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ABSTRACT

In this dissertation we discuss two distinct types 
of molecular systems. In both cases our analyses are based 
on the low energy (5 eV £ E  4 40 eV) elastic differential 
scattering experiments which we have performed.

The first type of system which we consider concerns the 
scattering of protons by rare-gas atoms, specifically: H+
+ Ar and H+ + Kr. Here it is seen that the interference 
phenomena manifest in the experimental differential cross 
sections are well understood in terms of semiclassical theory 
based on a single intermolecular potential corresponding to 
the ground state of the molecular ion. Furthermore, using 
a new method, we invert the well-resolved experimental data 
to find this intermolecular potential.

The second type of system which we consider concerns the 
elastic scattering of He+ by Ne. In this case the perturbations 
seen in the experimental cross section are not due to a single 
intermolecular potential. Instead, they are attributed to the 
lowest energy "crossing" of the (NeHe)+ potential curves. In 
our analysis we have shown that the most modern curve cross­
ing theory predicts a differential cross section which is 
entirely consistent with our experimental observation. More­
over, the semiclassical method may be extended to explain 
much of what is seen in the data.
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I . INTRODUCTION

The role of differential elastic scattering in the deter­
mination of intermolecular forces has increased considerably 
in the past decade. This has been due to continuous improve­
ments in experimental techniques associated with atom-atom 
and ion-atom collisions and to a desire to complete a theore­
tical problem which had its genesis in the early days of 
quantum mechanics but which had relatively little effort 
devoted to it until recently. This fundamental problem is the 
formal inversion of differential elastic scattering data to 
obtain the corresponding intermolecular potential. It is 
to this problem that we will address ourselves in Section III.

Calculations based on phenomenological potentials (and 
the JWKBL approximation) have been used in various iterative 
schemes to fit calculated differential cross sections to 
those experimentally observed.^ Numerical calculations of 
the differential cross section which utilize up to several 
thousand partial waves are common. Approximations such as 
those by Ford and Wheeler,^ simplify the numerical problem 
of calculating the differential cross sections and give physi­
cal insight into the origin of oscillatory behavior observed 
in some differential cross sections. These various approxi­
mations coupled with phenomenological potentials have proved 
extremely valuable in semi-quantitative interpretations of

2
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the experimental observations. We shall develop the semi­
classical approximation to provide insight into the features 
of the differential cross section; however, for quantitative 
inversion of the intermolecular potential, V(R), we shall 
use two new techniques. The first, which involves Regge 
poles, is due to E. A. Remler and allows the phase shift 
function, , to be constructed from the high resolution 
experimental cross section. The second technique, the 
transformation method of Vollmer,^ permits the calculation 
of V (R) from .

The specific molecular systems which are discussed in 
Section III (ArH+ , KrH+) are both bound by several eV. The 
collision energies for which the differential scattering 
measurements are made are sufficiently low such that the 
elastic channel is the only one which is important. However, 
the collision energies are above the minimum for which 
barrier penetration and hence (classical) orbiting can occur.

The one state elastic scattering experiments and analyses 
in Section III form a well-understood closed system. The 
problem of the two state (NeHe)+ system which we shall under­
take in Section IV is considerably more difficult and our 
discussion is more open-ended. In this case the perturbations 
which we observe in the elastic scattering cross section are 
not due to a single potential but rather are caused by the 
inelastic effect of curve crossing. Here, the potential
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curves corresponding to two distinct separate atom limits of 
the molecular system cross each other at some small inter- 
nuclear separation. In the vicinity of this crossing the 
system, originally prepared in the ground state, may make 
a transition to the other potential curve and exit in- 
elastically from the collision region.

The Stanford Research Institute group has studied the
4*(NeHe) system extensively before.3 Our low energy, large 

angle differential cross section experiments reported in 
Section IV have allowed the effect of the lowest energy 
crossing of the (NeHe) + system to be isolated. Furthermore, 
the ab initio calculation of Sidis^ for the potentials and 
coupling term as well as the semi-quantal technique of Delos' 
to solve the problem of the nuclear motion and connect the 
solution with the scattering amplitude have allowed the 
elastic differential cross section to be more accurately 
calculated than previously. This calculation compares 
favorably with our 40 eV He+ + Ne elastic scattering experi­
ment. Moreover, on the basis of this calculation the features 
observed in the differential cross section may be discussed 
in semiclassical terms. By comparison to the single channel 
work the two state calculation is considerably more involved; 
therefore, at the end of Section IV, a possible parameteriza­
tion of the curve crossing problem is given which may facili­
tate future treatment of this and more complex systems.



II. EXPERIMENTAL APPARATUS AND TECHNIQUE

In this section we shall briefly describe the experi­
mental apparatus and how it is utilized in performing elastic 
differential scattering experiments.

IIA. Experimental Apparatus

A schematic diagram of the apparatus is shown in figure 1. 
The main vacuum chamber is a 30" diameter aluminum cylinder of 
26" height which is evacuated by a liquid nitrogen trapped 6 " 
mercury diffusion pump. The cylinder is connected via the pri­
mary momentum analyzer tube (6 " radius of curvature, 90° section) 
to a smaller chamber which is evacuated by two 2 " mercury pumps 
which are also liquid nitrogen trapped. The pressure in each 
vacuum chamber is monitored by an ionization gauge.

The ion source, used in our elastic scattering experi­
ments, was of the duoplasmatron variety which was originally 
devised by Von Ardenne. The model we are presently using 
is a scaled version of the source used by the experimental 
group at the Stanford Research Institute and its operational 
characteristics are well documented.®

Positive ions are extracted from the source and accele­
rated through a series of electrostatic lenses, subsequently

5
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SCHEMATIC
DIAGRAM

P n 'im r^  ion b a tm

 Scottered products
J  ource. ^«.s 

Target 3«S

Figure 1; (a) duoplasmatron ion source, (b) accelerating
and focusing electrostatic lens system, (c) magnetic mass 
spectrometer, (d) retardation lens system, (e) collision 
chamber, (f) energy analyzer, (g) radio frequency mass 
spectrometer, (h) particle multiplier. Please note the 
product analysis system, consisting of elements f, g, and 
h is shown in heavy black lines in the main vacuum chamber. 
Furthermore, no attempt has been made to indicate the scale 
of the various elements.
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being focused onto the entrance slit of a second order focusing 
magnetic mass spectrometer. Upon leaving the mass spectrometer 
the ions are retarded by another set of lenses and focused onto 
the entrance slit of the collision chamber.

The collision chamber is a small vertical cylinder (with 
radius equal to .45" and height 1.9") inside the main vacuum 
chamber. It is sealed at the top and bottom, and target gas 
is admitted through a small aperature in the wall of the 
cylinder. In order to attain a sufficiently high density 
of scattering centers within the collision chamber (pressure 

lOHorr ) and simultaneously maintain a high vacuum on 
the outside, the entrance and exit slits of the collision 
chamber must be small. At the same time product ions must 
be detectable over a range of approximately 90°. To realize 
both these ends the collision chamber is made of two closely 
fitting coaxial cylinders. The inner cylinder, which is fixed 
in the main vacuum chamber, has a narrow (~ 30 mils) entrance 
slit but its exit slit is, in reality, a horizontal slot 
whose height is the same as that of the entrance slit but 
extends for about 90° around the circumference of the inner 
cylinder. The outer cylinder, which rotates with the detection

osystem, has a 90 entrance slot but its exit slit is very 
narrow. Within the collision chamber are two electrically 
isolated plates which enable one to determine the amount of ion 
current entering the collision chamber. This arrangement
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is shown in figure 2. By placing a small voltage between the 
two plates the "slow" ions which are the products of certain 
charge transfer reactions may be deflected onto one of the 
plates and the current measured with an electrometer. If the 
total cross section is known for such a reaction, the ratio 
of the deflected product current to primary beam intensity 
enables one to determine the density of scattering centers 
in the collision region.

£
r  ■

o + *
\  ° Lo + 4 0

t° °

L —  I  —

C o W \ s i o t f C M m b e .r

Pn

© Neu+roA At om o(f 
Qa* Target 

+ Ionised Product

D e te n t io n  P la ie s

EI|ectro*neter

Riwer Supply

Pou>er Supply

Figure 2: deflection plate detail.
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The first element in the detection system is an energy 
analyzer which is essentially a 127° section of a cylindrical 
capacitor. The filtering action of this device depends only 
on the kinetic energy to charge ratio of the product ion.
The energy analyzer is calibrated by accelerating the charge 
transfer products of the reactants He+ + He (which for 0  ̂  O 0 
have a kinetic energy 1 k-T ) through a known potential and 
into the analyzer. The second element of the detection system 
is a radio frequency mass spectrometer which was originally 
designed by Paul^ and, since it is relatively small and very 
efficient, is admirably suited to its present application.
The final element in the detection system is a Bendix particle 
multiplier. This device employs a continuous dynode surface 
and crossed E and H fields for the electron cascading process 
as well as a large entrance aperature for the efficient 
detection of product ions. The output of the multiplier is 
fed to an electrometer (for high ion current) or to a single 
particle counting system (for lower intensities). The entire 
multiplier unit is shielded with highly permeable material; 
and a fine mesh grid, maintained at low voltage, is placed 
before the entrance of the particle multiplier to prevent 
"creep-in" fields from entering the radio frequency mass 
spectrometer.
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IIB. Experimental Technique

In this section we shall outline the performance of a 
typical experiment.

After the entire system is evacuated to about 10  ̂ torr 
gas is admitted to the duoplasmatron source. An arc (typical­
ly 1.5 amp electron current) is struck and a plasma is formed 
within the source. Ions are then extracted from the most 
dense portion of this plasma (near the anode), accelerated, 
momentum analyzed, retarded, and collected on the outside 
surface of the collision chamber. The primary beam ion 
current is measured at this point with an electrometer.

Momentum analysis of the primary beam proves necessary 
since the duoplasmatron produces many species of positive ions 
with broad energy spectra. If, for instance, the proton 
source is W2 ' tJie species H 2 and are extracted with
the approximate intensity ratios 2:1:3. Furthermore, only 
about one part in 350 of the remaining H+ ion beam has the 
required energy ( E = AV(l ̂  0>) where AV is the potential dif­
ference between anode and analyzer) to pass through the 
momentum analyzer.

After a current of sufficient intensity is collected at 
the collision chamber the detection apparatus is set at 0 ° 
and the product energy analyzer is adjusted to pass the pri­
mary beam.
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Obtaining a good ion beam is, of course, the crux of the 
experimental problem. What qualifies as "good" is a strong 
function of the type of experiment one wishes to perform. 
Parameters associated with a 5 eV H+ beam were: more than

onto the collision chamber with an energy spread of 
.5 eV, and an angular full width at half maximum of less than 
1° (as measured by the detection system). Just how to fulfill 
these conditions is not easy to explain, but is essentially 
a matter of experience. A few remarks can, however, be made.

All physical surfaces to which the ion beam is exposed 
must be regularly cleaned and coated with Aquadag (graphite 
in alcohol) to prevent space charge buildup. This is parti­
cularly important for defining slits and other narrow passages. 
In tuning the beam^D. C. potentials are placed on the various 
elements of the system. We have found the voltage profile 
in Table 1 to give good results.

Once a satisfactory primary beam is obtained, scattering 
gas is admitted to the collision chamber. Since the leakage 
rate of target gas into the chamber and the defining slits of 
the collision chamber are both small, an equilibrium situation 
exists; and for all practical purposes we have a static gas 
target for which the pressure and temperature are defined.
Since we have no way of accurately measuring this pressure, 
absolute cross sections cannot be determined.
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Table 1: Experimental voltage profile

ELEMENT
POTENTIAL DIFFERENCE 

BETWEEN 
ELEMENT AND ANODE

Draw-out (first element of (b) in fig 1) -5 volts
Second element of (b) in fig 1 -180 volts
Remainder of elements of (b) in fig 1 between 

-30 and -80 volts
Analyzer ((c) in fig 1) -35 volts
Retard (first element of (d) in fig 1) - 1 0  volts
Remainder of elements of (d) in fig 1 between 

-5 and -20 volts
Collision chamber ((e) in fig 1) - anode voltage

If the target gas pressure is too high multiple scatter­
ing events can occur. Their effect will be manifested by a 
smearing of fine structure (high frequency oscillations) 
frequently seen in the angular distribution of the scattered 
ions. These considerations as well as the total cross section 
charge exchange experiment previously mentioned have allowed 
us to adjust the target gas pressure such that high resolution 
differential scattering measurements are possible.

In performing the experiment we advance the detection 
system by one-third degree intervals and energy select the 
elastically scattered product ions which are counted using 
the particle multiplier (at high gain), a pulse preamplifier,
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a pulse shaper/amplifier, and a single channel scaler/analyzer. 
The angle of observation is recovered as an analog voltage 
from a slide-wire potentiometer inside the vacuum system.
Both angle and corresponding count rate are digitally re­
corded by a system which includes a teletype code converter 
unit, and a teletype printer mechanism, and an interface 
which sequentially addresses the digital voltmeter and scaler/ 
analyzer.

As previously mentioned, the elastically scattered pro­
duct must be energy selected at each laboratory angle. 
Accordingly, we will give a brief kinematic treatment which 
relates the energy loss of the product ion, A E 3 , to the 
laboratory scattering angled- . Letting the subscripts 1,2,
3, 4 refer to the incident, target, detected product, and 
undetected product particles we may express the conservation 
of energy and linear momentum for elastic scattering in the 
following w a y ^

For elastic scattering of the incident ion 
consequently

A F  r - E  - *.n'TL),A3X?
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For singly charged particles, a voltage which is equal to 
A £3 accelerates the scattered ions to the entrance of the 
energy selector. Since only the elastically scattered pro­
duct has, at this point, the energy E, it is the only com­
ponent which can pass through the selector.

In order to obtain the center of mass differential cross 
section from the measured angular distribution two operations 
must be performed on the experimental data. The reaction 
volume shown in figure 3 is a function of the scattering 
angle ' Y  ; consequently its 0^ dependence must be taken into 
account

RecucVioo \/<»lur«e is sWcSecS

inylar ciwev̂ erite. cj. 
tV\e primary team

\

Figure 3 : reaction volume .

