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RESEARCH ARTICLE
10.1002/2016JC012514

Climate change impacts on southern Ross Sea phytoplankton
composition, productivity, and export
Daniel E. Kaufman1 , Marjorie A. M. Friedrichs1 , Walker O. Smith Jr.1, Eileen E. Hofmann2 ,
Michael S. Dinniman2 , and John C. P. Hemmings3,4

1Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, Virginia, USA, 2Center for Coastal
Physical Oceanography, Old Dominion University, Norfolk, Virginia, USA, 3Wessex Environmental Associates, Salisbury, UK,
4Now at Met Office, Exeter, UK

Abstract The Ross Sea, a highly productive region of the Southern Ocean, is expected to experience
warming during the next century along with reduced summer sea ice concentrations and shallower mixed
layers. This study investigates how these climatic changes may alter phytoplankton assemblage composi-
tion, primary productivity, and export. Glider measurements are used to force a one-dimensional biogeo-
chemical model, which includes diatoms and both solitary and colonial forms of Phaeocystis antarctica.
Model performance is evaluated with glider observations, and experiments are conducted using projections
of physical drivers for mid-21st and late-21st century. These scenarios reveal a 5% increase in primary pro-
ductivity by midcentury and 14% by late-century and a proportional increase in carbon export, which
remains approximately 18% of primary production. In addition, scenario results indicate diatom biomass
increases while P. antarctica biomass decreases in the first half of the 21st century. In the second half of the
century, diatom biomass remains relatively constant and P. antarctica biomass increases. Additional scenari-
os examining the independent contributions of expected future changes (temperature, mixed layer depth,
irradiance, and surface iron inputs from melting ice) demonstrate that earlier availability of low light due to
reduction of sea ice early in the growing season is the primary driver of productivity increases over the next
century; shallower mixed layer depths additionally contribute to changes of assemblage composition and
export. This study further demonstrates how glider data can be effectively used to facilitate model develop-
ment and simulation, and inform interpretation of biogeochemical observations in the context of climate
change.

Plain Language Summary Understanding how the global ocean responds to climate change
requires knowing the natural behavior of individual regions and anticipating how future changes will affect
each region differently. It is especially important to determine these behaviors for regions changing in
unique ways and for regions relatively undisturbed by human influences. One such region is the Ross Sea,
which has some of the most productive marine plants and animals around Antarctica. Significant changes
in the Ross Sea environment are likely over the next century, but it is not known how these changes will
impact the marine food web. In this study, computer simulations give us an idea of how warmer tempera-
tures combined with other changes related to melting sea ice may impact the base of the Ross Sea food
web over the next century. The simulations show changes in algae species, increases in the amount of plant
matter produced, and increases in the amount of plant matter that sinks from the well-lit ocean surface to
deeper waters. The details of what cause these changes in the simulations give us new ways of thinking
about change in the Ross Sea and point us toward parts of the system warranting further study.

1. Introduction

The Ross Sea is a highly productive marginal sea in the Pacific sector of the Southern Ocean. The continental
shelf contained within this sea is the most productive province of the Southern Ocean, with annual produc-
tion averaging �180 g C m22 yr21 [Arrigo et al., 2008]. Estimates of vertical carbon export have varied sub-
stantially, ranging from �1% [Collier et al., 2000] to >50% of annual productivity [Sweeney et al., 2000]. High
productivity in the Ross Sea polynya is driven by two functional groups, the haptophyte Phaeocystis

Key Points:
� Climate model scenarios for mid-21st

and late-21st century indicate
increases of primary productivity and
carbon export flux
� Shallower mixed layer depths cause

diatoms to increase and Phaeocystis
antarctica to decrease by the mid-
21st century
� Earlier availability of low light from

melting sea ice causes Phaeocystis
antarctica to increase more than
diatoms in the late-21st century
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antarctica that initially dominates the annual bloom, and diatoms, which accompany P. antarctica early in
the season and regularly form a subsequent bloom later in the season. P. antarctica growth begins in late-
October soon after sea ice retreat is initiated and open-water polynyas form, allowing sunlight to penetrate
the water column [Smith and Gordon, 1997]. Mixed layers are still relatively deep during this early phase of
the growing season when P. antarctica dominate the assemblage. Within days to weeks, the colonial form
of P. antarctica becomes a larger constituent than solitary cells [Smith et al., 2003a]. As time progresses,
these colonies undergo senescence and solitary cells are liberated [Smith et al., 2017]. P. antarctica are rarely
present by late-February or March when sea ice again covers the area. Chlorophyll concentrations, as well
as primary productivity, typically peak in December [Arrigo et al., 2000; Smith et al., 2003b]. Early studies
described the pattern of biomass accumulation as unimodal [e.g., Smith et al., 2000], but further evidence
demonstrated that during the latter part of the season there is often a secondary biomass peak as diatoms
increase substantially and in some years dominate the phytoplankton [Peloquin and Smith, 2007; Smith
et al., 2010]. The mechanisms allowing diatoms to bloom after P. antarctica decline are not fully understood,
as it is typically assumed that micronutrient resources (iron) are depleted late in the growing season and
would limit further growth.

Environmental conditions are critical in determining how the composition and dynamics of the phytoplank-
ton vary throughout the growing season. Observations from an autonomous glider in 2010–2011 [Smith
et al., 2014b] suggested that a transition of the phytoplankton assemblage from P. antarctica to diatoms
was associated with a change in the ratio of carbon to chlorophyll [Kaufman et al., 2014]. Analysis of the
oceanographic conditions showed this change to be most highly correlated with temperature; however, it
was not clear whether the correlation represented a causal relationship or a coincident seasonal trend.
Wind, and its effect on mixing, has been implicated as another important factor in determining phytoplank-
ton dynamics in the Ross Sea [Long et al., 2012; Neale et al., 2012; Queste et al., 2015; Jones and Smith, 2017].
Other studies have investigated links between phytoplankton and oceanographic variables. For example,
an investigation using structural equation modeling and data from January to February 2012 found summer
phytoplankton growth rates in the Ross Sea to be most affected by levels of iron [Mosby and Smith, 2016].
Irradiance levels likewise have been found to differentially affect phytoplankton growth in the Ross Sea
[Garcia et al., 2009; Mills et al., 2010; Feng et al., 2010].

On decadal time scales, the Ross Sea has been experiencing changes in both its physical and biological con-
ditions. Summer temperatures in the atmosphere have been increasing over several decades at McMurdo
station, located on Ross Island on the southwestern continental shelf, and in the surrounding water [Jacobs
and Giulivi, 2010; LaRue et al., 2013], even though winter temperatures in the northwestern margin of the
Ross Sea have been decreasing [Sinclair et al., 2012]. Along with climatic change in temperatures, sea ice
and vertical mixing are changing in the Ross Sea. Average sea ice extent and duration have in general been
increasing throughout the Ross Sea since at least the 1990s [Comiso and Nishio, 2008; Cavalieri and
Parkinson, 2008; Stammerjohn et al., 2008; Sinclair et al., 2014], but within the Ross Sea polynya there have
also been slight increases in the number of ice-free days between 1992 and 2013 [Schine et al., 2015]. A
marked freshening of the Ross Sea has been observed since the midtwentieth century, increasing the buoy-
ancy of surface waters and likely diminishing vertical exchange [Jacobs et al., 2002; Jacobs and Giulivi, 2010].
Additionally, the timing and magnitude of primary productivity in the Ross Sea have been changing over
the past two decades [Arrigo et al., 2008; Montes-Hugo and Yuan, 2012; Schine et al., 2015]. Between 1997
and 2013, trends in annual net primary production have been correlated with the number of ice-free days
and have been generally increasing in the area of the Ross Sea polynya, but decreasing to the east and
northwest [Schine et al., 2015].

