
W&M ScholarWorks W&M ScholarWorks 

VIMS Articles Virginia Institute of Marine Science 

9-2018 

The contribution of local and transport processes to The contribution of local and transport processes to 

phytoplankton biomass variability over different timescales in the phytoplankton biomass variability over different timescales in the 

Upper James River, Virginia Upper James River, Virginia 

Qubin Quin 
Virginia Institute of Marine Science 

Jian Shen 
Virginia Institute of Marine Science 

Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles 

 Part of the Aquaculture and Fisheries Commons 

Recommended Citation Recommended Citation 
Quin, Qubin and Shen, Jian, The contribution of local and transport processes to phytoplankton biomass 
variability over different timescales in the Upper James River, Virginia (2018). Estuarine, Coastal and Shelf 
Science, 196, 123-133. 
https://doi.org/10.1016/j.ecss.2017.06.037 

This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M 
ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M 
ScholarWorks. For more information, please contact scholarworks@wm.edu. 

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/vimsarticles
https://scholarworks.wm.edu/vims
https://scholarworks.wm.edu/vimsarticles?utm_source=scholarworks.wm.edu%2Fvimsarticles%2F2424&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/78?utm_source=scholarworks.wm.edu%2Fvimsarticles%2F2424&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1016/j.ecss.2017.06.037
mailto:scholarworks@wm.edu


1

The contribution of local and transport processes to phytoplankton biomass variability

over different timescales in the Upper James River, Virginia

Qubin Qin* and Jian Shen1

Virginia Institute of Marine Science, College of William and Mary,2

Gloucester Point, VA, 23062, USA3

4

*Corresponding Author:5

Qubin Qin6

Virginia Institute of Marine Science7

College of William and Mary8

Gloucester Point, VA 230629

Email: qubin@vims.edu10

Phone: (804) 684-767011



2

The contribution of local and transport processes to phytoplankton biomass variability

over different timescales in the Upper James River, Virginia

Qubin Qin* and Jian Shen12

Virginia Institute of Marine Science, College of William and Mary,13

Gloucester Point, VA, 23062, USA14

Abstract

Although both local processes (photosynthesis, respiration, grazing, and15

settling), and transport processes (advective transport and diffusive transport)16

significantly affect local phytoplankton dynamics, it is difficult to separate their17

contributions and to investigate the relative importance of each process to the local18

variability of phytoplankton biomass over different timescales. A method of using the19

transport rate is introduced to quantify the contribution of transport processes. By20

combining the time-varying transport rate and high-frequency observed chlorophyll a21

data, we can explicitly examine the impact of local and transport processes on22

phytoplankton biomass over a range of timescales from hourly to annually. For the23

Upper James River, results show that the relative importance of local and transport24

processes differs on different timescales. Local processes dominate phytoplankton25

variability on daily to weekly timescales, whereas the contribution of transport26

processes increases on seasonal to annual timescales and reaches equilibrium with local27

processes. With the use of the transport rate and high-frequency chlorophyll a data, a28
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method similar to the open water oxygen method for metabolism is also presented to29

estimate phytoplankton primary production.30

Keywords: Transport rate; phytoplankton biomass; high-frequency observational data;31

primary production; timescale; open water method32
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1. Introduction

Phytoplankton dynamics, such as the variability of biomass at a location, are33

controlled by both local processes and physical transport processes. Local34

environmental conditions, such as temperature, light, nutrient supply, and grazing35

pressure, strongly regulate phytoplankton growth and primary production through both36

bottom-up and top-down controls (Kremer and Nixon, 1978). Transport processes in37

aquatic systems, including advective transport and diffusive transport, affect38

phytoplankton biomass by redistributing either biomass (direct effect), or dissolved and39

particulate constituents such as nutrients that regulate phytoplankton growth (Lucas et40

al., 1999; Cloern, 2001; Paerl et al., 2006; Lancelot and Muylaert, 2011).41

The interactions between local and transport processes are complex, and their42

contributions to phytoplankton dynamics can vary under different dynamic conditions.43

Because each external forcing (e.g. tide, flow, and wind) and environmental factor (light44

and temperature) has its own periodic fluctuation, the fluctuation will affect these two45

processes. We hypothesize that the relative importance of local and transport processes46

varies with timescales, which is also indicated by previous literature. Lucas et al. (2006)47

suggest that intra-daily variability of phytoplankton biomass is largely controlled by both48

the diurnal light cycle and the semidiurnal tidal oscillation, which implies the importance49

of contributions from both local environmental conditions and tide on the hourly50

timescale. Lake et al (2013) conduct measurements of photosynthetic rates and51

integrate daily production on summer months in the York River for both the spring and52

neap tides. They find that daily primary production does not show a clear variation53
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during spring-neap cycle, which suggests that the local biological processes are54

dominant for daily primary production rather than transport processes. Shen et al.55

(2008) show that the high biomasses of macroalgae and phytoplankton are the56

dominant cause of diurnal variation of dissolved oxygen concentration (DO) resulting57

from high production during daytime and high respiration at night. It suggests that local58

biological processes can be the dominant processes for primary production for the daily59

timescale in estuaries and shallow-water systems. Conversely, changes in freshwater60

discharge are considered to be a major factor driving strong seasonal and annual61

patterns of phytoplankton biomass in river-dominated estuaries, which modulate the62

location and strength of algal blooms through transport and nutrient supply (Valdes-63

Weaver et al., 2006; Reaugh et al., 2007; Costa et al., 2009; Peierls et al., 2012).64

Bukaveckas et al. (2011) show that algal blooms vary longitudinally along the Upper65

