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ABSTRACT PAGE 

This dissertation reports on the first direct comparison between the results of ray-based and 
full-wave calculations for mode conversion in plasma. This study was motivated by the 
modular method originally developed by Ye and Kaufman to treat a magnetosonic wave 
crossing a cold minority-ion gyroresonance layer. We start with the cold plasma fluid model 
and introduce a system of evolution equations for electrons and two ion species: deuterium 
and hydrogen. We first study this system of equations for uniform plasma by Fourier 
methods, which gives the dispersion relations. We discuss how the traditional approach -
which eliminates all other dynamical variables in terms of the electric field - leads to singular 
denominators at the resonances. We then introduce the Kaufman & Ye approach, which 
retains the ion velocities as dynamical variables. In this formulation, the ion resonances 
appear as 'avoided crossings' between the familiar 'fast wave' and a zero-group-velocity ion 
'mode' associated with the particle velocities. We then extend our problem to nonuniform 
plasma where the resonance is localized in space. Away from the resonance, WKB methods 
apply, but they break down in the vicinity of the resonance. In this region, we introduce the 
notion of 'uncoupled modes' and discuss how to use them to systematically carry out a 
simplification of the problem. This leads directly to the modular method of Kaufman & Ye in 
the mode conversion region, and provides the connection coefficients for the WKB solutions 
across the resonance layer. We specialize to an incoming wave packet and use the full-wave 
equations and the reduced 2x2 form to numerically study the wave packet conversion. This 
allows us to observe the emission of the reflected wave packet after a time delay (the linear 
'ion-cyclotron echo'). We calculate the incoming, transmitted and reflected wave packet 
energies. We compare them to the transmission and reflection coefficients predicted by the 
S matrix approach of Kaufman and Ye for a wide range of ion density ratios and find good 
agreement. 
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Chapter 1 

Introduction 

Current estimates suggest that most of the matter in the universe 

interacts only by gravitational forces; hence it is 'dark'. Of the remaining 

'ordinary' matter, the large majority of it is ionized to some degree and, 

hence, a plasma. Plasmas consist of free electrons and ions that can be acted 

upon by electric and magnetic fields to a far greater degree than neutral 

matter. One big characteristic of plasma that is different fro~ a collection of 

discrete particles is that plasma has collective behavior, such as waves and 

flows. Furthermore, plasmas carry current and charge densities which act as 

sources for the electromagnetic field. This leads to a rich variety of 

phenomena that are of interest in astrophysics, space physics, and laboratory 

plasmas. Plasmas are also of technological importance and are used routinely, 

for example, in material science and surface processing. The most direct 

application of the ideas described in this thesis concern radio frequency (RF) 

heating [1, 2, 3, 4] of fusion machines where the phenomenon of interest 

(mode conversion in the ion-cyclotron range of frequencies) is used to convert 

RF energy injected by an antenna at the plasma edge into particle kinetic 

energy, thereby heating the ions. 

When there is a magnetic field, a moving charged particle gyrates with 

a characteristic frequency: the gyrofrequency. Ifthe collective oscillatory 

motion of a plasma wave resonates with this particle motion there can be a 
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significant exchange of energy, either from the wave to the particles (heating) 

or vice versa (wave emission). In the problem we study here both processes 

occur because what is commonly called mode conversion [5, 6] in RF plasmas 

is in fact a two-step process: 1] in the first step an incoming collective wave 

converts partially to a disturbance in the motion of resonant ions, 2] in the 

second step the motion of these ions converts again to emit a reflected 

collective wave. In traditional treatments of mode conversion in the plasma 

literature, this is usually treated as a single-step process, even though there is 

a time delay between the first and second steps. As we will show, following 

the method ofYe and Kaufman [7, 8, 9], if the process is studied using ray 

phase space methods [10, 11, 12, 13, 14, 15], it becomes clear that two distinct 

events are involved: they are separated in phase space and the time delay 

arises because information has to be transported from one point in phase space 

to another. A great advantage of the Y e and Kaufman approach is that, 

because the two events are separated in phase space it is possible to develop 

local simplified approximations that lead to phase space connection 

coefficients for incoming and outgoing rays. In this way, we arrive at a 

simple theoretical prediction for how energy is shared among the incoming 

and outgoing collective waves, and how much is deposited with the particles. 

The modular approach to mode conversion developed by Y e and 

Kaufman has been used to great advantage by our group [16,17,18], and we 

have extended it to include particle kinetic effects, multidimensionality, 

multiple resonances, cavity effects, etc. However, this thesis provides the first 
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direct comparison between a 'primitive' full-wave calculation of the 

phenomenon and the ray-based predictions. This is important because ray

based methods - which involve finding solutions of ordinary differential 

equations - run much faster than full-wave simulations, which involve partial 

differential equations, or even integra-partial differential equations. For 

example, to find the spatial heating profile for RF heating scenarios in 

tokamaks, a full-wave simulation can take a week on a supercomputer but a 

ray-tracing calculation can take only a few minutes on a desktop computer to 

map out where the conversion will occur, provide an estimate of how energy 

is transported through the machine, and predict where it will be deposited 

[19]. Because they take so long, full-wave simulations cannot currently be 

used real-time to analyze experimental data. The CPU overhead for each 

simulation also implies it will be difficult to use full-wave methods to do 

thorough studies of parameter space for the design of future fusion machines. 

This suggests that ray-based and full-wave methods can work together, with 

ray-based methods providing insight in real-time during experiments, as well 

as helping to identify critical points in parameter space where full-wave 

methods should take a more detailed look. 

We now provide an outline of the rest of the thesis. We introduce the 

cold plasma model in Chapter 2. In this model each particle species (electrons, 

hydrogen and deuterium ions) are treated as interpenetrating cold ideal fluids. 

They are 'cold' because we do not allow for a thermal spread of velocities 

about the local fluid velocity. The evolution equations are derived by 
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imposing two fundamental conservation laws: we insist on mass and 

momentum conservation for each species separately. The different particle 

species interact only via the electromagnetic fields, and they act as sources for 

these fields. We then linearize the cold fluid equations and 

nondimensionalize. This allows us to identify the relevant small parameters in 

the problem. 

In chapter 3, we study the uniform plasma case. We will use the 

Fourier transformation to derive the dispersion relations for collective motions 

and introduce both the traditional method and the Kaufman & Y e approach. In 

the Kaufman & Y e approach, certain singular denominators associated with 

resonances turn into "avoided crossings", also called mode conversion. Mode 

conversion results in energy and action exchange between two nearly

degenerate modes. 

In Chapter 4, we specialize to one spatial dimension and allow the 

background to be nonuniform, which makes all the resonances local in x. We 

can no longer use Fourier transforms as in the nonuniform plasma, so we 

introduce the WKB (ray tracing) method when away from the mode 

conversion. To motivate some of the mathematics, a simple pedagogic 

example is given of a vector wave equation solved using WKB methods. 

In Chapter 5, we continue to consider nonuniform plasma, but focus 

now on the mode conversion region where the WKB approximation breaks 

down. We discuss the modular methods developed by Kaufman et al. to 

connect the incoming and outgoing WKB solutions. An interesting twist here 
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is that the two 'avoided crossings' that occur in this problem are associated 

with two modes that are dramatically different in physical character: the 

magnetosonic 'fast' wave is a nondispersive electromagnetic disturbance, 

while the ion-hybrid resonance has zero group velocity. This means the 

conversion occurs 'at a caustic', and that both conversions lie over one 

another in x-space. This projection singularity is what leads the traditional 

methods of analysis - which use the x-space representation for numerical 

analysis - to have difficulty because the problem is numerically stiff with a 

wide range of spatial scales. In phase space, as we shall show, there is no 

problem dealing with the conversion. We will show how to simplify our 

resulting 6x6 evolution equations to a 2x2 reduced form. Using Weyl symbol 

methods (which are particularly simple to apply in the current setting) we can 

construct a local wave equation in the vicinity of each mode conversion. This 

local 2x2 wave equation is then solved to find the standard S matrix (WKB 

connection) coefficients. This gives the transmission and conversion 

coefficients, and predicts how energy will be distributed after the mode 

conversion occurs. We will revisit the cold plasma model and present the 

double conversions. 

In Chapter 6, we will numerically calculate both 6x6 and 2x2 'full

wave' equations, which will give the wave packet evolution along with the 

incoming, transmitted and reflected packet energies. We will then compare the 

transmitted and reflected energy coefficients with the S matrix theoretical 

prediction for a range of ion density ratios. We will see that the agreement is 
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quite good over a wide range of density ratios for hydrogen-deuterium 

plasmas. These particular ion species were chosen because they are of interest 

in real fusion experiments studying conversion. We emphasize that these are 

the first direct comparisons between ray-based and full-wave methods for a 

three-species cold plasma model that includes the ion-hybrid resonance. 

Earlier comparisons between the two approaches used much simpler models 

constructed for illustrative purposes [20] [21]. Also, we note that Cally et al. 

have recently examined the reflection of a fast wave at the Alfven resonance 

in a solar MHD model and found good agreement with ray-based estimates of 

reflection and absorption - based upon the modular methods discussed here -

for some parameter ranges, but not all [22]. For some of the parameter values 

studied by Cally et al. the local approximations used in our approach break 

down, so the disagreement is not really surprising. But, the results point to 

interesting directions for further development of the method. 

In Chapter 7 we end with a summary and discuss possible future lines 

of research. 
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Chapter 2 

Cold Plasma Model 

The plasma model we studied is an ionized gas consisting of positively 

and negatively charged particles with overall of charge neutrality for the 

unperturbed background. To maintain the ionization, of course, the plasma is 

usually at a very high temperature. The presence of free charges makes the 

plasma respond strongly to the existence of electromagnetic fields. These 

unique characteristics make plasma a fourth state of matter. 

We model the plasma as a cold fluid. This means there is no thermal 

velocity spread around the local mean velocities (the fluid velocity for each 

species). The cold plasma model provides a significant simplification, but still 

gives a reasonably accurate description of some waves that occur in real 

plasma. 

2.1 Fundamental equations for the Deuterium

Hydrogen-Electron System 

2.1.1 Maxwell's Equations 

Plasmas are ionized gases. We assume that our plasmas are 

quasineutral, on average at each point they have an equal amounts of positive 

and negative charge. The model we studied consists of electrons and two 
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different species of ions: deuterium and hydrogen. We start with Maxwell's 

equations [23]: 

(2.1) 

- a.B 
VxE=--at (2.2) 

(2.3) 

(2.4) 

Where p = ,Lnses, J = ,Lnsesvs, the subscripts denotes different particle 

species. Each particle species is also assumed to satisfy two fundamental fluid 

conservation laws: conservation of mass and momentum. 

2.1.2 Mass Conservation 

We treat the Deuterium-Hydrogen-Electron plasma as three ideal 

interpenetrating fluids that interact only through the electromagnetic fields 

[24]. The evolution equations for such fluids are the mass conservation 

equation -- also called the continuity equation - and momentum conservation 

- also known as the force balance equation. 

Consider any fixed volume V0 in the space. The mass of fluid s 

contained in this volume is 

Msvo (t) = J msns (x,t )dV. (2.5) 
Vo 
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Where ns ( x ,t) is the fluid number density for fluid species s at the position 

x = (x,y,z) at timet; ms is the mass per particle for fluid species sand the 

integration is taken over V0. Following Newton, the time derivative of the 

mass in Vo is 

dMsv.(t) . M 5v,(f+At)-M
5
v,(f) ----"-"- = hm o o 

dt dt-->0 l'!:.t 

J m,n,(x,t + l'!:.t)dV- J m,n,(x,t)dV 
= lim Vo Vo 

&-->0 l'!:.t 
.(2.6) 

= lim f msns(x,t + l'!:.t)- msns(x,t) dV 
M-->0 !'J.t 

Vo 

= Jtimm ns(x,t+l'!:.t)-ns(x,t) dV= fm iJn.(x,t) dV 
M-->0 s !'J.t s dt 

~ ~ 

Note that at a critical step we have exchanged the order of the 

integration and the limit. This is justified if the integrand satisfies certain 

smoothness conditions, which we will assume hold, without proof. The 

number of particles of each species is assumed to be constant; hence the total 

mass in the volume can only change by having particles flow in - or out - of 

the volume. 

At the time t, the mass of fluid flowing through an infinitesimal 

surface area on the boundary of Vo, denote dA, in the short time L1t is 

msns(x,t)vs(x,t)·ndAI'!:.t, where vs is the local fluid velocity of species sat 

the position x = (x,y,z) and timet, and n is the outward-pointing normal 

direction of the area dA. Hence, by convention, when 

msns (x ,t )v, (x ,t) · n dA l'!:.t is positive, the fluid is flowing out of the volume 
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and when it is negative, the fluid is flowing into the volume through dA. 

Dividing by At and integrating over the surface of the volume V0, the rate of 

change of the total mass of fluid species s is 

dM,(t) J, (- )- (- ) ~d'A _....::,...__ =- 'f msns x,t vs x,t •n 1'"1. 

dt V
0

surface 

(2.7) 

The negative sign appears because of our sign convention for the unit normal: 

an outward flux is positive and contributes to a decrease in the total mass. 

From equations (2.6) and (2. 7), we get 

f dns(x,t)dV=- J, (- )-(- )•~d'A 'f ns x,t v. x,t n r1. 

y
0 

dt V
0

surface 

(2.8) 

By Green's formula, the surface integral can be transformed into a volume 

integral, so (2.8) becomes 

J dns(x,t) dV =- JV·(n,(x,t)v.,(x,t))dV 
~ dt ~ 

(2.9) 

Thus, 

J[an.(x,t) + V•(n.(x,t)vs(x,t))l1v = o. 
v, at r 

0 

(2.10) 

Since the volume V0 is arbitrary and (2.1 0) must be valid for any 

region in space, hence the integrand has to be zero. Therefore we get a local 

statement of conservation of mass: 

dns(x,t) n.( (- )- (- )) = 0 ----'~-+ v ns x,t vs x,t . 
dt 

(2.11) 

This is the continuity equation and it holds for each species of our cold plasma 

model. This is a special case of a conservation law, which equates the time 
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derivative of a density of some quantity with the divergence of the flux of that 

quantity, where the flux is the density times the local fluid velocity. The force 

balance equation - discussed in the next section -- is another example of such 

a conservation law: it holds for each component of the momentum density for 

each species. An additional complication in the momentum conservation law 

is the need to treat external forces. 

2.1.3 Momentum conservation equation 

The total momentum for the fluid species s of any volume Vo is 

fi,(t) =I msnsCi,t)VsCi,t)dV. (2.12) 
Vo 

So the rate of momentum change is 

dfi.<t) _I[ _ c- )ans<x.t) c- )avs<x.t)Jdv - msvs x,t + msns x,t . 
& ~ ili ili 

0 

(2.13) 

Substituting (2.11) into (2.13) gives: 

dfi.<t) I[ n r _ _ _ J- _ avs<x.t>]d --= -ms v. ns(x,t)vs(x,t) vs + msns(x,t) v. 
& ~ ili 

(2.14) 

The time rate of change of the total momentum on the fluid s is now equated 

to the net external forces .F;xrernal acting on the matter in the volume. These 

forces are of two difference types: volume forces f. voLume -that act throughout 

the volume (important examples are gravitational forces, or electric and 

magnetic forces)- and what are called tractive forces f.rractivethat act at the 

surface. 
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dP, ( t) = f dV F external = f dV F volume + f dA F tractive 
dt s s s 

~ ~ a~ 

(2.15) 

For cold ideal fluids, the tractive forces are assumed to be due only to the 

advection of momentum in or out of the volume due to the fluid motion. 

