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Enhancing assessments of blue
carbon stocks in marsh soils
using Bayesian mixed-effects
modeling with spatial
autocorrelation — proof of
concept using proxy data

Grace S. Chiu1*, Molly Mitchell 1*, Julie Herman1*,
Christian Longo2 and Kate Davis3

1Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA, United States,
2Emergency Medicine, RWJBarnabas Health Medical Group, West Orange, NJ, United States,
3Independent Researcher, Nashotah, WI, United States

Our paper showcases the potential gain in scientific insights about blue carbon

stocks (or total organic carbon) when additional rigor, in the form of a spatial

autocorrelation component, is formally incorporated into the statistical model

for assessing the variability in carbon stocks. Organic carbon stored in marsh

soils, or blue carbon (BC), is important for sequestering carbon from the

atmosphere. The potential for marshes to store carbon dioxide, mitigating

anthropogenic contributions to the atmosphere, makes them a critical

conservation target, but efforts have been hampered by the current lack of

robust methods for assessing the variability of BC stocks at different geographic

scales. Statistical model-based extrapolation of information from soil cores to

surrounding tidal marshes, with rigorous uncertainty estimates, would allow

robust characterization of spatial variability in many unsampled coastal

habitats. In the absence of BC data, we consider a historical dataset (the best

available) on soil organic matter (OM)—a close proxy of BC—on 36 tidal (fresh

and salt) marshes in the Virginia portion of Chesapeake Bay (CBVA) in the USA.

We employ Bayesian linear mixed(-effects) modeling to predict OM by marsh

type, soil category, soil depth, and marsh site, whereby site effects are modeled

as random. When the random site effects are additionally assumed to exhibit an

intrinsic conditional autoregressive (ICAR) spatial dependence structure, this

more complex model clearly suggests groupings of marsh sites due to their

spatial proximity, even after adjusting for the remaining predictors. Although

the actual membership of each group is not a focus of our proof-of-concept

analysis, the clear presence of groupings suggests an underlying latent spatial

effect at the localized-regional level within CBVA. In contrast, the non-spatially

explicit model provides no clear indication of either spatial influence between

sites or improvement in predictive power. The polar difference in conclusions

between models reveals the potential inadequacy in relying on predictor

variables alone to capture the spatial variability of OM across a geographic
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domain of this size or larger. We anticipate that spatially explicit models, such as

ours, will be important quantitative tools for understanding actual carbon

measurements and for assessing BC stocks in general.

KEYWORDS

blue carbon, coastal sediment, spatial regression, conditional autoregressive
dependence, Markov random field (MRF), Bayesian modeling and inference

1 Introduction

The storage of “blue carbon” (BC) is the temporary or long-

term storage of carbon in aquatic natural systems. Through

photosynthesis, shoot and root production and then burial of

above- and below-ground biomass, marshes, mangroves, and

seagrass beds can store carbon dioxide that is removed from the

atmosphere. Depending on the plant community, seasonal, annual,

and multiyear storage in biomass and long-term burial of sediments

are all considered BC reservoirs (Mcleod et al., 2011), although the

contribution of each to the global carbon cycle is different.

Under stable conditions, tidal marsh productivity greatly

exceeds the rates of soil carbon metabolism and the carbon stock

tends to build over time, resulting in an organic-rich upper layer.

Carbon burial in vegetated coastal systems, when extrapolated to

global extent, is 2 to 10 times those in shelf/deltaic sediments

(Duarte et al., 2005) and exceeds temperate, tropical and boreal

forests (when considered separately; Mcleod et al., 2011). The

potential for marshes to remove and store carbon dioxide,

mitigating anthropogenic contributions to the atmosphere, has

made them a critical conservation target (Coverdale et al., 2014).

Protecting these critical resources requires an understanding of the

existing carbon stocks on a wide geographic scale (McTigue et al.,

2019). However, marsh sediment cores tend to be relatively scarce

and carbon stocks have been shown to vary with depth and across

short geographic scales, leading to broad generalizations in blue

carbon stock calculations. In 2011, Mcleod et al. (2011) stated,

“There are no definitive studies of spatial variability within

mangrove forests, salt marshes, or seagrass meadows other than

studies addressing C burial differences.” Since then, there have been

efforts to estimate spatial variability (e.g., Lavery et al., 2013; Ewers

Lewis et al., 2018), but no statistically robust method for assessing

the variability in carbon stocks at different scales has been

developed. Statistical model-based extrapolation of information

from soil cores to surrounding tidal marshes and SAV

(submerged aquatic vegetation) beds with rigorous uncertainty

estimates would allow robust characterization of many

unsampled coastal habitats.

