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ABSTRACT

A theoretical investigation is made of the temperature de-
pendence of the electrical resistivity of concentrated strong-
scattering, disordered alloys. First, the deformation poteantial theory
and the semi-classical Boltzmann equation are used to study the effect
of the collision rate on the electron-phonon coupling constant. The
result indicates that the criterion on collision rates for the validity
of the use of Born-Oppenheimer adiabatic approximation may be beyond the
previously accepted limit. The theory also indicates that although it
occurs in principle, in real alloys the electron-phonon interaction is
never quenched by fast collisions. Thus, this mechanism fails to account
for the quenched temperature dependence of the resistivity observed in
many alloys. Second, a model calculation for the temperature dependence
of the electronic density of states and the conductivity based on the
Kubo linear response theory is made by introducing thermal disorder in
the coherent potential approximation. Thermal disorder is found to smear
and brozden the static alloy density of states. The electrical resistivity
in weak scattering alloys always increases with the temperature. But in
the strong-scattering case, the temperature coefficients of resistivity
can be positive, zero, or negative, depending on the location of the

Fermi energy.
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AN INVESTIGATION OF THE TEMPERATURE DEPENDENCE OF THE ELECTRICAL

RESISTIVITY OF CONCENTRATED STRONG-SCATTERING ALLOYS



INTRODUCTION

The macrqscopic electronic properties of alloys, such as the
d.c. electrical resistivity and the Hall coefficients, have been fruit-
ful subjects for experiments,l’2 because useful devices, e.g. strain
gauges, have been constructed which depend on these properties, they
can be measured accurately, and the results of these experiments pro-
vide an insight into the microscopic behavior of the materials. The
theoretical interpretation of these properties has lagged far behind
the wealth of experimental information. For example, it is well known
that constantan has a very constant resistivity over a wide range of
temperature (See Fig. I). Because of a formidable combination of com-
plexities, (a detailed discussion of this point is given at the end of
Chap. 3), this fact remains a challenging theoretical problem. It is
too early a stage in the development of alloy theory to give a first
principles, quantitative description of the transport properties of
concentrated, strong scattering, disordered systems, like constantan,
since the easier and more basic electronic quantity, the static alloy

39’"’95’6 At

density of states, is just beginning to be understood.
present, even a qualitative or model description of the transport
properties in such alloys is greatly needed.

Desiring to understand the temperature dependence of electrical

resistivity, we started an investigation of the role of lattice motion in



Figure T.

Flectrical resistivity of Cu-Ni as a function of temperature
(Ref. 2. p. 118). The numbers relate to the concentrations
of Ni, The temperature indicated by the arrows are the Curie
points. Those alloys containing about 40 to 45 at -% of Ni
which have very low resistivity temperature coefficients are

known as constantans.
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an alloy. The first simple question we ask is: can the nature of the
electron-phonon interaction be affected by the high collision rate of
electrons in an impure material? We approach this problem from defor-
mation potential theory and the classical Boltzmann equation. Using

the collision time approximation, we derive "collision time" dependent
deformation potentials for longitudinal and transverse phonons. The
conclusion is that the collision rates encountered in real alloys can
never become large enough to affect the electron-phonon interaction.

The characteristic collision time which must be reached before collisions
change the deformation potential is much too fast to find even in the most
disordered case. This characteristic time condition can be understood
from the following point of view. The condition indicates that the Born-
Oppenheimer adiabatic approximation7 is valid as long as the diffusion
length of an electron in a phonon period is greater than the Thomas-
Fermi screening length. This is equivalent to the condition that the
effective force on an electron due to collisions is smaller than the
Coulomb force producing screening.

The second problem, the more important result of this re-
search, is to investigate the temperature dependence of the electronic
density of states and electrical resistivity of disordered alloys from
a more rigorous theory. First, we set up the formalism for the density
of states and d.c. conductivity of disordered systems in terms of the
averaged Green's functions <<G>> and <<GG>>. Then a general discus-
sion of the temperature dependent aspects of the formulae is given along
with a review of directly related work. After giving an outline of the

3,859

formalism of the coherent potential approximation (CPA), we present

a model calculation based on CPA.



In the model calculation, we use a model Hamiltonian similar

to that of Velick§3

et.al., but with thermal disorder added. A new in-~
terpretation of the basis and matrix elements which enter into the for-
malism 1s given, and this is then incorporated in the matrix manipula-
tion of the averaged Green's function. The thermal disorder Hamiltonian
takes the usual form containing one-phonon creation and annihilation
operators. Working within this model, we reduce the CPA self-consistent
operator equation to a scalar integral equation for the self-energy. In
order to obtain the numerical results, we use simple forms for the input
functions: a semi-ellipse for the pure crystal density of states, a
velocity functional form proportional to the density of states, and a
Gaussian distribution governing the thermal fluctuation of the random
atomic energy levels. Following a detalled discussion of the numerical
method of solving the integral equation, we present the results of
numerical computations for some representative parameters. A systematic
study of self-energies, the total density of states, the component density
of states and the conductivity is exhibited in the form of three dimen-
sional plots. Thermal disorder is found to smear and breoaden the static
alloy density of states. Disorder always increases the electrical
resistivity in the weak scattering limit. However, in the strong scat-
tering case, the conductivity may decrease, increase, or remain constant
with temperature depending on the location of the Fermi energy.

The numerical results are followed by a discussion of the
implications of the model calculation. The non-perturbation nature of
the problem is briefly mentioned, then an interpretation of the self-

energy in the averaged Green's function is given. We show that the



relaxation time, corresponding to the imaginary part of the self-energy
appearing in the formulae for the density of states and the conductivity,
is not the usual decay time of the Bloch states, but rather is the decay
time for a different process. However, in the weak scattering limit,
there is no distinction between these two relaxation times. We also
attempt, by a proper choice of the relaxation time and the Fermi velocity,
to reduce the CPA conductivity formula to the customary form which aids
in the physical interpretation of the results. In the free electron case,
this is particularly vivid.

Finally, a systematic analysis of the problems associated with
8 real transition metal alloy is given. From this, we can see how far

we are from the goal of a quantitative theory of transition metal alloys.



THE INFLUENCE OF THE COLLISION RATE

ON THE ELECTRON-~-PHONON INTERACTION

A. A Simple Illustration of a Saturated Collision Rate and the Tempera-—

ture Dependence of the Electrical Resistivity.

The simplest formula for the d.c. electrical resistivity islo

*.
m* L
= —_— 2-1
f[=weaT (2-1)
where m¥ is the effective mass of the carriers, n, is the number of

carriers per unit volume and ‘T is the collision time.
The simplest approximation for 7" in an impure metal at finite
. 1
temperature is the Matthlessen'sl rule,

| I

|
—’:F = —ﬁ + ’,_‘7:’: , (2-2)
where'/ﬁ;and'/ﬁ}are the contributions to the total collision rate'/%due
to impurity scattering and electron-phonon interaction respectively.

Here Uﬁ;is independent of temperature While'/%;is linear in temperature
at high temperatures.

If the resistivity of certain concentrated alloys, such as
constantan, were calculated using the Matthiessen's rule, then the
temperature coefficients :;fof the calculated rej;stivity would be
greater than the observed value. (The observed Z"Tof‘or constantan is

almost zero as seen from Fig. I). It is generally found that metals

which exhibit small temperature-coefficients in resistivity also have



rather large resistivities, so one question that may be asked is, can
high collision rates modify the electron-phonon coupling constant in
such a way that the temperature variation of the resistivity is quenched?
The answer to this question is yes in principle, but not in practice.
To serve as an introduction to the chapter, an outline of a theory will
be developed to show how the resistivity variation can be quenched. A
detailed theory could easily be constructed following this outline.
Suppose we have a collision-time dependent electron-phonon

interaction which can be expressed as

°
HQ.F = HeP ?(T} ; (2-3)
where the function g{T) (See Fig. II) contains the effect of collisions
and is a function whose magnitude starts at unity and decreases sharply
as '/fr exceeds some critical wvalue '/1: . Hg.p is the collision-time
independent electron-phonon interaction Hamiltonian. A collision time

’
‘T;is associlated with H as T, is associated with HO . As a con-
e.p f e.p
sequence of 'golden rule' and Eq. (2-3), 'zl’p'is related to 7, by
o 12 1 L]
’;F, =13 T, (2-k)

Applying Matthiessen's rule in our case, we arrive at a self-consistent

equation for T,

2 |1
o= S ! | "—
= 4 = — 4+ | 2 e g -
R A - % - (2-5)
A graphical solution for '/T from Eq. (2~5) is shown in Fig. IT.
We find that if l/Tz 04 '/T;_’ the collision rate increases with temperature
. l . . .
and 1s saturated at ‘/12 If /r’ > ‘/1: ,» & situation which never occurs

in real metals as will be seen later, then the collision rate is constant,

. . 1
not varying with temperature, and |/T ~ /TI.



Figures II(a) - II(ec). The sketches of the graphical solution for
. P 2 \
Eq. (2-5), i.e. = = Tx* | 9(1’)’ ;‘."T"P_E'.'r) , Or
L(T,T)ET—(T)(-J-—_J.):,j(T)I . As a function of
P T
[
l/T , l?f’t” drops sharply when '/T > /'rc .
Figure II(a). For '/TI(< '/—rc , the solutions, '/'r“—),
increase linearly with '/7;”')-
Figure II(b). For '/,r < 1/ , the solutions, '/-r(-r),
r~ c
are quenched around ! /T .
c
Figure II(c). For ‘/'rz ” ‘/‘rc , the solutions, '/‘r(-r)a

are independent of T and approximately egqual to '/T.r'

10
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The next sections will give the details of how to calculate
H p from the "bare" deformation potential. It will be seen later that

the resulting He.p for the longitudinal phonons does have the character
represented by Eq. (2-3), but the critical collision rate '/ﬁ; is of or-
der of w(%)zx /ansec-l, which can never be reached in a real alloy.
Here ¢ is a typical phonon freguency, say the Debye frequency, l[,' is the
speed of sound, and 1& is the electron velocity at the Fermi level. For
transverse phonons, vézcorresponds to u:(%% ~ I(f‘sec—l, but the satura-
tion effect is only effective for long wave length phonons, which contri-

bute very little to resistivity. So the saturated collision rate cannot

account for the electrical resistivity of constantan.

B. Deformation Potential.

When the atomic lattice is subjected to smooth, longwave de-
formation, so that loecally it can still be thought of as crystalline, a
good description of the electron dynamics can be obtained from the band
structure as a function of position. The deformation potential is the
energy change of an electron per unit strain relative to its energy in
the static crystal when the crystal is distorted by a phonon. In a
metal the major contribution to the deformation potential arises because
the electrons do not follow the motion of the ions perfectly. Con-
sequently, in the Coulomb gauge, a longitudinal phonon produces an elec-
trical potential and a transverse phonon produces a vector potential. -

A single electron moves in the electrical potential caused by all the
other electrons and the distorted ion lattice. The energy of interaction

constitutes an extra term in the one electron Hamiltonian. This charge
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shift plays a very important role in the determination of electron-
phonon interaction in metals.12 But in an alloy, the high collision
rate of the electrons with defects, i.e. "impurities" and phonons, tends
to drag the electrons along with the moving lattice in an equilibrium
where the electrons move rigidly with the ions. Thus the charge shift,
and as a consequence the electron-phonon interaction, can be modified
by collisions.

We shall derive the collision time dependent deformation po-
tential by generalizing arguments which have been developed for the theory

of acoustic attenuation.lB’lh’l5

The acoustic attentuation theory is
modified here in two ways; first, the effect of phonons on the band
structure is formally introduced into the theory, and second, the solu-
tion method previously used, i.e. the Chambers trajectory method,16 is
replaced by one in which the physical approximations are more evident.
The theory is semi-classical and in outline proceeds as follows. A
Boltzmann equation for the temporal and spatial dependence of the elec-
tron distribution function, with a collision time approximation, is
introduced. A phonon acts as an external driving force in this equation.
The Boltzmann equation is solved self-consistently with Maxwell's
equations to yield a deformation potential which is an explicit function
of collision time.

It is well known that the deformation potential calculation
outlined above is only justified for long wave phonons.lT For short

wave phonons, we have an inherently more difficult problem. Our method

cannot yield accurate answers. However, it should indicate the general
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trends. We shall use three items as input for our calculation: the
unperturbed band structure, the 'bare' deformation potential (to be
discussed shortly) and the collision time which represents all the
collisions. The point of interest is how collisions modify the de-

formation potential.

C. The Calculation of the Deformation Potential.

1. General Formalism

Consider a crystal with n, mono-valent atoms per unit volume

0
at a finite temperature T so there are a number of phonons thermally
excited. Let us focus on the electron interaction with one mode of the
phonon spectrum, wave vector—i and frequency ew . If the lattice is

deformed smoothly, as is always assumed in the deformation potential

formalism, the phonon is characterized by the atomic velocity field
o —  (FF-wt
uer,t) = §u e . (2-6)
This field then generates forces on the electrons which shift the elec-
tron distribution. Also, the electrons collide with lattice defects
which tend to force the electrons toward a new local equilibrium. In a
steady state, we shall find the effective forces on the electrons and
their energy shift by solving the Boltzmann equation.

Let f(?;i,t) be the distribution function of the electrons.

It is the density of electrons at location'?, with wave vector'i, at

time t. The Boltzmann equation in the collision time approximation is:

of ) £E of +f_. FF k= fp (PRt
ot m T R T , (21

af
Y3
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where f is the local equilibrium distribution to which the electron

L.e
-

collisions tend to drive the system, and F is the effective force on

the electrons caused by the phonon. The Boltzmann equation, Eq. (2-7),

has been written assuming that the effective electron mass equals the

free electron mass. At any point in space, the electron density n(T,t)

is related to £(r,k,t) by
7 = 3 Rt
N7t) falkf(?‘ﬁz . (5.8)

In thermal equilibrium and in the absence of phonons, the

distribution function fe(-lz) is a Fermi distribution:

Y ! ]
)= T3 '
'lce (k 41 o BCEF-Mo)y | ) (2-9)
where f} = '/KT’ K is the Boltzmann constant. The equilibrium electron
density 0, is

No =f0[3i7£e(?). (2-10)

]
Eq. (2-10) determines /“o , the FPermi energy. E‘z is the unperturbed energy
of the electron, i.e., the unperturbed band structure.
The local equilibrium distribution into which the collisions

tend to drive the distribution is a drifted, local Fermi distribution fQ, -
{ - I ’
T k)= 03 2ty — Lt =m Up - 2-11
j-e‘ ’ 47 eﬂ[f‘u,t; /u:F t) mYr U (Ft] ( )

Except for terms of order (,lz, that we neglect, fﬂ, e is simply a Fermi

function in terms of the electron energies as seen by an observer riding

8

s - 1 "o " =
the atoms at velocity ( . The "drift’ term -ml/i; « 4 {Tt) transforms the

rest-frame energy to that measured in the moving frame.
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The distribution Eq. (2-11) is called a "local" distribution,
because the local Fermi energy ,u (?,t) must be adjusted to match the

local electron density,
Nn(rt) =fd’t fpe @E0

Finally,in Eq. (2-11), Ei(f,t) is the energy of an electron with wave

(2-12)
-

vector k in a crystal homogeneously strained with the strain tensor

characterizing the neighborhood of the position T of the actual crystal

at time t. The difference between &z (¥,t) and g;. is the "bare" de-

formation energy which is defined by

° .(,8
F.t) = £2(Ft) - = f.. ¥
SE-{“/ 1Tt - &g E‘ Y,<,g (Frt) (2-13)
g -
Zf is called the deformation potential. \((p(r,t) is the instantaneous

strain tensor, which is related to the velocity field 'fl('f,t) by

= B ' (G.T-wt)
. - 7uuﬂ(r,t) _ _?dgu 9r
Y,z(s (r)t) = o ) e ‘ﬁ. (2-14)

A detailed formal development of the calculation of g—i may be found in
Whitfield'sl9 work, but E-ﬁ(?,t) will be regarded as an input to this
calculation.