Hence, it is a momentum flux. The /h component of the momentum flux for 

species sis simply msnsv/ times the local flow velocity. Therefore, the/h 

component of equation (2.15) is: 

dPd~(t) = f dV(F,externaly = (J dV F,vo/ume + f dAft,tractiveJj 

~ ~ a~ (2.16) 

= fdv(ftvozume)j + fdA n · (m n v jv) 
s s s s s 

Vo av0 

With Green's formula, we can replace the surface integral with a volume 

integral: 

fdA n · (msnsv/vs) =- f dVLmsdk (nsv/vsk). (2.17) 
av0 V0 k 

Where j,k=x,y,z lies in the three-dimensional configuration space, and the 

minus sign indicates that a positive (outward) momentum flux corresponds to 

a decreasing momentum of the fluid in the volume. 

Substitute equation (2.16) with (2.17), 

(2.18) 

= J dV(F,volumey- J dVmsLv/dk (nsv/)- f dVmsnsLVskdkv/ 
V0 V0 k v0 k 

Equation (2.14) has the/h -component: 
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dP/ ( t) _ J [ ~ j :.. ( k ) dvj s ] d - -ms£.J v sok n,.v s + msns -:1- v 
dt v. k ot 

0 

(2.19) 

Combining (2.19) with (2.18), we get: 

f dV(F,"otumey = f dVm,n,Lvskakv/ + f msn, a;;. dV 
~ ~ k ~ 

= f dV msns(vs · V)v/ + f msns d;;s dV 
Vo Vo 

Expressing this in the vector form, 

fdv (- )[- (- ) n- (- ) dv.(.x,t)] jdVF-votume(- ) msns x,t vs x,t •vvs x,t + = s x,t . 
v. dt v. 

0 0 

(2.20) 

This is the momentum conservation equation for the fluid species s of volume 

V0. Using the fact that the equation is valid for any volume V0, the integrands 

have to be equal, thus we get the equation of motion: 

( - )[- (- ) n- (- ) dvs(x,t)] F- volume(- ) msns x,t vs x,t •vvs x,t + dt = s x,t (2.21). 

The result (2.21) is general and applies for any external (volume) forces. 

We now specialize our model by assuming the volume force is the 

Lorentz force law for charge particle motion in EM fields. Therefore, we have 

(in SI units): 

F.volume(x,t) = Lq,ns(x,t)[ E(x,t)+ vs(x,t) X B(x,t) J. (2.22) 

Where qs is the charge of the fluid species s; E is the electric field and B is the 

magnetic field. 

Combining equation (2.21 )and (2.22), we get the equation of motion: 
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(- (- ) n)- (- ) dvs(x,t) qs [E_(_ ) - (- ) - _ J 
V

5 
x,t •v vs x,t + =- x,t + vs x,t X B(x,t) . 

dt ms 
(2.23) 

For the cold plasma model with two ion species (deuterium and hydrogen) and 

electrons, the six fundamental evolution equations are (2.1), (2.2), (2.3), (2.4), 

(2.11) and (2.23). These form a closed set of equations and, combined with a 

choice of initial conditions, provide a complete description ofthe plasma. 

Let's count variables. These are: the three electric field components; 

the three magnetic field components; the deuterium, hydrogen and electron 

densities (nD(x,t), nH(x,t), n,(x,t) ); and the velocities: 

This gives a total of 18 unknowns. 

Because we are using a cold ideal fluid model for each species, we 

have neglected the direct particle-particle interactions, which would lead to 

collisions at the micro level, and viscosity and drag effects at the macro - or 

fluid -- level. At the present level of description, the particles interact with 

each other only through the intermediary of the macroscopic electromagnetic 

fields. The particles act as sources for these fields, but because the particles 

are treated as a smooth fluid, the fields are also assumed to be smooth in 

space. While noting how much of the microscopic physics has been neglected, 

it is also important to emphasize that the cold fluid model captures some of 

the essential wave physics observed in laboratory plasmas. In particular, the 
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wave mode that will concern us in later chapters (e.g. the fast Alfven wave) is 

well-established as having many of the properties predicted by the simple 

cold-plasma equations. 

The most important effect that has been neglected at this level of 

description is thermal broadening of the resonant wave-particle interaction. 

For cold fluids with single-frequency harmonic wave motion, this resonant 

interaction is 'sharp': the resonance condition is either satisfied or it isn't. For 

uniform plasma, the resonance is global while for nonuniform plasma (which 

is of more interest to us) the resonance occurs at a well-defined spatial 

position where the gyrofrequency of species s equals the wave frequency. If 

there is a thermal spread, then each subpopulation of particles - moving at 

different velocities - can resonate at slightly different spatial positions due to 

Doppler effects, leading to a broadening of the spatial region where resonance 

occurs. Phase mixing among the different populations of particles also leads to 

wave absorption via Landau damping. These ideas were discussed in [25,26]. 

Thermal effects are not treated in this thesis, but will be pursued in later work. 

2.2 Total Physical Energy for the Deuterium-Hydrogen

Electron Plasma 

The total energy of the cold plasma is conserved by the evolution 

equations derived in the previous section, and it will be used to compare our 

various methods of analysis in later chapters. The total energy consists of two 

parts: the electromagnetic field energy and the particle kinetic energy. 
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The electromagnetic field energy is 

J e
0 (I- _ 12 21- _ 12) efietd = - E(x,t) + c B(x,t) dV. 

v 2 
(2.24) 

The particle kinetic energy is 

The total energy is 

etota/ = e field + e kinetic (2.26) 

Taking the time derivative of ( 1.25), and using the evolution equations, a 

straightforward calculation shows the total energy is conserved. 

2.3 N ondimensionalization 

We will eventually solve our evolution equations numerically, which 

requires that they be nondimensionalized. We nondimensionalize the 

evolution equations of section 2.1 by first choosing reference scales for mass, 

charge, time scales, and spatial scales. The '*' quantities are nondimensional. 

(2.27) 

Here mp is the proton mass, e is the proton charge; x0 and to are the rescaled 

length and time scales. We will choose these scales in a moment. 

For electric field E and magnetic field B will be nondimensionalized-

- along with each fluid species density ns, and velocity vs -- as follows: 
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nJx,t) = n0n
5
.(X.,t.), V5 (X,t) = V 0V5

.(X.,t,) 

E(x,t) = E0E.(x.,t.), B(x,t) = B0B.(x.,t.) ' 

where all notations with 0 subscripts represent reference values. 

There are, of course, relations between some of these choices. For 

example: we have x0 = cAt0 , E0 = cB0 , where cis the speed oflight. We 

define 

Q = eB0 
po- m , 

p 

(2.28) 

(2.29) 

Where QP0 is the proton gyrofrequecy, mP is the proton plasma frequency and 

cA is the Alfven wave speed for the proton [27]. 

Rescaling the six equations (2.1), (2.2), (2.3), (2.4), (2.11) and (2.23) 

using (2.27) and (2.28), we get: 

v. x £. = - c A ali. 
c at. 

V.·B. = 0 

ans. n ( - ) 0 -+ v.• ns.vs. = at. 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

( - n )- avs• n c es• - n es• - (- ) B- (- ) (2 35) V5 .•v. V 5.+-=:.t!.P0t0 ---E.+uP0t0 -vs* x,t X • x,t . at. CA ms• ms* 
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h n ( a a a ) · h d. · · d. · 1 · 1 w ere v. = -,-,- IS t e gra 1ent operatiOn m 1mens10n ess spatia 
ax. dy. az. 

variables. 

freedom to pick the time scale to such that.f2 =J.They are pure numbers that 

will characterize the physical regime we are working in. For simplicity we 

now drop all the *'sin the above equations. This gives: 

- 2 2~ - a£ 
VxB=_h j 3 """'nsesvs+ _h-

s dt 

- aB 
VxE=-.h-

1 dt 

_an...::,_S ('--x ,'--t) n ·( ( _ )- ) = 0 dt + v ns x,t vs 

(2.36) 

(2.37) 

(2.38) 

(2.39) 

(2.40) 

(- (- ) n)- (- ) dV5 (X,t) 1 es -(- ) es - (- ) -(- ) (2 41) 
V

5 
x,t •v V

5 
x,t + = --E x,t + -vs x,t X B x,t . . 

dt h ms ms 

Equations (2.36)- (2.41) are the nondimensionalized version of the six 

fundamental equations for the system. We still have 18 unknowns. 
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2. 4 Linearization 

We now linearize the cold plasma equations about a static background 

in order to study the dynamics of small-amplitude waves. Following the 

standard approach, all the dependent variables for each plasma species 

s, ns, v_,(i,t),ECx,t),BCx,t) are assumed to have a static zeroth-order term with 

a first-order small perturbation term. The static background will be allowed to 

have a nonuniform spatial dependence. The zeroth-order magnetic field is 

assumed to be non-zero. We assume it points everywhere in the same 

direction, for simplicity, and we take its direction as our z-direction. The field 

strength is allowed to depend on x: B0 = B0 (x)z. 

The zeroth-order velocity fields are assumed to be zero: v0 (x,t) = 0. 

The zeroth-order electric field has to be zero; otherwise it would conflict with 

the assumed static unperturbed state of the particles: E0 (i ,t) = 0. 

From these assumptions, we have 

vs(x,t) = v;(x,t) 

E(x,t) = E 1(x,t) 

B(x,t) = B 0 (x)z + B1(x,t) 

ns(x,t) = n~(x) + n!(x,t) 

Where the superscript 0 represents the zero-order term and 1 represents the 

first-order term and s represents different particle species. Also, for the 

(2.42) 

unperturbed state, the total charge has to be neutral, so we set ~>sn~ = 0 and 
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the undisturbed density is assumed to be homogeneous in space and constant 

0 0 0 0 

m time, so ns IS a constant. 

After inserting the definitions of the zeroth- and first-order terms of 

(2.42) into equations (2.36)- (2.41), and keeping only the resulting first-order 

equations, we find the following linear system of evolution equations: 

-I 
n -~ - 2 2"" o _ 1 _ aE (x,t) 
v X B (x,t) = _h f 3 £..in, esv, (x,t) + _h dt 

s 

(2.43) 

n E-~c- ) __ + iJB1
(x,t) 

v x x,t - JI dt (2.44) 

(2.45) 

(2.46) 

_dn....::.!-'-(X_,t-'-) no( 0-1(- )) = Q 
dt + v ns vs x,t (2.47) 

av:(x,t) 1 es E-1(- ) es -1(- ) Bo(-)A 
----''--'--~= -- x,t +-vs x,t X X z 

dt ~ ms ms 
.(2.48) 

This system of equations is the focus of our study in the next few chapters. 

We will first consider the special case of uniform plasma in Chapter 3. Using 

standard Fourier methods we will identify the important features of the 

various modes supported by the plasma in this case. In Chapter 4 we consider 

the effects of non uniformity and find that - away from resonances - WKB 

methods can be used, provided the background variation is on a longer spatial 

scale than the wavelength of the waves. Then, in Chapter 5 we move to the 

central topic of this thesis: how to connect the incoming and outgoing WKB 

solutions across the resonance layer using modular methods developed by 
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Kaufman and co-workers. In Chapter 6 we then perform a direct comparison 

of numerical simulations and various methods of approximation. 
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Chapter 3 

Waves in uniform plasma 

We introduced the six differential equations that govern the Deuterium-

Hydrogen-Electron plasma system in the Chapter 2. In Section 2.4 we 

linearized the electric field about a zero background, and the magnetic field 

about a constant zeroth-order term with a first-order small perturbation term 

B(i,t) = B0 (x)z + B1(i,t). In this chapter, we make a further assumption: the 

zeroth-order magnetic field is not only constant in time but also homogenous 

in space. Again, we take the zeroth-order magnetic field direction as the z-

direction: 

where B0
, the magnitude of the unperturbed magnetic field. 

The six linearized partial differential equations are: 

-I 
t7 -1 - 2 2"' 0 -I - dE (i,t) 
v xB (x,t)=:h_ f 3 £..ins esvs (x,t)+ :h_---

s dt 

t7 E-~c- )--+ aiJI(x,t) 
v X X, t - J 1 ---'-----'-

dt 

iJn!(x,t) n ( o-1(- )) 0 ----"--+v•nv xt = dt s s ' 
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av;(x,t) 1 es E-1(- ) es -Ic- ) Bo(-)A 
----''-----= -- x,t +-vs x,t X x z 

dt J; ms ms 
(3.7) 

Where the superscript 0 represents the zero-order term, 1 represents the first-

order term, and s represents different particle species. 

3.1 Fourier transformation 

Because the coefficients of this system of PDEs are constant, we know 

the solutions can be found as superposition of exponentials. Any function 

g(x,t) can be represented by a Fourier integral of the form: 

g(x ,t) = 2~ f g(k ,w) e;<iC·x-ror) d 3 k dw (3.8) 

Where g(k,ro) is the Fourier transform of the function g(x,t). By converting 

the system ofPDEs into a system of algebraic equations, the Fourier 

transform makes the linear differential equations easier to solve. From the 

Fourier transform, it is easy to derive the following relations: 

dg _ 1 J~ ( . -) ;(f.:x-ror)d3kd ---- -zwg e w 
at (2n)2 

-

Vg = -1 -J~ (ikg)ei<k·x-ror)d3kdw 
(2n)2 

-

Therefore, we have the following familiar correspondences between 

operators in (x, t) space and multiplication by numbers in (k, ro) space: 

Fourier transforming the equations (3.2)- (3.7), we get: 
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(3.11) 

(3.12) 

(3.13) 

(3.14) 

-iron~ (k ,co)+ ik•(n~~; (k ,co))= 0 (3.15) 

Fourier transforming equation (3.7) and expressing the result inx,y,z 

components: 

. - I - 1 es - I - esBO - I -
-zrovsx (k,ro) =--Ex (k,ro)+ -vsy (k,ro) 

h ms ms 

. - I - 1 es - I - esBo - I -
-lWvsv (k,ro)= --EY (k,ro)---vsx (k,ro) 

- h ms ms 
(3.16) 

1 - le - 1 -
-irovsz (k,ro)=--s Ez (k,ro) 

h ms 

Where the"-" represents the Fourier transform of its original function. 

3.1.1 Wave packets 

When we Fourier transformed the equations, we assumed the solution 

is a superposition of plane waves. Let's consider a more general wave 

function such as a wavepacket, which will be used for our numerical 

comparisons. First, let's treat a simple scalar wave equation of the 

form: D(-iax,ia
1
)lfl(x,t) = 0. If the wave packet has a well-defined carrier 

wave number k0 , it is useful to write the solution for lfl(x,t) as: 
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ro0 is where D(k0 ,(1)0 ) = 0 .Insert this ansatz into the wave equation, 

D(-iax ,ia1 )1f!(x,t) = D( -iax ,ia1 )ei<kox-worl¢(x,t) 

= ei(koX-Wotl D(ko- iax,(t)O + iat )¢(x,t) = 0 

first order: 

This gives the group velocity, the velocity of the propagation of the envelope 

a% 
of the wave packet definition: vg =- ar;{/ 

aw ko ,Wo 

= am . This is also the speed 
ak 

at which the energy propagates. The phase velocity, which is the speed at 

which the phase fronts move, is v P = mo . We derived here the group velocity 
ko 

and phase velocity for the uniform case and they do not depend on x-space. 

For the nonuniform case we will discuss in Chapter 4, the phase and group 

velocities are no longer constant. The wave packet's energy propagation 

depends on the local group velocity and the carrier oscillation wave fronts 

propagate according to the local phase velocity. 
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Consider now a more general situation where more than one mode is 

present. When the phase velocities for different modes are equal, there occur 

mode conversions. These are points where the local (in x) wavenumbers and 

frequencies of the two modes are equal. 