This particular correction has been discussed in detail pre­
viously and will not be elaborated here.-^ It turns out that 
a knowledge of the apparatus geometry allows one to write the
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corrected intensity, I tC)0 , as a function of the experimental 
intensity, I 0 ('Y'), in the following way

Ia(v) - IoCv) CO)
Where C(7-) is the reaction volume correction which goes, 

for large 'Y , to sm'V ; and is shown in figure

CCV-), «‘n )L

(o O'
Figure 4: reaction volume correction as a function of
scattering angle.
The corrected intensity must now be transformed into the 

center of mass coordinates. First we define the laboratory 
differential cross section cr(V) as

(n u m b e r  parW eles  yCa+terec^ j
p e r  uni- t  >’n+o c S X l u L  )

n V ) < * U la b = —  ------------------
( number ipeidtent parbctas \  /  h^wber \

p e r  unt'4- Area, pe r  0111+ time. J ^ S CA't'terin^ oeotersy
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<r Cy<) = ‘K

where d il)ab is the differential solid angle in laboratory 
coordinates and K is a constant which is proportional to 
the incident intensity times the pressure of the target gas. 
Since we do not know K exactly our experiments measure the 
relative differential cross section. Making the C.M. trans­
formation we find that:

L  A  _ T*-

and

( V  t z S ' c - e ) %  ' *

where ©  is the C.M. scattering angle.
Both the volume correction and the C.M. transformation 

in the last equation are numerically applied to each set of 
experimental data. The effect of these operations is to 
smoothly increase the scattering intensity at larger scat­
tering angles, while neither one much affects the location 
and periodicity of experimentally resolved oscillations in 
the differential cross sections.

One further topic remains to be discussed; th^t is the

( r C Q ' )  =■
I'
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problem of the smearing of high frequency oscillations in 
some observed differential cross sections. It would be 
extremely useful to put this problem on a quantitative basis 
but the complexity of the question presently precludes this.
We can at least point out the principal causes of this effect: 
(1 ) the angular width of the primary beam, (2 ) the finite 
angle subtended by the product analyzer and (3) the thermal 
motion of the reactants. To facilitate comparison between 
experimental data and calculated cross sections we have done 
two things. First, we have convoluted the calculation of the 
differential cross sections with a function thought to be 
representative of the experimental resolution (this function 
has typically had &bbut the same-angular width as the pri­
mary beam). The second method we have employed is much
more sophisticated. Utilizing a procedure developed by 

12G. E. Ioup we have deconvoluted the experimental cross 
section. The result of such a deconvolution may be seen 
for the 5 eV H+ + Ar scattering system in figure 5b. The 
reader should note that we believe this latter technique 
is reliable only insofar as it enhances the structure al­
ready seen in the original data (please compare figures 5a 
and 5b.



10 20 30 40 50 60'
C.M. S C A T T E R I N G  A N G L E  ( d e g r e e s )

Figure 5: (a) e x p e r i m e n t a l  relative differential cross
section, (b) d e c o n v o l u t i o n  of the experimental d i f f e r e n ­
tial cross section. B o t h  curves pertain to the 5eV H+
+ A r  elastic s c a t t e r i n g  system.



III. ELASTIC SCATTERING FOR 
ONE STATE SPHERICALLY SYMMETRIC SYSTEMS

The focus of this section will be the low energy experi­
mental differential cross section as typified by the H+ + Ar 
5 eV data shown in figure 5a. We will explain the structure 
seen in this experiment on the basis of semiclassical ideas 
which shall be developed in some detail. Further, using two

o 4new techniques (the Remler-ReggeJ and Vollmer methods) which 
are also discussed herein, we will construct the inter - 
molecular potential from the experimental cross section.

Our discussion of this problem will begin with an ex­
plicit definition of the intermolecular potential and a re­
duction of the complete wave equation to the equivalent one 
particle Schroedinger equation involving this potenital. We 
shall then review the well-known partial wave and JWKBL phase 
shift‘d  methods which provide a connection between the solution 
to the reduced wave equation and the differential cross section. 
In the present case these methods allow accurate calculation of 
the differential cross section but give little insight into 
the nature of the structure seen in the experimental data. To 
afford such insight we shall use the deflection function of 
classical mechanics in a semiclassical way. That is, further 
approximations will be made to the partial wave method the re­
sult of which allows the differential cross section to be dis­
cussed in terms of the classical deflection function. At

19
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different points in the development of these ideas we have 
thought it appropriate to make some explicit connection with 
our experiment, and have done so. Through Sections 
IIIA and IIIB the differential cross section is viewed as 
resulting from scattering by an intermolecular potential.
In Section IIIC we show, by using the Remler-Regge^ and Vollmer^ 
methods, how this potential can be efficiently constructed from 
the experimental data; while, in Section H I D  we apply the 
methods of IIIC to two particular experiments, H+ + Ar and H+
+ Kr.



XXIA. The Quantum Mechanical and JWKBL Methods

It will be shown that the results of the low energy H+
+ Ar and H+ + Kr experiments are consistent with the scatter­
ing predicted by using a single elastic channel in the cal-

out our contention that only one channel need be considered. 
Since the basic thrust of our investigation is to recover the 
intermolecular potential from the scattering data we shall 
begin this section by indicating explicity in quantum mechani­
cal terms what is meant by the intermolecular potential.

The Schroedinger equation for a system of N electrons and 
two nuclei may be written in center of mass coordinates as

where is the set of C.M. electron coordinates, R is the 
internuclear separation, and M is the reduced mass of the 
nuclear system. Since we assume it is appropriate to con-

culation. New theoretical w o r k ^  on the (ArH)+ system bears

2i p - E ] i - 0

sider only one channel we write

= ¥ ( K )

where <d(<\ f t )  is the ground state solution to
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Let us suppose that this electronic Schroedinger 
equation has been solved exactly at all internuclear 
separations R and that the total electron binding energies 
£( R) have been obtained. If equation III-l is multiplied 
by and integrated over the electron coordinates we obtain

d ( R ) F C S )  -  < f  | F W ? )  +■ ^ ~ b e2 F ( R ; )  > E F ( R )

The second term of the last equation may be expanded

<<? lgj V,21 F(R)?> • V2 F(R) -h §  <«}\Vg I
^  F ( R ^  < « ^ l  V g l  ? >

So that

v * -  2tf ̂  - E) ‘ (< v<?>+2<vr>v 0  F(fi

We now assume that the nuclear velocity is negligibly small 
and make the Born-Oppenheimer approximation by setting the 
right hand side of the above equation to zero, and obtain

(III-2)

("fft  «- e(R) - eCco)) FCfft -  (E-cCcoV) F (R )
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This equation is the nuclear Schroedinger equation from which
we identify the intermolecular potential (adjusted to yield
V  C R H O  I as R  -► CO ) ) V(R) as

(III-3) V ( R )  = £ ( F 0 *  e.1  -  e C c o )

Please note that since the electron binding energy only depends
I Iupon )RI= R  for a diatomic system, therefore the potential is 

only a function of the magnitude of the internuclear separation.
For many systems, including those discussed herein, £ (R) 

leads to some nuclear attraction as is seen in figure 6 .

Figure 6 : the origin of the attractive well in V(R) -

Having defined V(R) we shall now solve equation III-2 
by using the partial wave method.1 3 To do this we write F ( R )  

asymptotically as

dii-4) F ( R ) -  e' * +  { ( G )n
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which represents an incident plane wave 6 and a spherical 
scattered wave •^(©W /r radially outgoing from the center 
of force (i.e. nuclear center of mass). Using the expression 
for the current density

j* * V t  - - f

for incident and scattered fluxes the differential cross 
section, <r(0 ) , may be identified from its definition 
as:

( m - 5 )  <r (e') ■=. | |(o)[z

To find we expand F (  R )

F ( * )  = £
J 8 - o  k R

where satisfies the radial part of equation III-2
that is:

/, ■1 2 V \  ^(R') - l) \ c m  /_n _ n
(III-6 ) + - o

Since V(R)'*0 as R-*o we choose the asymptotic form of 
as

(III-7) ^ ( f O  S i ' n ( k R ' 1 fir +7fe )



Before proceding further let us make a few remarks about 
. If V(fi) were identically zero the solution to equation 

III-6 would have:

(kR)

which goes asymptotically as:

%  w  s,n

So that is really the phase shift between the
scattered partial wave with V(FO present and with V(.B)-£?■ 
In this sense is a measure of the strength of V ( K ) .  

Further 7^ will be positive for attractive potentials and 
negative for repulsive o nes.^

For H. very large in equation III-6 the angular 
momentum term will dominate V(^) and will be small.

Rather than repeat a well-known derivation we simply 
give the result that j(e') may be expressed as an infinite 
sum over terms involving 7^ .
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Equation III-8 is called the Rayleigh-Faxen-Holtzmark (RFH) 
sura.^

We can now relate the potential of equation III-3 to 
the differential cross section in equation III-5 via equations 
III-6 , III-7, III-8 . Although it is possible to proceed in 
exactly this fashion we will greatly simplify matters by 
using an approximation for the phase shift which relates 
directly to V (R') . This approximation1,* called JWKBL, is 
basically due to the work of Jeffreys. In order to discuss 
this technique let us consider the one dimensional Schroedinger 
equation

r - ;  wi-rii p= J 7 M (  e  -V M )’

and let
+ 1 * C p W  A*

'H'Cx) = <yCO e

Upon substituting this expression into the one dimensional 
wave equation we find:

* <*!<* + (o if + j- a) = o
ip W  - ' ‘ j .  df  ” Jl y

is smal
P

Aj. p A  y. w

If — is small we neglect the first term above and solve
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and

to see precisely what this approximation means we resub­
stitute the solution

/-> i. i -»/2 titf'Cpdx (m-9) t =- k p e

back into the original equation with the result:

r
C U 2 W ( r 7 -£h-°

giving the exact condition for the approximation

This condition will be fulfilled if p2 is large with respect 
to "hp' ; that is, if \  is small with respect to changes of 
the potential. So for smooth slowly changing potentials and 
reasonably short wave lengths for the free particle, equation 
III- 9 should be a good approximation.
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Vto

E

-*------------ 1------------------^ = = ------- ►  x
Figure 7: one dimensional V(x) showing classical and
non-classical regions.

To the right of the classical turning point, XT , in 
figure 7 £>V an<i ? is real so that the solution to equation
III- 9 is oscillatory; while to the left of XT ^E<V > is 
imaginary and ^  is exponentially damped. This is in good 
agreement with the classical result which forbids the particle 
to exist in region I. What we have said thus far is not valid 
for X'uXy , since f>A/ 0  and equation 1 1 1 - 1 0  is not in general 
true. Jeffreys has provided the appropriate connection 
formula in the region of the turning point.^

Assume V(x) is linear in a small region about xT i.e. let:

so,

o
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Define:

1

So the Schroedinger equation becomes

- 2 ^ = 0

The solution to this equation is the Airy function,

o O  ^
f*' S TT [ 0,5 (^5 + S ?) J S

which has the asymptotic forms

A. t 'I 1 ,A » ( h ) ^ _ ,ylf ' C  ^ or "2. z' O

and

A  i (.0
I

TT (-?)'
®0 identify the connection with equation III- 9 we resub­
stitute as follows:

1 C-0 *  23 V
XtX

Which gives ^  f°r regions I and II in agreement with equation 
III- 9 as: x

-u, I I-'h V  $lpWx 
Tr = I f I e *T
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and

d i i - i i )  ^  = 2  f ' h  s i n  ( V  \ i f )
*r

We could now hope to use equation III-ll to evaluate 71  ̂

first having let

f • r ^ u ^ v ^ r

where the effective potential is

= V(R)+ 2y\ r1
It would, however, be incorrect to do so since our previous
solution was exponentially damped in region I as x -- ►  — oo
We must solve the problem for ''ty-j- to go to zero as O  

The equation we must solve is

( I I I ~ 6) d  7 § E (Irt +  ^  =  O

If we define

y a  =  In F} a n d  B  ’/ z  = ^  (  R )

Equation III- 6 becomes, after some algebra:
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For this  equation we have the same boundary conditions in region I as 

before — so we may simply use our former result  for region II.

£ _ *  X ^ V~) - C l * ' k T

111 !J/ e ^ 2 n ( E - V )

Therefore:

with

Q -  ^  ( E - V ) -  ( ^ ) J
^  n ft*

or ft

Rt
•n- ( R ) =  2 Q - V,,v »  ( *  * [  ( Q ' h - ^ ) M  ♦ k R - k R r )

As ft becomes large,

oO
( f O  ^  s i n  ^ ( Q 1̂2 +  k  R -  k  R T )

Comparing this  result  with the required asymptotic form,
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equation III- 7 , we may identify ^  as:

(111-12) *
It + ^  - k R  2 T +

tfr

The agreement between the JWKBL phase shift which we 
have just calculated, equation 1 1 1 - 1 2  and Tfy obtained from 
the numerical solution to equation III- 6 has been found to 
be-*-̂  extremely good. A typical phase shift function corres­
ponding to figure 6 is shown in figure 8 •

f t

0

Figure 8 : phase shift function for scattering
from the potential of figure 6 at low collision 
energy.
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We shall now digress briefly to discuss how the results
thus far obtained are relevant to the low energy scattering
experiments in Section HID. In an earlier attempt to re-

1 ficover the intermolecular potential we assumed an analytic 
form for V(R)

i/«n C,eClR 0, C m <111-13) V ( R )  - —  -  — R1|

We then calculated the JWKBL phase shifts corresponding to
this potential and used the partial wave sum to find the
cross section. The parameters C , and C3 were varied
in the calculation until the predicted cross section was in
"satisfactory" agreement with the experimental data. The
resulting values of d ^ Q z and C 3 as well as Cif (which is
not a free parameter but is fixed by the dipole polarizability
of the target atom) determine the intermolecular potential
through the assumed form of equation 111-13. This procedure,
although numerically correct, has two major diadvantages.
First, no insight is given into the scattering features; and
second, for the systems of present interest, the upper limit
on the Siam in equation III-8 must be quite large, about 800,
for proper convergence of the phase shifts

19While the semiclassical method affords insight into the 
nature of the scattering the Remler-Regge^ and Vollmer^ methods 
allow a much more efficient recovery of V(ft') from the experi­
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mental cross section. Therefore, w e  shall proceed to develop 
these topics.
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IIIB. The Classical and Semiclassical Methods

Consider a purely repulsive spherically symmetric field 
of force with a beam of non-interacting classical particles 
incident upon it as shown in figure 9•

trajec+ory

Figure 9: scattering by a repulsive center of force.