The effective force on an electron, F in Eq. (2-7), is given by

F=- 28FD | o+l xB)
' (2-15)

27 ¢
The first term in Eq. (2-15) arises because the band energy in the presence
of a phonon is position dependent. The second term is the electromagnetic
Lorentz force due to the fields -ﬁ and .ﬁ These fields must be determined
self-consistently from Maxwell's equations, with the charge density /’(r,t)

defined by

PEit) = e[ maer -y (7.t , (2-16)
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and the current density EY?,t) defined by

b - —_—
- — > — (r.t
TJev oty = Je () - Moe U 2. (2-17)

In Eq. (2-16), n(T,t) is the electron density defined in Eq. (2-8) and

n_(r,t) is the instantaneous ionic density around T at t. In Eq. (2-17)

1{
b
je is the electronic current density which is related to the distribu-

tion function f(%,k,t) by

- — -
78 (Fv,t) =-I’dji ev}‘ 7[( F’ﬁ'{). (2-18)
The second term in Eq. (2-17) is the current density due to the ionic
motion.

The solution of the Boltzmann equation in the linear approxi-
mation is characterized by all variables oscillating about their equi-

librium values with changes proportional to the spatial and temporal

i('i-i-'—wt).

factor e Thus the various quantities can be written as

-, -t - L.(‘i‘?‘wt)

f(Fkt) = f & +8fde ) (5.19)

L'(‘g‘,‘r“_ wt)
Net.t)y=", + N E ) (2-20)
“{2,7—w£1
N, c?’;‘t)’—:’no + oN: € P (5-21)
(¢9.7-wt)

f! o (T Rst) = fe‘“ * 57[““0 ) (2-22)
o ‘(?',;'-wf)

EZ("U = &z + 9z € ’ (2-23)
.7 —ct)

gy (2-24)
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mi

Ft)= §BC .

Wl

(2-26)

(2-6), (2-9), (2-11), (2-22), (2-23) and (2-24) combine

to yield

§f,, = 2 (Seg - spu - mTgeSi) (o2
Because the Ferml distribution cuts off sharply, we have

? o~ .

af; = - g3 S(f;' -Mo) (2-28)

with 5/(( fixed by

Sm =.-j' d’4 S{},e =-D(E)(§& ~SH) (2-2)

The quantity D( EF) , the density of states (including both spins) per

unit volume at the Fermi level EF,is given by

ds;
D[EF - 47"3 + U—

where 4 S is an elemen%r of area in k space on the unperturbed Fermi

(2~30)

7

surface, and UIE is the speed of the electron with wave vector kF In
Eq. (2-29) Sff is the average of the change of the electron energy over

the Fermi surface,

i °
_:S?f szs dSF ’ (2-31)

In the linear approximation the driving term in Eq. (2-7) is

ol
e

approximated by
E o ~F. e _ (-(567- z+eva -SE )5 e (2-32)
R % o oF . -
_— =t
Notice the magnetic part of the Lorentz forcez.ell['xﬁ makes no contribu-

—

tion in Eq. (2-32) since it is always perpendicular to Ui
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Now that all the quantities are defined, it is trivial to write

down the linear solution to Egq. (2-T)

57((“_(9& SE.(tzA)-e/l SE+ 8Ez - Sf,-———mv..-su

0 (2-33
955’ l~Cwr+i7-3 )
where,\ ]].,"( is the mean free path of the electron with velocity V';
The factor _?_{_"Eo in Eq. (2-33) guarantees that only electrons near the
31

Fermi surface contribute to § f .
It is interesting to compare Eq. (2-33) with the result from
acoustic attenuation theory. For the free electron gas, the "bare"

deformation energy is zero, and the density of states per volume is

simply
£F — 3 N
Di€g) = _%—;;T—" ) ’-E—;' (2-34)

Thus Eq. (2-33) reduces to

SJCHU"" 9{e ) ep- SE+mV—- 5u+ Zs 21 n

I -dwT +¢ g /\
which is exactly the same as Kittel's expression.

) (2-35)

(2-33) is still an implicit equation for S f, since the

—

electric field é-E‘| is a function of § n and the current density ‘je
through Maxwell's equations, while §n and ?e are in turn functions of
S f as seen from Eqs. (2-8) and (2-18). The results are different for
different types of phonons. In the next two sections, longitudinal and

transverse phonons are discussed separately.

2. Longitudinal Phonon

For a longitudinal phonon, the direction of the velocity field
A
is the same as that of the wave vector, i.e. ﬂ:? . The electrical field

E(?,t) is connected to the particle densities by Poisson's equation,
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,— . Ecr 1) = 4mef nCT"l‘t)—nI(?/-{‘)J , (2-36)
7

or

Lis = 4me(Sn-n)

(2-37)
Eq. (2-33) then becomes
¢ 5"_§f’1‘“‘." TE_Sn 5 o
SFk) (9{2 SExtgi(Tp ~pIN+8E-5&- 5 -mYp-SU 8
l—('w'r.,_(“?-'.ﬁ ’(2—3 )
where
2 v
2 =z (4ve D) (5-30)

The wave number % is the reciprocal of the Fermi-Thomas shielding length.
In what follows, we shall only treat a parabolic band. Eq. (2-38) relates
b —
two unknowns, $f(k) and §n. But §n does not depend on k,and,from

b
Eqs. (2-8), (2-19) and (2-30), is related to & f(k) through a simple

integration,

Sn =fol3ﬁ Sffz). (2-10)

If we integrate both sides of Eq. (2-38) over k space, we can solve for
S n in terms of known quantities. After a little manipulation, we find

(see Appendix A)

~

— g* . mlpSU ¢
Sn - SN, "5£fD g2 ~t ;/1 D5 (2-11)
I +( 1 + I(cm) L
+* )
where
(T
INGo) e 2: 9 (2-42)

|- wT +
L (4 i:r g4y
—£1/1
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Now that §n is known, we can proceed to obtain the electrical

potehtial ¢(r,t) in a straightforward way. Let

¢ vot) = spett (2-43)

Using Poisson's equation,

vzsb = —4ﬂe[n17,f)—’>’1;t?/t7], (2-l)
we find
4me
5 = T (Sn-8M:) (2-45)
Finally, the total deformation energy caused by the longitudinal phonon
is
L'[‘g‘-'i’—wé)

o
(P = epre+[Epie-Ei] =50
082 ( ’ ¢ 2' £ 7 . (2-16)
Thus SDs can be expressed in terms of all the known quantities. The

result is also derived in Appendix A:

[_g_r‘_'..,.ggz—%)[w 1(77]+55i-52_£.w
oD = 2 A (2-47)
J L+ [+ 10m]) (_g_:)

From this we can write down the final electron-longitudinal-phonon

interaction Hamiltonian,

N b

Y.P—wt) ]

(§-T-wt) ~t(
He.r = Zi[ 591* et!! + SD% e ) (2-148)

Let's investigate SD7 to see where it changes character as
'/’r increases. To do this, we first express Sfi ’ SfF and § U in terms
of SnI, with the aid of some brief arguments involving the strain

tensor defined in Eq. (2-14),as follows. Without losing generality, we



2

A »
can take Y to be z., In this case, the only nonvanishing component in

the strain tensor is Yzz’ which according to Eq. (2-1k4) is

s - gsu (G T-wt)
Yu”l“ = %e : _ (2-19)

The dilatation A (¥,t) is the trace of the strain tensor. Here it is

just YZZ(F,t). Denote the dilatation by

. ¢ ('1". Y-wt)
Aty =8a8C , (2-50)
22
and the zz component of deformation energy i.e. E—f in Eq. (2-13)
22
Ez =Uz . (2-51)
Then it is a straightforward matter to write the following relations:
SN, =-".54 (2-52)
- — - snl
SE*{ = Uz §A =~ Uk = (2-53)
[}
56 = Y Sa=-y 2, (2-54)
[ ]

where UF is Uk averaged over the unperturbed Fermi surface. Substitu-

ting Egs. (2-51), (2-53) and (2-54) in Eq. (2-47) we find

s .9 _ s p
(% + Ug -ga)[wlmj-r Ug -Up + ( :A,

(2-55)

SDf('—S;":)

zl

l+ [+ 1cm] (’f‘)
Note that except for the last term in the numerator, the dependence
of SD.i- onv is through the function I{J). Referring to the definition
of I(T), Eq. (2-42), we now examine the extreme cases: i/( > 1 and Z/j« ]
where I(T) reduces to

- WT .

> ;o AT

A
) =9 (2-56)

I(t)=

- —— e prna.

:_3_““_)7_._-— ~3¢ U 5 2/1((]
7*A* A Ve
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Thus |I(F)| is small compared to unity until §/4 becomes small enough so
Vs

v
F
It is interesting to consider the case when 2/1 »>>»|, which applies

21

that §4<

to most metals. In this case éDi reduces to Ziman's result

5D2' =(- %’1:)[-%"- + Uz ——JF + rg-, U;_-] /(”‘ ’;‘,) ] (2-57)

Using Eq. (2-34), Eq. (2-55) becomes

: - 28 U
$Dy = (-3 (26 +Up ) 0+Tm) 40 JE (5.58)
= ot 3 -5
b n. I+[1+Iem ] (L) ’
and Eq. (2-57) becomes ‘Z
2 9
SD*=(—-S-1"—)[—3EF+U2 == ] (2-59)
i —
1 Y‘o ‘ .‘- %_z . 59
The quantity in the bracket of Eq. (2-59) is the form factor of the electron-

phonon interaction matrix element as discussed in Ziman's text.22

Notice that in Egs. (2-57) and (2-59), gDi. is independent of 7 .
We shall show that SD-i remains steady over the range of collision times
T that are physically accessible. From Eq. (2-56) and Eq. (2-58), we see
that collisions are most effective in changing SD;‘ when 2/] is much

smaller than one, because I(T) increases as —-‘71 and the last term in

9
the numerator of Egq. (2-58) is proportional to —z";“ . But in the limit
iA << |, there is a cancellation between the term _g EF I (7)and the last

term in the numerator of Eq. (2-58), leaving the equation in the form

gt 3% o
5 (_Sn: 35r*ut21'L’17:?24 kg2

I+ ( % Ly (2-60)
/I = 3¢ ’_;T %){_?z)
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If we define a characteristic time 7; such that

IS ¥ N
T =)V (2-61)
then Eq. (2-60) becomes

T . ‘T‘ 2 .
_ 8Nt %‘EF+UI%1‘L3(TT—‘)('§)U*

o0y = (-3¢ A ) (2-62)
} Mo b+ Lo sy 2
% T/\2
There are three factors in Eq. (2-62) which guarantee the steadiness of
S Di. as a function of 777. First UE is small compared to E'F' For a
smeared positive background and in the Hartree approximation Uk is zero.
Second, the screening length ‘/% is of the order of lO'"7 to lO_8 cm,

and the maximum phonon wave vector is roughly_% s SO i/f has an upper
limit of order one. Third, ’7‘2 is a very short time of order 10—19 sec.,
which prevents o from being important in the physical regime. A

9

collision time of lO-l sec. corresponds to a resistivity of 105/4,4(1-cm,
which is far bigger than the highest resistivity found in alloys.

3. Transverse Phonon

For a transverse phonon, the deformation potential can be ob-
tained in a way similar to that for a longitudinal phonon. The dif-
ference is that there is no charge shift, because a transverse phonon
does not produce a dilation in the crystal. There is, however, a
current generated by the moving charges.

Using the same techniques as used in the previous section, we

can let the electron current density be

- - L‘(‘?’.F_w'()
Jo(F.t) = 5(7,_ é , (2-63)

and the total current density be
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2 (FFwt) T = el Tt
- (9 7r- :

Tty =87e€ = (S je=n0e5H) S (26
To solve for Sje, first we connect the current density SI with the
effective field $E through Maxwell's equations. Without losing gener-

ality, we can let the directions of 2 and U be z and x respectively. Then

-
the components of S E and § :I‘ are simply related by

SE, = 4% ST, (2-65)

)

and
2
SE = NEYES
!Jj ’ - #.)2
Then we relate St]. ca.nd S_E. by
e
$e =fd3ﬁ e vy S, (2-67)

which is the result of the combination of Eq. (2-18), (2-19) and (2-63).

— . 2
$Tey = (4 (%) 57T.., (2-66)

Egs. (2-65), (2-66) and (2-67) are then used to solve for Sﬁ‘e.
But we have to specify the '"bare" deformation potential gﬁ-{-
in §f(k) (See. Eq. (2-33)) before we can do the integration in Eq. (2-67).
In our case, the only non-vanishing component of the strain tensor is
Y“ (See Eq. (2-14)). The corresponding 5EE can be obtained from a

combination of Egs. (2-13), (2-14) and (2-23).

SEs = - st A

' S 3 co /2 (2-68)
2%

where 5 is the zx component of the deformation energy per unit
I3

strain as defined by Eq. (2-13). If we used a general expression for

2%
{ » ©.8. the one given by Whitfieldl9, then integration of Eq. (2-67)

would be quite difficult. Then the self-consistent solution of the

— Jenw
current density §je would be so implicit that insight into the
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collisions' effect on the deformation potential would be lost. In-

stead, we shall restrict ourselves to the jellium model. In this case,

Stg=o0, and £(E) is simply
[ )= 98{ " wT _l_L"‘?",;’-‘ (2-69)
Using § £(k) from Eq. (2-69), we find the following results after a little

manipulation (See Appendix A):

Sn=o0 ’ (2-70)
(5je)7 =(87e)y =0, (2-71)
and

2
| i3 () E)5)55) ]
(§7e)y = mESM[ (2-72)

| + 0 a (9 Uy Cy2, 0y 1
4[1—”7)(?&)(7/1) I, 7
where ( '/_? ), again, is the Thomas-Fermi screening length, D is the

electronic density of states per unit volume at the Fermi level EF’

and I is the integral

0
‘ (-1")
I" =j:' 0{7 /-c'w’z’.(.(_'g/,'pz ’ (2-73)
From Egs. (2-65) and (2-66), we then obtain
SEy = SE, =0 (2-7h)
and

S Ex

¢ 4L (_’g;)zg]’x = ﬂ(ﬁ)l[(sit) ) meSM] (2-75)
A
203 s [ LD o O o)
I (.4(%)(_2.)[ )(7/’

(—Z)( )[7/1)(3 4/10)”0@5“
’*44(;}2(%)[7,)(37,)1 .
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This electric field produces an extra force on the electrons. The
perturbing Hamiltonian Hep for an electron can be obtained by the
standard method:

2

SHeF—- .F —g)‘£+€¢.