James River, and peak at the location where residence time becomes large due to a66

change of geometry, where about two-thirds of the net primary production is respired67

locally, and the remaining one-third is transported out of the region by fluvial and tidal68

advection. It suggests that the variability of phytoplankton biomass can be altered by a69

dynamic condition resulting from a change of local geometry.70

These studies point out the relative importance of transport processes compared to71

local biological processes on particular timescales. However, due to the difficulty to72

explicitly separate their contributions, few contributions to the literature discuss how73

the comparison changes over a range of timescales from days to years though which is74

interesting to know for some studies. For example, Lucas et al. (2009) suggest that the75
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variability of phytoplankton biomass can be described by a steady-state balance76

between local biological processes and transport processes described by residence time77

(i.e., it assumes that the variability of phytoplankton biomass is negligible, and local and78

transport processes are equal but counterbalanced in contribution). While this steady-79

state balance assumption may hold for long-term timescales, it is questionable for80

short-term timescales, such as daily and weekly timescales. A relevant discussion on the81

comparison of relative importance of the two processes is helpful to answer on what82

range of timescales the assumption is valid.83

The relative importance of each process on phytoplankton dynamics also needs to84

be evaluated for studies based on in situ observational data. As the development of85

instruments, many water quality parameters like DO and chlorophyll-a fluorescence can86

be measured in situ at 15-minute intervals, which is often referred to as high-frequency87

data (http://web2.vims.edu/vecos/). The easy accessibility of high-frequency DO data88

has prompted wide applications of the open water method for estimating ecosystem89

primary production and metabolism (Odum, 1956; Howarth and Michaels, 2000; Cole et90

al., 2000; Caffrey, 2004; Kemp and Testa, 2011). When applying this method for91

estimating daily ecosystem primary production and metabolism, the effect of physical92

transport processes is usually neglected (Staehr et al., 2010). This estimation without93

considering transport, however, may have large biases when biological metabolism or94

DO is significantly influenced by transport processes (Kemp and Boynton, 1980). In the95

discussion section of this study, we applied a similar open water method to estimate96

phytoplankton primary production using high-frequency chl-a concentration (denoted97
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by chl-a) data. The question as to whether the approach will cause more bias using98

phytoplankton data is unknown as spatial horizontal gradients of chl-a are often larger99

than those of DO. To evaluate the approach, the contribution of the transport processes100

on the daily timescale needs to be addressed.101

The objective of this study is to evaluate how the relative importance of local and102

transport processes to the local variability of phytoplankton biomass vary over a range103

of timescales from hours to years. Because the transport processes not only affect the104

phytoplankton biomass but also affect the nutrient transport, when evaluating the105

relative importance of transport processes to biomass variability, the contribution of106

transport processes is restricted to the direct effect that redistributes biomass, and107

therefore other indirect effects that regulate phytoplankton growth, such as108

temperature, light availability, and nutrient limitation, are attributed to the contribution109

of local processes. The Upper James River was selected as the study site where both110

local and transport processes contribute greatly to phytoplankton dynamics111

(Bukaveckas et al., 2011).112

2. Methods

In this section we first presented how to attribute the variability of phytoplankton113

biomass to the contributions of local and transport processes separately by114

decomposing the transport equation. Then we presented a detailed procedure to115

compute each contribution by using in situ observational phytoplankton data and116

dynamic fields. The phytoplankton biomass dynamics and contribution of local117



8

processes were estimated using observational data, while the contribution of transport118

processes was estiamted using dynamic fields computed by a dynamic model. Lastly, we119

statistically analyzed to evaluate the relative importance of local and transport120

processes, repectively, over a range of timescales.121

2.1. Decompose change of biomass122

The observation of phytoplankton data can be described by a three-dimensional123

transport equation with source and sink terms (Chapra, 1997). For simplicity, the first-124

order reaction transport equation for volumetric phytoplankton biomass in the x-125

direction can be expressed as follows:126




+ 




−




(




) =  (1)127

where C denotes volumetric phytoplankton biomass (g C m-3), x and t denote location128

and time, respectively, u is current velocity (m s-1), K is diffusivity (m2 s-1), and g denotes129

the growth rate of phytoplankton (d-1) as a result of local processes. We combined130

growth and loss as a net growth term g, as  =  −  −, where G is the gross131

growth rate, R is the respiration/excretion rate, andM is the mortality rate due to both132

grazing and settling. The gross growth rate G is a function of available light, nutrients,133

and temperature (Chapra, 1997). Note that Eq. (1) only includes terms in the x-direction134

for making the following derivations clear and all variables vary vertically. The terms on135

the left-hand side of Eq. (1) are the time derivative term, advective transport, and136

diffusive transport, respectively. Transport processes may increase local concentration137

of a property if the incoming water has higher concentrations, or decrease it if the138
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incoming water has lower concentrations. Thus, the impact of transport processes does139

not only depend on hydrodynamic fields (u and K) but also on the horizontal gradient of140

phytoplankton biomass ( ⁄ .141

Areal phytoplankton biomass (g C m-2) can be conventionally obtained by vertical142

integration of volumetric phytoplankton biomass C from the bottom to the surface, i.e.,143

 = ∫ 



, where z is the vertical location, and H is the water depth (m),  =  ∙  if144

the water column is well-mixed. As no phytoplankton is transported across the surface145

or the bottom, integrating Eq. (1) gives the transport equation for areal phytoplankton146

biomass:147




+ ∫ [




−




(




)]




 =  (2)148

where  is the vertical mean growth rate that accounts for the growth of areal biomass149

B.150

Analogous to the algal growth for biological process, we express transport processes151

as a transport rate FB, which is defined as152

 =
1


∫ [




−




(




)]




, (3)153

and the governing equation (1) can be transformed into the expression:154




=  −  (4)155

Dividing Eq. (4) by B on both sides gives the equation for the rates:156

1






=  + − (5)157
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Note that the impact of transport processes, expressed by  in Eq. (3), depends on158