Specifically, conventional methods to assess blue carbon

stocks employ rather simplistic regression models that may

account for the inherent spatial nature of blue carbon purely

through the spatial nature of predictor variables (e.g., marsh

type, depth). However, the same predictor variable in one

localized spatial region may capture the inherent spatial

variability more adequately than it does in another localized

region. As such, the additional modeling of the remaining spatial

variability— in the form of spatial autocorrelation— that is not

already captured by predictor variables is crucial to producing

realistic uncertainty estimates for model predictions (Le, 2006).

In this paper, we investigate the potential gain in scientific

insights about blue carbon stocks when a spatial autocorrelation

component is formally incorporated into the regression model.

To investigate methodological approaches, we consider the

historical data in Edmonds et al. (1990) on soil organic matter

(OM) from 36 tidal fresh, brackish, and salt marshes in the

Virginia portion of Chesapeake Bay (CBVA) in the eastern

United States. In the absence of BC data for CBVA, our use of

OM as a proxy is justified by its close positive relationship with

total organic carbon (TOC, which is the measure of blue carbon

storage) from marsh sediment samples (Mitchell, 2018). In

particular, tidal marsh plants remove carbon dioxide from the

atmosphere through photosynthesis. The carbon is used for

producing and sustaining plant biomass. Plant and microflora

biomass that is not exported from the marsh or respired/

decomposed on the marsh surface is stored through burial in

the sediments as OM. The potential for export of root biomass is

particularly limited, so that almost all of the root biomass is

stored in soil until it decomposes (Chmura, 2009). Marsh soils

have high organic input, which is typically easily decomposed;

however, they are also highly anaerobic, slowing decomposition.

Therefore, root biomass decomposes very slowly and carbon

does not decline significantly with depth in salt marsh soils

(Connor et al., 2001). In addition to plant productivity, tidal

marshes have high rates of benthic microflora production

(which can equal or exceed macrophyte production; Sullivan

and Currin, 2002) that contributes to carbon pools when buried.

Rates of biomass decomposition vary with plant type and along a

salinity gradient (Craft, 2007) and therefore may result in

different OM profiles in different tidal marsh types. OM is

composed of multiple components, namely, carbon, nitrogen,

phosphorus; TOC only represents the carbon fraction of tidal

marsh OM. As such, TOC is typically much lower than organic
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matter (e.g., 7% compared to 30%, respectively). That is, while

the actual values of OM and TOC will differ, patterns of

similarity between marshes are expected to be consistent

between OM and TOC. Therefore, we anticipate the insights

from the methodology in this paper to be highly relevant to the

modeling strategies for assessing blue carbon in general.

The rest of the paper is structured as follows. In Section 2, we

describe the data on organic matter and associated predictor

variables in Edmonds et al. (1990), and how we reconstruct the

sampling sites’ geographic coordinates, which are absent in the

original data. In Section 3, we discuss the development of our

Bayesian linear mixed(-effects) models to predict organic matter

by marsh type, soil category, soil depth, and marsh site, whereby

marsh site effects are modeled as random. For spatial

autocorrelation, we explain our focus on the conditional

autoregressive (CAR) structure, also known as a Markov

random field (MRF). In particular, we consider an intrinsic

CAR (ICAR) structure, which is a degenerate case of CAR. In

Section 4, we compare the model results, predictive

performance, and scientific implications between two

scenarios: (1) assuming spatially autocorrelated marsh site

effects based on the reconstructed geographic coordinates, and

(2) assuming uncorrelated marsh site effects. Finally, in Section

5, we discuss the broader scientific implications of this statistical

approach on estimating blue carbon stocks in marshes.

2 Materials and equipment

2.1 Historical data on organic matter

This paper leverages data published in a historic technical

report (Edmonds et al., 1990) on marsh soils throughout the

Virginia portion of Chesapeake Bay (CBVA). Chesapeake Bay is

the largest estuary in the USA, with more than 18,800 km of

shoreline in Maryland and Virginia, and more than 3,800 km2 of

tidal marshes, containing a diverse array of tidal marsh types and

ecologies. Within Virginia, CBVA possesses a wide range of

salinities from approximately 35 ppt near the mouth of CBVA,

to 0 ppt in the upper reaches of the estuarine rivers and in the

small tributary creeks found along their edges and is broadly

representative of the range of conditions found in mid-Atlantic

marshes. Marshes stretch along the entire shoreline, with

approximately 25% tidal freshwater marsh, 15% oligohaline

marshes, 30% mesohaline marshes and 30% salt marsh

(CCRM, 2017). Marsh sediments within CBVA are considered

to be predominately mineral with organic matter typically

averaging around 30% (or 300 g/kg). A survey of marshes

along the York River (a tributary of CBVA), found that

organic matter soil contribution ranged from 4–58% (but only

exceeded 50% at one site, Mitchell, 2018).