From the definition of differential cross section given in 
Section IIIA we have:

Number scattered into dfl - <T (0) I  dXl 
where X  is the incident beam intensity. If all of the 
incident particles having impact parameter between b and 
b +db are scattered into the dfl shown in figure 9 then

X (2 -rrbdb) = - <rt&) X  2ir s*n 0  ol©

where the minus sign indicates that increasing b decreases 
0  . Therefore the classical cross section is given as
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<r ( 9 )
5m  0

We can write b in terms of the angular momentum L :

L -  Mvb -  J ? mT  I

So that

(111-14)
L

2MES.-n e { - f L)
If one can find the relation between Q  and [_ then 

equation 111-14 may be used to find <r(0) .
This connection is provided by the equation of orbit 

for a classical particle whose angular momentum in con­
served. 20

(111-15) <pT + ^
Rt zmTR'i \ _ ~ ] xh

I  L2 l2 RM

Figure 10: trajectory of a repulsively scattered particle.
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From figure 18 it is seen that the C.M. scattering angle, 
0  , is:

0 -  tr  -<* .

And from equation 111-15

oO
L  ( c ! H

t 01 = °  +  I
where

%  = V(H) + 2rlR!
Our discussion to this point has been for simple repulsive 

trajectories only. However, we may take the same result over 
for attractive scattering and define the classical deflection 
function, ( 0  , just as before, i.e.

© C l ') = TT - «■

We note that for repulsive paths 0  = 0  and for attractive 
trajectories <X >tr and 0 - ^ 0  . In fact, for attractive
scattering ©  = - Q  . Using our previous result

(111-16) © ( L )  = IT "
2 L

oo
C

JTi? I RzJE-vftf
nr
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For purely repulsive potentials there is very little 
effect on the path of a particle having large L. (i.e. large 
b ) so ©  (large L ) is small and positive; while the 
particle which is directly incident on the center of force, 
L =  O  / is reflected back along this same line so © ( o )  = tt . 
Figure 11 shows a typical repulsive © ( L - V

©

Figure 11: for repulsive potentials.

The type of intermolecular potentials which we will 
consider in this section are not purely repulsive but have 
an attractive well as shown by the solid line of figure 6 • 
Figure 12 will aid in the construction of © ( for this 
case.

Figure 12: trajectories for
scattering by the potential of 
figure 6 .
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Here the particle having b - b ft shows no deflection and 
the one with b^b^ shows some attraction. At b = b^ a maximum 
attractive deflection called the rainbow angle, 0 ^ , is 
reached. For b <■ the trajectory becomes increasingly 
repulsive as is shown for b - \ >z  }bn  bg . The limit of tr 
for © ( 0 ) is obtained as before. Note, in figure 12 
the attractive trajectories have been placed above the center- 
line so as to point out the fact that particles having b = bn b8lb3 
appear at the same lab angle 0  . The deflection function 
corresponding to figure 12 is shown in figure 13.

©
"XT

9'

0
0
0
6,

Figure 13: 0 ( 0  corresponding to Y(fV) in figure 6 .

By analogy with equation III- 1 4 the classical cross section is 
given for 0  < as the sum of the classical cross sections 
for the three branches of the deflection function 2 1 shown in
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figure 13.

(o')
L;

0<eft £— • aMEsinGl^f^  branches d Li - 1 ' L*L;

While only branch 1 contributes for 0 > 0 r

L i
<r(e)

For

and

e > e fl '  2me *.ne (“- f  |
L- L i

0 - 0   ̂ 'S'0 0  = 0   ̂ L-j oo

cJ(3> I / i
L " ' and ^or a^  t îese reasons o\0; = oO . For

lj-?l " ^  and ^ C ^ O '00 * Therefore theL-LjjI-2. ^classical prediction for CT(0 ) appears as shown in figure 1 4 ,

e

Figure 14: prediction of ® ( l) in figure 13 for the
differential cross section.

This certainly does not look like the experiment in figure 5a 
and, thus, the classical treatment needs considerable refine­
ment. Such refinement is provided by the semiclassical method



which takes into account the phase relations of the scattered partial 

waves.

The starting point for the semi c lass ica l  method is  the RFH partial  

wave sum

oO
(111-8) + Pe(Cos0)

22The orthogonality of the Legendre functions shows

('3-fl + O (cos G l -  2 S  ( l -  c o s © )

 ̂ u>We S is  D ‘’r a <? cHel+a.

So i f  we are not interested in 0 = 0  we may drop the - 

in equation 111-8. Further, we use Laplace's approximation for 

large X ( jo? $ -  l/'S‘'n©>) ;

thus

with

and
SS, -- In, + U*'k)9 * Vh

oO cO
Replacing the sum X j t>y and also l e t t in g  (again good

Q-o o
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for large 5 ) we have

/ , I ?  , n n r  (  1 W  \
(111-17)  ̂ (9) ' —  . -1 \ ^  ̂  ( e -6- )

V. ] 2 t T 5 i n9  o

where now,
B,0O -  2^ + £0 * f  
B,ft) = 2 ^  - 4 ©  - ^

Since the arguments B, &̂>z in the above integral are,
in general, rapidly changing functions of $ the exponentials 
are, therefore, very high frequency terms. The stationary 
phase approximation states that the only contributions to the 
integral of equation 111-17 come from those values of S. 
where either phase B, or B 2 is stationary; and gives:

— O  - 2  + 0
ML ~ A&

^^9 _ L  P l

=  0-- 2 -  0
_ l rv 
‘ 2 ^

Both of these requirements may be combined in the following 
fashion:
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We then identify the term containing ( ^ . > 6 2 ) in equation
111-17 as corresponding to (attractive, repulsive) scattering.

Equation 111-18 , called the semiclassical equivalence 
relation, furnishes the important connection between the 
quantum mechanical phase shifts and the classical deflection 
function.

In the full quantum treatment each partial wave was 
able to contribute to the scattering amplitude at every 
center of mass angle. The equivalence relation greatly 
restricts the situation and constrains each partial wave to 
contribute at essentially one scattering angle corresponding 
to a point on the classical deflection function. However, if 
© 0 0  is multiply branched (as shown in figure 13), more 
than one partial wave can contribute at the same angle. To 
calculate the differential cross section let us expand the 
attractive scattering phase, , about a stationary
point X  - L

1_ Wig'net' 
4- O r J e h

By the requirement of stationary phase 0 • Neglect­
ing higher order terms we may write

ai+racVivifi.
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with
oO 

- L

J *
- L

For J < - L  the above integrand is rapidly oscillating and 
averages to zero. Consequently we may extend the lower 
limit to -oO and evaluate for > 0  (corresponding to 
branch 3 of the deflection function shown in figure 13). 
The result is

( IT V /2  i V 'f  

*

If we let ^2^4.0 corresponding to branch 2

J -  - i f - ) -
tt y / z V'j

We could then expand B2 about its one stationary
point and repeat the procedure just completed. The result 
is that we can associate with each branch, I , of the classical 
deflection function a partial ( G )  and obtain

; - L.® ■ i')

(111-19)

( , (8)

{,(9) , K  ‘

y e )  - e ' ^ " L 3e " v
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with the classical cross sections <J”C; given in accordance 
with equation 111-14.

i-i L;
Cr<L' k2 2. 1 i © k 2 S i n 0  j <* ®

A  U  I. .L.»

The semiclassical cross section is then

(111-20) crsc (0) - | (0) + ̂ 2(0) + {3(0) |

This result is valid when B ,  has two stationary phase points 
as shown in figure 15.

vo, r tous 
phase

B ,  ( S )  a b o v e  1 a n d  t e l  O lO  O . X « 5

J? 0  above 5 ant* - X 0  kel o«3 axis

Figure 15: the origin of the stationary phase points
corresponding to the three branches of ©(*-) in figure 13.
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When 0  is sufficiently large the slope of $ 0  is steep,B 
has no stationary points (shown in figure 16) and only 
branch 1 contributes to the scattering.

e.oo
—  J?0

Figure 16: the disappearance of the attractive
stationary point for large 0 .

Equation 111“ 20 shows, that in this case, the classical
result is valid.

In the angular range about which 0(L) possesses a
minimum (i.e. the rainbow angle) 'Yj 11 = O  an<  ̂equations
III-19 do not apply.

Ford and Wheeler c  in a famous set of papers kept the
third derivative term in the phase B, and assumed that the
deflection function was parabolic about (the angular
momentum quantum number corresponding to 0  .

( i n -21) © - ® R +- ^ ( L - U f
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therefore

= 2 v L fl^ Q p , ( L - L *> * ^ cb ( L ' U '>3 +  L 0  +

and

I  ( 0 s )  -  -  -j-
Jaitracln/e K

U  ^ e i(^iiL|l + L R 0 * p
2 t  s i n 0

where
a O

- o O

Letting

and defining

f \ I f i (Xi! + T ? 3 )
2rr ; e  ^

-00

We find

I (e^ = JS* t'*
with

<in-22> <r„ = p  |  i/3 ftiz ( ^ /5(0 '©fi))

-C
N
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and

£  ' 2 7 i_„ v  l r ©  ' ^ ir

So that

(0s) " i \T̂ 7 &'*' + ̂  e-'^|Z

where Y| is the phase of the repulsively scattered partial 
wa”°

From equation II1-19

Y. ■= 2 ^ L| - L , 0  -  ^

and we may write

(111-23) <rsc(®) = Oil +  <r* 2 K , rR

In the above equation CTC| is a monotonically decreasing 
function of Q  and <T^ has the periodicity of:

A  i2 ( %  ^  C 9 - 0  r "))

The first two terms in equation III-23 are shown and 
combined in figure 17. They clearly account for the low 
frequency structure in the differential cross section around 
© R  { see for example the experimental cross section in 
figure 5a) .



low ^re^uenc^ coMponenfs <r(6^
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T h  e. rainbou?  

ap p rox im ation

is invalid in 

fki5 region

 crC|

(Tr -KTc ,

Figure 17: low frequency components of <r(6 ') for scatter­
ing around 0 ^ in the semiclassical regime.

The last term of equation 111-23 is the source of the 
high frequency structure seen in well-resolved experimental 
cross sections. Its phase is

Y« " ^ 9 ( L r  + Lj') -  TjT

giving the spacing between adjacent maxima as:

( m - 2 4 ) A 0  =
•tr
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The envelope of equation 111-2 3 is seen to be

The semiclassical result for scattering in the vicinity 
of the rainbow angle is presented in figure 18 (again compare 

with the experimental data in figure 5a.

‘aerniela.S'S > do. I <r(e)

A © - -

—  (T,

mVftlicS i n

Figure 18: prediction for the high and low frequency 
components of < r ( d ) for scattering around in the 
semiclassical regime.
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Let us conclude this semiclassical discussion by examining 
the small angle behaviour of the cross section. As 0  — *■ 0  

the repulsive and innermost attractive branches come together. 
Thus,

Lj *  L. 2 L_0
L,

<*c,

and

Therefore equation III- 1 9 leads to:

l  ( c x \  (  ( a \  \— 1 ' f -I(*-,,0-11)1V C e ' ^ j O )  = e  e  + £  J

-  2 1 %  e.'^ cos ( L „ 9  - % )

with

Yos 2 ^ -  | i r  

Adding ^ ( G 1) we find:

^ ( e )  - e'*5 [ 1  t r e  ^ ( U 9 - X )

where

4- J G  - ^  *-3 2
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This gives the expression for the cross section

(111-25) <r5c (e)= <rttj [ i t -  ^ ( e )  + 2 ^ (8 ) 005^ ]

where
y c©) 5 2 [ ^  cos(lo 0  - ^ )

and

Y  = 2 ( 12l. - ^ s) - l 3 © - $

The last term in equation 111-25 contains two frequency 
components (the sum and difference of the frequencies of 
the multiplicative terms). The lower frequency term, having 
period

A O 2 tt ( i n -26) A ©  ^ -— :
*-3 ~

is dominant in the low angle range; whil£ the higher frequency 
term has period

(111-27) A 0  “ —
L 3 t  L 0

The term of equation 111-2 5 has

a ©  - r
i - o

which is quite competrable to the period of the high frequency 
oscillations around 0 ^  given in equation 111-24.

As the scattering angle is decreased the term is 
more quickly damped than the dos term since the amplitude



of y  (namely ) is becoming considerably less than one.
Although recent d e v e l o p m e n t s ^  have allowed a uniform

approximation (covering all angular ranges) to be made in
the semiclassical regime we have not discussed this technique
Its omission is due to the fact that we rely on the semiclass
ical method only for insight into the scattering features.
For quantitative calculation of the cross section we do not
have to make the semiclassical approximations —  rather we

3will use the Remler-Regge method which is presented next.



54

IIIC. The Remler-Regge Method and Inversion Procedure

In our previous discussions concerning the partial wave method

we have pointed out two disadvantages associated with the RFH sum:

(1) the length of the numerical computation for the systems of

present in terest ,  and (2) the lack of insight into the observed

scattering features afforded by this  scheme. The semiclassical

method just  presented dealt admirably with the la t ter  objection at

the expense, however, of further approximations to the formalism and

consequent loss of accuracy.

