

EN 10.454 0.152 10.739 0.078 
CCE 1.964 0.149 1.156 0.223 

Table 3 6· MBCTC Detection Rates .. 
HTTP-TEST MBCTC 

test false positive true positive 
KSTEST ?': 0.36 .00 .03 
regularity ~ 0.41 .01 .02 

EN?': 10.74 .01 .55 
CCE ~ 1.50 .00 .95 

3.4.2.4 JitterBug 

Our fourth set of experiments investigates how our detection tests perform against 

JitterBug [110]. JitterBug is a passive covert timing channel, so no additional traffic 

is generated to transmit information. Instead, JitterBug manipulates the inter-packet 

delays of existing legitimate traffic. The timing-window w, which determines the 

maximum delay that JitterBug adds, is set at 20 milliseconds, as suggested by Shah 
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Figure 3.6: Distribution of CCE Test Scores for MBCTC 
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et al. [110]. The average inter-packet delay of the original SSH traffic is 1.264 seconds, 

whereas, with JitterBug, the average inter-packet delay is 1.274 seconds. In addition, 

while 10 milliseconds on average might be noticeable with other protocols, SSH traffic 

has a small proportion of short inter-packet delays, i.e., only about 20% of inter-packet 

delays are less than 30ms in the training set. Therefore, because of having legitimate 

traffic as a base and only slightly increasing the inter-packet delays, JitterBug is able 

to retain much of the original correlation from the legitimate traffic. Moreover, by 

slightly increasing the inter-packet delays, JitterBug only slightly affects the original 

shape. Thus, JitterBug has similar shape and regularity to legitimate traffic. 

Also JitterBug is very difficult to detect for several other reasons. From a practical 

perspective, the machine itself has not been compromised, so conventional host-based 

intrusion detection methods fail. Moreover, the traffic is encrypted, so the contents 

of the packets cannot be used to predict the appropriate behavior. Additionally, the 

position of JitterBug, between the machine and the human, further complicates detec-
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tion because of the variation in human behavior, i.e., different typing characteristics. 

However, as JitterBug is a covert timing channel and transmits information, there is 

some affect on the entropy of the original process. 

We run each detection test 100 times for 2,000 packet samples of both legitimate 

traffic and JitterBug traffic. The mean and standard deviation of the test scores are 

shown in Table 3.7. The test scores for JitterBug and legitimate traffic are close to 

each other for all the tests except the entropy test. If we examine the distribution 

of entropy test scores for JitterBug and legitimate traffics, as illustrated in Figure 

3.5, we can see that the distributions of JitterBug and legitimate test scores are quite 

distinct. The detection rates for JitterBug shown in Table 3.8, are very low (0.04 or 

less) for all the detection tests except the entropy test, which has a detection rate 

of 1.0. Note that the other tests do detect some difference between JitterBug and 

legitimate traffic, but the differences are so small that it is impossible for these tests 

to differentiate JitterBug from legitimate traffic without a much higher false positive 

rate. Although the corrected conditional entropy test is successful at detecting all 

the other covert timing channels, it is unable to detect JitterBug. The corrected 

conditional entropy test bins the data into Q = 5 bins. For SSH traffic, the typical bin 

ranges (based on equiprobable binning) are 0.0 < bin1 ::::; 0.032, 0.032 < bin2 ::::; 0.088, 

0.088 < bin3 ::::; 0.160, 0.160 < bin4 ::::; 0.305, and 0.305 < bin5. JitterBug adds a 

maximum of 20ms (lOms on average) to the inter-packet delays, so the bin numbers for 

inter-packet delays are rarely changed. Therefore, the corrected conditional entropy 

scores of JitterBug traffic are close to those of the original legitimate SSH traffic. In 
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short, the corrected conditional entropy test is simply insensitive to small changes in 

the distribution. 

In contrast, the entropy test is able to detect JitterBug. The entropy test uses a 

large number of bins, with bin widths determined by the distribution of legitimate traf­

fic. The entropy test measures how uniformly the inter-packet delays are distributed 

into the bins, and how uniformly the inter-packet delays fit the legitimate traffic dis­

tribution. JitterBug creates small changes throughout the distribution. Since these 

changes fall within the variance that is typical of legitimate traffic, the tests that 

measure the maximum distance, like the Kolmogorov-Smirnov test, fail to detect the 

changes. However, the entropy test is sensitive to such changes throughout the distri­

bution. JitterBug increases the inter-packet delays and, due to the rotating window, 

redistributes the inter-packet delays in an Equilikely distribution. However, the in­

creases do not follow the legitimate distribution, leading to slight increases or decreases 

in the proportion of inter-packet delays for different bins. The entropy test measures 

how evenly the inter-packet delays are distributed into the bins, with the legitimate 

traffic distribution resulting in the most even or uniform distribution of bins and the 

most entropy, since the bins are sized to be equiprobable for the legitimate distribu­

tion. Therefore, the entropy test score for JitterBug is lower than that for legitimate 

traffic, which can be easily detected. 
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Table 3. 7: JitterBug Test Scores 
SSH-TEST JitterBug 

test mean stdev mean stdev 
KSTEST .270 .133 .273 .123 
regularity 6.230 5.847 6.038 5.624 

EN 10.663 0.374 8.199 0.720 
CCE 1.779 0.261 1.837 0.220 

Table 3.8: JitterBug Detection Rates 
SSH-TEST JitterBug 

test false positive true positive 
KSTEST 2: 0.60 .02 .03 
regularity :::; 0.15 .03 .03 

EN:::; 8.84 .01 1.00 
CCE 2: 2.16 .01 .04 

3.4.2.5 All Channels - Variable Sample Size 

Our last set of experiments investigates how our detection tests perform with different 

sample sizes against all four covert timing channels, IPCTC, TRCTC, MBCTC, and 

JitterBug. We vary sample sizes from 500 to 2,000 inter-packet delays for the entropy 

test and the corrected conditional entropy test. The sample size is important because 

it determines the amount of time it takes to detect a covert timing channel, and 

thus, the amount of information that a covert timing channel can transmit before it 

is detected. Of course, the faster a covert timing channel can be detected, the less 

information it can transmit. However, there is a tradeoff between detection speed and 

detection accuracy. While a smaller sample size means faster detection, it tends to be 

less accurate compared to larger sample sizes. 

The true positive rates for the entropy test against IPCTC, TRCTC, MBCTC, 

and JitterBug with 500 to 2,000 inter-packet delays are shown in Figure 3.8. The 
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Figure 3. 7: Distribution of EN Test Scores for JitterBug 
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true positive rates degrade at different rates in different covert timing channels. On 

one extreme, for IPCTC there is no decrease in true positive rate and it is easily 

detected with as little as 500 inter-packet delays. The pattern of IPCTC is obvious, 

so there is no need for a large amount of data. On the other extreme, the true positive 

rates of JitterBug degrade more rapidly with the decrease of sample size, and it is 

difficult to detect JitterBug with less than 1,600 inter-packet delays. JitterBug is more 

subtle. It adds only small delays and has a relatively low capacity, so its inter-packet 

delays are indistinguishable from normal without more traffic. In the middle, the true 

positive rates of MBCTC degrade gradually with the decrease of sample size, starting 

at 0.55 and ending at 0.14, showing approximately a linear relationship between its 

true positive rate and its sample size. Lastly, TRCTC is not detected by the entropy 

test, so its true positive rates remain close to zero. 

The true positive rates for the corrected conditional entropy test against IPCTC, 

TRCTC, MBCTC, and Jitterbug with 500 to 2,000 inter-packet delays are shown in 
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Figure 3.9. IPCTC and TRCTC demonstrate a similar trend in their true positive 

rates. Both have true positive rates close to 1.0 with more than 700 inter-packet delays 

and then degrade quickly with the decrease of sample size. As neither covert timing 

channel attempts to capture inter-dependencies between inter-packet delays, this likely 

indicates that the minimum sample size required by the corrected conditional entropy 

test for accurate detection is around 700. The true positive rates of MBCTC again 

decline gradually with the decrease of sample size, starting at 0.95 and ending at 0.27, 

similar to the corresponding entropy test results. JitterBug is not detected by the 

corrected conditional entropy test, so its true positive rates are close to zero for all 

sample sizes. 

Overall, combining the results of both tests, we can see that IPCTC and TRCTC 

are easier to be detected than MBCTC and Jitterbug when sample size is small. 

IPCTC and TRCTC can be accurately detected at the true positive rates of 1.0, 

with as little as 500 inter-packet delays and 1,000 inter-packet delays, respectively. 

MBCTC and JitterBug are much more difficult to detect, and they require close to 

2,000 inter-packet delays or more for accurate detection. These results are attributed 

to the fact that MBCTC and JitterBug effectively capture both traffic shape and traffic 

regularity, while TRCTC only captures traffic shape and IPCTC captures neither of 

these two properties. 
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3.4.3 Discussion 

The detection tests that we present are all able to detect some covert timing chan­

nels under certain conditions. However, the previous methods fail for detecting most 

of the tested covert timing channels. One major reason lies in the high variation of 

legitimate traffic. For example, the regularity test exhibits obvious weakness in this 

regard. Interestingly, the regularity test is the only test, other than the corrected 

conditional entropy test, that achieves lower average scores for all the covert tim­

ing channels. However, due to the high standard deviation of the regularity test in 

measuring legitimate traffic, the regularity test is not an effective detection method. 

The other main reason lies in the properties of covert traffic. For example, while the 

Kolmogorov-Smirnov test is better able to deal with legitimate traffic variation, it has 

problems with covert timing channels whose distribution is very close to that of legiti­

mate traffic. The Kolmogorov-Smirnov test measures the maximum distance between 

the two distributions, rather than measuring differences throughout the distribution. 

Thus, when the distribution of covert traffic is very close to that of legitimate traffic, 

the variance of the test scores is sufficiently large so that the test cannot differentiate 

covert traffic from legitimate traffic. 

Our entropy-based approach proves more effective than previous schemes. Based 

on the advantages of different binning strategies, we make use of both entropy and 

corrected conditional entropy for detecting covert timing channels. The entropy test 

is sensitive to small changes throughout the distribution. However, for a covert timing 

channel whose distribution is nearly identical to that of legitimate traffic, the entropy 
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test fails. By contrast, the corrected conditional entropy test measures the regularity 

or complexity of the traffic, rather than the distribution. Thus, it is effective to 

detect such a covert timing channel. However, if the original correlations of traffic are 

retained and the distribution is changed, then the conditional entropy test fails; but 

the entropy test works in this scenario by detecting slight changes in the distribution. 

Therefore, when both tests are combined, our entropy-based approach is effective in 

detecting all the tested covert timing channels. 

Figure 3.8: EN True Positive Rate vs. Sample Size 
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3.5 Potential Countermeasures 

In this section, we discuss possible countermeasures that could be used to harden 

covert timing channels against our entropy-based approach. Our discussion focuses on 

TRCTC, MBCTC and JitterBug. TRCTC and MBCTC are detected by the corrected 

conditional entropy test and JitterBug is detected by the entropy test. 
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Figure 3.9: CCE True Positive Rate vs. Sample Size 
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In an attempt to evade the corrected conditional entropy test, TRCTC could be 

redesigned to replay longer correlated sequences of inter-packet delays. The corrected 

conditional entropy test could counter this technique for short sequences by increasing 

the minimum pattern length. Of course, with increasing sequence length, the corrected 

conditional entropy test would lose its capability to measure regularity, because of the 

issues discussed in Section 3.3, unless the sample size were increased. However, this 

is not a significant threat, because replaying long correlated sequences of inter-packet 

delays would greatly reduce the capacity of TRCTC. In an attempt to evade the 

corrected conditional entropy test, MBCTC could be changed to refit the model more 

frequently so as to better capture the regularity of traffic. Moreover, MBCTC could 

be redesigned to model conditional distributions to better capture inter-dependencies 

in traffic. 

In an attempt to evade the entropy test, JitterBug could be reconfigured to use a 

smaller timing-window w. Eventually, as w becomes smaller, the entropy test would 
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need a larger sample size to detect the JitterBug. However, using a smaller timing­

window would, similar to our discussion of TRCTC, reduce the capacity of JitterBug. 

Additionally, JitterBug could be changed to transmit packets at more precise timing 

than milliseconds, as the millisecond-level precision could create a detectable pattern 

when the network delays are small. As another alternative, since a large number of 

inter-packet delays are required to detect JitterBug, JitterBug could attempt to trans­

mit with fewer inter-packet delays than the minimum required for the entropy test. 