It is natural to choose a gauge in which the electric potential is zero,

(2-76)

since there are no unbalanced charge sources. Then the vector potential
A is related to the electric field by

L F-wtd

'?i (r.,t) = oA € = 2;%3 E;Z; e

LeF-T-wt)
o ( 2-77 )
From Eqs. (2-T4k) and (2-75) only A_ in nonzero, and A =0 is guaranteed

in the Coulomb gauge, so Eq. (2-76) is just

-—

l'(7 Y—Wt)

SHG.F(T/f) = £ A P . (2-78)

To lowest order in the fields, we can replace P, by mvk(f). Let

v =D

- _ (g T-wt)
SHe.p (¥t SHz e . .

Then,from Egs. (2-75),(2-77) and (2-78), we can identifySHE as

[ AL (D) gh) Mesuc3 -4/

449 CE)(5) (32) T,

] m, %

set e )( (2)' (Z)(5) (3-4l)mucE) é’u]

"'( L meo? ’_4[%)2(_%)2

CwT I,
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But
4mene _  4me*p M. . - ¥ 2
mw? m D w? n 3
— _l.(%z)(},’)z (2-81)
BN AR

Putting Eq. (2-81) into Eq. (2-80), we find
] 'U‘ l -—d
SHy = -5 (%) (T34) (3-4/1,) mY (%) SU
i —

- 92ez 1
, 4(?)("3) (wT I,

m Uk Su ( 3écj'rro- c'u,n')
I =40 2)

For ?& U in general (perpendicular) directions, one should write Eq. (2-82)

(2-82)

“‘_h—
Cw T I, °

as

~ - 4
SHy = ’”‘Vi"su( BszIf ),

(2-83)

( ) {w fr I, '
Notice that, in Eq. (2-82), the entire effect of the collisions is con-

tained in the factors L and
cCwT

F = cwrT (2-84)

As the collision rate increases, F behaves as follows: when 7/1 >>1s F

&

has the constant value iT]’ -‘va ; it remains very steady and goes to(w-2)%
F
) : e g, U
when ?/11{, then it behaves like ¢ 3 f/l —v—;- as gA decreases further.

S

Define a characteristic wave number Z‘r by

FILE =007, (209
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+ -
which is of order of 10 4 cm 1. For a fixed q, as a function of '/T )

S Hl-{t begins with the value
A
- m U-"‘ ‘Su F ) .
SHp = : é 27 gA »> | (2-86)
I +¢ X (/)
4+ T

As I/T increases, SHk stays very steady, until -;——7—; is comparable
¢

with , i.e. when i/, A . We get

LwYTI,

— /O 3n . U;.'J
- m Vg SU[ ¢+ .
SHy = R NV A ZdL o

RNk

As '/r further increases, the two terms in the numerator tend to cancel
each other, and the denominator gets larger. The cancellation is exact
when yr-—)vo.

Since the factor L‘WTI‘,iS almost pure imaginary, there is
never a singular behavior in § HE Thus the increase of collision rate
tends to diminish SHI(" but this is unimportant until 2/1,\,[ . After that

S HIE' decreases very fast.

There is another quantity that must be noticed. The quantity

2
(%) in the denominator makes SHRA small except when 2( 27_ ~ /040‘;:’
1’ ~

i.e. in the extremely long wave length phonon regime. Thus, since a
typical Debye wavenumber is 2 x lO8 cm-l, only one phonon out of lO13

is involved, and we can therefore ignore the transverse phonons alto-

gether.
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D. Conclusions

We have given the details of the calculation of the effect of
callisions on the electron-phonon interaction based on the deformation
potential theory and the semi-classical Boltzmann equation. The results
for both longitudinal and transverse phonons do exhibit a decrease of
the deformation potential, as intuitively suggested. In the limit of
infinite collision rate ’/r » the longitudinal deformation energy Sﬂi
(Eq. (2-62)) goes to - ?51",- Uz , which is just the input "bare" deforma-

. °
tion energy 52—5 (Eq. (2-53)). Similarly the extra transverse deforma-
tion energy SHT{' goes to zero in the limit '/,Z_-voq

However, we have also concluded that this phenomenon which
yields a saturated collision time cannot be the cause of the observed
saturated electrical resistivity of many high resistivity metals. 1In
the longitudinal phonon case, this does not happen until a collision
rate is reached which is too fast, while the transverse phonons are
always negligible.

The results do, however, reveal that the adiabatic decomposi-
tion of the crystal energy into electrons and phonons seems to be valid
far beyond the usual criterion. Instead of the old criterion._,7

i Azt (2-88)
which Ziman derives from a transport equation result of Pippard for
acoustic attenuation, we arrive at the new criterion, to be discussed
shortly,

%A 21, (2-89)
where '/% is the shielding length of the electrons and d is the diffusion

length of the electron in a phonon period %,, .
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It is easy to show that the criterion in Eq. (2-89) is the

condition that guarantees the independence of §Dz from collision time.

f

From Eq. (2-60), we see that SDi is independent of T as long as

v L4 (2-90)
T2
or

2ogp Y% 5
7* U T

3 . (2-91)
But Eq. (2-91) can be rewritten as
2 1 !
_ 2-92
'g A wT 2; ! ’ (2-92)

or
9115z Z 1, (2-93)

Now, except for a constant factor of order unity, A J:js:is the root mean

square distance 4 that an electron diffuses in a time¢=-L. Thus we

a1
w
arrive at the criterion of Eq. (2-89).

The criterion of Eq. (2-89) agrees with the usual intuitive
picture for the validity of the adiabatic approximation. As long as the
electrons can diffuse a distance large compared to the shielding length
in a period of the phonon disturbance, 'they can adjust themselves to
the ionic motion, increasing the negative charge density where the ions
are compressed, restoring the Fermi level where this is disturbed, and
SO on."23 Since the shielding length is short, roughly one interatomic

distance, a violation of the condition, Eq. (2-89), means that the elec-

trons cannot move far enough from "their ions" in one phonon period to set
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up the shielded distribution and the adiabatic condition is not satis-
fied. More specifically, the electrons are "rigidly" attached to the
ions by collisions, so there is no electro-magnetic potential established
by unbalanced sources.

It is worth mentioning why our criterion for the validity of
the Born-Oppenheimer approximation is different from Ziman's. The mis-
take Ziman made stems from the fact that he reached his criterion by
watching the change of character of the acoustic power absorbed as a
function of the collision time, instead of the change of the coupling
constant of electron-phonon interaction. In our notation, in the
longitudinal phonon case, the acoustic power absorbed as a function of
collision time is dominated by a term which is proportional to the
imaginary part of I(7) (see Egs. (2-41) and (2-42)), which changes its
character at ?/Lv] as seen from Eq. (2-56). However, in our case,
the magnitude of I(7) (or | 9y I(7)|, since I(7) is almost pure imaginary)
must be comparable with unity in order to change the character of SD-Z;-
(see Eq. (2-55)). Physically, the difference arises from the fact that
the interaction Hamiltonian has a large 7] -independent term which arises
from the forces producing shielding, in competition with the terms from
collisions. However, this competition does not exist in the expression
for acoustic attenuation, hence the difference in behavior. We contend
that the criterion for the validity of the Born-Oppenheimer approximation
depends on the nature of the electron-phonon interaction, and other
macroscopic quantities may not provide a propar measure.

But generally speaking, even though the Hamiltonian doesn't

change its character, the use of Boltzmann zquation for the transport
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properties of an alloy is still not valid since the condition
iF A< (2-9%4)
can be reached in a concentrated transition metal alloy like constantan,
and we have no right to assign a momentum to an electron when the un-
certainty of the momentum exceeds the momentum. To investigate the prob-
lem of the electron-phonon interaction in such a system, the quantum-
mechanical density matrix technique ought to be used. The broad comp-
utational path is essentially the same. For example, we can start with
a "bare" electron-phonon interaction as an input, use Kubo's2h linear
response theory to find the charge density /o(?,t) and current density
.3(;,t), and then compute the extra electro-magnetic potential on the
electrons. But we no longer use the simple collision time approximation
or momentum basis states. Instead, we have to specify all the collision
mechanisms in the Hamiltonian and try to carry out the trace required
in the Kubo formula. This prescription is much too involved. The re-
sult we would expect is that the "bare" interaction would be subject to
the usual static screening processes appropriate to the alloy. Collisions
would not affect the screening until the criterion éh/zl is violated.

But in order to obtain the correct transport coefficients, we
ought to take the full linear response theory seriously, rather than
simply using a Boltzmann equation. The next part of the thesis is de-

voted to this purpose.



THE TEMPERATURE DEPENDENCE OF THE ELECTRON DENSITY
OF STATES AND D-C ELECTRICAL RESISTIVITY OF DISORDERED

BINARY ALLOYS

A. Density of States, Conductivity and the Green's Function in a

Disordered System.

Transport properties, such as electrical conductivity, are
often obtained from solutions to the Boltzmann equation. But the semi-
classical Boltzmann equation is not valid if the uncertainty in the
momentum of the carrier is greater than the momentum itself. This is
equivalent to the La,ndau—Peierls25 criterion for the validity of
Boltzmann equation:

T 2k (3-1)
To avoid this difficulty, we have to use a quantum mechanical ap-

proach to the transport properties. One approach is to use some gquantum
transport equation, such as Van Hove’s26 generalized master equation, but
the application of this method is not well developed in the literature,
since his integral equation is too difficult to solve. Other, more
manageable transport equations, such as the Kohn-Luttinger type,27’28
are perturbation-theoretic, and depend on the existence of a small
parameter, such as a small impurity concentration or weak scattering;
therefore, we cannot use such a method for a concentrated, strong-
scattering alloy. Another, more popular approach will be used here,

24,29

namely the density matrix method of the Kubo linear response theory,

36
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which is both rigorous and convenient. A good comparison of the Kubo
and Kohn-Luttinger methods is given by Moore.30 Our starting point,
the Kubo formula for the electrical conductivity, is obtained from a
formal solution to the Liouville equation of the density matrix to
first order in the external electrical field. The formal expression

o
aﬂiszh

for the d-c electrical conductivity tensor

it

0 Yr
on ﬁf dff al>~<jﬁ(-ékl>j;m> ) (3-2)
o o

where J (t) is the ol-component of the total current operator in the

unperturbed Heisenberg picture,

CHEA -cHt
T e,

- (3-3)

T = e
and 1 is the volume of the system, K is Boltzmann's constant, and T is
the temperature. In Eq. (3-3), ){ is the total Hamiltonian of the sys-
tem before the field is turned on. The bracket{ »in Eq. (3-2) means

the ensemble average, i.e.

(A =T L0 A (3-4)

where }g(}{)is the equilibrium density matrix. The Hamiltonian
generally includes all the subsystem Hamiltonians, e.g. electrons,
phonons, spin waves, etc., and the interactions among them. We shall
restrict ourselves to an alloy composed of N atoms and cN electrons.

The appropriate Hamiltonian of the alloy is

)'{ "—‘Z. Hl-]-’:-,'_R..)-ﬁz) Tt 72',,) + Hioh (-I-él’ “"'En) , (3-5)
¢
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where the one electron Hamiltonian H takes the form

K3

Hi = o= + V(P RoReo -0 R (3-6)
- ) -d
where V(r; ﬁl’ Ry vees RN) is the appropriate screened ionic potential

- —
when the ions are located at positions Rl through RN. Notice that H
depends on the locations of the ions. The eigenfunctions of H and

eigenvalues are defined by
H(T’.5 R ---;_ﬁn’)\PA (73R Ru) = Ea Wa (V5 Rir=sRu), (3-7)

In a static alloy the positions of the ions are fixed so H commutes

with H, . and the Kubo formula Eq. (3-2) can be reduced>" to the

Greenwood formula.32

2 ol
o (TS ) S vty o

<L 2¢€a

where a and b are quantum numbers defined in Eq. (3-7), and U;b is elec-

tron velocity matrix element

K oA

= i pd
U’ab = —-;( aIP‘ b> ) (3-9)
where pd' is the ol -component of the electron momentum operator. In

Eq. (3-8), ¢ %nwans an average over all the substitutional arrangements
of the lons, usually called the "configuration average'. The function

f in Eq. (3-8) is the Fermi-Dirac distribution

]
'chz)“ eﬂ(e_/”-}- | ) (3~10)

where (3: l[q.as usual, and /U is the Fermi energy.
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In general, the one electron Hamiltonian H does not commute
with the ionic Hamiltonian Hion' It is a rather difficult problem
trying to carry out the trace by any kind of perturbation expansion in
Eq. (3-2). However, we can approximate in the spirit of the Born-
Oppenheimer adiabatic approximation at this point. Since the ioniec
(lrigfl_) -3

motion is slow compared to the electron motion, i.e. 10 -,

v
we can freeze the ionic positions and solve for electroiiicstates, i.e.
Eq. (3-7). Then we can find the expectation value of the electronic
quantities in this particular ionic configuration. Finally, we can
average the expectation value over all possible positions of the ions
in the given configuration, and then over all possible configurations
to get the macroscopic expectation value. Applying this to the elec-
trical resistivity, the Kubo-Greenwood formula (Eq. (3-8)) is merely
modified by an extra average,

oi(ﬁz 2R ¢ Zazb('g‘g) S £V, Vi %2 (3-11)

el

where ( %;means an average over the ionic positions. We shall drop the
indices from the double average in what follows.

When Eq. (3-11) is applied to a liquid metal, we do not need
the configuration average. Then Eq. (3-11) is identical with the equation
used by Edwards.33 To be explicit, let us define the alloy electronic

spectral density matrices /? . /;, etc., following Edwards,

R(775e = <fza”)":{'ﬁ;7?'.:-~-fﬁ~) YT R Ra) SCEE)
E(E""l-l{w)_]_‘:}_dgﬂiz
&2, YA P W) S(E-E D)

(3-12)

n
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and
PR VIR L -’
/DZ[‘;:: J?-I} ?1;?;5 EHE).) = <<ZAZB ’4J0~ (r')‘#d(n) 4/‘7”") ‘Jlb(n)
S(Ei-Ea) SCE2-E)D | (3-13)

- Y
where Pc(Rl""’RN) is the distribution function of ionic positions
- -
(Rl,...,RN) in a particular ionic configuration, as indicated by the

index e¢. Explicitly, Pc is
¢ ¢’
¢ . - 2 -pE -PEy
’R =Z’l¢r{ku"bxu)’ c A"‘:."x' = ’ (3-1k)

(2
c
where ¢% is the eigenfunction of Hion with the eigen value Et’ in a

particular configuration c, so that

. 2,-..R 4>C_‘)-~_‘ = cfpc R s Re) .
Hiom (Roo == R @y Rir--u R = E, @p (R0 ko) (515)
Egs. (3-12) and (3-13) serve to define the double average explicitly.
They are also useful to ccnnect the gquantities of interest to us, i.e.
density of states and electrical conductivity, to the Green's function,

as follows.

The electronic density of states per atom is

/\(cm:—,i-,fal’r/",('r',?;e) : (3-16)

The electrical conductivity is related to /O2 by

ap_ amek’ _dE [ iy 77 NI RL 17
m fi
L=,
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Let us define a Green's function of complex argument z associated with H,

_ { _ l‘Pﬁ)‘(th
G= 2 - H _Za 2 - €a

) (3-18)

which is analytic everywhere except for a line of poles fg‘}, for large L
equivalent to a branch cut along the real energy axis,where the spectrum

of H lies.