 ⁄ . The non-zero  ⁄ can be caused by either the change of dynamic conditions159

due to interaction between forcings (i.e., flow, tide) and geometry, or the spatially160

inhomogeneous local biological processes. Thus, the contribution of transport processes161

in fact comes from both the dynamically induced transport (referred to as physical162

transport) and the non-physical transport. The contribution of non-physical transport163

can be expected to be relatively small locally as biological processes have less spatial164

gradient compared to the physical transport. Our interest is to understand the physical165

transport that contributes the change of biomass. We introduce transport rate F that166

only expresses the physical transport and we can now write Eq. (5) as follows:167

 = 


+ −⏟
ℎ 

+  − ⏟    
ℎ 

= 
∗

+ −⏟
ℎ 

(6)168

where  is the rate to express the variability of phytoplankton biomass as  =
1






=169




, and can be estimated from in situ observations of phytoplankton biomass B. The170

physical transport rate  is unknown but it can be estimated by using hydrodynamic171

field and boundary conditions.  =  +  − , which represents the growth rate of172

biomass that resulted from the combined local contributions. Once we know both173

values of r and F,  can be computed as (r – F). When  is zero (such as conservative174

properties) or it is spatially homogenous,  equals , and  equals . We will refer to175

r as the relative growth rate, and to  as the effective growth rate in the following176

sections. As F only represents the transport contribution, a negative F value corresponds177
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to a “transport in” process that increases biomass, and a positive F value corresponds to178

a “transport out” process that decreases biomass in accordance with Eq. (6), and a zero179

Fmeans there is no contribution of transport processes on local phytoplankton180

variability.181

Eq. (6) demonstrates that the relative change of biomass is a result of competition182

between local and transport processes, and their contributions could be evaluated by183

comparing the effective growth rate  to the transport rate :184

1)  >  leads to r > 0, biomass increases185

2)  <  leads to r < 0, biomass decreases186

3)  =  leads to r = 0, biomass remains constant187

Note that  and  could both have negative values. For example, the observed biomass188

B at a location may increase at night (r > 0) when photosynthesis does not occur ( < 0),189

but biomass can increase due to a transport of biomass to this location ( < ,190

“transport in”).191

2.2. Study site192

The James River is a tributary of the lower Chesapeake Bay located along the U.S. East193

Coast (Fig. 1). The Upper James River is the tidal freshwater region where salinity is194

between 0 and 0.05. Calibrated time series data (15-minute intervals) were collected195

from Chesapeake Bay Continuous Monitoring Station JMS073.37 at the Virginia196

Commonwealth University Rice Rivers Center (‘RC’, green triangle,197

http://web2.vims.edu/vecos/), from March to November 2006, 2007, and 2008. Data198
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were measured using YSI 6600 data sondes with the Clean Sweep Extended Deployment199

System, include a number of parameters such as chl-a, temperature, turbidity, and200

water depth (H). All calibration and maintenances follow the YSI, Inc. operating manual201

methods. Particularly, chl-a data were obtained using laboratory calibrated sensors that202

converts in vivo fluorescence of chlorophyll a to chl-a. The sondes were deployed203

around 0.5 to 0.9 meters below the surface of the water during the observational204

period, while the mean water depth H was about 2.5 m, and the mean tidal range was205

about 0.76 m at Station RC. Hourly irradiation data were obtained at nearby Richmond206

Airport. Also, monthly time series data of surface chl-a were collected from Chesapeake207

Bay Program Long-termMonitoring Stations TF5.4 and TF5.5 (blue squares).208

The monthly data were used for three long-term timescales (monthly, seasonal, and209

annual), while the high-frequency data were used to analyze the relative importance of210

each contribution for continuously increased timescales from hourly to annually.211

2.3. Compute relative growth rate212

As the instantaneous relative growth rate is defined as  =



, the solution213

is  = 
∙  →  , which computes biomass measured at time t + dt ()214

from the biomass at time t (). This indicates that the relative growth rate can be215

calculated by the change of biomass. Thus, for a time series of in situmeasured216

phytoplankton biomass with an observational time interval of ∆, a time series of217

relative growth rate ∆ that reflects the change in biomass from time t to t + ∆ can be218

calculated as:219
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∆ =
1

Δ
ln∆ − ln =

1

Δ
ln (

∆


) (7)220

where  and ∆ are the biomass measured at times t and t + ∆, respectively. For221

example, ∆ is the relative growth rate over daily timescale when ∆ =  d; ∆ is the222

relative growth rate over monthly timescale when ∆ = 3 d.223

chl-a data were used to obtain phytoplankton biomass. High-frequency chl-a data224

collected at 15-minute intervals were first smoothed to 1-h averages. Using hourly mean225

chl-a in the units of g m-3, the biomass in the water column can be estimated as  =  ∙226

 = : - ∙ - ∙ . Here, the assumption of a well-mixed water column was227

applied. This assumption is reasonable for the shallow Upper James River with no228

persistent stratification (Bukaveckas et al., 2011), while the mean euphotic depth is229

about 2-3 m. For a constant C: chl-a ratio (g C/g chl-a), the rate can be estimated230

according to Eq. (7):231

ℎ =
1

Δ
ln [

ℎ-∙∆

ℎ-∙
], with ∆ =  , (8)232

where the subscript “hr” denotes the observed hourly growth rate, and C: chl-a ratio233

was withdrawn since it did not affect rate computation. The C: chl-a ratio varies with234

seasons and species, which can be measured using observations. We applied a constant235

C: chl-a ratio at Stations TF5.5 and RC as the seasonal variation of C:chl-a ratio is236

relatively small and the average C: chl-a ratio was 39±2 g C/g chl-a (Bukaveckas et al.,237

2011).238
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2.4. Compute transport rate239