However, there is a problem with this approach. JitterBug uses forward error correc­

tion with repeated transmissions. This mechanism provides reliable communication 

even if packets are lost or some of the perturbed keystrokes go to a non-network appli­

cation, neither of which can be detected by a JitterBug embedded in the keyboard. By 

reducing the number of repetitions, JitterBug could evade detection, but could also 

fail to deliver its message. It remains an open question whether these countermeasures 

would be practical. 

3.6 Conclusion and Future Work 

In this chapter, we introduced an entropy-based technique to detect covert-timing 

channels by employing both entropy and corrected conditional entropy. We designed 

and implemented the proposed entropy-based detection tool. The development of 

this tool addresses a number of non-trivial design issues, including efficient use of 

data structures, data partition, bin granularity, and pattern length. We observed 

that as bin granularity increases, entropy estimates become more precise, whereas 
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corrected conditional entropy estimates become less precise. Therefore, based on this 

observation, we utilized the fine-binned entropy estimation and the coarse-binned 

corrected conditional entropy estimation for covert timing channel detection. 

We then applied our entropy-based techniques for detecting covert timing channels. 

The corrected conditional entropy test is able to detect the covert timing channels with 

abnormal regularity, while the entropy test is able to detect the covert timing channels 

with abnormal shape. Our experimental results show that the combination of entropy 

and corrected conditional entropy is capable of detecting a variety of covert timing 

channels. In contrast, for a covert timing channel whose distribution is close to that 

of legitimate traffic, all the previous detection methods fail. 

There are a number of possible directions for our future work. We plan to fur­

ther investigate the possible countermeasures that could be used by attackers to evade 

entropy-based detection. We also plan to explore the connection between our entropy­

based detection methods and the entropy that relates to covert timing channel capac­

ity. We believe that the exploration could lead to better detection methods or lower 

overall bounds on the capacity of covert timing channels. 
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Chapter 4 

Measurement and Classification 

of Chat Bots 

Internet chat is a popular application that enables real-time text-based communica­

tion. Millions of people around the world use Internet chat to exchange messages and 

discuss a broad range of topics on-line. Internet chat is also a unique networked appli­

cation, because of its human-to-human interaction and low bandwidth consumption 

[32]. However, the large user base and open nature of Internet chat make it an ideal 

target for malicious exploitation. 

The abuse of chat services by automated programs, known as chat bats, poses 

a serious threat to on-line users. Chat bots have been found on a number of chat 

systems, including commercial chat networks, such as AOL [99, 56], Yahoo! [98, 68, 

112, 85, 84] and MSN [57), and open chat networks, such as IRC and Jabber. There 

are also reports of bots in some non-chat systems with chat features, including online 
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games, such as World of Warcraft [28, 107] and Second Life [93]. Chat bots exploit 

these on-line systems to send spam, spread malware, and mount phishing attacks. 

So far, the efforts to combat chat bots have focused on two different approaches: 

(1) keyword-based filtering and (2) human interactive proofs. The keyword-based 

message filters, used by third party chat clients [131, 134], suffer from high false 

negative rates because bot makers frequently update chat bots to evade published 

keyword lists. The use of human interactive proofs, such as CAPTCHAs [3], is also 

ineffective because bot operators assist chat bots in passing the tests to log into chat 

rooms [85, 84]. In August 2007, Yahoo! implemented CAPTCHA to block bots from 

entering chat rooms, but bots are still able to enter chat rooms in large numbers. 

There are online petitions against both AOL and Yahoo! [99, 98], requesting that the 

chat service providers address the growing bot problem. While on-line systems are 

besieged with chat bots, no systematic investigation on chat bots has been conducted. 

The effective detection system against chat bots is in great demand but still missing. 

In the chapter, we first perform a series of measurements on a large commercial 

chat network, Yahoo! chat, to study the behaviors of chat bots and humans in on-line 

chat systems. Our measurements capture a total of 14 different types of chat bots. The 

different types of chat bots use different triggering mechanisms and text obfuscation 

techniques. The former determines message timing, and the latter determines message 

content. Our measurements also reveal that human behavior is more complex than 

bot behavior, which motivates the use of entropy rate, a measure of complexity, for 

chat bot classification. Based on the measurement study, we propose a classification 
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system to accurately distinguish chat hots from humans. There are two main compo­

nents in our classification system: (1) an entropy classifier and (2) a machine-learning 

classifier. Based on the characteristics of message time and size, the entropy classifier 

measures the complexity of chat flows and then classifies them as bots or humans. 

In contrast, the machine-learning classifier is mainly based on message content for 

detection. The two classifiers complement each other in chat bot detection. While the 

entropy classifier requires more messages for detection and, thus, is slower, it is more 

accurate to detect unknown chat bots. Moreover, the entropy classifier helps train the 

machine-learning classifier. The machine learning classifier requires less messages for 

detection and, thus, is faster, but cannot detect most unknown hots. By combining 

the entropy classifier and the machine-learning classifier, the proposed classification 

system is highly effective to capture chat hots, in terms of accuracy and speed. We 

conduct experimental tests on the classification system, and the results validate its 

efficacy on chat bot detection. 

4.1 Background and Related Work 

4.1.1 Chat Systems 

Internet chat is a real-time communication tool that allows on-line users to commu­

nicate via text in virtual spaces, called chat rooms or channels. There are a number 

of protocols that support chat [59], including IRC, Jabber/XMPP, MSN/WLM (Mi­

crosoft), OSCAR (AOL), and YCHT/YMSG (Yahoo!). The users connect to a chat 

server via chat clients that support a certain chat protocol, and they may browse 
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and join many chat rooms featuring a variety of topics. The chat server relays chat 

messages to and from on-line users. A chat service with a large user base might em­

ploy multiple chat servers. In addition, there are several multi-protocol chat clients, 

such as Pidgin (formerly GAIM) and 'Irillian, that allow a user to join different chat 

systems. 

Although IRC has existed for a long time, it has not gained mainstream popularity. 

This is mainly because its console-like interface and command-line-based operation are 

not user-friendly. The recent chat systems improve user experience by using graphic­

based interfaces, as well as adding attractive features such as avatars, emoticons, and 

audio-video communication capabilities. Our study is carried out on the Yahoo! chat 

network, one of the largest and most popular commercial chat systems. 

Yahoo! chat uses proprietary protocols, in which the chat messages are transmitted 

in plain-text, while commands, status and other meta data are transmitted as encoded 

binary data. Unlike those on most IRC networks, users on the Yahoo! chat network 

cannot create chat rooms with customized topics because this feature is disabled by 

Yahoo! to prevent abuses [82]. In addition, users on Yahoo! chat are required to pass 

a CAPTCHA word verification test in order to join a chat room. This recently-added 

feature is to guard against a major source of abuse-hots. 

4.1.2 Chat Bots 

The term bot, short for robot, refers to automated programs, that is, programs that 

do not require a human operator. A chat bot is a program that interacts with a chat 
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service to automate tasks for a human, e.g., creating chat logs. The first-generation 

chat bots were designed to help operate chat rooms, or to entertain chat users, e.g., 

quiz or quote hots. However, with the commercialization of the Internet, the main 

enterprise of chat bots is now sending chat spam. Chat bots deliver spam URLs via 

either links in chat messages or user profile links. A single bot operator, controlling 

a few hundred chat hots, can distribute spam links to thousands of users in different 

chat rooms, making chat bots very profitable to the bot operator who is paid per-click 

through affiliate programs. Other potential abuses of bots include spreading malware, 

phishing, booting, and similar malicious activities. 

A few countermeasures have been used to defend against the abuse of chat bots, 

though none of them are very effective. On the server side, CAPTCHA tests are 

used by Yahoo! chat in an effort to prevent chat hots joining chat rooms. However, 

this defense becomes ineffective as chat bots bypass CAPTCHA tests with human 

assistance. We have observed that bots continue to join chat rooms and sometimes 

even become the majority members of a chat room after the deployment of CAPTCHA 

tests. Third-party chat clients filter out chat bots, mainly based on key words or key 

phrases that are known to be used by chat bots. The drawback with this approach is 

that it cannot capture those unknown or evasive chat bots that do not use the known 

key words or phrases. 
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4.1.3 Related Work 

Dewes et al. [32] conducted a systematic measurement study of IRC and Web-chat 

traffic, revealing several statistical properties of chat traffic. (1) Chat sessions tend 

to last for a long time, and a significant number of IRC sessions last much longer 

than Web-chat sessions. (2) Chat session inter-arrival time follows an exponential 

distribution, while the distribution of message inter-arrival time is not exponential. 

(3) In terms of message size, all chat sessions are dominated by a large number of 

small packets. (4) Over an entire session, typically a user receives about 10 times as 

much data as he sends. However, very active users in Web-chat and automated scripts 

used in IRC may send more data than they receive. 

There is considerable overlap between chat and instant messaging (IM) systems, in 

terms of protocol and user base. Many widely used chat systems such as IRC predate 

the rise of IM systems, and have great impact upon the IM system and protocol 

design. In return, some new features that make the IM systems more user-friendly 

have been back-ported to the chat systems. For example, IRC, a classic chat system, 

implements a number of IM-like features, such as presence and file transfers, in its 

current versions. Some messaging service providers, such as Yahoo!, offer both chat 

and IM accesses to their end-user clients. With this in mind, we outline some related 

work on IM systems. Liu et al. [73] explored client-side and server-side methods 

for detecting and filtering IM spam or spim. However, their evaluation is based on 

a corpus of short e-mail spam messages, due to the lack of data on spim. In [77], 

Mannan et al. studied IM worms, automated malware that spreads on IM systems 
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using the IM contact list. Leveraging the spreading characteristics of IM malware, 

Xie et al. [130] presented an IM malware detection and suppression system based on 

the honeypot concept. 

Botnets consist of a large number of slave computing assets, which are also called 

"hots". However, the usage and behavior of hots in botnets are quite different from 

those of chat hots. The hots in botnets are malicious programs designed specifically to 

run on compromised hosts on the Internet, and they are used as platforms to launch a 

variety of illicit and criminal activities such as credential theft, phishing, distributed 

denial-of-service attacks, etc. In contrast, chat hots are automated programs designed 

mainly to interact with chat users by sending spam messages and URLs in chat rooms. 

Although having been used by botnets as command and control mechanisms [49, 4], 

IRC and other chat systems do not play an irreplaceable role in botnets. In fact, due 

to the increasing focus on detecting and thwarting IRC-based botnets (30, 52, 53], 

recently emerged botnets, such as Phatbot, Nugache, Slapper, and Sinit, show a 

tendency towards using P2P-based control architectures [123]. 

Chat spam shares some similarities with email spam. Like email spam, chat 

spam contains advertisements of illegal services and counterfeit goods, and solicits 

human users to click spam URLs. Chat hots employ many text obfuscation tech­

niques used by email spam such as word padding and synonym substitution. Since 

the detection of email spam can be easily converted into the problem of text clas­

sification, many content-based filters utilize machine-learning algorithms for filtering 

email spam. Among them, Bayesian-based statistical approaches [51, 135, 17, 137, 72] 
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have achieved high accuracy and performance. Although very successful, Bayesian­

based spam detection techniques still can be evaded by carefully crafted messages 

[128, 74, 64]. 

4.2 Measurement 

In this section, we detail our measurements on Yahoo! chat, one of the most popular 

commercial chat services. The focus of our measurements is on public messages posted 

to Yahoo! chat rooms. The logging of chat messages is available on the standard 

Yahoo! chat client, as well as most third party chat clients. Upon entering chat, all 

chat users are shown a disclaimer from Yahoo! that other users can log their messages. 

However, we consider the contents of the chat logs to be sensitive, so we only present 

fully-anonymized statistics. 

Our data was collected between August and November of 2007. In late August, 

Yahoo! implemented a CAPTCHA check on entering chat rooms [85, 7], creating 

technical problems that made their chat rooms unstable for about two weeks [5, 6]. 

At the same time, Yahoo! implemented a protocol update, preventing most third 

party chat clients, used by a large proportion of Yahoo! chat users, from accessing the 

chat rooms. In short, these upgrades made the chat rooms difficult to be accessed for 

both chat bots and humans. In mid to late September, both chat bot and third party 

client developers updated their programs. By early October, chat bots were found in 

Yahoo! chat [84], possibly bypassing the CAPTCHA check with human assistance. 