Climate model projections suggest the trend of increasing sea ice extent over the past several decades is
unlikely to continue into the future, but how this will impact the phytoplankton is unknown. The Ross Sea is
expected to experience warming throughout the next century along with reduced summer sea ice concen-
trations and shallower mixed layers [Bracegirdle et al., 2008; Bracegirdle and Stephenson, 2012]. Smith et al.
[2014a] utilized 21st century projections of winds and atmospheric temperature from a global climate mod-
el, along with a boundary-imposed freshening [Jacobs and Giulivi, 2010], to force regional simulations of
physical conditions within the Ross Sea for the mid-21st and late-21st century (described further in section
2.2.2). Their simulations with a coupled sea-ice circulation-ice shelf model suggest a summertime expansion
of the Ross Sea polynya and shallower mixed layer depths over the next century. There have been efforts to
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interpret the effects that similar
physical changes will have on
higher trophic levels in the
West Antarctic Peninsula [e.g.,
Ballerini et al., 2014], but the
few projections of future bio-
geochemical conditions in the
Ross Sea utilize coarse resolu-
tions and parameter sets not
specific to this region, making
them unsuitable for detailed
region-specific analysis. For
instance, a study of Earth Sys-
tem Models in the Coupled
Model Intercomparison Project
5 (CMIP5) showed a general
trend of increasing surface
chlorophyll and integrated pri-
mary production by the end of
the 21st century over a broad
area of the Ross Sea that
included both the open ocean

and continental shelf [Rickard and Behrens, 2016]. However, the authors themselves point out that ‘‘the
broad range of solutions of the climate scale models for the Ross Sea suggests care has to be taken in trans-
lating processes at the relatively large scale of these models to the regional scales.’’ Furthermore, global
model projections of phytoplankton do not include dynamics that are specific to this region, such as
P. antarctica morphotype transitions, thus limiting their effectiveness in evaluating future changes in the
Ross Sea. Although some lab studies have attempted to predict how Ross Sea phytoplankton will be altered
in the next century [Xu et al., 2014; Zhu et al., 2016], understanding how phytoplankton dynamics are likely
to respond to the full range of environmental changes in the Ross Sea remains an open question.

To improve our understanding of ecosystem responses to future physical changes in the southern Ross Sea,
we applied a novel one-dimensional (1-D) modeling approach that includes P. antarctica morphotype tran-
sitions and utilizes high-resolution glider data (Figure 1) for forcing and evaluation. Specifically, simulations
were first conducted for a contemporary time period to coincide with the approximate time and location of
the glider deployment, allowing for a robust skill assessment of the biogeochemical model. A 1-D test bed
framework, designed for comprehensive model analysis, was used to drive the biogeochemistry. This frame-
work allows for direct application of observation-based physical forcing fields derived from the glider data.
Subsequently, potential effects of climate-induced changes on Ross Sea biogeochemistry were investigated
by running the model under scenarios of future conditions and comparing the results to those of the con-
temporary setting. The independent contribution of likely changes in different forcing variables was also
examined, facilitated by the use of the 1-D analysis framework. In this paper, the structure, forcings, and skill
assessment of the model are first described in section 2 before analyzing the results of the contemporary
and future scenarios along with their sensitivity to physical and biological inputs in section 3. The implica-
tions of these model results are then discussed in section 4 in relation to our understanding of changing
biogeochemical dynamics in the Ross Sea, and conclusions are given in section 5.

2. Methods

2.1. Modeling Approach
The biogeochemical Model of Ecosystem Dynamics, nutrient Utilisation, Sequestration and Acidification
(MEDUSA) [Yool et al., 2011] was adapted for the Ross Sea and run within the Marine Model Optimization
Testbed (MarMOT), an advanced open-source 1-D model analysis framework [Hemmings and Challenor,
2012; Hemmings et al., 2015].

Figure 1. Southwestern Ross Sea showing the glider transect, overlaid on bedmap2
bathymetry of the shelf [Fretwell et al., 2013]. Dark gray areas represent topography above
sea level or glacial ice.

Journal of Geophysical Research: Oceans 10.1002/2016JC012514
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2.1.1. MEDUSA Model Structure
MEDUSA is a lower trophic level model with two phytoplankton and zooplankton groups (diatom and non-
diatom phytoplankton; microzooplankton and mesozooplankton), two detrital classes, and three nutrients:
dissolved silicic acid (DSi), dissolved iron (DFe), and dissolved inorganic nitrogen (DIN). In earlier analyses,
data assimilation experiments have been used to demonstrate that models with two phytoplankton and
two zooplankton groups represent a good balance of realism and skill for lower trophic level models [Xiao
and Friedrichs, 2014]. MEDUSA is also well suited for study of the Ross Sea in part because of its inclusion of
iron and silicon dynamics. A complete description of MEDUSA-1.0 is given by Yool et al. [2011].

MEDUSA has several notable characteristics. Nitrogen is the model’s primary ‘‘currency,’’ but the model
allows phytoplankton to have different C:N ratios and diatoms to have a variable Si:N ratio. Temperature-
dependent growth of phytoplankton is limited simultaneously by available light and nutrients. Diatoms
incorporate silicic acid and are grazed by mesozooplankton but not microzooplankton. Detritus is reminer-
alized throughout the water column and is modeled in two separate ways: slow-sinking detritus is repre-
sented explicitly as a tracer whereas fast-sinking detritus is tracked implicitly as it traverses the water
column. Microzooplankton mortality contributes nitrogen and iron directly to the slow-detritus tracer, but
not to the fast-sinking flux. Another feature of MEDUSA is that nitrate and ammonium are not included as
independent state variables; DIN represents the sum of both. The model includes an iron submodel
(adopted from Parekh et al. [2005] and based on Dutkiewicz et al. [2005]), which distinguishes between
‘‘free’’ iron, which is removed throughout the water column by scavenging, and ligand-bound forms. Rather
than explicit modeling of iron complexation reactions, the ratio of ‘‘free’’ and ligand-bound iron scales nonli-
nearly with total iron concentration according to parameters of total ligand concentration and ligand bind-
ing strength. Sinking flux and remineralization in MEDUSA are implemented using a ballast scheme that
‘‘protects’’ a variable fraction of sinking material by inorganic ballasting minerals.
2.1.2. Modifications to MEDUSA
Adaptation of MEDUSA-1.0 for the Ross Sea implementation (MEDUSA-RS) included replacing the original
non-diatom tracer with two semi-independent tracers representing P. antarctica. Solitary cells of P. antarcti-
ca (Ps) and colonies of P. antarctica (Pc) are divided to represent the morphotype transitions that this species
undergoes during growth in the Ross Sea. Concentrations of P. antarctica and diatoms are modeled as

@Ps

@t
5PPPs � Ps1CL2CF2GlPs

2GmPs 2l1;Ps
� Ps2l2;Ps

� Ps

kPs 1Ps
� Ps; (1)

@Pc

@t
5PPPc � Pc1CF2CL2l1;Pc

� Pc2WPc ; (2)

@Pd

@t
5PPPd � Pd2GmPd 2l1;Pd

� P d2l2;Pd
� Pd

kPd 1Pd
� Pd2WPd ; (3)

where PPPx represents gross primary productivity of phytoplankton type x (and Px signifies the biomass of a par-
ticular group: Pd for diatoms, Pc for P. antarctica colonies, and Ps for solitary P. antarctica), which is limited by
temperature, light, and nutrients; Gl and Gm represent grazing by microzooplankton and mesozooplankton,
respectively; l1;Px

represents density-independent losses such as respiration; l2;Px
� Px

kPx 1Px
� Px represents other

nonlinear mortalities such as disease or grazing by implicit higher trophic levels; and WPx represents passive
sinking. The two transitions of P. antarctica, solitary cells forming colonies (CF ) and solitary cells being liberated
from colonies (CLÞ, are represented in a manner adapted from Popova et al. [2007] with the following
equations:

CF5
cF � Ps � 12fzð Þ � QFe;Pc ; if Ps � s

0; if Ps < s
;

(
(4)

CL5cL � Pc � fz � 12QFe;Pc

� �
; (5)

where cF is the max rate of colony formation, cL is the max rate of solitary cell liberation, Q is a nutrient limita-
tion factor based on Michaelis-Menten kinetics, s is the threshold concentration at which solitary cells undergo
colony formation, fz is a nondimensional switch that allows colonies to form in the photic zone and solitary

Journal of Geophysical Research: Oceans 10.1002/2016JC012514
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cells to be liberated when colonies are below the photic zone (fz50:5 � tanh z2zph

10

� �
11

� �
), and zph is the photic

zone depth. These transitions are calculated slightly differently than Popova et al. [2007], to include DFe limit-
ing the formation and maintenance of P. antarctica colonies (QFe,Pc term in equations above: see supporting
information Table S2 for more details); the parameters for the transition equations (cF , cL, s) have also been
modified slightly from the values in Popova et al. [2007] based on results of sensitivity tests.

