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ABSTRACT

We study situations in which an algorithm must make decisions about how to best route 
and schedule data transfer requests in a communication network before each transfer leaves 
its source. For some situations, such as those requiring quality of service guarantees, this is 
essential. For other situations, doing work in advance can simplify decisions in transit and 
increase the speed of the network. In order to reflect realistic scenarios, we require that our 
algorithms be online, or make their decisions without knowing future requests. We measure 
the efficiency of an online algorithm by its competitive ratio, which is the maximum ratio, 
over all request sequences, of the cost of the online algorithm's solution to tha t of an optimal 
solution constructed by knowing all the requests in advance.

We identify and study two distinct variations of this general problem. In the Erst, data 
transfer requests axe permanent virtual circuit requests in a circuit-switched network and 
the goal is to minimize the network congestion caused by the route assignment. In the 
second variation, data transfer requests are packets in a  packet-switched network and the 
goal is to minimize the makespan of the schedule, or the time that the last packet reaches its 
destination. We present new lower bounds on the competitive ratio of any online algorithm 
with respect to both network congestion and makespan.

We consider two greedy online algorithms for permanent virtual circuit routing on ar
bitrary networks with unit capacity links, and prove both lower and upper bounds on their 
competitive ratios. While these greedy algorithms are not optimal, they can be expected to 
perform well in many circumstances and require less time to make a decision, when com
pared to a  previously discovered asymptotically optimal online algorithm. For the online 
packet routing and scheduling problem, we consider an algorithm which simply assigns to 
each packet a  priority based upon its arrival time. No packet is delayed by another packet 
with a  lower priority. We analyze the competitive ratio of this algorithm on linear array, 
tree, and ring networks.

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ANALYSIS OF ALGORITHMS FOR ONLINE 

ROUTING AND SCHEDULING IN NETWORKS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 1

Introduction

1.1 Problem Statement

Routing and scheduling are fundamental problems in the design of a networking protocol. 

To route a  data  transfer1 is to choose the path in the network that the data will follow to 

reach its destination. To schedule a data transfer is to decide when it should be transferred 

across each link in its path.

Traditional store-and-forward protocols transfer large amounts of data by breaking the 

data into many unit size packets and handling each packet individually. Packets are routed 

in a piecemeal fashion; when a packet arrives at a  network node, the node decides where to 

next forward the packet by consulting a local routing table. Routing tables may be updated 

periodically based on statistical measures of network traffic. Scheduling is accomplished by 

means of a local queuing algorithm at each node which, at each time step, chooses to forward

lWe will use the term data transfer to refer to any transfer of data, regardless of the type of network 
protocol used. When we talk about packet-switched networks, we will refer specifically to file transfers or 
packets. When we discuss circuit-switched networks, we will refer to virtual circuits.

2
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CHAPTER 1. INTRODUCTION  3

a subset of packets currently in its queue.

The emergence of high speed networks and modern network applications has initiated a 

reappraisal of how to best handle network data transfers. One alternative to local routing 

and scheduling is to make routing and/or scheduling decisions in advance a t the source, 

before any data is sent. This design decision makes sense in a variety of situations. For 

example, many multimedia streams require guarantees of both low latency and low data 

loss. The latter problem is a result of buffer overflow which can arise from even small 

delays in high speed networks. Such guarantees are met by allocating a  virtual circuit to 

the stream in advance. A virtual circuit consists of guaranteed bandwidth on a  fixed route 

for a specified duration. Once the virtual circuit is allocated, all data sent along the circuit 

is conceptually considered to be a FIFO stream (or flow). Virtual circuit service is an 

important component of emerging Asynchronous Transfer Mode (ATM) networks in which 

several different types of traffic, each with its own bandwidth requirement, vie for the same 

network resources.

Source routing and scheduling may also be advantageous in packet switched networks 

when file transfers are very large (e.g., multimedia, network backups, distributed database 

updates). By using available global information, or actually gathering such information, 

one may be able to prevent congestion and more efficiently transfer the file. W hen files are 

large, the time required to globally determine a good route and schedule for a  file transfer 

is likely to be small compared to the time required for the actual transfer. Furthermore, 

transferring files efficiently in light of current traffic conditions is more im portant for large 

files than for small ones. Consider the case of two files whose assigned paths intersect at 

some link in the network. If the files are small, the delay resulting from such a  “collision”

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 1. INTRODUCTION 4

is small. However, if the files are quite large, the delay may be substantial. Traditional 

packet switching cannot (for lack of global information) prevent such delays, whereas a 

centralized routing and scheduling method can carefully spread out file transfers to reduce 

overall completion times. Furthermore, the scheduling of file transfers will impact available 

bandwidth for other, perhaps real time, transmissions.

Making routing an d /o r scheduling decisions in advance also decreases the required com

plexity, and increases the speed, of network switches, an important issue in high speed 

networks. If preassigned routes (or ATM virtual circuit/path  identifiers) are encoded in 

packet (or ATM cell) headers then switches simply forward packets without any significant 

time loss. In packet switched networks, encoded schedules, which may be as simple as fixed 

priorities, can also reduce the control overhead.

We consider online source routing and scheduling problems in which data transfer (file 

transfer or virtual circuit) requests become known to an  algorithm one at a time and both 

the routing and scheduling decisions must be made for each request before any future 

requests axe known. This approach is in contrast to an offline approach in which it is 

assumed tha t all requests are known a priori. While there always exists an optimal offline 

algorithm for a  problem, an online algorithm is only able to give a  suboptimal solution 

based on its lim ited knowledge. In order to measure the efficiency of an online algorithm, 

we compare its performance, with respect to some objective function, to that of an optimal 

offline algorithm. For a minimization problem, which is the type of problem we consider, 

the maximum ratio of the performance of an online algorithm to that of an optimal offline 

algorithm is called the  competitive ratio.

In its most general form, the online routing and scheduling problem is formally defined

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 1. INTRODUCTION  5

as follows.2  We are given a  weighted directed graph G  =  (V, E , c, q) representing a  com

munication network. The set V  of nodes represents a  set of machines (or switches) which 

are capable of sending and receiving data. The set E  of directed edges represents a  set of 

unidirectional communication links between machines. We assume that each machine can 

participate in as many simultaneous sends and receives as there are incident outgoing and 

incoming edges, respectively.

The function c : E  —> { 1 ,2 ,3 ,... } describes the capacity of the network links. In a 

packet switching model, we assume that a file transfer consists of a  number of fixed-size 

packets and define c(e) to be the number of packets th a t can be transmitted over link e 

in unit time. In a virtual circuit model, c(e) represents the total bandwidth available for 

virtual circuit requests on link e. We will assume that, for all e €  E, c(e) is equal to a 

constant w (which may differ from network to network), w  may be called the width of the 

network links.

In a packet switching model, each machine v contains an intermediate queue which may 

be used for temporarily storing packets as they are forwarded to their destinations in the 

network. The function q: V  —> {0 , 1 ,2 , . . .  } describes the queue length or memory constraint 

associated with machine v. In particular, q(v) is the number of forwarded packets tha t can 

be stored at machine v in an intermediate queue at any given time. We assume that each 

machine v also possesses an initial queue and a final queue of arbitrarily large capacity. 

Files sent from v are initially stored in its initial queue and packets with destination v are 

immediately taken from the intermediate queue at v and placed in the final queue. In a

2 A list of the following notation, and other notation used in this dissertation, is included in Appendix B 
for reference.
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CHAPTER 1. INTRODUCTION  6

virtual circuit model, these memory constraints can be ignored.

The input to our problem is a  sequence of file transfer (or virtual circuit) requests 

a  =  / i ,  / 2 , . . .  , /* . Each €cr is represented by a tuple (sj, t j ,  lj, a7). The nodes Sj,1j 6 V  

are the source and destination of the request, respectively. The value lj € { 1 ,2 ,3 ,... } is the 

size of the request, the length of the file (in fixed-size packets) or the required bandwidth of 

the virtual circuit, and a7 € {0 , 1 , 2 , . . .  } is the request’s arrival time, (a* < a, if and only 

if i < j .)

When a  request f j  € a  arrives, a centralized algorithm in a  packet-switched environment 

must immediately make both a routing and scheduling decision based solely on the decisions 

it made for requests / i , / 2 , • • • , f j - 1 - In a circuit-switched environment, an algorithm need 

only make an online routing decision. We will consider the problem of routing permanent 

virtual circuit requests (vs. switched virtual circuits) which are assumed to exist indefinitely. 

Equivalently, one may think of this model as one in which the finishing times of all requests 

are the same.

An algorithm routes a request f j  by assigning to f j  a path  Pj 6  Vj, where Vj is the 

set of paths between machines Sj and tj in the network. (We assume that \Vj\ > 0 for all 

j  =  1 ,2 ,...  , A:.) An algorithm schedules a file transfer by specifying the times at which it 

will cross each link in Pj. If a  file transfer is not crossing a link and has not yet reached its 

destination, then it must be assigned to a queue at the head of the next link on its path. 

At all times, no link e may be assigned more than c(e) =  w packets and no node v may be 

assigned more than  q(v) packets.

We will seek to  minimize two objective functions, one for each network model we con

sider. In the virtual circuit model, we will minimize  the network congestion, defined to be
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CHAPTER 1. INTRODUCTION  7

the maximum ratio, over all links in the network, of the bandwidth assigned to the link to 

the link’s capacity. Minimizing congestion attem pts to avoid hot spots or bottlenecks by 

spreading bandwidth as evenly as possible over the network links. Minimizing congestion 

also attem pts to increase the network bandwidth available for other users and applications. 

Formally, we define

«( ' )=  E  ^  i11'
K j : e € P ,  v '

to be the congestion on link e after an online algorithm has routed requests / i ,  / 2 , • • • , f j - 1 - 

(The particular online algorithm will always be clear in the current context.) For simplicity, 

let n(e) =  /jfc+i(e), the congestion on link e after an on-line algorithm has routed all k  

requests.

The congestion on path P  after an online algorithm has routed requests f i ,  f 2 , ■■ ■ - f j - i  

is defined to be

Let p{P)  =  fik+i(P).

Finally, the network congestion after an online algorithm has routed requests 

/i> f i ,  • • • > f j - i  is defined to be

The total congestion incurred by an online algorithm is denoted ft = pk+i- Clearly, since 

we do not allow requests to  be rejected, the congestion of a  link may exceed one. If an
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CHAPTER 1. INTRODUCTION 8

optimal offline algorithm can service the request sequence while maintaining congestion at 

most one, and an online algorithm incurs congestion c > 1 , this is an indication that the 

algorithm requires that the network capacity be increased by a factor of c in order to service 

the sequence. Alternatively, c >  1 may be interpreted as a  degree of slowdown in service. 

From a theoretical point of view, the factor c is also an indication of how well the online 

algorithm can find suitable routes.

The second objective function we consider, applicable in the packet switching model, 

is the makespan, defined to be the time the last packet reaches its destination. Formally, 

we define Cj to be the completion time of file transfer f j .  The makespan of a schedule is 

defined to be

C — max C,.
l<j<k J

1.2 Competitive Analysis

An online algorithm for a  minimization problem is traditionally called competitive if it 

always finds a solution whose cost, or objective function value, is within a  small factor of 

the cost incurred by an optimal offline algorithm. An online algorithm for a maximization 

problem is competitive if it always finds a  solution whose profit (again, the objective function 

value) is a sufficiently large fraction of the optimal profit. This technique is known as 

competitive analysis [48]. Intuitively, competitive analysis measures the degree to which the 

performance of an online algorithm suffers, due to its lack of knowledge about the future, 

compared to that of an optimal offline algorithm.

Competitive analysis was introduced by Sleator and Taijan [89], who studied online
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CHAPTER 1. INTRODUCTION 9

algorithms for accessing the elements of a list. Their techniques were further refined by 

Borodin, Linial, and Saks [24, 25] in the context of metrical task systems; Karlin, Manasse, 

Rudolph, and Sleator [47] in the context of snoopy caching; and Manasse, McGeoch, and 

Sleator [65, 6 6 ] in their classical work on the Ar-server problem. Competitive analysis has 

since been applied to many common resource allocation problems including single proces

sor scheduling [71], file allocation [21, 11], load balancing (e.g., [17, 18]), multiprocessor 

scheduling [85], and virtual circuit routing [80].

As indicated above, the competitive ratio is defined differently for minimization and 

maximization problems. First, consider an online algorithm A  for a  minimization problem. 

Let cost(o-) be the cost of the solution obtained by A  given request sequence a. Let cost* (cr)

be the cost obtained by an optimal offline algorithm given the same request sequence. 

D efin ition  1.1

Online algorithm A  is c competitive for a minimization problem if and only if, for all request

sequences a, cost(c-) <  c • cost* (a) +  a, where a is a constant.

D efin ition  1.2

The competitive ratio of online algorithm A  for a minimization problem is defined to be

cost (a) 
suP ---- 77—r*a  COSt (O')

We note that very often c is not a  constant, but rather a  function of some input parame

ters. For a  maximization problem, let profit (<r) denote the profit or benefit of the solution 

obtained by A  given request sequence a. Let profit* (cr) be the profit gained by an optimal 

offline algorithm.
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CHAPTER 1. INTRODUCTION 10

D efin ition  1.3

Online algorithm A  is c competitive for a maximization problem if and only if, for all request

sequences a ,  profit^) >  £ • profit*(<r) +  a ,  where a is a constant.

D efin ition  1.4

The competitive ratio of online algorithm A  for a maximization problem is defined to be

profit* (tr) 
a profit(ff) ‘

D efin ition  1.5

Let c(A) denote the competitive ratio of an online algorithm A  for a problem P.  The competitive 

ratio of P  is defined to be inf^ c(A).

In order to prove a strong result about the competitive ratio of a online algorithm, it 

is necessary to bound the competitive ratio from both below and above. If a value (or a 

function) c is an upper bound on the competitive ratio of an online algorithm then, for all 

request sequences, the algorithm is guaranteed to produce a solution whose cost is at most 

c times the cost of an optimal solution (plus perhaps a constant). If c is a lower bound on 

the competitive ratio of an online algorithm, then the competitive ratio of that algorithm 

cannot be better than c. If c is a  lower bound on the competitive ratio of a problem, then no 

online algorithm for the problem can achieve a  competitive ratio better than c. If a  known 

lower bound for a problem matches the upper bound for an online algorithm, then we know 

that the online algorithm is the best possible. A lower bound proof is often framed as a 

game between an online algorithm and a cruel adversary. The adversary issues a  request 

sequence with the goal of forcing the online algorithm to perform badly. If the adversary 

can generate a  request sequence that forces the ratio of the online algorithm’s cost to its
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cost to be c, then c must be a  lower bound on the competitive ratio of the online algorithm. 

If this strategy works for any online algorithm, then c is a  lower bound on the competitive 

ratio for the problem.

One can also use competitive analysis to measure the performance of a  randomized online 

algorithm. A randomized algorithm is defined to  be a  probability distribution over a set of 

deterministic algorithms. The competitiveness of a randomized online algorithm is measured 

with respect to its expected performance, where the expectation is taken over its random 

choices. The competitive analysis of randomized algorithms is more subtle because the 

competitiveness of an algorithm depends on how much an offline adversary knows about the 

algorithm’s random choices. In contrast, a  deterministic algorithm is completely predictable 

and easier for an adversary to “outsmart” . Ben-David, et al. [22, 23] introduced three types 

of adversaries against which one may compare a  randomized online algorithm. An oblivious 

adversary chooses its request sequence in advance without knowing the algorithm’s random 

choices and then responds to the sequence optimally. An adaptive online adversary chooses 

each request based on the algorithm’s responses to previous requests but must serve each 

request itself before future responses of the algorithm axe known. Lastly, an adaptive offline 

adversary chooses each request in the same way as the previous adversary but may respond 

to the entire sequence at the end. Adaptive adversaries are stronger than an oblivious 

adversary. An adaptive offline adversary is so strong that if there exists a  randomized 

online algorithm for a  problem that is c competitive against an adaptive offline adversary, 

then there exists a  c competitive deterministic online algorithm as well. [22, 23]

Competitive analysis allows us to analyze online algorithms without having to make 

any assumptions about the input. Such assumptions, especially those characterizing ar
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rivals and service times in terms of probability distributions, are sometimes unnatural and 

poor approximations to real systems, especially in the case of packet routing. Competitive 

analysis provides a robust worst case analysis of an online algorithm; if an online algorithm 

can be shown to have a small competitive ratio then this is a strong result. Since the opti

mal performance is fixed, this method also gives an algorithm designer the benefit of being 

able to compare the performance of two online algorithms by using the constant optimal 

performance as a benchmark.