The technical report focused on describing different marsh

soil types and did not attempt spatial analysis of organic matter;

however, it offers a dataset well suited to the development of a

geospatial statistical model because 1) all the cores were taken

using the same methods and with standardized core depths, 2)

the cores covered broad geospatial and estuarine ranges,

sampling everything from tidal fresh to saltwater marshes, and

3) the report included detailed site descriptions including

vegetative characteristics. The soil organic matter in the cores,

recorded in g/kg of soil, was estimated by the acid-dichromate

digestion method (see Supplementary Material).

2.2 Reconstruction of
geographic coordinates

Edmonds et al. (1990) did not include precise geographic

coordinates (i.e., latitudes and longitudes) for the 38 marshes

sampled. However, for each marsh, they described three

markers, and the distance and bearing from each marker to

the sampling location (e.g., 3.5 miles, 180 ∘ from the intersection

of Route 5 and Route 31). This allowed us to triangulate the

location of the sampling site. The uncertainty associated with

this triangulation is estimated to be in the tens of meters, thus

correctly identifying marshes, but not necessarily the exact

sampling point within the marsh. Figure 1 displays the

reconstructed locations of the 38 marshes.

2.3 Predictors of organic matter

Depth is a key correlate of organic matter content (OM).

Within the marsh sediments, OM tends to decline with depth,

more rapidly in the top ∼ 20 cm and less rapidly in deeper

sediments as the remaining OM is more refractory (Morris and

Bowden, 1986). Edmonds et al. (1990) considered three depth

ranges for mineral soils: 0–13 in (∼ 0–33 cm), 13–26 in (∼ 33–66

cm), and 26–40 in (∼ 66–102 cm). (See Supplementary Material

for additional information about depth ranges.) Instead of

regarding depth as a categorical predictor with ordinal values

of top, mid, and bottom, we take depth as a numerical predictor

by taking approximate middle values of the mineral soil ranges

in inches, namely, 6, 19, and 33. Employing an explicitly

numerical predictor simplifies the regression model structure,

in the presence of various other multilevel categorical predictors.

Among the remaining predictor variables, all are categorical,

and they also contain overlapping information about the

marsh environment:

• Soil category (5 levels, Figure 2A): Edmonds et al. (1990)

describe 6 soil categories, namely, Fluvaquent,

Hydraquent, Sulfaquent, Sulfihemist, Hydraquentic

Humaquept, and Histic Humaquept. Since the

Humaquepts are the only categories with modifiers

and there is only one of each, we omit those from the
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full set of 38 marshes in the sample in order to preserve

statistical power, leaving a reduced set of 36 marshes.

• Soil type (12 levels, Figure 2B), as given in Edmonds et

al. (1990): In soil surveys, these are formally known as

soil components and tend to be locality specific. As such,

it is difficult to compare them across the spatial extent of

the study.

• Vegetation type (7 levels, Figure 2C), as given in

Edmonds et al. (1990): Arrow Arum-PickerelWeed

(APW), Big CordGrass (BCG), Black NeedleRush

(BNR), Brackish Water Mixed (BWM), Freshwater

Mixed Community (FMC), Saltmarsh CordGrass

(SCG), and SaltMeadow Combined (SMC).

• Inundation (3 levels, Figure 2D) and Salinity (2 levels,

Figure 2E): Tidal marsh vegetation is directly controlled

by inundation level and salinity of the environment

(Anderson et al., 2022), with particular species or

communities in saline, brackish, and freshwater areas,

and subsets of those communities at different elevations

within the tide range. Therefore, estimated salinity and

period of inundation can be inferred from the plant

community. In addition, spatially explicit salinity

datasets (based on the Chesapeake Bay Program’s

salinity assignments, as described in Mitchell et al.,

2020) were used to help characterize local conditions

into 2 levels of salinity (salt, fresh). For inundation, we

initially connected the vegetative communities as

described in Edmonds et al. (1990) to 3 levels (low,

mid, high). Because the distribution of marsh plants are

highly regulated by the frequency of inundation, we

assigned low inundation to reflect a community

dominated by high marsh plants, and high inundation,

a community dominated by low marsh plants. The mid

inundation category encompassed sites where the

vegetation was evenly mixed between high and low

marsh plants. However, preliminary analyses using the

FIGURE 1

Reconstructed locations of marshes (sampling sites) in Edmonds et al. (1990), with inset showing relationship of study area to the Mid-Atlantic
coast, USA.
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3-level categorization identified the unnecessary

breakdown between mid and low inundation (Longo,

2022). Therefore, in this paper we combine them as a

single not-high (= low/mid) category.