Further changes to the model include the addition of sinking terms in the P. antarctica colonies and diatom
equations. These terms approach a maximum sinking rate (WPx ) as the phytoplankton become increasingly
nutrient limited:

WPc 5WPcmax 12min QN;Pc ;QFe;Pc

� �� �
; (6)

WPd 5WPdmax 12min QN;Pd ;QFe;Pd ;QSi
� �� �

: (7)

Export flux of carbon at a particular depth in the model is thus calculated as the combination of passively
sinking live P. antarctica colonies and diatoms with slow sinking of small detrital particles and ballasted fast
sinking of large detritus. The aggregation of sinking particles is not modeled explicitly.

Several key parameters were also changed from MEDUSA-1.0 to be more representative of conditions for
the Ross Sea (Table 1). For example, distinct C:Chl ratios [Ditullio and Smith, 1996] and C:N ratios [Arrigo
et al., 2000] were set for each phytoplankton group. In contrast to the setup described by Yool et al. [2011],
MEDUSA-RS also does not include aeolian deposition. A sensitivity analysis revealed that realistic concentra-
tions of atmospheric iron deposition in the Ross Sea negligibly affect the modeled phytoplankton, in accor-
dance with field-based estimates [Winton et al., 2014]. All model equations are provided in the supporting
information Tables S1 and S2.
2.1.3. Physical 1-D Model Framework
MEDUSA-RS was run within the Marine Model Optimization Testbed (MarMOT), which allowed for standard-
ized specification of input files and rapid execution of multiple model runs. MarMOT does not solve for
physical variables prognostically. Instead, temperature and vertical diffusivity are provided as inputs (section
2.2). In this study, diffusive motion is assumed to drive all vertical transport and therefore vertical advection
is set to zero. The model is configured to focus on dynamics within the euphotic zone, with a domain span-
ning the ocean surface to 200 m and a vertical resolution of 5 m.

2.2. Model Forcings
Model simulations were conducted at 1698E, 77.48S in the southern Ross Sea (Figure 1) for the time period
1 October 2012 to 1 February 2013 to coincide with the approximate time and location of an autonomous

Table 1. Parameter Values Used in This Study

Parameter Name Symbol

Phaeocystis antarctica
Colonies, P. antarctica

Solitary, Diatoms Units Reference

C:Chl ratio C:Chl 40, 30, 150 DiTullio and Smith [1996], Mathot et al. [2000]a

C:N molar ratio C:N 7.3, 7.3, 6.4 Arrigo et al. [2000], Mills et al. [2010]
Maximum growth rate at 08C V 0.5, 0.5, 0.375 d21 Smith and Gordon [1997], Smith et al. [1999]a

Chl-specific initial slope of P-E curve a 3, 3, 0.6 gC (g chl)21 (W m22) 21 d21 Mills et al. [2010]a

Half saturation conc. for Fe uptake kFe 0.1, 0.05, 0.005 mmol N m23 Coale et al. [2003], Garcia et al. [2009],a Sedwick et al. [2007]
Half saturation conc. for DIN uptake kN 0.5, 0.5b, 0.75b mmol N m23 Yool et al. [2011]
Metabolic loss rate l1 0.02, 0.02b, 0.02b d21 Yool et al. [2011]
Mortality half saturation conc. kmort 0, 0.5b, 0.25 mmol N m23 Yool et al. [2011]a

Maximum gravitational sinking rate Wmax 20, 0b, 5 m d21 Smith et al. [2011]a

P. antarctica maximum colony formation rate cF 5 d21 Popova et al. [2007]a

P. antarctica threshold solitary cell conc.
for colony formation

s 0.4 mmol N m23 Popova et al. [2007]a

P. antarctica maximum rate of solitary
cell liberation from colonies

cL 1.6 d21 Popova et al. [2007]a

Microzooplankton,
Mesozooplankton

Maximum grazing rate g 0.3, 0.225 d21 Yool et al. [2011]a

Grazing half saturation concentration kgraz 0.2, 0.1 mmol N m23 Yool et al. [2011]a

aValue has been modified from the reference value as a result of sensitivity tests.
bValue is unchanged from Yool et al. [2011].

Journal of Geophysical Research: Oceans 10.1002/2016JC012514
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iRobot Seaglider deployment
[Ainley et al., 2015; Jones and
Smith, 2017]. This facilitated
using the glider data to derive
physical forcings for model inte-
gration over this time period,
which we term the contempo-
rary control run (or simulation;
section 2.2.1). The remaining
physical forcings for the control
run are derived from satellite
and reanalysis data. Climate sce-
nario forcings were generated
from a regional Ross Sea hydro-
dynamic model (section 2.2.2),
and boundary conditions were
set using climatological condi-
tions (section 2.2.3).
2.2.1. Physical Forcings for
Contemporary Control Run
Glider data (Figure 1) [Ainley
et al., 2015; Jones and Smith,

2017], available in the BCO-DMO data repository (http://www.bco-dmo.org/dataset/568868), were used to
generate the temperature and vertical diffusivity time series required to implement the 1-D model. When
available, temperatures were used to force the model directly; prior to the glider deployment (22 Novem-
ber) temperatures in the model were set to the first temperature profile measured by the glider (Figure 2a).
After ice no longer covered the ocean surface, mixed layer depths (MLD) were calculated from glider densi-
ty profiles using a threshold criterion of 0.01 kg m23 [Kaufman et al., 2014; Jones and Smith, 2017], and were
set to the first glider-determined MLD before the glider deployment (Figure 2b; during ice covered time
periods the water column was assumed to be well mixed) [Gordon et al., 2000]. Following the approach of
Llort [2015], vertical diffusivities, jz, were generated by separating the water column into an upper actively
mixed layer and a bottom layer of low mixing. Diffusivity at the surface (jz 5 1023.5 m2 s21) was reduced
slightly to account for friction at the air-sea interface, and the gradient between the value within the mixed
layer (jz 5 1020.5 m2 s21) and below (jz 5 1023 m2 s21) was smoothed.

Surface irradiances and surface iron fluxes are also required inputs for the 1-D model. Percent ice cover was
obtained from the Special Sensor Microwave Imager/Sounder [Spreen et al., 2008] and averaged within a
rectangular area (1678E–1738E, 77.58S–76.68S) surrounding the glider track. An Ice Melt Day (IMD) was
defined as a reference to mark the transition from winter conditions. The IMD was calculated as the first day
when ice coverage dropped below a threshold level of 80% and remained below this level for at least 75%
of the next 30 days. 1 November was calculated as the IMD for the control run in 2012 (Table 2). Experi-
ments demonstrated that the IMD was not highly sensitive to changes in IMD thresholds. Surface solar radi-
ation, including the effect of cloud cover, was obtained from the 3 h forecast fields of the ERA Interim
dataset [Dee et al., 2011] at the location 1698E, 77.358S. These values were multiplied by percent ice cover to

generate irradiance values that enter at
the water surface (Figure 2c). Although
this simplification does not account for
the thickness of the ice or other inter-
nal properties of the ice, it captures the
first-order processes of irradiance
attenuation due to the presence of sea
ice. Solar radiation values were
assumed to be zero before the IMD.

Input of iron into the water column
was assumed to occur when sea ice

Figure 2. Physical forcings used for the model control run. (a) Sea surface temperature,
(b) mixed layer depth, (c) maximum daily irradiance, and (d) surface iron flux. Dotted lines
before 22 November 2012 indicate times prior to the first measurements of the glider;
hatched areas indicate times before the IMD.