Due to these problems and the lack of chat bots in September and early October, we 
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perform our analysis on August and November chat logs. In August and November, 

we collected a total of 1,440 hours of chat logs. There are 147 individual chat logs 

from 21 different chat rooms. The process of reading and labeling these chat logs 

required about 100 hours. To the best of our knowledge, we are the first in the large 

scale measurement and classification of chat bots. 

4.2.1 Log-Based Classification 

In order to characterize the behavior of human users and that of chat bots, we need 

two sets of chat logs pre-labeled as bots and humans. To create such datasets, we 

perform log-based classification by reading and labeling a large number of chat logs. 

The chat users are labeled in three categories: human, bot, and ambiguous. 

The log-based classification process is a variation of the Thring test. In a standard 

Thring test [118], the examiner converses with a test subject (a possible machine) 

for five minutes, and then decides if the subject is a human or a machine. In our 

classification process, the examiner observes a long conversation between a test subject 

(a possible chat bot) and one or more third parties, and then decides if the subject 

is a human or a chat bot. In addition, our examiner checks the content of URLs 

and typically observes multiple instances of the same chat bot, which further improve 

our classification accuracy. Moreover, given that the best practice of current artificial 

intelligences [116] can rarely pass a non-restricted Thring test, our classification of 

chat bots should be very accurate. 

Although a Thring test is subjective, we outline a few important criteria. The 
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main criterion for being labeled as human is a high proportion of specific, intelligent, 

and human-like responses to other users. In general, if a user's responses suggest 

more advanced intelligence than current state-of-the-art AI [116], then the user can 

be labeled as human. The ambiguous label is reserved for non-English, incoherent, 

or non-communicative users. The criteria for being classified as bot are as follows. 

The first is the lack of the intelligent responses required for the human label. The 

second is the repetition of similar phrases either over time or from other users (other 

instances of the same chat bot). The third is the presence of spam or malware URLs 

in messages or in the user's profile. 

4.2.2 Analysis 

In total, our measurements capture 14 different types of chat bots. The different types 

of chat bots are determined by their triggering mechanisms and text obfuscation 

schemes. The former relates to message timing, and the latter relates to message 

content. The two main types of triggering mechanisms observed in our measurements 

are timer-based and response-based. A timer-based bot sends messages based on a 

timer, which can be periodic (i.e., fixed time intervals) or random (i.e., variable time 

intervals). A response-based bot sends messages based on programmed responses to 

specific content in messages posted by other users. 

There are many different kinds of text obfuscation schemes. The purpose of text 

obfuscation is to vary the content of messages and make bots more difficult to rec­

ognize or appear more human-like. We observed four basic text obfuscation methods 
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that chat hots use to evade filtering or detection. First, chat bots introduce random 

characters or space into their messages, similar to some spam e-mails. Second, chat 

bots use various synonym phrases to avoid obvious keywords. By this method, a 

template with several synonyms for multiple words can lead to thousands of possible 

messages. Third, chat bots use short messages or break up long messages into multiple 

messages to evade message filters that work on a message-by-message basis. Fourth, 

and most interestingly, chat bots replay human phrases entered by other chat users. 

According to our observation, the main activity of chat bots is to send spam links 

to chat users. There are two approaches that chat bots use to distribute spam links in 

chat rooms. The first is to post a message with a spam link directly in the chat room. 

The second is to enter the spam URL in the chat bot's user profile and then convince 

the users to view the profile and click the link. Our logs also include some examples 

of malware spreading via chat rooms. The behavior of malware-spreading chat bots 

is very similar to that of spam-sending chat bots, as both attempt to lure human 

users to click links. Although we did not perform detailed malware analysis on links 

posted in the chat rooms and Yahoo! applies filters to block links to known malicious 

files, we found several worm instances in our data. There are 12 W32.1maut.AS [114] 

worms appeared in the August chat logs, and 23 W32.Imaut.AS worms appeared in 

the November chat logs. The November worms attempted to send malicious links 

but were blocked by Yahoo! (the malicious links in their messages being removed), 

however, the August worms were able to send out malicious links. 

The focus of our measurements is mainly on short term statistics, as these statistics 
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are most likely to be useful in chat bot classification. The two key measurement 

metrics in this study are inter-message delay and message size. Based on these two 

metrics, we profile the behavior of human and that of chat bots. Among chat bots, we 

further divide them into four different groups: periodic bots, random bots, responder 

bots, and replay bots. With respect to these short-term statistics, human and chat 

bots behave differently, as shown below. 

4.2.2.1 Humans 
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Figure 4.1: Distribution of Human Inter-Message Delay (a) and Message Size (b) 

Figure 4.1 shows the probability distributions of human inter-message delay and 

message size. Since the behavior of humans is persistent, we only draw the probability 

mass function (pmf) curves based on the August data. The previous study on Internet 

chat systems [32] observed that the distribution of inter-message delay in chat systems 

was heavy tailed. In general our measurement result conforms to that observation. 

The body part of the pmf curve in Figure 4.1 (a) (log-log scale) can be linearly fitted, 

indicating that the distribution of human inter-message delays follows a power law. 
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Figure 4.2: Distribution of Periodic Bot Inter-Message Delay (a) and Message Size 
(b) 

In other words, the distribution is heavy tailed. We also find that the pmf curve of 

human message size in Figure 4.1 (b) can be well fitted by an exponential distribution 

with >. = 0.034 after excluding the initial spike. 

4.2.2.2 Periodic Bots 

A periodic bot posts messages mainly at regular time intervals. The delay periods of 

periodic bots, especially those bots that use long delays, may vary by several seconds. 

The variation of delay period may be attributed to either transmission delay caused 

by network traffic congestion or chat server delay, or message emission delay incurred 

by system overloading on the bot hosting machine. The posting of periodic messages 

is a simple but effective mechanism for distributing messages, so it is not surprising 

that a substantial portion of chat bots use periodic timers. 

We display the probability distributions of inter-message delay and message size 

for periodic bots in Figure 4.2. We use '+' for displaying August data and '•' for 
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November data. The distributions of periodic bots are distinct from those of humans 

shown in Figure 4.1. The distribution of inter-message delay for periodic bots clearly 

manifests the timer-triggering characteristic of periodic bots. There are three clusters 

with high probabilities at time ranges [30-50], [100-110], and [150-170]. These clus­

ters correspond to the November periodic bots with timer values around 40 seconds 

and the August periodic bots with timer values around 105 and 160 seconds, respec­

tively. The message size pmf curve of the August periodic bots shows an interesting 

bell shape, much like a normal distribution. After examining message contents, we 

find that the bell shape may be attributed to the message composition method some 

August bots used. As shown in Appendix A, some August periodic bots compose a 

message using a single template. The template has several parts and each part is as­

sociated with several synonym phrases. Since the length of each part is independent 

and identically distributed, the length of whole message, i.e., the sum of all parts, 

should approximate a normal distribution. The November bots employ a similar com­

position method, but use several templates of different lengths. Thus, the message 

size distribution of the November periodic bots reflects the distribution of the lengths 

of the different templates, with the length of each individual template approximating 

a normal distribution. 

4.2.2.3 Random Bots 

A random bot posts messages at random time intervals. The random bots in our data 

used different random distributions, some discrete and others continuous, to generate 
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inter-message delays. The use of random timers makes random bots appear more 

human-like than periodic bots. In statistical terms, however, random bots exhibit 

quite different inter-message delay distributions than humans. 

Figure 4.3 depicts the probability distributions of inter-message delay and message 

size for random bots. Compared to periodic bots, random bots have more dispersed 

timer values. In addition, the August random bots have a large overlap with the 

November random bots. The points with high probabilities (greater than 10-2 ) in 

the time range [30-90] in Figure 4.3 (a) represent the August and November random 

bots that use a discrete distribution of 40, 64, and 88 seconds. The wide November 

cluster with medium probabilities in the time range [40-130] is created by the Novem-

ber random bots that use a uniform distribution between 45 and 125 seconds. The 

probabilities of different message sizes for the August and November random bots are 

mainly in the size range [0-50]. Unlike periodic bots, most random bots do not use 

template or synonym replacement, but directly repeat messages. Thus, as their mes-
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Figure 4.5: Distribution of Replay Bot Inter-Message Delay (a) and Message Size 
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sages are selected from a database at random, the message size distribution reflects 

the proportion of messages of different sizes in the database. 

4.2.2.4 Responder Bots 

A responder bot sends messages based on the content of messages in the chat room. 

For example, a message ending with a question mark may trigger a responder bot to 

send a vague response with a URL, as shown in Appendix A. The vague response, 
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in the context, may trick human users into believing that the responder is a human 

and further clicking the link. Moreover, the message triggering mechanism makes 

responder hots look more like humans in terms of timing statistics than periodic or 

random hots. 

To gain more insights into responder bots, we managed to obtain a configuration 

file for a typical responder bot [119]. There are a number of parameters for making 

the responder bot mimic humans. The bot can be configured with a fixed typing rate, 

so that responses with different lengths take different time to "type." The bot can 

also be set to either ignore triggers while simulating typing, or rate-limit responses. 

In addition, responses can be assigned with probabilities, so that the responder bot 

responds to a given trigger in a random manner. 

Figure 4.4 shows the probability distributions of inter-message delay and message 

size for responder hots. Note that only the distribution of the August responder 

hots is shown due to the small number of responder hots found in November. Since 

the message emission of responder hots is triggered by human messages, theoretically 

the distribution of inter-message delays of responder hots should demonstrate certain 

similarity to that of humans. Figure 4.4 (a) confirms this hypothesis. Like Figure 

4.1 (a), the pmf of responder bots (excluding the head part) in log-log scale exhibits 

a clear sign of a heavy tail. But unlike human messages, the sizes of responder bot 

messages vary in a much narrower range (between 1 and 160). The bell shape of 

the distribution for message size less than 100 indicates that responder hots share 

a similar message composition technique with periodic bots, and their messages are 

94 



composed as templates with multiple parts, as shown in Appendix A. 

4.2.2.5 Replay Bots 

A replay bot not only sends its own messages, but also repeats messages from other 

users to appear more like a human user. In our experience, replayed phrases are 

related to the same topic but do not appear in the same chat room as the original 

ones. Therefore, replayed phrases are either taken from other chat rooms on the same 

topic or saved previously in a database and replayed. 

The use of replayed phrases in a crowded or "noisy" chat room does, in fact, 

make replay bots look more like human to inattentive users. The replayed phrases are 

sometimes nonsensical in the context of the chat, but human users tend to naturally 

ignore such statements. When replay bots succeed in fooling human users, these users 

are more likely to click links posted by the bots or visit their profiles. Interestingly, 

replay bots sometimes replay phrases uttered by other chat bots, making them very 

easy to be recognized. The use of replay is potentially effective in thwarting detection 

methods, as detection tests must deal with a combination of human and bots phrases. 

By using human phrases, replay bots can easily defeat keyword-based message filters 

that filter message-by-message, as the human phrases should not be filtered out. 

Figure 4.5 illustrates the probability distributions of inter-message delay and mes­

sage size for replay bots. In terms of inter-message delay, a replay bot is just a 

variation of a periodic bot, which is demonstrated by the high spike in Figure 4.5 

(a). By using human phrases, replay bots successfully mimic human users in terms 
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Figure 4.6: Classification System Diagram 

of message size distribution. The message size distribution of replay hots in Figure 

4.5 (b) largely resembles that of human users, and can be fitted by an exponential 

distribution with ,\ = 0.028. 

4.3 Classification System 

This section describes the design of our chat bot classification system. The two main 

components of our classification system are the entropy classifier and the machine 

learning classifier. The basic structure of our chat bot classification system is shown in 

Figure 4.6. The two classifiers, entropy and machine learning, operate concurrently to 

process input and make classification decisions, while the machine learning classifier 

relies on the entropy classifier to build the bot corpus. The entropy classifier uses 

entropy and corrected conditional entropy to score chat users and then classifies them 

as chat bots or humans. The main task of the entropy classifier is to capture new chat 

hots and add them to the chat bot corpus. The human corpus can be taken from a 

database of clean chat logs or created by manual log-based classification, as described 

in Section 5.2. The machine learning classifier uses the bot and human corpora to 

96 



learn text patterns of bots and humans, and then it can quickly classify chat bots 

based on these patterns. The two classifiers are detailed as follows. 