1.3 Related Research

There are at least four related threads of research in the current literature tha t relate to the 

online routing and scheduling problems we consider. In this section, we will review these 

results. In Section 1.4, we will describe how our research relates to these results and give 

an outline of the dissertation.

1 .3 .1  O ffline F ile  Transfer R o u tin g  an d  S ch ed u lin g

The offline version of the file transfer routing and scheduling problem on packet-switched 

networks was introduced and studied independently by two groups — Mao and Simha 

[73, 72] and Rivera-Vega, Varadarajan, and Navathe [82, 83, 95].

Essentially two special cases of the offline problem have been studied in the literature. 

In both versions, unless specified otherwise, network links have unit capacity, nodes contain 

arbitrarily large queues, and file transfers have unit length. In the first version of the 

problem, network links are switched on a  file by file basis and the goal is to minimize 

the makespan of a schedule. In the second version of the problem, network links can
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accommodate several file transfers simultaneously with multiplexing and the goal is to 

minimize the network congestion of the route assignment. (This version is equivalent to a 

permanent virtual circuit routing problem.) Mao and Simha [72] called these two versions 

the serial model and the shared model, respectively.

C om plexity R esults

Rivera-Vega, Varadarajan, and Navathe [82] proved that the makespan minimization prob

lem on general networks is NP-hard and can be formulated as a 0-1 integer programming 

problem. They were able to limit the number of variables in the integer program by proving 

that the length of an optimal schedule is tightly bounded from below by L  and from above 

by L + k  — 1, where L  is the length of the longest shortest path  over all file transfers and k is 

the number of file transfers. If the length of the shortest path  of every file is different, then 

a schedule of length L  is always possible by routing the files over shortest paths and giving 

priority to files with the longest shortest path. Rivera-Vega, Varadarajan, and Navathe [83] 

proved that the same version of the problem is NP-hard on fully connected networks, even 

if the routes are allowed to contain at most two edges. However, they designed a  0 ( | V| + k) 

time algorithm that finds an optimal two-edge schedule in fully connected networks when 

there is only one source or one destination.

Mao and Simha [73, 72] considered both the serial and shared link models, under the 

constraint that no node acts as both a sender and a  receiver of a file. They proved that both 

versions are NP-hard when file transfers can have arbitrary lengths, even if the network is 

bipartite. However, both versions can be solved in polynomial time on bipartite networks 

if files have unit lengths, there is only one file sent between any pair of nodes, or the
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network graph has only single links between any pair of nodes. Define an L-layer digraph 

(or a layered digraph with L  layers) to be one in which the nodes can be partitioned into 

L + 1 sets V0, V i , . ..  , Vi  such that, for all edges (u,v) £  E, u £  Vi and v £  Vi+i for some 

0 < i < L — 1. (An N  input butterfly network is an example of a layered network with 

logN  — 1  layers3.) Mao and Simha proved tha t for 2-layer digraphs with only single, unit 

capacity edges, both versions of the problem are NP-hard, even if only one unit length file 

transfer is sent between any pair of nodes. Mao and Simha also showed tha t if the network 

is a ring with arbitrary link speeds and every node acts as a sender and receiver of an 

arbitrary length file, then the congestion minimization problem is NP-hard.

A pproxim ation Algorithm s

Given that so many simple versions of the problem are likely intractable, it makes sense 

to examine polynomial time approximation algorithms. Rivera-Vega, Varadarajan, and 

Navathe [82] proposed using an adaptive path scheduling heuristic to approximately schedule 

file transfers in the makespan minimization problem. Files are assigned a  fixed priority 

and considered in this order. The heuristic assigns to each file the path th a t requires the 

least time based on conflicts with higher priority files. No analysis is given in [82] for this 

algorithm, but the authors conjectured that it constructs schedules with makespan bounded 

by the theoretical upper bound o fL  +  fc — 1  i f a  suitable priority scheme is chosen.

Rivera-Vega, Varadarajan, and Navathe [83] conjectured that two-edge schedules are op

timal on fully connected networks and proposed a  two phase algorithm to construct such a 

schedule. In the first phase, a set of two-edge routes are found for the file transfers. The au

3 We use log to denote log2-
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thors gave an optimal integer programming formulation and two approximation algorithms 

for this phase. The first approximation algorithm produces schedules with makespan within 

a  factor of four of optimal. The second approximation algorithm assigns all but an initial 

subset of the files one a t a  time to a two-edge route with minimum congestion. Simulations 

suggest that the performance guarantee of the second approximation algorithm is roughly 

twice optimal. In the second phase of the two phase algorithm, a  schedule is computed for 

the set of routes found in the first phase. The authors gave an algorithm for the second 

phase that is optimal with respect to a given set of two-edge routes. Varadarajan and 

Rivera-Vega [95] later designed an approximation algorithm with a performance guarantee 

of two which computes two-edge routes and a schedule simultaneously.

Mao and Simha [72] studied three simple online list scheduling (LS) algorithms for 

assign ing  routes to file transfers in general networks. The file transfers are scheduled so 

tha t a file stays at an intermediate node only when the next link in its route is busy 

t r an sfe rrin g  a file with a  sm alle r  index. The three online routing algorithms are described 

as follows:

A lgorithm  LSI

For file transfer request f j ,  assign any route P  GVj .

A lgorithm  LS2

For file transfer request f j ,  assign a route P  € Vj  with the fewest links that have been used 

before.
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A lg o rith m  LS3

For file transfer request f j .  assign any route P  € Vj  which minimizes

f  H j ( e ) ,  e & P
max <max < . , /, _ .
e<=E 1 Hj(e)  +  e G P

Mao and Simha showed that the competitive ratios of algorithms LSI and LS2 are Cl(k), 

and the competitive ratio  of algorithm LS3 is Cl > with respect to both congestion and 

makespan, even on 2 -layer digraphs with unit speed links. Simulation experiments showed 

that in practice both LS2 and LS3 outperform LSI by a  large margin while LS3 constructs 

schedules just a  little better than LS2 does.

F ile  T ransfer S chedu ling

The offline file transfer routing and scheduling problem is related to the File Transfer 

Scheduling problem of Coffman, Garey, Johnson, and LaPaugh [32]. An instance of this 

problem is described by a  multigraph called a file transfer graph. Each graph vertex rep

resents a  transceiver which is capable of sending a file to or receiving a file from any other 

transceiver via an underlying fully connected network. Each edge represents a file to be 

transferred between the  transceivers represented by its endpoints. The length of an edge 

represents the time required to transfer the file. Associated with each vertex is a  port con

straint which specifies the m ax im u m  number of file transfers in which the vertex may be 

engaged at any time. The goal is to assign start times to the file transfers, subject to port 

constraints, so that makespan is minimized. Coffman, et al. [32] proved that the general 

problem, as well as several special cases, are NP-hard. O ther special cases can be solved
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optimally by polynomial time algorithms. [32, 27]

For those cases of the problem that are NP-hard, Coffman, et al. [32] studied the List 

Scheduling (LS) approximation algorithm and variants thereof. At time 0 and every time 

thereafter that marks the completion of a file transfer, LS scans a priority list for file 

transfers that have not yet started  and for which there are available ports at both endpoints, 

and starts each such file transfer immediately. If all file transfers have equal length, the 

performance ratio of LS is strictly less than two. If the file transfers have arbitrary lengths 

and port constraints are unit then the performance ratio of LS is at most two. If the files 

have arbitrary lengths and the port capacities are arbitrary then the performance ratio of 

LS is 2.5 if the priority list is maintained in decreasing order of transfer times. For many 

special graphs, better performance ratios are possible with both LS and other algorithms. 

[32, 27, 75, 76, 74]

Coffman, et al. [32] also studied the problem in a distributed environment in which 

each machine makes scheduling decisions for the file transfers that originate with it, and 

no machine has accurate knowledge of the global system state. The authors analyzed 

two distributed algorithms for situations when Byzantine failures are not possible, and 

communication delays are small compared to file transfer times.

Several variations of the original problem were studied subsequently. Mao [69] examined 

the special case in which the file transfer graph is a  directed multigraph. Several authors 

studied versions allowing preemption [41, 40, 77, 29, 26, 28, 38]. Whitehead [97] studied a 

file transfer scheduling problem that allows file forwarding.
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1.3 .2  O n lin e  V ir tu a l C ircu it R o u tin g

Several variations of the online virtual circuit routing problem have been studied recently 

[80]. Variants of recently discovered algorithms, based on techniques developed to  ap

proximately solve offline multicommodity flow problems [84, 60, 52], are reportedly being 

implemented in AT&T’s ATM switches, and the research was recently recognized by the 

SIGACT Long Range Planning Committee as a  major contribution of theoretical computer 

science [3]. The general problem (more general than we described earlier) is composed of 

two parts: admission control and routing. The admission control component is to decide 

whether to accept a  virtual circuit request given lim ite d  resources. The routing component 

is to decide which path  to use for an accepted request.

A virtual circuit request sequence is denoted 0\, 0 2 ,. . .  , 0k where each 0j is represented 

by a tuple (sj, t j , r j ( r ) ,a j ,  bj). Nodes sj and tj are the source and destination of the request, 

respectively, a , and bj are the requested start and finishing times for the virtual circuit. 

When bj =  oo we call 0j a permanent virtual circuit. Otherwise, 0j is a switched virtual 

circuit. There may be situations when the fin ish ing  time is finite, but becomes known only 

after the virtual circuit is finished. In these cases, we modify the model slightly to include 

both initiation and termination requests. When the fin ish in g time is known, the duration 

is denoted T( j )  =  bj — aj. rj  (r) describes the bandwidth requirement for virtual circuit 0j  

as a function of time. For permanent virtual circuits, the rate is assumed to be constant 

with time and is denoted rj.

Two general versions of the virtual circuit routing problem have been studied. In  the 

first, an algorithm must accept all requests and the goal is to minimize the network conges
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tion incurred by those requests. (This is the version we study.) In the second version of the 

problem, some requests may be rejected and the goal is to maximize network throughput 

while obeying capacity constraints.

Algorithm s for M in im ising  C ongestion

Aspnes, et ad. [4, 5] studied permanent virtual circuit routing in the congestion minimization 

model. They designed an elegant online algorithm which assigns to each request 3j a  shortest 

path with respect to the following exponential cost function:

Ce(j) =  a ^ (e)+£ i  -  a ^ (e)

where a =  1  +  7  for any 0 <  7  <  1. The quantity fij(e) is defined as in equation (1.1). 

with lj =  ry  This algorithm, which we will call E x p -R o u te , is O(logn) competitive, where 

n =  |Vj, on arbitrary networks. 4 Furthermore, Aspnes, et al. proved that E x p -R o u te  is 

optimal (up to a constant factor) by showing tha t no algorithm can have a competitive 

ratio better than l0£^—-.

A 0(log(nT)) competitive algorithm, where T  is the  maximum duration, can be derived 

for switched virtual circuits by concurrently using the algorithm above to solve one instance 

of permanent virtual circuit routing for each time step [16]. No matching lower bound is cur

rently known. Awerbuch, et al. [10] noted that the competitive ratio of any online algorithm 

for routing switched virtual circuits with unknown durations must be fl(-tfn).  However, 

they designed a  O(logn) competitive algorithm that reroutes a  request O(logn) times. A

4This is technically only true if the optimal congestion is 1. For the more general case, the algorithm 
must be modified slightly, with only a  factor of 4 increase in the competitive ratio.
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rerouted circuit is simply reassigned to another path  between its source and destination 

during its duration. Rerouting causes a  brief disruption in service, but ultimately allows 

the transmission to continue to completion.

For a model with Poisson arrivals, Kamath, Palmon, and Plotkin [45] presented an 

algorithm that is similar to Ex p _Route  in that circuits are routed along shortest paths with 

respect to an exponential cost function. However, the maximum congestion of the algorithm 

is guaranteed to stay within an additive y/r log n  factor of the optimal congestion, where r  

is the max im u m  fraction of bandwidth that can be requested by a single virtual circuit on 

any link, as long as r  is relatively small.

Awerbuch, Azar, and Fiat [8 ] applied a  generalization of Ex p -Route to an online packet 

routing and scheduling problem. Their problem differs most notably from ours in tha t 

they allow queue and link capacities to be exceeded while minimizing average packet delay 

j  Ylj(Cj — a,j). Their algorithm is simultaneously O (log (T  Y!e€Ec(e))) competitive with 

respect to congestion, where T  is the m ax im u m  packet delay, and competitive with 

respect to average packet delay.

A lg o r ith m s  for M axim izing Throughput

In the throughput maximization version of the virtual circuit routing problem, a profit p3 

is specified for each request (33 and the goal is to maximize the total profit of the accepted 

requests. A m ong other t h ings, the total profit can be defined to be throughput or the 

number of accepted circuits. When durations are unknown, no competitive algorithm exists 

for the problem, even on a single link and even if preemption is allowed [34]. However, 

Awerbuch, Azax, and Plotkin [9] designed an admission control and routing algorithm for
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virtual circuits with known duration. As with Ex p  .Ro u te , the algorithm first assigns to 

each link a cost that is an exponential function of the current congestion. In this case, 

a =  2LTF  4- 1 where L  is the maximum number of hops taken by a virtual circuit, T  is the

where /x7 (e, r) is defined as it was for the congestion minimization problem, with an  added 

time parameter. Then a request is accepted only if there exists a  route whose total cost is 

small relative to the profit to be gained by accepting it. Specifically, a  request (3j is accepted 

and assigned to any path  Pj satisfying

if such a path exists. Otherwise, the request is rejected. It is interesting to note th a t the 

algorithm does not necessarily choose a unique route for a  request. Rather, a request is 

routed on any path tha t fulfills the requirement.

If the following two assumptions hold on the input, then the algorithm is 0(log(L TF)) 

competitive on general networks. By removing the element of time, an 0(log(LF)) com

petitive algorithm for permanent virtual circuits can be derived from this result [80]. The 

first aforementioned assumption requires that the profit of a  request be proportional to its 

throughput. Specifically, for any request

maximum duration of a  virtual circuit, and F  is a  constant. The cost of a link e a t time r ,

just before request (3j arrives, is defined to be

Ce(i,T) =  c(e) ^ a ^ (e’T) -  l )

L rj{r)T{j)
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Secondly, the bandwidth requirement of each request must be small relative to the link 

capacities. Specifically, no online algorithm can have a  polylogarithmic competitive ratio 

on arbitrary networks unless

r  ( r )  <  g j ge&g cj e ^  ( 1.2 )
log a

Without these assumptions, randomized online algorithms with polylogarithmic competitive 

ratios have been designed for trees, meshes, trees of meshes, and hypercubes [12, 13, 61].

Variants of the exponential routing algorithm have been evaluated with simulations on 

an existing commercial network topology consisting of 25 nodes and 61 uniform capacity 

links. One variant of the algorithm [36], using greedy admission control for permanent 

virtual circuits, was shown to route 6.5% to 15% more bandwidth5  than an algorithm 

choosing the shortest path (min-hop), up to 25% more bandwidth than an algorithm which 

chooses the path with minimum maximum congestion, and 60% more bandwidth than an 

algorithm which chooses routes randomly. Another variant of the exponential algorithm 

[37], using the non-greedy admission control method of [9] for switched virtual circuits and 

improved using results from stochastic analysis, was shown to outperform min-hop with 

greedy admission control in a number of scenarios. These results support a  theoretical 

result showing that any algorithm using greedy admission control is ©(n) competitive with 

respect to throughput [36].

Other authors have studied variants of the routing and admission control problem. 