After the Fourier transformation, traditionally all of the unknowns are 

eliminated in favor of the electric field. As we shall see in the next section this 

leads to resonant denominators at certain frequencies. By contrast, the method 

proposed by Kaufman and Y e retains the velocity field for the resonant 

species. This makes the problem look much more like a standard avoided 

crossing or mode conversion. We will find this approach more appropriate to 

study resonance crossing in nonuniform plasmas, 

3.2 Traditional method 

The results in this section are well known and are included here for 

completeness. Readers already familiar with the topic of RF waves can skip 

ahead. In Chapter 2, we introduced the fact that there are 18 variables 

(ECi,t),B(x,t),n.(x,t), v.(.x,t)) of the Deuterium-Hydrogen-Electron plasma 

system whose dynamics are governed by and Maxwell equations and mass 

and momentum conversion equations. A traditional way to solve this system is 

to write all other variables in favor of electric field E(i,t). After we get the 

solution for the electric field, we can use the Maxwell's equations and mass 

and momentum conservation equations to solve for the other variables. 
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We can define the gyrofrequency, which is also called cyclotron 

frequency n. = e.Bo for each particle species sand rewrite equation (3.16) 
m. 

into a matrix form: 

[

-iro -n. 
n. -im 

0 0 

Here all the superscripts 1 representing the first-order terms have been 

dropped for simplicity. Inverting the matrix and solving for the velocity 

function in terms of the electric field gives: 

-i(J) n. 
0 

.Q 2- (1)2 Q 2- (1)2 

[~] (v" J 
s s 

_ _ 1 e, n. -im 
0 v ---

Q 2- (1)2 Q 2- (1)2 sv .h 
-- I m. 
vsz 

s s 

0 0 
(J) 

Combining the equations (3.18) and (3.11), we obtain: 

- .:: 2 2~ 0 - ( ) .:: (- (J ) .:: ikxB=_hf3 ~n.e.v,+ -im E_h=-im 1--.- E_h 
• zm_h 

Where Y is the identity matrix and the matrix a is defmed as: 
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(3.18) 

(3.19) 



-i(J) Qs 

Q 2- (1)2 !2 2 -ol s s 

0 

0 2 n .. -i(J) -=Ln .. e, f.J2 
(j- I 3 Q 2- (1)2 !2 2 -ol s ms 

0 
s s 

0 0 

-im n .. 0 
Q 2- (1)2 Q 2- (1)2 

s s 

= L (J) ps 
2 h 

Qs -im 
0 

Q 2- (1)2 Q 2- (1)2 
s s 

0 0 
(J) 

with the definition of the plasma frequency for each plasma species 

n oe 2 

m ps 
2 = _s _ .. _ f 3 

2 and the plasma frequency for the system is defined 
ms 

Multiply both sides of equation (3.12) from the left by k using the 

cross product and substitute for k x Busing equation (3.19) yielding: 

--.::: -.::: -a.::: 
k X (ik X E)= iro(k X B)J; = -im2 (1- -. -)EJ;2 

zw .t; 

Rearranging and using the definition of the index of refraction 

- k 
N=-· - .t;w . 

--.:::- (5.::: 
Nx(NxE)+(I --)E= 0 

im .t; 

(3.20) 

(3.21) 

(3.22) 

Recall that we defined the z-direction to lie along the zeroth-order magnetic 

field. We still have freedom to choose our x-y direction. Choose the x-y 
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direction such that the N -direction lies in the x-z plane at an angle ()to the z-

direction N = (N sin(),O,N cos()). 

Figure 3.1 illustrates the coordinates of the wave propagation direction 

of uniform magnetized cold plasma. 

.v.i...-·'' -· 8'' 

FIGURE 3.1 THE COORDINATE SYSTEM IN THE WAVE PROPAGATION OF THE UNIFORM MAGNETIC 

UNPERTURBED PLASMA 

Expanding equation (3.22) in matrix form yields: 

(

S- N 2 cos2 
() -iD 

iD S-N2 

N 2 sin()cos() 0 

(3.23) 

Where, following Stix's notation [28], we define 

2 
- ~ (J)ps 

S=l- £.J( 2 2)' s (J) - .Qs 

It is also useful to introduce Stix's Rand L functions, which separate 

out the left- and right-circular resonance behaviors. These functions are 

defined as: 

(J) 2 (J) 2 

R=l- L ps ' L=l-L ps 

s w(w+.Qs) s w(m-.Qs) 
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R+L R-L 
Note that S=--,D=--. 

2 2 

Equation (3.23) is a matrix equation of the form ~(k ,w) · E(k ,m) = 0. 

This can have a nontrivial solution for E(k ,m) if and only if 

det ( ~( k, m)) = 0 . Let's take a moment to understand the geometrical meaning 

of this condition. The matrix J2(k,m) is a function of k (which has three 

components) and ro. Therefore, consider the function det(~(k,ro))on the 

four-dimensional space (k,ro). The condition det(~(k,ro)) = 0 forces a single 

scalar relation among the four variables, hence it defines a three-dimensional 

surface which we call the dispersion manifold. This surface might have 

multiple sheets, but each sheet is locally smooth at most points. We have 

found this manner of visualizing the dispersion surface to be useful because it 

generalizes straightforwardly to the nonuniform case (by expanding the size of 

the space to include x ). 

Traditionally, however, Equation (3.23) is viewed as a condition on N 

and 9. The det(~(k,ro)) = 0 condition becomes a sixth-order polynomial 

(more precisely, a cubic in N 2
) for the magnitude of N, with f) -dependent 

and ro-dependent coefficients. Note the resonant denominators in Rand L. 

To better understand the problem, we will examine a special case 

where the wave propagates perpendicular to the magnetic field: e = 1C • 
2 

Equation (3.23) reduces to: 
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-iD 

S-N2 

0 
~ ](~:] = 0 

P-N2 E z 

(3.24) 

For the nontrivial electric field solution, the determinant of the matrix 

has to be zero: de{~ 
-iD 

S-N2 

0 

~ ] = 0 , which gives two eigenvalues 

P-N 2 

(1) The first eigenvalue with its corresponding eigenvector is 

This is called ordinary mode because the undisturbed magnetic field has no 

effect on the particle motion. From equation (3.18), we get 

v,. = 0,0,--0 
_,. , so v,. x B0 = 0, the Lorentz force (3.16) reduces to a - ( 1 iE e ) - -

J; w m,. 

simpler version -iw~,.(k ,w) = _!_~ E(k ,w). Figure 3.2 illustrates the 
J; m,. 

- -
directions of the induced electric and magnetic fields, Ez and BY are the 

induced electric field and magnetic field. 
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FIGURE 3.2 THE DIRECTIONS OF INDUCED ELECTRIC AND MAGNETIC FIELDS 

From the definition of P and N, we will have 

1-12 (J) 2 k 
P = 1 - --7 = N 2 = -

2
-

2 
• Rearrange the equation, we will get the dispersion 

ro f..w 

relation: ro2 = lfl: + roP 2 • This result that does not carry units because of the 
f.. 

nondimensionlization we performed in Chapter 2.3. To better understand the 

physics, we reintroduce units. Multiplying by frequency units on both sides: 

(3.26) 

where all the * terms represent the dimensionless terms and the notations 

subscribed with 0 represent reference values. Also we used the relation 
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introduced in Chapter 2.3 that J; = cA ,x0 = cAt0 . Equation (3.26) is the 
c 

familiar dispersion relation for electromagnetic waves in a plasma. 

It is interesting to note in passing that, after multiplying by n 

(Planck's constant divided by 21t) on both sides of equation (3.26), we get: 

(3.27), 

with the definition of momentum p 2 = n2 1kl2 • This looks very similar to the 

Klein-Gordon equation [29] for a free particle with the mass-energy 

relativistic massive particles with equation (3.27), the plasma frequency for 

the system plays a role of mass, although it is purely classical effect. 

Figure 3.3 shows positive m branch of the dispersion relation of this 

mode. It illustrates that as m and k increases, it asymptotes to the straight 

lines OJ = ± 1J; . And there do not exist waves with real m below the plasma 

frequency m P • 
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FIGURE 3.3 THE DISPERSION RELATION FOR ORDINARY MODE. 

Solving the dispersion relation, it will give the wave number value 

k = ±h J ol - m P 
2 x for propagation in the x-direction. The group velocity is 

::~ 1 +2m 2 

d fi d 
_ u(J) + 

1
_ J1 P 

e me as v = ----=- = _- x . 
g dk h e + h2m/ 

In the wave packet, different plane waves move at different phase velocities. 

1 (J) 2 

The phase velocity is defined as vp = 
1

;

1 

k = ± h2 + ,?. x for propagation 

in the x-direction. 

Figure 3.4 shows the positive branch of group velocity and phase 

velocity. At the plasma frequency, the group velocity at which speed energy 

propagates will go to zero and the phase velocity is infinite. As w increases, 

these two velocities asymptotically approach one another. 
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(I) 

FIGURE 3.4 THE POSITIVE BRANCH OF THE GROUP VELOCITY AND PHASE VELOCITY FOR THE 

ORDINARY MODE 

(2) The second eigenvalue and its corresponding eigenvector is: 

.(3.28) 

This is called the extraordinary mode and it has a more complicated behavior 

than the previous ordinary mode. The electric field has components both 

parallel and perpendicular to k . We will discuss the phase and group 

velocities, and the polarization, momentarily. 

After we get the solutions for the electric field, we can use Maxwell's 

equations, the mass conservation equation and the momentum equation to 

solve all of the other fifteen dependent variables B1 
}

1 ,li/. 

Figure 3.illustrates the orientation of the induced electric and magnetic fields 

for this root. 
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FIGURE 3.5 THE DIRECTION OF THE INDUCED ELECTRIC FIELD AND MAGNETIC FIELD FOR THE 

SECOND EIGENVALUE. 

From the definition of S, there exist a few poles and zeros. The poles 

occur when the wave frequency equals the gyro frequency of one of the 

particle species, and the zeros of S occur either where R or L equals zero. It is 

not generic for both Rand L to go to zero together. We will examine the plots 

of R, L, S and N2 in next section. 

3.3 The resonances 

In section 3.2 we showed when the wavevector is perpendicular to the 

unperturbed magnetic field, one of the eigenmodes is N 2 = RL . The index of s 

refraction N2 is zero when R or L is zero and infinite when S is zero. Recall the 

definition for R, L and S: 

m 2 m 2 

R:=l- L ps ' L:=l-L ps 

s m(m+ns) s m(m-ns) 
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Next, we will discuss these functions in detail and use a Deuterium-

Hydrogen-Electron plasma where the deuterium and hydrogen are both 

present at 50% of the number density as an example. 

As the wave frequency co goes to zero, R and L appear to diverge 

because m appears in the denominator. However, a careful analysis shows the 

term _.!.._ is well behaved in the limit because of our assumption of charge 
(1) 

neutrality. In that case, a little algebra shows that: 

When co is zero, R and L equal the same value, called the Alfven index of 

refraction of index, NA. 

Figure 3.6 showed the function R in the positive wave frequency 

region, where we concentrate on. Because the electron cyclotron frequency 

and the ion cyclotron frequencies are so far away apart 

ln. I= mH QH = 1836QH, we will look at them separately. Figure 3.6 (a) 
m. 

focuses on the ion cyclotron frequency region while Figure 3.6 (b) focuses on 

the electron cyclotron frequency region. 
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lon Cyclotron 
Frequencies 

FIGURE 3.6 R AS A FUNCTION OF FREQUENCY IN THE POSITIVE FREQUENCY RANGE 

R 

w 

FIGURE 3.6 (A) FUNCTION R IN THE ION CYCLOTRON FREQUENCY REGION 

Then we will focus on the absolute value of the electron frequency region. 

38 
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FIGURE 3.6 {B) FUNCTION R IN THE ELECTRON CYCLOTRON FREQUENCY REGION 

When co= wR;o, R = 0 and N2 = 0 correspondingly. The condition 

when N2 goes to zero is called a cutoff. Recall that N2 is a smooth function of 

co, therefore there will be frequencies in the vicinity of the cutoff where N2 < 

0, implying that waves of that frequency are evanescent, hence they are 'cut 

off' from propagating. We will see in the nonuniform case that cutoffs are 

associated with caustics where rays must turn back from nonpropagating 

regions. 

In the present case there is only one root for coR;o. The cutoff occurs 

at coR, bigger than the absolute value of electron cyclotron frequency, which 

is much higher than the ion cyclotron frequency. Therefore, at the cutoff of 

coR;o, the ion motions can be neglected. 

2 

R :=d - __ w....!e:.:!...s --

CO(W + Q,) 

Which gives the value of COR;O:::: I~. I+ ( ~e r + (J)pe
2 

. When (J) =ln. I' R 

diverges. And when w ~ =, R ~ 1. 
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Figure 3. 7 indicated the function L in the positive wave frequency 

region. Again, the ion and electron cyclotron frequencies are very well 

separated; Figure 3.7 (a) focuses on the ion cyclotron frequency region while 

Figure 3.7 (b) focuses on the electron cyclotron frequency region. 

II 
II 
II 
II 
II 
II 

L 

1.0 I 

FIGURE 3. 7 L AS A FUNCTION OF FREQUENCY OVER THE FULL RANGE 

FIGURE 3.7 (A) FUNCTION LIN THE ION CYCLOTRON FREQUENCY REGION 
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FIGURE 3.7 (B) FUNCTION LIN THE ELECTRON CYCLOTRON FREQUENCY REGION 

There are two roots where w = wL=o , which gives L=O,where we 

again have cutoffs where N2 = 0. When w ~ =, L ~ 1, same as R does. 

The cutoff occurs at wL=o, which is can occur in the ion cyclotron range of 

frequencies. 

At the ion cyclotron frequencies L blows up. R blows up at the electron 

cyclotron frequency. This is because positive ions gyrate so as to resonate 

with left-circular polarized waves, while electrons resonate with right-circular 

polarized waves. (Hence, the purpose of the L and R notation is now clear.). 

We will discuss these conditions more in detail later. 

FunctionS is defined as S = R + L . Figure 3.8(a) shows Sin the ion 
2 

cyclotron frequency region while Figure 3.8 (b) shows Sin the electron 

cyclotron frequency region. 
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WS=O 

FIGURE 3.8 (A) FUNCTIONS IN THE ION CYCLOTRON FREQUENCY REGION 

Next we will focus on the absolute value of the electron cyclotron frequency 
region. 

s 

ws=O w 

FIGURE 3.8 (B) FUNCTIONS IN THE ELECTRON CYCLOTRON FREQUENCY REGION 

When m = ms;o ,S = 0, IAif = R: ---7 oo. The condition when the index 

of refraction goes to infinity is called a resonance. Because this particular 

resonance involves both the Hydrogen and Deuterium ions in combination, it 
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is called the ion-ion hybrid resonance, or just the 'ion-hybrid' resonance. 

Each additional species in the plasma will result in one hybrid resonance. 

Also, S blows up at the ion cyclotron frequencies because L does, and it 

diverges at the electron cyclotron frequency because R does. Although 

functions R, L and S diverge in the ion and electron frequencies, the index of 

refraction (which involves the ratio RLIS) does not. 

Figure 3.9(a) (b) and (c) show how the function N2 behaves. There are 

three roots corresponding to S=O. For a clearer view, we will look at them one 

by one. 

ws~o 
I 

FIGURE 3.9 {A) FUNCTION N2 
IN THE FIRST 8=0 ROOT REGION 

When OJ = 0 , the index of refraction equals to the Alfven index of 

refraction. N2 diverges at the first root where m = Ws=o ,S = 0. This is the ion 

hybrid resonance. An ion hybrid resonance always lies between each adjacent 

pair of ion cyclotron frequencies and, in general, they must be numerically 

calculated. 
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FIGURE 3.9 (B) FUNCTION N2 
IN THE SECOND S=O ROOT REGION 

Figure 3.9 (b) illustrates the second root of S = 0, where the hybrid 

resonance lies between the Hydrogen cyclotron frequency and the electron 

cyclotron frequency. This is called 'lower hybrid' resonance. The lower 

hybrid resonance is located between the highest ion cyclotron frequency and 

the electron gyrofrequency. For more cases with more than one ion species, 

the lower hybrid resonance usually cannot be calculated analytically but must 

be computed numerically. 
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FIGURE 3.9 (C) FUNCTION N 2 
IN THE THIRD S=O ROOT REGION 

Figure 3. 9( c) shows the third root of S = 0 and this hybrid resonance is 

located at a frequency greater than the electron cyclotron frequency. This one 

is called the 'upper hybrid' resonance. The upper hybrid resonance is mainly 

due to the motion of electrons. 