The transport rate F can be computed based on a conservative tracer using a 3D240

numerical model. For a conservative tracer , it is governed by Eq. (1) with zero growth241

rate (Note that C is replaced by tracer concentration  for clarity):242




+




+




+




=




(




) +




(




) +




(




) (9)243

where u, v, w represent velocities in the x, y, and z directions, respectively; and Kx, Ky, Kz244

represent diffusivities in the x, y, and z directions, respectively. For the modeling245

domain, no tracer comes from the boundaries at all times, i.e.  =  at both river and246

open boundaries. By using this boundary condition, it assumes that phytoplankton in247

the Upper James River are mainly from autochthonous sources, which is reasonable in248

James River as the chl-a at the fall-line of the James River is much lower than the chl-a249

downstream (Bukaveckas et al., 2011). The initial condition,  = 1, is set everywhere250

within the domain. The tracer is transported by the dynamic fields, which results in the251

change of horizontal tracer gradient due to the change of geometry and dynamic forcing252

conditions. Therefore, the transport rate for tracer concentration, , can be computed253

as  = −



= −




, and the transport rate F used in this paper to represent the254

contribution of transport processes can be computed as  = −
1

∫ 

0

 ∫ 

0


. Because255

the rate of F is normalized by the tracer, the initial condition and the magnitude of the256

tracer concentration will not affect the model results after a sufficient initial simulation257

period, and the impact of the initial condition is negligible in the calculation of .258
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A real-time three-dimensional numerical model for the James River was developed259

(Shen et al., 2016) using the Environmental Fluid Dynamics Code (EFDC), and it has a260

good spatial resolution to represent the local variation of complex geometry. The model261

was forced by hourly tide and salinity at the mouth and hourly wind and heat flux262

obtained at nearby airport stations, which account for both tidal and meteorological263

variation. The model was calibrated and verified from 1990–2013 for both264

hydrodynamics and water quality (Shen et al., 2016). There are a total of 3,066 grid cells265

in the horizontal and eight layers in the vertical. The model was also used to compute266

water age in the James River (Shen and Lin, 2006). As the cross-section of the Upper267

James is narrow and located in the freshwater region without salinity-induced268

stratification, the volume-controlled freshwater residence time was estimated as the269

difference of the lateral mean water age at the control section near Stations TF5.4 and270

TF5.5 along the main channel.271

With the use of the numerical model, the transport rate F over the entire time series272

from 2006 to 2008 was computed based on Eq. (9) with specific boundary and initial273

conditions described above.274

2.5. Compute rates for each timescale275

Mean rates for timescales longer than the hourly timescale can be obtained by taking276

the average of the hourly rate ℎ over the given time interval of ∆ through the277

following equation:278

 =
1

∆
∫ ℎ
∆


=

1

Δ
∫




 =

∆



1

∆
ln∆ − ln (10)279
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It can be seen that the mean rate only depends on the biomass at the beginning and280

ending time for the interval of ∆. Therefore, rates for timescales longer than the hourly281

timescale can be obtained by two equivalent methods, either using Eq. (7) with ∆282

equals the particular timescale, or using the average as Eq. (10). Here, the two methods283

Eq. (7) and Eq. (10) were applied to data at Station TF5.5 and RC, respectively. After we284

obtain both  and ̅, the effective growth rate  on that timescale was calculated using285

Eq. (6),  =  + ̅. The overbar will be dropped hereafter when we present results with286

the understanding that the values are mean values.287

2.6. Evaluate contributions of local and transport processes288

Eq. (6) provides a way to evaluate the contributions of local processes and transport289

processes to phytoplankton variability in terms of effective growth rate  and transport290

rate F. A statistical method is applied to evaluate the contributions of local and291

transport processes. Correlation coefficient values, R2, between F and r and between 292

and r, are calculated for each timescale to examine the proportions of the variance of r293

that could be explained by F and , respectively. Additionally, the overall relative294

importance of local and transport processes on each timescale can be quantified by295

comparing the root-mean-square (rms) of the entire time series of F and  on that296

timescale:297

:



; :




(11)298

Note that, on each timescale, the relative importance of each process computed by299

Eq. (11) used the entire time series of data during the observational period (1990-2013300
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for Station TF5.5 and 2006-2008 for Station RC); and the analysis reflects their overall301

contribution during the entire observational period on this timescale, indicating the302

averaged relative importance or the contribution under normal conditions. The result of303

short timescale does not represent their contribution over a shorter period during304

abnormal conditions. For example, episodic events, such as storm surges and large305

discharge events, may dramatically increase contribution of transport processes in a few306

days at Station RC, and have greater impact on phytoplankton dynamics than local307

processes during those events; but these signals were filtered out when considering the308

entire observational period, and it will later be shown that the change of phytoplankton309

biomass on daily timescales was overall dominated by local processes (Section 3.7).310

3. Results

3.1. Evaluation of contribution of transport processes311

By comparing the transport rate to the relative growth rate, the contribution of312

transport process to phytoplankton biomass variability was evaluated over a sequence313

of timescales. Note that for long-term timescales (monthly, seasonal, and annual), we314

only presented results from long-term monitoring data at Station TF5.5, and315

summarized results from high-frequency data at Station RC at Table 1, and the results316

from two data sources are comparable.317

3.2. Short-term timescales318

The correlation of the relative growth rate r and the transport rate F for a 3-year319

period was analyzed using the high-frequency data for timescales shorter than daily320
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(Table 1). Overall, their correlations were quite low, suggesting that transport processes321

were not the dominant processes to phytoplankton variability for those timescales322

during the observation period.323

The tide in this estuary shows a semidiurnal cycle. From a transport perspective, the324

net effect of transport on biomass is more important in tidal and daily timescales.325

However, for an intratidal scale, the tide can have a large influence on biomass during326

the flood and ebb periods, which will modulate the phytoplankton concentration in the327

water column. The contribution of tide, therefore, is expected to play an important role328

in the phytoplankton dynamics during food and ebb periods. An example from October329