The large number of categorical predictors relative to the

number of marshes poses a challenge to modeling. For a

regression model, each categorical predictor contributes a number

of unknown model parameters that is no fewer than the number of

levels minus one; this base number increases multiplicatively if

interactions between predictors are considered. For this reason, we

take the following measures to preserve statistical power:

• Omit soil type.

• Omit Sites 16 and 28, the only Humaqueptic sites under

soil category.

• Replace the original vegetation type categorization with

a new 4-level categorization of marsh type, defined by

crossing the 2-level inundation and 2-level salinity. The

resulting marsh type categories are ‘1’ = Low/Mid–FW,

‘2’ = High–FW, ‘3’ = Low/Mid–SW, and ‘4’ = High–SW

(Figure 2F).

The new definition of marsh type implies collinearity between

marsh type and each of inundation and salinity, so that the latter

D

A B

E F

C

FIGURE 2

Spatial distributions of categorical variables across the 36 marshes considered for modeling (i.e., excluding Sites 16 and 28). (A) Soil
category (Fluvaquents, Hydraquents, Sulfaquents, Sulfihemists). (B) Soil type (“L” at the end of a category denotes “loam”). (C) Vegetation
type. (D) Inundation. (E) Salinity (Freshwater, Saltwater). (F) Newly defined Marsh type by crossing Inundation with Salinity (‘1’=Low/Mid–
FW, ‘2’=High–FW, ‘3’=Low/Mid–SW, and ‘4’=High–SW).
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two cannot enter the regression model as predictors alongside

marsh type. Therefore, the final set of regression predictors

includes marsh type, depth, soil category, and marsh site.

2.4 Transformation of organic
matter measurements

The dependent variable of interest is sediment core OM,

recorded in g/kg of soil. For linear mixed modeling, the

distribution of the dependent variable should not exhibit

substantial skewness. Figure 3 shows that the distribution of these

OM data are highly right-skewed, but log-transformation

substantially reduces the skewness. Therefore, we model log(OM)

as a response of the above predictor variables.

3 Methods

3.1 Bayesian spatial regression modeling

Point-referenced spatial data, such as ours, are often

modeled using a classical geostatistical (continuous-space)

model, in which the covariance between two spatial locations

is described by a proposed functional form (e.g., exponential

decay) with unknown parameters (see, e.g., Zimmerman and

Stein, 2010). For our data, however, the sampled marshes fall

along highly irregular shorelines in the lower Chesapeake Bay.

That is, the sampling universe of the study area is far from being

a contiguous spatial domain, and it would be rather

unreasonable to employ a modeling approach that is meant

for continuous space.

FIGURE 3

Distributions of sediment core organic matter in g/kg soil (left panels) and log(g/kg soil) (right panels) across the 36 marshes observed at the top
depth (top panels), middle depth (middle panels), and bottom depth (bottom panels), respectively.
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An alternative is to assume a conditional autoregressive

(CAR) spatial structure. CAR is a nearest-neighbor

dependence structure that is typically employed to model

areally aggregated data, in the form of either a lattice (i.e., a

regular grid, e.g., Chiu et al., 2013), or a set of irregular polygons

(e.g., Hyman et al., 2022). Two areal units are considered

immediate neighbors if they share a border. CAR models with

first-order dependence only consider nearest neighbors. Higher-

order dependence CAR models are possible by further modeling

the dependence of a site with its neighbors’ immediate neighbors

(e.g., Chiu and Lehmann, 2011). For the CAR structure to model

point-referenced data, the investigator must decide what

constitutes a pair of neighbors. White and Ghosh (2009)

developed the stochastic neighborhood CAR, or SNCAR,

model for point-referenced data, while avoiding the need for

an upfront definition of neighbors. The SNCAR model infers a

suitable threshold distance as an unknown model parameter,

whereby only those marshes located within each other’s

threshold radius are considered neighbors. For neighboring

marshes, the SNCAR model further assumes an exponential

decay covariance.