Using the identity

— _—_jlv—;(——;LTTS(J‘), (3-19)

we can easily show that Eq. (3-16) is equivalent to

N(E) = 2= QT KGLEF 0L (3-20)

We can also rewrite Eq. (3-11) or Eq. (3-17) in the operator form

o8 Aneh 517{_0%} Trk PS5(-HPAS -1, (3-21)

M JLL

or, when the delta functions are expressed in terms of the Green's

function through Eqs. (3-18) and (3-19), C\ becomes

O = z-rre*fo( (- 47} 1,,,, s (1,1, (3-22)

where

Toepe (11 = 22 T PPL 9% p )+ Kps PAat)
kbt = eyopha], (323

with

K (2, p% 2:) 2 L G PXGeen)) . (3-24)
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In Eq. (3-23), "f'means ’li[o .

So far the formulae, Egs. (3-20) and (3-22) are still very
general, they can apply to any disordered system. Thus, to solve for
the density of states, we need to average the one electron Green's
function G; while for conductivity, we need, loosély speaking, an average
of the product of two Green's functions <<GG>>.

However, the conductivity formula Eq. (3-22) is only an approxi-
mation to the exact Kubo formula Eq. (3-2). It is valid whenever the
ionic motion can be treated classically, or, equivalently, when we can
neglect the non-commutation of the ionic momenta and positions. Thus,
it is valid to use Eq. (3-22) in liquid metals, and solid metals at high
temperatures.3h

Intuitively, we feel that Eq. (3-22) may still be a valid
approximation for a solid alloy at low temperatures so long as the col-

lision rate '/T of the electrons is much faster than the Debye frequency

(L% of the ionic motion, i.e.,

-,;—,- > Wy (3-25)
This means that the uncertainty in the electron energy is big compared
to the maximum phonon energy, so that the conservation of energy in the
scattering of one electron by a phonon is of little significance. Under
this circumstance we can approximate the phonons as "static scatters"

and treat the scattering as elastic as in Eq. (3-11).

B. A Survey.

As we have seen in the previous section, the averaged Green's

functions <<G>> and <<GG>> determine the electronic properties of
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interest in the alloy: the electronic density of states/A/(E) and the
electrical resistivity (\. Although there has been some contact between
experiment and some aspects of the theory, as reviewed extensively by

Mott35

» plausible approximation schemes for calculations in real dis-
ordered materials have not been worked out36’37, but are rapidly being
developed. In what follows, we shall survey the relevant areas of the -
field, and state our own problem and methods against this background.

In the averaging process, we must first know the ionic dis-
tribution function P_ in Eq. (3-14), the quantity that leads to the
temperature dependence of the density of states/Af(E) (Eqs. (3-16) and
(3-12)) and the conductivity O\ (Eq. (3-21)). 1In a completely disordered

system with no ionic correlations, <’Tl)2is the trivial uniform distri-

bution

!
(P> = (3-26)
In this case, there is no temperature variation in N(E), while the
temperature dependence of O\ is only characterized by the trivial Fermi
distribution factor (- %“_f,) in Eq. (3-21). This simply distribution is
not true even in the most disordered materials like liquid alloys or
amorphous material. The determination of the temperature coefficient
in A/ (E) and O, of these material relies on a genuine understanding of
Pc, which is always complicated. However, when the atomic potential is

33,38 39

weak, our Eqs. (3-17) or (3-21) can be reduced to the Faber-Ziman
type formula for the resistivity of liquid alloys. What we then need
is the structure factor, which can be found from neutron diffraction

experiments or can be calculated as in the work of Bathia and Thornton.ho
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In a crystalline alloy, the ions are restricted to vibrate around their
lattice sites. Then the ionic motion can be described in terms of normal
modes, or phonons. The average over lonic positions can be replaced by
a thermal average over the phonon distribution. 1In a static disordered
alloy, which is the most popular topic in the literature, the average is
simply the configuration average ¢ >c

More difficult than the determination of Pc is the computation
of the average in <<G>> and <<GG>>. The most trivial approximation to
<<G>> is the one corresponding to <<H>>, This sometimes results in a
rigid shift of the band, and then is called the "rigid band" model.hl
In the weak scattering limit, Edwards,hz starting from Eq. (3-17), summed
up certain diagrams in both the <G>C and <GG>C expansion series and was
able to rederive the usual conductivity formula (the one arrived at from
the Boltzmann equation). At low concentration, Langerh3 used the many
body thermodynamic Green's functionhh and a perturbation expansion to
get the conductivity to the first order in concentration. For strong
scattering, but localized potentials, Beebyhs neglected the statistical
correlation between the atomic scattering matrices in the multiple
scattering expansion of <G>c and summed up the series to get the so
called "average T matrix" approximation. This approximation produces
an unphysical band gap3 in the alloy density of states at all scattering
potential strengths. Later, Ba,llentineh6 used a self-consistent method
in the calculation of the band structure of liquid Al and Bi. This
"self-consistent virtual crystal" approximation (see Reference 3), in

contrast to the "averaged T matrix" approximation, gives no splitting
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of the alloy band no matter how big the potential strength is. The first
good theory to deal with alloys of arbitrary concentrations and scattering
strengths is the "Coherent Potential Approximation", or CPA for short.
This approach to <G>c was originated by Soven8 and was greatly extended

by Velicky et al.>. Velick379

further extended CPA to attack the problem
of electronic transport in a static alloy, and discussed the numerical
results for O\ in a model alloy.

So far, the CPA approximation is still the basic working appro-
ximation in the electronic theory of concentrated strong-scattering alloys.
It is also a powerful tool for other alloy properties. For example,
TaylorhTused the same technique for the lattice vibration problem in
alloys, and Onodera and Toyozawah8 applied the same approximation to
Frenkel excitons in mixed ionic crystals. Since we are going to use CPA
in our model calculation of the temperature dependence of/A[(E) and O\ in
a crystalline disordered alloy, the CPA formalism will be discussed in
detail in the sections that follow.

The more recent developments in the theory of <<G>> and <<GG>>
are either mathematical justifications, or generalizations of CPA. First,

49

Yonezawa carefully analyzed and generglized the expansion series in the
self-energy of <G>c' Excluding "multiple occupancy" of a site by more
than one atom, she concluded that the approximate self-energy obtainable
by summing all terms involving multiple scattering at the same site was
identical with the CPA result. Later, Ziman50 conjectured that for a
tight binding alloy, the "locator" expansion of Matsubara and Toyozawa51

was superior to the usual band propagator expansion and used it to arrive

at a different conclusion from CPA about the splitting of the band. But
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in a later paper Leathsz, using a diagram technique and taking into

' correction, showed that Ziman's idea

account the "multiple occupancy'
was not correct. Furthermore, he also showed that the diagrams of

Lo L3 31 " ;
Edwards ~, Langer ~,and Verboven™ ,when properly corrected for "multiple

9

occupancy", led to Velicky's®’ CPA electrical conductivity result. In

an attempt to improve CPA by including random off-diagonal (hopping)
53

matrix elements, Berk”™ restricted himself to the weak-~scattering limit,
to avoid the difficulty of the strong-scattering problem. His work is
essentially a different version of the "self-consistent virtual crystal"
approximation. An attempt at the same problem was made by Edwards and
Loveluck.Sh They used an elaborate diagram method and summed up a large
number of diagrams. But their result for the density of states still
exhibits the unphysical "average T matrix" band gaps. They also con-
cluded that the self-consistent method was too complicated for their case.
The most substantial generalization of CPA, namely CPn, was

55

recently developed by Freed and Cohen. They generalized the coherent
potential theory from the single-site approximation to n~atom clusters.
The cluster Green's function Gn (in their notation) is self-consistently
determined in a way similar tow<G>c in CPA but more involved. However,
they showed that uniformly averaging a finite cluster Green's function

to get the translational invariant alloy Green's function could not
produce a different result from CPA. In order to get nontrivial results,
one should go through a subtle averaging process, called ECPH (extended

CPg.approximation). The simplest version of ECPn is Kohn's notion of

periodically compact disordered clusters.56 The most important results
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of CPT is the demonstration of the existence of localized states (bound
states), outside the CPA band, and in the regions obeying the localiza-
tion theorem.78
Several interesting uses of CPA have appeared in the literature.
CPA has not been restricted to the tight binding approximation. In an

ST

early, different version of CPA, Anderson and McMillan”' used a self-
consistent equation for the phase-shift to calculate the band structure
of liquid iron. Using a similar method, Soven58 has applied CPA to a
muffin tin potential and has been able to deal with an alloy with
constituents of different band-widths. CPA also serves as an approximate
quantitative scheme. It has been used to yield the density of states

4,5

in Cu-Ni alloys. It was also applied to the magnetic properties

°9

of Cu-Ni alloys. Velicky and Levin60 have also used CPA to discuss
intraband optical constants in a simple tight binding band. Recently
Levin and Ehrenreich6 applied CPA along with a model Hamiltonian for
Ag~Au alloys. By adjusting a concentration dependent d-level energy,
they could make the concentration dependence of the optical absorption
edge agree with experiment.

From this review, it can be seen that the self-consistent
Green's function approach to the alloy problem, with CPA as the basic
approximation, has been fruitful. Although CPZ should give better answers
than CPA, at present, when even a model description of CPFh has yet to be
developed, and the CPn two Green's function average has not even been

discussed in the literature, CPA is the only simple and practical method

to use in an investigation of the temperature variation trends of,ﬂ/kE)
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and O\ in a concentrated, strong-scattering alloy. It is expected,

however, that the method developed below can be generalized to CPn.

C. The Coherent Potential Approximation

Henceforth, we shall consider only crystalline disordered
substitutional binary alloys. Let x and y be the fractional concentra-
tions of the constituent A atoms and B atoms respectively, so that x
is the probability of an A atom occupying a given site. The one-electron

Hamiltonian H in Eq. (3-6) takes the form

H=Ho+u=H°+Znuﬂm (3-27)

where HO is the periodic part of H, and U contains the randomness due
to both substitutional and thermal disorder. Un is the contribution of
the n-th site to U. The decomposition in Eq. (3-27) is not unique.
However, a convenient decomposition can always be chosen for a given
system.

Our object is to determine <<G>> and <<GG>>. Here the double
average is a thermal average over the phonon ensemble in a given con-
figuration, followed by an average over all configurations. The coherent
potential approximation (CPA) is a technique for finding a self-consistent
solution for the average Green's function. The method61 is outlined below.

The average Green's function can be expressed as

) 1
(¥ = = = -
(6 =& =———3 . (3-28)

This defines 2: » the self-energy operator, which has the full crystal

= A
symmetry since G does. Thus 2 represents an effective potential for



ko

the averaged crystal. Expressing G from Eq. (3-~18) in terms of G yields:

G=E+——6‘=TG) (3-29)

where

T:(U_b[h?(u-%)] =[1—(U—§EJEJ“(U-2¢)
. . = (3-30)
= (U-2)+(u-2)CT .

Now taking the average on both sides of Eq. (3-29), we get

G = G + GLTYG (3-31)

which is solved by

£Ti5Hw=0. (3-32)

This, as can be seen from Egs. (3-28) and (3-30), is the self-consistent

A A
equation which must be solved for Z . Z can be expressed as a sum of
A
self enzrgy operators Zn R
- A
2 = Z,,Z- ) (3-33)

A
The choice of the operators Zn is not unique, the only restriction is

that the sum over in's must add to the operator ﬁ which has the
symmetry of the pure crystal. A particular choice will be useful such
that each in is localized near its site n and places an equal contribu-
tion on each site.

Since the potential U is a sum of contributions from each

site, i.e. U = Z Un’ the scattering operator T can be expressed as
n

(3-3k4)

T=5. Q. =1, Q. ,

with
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Q.)

=Tn+2 TalTm+) TaGT,2 6 To +-o , (3-35)

mitn)

@m =(U.,-§.J(|+(=5T)=T..(n+? 2

mEF ) 4 1) A dm
and
—~ ==
S~ - A
Q.= (1+TE)Un-TH=(1+ 2. Q.6)T,
& = > (3-36)
= TH+Z T‘"GTn +Z T;GZTMG'n+"".-
mitnj £ (Em m it n)
The atomic scattering operator Tn is defined as:
A = -1
T. = (U-30[1-G(u.-20)
(3-37)

- (Uh—gh) + ( U...—f'..)g_rh

In multiple scattering language, Qn’ as seen from Egs. (3-3§) and (3-35)
represents the contribution to the total scattering such that the last
scattering happens at site n; while Qn represents the contribution to T
such that the first scattering is at site n. In terms of the Tn's, the
scattering operator T has the customary form:

T=2T+L TET+2 TCTET +-

(nEm, mEl)
The ensemble average of Eq. (3-34) along with Eq. (3-32) is:

£TH» =0=3 «QY. (3-39)
But from Eq. (3-35) we have
QY =LTnl1+ @ZM”,Q,’ . (3-40)

A
The coherent potential approximation for ZE consists of two ingredients:
A
(i) there exists a decomposition of § as in Eq. (3~33) such that we can

neglect the statistical correlation between the atomic T matrix Tn and
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the effective waves coming from other sites, i.e.

QY =& T (1+ G D L*gg,.,)»

(3-b1)
ZKTY 1+ 8 2 &R.»).
This is a "single site approximation'.
(ii) 2, satisfies
«Tv\(i))> =0, (3-h2)

Eq. (3-h42) is the CPA equation for j% , which entirely determines G(z)
and thus the density of states//V((E).
For the electrical conductivity, we have to determine the
operator K as defined in Eq. (3-24). Substituting G into K from the
(3-29), and using the CP equation, Eq. (3-32), we can reduce K to

the form

ol = -
K(‘Z-) P ,‘21) = G (2 [ P.L"" }_,( 21 ;P“) z-z)J Eli"‘;) ) (3-)43)
where the vertex operator T" is given by

,/l[’&‘l/ F‘, 22) = <( T(a.)g(&) F'L 2(5:) T[i‘z) >>. (3-kl)

The vertex operator r’ may then be rewritten as the sum of contribution
from all sites by using Eq. (3-34) for T and Eqs. (3-35) and (3-36) for

~/
Qn and Qn respectively,

F=37%.«Q.5 pEa.
=22 4T (|+§Z p)GPG (1) QG)'[;))

S (¥m)

(3-45)
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CPA for K has a further single site approximation in addition to Eq. (3-k41),
i.e.
— = ol = o~ =
UTn(1+62 QIGPEUI+2 B 6)TD
[T} S$CEm)
- - ~ = (3-16)
LT K (1462 G P6 U +3. 8,509 Tm Y,
which is zero for n # m, since Tn and TIn are then independent, and each

averages to zero, by Eq. (3-42). Thus we arrive at the following result

KOG P'GAY = «QWE P ERY S
2 7 Sum

(3-L7)

This, in two resolvent language, means that we have neglected all the
statistical correlations between two particles unless they are scattered
at the same site. In other words, we have neglected the statistical
correlation between the scattered waves from two different sites.