2008 is shown in Fig. 2. Rates r and F on the timescale of 6 h were significantly linearly330

correlated (R2 = 0.52, p < 0.001). The correlation was even higher when only nighttime331

data were used (Fig. 2c, R2 = 0.54, p < 0.001). A strong tidal signal was observed that332

indicated both rates were modulated by the semidiurnal tide.333

The 6-h averaged time series data revealed that increases in phytoplankton biomass334

occurred during the night (r > 0) when no photosynthesis occurred (Fig. 2c), and the335

mass increase corresponded to a negative transport rate (note that figure plots use –F),336

which suggests that the increases in biomass at night were caused by a “transport in”337

process due to the transport induced by tides and freshwater discharge. Although the338

tide can modulate the intratidel transport processes, the large intratidal variability will339

be filtered for a tidal or daily period and the influence of net physical transport340

processes on biomass on tidal and daily timescales is not as important as local processes341

(Table 1).342
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3.3. Monthly timescale343

The time series of chl-a and local residence time for the period of 2000-2013 at344

Station TF5.5 is plotted in Fig. 3a. This figure shows that chl-a and residence time had345

the same variations. On a monthly timescale, chl-a correlated with the residence time346

(R2 = 0.33, p < 0.001, Fig. 3b). Lower chl-a was shown to correspond with shorter347

residence time, though the correlation was more diverse when residence time was long,348

which usually occurred in the summer, indicating that the contribution of local349

processes is more important during summer when the dynamic conditions become350

favorable for growth.351

The transport rate F was correlated to the relative growth rate r at Station TF5.5 for352

the period from 2000 to 2013 (R2 = 0.25, p < 0.001) as shown in Fig. 3c and 3d.353

Variations of r and F were in phase, in general, which suggests that the monthly354

variability of phytoplankton biomass is modulated by hydrodynamics. Note that only 13-355

year result was presented in Fig. 3 for making the plot clear, and the correction between356

r and F during the entire years of long-term monitoring data (1990-2013) was shown in357

Table 1.358

3.4. Seasonal timescale359

For the seasonal timescale, analysis of the time-series data from the years 1990 to360

2013 showed that transport rate F was correlated with relative growth rate r (R2 = 0.22,361

p < 0.001, Fig. 4b). The transport rate F remained positive, and transport processes had362

a net “transport out” effect on phytoplankton biomass throughout the observation363

period (Fig. 4a). The relative growth rate r had either positive or negative values, but the364
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corresponding effective growth rate  was always positive, suggesting that the365

contribution of local processes leads to an increase in phytoplankton biomass.366

All three rates (r, F, and ) showed seasonal variations (Fig. 5). The transport rate, F,367

appeared to have smaller magnitudes during summer than during other seasons,368

corresponding to the lowest freshwater discharge into the James River in the summer.369

The effective growth rate, , seemed to be lower during summer and fall than during370

spring and winter. This seasonal change can be attributed to a change in composition of371

algal species and an increase in respiration, grazing, and nutrient limitation during the372

summer (Marshall and Egerton, 2013). As a consequence, the relative growth rate373

tended to be low during summer and fall, even though F was lower. It shows that  was374

much larger than r, after removal of the impact of transport processes (Fig. 5), indicating375

the values of r would underestimate the effective growth rate of phytoplankton without376

considering any effect of the physical transport.377

3.5. Annual timescale378

For the annual timescale, the correlation between F and r was significant (R2 = 0.48, p379

< 0.001, Fig. 4b) and it was higher than the correlation between  and r (R2 = 0.24, p <380

0.001). Similar to the seasonal timescale, both F and  remained positive, while the381

magnitude of the relative growth rate r diminished (Fig. 4c), indicative of the balance382

between local and transport processes. The contribution of transport processes showed383

a net “transport out” effect on interannual phytoplankton biomass variability in the384

Upper James River, i.e. more biomass was transported out of this region than was385

transported in.386
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3.6. Rate variations387

The daily effective growth rate, ,may be of the same magnitude as the gross growth388

rate, G, if respiration and grazing pressure are very low. Theoretically, the daily gross389

growth rate represents photosynthetic production, and it has maximum values ranging390

from 1 to 5 d-1 dependent on the temperature, nutrients, and phytoplankton species391

(Eppley, 1972; Brush et al., 2002). However, the estimated effective growth rate may be392

an order of magnitude smaller than the theoretical maximum values, due to suppression393

of photosynthesis by nutrient and light limitation, respiration, settling, and grazing. The394

variability of  reflects a net response of phytoplankton to the change of local395

environment conditions.396

We used median rates as representative of typical values for each timescale (Fig. 6a).397

Positive values of the rates r,  and –F corresponded to the increase of phytoplankton398

biomass whereas negative values indicated a decrease. Both medians of positive and399

negative rates, respectively, are listed in Table 1. In general, both the medians of400

positive and negative rates decreased as the timescale increased.401

For seasonal or longer timescales, the medians of transport rates (-F) were negative402

at Station RC (Table 1). In fact, -F was always negative on these long-term timescales,403

suggesting that the net contribution of transport processes flushed biomass404

downstream (“transport out”).  was always positive, suggesting that the net405

contribution of local processes was to increase the phytoplankton biomass, i.e.,406

phytoplankton primary production was larger than the loss from respiration, excretion,407

settling, and grazing. The competition between local and transport processes leads to408
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either an increase or a decrease of phytoplankton biomass, which was reflected by the409

existence of both positive and negative values of r when the timescale exceeded the410

monthly timescale.411

3.7. Relative importance of local and transport processes412

The increased correlation between rates F and r from a monthly timescale to an413

annual timescale, based on analysis of long-term monthly monitoring data at Station414