Competitive online algorithms tha t allow requests to be preempted have been designed for 

a single link (which models a virtual path) and for linear arrays [34, 35, 62, 19]. Kamath,

5 The routed bandwidth is measured when, for the first time, more than 50% of a set of requests is rejected.
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Palmon, and Plotkin [45] studied a model with Poisson distributed arrival times and expo

nentially distributed durations, and gave am algorithm that achieves am expected rejection 

ratio within am additive constant of optimal if a granularity condition similar to (1 .2 ) is 

satisfied. Feldmamn, et al. [33] considered a model tha t allows delay before a route assign

ment. They showed th a t if the maximum allowed delay is bounded, then no improvement 

is possible: the competitive ratio of any adgorithm is fi(logn) w ith respect to the admission 

ratio (the ratio of the profit gained by aulmitted requests to the total profit of ail requests), 

matching a previous lower bound on a  linear array with no delay adlowed [12, 62]. However, 

if the maximum delay is unbounded amd all requests (with unknown duration) must be 

routed, they showed th a t a batch-style adgorithm is ©(logn) competitive with respect to 

makespan on binary trees with unit capacities amd O (y/n) competitive on bounded degree 

plamar graphs . 6  In contrast to the fl(logn) lower bound for the bounded delay case, the 

authors could only provide a lower bound of Q ( lo g io g io g n )  on t*ie competitive ratio of 

any algorithm for the unbounded delay case on a full binary tree. For linear arrays, they 

presented algorithms w ith constant competitive ratios.

D istributed  Virtusd C ircuit R outing

Awerbuch and Azar [7] studied a distributed resource allocation problem of which dis

tributed virtual circuit routing is a special case. The problem is described by a  set of clients 

X  amd a set of servers E.  Associated with each server e 6  E  is a  capacity c(e), amd associ

ated with each client j  €  X  is a  demand rj and a  set Vj  of feasible subsets of E.  A client j

6Shmoys, Wein, and Williamson [85, 86] show how any batch-style scheduling algorithm can be made 
into a fully online algorithm (allowing delay) with competitive ratio increased by at most a factor of two. 
Feldmann, et al. [33] r efine  this result for their algorithms by demonstrating the existence of fully online 
versions with competitive ratio increased by only an additive one.
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may be satisfied by simultaneously assigning its entire demand to each server in some set 

Pj E Vj.  In terms of virtual circuit routing, each client j  corresponds to a virtual circuit 

request with bandwidth requirement rj  and feasible routes Vj.  Two versions of the problem 

were studied. In the first, the goad is to maximize throughput amd in the second, the goal 

is to minimize the makespan.

In the first problem, the goad is to maximize the throughput by accepting a maximal 

subset of clients that can be scheduled concurrently without exceeding capacity constraints. 

The authors relaxed the problem to a fractional version where a client may distribute its 

load over all the feasible subsets. An algorithm for the fractional version may be converted 

into a  randomized algorithm for the integral version as long as a  granularity condition is 

satisfied with respect to the maximum demand. Without this assumption, no approximation 

algorithm exists unless P=N P. Awerbuch and Azar designed am algorithm for the fractional 

problem that is O(logn) competitive with respect to throughput and O(logn) competitive 

with respect to the time needed to complete the assignment, provided the number of routes 

for each request is polynomial in n , where n =  max | |  A |, \E\,

In the maikespam minimization case, the goal is assign to each client j  a  feasible subset 

Pj € V j  and a time T( j )  so tha t the clients complete in the least amount of time and do not 

exceed capacity constraints. This version is relaxed in two ways. First, it is not required 

tha t all edges in a feasible set be scheduled simultaneously. If a granularity condition holds, 

then a  randomized algorithm for the minimum makespan case can be constructed from an 

algorithm for this relaxed load (congestion) m inim iza tio n  version. The load m inim iza tio n  

problem is relaxed to a fractional version as in the maximum throughput case. They gave an 

algorithm for the fractional version of the problem which is 0 (log n) competitive with respect
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to load and CHlog3  n) competitive with respect to time. Simply stated, the algorithms work 

in phases, progressively assigning the demand to the servers in progressively larger pieces, 

until either the demand is satisfied or an exponential weight is exceeded.

1 .3 .3  O n lin e  L oad B a la n c in g

The congestion minimization version of the online virtual circuit routing problem is a  gen

eralization of am online load balancing problem in which each job in a  sequence must be 

assigned to one of n  independent, parallel machines. Each machine has a speed s(i) 

which reflects its processing power. In general, job j  is specified by a tuple {p[ j ) , a j , b j ) 

where p j  is the job’s load vector, a.j is the job’s arrival time, and bj is its finishing time. Each 

component Pi(j) of the load vector is the weight of the job if assigned to machine i. In the 

identical machines case, the weight of every job is the same for all machines and is denoted 

Wj. In the identical machines with assignment restriction case, each Pi(j) is either equal to 

a constant Wj or oo. In the related machines case, Pi{j) — jfo-  When a  job arrives at the 

scheduler it must be assigned immediately to exactly one machine, whose load is increased 

by exactly Pi(j) for the duration of the job. In non-preemptive load balancing, a  job, once 

assigned, may not be reassigned to another machine. On the other hand, if preemption is 

allowed, jobs may be reassigned during their execution. The goal of any algorithm is to 

minimize the maximum load on the machines at any given time.

We point out that the literature on online load balancing distinguishes itself horn online 

machine scheduling [85, 8 6 ]. In the latter problem, each job is specified by an arrival time 

and a  load. The existence of a job becomes known upon arrival, but its load is not known 

until the job is completed. The key difference between this model and online load balancing
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of jobs with unknown durations is that when a job need not be scheduled immediately upon 

arrival. The goal is to minimize the makespan of the schedule. If preemption is allowed, 

jobs may be canceled and completed a t a later time, possibly on another machine, without 

penalty. In a non-preemptive model, free reassignments are not allowed, but jobs may be 

canceled and restarted at a later time.

Perm anent Jobs

Permanent jobs are assumed to execute forever. When machines are identical, the load 

balancing problem with perm anent jobs is the classical machine scheduling problem for 

which Graham [39] proved th a t the greedy algorithm which assigns each job to the machine 

with the least load is (2 — £) competitive. Recently, new algorithms with constant (for 

all n) competitive ratios strictly less than two were designed by Bartal, Fiat, Karloff, and 

Vohra [20] amd Karger, Phillips, and Tomg [46]. For the identical machines with assignment 

restriction case, Azax, Naor, and Rom [17,18] proved that the greedy algorithm is flog n] +1 

competitive. They further showed that this bound is tight, up to an additive 1, by proving a 

lower bound of [log(n +  1)1 for any adgorithm. They also designed a  randomized adgorithm 

which is Inn competitive agadnst an oblivious adversary, amd proved this result is tight as 

well. For the related m a c h in es case, the greedy algorithm is adso ©(logn) competitive, but 

Aspnes, et al. [4] showed th a t a  non-greedy adgorithm is 8  competitive. For the most generad 

case where the load vector is unrestricted, Aspnes, et ad. [4] designed a  O(logn) competitive 

algorithm which is essentially the virtual circuit routing algorithm Exp  .Route  applied to 

load badancing. The greedy algorithm in this case is @(n) competitive.
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Jo b s  w ith  U nknow n D u ra tio n

Jobs with unknown duration arrive and depart the system at arbitrary times. The departure 

time of a  job is not known to an algorithm when the job arrives and becomes known only 

after the job departs. For the identical machines case, the greedy algorithm of Graham [39] 

is still (2 — i )  competitive. Azar and Epstein [15] proved that this algorithm is optimal. 

However, for identical machines with assignment restriction, Azar, Broder, and Karlin [14] 

showed that any algorithm, deterministic or randomized, must be Q. (y/n) competitive, and 

that the greedy algorithm is O (n2/3) competitive. A 0  (V**) competitive algorithm was 

later discovered by Azar, et al. [16]. Phillips and Westbrook [79] designed two algorithms 

that use preemption to surpass the Q (^/n) lower bound for the special case in which each 

Pi{j) is either 1 or oo. The first algorithm performs p amortized reassignments per job 

and is 0  competitive. The second algorithm improves the total running time of

the first algorithm at the expense of the load. Awerbuch, Azar, Plotkin, and Waarts [10] 

designed an algorithm which is 16 competitive and performs at most O(logn) reassignments 

per job, if the optimal load is at least log n. Westbrook [96] later extended the algorithm 

to remove this requirement. For the related machines case, Azar, et al. [16] designed a 

20-competitive deterministic algorithm. There is no known o(n) competitive algorithm for 

the unrelated machines case. However, if preemption is allowed, the online virtual circuit 

routing algorithm of Awerbuch, et al. [10] can be applied to achieve a O(logn) competitive 

ratio with 0 (log n) reassignments per job.
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Jo b s w ith  K now n D u ra tio n

Nothing is known about whether knowing the durations helps in the cases of identical ma

chines with assignment restriction or related machines. However, for the unrelated machines 

case, Azar, et al. [16] designed a  0(log nT)  competitive algorithm, where T, known in ad

vance, is the ratio of the maximum to minimum duration. This algorithm is essentially a 

special case of the algorithm for routing switched virtual circuits w ith known durations.

1 .3 .4  P a ck et R o u tin g  a n d  S ch ed u lin g

The problem of efficiently moving packets along paths in a network is important both in 

general purpose store-and-forward networks and in large-scale general-purpose parallel com

puters, where typically a  large proportion of time is spent moving data  among processors. 

There are many variations of the packet routing problem; the one we adopt here is taken 

from Leighton, et al. [59] and subsequent literature.

At each network node there are two queues, an initial queue and a  final queue. In a 

static routing problem, all packets initially (at time 0 ) reside in initial queues at various 

nodes of the network. The most common type of static problem is a  k-k  routing problem in 

which each node initially contains k  packets which are sent to arbitrary destinations. At the 

end of the routing, each node contains k packets. The 1 — 1 routing problem is also called 

a permutation routing problem. On the other hand, in a  dynamic problem, packets may 

arrive in initial queues over time. In either the static or dynamic case, the packets must be 

moved toward their destinations by using a store-and-forward routing scheme. Every edge 

in the network has at its head an edge queue which is used to temporarily store packets 

being forwarded to another node. At each time step, an algorithm residing at a node must
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decide whether each packet in an edge queue should wait in the queue or be forwarded to 

the edge queue a t the head of the next edge on its path. In some versions of the problem, 

routes an d /o r schedules (packet forwarding times) may be decided at the source and simply 

read from packet headers by the nodes. At most one packet (or, in general, w packets) may 

traverse any edge at any time. The goal of an algorithm is to deliver all packets to the 

final queues at their destinations quickly and using small edge queues. The packet routing 

problem has been studied extensively in many forms [55, 54]; we will describe only a few 

results here tha t most closely related to our work.

Most work on packet routing deals with specific network topologies tha t axe common in 

large-scale parallel architectures (e.g., arrays, trees, hypercubes, butterfly networks). How

ever, in recent papers [59, 57, 56, 58], the problem is considered on more general networks 

and the work is divided into two distinct stages. In the first stage, a  path is chosen for 

each packet connecting its source and destination. The goal of this stage is to find a  set 

of paths with small congestion (i and dilation d. For some networks including meshes, 

butterflies, and shuffle-exchange networks, stage one can be accomplished easily using a 

method described by Valiant [93] in which a packet is first routed to a  random intermediate 

destination before it is routed to its final destination. This method gives a  set of paths with 

values of /j  and d that axe within a  small constant factor of the diameter of the network. In 

the second stage, a  schedule is constructed describing the movement of packets along their 

predetermined paths. The goal of this stage is to both minimize the length of the schedule 

and the maximum queue size in terms of the congestion and dilation of the paths.
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G en era l N e tw o rk s

Leighton, Maggs, and  Rao [59, 57] proved that a schedule exists with length O (fi + d) for 

any static routing problem on an arbitrary  network, using constant size queues. Leighton 

and Maggs [58] later showed how to find such a schedule offline in 0(k |i? | 4- \E\ log£(fc|2?|)) 

time for any fixed e > 0, where k is the number of packets. Leighton, Maggs, and Rao 

also described a randomized local control algorithm for arbitrary networks tha t produces 

a schedule of length 0 (/i +  dlog(kd)) using queues of size 0 (log(fcd)) with high proba

bility. An improved local control algorithm was given by Rabani and Tardos [81] which 

routes all packets in 0 (/i) +  (log* Ar)°(log’ k'>d + log6  k) steps with high probability. One year 

later, Ostrovsky and Rabani [78] presented an algorithm that delivers all packets to their 

destinations in just 0 (/x + d + log1+£ k) steps with high probability.

L ayered N e tw o rk s

Leighton, Maggs, Ranade, and Rao [59, 56] studied the static problem on the class of 

bounded degree layered networks. For an  arbitrary L-layer network, they designed a  ran

domized algorithm th a t constructs a  schedule of length 0 (/i-t-.L+log k) with high probability 

and requires only constant size queues. They were able to apply their result to meshes, but

terflies, shuffle-exchange networks, multidimensional arrays and hypercubes, and fat-trees 

by reducing the problem of routing on the original network to the problem of routing on a 

s im ila r  layered network.
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L inear A rra y s  a n d  R ings

The static k-k  routing problem on a  linear array can be solved optimally by send

ing each packet toward its destination immediately and giving priority to packets with 

the farthest distance yet to travel. This strategy produces a schedule with makespan 

max,<j{ j  — * +  fi(i, j ) }  — 1 in the worst case, where fi(i , j)  is the number of packets passing 

through nodes z and j  [49]. Kaufmann and Sibeyn [51] showed that any priority scheme for 

a static problem will result in a packet being delayed at most n times.

Makedon and Symvonis [64] studied a  special case of the k-k packet routing problem 

on ring networks in which all k  packets originating at a  node have the same destination. 

Their algorithms are oblivious in the sense tha t they choose the route for each packet at 

the source and then forward packets locally. The goal of an algorithm is to come close 

to achieving the worst case lower bound with respect to makespan (a lower bound on the 

makespan of a  worst case instance) for any instance. The worst case lower bound for a ring 

is at least max { Syi, Sp}, where n  is the number of nodes. (The first term in the bound is 

the maximum path  length. The second term results from an instance in which all j  nodes 

on one half of a  ring send their k packets to nodes on the other half of the ring. Then all ^  

packets must cross one of two links, resulting in congestion at least 2p on one of the links.) 

For the case where k  =  2, Makedon and Symvonis proved a new lower bound of ^  and 

designed an algorithm which matches the bound. For the case where k > 2, they designed 

an algorithm th a t constructs a schedule with makespan at most The algorithm

divides the packets initially at a node between the packets’ two routes depending on the 

shortest distance the packets must travel. Packets are forwarded using a FIFO policy. On
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the other hand, the greedy algorithm that assigns every packet to its shortest route requires 

a t least J steps in the worst case. (If every node sends k  packets to the node J  nodes 

to the right, then all packets are sent in the same direction and a bisection argument shows 

tha t at least k [p j packets must cross any link.)

Kaufmann amd Sibeyn [50] designed d e te rm in is tic, oblivious algorithms for the general 

k-k  routing problem on a  ring. In each of their algorithms, packets that have the furthest yet 

to traw l are given priority. In addition to proving several new lower bounds for adgorithms 

possessing varying amounts of knowledge, they designed and analyzed five algorithms with 

varying degrees of optim ality for different values of k. The maun result was an adgorithm 

that requires at most +  y/n  steps, beating the adgorithm of Makedon and Symvonis [64]. 

The algorithm was simplified in [8 8 ] and better adgorithms were given for the cases where 

k  =  2 ,3. Sibeyn [8 8 ] also considered the dynamic problem amd designed an adgorithm that 

requires at most ^ steps in the worst case to  route a k-k  distribution. The adgorithm 

sends each packet adong its shortest route if the length of that route is a t most jj. Other 

packets are adtemately directed clockwise and counter-clockwise toward their destinations. 

To our knowledge, no lower bound on makespan is known for the dynamic problem.

Trees

Symvonis [91] designed two offline adgorithms for the permutation routing problem on trees. 