Using Egs. (3-35), (3-36) and (3-46) we find

]—: = <<@h_é P‘E au»
S’ Th&(1+G6 2 @p)éf’“é(wzsgfé)»n»

F{#")

=K T,LG PG + E(ch4<..<,afa PG, e» T

(3-48)

=LTG P 2,17 )6 To D

In Eq. (3-48) we have used the CPA results LKa,» = <ZE§15§ = 0.
Combine Egs. (3-43), (3-45), (3-47), and (3-48) to obtain the

closed equations for K,

K=Z(p*+3 D)8, (5-49)
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and
which yield the formal solution for rq :

T"=Zh« T..E'P"ET..)) + Z ((T..E«Tmz P'l(-;,: TN T +---

he™
{nkm)

(3-51)

Egs. (3-49) and (3-50) complete the CPA formalism. They are still
formidable. We have to obtain the self-energy from Eq. (3-42) in order

to get E, then try to sum the series in Eq. (3-51) to get [~ , and finally
insert [ into Eq. (3-43) to find XK. In the next section a simple band
model Hamiltonian will be used to reduce the operator equations to simple

scalar equations.

D. Model Calculation

1. Simple Band Model
We shall use the simplest possible model electron Hamiltonian

that includes both substitutional impurities and thermal disorder,

H=H. + D"’O: (3-52)

where

7

He = Z,w In> £l (3-53)

represents the part of the Hamiltonian off-diagonal in site indices, and
the tnm are assumed to be periodic, and independent of alloying and lattice

distortion,

D=) Iny&.<nl (3-54)
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represents the "impurity" Hamiltonian with En either E’A or £B,

according to whether an A or B atom is on site n, and

O =3 1n>06,<n (3-55)

is the electron phonon interation. The phonon operator, Gn depends

on which ion occupies site n and on the phonon coordinates. This model

is a generalization of the Koster-Slater one impurity case, and is identi-
cal with the model exploited by Velicky et al?, with the addition of the
phonon contribution.

A few words are appropriate here about some assumptions, defi-
nitions, and redefinitions that we are making. Some of the problems
about which we shall be speaking are already present in the Koster-
Slater case, although they are customarily (and unnecessarily) ignored.
The heart of the problem is the definition of the site basis, and im-
plications of the choice. Let us take |[n) to be an atomic or Wannier
function centered at-ﬁg. Following the convenient custom, we pretend
that the [n are not only very localized, as are atomic wave functions,
but also orthogonal, as are Wannier functions. In other words, we assume
that the difference between Wannier and atomic wave functions can be neg-
lected, as is true in a good tight binding case. Now usually, in an
exposition of the Koster-Slater model, the |n> are all taken to be
one type of wave function, e.g. pure A crystal Wannier functions assoc-
iated with a single atomic orbital, but this is highly unphysical - the
true wave function can not generally be approximated well on such a
basis, without multiplying the number of bands +taken i1nto

account. Therefore, let us initially take |[n» to be InA? or |nﬁ> ’
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the state appropriate to the type of atom at n s |r1>»being centered
on the actual position-ﬁn, rather than the official lattice position-ﬁg.
We assume that the tails of the atomic basis are almost the same, so

that we can neglect differences in the off-diagonal matrix elements of
energy and momentum, tnm and'ggm, and assume them to be independent of
alloying. The phonon contribution is restricted to be diagonal only for
the resulting mathematical convenience in the CPA formalism.

Now let us redefine our point of view or notation. Using the
basis described above, for a particular configuration let us convert all
operators, such as G, K, etc., into matrices, and regard all the CPA
equations as matrix equations. Equivalently, we could turn these
matrices into operators by using an abstract periodiec basis. The final
results will not be affected, of course, but some very clumsy notation
and language is being avoided, without pretending that Schrodinger's
equation is insensitive to the potential (the literal use of one type
of [n) ).

Let us apply the CPA formulation of the previous section to
the simple band model. In the "mock periodic" crystal described by
HO, the Green's function is
G.(2) = 1 =Z 172><EI
0 T2 — H. H. 3 2-ekh) / (3-56)

-l
where the [k D> are the "mock Bloch states” of H, defined by

- ) ﬂ"ia
4> = \T:v—"znel In> ,

with energy G(?) given by the usual expression
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€C£)=Zh L fno)

‘J -
and k is the usual wave vector in +the Brillouin =zone associated
with the static crystal lattice. The Wannier or atomic states |[nd of

the site basis are then related to the "mock Bloch states" by

’LI Rn
Imdy = Z—a l£>, (3-57)

Since the site-diagonal matrix elements of GO are site-

independent, i.e.

Fol2) =dn| G (2 n) = Lol .21 10D
(3-58)

u

Z‘ -2' E(R) )

the pure crystal density of states per atom, according to Eq. (3-20) »

O’
is
' -
N, (E) = i‘ﬁ“@mFo“f”)_ (3-59)
Another useful relation between FO and 0° obtainable from Eq. (3-58),
is
Ncl:)
Fo (2) :fo(E — . (3-60)

The averaged finite-temperature alloy described by G(z) has the full

crystal symmetry. Thus, corresponding to Eq. (3-58),we can define

l
=Sk - (3-61)

= G =
F(2) = (ol G(2r]od>= NZ'{ 2 - €¢(
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Here we have used Eq. (3-28) and the general periodic property of the

self-energy,

»r

>t =Z,{ ]702(%:1)(7;1. (3-62)

In the coherent potential approximation we obtain the self-
energy from the solution of Eq. (3-42). A scalar solution for 2 can
be found, so that the self-energy is a sum of site contributions, i.e.
A
J, = InyZ<nl, (3-63)
Thus, Tn (Eq. (3-37)) is site diagonal, and the operator equation,

Eq. (3-42), becomes the scalar equation

En t B0 — 2 _ (3-64)
\ :-ca+e.,-z)F>>'O '

This equation for ¥ reduces to Eq. (4-22) of reference 3, if §,—»0 ,
i.e. in the static alloy. However, in the static alloy the equation
for 3 is merely algebraic, whereas here, with phonons included, it is
an integral equation.

Once we obtain § from Eq. (3-64), we can obtain F from

Eq. (3-61), in terms of F, (see Eq. (3-58)),

Fiey = Foez-g2), (3-65)

since 3 is independent of X. The density of states per atom )V/(E) is

then, from Eqs. (3-20) and (3-61),

NEY =+ — 9m F (ETi0) | (3-66)



58

To obtain an expression for the conductivity, we first prove that the

vertex correction r' in Eq. (3-51) vanishes. Each term in the series
. . = %= . . .

expansion, Eq. (3-51), contains a factor T,,‘G ’P G Tm Since Tn is site

diagonal, r =0, if (nlz 77"‘6:— In) = 0. But we have

ol =
= 4= | -m U (k)
nl GInd> =/ <= (3-67)
< GP Zk N (2’_6(1)_2)(-&1—61'{)—2) ?

LN
where (k) is the ol component of the velocity, defined by

-—

ViR = ;‘;Uzlf“t?), (3-68)

Time reversal symmetry gives the relations

U’L("-i) - - 'U""‘(Z) , (3—69)
and
€-k) = %), (3-70)

Therefore, the summation in Eq. (3-67) vanishes identically. Thus,from

Eq’ (3—h9)9
K = 6 PG . (3-71)

Combining Eqs. (3-22), (3-23), (3-68), and (3-T1), and defining g(X,z) as

|
2 —€ed)—3w ’ (3-72)

?(I)i) = [z’ E(f)“z):

the conductivity becomes

o%f 2e’1'~fd7 (- %)Z? Vi vib [ 9m ?[?'74)]? (3-73)

w0




59

Or, following Velick_{r,62 we have the alternate form
aB _ ae'k j' df / An) 2
o = dn (- d Y
T 1) )0 [ [7-s-Acpl* + Az‘7’] (3-74)
"Tii ZZ v vk S5 - ed) ,

where 'Qc is the volume per atom and A and A are defined from the self-

energy > ,

Ay = e T (74i0) (3-75)
and

AU = | G T (72i0)] (3-76)

We have now set down the expressions for the model Hamiltonian
conductivity and density of states. In the next section, we shall dis-
cuss the phonon system and the phonon averaging process in the self-

energy equation, Eq. (3-6L).

2. Electron-Phonon Interaction and Distribution Function for Qn.

In the harmonic approximation, the atomic motion of the alloy

in a given configuration can be described by the Hamiltonian

3

N
+
hws (Ve + by by) (3-77)
§=

HP,,‘ -
+

where bS and bs are the creation and destruction operators for a phonon

in states, with frequency ws' However, in a concentrated alloy, the

phonon quantum number s can no longer be identified with the crystal

momentum. The electron-phonon interaction, which does not conserve



60

crystal momentum, is represented in our model (Eq. (3-55)) by the local

Hamiltonian

HeF = 6 = Zh Ind 9n<"|, (3-78)

We make the standard, excellent approximation

e“ = Zs [Ystn) ‘95 -+ 'X:(n) bj]/ (3-79)

where Xs(n) is the probability amplitude for an electron at the n'th

site to absorb a phonon with gquantum number s. Notice that TKS(n),

bs, and Gn are configuration dependent. DNotice also that since On is

an operator, the self-consistent equation, Eq. (3-64), is a phonon op-

erator equation. However, we can reduce it to a scalar form, as follows.
The phonon average of any function f( en) of the operator

6is

n

<')[(6n)>F = T'F“ [ﬁ,,‘ -f(é),.;] , (3-80)
where

g~ FH

lop;\ = T 1 e"SHr"] ’ (3-81)

and the trace is over all states of the lattice motion. The average

< o( Gn) >P can also be written in terms of the probability distribu-

tion Pn( 7 } as

4 7('(8»)>P =f fo Boop dy (3-82)
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where Pn( ‘7) is defined in terms of its characteristic function SDH(X),

. Xy
Pacm) = —;;,]dxe @, X)), (3-83)

which in turn is defined as

Pn (X = Trm-[fph e ™). (3-8)

Explicitly, the characteristic function is

-B2 kw0 % +b] bs) [;(Z(z(,mbs-*ﬁmbj)
P, (x) = Ty S - = ’]
" ph WF“[ C ‘/3'2_, Fws( a+ b; b_,JJ
X ( Yeemr bs + Loms bY)
= T[T p) (g B )]

(3-85)
_ . ( X '6V_;(n)
Tulimp)(Te ))
- (X W] _ ()
“‘U[T"Pkﬂe "] = T e ).
In the above expression, we have defined
1 o
‘ — Ya+ s )
f5 = €~ﬁij+b’ " 2. e fhon e (3-86)
"s'—" )
and
+
T;V;(h) = Xs(n) bs + '{;‘Ln) bs » (3-87)

and have used the commutation relation

(3-88)
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N
Note qJéS)(7() is the characteristic function of TN;(n), which is
essentially the displacement of a one-dimensional quantum oscillator,

so that we can use the standard result

i ) _, 2
) -gedn X7, (3-89)

90,,(76)= e
where

(s)

2 !
A, = | 'O/S{ml ca«ﬂ\(‘iﬁ'kws), (3-90)

Thus, in view of Eqs. (3-80), (3-89) and (3-90), spn()() becomes

. 2
q)h(x)z e-r‘u%) (3-91)
where
(s7 2
An = ZS A = 2 [Tyoml coth (3 phws). (3-92)

Note that Ciés) is proportional to the Debye-Waller factor times the
square of the electron-phonon coupling constant. Since the character-
istic function an()ﬁ) is a Gaussian, its Fourier transform, the distri-

bution function, is a Gaussian too. Thus the distribution function is

2
o -0 /2dn (3-93)
vz e

Applying Egs. (3-82) and (3-93) to the self-consistent equation, Eq. (3-64),

we have a scalar integral equation for EE )

, —1*/24n €.+71-2 =0, (3-94)
Jti <z 0 (=
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Let us define a local distribution PA(TI), which is the average
of Pn( ‘7) over all configurations with an A atom at the n'th site, and

define PB("?) similarly. Then Eg. (3-94) becomes more explicit,

f“{’lfxﬂ"l’(' Eor1 % )‘*?Pa“?’(,s““’_z )] =0 (395

—(fa+7-2)F - (£ +7-2)F

The equation for Z thus depends on the pure crystal density of states
and the distribution function. In the next section we shall further
simplify the model in order to get a qualitative idea of the tempera-

ture dependence of density of states and the conductivity.

3. Mcdel Density of States, Velocity Dispersion and Local Distribution

Functions.

Let us first review the procedure for calculating the self-
energy 3 , the density of states/( , and the conductivity O\ , and then
describe some model functions that we have actually used in our computa-
tions.

To calculate the self-energy Z , we need to
(i) obtain Fo(z) from the dispersion relation & (k), using Eq. (3-58),
or from the pure crystal density of states /\/O(E), using Eq. (3-60);
(ii) Express F as a function of § by Eq. (3-65);

(iii) Specify the electron-phonon parameter ’{S(n), then get a(n from
Eq. (3-92). Perform the configuration average on Pn( '7) to get PA(7 )
and PB()', ).

(iv) Solve the integral equation, Eq. (3-95) for § . Once the self-

energy is obtained, we compute the density of states j\/(E) from Eq. (3-66).
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To compute the conductivity, we assume a cubic lattice, so that

the averaged conductivity is isotropic,

o = o~ Saup (3-96)

where, according to Eq. (3-Th),

_ a2¢et _Af { A7) 12
o = _:!T_ﬁc.fd”( 47)/”(:[0]—?-/1(7))2-{- A‘t”)

(3-97)
2
T\"/Z;'BL Vb J(I-ecz))] .
If we define the velocity dispersion Y(€)by
ey = L 2 - (3-98)
viee) = Z’C Vik) Sce~ &k //\/o(e) .
then
2 2 2
et (
O\ = E—Hfd’lf'%ﬁ)fdf VeI Nots) A 7)2 5 (3-99)
T 1 [p-3-A00* + A%p]*

Since we are investigating the general trends, it is neither convenient
nor profitable to start our calculation from a detailed & (k) and
2
]/s(n). Instead we shall use simple model forms for ‘/V;(E), Ve,
and local distributions P, and P_ as follows.

A B

For pure crystal density of states, we have adopted the Hu.bbard65

ellipse model,

2 1< |
— - E? ) lEI L

Noeer={ ™Y (3-100)
0 J [El >} )

where the energy unit is a half-bandwidth. This model is essentially

an approximation to a simple cubic tight-binding s band density of
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states. It also behaves like a free electron density of states around
the bottom of the band. This is a model that has been used extensively
in calculations of electronic properties in alloys.3

Corresponding to Eq. (3-100), we have

Fo(2) = 22-2Vz2-1Jz2+1 , (3-101)
so that
F(2) = Fo(2-2)= 2(2-Z) - 2 yz-or-1 Jea-s)+! . (3-102)

The simplest form for the local distribution functions PA and PB can be

obtained by assuming that the electron-phonon interaction is independent

of configurations,

! "71/2al
P (n) = P = (3-103)
a1 8 (7) V 211 & ¢ )

Instead, and intuitively more attractive, we take

_ | -1/ 24,6
PA:B (7) - \/——-32—1-;:2— -

AB /
which could, for example, be obtained by taking a typical term in the

(3-10L4)

configuration average leading to PA and PB. The input parameters G‘A
and C(B are linear in temperature at high temperatures. (see Eq. (3-92)).
2
The spectrum & (%), and therefore V (E) ,cannot be uniquely

derived from ,A/;(E). Following Velickjg, we chose the form

vie) = 'U',: (1-€) (3-105)

which corresponds well with our model /A/B(E), and with the simple band



66

structure we just mentioned. Here 'l/"m is the maximum velocity in the

band. Combining Egs. (3-99), (3-100) and (3-105), we obtain

1 ! a3, 2
o 2eh (2 g /d (- 4f [ (=507 4 1) (3-106)
O\ - ‘1T~ﬂ—c (3.” V") 7 d7) —'df [(7—3_/1‘7”1_‘_ AZ(;’)JZ-

For later convenience, let us define a function i('] ) by

! 2
Al7)
= -tH [ ;J 3-107)
or, after integration (see Appendix B),
T N3(7) 6 Aly) J
(n) = | + —2 21 (3-108)
i 7) [6 A (7) [ 7N .