Concurrently with the historical  development of the semiclassical  
24method Regge was invest igating the properties of the $-matrix con­

sidered as a function of a complex angular momentum variable. One 

of the results of this  investigation was a type of singularity in

the$-matrix elements which is  presently called a Regge pole. Using
25the Watson-Sommerfeld method the in f in i t e  partial wave sum may, in 

many cases, be replaced by a sum over a f in i t e  number of such poles.
3

Remler has applied this result  to low energy atomic scattering 

problems; and we f ind,  in the 6 eV H+ + Ar problem, that the partial 

wave sum over 750 values of 0 may be replaced by a sum over 13 

poles in the complex H plane. Moreover, Remler has ex p l ic i t ly  

connected the s ingularit ies  in the diagonal S-matrix elements 

with the deflection function thus providing the in tu it ive  connection 

between the pole parameters (number and location) and the scattering 

features.
3

We shall now discuss the Remler-Regge method. We begin
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by defining

S £ O')  = e 2 '"1*"'1 w i n  \ - S L > ' l z

The RFH sum, equation 111-8 may be rewritten

i W ( & )  ~ ' H  ^   ̂c-oS ”0

25We now apply the Watson-Sommerfeld method to the above sum. That 

is^the summand above is  multiplied by a function which contains f i r s t  

order poles for integer £  and then integrated over a clockwise 

contour, C., , containing the real axis of the L plane and

closing at Jl - 4 00 , we obtain:

(in-28) ^  V O  a x

c,

If  Sj, contains a f in i t e  number N , of s ingularit ies  £

o f f  the real ax is ,  C, may be opened to C2 (a contour which stretches

along the imaginary ax is ,  I ,  and, since the set  may not be 

passed through, extrudes from I so as to encircle each in the 

f i r s t  and fourth quadrants in a counter-clockwise fashion. Further 

i f  9 g i s  symmetric the integrand is  antisymmetric and the contribution 

along I  vanishes, so that Cauchy's theorem may be used to evaluate

the integral .
3

Remler has le t
N

x Poles v
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where S)»f is unitary, symmetric, and first order,

(111-29) Sv -
A2 - V

Therefore equation 111-28 becomes

^ r  \ z  \*2
( i n - 3 0 )  i k f / e ) = £  i  %77̂  i t

p- . l  r ‘ * p
v  - x-2-

p -., • - p  A f  A |

Where the coefficient, above, has the following approximation^ 
(suitable for numerical computation)

it 1 ^ ' ( \   ___!___  ^  - ______r . A2 c ^ i r X p  " J Z(Ap+ ‘/*Os,’n ®  ^  6 4  (Xp+ '/h ) ' | + s

with

r— i f  i i i i  O - ' / O 2 ,a  =. >  I ------- i n ;  o^Ker-e h * -  I . h: =   h; ,
s 2 L i  V 2 * in 0  y J i l C l  +  U

0 = o

Since H  is relatively small ( for the systems
reported herein) the sum in equation 111-30 proves to be a 
very efficient method of calculating fp(©) •

The expression for a single pole, equation 111-29, may 
be directly related to the phase shift:

art) = af3 ( ) s - 2 ̂  ' 2ar^[(X-Xps)-(AtX?)‘]

S\? - ^?) + ar9(*+V)]
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Recalling that, ^ p “ 7 CLr<J we have:

^>P ̂  ~ ar$ C > - X p} " ar3
j -1 X m X p  1 -1 X m  X P

^ p *  f“  ^  v T h T a f

and, using the equivalence relation, we have

_ 0 r  i m > P__________
1 L a + R e x , ) 7 * c i m v 1(III-31)

X m >

( X - R e X PY
*  1
+ (Jr« ̂  pY J

0Xt

These two functions are shown in figure 19 , where it is
seen that («) ̂  is essentially a pulse centered at Re. Xp
having (for ReXp "» I^Xp) h  width [y/w2 ^ m X-p an^ depth 2 / I m X p 

\ > ® > r

 ^XPAJ V
 ® A P

\ ReXp

Figure 19: phase shift and deflection functions for a
single pole.
If |\) poles are placed on a circle of radius j a  centered

at s^own -̂n Appendix B that
N

N % P
p -- i

and
( I I I - 3 2 )  0 f - - N © ^
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A typical phase shift function may then be constructed, 
as shown in figure 20, by adding to a function T]tore = V.c.

*\ 2 ftwhich goes smoothly to zero for A - a c and is large and 
negative for X  - V2

Figure 20: composite phase shift function
from pole and core contributions.

Our present expression for contains two curvature 
parameters and one parameter which determines L 0 in the 
classical deflection function.

The complete scattering amplitude may be evaluated

,i<f(e) = £  > P x - ' / ^ e K S p S c - O
} > * l/i

tm-33>;kf(e) - £  > PVfcc «eKS,-0 + E  x W “ ,0'> W  0
X~Vz  > = ‘/2
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The first sum of equation 111-33 has already been 
evaluated in equation 111-30; the second must only be cal­
culated from h  to since ~ I for "X - • It should be
noted that even though a part of the RFH sum is retained, 
equation III-33 still represents a considerable improvement 
since <■ 150 for all systems considered here.

Equation 111-31 and 111-32 allow a simple connection to 
be made between the relevant semiclassical quantities and the 
pole parameters, that is:

(in-34) l *-- R e X p , © R ^

The first step in recovering the intermolecular potential 
is to construct the phase shift and deflection functions-from the 
data. This is accomplished as follows. Using the high and low 
frequency oscillations observed in the experimental cross section 
the pole and core parameters are initially estimated using the 
semiclassical ideas presented before, together with the relations

3III-34. The Remler-Regge calculation is now iteratively per­
formed. That is, equation III-33 is used to calculate <5“(S') . If 
the result is not in good agreement with the experimental cross 
section, the pole and core parameters are estimated again and 
the calculation is repeated until satisfactory agreement between 
0 ^  Ce') and is achieved. The entire "trial-and-error"
procedure is guided by one's semiclassical intuition. A detailed 
example of this method will be given in the discussion of 
the 5 eV H+ + Ar scattering system.
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Having determined the phase shifts the transformation 
method of Volljijer 4 may be used to find V(R)* In this step 
we restrict ourselves once more to the JWKBL approximation.

We begin by writing the JWKBL phases, equation II1-12 
in a different but equivalent fashion

Making the substitution

We have:

/3
where

f t  =

Letting w  = <! j ? - { ?  and 4 ? - A  * ( R 7  R  - \ / X  )

and integrating by parts we obtain:

with
(111-35)
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Consequently the transformation equations are 

m i - 3 6 )  R ( * ) =  S a Q<* ) / 3 E

V O r t - E O - e « m 'c )

Equation 111-35 represents an integral equation for Q ( jO  
which Vollmer solves by multiplying both sides by

p  i p - v i r *

and integrating over y3. Thus:

_ u  ( A / L m *  = 7 &/i/i

He reduces the right hand side to^
o O

} ^JUi Q(S)
Z*.

differentiates both sides of the resulting equation with 
respect to t  , and then replaces x l . by obtaining the 
desired expression for .

00
± L  -L L  (
ir k A  Af '
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In order to numerically compute Q  we have made the sub­
stitution

With the phase shift and deflection functions constructed 
from the data via the Remler-Regge method equation III-37

the intermolecular potential.
When VCR'l-O ,#-1^ and = also when ( $ )  -  E. ̂  O

and . Therefore, within the extremely small range of
R between the zero of the potential and the distance of 
closest approach Q.00 must rise from zero to infinity. The 
steep rise and large values for Q  introduce numerical errors 
into the inversion procedure for V ( f 0 > O  . The onset of 
these errors in first manifested by a non-monotonic behaviour 
of . Such anamolous effects could be minimized by re­
scaling E andk ; this was not done, however, since the positive

which, after some algebra, leads to the equation:

(111-37) c . o s * o t
ft

kjt (  ©(4/cos.Q
2 j  cos’ f*

O
w h e r e  © =  (  2  /  k )  • ^

is used to find Q 0 0  o/er a range of t  • Each is
transformed by equation III-36 to find a point ( R ) V ( R ) )  on



63

region of V(R) is not effectively sampled by our low energy 
experiments. VCR) was adjusted in this region in a different 
way for the R+ + Ar scattering system which shall be discussed 
next.

Before ending this section it should be stated that both 
the Remler-Regge and Vollmer methods have been separately 
tested. The former has yielded results which are the same 
as the prediction of a complete partial wave calculation; 
while the latter has reproduced a potential taking as input 
information the JWKBL phase shifts and deflection function 
(calculated via equation III-1 2 ) corresponding to that 
potential.

The entire inversion procedure has produced results for
the H +tMe. H e V  scattering system27 which are in good agree-

2 8ment with the ab initio potential calculated by Wolniewiczy 
which is thought to be quite accurate.
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HID. Proton-Rare Gas Atom Scattering Experiments

We shall now detail the inversion procedure for the 5eV 
(-ĵ + f a r  experiment shown in figure 21a. The discussion con­
cerning it will be brief since all that has been said thus
far finds particular and satisfying application in this case.

12The experimental cross section has been deconvoluted, 
shown in figure 2Iiv to further enhance the structure seen in 
the data.

To begin, an initial semiclassical guess is made at the 
Remler-Regge pole and core parameters as follows. The two 
largest angle minima of the low frequency oscillations in 
the cross section are fit to the corresponding minima of the 
A i 2 ( ( 0 -©^Y) function which, from the semiclassical point
of view, is the attractive contribution to the low resolution 
large angle scattering (equation III-22). Having thus estimated 
the rainbow angle and the deflection function curvature
parameter , these quantities are related to the pole para­
meters in equations III- 34 where the additional equation 

[r/rl2 e */i has been used for the half width of the (assumed 
parabolic in this range) attractive well of ©  ( i S ) .

The high frequency oscillations in the vicinity of © ^  

determine the value of Lr-*-L, via equation 111-24.
The value of L 0 , although more precisely obtainable by 

fitting the periodicity of the high and low frequency oscil-
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H+ +  Ar

6
( a )

.'vV'S'
■•s

(b)
5 V  • - V

**
( C )

4

3 020 4 0 5 0 6 010
C.M. SCATTERING ANGLE ( d e g r e e s )

Figure 2 1 :  (a) experimental relative differential cross
section, (b) deconvolution of the experimental differen­
tial cross section, (c) convolution of the calculated 
differential cross section. All curves pertain to the 
5eV H+ + Ar elastic scattering system.
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lations at small scattering angles to the predictions of 
equations 111-26 and III-2 7 , has been simply approximated 
as the average of Lr and L ( . The condition that © ( 0  

goes smoothly through j (0,1T) } (L,, Or') 5(L0 ,0) ; ( L B , ' 0 ^ ]  
with curvature Cĵ at the last point mentioned allows the 
initial estimation of and therefore R e ^ p  .

More sophistication than this is not necessary since 
the next step is to iteratively use the Remler-Regge method 
in order to reproduce all details of the experimental cross 
section. This has been done until the convoluted calculation, 
figure 2Lc, is in excellent agreement with the deconvoluted 
data, figure 2 1 b.

The resulting phase shift function, shown in figure 22, 
together with the semiclassically equivalent deflection 
function have been used in Vollmer's method to recover the 
intermolecular potential shown in figure 2 3 and tabulated 
in Table 2.

To verify and extend the repulsive portion of the in­
verted intermolecular potenital, it was extrapolated from 
V(lV)= 0  to about 3 0 e V  . Velocity independence was explicitly 
assumed and this intermolecular potential was used to predict 
the cross section at iMeV collision energy. The result was 
compared to a higher energy experiment which showed little 
of the interference effects but presented a large decrease of 
intensity on the dark side of 0 B (corresponding to scattering
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z .o
Ho
•Z.
z >u.
z  o
H*OLU-Ju.Uio

H*OZOLl.
HU_
x10
LlICO<Xa.

20 40 60 80 100 120 140
ANGULAR MOMENTUM QUANTUM NUMBER

Figure 22: dashed line - phase shift function value
(multiplied by .1), solid line - deflection func­
tion. Both curves correspond to the 5 eV H+ + Ar 
scattering system.
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A r  H

- 2 ’

- 3

- 4  —

2 3 654

INTERNUCLEAR SEPARATION (a0)
Figure 23: inverted intermolecular potential for the
(ArH)+ system.



Table 2: ArH+ intermolecular potential

R in a0 V(R) in eV
1.750 +7.25
i . y j 5 +4.40
1. »u4 +2. 40
1.8U7 +2.00i.aiy +1.60
1.035 +1.20
1.848 + 0.77
1.868 +0. 36
1.889 -0.06
1.912 -0.47
1.934 -0.90
1.955 -1.331.976 -1.77
1.998 -2.22
2.020 -2.66
2.045 -3.08
2.076 -3.46
2.115 -3.76
2.162 -3.99
2.219 -4.14
2.284 -4.21
2.357 -4.22
2.439 -4.16
2.528 -4.04
2.625 -3.89
2.728 -3.71
2. 837 -3.50
2.951 -3.29
3.071 -3.07
3.196 -2.83
3.328 -2.59
3. 465 -2.353.606 -2.11
3.750 -1.88
3.894 -1.68
4.037 -1.49
4.178 -1.334.316 -1.18
4.452 -1.06
4.585 -0.954.715 -0.85
4.843 -0.76
4.968 -0.69
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for Q >  ) •  The results of this calculation were in
gratifying agreement with the data as shown in figure 24*

Because of the detailed nature of the 5eV experiment 
as well as the validity of the approximations (JWKBL phase 
shifts and Born-Oppenheimer theorem) for the H+ + Ar system 
at this energy, we believe the intermolecular potential in 
figure 23 is highly accurate.

By comparison with the (ArH)+ data the 6eV H+ + Kr 
experiment, figure 25, givesiless useful information. The 
cross section, which at first glance appears to be quite 
detailed, shows no fine oscillations and therefore presents 
no information to accurately determine the L  scale of the 
deflection function. We will expand on this point.

The shape of the attractive well of @(1~') may be found 
as before; namely and can be inferred from the large
angle low frequency oscillations and equation III-22. The 
small angle low frequency component and equation III-26 
specify the deviation of branch 3 of ©) Cl ) from a parabola 
for Q  <30°* This, however, is all that we can accurately 
determine.