TF5.5, suggested that the relative importance of the transport processes to415

phytoplankton variability increases when evaluating it on a longer timescale. This result416

was consistent with the evaluation using high-frequency data at Station RC during 2006417

to 2008 (Fig. 6c and 6d). The coefficient of determination, R2, also showed that the418

proportions of r variance that could be explained by the transport rate F increased with419

the increase of timescale, whereas the proportions that could be explained by the420

effective growth rate, , decreased.421

The relative importance of contributions of local and transport processes over422

continuously increasing timescales were compared for the period from 2006 to 2008423

(Fig. 6d). The relative importance of transport processes had an increasing trend with424

increasing timescale whereas that of local processes had a decreasing trend, and they425

were equally important in the monthly timescale at Station RC. The relative importance426

of each contribution was more diverse in timescales shorter than daily; it shows that the427

contribution of local processes peaked on daily and tidal timescales, whereas the428

transport processes showed peaked relative importance on timescales around 6 and 18429

h (Fig. 6d). These variations are caused by the intratidal variability and will be discussed430
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in the next section. It can be seen that tide also modulates the local processes though431

the net tidal contribution is less.432

4. Discussion

4.1. Factors affecting local and transport processes433

Similar to the hydrodynamic conditions investigated for many other estuaries (Wang434

et al., 2004; Barcena et al., 2012; Lemagie and Lerczak, 2015), river inflow and tides are435

the two primary factors affecting the transport processes in the Upper James River and436

contribute to phytoplankton biomass dynamics, while other forcings such as wind play437

less important roles.438

River inflow determines the overall net long-term advection characteristics of the439

Upper James River. The phytoplankton biomass transported from the upstream440

freshwater is generally found to be smaller than the biomass generated in the tidal441

freshwater region and estuary (e.g., Bukaveckas et al., 2011; Peierls et al., 2012; Paerl et442

al., 2014). As the residual current always flows downstream, the biomass is transported443

downstream, resulting in a net “transport out” effect on phytoplankton biomass when444

viewing it from a long-term perspective. Consistently, river inflow also had the net445

“transport out” effect in the Upper James River, reflected by only positive medians of446

transport rate F found on the annual timescale (Table 1).447

Tides also have substantial effects on phytoplankton variability. The dominant448

constituent of tide in the Upper James River is the semi-diurnal M2 tide with a 12.42-h449

tidal period. Both advective and diffusive transport are enhanced during either flood or450
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ebb tides, which increase the relative importance of transport processes on a timescale451

of about one-half of the tidal period (around 6 h); whereas the largest relative452

importance of local processes is around tidal and daily timescales, because the net453

impact on transport processes from tides is minimal by averaging over a complete tidal454

cycle, it is consistent with results in Fig. 6c and d.455

The local processes are fundamental for phytoplankton variability, regardless of the456

transport processes. It is found that local processes always have an important457

contribution to the phytoplankton biomass dynamics in the Upper James River even on458

the timescales with a large physical contribution (Fig. 6d). For the monthly timescale,459

the results are more scattered with an increase of residence time (Fig. 3b), these large460

residence times usually occurred in summers when both riverine flows and transport461

rate were small (Fig. 5), and the contribution of local processes became relatively more462

important than that of transport processes. Local processes play critical roles on diurnal463

timescales, owing to the well-recognized diurnal variation that phytoplankton biomass464

increases during the day because of photosynthesis, but decreases at night.465

The contribution of local processes also showed seasonal variations represented by466

the effective growth rate  (Fig. 5). In general, a smaller value of  appeared in summer467

and fall than during winter and spring. One possible reason for this seasonal change is468

the phytoplankton species succession. The “transport out” effect by freshwater has469

been found to be a determining factor on phytoplankton growth and composition in470

river-dominated estuaries as it tends to select fast-growing species in high-flow471

conditions (Ferreira et al., 2005; Paerl et al., 2006; Costa et al., 2009). The maximum472
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freshwater discharge occurs in the winter and spring in the James River. The enhanced473

“transport out” processes along with abundant nutrients favors freshwater diatoms that474

have relatively high intrinsic growth rates to become the dominant species in these two475

seasons. In the summer and fall, when the “transport out” effect is reduced and476

residence time increases, the percentage contribution of dinoflagellates and477

cyanobacteria with lower intrinsic growth rates increases (Valdes-Weaver et al., 2006;478

Marshall and Egerton, 2013). Temperature, nutrients, and grazing may be other factors479

affecting the seasonal change of the contribution of local biological processes, as480

respiration and grazing often peak in summer while nutrient limitation is severe though481

with large benthic flux input of recycled nutrients (Kemp et al., 2005).482

4.2. Long-term validation483

Complex phytoplankton dynamics can be described by the balance between local and484

transport processes under steady-state conditions (Lucas et al., 2009), and it is expected485

that this balance is acceptable on long-term timescales but may be questionable on486

shorter timescales. Therefore, it is interesting to examine on which timescales this487

assumption is valid.488

The steady-state assumption is equivalent to assuming that r = 0, or that the489

magnitude of r is negligible compared to the magnitudes of  and . Direct comparisons490

of r to  and  show that the assumption is valid for seasonal to annual timescales in491

the region as r is small. By using the root-mean-square (rms) of each rate to quantify492

their magnitudes, it is found that the ratios of rms(F) to rms(r) and rms() to rms(r)493

increased as timescales increased (Fig. 6b). This suggests that contributions of local and494
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transport processes have the tendency to be balanced only when the timescale is longer495

than 10 days (Fig. 6a and b). Their difference becomes more significant for hourly to496

daily timescales.497

4.3. Phytoplankton primary production498

The open water method using high-frequency dissolved oxygen data has been widely499

applied to estimate gross primary production, ecosystem respiration, and net ecosystem500

metabolism (Staehr et al., 2012). Because of the influence of advection processes, high-501

frequency phytoplankton data have not often been used to estimate these metabolic502

rates. Here, we used high-frequency chl-a data to estimate phytoplankton gross primary503

productivity similar to open water oxygen method and to evaluate the influence of504

physical transport on estimation of the rate.505

For each time interval (e.g.  = 15 minutes), the change of phytoplankton biomass506