For a metal alloy, 'é{ is a sharply peaked function of at = & ,and
ar T 1%

we can then express O\ in the usual approximation,

et , 2w tpl RS
= 288035 [t Bt a0 )

Since o‘f[»})is a smooth function of -)Z except at the singular
points of the density of states, terms involving of’éé,;) and higher
derivatives are small compared to af(éF) and may be neglected. Thus, if

eF is not too close to a band edge, or other singularity, it is
sufficient to keep only the first term in the expansion of Eq. (3-109),

so the conductivity becomes

. w2 SR y A(E)
O = /\(cer) [ |+ 6 ¥ J (3-110)

{2 "n-c A (GF) -"/\/(G'F)
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The temperature dependence of the density of states and the
conductivity can now be investigated. The details and results of numeri-
cal calculation will be presented in the next section. However, a quicker
understanding of some features of this theory can be obtained by in-
vestigating the weak scattering limit. This topic is treated in

Appendix C.
4, Calculational Procedures.

Let us review the input parameters needed for the computation.
For a binary alloy AxBy at finite temperature T, x and y are the con-~
centrations of A and B atoms, EA and EB are the strengths of static
random potentials around A and B atoms respectively, and, olA and O(B
are the electron-phonon interaction parameters which are linear in tempera-
ture at high temperatures. Indeed, O‘A and O(B can be thought of as
the mean square of the thermal fluctuation in the atomic potential

strengths £A and SB respectively. It is convenient to define the

origin of energy and a scattering strength S by
L
gA = 2 S
£s =-45 .

Here all the energies are in units of the half-bandwidth.

(3-111)

To solve for 3 from the integral equation,Eq. (3-95), it is
convenient to express it in a different form which is useful for

iteration,

L= << £at B >/ & - : »/ (3-112)

I =(€at+@n-3)F I =CEn+0n-2)F



68

which can be simplified further, to

l
=2-2F - | ». (3-113)
2 % b & 2 —(Ea+0.)~%F >

In deriving Eq. (3-113), we have used Eq. (3~102), which can be rewritten
as

2 =2- F@ ~ z Fe) (3-11k)
The iteration procedure is as follows. Start with some appropriate F,
compute § from Eq. (3-113), which provides a new F from Eq. (3-102),
and so on.

The convergence of X depends on a good choice for the initial
F. Notice that F is the site diagonal matrix element of a translationally
invariant Green's function. In iterating, good convergence tends to
depend on starting out close to the final answer. Since the phonons
usually have a small effect compared with the alloying, the best initial

(O). The speed

trial value to use for F is generally the static alloy F
of convergence also depends on the energy. There is always better con-
vergence at the band center than at the band edges. So, in the actual

(0) (to be discussed shortly),

computation, we solve for the static alloy F
then we start iterating at an energy corresponding to the peak of the
static density of states, iterating Eq. (3-113) to get the temperature
dependent self-energy § at that energy. Then we use this 3 ., or the
corresponding F as the initial value for a neighboring energy, and con-
tinue this procedure to the tails of the band. In the case of split
bands, we carry out the procedure for each subband separately. The self-

(0)

energy 2f°) and the corresponding F of the static alloy have been



69

discussed in detail in Ref. 3. Here we only quote the results of Ref. 3
whenever they are needed for our computation. It is convenient to solve

(0)

for F , which satisfies a cubic equation,

leF(o)S__é_aFuni_l_ [et__"‘q_(s'l_',]F(or__ (2+-é:) =0 , (3-115)

where € is the averaged energy XEy+3 €. When Eq. (3-115) is solved
for a real energy z = E in the band, there are three roots. We only
choose the correct root corresponding to E = E + io, i.e., the imaginary

(0)

part of F must be negative in order to give a positive density of
states (see Eq. (3-66).
In the process of iteration in Eq. (3-113), we always encounter

the following average:

' — »
2= (£, t0m-%F

L Ly (3-116)
=/d[ xe')/lv‘n , ye7/2"]
T Vamdy ( 2 - Ea-1-ZF)  Vamdg ( 2-&g-7-4F)
-t
=jd-£ e X " ¢ ]
e 2~ &a-J2dy t -5F 2~ &g -[2dgt-3FJ
In other words, we have to carry out the integral
-t?
e
Wi(2,,s) ‘-—'[df , (3-117)
Zpog-t
where
o —t—— _ )
Z25.8 \/Tz—o-ag ( 2 éa.8 4F) . (3-118)

Since, for a real energy z = E in the band, F will have a negative ima-

inary part, we have

9/m o8 >0 . (3-119)
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Except for a constant, the integral in Eq. (3-117), is a complex error
function. A discussion of this function and the tabulated values for
certain ranges of the argument are given in Ref. 66. In the actual
calculation, we used the series expansion67 for |Re ZA,§| < 2.8 and
| 9m Zas8] € 1-4 ,vhile outside this range we used the ten point Gaussian
Hermite quadrature formula.80 The convergence for most cases is very
fast.

Once the self-energies inside the bands are obtained, F
follows immediately, yielding in its turn the density of states from
Eq. (3-66). It is then easy to obtain the conductivity as a function of
the Fermi energy, since we have expressed the conductivity in terms of
the density of states and self-energy. (see Eq. (3-110)). But if we
want the conductivity as a function of temperature, we have to calculate
the Fermi level at each temperature. This can be done by solving for

< 7 in

00 é%
c=2[ de feorNeer = 2 | e de (3-120)

where ¢ is the average number of electrons per alloy atom and is given by

C =xCht JCg (3-121)

Here CA and CB are numbers of electrons per atom for pure A and B

crystals.
5. Results of the Numerical Calculations and Discussion

Because we do not have a definite alloy in mind, all the param-

eters are free to vary for different alloys. We shall only pick some
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representative values for each parameter for numerical illustrations.
However, an understanding of salient features of these examples should
give some insight into the nature of the model.

In Fig. III(a) to ITI(c), the self-energy is plotted as a
function of energy. Each figure represents an alloy with a definite
concentration x and scattering strength § but af two different tempera-
tures. The solid line represents the static alloy while the dashed line
stands for the alloy at T # 0. Fig. ITI(a) represents an alloy in the
virtual crystal limit, in which x = 0.1, § = 0.5. We shall refer to a
situation as having "virtual crystal" character when § is small, and §
relatively slowly varying, (so that perturbation theory is reasonable).
The scattering nature of the static alloy is characterized by the a hump
of & at the top of the band. When thermal disorder is introduced, A
increases in the whole range of energy inside the band. But the increase
of AA in the lower energy part of the band is greater than that arduhdlthe
hump of the static A . The real part of the self-energy A , of the
static alloy is almost a constant in the lower part of the band, but has
interesting structure in the "impurity" part of the band. The thermal
disorder affects the "host" part and "impurity" part equally, so that
we have a shift of the spectrum from the center of each component bands
to both wings. This is reflected in the change of A . As we go from
the lower energy region up to higher energy, we have a negative change in

A then a positive change, then the change in A tends to become
negative when we enter the impurity part, and finally positive at the

very top of the band. In Fig. III(b), where x = 0.5, § = 0.8,the alloy
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FPigure III. The real part (/\) and the absolute value of the imaginary
part (D) of the self-energy for the static alloy (solid line)
and the alloy at a finite temperature (dashed line) character-
ized by o(A = olB = ok = 0,015. The three figures are
for three alloys with (a) X = 0.1, § = 0.5; (b) & = 0.5,

S =0.8; and (¢) X =0.1, §=1.0.
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is concentrated, and the scattering strength is moderately big. The
static alloy A has a very sharp peak at the center of the band where the
impurity scattering is most effective. The thermal disorder causes a
positive change 1in both wings of the band and a negative change at the
center. The decrease in A happens at the energies corresponding to the
strongest damping in the static alloy. As will be clear from our later
discussion of J , this implies that the highly scattered electrons in
the warm alloy at these energies are in more nearly Bloch-like wave-~
functions. The change in A has the same general character as in the
first case discussed, and here again it shows the tendency towards a
spreading of the spectrum. In Fig. III(e), x = 0.1, § = 1.0, the static
alloy band is split. The static alloy is characterized by a virtual
crystal A in the host subband, and a very high LS in the impurity sub-
band strongly peaked near the band gap. As expected from previous two
cases, the thermal disorder increases A in the virtual crystal region,
but decreases A at energies of very high damping. Since the static band
is already split, the shift of the energy spectrum for each subband
causes a stretching of the band.

The density of states as a function of temperature for the alloys
of Fig. III are shown in Fig, IV. Several values of the temperature
parameter f are represented in each plot. There is no visible structure
in the density of states in Fig. IV(a), and increasing the temperature
only stretches the band and smears its edges. Fig. IV(b) shows that the
dip in the static density of states in gradually filled and disappears.

The same long band tails appear for big values of X . In Fig. IV(c),
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Figure IV. Density of states M(E) at five temperatures characterized
by o = 0.0, 0.0075, 0.015, 0.05 and 0.1, and atA = o=l
The three figures are for three alloys with (a) X = 0.1,

§=0.5 (b) X=0.58§= 0.8 and (c) X=0.1, &= 1.0.
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we start with a split static alloy band. But the band gap is very small,
so the thermal fluctuation in the energy can easily close the band gap,
and £ill it up completely for big el values. The electron-phonon inter-
action, of course, can cause different fluctuations in the scattering
strengths for A stoms and B atoms, so that olA # a‘B. Fig. V shows the
plots corresponding to those in IV(b) and III(b). The only difference is
that ckA is set to be four times as big as olB, i.e. C{A/ O‘B =1
and CiB = ok . The effect on the self-energy is a bigger change in both
D and /\ in the upper part of the band, with Z_ in the lower part being
almost like that in Fig. III(b). Similarly, the density of states is no
longer symmetric, the upper energy part being stretched more than the
lower energy part.

These results can be better visualized through the study of
component densities of states. The self-consistent equation, Egq. (3-113),
for :E can be rewritten as a simpler expression for F by using the equality
in Eq. (3-114),
F =4 ' »

- I

Z ~(&.+0n)-%F (3-122)
X s
=fd7 PA"” Z”E—A'q‘ﬂlﬂ: + ‘/JV 13517) '2"83"7""4",: .

The quantities

' (3-123)
z- EAIB-'I —’#F

have a special meaning. F%‘q’%) means the diagonal matrix element of a

FA.B(.’['%)E

restricted-averaged Green's function at the site zero. The restriction

is that an A atom is definitely at site zero with a "phonon level shift 7 .
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(a) The self-energy for the alloy with A = 0.5, §= 0.8

and D(A = OLB = b o{ at two temperatures characterized
by ol = 0.0 (solid line) and ol = 0.015 (dashed line). (b) The
density of states for the same alloy at four temperatures

characterized by o{ = 0.0, 0.0075, 0.015 and 0.05.
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In the CPn language, this corresponds to a one atom cluster, i.e.
CPi"(A, 1 ). We are simply using the Green's function of a crystal
characterized by the level EA + "l at site zero, and by ZCPA at all

other sites, i.e.

Fatg,2)= <ol[&—Ho- f—(w)&+7<ol)+(lo>2<0)]‘ 10

F(e> ] (3-124)

|- CE+7M-2)F + ~&-7-Z
|
284 -7-%F

If we take the imaginary part of both sides of Eq. (3-124),and relate

InF to the density of states AN (E) through Eq. (3-66), we have

Ne) =/417f X Paey 1/Ac7,:) +4 Paty) 1/517»15)] (3-125)
J

where le

CB"’»E) are "local density of states" and are defined by

2

‘/A’E (Y'E) = - "—;—T q»« FA:B (7; Etio) (3-126)

Or, after integration, Eq. (3-125) may be rewritten, in terms of what

will be called "component densities of states", as

NE) = X N> + 7/\/3(5). (3-127)

Thus, the total density of states is the Sum of the component densities
of states /\/A(E) and /VB(E) weighted by their concentrations. The com~

ponent density of states M-\ B(E) at finite temperature differs from the
>
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)

corresponding static component density of states//vfg?B(E) by a smearing
due to thermal fluctuations. The systematic changing of_/“/;,B(E) as a
function of the temperature parameter o is shown in Fig. VI,

Note that in one special case, the algebra of our model forces
g very simple kind of behavior. In a 50-50 alloy, with O(A = GK:B, /\
should be antisymmetric and A symmetric in E. At the center of the
band (E = 0), ,A('and A vwill always go oppositely with a change of tem-
perature, /Af’increasing when A decreases, and vice~versa. This can be

seen from the relation between /\f and Z

N(E) = -—L de /\/0(6) AE) (3-128)
i (E-AB)-€)* + a*E)

which is a combination of Eqs. (3-60), (3-65) and (3-66).

Turning to the conductivity, once the density of states and
the imaginary part of the self-energy are known, the conductivity as a
function of the Fermi level is easily obtained from Eq. (3-110). Figs.
VII(a)-(c) are the corresponding conductivity for alloys with the same
parameters as shown in Figs. IV(a)-(c), while Fig. VII(d) is the one
corresponding to Fig. V(b). In the virtual crystal (i.e. Figs. VII(a) and
IV(a)), the change in density of states for small o{ is not visible, but
the change in the conductivity is very big. Thus, in this case the electron-
phonon interaction is the dominant mechanism for the resistivity at high
temperatures. On the other hand, in the alloy with a high "impurity
resistivity", (Fig. IV(b) and VII(b)), the relative change in the con-
ductivity is not very large. In the split band limit, when the Fermi

level is at the band edge or in the band gap, the degenerate Fermi
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Component densities of states, /VA (solid line) and /VB

(dashed line), as defined in Egs. (3-125) and (3-127) at
several temperatures characterized by different e values. The
four figures are for alloys with (a) ® = 0.1, §= 0.5,

olA= olB=oL ; (b) X =0.5, &= 0.8, o = oy = ol
(¢) X =0.1, §=1.0, O‘A = O‘B =ot and (d) A= 0.5,

5=o.8but o =hot_=Lek ,
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Figure VII. Electrical conductivity O\ calculated from Eq. (3-110) as
a function of the Fermi energy at different &{ values. The

four figures are alloys with

(a) A=0.1, §=0.5 o, = Xk =¢e;
(b) x=0.5, §=0.8, o, = ot;=%;
() X=0.1, §=1.0, oy, = o4 =0 ; and
(@) x=0.5, §=0.8, o, =k ot =lot,
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statistics leads to the zero conductivity that may be observed in the
static alloy curve. When thermal disorder is introduced, the band gaps
are filled so that the conductivity becomes nén—zero. However, we cannot
rely on CPA to describe the "impurity band" conductivity, since the cluster
effect is very important in this case.