The model specifies th a t each queue has capacity one and that during any time step all 

edges can carry at most one packet in each direction. The first a lg o rith m  requires O(n2) 

time and 0 (n2) space to construct a  schedule with length at most n — 1 (which is worst case 

optimal). The second algorithm requires 0 (n 3) time and O(nlogn) space to construct a
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schedule with length a t most n  — 1. This second algorithm constructs direct routes: once a 

packet leaves its source, it moves one link closer to its destination with each step. Symvonis 

[90] also designed an online, local control algorithm for trees by adapting the greedy online 

algorithm to use less buffer space and still complete in n  — 1  steps. (The greedy algorithm 

can require queues as large as § — 2.) Alstrup, et al. [2] gave an offline algorithm for direct 

routing on trees that improves upon the algorithm given in [91]. Their algorithm requires 

O (nlognloglogn) time and O (nlogn) space to construct a schedule with length a t most 

n  — 1 .

G reedy Packet Scheduling

Some interesting results have been shown about the efficiency of simple greedy queuing 

policies. A queuing policy is greedy if it always forwards a packet when there is an available 

link on which to send it. Cidon, Kutten, Mansour, and Peleg [30] showed that if the set 

of paths is layered, then any greedy policy guarantees that each packet pj arrives at its 

destination within dj + dj 4- k  — 1 steps, where a-j is the packet’s arrival time, dj is the 

number of links packet pj traverses, and k is the total number of packets. This result can 

be extended to the case of unique subpaths where, for every pair of nodes, whenever two 

different routes contain a  segment joining the pair, the two segments are identical. Cidon, 

Kutten, Mansour, and Peleg [30] proved that when each packet is routed over a  shortest 

path, the specific greedy strategy tha t forwards the packet which has traveled the least 

distance so far guarantees tha t every packet arrives within d j + k  — l time units. Mansour 

and Patt-Shamir [6 8 ] generalized this result to any greedy strategy. They showed that a 

greedy schedule is guaranteed to deliver packet j  in no more than dj + [ ^ - J  time units
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where w is the maximum number of packets that can traverse a  link simultaneously. Greedy

different types of identical machines T i,T z , . . .  ,7 j. Each job must be executed first by a 

machine of type T j, then by a  machine of type T2 , etc., and finally by a machine of type T/. 

However, not all machine orders are possible for all jobs; a problem instance includes a  set 

of feasible machine orders tha t apply to all jobs, and (possibly infinite) processing times for 

each job/machine pair. Conceptually, the machines in this problem are analogous to links 

in a routing problem on a  layered network with I layers, and the feasible machine order and 

processing times together are analogous to a path of length I. However, we note tha t this 

problem formulation is not the equivalent to the routing problem for two reasons. First, 

the goal of the problem is to minimize makespan rather than congestion. Second, there are 

instances of job scheduling that do not correspond to any network routing problem.

As discussed in the introduction, we are interested in the online permanent virtual circuit 

routing problem in  which all network links have the same capacity. We do not believe 

that the unit capacity assumption causes significant loss of generality in real situations,

policies do not guarantee such bounds on an arbitrary set of paths; Cidon, et al. [30] proved 

that some greedy strategies may produce schedules with length ft + k j .

1 .3 .5  M u lti-O p e r a tio n  J ob  S ch ed u lin g

Mao [70] studied a  related multi-operation job scheduling problem. A job shop contains I

1.4 Outline

1.4 .1  O n lin e  P e r m a n e n t V ir tu a l C ircu it R o u tin g
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especially if we consider backbone networks. Recall that Awerbuch, et al. [4, 5] proved 

tha t the competitive ratio of any online virtual circuit routing algorithm for this case is 

a t least Iog£~1. This lower bound also applies to randomized online algorithms against an 

oblivious adversary. In Chapter 2 , we offer an alternative lower bound proof th a t uses a 

different technique to show that any online algorithm is at least *?S" + 3  competitive, slightly 

improving the previous lower bound by an additive factor of two. Our construction requires 

a  network with fewer nodes and links, and approximately half as many requests to force 

any online algorithm to incur the same congestion. Our lower bound result, in terms of 

the number of requests, is tight in the sense that there exists a class of instances whose 

competitive ratios are at most within an  additive 1 of this lower bound. Our lower bound 

applies to randomized online algorithms against an adaptive online adversary ra ther than 

against an oblivious adversary.

In Chapters 3 and 4, we analyze the competitive ratio of two greedy virtual circuit 

routing algorithms. We are motivated primarily by the results of Mao and Sim ha [72], 

Aspnes, et al. [4, 5], and Azar, Naor, and Rom [17, 18]. As discussed previously, Mao and 

Sim ha considered greedy online algorithms for their shared model of file transfer routing and 

scheduling, which is essentially identical to the congestion minimization model of perm anent 

virtual circuit routing. They showed th a t their best adgorithm, LS3, is Cl competitive 

(and, implicitly, Cl (y/rn) competitive where m is the number of network links), leaving 

open the upper bound and the question of whether there exist better greedy algorithms. 

Aspnes, et al. [4, 5] showed tha t the non-greedy (in the strict sense) algorithm Ex p -Rou te  

is asymptotically optimal (with competitive ratio O(logn)) for permanent v irtual circuit 

routing. Ex p -Route is a  generalization of an online algorithm for load balancing perm anent
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jobs in the unrelated machines case. Since the greedy algorithm for this load balancing 

problem is 0 (n) competitive, so is any greedy algorithm for the most general case of virtual 

circuit routing in which the load applied to a link by a request is independent of the 

link’s capacity. However, the greedy load balancing algorithm is 0 (logn) competitive in 

the identical machines with assignment restriction and related machines cases [17, 18, 4, 

5]. This raises a  natural question: is a generalization of the greedy algorithm similarly 

competitive for virtual circuit generalizations of these load balancing cases (which are those 

with practical applications)? The problem we consider is a  generalization of the problem of 

load balancing permanent jobs on identical machines with assignment restriction, studied 

by Azar, Naor, and Rom [17, 18].

The real motivation behind the greedy algorithms is the possibility of reducing the 

control overhead involved in virtual circuit routing. Exp .Route  is capable of making ex

cellent routing decisions but requires the computation of many exponential functions with 

real bases and exponents for each decision. We wonder whether algorithms that require 

fewer computational resources can also demonstrate sufficient efficiency in at least some 

non-trivial cases. These issues and tradeoffs between computational and routing efficiency 

will be discussed in more detail in the sequel.

In Chapter 3, we will improve the lower bound given by Mao and Simha [72] for LS3 

(calling it Greed y _Ro u t e 1) and provide an upper bound with respect to congestion that is 

tight in many cases, including the ones considered in [72]. Specifically, we will prove that, 

when the bandwidth requirements of requests are approximately equal (or when various 

other conditions hold), the competitive ratio of Greed yJ I o u teI  is © (^y/Vrnj on arbitrary 

networks, where V  is the maximum over all requests of the ratio of the lengths of the longest
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to shortest path for the request and m  is the number of network links. We also provide a 

lower bound for layered networks (in which case P  =  1) which shows tha t the competitive 

ratio is 0  (\/m )  in this case. When bandwidth requirements are arbitrary, the upper bounds 

are increased by a factor of O where £  is the ratio of the maximum to minimum

bandwidth requirement, although we suspect that this term does not belong in the true 

competitive ratio.

In Chapter 4 , we analyze a  better greedy a lg o r i th m  called G re e d y _ R o u te 2 , and show 

tha t it is (approximately) O (dlogn) competitive, where d is the length of the longest path 

assigned to a request. 7  Therefore, for networks with relatively short paths relative to n, 

this algorithm performs well; if d = O(logn), the competitive ratio is polylogarithmic and 

if d =  0(1), the competitive ratio is asymptotically optimal. We also prove a lower bound 

o f £l{d+ log (n  — d)) for arbitrary networks and (d 4- log ( j  — d))  for layered networks. 

We stress that the upper bounds for both G re e d y _ R o u te 1  and G re e d y _ R o u te 2  apply to 

arbitrary topology networks, i.e., G re e d y _ R o u te 2  is polylogarithmically competitive for any 

network with d = O(logn) rather than just those with a specific topology.

The analyses of G re e d y _ R o u te 1  and G re e d y _ R o u te 2  answer an interesting question 

about the generalization of the greedy algorithm to routing. On the one hand, the greedy 

load balancing algorithm, when applied to routing, is no longer optimal, having a competi

tive ratio in u/(logn) for general networks. On the other hand, it may perform well in some 

cases. The primary reason th a t the greedy algorithms can perform poorly is that they can 

choose routes that are unnecessarily long, thereby increasing the congestion on too many

7Our upper bound holds if the optimal route assignment has a small degree of overlap. We discuss this 
further in Chapter 4.
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links. Taking this into account, the factor of d in the competitive ratio of G re e d y _ R o u te 2  

makes intuitive sense.

We can apply our virtual circuit routing algorithms, with identical results, to a variant 

of the multi-operation job scheduling problem [70] in which each processing time is either 

unit or infinite (an infinite processing time means that we cannot assign that job to that 

machine), and the goal is to minimize the m a x im u m  load. (This is true because our analyses 

do not depend on the fact tha t routes are paths in the network; they could be arbitrary 

sets of network links.) In this problem, each job is assigned to each machine in a feasible 

machine order permanently. For this problem, G re e d y _ R o u te 2  is 0(1 log n) where I is the 

number of machine types. If the number of machine types is constant (or small relative to 

the total number of machines), then this is a  good bound.

We should mention that G re e d y _ R o u te 2  is identical to the min-max algorithm simu

lated in [36], and compared to the min-hop algorithm8  and a variant of E x p _ R o u te . In 

these simulations the goal was to maximize throughput rather than minimize congestion. 

G re e d y _ R o u te 2  was shown to route up to 25%  less throughput than the exponential al

gorithm. But the simulated network contains many routes with lengths close to n. (By 

inspection, it is easy to see that, for most source/destination pairs, there is a simple path 

tha t c o n ta in s  at least 75%  of the network nodes.) We suspect that the simulation results 

would be different in a  network with shorter paths.

8 As an aside, we point out that the competitive ratio of the min-hop algorithm can be arbitrarily bad 
with respect to congestion. An adversary can supply an arbitrarily long sequence of requests between a pair 
of directly connected nodes for which there are many longer alternative routes. While the min-hop algorithm 
will always assign every request to the direct route, an optimal algorithm will appropriately spread out the 
load over all the routes. This idea still holds for an algorithm that minimizes congestion over all shortest 
paths.
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1 .4 .2  O n lin e  P a ck et R o u t in g  a n d  S ch ed u lin g

As indicated earlier, there have been several different packet routing and scheduling mod

els studied in the literature. The models can essentially be categorized based upon four 

characteristics:

1 . whether the route is assigned at the source or piecemeal during the packet’s lifetime

2 . whether the schedule is assigned at the source or piecemeal during the packet’s lifetime

3. whether a routing and scheduling algorithm (at the source or distributed among the 

nodes) has only local knowledge or has (or can obtain) global knowledge

4. whether a routing and scheduling algorithm has knowledge of future requests (offline) 

or not (online/dynamic)

In the following discussion, we will refer to a model with the notation 1 /2 /3 /4 . 1  and 

2 will be replaced by either S or P, depending upon whether the routing and scheduling 

decisions are made at the source or in a piecemeal fashion, respectively. In some models, 

routes are assumed to be given and decoupled from the rest of the problem, or scheduling is 

not relevant (as in a circuit-switched model); in these cases, we will write -  in place of 1  or 

2, as appropriate. 3 will be replaced by either L or G, depending upon whether the model 

uses local or global information. 4 will replaced by Off or On, depending upon whether the 

a lg o r i th m s  in the model have knowledge of future requests.

Different models are appropriate for different situations. For instance, piecemeal routing 

and scheduling decisions are often good because decisions are deferred until the last minute 

and such algorithms usually require very little overhead a t the source. On the other hand,
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such schemes cannot really prevent congestion; they can only deal with it when it occurs 

so tha t packets are not lost. Global algorithms can prevent collisions and congestion, and 

decrease switch complexity. However, these algorithms require more overhead at the source 

and the global information may be hard to gather.

At one end of this spectrum are the S/S/G /O ff model studied by Mao and Simha [72] 

and Rivera-Vega, et ad. [82, 83, 95] and the -/S /G /0 f f  model studied on general networks by 

Leighton, Maggs, and Rao [59, 57]. Of the literature cited eaxlier, some of the work on trees 

also falls into the latter category [91, 2]. At the other extreme are the traditional distributed 

perm utation routing problems (P /P /L /O ff) and dynamic routing problems (P/P/L/On). 

There axe adso distributed models th a t decouple routing from the scheduling (-/P /L /0n ) [56, 

30, 6 8 ]. The oblivious algorithms for k-k  routing on ring networks fall into the S /P /L /O ff 

and S/P/G /O ff models [64, 8 8 ]. The online virtuad circuit routing problems can be written 

as S /- /G /0 n  [4, 9] or S /- /L /0 n  [7].

We axe interested in the S/S/G/On model. We would like to be able to assign source 

routes and schedules to arbitrary paickets arriving at arbitrary times to minimize makespan. 

This model was inherent in the algorithms studied by Mao and Simha [72] which scheduled 

files according to a greedy, fixed priority schedule. A file tramsfer’s priority is its index in 

the file transfer sequence. The schedule is greedy in the sense th a t a  file transfer is only 

held a t a  node if it is blocked by files with higher priorities (smaller indices). This was also 

the idea in the so-called adaptive path scheduling heuristic of Rivera-Vega, et ad. [82].

There axe few reasons why this model is interesting, besides the extension of the work 

cited above. First, from an engineering point of view, a method such as this helps to reduce 

the complexity of network nodes. Reducing overhead is importamt and is probably why
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many practical parallel computers use simple non-optimal routing algorithms [92]. Second, 

most packet routing algorithms are either studied with respect to static permutation routing 

problems or stochastic modeling. Dynamic problems with arbitrary arrivals are less common 

and pose different challenges with respect to algorithm analysis. For example, one cannot 

assume packets are evenly distributed throughout the network as one can with a  permutation 

problem. Sibeyn [8 8 , 87], for one, mentioned tha t future research on the dynamic problem 

on rings is important.

The canonical efficiency measure of a  packet routing and scheduling algorithm in the 

literature is how close it comes to being able to schedule every instance in worst case 

optimal time. The worst case optimal makespan for a problem is the number of steps 

required by an optimal algorithm to move every packet in a worst case instance to its 

destination. A stronger result would be one analogous to a  competitive ratio: if an algorithm 

has competitive ratio (or performance ratio) c then it can schedule every instance within 

c times the optimal number of steps for that instance (not just the worst case instance). 

This sentiment was voiced by Kaufmann and Sibeyn [50], who expressed interest in showing 

that their algorithms were not only worst case optimal, but also optimal for each particular 

instance.

In Chapter 5, we will revisit the greedy, fixed priority scheduling algorithm (GFP) and 

prove a  few results with respect to competitive ratio on some simple networks with un

bounded queues. Specifically, we analyze linear arrays, trees, and ring networks. For linear 

arrays (and other networks whose nodes have indegree one) we show that the competitive 

ratio of GFP is 2 — e. We generalize the proof of this result to directed trees to show that the 

competitive ratio of GFP is 0(logn). Lastly, we consider full-duplex ring networks on which
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each request can follow one of exactly two routes. In this case, we show that GFP scheduling 

combined with minimum hop routing gives an algorithm that is a t most 3 — e competitive. 

If all packets arrive at the same time and originate at the same node, then this algorithm 

is at 2 competitive. We show th a t the competitive ratio of any algorithm which always 

assigns a  request to its shortest path  if the length of the shortest path is a t most 0n  for 

some 0 <  0  < ^ is at least 2 — e. This includes the dynamic algorithm designed by Sibeyn 

[8 8 ]. This result implies tha t if there is an algorithm that is better than 2 — e competitive 

on ring networks, then it must be adaptive in some sense. But such an algorithm must 

also take into account path lengths; an algorithm that does not, such as Gr e e d y _Ro u te1 or 

Greed y _Route2, can be fi(n) competitive.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2

Lower Bounds

2.1 Introduction

In this chapter, we will provide lower bounds on the competitive ratio of any online routing 

and scheduling algorithm, with respect to both network congestion and makespan . 1 The 

lower bounds can be expressed in terms of the number of network nodes n, the number of 

network links m, or the number of requests k. The bound in terms of k  is less useful since it 

only holds on sufficiently large networks. For this reason, in the sequel we will state upper 

bounds for specific online algorithms in terms of the number of nodes n  and the number of 

links m.

