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ABSTRACT

High-field 13C and 'H NMR spectroscopies have been used to investigate some 
unusual features of the molecular microstructure of poly(vinyl chloride) (PVC). The 
results obtained have illuminated several significant aspects of the mechanism for vinyl 
chloride (VC) polymerization, and they also relate to the very important question of the 
reasons for the thermal instability of the polymer.

Several model monochloroalkenes were synthesized in order to determine l3C shift 
increments for the replacement of H by Cl at positions that are a , P, or y to an isolated 
internal double bond in a linear carbon chain. These increments then were used to predict 
the 13C shifts of the internal allylic chloride structure in PVC. The predictions were not 
satisfactory, a result which showed that, as expected, the increments were not additive.

It was shown that during conventional VC polymerization, the chloroallylic chain 
end (-CH2CH=CHCH2C1) does not copolymerize with the monomer and is not destroyed 
by a mechanism involving allylic rearrangement, macroradical addition, and chlorine-atom 
P-scission to produce a -CHC1CH2CH=CHCH2CHC1- structure. Nevertheless, that 
mechanism was found to operate during the preparation of a special type of PVC [made at 
0 °C with (t-Bu)2Mg initiation] which contained the rearranged chain end, -CH2- 
CHC1CH=CH2, at an abnormally high concentration.

During the preparation of PVC under subsaturation VC pressures, small amounts 
of a l,3-di(2-chloroethyl) branch structure were found to be formed by a “double 
backbiting” mechanism involving two intramolecular H abstractions in succession. The 
presence of this structural defect, which is believed to be very unstable to heat, was 
established by the 125.77-MHz I3C NMR spectra of reductively dechlorinated PVC 
specimens. At 55-80 °C, the two backbites leading to the defect differ substantially in 
relative rate, in that the backbitingraddition rate ratio is larger for the second backbite by a 
factor of 15-16 (mean value), irrespective of temperature. Remarkably, no evidence was 
obtained for the presence of the 2-ethyl-«-hexyl branch structure that would have resulted 
from double backbiting by an alternative route. The absence of this structure and the 
presence of the l,3-di(2-chloroethyl) branch array were confirmed by spectral 
comparisons with the l3C shifts of two reference models, 9,11-diethylnonadecane and 9- 
(2-ethyl-w-hexyl)heptadecane, that were prepared by unambiguous tactical methods.

Polymerizations of VC were performed in the presence of two potential transfer 
agents, trans-1 -chloro-2-hexene and trans-1,5-dichloro-2-pentene. Preliminary examina
tion of the resulting polymers by high-field NMR provided evidence for the destruction of 
the -CH2CH=CHCH2C1 chain end, during polymerization, by a mechanism involving H 
abstraction to form the -CH2CH=CHC*HC1 radical, followed by the addition of that 
species to VC in order to give the thermally unstable structure, -CH2CH=CHCHCICH2-.

xv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A STUDY OF POLY(VINYL CHLORIDE) 

MICROSTRUCTURE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 1

INTRODUCTION

1.1 General

Polymers are everywhere. People began to use natural polymers at the same time that 

they themselves appeared in the world. Such polymers as cellulose, starch, natural rubber, etc., 

were used for ages long before they were recognized as polymers.

It is impossible to imagine modem life without polymers. Herman F. Mark wrote in 

1985: "We would have no Bible, no Greek epics and tragedies, and no Roman history without 

parchment and papyrus. There would be no paintings of Leonardo, Raphael, and Rembrandt 

without canvas and polymerizing oils. And there would be no music of Corelli, Beethoven, and 

Tchaikovsky without string instruments, all of which consist entirely of natural organic 

polymers such as wood, resins, and lacquers".1 Many modem technologies are based on the 

use of polymeric composite materials which are lighter and very often much more durable than 

natural products and/or metals.

The importance of the invention of polymers and polymerization has been emphasized 

many times and in many places. Lord Todd (former president of the Royal Society of London) 

answered the question, "What do you think has been chemistry's biggest contribution to 

science, to society?", as follows: "I am inclined to think that the development of polymerization 

is, perhaps, the biggest thing chemistry has done, where it has had the biggest effect on

2
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everyday life. The world would be a totally different place without artificial fibers, plastics, 

elastomers, etc. Even in the field of electronics, what would you do without insulation? And 

there you come back to polymers again".2

1.2 PoIy(vinyl chloride) (PVC)

With a consumption of about twenty million tonnes worldwide (Table 1.1)/ poly( vinyl

Table 1.1

Worldwide PVC consumption according to regions (in 10001)

1992 1995

Western Europe 5,200 5,320

Eastern Europe 1,260 850

North America 4,600 5,050

Japan 1,870 1,830

Southeast Asia 3,900 5,500

Rest of the world 1,670 1,850

Total 18,500 20,400

chloride) (PVC) continues to be the second most important commodity plastic (polyethylene 

ranks first).
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Until the year 2000, an average increase in worldwide consumption of 4% per year is 

expected, with Western Europe accounting for about 2%, but the growing Asian market for 

6%. The growth rates for the various applications differ, as the data for Western Europe 

illustrate (Table 1.2).3

Table 1.2

Western Europe PVC consumption according to major applications (share in %)

Application 1992 1995

PVC-unplasticized ('total') 66 68

Pipe/fittings 28 29

Profiles/sheet 16 19

Film 10 9

Bottles/hollow articles 8 7

Miscellaneous 4 4

PVC-plasticized ('total') 34 32

Film 8 7

Tubing/profiles 4 4

Coatings 4 5

Flooring 5 5

Cable 8 8

Miscellaneous 5 3
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Developments in PVC production which are expected to enable a direct conversion of 

ethane to vinyl chloride could secure a cost advantage for PVC.4 The main focus of the process 

development was and is on the reduction of production costs by energy conservation and on 

the reduction of chemical emissions to air and water. Today’s modem polymerization units 

operate with such low emissions that they fall below current strict limits imposed by the law.5

The preparation of vinyl chloride was reported in 1835 from the reaction of ethylene 

dichloride with alcoholic potassium hydroxide.6 The first "metamorphosis" (polymerization) of 

vinyl bromide was observed in 1860, and the polymerization of a number of vinyl halides, 

including vinyl chloride, by exposing them to sunlight was reported in 1872.7 In 1914 Hoechst 

reported the use of organic peroxides to accelerate the reaction and announced the first use of 

free-radical initiators.8 Commercial production of PVC was started in Germany in 1932, using 

emulsion technology 9 The first PVC plant to be built in the USA (in 1936) was the Carbide 

and Carbon Chemical Companies (now Union Carbide) plant at South Charleston, West 

Virginia.10 In the USA and later in the UK, PVC production was based primarily on suspension 

polymerization, rather than on the emulsion polymerization that was favored in Germany.

However, PVC was still far away from full acceptance, because its processing and heat 

stability problems had to be solved. The first breakthrough came in 1932 when B. F. Goodrich 

patented the use of plasticizers with PVC.11 After examining a wide range of chemicals, the 

Goodrich group identified bis(2-ethylhexyl) phthalate as the best plasticizer.11 The use of PVC 

stabilizers also was developed in the 1930s. In Germany, alkalis had been used to improve the 

stability for some time, and in 1934, the use of lead stabilizers was patented.12 In the same year 

two researchers from Union Carbide patented the use of "one or more alkali metal, cadmium,
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lead, or manganese salts of weak carboxylic acids" as stabilizers.13 The use of dialkyltin soaps 

as stabilizers was discovered soon thereafter.

PVC owes its popularity to its versatility. The polymer itself is chemically inert (to a 

large degree) and nonflammable, burning only in the presence of a source of ignition. It is 

compatible with many additives, including plasticizers, heat stabilizers, lubricants, fillers, and 

other polymers. All of these features have made PVC one of the world's major bulk polymeric 

materials.

1.3 Microstructure of polymers

A complete knowledge and understanding of the physical and chemical properties of 

polymeric materials is difficult, if not impossible, without the understanding and 

characterization of polymer microstructure. In most cases microstructures are formed during 

polymerization and are determined by processes such as the stereochemistry of monomer 

addition, initiation, propagation, termination, and chain transfer. The modification of polymers, 

by reactions such as “polymer-analogous” transformations or graft polymerization, can 

certainly cause other changes in polymer microstructure leading to branches, grafts, crosslinks, 

and new functional groups.

It is known that even in low concentrations, microstructures can provide significant 

effects on certain properties of polymeric materials, such as morphology and thermal stability. 

Powerful modem analytical methods allow one to determine and characterize polymer 

microstructures at very low concentrations and to reveal the presence of very complex 

moieties. For instance, this dissertation has confirmed the existence, in PVC, of l,3-di(2-
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chloroethyl) branch structures which were impossible to detect several years ago.14

Knowledge of the nature, concentrations, and formation mechanisms of the 

microstructures in polymers is very important for an understanding of the mechanism- 

structure-property sequence which is crucial in the design of new materials, the improvement 

of polymer properties, and the control of polymer processing.
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CHAPTER 2

BACKGROUND

2.1 Degradation and stabilization of PVC

2.1.1 General

PVC is a unique polymer. Although it is produced in millions of tonnes (metric) per 

year, it is perhaps the most thermally and photochemically unstable commercial resin. The loss 

of HC1 from PVC was discovered in the early 1930s in Germany:1

Scheme 2.1: Dehydrochlorination of PVC

180-200 °C A
-(CH2-CHCl)n----------------► xHClf + -(CH=CHV(CHr CHCl)n_x-

When x reaches a value of 7, PVC acquires color: pale yellow in the beginning (x = 7- 

8), then brown and eventually black. Larger values of x lead to more intense colors. Actually, 

coloration first occurs at ca. 0.1% of dehydrochlorination. The presence of conjugated 

polyenes in the polymer leads to oxidation and crosslinking, and as a result, the polymer loses 

its useful properties. An interesting phenomenon has been discovered: polyene sequences grow 

up to an x value of ca. 20-30 and then stop. The mechanism that is responsible for this result is 

not yet clear.2

8
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Originally, the question about stability of this polymer was raised immediately after 

PVC was first prepared. What was (and still is) responsible for the remarkable instability of this 

material? To investigate the stability of the repeating unit in PVC, a model compound was 

studied:

CH3-CHCI-CH2-CHCI-CH2-CHCI-CH3 

It was found that this compound begins to degrade only at temperatures above 250 °C, which 

are significantly higher than those where PVC degrades thermally.3 On the basis of this 

experimental fact, the answer emerged: there are some structural defects in PVC, and they are 

responsible for the thermal degradation. Tertiary and allylic chloride were suggested to be the 

two major structures that are responsible for this degradation. However, their relative 

importance was not clear. Finally, the answer to this question was shown to be linked to the 

concentration of free HC1 in the system. This conclusion emerged from a study of the 

degradation of several different model compounds containing either allylic or tertiary chloride 

structures.4’3 The authors found that the degradation rate of a model compound incorporating 

tertiary chloride (5-chloro-5-methylnonane) was not sensitive to the rate of argon flow, which 

controlled the concentration of free HC1 in the system. On the other hand, two stereoisomers 

with an allylic chloride group in their structures (cis- and £r<ms-4-chloro-5-decene) showed a 

decreasing rate of dehydrochlorination when the argon flow rate was raised. Increasing the 

argon flow rate decreased the concentration of the free HC1. Eventually, both allylic chloride 

stereoisomers were found to be less reactive than 5-chloro-5-methylnonane at the highest flow 

rate and more reactive than that substance at the lowest flow rate. These results led to the 

conclusion that the dehydrochlorination of internal allylic chloride structures is more

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10

susceptible to HCl catalysis than that of tertiary chlorides. This difference in susceptibility is so 

large that the relative reactivity of these two types of chloride can be changed merely by 

changing the concentration of HCl in the system.5 The same difference in reactivity was 

observed later by other researchers.6’7

However, in the degradation of PVC it is difficult, if not impossible, to determine the 

concentration of HCl. This concentration is determined by a number of factors, such as 

temperature, viscosity, morphology, and the ability of the stabilizer system to scavenge HCl.

Another interesting result is the low dehydrochlorination reactivity expected8 and 

found9 for the chloroallylic chain-end models cis- and trcms-1 -chloro-2-hexene. Their reactivity 

was similar to that of a conventional sec-alkyl chloride9 Therefore, R-CH=CH-CH2C1 

structures are not unstable defects in PVC.

The existence of a unique structure has been proposed by Minsker et a/.10’11 It is a 

ketoallyl arrangement: -CO-(CH=CH)„-CHCl-. The authors10,11 argue that this is the only 

structural defect that contributes significantly to the thermal instability of PVC. It was proposed 

to result from a very selective and quantitative oxidation of allylic methylene moieties upon 

exposure of the polymer to air under ambient conditions. In studies of the stability of model 

compounds,4’12 it was found that /ftz/is-R-CO-CH=CH-CHCl-R' (where R is n-Bu, R' is n-Pr) 

actually is much more stable that ordinary vinyl chloride units; whereas c/s-R-CO-CH=CH- 

CHC1-R' undergoes dehydrochlorination very rapidly at room temperature to form furanoid 

structures that are very unstable as well.12 In the case of PVC itself the transformation of cis 

ketoallylic structures into furanoid ones would be followed by a facile dehydrochlorination to 

produce polyenes.12 Minsker reported the amount of ketoallylic groups to be at the level of
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0.05/(1000 C).13 However, the existence of those structures at that level has not been 

confirmed by high-field (125-MHz) I3C NMR spectroscopy, which would have been capable of 

detecting them.9 Instead, the NMR results showed the presence, in samples obtained from 

Minsker, of nonoxidized internal allylic structures at the level of0.1/(1000 C).9

It has been shown that the ordinary monomer units do play an initiatory role in thermal 

degradation2,14 and that tacticity does influence polyene sequence growth.15 The total 

concentration of both allylic and tertiary chlorides decreases with decreasing temperature of 

polymerization.16 However, it has been found17 that the thermal stability of PVC made at very 

low temperature is very poor and does seem best explained by a polyene length enhancement 

that is caused by increased syndiotacticity. Another relevant finding is that the thermal 

dehydrochlorination of PVC continues at about the same rate after the kinetic effects of labile 

structures introduced during polymerization are no longer detectable.2,18 This constant rate of 

dehydrochlorination seems to require initiation by ordinary monomer units, whose conversion 

to allylic chlorides can occur as a result of HCl catalysis.18

A survey of PVC microstructure will be undertaken below in Section 2.2.

2.1.2 Degradation of PVC

2.1.2.1 Free-radical mechanism

Several different mechanisms have been proposed for the growth of conjugated 

polyene sequences during the thermal degradation of PVC. Some of these mechanisms involve 

free radicals19 according to the general scheme:
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Scheme 2.2: Free-radical mechanism of PVC degradation
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-CH2-CHCl-CH2-CHCl-CH2-CHCl- 

R*

-C‘H-CHC1-CHt CHC1-CHt CHC1- + RH

'  I
-CH=CH-CH2-CHC1-CH2-CHC1- + Cl*

J  "HCl

-CH=CH-C*H-CHCI-CH,-CHC1-

I
-CH=CH-CH=CH-CHj-CHCl- + Cl’

|  etc.

It has been found that the addition of free-radical sources accelerates polyene propagation, but 

this type of mechanism cannot explain the following observation: Cf is a very reactive and 

unselective radical and thus should be able to abstract hydrogen from other parts of the 

polymer, rather than exclusively from allylic CH2 groups.15 Also, if free Cl* radicals were 

formed, they should be scavenged by radical traps. However, when toluene was present in 

systems containing decomposing model compounds, 1,2-diphenylethane was not formed:5,9
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Scheme 2.3: Formation of 1,2-diphenylethane

13

C6H5-CH3 + Cl* ------► C6H5-C*H2 + HCl

2C 6H5-C*H2 — -►  CsHs-CHo-CHo-CsHs

It now is known that Cl* is so reactive that it abstracts hydrogen from aliphatic 

compounds in "cage” reactions (even in very fluid media) and that this abstraction is so fast that 

it competes efficiently with diffusion of Cl* from the cage.20 According to the radical scheme 

for dehydrochlorination, the rate of formation of polyene structures should be similar to the 

rate of dehydrochlorination.9 However, experimental data published by Hjertberg and co- 

workers21,22 show that the dehydrochlorination rate actually is about twenty times faster than 

the rate of polyene sequence formation during the nonoxidative degradation of the pure 

polymer at 190 °C.

2.1.2.2 Ion-pair mechanism

A much more likely mechanism for the dehydrochlorination9 is depicted below. 

Actually there are two "submechanisms": "pure" ionic,23 in which Cl' is totally separated from 

the macrocation, and quasiionic, when a transition state with highly separated charges is 

involved. In the quasiionic mechanism, the breaking bond C5*—Cl8" is much longer than the 

breaking bond C5"—H5*.15,23
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Scheme 2.4: Ion-pair mechanism of PVC degradation
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-CH=CH-CHCl-CHo- -CH=CH-C+H-CH,- + Cl'

I-HCl

-(CH=CH)2-CHC1-CH2- — (CH=CH)2-C+H-CH2- + Cl

\-HCl

-(CH=CH)3-CHC1-CH2- ----- ►  etc.

It is well-known that HCl is a very good catalyst for PVC dehydrochlorination. 

Recently its importance was reconfirmed24 when it was found that the presaturation of PVC 

powder with HCl significantly increases the rate of subsequent thermal dehydrochlorination. It 

was also shown that the dehydrochlorination rate decreased with decreasing specimen 

thickness when nonpretreated films of PVC were used,24 apparently owing to the faster 

diffusion rate of HCl from the thinner samples. Actually, HCl can take part in all of the steps 

that are involved in the formation of PVC polyenes: initiation, propagation, and termination. 

Some researchers found an acceleration of initiation in the presence of HCL,2125 and the ability 

of HCl to elongate polyenes owing to its catalysis of propagation was suggested by the same 

authors.