Table 2. Physical Forcings for the Control Run and 2050 and 2100 Climate
Scenario Simulations

Control Run
(Average)

2050
(Average)

2100
(Average)

Temperature (SST in 8C) 20.96 20.67 20.16
MLD (m) 77 72 55
Irradiance (W m22) 240 254 272
Iron input (day when 50%

of initial surface iron
has entered the water)

15 Nov 10 Nov 4 Nov

IMD (day) 1 Nov 27 Oct 21 Oct
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melts. To represent this, the simulation time period was initialized with a sea ice inventory of 5.8 lmol
Fe m22 [McGillicuddy et al., 2015]; decreases in sea ice, which are assumed to represent melting, were used
to generate a time series of iron input into the surface model layer (Figure 2d). Although sea ice reduction
in the real system is a combination of in-place melting and advection out of the area, the scarcity of data on
these processes constrains the simulation to represent melting only. This approach represents a spatial
averaging of iron input, and is likely a high estimate. The relative magnitude of iron input was proportional
to the magnitude of decrease in sea ice cover from a full 100% whenever sea ice dropped below the previ-
ously lowest level of cover. For instance, 10% of the initial inventory would be input into the surface model
layer on a day in which sea ice cover decreased a further 10% below the previously lowest ice cover per-
centage (e.g., from 50% to 40%).
2.2.2. Physical Forcings for Future Climate Scenarios
Forcings for the future climate scenarios were generated using output from simulations of a sea ice-ocean-
ice shelf model of the Ross Sea based on the Regional Ocean Modeling System (ROMS) [Dinniman et al.,
2007, 2011]. This implementation, configured with 5 km horizontal grid spacing, 24 vertical layers, and
including a dynamic sea ice model, was used to estimate changes in the physical dynamics of the Ross Sea
shelf between a contemporary simulation and midcentury (2046–2050) and late-century (2096–2100) simu-
lations. These future scenarios applied projected wind forcing and atmospheric temperature changes from
the CMIP3 A1B emissions scenario of the Max-Planck-Institute European Centre/Hamburg 5 (ECHAM5) glob-
al climate model [Jungclaus et al., 2006]. The observed freshening of the Ross Sea [Jacobs et al., 2002], which
is thought to be remotely forced due to an increased advection of low-salinity water from the Amundsen
Sea [Jacobs and Giulivi, 2010; Nakayama et al., 2014], was simulated in the future climate scenarios by simply
imposing a freshening at the lateral boundaries. Further details of the ROMS model simulations and pro-
jected physical conditions are given by Smith et al. [2014a].

Four forcing fields of MEDUSA-RS were altered for the climate scenario experiments: temperature, vertical
diffusivity, surface iron input, and solar radiation flux (Table 2). These forcing fields were generated using
the ROMS model output fields of sea ice cover, MLD, and temperature. For each of these outputs, difference
fields were calculated between the 5 day averages in the last 2 years of either the mid-21st or late-21st cen-
tury simulations and the last 2 years of the contemporary simulation, following the approach of Smith et al.
[2014a]. The difference fields of temperature and MLD were spatially averaged within 1668E–1748E and
77.58S–768S and interpolated from 5 day averages to daily values over the control simulation time-period to
produce projected deviations from the control representative of the study area. These differences were
added to the current-day time series to generate the mid-21st and late-21st century fields. The timing of
polynya expansion in the ROMS simulations occurs on average 5 and 11 days earlier over the continental
shelf in the mid-21st and late-21st century [Smith et al., 2014a]; following this trend, the IMD, sea ice cover
and surface iron input time series were shifted 5 and 11 days earlier. Future vertical diffusivity fields were
generated from the modified IMDs and MLDs, and future irradiances were generated from the modified
IMD and sea ice time series. The future irradiances represented here come solely from the projected
changes in sea ice, therefore the future scenarios include, in effect, the same cloud cover as the control sce-
nario. Because of the significant uncertainty regarding future changes in the physical forcings, simulations
were also conducted in which forcings for the future scenarios were each halved or doubled (section 2.4).
2.2.3. Biogeochemical Initial and Boundary Conditions
Initial and bottom (200 m) boundary conditions for DIN and DSi were generated using monthly climatologi-
cal data with observations spanning 1970–2003 for the months November through February [Smith et al.,
2003b]. Average DIN and DSi concentrations were calculated from this climatology within a bounding box
of 1648E–1768E and 758S–788S, which encompasses the entire 2012–2013 glider track (several other bound-
aries for this box were tried, but the average concentrations did not depend strongly on the size of the
box). Initial profiles of DIN and DSi were set to the climatological values for November, which was the clima-
tological profile earliest in the season and closest to the simulation start date. Bottom boundary values for
DIN and DSi remained at the initial condition values until the middle of November, transitioned over 1
month to the climatological 200 m average (30.6 mmol N m23 and 80.2 mmol Si m23), and then were held
constant for the remainder of the simulation time period.

Since climatological DFe data are not available, boundary and initial conditions for dissolved iron were
drawn from Sedwick et al. [2011], Marsay et al. [2014], and Gerringa et al. [2015]. Based on data within a
bounding box of 1668E–1748E and 77.58S–768S, the bottom boundary condition for DFe was set to a
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constant 0.2 nM, which is also a value attributed to Modified Circumpolar Deep Water (MCDW) [Gerringa
et al., 2015] and is close to the winter DFe ‘‘reserve value’’ present in the water column after deep convective
mixing during winter [McGillicuddy et al., 2015]. The DFe initial condition was also set to 0.2 nM. Initial nitro-
gen concentrations of diatoms and solitary P. antarctica were each set to 0.05 mmol N m23 (approximately
equal to 0.1 mg L21 of chlorophyll), while concentrations of colonial P. antarctica were set lower (0.001
mmol N m23) to allow colony formation to mimic patterns observed in situ. Initial concentrations of both
microzooplankton and mesozooplankton were set to 0.005 mmol N m23, and detritus was set to 0.01 mmol
N m23. Initial and bottom boundary conditions for all biogeochemical variables were the same for the
future climate scenarios as in the contemporary run.

2.3. Skill Assessment
Bio-optical measurements from the glider as well as climatological data were used to evaluate the modeled
biogeochemical distributions. Fluorescence and optical backscatter counts were measured by the glider
using a Wet Labs ECO Puck sensor and converted to concentrations of chlorophyll and particulate organic
carbon (POC), respectively, using the regression equations of Jones and Smith [2017]. These were binned
into daily, 5 m vertical bins and compared to modeled chlorophyll as well as POC, which was computed as
the sum of phytoplankton, zooplankton and detrital carbon. Climatological monthly means of chlorophyll,
nitrate, and silicic acid from November, December, and January [Smith et al., 2003b] were also compared
with modeled values of chlorophyll, DIN, and DSi. Dissolved iron values from the literature [Sedwick et al.,
2011; Marsay et al., 2014; Gerringa et al., 2015] averaged over the upper 50 m were used for assessing per-
formance of the model.

Model-data fit of the contemporary control run was assessed quantitatively using statistical skill metrics
that accentuate specific aspects of model performance [Stow et al., 2009; Olsen et al., 2016], including root
mean squared difference (RMSD), unbiased RMSD, bias, standard deviation, and linear correlation. Bias,
unbiased RMSD, and RMSD were plotted using Target diagrams [Hofmann et al., 2008; Jolliff et al., 2009;
Friedrichs et al., 2009]. Target diagrams provide a straightforward method to compare multiple simulations
in terms of bias (y axis), unbiased RMSD (x axis), and total RMSD (distance from origin). Target diagrams also
provide information on whether the modeled standard deviation is greater than that of the observations
(model symbols fall to the right of the y axis) or less than that of the observations (model symbols fall to the
left of the y axis). To determine the robustness of model skill assessment results to uncertainty in the param-
eters and boundary conditions, the contemporary simulation was run with modified (620%, consistent with
variability of DIN and DSI in the climatology) values of nutrient boundary conditions (bottom conditions
and initial conditions) and parameters that directly affect phytoplankton growth, P. antarctica morphotype
transition, and sinking. These sensitivity runs were ranked according to normalized percent differences in
RMSD (summed for both chlorophyll and POC) between each sensitivity run and the control run, and model
skill was assessed via Target diagrams for simulations in which the five parameters to which chlorophyll and
POC were most sensitive were modified.

2.4. Future Scenarios
To examine how Ross Sea phytoplankton composition, productivity and export may change in the future,
MEDUSA-RS was run with projected climate forcings (section 2.2.2) and results were compared with the
contemporary control run (section 2.2.1). Two scenarios were evaluated, forced by projected conditions for
a midcentury period and a late-21st century period (as described in section 2.2.2), and these are hereafter
referred to as the 2050 and 2100 future scenarios, respectively. Changes from the contemporary control to
a future scenario are denoted by D (e.g., DPP2050 for change in primary productivity from the control to
2050 or DE2100 for change in export from the control to 2100). Unless otherwise indicated, integrated prima-
ry productivity and export values are integrated both over the model depth (200 m) and the simulation
time period (1 October 2012 to 1 February 2013) and given in units of g C m22 yr21. (Note, although these
values do not represent integrations over the entire year, roughly 90% of total production occurs before
February (W. Smith, personal communication, 2016).