The above figures 3.4-3.9 are all shown to scale. As discussed, the 

plots span a very wide frequency range from the ion cyclotron frequency to 

the electron cyclotron frequency and above, so we have to show multiple 

figures in the different frequency regions for a clearer view. Next I want to 

show the figure not to the scale to give a better idea how the index of 

refraction changes as the frequency changes. Figure 3.10 shows the relations 

of Sand N2 for the Deuterium-Hydrogen-Electron plasma for deuterium and 

hydrogen are both 50% of the density. The main difference is that the upper 

hybrid resonance should be very far to the right. 
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FIGURE 3.10 THE INDEX OF REFRACTION AS A FUNCTION OF FREQUENCY NOT TO SCALE FOR 

50%DEUTERIUM AND 50%HYDROGEN. 

At cutoffs, the index of refraction N2 is zero. This occurs when R or L 

are zero. The index of refraction is infinite when Sis zero, which occurs at 

resonances. For our Deuterium-Hydrogen-Electron plasma, there are two ion 

species and electrons, so there exist three resonances. The CD@® dashed lines 

corresponding to three different roots when S == 0 are the ion hybrid 

resonances, lower hybrid resonances and upper hybrid resonances 

respectively. Cutoffs occur at roR, the root where R==O and roL two roots where 

L==O. As we mentioned earlier, each species in the plasma will result in one 

hybrid resonance. If we change the density of the two ion species instead of 

50% each, but 99% Deuterium with 1% Hydrogen and the plasma is still 

neutral. 
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FIGURE 3.11 THE INDEX OF REFRACTION AS A FUNCTION OF FREQUENCY NOT TO SCALE FOR 

99%DEUTERIUM AND 1 %HYDROGEN 

Compare Figure 3.10 and 3.11, the upper hybrid resonance is 

unchanged because it is dominated by the electron motions as discussed. The 

ion hybrid resonance and lower hybrid resonance move closer to each other. If 

we eliminate the Hydrogen from the system, only one ion and one electron 

species remain. 

• I 
I 
l 
l 
I 
I 
I • I 
I 
I 
I 
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I 
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FIGURE 3.12 THE INDEX OF REFRACTION AS A FUNCTION OF FREQUENCY NOT TO SCALE FOR 

ONLY ONE SPECIES OF ION: DEUTERIUM 
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Figure 3.12 shows as there is only one ion species, there are no longer 

three hybrid resonances only two. One of the remaining resonances is the 

lower hybrid resonance; the other is the upper hybrid. This matches what we 

discussed earlier, each ion species results in one hybrid resonance. The hybrid 

resonance because of the electron motion is again unchanged in this limit. 

3.4 The Kaufman & Ye model 

Because the traditional methods eliminate all variables in terms of the 

electric field, they can obscure an important phenomenon: when a collective 

wave crosses a minority gyroresonance layer there is a disturbance that 

evolves in the velocity channel which carries energy and momentum [30] 

[31]. Following this disturbance in the velocity field becomes particularly 

useful when we want to understand resonance crossing in nonuniform plasma. 

For the uniform case, we simply note that by keeping the velocity field and 

electric field on an equal footing means we return to Equation (3 .17) and keep 

nine variables (the velocities and the electric field). 

In summary, following Kaufman and Y e, we eliminate all the variables 

in favor of the electric field, and the particle velocities. Because we are 

concerned with frequencies in the ion-cyclotron range, which is far from the 

electron cyclotron resonance frequency, we also eliminate the electron 

disturbance in terms of the ion velocity fields and the electric field. We used 

Equations (3 .11) and (3 .12) to eliminate the magnetic field and electron 

particle velocities in terms of the electric field and ion velocities. Equation 

(3 .16) gives a relation between the electric field and the ion particle 

48 



disturbance. So the eighteen unknown variables E(x,t),B(x,t),ns(x,t), vs(x,t) 

(s = deuterium, hydrogen and electron) will reduce to nine variables: 

E(x,t), Vv(x,t), vH(x,t). Appendix A shows in detail how to get the equations 

for the nine remaining unknowns from the cold plasma equations. We 

consider a special case that selects the unperturbed magnetic field as the z 

direction and then pick the particle disturbance direction as the x direction, 

which means k = kx, k.v = 0, kz = 0. In this situation, the dynamics along and 

across the magnetic field decouple and the wave equation in (k, m) space will 

reduce to two uncoupled block matrices (the off-diagonal blocks are zero): 

( R'·' )(V.''J -6x6 !..6xl = 0 
~~x3 ~~I 

ER 

VDR 

.~:. =[ ;:j vx,y = VHR 
!..6xl -

EL 
VHz 

VDL 

VHL 
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2 

0 

0 

0 

_!_...3_ 
0 0 0 

f. mH 

_.!_k' 
2 

Rz -=3x3 = 

0 

0 

jj33 

_!._ ev 

h mv 

_!._ eH 

h mH 

0 

0 

0 

0 

0 

0 

. !.3!2 0 -zro 1 3 nv ev 

iro 

0 

L.:Q_ 
f. mo 

_!_...3_ 

f. mH 

k 2 0 2 

D- = _-{.'2 2 - !.2!2 n.e e (J) 
II - J1 (J) + + I 3 

2 m. (J) +Qe 

0 

0 

iro 

0 

0 

0 

0 

(3.29) 

(3.30) 

In summary, the dynamics across the magnetic field (the x-y direction) 

decouples from the dynamics along the magnetic field (the z-direction). For 

the z component, because the uncoupled magnetic field and the particles are 

moving in the same direction, the term v1 x B0 in the Lorentz force vanishes 

and the solution to this problem is discussed in [32]. We will be more 

interested in how the electric field interacts with the particle motion in the x-y 
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direction. So we will concentrate on that six-dimensional block, with the 

notation defined in Equation (3.28): 

~~;6 ( k,m) · ~~i ( k,m) = 0. 

For nontrivial solutions ~,X;i ( k,m), the determinant of 

det ~~;'6 ( k ,ro) = 0 , which gives the dispersion relation of ro and k. 

We will look at two examples. Figure 3.13 shows Deuterium and Hydrogen 

both at 50% density. 

FIGURE 3.13 THE DISPERSION RELATION IN THE POSITIVE FREQUENCY REGION FOR 

50%DEUTERIUM AND 50%HYDROGEN 

Figure 3.13 shows that there are two fast wave modes ro = ±cak, where 

Ca is the Alfven wave speed of the system. The standing wave mode, which 

crosses the middle of two ion cyclotron frequencies, occurs because we used 

the Kaufman-Y e approach, keeping the velocities of the two ion species as 

dynamical variables. This 'mode' used to appear as a singular denominator in 

the traditional approach, but it now appears as a new branch of the dispersion 
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relation, with avoided crossings. The ion hybrid resonance appears as a 

horizontal dispersion curve, implying that 'mode' has zero group velocity. 

We will see what this means physically in the next Chapter. 

Next we will look at a different density for the two ion species, when 

one of the ions is a minority: 99% Deuterium and 1% Hydrogen as Figure 

3.14. 

fiGURE 3.14 THE DISPERSION RELATION IN THE POSITIVE FREQUENCY REGION FOR 

99%DEUTERIUMAND 1 %HYDROGEN 

When Hydrogen becomes the minority, the fast waves are still the 

same, but the ion hybrid resonance moves up to the vicinity of the Hydrogen 

cyclotron frequency. 

As we will see, in the nonuniform problem the region where two 

modes are nearly degenerate, the 'avoided crossings', now become local in x. 

When waves cross these resonance layers, they can exchange energy and 

action with each other. In the nonuniform setting this is called mode 

conversion. The Kaufman-Ye approach shows that resonance crossing in 
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plasmas is really a pair of avoided crossings, which is obscured in the 

traditional approach. 
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Chapter 4 

Waves in nonuniform plasma far from 

resonance 

We discussed waves in uniform plasma in Chapter 3. There we carried 

out the Fourier transformation for linearized cold-plasma model of 

Deuterium-Hydrogen-Electron plasma. We introduced both the traditional 

method and the Kaufman & Y e method to perform the calculation and 

described the dispersion relations in both formulations, noting that certain 

resonances that appear as singular denominators in the determinant using the 

traditional approach appear as zeros of the determinant (i.e. they are related to 

dispersion curves) in the Kaufman-Ye formulation. Therefore, in the KY 

formulation, a resonance crossing will look like an avoided crossing. This 

shows that what is called 'mode conversion' in plasma physics is in fact 

deeply connected to Landau-Zener [33, 34] or 'level-crossing' [35,36] 

phenomena that are familiar in condensed matter or AMO physics. 

In the current chapter, we will study these cold-plasma waves in 

nonuniform plasma. The undisturbed magnetic field strength will be allowed 

to vary in space. For simplicity, we assume the non-uniformity is only in the 

x-direction. The zeroth order magnetic field is again assumed to lie in the z

direction: B 0 = B(x)z. These assumptions can be relaxed without changing the 
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WKB analysis described below, but for ease of comparison with the uniform 

plasma results of the previous chapter we restrict ourselves to adding only one 

new twist to the problem. 

4.1 Local resonances 

In the nonuniform case we must be careful about operator orderings. 

Because the background is constant in time we can still Fourier transform 

from the time to the frequency domain. However, we will be using wave 

packets to study the resonance crossing numerically, hence we will return to 

the time domain at that time. The linearized cold plasma model (Maxwell + 

mass and momentum conservation) consists of Equations (3.2)-(3.6) once 

again, while equation (3. 7) becomes: 

(4.1) 

Thus the six fundamental equations are: 

-iwii~(x,w) + V•(n~~;(x,co)) = o (4.6) 

And the momentum conservation law is written in x,y,z components: 
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. -1 (- ) - 1 e, E- 1(- ) n ( )-1 (- ) -l(I)Vsx X,(l) --- X X,(l) + 1>-'s X vsy X,(l) 

J.. ms 

. -1 (- ) 1 es E- 1(- ) Q ( )-1 (- ) -l(I)Vsy X,(l) = -- y X,(l) - s X Vsx X,(l) 

f.. ms 

. -1 (- ) 1 es E- 1(- ) -zrov,z x,m = -- z x,ro 
f.. m, 

The gyrofrequency for each plasma species, denoted as Qs(x) = esBo(x), is 
ms 

now x-dependent. The"-" indicates the Fourier transform in time of its 

original function. Because we again assume the plasmas are cold, we can 

employ the Kaufman & Ye model as in Chapter 3. 

Appendix B shows the details of how to express this system ofPDEs 

in a compact matrix operator form for the Deuterium-Hydrogen-Electron 

system: 

(4.7) 

(4.8) 

where Q9
x

9 is a 9 x 9 matrix operator and 1f1 is a 9-component wave function. 

For simplicity, and to minimize the computational overhead, the background 

medium is assumed to vary only in the x direction. Also, our work currently 

restricts the problem to variation in only one spatial dimension, hence 

lf!. = lf!.(x,t). In Eq.(4.8), therefore, when acting on \jl, we set idY = O,idz = 0. 

As in the uniform case described in Chapter 3, in this setting the 9x9 matrix 

operator decomposes into two uncoupled matrix operators, one 3x3 block 

governs the dynamics along the unperturbed magnetic field (along z), while 
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the remaining 6x6 block governs the dynamics across the background 

magnetic field: 

.!.a' 2 X 
0 0 

.!..2 
f., mv 

0 0 (4.9) 

L2 0 0 
J; mH 

.!.a' 
2 ' 

0 0 

0 0 0 .!..2 
f., mv 

0 0 0 L2 0 
f., mH 

Where we have introduced the operators 

We note that, because we are interested in frequencies that lie in the ion-

cyclotron range, the denominators associated with the electron cyclotron 

resonance are non-singular. 

In Chapter 3, where we discussed waves in uniform plasma, we 

mentioned that the Fourier transform converts the wave operator to an 

ordinary matrix that depends upon k and m. The determinant of this matrix is 

the dispersion function, and the zeros of this function define the dispersion 

curves. In the current chapter we are dealing with nonuniform -though 

stationary-- plasma. Therefore we can only Fourier transform in time. 

However, the models we have derived have an important special property: 

there are no terms that mix x and - ia x in the current 6x6 matrix. Therefore, 
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ordering issues don't appear and we don't need to invoke the full generality of 

the Weyl symbol calculus [37], which would be needed for more general 

cases. The symbol of the 6x6 cold plasma operator is therefore what we would 

naively write down by simply replacing - ia x by k: 

jjll -irof,'J,'" 0e -irof,'f,'" 'e -~k' 0 0 
J, D D j, H H 2 

il.!.£.. i(ro+i20 (x)) 0 0 0 0 
(4.10) 

J, mo 

fj,_.!!.JL 0 i(w+QH(x)) 0 0 0 

~;,~r(j := 
J, mH 

-~k' 0 0 b, -iw !,'!,' n ° e -iwf,'f,' n °e 
2 J, D D !, H H 

0 0 0 Jj,_!.£.. i(w-Q0 (x)) 0 
J, mo 

0 0 0 fj,_.!!.JL 0 i(ro-QH(x)) 
J, mH 

k2 0 2 

D- - ~2 2 ~2!2 nee e (J) 
-- (J) +-+ 

II - I 2 I 3 + Q (X) m. (J) e 

k 2 0 2 

D- =-"2 2 - .r2f2nee e (J) 
22- Jl (J) + + Jl 3 

2 m, m-Q,(x) 

Before considering the cold plasma problem, we consider WKB theory 

for vector wave equations more generally, introducing notation and deriving 

some important general results. We then return to the cold plasma problem in 

subsequent sections. 

4.2 the WKB method 

In this section, we will review the WKB method for solving vector 

wave problems. When there are no caustics or mode conversions, the WKB 

method --also known as the ray tracing method -- is effective for solving wave 

equations. 
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Here I want to talk about the general case of a wave equation in 

multiple spatial dimensions. We also assume we have a vector wave problem. 

The medium is time-independent but varying in space. We assume the wave 

operator is finite-order in the derivatives. (This could be generalized using the 

Weyl calculus, but the assumption is sufficient for the problem of interest in 

this thesis.) Hence, we consider a general wave equation of the form: 

.Q(x,-iV,ia,) ·lfl(x,t) = o (4.11) - -

Fourier transforming in time gives: 

.Q(x,-iV;m) ·ift(x,m) = o (4.12) 

Since the frequency m is just a fixed parameter, we can suppress it for 

notational simplicity but emphasize that all the results that follow hold for a 

fixed frequency. We will have to revisit this when we talk about wave packets 

later. Our wave equation is now of the form: 

.Q(x,-iV) ·ift(x) = o (4.13) 
- -

We are interested in solutions of this equation which have a phase that is 

rapidly varying compared to the background. To set up the asymptotic 

calculation, we now introduce a formal small parameter £ in front of the 

gradient. Doing the calculation in this manner allows us to keep the 

background variation on a fixed spatial scale while taking the wavelength of 

the oscillations to zero as £becomes small. We start with a trial solution, 

which is called an eikonal ansatz: 
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.ll(i) 

lji(i) = A(x)e'-e e(x) 

We assume the background medium is weakly inhomogeneous, the phase 

factor O(i) varies more quickly than both the amplitude A(i) and the 
£ 

polarization vector e(x). 

(4.14) 

We assume the wave operator is self-adjoint. The system then has an 

action principle: 

(4.15) 

Insert the eikonal wave ansatz (4.14) into it. To leading order in£ this gives: 

(4.16) 

The variation with respect to e t(i) gives 

A2 (.X)~(.x, v ec.x)). e(x) = o. ( 4.17) 

For nontrivial solutions (A( .X) :f. 0 ), we must have: 

( 4.18) 

At each spatial position, the polarization e(x) must be an eigenvector of the 

matrix ~{.X,V'O(i)) with zero eigenvalue. Define the local wavevector: 

k(x) = v O(x). 