It is interesting that HCl may inhibit benzene formation from PVC by inhibiting 

intramolecular cyclization involving a triene whose central double bond is cis.26 Inhibition could 

occur owing to HCl-catalyzed isomerization of the cis double bond into the trans configuration.
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The rate of dehydrochlorination is much higher in polar solvents,27 a result that strongly 

supports the operation of the ionic mechanism.

2.1.2.3 Other mechanisms

Another mechanism of dehydrochlorination (the so-called "polaron" one) was 

suggested in recent years.28-31 It involves the formation of an allylic cation radical as a chain- 

carrying intermediate. However, this mechanism is not well-developed yet and has recently 

received some criticism.9

Some theoretical calculations have led to the conclusion that the formation of PVC 

polyenes involves the loss of several HCl molecules in a single step.32 For example, 22 

molecules of HCl were proposed to leave simultaneously, when the first one has left in an ionic 

process.32 All of the excess energy needed to effect the first dehydrochlorination {i.e., AHL-tr., ^  

- AHnaction) was assumed to remain in the original polymer molecule and to cause ejection of the 

other HCls from that molecule in a process requiring no additional energy input.32 However, 

any excess of vibrational or rotational energy would be most unlikely to remain localized near 

the first-formed double bond in a system of this type9 It should be transferred very rapidly, 

instead, (within 10'11-10'12 s) to the condensed-phase matrix9,33 Moreover, this "one-step 

unzipping mechanism"32 does not account for the considerable effects of catalysts, stabilizers, 

and temperature on the length of the polyene sequences9

2.1.2.4 Effect of oxygen on PVC dehydrochlorination

It has been found that the rate of PVC dehydrochlorination increases in the presence of
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molecular oxygen and that oxygen increases chain scission during the thermodegradation of 

PVC.34 At least two mechanisms for these effects have been proposed; one leads to HCl loss/5 

but the other one does not.36

Scheme 2.5: Oxidative degradation of PVC with HCl loss
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The free radical at -C*C1- does not P-cleave to break the PVC backbone, because the 

activation energy of that process is too high. An alkoxy radical attached to the backbone can 0- 

cleave, but actually another mechanism also takes place (as shown): the peroxy radical 

abstracts hydrogen from another molecule of PVC to form a hydroperoxide that is converted 

into a geminal chlorohydrin whose dehydrochlorination produces a backbone keto group.
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Scheme 2.6: Oxidative degradation of PVC without HCl loss

OOH

+ *OH

'C------

The P-scission of alkoxy radicals attached to polymer backbones is responsible for 

most of the chain cleavage occurring during the oxidation of PVC and other addition polymers.

2.1.2.5 Photodegradation of PVC

When it is exposed to direct sunlight, PVC undergoes degradation to form the same 

type of polyene sequences as in the case of thermal degradation:

Scheme 2.7: Photodegradation of PVC 

-(CH2-CHCl)n-  hv ►  -(CH=CHV(CH2-CHCl)n.x- + xHCl

Both thermo- and photodegradation are very facile processes. Some "initiators" of 

photodegradation must occur in virgin PVC. The presence of either C-Cl or isolated double 

bonds cannot account for the photoinitiation. Owen37 deduced the following kinetic scheme:
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Scheme 2.8: Kinetic scheme of PVC photodegradation
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This scheme indicates that the photodegradation of PVC containing unsaturated sequences is 

the major process.

In 1982 Decker studied the degradation of PVC by UV radiation/8 He reported that 

the value of the quantum yield <j)Ha (the number of HCl molecules produced per photon 

absorbed) was only 0.011 under an atmosphere of nitrogen. He also found independence of 

<j>Ha on the irradiation time (for extended periods) and on the initial amount of unsaturation in 

the polymer. An observed decrease of foci at very long irradiation times was attributed to the 

formation of a highly absorbing surface layer consisting of totally degraded PVC.

The initiating chromophores for photodegradation needed to be identified. By using 

laser Raman spectroscopy and other techniques, Maddams39 and other workers had detected 

peroxy, carbonyl, and polyene groups in virgin PVC. In order to find the relative importance of 

these groups, the number of 300-nm photons absorbed by equal amounts of the chromophores 

was determined. The results showed the superiority of the polyene structures in photon 

absorbance; that is, a value of 104 vs. 10 for carbonyl groups and only 1 for peroxides. 

Therefore, the polyenes in virgin PVC are recognized to be the principal structure that is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



19

responsible for photoinitiation.

Recently, Denizligil and Schnabel40 studied the photooxidation of PVC in the absence 

and presence of phthalate plasticizers. They showed the formation of a number of carbonyl 

structures in the PVC backbone, including -CHC1-C(=0)-CHC1-. On the other hand, the 

cleavage of C-Cl bonds and crosslinking were retarded by the phthalates.

2.1.3 Stabilization of PVC

Since PVC is the second most widely produced polymer in the world and one of the 

least stable commercial resins, the topic of its stability is of great importance. This subject has 

been covered recently in several books and reviews.25'11’19,41'44

2.1.3.1 PVC thermal stabilizers

There are several groups of PVC heat stabilizers:

1) Organotin compounds

Some specific examples of these stabilizers are the following:

1. Bu2Sn[OCO(CH2)10CH3]2 2. B^SntSCHjCOOCgH^

3. Bu2Sn[S(CH2)iiCH3]2  4. -[Sn(Bu)2-S-CH2-COO]x-

5. -[Sn(Bu)2-OCO-CH=CH-COO]x- 6. Bu2Sn(OCO-CH=CH-COOR)2

where Bu is w-butyl, and R is alkyl.

Stabilizer 1 is one of the oldest used by industry. The effectiveness for long-term 

stability can be expressed by this sequence:42
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2 and 4 > 3 > 5 and 6 > 1 

The superiority of 2,3, and 4 is due to nucleophilicity. Sulfur-containing nucleophiles are more 

reactive than those containing oxygen, while 2 and 4 probably are better than 3 because of their 

greater solubility in PVC. Stabilizers 5 and 6 act as Diels-Alder dienophiles to stop the growth 

of polyenes. Recently, Oct2Sn(/so-octylthioglycollate)2  was shown to be an effective thermal 

stabilizer.45

2) Metal soaps

The synergistic system consisting of Ba(OCOR)2  and Cd(OCOR>2 was used for years 

until cadmium compounds were classified as toxic substances. This system works according to 

this scheme:

Scheme 2.9: Stabilization of PVC by Ba/Cd soaps

Cl OCOR OCOR

^  + c \  ^ 2  — +  c d c i3
OCOR 2

CdCl2 + Ba(OCOR)b ►  Cd(OCOR), + BaCl2

In these reactions cadmium soap (for example, the stearate) replaces labile (both allylic and 

tertiary) chlorines in PVC to form more thermally stable structures. The disadvantage of this 

reaction is the production of the strong Lewis acid, CdCl2, which causes dehydrochlorination.46 

However, the barium soap then plays an excellent role by converting the CdCl2 into the 

stabilizer Cd^COR^ and concurrently forming the weak Lewis acid, BaCl2, which is not a
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dehydrochlorination promoter. According to this mechanism, it can be expected that in the case 

of barium-cadmium carboxylate mixtures, the stabilization effect would increase continually as 

the barium-to-cadmium ratio is increased.19’47’48 Its Mure to do so has been taken as evidence 

against the Frye-Horst stabilization theory (just described), which is discussed in more detail 

below. However, a recent model-compound study, carried out by Grossman49 and 

incorporating both kinetic and product evidence, showed that the most effective Frye-Horst 

reagent is actually a 1:1 complex obtained from equal parts of the carboxylates of cadmium and 

barium. It also was shown that since this complex is much more reactive toward labile chlorine 

than the barium carboxylate itself increasing the barium:cadmium ratio above 1:1 does not 

affect the rate of dehydrochlorination.

Because of the cadmium toxicity, other mixed-metal systems (such as calcium/zinc50 or 

barium/zinc soaps51,52) were developed and already are widely used in industry. According to a 

recent report,51 European PVC-producing plants use 70% lead, 11% barium/zinc, 9% 

calcium/zinc, 7% tin, and 3% other heat stabilizers. In the European marketplace, cadmium- 

free self-lubricating products now dominate in demanding areas such as calendering and 

extrusion.53

3) Lead compounds

Several different lead compounds are widely used as PVC stabilizers. Their costs are 

low, and they have very good electrical properties. The most useful of them probably are: 

3PbOPbS04«H20  2PbS04«Pb(00C)2C6H4 2Pb0*PbHP03*l/2H20  

However, the structures of lead stabilizers have been revised recently.54 Infrared and NMR
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spectra of basic lead carboxylates that are used as heat stabilizers indicate that these salts are 

not complexes or double salts of lead oxide, as suggested in most textbooks, but rather are 

unique compounds of interesting structure. According to this report,54 lead stabilizers probably 

function by reacting with hydrogen chloride and thus by interfering with acid catalysis of the 

elimination reaction.

A) Other stabilizers

Other stabilizers are "chelators" such as mixed alkyl-aryl phosphites or epoxides. These 

materials can scavenge HCl or replace labile chlorine in the PVC. Several other types of 

nonmetallic substances have been used as secondary components of PVC stabilizer packages.

2.1.3.2 Mechanisms of thermal stabilization

There are two main mechanisms for thermostabilization. They are the destruction of 

thermally labile structures (i.e., allylic and tertiary chloride) and the scavenging of HCl, which is 

an effective catalyst for dehydrochlorination.

A very general formula for many organic metal-salt stabilizers is MY2, where M is a 

cation such as R2Sn2+ [R is methyl, butyl (most frequently), or octyl], Ba2+, Ca2+, Cd2+, Pb2+, or 

Zn2+, and Y is an anion such as thiolate (mercaptide) or carboxylate.2,10'19’42,44 Two researchers, 

Frye and Horst, first proposed the replacement of labile chlorine atoms in PVC by the more 

stable Y groups55*57 and suggested that this replacement can improve the thermal stability of the 

polymer. Frye and Horst also considered the possibility that the Y groups could be removed 

pyrolytically or catalytically in 3-elimination reactions that regenerate allylic chloride. In fact,
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they obtained experimental evidence for such elimination from PVC during the latter stages of 

thermal stabilization by dibutyltin 3-mercaptopropanoate57 and the 2-ethylhexanoate salts of 

barium,56 cadmium,56 and zinc.55,56

A "reversible blocking mechanism" involving the replacement of allylic chlorine at 

polyene ends and the subsequent removal of the replacing groups has been proposed by Ivan et 

a/..58-60 They showed that the reversible blocking of polyene growth occurs in both the 

presence and the absence of molecular oxygen. Also, they proposed, specifically, the 

conversion of growing polyenyl chlorides into allylic carboxylates via the blocking process.59 

Other authors9 agreed with this conclusion and showed that the data of Ivan et al. confirmed it.

A likely mechanism for the HCl-catalyzed unblocking of polyenyl chloride elongation is 

shown in the following scheme:61

Scheme 2.10: Probable mechanism of HCl-catalyzed unblocking of stabilized PVC
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B: -CHKCHCHVpCHCl- + HCl + RCOsH
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Ivan et al.59 found a reactivity order of CdSt2 < PbSt2  < BaSt2 (where St is stearate) for the 

initial rates of dehydrochlorination after unblocking occurred. They39 also showed that the 

initial rates of dehydrochlorination after unblocking increased with increasing initial 

concentration of stabilizer, a result that could be ascribed9 to the formation of additional 

potentially labile structures during the induction periods. The authors of a recent review9 

demonstrated that these and other observations were consistent with the formation and 

subsequent destruction of allylic carboxylates that were produced in Frye-Horst displacement 

reactions.

An interesting explanation for the thermal stabilization of PVC was proposed by 

Naqvi.6265 He found a stabilization effect resulting from the incorporation of hydrocarbons or 

ethylene monomer units in amounts which did not cause phase separation. These results are in 

agreement with the known stabilizing effects of non-polar solvents2,19,41,66 and are strong 

evidence in favor of the ionic or quasiionic mechanism of thermal dehydrochlorination.

An argument against the Frye-Horst theory has been that several organic metal salts do 

not lower the rate of thermal dehydrochlorination (i.e., they do not cause true chemical 

stabilization)47 when they are used either as PVC additives or as chemical pretreatment agents. 

This phenomenon was pointed out in a publication67 where possible causes of such behavior 

were described. They are, for example, low concentration of stabilizer, mild reaction 

conditions, and dehydrochlorination catalysis by metal chlorides formed in situ.

Naqvi et al.6* made another attempt to increase the thermal stability of PVC by 

introducing nonpolar (alkyl) moieties into the polymer matrix. They used laurates, palmitates, 

and stearates of zinc and calcium and observed some stabilization. However, the effect of alkyl
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chain length on polymer/stabilizer compatibility obviously could be important.

An alternative stabilization theory has been proposed by Michell.69 It relates to "basic 

lead" stabilizers when they are used together with long-chain fatty acids. The suggested scheme 

is as follows:

Scheme 2.11: Michell’s stabilization theory

2 PbC03*Pb(0H)2 + 6 HSt 3 PbSt2 + 2 CO, + 4H20

2 Cl' + PbSt, ►  PbCi, + 2 RC02*

O — CR

— c = c —c — c —  + rco2‘ — c = c — c —

O— CR

— c = c — c — c ----  C = c — C = C   + HSt

where HSt is w-C17H35C02H and R is /?-C17H35

It represents a "true stabilization" mechanism.69 In the first step of this mechanism, lead stearate 

is formed. Then radicals taking part in the degradation are converted into nonradical products, 

and ester-containing structures are thermolyzed to regenerate stearic acid and produce a group 

which has a relatively stable vinylic carbon-chlorine bond. However, Starnes and Girois9 have 

criticized this mechanism on several grounds: (1) A free-radical mechanism for polyene growth 

now is highly dubious. (2) The proposed reaction of chlorine radical with lead stearate probably
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cannot occur, and even if it could, other reactions of Cl* are more likely. This radical is 

extraordinarily reactive and unselective in the condensed phase,70 where the rates of its 

reactions come close to being difiusion-controlled.71 So, in the presence of a great excess of 

PVC, very few chlorine radicals would attack PbSt2. (3) Stearyloxy radical (RCO2*) should be 

very unstable because a similar species, acetoxy radical, decarboxylates thermally at rates which 

are so rapid that noncage competing reactions of this radical are not observed.72 Consequently, 

if the radical mechanism were occurring, it is very probable that stearyloxy radicals would be 

converted very quickly into alkyl (stearyl) radicals that should be reactive enough to continue 

the degradation kinetic chain. (4) The ester pyrolysis reaction actually should yield other 

products. The pyrolysis of similar compounds has been reported in a number of papers12,73'74 

which suggest that the carbonyl group would facilitate dehydrochlorination to produce - 

CH=CH-C(02CR)=CH- or an even less stable chloroallylic structure, -CH=CH-CH(02CR)- 

CH=CH-CHC1-.

2.1.3.3 Stabilization by nonmetallic organic compounds

Because there are more and more environmental constraints on the usage of heavy 

metal compounds, scientists have been trying to discover non-metal-containing stabilizers for 

PVC. They have achieved some success,2,44 but since the activity of such stabilizers is rather 

low, it is premature to consider them for use as primary stabilizers.

As was noted above, Naqvi65,68 has used some nonpolar compounds to improve the 

stability of PVC, in keeping with the matrix-polarity reduction proposal. He has obtained 

significant improvements in PVC heat stability by blending the polymer with low-molecular-
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weight polyethylene or c/s-polybutadiene. The addition of HCl to alkene linkages might 

contribute to these stabilizing effects, but owing to differences in carbocation stability, addition 

to the polyene sequences of degraded PVC would seem to be more favorable than addition to 

the isolated double bonds of c/s-polybutadiene. However, the latter addition should produce a 

relatively stable alkyl chloride structure, rather than a shorter but still labile allylic chloride 

one.75

Two of the major vitamins, Ai (//ms-P-carotene)76 and E (a-tocopherol)77, have been 

used as PVC stabilizers. Significant thermal stabilization caused by P-carotene was observed in 

solutions of PVC.76 The authors made the interesting observation that highly degraded PVC 

also can stabilize the virgin resin. In the same article,76 the authors describe the use of calcium 

stearate as a scavenger of HCl and their finding that dehydrochlorination was faster when the 

HCl was removed. This phenomenon was ascribed to the prevention of HCl readdition by the 

basic additive. Actually, the possibility of the readdition of HCl to PVC polyene sequences was 

described earlier,78 and obviously it is one of the factors that may contribute to the termination 

of polyene growth.

It has been reported77 that a-tocopherol (vitamin E) is a universal polyfunctional low- 

toxicity stabilizer with a complex action. When it is used as a chemical additive to PVC, a- 

tocopherol exhibits the properties of a high-efficiency stabilizer-antioxidant. It provides 

synergistic effects if it is used with metal-, epoxy-, sulfur- or phosphorus-containing stabilizers, 

and it is an excellent mechanical and chemical stabilizer-lubricant. It also provides some 

plastification for PVC. The use of PVC-a-tocopherol formulations simplifies processing, 

reduces the cost of the final products, and improves their operational characteristics. For
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example,77 PVC-a-tocopherol systems can be used in the electrical, chemical, lighting, and 

other industries (in cables, films, artificial leather, etc.) in order to (a) reduce the consumption 

of lead- and other metal-containing stabilizers by factors of 1.5 to 4, b) eliminate lubricants 

(waxes, paraffins, potassium stearate, and others) and synthetic stabilizer-antioxidants 

(hindered phenols, aminophenols, etc.) from standard formulations, and c) decrease the 

consumption of ester plasticizers. There is only one disadvantage: a-tocopherol is a very dark- 

colored material. Thus it can only be used in dark-colored products such as cables, for instance.