4.3.1 Entropy Classifier 

The entropy classifier makes classification decisions based on entropy and entropy 

rate measures of message sizes and inter-message delays for chat users. If either the 

entropy or entropy rate is low for these characteristics, it indicates the regular or 

predictable behavior of a likely chat bot. If both the entropy and entropy rate is 

high for these characteristics, it indicates the irregular or unpredictable behavior of a 

possible human. 

To use entropy measures for classification, we set a cutoff score for each entropy 

measure. If a test score is greater than or equal to the cutoff score, the chat user 

is classified as a human. If the test score is less than the cutoff score, the chat user 

is classified as a chat bot. The specific cutoff score is an important parameter in 

determining the false positive and true positive rates of the entropy classifier. On the 

one hand, if the cutoff score is too high, then too many humans will be misclassified as 

bots. On the other hand, if the cutoff score is too low, then too many chat bots will be 

misclassified as humans. Due to the importance of achieving a low false positive rate, 

we select the cutoff scores based on human entropy scores to achieve a targeted false 

positive rate. The specific cutoff scores and targeted false positive rates are described 

in Section 5.4. 
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4.3.1.1 Entropy Measures 

The entropy rate, which is the average entropy per random variable, can be used as 

a measure of complexity or regularity [101, 105, 44]. The entropy rate is defined as 

the conditional entropy of a sequence of infinite length. The entropy rate is upper-

bounded by the entropy of the first-order probability density function or first-order 

entropy. A independent and identically distributed (i.i.d.) process has an entropy rate 

equal to its first-order entropy. A highly complex process has a high entropy rate, 

while a highly regular process has a low entropy rate. 

A random process X = {Xi} is defined as an indexed sequence of random variables. 

To give the definition of the entropy rate of a random process, we first define the 

entropy of a sequence of random variables as: 

L P(x1, ... , Xm) log P(x1, ... , Xm), 
X1, ... ,Xm 

where P(x1, ... , Xm) is the joint probability P(X1 = x1, ... , Xm = Xm)· 

Then, from the entropy of a sequence of random variables, we define the conditional 

entropy of a random variable given a previous sequence of random variables as: 

Lastly, the entropy rate of a random process is defined as: 

Since the entropy rate is the conditional entropy of a sequence of infinite length, 
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it cannot be measure for finite samples. Thus, we estimate the entropy rate with the 

conditional entropy of finite samples. In practice, we replace probability density func­

tions with empirical probability density functions based on the method of histograms. 

The data is binned in Q bins of approximately equal probability. The empirical prob­

ability density functions are determined by the proportions of bin number sequences 

in the data, i.e., the proportion of a sequence is the probability of that sequence. 

The estimates of the entropy and conditional entropy, based on empirical probability 

density functions, are represented as: EN and CE, respectively. 

There is a problem with the estimation of CE(Xm I X1, ... , Xm-d for some values 

of m. The conditional entropy tends to zero as m increases, due to limited data. If a 

specific sequence of length m - 1 is found only once in the data, then the extension 

of this sequence to length m will also be found only once. Therefore, the length 

m sequence can be predicted by the length m - 1 sequence, and the length m and 

m- 1 sequences cancel out. If no sequence of length m is repeated in the data, then 

CE(Xm I X1, ... ,Xm-d is zero, even for i.i.d. processes. 

To solve the problem of limited data, without fixing the length of m, we use the 

corrected conditional entropy [101] represented as CC E. The corrected conditional 

entropy is defined as: 

where perc(Xm) is the percentage of unique sequences of length m and EN(Xl) is 

the entropy with m fixed at 1 or the first-order entropy. 
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Table 4.1: Message Composition of Chat Bot and Human Datasets 
AUG. BOTS NOV. BOTS HUMANS 

periodic I random I responder periodic I random I replay human 
#of msgs. 25,258 1 13,998 1 6,160 10,639 1 22,820 1 8,054 342,696 

The estimate of the entropy rate is the minimum of the corrected conditional 

entropy over different values of m. The minimum of the corrected conditional entropy 

is considered to be the best estimate of the entropy rate from the available data. 

4.3.2 Machine Learning Classifier 

The machine learning classifier uses the content of chat messages to identify chat bots. 

Since chat messages (including emoticons) are text, the identification of chat bots can 

be perfectly fitted into the domain of machine learning text classification. Within 

the machine learning paradigm, the text classification problem can be formalized as 

f : T x C ____, {0, 1}, where f is the classifier, T = {t1, t2, ... , tn} is the texts to be 

classified, and C = {cl,c2, ... ,ck} is the set of pre-defined classes [108]. Value 1 for 

f ( ti, Cj) indicates that text ti is in class c1 and value 0 indicates the opposite decision. 

There are many techniques that can be used for text classification, such as nai:ve Bayes, 

support vector machines, and decision trees. Among them, Bayesian classifiers have 

been very successful in text classification, particularly in email spam detection. Due to 

the similarity between chat spam and email spam, we choose Bayesian classification 

for our machine learning classifier for detecting chat bots. We leave study on the 

applicability of other types of machine learning classifiers to our future work. 

Within the framework of Bayesian classification, identifying if chat message M is 

issued by a bot or human is achieved by computing the probability of M being from a 
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bot with the given message content, i.e., P(C = botiM). If the probability is equal to 

or greater than a pre-defined threshold, then message M is classified as a bot message. 

According to Bayes theorem, 

p b M _ P(Mibot)P(bot) _ P(Mibot)P(bot) 
( otl ) - P(M) - P(Mibot)P(bot) + P(Mihuman)P(human) · 

A message Misdescribed by its feature vector (ft, h, ... , fn)· A feature f is a single 

word or a combination of multiple words in the message. To simplify computation, 

in practice it is usually assumed that all features are conditionally independent with 

each other for the given category. Thus, we have 

n 
P(bot) fi P(filbot) 

P(botiM) = n i==l n 

P(bot) fi P(fiibot) + P(human) fi P(fiihuman) 
i==l i==l 

The value of P(botiM) may vary in different implementations (see [51, 137] for im-

plementation details) of Bayesian classification due to differences in assumption and 

simplification. 

Given the abundance of implementations of Bayesian classification, we directly 

adopt one implementation, namely CRM 114[135], as our machine learning classifica-

tion component. CRM 114 is a powerful text classification system that has achieved 

very high accuracy in email spam identification. The default classifier of CRM 114, 

OSB (Orthogonal Sparse Bigram), is a type of Bayesian classifier. Different from 

common Bayesian classifiers which treat individual words as features, OSB uses word 

pairs as features instead. OSB first chops the whole input into multiple basic units 
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with five consecutive words in each unit. Then, it extracts four word pairs from 

each unit to construct features, and derives their probabilities. Finally, OSB applies 

Bayes theorem to compute the overall probability that the text belongs to one class 

or another. 

4.4 Experimental Evaluation 

In this section, we evaluate the effectiveness of our proposed classification system. 

Our classification tests are based on chat logs collected from the Yahoo! chat system. 

We test the two classifiers, entropy-based and machine-learning-based, against chat 

bots from August and November datasets. The machine learning classifier is tested 

with fully-supervised training and entropy-classifier-based training. The accuracy of 

classification is measured in terms of false positive and false negative rates. The false 

positives are those human users that are misclassified as chat bots, while the false 

negatives are those chat bots that are misclassified as human users. The speed of 

classification is mainly determined by the minimum number of messages that are re-

quired for accurate classification. In general, a high number means slow classification, 

whereas a low number means fast classification. 

Table 4.2: True Positive and Negative Rates for Entropy Classifier 
AUG. BOTS NOV. BOTS HUMANS 

periodic random responder periodic random replay human 
test true pos. true pos. true pos. true pos. true pos. true pos. false pos. 

EN(imd) 121/121 68/68 1/30 51/51 109/109 40/40 7/1713 
CCE(imd) 121/121 49/68 4/30 51/51 109/109 40/40 11/1713 

EN(ms) 92/121 7/68 8/30 46/51 34/109 0/40 7/1713 
CCE(ms) 77/121 8/68 30/30 51/51 6/109 0/40 11/1713 

OVERALL 121/121 68/68 30/30 51/51 109/109 40/40 17/1713 
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4.4.1 Experimental Setup 

The chat logs used in our experiments are mainly in three datasets: (1) human chat 

logs from August 2007, (2) bot chat logs from August 2007, and (3) bot chat logs 

from November 2007. In total, these chat logs contain 342,696 human messages and 

87,049 bot messages. In our experiments, we use the first half of each chat log, human 

and bot, for training our classifiers and the second half for testing our classifiers. The 

composition of the chat logs for the three datasets is listed in Table 4.1. 

The entropy classifier only requires a human training set. We use the human 

training set to determine the cutoff scores, which are used by the entropy classifier to 

decide whether a test sample is a human or bot. The target false positive rate is set 

at 0.01. To achieve this false positive rate, the cutoff scores are set at approximately 

the 1st percentile of human training set scores. Then, samples that score higher than 

the cutoff are classified as humans, while samples that score lower than the cutoff are 

classified as bots. The entropy classifier uses two entropy tests: entropy and corrected 

conditional entropy. The entropy test estimates first-order entropy, and the corrected 

conditional entropy estimates higher-order entropy or entropy rate. The corrected 

conditional entropy test is more precise with coarse-grain bins, whereas the entropy 

test is more accurate with fine-grains bins [44]. Therefore, we use Q = 5 for the 

corrected conditional entropy test and Q = 256 with m fixed at 1 for the entropy test. 

We run classification tests for each bot type using the entropy classifier and ma­

chine learning classifier. The machine learning classifier is tested based on fully­

supervised training and then entropy-based training. In fully-supervised training, 
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the machine learning classifier is trained with manually labeled data, as described 

in Section 5.2. In entropy-based training, the machine learning classifier is trained 

with data labeled by the entropy classifier. For each evaluation, the entropy classifier 

uses samples of 100 messages, while the machine learning classifier uses samples of 25 

messages. 

4.4.2 Experimental Results 

We now present the results for the entropy classifier and machine learning classifier. 

The four chat bot types are: periodic, random, responder, and replay. The classifi­

cation tests are organized by chat bot type, and are ordered by increasing detection 

difficulty. 

4.4.2.1 Entropy Classifier 

The detection results of the entropy classifier are listed in Table 4.2, which includes 

the results of the entropy test (EN) and corrected conditional entropy test (CCE) for 

inter-message delay (imd), and message size (ms). The overall results for all entropy­

based tests are shown in the final row of the table. The true positives are the total 

unique bot samples correctly classified as hots. The false positives are the total unique 

human samples mistakenly classified as hots. 

Periodic Bots: As the simplest group of hots, periodic hots are the easiest 

to detect. They use different fixed timers and repeatedly post messages at regular 

intervals. Therefore, their inter-message delays are concentrated in a narrower range 

than those of humans, resulting in lower entropy than that of humans. The inter-
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message delay EN and CCE tests detect 100% of all periodic bots in both August 

and November datasets. The message size EN and CCE tests detect 76% and 63% of 

the August periodic bots, respectively, and 90% and 100% of the November periodic 

bots, respectively. These slightly lower detection rates are due to a small proportion of 

humans with low entropy scores that overlap with some periodic bots. These humans 

post mainly short messages, resulting in message size distributions with low entropy. 

Random Bots: The random bots use random timers with different distributions. 

Some random hots use discrete timings, e.g., 40, 64, or 88 seconds, while the others 

use continuous timings, e.g., uniformly distributed delays between 45 and 125 seconds. 

The inter-message delay EN and CCE tests detect 100% of all random bots, with 

one exception: the inter-message delay CCE test against the August random hots 

only achieves 72% detection rate, which is caused by the following two conditions: (1) 

the range of message delays of random hots is close to that of humans; (2) sometimes 

the randomly-generated delay sequences have similar entropy rate to human patterns. 

The message size EN and CCE tests detect 31% and 6% of August random bots, 

respectively, and 7% and 8% of November random bots, respectively. These low 

detection rates are again due to a small proportion of humans with low message 

size entropy scores. However, unlike periodic bots, the message size distribution of 

random bots is highly dispersed, and thus, a larger proportion of random bots have 

high entropy scores, which overlap with those of humans. 

Responder Bots: The responder bots are among the advanced bots, and they 

behave more like humans than random or periodic bots. They are triggered to post 
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messages by certain human phrases. As a result, their timings are quite similar to 

those of humans. 