In practice, the conductivity of an alloy is investigated as
a function of temperature by fixing the average number of electrons per
atom, C (see Eq. (3-120)), instead of fixing the Fermi level. Although
it is difficult to experimentally adjust C, it is convenient and instruc-
tive to plot the conductivity as a function of C. In Fig. VIII we study
this kind of plot for the case x = 0.5, & = 0.8. The solid line repre-
sents the static alloy, the other two dashed lines are the alloy with
ol = 0.0075 and 0.015, respectively. It is interesting to see that the
conductivity can either increase or decrease with temperature depending
on the number of electrons per atom for the alloy. In other words, the
temperature coefficients of conductivity are very sensitive to the loca-
tion of the Fermi level. For the same band structure, the three dif-
ferent locations of Fermi energy., as shown by the arrows, give three
qualitatively different results in 2?;: At A it 1s positive; at B,
zero; at C, negative. The corresponding resistivity vs temperature
curves for these three cases are shown in Fig. IX. Finally, let us in-
vestigate the influence of different C%_A and O(B on the temperature
variation of the conductivity. The input parameters for Fig. X differ
from those of Fig. VIII, only in that, in Fig. X, olA is four times as
big as C‘ZB (in both figures, cl:B =ol ). The conductivity is no longer
symmetrical with respect to the center, the electron conductivity being

bigger than the hole conductivity at finite temperatures.
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Figure VIII. Flectrical conductivity as a function of the numbers of
electrons per atom per spin for the alloy with X = 0.5,
S = 0.8, clA = O‘B = ol . The three curves represent the
static alloy (solid) and the alloy with ol = 0.0075 (dashed
line a) and o{ = 0.015 (dashed line b). Arrows indicate three

different temperature coefficients of electrical resistivity.

At A, 0—‘-[-’ is positive:; at B, zero; at C, negative.

aTt
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Figure IX. The electrical resistivity as a function of temperature cor-
responding to the three cases indicated by the arrows in Fig.

VIII. Here o is for case A, X for case B, and + for case C.
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Figure X. Conductivity as a function of electrons per atom per spin
for the alloy with X = 0.5, § = 0.8 and o, = L olB =4
The three lines are for three temperatures characterized by
ol = 0.0 (solid line), o = 0.0075 (dashed line a) and o = 0.015

(dashed line b).
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E. Implications of the Model Calculation.

We have presented the main features of the model calculation.
The most obvious conclusion that may be drawn from our data can be put
in this way: The thermal disorder broadens and smears the electronic
density of states in the alloy. It raises the electrical resistivity in
the virtual crystal limit, but, in a strong scattering alloy, produces
an increase or decrease in conductivity depending on the location of the
Fermi energy. We can say more, outlined as follows. Since we have
treated the density of states and conductivity adequately in a model
which has many of the characteristics of an alloy, we should look for
any physical ideas that might be suggested by our experience with the
model. Along these lines, we will first ask what help perturbation
theory can give us. Then, we compare the elementary expression for
conductivity with the CPA formula, both generally and in a limiting
case. In the process, we discover a need to re-examine the meaning of
the self-energy. TFinally, the complications inherent in real transi-
tion metal alloys are considered.

In a concentrated, strong scattering alloy, the electron-
phonon interaction is small compared to the "impurity" scattering, but
it is the essential mechanism governing the temperature dependence.

(In our case it is the only mechanism.) It is believed that the lowest
order contribution of the electron-phonon interaction to the resistivity,
calculated by the usual perturbation theory, should give the correct
answer. In our case this technique is prohibited by our poor knowledge
of the nature of the static alloy. PFor example, let us expand the Green's

function G (Eq. (3-18)) in terms of the static alloy Green's function Gg
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G = Gs +6G;066s +G6s©GO06s+ - > (3-129)

where GS is defined as (see Eq. (3-52))

|
2 -Ho"D

When we average on both sides on Eq. (3-129), we get

G . (3-130)

L6» = KGs), +{(6:{06:05, 65>+~

(3-131)

To use perturbation theory based on the static alloy, we need to know
the three Green's function average (G,(G Gs G)P G,)c very well, which is
an unsolved problem to date. Therefore, we use the alternate method of
the self-consistent CPA equations.

The Kubo Greenwood Formula for electrical conductivity in CPA

and our model has been reduced to a very simple and explicit expression,

(3-132)

7 ek W Nt 4 6A(€F))

A= . A (€ TN(en /.

which is only a function of the density of states,Af'and the absolute
value of the imaginary part of the self-energy A at the Fermi energy
The form of Eq. (3-132) makes for easy comparison with the elementary
formula for resistivity,68
3 | /
/a - e*y? D T o

where D( €

(3-133)

F) is the density of states per unit volume at the Fermi energy

(including both spins), 7 is the collision time, and 7Y~,, the velocity

of the electron at G;F' We can identify
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D&y = — N“r (3-13L)
and force

2 2 2 2
Ur T =%V~Nfer)‘—"(l

2
- £a
= Ve 5o 1+ 250).

)\( ) (3-135)

2
In Eq. (3-135) we have defined a TI'(EF) related to N(Ef’ in the same way
S
as Y(E) to N,(€) in Eq. (3-105).

We gould define a collision time either b Xk ork __Q_.

; T V 53 24('+nw) ,
and let the remaining factor define 'V'F . But this is only meaningful
if we understand the physical meaning of A [GF) , Or the whole self-
energy Y .

The basic definition of the self-energy is Eq. (3-28), i.e

LG) = P Hl sl (3-136)

We get a better feeling for § if we think of {{G(z)> as a propagator,
and use the relation between the ensemble-averaged time evolution opera-

tor L Ut)D and «a(z)>D»

Y

-2t
KUHD = -:-1-—}{ dz e G (3-137)
2L

The clockwise contour includes the real axis and surrounds the lower

half z plane. Consider how an eigenstate of Hy, say a "mock Bloch state"
A

f{) in our case, evolves. Since X is diagonal in [I), the probability

amplitude for finding a state surviving after a time t is
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- _ -(2t —
a, (+>=(§|<<Ulf>>>!k>=—£—1-:-t.-fa/%€ (R — 1%
-L'zf
= = fde
2wl 2 -€Rr-322%)
é ——d
= ST fdz e g(ﬁ,u
(3-138)
Or, after integration,
az ) = e Z'(“t, | (3-139)

where zl(i) is the pole of g(k,z) inside the contour. Thus, the real

part of z, is the shifted spectrum corresponding to & ('E), and the

1

imaginary part of z_ measures the ensemble averaged decay of the "Bloch"

1
L) o~
states | k) . The decay time of the [kD state is

T = L3 (3-140)

* 2(-9m2(B) .

But the location of the pole at z. and the self-energy Z_ (zl) are closely

1
related by
Rz (k) = €R) + R T (ak) (3-141)
and
Om 20%) = Im T2k . (3-1k2)

Therefore, the self-energy at the poles of g(k,z) has a very simple
physical meaning: the real part of 3 1is the shift of the energy level
(= (%) in the alloy, the imaginary part is the uncertainty of this energy

level in the ensemble.
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However, the self-energies in the formulae for the density of
states and conductivity (see Egs. (3-20), (3-22), (3-23) and (3-24)) are
at the energies z = E + 1i0. These are not necessarily the poles of
g(E,z). Thus, we have a physical interpretation for }E(zl), but what
we need is the meaning of 3 (E + i0).

Suppose we construct states | 4L€>'with a sharp energy E in a

particular alloy and phonon configuration, and this state has the expression

[ ¥,,> = Z; Ay (e Bl %> . (3-143)

Then the average energy-momentum density of states, i.e. the spectral

function, is

A (E/Z)
2 ~1hlh
[E- ehr-Awd] +aret) | (3714

4 Z , lAylE'IZleg(E-E’)>> = _1_;__
VE

as is well known from elementary Green's function theory. In our case,

]
the self-energy is independent of k, so we have

- (2 1 A(E)
: -E))) = (3-145)
€ % IAV(EI,“’ S EI» T [ g-~e®)-AB))*+ 4B .

Thus, if we take Eq. (3-145) as giving us the spectral density of a
typical exact energy state of the alloy, then A (E) gives us a spectral
width in terms of the pure perfect crystal spectrun € (k). In other
words, the alloy energy state is composed of "Bloch" states ranging over
o )

k, with a spread A(E), in €&(k), so that the lifetime of coherence

of the alloy wavefunction, when it is in a pure perfect crystal, is
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h
= (3-146)
Te 2A(E) .

Thus, our conductivity formula does not manifestly contain the usual
collision time of a Bloch state. However, in the virtual crystal limit
there is not much difference between these two relaxation times. The

CPA result for the self-energy in this limit is (see Appendix C)

Tierx= € +(%Y§*+ Aely +Yelg) F, (2-2) (3-147)

- -4
In order to find the pole of g(k,z), we need z. - % =€ (k), so that

Eq. (3-1L47) becomes

2, -€RY =€ +(AY S+ Xola + Ydg) Fo (&F)ti0) (3-148)

where we have set € (X) to &(K) + i0 in order to have a negative

imaginary part for z Using Eq. (3-140), we have

1"
- 2T, b Ady +Yokg) N, (eck))

On the other hand, if we find the self-energy at € +€&(k) + 10, we have

SIT +e(R)tio) =€ +(1Y Sz+7(ola+?°‘s)ﬂ(eﬂ‘)t¢'o)) (3-150)

so that

A(E+ER) = (XYSH+ Ay +Yckp ) TN (€(R) (3-151)
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The collision rate corresponding to the coherence time ’Tz is

g +€(R)
I ZA[;+ Z_AW(XYJon(A*yals)N(é(ﬁ)) 3-152)
T, (E+€ed)

which is identical with l/qi.in Eq. (3-149). 1In this case, Eg. (3-135)
takes on a more familiar form. When we drop terms of higher order than

2 . A .
5 and o , we can assign a collision time

L I 2 A(E) l
T o T - (3-153)
T 7; -h €F=G(I)+€
and the Fermi velocity
U= T W"‘ Niegr = “2Uz/\/(2'é+ec?2>)
F - F 4 "
(3-15L)

1]

2 :
—%—_- 1}‘: /\[,2( eck)) = "U}Ce-a{)) !
é?(;)== é%:-
These results, Egs. (3-152)-(3-154), may be obtained alsoc from
perturbation theory. However, when perturbation theory is not valid, the
contributing factors to the elementary conductivity formula, as well as the
formula itself, tend to lose their simple meanings. If, for example, we
identify the T  of the simple formula with our ’Tz , then the corres-
ponding Fermi velocity 'U; is a function of the coherence time and den-
sity of states, as well as the pure crystal band structure.
It is interesting to apply the CPA result for the conductivity
to a system composed of free electrons and randomly distributed strong

scattering, short-ranged isotropic potentials. Since the potential is
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short-ranged and isotropic, the vertex correction can be neglected.
Replacing Bloch waves by plane waves in Eq. (3-Tk), a little algebra

suffices to rederive the elementary formula (see Appendix D)

t
— € 2 T (3-155)

where D = 2 /fF/_n , T is the coherence time, ®/3A , and the Fermi
F
2
velocity 1& is related to the final density of states as the free

2
electron velocity 7V, is related to the free electron density of states.

That is, if
P 242
Vo (k) = L3 = A/\/oz(eﬂb) ) (3-156)
2m
then
42 )
V= AN (e (3-157)

The formulae, Egs. (3-155) and (3-157) provide useful information relating
the density of states and the conductivity. Once the relaxation time is
properly calculated, a measurement of the conductivity will give the den-
sity of states and vice-~versa.

A word is in order here on the difficulties and complications
that still separate a calculation like the present one from a realistic
treatment of the transition metal alloys. In the first place, these

69

metals have a complicated band structure. At least six bands are in-
volved, instead of one, none of the bands7o having a true tight-~binding
character, and most of the bands (the d-bands) being extremely sensitive

to small changes 1in the potential,'-{l or crystal structure. This sensi-

tivity implies that the self-consistent field (SCF) potential may be
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hard to take into account, the potential at one atomic cell being depen-
dent on the configuration in its neighborhood, the electronic structure
dependent on the potential, the electronic density on electronic struc-
ture, the potential on the electronic density, and so on, in a vicious
cirecle. The change in band structure with temperature, due to expansion
and other effects, may be difficult and important. In addition, not all
configurations are equally likely, but rather there is some correlational

79

clustering of atoms, at best, and defects could be important in tran-

sition alloys made with a minimum of correlational clustering. Then,
one may be extremely near a significant band-edge, as in constantan,72
and generally transition metal conduction bands are jungles of singu-
larities. Under such conditions, cluster effects are very important and
CPA inadequate, as we have mentioned earlier. The electron~phonon inter-
action, also, is non-trivial in the transition metals, and all the more
so in the alloys. Even the phonon spectrum itself changes significantly
with alloying.73 One of the most serious problems, along with the band
structure complications mentioned above, is that all of the transition
metals tend to have various magnetic properties. There are giant
"polarization clouds" in at least some carefully made Cu-Ni alloys,Th’T9
and a Kondo-like resistivity-minimum type effect75 is probably extremely
important, and should be explored in a semi-empirical way separately
from all the other invluence that we have mentioned. One element of

"s-electrons"”

simplicity in the problem is that in Ni-Cu alloys, the
apparently carry most of the current. This idea, which has been present

in the literature for many years on the basis of a vague hypothetical
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picturehl of the transition-metal band structure, turns out to be
accurate76 for Cu-Ni (but probably not in some other transition alloys),
as a result of an involved numerical balance among seversl competing
effects. A hopeful sign is that somé theoretical results based on fairly

T e

realistic atomic potentials should be available in the near future.
have a loug way to go, but some of the basic questions are now within

reach.



Appendix A

The Derivation of Equations in Chapter Two

1. S8nin Eq. (2-41)

Putting § £(&) from Eq. (2-38) into Eq. (2-40) and using the
delta function approximation for %fgi" (Eq. (2-28)), we first integrate
[y

the radial and the azimuthal part of d3k and get

! n  Sng $n
(—-—---——J Acooa—-———mv,fuma
§n=- %/0(16040) (T) | ] ‘4 (A-1)
-LwWT +( 2/1 Coo 9 g

A ~
9 is the angle between 7 and A , and D is the density of states per
volume. It is understood that , A , and D are evaluated on the Fermi

surface. We also have made the following approximation

[d’l S.E'i[i,._/l_. = S?F/a(’ﬁ 2/ — (4-2)
I-cwltc g-4q l—t'w'r-f-c'g-/i .