The infinite set of deflection functions  ̂©i^ shown 
in figure 26 all have identically shaped attractive portions, 
all equally well reproduce the periodicity of the low fre­
quency component of the cross section, and individually lead 
to the corresponding set of quite different potentials S Vj (
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3 —
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  1 ■■ —  ■ * 1   1 - 1
10° 2 0 °  3 0 °  

C.M. SCATTERING ANGLE

Figure 24: open circles - experimental relative differ­
ential cross section, solid line - convolution of cal­
culated cross section predicted by the intermolecular 
potential in figure 23. Both cross sections pertain 
to the 14 eV H+ + Ar scattering system. Please note 
that the curve representing the calculation has been 
shifted down to facilitate comparison with the experi­
mental result.
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10 20 4 03 0 50 6 0
C. M. SCATTERING ANGLE ( d e g r e e s )

Figure 25: (a) experimental relative differential cross
section, (b) convolution of the calculated cross section. 
Both curves pertain to the 6eV H"*" + Kr elastic scattering 
system.
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in figure 27.

L

Figure 26: the set of deflection functions which all
predict the same periodicity for the low frequency oscil­
lations in < r ( Q ').

Figure 27: the potentials corresponding to the deflection
functions in figure 26.

The observation (based on the H+ + He, H+ + N e , and H+ +
Ar systems where fine oscillations have been resolved) that 
the average small angle low frequency periodicity has

provides a crude device to fix the scale of L .  This assump­
tion was invoked, and the potential of figure 28 and Table 3 
corresponding to the calculated cross section in figure 2 5

0 R

L o

was recovered using the Remler-Regge^ and Vollmer4 treatments.
This potential is clearly much less reliable than the 

(ArH)+ result.
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Figure 2 8 : inverted intermolecular potential for the
(KrH)+ system.
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Table 3 : Inverted points on V (R) for (KrH)+

R in a0 V(R) in eV
2.254 +1.74
2.265 +1.34
2.2S1 +0.92
2.300 +0.51
2.320 + 0.10
2.342 -0.30
2.367 -0.69
2.393 000 •H1
2.420 -1.46
2.449 -1. 85
2.476 -2.23
2.504 -2.61
2.532 I u> 0 o o
2.561 -3.37
2.594 -3.71
2.633 o01

2.678 -4.25
2.730 -4.43
2.790 -4.55
2. 855 -4.62
2.928 -4.65
3.006 -4.62
3.091 -4.55
3.182 -4.45
3.278 -4.32
3.380 r-iH•l

3.485 -4.00
3.596 -3.82
3.710 -3.63
3.828 -3.43
4.078 -3.02
4.349 -2.58
4.633 -2.15
4.920 -1.77
5.200 -1.45
5.470 -1.20
5.740 -1.00
6.000 -0. 85
6.240 r-i.01

6.480 -0.60
6.720 -0.51
6.950 -0.44
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Table 4 : Pole and core parameters for the one state systems

System Energy Lo N Rs X j Im

H+ + Kr 6eV 91.5 16 138.15 33.55

H+ + Ar 5eV 67.0 13 100.20 25. 78
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The final pole and core parameters for this, as well as 
the preceding experiment, are listed in Table 4.

Some ideas which may be of help to determine the L scale of 
®  (L) in future low resolution experiments and analyses are 
presented in Appendix C. The best rule to follow is, however: 
resolve the high frequency oscillations.



IV. ELASTIC SCATTERING FOR THE 
TWO STATE CURVE CROSSING SYSTEM (NeHe)+

The experimental differential elastic cross section for 
the He+ + Ne system at 40eV collision energy is shown in 
figure 29. By comparison to the 5eV (ArH)+ data this experi­
mental cross section looks very simple; and, one would hope 
that its analysis would prove easy, almost trivial.

Nothing could be farther from reality. To a theoreti­
cian, the problem appears to be one of eleven electrons and 
two nuclei in relatively close proximity existing in a variety 
of molecular states many of which are coupled together. In 
the present treatment we shall have recourse to two potentials 
corresponding to two classical trajectories as well as to a 
third function which represents the probability of following 
one of the other of these paths. This is not all, however, 
since two additional "phase shift" functions, arising from the 
coupling itself, will be found necessary to describe our 
scattering experiment.

We shall endeavor to be quite explicit in the discussion 
about the diabatic and adiabatic terms. In describing the 
new theoretical work of Sidis® and Delos^ we shall 
attempt to be clear about their results but the intermediate 
steps will be outlined only; a complete and rigorous treatment 
being outside the scope of this dissertation.

The subject of curve crossing is by no means closed and

78
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10 20 30 40 50 60 70 SO 90
C.M. S C A T T E R I N G  A N G L E  ( d s g r e s s )

F igure 29: e x p e r i m e n t a l  d i f f e r e n t i a l  elastic s c a t t e r ­
ing cross sect i o n  for He+ + Ne at 40c.;.
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the present work should be taken as a phenomenological indica­
tion, rather than proof, of the viability of the most modern 
theory; a theory which does, in the low energy He+ + Ne case, 
reduce to the fairly clear explanation that the uncomplicated 
aspect of the experimental data portends.
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IVA. Adiabatic, Diabatic, and Quasi-Diabatic Potentials

Let us begin this section with a discussion of the potent­
ials. As in Section IIIA we write the complete Schroedinger 
equation in C.M. coordinates:

Vi ' ^  -1) ■* - 0

and expand . This time we explicitly use the complete set

of molecular wave functions ^jCri ■)^0 s;*-nce the coupling terms
will be of paramount importance,

( i v - l )  f  X 2  F *  ( R )  ^ ( r (- > R )  
J

where, the superscript a refers to "adiabatic."
Each of the ^  satisfies the electronic Schroedinger 

equation:

('*£ £  V? + v(n^)) = E“(*0&(?.-,R)
t i -1

where the V  vA' ^ ) in the above equation does not include the 
coulomb repulsion V Coo| - 7 r

Inserting equation IV-1 into the complete equation, pre­
multiplying by and integrating over electron coordi­
nates we obtain:
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(IV-3)

( 4 h v« 4 Vcul + E;CR)-E)F‘ W2V[

-- ^  £  ( M k W r I ^  + 2 < ? J V R l?cr>- V R) F ' O ? )
2r\ j

In the above equation we define the n o n - c r o s s i n g ^  

adiabatic potential for the Kth molecular state to be (apart 
from an additive constant)

(IV-4I V R (ft) - VCou\ + E 4 ( r )

where e 1 ( r ) has been defined in equation IV-2.
For low collision velocities we proceed as in Section IIIA 

and neglect the diagonal terms on the right of equation IV-3. 
Furthermore, in this same limit (slowly moving nuclei) Sidis^ 
lets y') and therefore:

If the remaining terms on the right hand side are small 
or zero then v 4k (r) specifies the nuclear trajectory. If on 
the other hand they are large, equation IV-5 is a complicated 
expression and V^OV) loses its meaning in this context. Let 

us examine <‘S*ljrk'%> to see when this will occur. From
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equation IV- 2 :
*

t-W  ̂̂  ̂  ~ ^  ̂   ̂̂  ̂

So that,

<AR

“ KllP)' fe> *

In Appendix E it is shown that

Therefore,

, , A , v I I «?,>
( i v - 6 )  <<Sk \ dTR' ^cr> = - -  —  7 7 ^ -- - - - - - --

11 j t K

If figure 30 represents the results of an adiabatic cal­
culation for two states dj^ and of the same molecular 
symmetry, then in the region of Re>l is small and
equation IV- 6 tells us that 4 §k I jff> l<fjV lar9e and the 
states are strongly coupled; so that the adiabatic potentials 
are not good in this region. On the other hand, far away from 

the potentials are smooth and widely spaced so that V ^ ( r ) 
and adequately describe the nuclear motion (i.e.
equation I V - 5 with the right hand side equal to zero is valid)
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RR
Figure 30: adiabatic potentials for the two state
problem.
We will now discuss another representation, the diabatic, 

which allows the coupling to be much more readily dealt with. 
This representation was originally suggested by Lichten^O 
and has been rigorously defined by Smith31. Let us define

j
the functions 0£j as those which diagonalize g -  so that

(IV-?) ^ ' Y ' K  IjfR i

Since the are not exact solutions of the electronic
Schroedinger equation, <( H m a y  have off-diagonal elements 
in this representation^and the diabatic curves defined by,

(IV-8) \/<̂(P\')- 0 ^ 1  H- V Cou| + Constant

can cross. The complete Schroedinger equation is now solved
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by expanding,

j-
Proceding exactly as before we find:

(IV'9) ('I'm + V * " 1  ) F

= $ .  E  ( < > , l v R2 + F*(ft)

J ^ K

For low collision velocity Sidis^ neglects the angular portion 
of and thus:

X71 -  f®2 4 . 2  i
K ~ AR1 ft 4ft

JjZFurther, he expands as

<>* i E ' \>j-> = £  ' A 1 *>><?> iA i v>)x

* A   ̂ ^
Therefore, all but the last set of terms in equation IV-9 
are, by the requirement of equation IV-7, identically zero, 
so:

(iv-10) (-7̂ 7 r +-V^-e ) f *(£) = -2Z<Xk.I F j(r)
z ft*
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Equation IV-10 shows that the smaller \ I
is, the more truly (.R) represents the intermolecular 
potential.

For example we could, in our particular case, develop 
as follows. First, simplify to a two state process. Next, 
allow the left hand side of equation IV-10 to represent the 
unperturbed Schroedinger equation. And finally, treat the 
one remaining term on the right side as a time dependent 
perturbation. The time dependency comes through a prescrip­
tion of the unperturbed classical path R(t); while the fact 
that perturbation theory can be used at all is due to the 
fact that the relevant %j'/> is small (Sidis6calcu-
lates ,26eV for the lowest energy crossing of the (NeHe)+ 
system).

Let us now draw a connection between the two representa­
tions. At the crossing of two diabats, figure 31, the partial 

matrix looks like:

(  I I T - j ' y  ‘C ’X j  IK*#! 'X-fcV

 ̂ ^ ^  j'/' ^  ̂  ̂"X-kV

Since the matrix elements are to be evaluated at R<> , however:

<  X j  I HeP 1 = K X-jc I 1 X k )  z. £  c

^^"3  ̂ \ "Xt/* ” 1 ^ j-
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So that the 2 X 2  matrix becomes

£i

H
H

KJ ^  t

To find the adiabatic energies, and E|<, we diagonalize 
obtaining:

f a =  T  +  Li  
JnK ~

and

e: -e: - 2 h k j

This result is also shown in figure 31.

jlA K x b a t i c  po'Ven-kia. ls

dlialpa^ic poVenitals

RR
Figure 31: a comparison of the diabatic and adiabatic
potentials in the vicinity of the crossing.
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Since equation I V - 7 defines the functions,^/ apart from 
an R~independent unitary transformation, these functions are 
chosen to solve equation IV- 7 and to separate to the correct 
asymptotic separate atom limits; and thus they coalesce to 
the adiabats as R becomes large.

The adiabatic representation, although more readily found, 
proves insufficient in the case where two adiabatic curves are 
close together. The coupling between the states appears as 
a complicated breakdown of the Born-Oppenheimer approximation 
involving not only the matrix elements a n d ^ ^ i ^  , but

j
the operator ^  itself. The coupling terms in the diabatic 
representation are simply off-diagonal matrix elements of 
VIa l  which are more easily calculable and have been found 
to be small and slowly varying for the case in question.

Determining the diabatic representation, according to 
equation IV- 7, proves to be the problem. To accomplish 
this Sidis notices that A  acts on a Slater determinant

C.wave function like a one electron operator. Consequently, if 
two such wave functions, ^ ^  , differ by two or more mole­
cular orbitals, MO's, the matrix element \ will be
zero. He therefore chooses to represent many of the crossing 
diabatic states by determinantal wave functions vrtiose elements 
are MO's, the columns of which do differ by two or more 
orbitals. He finds that is not identically zero for
some of the states, but since these correspond to smooth
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well-separated curves in the adiabatic case this representation 
«

is called guasi-diabatic. The two states which will be of 
particular interest to us diffef by two MO's and so for our 
case this representation is essentially the diabatic.

The MO's are constructed as linear combinations of 
Slater type atomic orbitals the parameters of which Sidis 
obtains from the work of Gilbert and Wahl.  ̂ The determinantal 
wave functions are then constructed and the expansion coef­
ficients in the.individual MO's are varied to minimize the 
diagonal element at each R.

The lowest energy crossing is found to be the intersection 
of the curves corresponding to the two molecular states 
State 1: I C 2 ̂ 7 <r2 ̂ M  CT2  ̂ ! TT* ) 3 o' j * £  +‘

which Sidis calls the B state 
State 2: I <r7 ̂ 7  O'2 > 3   ̂ 2^ 2 +’

which Sidis calls the C state 
State 1 connects with the ground states of both ion and

atom:

State 1: H e* ( V s •, * S ) , N e ( l * V sV r ‘ j ' s )

while State 2 corresponds, at large R, to the excited state 
of the atom;

State 2; H e + ( | s ^ ) N  ̂  ( 1 * * )  ̂2 } "35 ^ P  )
Sidis locates the crossing at P><, = 1-̂ TC? ) E- " ^"7-fteV
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and finds that

< T , I M l > 2 > |  = V ^ ( R () - . H e V
R = R t

The points which he has calculated for these two curves 
as well as the analytic functions which we have employed to 
represent them will be seen in Section IIIC.

We shall use these calculations of (R) , V2 (R) ,V.^ (R ) in 
our initial attempt to predict the He+ + Ne elastic scattering 
cross section. It will be seen, in Section IVC, that only a 
slight modification to the potentials is necessary in order 
to bring d‘co<icĈ ') into good agreement with ( 9 )  .
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IVB. Solution of the Coupled Equations and 
Connection with the Scattering Formalism

The methods presented in Section IVA have greatly reduced 
the difficulty of solving the complete Schroedinger equation. 
The information provided to this Section, then, consists of 
two coupled equations in the diabatic (really, quasi-diabatic) 
representation. Specializing equation IV-10 to two states 
we have:33

In Section IVB, therefore, we shall solve the set IV-11 
and relate the solution to the differential cross section.

ing any of them in detail, a few general remarks are in order. 
In all cases t h e ^ R )  functions in equation IV-11 are expanded 
in terns such as

(IV-11)

where, for instance, the terms ") > (R) and V^Cr) are
known from the work of Sidis.®

7This shall be done by following the method of Delos. Actually
7Delos presents four methods of solution, and, before discuss-

and the solution of Schroedinger1s equation is reduced to 
solving coupled first order equations for the C's, which are
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called the "classical" equations. Two of the derivations take 
u) as a momentum and z as the conjugate displacement. In one 
of these (called diabatic configuration space) the momentum 
corresponds to the diabatic potentials of equations IV-11.