The inter-message delay EN and CCE tests detect very few responder hots, only 

3% and 13%, respectively. This demonstrates that human-message-triggered respond­

ing is a simple yet very effective mechanism for imitating the timing of human inter­

actions. However, the detection rate for the message size EN test is slightly better 

at 27%, and the detection rate for the message size CCE test reaches 100%. While 

the message size distribution has sufficiently high entropy to frequently evade the EN 

test, there is some dependence between subsequent message sizes, and thus, the CCE 

detects the low entropy pattern over time. 

Replay Bots: The replay hots also belong to the advanced and human-like hots. 

They use replay attacks to fool humans. More specifically, the hots replay phrases they 

observed in chat rooms. Although not sophisticated in terms of implementation, the 

replay hots are quite effective in deceiving humans as well as frustrating our message­

size-based detections: the message size EN and CCE tests both have detection rates 

of 0%. Despite their clever trick, the timing of replay hots is periodic and easily 

detected. The inter-message delay EN and CCE tests are very successful at detecting 

replay hots, both with 100% detection accuracy. 

4.4.2.2 Supervised and Hybrid Machine Learning Classifiers 

The detection results of the machine learning classifier are listed in Table 4.3. Table 

4.3 shows the results for the fully-supervised machine learning (SupML) classifier 

106 



Table 4.3: True Positive and Negative Rates for Machine Learning and Hybrid Clas­
sifiers 

AUG. BOTS NOV. BOTS HUMANS 
periodic random responder periodic random replay human 

test true pas. true pas. true pas. true pas. true pas. true pas. false pas. 
SupML 121/121 68/68 30/30 14/51 104/109 1/40 0/1713 

SupM £retrained 121/121 68/68 30/30 51/51 109/109 40/40 0/1713 
EntML 121/121 68/68 30/30 51/51 109/109 40/40 1/1713 

and entropy-trained machine learning (EntM L) classifier, both trained on the Au-

gust training datasets, and the fully-supervised machine learning (SupM Lretrained) 

classifier trained on August and November training datasets. 

Periodic Bots: For the August dataset, both SupM L and EntM L classifiers 

detect 100% of all periodic bots. For the November dataset, however, the SupM L 

classifier only detects 27% of all periodic bots. The lower detection rate is due to 

the fact that 62% of the periodic bot messages in November chat logs are gener-

ated by new bots, making the SupM L classifier ineffective without re-training. The 

SupM Lretrained classifier detects 100% of November periodic bots. The EntM L 

classifier also achieves 100% for the November dataset. 

Random Bots: For the August dataset, both SupM L and EntM L classifiers 

detect 100% of all random bots. For the November dataset, the SupM L classifier 

detects 95% of all random bots, and the SupM Lretrained classifier detects 100% of 

all random bots. Although 52% of the random bots have been upgraded according to 

our observation, the old training set is still mostly effective because certain content 

features of August random bots still appear in November. The EntM L classifier again 

achieves 100% detection accuracy for the November dataset. 
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Responder Bots: We only present the detection results of responder bots for 

the August dataset, as the number of responder bots in the November dataset is very 

small. Although responder hots effectively mimic human timing, their message con­

tents are only slightly obfuscated and are easily detected. The SupM L and EntM L 

classifiers both detect 100% of all responder hots. 

Replay Bots: The replay bots only exist in the November dataset. The SupM L 

classifier detects only 3% of all replay bots, as these bots are newly introduced in 

November. The SupM Lretrained classifier detects 100% of all replay bots. The 

machine learning classifier reliably detects replay bots in the presence of a substantial 

number of replayed human phrases, indicating the effectiveness of machine learning 

techniques in chat bot classification. 

4.5 Conclusion 

This chapter first presents a large-scale measurement study on Internet chat. We 

collected two-month chat logs for 21 different chat rooms from one of the top Internet 

chat service providers. From the chat logs, we identified a total of 14 different types 

of chat hots and grouped them into four categories: periodic bots, random hots, 

responder hots, and replay hots. Through statistical analysis on inter-message delay 

and message size for both chat bots and humans, we found that chat bots behave very 

differently from human users. More specifically, chat bots exhibit certain regularities 

in either inter-message delay or message size. Although responder bots and replay 

bots employ advanced techniques to behave more human-like in some aspects, they 
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still lack the overall sophistication of humans. 

Based on the measurement study, we further proposed a chat bot classification 

system, which utilizes entropy-based and machine-learning-based classifiers to accu­

rately detect chat bots. The entropy-based classifier exploits the low entropy charac­

teristic of chat bots in either inter-message delay or message size, while the machine­

learning-based classifier leverages the message content difference between humans and 

chat bots. The entropy-based classifier is able to detect unknown bots, including 

human-like bots such as responder and replay bots. However, it takes a relatively 

long time for detection, i.e., a large number of messages are required. Compared to 

the entropy-based classifier, the machine-learning-based classifier is much faster, i.e., 

a small number of messages are required. In addition to bot detection, a major task of 

the entropy-based classifier is to build and maintain the bot corpus. With the help of 

bot corpus, the machine-learning-based classifier is trained, and consequently, is able 

to detect chat bots quickly and accurately. Our experimental results demonstrate 

that the hybrid classification system is fast in detecting known bots and is accurate 

in identifying previously-unknown bots. 
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Chapter 5 

Detecting Online Game Bots 

The online gaming market has experienced rapid growth for the past few years. In 

2008, online gaming revenues were estimated at $7.6 billion world-wide [81]. The 

most profitable online games are subscription-based massive multiplayer online games 

(MMOGs), such as World of Warcraft. In 2008, World of Warcraft reached 11.5 

million subscribers [16]. Each subscriber has to pay as much as $15 per month. It 

is no surprise that MMOGs make up about half of online gaming revenues [81]. As 

MMOGs gain in economic and social importance, it has become imperative to shield 

MMOGs from malicious exploits for the benefit of on-line game companies and players. 

Currently the most common form of malicious exploit and the most difficult to 

thwart, is the use of game bots to gain unfair advantages. Game bots have plagued 

most of the popular MMOGs, including World of Warcraft [80, 104, 129, 100, 95], 

Second Life [92], and Ultima Online [40, 113], and some non-MMOGs such as Diablo 2 

[33]. The primary goal of game bots is to amass game currency, items, and experience. 
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Interestingly, game currency can be traded for real currency1, making cheating a 

profitable enterprise. Since MMOGs are small economies, a large influx of game 

currency causes hyper-inflation, hurting all players. Thus, the use of game bots is 

a serious problem for not only giving some players unfair advantages but also for 

creating large imbalances in game economies as a whole. With a large investment in 

development costs, game service providers consider anti-cheating mechanisms a high 

priority. 

The existing methods for combating bots are not successful in the protection of 

on-line games. The approaches based on human interactive proofs (HIPs), such as 

CAPTCHAs, are the most commonly used to distinguish bots from humans. However, 

the inherent interactive requirement makes HIP-based approaches inadequate to apply 

in MMOGs. In particular, multiple tests are needed throughout a game session to 

block the login of bots; otherwise, a malicious player can pass the one-time test and log 

a bot into the game. Although multiple tests can foil the malicious player's attempt for 

bot login, they are too obtrusive and distractive for a regular player to tolerate as well. 

A different approach, taken by some game companies, makes use of a process monitor 

to scan for known bot or cheat programs running on a player's computer. Blizzard, 

the makers of World of Warcraft, developed such a system called the Warden that 

scans processes and sends information back to their servers. A number of similar 

anti-cheat systems have been built for other games [39, 120, 94, 35]. However, this 

scan-based approach has proven ineffective, and even worse, raises privacy concerns. 

1The exchange rate for World of Warcraft is 1,000 gold to $11.70 as of July 25th, 2009 [117]. 
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The Electronic Frontier Foundation views the Warden as spyware [79]. 

Besides technical approaches, Blizzard has pursued legal action against bot makers 

[9], claiming over $1 million per year in additional operating costs caused by game 

bots in their lawsuit [15]. Moreover, Blizzard has banned thousands of accounts for 

cheating [21], yet many players continue cheating via bots and slip through the cracks 

[95, 100]. 

In this chapter, we introduce an approach based on human observational proofs 

(HOPs) to capture game bots. HOPs offer two distinct advantages over HIPs. First, 

HOPs provide continuous monitoring throughout a session. Second, HOPs are non­

interactive, i.e., no test is presented to a player, making HOPs completely non­

obtrusive. The use of HOPs is mainly motivated by the problems faced by HIPs 

and methods used in behavioral biometric systems [96, 103, 43, 2]. Similar behavior­

based approaches have been used in many previous intrusion detection systems [46, ? , 

67, 102, 121]. We collect a series of user-input measurements from a popular MMOG, 

World of Warcraft, to study the behaviors of current game bots and humans. While 

human players visually recognize objects on the screen and physically control the 

mouse and keyboard, game bots synthetically generate mouse and keyboard events 

and cannot directly recognize most objects. Our measurement results clearly show 

the fundamental differences between current game bots and humans in how certain 

tasks are performed in the game. Passively observing these differences, HOPs provide 

an effective way to detect current game bots. 

Based on HOPs, we design and develop a game bot defense system that analyzes 
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user-input data to differentiate game bots from human players in a timely manner. 

The proposed HOP system consists of two major components: a client-side exporter 

and a server-side analyzer. The exporter is responsible for sending a stream of user­

input actions to the server. The analyzer then processes the user-input stream and 

decides whether the client is operated by a bot or a human. The core of the analyzer 

is a cascade neural network that "learns" the behaviors of normal human players, as 

neural networks are known to perform well with user-input data [2, 90, 91]. Note 

that the latest MMOGs virtually all support automatic updates, so the deployment 

of the client-side exporter is not an issue. Moreover, the overhead at the client side is 

negligible and the overhead at the server side is small and affordable in terms of CPU 

and memory consumptions even with thousands of players per server. To validate the 

efficacy of our defense system, we conduct experiments based on user-input traces of 

bots and humans. The HOP system is able to capture 99.80% of current game bots 

for World of Warcraft within 39.60 seconds on average. 

It is an arms race between game exploits and their countermeasures. Once highly 

motivated bot developers know the HOP approach, it is possible for them to create 

more advanced game bots to evade the HOP system. However, the purpose of the 

HOP system is to raise the bar against game exploits and force a determined bot 

developer to spend significant time and effort in building next-generation game bots 

for detection evasion. Note that, to operate the game in a human-like manner, game 

bots have to process complex visuals and model different aspects of human-computer 

interaction and behavior, which we believe is non-trivial to succeed. 
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5.1 Background 

In this section, we first briefly present the evolution of game bots. Then, we de­

scribe the game playing behaviors of human players and game bots, respectively, and 

highlight their differences in a qualitative way. 

5.1.1 Game Bots 

A variety of exploits have appeared in the virtual game world for fun, for win, and for 

profit. Among these game exploits, game bots are regarded as the most commonly­

used and difficult-to-handle exploit. The earliest game bots were developed for the first 

generation MMOGs such as Ultima Online [113]. Even at that time, bot operators 

were already quite sophisticated, creating small server farms to run their bots [40, 

113]. At the early era of game bots, most of bot programmers wrote their own game 

clients. However, as a countermeasure, game companies often update games, breaking 

operations of those custom game clients. Bot programmers were forced to update 

their game clients, keeping up with the latest game version. This cycle proves to be 

very tedious for game bot programmers. Moreover, the complexity of game clients 

has grown continuously, making it increasingly difficult to develop and maintain a 

standalone custom game client. 

The arms race between game vendor and bot developer has led to the birth of an 

interesting type of game bots that, much like humans, play games by reading from 

screen and using the mouse and keyboard. These advanced bots operate the standard 

game client by simply sending mouse and keyboard events, reading certain pixels from 

114 



the screen, and possibly reading a few key regions in the memory address space of the 

game application. Most bots are equipped with macro scripting capabilities, similar to 

programs like Autolt [10], which enables bots to be easily reprogrammed and quickly 

adapted to the changes made by game companies. 

5.1.2 Game Playing Behaviors 

MMOGs, such as World of Warcraft, entertain players by providing a large degree 

of freedom in terms of actions a player can perform. In the game world, a player 

controls a virtual character (avatar) to explore the landscape, fight monsters, complete 

quests and interact with other players. In addition, a player can further customize 

the character by learning skills and purchasing items (such as armor, weapons, and 

even pets) with virtual currency. Each game activity requires a player to interact 

with the game in a different fashion. As a result, it is expected that the inputs of 

a human player will exhibit burstiness with strong locality and the input contents 

vary significantly for different tasks through game play. However, when a bot is used 

to play the game, its main purpose is to gain rewards (level and virtual currency) 

without human intervention by automating and repeating simple actions (such as 

killing monsters). Being much less sophisticated than human, bot actions would show 

regular patterns and limited varieties. 