(∆) is described by the equation below:507

∆

∆
=  −  −  (12)508

where GPP is the 15-minute phytoplankton gross primary productivity (g C m-2 15 min-1),509

RPP is the 15-minute rate of total phytoplankton respiration and consumption (including510

respiration, grazing, and settling, g C m-2 15 min-1), which represents total biological511

losses. FPP is the 15-minute rate of transport in or out of phytoplankton by transport512

processes (g C m-2 15 min-1); a positive FPP (-F < 0) means that the carbon produced by513

local biological processes is transported out of this location and benefits the food web in514
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adjacent areas (Cloern, 2007). We also use DPP to denote the difference between GPP515

and RPP,516

 =  − . (13)517

FPP is estimated from the product of phytoplankton biomass and transport rate, and518

it was calculated using the transport rate F computed from the numerical model in this519

study ( =  ∙ ). The method for computing GPP and RPP is similar to the open520

water method, and DPP was first computed by summation of ∆ ∆⁄ and FPP for each521

time interval. Daily RPP was estimated from the extrapolation of nighttime RPP (= the522

sum of nighttime 15-minute DPP) to one day; and daily GPP was estimated, according to523

Eq. (13), from daily DPP (= the sum of 15-minute DPP over one day) plus daily RPP. Both524

daily GPP and RPP are in units of g C m-2 d-1. Unrealistic negative values of daily GPP525

were found for some days (about 24%), and they were excluded from the calculations526

following the way of the open water method (Caffrey, 2003). Most of the negative daily527

GPP values appeared on rainy days when precipitation may enhance the flushing effect528

from runoff from adjacent watersheds. The results are representative of primary529

productivity and metabolic rates under normal weather conditions. Note that the530

transport rate F used was computed from the numerical model that only represents the531

physical transport as shown in Eq. (6), and the results are only used to quantify the532

influence of physical transport on the estimation of GPP.533

For the Upper James River, the typical C: chl-a ratio equals 39 g C/g chl-a with small534

seasonal variability (Bukaveckas et al., 2011). Because we have no winter data, the535
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annual phytoplankton primary production cannot be correctly estimated. Nevertheless,536

we assumed that gross primary production in winter was lower than or equal to the537

minimum of seasonal production. The annual phytoplankton gross primary production538

were estimated to be about 255.90, 685.91, and 486.26 g C m-2 yr-1, respectively, for the539

years 2006, 2007, and 2008 (Table 2). These estimations were comparable to the 12-540

year averaged (1989-2001) annual phytoplankton gross primary production, around 230541

g C m-2 yr-1, measured in the laboratory using 14C method at Station TF5.5 (Nesius et al.,542

2007). An example of the seasonal averages of GPP, RPP, and DPP in 2008 are also543

shown (Fig. 7), and the seasonal average of GPP during the summer 2008 was 2.31 g C544

m-2 d-1, close to the seasonal mean rate of 2.11 g C m-2 d-1 using the method of dissolved545

oxygen incubations for the nearby York River during the same time period (Lake et al.,546

2013).547

The amount of primary production transported out ranges from 7% to 13%548

(FPP/GPP). It suggests that the net physical transport processes have a minor impact on549

estimates of GPP and RPP on daily scale under normal weather conditions. This is550

consistent with the analysis of biomass variability on the daily timescale.551

5. Conclusions

To evaluate the contribution of transport processes to phytoplankton biomass552

variability using high-frequency observational data, we introduced the transport rate553

method, which enables us to estimate each contribution exclusively as a first-order554

approximation. The Upper James River was selected as the study site, and the results555
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support the hypothesis that both local and transport processes contributed significantly556

to the local variability of phytoplankton biomass, but their relative importance changed557

on different timescales. On a short-term basis such as daily and weekly timescales, even558

though the transport processes could modulate phytoplankton biomass variability on an559

intratidal timescale due to flood and ebb variations, the intratidal variations will be560

removed over a tidal cycle. The local processes dominated the overall contributions561

during the observational period; however, the relative importance of transport562

processes tended to be equivalent to the local processes in the long-term timescales563

(e.g., seasonal and annual). Another analysis of this study shows that the local processes564

were almost balanced by the transport process on the seasonal and annual timescales,565

and approached a steady-state condition for phytoplankton dynamics, whereas the time566

derivative term became important for shorter timescales.567

Examination of the transport rate revealed that transport processes exhibited a568

persistent “transport out” effect on long-term timescales to decrease in situ569

phytoplankton biomass in this region, but it was not the case for timescales shorter than570

seasonal that transport processes could either increase or decrease the biomass,571

corresponding to “transport in” and “transport out” processes, respectively.572

Transport processes had a small impact on the estimation of daily gross573

phytoplankton productivity. By applying a method analogous to the open water oxygen574

method that calculates phytoplankton gross primary production using 15-minute575

observational data, the percentage of production flushed out was around 7-13% under576

normal weather conditions.577
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The use of the transport rate is a first-order approximation for quantifying transport578

processes. Zero concentrations were applied at the boundaries for this study, and the579

computed transport rate F did not account for the possible effects of inputs from580

boundaries (though these are very low), and therefore the contribution of the transport581

processes considered was the redistribution of biomass produced within the study area582

due to the change of dynamics and geometry. The additional bias of the transport rate583

on the hourly timescale could come from the numerical method and model grid584

resolution that may not be able to simulate the microscale varibility of physical585

processes, which causes the patchiness of phytoplankton distribution that makes the586

observed chl-a data fluctuate highly with a change of dynamic conditions. Besides the587

use of the numerical calculation, the transport rate can also be estimated based on field588

observations of current, salinity and water depth. In addition, the pattern of the relative589

importance of local and transport processes on different timescales demonstrated in590

the Upper James River may vary at other locations of the estuary, which would warrant591

further study.592
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Table 2. Estimates of annual phytoplankton gross primary production (GPP), total710

biological losses (RPP, including respiration, grazing and settling), DPP (GPP - RPP), the711

amount of production flushed out (FPP) at Station RC for the three years 2006 to 2008.712