<0

The other (adiabatic configuration space) still solves 
what we have previously termed the diabatic equations (IV-11) 
but is called adiabatic since to is taken to be:

These are just the momenta corresponding to a diagona- 
lization of

that is, to the adiabatic potentials. As we shall see, the 
configuration space representations break down when the 
classical turning point is in the vicinity of the crossing.
To establish the validity of his treatment for this region 
Delos transforms equations IV-11 to momentum space and derives 
(where the roles of ui and ^ are interchanged) the same classi-
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cal equationsP this time making approximations which are valid 
for the turning point close to the crossing but invalid else­
where. 34

In order to derive the classical equations and connect 
their solutions with the scattering problem we shall outline 
Delos' method in the diabatic configuration space representation.

First, expand as:

i V ' 5 , ( R )  (■ a - ' ^  S tCR)
^ ( F O  * a i + W e  - w t M . k R J e

with
R

 ̂ P,,,(«■)<»« 

rt'>»

Here, already, although no approximations have yet been 
made the problem is cast in a classical light; and one sees 
in equations IV-12 the nuclei (i.e. the C.M. coordinate R) 
moving up to and away from the classical turning points R T 
with diabatic momenta P v̂  (which, since both possibilities 
have been explicitly allowed in equation IV-12, is in­
herently a positive quantity).

Since substitution of equation IV-12 into equation IV-11 
would give two equations in four unknowns, Delos is free to 
make an additional two restrictions on the coefficients, as



94

follows:

(IV-13)

( A ‘-) = O

This eliminates the second order terms, and with the 
additional substitution:

equations IV- 11 and IV- 13 give four complex first order 
equations for the new coefficients, b:

(IV-14)
0

M,, e'V '(5‘'W KWlie-:,;(v g

MW,2e ttV-®̂ c,;s' n
2 P.

(4?V2'̂
U  2PZ

Mv/ J t '($£•£,} ‘» ^ / «5 p\ 7-('_m_ze rtv,2e
it Jp£ " it fp^

—  'e 
2Pz 0

H

‘V

vV t

l\^l

Equations IV-14, entirely equivalent to IV-n, are now 
reduced to two by making three approximations.

In the first of these approximations, the WKB, we neglect 
the b (4_ )b,_ and 2+ coupling. This assumes that the
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terms 

(IV-15)

are small,  and wil l  be true i f

CRT &  P,,t «  P,,-,
where [ R l  is  the unit length in particular system of units in which 

R and P i ^  are expressed.

As before in Section 111A, this  means that the potential is  

slowly changing and the free part ic le  wavelength is re la t ive ly  small. 

Actually (J^ 1 / 2  Pi,z need not be small i f  i t  i s  fa ir ly

constant and i s  large; then the coupling term will  be

a rapidly o sc i l la t in g  quantity which averages to zero.

Second, the b,+ , b2-  and )pz+ , b ,_  coupling terms

are ignored. Here i t  i s  assumed that the terms

V\ Vtx +
<IV-16 1 ~ T f ^  e

are much less  important than;

+ y \ ^  12

This approximation necessitates  the requirement that

| P,+ P2 I »  \P,-Pz|



and also that V ii(r ) be a slowly varying function. Delos^
further shows that a second condition must hold for V n  / namely

If the three requirements stated above are fulfilled, 
then (IV-16) will be a rapidly oscillating term whose deviation 
from the approximation averages to zero.

While it is reasonable that the terms in (IV-15) and 
(IV-16) are unimportant in the classical region (i.e. for 
real momenta to the right of the turning point), it is clear 
that in the vicinity of R-r, i neither is valid since P,,z-0. 
If the turning point is not too near the crossing point, , 
then the coupling between the 1 and 2 states may be ignored 
in the non-classical region and a connection formula obtained 
(as was done in Section IIIA).

So, under the assumption that are not close to ^  c
equations IV-14 are reduced to:

The JWKB boundary conditions give in this case:^

1+
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where R T , is the larger of R Ti Rrz • We now define a new 
variable, T  CR) , with units of time, and let:

and

r ( f V )

a?- y\

<*R 'Tr r
^or the bi,z+ e^u«-+ions

f r  U s
<*R J ? K

With the further substitution:
i V z

T

C-.zO') ' b.,1-0)

We may write equation IV-17 as:

(IV-18) A
a /o .w i

.mC.O)
o

v,,(t)e"A ofIX
V.2 (*)e,Ayc,(t) 

c,0)
U-7 Ii+K

A » i  r l ^ C R C M ) - S , ( B W ) ]  for

Our problem is now to solve these two complex first order 
equations, called the classical equations. In the next steps 
we shall further reduce equation IV-18 to three real equations,
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the solutions of which are directly related to the scattering 
amplitude.

Accordingly, we define the "evolution matrix" as:

So that G r ( V ^ T) satisf ies:

(IV-19) ^ &(?• ' t ' )  '  (  0  A ) C r & f r )

1  ’ T O  /

with the boundary condition that 

(IV-20) G r C ^ ^ r " )  " 1

From the last two equations GG+- I j&'G’’and dleA (j  = | 
Consequently G may be parameterized as:

/ / T ^ e ' ^  - 2 e ;r*
2 e .u

Equation IV-19 then shows that must solve the set:

H  * - * V* „•» (a + r, - r.)

<IV-22) *7 « -A = :  e»s ( A+ r,-rV )
A?. f T ? *

* 3  =-1, c s ( A , r 2 - r )
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with the boundary conditions from equation IV-20:

2  f a  ,'tv') - o

(IV-23) r, f a  f a )  = O  

Using the definition of G as well as the property that:

= G O / t v " )

we find

C,C?>\ _i
(IV-24) - - e  G C t  > % ) & ( %  f a )

ICiC-wJ\ C i  O r )
S J '

This is an important result in that it shows equations 
IV-22 need only be integrated over one half their range. That 
is, the wavefunction can be specified in some state at =-°° 
before the scattering and G, defined in equation IV-21, is then 
employed to find the wavefunction at ^"=+oO long after the 
interaction. To accomplish this, equation IV-24 tells us 
that the parameters Z. ̂  need be integrated over only
the half space ^  -̂ 'T to =•+<£) . We define ^  as

( i v - 25) S - ttr.rO

and the matrix element for channel 1 elastic scattering is
, given by:
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Recalling the expansion for °?( ( Rl

we identify

„  ; ( s 1v ' - k >Fi + 5f )
l i m  b , _  -  b m  'I b
R oo p-*>oo

and
: ( c t-i _ 1/ R  -v ^

J  = U  b lt( R ( t ) ) ^ e  1 ' ' 2
" R-*oo 

but from equation IV-24

C.O) * e ’ * s„ c, C-oo-y
therefore

,3li« CRfM) = e 1 $, l;« b,_ (.«(*>)
R -*■ co h R-** co

So that n

.. = e S „  >"*> e^  u 11 R->0O

Recalling the definition of S ^  in equation IV-12 and
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TfauKBL in equation 11 1 - 1 2  we see that:

(IV-26) S 11e2<*'

where , is the JWKBL phase shift corresponding to the 
diabatic potential V, (r ).

We can now connect the solutions  ̂ of the classi­
cal equations with the scattering amplitude and write:

$(o) --27 kZ] C2 fi* 0  55(cose) 1)

(IV-2 7) ^

Here, we have used equations IV-25 and IV-21 to evaluate 
, . The values of Z 5 H  ) ̂ 2, used in equation IV-27 result 

from the integration of the set IV-22 from to ^  -  +oO
with the boundary conditions IV-23. The one problem remain­
ing in this discussion is the solution of equations IV-2 2.

In order to deal with the phase A ,

A - -  i  ^ [ v , C R M ) - V 2 (R«'))] A t

^  . 7 Delos introduces two new unitless variables A  and s .

*

(IV-28) s (t) -  ^
o
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Let us take to be zero at the crossing. Consequently, 
at the turning point <  R ĉ ;

S - $ T < 0

but at R - P*t ■) ~ O  S o

H
= 0

at the crossing point;

s-.O , * « V.-v/j --O

and as ^  oO j

^00 00 
°°

5 ^  - ^  \ / l 2  ( R C ' t ) ' )  ^  l S S < n c €  \ / l2~-̂
° a . s  R - * - < o

The function jK*) is plotted as a solid line in figure 32.

Delos approximates the real J k ( % ) by the quadratic7

K 0 -

shown as a dashed line in figure 32.
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S

Figure 32: solid line - the function ; dashed line -
the quadratic approximation of Delos.7

The parameters and f2 are evaluated using the de­
finitions IV-28 and explicit expansions for Vi 2 ( R )  , V xzCft) 

and around the crossing point —  namely:^®

V C R )  ' - V R  " ' V ' l *  

v I2(r) = v u C M  - S • R

R < * >  - v - ?  *



with

F V
= i ,
- A R

F ',2
- A 2 
' A R 2

5 * A v,i 1

V  =
A R

'R-Bt

where F is an average force which acts on the system at R- 
Shis gives for ft, and

W ( v.\*)
(IV-29)

kt* V
H  V F z  

1<W3

Using these results, defining, 

(IV-30) \ HV - ~  an i  -

jr2
1 1
H A

and noticing that,

4 s * S

we may rewrite equations IV-22
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(IV-31)

with

g-'-HfTF sin (A + r; -r,)

£  = ' h | = F  “ s ( A + r ‘ - ^

fl „ 5 ( a *  pt - n )

H  =

A - i S

JT+T"
*

.£  { & ?

and the boundary conditions:

E(-£ , ~ 0  = 0

r, (-6,-0 = o 

n, (-<r 0  --it
These boundary conditions present some difficulty in the 

numerical solution of equations IV-31 (see for example the 
third equation in the set). No such difficulties, however, 
exist in the result of the adaibatic configuration space 
treatment which we have touched on previously.

Here, expansion of Fiyj (R*) in terms containing, as 
arguments, action integrals over adiabatic momenta results in
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the classical equations:

x 7 ' z(»tn °
with

R 
(iv-33) A , J _  f ( TT? ( R) —  IT, (R)) <t R  

h  ( L

where Tf are the adiabatic momenta given by the plus and 
minus roots of the equation:

V,, - £  2 M  [
(IV-34)

Equations IV-32 may be brought into the form of equations 
IV-18, by multiplying both sides by ■ - e

This being done, we may proceed as before and write
 ̂ n — p p  /  v

J d  2 ( M Z) t0s ( A  + P2- P , )

(IV-35)
<u~ " T c T I F )  g ,-?’n s'n ( A  -t- P, - H)

1—  f ^ s , 0
<«+ 2 0 < - r )  2
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TTWhere, it is noted, how the extra phase — has been 
absorbed in the trigonometric functions.

These equations are to be integrated from to $ = + o O
In practice the solutions converge to their limit^at i  ^ 4  2 0  

thus rendering the numerical problem possible and making the 
parabolic approximation to ^ ( 0  reasonable.

The phase A in equations IV-35 must be written in terms 
of $ . From the definition of the adiabatic momenta in equation 
IV-34 we find:

zz - TT,2 -  -  I- i *TT.

and letting

M  _ Tri_jL71'2
-  2

we have
» R .  4 5  AJ- *1 <14

A t  A s  A t

and from equation IV-33 :

(IV-36) A - - k (  .lTF*L.
A  ' 1 ]
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Here, the boundary conditions are no problem since

-  o

at the boundary.
Equation IV-2 7 can then be employed to find ^  (  0 )  ; 

the one change being that now corresponds to an action 
integral over the TT momenta, that is to say equation
IV-2 7 is now the adiabatic phase shift function.

7Delos' adiabatic momentum space treatment shows the 
validity of equations IV-35 and IV-36 for the classical 
turning point close to the crossing; the adiabatic configura­
tion space treatment just presented is valid elsewhere. Con­
sequently equations IV-35 and IV-36 should be correct and 
useful for all classically allowed regions of space.

Let us conclude this section with a summary of the cur­
rent results which we shall presently use to solve the low 
energy (NeHe)+ curve crossing problem.

The diatomic system (NeHe)+ is initially prepared in the 
state 1 (He+ and Ne both in their ground states at R=cO long 
before the interaction). The scattering occurs; and at some 
small internuclear separation the adiabatic potentials for 
state 1 and for state 2 (asymptotically He+ + Ne*) become 
quite close together. The elastic scattering amplitude for 
state 1 may be computed from:
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j(e) = 2| kI ( 2 )* ' )P t (c»0)[22e2iCvri\  (\-z’)«? ,W r 0 - i ](IV-27)

Here is the JWKBL phase shift function resulting from the 
adiabatic potential for channel 1. The values of the functions 
2,^ r2 (which also must be computed for each J? in the sum) 
are the solutions to the three coupled first order equations:

*•*

( I V ~ 3 5 )  S ’" M I R  ^ + r * ' r^  

43 : -I—■ *•„ U+rr r?)
It f U * * 1) 2

with
1   _

( I V - 3 6 )  A  ’  “ V (  j l l l l '  A X

2 4  ff+7 "

These equations are numerically integrated from ^ =t-t>£ 
with the boundary conditions,

2 ( - (  , - 0  = O

r,(-‘ ,-0  = o  
r = - tt
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to A  = +oD . In actual practice the integration is truncated 
when 2^ r, and have converged? which is usually at ~  + 2 0  

The values of the parameters £ , b (which are different for 
each value of $) have resulted, in this case, from further
specializing the Delos approximations to linear potentials

have been initially taken to be those calculated by Sidis in 
the quasi-diabatic representation.