Besides the high-level behavioral differences, humans and hots also interact with 

the game very differently, despite that both interact with the game via mouse and 

keyboard. As biological entities, humans perceive the graphical output of the game 
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optically, and feed input to the game by physically operating devices such as keyboard 

and mouse. In contrast, bots are computer programs that have no concept of vision 

and are not bounded by mechanical physics. While bots can analyze game graphics, 

it is computationally expensive. To avoid this computation cost, whenever possible, 

bots attempt to obtain necessary information, such as the locations of the avatar, 

monsters and other characters, and the properties (health, level, etc.) of the avatar, 

by reading the memory of the game program. 

In general, bots control the avatar by simulating input from devices via OS API 

calls, such as setting key press state or repositioning mouse cursor. The techniques 

used by bots are often crude, but in most cases, quite effective. For example, without 

reading the graphics or scanning the terrain, a bot can navigate to a target location 

by knowing just two coordinates-the current location of the avatar and that of the 

target. The bot then tries to approach the target location by steering the avatar to go 

forward, left and right, and then checks its progress by polling the two coordinates. 

If the avatar location does not change in a given amount of time, the bot assumes 

that an obstacle (trees, fences, steep terrain, etc.) is in the way and tries to navigate 

around it by moving backward a few steps, turning left or right, and going forward. 

Occasionally, graphics analysis can be useful, such as when picking up items on the 

ground. The bot can again handle this situation in a simple and efficient manner by 

exploiting the game user interface. When the cursor is placed on top of an object, the 

game would display a small information window on the lower-right corner. Thus, the 

bot moves the mouse cursor in grid patterns, and relies on the change of pixel colors 
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on the lower-right corner of the screen to know if it has found the object. 

5.2 Game Playing Characterization 

In this section, we examine how bots and humans behave in the game, in order to 

have a deep understanding of the differences between humans and bots. Based on 

our game measurements, we quantitatively characterize the game playing behaviors 

of human players and bots, respectively. The behavioral differences between bots and 

humans form the basis for our HOP-based system. 

5.2.1 The Glider Bot 

We select the Glider bot [80] as the sample game bot for our research. The Glider bot 

is a very popular game bot for World of Warcraft. It runs concurrently with the game 

client, but requires system administrator privileges. This escalated privilege helps 

the Glider bot to circumvent the Warden anti-bot system, and enables it to access 

the internal information of the game client via cross-process-address-space reading. 

It operates by using a "profile"-a set of configurations including several waypoints 

(map coordinates in the game world) and options, such as levels of monsters to fight. 

When in operation, the game bot controls the avatar to repeatedly run between the 

given waypoints, search and fight monsters that match the given criteria, and collect 

bonus items after winning fights. 
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Table 5.1: Definitions of User-Input Actions 
Action Definition 

Keystroke The press and release bf a key. 
A series of continuous mouse 
cursor position changes with no 

Point 
mouse button pressed; the time-
stamps for each pair of cursor 
position changes are no more 
than 0.4 seconds apart. 

Pause 
A period of 0.4 seconds or longer 
with no actions. 
The press and release of a mouse 

Click 
button; the cursor travels no more 
than 10 pixels between the press 
and release. 

Point-and-Click 
A point followed by a click within 
0.4 seconds. 
The press and release of a mouse 

Drag-and-Drop 
button; the cursor travels more 
than 10 pixels between the press 
and release. 

5.2.2 Input Data Collection 

We collect player input data for both human and bot using an external program in 

a non-intrusive manner, i.e., no modification to the game client program. The input 

data collection program, a modified version of RUI [69], runs concurrently with the 

game, polling and recording the keyboard and mouse input device status with clock 

resolution close to 0.015625 second (approximate 64 times/sec). Each input event, 

such as key press or cursor position change, is recorded along with a time stamp 

relative to the starting time of the recording. 

We invite 30 different human players to play World of Warcraft and collect 55 hours 

of their user-input traces. Correspondingly, we run the game bot with 10 different 
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Figure 5.2: Keystroke Duration Distribution 

profiles in 7 locations in the game world for 40 hours and collect its input traces. The 

10 profiles are bot configurations with different sets of waypoints that the bot follows 

while farming, i.e., killing monsters and gathering treasure. The profiles are setup 

in 7 locations with different monster levels (from levels 1 to 40), monster densities 

(sparse to dense), and different obstacles (barren plains to forest with lots of small 

trees). The game bot profiles are half run with a warrior and half run with a mage. 

These two bot characters range from level 1 to over 30 in the traces. 

We conduct post processing on the input trace data to extract information with 

regard to high-level user-input actions. For example, we pair up a key press event 

with a subsequent key release event of the same key to form a keystroke action; we 
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Figure 5.4: Drag-and-Drop Duration Distribution 

gather a continuous sequence of cursor position change events to form a point action 

(mouse movement action). Table 5.1 gives a complete list of high level actions we 

derive and their corresponding definitions. 

5.2.3 Game Playing Input Analysis 

We analyze the Glider bot and human keyboard and mouse input traces with re-

spect to timing patterns (duration and inter-arrival time) and kinematics (distance, 

displacement, and velocity). Our bot analysis below is limited to the current game 

bots. 
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Two keyboard usage metrics for human and bot are presented in Figures 5.1 and 

5.2, respectively. Both figures are clipped for better presentation, and the trailing 

data clipped away contribute less than 3% of the total for either human or bot. 

Figure 5.1 shows the distribution of keystroke inter-arrival time, i.e., the interval 

between two consecutive key presses, with a bin resolution of 0.1 seconds. There are 

two major differences between the bots and humans. First, the bot issues keystrokes 

significantly faster than humans. While 16.2% of consecutive keystrokes by the bot 

are less than 0.1 second apart, only 3.2% of human keystrokes are that fast. This 
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is because human players have to initiate keystroke action by physical movement 

of fingers, and hence, pressing keys at such high frequency would be very tiring. 

Second, the keystrokes of the bot exhibit obvious periodic patterns. The empirical 

probabilities of the bot pressing a key every 1 or 5.5 seconds are significantly higher 

than their neighbor intervals, which provides us some insights into the internals of the 

bot: it uses periodic timers to poll the status of the avatar (i.e., current coordinate), 

and issue keyboard commands accordingly (e.g., bypass possible obstacles by turning 

left/right and jumping). However, for human players, their keystroke intervals follow a 

Pareto distribution, which matches the conclusions of previous research [127]. Figure 

5.2 shows the distribution of keystroke durations, with the bin resolution of 0.03 

second. These figures reassures our previous observations: the bot presses keys with 

much shorter duration--over 36.9% of keystrokes are less than 0.12 seconds long, while 

only 3.9% of human keystrokes are completed within such a duration; the bot exhibits 

the periodic keyboard usage pattern-keystrokes with around 0.25 second duration 

are significantly more than its neighbor durations. 

Figure 5.3 shows the relationship between the mouse speed and the displacement 

between the origin and target coordinates for the point-and-click. Less than 0.1% 

of the total data points for either human or bot are clipped away. The hots exhibit 

two very unique features. First, unlike human players, who move the mouse with very 

dynamic speed at all displacement lengths, the bots tend to move the mouse at several 

fixed speeds for each displacement, and the speed increases linearly as displacement 

lengthens. This feature implies that, again, the bots use several fixed length timers for 
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mouse movements. Second, we also observe that the bots make a significant amount 

of high speed moves with zero displacement, that is, after a series of fast movements, 

the cursor is placed back exactly at its origin. Such a behavior is absent in the human 

data, because it is physically difficult and unnecessary. 

Figure 5.4 shows the distribution of mouse drag-and-drop duration, with the bin 

resolution of 0.03 second. For the bots, 100% of actions are accomplished within 0.3 

second. However, for human players, only 56.6% of drag-and-drop actions finish 

within the same time window; over-one-second actions contribute 25.5% of the total, 

within which, about 0.8% of actions are more than 5 seconds long, and are thus clipped 

away from the figure. 

Figure 5.5 illustrates the distribution of mouse movement efficiency for point-and­

click and drag-and-drop. We define movement efficiency as the ratio between the 

cursor displacement and the traversed distance over a series of movements. In other 

words, the closer the cursor movement is to a straight line between the origin and 

target coordinates, the higher the movement efficiency. Note that, while the bin 

width is 0.02, the last bin only contains the actions with efficiency of 1.0. Bots 

exhibit significant deviation from human players on this metric: 81.7% of bot mouse 

movements have perfect efficiency, compared to that only 14.1% of human mouse 

movements are equally efficient. Aside from 3.8% of mouse movements with efficiency 

less than 0.02 (most of which are zero efficiency moves, due to the cursor being placed 

back to the origin), a bot rarely moves the mouse with other efficiencies. However, 

for human players, the observed probability of mouse movement efficiency follows an 
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Finally, Figure 5.6 presents the relationship between the average mouse move speed 

and the direction of the target coordinate, plotted in polar coordinate with angular 

resolution of 10 degrees (n/36). Each arrow represents the average velocity vector 

of mouse movements whose target position is ±5 degrees in its direction. For the 

bots, there is no evident correlation between the speed and the direction. In con-

trast, for human players, there is a clear diagonal, symmetric, and bounded movement 

pattern: diagonal movements are generally faster than horizontal and vertical move-

ments, upward movements are slightly faster than downward movements, and leftward 

movements are slightly faster than rightward movements; overall, the movement speed 

is bounded to a certain value. The diagonal and symmetric pattern is attributed to 

the human hand physiology, and the speed boundary is due to the physical constraint 

of human arms. 

5.3 HOP System 

In this section, we describe the design of our proposed HOP system. The HOP system 

consists of client-side exporters and a server-side analyzer. Each client-side exporter 

collects and sends a stream of user-input actions taken at a game client to the game 
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server. The server-side analyzer then processes each input stream and decides whether 

the corresponding client is operated by a bot or a human player. Figure 5.7 illustrates 

the high-level structure of the HOP system. 

5.3.1 Client-Side Exporter 

Since each game client already receives raw user-input events, the client-side exporter 

simply uses the available information to derive input actions, i.e., keystroke, point, 

click, and drag-and-drop, and sends them back to the server along with regular 

game-related data. Ideally, the client-side exporter should be implemented as an 

integral part of the game executable or existing anti-cheat systems [39, 120, 94, 35]. 

For the prototype of our HOP system, we implement it as a standalone external 

program, as we do not have source code access to the World of Warcraft. 

5.3.2 Server-Side Analyzer 

The server-side analyzer is composed of two major components: the user-input action 

classifier and the decision maker. The work-flow of the server-side analyzer is as fol­

lows. For each user-input action stream, the system first stores consecutive actions 

into the action accumulator. A configurable number of actions form an action block, 

and each action block is then processed by the classifier. The output of the classifier 

contains the classification score for the corresponding action block, i.e., how close the 

group of actions look to those of a bot, and is stored into the output accumulator. 

Finally, when the output accumulator aggregates a configurable amount of neural net­

work output, the decision maker makes a judgment. Each judgment reflects whether 
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the player is possibly operated by a bot since the last judgment. The output accu­

mulator is refreshed after each decision is made. The analyzer continuously processes 

user-input actions throughout each user's game session. 

5.3.2.1 Neural Network Classification 

We employ artificial neural networks for user-input action classification due to the 

following two reasons. First, neural networks are especially appropriate for solving 

pattern recognition and classification problem involving a large number of parameters 

with complex inter-dependencies. The effectiveness of neural networks with user-input 

data classification has already been demonstrated in behavioral biometric identifica­

tion systems [2, 90, 91]. Second, neural networks are not simple functions of their 

inputs and outputs. While the detection methods based solely on those metrics with 

clearly defined equations are susceptible to inverse function attacks, neural networks, 

often described as a "black box", are more difficult to attack. Note that our HOP 

system is not necessarily tied to neural networks, and we will consider other classi­

fication methods, such as support vector machines (SVMs) or decision trees, in our 

future work. 

The neural network we build for the HOP system is a cascade-correlation neural 

network, a variant of feed-forward neural networks that use the idea of cascade train­

ing [41]. Unlike standard multi-layer back-propagation (BP) perceptron networks, a 

cascade correlation neural network does not have a fixed topology, but rather is built 

from the ground up. Initially, the neural network only consists of the inputs directly 
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connected to the output neuron. During the training of the neural network, a group 

of neurons are created and trained separately, and the best one is inserted into the 

network. The training process continues to include new neurons into the network, 

until the neural network reaches its training target or the size of the network reaches 

a pre-defined limit. 