In addition to examining the overall effect of projected changes in the four combined physical forcings, the
effect of each forcing change was examined independently while keeping the other three forcings the
same as in the contemporary control run. Although in reality, physical drivers of the ecosystem are not inde-
pendent from each other, these independent tests help to determine the robustness of the future scenario
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results to uncertainty in the represen-
tation of the projected environmental
changes and to assess the linearity of
the simulated effects from changing
physical forcings. For this purpose,
simulations were also conducted in
which forcings for the future scenarios
were each halved or doubled. Further-
more, robustness of the future scenar-
io results to uncertainty in parameters
and boundary conditions was deter-
mined from runs with modified
(620%) values of nutrient boundary
conditions (bottom conditions and
initial conditions) and parameters that
directly affect phytoplankton growth,

P. antarctica morphotype transition, and sinking. For the sake of focusing on the effect of projected environ-
mental changes, values of DPP and DE for these sensitivity runs were calculated with respect to the contem-
porary simulations with similarly modified parameters and boundary conditions.

3. Results

3.1. Contemporary Control Run
3.1.1. Assessment of Chlorophyll and POC
The model results reproduce the drawdown of nutrients observed in climatological data over the growing
season (Figure 3), and the pattern of this progression follows changes in the physical drivers. For example,
small peaks in nutrient concentrations occur in the model at the same time as short-term mixing events
(e.g., on 5 December and 26 December; Figures 2b and 3). By mid-December, most of the sea ice has disap-
peared and temperatures are as high as 18C (Figure 2). By this time, when mixed layers are shallow and light
levels are approaching their maxima, concentrations of DIN within the upper 50 m have been reduced from

their initial condition to an average of
�26 mmol N m23, a decrease similar to
the climatological trend (Figure 3). DSi is
drawn down only slightly by 15 Decem-
ber, and less than in the climatological
data; however, by 15 January modeled
DSi concentrations match the climatolo-
gy closely (Figure 3). Over this time peri-
od, DFe is reduced by more than either
DIN or DSi, reaching approximately one
third of its initial concentrations by 15
December, matching the range of
observed values. Although there are
additional inputs of iron in the model at
the surface from melting sea ice (Figure
2d), these do not drastically change the
dissolved iron concentrations averaged
over the top 50 m, which reach low lev-
els near the end of the simulation
(Figure 3).

Modeled distributions of chlorophyll
and POC compare well with available
data (Table 3). In both the control
simulation and glider observations,

Figure 3. Mean daily modeled DIN (blue line), DSi (orange line), and DFe (purple
line) for the upper 50 m of the control run; shaded areas show standard deviations.
Dots for nitrate and silica represent climatological values with error bars of one
standard deviation for the upper 50 m. Dots for iron represent upper 50 m values
from the literature.

Figure 4. Mean daily modeled biomass from the control run (blue line) and the
glider (black line) over the upper 50m for (a) chlorophyll and (b) total POC, with
shaded areas representing one standard deviation.
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chlorophyll peaks in December and decreases thereafter (Figure 4a). The maximum in chlorophyll occurs
after irradiance exceeds �400 W m22 (Figure 2c), but irradiance continues to increase throughout the sec-
ond half of December, while chlorophyll concentrations begin to decrease. Average concentrations of mod-
eled chlorophyll in the upper 50 m are highly correlated with measured chlorophyll (Table 3; Figure 4a).
Concentrations of POC reach their highest levels in the beginning of January after chlorophyll peaks, and
remain elevated throughout the model simulation (Figure 4b). Upper 50 m averages of modeled POC are
strongly correlated with glider observations (Table 3; Figure 4b).

Model-data comparison is also visualized using Target diagrams [Hofmann et al., 2008; Jolliff et al., 2009;
Friedrichs et al., 2009], for the control run as well as for simulations generated by increasing or decreasing
the five parameter or boundary conditions to which modeled chlorophyll and POC were most sensitive
(Figure 5). The control run has greater skill, i.e., a lower RMSD, than the mean of the observations, indicating
a model efficiency greater than zero [Stow et al., 2009]. For some modified parameter or boundary condi-
tions, total RMSD decreases for either chlorophyll or POC while increasing for the other. For example,
increasing the maximum growth rate for diatoms results in a 12% reduction in chlorophyll RMSD but a 22%
increase in POC RMSD. Model skill is most sensitive overall to initial and boundary conditions of DFe, for
which a 20% decrease or increase results in a 10% reduction or 220% increase of absolute bias in modeled
chlorophyll and the greatest departure of total RMSD from the control run. Model skill was also sensitive,
albeit less so, to parameters involving P. antarctica colonies.

Throughout the simulation, phytoplankton is the largest component of total POC, with zooplankton and
detrital biomass making up smaller contributions (Figure 6). Beginning in the latter half of December, and
after P. antarctica biomass has started to decline, zooplankton carbon increases slowly until the end of the
simulation, but remains a small percentage (<10%) of total carbon throughout. These low abundances of

zooplankton are in qualitative
agreement with cruise measure-
ments showing low heterotro-
phic plankton abundance in the
spring and early summer of
1996–1997 [Dennett et al.,
2001]. Detrital carbon is highest
at the beginning of January
after P. antarctica concentra-
tions have started to decline
(Figure 6).
3.1.2. Assessment of
Phytoplankton Assemblage
Composition, Productivity,
and Export
The relative dominance of
P. antarctica and diatoms varies
throughout the contemporary
control simulation (Figures 7a
and 7b). Modeled solitary cells
of P. antarctica begin accumu-
lating around 1 November,
slightly earlier than colonies or
diatoms, as a result of increased
available light, shoaling of the

Table 3. Statistical Comparison Between Biomass Values of Control Run and Glider Observations Averaged Over the Upper 50 m

Bias RMSD Correlation
Model Mean 6 Standard

Deviation
Glider Mean 6 Standard

Deviation

Chlorophyll (mg m23) 0.41 0.7 0.94 3.0 6 1.4 2.6 6 1.6
POC (mg m23) 27 45 0.84 237 6 55 210 6 69

Figure 5. Target diagrams for the control run comparing (a) modeled daily chlorophyll
with glider-derived chlorophyll and (b) modeled daily POC with glider-derived POC for the
upper 50 m. Skill values are also shown for the top five parameters to which chlorophyll
and POC were most sensitive. Upward (downward) pointing triangles indicate runs in
which the parameter was increased (decreased) by 20%. The radius of the dashed circle
represents the total RMSD of the control run, and the radius of the solid circle represents
standard deviation of the glider observations. Abbreviations BC and IC refer to (bottom)
boundary condition and initial condition, respectively, and pacol indicates P. antarctica
colonies.
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mixed layer and plentiful iron. Soon
after their initial growth, solitary
P. antarctica cells exceed the threshold
concentration in the model and begin
forming colonies. Colonies then under-
go a sharp increase in abundance,
becoming maximal in the first half of
December (Figures 7a and 7b) when the
mixed layer has shoaled to an average
of �20 m (Figure 2b). By the first week
of December, average dissolved iron
concentrations in the upper 50 m have
been reduced from �0.2 to �0.14 nM

due to P. antarctica growth (Figure 3). Diatoms accumulate slower than P. antarctica, and diatoms are not a
major constituent of the assemblage until after mid-December, by which time they average �50 mg C m23 in
the upper 50 m, accounting for >30% of total phytoplankton carbon (Figure 7b), although <10% of total chlo-
rophyll (Figure 7a). P. antarctica biomass declines during the latter half of December as irradiance and tempera-
tures continue to increase and mixed layers remain shallow. Diatoms continue growing in January, even while

average DFe in the upper 50 m remains
less than 0.07 nM (Figure 3).