However, the SNCAR model is highly complex; for a first

attempt of spatially explicit modeling of data with potential

implications for blue carbon stocks, we choose the simpler first-

order intrinsic CAR, or ICAR, dependence structure (e.g., Chiu

et al., 2013) with a rather arbitrary threshold. ICAR is a

degenerate case of CAR, whereby the conditional spatial

correlation between neighbors (given all other marshes) is

fixed at 1. For the threshold radius, one extreme would be to

take it as the smallest pairwise distance in the dataset, leading to

the sparsest possible neighborhood structure, and containing as

few as a single pair of neighbors. The other extreme would be to

take the largest pairwise distance as the threshold, so that every

site is a neighbor of every other site. Mathematically, a certain

level of sparsity is required for model estimability; with only 36

marshes, estimating the spatial parameters alongside numerous

regression coefficients is rather ambitious. As such, we construct

preliminary models using a threshold radius of 16 km, 24 km,

and 36 km, respectively, each of which results in a neighborhood

structure that is reasonably sparse without having too few pairs

of neighbors to inform the statistical inference for the spatial

parameters. The preliminary results show little sensitivity to the

thresholds (see Supplementary Material), and subsequently we

take 24 km as the threshold for formal modeling. The resulting

neighborhood structure is depicted as an adjacency matrix

in Figure 4.

3.2 Model statements

Our spatial regression model appears as Eqs. (1)–(3) below.

It is a linear mixed model, with log-transformed OM regressed

on marsh site (categorical), marsh type (categorical), soil

category (categorical), depth (numerical, based on ordinal

depth ranges), and the interaction between depth and marsh

type; marsh site effects are modeled as random, on which the

ICAR spatial autocorrelation structure is assumed. The

interaction between depth and marsh type allows the slope

between log(OM) and depth to differ across marsh types. We

do not consider other interaction terms in the model due to

either in estimability or no improvement in goodness-of-fit

based on preliminary analyses (see Supplementary Material).

For the i -th marsh site (i=1,…,36 ) at the j -th depth (j=1,2,3 ,

except for i=11 for which j=1,2 only), let yijkℓ denote the log(OM)

associated with the numerical predictor, depth, denoted by xij
(=6,19,33) , and marsh type k and soil category ℓ . Note that the

107 pairs of (i,j) are nested inside k and ℓ . Further, let wij denote

the standardized values of xij , i.e., the 107 values of wij 's have

mean 0 and standard deviation 1 (depths are standardized to

ensure numerical stability). Then, the regression model is

yijk‘ = b0 + a1k + g‘ + b1 + a2kð Þwij + fi + ϵijk‘ , (1)

fi ∼ ICAR, Var(fijs 2
f ) = s 2

f , (2)

ϵijk‘js 2 ∼ N 0,s 2� �
(3)

FIGURE 4

The adjacency matrix (symmetric) of 36 × 36 cells based on a 24
km threshold radius. Marshes s and t are considered neighbors if
they are located within the threshold radius of each other, and
the cell on the s -th row and t -th column of the adjacency
matrix appears green. A gray cell denotes non-neighbors. White
cells along the diagonal denote not applicable, as the notion of
neighborhood between a marsh and itself is undefined. Note
that the cell labels run from 1 to 36 (not 38) due to the omission
of Sites 16 and 28.
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where b0 and b1 are the overall intercept and slope parameters

with respect to depth; a1k and gℓ are the main effects (fixed

effects) on yijkℓ due to marsh type k(=1,…,4) and soil category

ℓ(=1,…4) , respectively; a2k is the interaction effect (fixed effect)

on yijkℓ between marsh type and depth; fi is the spatially

autocorrelated random effect due to the i -th marsh site, with

variance s 2
f ; and ϵijkℓ is white noise (regression error), with

variance s2 . Fixed effects are subject to the linear constraint

a11=a21=g1=0 .

For Bayesian inference, all unknown parameters (appearing

only on the right-hand-side of Eqs. (1)–(3)) require prior

distributions that reflect the modeler’s a priori understanding

unrelated to the data at hand. Prior distributions can be inspired

by historical datasets or mechanistic models. However, when an

obvious source of inspiration is absent, priors that are diffuse

with respect to exploratory analyses may be employed to reflect

the modeler’s lack of concrete knowledge about the parameters.