At this point, the curve crossing problem should appear 
much more complex than the relatively straightforward one state 
theory of the previous chapter. In fact the present lack of 
parameterization of 2 does expand the numerical work

and constant interaction element Vi ̂

M l  I  \JZ 1 n

'p>c cT p  1R c . F ( R t)

(IV-30)
M  M S  J

A\f, l _  &\J2 \

where F ( R C') is an average force at the crossing. The values
of the parameters (  ̂ |p^  ̂ V,(Rt) - V2(Rc)  ̂ancft
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to a considerable extent. However plotting the quantities Z ., 
S s S *  c s r

o L  2^7* ' an(̂  ^  as funct^ons ^ provides the needed insight 
into the scattering problem. This, we shall do and discuss in 
the next section.
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IVC. Experimental Results for the 
He+ + Ne Curve Crossing System

We believe that, in our series of experiments on the 
(NeHe)+ system, we have isolated the effect of the lowest 
energy crossing of the intermolecular curves. In the 6eV 
experiment, shown in figure 34c> no perturbation appears in 
the differential cross section; and the scattering is such 
as would result from a smooth repulsive potential. In this 
case, the energy is too low to sample the crossing (see 
figure 33)

v(fO ®(?) <t ( q )

Tt

E = M

R

Figure 33: the monotonic behavior of (r(0) for the 6 eV
He+ + Ne scattering system.

At 30eV collison energy, however, the energy is some­
what greater than EIC and a perturbation is seen in the cross 
section, shown in figure 34t> at large angle. Why the pertur­
bation should appear so far out is explained by figure 35.
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1 0  2 0  3 0  4 0  5 0  6 0  7 0  8 0  9 0
C.M. SCATTERING ANGLE (d e grees )

Figure 34: experimental differential elastic scatter­
ing cross sections for He+ + Ne at; (a) 40eV, (b) 30eV, 
(c) 6eV.
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At this low energy the impact parameter of the classical 
particle does not have to be very large before the turning 
point, R t , is greater than R c . Consequently at a small 
value of Q  ̂@ becomes equal to ^  corresponding to large 
0 C in the deflection function; and the JWKBL phase shifts*^ 
for a smooth repulsive potential will again provide a fairly 
accurate description of the scattering.

r  O ')V(fO

0

Figure 35: the onset of curve crossing perturbations in
(TO) for the 30 eV He+ + Ne scattering system.

As the collision energy is increased becomes larger 
and Q c smaller, until at 40eV the perturbation in the diffe­
rential cross section, figure 34a* is nicely centered in the 
angular range of our equipment.

The simple discussion thus far is not really correct.
In analogy to raihbow.usg£tteringA4§ the onset of the effegts 
seen in the cross section occurs at a somewhat smaller angle
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than 0 C in figure 35. Since our insight into the quanti­
tative aspects of the problem is considerably less developed 
than for rainbow scattering, an acthal calculation was made. 

An analytic function for the adiabatic curve was care-

the partial wave sum of IV-2 7 was used to find the cross 
section.

The results showed, among other things, that the pre­
dicted perturbation was at too small an angle (about a 7° 
shift to the left). Using the type of reasoning with which 
we began this section, we shifted the crossing point up by 
1.3eV. Further, a more simple function, which still closely 
approximated the Sidis points,6was used for the adiabatic 
curve. The explicit form used was:

/Tfully constructed using the points of Sidis, shown in figure 
36, and his value for V|Z ; the small value for the inter­
action term - .7£>€\i) necessitated a very sharp "knee" in
the adiabatic potential. The functions ^(-O  ̂T, ( . J L )  ^ rz(-0 
were found by numerical integration^ of the set IV-35; and

-T3IH4-S7R 004.

-  e +-

(IV-37) + 8 642 0 0 ( p

-  e34-974446 R -
+• i7.f + i.M5e

(R-I.SfcV*
•0841

^Of l - ^ a 0 : V a ( R ) =  e
'2.07H R+ 6-745

+ 1-45 e
( R-WfcV- •0«M I



V 
(R

) 
(e

V
)

116

4 0

3 0

20

INTERNUCLEAR SEPARATION (au . )

Figure 36: circles - result of the Sidis calculation,
solid lines - analytic functions representing the adia­
batic and diabatic curves corresponding to these cir­
cles, dashed lines - curves which were used to cal­
culate the differential cross section in figure 37.
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and is shown, along with the diabatic curve as dashed lines 
in figure 36. Using these potentials the parameters in 
IV- 30 were found:

equations IV-35 and IV-27 with the result shown in figure 37. 
The perturbations in the theoretical prediction are seen to 
be in quantitative agreement with those resolved in the 
experiment (figure 37) . Furthermore, the quali'tativej aspects 
of the experimental cross section (a smooth decrease before 
and fairly smooth, with very minor oscillations, after the 
crossing perturbation) are satisfactorily reflected by the 
calculation. The major difference between and
<Tca(c C Q ' ) is the general rate of decay of the cross section 
with increasing angle.

We do not wish to belabor this disparity too strongly.
42Too many experimental factors can affect the general decay

v u ( m  - -2(* e V
(IV-38) V(ftc1 - Ec = I'M ̂  

Rc - i s u ,

F ( R c-)= 3 5 - 7 4 1  %

The calculation for <r(0) was again performed by using
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2

v*\

0

2010 3 0 40 50 60 7 0 00 9 0 100
C.M. SCATTERING ANGLE (degrees)

Figure 37: dashed line - calculated differential
cross section, solid line - convolution of the cal­
culated differential cross section, points - experi­
mental data. All curves pertain to the 40eV He+ + 
Ne elastic scattering.



119

rate (over ninety laboratory degrees and about three hours in 
time) for us to put a great deal of faith in this aspect of 
the data. On the other hand, we very strongly believe that 
the periodicties and locations of experimentally resolved 
oscillations are highly accurate.

We shall now discuss the origin of the observed scat­
tering features in semiclassical terms. Our discussion shall 
be based on the two pseudo-deflection functions which shall 
be defined:

( i v - 3 9 )  « zfi O l . C O - T l O O )

which we have constructed by extending the equivalence re­
lation to the partial wave sum

( i v -2 7 )  ^

@  (fi) and 0^(5) have been plotted along with the adiabatic 
and diabatic deflection functions 0 a (c) and ©^(fi) in figure 
38. Their shape may easily be inferred from the functions 
P,(jO   ̂ and ?($) which are shown in figure 39. 17$) is
essentially a step function around this produces a negative 
going pulse in the deflection function which serves to decrease 
© a (£) only in the region immediately to the left of .
Delos^has noted that as Q becomes small

r t u )
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.6 -

. 3  -

h h 200100
ANGULAR MOMENTUM QUANTUM NUMBER

Figure 3 8 : inset - the function Z z (Sl); solid line -
adiabatic deflection function ©«_ , chain line - dia- 
batic deflection function © 4  , dashed line - the pseudo 
deflection function ©j , dotted line - the pseudo de­
flection function ©,
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.6 —

.3 -

.9 —

.6 —

-2 -

-3 —

180170
ANGULAR MOMENTUM QUANTUM NUMBER 

Figure 39 : the functions "ZCS.̂ jHjCO }
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So that, to the right of ,

The difference between an^ © ^ ( 0  is the approxi­
mately wedge-shaped region of area 2tr which has been removed 
from ©^(0 around Jl^ . We also note that, since r2on has 
approximately zero slope at :

In our numerical procedures we have not solved the set 
IV-35 over the entire range of d but only for values of J? 
around . For Jl only a few units larger than J?c ^  ( A ) is
almost zero and ^  i s  entirely negligible. Consequently for 
large d , the adiabatic phase shifts are all that one needs 
to know. For Jl about twenty units smaller than 
has converged to ©{4(4). So that for values of $  to the left 
of f j  in figure 38 we have explicitly used the diabatic path. 
In this same region we have analytically approximated ( . - % ) ,  

which makes negligible difference to the calculation since it 
has already saturated to its limit and makes no further con­
tribution to . For Z(fi) we have used the Landau-Zener
formula^

(iv-40)



123

which is an excellent approximation in this region. We have 
made one further approximation to the work of Delos^in that 
we have removed the J? dependence from F(RC) and evaluated 
this average force for J l -  ■

Let us now examine the semiclassical prediction of © , C O  
and © z(fi) for the differential cross section; where, as before, 
our references to angles and values of i! will be to figure 38 
For 0 > 0 3  there are two paths the system may follow, i.e.
©  t (5) = ©a.(!0 and ) - ©cfi(i). Since is almost unity
here we would expect ©JtCC) to basically account for the 
differential cross section in this region. Since Z(£) is 
not identically one, however, there should be some small 
amplitude interference in <t ( Q ) for 0 ^ 0 ^ -  We can be more 
explicit: since both © ((C) and © zCc) are smooth monatonic
functions we adapt equation III- 1 9 to this situation and write

  2 \ 1-----( i v - 41) |(e") -- z2 e. 2 4. (i-*2) e' 1

with

A ,,z= 2 7 V -  ©  V "  2

K

'•*' k V n © | l f
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So that

<r(e) = 2 V ,  f O - z M ’ TC| * 2 * v 0 - r !)Ks'<,' c«

From figure 38 one can make the rough approximations

/ ir- I. 2 \ ,
(H) r TT -  ( --- ) J?^  Z V '7 ° }

o . t 7 Q
2  [ • 2  - T T

Q  — IT
1-2-TT \oo

and ignore the term 0"ci which is very small; we find
that

r(e) - a1* o-C; ( i + ^ J' coS ( 2( yi , - y!z'l * s ( i i z-iit))'\
r  \ VJ/1 /

but

£ > ro 
(Tc,

Consequently the cross section should oscillate with 
periodicity

' 2 - i r(IV-42) '

and amplitude of approximately one tenth the average intensity. 
Furthermore we have found (by measuring ) that formula
IV-42 is essentially valid for all angles larger than © 0 •
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and thus accounts for the high frequency component of the 
cross section in figure 37. Since only one classical trajec­
tory ©,(6) = ©a(2) exists for 0 < 0 O these oscillations are 
damped out in this region.

The large "rainbow-like" envelope (at 52°) in the cross 
section is essentially due to the negatively curved doubly- 
branched portion of @,(fi) immediately to the right of .
Since ©,(2) possesses another doubly-branched portion to 
the left of this last assertion should be verified. In 
order to do so, we have added a large negative pulse to ©,(5) 
in the vicinity of its minimum and recalculated the cross 
section. The results are shown in figure 40. Since the 
rainbow structure has only moved about 2°, the small amount 
by which we changed the maximum of instead of the
large amount by which we changed its minimum we believe that 
our initial assertion is correct. Also, since branch multi­
plicity has been extended below Q 0 , the high frequency 
oscillations appear at smaller angles.

The next few remarks are basically speculation on the 
part of the author. In addition to showing the source of 
the rainbow-like structure seen in the cross section, figure 40 
may also indicate the source of the peculiar perturbation 
seen between 75° and 80° in figure 37. Our previous discus­
sion of this angular region predicted only small regular 
oscillations resulting from the two smooth interfering
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Figure 40: (bottom) solid lines - 0,U)
and ©iCl) from figure 38, dashed line
- the distortion introduced into © t; (top) 
solid line - convoluted differential cross 
section corresponding to undistorted 0, 
and ©i, dashed line - convoluted differen­
tial cross section where ©, has been dis­
torted. Both relative cross sections have 
been calculated for the 40 eV He+ + Ne 
elastic scattering system.
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trajectories shown in figure 38- We believe: (1) that for

perturbation is the cross section at large angles. The deeper

perturbation in the calculated cross section. Since we can­
not, as yet, mathematically define a single smooth average 
deflection function, we cannot prove what we have just pre­
sented but we believe that it is so anyway.

As a conclusion to this section we shall introduce two 
quantities, fHi') and @  ($) , and discuss a possible para­
meterization of the curve crossing problem which may facilitate 
the calculation of the differential cross section. If we write

we find the deflection function semiclassically equivalent to

@  > , it is reasonable to consider the scattering as re­
sulting from an average deflection function, (3) , lying
close to 0 2($O since £'Z is almost unity; and (2 ) that the 
angular momentum coupling between 0 (( O  and 0^(3.) leads to 
a distortion in 0 av (ft) for values of X  around the minimum 
of @ » ( J 0  * an<̂  that this distortion produces the irregular

minimum introduced into 0  ( ((?) in figure 40 augments the 
distortion in 0 ^ ( 3) and therefore enhances the resulting

+ O-a*)
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with

(IV-44) f t ( j f )  -  J V  +  ( | I V ) " 1 -f 2 z ‘l (  \ - * n  c o s  C f ^ - ^ r . 7

©(£) and j \ { d )  have been determined in the 40eV He+ + Ne 
case and are plotted in figure 41. The surprising result 
is that, for , ©(C) oscillates around (ll). The
periodicity of these oscillations is given by

(IV-4 5 ) cos £ 2 ( P.Cfi) -r FV.CO') + Cofl5V<a.r>i-J

The oscillations in fl(fi) also conform to IV-45 with a 
phase difference of IT . In both cases the frequency approaches 
zero as becomes small since

ri-~°
a* - A  -  1 - I  - o

For in the region where is small the lower envelope
of the oscillations of © ( C )  is

( © ( ( o  + © t c o

and neglecting Q - 2?)Z the upper envelope is

?7 0 t(c) - ^-0 ZU)"]

It is clear that as ®,(fi) — *■ © t(2) (i.e. as becomes small) 
the amplitude of the oscillations is strongly damped.
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Figure 41: (bottom) chain line - A(<L) ; (top)
dashed line - _©i( 0  , dotted line - ©,(C) ,
solid line - ©U) .
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The form of 0 ( f i )  suggests a parameterization in terms 
of the Remler-Regge method.  ̂ a set of pole configurations 
could be placed as shown in figure 42*

•o.

u

Figure 42: location of poles inthe[\I plane which would
reproduce oscillations of 0(fi) in figure 41.

The spacing between them is related to the local period of 
IV-45; while the constellations which have small real parts 
also have larger imaginary parts since the oscillations in 
the deflection function are damped as Additionally,
to continue the phase shift and deflection functions to 
large $  , a circular array of poles could be positioned at 

ĉ. in the fourth quadrant of the [X] planed4 An 
analytic function 0c ( j?) which goes smoothly to zero at 
would continue © ( O  to the point (Ojtr) as shown in figure 43.
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Figure 43: the composition of 0(0 from pole and core
contributions.