Following the development of the uniform medium theory, we now define the 

dispersion function ']) which is the determinant of the matrix~( x,k(x)): 

For nontrivial solutions we must have: 
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(4.19). 

This is the Hamilon-Jacobi equation. It is a nonlinear partial differential 

equation for the unknown phase. Equation ( 4.19) can be solved locally -but 

not globally in general -- using ray tracing methods in phase space. 

Ray phase space is formed by adjoining the n-dimensional space x 

and n-dimensional wavevector space k into a 2n-dimensional space 

z = ( x, k) = ( z1 , z2 ••• z2n) where the wavevector space k is now treated an 

independent variable. When we enforced the relation that k = k(x) = V 8(x), 

we defined ann-dimensional surface ( x,k(x)) in the 2n-dimensional phase 

space, and this surface is called a Lagrangian manifold. The phase function 

8(x) can be constructed by launching a family of rays with the given initial 

conditions. This family of rays on the Lagrangian manifold can be used to 

construct the phase function by integrating kdx along each, as described on the 

next page. 

Since we assumed the wave operator is self-adjoint, the matrix 

{?(z) = {?( x,k(x)) is Hermitian. Therefore, there are n real eigenvalues 

Dj (z). If they are nondegenerate, there will ben corresponding eigenvectors 

e iz),j = 1,2 .. . n that are orthogonal. Therefore they form a basis. Because 

we assume we are in the area away from resonances -- which means away 

from the degeneracy -- there is at most one zero eigenvalue, for 

example, D1 (z) = 0 with eigenvector e 1(Z). The determinant of the dispersion 
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matrix can be written as the product of the eigenvalues: 

gives the dispersion surface of wave 1. On this dispersion surface, rays will 

propagate with the ray Hamiltonian .:D(z). Also, D1 (z) can be chosen as the 

ray Hamiltonian. This gives the same rays, but with a different 

parameterization. 1 

For any two scalar functions J(Z) and g(z), the Poisson bracket is 

defined as {J,g} = V' xf · V' iig- V' .d · V' xg. The ray Hamiltonian .:D(z) 

generates the ray by 

_, dz {""'(-) _} Z =-= ..L.J Z ,Z 
dG 

(4.20) 

Thus we have x = - V' ii.:D ( z), k = V' x.:D ( z) and the associated phase can be 

constructedas 8,(x)=8
0

+fx k(x')·di'=8
0
+ af

1

k(x,G')· dx dG' by 
- dG' 
xo (Jo 

following the ray G 1 , where 80 is the initial condition for the phase; G 0 is the 

initial point of this ray. Note that we must choose initial conditions where 

1 Consider n=2 as an example for simplicity: .2l ( z) = D1 ( z) · D2 ( z), and 

suppose D1 ( z) = 0 , but use the determinant as ray Hamiltonian. Then: 

z= dz ={2l(z),z}={Dp2 ,z}=D1 {D2 ,z}+D2 {D"z}=D2 {D"z}. The 
dG 

factor of D2 can be absorbed into a new ray parameter via: dG = D2 . Then 
dG' 

dz {v _} -=D2 "Z . 
da' 
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Because the phase O(.i) appears in equation (4.16) only through its 

gradient we can shift the phase O(.i) by an overall constant leaving the action 

invariant O(.i) ~ O(.X) + 80 . By Noether's theorem [39], there is an associated 

conserved quantity, which is the wave action flux density 

](.X)= -A2(x)[V t<(e t(x).Q(x,k) · e(.i))J_ _ . Varying the action with 
- k=V8(x) 

respect to the phase gives the conservation law (recall we are assuming no 

time-dependence here) V · ] = 0 . The conserved action flux density 

associated with the zero eigenvalue D, (z) is: 

expression for the amplitude propagation. This equation typically does not 

have global solutions: it breaks down near caustics or in conversion regions. 

The proper treatment of caustics is discussed in the work of Delos [ 40], 

Littlejohn [41] and others. In the problem considered in this thesis, however, 

we are concerned with the breakdown of WKB in conversion regions, so we 

consider a simplified problem where the 'caustic' that appears is 

straightforward to deal with (as we'll see, the conversion from the 'fast wave' 

to the 'ion hybrid' mode looks like conversion at a caustic). 

The polarization propagation is discussed in [42, 43, 17]. We will not 

need the polarization transport results here, however, because we will be 

carrying out direct numerical simulations on the one hand, and using a local 

construction on the other hand for finding the 'uncoupled' polarizations 

(sometimes called the 'diabatic basis' in the AMO literature). 
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4.3 WKB method on an example vector problem 

We discussed WKB methods for generic vector wave problems in 

section 4.2. In this section, we will introduce a simple wave problem in a 

background that is weakly varying in space and constant in time as an 

example. 

(4.21) 

Where T] is the constant coupling and QH(x) is a spatially dependent 

gyro frequency for Hydrogen. There is a very simplified version of the local 

wave equation governing the interaction between the fast wave (in channel 

'a') and the,hydrogen gyroresonance (in channel 'b'). In later chapters we will 

provide a more formal derivation of a similar 2x2 model directly from the 

cold plasma model, so this simple model is actually more than a 'toy'. 

. (ua )2
- (-ia )2 

17 ) Because the matnx r n. x . acting on the 
'I zat- QH(X) 

(
lfla(x,t)) · · · d d F · fi h wave vector 1s time m epen ent, we can ourter trans orm t e 
lflb(x,t) 

. . . b . . (lfla(x,t)) (lj/a(x)) -irot h" h · equatiOn m ttme y msertmg = _ e , w 1c gtves us: 
lflb(x,t) lflb(x) 

(4.22) 
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(
if!a(x)) ·e( ) (Aa(x)) If we insert a WKB ansatz _ = e' x , assuming the 
lflh(x) Ab(x) 

two-component wave function has a rapidly varying phase 8(x) and slowly 

· 1' d d 1 · · (Aa(x)) varymg amp 1tu e an po anzatwn , we get: 
Ab(x) 

-iwt ill(x) ((i/ -k
2 

e e • 
1} 

(4.23) 

h k d8 F .. 1 1 . £ h . (Aa(x)) 0 w ere = - . or any nontnv1a so utwn or t e equatwn: * , we 
dx Ah(x) 

have 

(4.24) 

Equation ( 4.24) defines a 2-dimensional dispersion surface in 3-dimensional 

space (x,k,w). 

If the coupling 1J is zero, the dispersion function (4.24) becomes 

(4.25) 

which has two eigenvalues, one associated with the fast wave, and the other 

the hydrogen gyroresonance. Considered, instead, as a function of ro for fixed 

x there are three distinct branches of the dispersion function: 

For each spatial position x0, the zero eigenvalue gives a condition on 

the wave number ro = ±k and the gyrofrequency is ro = QH(x.). 
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(IJ = -k 

FIGURE 4.1 THE DISPERSION CURVES FOR FIXED SPATIAL POSITION X. 

In Chapter 3, we mentioned the group velocity that describes the propagation 

of the energy/ amplitude or envelope of the wave packet and phase velocity 

that describe how the carrier oscillation of the wave packet changes. 

According to the definition, v g = am , v P = m . The eigenmode 
dk k 

{

(1) = k ~ v = 1 v = 1 
g ' p 

m = ±k gives and it is the 'fast wave' mode; the 
m = -k ~ vg = -1,vP = -1 

positive mode is the right-moving direction while the negative mode is the 

left-moving direction. 

In figure 4.1, the blue .2>11 = ro2 
- e mode is the fast moving wave 

mode with the left (the minus ko branch) and right propagation waves (the 

positive ko branch) in space x. The group velocity and the phase velocity have 

the same value for all ro, hence these waves are dispersionless. We will derive 

the ray equations momentarily. 

h d. . n h 0 m QH(x.) I . T e. 1sperswn curve m = .:."H (x.) as v = , vP =- = . t 1s a 
g k k 

standing wave because the group velocity is zero. The red curve in Figure 4.1 
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is where.2l22 = w- .QH(x) = 0. Because there is no constraint on the wave 

number for this mode, the phase velocity can be freely changed. In figure 4.1, 

the two modes cross at the green dots, where the phase velocities of the two 

modes are equal. This is called the " mode conversion" region, for each choice 

of frequency it will occur at a different position X• determined by the 

condition .Q H ( x.) = W0 , hence the resonance for a given frequency is now 

localized in x. 

Ignoring mode conversion for the moment, we can ask what ray orbits 

look like for these two modes. In order to do that we must therefore extend 

our point of view to include the x-domain and view the dispersion functions 

on the three-dimensional space (x,k, 01). 

67 



FIGURE4.2 THE 3D DISPERSION SURFACE FOR THE FAST WAVE 

Figure 4.2 shows the fast wave dispersion surface where 

2>11 :=al-e = 0 in the three-dimensional space (x,k,W). It is independent of X, 

so it is invariant in the x-direction. 
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FIGURE 4.3 THE 3D DISPERSION SURFACE FOR THE GYRO FREQUENCY STANDING WAVE MODE 

Figure 4.3 shows the dispersion surface where 'JJ22 = m- QH (x) = 0, there is 

no k dependence, so the surface is invariant in k. 
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FIGURE 4.4 THE 3D DISPERSION SURFACE FOR THE TWO MODES 

Figure 4.4 shows the dispersion surface where .2\ 1 • 'JJ22 = 0. The two 

modes intersect at places that are x-dependent. For a wave with a fixed 

frequency carrier, it will cross the resonance at a certain space x point with a 

definite wavenumber. 

Figure 4.5 illustrates the ray orbits in x-k phase space of the two 

different modes. The blue positive branch is for the right-moving wave while 

the blue negative branch is for the left-moving wave. The red one is the 

standing wave- i.e. the hydrogen gyroresonance. Equation ( 4.20) gives the 

motion in k space: k = v X']) ( z) . The fast wave mode ])11 = ol - e is space-

independent so it is motionless in k as indicated in Figure 4.2. The standing 

70 



. ak a2l(z) an (x) 
wave mode 2l22 = m- Q H (x) 1s x-dependent. Thus - = --= - H , at ax ax 

the standing wave mode, which is stationary in x space, but propagates in k 

space. 

k 
.. 

-----~---+----.X 

FIGURE 4.5 THE DISPERSION CURVES FOR FIXED FREQUENCY. 

Notice that the red ray, associated with the hydrogen gyroresonance, is 

vertical and, hence, looks like a (highly degenerate!) caustic in x-space. This 

is what we were referring to earlier when we mentioned that in this problem 

'conversion occurs at a caustic'. In fact, Figure 4.5 shows we have two 

conversions lying over one another in x-space. They are separated in phase 

space, however, which will allow us to develop a modular approach to the 

resonance crossing problem, treating the two conversions in isolation. 

If the coupling is not zero, then the two pictures will be modified in 

the area when two modes cross. The dispersion function is now: 
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We mentioned previously when the phase velocities for the two modes are 

equal, they are degenerate and mode conversion occurs and the WKB methods 

fail. 

Away from the mode conversion area, we use the WKB method to 

calculate how the waves propagate. Initial conditions are chosen so that 

1J ) = 0 . The corresponding null 
(t)o -QH(xo) 

Away from xo the amplitude is chosen to be a Gaussian with a width that is 

large compare to a wavelength of the carrier oscillation, but small compared 

to the length scale over which the background changes. Whenm0 = -k0 , this 

gives a left-moving wave packet; while for (1)0 = k0 we would get a right-

moving wave packet. The envelope of the wave packet is updated using the 

group velocity while the carrier is updated using the phase velocity. 

Figure 4.6 indicates the avoided crossing phenomenon in the ( m, k)-

space for fixed xo. The dispersion curves clearly show an avoided crossing at 

two points. The fact that the dispersion curves reconnect in the manner shown 

is physically important: for all real values of k there are only real roots of the 

dispersion relation m(k). If the avoided crossing had a gap for some values of 

real k, it would imply that for those values of k there were complex 

frequencies, hence the possibility of instabilities. 
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w 

FIGURE 4.6 MODE CONVERSION IN (J.)-K SPACE FOR FIXED POSITION Xo. THESE ARE DISPERSION 

CURVES. NOTE THE AVOIDED CROSSINGS. 

In Figure 4.7 we draw the rays in phase space. These are 

representational only to illustrate what the avoided crossing phenomena looks 

like in the x-k space for fixed (Q). Signals propagate along the rays (unlike the 

dispersion surfaces of the previous figure). 

k 

-k 0 

X 

FIGURE 4.7 MODE CONVERSION IN X-K SPACE FOR FIXED FREQUENCY ro0 . THE BLACK CURVES 

ARE RAYS. 

We now consider how to apply these ideas to the original cold plasma model. 
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4.4 WKB method on the Cold plasma problem 

In this section we will revisit our cold plasma equations by using the 

WKB method when away from the resonances. Before we focus on the 

uncoupled modes, we first examine the dispersion curves for a fixed x point 

for a 50%Deuterium-50% Hydrogen density ratio plasma. Figure 4.8 shows 

the dispersion curves, now for our full cold-plasma model, in the ion-

cyclotron frequency range for the full cold-plasma model with this density 

ratio. Compare this Figure 4.8 with Figure 4.6, which are the dispersion 

curves for our 2x2 'toy' model, Equation ( 4.21 ). 

c D 
k 

3 2 3 

FIGURE 4.8 DISPERSION CURVES FOR 50% DEUTERIUM-50% HYDROGEN WITH ELECTRON IN ro

K SPACE FOR A FIXED POSITION Xo > X•. THESE ARE DISPERSION CURVES CALCULATED USING 

THE FULL COLD PLASMA EQUATIONS. 
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In Figure 4.8 the red circles are the mode conversions of the positive 

ion-ion hybrid mode and the fast wave mode; the blue circles are the mode 

conversions of the negative ion-ion hybrid mode coupled with the fast wave 

mode. Note that we have chosen our time scale to be the cyclotron period for a 

proton, hence QH=l and nn=l/2. Because we will choose a wave packet with 

positive carrier frequency, we will be more interested in the area of the red 

circle. Far away from the red circle mode conversion region, the waves 

behave similar to a fast wave mode or a pure resonance. The fast waves 

propagate to both left and right direction with a well-defined group velocity, 

a% 
v g = -ar;{/ and phase velocities v 8 = ~ . In area A, the fast wave mode is 

0(1) 

far from the crossing and the wave number for the carrier is negative, which 

gives a negative group velocity and phase velocity. When the group velocity 

is negative, it means the envelope is moving to the left. In the area B, the fast 

wave mode is far from the resonance and both the carrier frequency and wave 

number are positive, which gives a positive group velocity. Hence, the 

envelope propagates to the right. We set our initial wavenumber and carrier in 

a region like A with the wave packet position to the right of the resonance in x. 

The 'mode' associated with the ion-hybrid resonance does not 

propagate in x space but does propagate in k space as we discussed in section 

3.4. There are no constraints on kin this mode. The group velocity is zero, the 

envelope is stationary in x space and the phase velocity can be any value. It is 
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positive at the point D where k is positive and negative in the area C where k 

is negative. 

Next, we will study the polarization of the dispersion curves away 

from the crossings. At C and D the amplitudes of the polarization components 

are dominated by the ion motion with almost zero contribution from the 

electric field. This means the energy of the gyroresonance mode away from 

the crossing is mainly carried by the particles' motion, not the field. At A and 

B, but also away from the crossings, the amplitudes of the polarization 

components are evenly distributed between the electric field and ion motion. 