Although there are no temporally
resolved data sets of in situ assemblage
composition to quantitatively compare
to for this time/location as was possible
for chlorophyll and POC (Figure 5), the
temporal shift in partitioning among
phytoplankton groups can be com-
pared to other information in the litera-
ture. Studies have shown that relative
dominance of P. antarctica in the assem-
blage of the Ross Sea polynya tends to
reach maxima in December or early Jan-
uary, and colonies are the largest com-
ponent of P. antarctica cells at that time
[Arrigo et al., 2000; Smith et al.,
2003a,2010,2013]. The model time series
generates a peak of P. antarctica colo-
nies at a time in agreement with the lit-
erature estimates of peak P. antarctica
abundance (Figure 7). Measurements of
cell abundances along cruise transects
in the Ross Sea polynya in 1996–1997
found that diatom and flagellated (soli-
tary) P. antarctica cell abundances
reached maximum abundance between
mid-January to late-January [Smith et al.,
2003a]. Diatom biomass in the model is
consistent with this documented pattern,
although modeled solitary P. antarctica
cells peak just after mid-December (Fig-
ures 7a and 7b), which is slightly earlier
than measurements by Smith et al.
[2003a] suggest. Additional pigment and
nutrient analyses revealed that

Figure 6. Partitioning of modeled POC into constituent model state variables.

Figure 7. Time series of modeled (a) chlorophyll and (b) carbon for each
phytoplankton group averaged over the upper 50 m. Shaded areas represent one
standard deviation. (c) Time series of depth-integrated primary productivity (solid
line) and carbon export flux at 200 m (dotted line).
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subsequent to spring maxima of P. antarctica colonies, diatoms can become either equally dominant with P. ant-
arctica or more dominant in late spring and summer [Smith et al., 2006; Peloquin and Smith, 2007; Smith et al.,
2013], and this is reproduced in the model (Figures 7a and 7b). Glider observations of chlorophyll and POC during
2011 also suggested that a temporal succession from P. antarctica to diatoms occurred after 10 January [Kaufman
et al., 2014], similar to the pattern followed by phytoplankton chlorophyll (Figure 7a).

The timing of modeled primary production generally follows the pattern of total phytoplankton carbon
in the model, with primary productivity integrated over the model simulation reaching 112 g C m22

yr21. Modeled productivity generally agrees well with Ross Sea estimates computed for other years
[Saba et al., 2011] and is not substantially different from estimated annual production of 87 g C m22

yr21 for 2012–2013 computed from MODIS satellite observations for the western Ross Sea [McGillicuddy
et al., 2015]. Export flux of organic carbon at 200 m in the model (19 g C m22 yr21) represents �17% of
total primary production in the overlying water column, but varies from �2% in early November to a
maximum of 42% in late-January (Figure 7c). The mean daily carbon export flux (151 mg C m22 d21) is
within the range of flux estimates reported from elemental budgets, yet higher than estimates of carbon
flux from moored sediment traps [Smith et al., 2011b]. Carbon export flux increases more slowly than
productivity; a similar lag between productivity and export was observed in 1991–1992, when productiv-
ity estimates were maximum in early January while flux estimates were maximum in late-February repre-
senting a lag of �50 days [Smith and Dunbar, 1998]. Lags of 4 weeks between productivity and export
flux maxima were observed in 2005–2006 as well [Smith et al., 2011b]. Thorium isotope estimates of POC
flux at 100 m in this area also indicated a maximum after mid-January 1997 [Cochran et al., 2000]. Carbon
export flux begins to increase in the second half of December and throughout January, after the
P. antarctica have mostly disappeared from the upper waters, reaching �30–50% of primary productivity
in late-January.

3.2. Future Climate Scenarios
3.2.1. Phytoplankton Biomass
and Assemblage Composition
Application of mid-21st and late-
21st century forcing to MEDUSA-
RS yields increases in overall phy-
toplankton biomass in both future
scenarios; however, these increases
are dependent on the assumed
future physical forcing conditions.
Despite significant uncertainties in
the future physical forcing (uncer-
tainties in Figures 8a and 8b repre-
sent results of doubling and
halving future changes in physical
forcing), the increase (from the
contemporary control run) in phy-
toplankton biomass is considerably
greater in the late-century scenario
than in the midcentury scenario
(Figures 8a and 8b). Not surprising-
ly, the uncertainty in phytoplank-
ton biomass in the late-century
simulation is much greater than in
the midcentury simulation, though
both scenarios show increases in
biomass.

The simulated changes in biomass
result from the unique effects of
the four independent physical

Figure 8. Change in time-integrated (and depth-integrated to 200 m) phytoplankton
carbon between the contemporary control run and the (a) mid-21st and (b) late-21st
century climate scenarios. Changes in biomass of each phytoplankton group are also
shown between the contemporary control run and the (c) mid-21st and (d) late-21st
century climate scenarios. Bars indicate changes due to temperature, MLD, surface iron
flux, irradiance, and all four forcings combined. The effect of halving and doubling
physical forcing deltas (between contemporary and future scenarios) are shown by the
capped error bars; the dotted error bars for Fe indicate when doubling (halving) of the
delta resulted in a greater (less) reduction in phytoplankton carbon.
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forcings (i.e., temperature, MLD, solar radiation flux, and surface iron flux). In particular, earlier influx of solar
radiation is the primary driver of increased integrated phytoplankton carbon from the control run to both
the midcentury and late-century scenario (Figures 8a and 8b). Changes in MLD, in contrast, result in
decreased integrated phytoplankton carbon in the midcentury scenario, which, when combined with the
effects of the other physical forcings, results in a smaller increase in biomass for the run with combined forc-
ings. Shifts toward earlier input of iron from melting sea ice have less of an impact than irradiance and MLD
midcentury, though earlier input of iron has a moderate negative impact on productivity in the late-century
scenario. Temperature increases have positive yet minimal direct impacts on total phytoplankton biomass
for both midcentury and late-century.

The three phytoplankton groups respond quite differently to the forcing changes (Figures 8c and 8d). Dia-
tom carbon increases �60 g C m22 from the control run to midcentury, whereas total P. antarctica carbon
decreases �30 g C m22, with solitary P. antarctica biomass decreasing by approximately half as much as
colonial P. antarctica. These overall changes are largely due to the shallower MLDs of the midcentury forcing
(Figure 8c). In the late-century scenario, both diatom and P. antarctica biomass are �70 g C m22 higher
than in the contemporary control run, implying a small increase of only �10 g C m22 in the second half of
the 21st century for diatoms and a larger increase of �100 g C m22 for P. antarctica. Again, the impact of
temperature on growth and remineralization rates and changes in surface iron flux do not have major
impacts on simulated future phytoplankton assemblage composition in the Ross Sea (Figure 8d).
3.2.2. Productivity and Export
Primary productivity and carbon export are greater in both the midcentury and late-century scenarios com-
pared to the control (Figure 9). In addition, productivity and export in the late-century scenario are greater
than in the midcentury scenario, although differences between the future scenarios and control are more
robust to uncertainties in the future physical forcings than differences between the two future scenarios
(uncertainties in Figure 9 represent results of doubling and halving future changes in physical forcing). Inte-
grated productivity increases 6 g C m22 yr21 (5% increase), which is twice as much as carbon export at
200 m increases (3 g C m22 yr21) from the control run to midcentury (Figures 9a and 9c). Primary productiv-
ity is 15 g C m22 yr21 greater (14% increase) in the late-century scenario than the contemporary control run

and export flux of carbon
increases 4 g C m22 yr21 (Fig-
ures 9b and 9d). Throughout
the 21st century, carbon export
represents �18% of total prima-
ry production. The timing of
maximum productivity for the
groups change in the future
scenarios, with diatoms reach-
ing a productivity maximum in
both midcentury and late-
century approximately 1 week
earlier than in the control; P.
antarctica, on the other hand,
reach maximum productivity 4
and 10 days earlier in the mid-
century and late-century scenar-
ios, respectively.

Productivity and carbon export
flux at 200 m in the future sce-
narios are affected more by
changes in MLD and irradiance
than by the direct effect of tem-
perature or changes in surface
iron flux from melting ice.
Changes in MLD have minor

Figure 9. Change in productivity from the contemporary control to the (a) mid-21st and
(b) late-21st century climate scenarios, and change in carbon export flux at 200 m from
the contemporary control to the (c) mid-21st and (d) late-21st century climate scenarios.
The effect of halving and doubling physical forcing deltas (between contemporary and
future scenarios) is shown by the capped error bars; the dotted error bars for Fe indicate
when doubling (halving) of the delta resulted in a greater (less) reduction in productivity.
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impacts on total productivity
and are much less than the
effects of changes in irradiance
(Figures 9a and 9b). In contrast,
the magnitude of DExport from
MLD changes is similar to that
from changes in irradiance (Fig-
ures 9c and 9d). Shifts in the tim-
ing of surface iron input result in
lower productivity and carbon
export, but these changes are
barely significant. The impact of
higher temperatures on phyto-
plankton productivity is general-
ly less than any of the other
independent effects, however,
runs with higher temperature
show a minor increase in carbon
export flux for both future sce-
narios. For both the mid-21st
and late-21st century scenarios,
the combined effect of the four
physical forcing changes on pro-
ductivity and export is different
from a linear summation of their
individual effects.