FPP/GPP representing the fraction of production flushed out are also presented.713

Annual
phytoplankton
metabolic rates

GPP1 RPP1 DPP1 FPP2 


(g C m-2 yr-1)

2006 255.90 274.29 -18.39 32.65 12.76%

2007 685.91 688.50 -2.59 47.76 6.96%

2008 486.26 512.42 -26.16 31.87 6.55%

1estimated using 15-minute observational data
2estiatmed using numerical model

714
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Figure Captions

Fig. 1. Map of the Chesapeake Bay and James River. Locations for the Continuous715

Monitoring Stations RC, and the Long-term Monitoring Stations TF5.4 and TF5.5 are716

shown, respectively, by the green triangle and the blue squares. The domain of the717

James River 3D model is also presented.718

Fig. 2. Comparison of the 6-h moving averages of r and F at Station RC in October 2008.719

a) time series of relative growth rate r (red line), transport rate F (blue line, here plotted720

as –F ), and irradiance (black line); b) the relation between -F and r using all data during721

the month (daytime + nighttime); c) the relation between -F and r only at nighttime.722

Fig. 3. Contributions of transport processes on monthly timescales at Station TF5.5. a)723

time series of chl-a (black line,  1) and residence time (blue line); b) the relationship724

between chl-a and residence time; c) time series of relative growth rate r (black line)725

and transport rate F (blue line, –F ); d) the relationship between -F and r. The data used726

are from the years 2000 to 2013.727

Fig. 4. Rates r, -F, and  on seasonal and annual timescales during the years 1990 to728

2013 at Station TF5.5.729

Fig. 5. Box plot for rates r, -F, and  on seasonal timescale during the years 1990 to730

2013 at Station TF5.5. Horizontal lines in the boxes indicate medians, boxes indicate731

interquartile ranges, whiskers indicate the extremes that are set to be 1.5 times the732

range from the boxes, notches in boxes indicate the 95% confidence intervals of733

medians, and circles indicate outliers.734
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Fig. 6. a) Medians over different timescales for positive and negative rates, respectively.735

Transport rate (–F, blue lines), relative growth rate r (red lines), and growth rate736

 (green lines); b) Ratios of root-mean-square of rates. Blue line denotes rms(F) to737

rms(r), green line denotes rms() to rms(r); c) coefficient of determination R2 between F738

and r (blue line) and between  and r (green line); and d) estimates of the relative739

importance of transport processes (blue line) and local processes (green line).740

Fig. 7. Phytoplankton primary production in each season of 2008 at Station RC, by741

assuming  =  ∙  (winter data are not available). Phytoplankton gross primary742

productivity (GPP), phytoplankton total biological losses (RPP, including respiration,743

grazing and settling), phytoplankton DPP (GPP - RPP), error bars represent the 95%744

confidence intervals.745

746
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747

Fig. 1. Map of the Chesapeake Bay and James River. Locations for the Continuous748

Monitoring Stations RC, and the Long-term Monitoring Stations TF5.4 and TF5.5 are749

shown, respectively, by the green triangle and the blue squares. The domain of the750

James River 3D model is also presented.751
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752

Fig. 2. Comparison of the 6-h moving averages of r and F at Station RC in October 2008.753

a) time series of relative growth rate r (red line), transport rate F (blue line, here plotted754

as –F ), and irradiance (black line); b) the relation between -F and r using all data during755

the month (daytime + nighttime); c) the relation between -F and r only at nighttime.756
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757

Fig. 3. Contributions of transport processes on monthly timescales at Station TF5.5. a)758

time series of chl-a (black line,  1) and residence time (blue line); b) the relationship759

between chl-a and residence time; c) time series of relative growth rate r (black line)760

and transport rate F (blue line, –F ); d) the relationship between -F and r. The data used761

are from the years 2000 to 2013.762
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763

Fig. 4. Rates r, -F, and  on seasonal and annual timescales during the years 1990 to764

2013 at Station TF5.5.765
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766

Fig. 5. Box plot for rates r, -F, and  on seasonal timescale during the years 1990 to767

2013 at Station TF5.5. Horizontal lines in the boxes indicate medians, boxes indicate768

interquartile ranges, whiskers indicate the extremes that are set to be 1.5 times the769

range from the boxes, notches in boxes indicate the 95% confidence intervals of770

medians, and circles indicate outliers.771
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772

Fig. 6. a) Medians over different timescales for positive and negative rates, respectively.773

Transport rate (–F, blue lines), relative growth rate r (red lines), and growth rate774

 (green lines); b) Ratios of root-mean-square of rates. Blue line denotes rms(F) to775

rms(r), green line denotes rms() to rms(r); c) coefficient of determination R2 between F776

and r (blue line) and between  and r (green line); and d) estimates of the relative777

importance of transport processes (blue line) and local processes (green line).778
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779

Fig. 7. Phytoplankton primary production in each season of 2008 at Station RC, by780

assuming  =  ∙  (winter data are not available). Phytoplankton gross primary781

productivity (GPP), phytoplankton total biological losses (RPP, including respiration,782

grazing and settling), phytoplankton DPP (GPP - RPP), error bars represent the 95%783

confidence intervals.784
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