However, the energy is mainly contributed by the fields, as we will show by 

deriving the wave packet energy in detail in Chapter 6. This completes our 

discussion of the problem far from resonance, where the WKB approximation 

is valid. We now turn to the local behavior within the resonance region. 
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Chapter 5 

Waves in nonuniform plasma at 

resonances 

We discussed the wave propagation in nonuniform plasma away from 

the resonances, where the polarization and amplitude of the eikonal ansatz of 

WKB method are slowly varying. In this chapter, we will concentrate on the 

wave equations we studied in Chapter 4 at resonances, where the WKB 

approximation fails. 

5.1 Reduction to the 2x2 form 

Although WKB breaks down in mode conversion regions, the ray 

geometry in the conversion regions can still be employed to develop local 

wave equations governing the two coupled wave modes undergoing the 

conversion. At the ray tracing level of description, mode conversion appears 

as a ray splitting event, where one incoming ray turns into two outgoing rays -

the transmitted and converted rays. The local wave equation can be solved to 

find the initial phase and amplitude of these outgoing rays. These WKB 

connection formulae are summarized by an S-matrix. [18]. 

In Chapter 4, we discussed the dispersion curves for a fixed position 

x. of the cold plasma equations in ( m,k) space. Here I want to change the 
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perspective by fixing the frequency in the ion cyclotron frequency range, 

m = m. and show the dispersion curves in the phase space (k,x). 

converted 
standing wave 

fast wave 

6 

k 
4 

conversion 2 reflected 
2 

/ fast wave 
,-- ':::...-------

4 

6 

100 

incoming 
fast wave 

conversion 1 

FIGURE 5.1 DISPERSION CURVES FOR THE COLD PLASMA EQUATIONS IN PHASE SPACE FORA 

FIXED FREQUENCY (1) • . THESE ARE RAYS, BUT NEAR THE CONVERSIONS WKB BREAKS DOWN. 

There are two conversions in Figure 5.1. Let's take a closer look at 

conversion 1. As mentioned earlier, away from the conversion, the 

polarizations following the ray change slowly, but they rapidly change near 

the conversion. We can interpolate to get the polarizations at the conversion 

point (k.,x.)for the two constant uncoupled modes ea(k.,x.) and e).(k.,x.). 

(We adopt the convention that the uncoupled modes are labeled with Greek 

indices.) 

Consider Figure 5.2: There are two rays: ray a (in green) and b (in 

purple). Following ray a, this transitions smoothly between the incoming ray 

of uncoupled mode a and the outgoing converted mode 'A. Ray b behaves 

similarly. We interpolate between these two pairs of polarizations to the 
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conversion point (k.,x.) and get the two uncoupled constant polarizations 

I 
I 

ray a 
,.. I ,.. 
eJ.. I eoc 

~,,~ 

ray b (k,~~---'' ea(i n) 
I '"'-i; 

I 
I 

FIGURE 5.2 LOCAL RAY GEOMETRY AND THE POLARIZATION A TEACH POINT ON THE RAYS. 

ea(k.,x.) IS CONSTRUCTED BY LINEARLY TRANSPORTING THE INCOMING AND OUTGOING RED 

POLARIZATIONS TO THE ORIGIN, THEN AVERAGING ea (in) AND eb(out); e). (k.,x.) IS 

CONSTRUCTED SIMILARLY BY AVERAGING THE BLUE POLARIZATIONS e a (OUt) AND eb (in) . 

For each fixed value of frequency m = m. , the 6x6 cold plasma 

equations are: 

We now use the uncoupled polarizations for the fixed frequency m = m. to 

(5.1). 

introduce a new ansatz appropriate for the neighborhood of the conversion. In 

that local neighborhood, lfl(x) is taken to be of the form: 

(5.2). 

Inserting this new ansatz into the action principle we find: 
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The variation with respect to the uncoupled amplitudes lfl a and lfl -t gives the 

reduced wave equation: 

(5.4) 

The 2 x 2 form of wave operator is 

where the operators bm,(x,-idx) = e: · ~6x6 (x,-idJ ·en, and m,n = (a,.A). 

The four operators Dmn(x,-idx)are linear combinations ofthe original entries 

of the 6 x 6 wave operator ftx 6 (x,-idJ because the uncoupled polarizations 

are constant. And --just like the 6 x 6 wave operator for our cold plasma 

model -- there are terms that mix products of x and -idx in the 2 x 2 wave 

operator. Therefore, we can still avoid invoking the full Weyl symbol calculus 

and we can easily obtain the symbol of the 2 x 2 operator by simply replacing 

122x2(x,k) = (Daa(x,k) Da.t (x,k)) _At 6x6 A , where Dnu,(x,k) =em ·/2 (x,k) ·en, and 
- D,ta(x,k) Du(x,k) -

m,n =(a, .A). We now Taylor expand the 2 x 2 symbol of the wave operator 

[ 44] around the conversion point ( x., k.) . The diagonal terms are zero at the 

leading order because the polarizations project the 2 x 2 matrix onto the 

uncoupled modes. The off-diagonal terms are constant at leading order. The 

2 x 2 form of the wave operator therefore has the following reduced form: 
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h - _ At D6x6( k A w ere 17 = e a · = x. , • ) · eA. . 

Referring back to Figure ( 5.1): If an incoming wave packet is launched 

in the (red) fast-wave mode, at the lower conversion the transmission 

coefficient and conversion coefficient are defined as [15]: 

where the normalized coupling constant is defined 17 = ij11 , with 
1~172 

~ = { Da ,DJ the Poisson bracket of the uncoupled dispersion functions. The 

bracket is evaluated at the conversion point. In the current case the value of 

is proportional to 
x=x"' 

the product of 1] the wavenumber at the conversion point, 2] the gradient of 

the nonuniform background at the conversion point, and 3] the densities of 

hydrogen and deuterium; c1 and c2 are constants related to the constant 

uncoupled polarizations. 

The wave packet energy splitting at the conversion can be predicted by 

the transmission and conversion coefficients. The fraction of energy 
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transmitted is lrl2 
and the fraction converted is 11312

• Energy conservation is 

guaranteed because by properties of the r-function: lrl 2 + 11312 = 1 [18]. 

This is the S matrix prediction for how energy will split when an 

incoming ray is crossed the conversion region, splits into a converted ray and 

a transmitted ray. The transmission and conversion coefficients can be used to 

predict how the energy is transmitted and converted. As we have shown, the 

whole derivation is for a fixed frequency. We will compare this S matrix 

prediction for the energy transfers with the full wave calculations for a narrow 

banded wave packet crossing the conversion region. It is important to note 

that with a wave packet there is a range of frequencies in a narrow banded 

wave packet, though the spectrum is dominated by the carrier frequency. 

Strictly speaking, the frequency dependence of the S-matrix predictions must 

be taken into consideration. However, the transmission and conversion 

coefficients are smooth functions of the frequency, hence the results for a 

narrow-banded wave packet are very close to the single frequency ones. We 

neglect this subtlety in this thesis, and find we still get good agreement 

between the ray-based S-matrix predictions and the full-wave simulations. 

5.2 Double conversion for the cold plasma models 

Figure 5.1 shows that in the resonance-crossing problem, there are two 

conversions in ray phase space that lie over one another in x-space. We will 

discuss each of them here in detail. When we launch an initial fast wave 

packet from the low-field side of the resonance (in Figure (5.1) this 
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corresponds to the red ray entering from the lower right), it propagates in x-

space until it reaches the mode conversion region 1, and the conversion 

occurs. The wave packet splits into a transmitted fast wave packet and a 

disturbance in the ion motion that does not propagate in x but propagates in k-

space until this converted wave packet arrives at the mode conversion region 

2. That is, in x-space the group velocity of the wave packet is zero, but the 

carrier oscillation evolves. Now the previously converted standing wave 

packet from conversion 1 is the 'incoming' wave packet for conversion 2. The 

local 2x2 matrix operator for region 2 governs the coupled wave propagation 

in the second conversion. Part of the energy is now converted to a reflected 

fast wave (the red ray traveling to the upper right in Figure (5.15)) while the 

rest of the energy is transmitted through the second conversion and continues 

to propagate ink-space. Eventually, the carrier oscillations in the standing 

wave packet develop very small spatial scales and the wave will dissipate, but 

this physics is not included in the present model. 

Because there are two conversions in this problem, we need to reduce 

from the 6x6 form of the wave operator to the 2x2 normal form at each local 

conversion point. The cold plasma 6x6 matrix is quadratic in k and therefore, 

if the conversion point in mode conversion region 1 is (-k.,x.,m.), in region 

2 the second conversion will be at ( k., x. , m.) . 2 In both conversion regions, 

2 N.B. This is a special property of the one-dimensional problem. In two or 
three spatial dimensions the ray geometry is much richer and further 
complications can arise. But, we have found that it is often still possible to 
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the off-diagonal coupling term is the same. Thus, the transmission and 

conversion coefficients of these two conversion regions are the same. If we set 

the incoming wave packet energy to be 1, after the conversion region 1 the 

transmitted fast wave packet energy is l-rl2 
and the converted standing wave 

packet energy is 1.812 
• When the converted wave packet propagates to arrive 

later at conversion 2, the reflected wave packet energy has undergone two 

conversions; hence the reflected wave packet has the energy 1.812 ·1.81 2 = 1.814
. 

After this second conversion, the 'transmitted' wave packet will continue 

propagating in k-space, with the energy 1.812 ·l-rl2 
• The total energy in all wave 

packets after the two conversions 

that total energy is conserved after two mode conversion regions. 

treat the conversion ray-by-ray and that it is still very useful to think of 
gyroresonance crossing as a 'double conversion'. 
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Chapter 6 

Numerical calculations and comparison 

with theoretical predictions 

In the previous chapters, we have derived the 6x6 matrix form of the 

wave equation for our cold plasma problem, as well as the 2><2 reduction that 

governs the wave dynamics in the vicinity of the resonance. In this chapter, 

we will discuss numerical methods to solve these equations, as well as 

carrying out a direct comparison between the numerical calculations and 

analytical estimates of the transmission, conversion and reflection coefficients 

based upon the modular S-matrix approach of Kaufman et. al. 

6.1 Crank-Nicolson method 

The 6x6 matrix equation for cold plasma is a set of partial differential 

equations. These must be supplemented by appropriate initial conditions, 

which in the present case we choose to be a magnetosonic wave packet that 

approaches the resonance from the low-field side (i.e. from the right). The 

numerical solution ofPDE's is a very large field of research, which goes well 

beyond the scope of this thesis. Because the medium is nonuniform in space 

we cannot use Fourier methods, hence we will use finite difference methods to 

solve the wave equation. 
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Recall the cold plasma equation in nonuniform medium is of the form: 

~(iCJx,x,-iCJ,) · !::'(x,t) = 0. The symbol ofthe operator for our cold 

Deuterium-Hydrogen-electron plasma is: 

t/P t/P 1 2 
bll -iw-1- 3 n °e -iOJ-1_3 n oe --k 0 0 

fz D D fz H H 2 

!1 .!!_g_ i(al+Q0(x)) 0 0 0 0 
it mv 

fz .!!.E._ 0 i(w+QH(x)) 0 0 0 
Rx.y = it mH 
=6x6-

_..!.k2 t/P J,3P 
0 0 Dzz -iOJ-1- 3-n °e -iOJ-1_3 n oe 

2 fz D D j., H H 

0 0 0 fz .!!_g_ 
i( OJ- Q 0(x)) 0 

it mv 

0 0 0 fz .!!.E._ 0 i(w-QH(x)) 
it mH 

e n°e2 
(1) iJ = _ .r2(1)2 + _ + .r2f2 _e_e ___ _ 

11 )J 2 )J 3 + Q ( ) m, OJ e X 

e n°e2 
OJ iJ =: _ .r20J2 + _ + .f2J 2 _e_e ----

22 JI 2 JI 3 _ n ( ) m, w .::.~, x 

As we discussed in Chapter 3, for nontrivial solutions, the determinant of the 

matrix has to be zero det ( ~~:6 ( k, m, X)) = 0 , which gives us the dispersion 

function of a sixth-order polynomial equation of OJ. Figure 6.1 shows the 

dispersion relation for a fixed spatial position. 
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FIGURE 6.1 DISPERSION RELATION OF THE FULL 6x6 COLD PLASMA PROBLEM FOR A FIXED 

POSITION 

The dispersion function (the determinant of the symbol matrix) is a 

sixth-order polynomial in w. In the ion-cyclotron range of frequencies we can 

simplify the dispersion function to a fourth-order polynomial by using the fact 

that.fl is very small and applying the following approximation for the electron 

contribution: 

k2 0 2 k2 0 2 

D- =- .r2 2 - .f2j2 nee e (1) -- .f2j2 nee e ~ 
11 - Ji (J) + + Ji 3 - + }J 3 

2 me (1) + Qe(x) 2 m. n.(x) 

k 2 0 2 k2 0 2 
fj =- .r2(1)2 +-+ "2!2 n.e e (J) =-- .f2j2 nee e ~ 

22 11 2 11 3 _ Q (x) 2 11 3 n ( ) me (J) e me .1o.:.e X 

The dispersion relations computed under this approximation overlaps the 

exact result, which means the wave characteristics will not be changed and 

thus this simplification is valid in this range of frequencies. 

We want to study the cold plasma model for an incoming wave packet 

in the fast wave mode in the space-time domain. We follow its evolution to 
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study the effect of its crossing the resonance layer at x = 0. We performed the 

Weyl symbol calculation again to obtain the operators in time-space domain. 

As we explained in Chapter 4, because there is no product term of x and k, we 

can simply relate: .i_ ~ -iw, ~ ~ ik. The operator in x-t space is therefore: 
at ax 

~3p 
b11 

1 -' o a --nD eD I 

fz 

fz 2 --(), + iQD(x) 
~ mD 

!2 5!.._ 0 

k·Y = 
~ mH 

=6x6-

.!..az 0 2 X 

0 0 

0 0 

~3!32 o a 
--nH eH I 

fz 

0 

-a, +i!lH(x) 

0 

0 

0 

.!..a2 
2 X 

0 

0 

b22 

!2 2 
~ mD 

/25!.._ 
~ mH 
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Next, we will use the finite-difference method to numerically solve the 

PDEs. Because of our simplification, the differential equations all involve 

first-order derivatives in time. There are also second-order derivatives in 

space. We can therefore apply the Crank-Nicolson method [45]. This method 
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has the highly desirable property that the iteration scheme is exactly unitary. 

This means that the time-step is represented by a unitary matrix operation. 

This ensures numerical stability for these Schrodinger-type PDEs. Several 

other numerical methods we used were unstable, sometimes wildly so. 

Appendix C shows the details about how to express the PDEs in finite 

difference form. 

We can also reduce the 6x6 equation to the 2x2 local form as 

explained in Chapter 5, then solve the reduced wave equation numerically. 

We calculate the 2x2 local form numerically to compare with the 6x6 results. 

We also analytically expand the 2x2 symbol around the local resonance 

position using methods described in Chapter 5 to obtain the S matrix for each 

of the two mode conversions in the problem. Thus we get a closed form 

analytical prediction of the transmission and reflection coefficients to compare 

with the 6x6 and 2x2 full wave numeric results. 

6.2 Initial wave packets 

We choose initial conditions consisting of a magnetosonic wave 

packet that enters the resonance region from the low-field side (i.e. it is 

moving from right to left since we assume the magnetic field strength 

increases to the left). Firstly, we choose a position x = x0 that is far away 

from the resonance to the right as the center position for the initial wave 

packet. Secondly, we pick the wave frequency for the initial wave packet that 

equals the ion-hybrid gyrofrequency at the resonance ro0 = QIH(x = 0), and 
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x = 0 is where the resonance takes place. Thirdly, use Maple to calculate 

when det[~~;6 (k,m = QIH(x = O),x = X0 )] = 0, which gives the initial 

value of the wavenumber k = k0 • Select the sign ofthe root to guarantee the 

wave packet is propagating to the left toward the resonance. Lastly, use the 

cold plasma equation at the initial wave packet position with the initial wave 

frequency and wavenumber to determine the initial polarization satisfying: 

~~;6 (k = k0 ,W = W0 ,x = x0 ) • ~x;i (k = k0 ,W = W0 ,x = x0 ) = 0 

This initial wave packet is now evolved forward in time using the Crank

Nicolson algorithm described in Appendix C. We discuss in a moment how 

we measure the energy of the incoming wavepacket, as well as the transmitted 

and reflected packets. 