The main result of this chapter can be formally stated as follows:

l A preliminary version of the results in this chapter appeared in [44].

43
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T heorem  2.1

The competitive ratio of any deterministic online routing and scheduling algorithm is at least

(a) *°gwT3~e for arbitrarily small positive e <  log 3, with respect to congestion;

(b) loSn+5~t f0r arbitrarily small positive e <  log 3, with respect to makespan;

(c) for arbitrarily small positive e  <  log §, with respect to congestion;

(d) loSrn+4~e for arbitrarily small positive e  <  lo g |,  with respect to makespan;

(e) log A: +  1 with respect to congestion; and

(f) +  1 with respect to makespan.

Furthermore, these results hold even when all requests have unit length2 and share one 

destination3, and the network is a  simple 2 -layer digraph with unit capacity links.

To prove Theorem 2.1, we will construct a network and a sequence of requests that force 

any o n lin e  algorithm to incur a sufficiently high cost (congestion or makespan). In the proof, 

we will imagine a  game between an arbitrary online algorithm and a malicious adversary. 

The adversary will give a network and then issue a corresponding sequence of requests, 

which must be answered by both the o n lin e  algorithm and the adversary. The adversary’s 

goal is to make the o n lin e  algorithm perform as badly as possible. Our adversary will be 

adaptive and online: adaptive in the sense that it will issue each request f j  only after it has 

watched the on lin e  a lg o r i th m  make its decision for request f j - 1 , and online in the sense that 

it must make its own decision for request f j - 1  before it issues request f j .  Before we present

2In this chapter, we will refer to requests as file transfers with unit length, rather than virtual circuit 
requests with unit bandwidth requirements.

3We can alternatively construct a  2-layer network with one source.
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$ 1 ,1  
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$3,2 

$3,3 
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Figure 2.1: The network graph of Aspnes, et al. with N  =  8 .

this proof, however, we will discuss our results in the context of previous lower bounds for 

online routing.

2.2 Relationship to Previous Work

Aspnes, et al. [4] were the first to show that the competitive ratio of any online routing 

algorithm must be fl(logn) with respect to network congestion. For any value of N , where 

N  is a  power of 2, the lower bound instance of Aspnes, et al. consists of a directed 2-layer 

network with n  =  2N  nodes — one source node, N  intermediate nodes, and N  — 1 des

tination nodes — and m =  N lo g N  links connecting source nodes to intermediate nodes 

and intermediate nodes to destination nodes. (An example of this network, with N  = 8 , 

is displayed in Figure 2.1.) The request sequence corresponding to this network contains 

k  =  N  — 1 unit length requests, which force any online algorithm to incur congestion at

«i
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Aspnes, et al. Construction Our Construction

n 2 2 **+ 1 2 2#x-3 +  3  . 2 m-2 +  1

m 2 2 #*(2 /x + 1 ) 2 2/x- 2  +  2 fi-l

k 22fi — 1 2 **

Table 2.1: A comparison of our lower bound construction and tha t of Aspnes, et al.

least . On the other hand, an optimal algorithm can always achieve unit congestion. 

Therefore, their construction shows tha t the competitive ratio of any online algorithm must 

be a t least loS"~l and with respect to congestion.

From the statement of Theorem 2.1 above, we see that our lower bounds are better by 

in the first case and slightly more than a factor of two in the second. In other words, 

our construction requires a  slightly smaller network and half as many requests to force any 

online algorithm to incur the same congestion. See Table 2.1 for a comparison of the values 

of n, m, and k  in the two constructions, in terms of /x, the forced competitive ratio with 

respect to congestion.

Part (e) of Theorem 2.1 is tight (up to an additive one) for the class of permanent 

virtual circuit instances that correspond to permanent job load balancing instances on 

identical machines with assignment restriction [17, 18]. Each such load balancing instance 

can be transformed into a virtual circuit instance on a network similar to the one used in 

our proof of the lower bound.

In the context of randomized online algorithms, the result of Aspnes, et ad. holds for 

randomized online algorithms against a  weak oblivious adversary while our proof holds only 

against a stronger adaptive online adversary. (This is because their adversary provides a
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request sequence tha t is independent of the decisions of the online algorithm.) So while our 

result says nothing about randomized online algorithms against an oblivious adversary, it 

does show how the lower bounds for randomized online algorithms can be increased against 

an adaptive adversary.

2.3 Lower Bounds for Determ inistic Online Algorithms

As discussed earlier, the proof of Theorem 2.1 will be framed as a  game between an arbitrary 

online algorithm and a  malicious adversary who supplies requests one a t a  time in response 

to previous decisions of the online algorithm. In the next two subsections, we will carefully 

define the network graph and the adaptive request sequences used to prove our result. We 

will follow these constructions with the formal proof of the theorem.

2 .3 .1  T h e  N etw o rk

The network graph we use in the lower bound proof can be defined in two equivalent ways; 

we will describe both. The first definition defines the nodes and edges directly, while the 

second defines them recursively. While the first definition may be easier to visualize, the 

second is more convenient for our proof.

For any integer i > 0, we will define a  network graph G{. Every link in Gi will have unit 

capacity and every node will have arbitrarily large queues. Network graphs G2 and G3 are 

displayed in Figures 2.2 and 2.3, respectively.
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“ 12
Ul

«13
« 2

m t«3
«23

Figure 2.2: The network graph (?2 -

A  Direct D efin ition

To simplify notation, let N  =  2 \ The vertex set of Gj is defined to be Si U X i  U T, where

■Si =  {ua6 : 1 < a <  & <  N }  U {«a : 1 < a < N }  

is the set of source nodes,

X{ = {xi,X2, ■ ■ ■ ,Zyv}

is the set of intermediate nodes, and Ti =  {£} is the set containing a single destination node. 

Clearly, the number of nodes in Gi is

n =  |St U X i  U Ti| 

N ( N  -  1) +  2N  + 1

N 2 3 N  ,
=  i - + i - + L (2.1)
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Figure 2.3: The network graph G3 .
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The set of directed edges of Gi is defined to  be the union E\  U E f  where

&i =  {(«o6 »a;o), («o6 iS&): l < a < 6 < N } U  {(ua,x a): 1 <  a < N }

is the set of edges between the nodes in Si and Xi,  and

E f  =  {(a:0, t ) : 1  <  a < N }

is the set of edges between the nodes in X i  and Tj. Clearly, the number of edges in G, is

m = \ E f u E f \

=  N ( N  -  1) +  2N

= N 2 +  N. (2.2)

A  Recursive D efin ition

For the recursive definition, we will begin by defining Gq to be the directed graph with 

three nodes — a  source node ui, an intermediate node x \ ,  and a destination node t — and 

two directed edges (t»i,a:i) and (®i,t). For any integer i > 0, Gi is constructed recursively 

as follows:

1. Make two copies of G t-i-

2. For any two intermediate nodes xa and one in each G,_i, add a source node u  and 

edges (u ,xa) and (u , n ,).

3. Contract the two destination nodes in the two copies of Gi_i into one destination 

node t.
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4. Relabel the intermediate nodes x i, x 2, • • • , <•

5. Relabel a source node u ^ , with a < b, if it is connected to intermediate nodes xa and 

ifc. Relabel a  source node ua if it is only connected to intermediate node x a.

Figure 2.4 illustrates the construction of network graphs Go, G\ and G%.

2 .3 .2  T h e  A d v e r sa r y ’s R e q u e st S e q u en ce

We observe th a t in any network graph Gi there are two possible routes tha t an algorithm 

can assign to  a  request between source and destination t: the route passing through 

intermediate node x a or the route passing through intermediate node xj,. Which of the two 

is chosen depends entirely on a particular online algorithm A.

As discussed earlier, we will design an adaptive online adversary that will issue its 

requests based on earlier choices made by A. In order to define this adaptive request 

sequence, we will first define, for any online algorithm A, an operator |A as follows: a | A 6  

returns a if A selects a  route passing through intermediate node x a when the adversary 

gives A the choice between a route passing through x a and a route passing through another 

intermediate node x&. Otherwise, a |A& returns b 4 Hence, for a  request between nodes ua* 

and t  on some network Gi, online algorithm A will assign route ( u ab, ^a|A6 > Note that 

a\Ab is different from “a or b” in that once the algorithm makes its decision, the value 

returned from ajA& is fixed. In the sequel, a |A& will be denoted simply by a|& when the 

specific online algorithm is clear in the current context.

*For any values of a and 6, the request sequence in which the choice between r a and x& is given will be 
clear from the context, and the adversary will give A  such a  choice at most once in any request sequence. 
Therefore, no ambiguity will arise as a result of not specifying information about the memory of the algorithm 
as input to |A.
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Figure 2.4: The network graphs Go, Gi and G2, constructed recursively.
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Each request f j  issued by the adversary will have length lj = 1 and arrival time a.j =  0. 

(Even though the requests all arrive at the same time, we still require that they be assigned 

routes in the order they appear in the sequence. An alternative would be to assign arrival 

times that differ by am arbitrarily small amount. Given these model simplifications, in what 

follows, we will represent f j  simply by the pair (sj, tj).

For network graph Gj, the request sequence issued by the adversary to online algorithm 

A  will be denoted o*(A) and will consist of a recursively defined sequence, denoted 0 i(A), 

followed by one last request. We begin by defining <Xi(A). The base case, 0 1 (A), issued to 

online algorithm A  on network graph Gi, trivially contains just one request, (u\2 ,t). In 

general, to define o»(A) for network graph Gi and online algorithm A, we first concatenate 

two copies of one for each G,_i used in the construction of G,, with labels of the

source nodes modified accordingly. Let and titf be the source nodes of the last request 

in each of the two 0 i_ x(A) sequences. Then the last request in 0 ,(A) is

The actual request sequence that the adversary will provide to an online algorithm A  

is Oi(A). Let UyZ be the source node of the last request in 0 i ( A ) .  Then request sequence 

o'(A) is defined to be 0 j(A) followed by the single request ( “y| Az, t j  ■ For example, refer to 

Table 2.2 for request sequence 0 3 (A). Notice that

k = \a ' i( A ) \ = 2 i. (2.3)

Before continuing, we present this simple lemma which will be needed in later proofs. 

The proof of the lemma is obvious from the construction of 0 *(A).
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o 'M ) Request Route assigned by online algorithm A

h («12  ,t) (« 1 2 t®1 |2 >*)

h (« 3 4 ,* ) (u34,X3|4 , t )

h (« (l|2 )(3 |4 )i* ) (« (1 |2 )(3 |4 ),* (1 |2 )|(3 |4 ),*>

U ( « 5 6 ^ ) (« 5 6 i ^ 5 |6 i *)

h («78»*) (« 7 8 ,® 7 |8 » * )

h (« (5 |6 )(7 |8 )> 0 ( “ (5 |6 )(7 |8)»*(5 |6)|(7 |8)i*)

h ( m ((1 |2)|(3 |4))((5 |6)|(718)).0 <«((l|2)|(3 |4))((5 i6)|(7 |8)), *((1 |2)|(3 |4))|((5 |6)|(7 |8))» 0

h (U ((l|2)|(3 |4))|((5 |6)|(7 |8))>f) <u ((l|2 ) |(3 |4 )) |((5 |6 ) |(7 |8 ))^ ((l|2 ) |(3 |4 )) |((5 i6 ) |(7 |8 )) . *}

Table 2.2: The definition of 0 3 (A) and the routes assigned by online algorithm A. 

L em m a 2.1

Let * be any positive integer and let A be any online algorithm. Then, for any two requests 

(uab, t), (u ^ , t) e  o-j(A), a ^ c o r b ^ d .

2 .3 .3  P r o o f  o f  th e  Lower B ou n d s

We will now examine the congestion and makespan of a solution produced by an arbitrary 

online algorithm A, as well as those of an optimal solution, using <x((A) as the request 

sequence on network graph Gi. As a result, we establish a  lower bound for our problem 

with respect to both congestion and makespan.

Let us first consider the example of routing and scheduling the requests in er^(A) on 

network G 3 .  Since i  = 3, there axe k  =  8  requests to transfer. As shown in Table 2.2, f \  

and / 2  use the parallel routes (u i2 ,Xi\A2i t }  and ^ 3 4 , £ 3 ^ 4 , ^ ,  respectively, causing the 

makespan to be 2  ( 2  hops for the requests to reach destination node t )  and the congestion
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to be 1 . For request fa, we observe that A  must choose a  route that passes through a

previously used link. This forces the makespan to  reach 3 (since a link can only be used by

one request during any time unit), and the congestion to reach 2. The situation with / 4 , /s

and /g, in the lower half of the network, is analogous to tha t of the first three requests and

leaves the overall makespan and congestion unchanged. When / r  arrives, because of the

way (7 3 (A) and G3  are designed, A has no choice but to assign a route passing through one

of the two most heavily used links, forcing the makespan and congestion to increase to 4

and 3, respectively. Lastly, when fa arrives, A must assign it to its only route, which passes

over the most heavily used link in the network, causing the makespan and congestion to

increase to 5 and 4, respectively.

In general, we have the following lemma regarding the congestion incurred by A when

presented with o»(A). Lemma 2.2 will later be used to prove Lemma 2.3 which deals with

the congestion and makespan resulting from <t((A).

L em m a 2 . 2

For any positive integer t and any online algorithm A, let (ityZ, t) denote the last request in the 

request sequence <7i(A) (on network graph G*). Then /x =  *•

P ro o f

The proof is by induction on i.

B ase case  (i =  1). W hen i =  1, the lemma holds since there is only one request in <t i(A) 

and that request is assigned route (u ^ , t) , causing congestion 1 on edge (x ^ ,* ) -  (To

simplify notation, we use | as shorthand for |A throughout the proof.)
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In d u c tio n  s te p  (i >  1). By definition, the edge set of the network graph Gt contains two 

disjoint edge sets from two copies of G i- 1 (with nodes relabeled). Let k — \<?i{A)| =  2* — 1 . 

Then, also by definition, the first A: — 1 requests in Ot(A) consist of the concatenation of two

sequences (with nodes relabeled), each of which contains requests whose potential

routes are contained entirely in one copy of G i- 1 - Let (u ^ , t) denote the last request in one 

ai-i(A )  sequence and let (u ^ , t) denote the last request in the other ert_i(A) sequence. By 

the induction hypothesis and the fact tha t any path assigned to a request in one cr,_i(A) is 

edge disjoint from any path assigned to a request in the other cr,_i(>l),

P k  ((*a|6, t ) ) = ( A k  ( ( x e[d, t ) )  =  i  -  1. (2.4)

The last request in <Ti(A) is, by definition, (u(0 |6)(c|d)^)’ to which A wifi assign the route 

(«(a|6)(c|<q. (̂a|e»)|(c|rf)’ *)- Since this route contains Se (*(«|6 )|(e|d)» 0  > which is either (xtt|6, t) 

or (xc|d,t ) ,  by (2.4),

f* ((^ lo lftJK cidJiO ) =  f* k + l  ( (^(a |6 )|(c |d )> 0  ) =  *• ®

Lemma 2.3

Let i  be any positive integer and let A  be any online algorithm. When given network graph 

Gi and request sequence cr (̂A), A  will construct a solution with congestion at least i  4- 1 and 

makespan at least i  -f 2.