Figure 5.8 illustrates the general construction of the cascade-correlation neural 

network. There are eight input values for each user-input action, including seven 

action metric parameters and a bias value that is used to differentiate the type of 

action, e.g., keyboard action or mouse action. The neural network takes input from 

all actions in an action block. The connections between the input node and neurons, 

and among neurons, are represented by intersections between a horizontal line and a 

vertical line. The weight of each connection is shown as a square over the intersection, 

where larger size indicates heavier weight. 

The seven action metric parameters are: action duration, mouse travel distance, 

displacement, efficiency, speed, angle of displacement, and virtual key (a numeric 

value corresponding to a keyboard key or a mouse button). The speed and efficiency 

are derived parameters from the basic parameters, such as duration, distance and 

displacement. These derived parameters are used mainly to help the neural network 

capture the inherent association between input parameters, reduce the network com­

plexity, and thus, speedup the training process. The number of actions in an action 

block directly affects the total amount of input data to the neural network. Increasing 

the block size provides the neural network with more context information and can, up 
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Figure 5.8: A Cascade Neural Network 

to a certain point, further improve the classification accuracy of the trained network. 

However, too many input actions can also increase the overall complexity of the neural 

network and slow down the training process. 

5.3.2.2 Decision Making 

The decision maker refers to using accumulated output from the neural network to 

determine whether the corresponding user-input data is likely from a bot or a human 

player. Different algorithms can be applied to consolidate accumulated classifications. 

We employ a simple "voting" scheme: if the majority of the neural network output 

classifies the user-input actions as those of a bot, the decision will be that the game 

is operated by a bot, and vice versa. The decision process is a summary of the clas-

sifications of user-input actions over a period of time. While individual classification 

cannot be 100% correct, the more accumulated output, the more confidence we have 

in the decision. On the other hand, the more accumulated output, the more user-

input actions are required, which translates to more data storage and longer time for 

decision making. 
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5.3.3 Performance Impact and Scalability 

The nature of MMOGs dictates our design of the HOP system to be scalable and 

light-weight, limiting performance impacts on game clients and the server. At the 

client side, the system resource consumed by the collection of user-input actions is 

minor. In addition to the system resource of a game client, an MMOG player's 

gaming experience also depends on network performance. Since the user-input actions 

are short messages, 16 bytes of data per user-input action, the additional bandwidth 

consumption induced by the client-side exporter is negligible. The presence of the 

exporter thus is imperceptible for end users. At the server side, the scalability is 

critical to the success of our HOP system. The server-side analyzer is very efficient 

in terms of memory and CPU usage, which is shown in Section 5.4.4. The size of 

additional memory consumed per player is comparable to the size of the player's 

avatar name. A single processor core is capable of processing tens of thousands of 

users simultaneously in real-time. Therefore, the HOP system is scalable to the heavy 

workload at a game server. 

5.4 Experiments 

In this section, we evaluate the efficacy of our HOP system through a series of exper­

iments, in terms of detection accuracy, detection speed, and system overhead. The 

metrics we use for detection accuracy include true positive rate and true negative rate. 

The true positive rate is the percentage of hots that are correctly identified, while the 

true negative rate is the percentage of humans that are correctly identified. The de-
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tection speed is determined by the total number of actions needed to make decisions 

and the average time cost per action. In general, the larger the number of actions 

required for decisions and the higher the average time cost per action, the slower the 

detection speed becomes. 

Table 5.2: True Positive and Negative Rates vs. Thresholds and# of Accumulated 
Outputs 

Threshold 
# of Accumulated Outputs 

1 3 5 7 9 11 13 15 17 19 21 

0.25 
0.978 0.995 0.997 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 
0.959 0.977 0.983 0.987 0.990 0.992 0.994 0.994 0.996 0.996 0.997 

0.5 
0.961 0.991 0.997 0.998 0.999 1.000 1.000 1.000 1.000 1.000 1.000 
0.976 0.990 0.994 0.996 0.998 0.998 0.998 0.998 0.999 0.998 0.999 

0.75 
0.926 0.980 0.992 0.997 0.998 0.998 0.998 1.000 1.000 1.000 1.000 
0.985 0.995 0.997 0.998 1.000 0.999 0.999 1.000 1.000 0.999 1.000 

0.9 
0.859 0.935 0.964 0.980 0.985 0.996 0.995 0.996 0.995 0.998 0.998 
0.991 0.998 0.999 0.999 1.000 0.999 0.999 1.000 1.000 0.999 1.000 

0.95 
0.775 0.856 0.895 0.922 0.940 0.947 0.958 0.969 0.976 0.975 0.983 
0.994 0.999 0.999 0.999 1.000 0.999 0.999 1.000 1.000 0.999 1.000 

0.975 
0.624 0.668 0.700 0.723 0.737 0.757 0.770 0.776 0.792 0.796 0.804 
0.996 0.999 0.999 0.999 1.000 0.999 0.999 1.000 1.000 0.999 1.000 
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5.4.1 Experimental Setup 

Our experiments are based on 95 hours of traces, including 55 hours of human traces 

and 40 hours of game bot traces. In total, these traces contain 3,000,066 raw user­

input events and 286,626 user-input actions, with 10 bot instances and 30 humans 

involved. The 10 bot instances are generated by running the Glider bot with 10 

different profiles. The human players are a diverse group, including men and women 

with different ages and different levels of gaming experience. The more detailed trace 

information has been given in Section 5.2.2. 

The experiments are conducted using 10-fold cross validation. Each test is per­

formed on a different human or bot that is left out of the training set for that test. 

Therefore, to validate a given configuration, 20 different partitions are created, one for 

each of the 10 bots and 10 sets of three humans. The partitions consist of a training 

set of either 9 bots and 30 humans or 10 bots and 27 humans, and a test set of either 

one bot or three humans. Thus, each test is performed on unknown data that the 

system has not yet been trained on. 

5.4.2 Detection Results 

The HOP system has four configurable parameters: the number of actions per block, 

the number of nodes, the threshold, and the number of outputs per output block. The 

first two parameters mainly determine the size and complexity of the neural network, 

while the second two parameters largely affect the detection performance of the entire 

system. The threshold determines how a neural network output is interpreted: a 
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value over the threshold indicates a bot, while a value under the threshold indicates 

a human. Note that humans have a value of 0.0 and bots have a value of 1.0 in the 

training of the neural network. 

We first configure the number of actions per block and the number of nodes. The 

true positive and true negative rates with different numbers of actions and different 

numbers of nodes are shown in Figure 5.9 (a) and (b), respectively. These tests are 

performed with a default threshold of 0.5. The neural network becomes more accurate 

as more actions are provided, but we see diminishing returns in accuracy as the number 

of actions increases, e.g., going from 4 actions to 6 actions requires 50% more input 

but only provides a relatively small increase in the overall accuracy. 

In most cases, the binomial theorem predicts that combining three decisions for 

the 4-action neural network should be more accurate than combining two decisions 

for the 6- or 8-action neural networks. Therefore, we choose to use a neural network 

with 4 actions as input, which gives true positive and negative rates of 0.971-0.977 

and 0.959-0.973, respectively. 

The overall true positive and negative rates do not always grow as the number of 

nodes increases. At some points, increasing the number of nodes no longer improves 

the true positive or negative rates and the neural network starts to over-fit the training 

set. A neural network of 40 nodes provides a true positive rate of 0.976 and a true 

negative rate of 0.961, which is the best combination of true positive and true negative 

rates with 4 actions as input. Therefore, we set up the neural network based on this 

configuration. 
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With the neural network configured, the threshold and the number of outputs per 

block determine the overall performance of the system. The threshold can be increased 

or decreased from the default value of 0.5 to bias the neural network towards bots or 

humans, improving the true positive rate or the true negative rate, respectively. The 

number of outputs per block affects both the detection accuracy and the detection 

speed of the system. As the number of outputs per block increases, the detection 

accuracy of the system increases, but the detection speed decreases as more neural 

network outputs are needed to make decisions. 

The true positive and negative rates with different thresholds and different num-

bers of outputs for hots and humans are listed in Table 5.2. The top number in each 

cell is the true positive rate and the bottom number is the true negative rate. The 

neural network has 40 nodes and takes 4 actions as input. There are a number of 

settings that allow for a true positive or true negative rate of 1.0, though not both. 

To avoid a false positive---mistaking a human for a bot, we prefer a high true negative 

rate. The smallest number of outputs per block that achieves a true negative rate of 

1.0 is 9 outputs per block with the threshold of 0.75, which gives a true positive rate 

of 0.998. 

Table 5.3: True Positive Rates for Bots 

Bots 

#1 1 #2 1 #3 1 #4 1 #5 1 #6 1 #7 1 #8 1 #9 1 #10 
o.988 1 1.ooo 1 o.998 1 1.ooo 1 1.ooo 1 1.ooo 1 1.ooo 1 1.ooo 1 o.998 1 1.ooo 

With the fully configured system ( 40 nodes, 4-action input, the threshold of 0. 75, 
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Figure 5.10: Decision Time Distribution 

and 9 outputs per block), Table 5.3 lists the true positive and negative rates for each 

of the individual bats in our traces. The true negative rates are 1.0 for all of the 

humans, so none of the human players in our traces are misclassified as bats. The 

true positive rates are between 0.988 and 1.000 for the bats in our traces, with the 

average true positive rate of 0.998. 

The detection speed of the system is a function of the total number of actions 

required for decision making and the average time cost per action. The total number 

of actions is 36 (i.e., 9 outputs x 4 actions per output). The time cost per action 

varies. The average time cost per action, ignoring idle periods longer than 10 seconds, 

is 1.10 seconds. If a player is idle, strictly speaking, no one is "operating" the game, so 

no decision can be made. Of course, idle players (bats or humans) are not performing 

any actions and should not be a concern. Based on the total number of actions and 

the average time cost per action, Figure 5.10 illustrates the decision time distribution 

for bats and humans. From the decision time distribution, we can see that our HOP 

system is able to make decisions for capturing bats within 39.60 seconds on average. 

Note that we perform the same experiments with BP neural networks and observe 
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that the cascade neural network is more accurate in bot classification than BP neural 

networks that use incremental, quick propagation, or resilient propagation method. 

5.4.3 Detection of Other Game Bots 

To further test our HOP system, without retraining the neural network, we perform a 

smaller experiment on a different game bot from a different game. While Diablo 2 is 

not an MMOG, it has an MMOG-like economy (items may be traded with thousands 

· of other players) and is also plagued by game bots. This set of experiments studies 

MMBot, a popular free bot for Diablo 2 that is built using the Autolt scripting 

language [10]. Similar to Glider, MMBot automates various tasks in the game to 

accumulate treasure or experience. However, unlike Glider, MMBot does not read 

the memory space of the game, but instead is based entirely on keyboard/mouse 

automation, and pixel scanning. As Diablo 2 has a much different interface (top­

down isometric view rather than first person view like World of Warcraft) and much 

different controls, the purpose of these experiments is to test how general our system 

is and to show that it is not limited to any specific bot or game. 

We collect a total of 20 hours of Diablo 2 traces, both bot and human. We run 

MMBot for 10 hours and have 5 humans play Diablo 2 for a total of 10 hours. We then 

reuse our existing neural network ( 40 nodes, 4 action-input, 9 inputs per block) with 

the adjusted threshold value to optimize our detection results. Without retraining, 

the neural network achieves a true positive rate of 0.864 on the bot and a true negative 

rate of 1.0 on the human players. This result shows that our HOP system is able to 
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capture certain invariants in the behavior of bots across different games and different 

bot implementations, indicating the possible potential of HOP-based systems for other 

applications. 

5.4.4 System Overhead 

Our proposed system at the server side (i.e., the server-side analyzer) is required 

to process thousands of users simultaneously in real-time, so it must be efficient in 

terms of memory and computation. Now we estimate the overhead of the analyzer 

for supporting 5,000 users, far more than the regular workload of a typical World of 

Warcraft server. The analyzer process, which includes the neural network, is profiled 

using valgrind and consumes only 37 KBytes of memory during operation. The 

prototype of our system is designed to use a single-thread multiple-client model with 

time-multiplexing, and thus only one process is used. Of course, additional processes 

could be used to process in parallel. 