We will also compare the full 6x6 simulation with a numerical 

solution of the reduced 2x2 wave equation in the vicinity of the resonance. 

The 2x2 reduced form is obtained from the constant uncoupled polarizations 

ea(k.,w.) and e'-(k.,ro.) as introduced in Chapter 5. We use the same 

approach to get the proper wave packet initial conditions which satisfy the 

local dispersion curves det [ {12x 2 ( k ,W = W0 ,x = X 0 )] = 0 and the 

corresponding polarization that 

{1 2x 2 (k = k0 ,W = W0 ,X = x0 ) ·lf!_2x 1 (k = k0 ,W = W0 ,x = x0 ) = 0. 
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6.3 Numerical results 

6.3.1 Wave packet propagation 

After the initial wave packet for the 6x6 full wave is determined as 

above, it propagates in the fast-wave mode until it encounters the mode 

conversion region. It will excite a disturbance in the resonance layer and the 

remnant of the fast-wave packet will continue as the transmitted wave. The 

disturbance in the resonance layer is supported largely by particle motion (the 

field contribution to the energy is small). The carrier oscillation of this 

disturbance evolves in k-space while the envelope of the wave packet is 

stationary in x-space until the resonance condition for the other mode 

conversion is satisfied. This disturbance then converts partly back into the 

fast-wave mode. Therefore, after a finite time delay a reflected fast wave 

packet is emitted. As an example, we show the wave packet propagating 

before and after mode conversion for a 99% Deuterium and 1% Hydrogen 

plasma. Figures 6.2-6.4 show what the wave packets look like before and after 

the resonance crossing. 
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6 by 6 Full Wave (99% Deuterium- 1% Hydrogen) t=10 
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FIGURE 6.2 THE SHADED REGION INDICATES THE INCOMING WAVE PACKET FOR THE FULL 6x6 
COLD PLASMA PROBLEM. THE RED LINES ARE THE MODE CONVERSION REGIONS. THE 

INCOMING WAVE PACKET MOVES TO THE LEFT. THE INCOMING ENERGY IS COMPUTED USING 

THE SHADED REGION. 

92 



6 by 6 Full Wave (99% Deuterium- 1% Hydrogen) t=200 
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FIGURE 6.3 THE SHADED REGION INDICATES THE TRANSMITTED WAVE PACKET FOR THE FULL 

6x6 COLD PLASMA PROBLEM. THE RED LINES ARE THE MODE CONVERSION REGIONS. THE WAVE 

PACKET MOVES TO THE LEFT. THIS IS THE TRANSMITTED WAVE PACKET AND ITS ENERGY IS 

COMPUTED USING THE SHADED REGION. 
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6 by 6 Full Wave (99% Deuterium-1% Hydrogen)t=325 
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FIGURE 6.4 THE SHADED REGION INDICATES THE REFLECTED WAVE PACKETS FOR THE FULL 6x6 
COLD PLASMA PROBLEM. THE RED LINES ARE THE MODE CONVERSION REGIONS. THE 

REFLECTED WAVE PACKET MOVES TO THE RIGHT. ITS ENERGY IS COMPUTED USING THE SHADED 

REGION. 

Similarly, if we apply Crank-Nicolson to the 2x2 reduction form and 

use the proper initial conditions introduced in the previous section, we will get 

the numerical calculation for the 2x2 full wave. For the same 99% Deuterium-

1% Hydrogen plasma, Figures 6.5-6. 7 show how the wave packets before and 

after the resonances look like for the 2x2 reduced form. After the initial wave 

packet is launched, it propagates to the left until it hits the mode conversion 

region. In the case of the 6x6 full wave, just as the case for the 2x2 full wave, 
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the incoming wave packets will excite a disturbance in the resonance layer 

and the remnant of the fast-wave packet will continue as the transmitted wave. 

In the same way, the carrier oscillation of this disturbance evolves ink-space 

while the envelope of the wave packet is stationary in x-space until the 

resonance condition for the other mode conversion is satisfied. And as before, 

this disturbance then converts partly back into the fast-wave mode. Therefore, 

it appears that after a finite time delay, a reflected fast wave packet is emitted. 

2 by 2 Full wave (99%Deuterium -1%Hydrogen) 
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FIGURE 6.5 THE SHADED REGION INDICATES THE INCOMING WAVE PACKET FOR THE2X2 

REDUCED FORM. THE INCOMING ENERGY IS COMPUTED USING THE SHADED REGION. 
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2 by 2 Full wave (99%Deuterium - 1 %Hydrogen) 
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FIGURE 6.6 THE SHADED REGION INDICATES THE TRANSMITTED WAVE PACKET FOR THE 2x2 
REDUCTION FORM. NOTE THE DISTURBANCE REMAINING IN THE VICINITY OF THE RESONANCE IN 

THE LOWER FRAME {WHICH IS LARGELY A COMBINATION OF THE PARTICLE VELOCITIES), AND 

THE EMERGENCE OF THE REFLECTED WAVE PACKET {WHICH IS LARGELY THE ELECTRIC FIELD). 
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FIGURE 6. 7 THE SHADED REGION INDICATES THE REFLECTED WAVE PACKET FOR THE 2X2 

REDUCED FORM. THE REFLECTED ENERGY IS COMPUTED USING THE SHADED REGION. 

6.3.2 Wave packet energy 

Next we will calculate the energy before and after the mode 

conversions. In Chapter 2.2, we discussed the total energy for the system. We 

will compare the transmitted energy ratio and reflected energy ratio for the 

different 6x6 and 2x2 full wave equations and the S matrix prediction. In 

Figure 6.2, the field energy is: 
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where the '*' quantities are nondimensional and all notations with the 

subscript 0 represent reference values. For each species s, the kinetic energy is 

In the energy calculation, the magnetic field and the electron velocity 

are unknown variables. We use the Maxwell-Farady equation to get the 

nondimensionalized iJ* and by applying the momentum conservation 

equation, we can represent v; by the electric field. In the ion-hybrid region, 

the electron kinetic energy is very small compared to the ion kinetic energy. 

Thus we can express the energy in terms of our known parameters 

£ = I rt~6x6 r, V= 
envelope 
region 

1 1 
-+--
2 2J/ 

1 
2J;2 

1 
2J;2 

1 1 
-+--
2 2J;2 

ER(x,t) 

EL(x,t) 

VDR(X,t) 

VDL (x,t) 

VHR(X,f) 

VHL (x,t) 

* * 
n Dm D 

2 
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Unlike the total energy that is integrated over the whole space, the 

wave packet energy is only integrated over the width of the wave envelope 

(the shaded regions in the previous figures). Since our numerical algorithm 

uses finite-differences, the integral becomes a summation. We summed up the 

corresponding shaded areas for the incoming, transmitted and reflected waves 

to get the corresponding energies. We define the amplitude of the transmission 

coefficient as the ratio of the transmitted energy to the incoming energy and 

the amplitude of the reflection coefficient as the ratio of reflected energy to 

the incoming energy. 

In the 2x2 numerical calculation, because we use the constant 

uncoupled polarization to represent the vector 

ER(x,t) 

EL(x,t) 

V= 
VDR(X,t) 

VDL(X,t) 

V8R(X,t) 

V8L(X,t) 

2x2 numerical calculation. 

We performed this calculation for the various number density fractions 

of Deuterium and Hydrogen (50% D-50% H, 80% D-20% H, 95% D-5% H, 

97% D-3% H, 99% D-1% H, 99.5% D-0.5% H, 99.8% D-0.2% H). And these 

results are plotted in two figures to illustrate what the amplitude of 

transmission (Figure 6.8) and reflection coefficients (Figure 6.9) obtained 

from our three methods for different proportions of ion densities. 
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Amplitude of Transmission Coefficient 

50%D-50%H 80%D-20%H 95%0-5%H 97%D-3%H 99%D-1%H 99.5%0-0.5%H 99.8%0-0.2%H 

FIGURE 6.8 THE TRANSMISSION COEFFICIENT FROM THE 'FULL-WAVE' 6x6, 'REDUCED' 2x2 
FULL WAVE AND 'RAY -BASED' S MATRIX PREDICTIONS FOR DIFFERENT ION DENSITIES. 

Figure 6.8 shows that as the deuterium density increases and hydrogen density 

decreases correspondingly, the amplitude of transmission coefficient increases 

too, which means more energy transmits through the ion-hybrid 

gyroresonance layer. 
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FIGURE 6.9 THE REFLECTION COEFFICIENT FROM THE 'FULL-WAVE' 6x6, 'REDUCED' 2x2 FULL 

WAVE AND 'RAY -BASED' S MATRIX PREDICTIONS FOR DIFFERENT ION DENSITIES. 

Figure 6.8 shows that as the deuterium density increases and hydrogen 

decreases accordingly, the amplitude of reflection coefficient decreases, which 

means less energy converts back to the fast wave mode. 

For each density, we find the 6x6 and 2x2 full wave results and the S 

matrix prediction match each other well, which shows that the ray tracing 

method of prediction is valid. The errors between the full-wave and ray-based 

S matrix prediction comes from several causes: 1] We used the finite-

difference numerical calculations. 2] The polarizations used for the Galerkin 

projection we chose to reduce the 6x6 to the 2x2 form at the conversion point 

are obtained by linear interpolation. The resulting local wave operator is 

linearized, so higher order corrections are neglected. Physically, the Galerkin 

projection is accurate in the mode conversion region and it is less accurate 
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farther away from the conversion. 3] As discussed in Chapter 5, the S-matrix 

prediction is for a fixed frequency. However, our numerical calculation is for 

a (narrow-banded) wave packet which has a spread of frequencies. 

Despite all the estimates we have made and the numerical errors we 

brought in, these results match very well with each other, which gives us 

confidence that ray-based methods give good results over the whole range of 

density ratios. 
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Chapter 7 

Summary and conclusion 

In this thesis I have provided the first direct comparison between full

wave and ray-based calculations of the important phenomenon of resonance 

crossing in nonuniform plasma. 

In Chapter 2, we introduced our cold plasma model consisting of two 

ion species, deuterium and hydrogen, and electrons. We model the plasma as 

comprised of ideal charge-carrying fluids satisfying mass and momentum 

conservation equations. After sketching the derivation ofthis set of nonlinear 

partial differential equations, we linearized and then nondimensionalized 

them. We also discussed how to compute the total energy of the system. These 

cold plasma model equations are the focus of this dissertation, and the energy 

is the quantity we used for comparison to test the validity of our ray-based 

method. 

We first studied this plasma in a uniform magnetic field in Chapter 3. 

Because of the uniformity, we could Fourier transform the partial differential 

equations and find the dispersion relations. The traditional approach 

eliminates all the variables in favor of the electric field. This obscures the 

physics when a magnetosonic wave packet and an ion-hybrid wave are 

resonant. When this resonance occurs, energy and action are exchanged 

between the two modes. This is the 'mode conversion' phenomenon. The 

103 



approach ofYe and Kaufman, which retains the ion velocities as dynamical 

variables in addition to the electric field, shows that the mode conversion is 

essentially a pair of avoided crossings. The ray-based approached, the real 

power of which only becomes apparent in nonuniform plasma, is based upon 

this fundamental insight. 

In Chapter 4 we then extended our study from a uniform background 

to allow for nonuniformity in space, but the background is still assumed to be 

stationary in time. The avoided crossing now is local in x. Because of the 

nonuniformity, we cannot Fourier transform in space as we did in Chapter 3 

but we can use WKB (ray tracing) methods away from the conversion region. 

The models we are studying have a nice property: there are no terms in the 

wave operator that involve products of x and - id x • Therefore we can avoid the 

full complication of the Weyl Symbol calculation to get the dispersion 

relations and can freely substitute k for - id x to fmd the symbol of our 

dispersion matrix, Equation ( 4.1 0), which is dependent on x, k, and m. Taking 

the determinant of the dispersion matrix gives the dispersion function. The 

zeros of the dispersion function give the dispersion surfaces, Figure (4.8). 

The dispersion function plays the role of Hamiltonian for the rays, Equation 

( 4.20). These ray equations are valid away from the mode conversion region. 

We provided a very short summary of WKB methods for a general vector 

wave equation. As an illustration we also applied these methods to a 

simplified wave equation governing the interaction of the fast wave and 
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gyroresonance. We then went back to our cold plasma model and applied 

these WKB concepts away from the conversion. 

In Chapter 5, we focused on the conversion region. We defined the 

notion of 'uncoupled modes', and used them to reduce our 6x6 matrix wave 

operator to a 2x2 reduced form via Galerkin projection. We then expand the 

symbol of this 2x2 wave operator around the two conversion points to get the 

S matrix at each of the two conversions, where we could get the transmission 

and conversion coefficients. Also, we investigated the double conversion and 

found that - as predicted by the Y e and Kaufman approach -- after launching 

an incoming wave in the fast wave mode, reflected waves appeared after a 

finite time delay in the x-t domain. 

In Chapter 6, we introduced the numerical calculations for our models. 

We applied the Crank-Nicolson method to our 6x6 full-wave equations and 

the 2x2 reduced model. The great advantage of the Crank-Nicolson method is 

that it gives unitary evolution (under discrete-time iteration), hence stability is 

assured. Other numerical methods we had examined for this calculation were 

not stable. We also compared transmission and conversion coefficients with 

the ray-based S-matrix predictions for a wide range of hydrogen/deuterium 

density ratios. Combining these predictions together in the appropriate way 

gives a ray-based prediction for the overall transmission and reflection 

coefficients from the ion-hybrid resonance. These three predictions matched 

very well, see Fig. 6.8 and 6.9, which verified both the 2x2 reduction and the 

related ray-based S-matrix method, which is based upon a local approximation 
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to the 2x2 reduced wave equation. This is an important result that supports the 

use of ray methods. One advantage of ray-based methods is that they only 

involve ordinary differential equations, which are much easier and faster to 

solve than partial differential equations. 

We should comment on aspects of real plasma experiments that were 

left out of our study. Inclusion of these effects would provide fruitful 

extensions of the work presented in this thesis, but would have significantly 

complicated the analysis. We note that other full-wave simulations, even the 

most powerful computer codes currently available, also leave out many of 

these effects. This shows how much work there remains to be done. We used a 

linearized ideal fluid model assuming a quiescent and simple background 

magnetic field geometry, hence we did not include nonlinear effects, 

nontrivial magnetic field geometries characteristic of real fusion experiments, 

turbulent fluctuations in the background, viscous effects, or finite pressure. 

Because we used a fluid model, we did not include wave-particle resonance 

effects, or particle collisions, hence the eventual mechanism by which wave 

energy is finally thermalized by the ions is left out of our model. We assumed 

a globally-fixed density ratio of ion species. We included only three species 

(electrons, hydrogen and deuterium) and assumed full ionization, while a real 

experiment would have far more charged particle species due to impurities 

from the wall, and neutrals in the cooler plasma near the edge. Furthermore, 

we used very simple boundary conditions. The boundary of a real physical 

plasma is anything but simple. The coupling to the antenna was not treated 
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either, while real antenna physics is complex and hard to model because of 

near-field effects and the back-reaction of the plasma on the antenna. 