3.2.3. Sensitivity of Scenario Results to MEDUSA-RS Parameters and Boundary Conditions
Simulated changes in productivity and export between the contemporary control run and the future scenar-
ios also depend on boundary conditions and model parameter values (Figure 10). Their impact on projected
environmental changes was evaluated by comparing future and contemporary scenarios with similarly
modified (620%) values. Variation in the DFe bottom boundary condition and the maximum growth rate of
diatoms results in the greatest change in DPP and DE estimates. A 20% increase (decrease) in the bottom
boundary concentration of DFe results in a 52% increase (27% decrease) in DPP in 2050 and a 32% increase
(21% decrease) in 2100 (Figure 10). On the contrary, a 20% increase (decrease) in the diatom growth rate
results in a 14% decrease (61% increase) in DPP in 2050 and a 7% decrease (47% increase) in 2100. Changes
in productivity and export were less sensitive to other parameters, such as the phytoplankton sinking rates
and half saturation coefficients for iron uptake. The threshold concentration (s) for P. antarctica colony for-
mation affects DPP and DExport more than the other two morphotypes transition parameters cF and cL (Fig-
ure 10). The future scenario results were relatively insensitive (<5% change in DPP and DE) to other
parameters, such as the initial slope of the photosynthesis-irradiance curve (a) for solitary P. antarctica cells
and the boundary values of DIN and DSi.

4. Discussion

4.1. Implications of Future Ross Sea Changes
The simulated future phytoplankton assemblage and productivity changes (Figures 8 and 9) are similar to
those hypothesized in the literature. Smith et al. [2014a] suggest that production will likely increase due to
changes in summer sea ice concentrations and hypothesize that shallower MLDs will cause diatoms to dom-
inate the future phytoplankton assemblage relative to P. antarctica. A competition experiment by Xu et al.
[2014] also suggests that future conditions of light, CO2, and temperature may favor diatoms over
P. antarctica. In the lab, results from a culture experiment investigating the interactive effects of tempera-
ture and iron led Zhu et al. [2016] to conclude that the distribution of diatoms would likely expand relative
to P. antarctica in the future, primarily due to temperature impacts on growth rate. The simulations here are
in accord with these suggestions of increased diatom production for 2050; however, the simulations in this

Figure 10. Effects of modified parameter values and boundary conditions on (a, b) produc-
tivity and (c, d) export for the future scenarios. The height of each bar represents change
from the contemporary control to the future scenarios. Light gray bars on the left of each
pair (dark gray bars on the right of each pair) indicate runs in which the parameter or
boundary value was decreased (increased) by 20%. Only shown are parameter or bound-
ary conditions for which a 20% change resulted in more than a 5% change in DPP or
DExport. Abbreviations BCFe and SfceFe refer to boundary concentration (including both
bottom and initial condition) and surface iron concentration, respectively, and other
abbreviations and symbols are identified in Table 1.
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study suggest that this increased diatom productivity may not continue throughout the second half of the
21st century. Instead, during this later time period, the model projects that increases in P. antarctica will
exceed those of diatoms as a result of interplay between MLD changes and an earlier beginning of the
growing season when ice melts. Additionally, the simulations here suggest direct effects of increased tem-
perature on growth and remineralization rates over the next century will be small compared to effects of
changes in MLD and irradiance.

Carbon export is of particular interest in the Ross Sea due to high productivity, and because aggregates
appear in a greater abundance than in many other areas of the world [Asper and Smith, 2003]. The midcen-
tury model scenario produced both an increase in the relative proportion of diatom productivity and a
�13% increase in export, which contrasts with the hypothesis advanced by Xu et al. [2014] that carbon
export may decrease as assemblage composition shifts in the future toward more diatoms. Between the
midcentury and late-century scenarios, however, the proportion of productivity exported remained nearly
constant rather than declining as P. antarctica production increased relative to diatoms. Evidence on the rel-
ative contribution of diatoms and P. antarctica to Ross Sea export is mixed, with some suggestion that dia-
toms may contribute to carbon export to a lesser extent than P. antarctica [DiTullio et al., 2000]; however,
although diatoms may sink more slowly they also may form more aggregates [Asper and Smith, 2003]. In
accordance with these observations, P. antarctica colonies in the model do sink faster than diatoms,
although liberation of solitary cells and remineralization in the model limited export of P. antarctica. Recent
observations found collapsed P. antarctica colonies, known as ghost colonies, below intact colonies; this
indicates the possibility of P. antarctica contributing greater to carbon flux than hitherto estimated,
although the sparseness of observed ghost colonies during the single season of measurements led the
authors to concede the possibility of revealing greater contributions of ghost colonies to export flux with
more measurements [Smith et al., 2017].

Future changes in phytoplankton composition, productivity and export have implications for the rest of the
Ross Sea food web. Although it is tempting to speculate that an increase in diatom productivity would pro-
vide increased energy to grazers and thus increase secondary production, the Ross Sea is considered a
‘‘wasp-waist’’ food web, in which abundances of middle trophic level taxa are relatively low, despite high
primary production and high abundances of higher trophic levels [Ainley et al., 2015]. In particular, micro-
zooplankton abundance is demonstrably low in the Ross Sea [Caron et al., 2000; Dennett et al., 2001], and if
zooplankton increases linearly with phytoplankton then low abundances may simply continue over the
next century in part because surplus production may be recycled or exported depending on the relative
fraction ingested versus egested. The model used here excludes grazing of P. antarctica colonies, based on
previous studies suggesting P. antarctica colonies are ineffectively grazed by zooplankton [Tang et al.,
2008]. However, other model results suggest that in the Ross Sea polynya low zooplankton abundances
may be a result of temporal decoupling from early and rapid growth as opposed to any inherent resistance
of P. antarctica to zooplankton grazing [Tagliabue and Arrigo, 2003].

The MEDUSA-RS model does not explicitly model trophic levels above mesozooplankton, but future contri-
butions to higher trophic level production will likely depend on how relative abundances of diatoms and
P. antarctica change, regardless of the decoupling versus grazing-resistance mechanism. For example,
Euphausia crystallorophias is the dominant krill species in the southern Ross Sea [Sala et al., 2002], but much
is unknown about this species’ relationship to phytoplankton. Mesozooplankton abundances on the conti-
nental shelf appear to be less than in the open ocean to the North [Stevens et al., 2015]. Any interpretation
of potential implications for top predators, such as penguins, are tenuous as contemporary observations
indicate that primary production in the Ross Sea sometimes, but not always, exhibits covarying relationships
with higher trophic level species such as seals and penguins [Dugger et al., 2014; Paterson et al., 2015; Ainley
et al., 2015]. For instance, in contrast to East Antarctica where variation in primary production explains 64%
of the variation in penguin colony size, in West Antarctica, where the Ross Sea is located, variation in prima-
ry production only explains 13% of variation in penguin colony size [Arrigo and Van Dijken, 2003].

4.2. Mechanisms of Future Ross Sea Changes
The magnitude and direction of productivity changes in future scenarios simulated here are determined
not by one individual environmental driver, but by the interactive effects of multiple factors. Direct effects
of temperature on growth and remineralization rates had the smallest impact on primary productivity of
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the four manipulated forcings in these model experiments, even when the predicted temperature change
was doubled (Figure 9a). Synoptically, satellite observations from 1997 to 2013 reveal a significant positive
relationship between temperatures and net primary production [Schine et al., 2015], and intraseasonal glider
observations show strong correlations between sea surface temperature (SST) and biomass variations in the
Ross Sea [Kaufman et al., 2014]. However, observed correlations with temperature inherently include indi-
rect effects on other physical conditions such as sea ice, light availability, and surface iron fluxes. Other stud-
ies have also shown that temperature changes often have less of an effect alone than when accompanied
by concurrent changes in irradiance or nutrients, especially iron. For instance, shipboard incubation experi-
ments found the effects of increased temperature to be generally less than the effects of increased iron
concentrations [Rose et al., 2009]. Furthermore, structural equation modeling, which is a multivariate statisti-
cal analysis technique for determining direct and indirect causal relationships, in the Ross Sea revealed a
weaker relationship between phytoplankton and temperature as compared to MLD or iron concentrations
[Mosby and Smith, 2016]. Manipulation experiments with Ross Sea phytoplankton demonstrated a response
by diatoms to increased temperatures, whereas P. antarctica did not respond to temperature increases
except when accompanied by increased iron as well [Zhu et al., 2016]. The simulations here reproduce this
differential response, with diatom productivity increasing more than P. antarctica in response to increased
temperatures.