The parameterization of A02) is not so apparent. It 
45may, as Remler suggests, prove possible to modify the form 

of the singularities in the first quadrant such that the 
matrix elements no longer obey the unitarity condition.
Then the resulting complex phase shifts are which
are adjusted so that:

Unfortunately, time prohibits our undertaking this task; 
and our last few comments should only be regarded as possibi­
lities which may effect a quantitative treatment of more 
complicated systems where many crossings are seen.



V. CONCLUSION

Our conclusion for the one state  e la s t i c  scattering systems is  

straightforward. The Remler-Regge and Vollmer methods allow the 

inversion of the intermolecular potential from well-resolved ex­

perimental data. Furthermore, through the semi class ica l  method, 

sp e c i f i ca l ly  the def lect ion function, the origin of the observed 

scattering features is  well understood. In fac t ,  the analysis  

and inversion techniques presented in Section III should be ap­

plicable to any spherical ly  symmetric scattering system for which 

the JWKBL phase sh i f t s  are thought to be adequate.

In the more complicated curve crossing problem, presented in 

Section IV, semi c lass ica l  ideas again give insight into the 

scattering.  Here, however, the def lection functions which we have 

constructed are rapidly changing when the c lass ical turning point 

approaches the crossing; and therefore in certain angular regions 

the semiclassical method is  not s t r i c t l y  applicable. In any case,  

the fu l l  partial wave prediction of the cross section based on the 

Sidis potentials  and the Delos semi quanta! method is  in good agree­

ment with our experimental result  for the (NeHe)+ system at 40eV 

co l l i s ion  energy. The major difference between calculated and 

experimental cross sections in this case is  a discrepency between 

the overall decay rates of  the two curves, the experimental result  

appearing to fa l l  faster  with increasing angle. A number of  

explanations for this  disagreement suggest themselves. The potentials  

used in the calculation could well be too hard and more slowly r is ing
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functions for y w o u l d  improve the s ituation.  The p o ss ib i l i ty  

of  another curve crossing accounting for a further decrease in in­

tens i ty  at large scattering angles does e x i s t .  One would suspect,  

however, that i f  this  were the case there should also appear osc i l la tory  

features in the d ifferentia l  cross section due to this  second crossing;  

and, further, that these features should appear at large angles,  well-  

separated from those already observed. Since we have not experimentally 

resolved such features and since the slope discrepency begins to be 

apparent as c lose- in  as 35° we do not believe very strongly in this  

second p o ss ib i i l t y .  As mentioned in Section IVD the overall  experi­

mental slope may i t s e l f  be questionable. We w i l l ,  therefore,  turn 

brie f ly  to the problem of experimental error.

Many experimental factors might lead to an apparent decrease in 

in tens i ty  at large angles.  We mention in passing the p o ss ib i l i ty  of  

the primary beam and the target gas pressure changing during the course 

of  the experiment. Also, some discrepency may enter in our treatment 

of the experimental data. Specif ica l ly ,  i f  the primary beam were 

strongly focused in the vertical direction the reaction volume 

correction in Section IIB would not be accurate. Perhaps most im­

portant is  the e f f e c t  that a s l igh t ly  improper sett ing  of  the product 

accelerating voltage (AE-3 in Section 11B) would have upon the intensity.  

Uncertainties in this  sett ing could result from an incorrect estimation 

of the scattering angle ( + 2 / 3 °  at large angle) and from angular 

sh i f t s  or, worse, energy sh i f t s  of the primary beam during the 

experiment. For the higher energy beams with narrow energy profiles  

where the C. M. and laboratory systems are quite d if ferent  this  e f fec t  

could be profound. Thus, rough estimation (using the formula for AE.3 
in Section I IB) of the ef fect  of percentage uncertainties in A £3
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upon the scattered intensity indicates the e f fec t  to be about s ixty  

times larger for the 40eV (NeHe)+ system than for the 5eV (ArH)+ 

system at large scattering angles.

At this  point i t  i s  appropriate to make two speculative comments 

concerning the curve crossing problem. In Section IV we have seen 

indications that a single "average" deflection function would be a 

useful concept in describing the d ifferent ia l  cross section.  We 

have attempted to define this  function but the result  was osc i l la tory  

over a large range of H . Therefore our particular result  for 

cannot be considered to be a reasonable basis for a semi c lass ica l  in­

terpretation of the problem. It could however, in connection with the 

Remler-Regge method, be most useful for the numerical calculation of 

the d i fferentia l  cross section.
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Appendix A: Classical Orbiting

We have already introduced Ve^ as potential which
describes the radial motion of a classical particle, we had

V«{4 (R) = V(R) +
Let us sketch a family of such curves for a realistic V(R)

.01

01

L-L

L - Loo " 0

Figure 44: a family of effective potentials showing
centrifugal effects.
If a classical particle with impact parameter corres­

ponding to L 0l is incident on a scattering center with energy 
E 0I no radial force acts on it at the turning point 
and consequently it stays at this radius forever. In this 
case ® ( E )  possesses a pole at L~ L 0v and an infinite 
number of branches contribute to the scattering (shown in
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figure 45).
©

Figure 45: @ ( L)  for class ical  orbiting.

The conditions for c lass ica l  orbiting are

( A1) I - E  = 0  N ^ ~  O  coVicre fh e  ea.ua.ls
^  Kf i R  Kf JL R z c o r r e s p o n d s  t 15 £ - 0 2

We have graphically determined that for the inverted (ArH)+ 

potential in figure 23 E^ i s  l . leV .  Since class ical  orbiting 

cannot occur for incident beam energies which are above we 

are ju s t i f i ed  in neglecting this  phenomena in our analyses in 

Section III.
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Appendix B: A Discussion of the Circular Pole Configuration
45In Appendix B we wil l  repeat an argument which demonstrates 

the lack of dependence of ©j> (and hence of <r(©))  

upon p . We have

( B i )  © p ' - E  ‘  " 2 M 5  M  ^
P ‘-l |XZ-X>I

where X is  the real angular momentum Jl \ . We shall work

out the f i r s t  ( S  ph?,*') term above. Consider figure 46
where N poles are positioned on a c irc le  of radius j> .

Figure 46: geometry of the pole configuration in the £>"3 plane.
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So that
i cD

(B2) '\p+l - >p - A  «-

and

(b3 ) ^  = p e Q *

2
If A  is small

p  &  I R I

Here:-

e P - - 1  * y

Now let

^  X 2 _ ^ p  ^  A

Jts l

where ĉ S is the real differential displacement along the cir­
cumference of the circle in figure 46. This is valid when 
1/ ( ^ P  is a slowly varying function between poles (in other 
words for a relatively large number of poles). So using

J ! S  -

we have •
W p e - ' ? '  I

poie^P  ̂ ‘̂P (Ltrcle
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But from equation B1 and B2

a \ - ' F-\<D0 ( + F \ ~XZ \e ^  - f  V 1 ------ £ ) e ~  - Vs

So

, y _ > ’ A  ' '
c

However if all the poles are off the axis 1 ^ never equals 
p and the only singularity contained within the contour 

is , therefore

x r _t \ n  ■ f _i_P ' "1 _   !_ _  ^

?

The same argument could be applied to the second term of 
equation B1 with the final result:

( “Foil " F o * 1)

® s = n ® x p
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It should be noted that if the poles are too close 
together numerical difficulties preclude accuracy in the 
calculation. We have found that if yo is chosen anywhere 
within the limits ^  -C/o ■<! (.ImAp-l) the calculation for (©) 
is not perceptibly changed.
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Appendix C : Recovering the Deflection Function
from Low Resolution Data

This Appendix will present some thoughts on fixing the 
scale of L for the deflection function in low resolution 
experiments.

The two deflection functions in figure 47 should produce 
the corresponding cross sections in figure 48.

\i/®, \i/S, L
Figure 47: two deflection functions with identically
shaped attractive wells.

e
Figure 48: the differential cross sections corresponding
to the two deflection functions in figure 47.

The shapes of the attractive wells of ©, , and © 2 are 
identical so that the periodicities of the low frequency 
oscillations in both cross sections are the same. However 
the smaller repulsive contribution of ©, leads to better 
resolution of the interference phenomena and smaller total 
cross section. This suggests two possibilities.

If our understanding of smearing in the data is put on a- 
quantitative basis, the degree of experimental resolution of
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the low frequency component may Itself aid in a determination 
of • ’Further, if accurate absolute cross sections can be 
measured then (h)( and should definitely be distinguishable.
Along this same line a third, and more feasible, idea suggests 
itself.

If, in addition to the low resolution relative differential 
cross section, the relative total cross section4® could be 
measured for the low resolution system as well as for a high 
resolution system (for instance 5 eV W*+/\r ) then the cal­
culation4 ^ could be adjusted such that:

Toro. |

/ E x p e r i m e n t a l  T T o T o A

/Calcic "’•"'*"7 fc;ictuA "T
^or l o r e s o l u t i o n  I - — —------------------   X I y 00 resolution

\ s y s t e m  J / E x p e r i m e n t a l  \ s y s t e m
/ -̂or Vuyt resolution I
V s y s t e m  J

This additional requirement coupled with a good fit to 
the low frequency oscillations might well determine in
the deflection function. The basic difficulty in this pro­
cedure is that both relative total cross section measurements 
must be carried out under exactly the same experimental 
conditions.
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Appendix D: The Non-Crossing Rule

In this Appendix we will show why the adiabatic curves 
can not cross. To do this we will follow the treatment of 
Landau and Lifshitz.^

Let us suppose that the system is at an internuclear 
separation F|0 where the adiabatic binding energy curves ET^ (R) 
and E^(R') are close but not equal. Let us now see whether 
we can displace the separation coordinate, R , by a small 
amount A R  so that the eigenvalues are equal, i.e.:

To investigate this question we shall use degenerate 
perturbation theory. Accordingly, we let

E * ( R 0+ A R >  = E J C R . +  A R )  5 E ( R / A R )

(Dl)

where

and

(D2)

Where A V = A R
a  K. is the small perturbation operator re-
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suiting from a displacement of the system by an amount A  R. . 
Substitution of Dl into D2 gives

(D3) c, ( E ? + - A V - E ' )  <j>, + C 2 ( E J  + A V - E ) ?I - O

Premultiplying equation D3 by qp* and integrating over electron 
coordinates we find:

<D4 ) C, ( E* +- v„ - E ~) *■ V,z - o
with

v„ S <<3, I AVI c$,> 
va * < <$, i A V I  <$z>

Doing the same with results in

(os) c,v2l +■ c2(ej+ vtt-r) ® O
with

V 2| I A V |  <5,>

Since AV*=AV we have,
v£ - vl4

and let us assume Vii is real so that V^i-V iz .
The condition for the solution of the simultaneous 

equations D4 and D5 is that the determinant of the system



vanish:

£? +-V,, - E-

^ \ Z

So that

E -  \ C e: +■ Ej +■ v„ -V i  7 4 +  v„ - V „ y  + v.l

Consequently,

+' V „  -  V22>) i - ~ V v ^ '  "  O

That is

(D6 ) E j - E ^ V „ - V n - - 0

and
(D7) V lt - O

We have, in equations D 6 and D7 , placed two conditions on the
term A R  which can not, in general be satisfied.

The only way in which D 6 and D7 can be simultaneously
true is if ViZ - O  for some other reason. This is the case

49if and have different molecular symmetry.
The results of this appendix may then be summarized.

The curves for which is diagonal, that is the adiabatic

V,-

t V z z  - E
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curves, may not cross if the molecular symmetry of the two 
states is the same; conversly, if He? not diagonal for 
some represention (e.g. the diabatic) the curves can cross 
since equation D 7 does not apply.
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Appendix E: Mathematical Detail
t

In order to derive,

< ^ l a - R W , > ' -  ~ ^ T 7 k—

we have used the relation:

( E i )  I ^  ^  I \  ^  p,  1

We shall, in this Appendix, establish equation El. Consider 

(E2) ^ ' 7 r [(i'R ,Sj)'Vr < 5 t ] ^ r

’ -v-
and also 

(B3)

° <S?r +

So, from equations E2 and E3, we have:

(E4)
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The term on the left and the first term on the right of 
equation E4 may be converted to sufface integrals, so that:

S 5

But since the integrations, , are over all space
the surface integrals may be taken at infinity where the 
integrands vanish; consequently:

(«, \ ( V? %  *3r - S <  ^  k  *'r

Using the result that:

>1 * * r-* \ I r n *  r- m*"

as well as the fact that is a scalar, we find:

Z « < % \  f H l -  < 9 k I
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of  the forces ^'/dR and l\Jz/dR are d ifferent  at the 
crossing point.

39. Please recall that the JWKBL phase sh i f t s  are proportional to :
$  A R .

40. Please recall  that the rainbow angle is  to the right of the 
largest  angle maximum in the cross section. See, for example, 
figure 17.

41. The actual program ut i l ized  Hamming's predictor-corrector method.

42. Many slowly and smoothly changing conditions could a f fec t  this
decay rate , for example: (1) the primary beam in ten s i ty ,  (2)
the target gas pressure, (3) the ef f ic iency of the entire  
detection system as the e la s t i c a l ly  scattered product
loses  energy in the laboratory coordinates with increasing 
scattering angle. Some discrepancy may also enter in our 
treatment of the data: e . g . ,  for a beam strongly focused
in the vertical direction our reaction volume correction 
(discussed in Section I IB) would not be correct.
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43. The Landau-Zener method assumes that the approximations: 

ov- r1, - - t I j l

are valid for al l  values of 0- . I t ,  therefore, does not take 
into account phase changes in the v ic in i ty  of the crossing. See, 
for example:
Marchi, R. P.
Phys. Rev. 183, 185 (1969).

44. Corresponding to the negative attract ive pulse caused in the 
def lect ion function by f i r s t  quadrant s in g u la r i t i e s ,  fourth 
quadrant poles result  in a posit ive  pulse in © C O

45. Private communication of E. A. Remler.

46. The re lat ive  total cross section for systems where only one
channel is  open (or manifestly dominant) may be found by measuring 
the difference in the ion beam intensity  at 0°w ith  the scattering  
gas in and with i t  out.

47. The optical theorem:

W l  = ^  iM-fCo*)

would provide a convenient way of retrieving the total cross 
section from exist ing computer programs.

48. Reference 22, p. 263.

49. Reference 22, p. 264.
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