The primary memory requirement is to accommodate the accumulated user-input 

actions and neural network outputs for each online user. A single user-input action 

consumes 16 bytes, 4 bytes each for distance, duration, and displacement, and 2 bytes 

each for virtual key and angle. A block of 4 user-input actions consumes 64 bytes. 

A block of up to 16 neural network outputs requires 2 bytes as a bit-array. The per­

user memory requirement is approximately 66 bytes, barely more than the maximum 

length of account names on World of Warcraft, which is 64 bytes. If 66 bytes is scaled 

to 5,000 online users, this is only 330 KBytes in total, which is negligible considering 
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that the game currently stores the position, level, health, and literally dozens of other 

attributes and items for each user. 

The computational overhead is also very low. The computation time for processing 

all 95 hours of traces is measured using the Linux time command. The analyzer can 

process the full set of traces, over 286,626 user-input actions, in only 385 milliseconds 

on a Pentium 4 Xeon 3.0Ghz. In other words, the analyzer can process approximately 

296 hours of traces per second using a single CPU. A server with 5,000 users would 

generate approximately 1.38 hours of traces per second, a tiny fraction of the above 

processing rate. 

5.5 Related Work 

Exploiting online games has attracted increasing interest in recent years. Yan et al. 

[133] summarized commonly-used exploiting methods in online games and categorized 

them along three dimensions: vulnerability, consequence, and exploiter. In addition, 

they pointed out that fairness should be taken into account to understand game ex­

ploits. Webb et al. (126] presented a different classification of game exploits. They 

categorized 15 types of exploits into four levels: game, application, protocol, and in­

frastructure, and discussed countermeasures for both client-server and peer-to-peer 

architectures. Muttik [89] surveyed security threats emerging in MMOGs, and dis­

cussed potential solutions to secure online games from multiple perspectives including 

technology, economy, and human factor. Hoglund and McGraw [54] provided a com­

prehensive coverage of game exploits in MMOGs, shedding light on a number of topics 
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and issues. 

5.5.1 Anti-Cheating 

With the ever-increasing severity of game exploits, securing online games has received 

wide attention. The research work on anti-cheating generally can be classified into two 

categories: game cheating prevention and game cheating detection. The former refers 

to the mechanisms that deter game cheating from happening and the latter comprises 

the methods that identify occurrences of cheating in a game. For MMOGs, a cheat­

proof design, especially the design of the game client program and the communication 

protocol, is essential to prevent most of game exploits from occurring. This is because 

(1) the client program of an MMOG is under the full control of a game player and 

(2) the communication at the client side might be manipulated for the advantage of 

player. 

The prevention of game exploits has been the subject of a number of works. Baugh­

man et al. [8] uncovered the possibility of time cheats (e.g., look-ahead and suppress­

correct cheats) through exploiting communication protocols for both centralized and 

distributed online games, and designed a lockstep protocol, which tightly synchronizes 

the message communication via two-phase commitment, to prevent cheats. Following 

their work, a number of other time-cheat-resistant protocols [29, 34, 23] have been 

developed. In [86], Monch et al. proposed a framework for preventing game client 

programs from being tampered with. The framework employs mobile guards, small 

pieces of code dynamically downloaded from the game server, to validate and protect 
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the game client. Yampolskiy et al. [132] devised a protection mechanism for online 

card games, which embeds CAPTCHA tests in the cards by replacing the card face 

with text. Besides software approaches, hardware-based approaches to countering 

game exploits have also been proposed. Golle et al. [50] presented a special hardware 

device that implements physical CAPTCHA tests. The device can prevent game bots 

based on the premise that physical CAPTCHA tests such as pressing certain buttons 

are too difficult for bots to resolve without human involvement. 

In practice, it is extremely hard to eliminate all potential game exploits. Thus, 

accurate and quick detection of game exploits is critical for securing on-line games. 

Since game bots are a commonly-used exploit, a fair amount of research has focused on 

detecting and countering them. Based on traffic analysis, Chen et al. [24] found that 

the traffic generated by the official client differs from that generated by standalone bot 

programs. Their approach, however, is not effective against recent game bots, as the 

majority of current MMOG bots interact with official clients. In [25, 26], the difference 

of movement paths between human players and bots in a first-person shooter (FPS) 

game is revealed and then used for the development of trajectory-based detection 

methods. However, it is unlikely that this type of detection method can achieve similar 

speed and accuracy in MMOGs, because maps used in MMOGs are much larger than 

those in FPS games and avatar trajectories in MMOGs are far more complicated. 

Indeed, Mitterhofer et al. [83] used movement paths in World of Warcraft and their 

method requires from 12 to 60 minutes to detect game bots. Thawonmas et al. [115] 

introduced a behavior-based bot detection method, which relies on discrepancies in 
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action frequencies between human players and bots. However, compared to our work, 

the metric used for their detection, action frequency, is coarse-grained and has low 

discriminability, resulting in low detection ratio (0.36 recall ratio on average) and long 

detection time (at least 15 minutes). 

As game clients in general cannot be trusted, usually the detection decision is 

made at servers. Schluessler et al. [106] presented a client-side detection scheme, 

which detects input data generated by game bots by utilizing special hardware. The 

hardware is used to provide a tamper-resistant environment for the detection module. 

The detection module compares the input data generated by input devices (mouse 

and keyboard) with those consumed by the game application and fires an alert once 

a discrepancy is found. 

5.5.2 Behavioral Biometrics 

The idea of HOPs is largely inspired by behavioral biometrics based on keystroke 

dynamics [60, 87, 11, 96] and mouse dynamics [2, 43, 103]. Analogous to handwritten 

signatures, keystroke dynamics and mouse dynamics are regarded as unique to each 

person. Therefore, their applications in user authentication and identification have 

been extensively investigated [60, 87, 11, 96, 103, 43, 2]. Generating synthetic mouse 

dynamics from real mouse actions has also been studied [90, 91]. In spite of the fact 

that our system also utilizes the characteristics of keystroke and mouse dynamics, it 

significantly differs from aforementioned biometric systems in that our system lever­

ages the distinction on game play between human players and game bots, which is 
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reflected by keystroke and mouse dynamics, to distinguish human players from game 

hots. In contrast, those biometric systems exploit the uniqueness of keystroke dynam­

ics or mouse dynamics for identification, i.e., matching a person with his/her identity 

on the basis of either dynamics. 

5.6 Conclusion 

In this chapter, we presented a game bot defense system that utilizes HOPs to detect 

game bots. The proposed HOPs leverage the differences of game playing behaviors 

such as keyboard and mouse actions between human players and game bots to identify 

bot programs. Compared to conventional HIPs such as CAPTCHAs, HOPs are trans­

parent to users and work in a continuous manner. We collected 95-hour user-input 

traces from World of Warcraft. By carefully analyzing the traces, we revealed that 

there exist significant differences between bots and humans in a variety of character­

istics derived from game playing actions, which motivate the design of the proposed 

HOP defense system. 

The HOP defense system comprises a client-side exporter and a server-side ana­

lyzer. The exporter is used to transmit a stream of user-input actions and the analyzer 

is used to process the action stream to capture bots. The core of the analyzer is a 

cascade-correlation neural network, which takes an action stream as input and deter­

mines if the stream generator is a bot or a human player. We also employed a simple 

voting algorithm to further improve detection accuracy. Based on the collected user­

input traces, we conducted a series of experiments to evaluate the effectiveness of the 

141 



defense system under different configurations. Our results show that the system can 

detect over 99% of current game hots with no false positives within a minute and the 

overhead of the detection is negligible or minor in terms of induced network traffic, 

CPU, and memory cost. As our detection engine only relies on user-input information, 

our HOP system is generic to MMOGs. 
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Chapter 6 

Conclusions and Future Work 

This dissertation explores applications of information theory and statistical learning 

to anomaly detection. Specifically, we address two very important and challenging 

problems in network and system security, (1) detecting covert timing channels, and 

(2) determining if a user is a human or a bot. For the first problem, we developed an 

entropy-based approach for detecting covert timing channels. For the second problem, 

we developed a hybrid classification system, based on entropy and statistical learning, 

for detecting chat hots, and a game bot defense system, based on statistical learning, 

for detecting game bots. 

To detect covert timing channels, which could leak sensitive information from a 

system or network, we first studied covert timing channel design, and modeled, sim­

ulated, and tested different covert timing channels to better understand their charac­

teristics. Based on the observation that the creation of a covert timing channel has 

certain effects on the entropy of the original process, we developed an entropy-based 

approach to detecting covert timing channels. We implemented our entropy-based 
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approach using entropy and corrected conditional entropy. Our experimental results 

show that our entropy-based approach is sensitive to current covert timing channels 

and capable of detecting them. 

To defend against bots, which abuse various network applications, including chat, 

online games, web sites, and so on, we developed two different detection systems for 

bots in different network applications, chat and online games. 

First, we conducted a large-scale measurement study on a major commercial chat 

service, Yahoo! Chat, capturing over 1400 hours of chat logs. Based on the mea­

surement study, we proposed a hybrid classification system to differentiate bots from 

humans. The hybrid classification system consists of entropy-based (entropy and 

corrected conditional entropy) and statistical-learning-based (Bayesian classification) 

classifiers. The two classifiers complement each other in detection. The entropy­

based classifier is more effective against unknown or zero-day chat bots, whereas the 

statistical-learning-based classifier is faster against known chat hots. Our experimen­

tal results show that the hybrid classification system is able to quickly classify known 

chat bots and accurately classify previously unknown chat hots. 

Second, we collect game play traces for a popular massive multiplayer online game, 

World of Warcraft, capturing 95 hours of game play. The traces show various differ­

ences between humans and bots in their user-input characteristics. In addition, we 

observe that some actions with the game are difficult for hots to perform in a human­

like manner due to the need to process complex visuals in real-time. Based on these 

observations, we developed a HOP-based game bot defense system that analyzes user-
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input actions and uses a cascade-correlation neural network to determine if users are 

humans or bots. Our experimental results show that the HOP-based game bot defense 

system is highly effective against current game bots, raising the bar for attackers. 

6.1 Future Work 

Our future work will pursue several extensions to our entropy-based approach to 

detecting covert channels, our hybrid approach to detecting chat bots, and our sta­

tistical learning and human-observational-proof-based approach to detecting online 

game bots. 

First, we will determine how our entropy-based approach and other detection 

methods limit the capacity of covert timing channels. By measuring how detection 

methods constrain capacity, we get a broader view of how detection methods enhance 

overall covert timing channel defense. In addition, we believe that this further explo­

ration will lead to better detection methods that further limit covert timing channel 

capacities. 

Second, we also will look at more advanced and human-like chat bots that could 

evade our hybrid classification system. It is possible for more advanced chat bots 

to look more human-like in their inter-message delay and message size statistics. By 

combining the characteristics of responder bots and replay bots, a new bot could 

take on the approximate inter-message delay and message size entropy of humans and 

possibly evade our hybrid classification system. 

Third, we also plan to extend our HOP-based detection system to other interactive 
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applications outside of online games. A number of interactive web applications, such as 

social networking sites, blogs, and web-based e-mail services, all of which are plagued 

by bots, could represent possible applications for such a system. 
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Appendix A 

Chat Bot Examples 

A.O.l Response Example 

bot: user!, that's a damn good question. 

bot: user!, To know more about Seventh-day Adventist; visit http://www.sda.org 

bot: user2, no! don't leave me. 

bot: user!, too much coffee tonight? 

bot: user2, boy, you're just full of questions, aren't you? 

bot: user2, lots of evidence for evolution can be found here http://www.talkorigins.org/faqs 

In the above example, the bot uses a template with three parts to post links: 

[username], [link description phrase] [link]. 

A.0.2 Synonym Example 

bot: Allo Hunks! Enjoy Marjorie! Check My Free Pies 
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bot: What's happening Guys! Marjorie Here! See more of me at My Free Pies 

bot: Hi Babes! I am Marjorie! Rate My Live Cam 

bot: Horny lover Guys! Marjorie at your service! Inspect My Site 

bot: Mmmm Folks! Im Marjorie! View My Webpage 

A.0.3 Padding Example 

bot: anyone boredjn wanna chat?uklcss 

bot: any guystfrom the US/Canada hereiqjss 

bot: hiyafxqss 

bot: ne1 hereqbored?fiqss 

bot: ne guysmwanna chat? ciuneed some1 to make megsmile :-)pktpss 
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