If we define the integral

L

J I | = wT+( 9N (A-3)
[ 7 1-—ch+¢2/17 12/1 /AA{ l-CwT-cgA ))

then

f .
/ 017] ( .7//\‘7. = 2-(I-(wY) I,
» [-CwT+0qNT g

(A-L)

11k
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and §n from Eq. (A-1) becomes

. Sn }
vsu -(i-t v j —"“'Il -

To solve for Sn from Eq. (A-5), first we write

So 4% 5n_ s - _
Sn(2-1,)=-D [38F+(7)(—,,3- —b-)-'”?/\“][z-u (WL ] | e

R

or

9 2
$me2-1,)(7) =, %2 . mvsu, 4,2
=-DSE(45)-D 2)-(5n-8§Mc)  (a-T)
2 —(i-cwT)I, F 5) ‘ gn (‘i") ?

then group the ©n terms on the left

2-Ti_ 9] _ ¢, _DSE( 2L, mysu; 9.2,
sn['+2-(t-c‘w'r)1.(?)] Sn - D F(-?') ‘ g A (?)~ (4-8)

The second term in the brackets can be expressed as

2-1I.
2-(i-cntT) I, I~c’w7’-—.§2_

CwT (A-9)

H

By the definition of I,, we can identify the second term in (A-9) to be
the I(7T’) defined in Eq. (2-42). So finally Eq. (A-8) becomes
— , 92 . mUSU 9 .2
Snz'DSEF(jg’) -t D g A (f{)
+ |+ I(r 712
L ') (§)

(A-10)

Sn
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2, Sngr in Eq. (2-47)
From Egs. (2-43) and (2-46), we can identify
5D =e s + Sz . (A-11)
j=espr st

But 5(,{) is related to § n by Eq. (2-45). Putting $§n from Eq. (A-10)

into Eq. (A-11),we get

2
e’ $M; - D3g (£ =0 '";’,‘f“/j,_) _
5Dy =3z [ AT -Snef + s £
92 ) (A-12)
- sme’ _S‘nI(l'fI(T))( )= DSE,,(})— ’%’—ﬁ-“{%j] - SEs
72 j+[:+Ic*r)](,, k.
%
But 9;2= 4 T %D, so that we find
s (22, mysd4 4,2
SD" % [ (H'-I(T)){—'}— Sfr _?) 7 [?)J 3
¥ i+ I + oy
P+ L ](-g)

_%1(;+I(?)J-§-E‘:+55I 7,1
b+ [+ I('n](,)

—
-

[-Snz+ 58 (3 2, 2] 1+Im)+$E-SE. ¢ ;rju

| + [ 1+ I(1)] (?)
(A-13)
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—d

3. § j in Egs. (2-71) and (2-72)

o

. . A A A D .
Since we have specified ?:% and Y= X , it is easy to show
that the dilatation of the lattice is zero,so $ ng = 0. Then the

Poisson's equation implies

SE; = -¢ 41€ gn (A-1k)
9 .

A direct integration of Eq. (2-40) using § £(k) defined in Eq. (2-69)

gives

sn=2Lsni+ 4 ______DeA:SEz[z‘C,-‘-wq—)I.]. (A-15)

67/1

But 9 E, 1s directly proportional to S n as seen in Eq. (A-1L4). A

solution of Eq. (A-15) gives
Sn=o0 (A-16)

which implies SEZ = 0 from Eq. (A-1k4), so (Sje): 0, from Eq. (2-65).
To find ( § je)y’ we have to integrate ['evy s f(?)d3k. But because of
symmetry, the only nonvanishing term in the integral is from the electric
field term in § £(E). This gives a function of T times S Ey, which is
proportional to ( Sje)y (see Eq. (2-66)). Thus ( Sje)y also has the
solution ( Sje)y = 0.

To obtain ( $ ‘je)x’ we first use the result of Eq. (A-16),

i.e. § n = 0, then use a method similar to that for the § n solution

in Eq. (A-1) to integrate the radial and azimuthal part of d3k to get
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(SFe), /ﬂ ev, Sfb>
DeV Afess 6
(es£A+mU5M)/ ea®)

_ Dev I,
4

Acnto
I-dwY +(9/ co0d

H

(€SEA +mviu) (A-17)

where IO is the integral defined in Eq. (2-73). Substituting Eq. (2-66)

for §E (here SE = § E), Bq. (A-17) yields

(84e), = De”"{e/\ AT 5 Moo Su] + mSU (4-28)
which may be rearranged in the form

4

(53) (Devl)(z;n‘ek;)(v,) ;[,,':A (—-)mvSu +($}e) ~MoesU (A19)

Grouping the terms of ( Sje)x together, we obtain

2 v
m"esu[l-'-[lmen)( ’:ae)J

(SJe)x l (a-20)
tel 087/'10)( 41reA)('77-,)
Again, using 3_2 =4 e2D and %‘-’-: ;—EF,: .1_."31’:1, we may rewrite (A-20) as
N A ..4_)2 (=
(Sje)xz /noesu[ [+ 3 (%) (?)(V’ il‘ ] (A~21)
!

RERAE NEOIE TN E 7PN



Appendix B

The Evaluation of Z'lz )

The quantity ;Cc»l) is defined in Eq. (3-107) as:

2 2 %&
Al(n) (1-X%7) (B-1)
v =|d
‘v /f[(7]/| $)* + A J?

where A , A are defined as the real and imaginary parts of the self

energy
2 (to) = Aq-¢ Aly) (B-2)
It is convenient to define an auxiliary complex function
] 3/
- 32)%
$(2) = / ds [% 2
- T3 (B-3)
= (1-2% d;_’_’.—— /d; (2+3) (1—-% 2572
a -3
Then in terms of E . x(;?) may be rewritten as
A0 I P (e
x(ﬂ) = -i-—a—z {-K‘qm 9 (7ﬂo Z))
(B-4)

L [ Bepeon) + 5 9 [ 22 & cprion)

l\

Using Egs. (3-60) and (3-100), Eq. (B-3) may be rewritten as

119
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/
- Necx) T 2
$c2) = 2 2)/6(5 z-¢ +T_’Mtnd!
- 1T 2
—7[;+(:~£)F°(e)]'

(B-5)

There is no contribution to 1(7}from the 7_7_25' term in E » Since

_ —-L”}m(']ﬂ'o-i) + 5: qm (7ﬂ'0-5)=0 . If we define still another

function,

Yz (-2 R, 2= geio-s (5-6)

then, from Eq. (3-65), \P(Z) can also be expressed as:

Pie) = ci-22) Fopecon, (3-1)

Then in terms of \.,l)(z), pf[.?) becomes

LU )
&'067) =7 [ -i— % 1;{1(&) + 34 %f‘f’l%)] . (B-8)
Next evaluate Im \// (z),
Qo P (2= ~ TN (D ~(Re 2} ) (=TT Nip)) (G 2*) (RaF )
= —Tr/‘(—[t7—A)2—A2](—W/V)—ZA(']—AJ(&F) (B-9)
= ~TN [ 1-0g-A" 8+ 22 ) ReF]

and the derivative is:
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P ’ z {
5;%'4’(%) = %.a%-,“l/(%H 94"[%3‘ 4};)]
(2) al (2)
= 9 [ ) = R E2] (b-20)
Using Eq. (B-6) and Eq. (3-101), we can write

2-32(22-2/z72-1) (B-11)

W

= 92 -32F,(2) = 2-32Fcytio),

-

and the real part of Eq. (B-11) is

&[””"’“} = 2-3(Re2)(ReF) +3(0m2 )( G F)
= 2-3(7-MRF +38CTAN) (B-12)

=TM/[ (7-1) ’eF - 34°]

’rN 1T/V

Substituting Eqs. (B-9), (B-10) and (B-12) into (B-8) yields the equation
2
_TN 28 _gpAl iy A B-13)
=T X[ 1+ 2 28-S e RF)
Then Eq. (3-114) can be used to connect § and F:

Z('r) "V’ - FH}) -I:I F(r,*) 5 (B-14)

or, taking the imaginary part of both sides of Eq. (B-1k4),
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= TN -
A (e -7 (8-15)
However, we know that
Pz (RP)TH AW (5-18)
Solving Egqs. (B-15) and (B-16) for ReF,
2 | 2 (B-17)
(ReF) = —5 — -TW",
> T %
The real part of (B-14) yields
(']/1)-(”:',+—L)12¢F (—-—-+2)R¢F (B-18)

Substituting 7-,1 from Eq. (B-18) and (ReF)2 from (B-17) into Eq. (B-13),

and collecting terms, yields

.féy)= {(,A [l Tér"/AF] (B-19)



Appendix C

Virtual Crystal Limit

In the notation of Sec. D-4 of Chap. 3, the scattering strength
is defined by €A= S/g ) ZB"' - 5/2 . In the weak scattering limit S«
and olA and olB << 1, and a perturbation expansion in powers of these

parameters is useful. The CPA self-energy 3 can be expressed as

Z = ((gh"' 6.2 + <<(Eﬂ+ 8.) F ,7:>>J (c-1)

vhere 7j is the site diagonal matrix element of T (see Eq. (3-64), i.e.,
Ent On =%
l=(En+0--2)F (co2)
=t Gp=F + (Eat@u-E)F (EntOa=E) 4" o

Th =

£
Let us evaluate the first three Z" ), defined as J correct to powers

of S‘e and ‘/‘gﬂ in CPA. The first three moments of (& +G.)‘7>) are:

KEn+6 > ={(X-9)5/, =€ ,
L(En B D> = ,f{ + A ky t+ G438 , (c-3)

3 3
ClE+ O = (0-g) & + ZX sty -3 5y

The first three self-energies are:
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()
2 =0,

SV =K E 0D =€,
T2 K Ent 8.5 + K (Eat OVSF - K (et 80D SF

— 2 —_—
c +(_§F + Aoy +YAs)F - EF

—

€ + (7S 4+ Aoly +9s) E. (c-b)

i

In Eq. (C-L), F must be correct to order of SQ and v;zl . The density

of states per atomu/V/(E) is then approximated by

N( EYy =~ '—T,f q’"‘ F(E“"’) = :—-1%9»‘ Fo (E+co-ScEria)

(c-5)
z 2 QmF(E-Etio) = N ce-2),
which is just the "rigid band model" result. To the lowest order,
according to Eq. (3-110), the conductivity is
z 3 -
on = 112( e+ ’lf...‘,)/ N, € &-€) ) (c=6)
and the resistivity is
f=Ermliss)
T2\ ek U, N, 3cg-€)
(c-7)
~_’l( ) (fx>’5+xd,q+goéa)
— 3
v e’ t"v A (5% €) .
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Eq. (C~T) exhibits Matthiessen's rule,

/D.:/D_r+f; p (c-8)

with

/0 _ 12 L, 'X)’éz (c-9)
' Terk U N g-g)

and

/o - |2 N, XAy + §lg (c-10)
P etk U2 Noieg-g)

The "impurity" contribution ﬁ then obeys the Nordheim rule82 ,because
ﬁof xy;z . The "electron-phonon" contribution to resistivity, /ap ,

has a slope as a function of T which lies between those of the pure ecrystals.



Appendix D

The CPA Density of States and Conductivity

in Terms of the Self-Energy in the Free Electron Model

In the free electron model, the unperturbed density of states

per atom, _/VO(E), is simply

A
/\f(E \/“'i;r? :3J'E'EAJL?., (D-1)

The CPA density of states per atom, /\f(E), in terms of the self energy

Z (E), is

N(E)-"—'- L o A(ED
TN &k [E-AEY-E))* + AY(E)

- __l_/de /VoCé) A(E)
m LE-Aery-€)% + A%EY >
where § (E +10) = A (E) * i A (E) as usual. Using Eq. (D-1), we can

rewrite A (E) as

(p-2)

A(E
= -3
N(E)=A — Y{E) , (D-3)
where Y(E) is the integral
00
A€
Y () Ej fe — (D-k)
L [E-ANer-€] "+ A% .
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This integral is easily carried out using a contour sketched in Fig. XI(a).

Let us define A= E-AlE) ,/’: /ﬁ1+ A ,and @= }‘-M-'__;__ (see Fig.

XI(b)). Then in terms of residues,

Y(E) = T [ Rea(B+08) + Rao (B-00)]

. {/S-H'A)y2 (ﬂ—c‘A)‘/z
= Trc[ - + -
214 ~2CA

l/ (2n-8) /

= Zpr[ e, oltres
24 -2c4

za [*2e0a8) = T 3cepp) f*

= :g. _i—(/o+/g) . (D-5)
Thus
N(E)"’_J[(E “AEY)P 4+ A*] A+ E~ ALE) (D-6)
The CPA conductivity, O~ , according to Eq. (3-97), is
_.zekf,”_ /)[“[ A7) ]2
a7 [n-5-A)2 + A%
ﬁ}z —;—V?FJ§(§-ecZ>) . (>-7)
Since the velocity dispersion 'U"(-R‘) is simply
2 . 424" 2 &(F)
Uck) = —-—---ZM = -————m o~ A* N [erI)) (D-8)
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the conductivity is

At _
O;:ﬁ_e_} (_;,)..J/d,’(-#) ds /vo(s) § 7)z - (D-9)
e 1 [cy-Ach—z)‘+A (7)] )

Using Eq. (D-1) for /\{o(;):

_ 2e*k
O = -—-—-——_'Tac(-g—é)fdyl—g{)Lcy) A2(7)
(D-10)
~ 2etk 2A Az(E.F)
B TNc ( 3m ) ;[2 (Ek) /
where
I, (&) “f%dé e (D-11)
= D-11
2 A [(ef—/\(ep-é)’ + Aep)t .

Using the same contour as in Fig. XI(a), and the notation of Eq. (D-5),

we can write

I, = [ Reo € ftca) + Rea (p-cA)] _

(D-12)
But now the residues are of the double poles, and
Rio ' 3 ( B+ t'A)'/‘ 2 (/3+C'A)3/z
(ftCA) = 5 — - (D-13)
fred) = 2 = ey (2043 .

Similarly, for Res [ ﬂ—('A) , so that
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3, - Y% 48 U p¥ 38,
I, =mef vl o' 4+ “;L./“e ?

3 holm-%) 1 3 icsw—’%]
+ 2 4-A‘)f 4.4-"[ f/le *

me 3Az[° (20 40m%) + - P% 2 wo (38)]

i . 3
:._Z_Ezf/zﬁm% +§-;?/0/2600(39/:e). (D-1k4)

Since

g— [ 5Ci- ﬂ//,) ) (D-15)

and

Coa8s) = coo0co0 - 00 0n Sy

=B A - AT A
VL AP IO PR (p-16)

the integral, 12, becomes

To= SRfEm + 35 [ A fipem -0 JE7A
= 4Az./,_(f 3) + 3 B UFipp).
Thus

e* v, &
o = ‘g’ﬁc(%)‘ﬂ)[ﬂ%tl’w tza é‘(f-/“}
2et ,72A -
v [;;)(%)\/‘L(f-f/s)[ﬂ*",/ el J

N
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Using the result of Egs. (D-4) and (D-5), we can see that N =A Jaip+p) -

Then g becomes

=28 12y ( K s _f-8
&= al =) (N [p+ 3 ./75'-',?:]

it

L -4
12 2y (BN [ A+ 5 LE]

— 2e* /2 k

= 2 (N[ ] + £]
- 1€

-‘-3’-5(} INte) 2 Nie)

(D-17)

If we define a Fermi velocity v; which has the same relation to the

density of states N( GF) as chat of 1 to /VO(E) in Eq. (D-8), i.e.

2 2 2
U = ﬁ/\{cep , (D-18)

then we arrive at the elementary formula

O = "— (*—)/\/(Gf)v; = g—zuﬁzpp T, (>-19)

k

where D_ is defined in Eq. (3-134) and 7" is —— .
a. ( ) 7 At

F
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Figure XI(a). The contour for the integrations in Eq. (D-L4) and (D-11).
(b). The relations among /o’ ﬂ , &, E, A and @ as used

in Egs. (D-5) and (D-12).
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Figure XI(a)

B=E -A

Figure XI(b)
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