P ro o f

By definition, request sequence o((A) is the concatenation of Oi{A) and request (u ^ ., £),
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where UyZ is the source node of the last request in 0 i ( A ) .  (As in the proof of Lemma 2.2, 

we use | as shorthand for |A.) Let k = |o((A)| =  2*. Prom Lemma 2.2, we know that 

Hk ((:Ey|2, t ) )  =  z. Thus, since (uy|z,x y|2, t )  is the only route in Gi that can be assigned to 

request (uy|2 ,t) ,

P  ((•cy |i ’ ^ )) =  f*k+ i ( (*cv|z» 0 )  =  * "b

So the network congestion is t + 1 . This being the case, the last request to cross link (xy|z, t )

will do so at least z +  2  time units after it arrived — at least 1 unit to reach node xy|z plus

at least another z + 1  units to reach node t ,  causing the makespan to be z -F 2 . ■

Next we show that, for any online algorithm A , there exists a corresponding offline

algorithm A that can assign routes to the requests in cr((A) (on the network graph Gt) and

achieve makespan equal to 2 and congestion equal to 1. For each online algorithm A, A is

defined to be the algorithm that chooses, whenever possible, the route not chosen by A.

The following lemma will be used to prove this result:

Lemma 2.4

Let z be any positive integer and let A be any online algorithm. Suppose that, for some request 

f j  =  (uo6,t )  €  cr i(A ) ,  algorithm A chooses the route (ua6 ,x 7,t), where 7 €  (a ,6}. Then, for 

all requests /), =  (ityZ, t ) ,  where h >  j ,  y j L  7 and z  ^  7.

P roof

The lemma follows from the recursive construction of 0 j(A). According to the construction, 

once algorithm A decides to not choose (and A decides to choose) a route containing an 

intermediate node with index 7  for a request f j ,  no future requests can possibly have a  

source node with an index containing 7 .  ■
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Lem ma 2.5

Let t be any positive integer and let A  be any online algorithm. The set of routes assigned by 

A  to the requests in ( ? i ( A )  are pairwise edge disjoint.

P roof

From Lemma 2 . 1  we know tha t no link between a  source node and an intermediate node can

be contained in more than one route assigned by algorithm A .  To finish proving the lemma,

we must show the same about the links between intermediate nodes and destination nodes.

Consider an arbitrary link e =  (x7, t) that is contained in a  route assigned by algorithm A

to request f j  =  (ua t) 6  <7 i(.A). By Lemma 2.4, we know that e cannot be contained in

a route assigned by A  to a  future request. By applying Lemma 2.4 to each /* , h < j ,  we

see that no earlier requests could have had source nodes whose indices contain 7 . Thus,

e  cannot be contained in a  route assigned by A to an earlier request either. Thus, e is

contained in the route assigned by algorithm A to request f j  and no other. ■

We are now ready to prove Theorem 2.1, restated here for completeness:

Theorem  2.1

The competitive ratio of any deterministic online routing and scheduling algorithm is at least

(a) loSn+3~f for arbitrarily small positive e <  log 3, with respect to congestion;

(b) for arbitrarily small positive e <  log 3, with respect to makespan;

(c) for arbitrarily small positive e <  log | ,  with respect to congestion;

(d) 1°gm4M~- for arbitrarily small positive e <  log §, with respect to makespan;

(e) log fc +  1 with respect to congestion; and

(f) +  1 with respect to makespan.
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P ro o f

From Lemma 2.5, we know th a t the congestion of the route assignment constructed by A  is 

1 and tha t all requests can be sent to their common destination £ in 2 time units. Combining 

this fact with Lemma 2.3, we see that, for any value of t >  1, there exists a network graph 

and a  request sequence for which the competitive ratio of any online algorithm is at least 

i +  1 with respect to congestion and ^  with respect to makespan.

To prove the lower bound on the competitive ratio in each part of the theorem, we will 

simply rewrite these quantities in terms of the appropriate variables to show that there 

exist arbitrarily large networks and corresponding request sequences which force any online 

algorithm to incur the lower bound.

(a) Recall that N  = 2*. From (2.1), we see that, for all N  > 2,

N 2 3N  7  - 
—  -5- + -5- + 1

for some 1 <  7  <  3. Therefore, since N  =  2*.

log ( 2” )  l o g n + l - e  
1   O ~  o  (2-5)

for some 0 <  e =  log 7  <  log 3. Notice that, as t -> 0 0 , 7  approaches 1 and e ap

proaches 0. Therefore, there exist arbitrarily large network graphs (and corresponding 

request sequences) for which the competitive ratio of any online algorithm, with re

spect to congestion, is a t least

. logn +  3 - e
i  +  1 =  — —  -----------
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for arbitrarily small positive e.

(b) FVom (2.5), we can conclude that there exist arbitrarily large networks (and corre

sponding request sequences) for which the competitive ratio of any online algorithm, 

with respect to makespan, is at least

t +  2 log n  +  5 — e 
2 “  4

for arbitrarily small positive e.

(c) Prom (2.2), we see that, for all N  >  2,

m  = N 2 + N  = 7  N 2

for some 1 <  7  <  §. Therefore, since N  = 2*,

^  1°£ (  7 ) _  logm  — e

for some 0 <  e =  log7  <  log | .  Notice that, as i —*• 0 0 , 7  approaches 1 and e ap

proaches 0. Therefore, there exist arbitrarily large network graphs (and corresponding 

request sequences) for which the competitive ratio of any online algorithm, with re

spect to congestion, is at least

l o g m +  2 — et-i- 1  =  — —  --------

for arbitrarily small positive e.
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(d) From (2.6), we can conclude that there exist arbitrarily large networks (and corre

sponding request sequences) for which the competitive ratio of any online algorithm, 

with respect to makespan, is at least

i + 2 _  log m -F 4 — e 
~ T ~  4

for arbitrarily small positive e.

(e) From (2.3), we know th a t k  =  |o(| =  2*. Therefore, there exist arbitrarily large request 

sequences such that the  competitive ratio of any online algorithm, with respect to 

congestion, is a t least

* +  1  =  IogA +  1 .

(f) From (2.3), we see th a t there exist arbitrarily large request sequences such that the 

competitive ratio of any online algorithm, with respect to makespan, is at least

i ± 2  i  _
2  2

2.4 Lower Bounds for Randomized Online Algorithms

The lower bounds in Theorem 2.1 also hold for any randomized online algorithm against an 

adaptive online adversary. We saw earlier that our adversary is adaptive in the sense that 

it chooses each request based on the online algorithm’s responses to previous requests. Our 

adversary, represented by the  algorithm A, is also online since A  requires knowledge of the
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online algorithm’s responses to previous and current requests, but not of its responses to

future requests. Thus we also have the following corollary:

Corollary 2.1

The competitive ratio of any randomized online routing and scheduling algorithm against an 

adaptive online adversary is at least

(a) !P£i?±2~  ̂ for arbitrarily small positive e <  log 3, with respect to congestion;

(b) logn+5~* for arbitrarily small positive e  <  log 3, with respect to makespan;

(c) 1-°&TTVt'-2~* for arbitrarily small positive e  <  lo g | ,  with respect to congestion;

(d) lo£mT4~ - for arbitrarily small positive e  <  lo g | ,  with respect to makespan;

(e) log k  +  1 with respect to congestion; and

(f) +  1 with respect to makespan.
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Chapter 3

Online Algorithm  GreedyJIouteI

3.1 Introduction

In this chapter, we study a  simple greedy online algorithm, named Greed y_Ro u te1, for 

routing permanent virtual circuit requests on networks with uniform link capacity w .1 

Gr ee d y J I o u teI  was first proposed by Mao and Simha [72] as an approximation algorithm 

for the NP-hard offline file transfer routing and schedu lin g  problem. Mao and Simha (im

plicitly) proved tha t the competitive ratio of Greed yJ I o u t e I  is Q(y/m)  with respect to 

network congestion, where m  is the number of network lin k s , even when all requests have 

unit length and the network is a simple 2-layer digraph .2  We improve this lower bound re

sult by considering more complex networks. We also present an upper bound for arbitrary 

networks that is asymptotically tight when the ratio of the maximum to m inim um  band

width requirement (or file length, in file transfer terms) is constant or when the optimal

l The contents of this chapter are also contained in [42].
2 Mao and Simha [72] called this algorithm LS3 and showed that its competitive ratio is Q ( v^ )>  where 

k  is the number of requests. Their bound can also be expressed as fi (y/m)-

63
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congestion is a t most one. Otherwise, our lower and upper bounds differ asymptotically by 

a factor equal to the above ratio of bandwidth requirements. Previously, no upper bound 

was known for Gr e e d y J I o u te I .

Although the competitive ratio of Greed yJ I o u t e I  is inferior to that of the exponential 

routing algorithm Ex p  J I ou te  in [4], Greed yJ I o u te I  makes its routing decisions much more 

quickly, which may prove advantageous in certain situations. We will examine this tradeoff 

between the speed/tim e complexity of an algorithm and the congestion of its route assign

ment, and conclude tha t Greed y J I outeI  should be acceptable, especially when fast decision 

making is critical, on restricted classes of small networks.

3.1 .1  T h e  A lg o r ith m

We formally define Gre e d y J I o u te I  in the following way:

Algorithm  G re e d y J Io u te I

For request f J t  assign any route P  6  Vj  which minimizes

m a x / « (e)’ , e * P  .
I »*,(«) +  £ .

Ties are broken arbitrarily.

In other words, Gr eed y J I o u te I  will choose any path  that does not increase the current 

network congestion, unless such an increase is unavoidable. Consider, for example, the net

work in Figure 3.1. A value on a network link in the figure indicates the current congestion 

on that link at some time r .  If am online algorithm receives the request (sj, t j , l , r )  in this 

example, it cam assign any of the following six routes:

1. ( S j ,  U i, U4, U5,
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«i

Figure 3.1: An example of a  network graph.

2. (Sj ,Vi,V4,V5,V2,tj ),

3. (Sj,Vi,V2,tj),

4. (Sj,V4,V5,V2,tj),

5. { s j , V 4 , V 5 , t j ) ,  or

6. {Sj,v6,v7,v5,tj).

If an online algorithm  used either of the first two routes, the resulting network congestion 

would be 9. On the  o ther hand, if an  online algorithm  used any of the last four routes, the 

resulting network congestion would remain 8 . Therefore, G r e e d y J I o u t e I  could choose any 

route bu t the first two.

Before we can sta te  ou r results formally, it will be necessary to  define some notation. 

The following definitions hold for any particular problem  instance, consisting of a  request 

sequence <r =  / i ,  / 2 , • • • , f k  and a  network graph G.
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•  dj =  minpg-pj \P\ is the length of the shortest path  between nodes Sj and tj.

•  Dj  =  m axpg^ |P | is the length of the longest path  between nodes Sj and tj.

• V  =  maxi<j<jfe ^ . 3

• A =  mini <j<klj is the minimum bandwidth requirement among the requests in a.

•  A =  maxi<j<jfc lj is the maximum bandwidth requirement among the requests in a.

•  C  =  -A'

As we will discuss in Section 3.1.2, the advantage of G r e e d y J I o u t e I  lies in its speed 

and simplicity. We will prove in Section 3.2 that the competitive ratio of G r e e d y J I o u t e I  is 

0  (^VDCrnj on arbitrary networks, which is greater than the lower bound in [72] by a factor 

of 0  ^s /V L ^ . In Section 3.3, we will present an improved lower bound, showing that our 

upper bound is in fact off by a t most a factor of O m general. The upper bound is

asymptotically tight when the bandwidth requirements of the requests differ by a constant 

factor. We will show th a t the upper bound is tight when other conditions hold as well.

3 .1 .2  T radeoffs B e tw e e n  T im e  C o m p lex ity  a n d  R o u tin g  E ffic ien cy

If we compare G r e e d y J I o u t e I  and E x p J I o u t e  [4], we see a clear tradeoff between com

putational requirements and routing efficiency. G r e e d y J I o u t e I  provides fast and simple 

decision making at the expense of the quality of the route assignment. On the other hand, 

the routes assigned by E x p J I o u t e  sure guaranteed to be asymptotically optimal, but at a  

heavier computational price.

3The value V  r a n  actually be defined to be maxi<_,<i ^ 1  and the results in this chapter will still hold. 
But since this quantity depends on arbitrary decisions that G r e e d y J I o u te I  makes, it seems less desirable.
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G r e e d y  J I o u t b I  
0

f o r  e a c h  f j  6  o' d o
Pj <- A ss ig n _ G R E E D Y JR o u te I  ( j, fi) 

end fo r

f u n c t i o n  A ssign_G R EED Y  J I o u t e I  (.j, /x) 
y ! «— oo 
P '  < -  0
f o r  a l l  P  € Vj d o

temp <- maxe6p {/x3 (e) +  ^ }  
i f  temp <  (jl th en  

r e tu rn  P  
end i f
i f  temp < y! then  

y' «— temp
P> < - P  

end i f  
end fo r

r e t u r n  P'

Figure 3.2: A pseudocode representation of G r e e d y _ R o u te 1 .

Consider the pseudocode for Gr e e d yJ I ou teI  in Figure 3.2. In this implementation, 

Gr e e d y J I o u teI  requires ( |P | +1) comparisons and 1-̂*1 additions in the worst

case to assign a route to request f j . 4 In the best case, Gr e e d y J I o u te I  can require far 

fewer operations (as few as \Pj\ comparisons and additions) since it will exit as soon as it 

finds a  suitable route. On the other hand, consider the straightforward implementation of 

Ex p J I oute  in Figure 3.3, which always requires the computation of 2 p^p3 1-̂*1 exponential

functions in addition to \Vj\ comparisons and Ylpep, (3 |P | — 1) additions and subtractions . 5

4If the algorithm has available to it 0(m ) bytes of working memory, then the values can be
computed once for each path, bounding the number of additions by 0(m ).

5 This is a simplified version which assumes that the optimal congestion is 1 [80]. As noted earlier for 
G r e e d y J I o u te I ,  if the algorithm has O (m) bytes of working memory available to it, the number of arithmetic
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Ex p J I o u t e

l e t  a =  1  +  7  fo r  some 0  <  7  <  1 

f o r  each f j  € a  do
Pj «— Assign_Exp(a,j) 

end fo r

fu n c tio n  Assign_Exp(j, a) 
min «— 0 0  

P' 4 -  0
f o r  a l l  P  €  Vj do

temp 4- 5Zegp

i f  temp < min th en  
min 4— temp 
P ' < -P  

end i f  
end f o r  
r e tu rn  P'

Figure 3.3: A pseudocode representation of E x p J I o u t e .

Clearly, G r e e d y J I o u t e I  requires significantly less time to make each decision.

The obvious question now is whether the routes assigned by G r e e d y J I o u t e I  are good 

enough to warrant its use in time critical situations. The answer really depends on the 

situation, but we can discuss the factors in the bound to get some ideas. There are three 

factors to consider: y/V, y/C, and y/rn. Consider for a moment instances where V  and L  are 

small. For these instances, the difference between the competitive ratio of G r e e d y J I o u t e I  

and that of E x p J I o u t e  is obviously arbitrarily large if we consider arbitrarily large networks. 

However, if we consider real networks with less than a few hundred uniform speed links, the 

competitive ratios of the two algorithms do not differ significantly. As shown in Figure 3.4, 

when m  <  250, y/m  is at most twice logm  and when m < 850, y/rn is a t most three times

operations can be bounded by O(m).
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3.5

3 -

2.5

y/m
logm

1.5

0.5, 200 400 1000600 800
m

Figure 3.4: Relative difference between y/rn and logm on small networks.

logm. Even when m =  2000, y/rn is ju st slightly more than four times logm . 6

Whereas the competitive ratio of E x p _ R o u te  is dependent only upon the size of the 

network, our upper bound for G r e e d y J I o u t e I  also depends on the two factors y/V  and \fH. 

The first factor is the maximum ratio, over all requests, of the length of the longest path 

between the request’s source and destination and the shortest distance between the source 

and destination. The existence of this factor in the competitive ratio of G r e e d y J I o u t e I  is 

intuitive: the algorithm does not prefer short paths to long ones (as E x p J I o u t e  does) and 

therefore may add to the congestion of many more links than is necessary. For some networks 

though, including all layered networks, V  =  0(1), and G r e e d y J I o u t e I  is guaranteed to be

sSince we are considering small values of m, it would be inappropriate to continue without addressing 
the constants hidden in the big-oh notation. For G re e d y  J I o u t e I ,  the constant is only y/2 and for Exp .R o u te ,  
the constant is some number strictly greater than 1 which depends on constant parameters chosen by the 
algorithm designer. When it is not assumed that the optimal congestion is 1, this constant increases by a 
factor of 4. Therefore, we can safely ignore the constants in our comparison.
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O ( V C m )  competitive (but not much better — in Section 3.4 we show th a t the competitive

ratio of G r e e d y J I o u t e I  is still Q, (y/m) on layered networks). Although it seems unlikely 

that V  would be a  large function of m  in any network, if this were the case it might be 

reasonable to limit the paths from which G r e e d y J I o u t e I  is allowed to choose in order to 

minimize the error.