Some A/’-arylmaleimides were found to be effective heat stabilizers for both rigid79 and 

plasticized80 PVC. They were proposed to work as radical traps, but as was noted above, the 

radical theory of PVC degradation is highly unlikely to be correct. Maleimides also could act as 

Diels-Alder dienophiles to stop the polyene growth in the same manner as stabilizers 5 and 6. 

Later it was shown81 that pretreatment with several maleimides significantly improved the 

intrinsic stability of the polymer. The same authors81 pointed out that the maleimides evidently 

deactivated labile sites in PVC.

Recently, 3 -mercapto-1,2,3 -triazine-5-ones were found to be effective heat stabilizers 

and antioxidants for plasticized PVC.82

Finally, a few exotic methods for the stabilization of PVC should be mentioned. Some 

researchers used rubber seed oil83"85 or Jatropha seed oil86 for the nonoxidative and oxidative 

stabilization of PVC but met with little success. Others87 investigated the influence of different 

sands on the resistance of PVC to ultraviolet light. Three different kinds of sand were used as 

fillers: mine, river, and beach. The major conclusion of this research was as follows: "Mine or 

river sands protect against PVC degradation. The best results were obtained with a PVC-mine
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sand composite and the worst with beach sand. The optimum sand concentration in the 

composite was 56 vol %".s?

2.1.3.4 Stabilization by chemical modification

Pourahmady et a/.88,89 have found that the partial reductive dechlorination of PVC 

significantly enhances both the static and dynamic thermal stability. When used as reducing 

agents, both lithium aluminum hydride and tri-n-butyltin hydride provide less stabilization than 

lithium triethylborohydride. When the latter reagent was employed, dramatic changes occurred 

even at low reduction levels. For example, the rate of static dehydrochlorination at 190 °C was 

decreased by a factor of 30 when only 10-15 % of the total amount of chlorine had been 

replaced. It was noted that reduction by BH3 also improves the stability of PVC.

Other chemical modifications to improve the stability of PVC have been studied. 

Several years ago, stabilization by pretreatment with trimethylaluminum or an ethanol:water 

(1:1) mixture was examined,90 and somewhat earlier, enhanced stability was found for PVC 

that had been made in the presence of an organotin ester.91,92

2.1.3.5 Photostabilization

There are several different types of UV stabilizers for PVC that are used in industry. 

They can be subsumed under one of four major groups, as follows.

1. UV absorbers93

The main objective here is to convert photon energy into heat. The reverse reaction
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Scheme 2.12: Photostabilization of PVC by a UV absorber
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HO
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OH

OR

(see Scheme 2.12) is exothermic. Very useful UV absorbers are carbon black, titanium dioxide, 

and other pigments that can dissipate the absorbed radiant energy in innocuous ways. The most 

effective photostabilizer is the carbon black, but its color precludes its use in many applications.

2. Excited-state quenchers94

These quenchers are heavy-metal chelates, e.g., nickel compounds and others, with a 

large variety of ligands. The quenchers deactivate the excited states of chromophores 

according to this general scheme:
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Scheme 2.13: Photostabilization of PVC by excited-state quenchers

/rv ^ £
polymer ►  [polymer] — d ^  degradation

I quencher 
w

A
polymer + [quencher]

I
quencher + heat 

where kq » fcd

3. Radical scavengers95

A number of sterically hindered phenols are very useful as radical scavengers that 

prevent photodegradation. These phenols [or the hindered amine light stabilizers (HALS)] trap 

the chain-carrying radical intermediates that are involved in photooxidation. A general formula 

for hindered phenols is 2,6-di-fert-alkyl-4-R-phenol, where R usually is alkyl or substituted 

alkyl.

4. Peroxide decomposers96

Some sulfides and triaryl phosphites are active as peroxide decomposers which remove 

potential photooxidation initiators. These stabilizers are especially active when they are used 

with hindered phenols, a combination that may give strong synergistic effects.
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Scheme 2.14: Photostabilization of PVC by peroxide decomposers

ROOH + P(OAr)3  -» ROH + 0=P(0Ar)3 

ROOH + RSR’ -> ROH + RS(0)R'

An interesting method to improve the photostability of PVC was reported by Decker.97 

The method involves covering the article to be protected with a photocurable acrylic coating 

that contains one or more additives that are photostabilizers. When such an article is exposed 

to a source of UV light, the coating produces a clear, crosslinked layer that prevents 

photodegradation for a long period of time.

In another recent photodegradation study,98 the authors showed that plasticizer 

contributes to discoloration, not only by its influence on the PVC, but also by its own change in 

color.

A recent project99 compared plasticized PVC samples aged under natural or artificial 

conditions and samples recovered after use for long periods of time (15-30 years) at -20 - +27 

°C. The authors found that the predominant process in dark, Iow-temperature aging was loss of 

plasticizer by desorption. However, the major process in photoaging was degradation of both 

polymer and plasticizer, proceeding generally on the irradiated side of the sample and 

depending upon the wavelength distribution of the light.

The problem of PVC degradation obviously has not been solved entirely and thus is 

still quite attractive as a topic for study. Other recent articles pertaining to this problem appear 

in the list of references.100"104
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Finally, it has to be pointed out here that, in contrast, some researchers are 

investigating the possibility of dehydrochlorinating PVC completely in order to produce a 

conductive polymer105 comprised of conjugated double bonds. Dehydrochlorination caused by 

chemical106,107 or physical108,109 treatments has been studied for the purpose of preparing 

polyacetylene-like film specimens exhibiting easy processability. Upon irradiation with ion 

beams, PVC films become dark, and their resistivity decreases dramatically.110

2.2 Possible microstructures formed during polymerization

The microstructure of PVC has been studied extensively in recent years.111'118 A 

number of different structural defects are formed during the polymerization of vinyl chloride. 

The formation of most of them is much more facile in the latter stages of the polymerization 

when the monomer concentration is low. The structural defects can be divided into two major 

groups: those that are thermally stable and those that are not.

Several thermally stable structures can result from the head-to-head addition of the 

monomer to the growing macroradical, for example, as in Scheme 2.15.

The last reaction shown in this scheme gives a stable chloromethyl branch. 

Conventional PVC has 2-3 of such structures per 1000 backbone carbons.113 However, a 

radical intermediate leading to this branch can undergo another shift of chlorine that yields a 

stable dichloroethyl branch structure according to Scheme 2.16.
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Scheme 2.15: Formation of chloromethyl branch caused by head-to-head 

addition in VC polymerization

 C — C’HCI +  h2c = c h c i — c — c — c — c ' h 2

— c — c — c — c ' h 2 c — c — 6 — c h 2c i

c h 2ci

— c — c — 6 — c h 2c i  +  h 2c = c h c i CHCI

Scheme 2.16: Formation of dichloroethyl branch caused by head-to-head 

addition in VC polymerization
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Cl Cl -----H 1

------ C-----C----- C-----C----- C HCI
1 h 2 h  h 2

+ h 2c = c h c i Cl

There are about 0.3 dichloroethyl branches per 1000 backbone carbons.113 Also, the 

macroradicals formed by chlorine shifts can transfer Cl* to monomer to yield an unsaturated 

chain end which is fairly stable:
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Scheme 2.17: Formation of unsaturated chain end caused by head-to-head 

addition in VC polymerization

-CH2-CHC1-C*H-CH2C1 -c h 2-c h =c h -c h ,ci

and VC +

-CH2-C*H-CHCI-CH2C1 C1CH2-C’HC1

The concentration of this chain end varies, of course, with the molecular weight.113

Another structural defect was proposed by Minsker,11 as was mentioned briefly above 

in Section 2.1.1. He wrote that this structure is formed by air oxidation and that its cis isomer is 

the only defect that is responsible for the thermal degradation of PVC:10’119,120

Scheme 2.18: Minsker structures

Cl o

C— C\xc _ _ c /  H trans Minsker structure 
H ~~ ^ C < -

,H

Cl O

-C— C

Cl
Cl

7 —  cis Minsker structure
I .C = C . \

H' ‘H H

Minsker published a number of indirect pieces of evidence for the existence of the cis structure, 

including the chain scission of PVC by acid or base.10 He demonstrated the possibility of this 

reaction by using a model compound, and Panek et al.12 confirmed, with other models, the fast
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conversion of the cis structure into a furan group that should greatly facilitate the 

dehydrochlorination of PVC. However, as mentioned already, attempts to find the Minsker 

structure by 500-MHz 'H and 125-MHz 13C NMR have foiled, and no direct evidence for such 

a structure exists thus for.

Several thermally unstable structures might result from "backbiting" reactions. This 

type of mechanism was applied to polyethylene, and the existence of backbiting structures in 

that polymer was established.121,122

The growing macroradical can form a six-membered cyclic transition state that leads to 

an intramolecular chain transfer (backbite) which produces a butyl (or in the case of PVC, a

2,4-dichIorobutyl) branch after monomer addition:
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Scheme 2.19: Formation of2,4-dichlorobutyl branch caused by backbiting mechanism
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Actually, the formation of 2,4-dichlorobutyl branches via backbiting has been known for 

years.123 This mechanism obviously creates tertiary chloride at the branch point, a very labile 

structure that causes dehydrochlorination.

For polyethylene, a “double backbiting” mechanism has been described in the 

literature.121,122 However, there has been no proof for the operation of an analogous mechanism 

in the case of PVC. According to this mechanism, 1,3-diethyl and/or 2-ethyl-/z-hexyl branches 

are formed in polyethylene:
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Scheme 2.20: Formation of 1,3-diethyl branches caused by double backbiting mechanism
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Scheme 2.21: Formation of 2-ethyl-«-hexyl branch caused by double backbiting mechanism

C C'H

CH-

C----- C  CH

C‘H

2-ethyl-«-hexyl branch

In the case of PVC, similar mechanisms would produce structures that should be 

unstable thermally, because each of them would incorporate two tertiary chloride moieties.123

2.3 Objectives

The major objectives of the research described in this dissertation were twofold: (1) to 

identify various PVC microstructures that were expected to have low thermal stabilities and (2) 

to determine their mechanisms of formation.

The specific research topics were:

• the possible formation of the “common” isolated double bond via the reaction of
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macroradicals with alkene chain ends during the polymerization (see Sections 4.2 and 

4.4).

• the existence of previously proposed123 l,3-di(2-ch!oroethyl) and 2-(2-chloroethyl)- 

2,4,6-trichloro-n-hexyl short-branch structures formed by “double backbiting” routes 

(see Section 4.3).

During the course of these studies, a number of vinyl chloride polymerizations 

were carried out, both in the presence and in the absence of model compounds for allylic 

long-chain ends. Molecular weights and molecular weight distributions were determined, 

and several other models were synthesized for use as NMR reference substances. 

Reductive dechlorination and subsequent analysis by ljC NMR was the principal approach 

to the polymer microstructure determinations.

The characterization of the microstructures provided considerable insight into the 

mechanism of vinyl chloride free-radical polymerization and the formation of some of the 

thermally labile groups in PVC.
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CHAPTER 3

EXPERIMENTAL

3.1 Model compounds for possible microstructures

3.1.1 Materials

(1) frowj-2-Hepten-l-ol, HO-CH2-CH=CH-(CH2)3-CH3, #6084, 96%, bp 178 °C, 

Lancaster Synthesis, Inc.

(2) Triphenylphosphine, (CsH^sP, #T8,440-9, 99%, mp 79-81 °C, Aldrich Chemical 

Company, Inc.

(3) Carbon tetrachloride, CCL», #31,996-1, 99.9%, bp 76-77 °C, Aldrich Chemical 

Company, Inc.

(4) Diethyl ether, anhydrous, H5C2-0-C2H5, #0852, 99.9%, bp 35 °C, Mallinckrodt 

Group, Inc.

(5) Magnesium sulfate, anhydrous, MgS0 4 , #M65-500, Fisher Scientific Company

(6) Trimethylaluminum, (CH3)3A1, #25,722-2, 97%, Aldrich Chemical Company, Inc.

(7) Methylene chloride, CH2C12, #D37-4, 99.5%, Fisher Scientific Company

(8) Titanium(TV) chloride, TiCLt, 1 M solution in dichloromethane, #24,986-6, 

Aldrich Chemical Company, Inc.

41
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(9) Hydrochloric acid, HC1, #A508-212, 35.6%, Fisher Scientific Company

(10) Sodium chloride, NaCl, #S271-10, 99.0%, Fisher Scientific Company

(11) 5-Hexyn-3-ol, CH3-CH2-CHOH-CH2-OCH, #3602.90, 97%, Wiley Organics

(12) Thionyl chloride, SOCl2, #23,046-4, 99+%, bp 79 °C, Aldrich Chemical Company, 

Inc.

(13) Dimethylformamide (DMF), HCON(CH3)2, #D119-4, 99.8%, Fisher Scientific 

Company

(14) Propylene, CH2=CH-CH3, #29,566-3, 99+%, Aldrich Chemical Company, Inc.

(15) Zinc chloride, ZnCl2, 1.0 M solution in diethyl ether, #27,683-9, Aldrich Chemical 

Company, Inc.

(16) 3-Chloro- 1-butene, CH2=CH-CHC1-CH3, #25,205-0, 98%, Aldrich Chemical 

Company, Inc.

(17) Ammonium hydroxide, NH4OH, #A512-500, 20.2%, Fisher Scientific Company

(18) 2-Ethyl-1-hexanol, HOCH2-CH(C2H5)-(CH2)3-CH3, #E2,916-8, 99+%, bp 183- 

186 °C, Aldrich Chemical Company, Inc.

(19) Bromine, Br2, #32,813-8, 99%, bp 60 °C, Aldrich Chemical Company, Inc.

(20) Magnesium turnings, Mg, #20,090-5, 98%, Aldrich Chemical Company, Inc.

(21) Iodine, I2, #37,655-8, 99%, Aldrich Chemical Company, Inc.

(22) 9-Heptadecanone, CH3-(CH2)7-CO-(CH2)7-CH3, #H0536, 91%, T. C. I. America, 

Inc.

(23) Ammonium chloride, NH4CI, #A661-500, 99.5%, Fisher Scientific Company

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



43

(24) Cyclohexane, CeHu, #C556-4, 99.0%, Fisher Scientific Company

(25) Palladium on activated carbon (Pd = 5%), Pd, #20,568-0, Aldrich Chemical 

Company, Inc.

(26) Hydrogen, H2, Industrial Grade, 99.95%, Air Products and Chemicals, Inc.

(27) Lithium borohydride, LiBEL, 2 M solution in tetrahydrofuran, #21293-1000,

Acros Organics USA

(28) 3-Undecanol, CH3-CH2-CHOH-(CH2)7-CH3, #9487.00, 99%, Wiley Organics

(29) Bis(cyclopentadienyl)zirconium chloride, CioH^C^Zr, #18792-0050, 98+%,

Acros Organics USA

(30) 1-Decene, CH2=CH-(CH2)7-CH3, #11191-0010, ca. 95%, bp 181 °C, Acros 

Organics USA

(31) Ethylmagnesium chloride, C2H5MgCl, 2.0 M solution in diethyl ether, #30,033-0, 

Aldrich Chemical Company, Inc.

(32) Sodium, Na, lump, in kerosene, #28,205-7, 99%, Aldrich Chemical Company,

Inc.

(33) Hexanes, CgHu, #N3S-4, bp 60-90 °C, Fisher Scientific Company

(34) Bis(l,5-cyclooctadiene)nickel(0), (l,5-CgHi2)2Ni, #28-0010, 98+%, mp 60 °C, 

Strem Chemicals, Inc.

(35) Propionaldehyde, C2H5CHO, #22.051.32, 99+%, bp 46-50 °C, Janssen Chimica

(36) 1,3-Butadiene, H2C=CH-CH=CH2, #29,503-5, 99+%, Aldrich Chemical 

Company, Inc.
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(37) Ethyl alcohol, C2H5OH, anhydrous, denatured, #27,764-9, 90%, bp 78 °C, Aldrich 

Chemical Company, Inc.

(38) Tetrahydrofuran, C+HgO, #2858-05, 99.92%, bp 66 °C, Mallinckrodt Chemicals

(39) Chloroform-*/, CDCI3, #38,096-2, 99 atom % D, Aldrich Chemical Company, Inc.

(40) Tetrahydrofuran-*/g, GJDgO, #36,543-2, 99 atom % D, Aldrich Chemical 

Company, Inc.

(41) Acetone-cfe, CD3COCD3, #17490-0500, 99+ atom % D, Acros Organics USA

(42) Tetramethylsilane, (CH3)4Si, #13847-0250, 99.9+%, NMR grade, Acros Organics 

USA

3.1.2 NMR and GC/MS measurements

Proton-decoupled 13C NMR spectra were obtained at 125.77 MHz with a Bruker 

AMX500 spectrometer or at 75.57 MHz with a GE QE-300 instrument that also served to 

record the 300.52-MHz lH NMR spectra of low-molecular-weight compounds. A 60° 

pulse angle and a pulse repetition time of 10 s were used for the 125.77-MHz 13C NMR 

spectra, which were acquired at 100 or 110 °C from 15-20% solutions (w/v) of the 

samples in l,2,4-trichlorobenzene/p-dioxane-*/8 (ca. 4:1 v/v) containing hexamethyldi- 

siloxane as an internal reference (5 2.00 ppm vs. Me4Si). The 13C NMR spectra recorded 

at ambient temperature and all of the *H spectra were obtained from solutions in 

chloroform-*/, THF-*/g, or acetone-*/6/CS2 and are referenced to internal Me4Si (8 0.00
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ppm).

The (gas chromatography)-(mass spectroscopy) (GC/MS) measurements were 

performed with a Hewlett-Packard HP 5890A/5988A or HP 5890/5971A apparatus 

equipped with a fused-silica HP-1 capillary GC column [crosslinked methylsilicone gum, 

12 m x 0.2 mm (i.d.), 0.33 mm film thickness]. The mass spectrometer was operated in the 

total ion concentration (TIC) mode. Helium was used as the carrier gas, and the heating 

rate was 10-20 °C/min.