Vertical mixing, which is strongly regulated by sea ice and wind, is another important factor shaping the
phytoplankton assemblage, productivity and export in the Ross Sea. In these simulations, MLD estimates
are obtained from glider observations, which implicitly include effects of sea ice and wind. Wind plays an
important role in perturbing phytoplankton biomass distributions on intraseasonal timescales throughout
the Southern Ocean [Fitch and Moore, 2007]. During this particular glider deployment, short-term wind
events are implicated in disrupting phytoplankton growth and increasing export flux, especially near the
time of peak bloom [Jones and Smith, 2017]. Short-term wind events can be considered represented by the
changing MLDs observed by the glider. More broadly, the observed freshening of the Ross Sea continental
shelf is not solely a result of local atmospheric changes, but rather broader changes such as increased melt
water from the Amundsen Sea ice shelves [Jacobs and Giulivi, 2010; Nakayama et al., 2014]. If this freshening
continues, it will lead to MLD shoaling [Smith et al., 2014a] that drives the changes in phytoplankton compo-
sition simulated here.

This study found primary productivity to be most impacted by changes in irradiance, which is the primary
limiting resource in the early period of the growing season and is predominantly regulated by sea ice
[Massom and Stammerjohn, 2010]. These results suggest that irradiance is not only the primary contempo-
rary factor in regulating phytoplankton production, but future changes in irradiance due to earlier reduction
of sea ice can lead to greater changes in phytoplankton production and export than future changes in MLD,
timing of surface iron input and temperature. Diatoms and P. antarctica have been referred to as ‘‘layer for-
mers’’ and ‘‘mixers,’’ respectively, reflecting their different strategies for optimizing carbon fixation under
varying light levels [Cullen and MacIntyre, 1998; Kropuenske et al., 2009]. In future scenarios modeled here,
earlier melting of sea ice opens the ocean surface to irradiance during a time when solar radiation levels are
lower than later in the season. This extension of the lower light period permits an extended period of
growth for P. antarctica, which are noted for their relative dominance in conditions of lower light availability
[Arrigo et al., 1999, 2000, 2010]. In midcentury scenarios this irradiance effect is outweighed by the effect of
changes in MLD that enable greater diatom growth just at the time when P. antarctica reach maximum bio-
mass in the contemporary system. However, in the late-21st century scenarios the enabling of P. antarctica
growth under lower surface irradiances offsets the changes in MLD.

4.3. Uncertainties in Future Ross Sea Changes
The use of a one-dimensional (1-D) modeling framework is an experimental design choice, often appropri-
ate because of the importance of vertical exchanges that are critical to plankton dynamics. This approach is
frequently a valuable first step before exploring a system with a more computationally intensive 3-D model.
The principal advantage of using a 1-D framework is the ability to run a multitude of scenarios relatively
quickly for sensitivity experiments or data assimilation experiments aimed at parameter identification
[Schartau et al., 2016]. A wide array of assimilation experiments permits more in-depth intermodel structural
comparisons [Friedrichs et al., 2007] and the ability to run large ensemble simulations makes it easier to
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explore the effects of uncertainties from various sources [Hemmings and Challenor, 2012]. The 1-D setup
established here will facilitate a more comprehensive study of uncertainty in future work.

A particular source of uncertainty is the extent to which the observations used, both to drive and evaluate
the model, are representative of the wider study area. Model simulations in this study, for example, are not
representative of the entire Ross Sea continental shelf, and thus do not include the spatial heterogeneity
that is observed in this region [e.g., Arrigo and McClain, 1994; Nelson et al., 1996; Sweeney et al., 2000].
Instead, the 1-D simulations can be considered as representing spatially averaged conditions of the south-
ern Ross Sea. Horizontal advection is assumed to be negligible, even though horizontal transport and
eddies may be important near island land masses and the Ross Ice Shelf [Gerringa et al., 2015; Li et al., 2017].
In principle, uncertainties associated with lateral fluxes could similarly be investigated by using the 1-D test
bed framework in conjunction with 3-D model experiments [Hemmings et al., 2015]. In addition to spatial
considerations, having suitable glider observations from a single year limits the representativeness of the
contemporary control simulation. Compared to other years, Jones and Smith [2017] report that the 2012–
2013 year was warmer, more stratified, and experienced lower average wind speeds. However, ice coverage
values and solar radiation time series around the location of the glider indicate that the 2012–2013 year
was similar to the 2 years prior and the year after.

It is useful to consider additional sources of uncertainties from model structure, boundary conditions, and
parameters. Structural choices during the development of the MEDUSA-RS model determined certain
aspects of the scenario results. For example, the method by which the carbon to chlorophyll ratio varied
throughout the simulation (fixed for each group, but varying in total with compositional changes) could
affect the scenario results. Modeling the morphotype transitions between solitary cells and colonies of
P. antarctica was achieved in a relatively simple manner but can have a large effect on the consequent sim-
ulation results. Here the rates of transition were determined in part by iron limitation, but additional control
variables could be included. Although not necessarily a large component of the P. antarctica export, ghost
colonies may be prevalent within the Ross Sea, and their effect on phytoplankton dynamics should be
explored further [Smith et al., 2017]. There are also considerable uncertainties in the future physical forcing
fields. Here these were estimated by doubling/halving the differences from the current state in the future
physical fields. Although these sensitivity experiments demonstrated that the absolute magnitude of pro-
ductivity and export changes were a direct, though nonlinear, function of the magnitude of future physical
changes, the relative magnitudes were not; the relative importance of the four physical forcings, when
modified independently, were independent of the absolute magnitude of the future projected change.
Finally, there are also uncertainties in parameters and boundary values, which were examined by increasing
and decreasing these values by 20%. These modifications were shown to have an impact on the magnitude
of modeled future changes in productivity and export although the directions of change were insensitive to
these modifications. In general, uncertainties in future irradiances had the largest effects on future produc-
tivity and export, although uncertainties in diatom growth rate and boundary concentrations of iron had
substantial effects as well. The uncertainties in MLD and timing of surface iron input flux were of similar rela-
tive importance as the uncertainties in a few sensitive model parameters, such as the growth rate of P. ant-
arctica solitary cells, the sinking rate of P. antarctica and the initial P-E slope of diatoms. More robust
parameter optimization analyses with MEDUSA-RS are needed to further determine the region of parameter
space that is most consistent with the contemporary observations and to estimate future scenario uncer-
tainties by down-weighting results for parameters that are less consistent with contemporary observations.
Work toward this goal is currently underway using the data assimilative capabilities of MarMOT [Hemmings
and Challenor, 2012].

5. Conclusions

The impacts of projected environmental changes on Ross Sea phytoplankton were investigated with the
MEDUSA-RS biogeochemical model, and results of these changes in forcing provide three main findings.
First, future changes in physical condition lead to increases in total primary productivity and carbon export
flux over the 21st century. Second, between the contemporary and midcentury simulations, diatoms
increase while P. antarctica decrease, whereas in the late-21st century P. antarctica increase while diatom
biomass changes very little. This is because in midcentury the effects of irradiance changes are outweighed
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by MLD changes, whereas in the late-century scenario earlier melting of sea ice extends the growing season
of P. antarctica earlier into a period of lower average irradiances. Third, the overall increased irradiance from
melting sea ice drives primary production increases, however shallower MLDs additionally cause increased
export and assemblage changes. There is often difficulty teasing apart mechanistic relationships from in
situ measurements alone, and application of biogeochemical models is often limited by the quantity and
type of in situ data appropriate for evaluation and forcing. The use of glider measurements, to generate
physical forcings and evaluate in situ biomass, along with a 1-D model here demonstrates the effectiveness
of a synthetic approach, which partly overcomes the individual limitations of these otherwise distinct
approaches.
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