We take the latter approach in this paper for Eqs. (4) and (6)

using relatively diffuse normal and lognormal distributions,

respectively (see Supplementary Material for details):

b0, b1,a1k,a2k, g‘ ∼ N 0, 102
� �

  for  k, ‘ = 2, 3, 4 , (4)

sf ∼ uniform 0:22, 1ð Þ , (5)

log (s ) ∼ N 0, 1:52
� �

(6)

We elaborate upon our choice of the uniform prior

distribution for sf from Eq. (5) in Section 4.

For model comparison, we also fit the simpler mixed model

whereby the random marsh site effects fi are assumed to be

uncorrelated, i.e., Eq. 2 is replaced by fijs 2
f ∼ N(0,s 2

f ) ; to

simplify the code, we use the same log-normal prior distribution

from Eq. (6) for both s and sf .

3.3 Model implementation

For exploratory modeling, we employ classical (non-

Bayesian) regression that requires minimal computational

effort. The specific software packages are the R functions

lme4::lmer (Bates et al., 2015) and mgcv::gam (Wood,

2017) — see Supplementary Material for details. For formal

modeling, we implement our Bayesian models in the Stan

modeling language interfaced with the rstan package (Stan

Development Team, 2022). Stan conducts Markov chain Monte

Carlo (MCMC) simulations from the posterior distribution,

which is the joint probability distribution of all model

parameters given the observed data and stipulated model from

Section 3.2. In addition to the posterior distribution on which

Bayesian inference is based, MCMC simulations also facilitate a

wide range of inference summaries and model diagnostics.

The posterior distribution is typically highly complex for spatially

explicit models, in which case MCMC would be computationally

intensive. Our code is run on a high performance computing cluster

for both the ICAR and uncorrelated models. The code and output

appear in Supplementary Material.

4 Results

4.1 Technical results

The uncorrelated model converges readily with very good

MCMC mixing (statistical behavior of the simulated posterior

draws). As anticipated, the ICAR model requires substantially

more computational effort. Moreover, if the prior distribution

for sf in Eq. (5) is replaced with one that extends to the left

towards 0, such as a diffuse lognormal or uniform(0.01, 1), then

the posterior distribution exhibits multimodality. While a

multimodal posterior may not suggest an inherently flawed

model, the model as stipulated by Eqs. (1)–(6) results in better

MCMC mixing, a unimodal posterior, and some evidence of

better cross-validation performance, according to the leave-one-

out information criterion (LOOIC) and expected log predictive

density (ELPD) via the R package loo. (Vehtari et al.,

2017) (Table 1).

According to Table 1, predictive performance is best for the

ICAR model with a uniform(0.22, 1) prior for sf , followed by

the same model but with a sf prior that extends towards 0,

then by the uncorrelated model. In Subsection 4.2, we discuss

the vastly different conclusions based on the best ICAR model

and the uncorrelated model. Before that, first note that the

difference in ELPD between the best ICAR model and the

uncorrelated model is essentially the size of its SE. Thus, strictly

speaking, the best and worst models (and other models in

between) are rather statistically consistent with each other with

respect to predictive performance. This implies that spatial

autocorrelation cannot be clearly ruled out, even if the evidence

is mild.

If our key objective here were to make scientific

discoveries based on the statistical inference from this

dataset, it might be customary to adhere to the principle of

parsimony and select the least complex model that is not

clearly worse in predictive performance. However, because

our least and most complex models yield vastly different

scientific insights, more thought must be given to the

process of model selection. In fact, our needs do not lie in

the statistical inference from this historical proxy dataset.

Rather, the objective of our paper is to demonstrate the

potential for scientific insights into blue carbon stocks at

various spatial scales by employing the methodology of spatial

regression modeling; the proxy data are employed here to

demonstrate the methodology.
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4.2 Implications of spatial ICAR vs.
uncorrelated random marsh site effects

Spatial regression is a type of model-based spatial

smoothing. In this case, the quantities being smoothed over

space is the marsh site random effects fi . Figure 5 shows that the
posterior median values of fi indeed are more spatially similar in

size and in sign (positive or negative) for the ICAR model

(panels A and C) than for the uncorrelated model (panels B

and D). Also note that the posterior medians for the ICAR

model are collectively larger with narrower Bayesian confidence

intervals (CIs), implying that the marsh site effects on OM are

more statistically noticeable. Importantly, there is noticeable

spatial grouping of the fi 's — based on minimal overlapping

of CIs in Figure 5C, a possible partition of the marshes into

distinct groups is: {1–8} (all Eastern Shore sites), {9–15, 17–20,

23–27, 29, 30, 34–38} (all upstream sites except for sites 9–12),

{21, 22, 31, 32} (all sites on the lower western shore), and {33}

(the only outstanding upstream site). A finer grouping, although

less statistically evident due to overlapping CIs, may be roughly

defined as these sets of marshes: {1–8}, {9–12, 17, 24, 25}, {13, 14,

15, 18, 19, 20, 23, 29, 30}, {21}, {22, 31, 32}, {26, 27, 36}, {33}, and

{34, 35, 37, 38}. All marshes within each set in the finer grouping

— except for the two sets that include site numbers displayed in

bold or italic — exhibit spatial proximity in Figure 5A. Among

the four “outsider” marshes given in bold and italic, sites 24 and

25 are located next to each other.