The second factor unique to G r e e d y J I o u t e I  is the ratio of the maximum to minimum 

bandwidth requirement. We conjecture tha t this factor does not belong in the true competi

tive ratio, but rather is a byproduct of our proof technique. However, if the competitive ratio 

of G r e e d y J I o u t e I  does depend on \fC  then G r e e d y J I o u t e I  is more efficient on instances 

consisting of requests with like bandwidth requirements. Such instances are common. For 

instance, in a  network serving video or audio streams to customers, each request would 

require equal bandwidth.

3.2 An Upper Bound

In this section, we will prove our upper bound on the competitive ratio of G r e e d y J I o u t e I :  

T h e o re m  3.1

In the proof of Theorem 3.1, we will use the following notation relating to an arbitrary 

problem instance.

The competitive ratio of G r e e d y J I o u t e I  is O

•  Let Pj denote the path assigned to request f j  G a  by an optim al offline algorithm.

•  Let p m denote the optimal network congestion for the problem instance.
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•  Let A =  At where A is the maximum bandwidth requirement of a  request and w is 

the capacity of the network links. Notice tha t A <  p*.

•  Let k  =  , where y  is the congestion of the routes assigned by Gr e e d y J I o u t e I .

For each i  =  1 ,2 ,. . .  , k, f yi G a  is the first request to cause a link to have congestion 

a t least iA  in the route assignment constructed by G r e e d y J I o u t e I .  In other words, 

for all yi, fiyi+iiPyJ > iA, and ph(e) <  t'A for all edges e G E  and all h =  1 ,2 ,. . .  , yt-.

•  For each i =  1 ,2 ,.. .  ,/c, eZi G Pyi is a  link satisfying = yyi+i(Pyi). Ties are

broken in favor of the link with the smallest index.

The following three lemmas are fundamental to the proof of Theorem 3.1. The first

two lemmas motivate our definitions of yi and z\. Lemma 3.1 states that no two indices in

the set {yx, i/2 , • • • , y*} are the same and Lemma 3.2 quantifies the congestion on any path

p  e v yi just before fyi arrives and is assigned a  route. Lemma 3.3 is a technical detail used

t o  b o u n d  t h e  t o t a l  c o n g e s t io n  in c u r r e d  b y  Gr e e d Y J to u T E l in  te r m s  o f  /x*.

Lem m a 3.1

For all integers h  and t, 1 <  h < i < k , yi.

P ro o f

Assume that there exist h and i, where 1  < h < i < k , such that y/, =  yi. Since, by 

definition, y j,t+ i(eZt) >  iA, we know that

A*yi(ezJ >  (i — 1)A. (3.1)
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We also know, by definition, that Hyh (e) <  /iA, for all e 6  E. In particular, we know that 

Pyh{eZt) < /iA. But since yh = Vi,

M y i ( e r J  =  Aiyh ( e 2<) <  hA < (i -  1)A,

which is a contradiction to (3.1). H

L em m a 3.2

For all i =  1 ,2 ,. . .  , k , (P) >  (t -  1 )A for all P  € Vyi.

P roof

Suppose that there exists a  path such tha t (iy<(P) <  (z — 1)A. Since, by definition,

Hyt+i(Pyi) > iA, we know that ^ ( P y J  >  (i — 1)A. But this means that Greed yJ I o u te I

should have assigned f yi to path P  rather than P*  (#  P ), since this decision would have

resulted in a  smaller network congestion. (Notice th a t the network congestion did increase

with request f yi by the definition of yi.) This is a  contradiction to the selection of p y, by

Gr e e d y J I o u t e I .  ■

Lem m a 3.3

'Draft* > £ cei?/i(e).

P roof

Since no algorithm can assign a request f j  to more than Dj links, and the optimal solution 

had to have assigned each request to at least dj links, it must be the case tha t

£ (* • (« )  2  5 > w
3 e€E e€E
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The lemma follows from the fact that

73

Vm.fi > max —̂  fi (e).
3 e e E

We can now use the preceding lemmas to prove the main result of this section.

P roof o f T heorem  3.1

From Lemma 3.2, we know that, in particular, ^ ( P * . )  >  (i — 1)A for all i =  1 ,2 ,. . .  ,/c. 

Thus,

i= i  t = l

k (k — 1)A

W Q t J - Q *
2

.  ( S - O G h 2)*
2

U - 2 ) 2 A
>  VA  -----  (3.2)

To clarify the presentation, let us assume for the moment that the paths in the set

f p *  p *  p *  l>■ yi ’ y2>' '  ’ ’ y*/

are pairwise edge disjoint. From this assumption and the fact that yi < k, we see that

£ m < o  > £ « w >  £ * % ( * ’;,)• (3 .3 )
e€£» i—I
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Combining this fact w ith (3.2) and Lemma 3.3, we see tha t

74

'Dm/i* >  /x(e) by Lemma 3.3
e g £

K

by ( 3-3)

( J - 2) 2 a
VA J   by (3.2).

This implies that

. . y s - z . * )

=  ZDmn* A 4- 2 A

< y/2Dm(fim)2 +

=  (V 2V m  +  2) /i*. (3.4)

So when the paths in the set (P*t , P*2, . . .  , PyK } are pairwise edge disjoint, Gr e e d y J I o u t e I  

is O (y/'Drnj competitive. (See Corollary 3.1 below.) But to prove the theorem we must 

consider the more general case in which the optimal paths in the set (P*t , P*2, . . .  , P*^ } are 

not necessarily pairwise edge disjoint.

In general, let I  >  1 be the maximum number of paths in the set (P*t , P*2, . . .  , P~k } that 

intersect at an edge. Obviously, ^  <  / i* .  W hen /  >  1, inequality (3.3) is not necessarily 

true because the congestion on some edges e €  E  may be counted up to I  times in the 

summation on the right hand side. However, w ith the aid of Lemma 3.1, we can modify
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(3.3) to say that

Then, we see that

e€£ i=l

75

(3.5)

D m lp f > I  /x(e)

>  £ * ■ » ( * ; )
i = l

( r f . x

by Lemma 3.3 

by (3.5)

by (3.2).

This implies that

=  \J 2D Amin*  +  2A (3.6)

< ]j 2V j m ( n *)2 + 2n  

=  ( \ / 2 X>£m +  2 )  /i*.

Thus, Gr e e d y J I o u t e I  is O  competitive. ■

We note that there axe several realistic conditions under which we can infer that the 

competitive ratio of G r e e d y J I o u t e I  is O  ^y /V m j. We define a feasible request sequence to 

be one for which there exists a  set of routes with congestion n* < 1. We point out that 

this modified definition of competitive, which limits consideration to a  subset of instances, 

namely feasible instances, has appeared previously in the literature [8].
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C o ro lla ry  3.1

The c o m p e ti t iv e  r a t io  o f  G r e e d y J I o u t e I  is O  (VDrnj  if  a n y  o f  th e  fo llow ing  a re  t r u e

( a )  £  =  0 ( 1 ) ;

( b )  t h e  s e t  o f  o p tim a l ro u te s  is p a irw ise  e d g e  d is jo in t;

( c )  t h e  re q u e s t s e q u e n c e  is fe a s ib le  a n d  to  =  0(1) o r to  =  0(A); o r

( d )  A <  to  a n d  to  =  0(1) o r to  =  0(A).

P r o o f

(a) Obvious.

(b) Follows from (3.4) in the proof of Theorem 3.1.

(c )  When /i* <  1, we know th a t IX  <  to . Also, A <  fi* <  1. Thus, by (3.6),

(d) When A < to, it follows th a t A < 1. Thus, by (3.6),
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Notice that the first condition in part (d) must hold for real virtual circuit request se

quences. Otherwise, the request with the largest bandwidth requirement cannot be assigned 

to any route without exceeding link capacities.

3.3 A Lower Bound

In this section we show th a t the upper bound in Theorem 3.1 is tight up to a  factor of y/Z.

This result is formally stated  as follows:

Theorem  3.2

The competitive ratio of Gr e e d y J I o u t e I  is 0  (y /V m j for arbitrarily large values of V  and m.

We note that Theorem 3.2 implies that the upper bound in Theorem 3.1 is tight up to a 

constant factor when a t least one of the conditions in Corollary 3.1 is true.

To prove Theorem 3.2, we will construct an arbitrarily large network and corresponding 

request sequence, and then show that, if Gr e e d y J I o u t e I  makes bad decisions, it can incur 

the above network congestion on that instance. On the other hand, we will show that an 

optimal algorithm can always find a  set of pairwise edge disjoint routes for the requests.

3 .3 .1  T he N etw o rk

For any integers h > 1 and i > 1, the network is represented by a directed graph Gh,i 

containing i connected components and having a longest pa th  with length h. All links have 

unit capacity. As examples, (?2 ,i and G^yi are displayed in Figure 3.5, and Gs,2 is displayed 

in Figure 3.6.
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Ft+i

G 2,i

'5

v 2i+ l

Figure 3.5: The networks G2,i and G ^ .
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•  v

•  V

Figure 3.6: The network <j6 ,2 -
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The vertex set of Gh,i is defined to -be the union

1 = 1

where

Uh,c =  {u&,u‘i , . . .  , uLh_ l } contains the set of source nodes, and 

i «2 > - ■ - i |  is the set of destination nodes.

Note that

■ » i

n  = |J  {Uh.,i U VJ,,J 
lt=i I

( h -  1 \  f 3h  +  l \  .

The arc set of Gh,i is defined to be

t=i

where

h—2 (h-l)i+l h—2 ( A - l ) t + l

E *+  = U{K>®fc-«) }u U  {c«&— u U { « > < + i ) } u U
K— 1 IC=1 (C=0 K—h.

Note that

m =
t=i

= ( h -  l ) i 2  +  (2 h  -  l)t 

<  (3h -  2)i2. (3.7)
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Notice that the i connected components of Gh,i are the subgraphs

U Vk,i,Eh^.) : t =  1,2, . . .  , i } .

3 .3 .2  T h e  R e q u e st  S eq u en ce

Let denote the request sequence for the network Gh,i- As was the case in the proof of 

Theorem 2.1, each request will arrive a t time 0 and will require unit bandwidth. Therefore, 

we will represent each request f j  E <ta,» simply by its (S j , t j ) pair.

The sequence 0 7 ^  is formally defined to be the concatenation of i smaller subsequences:

c?h,i=(rk0 ° i 0 - - - 0 e'h-

All paths between the source and destination of each request in subsequence t = 

1 ,2 ,. . .  ,*, are contained in the subgraph U E ^ ) .  Each subsequence a \  is fur

ther defined to be the concatenation of two subsequences A lh and B Lh where

Ah  =  ( “ o> « / i ) . («o> « h + i ) »• • • . ( u o> u ( / i - i ) t + i )

and

B h  =  ( « o i » k - i )  - K X - 2 )  - • • • > K - ■

Note that

k  =

=  £  ( w i  +  iB *i>
1=1
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f i (sji  t j ) Pj

h

h

h

(U0>«3) ( u £ , « i , t 4 , t / £ )

( t i i , t 4 , u { >

{U\> A )

h ( U0>U3>

h (« 0 > « 4 ) ( « 0 * u4>

h (« 0 » « 5 ) ( u § , u f , t ( < « >

f t (« 0 » « 2 ) ( u § ,  u f , u | >

h ( « l , « 2 , u l ) ( u ? , u | , u ? )

h ( ^ 0 ^ 3 ) < « 0 . « 3 )

h o (« 0 » « 4 ) { < - 1 )
h i ( « 0 i « 5 ) ( u g , t x ? , u £ , v f ) (« 0 > « 5 >

<*3 fl2 ( “ 0.®6>

f l3 ( « o , « 7 ) ( « 0 » u x>“ 2 > u 7 ) (« 0 .® 7 >

/ l 4 (« 0 » u 2 ) (u l ,u l ,v% )

/ l 5 ( « ? , « !  ) ( « X , « 2 , UX> < t * i , « i ,  v i )

Table 3.1: Request sequence <7 3 ,3  on the network G3 3 .

As an example of this construction, consider the first three columns of Table 3.1, which 

contain the requests in <7 3 ,3 . (See Figure 3.5 for the corresponding network £ 3 ,3 .)

3 .3 .3  P r o o f  o f  th e  L ow er B ou n d

We will use the construction in the previous two subsections to prove Theorem 3.2. We

first notice tha t an optimal algorithm can always find a  pairwise edge disjoint set of routes

for the requests in 0 7 ^,. Informally, this route assignment is the one in which each request

in is assigned to its shortest path in G^i- Formally, we have the following lemma: 

L em m a 3.4

For all integers h  >  1 and i  >  1, the set of optimal routes for request sequence 07,  ̂ on network 

G h , i  is pairwise edge disjoint.
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P roof

Notice th a t the set of paths for the requests in each subsequence erj, of cr .̂i is contained

in a  different connected component of Gh,i, namely the subgraph {Uh,t U Vh.l, Eh.,i)- Thus,

to prove the lemma, we cam simply specify a  pairwise edge disjoint set of paths for each

subsequence t  =  1 , 2 , . . .  , i.

First, we assign each request (ujj, vlk ) €  A lh, k =  h, h  -F 1 , . . .  , (h — l ) t  +  1, to  the path

(uq, u‘ ). Since the destinations of all th e  requests in A lh are different, this set of paths is

pairwise edge disjoint. To each request ( i£ , €  B Lh, k =  0 , 1 , . . .  , h — 2, we assign

the pa th  (ulK, u*+1, vth_K_ l ). In  this set of paths, each link (u^, u^+1) , k =  0 , 1 , . . .  , h — 2,

is used exactly once and each link (u*, vLh_ K) , k = 1 , 2 , . . .  , h — 1 is used exactly once. ■

In  the worst case, GreedyJ I outeI  can assign to  each request its non-optimal route

(with the exception of the requests (uLh_2,v[), t =  1 , 2 , . . .  ,z, which each have only one

route). For example, the fourth column of Table 3.1 contains the worst case routes assigned

by GreedyJ IouteI, while the fifth column contains an  optim al route assignment. In the

example, GreedyJIouteI  has incurred congestion 3 after routing the requests in crj, 5 after

routing the requests in cr§, and 7 after routing the requests in 0 3 . In  general, we have the

following lemma:

Lem m a 3.5

For all integers h > 1, i >  1, and 1 <  t <  i, G reed y JIo u te I can incur congestion (h — l ) t  +  1 

after being issued request subsequence f f j O ^ o . , . 0 ^  on network Gh,i-

P roof

The proof is by induction on z.
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B ase case ( a =  1). For the base case, we will consider how G re e d y J Io u te I  might assign 

routes to the requests in the subsequence The first request will be (uq, v^). Since 

G re e d y J Io u te I  may assign either of the two possible routes to the request, suppose it 

assigns the route (uq, The next request will be («o>u/i-i)- Each of this

request’s two possible routes contains the link (uq,u{) and so assigning the request to 

either route will increase the maximum congestion to 2. Therefore GreedyJ I o u teI  may 

assign the route Now consider the next request, (u{,u^_2)- As

was the case previously, each of the routes for this request contains a common link, in 

this case (u^ ,t4 ), which has the maximum congestion. Thus, Greed yJ I outeI  may assign 

the route (u{, u ^ ,. . .  , u^_2). The maximum congestion is now 3. In general, when

request (u*, u^_K_ 1), k  = 0 , 1, . . .  , h — 2 , arrives, both routes will contain link (u*, u£+1) 

which has the maximum congestion k +  1. Thus Greed yJ I o u teI  can assign the route 

(u*,u*+1, . . .  ,u ^ _ 1 ,uj^_)C_ 1), causing the m ax im u m  congestion to reach k + 2. When the 

last request in a£, (u£_2 ,u j) , arrives, it is assigned the route u^_p u j), which causes

the maximum congestion to be h.