IR spectra were obtained on a Perkin-Elmer 1320 infrared spectrophotometer in 

the range of 600 - 4000 cm'1.

3.1.3 Synthesis of fira/is-l-chloro-2-heptene

Scheme 3.1: Synthesis of trans-1 -chloro-2-heptene

trans-1 -Chloro-2-heptene was synthesized by a method similar to a literature 

procedure.1 frows-2-Hepten-l-ol (5.00 g, 43.8 mmol) was added to a stirred solution of 

triphenylphosphine (16.14 g, 61.52 mmol) in carbon tetrachloride (29.6 mL, 307 mmol) 

under nitrogen. The mixture was stirred under nitrogen for 3 days; then the suspension 

was filtered, and trans- 1 -chloro-2-heptene was removed from the filtrate by extraction
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with ether (3 x 100 mL). The ethereal solution was dried over anhydrous MgS04 and 

concentrated with a rotary evaporator under aspirator vacuum. The yield of crude trcms-1- 

chloro-2-heptene was 3.65 g (62.8%), and the purity was 78% (by GC/MS); mass 

spectrum (Fig. 3.1), m/e (relative intensity, %): 27(28), 29(13), 39(46), 40(7), 41(67), 

42(19), 43(20), 51(12), 53(42), 51(71), 55(100), 56(78), 57(9), 65(13), 67(50), 68(14), 

69(27), 70(26), 75(12), 77(9), 81(59), 83(21), 89(11), 90(20), 91(9), 96(16), 97(38, M*- 

Cl), 104(10), 132(23, M*), 134(7, M*); 13C NMR (75.57 MHz, Tffiw/8, 50 °C) (Fig. 3.2), 

8: 45.28(C-1), 135.93(C-2), 127.01(C-3), 32.25(C-4), 31.72(C-5), 22.70(06), and 

14.20(07) ppm; lK  NMR (300.52 MHz, THF-dg, 50 °C) (Fig. 3.3), 5: 0.79-0.96 (3H, - 

CH3), 1.17-1.49 (4H, -CH2-), 1.93-2.12 (2H, -CH2-), 3.86-4.02 (2H, -CH2C1), 5.46-5.65 

(1H, -CH=CH-), and 5.65-5.86 (1H, -CH=CH-) ppm; IR (neat) (Fig. 3.4), strong peak at 

960 cm'1 (trans-CH-CH) .

3.1.4 Synthesis of tra#i5-5-chloro-2-heptene

(i) Synthesis of /raws-5-hepten-3-ol

fraws-5-Hepten-3-ol was prepared by a method similar to that in the literature.2 

Three solutions were prepared first:

Solution 1: Trimethylaluminum (3.83 mL, 40.0 mmol) was dissolved in 75 mL of 

methylene chloride in a 250-mL 3-neck round-bottom flame-dried flask under nitrogen. 

Solution 2: Titanium(TV) chloride (18 mL of a 1 M solution in CH2C12, 18 mmol) was
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Fig. 3.1: Mass spectrum and gas chromatogram of 

trans- 1 -chloro-2-heptene
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Scheme 3.2: Synthesis of fraws-5-chloro-2-heptene

CH.

OHOH

soci.
CH3

DMF

OH

dissolved in 32 mL of methylene chloride in a 100-mL 3-neck round-bottom flame-dried 

flask under nitrogen.

Solution 3: A 35.6% aqueous solution of HC1 (30 mL) was added to 70 mL of deionized 

(DI) water. This solution then was saturated with NaCl.

Solution 1 was cooled to 0 °C with an ice bath under nitrogen, and 5-hexyn-3-ol 

(1.96 mL, 18.0 mmol) was added slowly by syringe through a rubber septum. The 

liberated methane was vented through the gas outlet. Solutions 1 and 2 then were cooled 

to -45 °C with a mixture of chlorobenzene and liquid nitrogen, and solution 2 was 

transferred within 1 min into solution 1 by using a double-tipped needle. The reaction 

mixture was stirred for 30 min and quenched by the addition via syringe of precooled (0 

°C) methyl alcohol (10 mL). Solution 3 was then added. The mixture was allowed to 

warm to room temperature, stirred for 30 min, and extracted with ether (3 x 100 mL). The 

ethereal solution was dried over anhydrous MgS0 4  and concentrated on a rotary
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evaporator under aspirator vacuum to obtain 1.16 g (56 %) of residual /r<ms-5-hepten-3 - 

ol in a purity of 79% by GC/MS; mass spectrum (Fig. 3.5), m/e (relative intensity, %): 

27(12), 29(18), 31(25), 39(17), 41(39), 43(12), 55(18), 56(100), 57(22), 59(80), 67(11), 

85(18), 96(7, NT-H20), 114(4, M*); 13C NMR (75.57 MHz, CDC13, ambient temperature) 

(Fig. 3.6), 5: 10.01(C-1), 29.36(C-2), 72.52(C-3), 40.23(C-4), 127.64 and 127.79(C-5 

and -6), and 18.06(C-7) ppm; lH NMR (300.52 MHz, CDC13, ambient temperature) (Fig. 

3.7), 6: 0.48-1.12 (3H, -CH3), 1.12-1.60 (3H, -CH3), 1.60-1.92 (2H, -CH2-), 1.92-2.45 

(2H, -CH2-), 2.68-2.93 (1H, -CH(OH)-), and 5.20-5.69 (2H, -CH=CH-) ppm.

(ii) Synthesis of /ron.s-5-chIoro-2-heptene

The procedure is based on a published method3 for converting secondary alcohols 

into the corresponding chlorides.

Under a nitrogen atmosphere, thionyl chloride (2.30 g, 19.3 mmol) was added 

dropwise with stirring to 15 mL o f DMF while the temperature was kept at 0-5 °C with an 

ice bath. /ratts-5-Hepten-3-ol (2.00 g, 17.5 mmol) was then introduced slowly, and the 

resulting mixture was heated at 85-90 °C for 30 min. After cooling to room temperature 

and addition of 100 mL of deionized (DI) water, the mixture was extracted with ether (3 x 

150 mL), and the combined extracts were washed with DI water (3 x 100 mL). The 

ethereal solution was dried with anhydrous MgS04 and concentrated on a rotary 

evaporator under aspirator vacuum to obtain 2.28 g (98%) of residual *r<ms-5-chloro-2- 

heptene in a purity of 95% by GC/MS; mass spectrum (Fig. 3.8), m/e (relative intensity,
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Fig. 3.5: Mass spectrum and gas chromatogram of 

rrarw-5-hepten-3 -ol
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Fig. 3.8: Mass spectrum and gas chromatogram of 

frons-5-chloro-2-heptene
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%): 39(17), 41(20), 53(10), 54(10), 55(100), 56(13), 67(13), 76(11), 81(25), 

96(13),97(23, IvT-Cl), 132(17, M*), 134(6, NT); l3C NMR (75.57 MHz, Tffiw/8, 50 °C) 

(Fig. 3.9), 8: 17.85(C-1), 127.19 and 128.23 (C-2 and C-3), 41.54(C-4), 64.71(C-5), 

30.96(C-6), and 10.86(C-7) ppm; ‘H NMR (300.52 MHz, THF-i/g, 50 °C) (Fig. 3.10), 5: 

0.30-1.15 (3H, -CH3), 1.15-1.70 (3H, -CH3), 1.70-1.90 (2H, -CH2-), 2.30-2.40 (2H, - 

CH2-), 3.65-3.80 (1H, -CHC1-), and 5.20-5.60 (2H, -CH=CH-) ppm. The IR spectrum of 

the product (neat) (Fig. 3.11) displays a strong band at 960 cm'1 which corresponds to a 

trans alkene. There is no band at 700-830 cm'1 corresponding to a cis alkene.

3.1.5 Synthesis of fra/is-6-ch!oro-2-heptene

Scheme 3.3: Synthesis of rrara,-6-chIoro-2-heptene

H

H2C ^ C H 3 Cl

+ ZnCl?w 1 h 2 h

Cl

CHjCli
H a C ^ C ^ C ^ C H a  

M H2 H

fraw.s-6-Chloro-2-heptene was prepared by a method similar to a literature 

procedure.4

Propylene (14.25 g, 339.3 mmol) was added to a solution of ZnCl2 (44.3 mL of a 

1 M solution in ether) and CH2C12 (45 mL) at -84 °C; then 3-chloro-l-butene (10.00 g,

110.5 mmol) was introduced with stirring. The reaction mixture was warmed to ~0 °C and
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allowed to stand for 5 days (the temperature did not exceed 10 °C). After removal of the 

catalyst by washing with 100 mL of NH4OH solution (30%), the mixture was extracted 

with ether (3 x 100 mL). The ether solution was dried with anhydrous MgS04, 

concentrated on a rotary evaporator under aspirator vacuum, and subjected to short-path 

distillation to obtain 1.52 g (10 % yield) of /row.s-6-chloro-2-heptene: bp 39-41 °C (5 

torr), purity 94.8% by GC/MS; mass spectrum (Fig. 3.12), m/e (relative intensity, %): 

39(19), 41(31), 53(12), 54(14), 55(69), 56(11), 67(12), 69(29), 81(100), 96(16, NT-HC1), 

97(9, W f -Cl), 132(22, NT"), 134 (7, NT); l3C NMR (75.57 MHz, THF-^g, 50 °C) (Fig.

3.13), 6: 17.84(C-1), 126.10(C-2), 130.42(C-3), 30.16(C-4), 40.84(C-5), 57.98(C-6), and

25.45(C-7) ppm; lK NMR (300.52 MHz, THF-c/g, 50 °C) (Fig. 3.14), 5: 1.32-1.53 (3H, - 

CH3), 1.53-1.68 (3H, -CH3), 1.68-1.88 (2H, -CH2-), 1.98-2.30 (2H, -CH2-), 3.82-4.16 

(1H, -CHC1-), and 5.18-5.70 (2H, -CH=CH-) ppm; IR spectrum (neat sample) (Fig. 3.15), 

reveals strong peak at 960 cm'1 for trans alkene, no peak at 700-830 cm'1 for cis alkene.

3.1.6 Synthesis of 9-(2-ethyI-/i-hexyl)heptadecane

(i) Synthesis of l-bromo-2-ethylhexane

This compound was prepared by a method similar to a literature procedure.5

To a solution of 2-ethyl-1-hexanol (15.6 mL, 13.0 g, 99.8 mmol) and

triphenylphosphine (28.1 g, 107 mmol) in DMF (100 mL) that had been dried over 

molecular sieves, bromine was added dropwise until 2 drops caused the solution to 

acquire a permanent orange coloration. The resulting exothermic reaction raised the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Fig. 3.12: Mass spectrum and gas chromatogram of 

/ra/w-6-chloro-2-heptene

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



63

Q_
Q_

CM

CO

I O  M-

CM

3Q.

<L>
C<L>
Q.<L>

CMiO
t—o
01

MD

Cmo
'n'
E
2
r-m
in’C"-
E
S
o<ua.cn

z
u

sp
IE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



64

CLc_

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
g.

 3
,1

4:
 '

H 
NM

R 
sp

ec
tru

m 
(3

00
.5

2 
M

H
z)

 o
f 

/ra
//.

v-
6-

ch
lo

ro
-2

-h
ep

te
ne



or.

65

00

2  s

00

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
g.

 3
.1

5:
1R 

sp
ec

tru
m 

of 
/ra

//.
v-

6-
ch

lo
ro

-2
-h

ep
te

ne



66

Scheme 3.4: Synthesis of 9-(2-ethyl-«-hexyl)heptadecane

Br2, PhiP
R’CH2OH----------- =-► R'CH2Br

DMF

where R' is CH3(CH2)3CH(Et)-

1. Mg, Et20
2. (RCH2)2C=0
3 .NH4 CI

R'CH2Br ------------- ► (RCH2)2C(OH)CH2R'

where R is w-heptyl

-200 °C (RCH2)2C=CHR1 (A)
(RCH2)2C(OH)CH2R' --------►  +

-H20  (RCHjJCtCHzR^CHR (B)

H2 (4 atm), Pd(5%)/C
A + B —----- —-------- ► (RCH2)2CHCH2R’cyclohexane

temperature of the mixture to 55 °C. After the mixture had cooled to room temperature, it 

was extracted with 3 x 200 mL of ether, and the combined extracts were washed with 3 x 

200 mL of a solution prepared from equal volumes of deionized water and concentrated 

aqueous HC1. The organic portion then was washed with 3 x 300 mL of DI water, dried 

over anhydrous MgSCL, and concentrated on a rotary evaporator at 35 °C under aspirator 

vacuum. Fractional distillation of the residue was performed with an H. S. Martin spinning 

band micro still equipped with a Teflon band and having a maximum separation efficiency 

of 150 theoretical plates. The yield of l-bromo-2-ethylhexane thus obtained was 17.6 g 

(91%) (bp 31-35 °C at 0.10 torr), and its purity was 99% according to GC/MS analysis
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(Fig. 3.16), m/e (relative intensity, %): 27(14), 29(15), 39(16), 41(38), 43(20), 55(52), 

56(15), 57(100), 70(10), 71(62), 83(18), 113(13, IVf-Br), 135(5, M*-Bu), 137(5, NT-Bu), 

163(7, MVEt), 165(7, Nf-Et), 192(1.0, NT), 194(0.9, NT); 13C NMR (75.57 MHz, 

CDC13, ca. 25 °C) (Fig. 3.17), 5: 38.67(C-1), 41.50(C-2), 32.16(C-3), 29.06(C-4), 

22.96(C-5), 13.99(C-6), 10.90(C-2’), and 25.46(C-1’) ppm; lH NMR (300.52 MHz, 

CDCI3, ca. 25 °C) (Fig. 3.18), 8: 0.64-1.10 (6H, 2 CH3), 1.10-1.87 (8H, 4 CH2; 1H, CH), 

and 3.24-3.69 (2H, CH2Br) ppm.

(ii) Synthesis of 9-(2-ethyl-n-hexyl)-8-heptadecene and 5-ethyl-7-«-octyl-6-pentadecene 

In a flame-dried flask, a solution of l-bromo-2-ethylhexane (12.64 g, 65.4 mmol) 

in anhydrous ether (100 mL) was added slowly to a mixture of anhydrous ether (300 mL), 

magnesium turnings (1.59 g, 65.4 mg-atom), and two small iodine crystals. Several 

turnings were broken with a glass rod to generate fresh metal surfaces. The mixture was 

heated under reflux until the iodine color disappeared and then was allowed to stand at 

room temperature overnight. Following the slow introduction of a solution of 9- 

heptadecanone (4.00 g, 15.7 mmol) in dry ether (50 mL), the reaction was allowed to 

continue at room temperature for 3 h and subsequently was terminated by adding a 

saturated aqueous solution of ammonium chloride (50 mL). The ether layer was separated, 

and the aqueous moiety was extracted with 3 x 150 mL of ether. All of the ethereal 

fractions then were combined, dried over anhydrous MgS04, and freed of ether by rotary 

evaporation under aspirator vacuum. Low-boiling materials were distilled from the residue
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Fig. 3.16: Mass spectrum and gas chromatogram of 

1 -bromo-2-ethylhexane
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(0.10 torr, bp 45 - 136 °C with a final pot temperature of 198 °C), an operation that 

caused the quantitative dehydration of the 9-(2-ethyl-«-hexyl)heptadecan-9-ol 

intermediate. The final mixture included the following compounds: unconverted 9- 

heptadecanone (25.2%), 9-heptadecanol (9.6%), and two unsaturated compounds related 

to dehydrated 9-(2-ethyl-«-hexyl)heptadecan-9-ol: product 1 (20.0%) and product 2 

(37.1%), with GC retention times of 10.47 and 10.60 min, respectively (the yields were 

not determined); mass spectra (Fig. 3.19), m/e (relative intensity): product 1 (5-ethyl-7-«- 

octyl-6 -pentadecene?), 29(11), 41(21), 43(22), 55(30), 57(24), 67(17), 69(40), 71(14), 

81(27), 83(46), 85(15), 95(26), 96(12), 97(63), 109(14), 111(51), 125(32), 139(13), 

237(100, VT-CgHn), 238(20), 253(4, MT-C7Hi3), 293(63, tvT-Bu), 294(15), 321(69, tvT- 

Et), 322(17), 350(21, fyT); product 2 [9-(2-ethyl-«-hexyl)-8-heptadecene?], 27(10), 

29(26), 41(52), 43(66), 55(60), 56(22), 57(94), 67(36), 68(24), 69(63), 70(20), 71(28), 

79(17), 81(42), 82(17), 83(74), 84(14), 85(31), 95(35), 96(28), 97(81), 98(65), 99(23), 

109(17), 110(13), 111(59), 112(26), 113(18), 125(25), 126(34), 127(11), 138(35), 

139(100), 140(22), 154(63), 155(37), 223(10), 237(35, NT-CgHn), 238(14), 252(33, M*- 

C7H 14), 253(49, N'T-C7H 13), 293(12, NT-Bu), 321(14,1VT-Et), 350(39, \ f ) .