Therefore, overall, the ICAR results suggest that when spatial

autocorrelation is formally modeled alongside predictor

variables that have been documented to be potential drivers of

blue carbon stock, a latent spatial grouping emerges, one that is

not already accounted for by the predictors. This spatial

phenomenon is clearly absent from the results of the

uncorrelated model, as demonstrated by the lack of spatial

pattern among the posterior medians in Figures 5B, D.

With respect to the predictor variables, their statistical

relevance to OM is clearly demonstrated in either model

(Figures 5E, F). In particular, soil category matters to OM (at

least one gℓ has an 80% CI that is far from 0), and both depth and

marsh type are relevant to OM at least through their interaction

(the CIs for two of three a2k ’s are far from 0), even if the

respective main effects may be less statistically evident (0 is

inside the CI for b1 from both models, and none of the CIs for

a1k ’s from the ICAR model is far from 0).

Finally, in Figures 5E, F, the non-restrictive nature of our

prior distributions is evidenced by their flatness, contrasted with

the peakedness of the marginal posterior distributions of the

individual parameters. In other words, the statistical inference is

heavily dominated by the information contributed by the data

and minimally by our rather arbitrary choice of the

prior distributions.

5 Discussion

The statistical model-based analysis in this paper shows that

the inclusion of geospatial considerations when examining

differences in tidal marsh OM stocks can result in a markedly

different scientific interpretation of variability across marshes.

This results in important implications for making inference of

blue carbon stocks when it is based only on a few localized

samples but extrapolated to unsampled areas. There is an

increasing interest in estimating blue carbon stocks both for

global climate models and for economic valuation, such as the

growing blue carbon market (e.g., van den Bergh and Botzen,

2015). Enhancement of blue carbon stocks is a targeted activity

for mitigating climate change (Trumper et al., 2009) but

practical implementation of this activity requires a

sophisticated understanding of blue carbon stocks and

sequestration rates. Macreadie et al. (2019) called out the

importance of reducing uncertainties about blue carbon stocks

as critical for proper valuation of the resources and the

calculation of carbon dioxide emission offsets. The actual

number of carbon cores that can be used to infer this

information, however, is geospatially limited, and its spatial

variability is generally unknown. This has led to a tendency to

TABLE 1 LOOIC and ELPD of the ICAR and uncorrelated models.

prior distribution of sf

uniform(0.22, 1) extends towards 0

ICAR model LOOIC 212.2 216.0 to 217.1

ELPD − 106.1 − 108.0 to − 108.6

uncorr model LOOIC — 221.2

ELPD — − 110.6

ELPD diff, bold values only − 4.5 (SE=4.6)

A lower LOOIC value and higher ELPD value correspond to better leave-one-out predictive performance. The ELPD difference and standard error (SE) are obtained using the
loo_compare() function in the loo package.
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use a single value for blue carbon sequestration rates and stocks

across all marshes (e.g., Chmura et al., 2003; Duarte et al., 2013;

Howard et al., 2014). This approach is recognized as limiting

inference of carbon stocks due to the high spatial variability in

marsh carbon content, but is a necessary approach where data

are limited (Lawrence et al., 2012; Ewers Lewis et al., 2018). Our

model-based analysis suggests that, while the use of a single

average number may be appropriate in some circumstances, it

may be dramatically incorrect in others.