In conclusion, this dissertation compared the full-wave calculation 

with the ray-based prediction for a one-dimensional cold plasma model 

including mode conversion and we successfully tested the validity of ray

based methods for this model. As a potential topic for future research, this 

work should be extended to multi-dimensional plasma problems including 

mode conversion. There now exist full-wave simulation tools that include 

mode conversion in realistic plasma models [46, 47,48]. The ray-based 

RA YCON algorithm [ 19] has also been developed which can be applied to the 

same models. But, they have yet to undergo careful benchmark comparison 

with one another, and neither have been validated against experimental results 

as of yet. Much remains to be done. 
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Appendix A 

The momentum conversion equation gives a relationship between the particle 

disturbances and the electric field. When the unperturbed magnetic field is 

constant in time and homogenous in space, as we assume in Chapter 3, we 

linearize and Fourier transform the equations. Expressing the results in x,y,z 

components gives: 

. - l(k- ) 1 e, E- l(k- ) e,Bo- l(k- ) -zwv,x ,(1) = -- x ,W +--vsy ,W 
h m,. m, 

• - 1 - 1 e, - 1 - e,B0 
_ 1 -

-l(I)Vsy (k,ro) = --EY (k,w)---v,x (k,W) 
h m, m, 

1 - 1e - 1 -
-iwvsz (k,w) = --' Ez (k,w) 

e 
Define .Q = _s B0 

s 
ms 

h m, 

Rearrange equation ( A.1) 

(A.1) 

(A.2) 

The matrix is not diagonal, but it is i multiplying a Hemitian matrix, so it has 

pure imaginary eigenvalues and can be diagonalized using the eigenvectors. 

Here are the details: 
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J2 J2 
0 

2 2 

Define a 3 by 3 transformation matrix Q = J2. J2. 
0 and its -z --l 

2 2 
0 0 1 

J2 J2. 
0 --l 

2 2 

Hermitian adjoint Qt = J2 J2. 
0 QQt =I. -l 

' 2 2 
0 0 1 

Use Q and Qt to perform a similarity transformation on the matrix of equation 

(A.2). 

[

-iOJ 

And Qt ~s 
-n. 
-iOJ 

0 J [-i{J)- iQS 
0 Q= 

-iOJ 

-i{J) + iQS _J 
0 

Define 

J2(-l .-J) - E -zE 2 X y 

J2(-l ·-1) 2 Vsx + lVsy 

-I 
vsz 

So we get a diagonalized matrix by changing the basis from the x-y to the R-L 

basis. 

[ 

· ·n j[-1 J [£- 1] -z(J)- l:.~os VsR R 

-im + tn. v:L = _!_ ~ ~L~ • 

. -1 f.. s E I -zm vs: z 

(A.3) 
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The Fourier transforms of Ampere's law and Faraday's equation are: 

From equations (A.4) and (A.5), we can eliminate B1 by multiplying both 

sides of equation (A.5) from the left by k using the cross product and 

substituting k x B term by equation (A.4) yielding: 

Multiply Qt from the left in equation (A.6) 

And 

J,zolQt£1 + Qtf x k x £1 + irof,3 J/nv oevQt~v~ 

+imf,3 J/nH oeHQt~H~ = -irof,3 J/n.oe.Qt~/ 
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J2 J2. 
0 --z 

2 2 
( k k fi.'+ k k E' - k 'E' - k' E' J J2 J2. xyy xzz yx zx 

QtkxkxE1 = 0 
-1 -1 2-1 2-1 

-l kxkyEx + kizEz - kx Ey - kz Ey 
2 2 -1 -1 2-1 2-1 

0 0 1 kxkzEt + kizEy - kt Ez - ky Ez 

= 

Because we defined ( !:: J ~ and we have 

J2(_1 -1) - ER+EL 
2 

(~J~ ~ i ( E~ - Ei) , after substituting Ex, Ey withER and EL, we get: 

-I 
Ez 

Substituting equation (A.8) into equation (A.7), we get 
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(

-I J ER 
2 2 -I • 3 2 0 t-':: I • 3 2 0 t-':: I • 3 2 0 t-':: I + h (J) ~~ , + Z(J)h j3 nD eDQ VD + Z(J)h h nH eHQ VH = -Z(J)h j3 ne eeQ Ve 

(A.9) 

As stated before, we want to express all the variables in terms of the electric 

field and ion velocities, so we have to invert the equation (A.3) to express the 

electron velocity in terms of the electric field. The frequency range of interest 

is far below the electron gyrofrequency, so there are no singular denominator 

to worry about: 

(A.lO) 

(J) + Qe 

(tJ 
(J) 
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-r2 2 E-1 . -r3f2 0 Qt.:;: I . -r3f2 0 Qt.:;: I l .E~J - J1 ro E~ -zmJ 1 3 nD eD vD -zml! 3 nH eH vH 

2 

= _-r2f2 0~ 
Ji 3 n. 

m. 

(1) 

(I)+ Qe 

m- n. 

We can write equation ( A.ll) in a neat matrix form: 

Where the operator ~M is defined as 
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(A.12) 

(A.13) 



(k2+e) o 2 
D- =-.(2 2 X )' k2 .f2j2nee e (J) II - Ji (1) + + z + Ji 3 

2 m. (J) + n. 
- (~+e) ~~ w D = _ .r2ro2 + . Y + e + .r2j 2 _. _. __ _ 

22 Ji 2 z Ji 3 n 
m. (1)- 0\"e 

Recall that the deuterium and hydrogen ion velocities are subject to the 

linearized Lorentz force: 

( -iru- iQ" 

( -iru- iQ8 

(A.14) 

If we combine the two sets of matrix (A.13) and (A.14), we will get a 9 x9 

matrix: 
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APPENDIXB 

In Appendix A, we dealt with uniform plasma. Here we extend our analysis to 

nonuniform plasma. The momentum conversion equation provides a 

relationship between the particle disturbances and the electric and magnetic 

fields. When the undisturbed magnetic field is constant in time and slowly 

varying in space, linearize the equations and Fourier transform in time. In 

x,y,z components the result is: 

_ · - 1(- ) _ _!_~E- 1(- ) esB
0
(X) _ 1(- ) 

l(OVSX X,(O - X X,(O + V.l)l X,(O 

h ms ms 

• - 1(- ) 1 e, - 1(_ ) e,B
0
(x) _ 1(_ ) 

-zrovsy x,m = --EY x,ro - vsx x,ro 
h ms ms 

. - 1(- ) 1 es E- 1(- ) -zmvs" x,ro = -- . x,m . - h ms -

The gyrofrequency for each plasma species is defined as usual 

Q s ( x) = f 2 ~ B
0 

( x) , but it is now spatially dependent. 
ms 

Rearranging equation (B.1) we have: 

( 

-im -Qs(x) 

Qs(x) -im 

0 0 

As in Appendix A, this matrix can be diagonalized. 

(B.1) 

(B.2) 

The linearized Fourier transformation of Ampere's law and Faraday's law are: 

116 



(B.4) 

From equations (B.3) and(B.4), we can eliminateB1 by taking the curl ofboth 

sides of Equation (B.5) and using Equation (B.3), yielding: 

(B.5). 

Multiply Qt on the right of equation (B.5) 

(B.6) 

And 

a2£1 a2£1 a2£1 a2£1 __ Y + __ z _ __ x _ __ x 

axay axaz a/ az2 

a2£1 a2£1 a2£1 a2£1 
VxVxE 1 =V'(V'·E1)-V2E1 = __ x +--z ___ Y ___ Y 

axay ayaz ax2 az2 

a2£1 a2£1 a2£1 a2£1 
__ x + __ Y _ __ z _ __ z 

axaz ayaz ax2 a/ 
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a2£1 a2£1 a2£1 a2£1 
__ Y + __ z _ __ x _ __ x 

2 

QtVxVxE1 = J2 
2 

dXdy dXdZ d/ dZ2 

a2£1 a2£1 a2£1 a2£1 
__ x + __ z _ __ Y _ __ Y 

dXdY dYdZ dX 2 dZ2 

a2£1 a2£1 a2£1 a2£~ __ x + __ Y _ __ z ___ _ 

axaz ayaz ax2 al 
0 0 1 

a2 (£1 _ ;£1) a2£1 a2£1 a2£1 a2£1 a2 (£1 _ ;£1) 
Y x +--z -i--z +i--Y ___ x- x Y 

dXdY dXdZ dydz dX2 d/ dZ2 

= 
2 

a2(£1 +i£1) a2£1 a2£1 a2£1 a2£1 az(£1 +i£1) 
Y x +--z +i--z -i--y ___ x- x Y 

dXdY dXdZ dYdZ dX2 d/ az2 

J2 __ x + __ Y _ __ z _ __ z 

(
a2£1 a2£1 a2£1 azEI J 
dXdZ dydZ dX2 d/ 

Beca~e we defined ( !:} and we have 

(~)= 
After substituting Ex, Ey withER and EL, we get: 

QtV'xV'xE1 = 

ii E1 .fi o2 E1 .fi o2 E1 1 az {£1 - E1 
) 

-i--L +---' --i--' _ R L 
OXOy 2 axaz 2 oyoz 2 ox2 

1 az(£~ +El} 
2 ayz 

az£1 .fi a2£1 .fi a2£1 1 az(£1- £1) 1 az (£1 + £1) 
i--R +---: +-i--: + R L R L 

oxoy 2 axaz 2 oyoz 2 ox2 2 {)y2 

.fi az ( £~ + £~) + .fi i o2 ( £~ - £~) ( o2 £~ + 02 £~ ) 
2 axaz 2 oyoz ox2 {)y2 
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(B.7) 

Substituting equation (B. 7) into equation (B.6), we get 

-i a2 £i + .J2 a2 £~ _ .J2 i a2 £~ _ _!_ a2 
( £~ - £1) _ _!_ a2 

( £~ + £1) _ a2 £~ 
dxdy 2 dxdz 2 dydz 2 dx 2 2 al al 

. a2 £~ .J2 a2 £~ .J2 . a2 £~ 1 a2 
( £~ - £i) 1 a2 

( £~ + £i) a2 £1 

z--+----+-z---+- ___ L 

dXdy 2 dXdZ 2 dydz 2 dX2 2 iJl dl 

.J2 a2 
( £~ + £1) + .J2; a2 

( £~ - £i) _ ( a2 e: + a2 £~ ) 
2 dxdz 2 dydz dx2 iJl 

(B.8) 

As stated before, we want to express all the variables in terms of the electric 

field and ion velocities, so we to express the electron velocity in terms of the 

electric field. 

CO -Qe(x) [tJ 
(() 

(B.9) 
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. a2 .Ei J2 a2 .E~ J2 . a2 .E~ 1 a2 ( .E~ - .Ei) 1 a2 ( .E~ + .Ei) a2 .E~ -z--+-----z--- -- ---axay 2 axaz 2 ayaz 2 ax2 2 al az2 

. a2 t~ J2 a2 t: J2 . a2 t~ 1 a2 ( £~ - .Ei) 1 a2 ( £~ + .Ei) a2 £1 
z--+---+-z---+- -- __ L 

axay 2 axaz 2 ayaz 2 ax2 2 al az2 

J2 a2 ( .E~ + .Ei) + J2 i a2 ( £~ - .Ei) _ ( a2 t: + a2 t: ) 
2 axaz 2 ayaz ax2 al 

.r2 2 E-1 . .f3j2 0 Qt.::; I • .f3j2 0 Qt.::; I ( .E~J - Jl m E~ -zmJI 3 nv ev Vv -zmJI 3 nH eH vH 

(J) 

(J) (tJ 
1 

(J)- Qe(x) 

(B.10) 

Write equation (B.1 0) in a matrix operator form: 

(B.ll) 

Where operator ~M is defined as 

1 2 1 a2 a a -a -- -i x y 2 X 2 y 

J2 . - ( axaz- zayaz) 
2 

J2 . -(axaz + zayaz) (B.l2) 
2 

1 a2 1 a2 - - - + iax;'}.., 2 x 2 Y vy 

J2 . - ( axaz + zayaz) 
2 

J2 ( axaz - iayaz) 
2 
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Recall that the deuterium and hydrogen ions motions are given by the 

linearized Lorentz force law: 

(B.13) 

If we combine the two sets of matrix (B.12) and (B.13 ), we will get - finally -

-the 9 by 9 matrix operator for the non-uniform Deuterium-Hydrogen-

Electron plasma we quoted in Chapter 4: 
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Appendix C 

The Crank-Nicolson method is an implicit finite differencing method 

that gives unconditionally stable numerical results for certain types of partial 

differential equations. We represent a function cp(x,t) by its values at the 

discrete set of points in space and discrete time by choosing equally spaced 

points along both time and space axes. 

xj = x0 + jl1x, j = 0,1, ... ,x, 

tn= t0 +n11t, n=0,1, ... ,tN 

Let cfJ; denote cp(xj ,tn). We used the zero boundary condition for simplicity, 

which is cp( 1, t n) = 0, cp( x 1 , t n) = 0 . This will cause artificial reflections, but we 

make the computational box large enough so the conversion process we are 

interested in can complete itself before the wave packets reflected at the box 

boundaries reenter the conversion region. 

There are several ways to represent the time derivative term. The 

()cp' cpn+l _ cpn 
obvious one is - = 1 1 

• This is called forward Euler differencing 
dt j,n /1t 

and is first-order accurate in l1t . By giving the value at timestep n, we can 

obtain the value at n+ I. For the second order spatial derivative, we will use 

Crank-Nicolson differencing: 

:J.2n, (n.n+l _ 2Al~+l + n,n+l) + (n.n _ 2mn + n,n ) 
(J 'I' - '1';+1 'I'; '1';-1 '1';+1 'I'; '1';-1 

dX
2 

j,H - 2( 11x )
2 
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which is the two-step time average of implicit and explicit centered spatial 

differencing schemes. 

Replace the differential equations ~ · ~(x,t) = Owith the Crank-

Nicolson differencing where 

!,
3
!/ n °e a 

3 , 

Du !, J;- n °e a 
!
2 

D D t !
2 

H H t 

fz.!!.i!_ -a, +iQ0 (x) 0 
!, mo 

fz!JL 0 --d, + iQH(x) 

R= !, mH 

..!..a 2 
2 X 

0 0 

0 0 0 

0 0 0 

a 2 0 2 

DA c·a •a)- X '+2f2 n.e e a 
11 l x,X,-l 1 =--+ZJI 3 I 

2 m.n.(x) 

a 2 0 2 

DA ( •a •a ) - X ' +2f 2 nee e a 
22 l x,X,-l I =---ZJI 3 I 

2 m,n.(x) 

V(x,t) = 

ER(x,t) 

VDR(X,f) 

VHR(X,t) 

EL(x,t) 

VDL(X,t) 

VHL(X,t) 
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2 X 

0 0 

0 0 0 

0 0 0 

Dn !,
3

!/ n °e a /2 D D t 
/..

3

!/ n °e a /2 H H t 

!2 !!..!!_ 
!, mo 

-a, -iQ0(x) 0 

!2 !JL 
!, mH 

0 --d, - iQH (x) 



Because the Crank-Nicolson is an implicit method, we have to solve for 

vector r(x,t) at the next time step using all the space points at once. Denote 

r/ = ru&,n!1t) = 

where the matrices 

ER(j&,n!1t) ER~ 
V0R(jt1,x,n/1t) n 

VDRj 

VHR(jt1x,n/1t) n 
VHRj 

, we have = 
EL (j&,n!1t) EL~ 
VDL (jt1x,n/1t) n 

VDLj 

VHL (jt1x,n/1t) n 
VHLj 

r; n+l r; n 

A· 
li 

=B· 
li 

r.J r.J 

A and Bare tri-diagonal with dimension: - -- -

41 4 
43 41 

43 
A= 

~I ~2 
!!.3 ~I 

!!.3 

B= 

4 

~2 
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and 41 •4 ,43 ~~ .~2 .~3 are all 6 x 6 matrices. Recall we used the zero 

boundaries here. 

After inverting the matrix !1 , we will get an explicit result: 

~ 
n+i 

~ 
n 

!:; v 
= A-lB· !..2 • With given initial conditions, this iteration scheme 

r.J 

generates the vector values for later times. The Crank-Nicolson finite 

difference method guarantees this is a unitary iteration scheme [ 45]. In our 

problem, we have numerically verified the matrix !1-1 !l. has eigenvalues that 

are pure phases, which proves that this method is unitary. 
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