(iii) Synthesis of 9-(2-ethyl-«-hexyl)heptadecane

This substance was synthesized by adapting a literature procedure.6

A 3.47-g portion of the mixture containing 9-(2-ethyl-«-hexyl)-8-heptadecene and 

5-ethyl-7-«-octyl-6-pentadecene was dissolved in cyclohexane (80 mL) and subjected to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Fig. 3.19: Mass spectra and gas chromatogram of products resulting from the 

dehydration of 9-(2-ethyl-w-hexyl)heptadecan-9-ol
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catalytic hydrogenation at room temperature in the presence of 1.0 g of a Pd(5%)/C 

catalyst. The reaction was carried out for 6  h with constant shaking under a hydrogen 

pressure of 4 atm. Filtration and subsequent rotary evaporation of the filtrate gave a 

residue that was shown by GC/MS analysis to consist of 9-(2-ethyl-w-hexyl)heptadecane, 

9-heptadecanone, 9-heptadecanol, and minor impurities in a ratio of ca. 70:15:10:5, 

respectively. The starting ketone and the alcohol were identified by comparing their GC 

retention times and mass spectra with those of authentic specimens, and the distinctive 

resonances of these compounds were assigned easily in the 13C NMR spectrum of the 

mixture. Mass spectrum of 9-(2-ethyl-«-hexyl)heptadecane (Fig. 3.20), m/e (relative 

intensity, %): 57(16), 85(12), 99(12), 113(17), 127(15), 141(14), 155(13), 169(11), 

238(53), 239(100, M^-CgHn), 240(18), 295(11), 323(20, M*-Et), 352(1, M*); lH NMR 

(300.52 MHz, CDCI3, ambient temperature) (Fig. 3.21), 5: 0.70-1.00 (12H, 4 CH3), 1.00- 

1.79 (38H, 19 CH2), and 2.29-2.48 (2H, 2 CH) ppm; l3C NMR [125.77 MHz, 1,4- 

dioxane-c/g: 1,2,4-trichlorobenzene =1:4 (v/v), 100 °C] (Fig. 3.22), 8 :

9-f2-ethvl-fl-hexvr>heptadecane: 14.11(C-1), 22.96(C-2), 32.28(C-3), 29.68(C-4*), 

30.01(C-5*), 30.55(C-6), 27.07 and/or 27.12(C-7*), 34.81 and 34.88(C-8), 35.79(C-9), 

39.53(C-1’), 37.22(C-2’), 33.97(C-3’), 29.76(C-4’), 23.48(C-5’), 14.16(C-6’), 26.98(C- 

1”), and 10.98(C-2”) ppm.

9-heptadecanone: 24.34(C-7), 42.85(C-8), and 208.20 (C-9, off scale) ppm.

9-heptadecanol: 26.12(C-7), 38.27(C-8), and 71.78(C-9) ppm.

* Tentative assignment
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9-heptadecanone rfrom TCI. 91%) (Fig. 3.23): 14.03(C-1), 22.88(C-2), 32.16 

(C3), 9.45(C-4), 29.73(C-5), 29.76(C-6), 24.38(C-7), 42.87(C-8), and 208.40(C-9, off 

scale) ppm.

(iv) Synthesis of 9-heptadecanol

9-Heptadecanol was synthesized by adapting a literature method. 7

Scheme 3.5: Synthesis of 9-heptadecanol

OH

1. LiBfy THF
 ------ ► R — C — R

R '  ' R  2 - H + |
H

w h e r e  R  is /7-octyl

A 2 M solution of lithium borohydride in THF (10 mL, 20 mmol) was added 

during 1 h to a solution of 9-heptadecanone (3.00 g, 11.8 mmol) in freshly distilled 

anhydrous THF (20 mL) while the temperature was kept near 0 °C by external cooling. 

After 3 h of reaction at 0-5 °C, methanol (5 mL) was introduced during 20 min while 

cooling was continued, and the mixture was kept at room temperature for an additional 3  

h. Dilution with ether (50 mL), followed by washing with DI water (3 x 200 mL), drying 

over anhydrous MgS0 4 , and concentration in a rotary evaporator under aspirator vacuum 

left a residue comprised of 3.4% of 8 -heptadecene, 9% of heptadecane, and 87.6% of 9- 

heptadecanol (by GC/MS). The yield was not determined. Mass spectrum (Fig. 3.24), m/e
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(relative intensity, %): 41(13), 43(12), 55(18), 57(17), 69(56), 83(56), 97(13), 125(11), 

143(100, NT-CsHit), 144(10), 238(9, Nf-H20), 256(0.1, 1VT); 13C NMR [125.77 MHz, 

1 ,4-dioxane-Js: 1 ,2,4-trichlorobenzene = 1:4 (v/v), 100 °C] (Fig.3.25), 5: 14.05(C-1), 

22.92(C-2), 32.24(C-3), 29.60(C-4), 29.98 and 30.20(C-5 and -6 ), 26.09(C-7), 38.26(C- 

8 ), and 71.91(C-9) ppm; lH NMR (300.52 MHz, CDC13, ambient temperature) (Fig.

3.26), 5: 0.66-0.99 ( 6  H, 2 CH3), 0.99-1.65 (28 H, 14 CH2), and 3.44-3.75 (1 H, CH) 

ppm.

3.1.7 Synthesis of 9,11-diethylnonadecane

Scheme 3.6: Synthesis of 9,11-diethylnonadecane 

Bro, Ph3P
R-CH(OH)-Et ------1--------- ► R-CHBr-Et (A)

DMF
where R is w-octyl 

Cp?ZrCI->
R-CH=CH> + EtMgBr + Bf> — ------► R-CH(Et)-CH,Br (B)

ether
where Cp2ZrCl2 is zirconocene dichloride

r  RCH(Et)CH(Et)R (AA)
+

RCH(Et)CH2 CH(Et)R (AB)
+

RCH(Et)(CH2 )2 CH(Et)R (BB)

Na
A + B ---------------- ►*<

ether
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(i) Synthesis of 3 -bromoundecane

3-Bromoundecane was prepared by the reaction of 3-undecanol with Br2 in the 

presence of Ph3P, using an adaptation of a literature procedure. 5

Bromine (3.00 mL, 9.36 g, 58.6 mmol) was added dropwise to a solution of 

triphenylphosphine (16.73 g, 63.8 mmol) and 3-undecanol (12.00 mL, 9.95 g, 57.7 mmol) 

in DMF (100 mL). When the mixture had cooled to room temperature, it was extracted 

with 3 x 200 mL of ether, and the combined extracts were washed with 3 x 200 mL of a 

solution prepared from equal volumes of DI water and concentrated aqueous HC1. The 

ether solution then was washed with 3 x 150 mL of DI water, dried over anhydrous 

MgSC>4, concentrated in a rotary evaporator under aspirator vacuum, and fractionally 

distilled in the spinning band micro still to obtain 3-bromoundecane (bp 74-76 °C at 0.15 

torr) in a purity of 94% (yield was not determined), according to GC/MS analysis (Fig.

3.27), m/e (relative intensity, %): 27(15), 29(21), 39(18), 41(57), 42(14), 43(42), 55(52), 

57(100), 69(25), 70(12), 71(83), 83(10), 85(89), 99(37), 113(17), 155(58, NT-Br); l3C 

NMR (75.57 MHz, CDCb, ambient temperature) (Fig. 3.28), 8 : 12.08(C-1), 31.94(C-2), 

60.34(C-3), 38.90(C-4), 27.71(C-5), 29.18, 29.34, and 29.55 (C-6 , -7, and -8 ; exact 

assignments uncertain), 32.24(C-9), 22.73(C-10), and 14.12(C-11) ppm; [H NMR 

(300.52 MHz, CDC13, ambient temperature) (Fig. 3.29), 8 : 0.72-0.97 (3H, CH3), 0.96- 

1.13 (3H, CH3), 1.12-1.66 (12H, CH2), 1.66-2.10 (4H, CH2), and 3.83-4.12 (1H, CHBr) 

ppm.
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(ii) Synthesis of l-bromo-2-ethyldecane

This compound was prepared by adapting a literature procedure.8

Bis(cyclopentadienyl)zirconium dichloride (0.49 g, 1.7 mmol) and 1-decene (6.31 

mL, 4.67 g, 33 mmol) were introduced into a flame-dried flask in a glove bag under argon. 

Ethylmagnesium chloride (2.0 M solution in ether, 50.0 mL, 100 mmol) was added under 

nitrogen, and the mixture was allowed to remain at room temperature for 12 h. After 

cooling to -78 °C, bromine (6.90 mL, 21.5 g, 134 mmol) was introduced during 30 s, and 

the mixture was kept for 1 h at room temperature. It then was extracted with 3 x 150 mL 

of ether. The combined extracts were concentrated in a rotary evaporator under aspirator 

vacuum and fractionally distilled in the spinning band micro still to obtain a l-bromo-2 - 

ethyldecane sample (bp 89-93 °C at 0 . 2 0  torr) that was shown to be ca. 90-95% pure by 

*H NMR and GC/MS analysis (the yield was not determined): (Fig. 3.30), m/e (relative 

intensity, %): 27(13), 29(20), 39(16), 41(52), 42(10), 43(34), 55(79), 56(20), 57(87), 

69(33), 70(20), 71(100), 83(44), 85(93), 97(16), 99(45), 113(31), 127(11), 135(14, M*- 

CsHn), 137(13, M*-CgH17), 163(55, M+-C6H 13), 165(55, M^-CsHu), 169(26, M*-Br), 

248(0.7, M*), 250(0.6, M*); l3C NMR (75.57 MHz, CDC13, room temperature) (Fig. 

3.31), 5: 38.85(C-1), 41.l3(C-2), 31.99(C-3), 26.70(C-4), 29.89(C-5), 29.64(C-6), 

29.39(C-7), 32.28(C-8), 22.75(C-9), 14.15(C-10), 10.90(C-2’), and 25.23(C-1’) ppm; [H 

NMR (300.52 MHz, CDCI3, room temperature) (Fig. 3.32), 6 : 0.55-1.01 (6 H, CH3), 0.99-

1.68 (16H, CH2), 2.37-2.80 (1H, CH), and 3.14-3.60 (2H, CH2Br) ppm.
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(iii) Synthesis of 9,1 l-diethylnonadecane

9,11-Diethylnonadecane was prepared by a Wurtz reaction, via an adaptation of a 

method in the literature.9

Sodium (caA.O g, 43 mg-atom) was added to a solution of 3-bromoundecane 

(1.52 g, 6.46 mmol) and l-bromo-2-ethyldecane (1.61 g ,  6.46 mmol) in dry ether (50 

mL), and the mixture was kept at room temperature for ca. 3 days. Unchanged sodium 

was destroyed by the careful addition of a slight excess of isopropanol, and the mixture 

was diluted with additional ether (100 mL). It then was washed with DI water (3 x 200 

mL), dried over anhydrous MgSC>4, concentrated in a rotary evaporator under aspirator 

vacuum, and subjected to short-path distillation in order to remove all materials with 

boiling points below 50 °C at 5 torr. Analysis by GC/MS and lH NMR indicated that the 

residue was a 32:41:27 mixture of 9 ,10-diethyloctadecane (homocoupling product from 3- 

bromoundecane), 9,1 l-diethylnonadecane (heterocoupling product, the desired 

compound), and 9,12-diethyleicosane (homocoupling product from l-bromo-2- 

ethyldecane), respectively, containing minor amounts of impurities. Yields were not 

determined. The identities of 9 ,10-diethyloctadecane and 9,12-diethyleicosane were 

confirmed by comparing their GC retention times (9.4 min for 9,10-diethyloctadecane and 

10.3 min for 9,12-diethyleicosane), mass spectra, and diagnostic I3C NMR shifts with 

those of the authentic specimens whose preparations are described in subsequent sections.

9,11-Diethylnonadecane (GC retention time, 9.8 min) also was identified conclusively 

from its distinctive I3C NMR resonances and its mass spectrum, m/e (relative intensity, 

%):
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9.10-diethvloctadecane (Fig. 3.33.1): 29(13), 41(35), 43(54), 55(35), 56(24), 

57(100), 69(26), 70(22), 71(67), 83(16), 84(15), 85(57), 97(21), 98(11), 99(20), 111(18), 

113(10), 125(12), 154(100, NT- CnH24), 155(21, NT- C11H23), 197(8, NT- CgH17), 

281(15, NT- Et), 310(0.5, NT).

9.11-diethvlnonadecane (Fig. 3.33.2): 29(22), 41(56), 42(12), 43(80), 55(47), 

56(25), 57(100), 69(34), 70(22), 71(82), 83(20), 85(72), 97(16), 99(30), 113(22),

127(14), 141(13), 154(28, NT- Ci2H26), 155(16, NT- CijH^), 169(10), 2 1 0 ( 1 1 ), 211(42,

NT- CgHn), 295(85, \T - Et), 324(0.4, N'T).

9.12-diethvleicosaneflFig. 3.33.3): 29(22), 41(56), 42(16), 43(87), 55(53), 56(17), 

57(100), 69(35), 70(27), 71(78), 83(21), 84(10), 85(74), 97(20), 99(31), 111(11),

113(21), 127(15), 141(12), 154(38, M% Ci3H28), 155(18, M*- C13H27), 169(10), 224(10),

225(35, NT- CsHn), 309(85, Et), 338(0.8, M*).

13C NMR [125.77 MHz, 1,4-dioxane-t/s: 1,2,4-trichlorobenzene = 1:4 (v/v), 100 

°C] (Fig. 3.34), 5:

9.10-diethvloctadecane: 14.1 l(C-l), 22.96(C-2), 32.31(C-3), 29.70(C-4),

30.03(C-5), 30.55(C-6), 28.67(C-7), 31.39 and 31.41(C-8), 42.71 and 42.73(C-9), 

24.25(01’), and 12.80(02’) ppm.

9.11-diethvlnonadecane: 14.11(C-1), 22.96(C-2), 32.31(C-3), 29.70(C-4), 30.03 

(C-5), 30.55 and 30.57(C-6), 27.19 and 27.23* (C-7), 34.43 and 34.46(C-8), 37.38 and 

37.42(C-9), 39.15(C-10), 27.05 and 27.13(01’), and 10.98 and 11.01(02’) ppm.

* Tentative assignment
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9.12-diethvleicosane: 14.11(C-1), 22.96(C-2), 32.31(C-3), 29.70(C-4), 30.03(C- 

5), 30.55(C-6), 27.40(C-7), 34.11(08), 40.21(09), 31.12(010), 26.82(01’), and

1 1 .2 2 (0 2 ’) ppm.

lH NMR (300 MHz, CDCb, ambient temperature) (Fig.3.35) 8 : 0.71-1.03 (12H, 

CH3), 1.01-1.62 (34H, CH2), and 2.07-2.22 (2H, CH) ppm.

(iv) Synthesis of 9,10-diethyloctadecane

Magnesium turnings (0.16 g, 6 . 6  mg-atom), 3-bromoundecane (1.50 g, 6.39 

mmol), and anhydrous ether (50 mL) were heated under reflux overnight. A saturated

Scheme 3.7: Synthesis of 9,10-diethyloctadecane and 9,12-diethyleicosane

RCHBrEt

1. Mg, ether
2. A
3. NH 4 CI

RCH(Et)CH(Et)R
(A) (AA)

RCH(Et)CH2Br
(B)

1. Mg, ether
2. A
3. NH 4 CI

RCHfEtlfCH oloCHfEtlR
(BB)

where R is w-octyl

aqueous solution of ammonium chloride (50 mL) and additional ether (100 mL) were 

added in succession; then the ether layer was separated, washed with 3 x 200 mL of DI
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water, dried over anhydrous MgSO,», concentrated in a rotary evaporator under aspirator 

vacuum, and subjected to short-path distillation at 5 torr in order to remove compounds 

boiling below 50 °C. Analysis by GC/MS showed that the residue was 9,1 0 - 

diethyloctadecane in a purity of 98% (the yield was not determined). Mass spectrum (Fig. 

3.36), m/e (relative intensity, %): 41(19), 43(27), 55(19), 56(13), 57(37), 69(11), 70(10), 

71(26), 85(26), 97(13), 99(11), 111(14), 125(10), 154(100, M4- C„H24), 155(21, NT- 

C11H2 3 ), 197(9, M4- CgHi/), 281(18, M4-- Et), 310(0.4, M4); l3C NMR [125.77 MHz, 1,4- 

dioxane-dg: 1,2,4-trichlorobenzene = 1:4 (v/v), 100 °C] (Fig. 3.37) 5: 14.05(C-1), 22.91(C- 

2), 32.24(C-3), 29.64(C-4), 29.96(C-5), 30.49(C-6), 28.62(C-7), 31.38 and 31.41(C-8), 

42.71 and 42.73(C-9), 24.26(C-1’), and 12.79(C-2’) ppm; lH NMR (300 MHz, CDCI3 , 

ambient temperature) (Fig. 3.38) 5: 0.72-1.03 (12H, CH3) and 1.01-1.62 (32H, CH2) ppm.

(v) Synthesis of 9,12-diethyleicosane

A coupling reaction of l-bromo-2-ethyldecane (1.50 g, 6.02 mmol) was carried 

out with magnesium turnings (0.15 g, 6.02 mg-atom) in dry ether (50 mL) according to 

the procedure used to synthesize 9,10-diethyloctadecane, as described above. An 

analogous workup and distillation afforded residual 9,12-diethyleicosane in a purity of 

97%, according to GC/MS and [H NMR analysis (the yield was not determined). Mass 

spectrum (Fig. 3.39), m/e (relative intensity, %): 29(11), 41(26), 43(59), 55(25), 57(100), 

69(13), 70(12), 71(62), 85(39), 99(14), 154(11, M*- Ci3H28), 155(5, M+-C13H27), 225(5, 

M"- CsHn), 309(12, M4- Et), 338(0.1, M*); 13C NMR [125.77 MHz, l,4-dioxane-rf8:
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1,2,4-trichlorobenzene = 1:4 (v/v), 100 °C] (Fig. 3.40) 5: 14.05(C-1), 22.92(C-2), 

32.25(C-3), 29.64(C-4), 29.99(C-5), 30.51(C-6), 27.38(C-7), 34.11(C-8), 40.19(C-9), 

31.14(C-10), 26.82(C-1’), and 11.22(C-2’) ppm; lH NMR (300 MHz, CDC13, room 

temperature) (Fig. 3.41) 5: 0.59-1.05 (12H, CH3), and 1.02-1.91 (36H, CH2) ppm.