Specifically, in the case of the historical OM data, when

geospatial considerations are incorporated (Figure 5C), it is clear

that marsh site effects tend to have tighter confidence intervals and

their estimates (posterior medians) tend to be much closer to

adjacent marshes than marshes further away. The similarity

between adjacent marshes is interesting, since (i) it suggests that

there are some location-specific marsh characteristics beyond

marsh type, depth, or soil category that are affecting OM stocks,

and (ii) a single average value of log(OM) would be a grossly

inappropriate representation of tidal marsh OM content across the

study region, masking the distinction among group averages as

revealed by the spatially explicit model. It has been previously

shown that autochthonous OM sources such as marsh vegetation

are an important control on stocks (since different marsh plants

have different levels of productivity, persistence, and recalcitrance;

see Ewers Lewis et al., 2020) and our model results support those

findings (a2k ’s in Figures 5E, F). The geospatial analysis suggests

D

A B

E F

C

FIGURE 5

Bayesian inference results from the ICAR model of Eqs. (1)–(6) (panels A, C, and E) and uncorrelated model (panels B, D, and F). Panels (A, B):
bubble plot of fi (marsh site effect), where a large purple bubble represents a highly positive value for the estimated marsh site effect (posterior
median of fi ), and a large green bubble, a highly negative value. Panels (C, D): Bayesian confidence intervals for fi at confidence levels of 50%
(dark blue line) and 80% (light blue line); circles denote estimated marsh site effects. Panels (E, F): marginal posterior distributions for the
regression coefficients and variance parameters, with 80% confidence intervals delimited by white vertical lines, prior distributions shown in
magenta, and the value 0 marked in red for the regression coefficients.
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that OM content of allochthonous sediment contribution maybe

equally important to the stock within a given marsh. For example,

Figure 5C shows that sites 21, 22, 31, and 32 are less tightly

grouped than sites 1–8, although site 32 shares a vegetative

community with sites 2–6. Because sites 21, 22, 31, and 32 are

facing the mouth of the Chesapeake Bay, they are susceptible to

sediment erosion and sand overwash during high energy wave

events. This may reduce the retention of autochthonous OM and

add allochthonous mineral sediment to the marshes, and could be

the reason for site 32 to be distinguishable from 2–6.

In contrast, when geospatial considerations are excluded from

the statistical model, groupings between marshes are limited: the

values of the estimated marsh site effects are distributed broadly,

with confidence intervals that are wider and tend to overlap

(Figure 5D). That is, based on the more simplistic uncorrelated

model, spatial variability is substantial even after adjusting for the

predictor variables marsh type, depth, and soil category. This large

variability suggests that a single average value of log(OM)— given a

specific combination of marsh type, soil category, and soil depth—

might be a justified representation across the entire Chesapeake

Bay, if the scientific purpose was to estimate the region’s OM stock

for use in a climate model, for example. However, based on the

widely variable values of the estimated marsh site effect, it is clear

that a single number does not represent any given marsh

particularly well (Figure 5D). Thus, when the purpose is to

estimate the OM content of any particular marsh, the single-

value approach could lead to valuable loss of site-specific

information about OM stocks. This reasoning also highlights the

importance of the distribution of sampling sites for different

inference purposes. For large-scale OM estimation, it is clearly

important for the sampling sites to be relatively evenly spaced

across the spatial region of inference to allow adequate interpolation

of OM stocks. For example, according to our geospatial analysis,

using data from the Rappahannock River could provide a biased

estimate of OM stocks in the upper James River, despite the

similarity in salinity distribution and marsh plant vegetation.

However, for estimation of OM stocks in a particular marsh —

for example, an unsampled marsh on the lower James — samples

that are clustered around the marsh of interest may be required.

Note that within a tidal marsh, both plant composition and

hydrologic regimes tend to be stable over annual to decadal time

frames. Also, although upland soil organic carbon can vary

temporally with changes in land use (e.g., Ma et al., 2018), it

tends not to when land use is consistent over sampling periods

(López-Teloxa et al., 2017). Therefore, our models have not

considered temporal variation. In contrast, the tidal marsh OM

dataset featured in our paper has allowed us to explore the

importance of geospatial consideration in the potential future

modeling of blue carbon stocks, because carbon stock datasets

with broad geospatial representation and consistent sampling

techniques across space are rare to date. We anticipate that our

approach and implications discussed above regarding OM will be

directly applicable to carbon stock modeling, due to the high

correlation between tidal marsh OM and total organic carbon

(TOC; Craft et al., 1991). Because TOC values are almost always

much lower than OM values (e.g., 4% and 36%, respectively), a

rigorous geospatial modeling approach that can discern subtle

changes may prove to be especially important. We anticipate

applying the statistical methodology of this paper to new TOC

data (currently being collated) from an extensive sampling effort of

CBVAmarshes which was conducted in November 2021 as part of

a collaborative grant with the US National Resources Conservation

Service. Our methodology should result in improved insights into

blue carbon stocks compared to conventional approaches for

extrapolating known blue carbon stocks to unsampled marshes.
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