3.1.8 Synthesis of tra/i?-3,8-dichIoro-5-decene

(i) Synthesis of 5-decen-3,8-diol

Scheme 3.8: Synthesis of trans-3,8-dichloro-5-decene

2 1. (COD^Ni
2. EtOH

H H2 H H2

OH

where (C O D )2 Ni is bis( 1 ,5-cyclooctadiene)nickel(0)

OH

CH3

OH

SOCl2,
\ r  DMF

Cl

h 3c

Cl
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5-Decen-3,8-diol was prepared by a method similar to a literature procedure10 that 

had been used for the synthesis of 4-octen-2,7-diol.

A suspension of bis( 1,5-cyclooctadiene)nickel(0) (9.79 g, 35.6 mmol) in 100 mL 

of ether was mixed under nitrogen at -45 °C with a solution o f propionaldehyde (6.90 g, 

119 mmol) in 20 mL of ether. Butadiene (3.20 g, 59.3 mmol) dissolved in 15 mL of ether 

was added, and the mixture was stirred at 27 °C for 24 h under argon (argon was bubbled 

first; then static argon pressure was applied by using a balloon). After removal of ether 

under vacuum, 200 mL of ethanol was introduced, and stirring was continued for an 

additional 24 h. Ethanol then was evaporated under reduced pressure (50 °C, 5 torr), and 

the green residue was extracted with ether (3 x 150 mL). The ethereal solution was dried 

with anhydrous MgSC>4, concentrated in a rotary evaporator under aspirator vacuum, and 

then distilled with a short-path apparatus to obtain 1.62 g (yield, 16.0%) of an oily 

material that was shown to be 5-decen-3,8-diol: bp 134-145 °C (5 torr). The purity was 

8 6 % by GC/MS analysis. Mass spectrum (Fig. 3.42), m/e (relative intensity, %): 18(13), 

41(30), 55(26), 67(74), 82(71), 93(50), 109(22, M*- 20H - C2H5), 123(31, M~- 20H - 

CH3), 138(100, IVT- 20H), and 172(0.8, 1VT); 13C NMR (75.57 MHz, CDC13, room 

temperature) (Fig. 3.43) 5: 10.07(C-1), 29.52(C-2), 72.43(C-3), 40.17(C-4), and 

129.5 l(C-5) ppm.

(ii) Synthesis of trcms-3,8-dichloro-5-decene

The procedure used was based on a published method3 for converting secondary

alcohols into the corresponding chlorides without rearrangement.
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Thionyl chloride (2.46 g, 20.7 mmol) was added dropwise with stirring to 7.5 mL 

of DMF under a nitrogen atmosphere while the temperature was kept at 0-5 °C by an ice 

bath. 5-Decen-3,8-dioI (1.6 g, 9.3 mmol) then was introduced slowly, and the resulting 

mixture was heated at ca. 85-90 °C for 30 min. After cooling to room temperature and 

addition of DI water (100 mL), the mixture was extracted with ether (3 x 150 mL), and 

the combined extracts were washed with DI water (3 x 200 mL). The ether solution was 

dried with anhydrous MgS04, concentrated in a rotary evaporator under aspirator 

vacuum, and then distilled with a short-path apparatus to obtain three fractions. The 

second fraction (0.3 g) was the purest sample (80% by GC/MS) of 3,8-dichloro-5-decene: 

bp 100-110 °C (5 torr), mass spectrum (Fig. 3.44), m/e (relative intensity, %): 27(7), 

29(6), 41(43), 55(33), 67(35), 95(100), 116(12), 137(30, \T -  Cl - HC1), 172(8, NT- 

HC1), 174(3, M*- HC1), 208(2.1, M"), and 210(1.6, NT); 13C NMR (75.57 MHz, THF-4,, 

50 °C) (Fig. 3.45) 5: 10.98(C-1), 31.50(C-2), 65.06(C-3), 41.90(C-4), and 129.99(C-5) 

ppm; *H NMR (300.52 MHz, THF-c/g, 50 °C) (Fig.3.46) 5: 0.81-1.15 (6 H, 2CH3), 1.74- 

1.92 (4H, 2CH2), 2.35-2.62 (4H, 2CH2), 3.75-3.95 (2H, 2CHC1), and 5.48-5.74 (2H, - 

CH=CH-) ppm; IR (neat) (Fig. 3.47): strong absorption for trans double bond at 961 cm'1.

3.2 Bulk polymerization of vinyl chloride with chain transfer agents

3.2.1 Materials

(1) Vinyl chloride, CH2=CHC1, #38,762-2, 99.5+%, bp -13.4 °C, Aldrich Chemical
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Fig. 3.44: Mass spectrum and gas chromatogram of rra/25-3,8-dichloro-5-decene
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Company, Inc.

(2 ) Dimethyl 2 ,2 '-azobisisobutyrate, (CH3)2C(COOCH3)-N=N-C(COOCH3)(CH3)2 , 

#KCQ 7587, 99.5%, mp 22-28 °C, Wako Chemicals USA, Inc.

(3) trans- 1 -chloro-2-hexene, 98.3%I (Figs. 3.48-3.50)

(4) trans-1,5-dichloro-2-pentene, 89.5%1 (Figs. 3.51-3.53)

3.2.2 Polymerization of vinyl chloride

Polymerizations were carried out in sealed Pyrex tubes (12.5 mm o. d., 7.5 mm i. 

d., 19.5 cm in length) contained in a stainless steel bomb. A vacuum manifold was used to 

transfer vinyl chloride from a lecture cylinder to the tubes.

3.2.2.1 With no additives (PVC-0)

Dimethyl 2,2'-azobisisobutyrate (0.74 g, 3.2 mmol) was placed into a reaction tube 

that then was connected to the manifold and chilled with liquid nitrogen. A lecture bottle 

of vinyl chloride was connected to the manifold, and high vacuum was applied during 15 

min to remove air. Transfer of vinyl chloride was carried out under static vacuum. When 

the valve of the lecture bottle was opened, the monomer condensed in the reaction tube 

until 3.72 g (59.5 mmol) of it had been introduced. Freeze-thaw degassing was carried out 

three times in order to remove any oxygen from the reaction mixture; then the tube was 

sealed with a torch and placed (while cold) in the bomb, together with ca. 10 mL of

1 Synthesized by Dr. H. T. Chung and S. Frantz
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Fig. 3.48: Mass spectrum and gas chromatogram of 

trans- 1 -chloro-2 -hexene
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Fig. 3.51: Mass spectrum and gas chromatogram of 

trcms-1 ,5-dichloro-2-pentene
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pentane, which was used to create a counter pressure at the reaction temperature. When 

the bomb was closed, additional pressure (ca. 4 atm) was applied with nitrogen gas. The 

bomb then was thermostatted in an oil bath for 45 h at 80±1 °C. At the end of this time, 

the product was removed from the reaction tube, dissolved in THF (ca. 30 mL), and 

precipitated into a large excess of methanol (ca. 1 L). Drying at room temperature gave 

3.22 g of purified PVC (yield, 86.5%). (See the cumulative data in Table 3.3).

3.2.2.2 With trans- l-chloro-2-hexene (PVC-1)

The procedure was the same, in general, as that described above. The trans-l- 

chloro-2 -hexene was introduced into the reaction tube along with the initiator, and the 

amounts of these materials used in various polymerizations are given in Table 3.1. (See 

cumulative data in Table 3.3.)

3.2.2.3 With toz/is-l,5-dichloro-2-pentene (PVC-2)

The procedure was the same, in general, as that already described. The amounts of 

materials used for a number of polymerizations are listed in Table 3.2. Representative 

NMR spectra for two of the synthesized PVCs appear in Figs. 3.54 - 3.57.
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Table 3.1

Amounts of materials for various polymerizations

No. Initiator, mg(mmol) l-Chloro-2-hexene, mg(mmol) Vinyl chloride, g(mmol)

2 25.2(0.110) 107.3(0.9055) 2.0899(33.44)

3 44.8(0.195) 109.6(0.9249) 3.0583(48.93)

4 68.0(0.296) 102.3(0.8633) 3.0923(49.68)

5 86.0(0.379) 365.6(3.085) 1.6098(25.76)

3.2.3 Molecular weight measurements by viscosity

An Ubbelohde viscometer (CANNON #OC B237; viscometer constant, 0.003214 

centistokes/s) was used for molecular weight determinations of the synthesized PVCs. 

Experimental data taken at 30±0.1 °C are shown in Table 3.3;

Table 3.2

Amounts of materials for various polymerizations

No. Initiator, mg(mmol) 1 ,5 -Dichloro-2-pentene, 

mg(mmol)

Vinyl chloride, g(mmol)

6 75.8(0.330) 420.1(3.022) 3.5247(56.40)

7 17.0(0.0739) 52.6(0.444) 0.9984(15.79)

8 41.5(0.180) 75.0(0.633) 2.6677(42.68)
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Table 3.3

Polymerizations of vinyl chloride (VC) alone and with transfer agents (TA)

Viscometry

No. Init./VC

mmol/mol

(mg/g)

TA/VC

mmol/mol

(mg/g)

Efflux time, s 

(at least 2 0  runs)
riinh. Molecular

weight

Yld,

%

1, no TA 54.1

(198.9)

703.75±0.16 

variance: 0.1797 

st. deviation: 0.4239

0.7181 Mn=29,977

DP=480

Mw=60,149

M„/Mn=2.01

8 6

2 , with

1 -chloro-

2 -hexene

3.227

(12.06)

27.08

(51.34)

654.03±0.13 

variance: 0.1043 

st. deviation: 0.3230

0.3530 M„=l 2,440 

DP=199 

Mw=24,328 

Mw/M„=1.95

78

3, with

1 -chloro-

2 -hexene

3.981

(14.65)

18.90

(35.84)

663.51±0.62 

variance: 3.9891 

st. deviation: 1.9973

0.4248 M„=l 5,646 

DP=250 

Mw=30,719 

Mw/Mn=l.96

79

4, with

1 -chloro-

2 -hexene

5.976

(21.99)

17.45

(33.08)

658.17±0.18 

variance: 0.2082 

st. deviation: 0.4562

0.3847 M„=13,838

DP=221

Mw=27,058

Mw/M„=1.96

83

5, with

1 -chloro-

2 -hexene

14.52

(53.42)

119.8

(227.1)

73

6 , with 

1,5-

5.844

(21.51)

53.59

(119.2)

637.74+0.12 

variance: 0 . 2 0 2 2

0.2276 Mn=7,224 

DP=116

74
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dichloro-

2 -pentene

st. deviation: 0.4497 Mw=l 3,821 

Mw/Mn=1.91

7, with 

1,5- 

dichloro- 

2 -pentene

4.627

(17.03)

27.80

(52.68)

643.45±0.18 

variance: 0.2319 

st. deviation: 0.4816

0.2731 Mn=9,053 

DP=145 

Mw=l 7,452 

Mw/Mn=1.93

72

8 , with 

1,5- 

dichloro- 

2 -pentene

4.227

(15.56)

14.83

(28.11)

643.84±0.16 

variance: 0.1837 

st. deviation: 0.4286

0.2712 Mn=8,975 

DP=144 

Mw=l 7,297 

Mw/Ma=1.93

78

643.29±0.26 

variance: 0.5683 

st. deviation: 0.7538

0.2710 M„=8,967

DP=143

Mw=17,283

Mw/Mn=1.93

confidence intervals were calculated for 95% probability; the efflux time o f cyclohexanoiie 

was 609.27±0.26 (variance, 0.4581; standard deviation, 0.6768). Molecular weights were 

calculated using inherent viscosity (tiinh) values: 11

riinh = ln(t|rel)/[C], where r\ni = t/to 

Here, t and to are efflux time of solution and solvent, respectively, at 30±0.1 °C; 

and [C] is the amount of PVC in grams (ca. 0.2) per 100 mL of solution.

Number-average and weight-average molecular weights were calculated according 

to equations found in the literature: 12

logMn = 4.6549 + l.23851ogrii„h 

logMw = 4.9633 + 1.27991ogtiinh
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CHAPTER 4 

RESULTS AND DISCUSSION

The goal of this study was to elucidate several aspects of the microstructure of 

PVC. As was mentioned in the Background chapter, the microstructure of PVC is of 

particular interest because of its effects on PVC stability.

4.1 Attempts to predict the 13C chemical shifts of isolated internal allylic structures 

in PVC

The number of isolated internal double bonds in virgin PVC is typically < 0.6 per 

thousand carbons, 1 a concentration large enough to have a considerable effect on thermal 

stability. Most of these groups are formed due to hydrogen abstraction from PVC by 

growing macroradicals. Recently this pathway was named the "auxiliary" transfer 

mechanism and was combined theoretically and experimentally with another scheme for 

transfer to monomer during the free-radical polymerization of vinyl chloride. 1

So far the specific chemical shifts of the unique carbons in the following structure

y a P
-CH2 -CHCl-CH2 -CHCl-CH=CH-ayCHCl-CH2-CHCl- 

are not known with certainty. In order to try to predict them, three model compounds 

were synthesized for reference purposes: trans- 1 -chloro-2 -heptene (an a-chloro model),

130
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fraras-5-chloro-2-heptene (a 0-chloro model), and //ows-6-chloro-2-heptene (a y-chloro 

model). The I3C shifts of these substances were used to determine shift increments for the 

replacement of H by Cl, and these increments then were used to predict the unique shifts 

of the internal chloroallylic structure. However, the predictions did not agree satisfactorily 

with the shifts of the relevant resonances in the spectrum of the polymer. As is well known 

to be the case with a number of other polar substituents, the shift increments obtained 

from monochlorides evidently are not additive.

4.2 The addition of macroradicals to alkene chain ends during the polymerization of 

vinyl chloride

In several recent publications the outcome of head-to-head addition in vinyl 

chloride polymerization was discussed. 1-4 It also was shown that chain transfer to 

monomer occurs in two distinct ways. One of them, the "auxiliary" pathway, 1’2 begins with 

hydrogen abstraction from PVC. The importance of this pathway increases significantly 

when the concentration of the monomer declines. 1-3 Another route is a consequence of 

head-to-head VC addition. This pathway first produces radical 1 and then leads to the 

direct transfer of a chlorine atom to the monomer from rearranged radicals 2 and 3 in 

Scheme 4.1.

At a given polymerization temperature, the allylic chain end (A) concentration 

decreases with decreasing concentration of VC in a dramatic manner that allows the total 

alkene concentration to remain at the level of 1 per macromolecule1,2 but seems to require 

the radical-induced conversion of A into an internal double bond. 1 This transformation
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seems likely to play a significant role in molecular-weight development, and the 

elucidation of its detailed chemistry is essential for the complete understanding of the 

monomer-transfer processes.

Scheme 4.1 : Sequential reactions resulting from head-to-head addition during the 

free-radical polymerization of VC, where P* is the ordinary head-to-tail macroradical

VC VC

-CH2-CHC1-CHC1-CH

-c h 2-c h -ch ci-c h 2ci -c h 2-chci-c h -c h 2c i

VC y cVC yc
-c h 2-c h =c h -c h 2ci

-chci-c h -c h 9-c h c i-c h 9-c h -c h 9c h c i

VC VC VC

It has been known for some time that the concentration of A can decrease 

significantly when the VC concentration is reduced. 5 Dramatic evidence for such a 

decrease appears in Fig. 4.1, which compares the partial *H NMR spectra of two samples
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Fig. 4.1: Partial lH NMR spectra (500.14 MHz, THF-fik, 50 °C) of PVC made at 80 °C 

with P/Pq = 1.00 (A) or 0.59 (B). The spectra were recorded with identical plotting 

parameters and thus are directly comparable.
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of PVC made at 80 °C under constant VC pressures, 1 where P is the actual pressure of 

monomer and Po is its pressure at saturation.6 It is clearly seen that the 4.06-ppm doublet 

of the CH2CI protons of trcaxs-A undergoes a major reduction upon going from saturation 

conditions to a P/P0 value of 0.59. At the same time a significant increase in the intensity 

of the complex olefinic proton absorption1 at 5.5-6.0 ppm is observed.

The concentrations of A at saturation and subsaturation conditions were found to 

be 1.8 x 10' 3 and 1.05 x 10' 3 mol/(VC unit), respectively, 7 and the latter polymer was 

shown to incorporate 0.7s x 10' 3 mol/(VC unit) of internal double bonds derived from A. 1 

The formation of such double bonds must have been a free-radical process, because it was 

favored by the decrease in the concentration of the principal radical scavenger in the 

system (vinyl chloride). This conclusion has been confirmed by the NMR spectra of other 

subsaturation PVC specimens. 1

Theoretically, copolymerization of A with VC can be considered, but different 

researchers have reported that it does not occur. 7,8 Such copolymerization would not 

convert A into an internal alkene but would lead to structure B in dechlorinated PVC.

CH3 
H I

• c — c — c — c — c -
H2 I H H2 H2

-c — c h 2 
h2 b

Shift calculations made with the Grant-Paul parameters9 and the NMR spectra of model 

compounds reveal that the unique resonances of B are absent from the 13C NMR spectra 

of BujSnH-reduced PVC samples made under subsaturation conditions.7

However, there is another mechanism for A destruction that incorporates 

macroradical addition and requires close scrutiny. This mechanism is shown in Scheme
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4.2.

Scheme 4.2: Possible mechanism for the formation of additional internal

double-bond structures

K  p -
   -CHoCHClCH=CHo v
k-r 4 k&

-CHC1CH2 CH=CHCH2 CHC1-

-c h 2 c h c ic * h c h 2- - V(v  6  +
5  C1CH,C*HC1

This mechanism involves interaction of the growing macroradical, P \  with a rearranged 

isomer of A (4) in order to form a new radical (5) that then is converted into the internal 

aikene structure 6  by a |3-scission reaction1' 3 with VC. In conventional industrial PVC, 

structure 4 usually cannot be detected, 3 and because of its relatively low thermodynamic 

stability, both the rate constant kr and the equilibrium constant Kr = k/k.r are predicted to 

be small. However, published reactivity-ratio data for the VC/propene system10 suggest 

that the reactivity of 4 toward P* addition should resemble that of VC. Thus the situation 

when ka »  kr and ka »  Kr seems quite possible, and considerable amounts of 6  could be 

formed even when the steady-state concentration of 4 is too low to be detected.

Very strong evidence for the conversion of 4 into 6 , during polymerization, has 

now been obtained from the microstructure of a PVC specimen synthesized by a very 

special procedure. This unusual PVC was made at 0 °C with initiation by (/-Bu)2Mg, 11,12 

and its 2D !H NMR spectrum is displayed in Fig. 4.2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-0.5

: L 0  

-1.5

- 2.0

-2.5

13.0

- 3.5

^4.0

U.5

J5.0

-5.5

- 6.0 
:  P p

ppm 5.5 5.0 4.5 4.0 3.5

Fig. 4.2: Phase-sensitive DQF-COSY 2D *H NMR partial spectrum 

(500.14 MHz, THF-di, 23 °C) of (/-Bu)2Mg-initiated PVC

J f

'! ?

I
1-

m

m  

/

- S k

■ /

* 0 4
0 9

t* » t
V

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



137

The low intensity of doublet Y (the same resonance as in Fig. 4.1) shows that the 

concentration of A is very low. At the same time the concentration of the rearranged end 

group 4 is seen to be unusually high, as is revealed by the alkene peaks at 5.1-5.6 ppm, 12,13 

which also establish the presence of some /-BuCH=CH- terminal groups. 12 However, the 

broad singlet denoted as Z and centered at 5.67 ppm is of greater interest. It can be seen 

from the spectrum that the alkene protons producing this resonance are coupled only to 

the allylic protons denoted as X, which appear at ca. 2.54 ppm. From their chemical-shift 

positions it is clear that the latter protons are not attached to chlorinated carbons. On the 

other hand, the spectrum reveals that they also are coupled to protons in the principal 

CHC1 region. All of these observations point to the presence of structure 6  in this 

particular PVC specimen.

Figure 4.3 depicts the corresponding portion of the 2D 1H-13C NMR correlation 

spectrum of an acetone extract of the polymer made with (/-Bu^Mg. This spectrum 

reveals that the olefinic protons (Z) of 6  are attached to carbons having chemical shifts of 

ca. 130 ppm (shown by the arrow). Those carbons also are shown by the spectrum to 

resonate slightly upheld from the alkene carbons of A.

In order to confirm the spectral assignments for 6  and to prove its existence in at 

least this specific PVC, the model compound /r<ms-3,8-dichloro-5-decene was synthesized 

(see the Experimental part of this thesis). The alkene carbons of this substance resonate at 

129.96 and 129.99 ppm (racemic and meso isomers), while its allylic and olefinic protons 

appear at 2.47 (multiplet center) and 5.60 ppm (broad singlet), respectively. All o f these 

chemical shift values are in very good agreement with those found for polymer structure 6 ,
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with some minor perturbations being due to structure and temperature differences.

Fig. 4.4, parts A and B, shows l3C NMR partial spectra for the same PVCs that 

are noted in Fig. 4.1. From Fig. 4.3 it follows that the peaks at 130.4-131.1 ppm in Fig. 

4.4-A must come from the alkene carbons of the end group A (trans isomer, evidently). 

The four small peaks at 129.4-130.1 ppm can be attributed to the analogous carbons of 

the cis-A structure. Those four resonances are not revealed in Fig. 4.3, probably because 

of their very low intensities.

Fig. 4.4-C displays a part of the 13C NMR spectrum of the (/-Bu^Mg-initiated 

polymer. Detailed comparisons of intensities and chemical shifts in the spectra of Figs. 4.4- 

A and -C show that the five resonances with dots in Fig. 4.4-C are the only ones that 

could have arisen from the olefinic carbons of 6 . Figure 4.4-B shows a partial ljC NMR 

spectrum of a PVC that was synthesized under subsaturation conditions. Comparison of 

Figs. 4.4-A and -B clearly shows the disappearance of the A structure when subsaturation 

occurs. This comparison also shows that the subsaturation PVC contains several 

additional alkene peaks which arise, apparently, from isolated internal double bonds. 

Actually this result was predictable, because the total concentrations of internal double 

bonds (as calculated from Fig. 4.1) were 0.6 x 10' 3 and 2.3 x 10' 3 mol/(VC unit) for the 

saturation and subsaturation samples, respectively. 1 Moreover, Fig. 4.4-B clearly shows 

that there are no 6  structures formed under subsaturation conditions, because the dotted 

peaks at 129.91 and 130.08 ppm do not increase in intensity upon going from saturation 

to subsaturation. Those resonances have the same chemical shifts as two of the dotted 

peaks in Fig. 4.4-C (perhaps accidently), and they are the only resonances which appear in
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A
P/P0 = 1.00, 

80 °C

B
P/P0 = 0.59,

—i— ■— i— >— i— >— i— i— i—
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80 °C

136 134 132 130 128

ppm vs Me^Si

(£—Bu^M g initiator, 
0 °C

i— '— i— >
132 130

ppm vs Me^Si

Fig. 4.4: Proton-decoupled l3C NMR partial spectra (125.77 MHz, THF-Jg, 50 °C) of 

PVC samples made at: A  80 °C with P/P0 = 1.00; B, 80 °C with P/P0 = 0.59; C, 0 °C with 

(f-Bu)2Mg initiation. The spectra were recorded with identical plotting parameters and

thus are directly comparable.
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all of the spectra in Fig. 4.4. Thus, the final conclusion is that, in ordinary commercial 

PVC, the mechanism depicted in Scheme 4.2 is not responsible for the disappearance of A 

structures during the latter stages of polymerization.

Several other pathways for A destruction can be considered. They include addition 

followed by termination, addition followed by transfer of Cl to VC, and numerous 

possibilities involving the intermediate allylic radicals that would result from hydrogen 

abstraction. Since this work has failed to reveal any new structures into which A is 

transformed upon going to subsaturation conditions, a mechanism whereby A produces 

larger amounts of “old” isolated internal double bonds seems more likely. An attractive 

scheme that meets these requirements2 involves the conversion of A into the allylic radical 

-CH2CH=CHC'HC1, whose addition to VC creates the same internal alkene structure that 

results from transfer to monomer by the so-called auxiliary route. 1,2 The practical 

possibility of this pathway will be discussed in Section 4.4.

4.3 Double backbiting mechanism

The presence of short-chain branches in many important addition polymers that are 

produced on a large scale has been known for years. Such structures have been well- 

investigated and described for polyethylene and several ethylene copolymers. 14*17 The 

concentrations and distributions of these branches strongly affect the morphologies and 

physical properties of the host materials. Therefore, knowledge of such microstructural 

particularities helps one to understand the behavior of a material and very often to predict 

its properties.
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For PVC, the study of short-chain branching is of great interest for another very 

practical reason. Some of the branch-point carbons are attached to a chloro substituent 

and thus yield tertiary-chloride structures, which are believed by most PVC scientists to 

contribute greatly to PVC instability. However, as described in the Background chapter, 

some short-branch structures do not contain tertiary chloride. For instance, chloromethyl 

or dichloroethyl structures resulting from head-to-head addition during polymerization 

(see Scheme 4.1) are attached to a CH carbon and are quite stable for that reason.

Roedel18 was the first to suggest a formation mechanism for the n-butyl branches 

in low-density polyethylene. This mechanism involves intramolecular hydrogen abstraction 

(“backbiting”) by the propagating macroradical, via a cyclic six-membered transition 

state. 14' 15’17 Similar processes can be proposed for VC polymerization19"21 (see Scheme 

4.3). For PVC, the first backbiting step has been known for some time. 21,22 Continual 

head-to-tail addition of monomer to the macroradical formed by that intramolecular 

transfer (7) then gives, in a typical concentration of 1 per 1000 carbons, 22 a dichlorobutyl 

branch structure (BB) containing tertiary chloride. When one molecule of VC is added to 

7, macroradical 8  results and subsequently experiences similar backbiting transformations. 

In the same manner as P*, radical 8  can form six-membered transition states, but now in 

two different ways, in order to generate radical 9 and/or radical 10, whose subsequent 

addition to monomer should yield a 1,3-diethyl branch pair (DEB) or a 2-ethyl-«-hexyl 

branch structure (EHB). This double backbiting mechanism was first proposed for 

ethylene polymerization23 and then confirmed to occur in that system on the basis of 13C 

NMR studies by a number of researchers. 14,15,24"31 The possibility of double backbiting for
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Scheme 4.3: Creation and reduction of branch structures formed by backbiting during the polymerization of VC,

where P* is the head-to-tail macroradical, and Ars are rate constants
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PVC has been noted previously, 32 as well as the likely thermal lability of the DEB and 

EHB structures, 32 resulting from their incorporation of two tertiary chloride moieties. In 

that study, the researchers32 used a 50.31-MHz I3C NMR. instrument which was not able 

to detect these structures at low concentrations. We now have solved this analytical 

problem by using 125.77-MHz I3C NMR. Proof for the existence of double backbiting 

structures in PVC has not appeared in the literature heretofore.

The same authors32 described another process that starts with backbiting but 

produces the thermally unstable structure, internal allylic chloride. This process involves 

the abstraction of methylene hydrogen to form a rearranged radical, II, that can transfer 

adjacent chlorine to VC by (3-scission and thus yield an IA array.

P* ------► -CHC1C*HCHC1^w^CH2CH2 C1
11

11 + VC -----► -CH=CHCHCI- + C1CH2 C*HC1

______________  IA

The intermolecular counterpart of the reaction that gives 11 is very likely to be involved in 

the polymerization, as is the donation of Cl' to VC from the resulting radicals. This overall 

process now is known to be important for chain transfer to the monomer. 1,2

The experimental approach used in the work of this thesis involved the comparison 

of the 13C chemical shifts of the model compounds 9-(2-ethyl-«-hexyl)heptadecane and

9,11-diethylnonadecane with those of PVC that had been reduced with tri-n-butyltin 

hydride.
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4.3.1 Models for the 1,3-diethyl and 2-ethyl-/i-hexyI branch structures

Prior to this investigation, l3C chemical shifts had been reported for two DiEt 

models (5,7-diethyldocosane and 5,7-diethyldodecane) 27’28’33 and an EtHe model [12-(2- 

ethyI-w-hexyl)tricosane27,28]. Unfortunately, the conditions under which those shifts were 

measured (temperature and solvent) differed significantly from those under which all of 

our previous spectra of reduced PVC and PVC models had been obtained. Thus we found 

it necessary to prepare our own model compounds.

Our model for the DiEt structure was 9,1 1-diethylnonadecane:

2 ' 1 '
H3C — CH2 Et

I I
H3C — c — c — C — C— C — C — C — C — C — C — (CH2)7CH3

h2 h 2 h 2 h2 h 2 h 2 h 2 h h 2 h  a
Y P a  br aa br

Such long alkyl chains were chosen because the chemical shift of a given backbone carbon 

in a model will be essentially identical with a polymer shift if a linear chain of at least six 

carbons is attached to the carbon of interest. In this particular case, we were interested in 

the exact shifts of branch-point carbons and their a  and P neighbors, as well. As was 

described in the Experimental chapter, 9,11-diethylnonadecane was made by a Wurtz 

reaction of 3-bromoundecane and l-bromo-2-ethyldecane. The 3-bromoundecane was 

obtained from the corresponding alcohol by adapting a well-known procedure. The other 

precursor, l-bromo-2 -ethyldecane, was acquired by adapting an elegant two-step 

sequence that involves the Cp2ZrCl2-promoted addition of a Grignard reagent to an 

alkene, followed by reaction of the adduct with an electrophile (Br2 in our case). The 

Wurtz reaction gave 9,11-diethylnonadecane, the cross-coupling product, together with 

two dimers, 9,10-diethyloctadecane and 9,12-diethyleicosane, resulting from the
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homocoupling of 3-bromoundecane and l-bromo-2-ethyldecane, respectively. The 

isolation of 9,11-diethylnonadecane was not attempted and, in fact, was not required, 

because the diagnostic chemical shifts of that compound were determined easily from the 

13C NMR spectrum of the mixture of the three coupling products. Resonance assignments 

of these products were confirmed by comparisons with the spectra of authentic samples of

9,10-diethyIoctadecane and 9,12-diethyleicosane that were made by the magnesium- 

promoted homocoupling of the corresponding bromides.

Prior to our successful synthesis of 9,11-diethyInonadecane by a Wurtz reaction, 

some unsuccessful attempts to prepare this model compound were made. The first route 

depicted in Scheme 4.4 failed at the second step, in that we were not able to make the 

primary alcohol by a Grignard reaction of 3-undecylmagnesium bromide with 

formaldehyde. When 1 -bromo-2-ethyl-n-decane was eventually synthesized successfully, 

another problem arose. The yield in the Grignard reaction of 2-ethyl-n-decylmagnesium 

bromide with 3-undecanone (to obtain 9,ll-diethylnonadecan-9-ol) was found to be less 

than 1%. Replacement of the Grignard reagent by an organolithium compound was not 

helpful, probably because of the high steric hindrance of the reactants. Therefore, this 

pathway was abandoned.

Other unsuccessful approaches employed cross-coupling reactions between 3- 

bromoundecane and 1 -bromo-2 -ethyl-n-decane in the presence of very effective cross

coupling catalysts34 such as CuCN and L^CuCU, as is shown in Scheme 4.5. For simpler, 

less branched compounds, these catalysts work well, but in our reactions the yields were 

never more than a few percent. Replacement of a bromo compound with an iodide or the
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Scheme 4.4: Unsuccessful attempts to synthesize 9 , 1 1 -diethylnonadecane 

via organometallic compounds
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Scheme 4.5: Unsuccessful approaches to the synthesis of 9,1 l-diethylnonadecane

via cross-coupling reactions
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use of organolithium reagents were ineffective, and so this pathway was abandoned as 

well.

Our next attempt to obtain the model compound included a Grignard reaction 

between 2,4-diethylglutaraldehyde and «-octylmagnesium bromide (see Scheme 4.6). This 

reaction was to be followed by the dehydration of 9,1 l-diethylnonadecan-8,12-diol and 

catalytic hydrogenation. However, we failed to obtain 2,4-diethylglutaraldehyde in 

sufficient purity, and the Grignard reaction simply did not occur.

The last unsuccessful approaches were to involve the Wolff-Kishner reduction of 

the corresponding ketone to obtain 9,11-diethylnonadecane directly (see Scheme 4.7). 

Unfortunately, all of our attempts to prepare 9,ll-diethylnonadecan-10-one met with 

failure.

Our model compound for structure EtHe was 9-(2-ethyl-«-hexyl)heptadecane:

n br
Y P a  h

H3C----- C -------- C-------C------- C-----C---------C ------ C -----C-------- (CH^tCHJ
h2 h2 h2 h 2 h2 h2 H2 4

l'CH2
6 ' 5' 4' 3' r | 1" 2"

H3C— C — C — C— C — C— c h 3 
h 2 h 2 h2 h  h2

The last three steps in our synthesis of this material were similar to those used by Freche et 

al.35 in order to obtain a series of 12-(n-alkyl)tricosanes. l-Bromo-2-ethyl-rt-hexane, 

prepared from the corresponding alcohol, was converted into a Grignard reagent that was 

allowed to react with 9-heptadecanone in the conventional way. The product tertiary 

alcohol was not isolated because of its dehydration during its attempted purification. It 

eventually was converted quantitatively into an alkene mixture by heating under vacuum.
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Scheme 4.6: Unsuccessful approach to 9,11 -diethylnonadecane 

via 2,4-diethylglutaraldehyde
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The alkenes were identified as 9-(2-ethyl-w-hexyl)-8-heptadecene and 5-ethyl-7-«-octyl-6- 

pentadecene on the basis of their mass spectra, and both of them were reduced to 9-(2- 

ethyl-«-hexyl)heptadecane by catalytic hydrogenation. Analysis by GC/MS showed that 

the final mixture contained minor amounts of 9-heptadecanone and 9-heptadecanol as 

impurities. Their presence was confirmed by I3C NMR. Fortunately, the diagnostic 

resonances of 9-(2-ethyl-n-hexyl)heptadecane, 9-heptadecanone, and 9-heptadecanol were 

not coincident and thus were easily assigned. A reference sample of 9-heptadecanol was 

synthesized by reduction of the corresponding ketone with lithium borohydride.

Table 4.1 contains predicted shift values and the diagnostic 13C NMR shifts of the 

model compounds 9,11-diethylnonadecane and 9-(2-ethyl-n-hexyl)heptadecane, together 

with the corresponding shifts found for PVC.

In order to calculate the predicted values, temperature-corrected Grant-Paul 

parameters36 were used to modify the chemical shifts of poly(ethylene-co- 1 -alkene^ 7 

containing ethyl or n-hexyl branches. The specific temperature corrections36 and starting 

shifts37 were chosen because they had been obtained under conditions of solvent and 

temperature that were rather close to the conditions used in the work of this dissertation.

The experimental shifts of both model compounds are in good general agreement 

with both the predicted values and with the shifts of similar models measured under other 

conditions.27’28,33’38 Owing to the mutual close proximity of the DiEt-1’ and DiEt-fB 

resonances, as well as the EtHe-1” and EtHe-P peaks, the assignments for all of those 

signals are tentative and might need to be transposed. The doubling found for most of the 

DiEt resonances appears to result from the presence of both the meso and the racemic
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Table 4.1

l3C NMR chemical shifts of some possible structures resulting from “backbiting” and

subsequent reductive dechlorination

8 ,* ppm vs. Me4 Si

carbon predicted6 model polymer

DiEt-r 27.22 27.05,'* 27.13c 26.99, 27.06

DiEt-2’ 11.25 10.98, 11.01 10.96, 11.00

DiEt-br 37.17 37.38, 37.42 37.30, 37.34

DiEt-aa 38.54 39.15 39.05

DiEt-a 34.52 34.43, 34.46 hidden

DiEt-p 27.36 27.19,c 27.23c 27.13,27.16

EtHe-r 39.05 39.53 not found

EtHe-2’ 37.17 37.22 not found

EtHe-3’ 34.09 33.97 not found

EtHe-4’ 29.87 29.76° not found

EtHe-5’ 23.53 23.48 not found

EtHe-6 ’ 14.35 14.16 not found

EtHe-1” 27.22 26.98° not found

EtHe-2” 11.25 10.98 not found

EtHe-br 35.74 35.79 not found

EtHe-a 35.03 34.81, 34.88 not found
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EtHe-P 27.48 27.07,' 27.12' not found

EtHe-y 30.68 30.55 not found

‘Determined at 100 °C and 125.77 MHz from 15-20% (w/v) solutions in 1,2,4- 

trichlorobenzene/p-dioxane-c/g (ca. 4:1 v/v). bSee text for discussion. 'Tentative 

assignment.

stereoisomers. However, the doubling of the EtHe-a and EtHe-{3 resonances must be 

ascribed to the presence of the single chiral center. An analogous phenomenon is the 

magnetic nonequivalence of the isopropyl methyl carbons of (CH3)2CH-CH2-CH(CH3)- 

CH2-CH3. 39

4.3.2 Identification of doubly branched structures in reduced PVC

The diagnostic resonances of the model compounds were searched for in the 13C 

NMR spectra of dechlorinated samples of PVC that had been made previously1 at constant 

VC pressures which ranged from 59% to 100% of the pressure at saturation. After 

dechlorination, the polymers made at the lowest VC pressures displayed several DiEt 

resonances in their spectra. The chemical shifts of the DiEt carbons in such a reduced 

PVC specimen are given in Table 4.1, and the resonances are assigned in Fig. 4.5, which 

displays partial spectra for both the model compound (Part A) and the polymer (Part B).

Some of the DiEt peaks in Fig. 4.5-B can be identified easily, e.g., DiEt-br and 

DiEt-2’. The DiEt-aa peak also is present, but its assignment is rather tentative, and the 

assignment shown might need to be interchanged with that for the Cl-P signal. In spite of
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DiEfc-1'
^CW

CIM e-br

Fig. 4.5: Proton-decoupled ljC NMR partial spectra [125.77 MHz, 100 °C, 1,2,4- 

trichlorobenzene/p-dioxane-dg (ca. 4:1 v/v)] o f (A) model compound 9,11- 

diethylnonadecane and (B) a BujSnH-reduced PVC specimen made at 55 °C with a VC 

pressure at 59% o f the pressure at saturation. Because o f insufficient agitation, the VC 

concentration in the polymer particles'was less than the equilibrium value and, as a result, 

the M„ of the unreduced polymer (2.5 x 104) was abnormally low (see ref. 1). Arrows a - 

d  denote the expected shift positions of some of the EtHe carbons listed in Table 4.1.
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very high conversion in the reductive dechlorination, very small amounts of isolated 

residual chlorines still are found, as in these structures:

Cl c h 2ci

y M  M  
— c — c —- c — c — c -----

P a  1 a  P 
— c — c — c — c — c -----

h 2 h2 h  h 2 h2 h 2 h2 h  h 2 h 2
br

C l C IM e

The assignments made for the DiEt-0 and DiEt-1’ signals are quite consistent with the 

spectrum of the model compound (Fig. 4.5-A), despite the obvious coincidence of the 

downfield branch of the DiEt-1 doublet with the CIMe-p peak. The presence of the CIMe 

structure40 was established by the observation of all of its unique resonances, including 

the CIMe-br peak shown in Fig. 4.5-B. The only DiEt peaks that do not appear in the 

polymer spectrum are those for the DiEt-a carbons. However, their absence was 

expected, because they would be obscured by the much stronger Bu-ot resonance52 that is 

identified in Scheme 4.3.

There is some uncertainty about the presence of a DiEt-y signal. According to its 

calculated shift value (30.40 ppm), this resonance is likely to be obscured by the huge 

peak for conventional -CH2- groups. However, a spectrum of a similar reduced PVC 

sample revealed two weak shoulders at 30.61 and 30.65 ppm. It is possible that one or 

both of those resonances came (at least in part) from DiEt-y carbons. On the other hand, it 

must be noted that the cis isomer of the EtCP structure studied prevously41 would also 

produce a resonance at ca. 30.6 ppm. Moreover, the 13C NMR spectrum of the mixture of

9,10-diethyloctadecane, 9,11-diethylnonadecane, and 9,12-diethyleicosane contained two 

peaks at 30.55 and 30.57 ppm; whereas purified samples of 9,10-diethyloctadecane and
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CH.

EtCP

9,12-diethyleicosane exhibited only singlets in this region. The doubling observed in the 

polymer spectrum could have resulted from the presence of two DiEi-y resonances or 

from a difference in the shifts of signals associated with different compounds.

In contrast to our clear proof for the existence o f the DiEt structure in PVC made 

under monomer-starved conditions, no good evidence was obtained for the presence of 

the EtHe moiety in our reduced PVC samples. There are no unambiguous peaks at 

positions where signals from the EtHe structure should appear in our 13C NMR spectra. 

For example, the singlet denoted by arrow b at ca. 37.0 ppm and the doublet d  at ca. 34.7 

ppm might be recognized as the resonances of the EtHe-2’ and EtHe-a carbons, 

respectively. However, these peaks are very weak or undetectable in other spectra of 

reduced PVC which reveal the presence of significant amounts of the DiEt moiety. 

Moreover, it is impossible to conclude that the resonance denoted by arrow c belongs to 

the EtHe-br carbon, because the signal of that carbon should overlap the f-ICP-a/7-EtCP- 

a  composite peak. 42 The EtHe-br peak might appear as an upfield shoulder on the

t - I C P

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



159

/-ICP-a//-EtCP-a composite signal, but other reduced-PVC spectra do not contain it.

Perhaps the strongest evidence for the absence of the EtHe structure from reduced 

PVC is the failure of the EtHe-1’ resonance to appear at its expected position, which is 

denoted by arrow a (at ca. 39.5 ppm) in Fig. 4.5-B. The spectrometer used has a high 

enough field strength to resolve this resonance from both of its nearest neighbors, whose 

shapes and intensities give no evidence for its presence as a coincident peak. Furthermore, 

a change of solvent from 1,2,4-trichlorobenzene to tetrachloroethane-^ did not cause the 

emergence of any new resonances from the peaks that are closest to arrow a.42

The DiEtrEtHe ratio for low-density polyethylene (LDPE), as derived from 

statistical calculations, 43’44 is exactly 1:1. On the other hand, in striking contrast, our 13C 

NMR spectra indicate that the EtHe concentration in our reduced PVC samples was 

always less than that of the DiEt structure by a factor of 3-4, at least.

4.3.3 Concentrations of the branch structures formed by backbiting

The formation rates of the BB and DEB structures, produced as in Scheme 4.3 

under steady-state conditions, are given by equations 1 and 2  (molar concentrations are 

denoted by brackets).

d[BB ]/dt = ^ a[p-][VC]/(^[VC] + k \)  ( 1 )

d[DEB]/df = Ab£’b[P*]/(£a[VC]+ £ ’(,) (2)

d[PVC]/d/ = *p[P’][VC] (3)

Since most of the P ’ radicals are conventional head-to-tail ones, the polymerization rate 

can be described by equation 3, where k? is the conventional rate constant for propagation,
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and [PVC] is the concentration of polymerized VC units. The concentrations of BB and 

DEB per monomer unit ( p b b  and P deb)  then are given by equations 4  and 5, which when 

added or divided yield equations 6  and 7, respectively. Equation 8  is obtained by dividing 

equation 7 by equation 6 .

c/[PVC]/ dt *p(*a[VC] + *'b) (4 )

<j[DEB] / dt _ kbk \
Pdeb d[PVC] / dt k  [VC](Ara [VC] + k'b)

Pbb +  Pdeb =  £b/Ap[VC] (6 )

P deb/P bb =  ^ V ^ a [V C ] (7 )

P deb /P bb(P bb  +  Pdeb) =  k’̂ kbk*  (8 )

The values of ka and kp should be similar, owing to the structural resemblance of 

macroradicals P ' and 8  (see Scheme 4.3). The DiEt concentration per monomer unit is 

equal to pdeb (when the very low concentrations of incompletely reduced40 DEB 

structures are ignored), and Pbb represents the sum of the concentrations of the fully 

reduced Bu unit and another partially unreduced structure, -CH2-CH(CH2-CH2-CH2- 

CH2C1)-CH2- . 21,40 Thus the values of Pdeb and Pbb for the original, unreduced polymer 

could be obtained from the complete spectrum shown in part as Fig. 4.5-B. They were 

found to be 0 .3 3  x 10° and 4.8 x 10'3, respectively, and they lead to a value of 13 for 

k’dcp/kbki (« kykb), according to equation 8 . An analogous approach gave an approximate
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k’b/kb value of 17 for another polymerization performed at 55 °C with a constant VC 

pressure at 59% of saturation. In this case the respective values of pdeb and Pbb were 

found to be 0.30 x 10' 3 and 4.1 x 10‘3. This change is attributed to agglomeration during 

polymerization that resulted from inefficient agitation and led to a PVC M„ value of 2.9 x 

1 0 4. The mean &VAb value of 15±2 for 55 °C confirms an expectation based upon relative 

rates of backbiting during LDPE synthesis, 23’43 i.e., that the second backbite would occur 

significantly faster than the first one.

The backbiting reactions of P* and 8  are very similar with regard to reactants, 

transition states, and products. Hence, according to the analogy with LDPE,4j the 

inequality of kb and k \  can reasonably be ascribed to differences in conformer 

populations. In the case of ethylene polymerization, the conformational statistics predicted 

a very small effect of temperature on the rate ratio for backbiting. 43 Recently, for ethylene 

the maximum conformational contribution to the difference between the activation 

energies of the first and second backbites has been estimated to be only 1 .8  kcal/mol.42 

Moreover, due to structural similarities, the activation energies associated with ka and k̂  

should be nearly equivalent. Therefore, the expression k'Jc^k\Jca should be nearly 

insensitive to temperature changes. This conclusion has been verified by the data obtained 

for a PVC sample prepared at 80 °C under a constant monomer pressure that was 59% of 

the pressure at saturation. 1 In this case, the Ar’b V ^ a  value was 16, as deduced from the 

Pdeb and Pbb values, which were 0 . 3 3  x 10' 3 and 4.4 x 10'3, respectively. We conclude that 

within the error limits of our measurements, the values of k'bkp/kbk* obtained at 55 and 80 

°C are identical.
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In a recent publication, 21 good straight lines were obtained from plots of P bb  vs. 

[VC] ' 1 that were based on Hjertberg and Sorvik’s data for polymers made at various 

temperatures.6 From equation 6  it is obvious that such linearity can occur only when p DEB 

is small. Rearrangement of equation 8  yields equation 9, which was used to calculate

Pve.  = , .  .   (»)( M .  b p) ^BB

values of Pdeb from the Hjertberg and Sorvik6 Pbb data and k‘\jcvlkjci values of 15 or 16. 

The results revealed that Pdeb was never greater than 0.1 x 10'3. This finding shows that 

the inclusion of Pdeb in the pbb vs. [VC] ' 1 plots21 would have had only minor effects on 

their slopes. However, pdeb inclusion should slightly improve the regression fits of some 

of those plots by increasing the higher branch concentrations.

A straight line also was obtained for some polymers made at 40 °C in solution 

when their p BB values were plotted vs. [VC] ' 1.21 For this series of samples, the values of 

Pbb fall within the range, (0.9 - 5.6) x 10' 3, 21 and the DEB concentrations found from 

equation 9 (with k'Jcvlkdc1 set equal to 15) are in the range, (0.01 - 0.5) x 10'3. A double- 

regression plot of equation 6  made with these data has an R1 value of 0.97 and gives a 

kb/kp ratio of 3.0 x 10' 3 M. This ratio corresponds well with the k\Jkp value of 2.5 x 10° M 

found previously21 for heterogeneous polymerizations at 40 °C. The kjkp ratio actually 

should be larger in heterogeneous media than in solution if propagation is controlled by 

diffusion at high conversions under heterogeneous conditions.21 Thus, the present work 

confirms the argument that was made earlier21 against the occurrence of diffusion- 

controlled propagation in heterogeneous polymerization.
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Inversion of equation 5 gives equation 10, which can be used for the calculation of 

Pdeb as a function of VC concentration if the kp/kb and k jk \  values are available for the 

temperature of interest. These ratios can be obtained from equations 6  and 7 when the 

required data have been collected for one or more PVC samples.

In accordance with equation 5, pdeb depends in part on [VC]'2, rather than

do the concentrations of the other thermally labile defect structures. 1,21 Thus, the DEB 

structure may significantly reduce the thermal stability of polymer fractions that are made 

when the monomer concentration in the polymerizing system has reached low levels. On 

the other hand, the DEB concentrations in commercial polymers should be relatively low.

4.4 Chain transfer by H* abstraction from PVC chain ends

It was shown previously1 that the number of -CH2CH=CHCH2C1 chain ends in 

PVC decreases significantly when the polymerization of vinyl chloride is carried out under 

subsaturation VC pressures. Simultaneously, the concentration of internal allylic groups 

increases substantially, but the total number of double bonds per polymer molecule 

remains essentially the same. One approach toward an understanding of these phenomena 

was discussed above in Section 4.2. Another approach will now be briefly described.

According to information published earlier, 1 the mechanism shown in Scheme 4.8 

can account for all of the facts. In order to prove or disprove this mechanism, two model

(10)

exclusively on [VC]'1. For this reason, pdeb increases more rapidly with conversion than
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Scheme 4.8: Chain transfer by H* abstraction from allylic ends

t V '- r  * pvC
Cl_________ CJ____________CJ_________ Cl Cl__________

compounds were synthesized* and used as transfer agents in some polymerizations of vinyl 

chloride that were initiated by dimethyl 2,2-azobisisobutyrate at 80±1 °C. These models 

were trcms- 1 -chloro-2-hexene and /rawj-l,5-dichloro-2-pentene. High-field NMR was 

used to characterize the resulting polymers.

The purpose of these experiments was to detect, if possible, specific peaks in the 

NMR spectra that corresponded to atoms in end groups derived from the model 

compounds. The anticipated routes to those end groups are shown in Schemes 4.9 and 

4.10.

Scheme 4.9: Chain transfer to trans- 1 -chloro-2-hexene during VC polymerization

* By Dr. H. T. Chung and S. Frantz
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Scheme 4.10: Chain transfer to trans-1,5-dichloro-2-pentene during VC polymerization

P* + PH + Cl

VC
PVC

Cl

Our preliminary *H and 13C NMR work strongly suggests that both of the model 

compounds were incorporated into the polymers in the ways that these schemes depict. 

The mechanism of Scheme 4.8 also is supported by several pieces of indirect evidence that 

will be described in a forthcoming publication on this subject. 45
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CONCLUSIONS

1 . Several model monochloroalkenes were synthesized in order to determine I3C shift 

increments for the replacement of H by Cl at positions that are a , P, or y to an isolated 

internal double bond in a linear carbon chain. These increments then were used to 

predict the 13C shifts of the internal allylic chloride structure in PVC. The predictions 

were not satisfactory, a result which showed that, as expected, the increments were 

not additive.

2 . During conventional VC polymerization, the chloroallylic chain end (-CH2- 

CH=CHCH2C1) does not copolymerize with the monomer and is not destroyed by a 

mechanism involving allylic rearrangement, macroradical addition, and chlorine-atom 

P-scission to produce a -CHCICH2CH-CHCH2CHCI- structure. Nevertheless, that 

mechanism was found to operate during the preparation of a special type of PVC 

[made at 0 °C with (/-Bu)2Mg initiation] which contained the rearranged chain end, - 

CH2-CHC1CH=CH2, at an abnormally high concentration.

3. During the preparation of PVC under subsaturation VC pressures, small amounts of a 

l,3-di(2-chloroethyl) branch structure were found to be formed by a “double 

backbiting” mechanism involving two intramolecular H abstractions in succession. The 

presence of this structural defect was established by the 125.77-MHz 13C NMR 

spectra of reductively dechlorinated PVC specimens. At 55-80 °C, the two backbites 

leading to the defect differ substantially in relative rate, in that the backbiting:addition 

rate ratio is larger for the second backbite by a factor of 15-16 (mean value), 

irrespective of temperature. No evidence was obtained for the presence of the 2-ethyl-

166
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«-hexyl branch structure that would have resulted from double backbiting by an 

alternative route. The absence of this structure and the presence of the l,3-di(2- 

chloroethyl) branch array were confirmed by spectral comparisons with the l3C shifts 

of two reference models, 9,11-diethylnonadecane and 9-(2-ethyl-«-hexyl)heptadecane, 

that were prepared by unambiguous tactical methods.

4. Polymerizations of VC were performed in the presence of two potential transfer 

agents, trcms- 1 -chloro-2-hexene and trans- l,5-dichloro-2-pentene. Preliminary 

examination of the resulting polymers by high-field NMR provided evidence for the 

destruction of the -CH2CH=CHCH2Cl chain end, during polymerization, by a 

mechanism involving H abstraction to form the -CH2CH=CHC*HC1 radical, followed 

by the addition of that species to VC in order to give the thermally unstable structure, 

-CH2CHCHCHCICH2-.
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