Induction step  (a >  1). Let us now consider how G reedyJIou teI might assign the 

requests in a \  o crfr o . . .  o <7^. By the induction hypothesis, after assigning the requests 

in o crjj o . . .  o o^-1 , G reedyJIou teI could have incurred congestion (h — 1)(a — 1) +  1. 

Let us say th a t th is has happened. Now we consider what can happen when the requests 

in <7̂  arrive. T he paths assigned to these requests will all be contained in the subgraph 

(Uh.,i U Eh,c). By construction, none of the links in E ^ L has been traversed by a previous 

request. Therefore, none of the  first (h — 1)(a — 1) +  1 requests in aLh (the requests in ALh)
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will increase the  maximum congestion. Thus, G re e d y J Io u te I  may assign each such request 

(uq.Ur) G A lh, k = h ,h  + 1 , . . .  , ( h  —l) t  +  l  to an  arb itrary  route, say (u{ j ,u \ , . . .  ,u Lh_ v vlK). 

As a  result o f this assignment, every link («£,, u£,+1), v  =  0 , 1 , . . .  , h — 2, will have congestion 

( f c - l ) ( t - l )  +  l.

T he next request to arrive is (uQ,vLfl_ l ). Each of this request’s two possible routes con

tains the link (uq, u\), which currently has the  maximum congestion. Thus, G reedyJIou teI 

may assign the  route (u^ ,u^ , . . .  , uLh_ v  As a  result, the maximum congestion is now

{h—l ) ( t —1)+2.  Now consider the  next request, (u \,v lh_2). As was the case previously, each 

of the routes for this request contains a  common link, in th is case (u \,u^), which has the 

maximum congestion. Thus, G reed y JIo u te I may assign the route (iij, . . .  , u h-i> u^ -2)- 

The m axim um  congestion is now (h — l ) ( t  — 1) +  3. In general, when request (u*, 

k =  0 , 1 , . . .  , h  — 2, arrives, bo th  routes will contain link (ulK, ulK+1) which has the maximum 

congestion (h — l ) ( t  — 1) +  k +  1. Thus G reedyJIou teI can assign the route

causing the  m axim um  congestion to reach (h — l) ( i  — 1) +  k +  2. W hen th e  last request in 

°/i> (uh -2 ' v i ) '  arrives, it is assigned the route (u^_2, uLh_l ,v[), which causes th e  maximum 

congestion to  be (h  — l)( i  — 1) +  h  =  (h — l) t  +-1. ■

We will now use Lemmas 3.4 and  3.5 to  prove Theorem 3.2.

P r o o f  o f  T h e o re m  3.2

By Lemma 3.5, when G reedyJIou teI is issued the request sequence (Th,i = ak 0(Th 0 "  ' 0<Th>
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it can incur congestion

86

/j. = (h — 1)* +  1. (3.8)

To rewrite n  in terms of m, we first notice from (3.7) that

Substituting (3.9) into (3.8), we see that

(3.9)

" 5 {h - 11 (v̂ S) +1 

-(A - 11 (v^rS)+ 1 (since h > 1 )

_  y /(h  -  l)m  
2

=  Cl (V'Drnj .

The last equality follows from the fact that, for every request f 3 6  A lh, t =  1 ,2 ,...  ,i, 

dj =  1, D j = h, and these are the minimum and maximum such values possible in the 

network Gh,i- Thus, since fjL* =  1 by Lemma 3.4, the competitive ratio of Greedy_Route1  

is Cl . ■

3.4 A  Lower Bound for Layered Networks

According to Theorem 3.1, Greedy_Route1 is O (y /C m j competitive on layered networks 

since the length of every path  for any request is the same, causing V  =  1. In this section, 

we show that Theorem 3.1 is tight up to a  factor of O on L-layered networks, even

on an end-to-end instance in which every path  has length L.
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This result also answers a relevant question about the way Greedy_Route1 breaks ties.

GreedyJ IouteI ,  as defined, breaks ties arbitrarily: it may choose any route that satisfies

the requirements of the algorithm. Thus, the upper bound of Theorem 3.1 holds for any tie

breaking scheme. In practice however it would be reasonable to choose the shortest route

that satisfies the algorithm. In this way, the fewest links are affected by each decision and

requests will presumably reach their destinations sooner. However, this result shows that if

Greedy J IouteI  uses this tie breaking scheme, its competitive ratio is still Sl(y/m ). Notice

that this result also holds for an algorithm which first narrows its consideration to the set

of shortest routes and then uses Greedy J IouteI  to choose from am ong those routes.

We will prove the following theorem:

Theorem 3.3

The competitive ratio of Greedy J IouteI  is SI (y/in) on layered networks for arbitrarily large m.

The proof will use the same format and notation as the proof of Theorem 3.2. We will 

first construct a  layered network and a  corresponding request sequence, and then use them 

to show that Greedy J IouteI  can incur a  congestion factor sufficient to prove the theorem.

3 .4 .1  T h e  N etw o rk

For any integers h >  1 and t >  1, the network is represented by a directed graph Gh,i 

with h layers and t connected components. (Note that we use the same notation as in 

Section 3.3, but with different definitions.) All network links have unit capacity. G24 and 

G3 ,t are displayed in Figure 3.7 and Gq,2 is displayed in Figure 3.8.
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1,3

2,1

■mv
1,2'

1,3

»+l
l,i+l

2z+l

x l,2i+l x2 ,2 i+l
Figure 3.7: The layered networks C?2 ,i and G3 tt.
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Figure 3.8: The layered network (*6 ,2  •
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The vertex set of G ^i is defined to be the union

i
U i U ^ U V ^ U X ^ )
1=1

where

• Uh,L =  {«i, «2 > • • • ' u h - 1 } is ^ e  set of source nodes,

is the set of destination nodes, and

( / i - l ) i + l / i - l

• xh<t =  u u {x i,n} U {zft-i.i}  *s the set of intermediate nodes.
k= 2  i/=l

Note that

n =
|i= i

h { h -  1 ) ^ .2 + ^ h(h  -F 1 ) +  2  

The arc set of Gh,i is defined to be

U ^ -
i=i

Each set i =  1 ,2 , . . .  , i, is the axe set of a different connected component

and is most clearly defined as the union of two sets: U p p e r J  and Lower (E/^J. The 

arcs in U p p e r a x e  enclosed in a  dashed box in Figures 3.7 and 3.8. Upper(Eh,L) is 

composed of three logical parts:
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•  The “head” of Upper(£?ft,t) contains the arcs leaving the source nodes, and is defined 

to be

U {K^U+i)}-
k= i

•  The “tail” of Upper(jE?/,,t) contains the arcs entering the destination nodes, and is 

defined to be

h—2
U {K-i,*X+i)>04_i,a-1X)}-
K=l

•  The “body” of Upper(J?/,it) is the union of three sets:

h—2h—2 h—2
u u  { i.XU,K1 Xt/+l,K )} \ U u (S'10)

k—2 u=l k—2
h—2
U U (3.11)
k=2
h—2
U {K-*-i,a-i>4-«,J}- (3.12)
K=l

The edges in the “body” of Upper(£’/liJ  are identified in the top component of Gg,2 in 

Figure 3 .8 . The edges marked (3 .10) are dashed, the edges marked (3 .11) are dotted, 

and the edges marked (3 .1 2 ) are dot-dashed.

Lower(i£/iti) (the edges not enclosed in a  dashed box in Figures 3 .7  and 3.8) is sim ila r ly  

composed of three logical parts:

• The “head” of Lower(Eh,i) is

(h—l)i+l
U (K-i.Zi,*)}-

K—h—1
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•  The “tail” of Lower(£?h,t) is

(A-i)t+i
U {(4-i.a- iX M 4 - i.icX)} u {(4-u-n4-i)}-

The “body" of Lower(25/,,t ) is

(h—l)i+l h -2
U U { (4,*» 4 + 1 ,/c) }

K—h— 1 i / = l

Note that

i i

m  =  U  (Upper(JB/lii) U L a w e r f^ J )
L=i

< {h 2 + h -  l) i2. (3.13)

3 .4 .2  T h e  R eq u est S eq u en ce

We now define the request sequence for the network Gh,i- As in the previous section, we 

will refer to each request simply as (Sj , t j ). The request sequence will be denoted <Jh,i and 

is defined to be the concatenation of t subsequences:

Bach o i is further defined to be the concatenation of two subsequences A i and B i where

A h = (4 -i.4 ) . (4-i. 4+i) . (4-i.®(*-i)t+i)
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f j (Sj , t j ) Pi Pi

° 3

h
h
h

(« 2 > u 2)

(«2 » * i,2 >

( “ 2 , * 1 ,2 , *2,2, ” 2 )

( u l , x l , 2 , a;2f2 , u l>

(« 2 » ;E1.3>a:2,3>u 3 )

{ 4 ’x \ & x 2 ,n v\ )

h (« 2 » « 3 ) ( t i l , ® ? , (v%,4,3'xh ' vz)
h (« 2 , v\) ( ^ , X ? 4 , X | 4 , ^ )

°Z h («2>U5) (« 2 ,* 1 ,2 > * 2 ,2 » U5> ( « i , x ? ^ , x i ^ , « g )

h (« 2 , Vi) ( « 2 ,X l ,2 T x i t l , u | )

h ( « l i » l ) ( t i i , x f 2 , *2,2 >Ul )

h (“ 2 .U 3 ) ( t x i , x f i3,X ^ 3 , ^ )

ho
h i ( « 2 , X ? ^ , ^ , « f )

<4 Il2 (« 2 > * l,6 > * 2 ,6 iu 6 )

/ l 3 (ti2> V j ) ( u 2 , x f |2 ,X 2 ^ , V y ) (^2, x f ,7 ,  X2,7, U7 )

/ l 4 («2>u2) (l4,4,2'4,2^2) ( « 2 , x f 2 5X2 ,H u 2>

/ l 5 («1> *>i) (u?,X?f2>* if2,W?) (ul,Xi,2^2.2»ul)

Table 3.2: Request sequence 0 -3 ,3  on the layered network (7 3 ,3 .

and

Note that

k  =

=  £ ( | X i |  +  |SJ|)
1 = 1

As an example of this construction, consider the first three columns of Table 3.2, which 

contain the requests in <7 3 ,3 . (See Figure 3.7 for the corresponding network £7 3 ,3 .) The fourth
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column of Table 3.2 contains the worst case routes assigned by Greedy  J I o u teI ,  while the 

fifth column contains optimal routes.

3 .4 .3  P r o o f  o f  t h e  L o w e r  B o u n d

As in the previous section, the optimal route assignment for 0 7 ^  is pairwise edge disjoint.

Informally, in an optim al route assignment, each request in A Lh, for t =  1 ,2 , . . .  , i, is assigned

its “lower” route (as the networks are drawn in Figures 3.7 and 3.8), while each request

in B Lh, for 1 =  1 , 2 , . . .  , z, is assigned its “upper” route. In general, we have the following

lemma:

L em m a 3.6

For all integers h > 1 and i > 1, the set of optimal routes for request sequence 0 7 ^  on the 

layered network Gh,i is pairwise edge disjoint.

P ro o f

Notice that the set of paths for the requests in each subsequence nLh of 0 7 ^, is contained in 

a different connected component of G/, ,. Thus, to prove the lemma, we can simply specify 

a  pairwise edge disjoint set of paths for each subsequence 0 ^, 1 =  1, 2, . . .  , i.

First, we assign each request (u^_x, vLK) 6  ALh, k = h, h + 1 , . . .  , (h — l)t +  1 , to the path

• • • > t»*)  .

Since the value of k  for each request in ALh is different, this set of paths is pairwise edge 

disjoint. To each request {uLK,v LK) 6  B Lh, k = 1 ,2 ,...  , h — 2, we assign the path

(uK, • 1 Xh-K.—2 ,*+i> x h-K—l,h—l'>x h—K ji-lix h.—K+ljt—li • • ■ 1 x h-l,K—l i VK.) •
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To request e  B Lh, we assign the path

(uh - l 'Xl,/i-l»x 2 ,/i-2 >--- >xfc-l,/i-2 ’ufc-l) • ®

In the worst case, Grebd y_Ro u te1 can assign to each request its non-optimal route (with

the exception of the requests (u^, v[) , i =  1, 2 , . . .  , i, which each have only one route). In the

example in Table 3.2, Gr e e d y -Ro u te I  has incurred congestion 3 after routing the requests

in 0 3 , 5 after routing the requests in erf, and 7 after routing the requests in 0 3 .

In general, we have the following lemma:

Lem m a 3.7

For all integers h >  1, i >  1, and 1 <  4 <  *, G reedy  J I o u t e I  can incur congestion (h — L)i +  1 

after being issued request subsequence <̂ 1 0  CTh °  ■ ■ ■ 0  on laYerec* network G h , i -

P ro o f

The proof is by induction on 4.

B ase  case ( 4 = 1 ) .  For the base case, we will consider how G reed y  J I o u t e I  might as

sign routes to the requests in subsequence cr£. The first request will be (u j .p t iJ ) .  Since 

G reed y  J I o u t e I  may assign either of the two possible routes to the request, suppose it assigns 

the route ^« /L i’x i,/i_i>x 2 ,/i-i>• • • ^x h - i ,h - v vh)- The next request will be 

Each of this request’s two possible routes contains the link j  and so assign

ing the request to either route will increase the ma-vimum congestion to 2. Therefore 

Greed y J I o u t e I  may assign the route ^ 4 _ i’x i,A-i>x 2 ,/i-i’ . . .  Now con

sider the next request, (u^_2, u^_2) . As was the case previously, each of the routes for this re-
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quest contains a  common link, in this case A_ 1, x ^ h -i)  > which has the maximum conges

tion. Thus, Greed y  J I o u teI  may assign the route ^u£_2, x2 ,/i-p  • • • »x h -i,h -i’vk - 2 )-

The maximum congestion is now 3. In general, to request (u*, u*) € k = 1 ,2 ,... , h — 2, 

Greed y  J I o u te I  may assign the route

/.A  i „ i \

When the last request (u},o}) €  <r̂  arrives, it is assigned the route

( 'u [ ,  x { 2 ,  • • • 1 * h - 3 ,2 >  x h - 2 , h - l ’ x k - l , A - l ’ V 1 )  ’ 

which causes the maximum congestion to be h.

In d u c tio n  s te p  (t >  1). Let us now consider how G r e e d y J I o u te I  might assign the 

requests in er£ o <7 ^ o . . .  o aLh. By the induction hypothesis, after assigning the requests 

in <t£ o 0 % o . . .  o o£~l , G re e d y J Io u te I  could have incurred congestion (h — l)(t — 1) +  1. 

Let us say that this has happened. Now we consider what can happen when the re

quests in cr̂  arrive. The paths assigned to these requests will all be contained in the 

subgraph {UhyL U V^L U X ^ L, E ^l)-  By construction, none of the links in E ^ L has been 

traversed by a previous request. Therefore, none of the first (h — l ) ( t  — 1) 4- 1 requests 

in <7^ (the requests in A Lh) will increase the m axim um  congestion. Thus, G re e d y J Io u te I  

may assign each such request (uLh_v  v*) 6  ALh, l = h, h + I , . . . ,  (h — l ) i  + I, to an arbi

trary route, say ' ' '  ' x h - i ,h -v vK)- As a  result of this assignment, the

links ( u U i ^ U - i )  » i ’x 2,h—i j  - ••• < w U 1  each have congestion

(h — l)(i — 1) + 1.
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The next request will be («*_!> Each of this request’s two possible routes con

tains the link h - i ) '  which currently has the maximum congestion. Therefore

Gre e d y J I o u t e I  may assign the route ^«h_i>x i,/,_ iix 2 ,/i-i> • • • > x h - i ,h -v  vh - i ) -  a re~ 

suit, the maximum congestion is now (h — l)( t — 1) +  2. Now consider the next re

quest, As was the case previously, each of the routes for this request con

tains a  common link, in this case which has the maximum congestion.

Thus, Gr e e d y J I o u teI  may assign the  route ^“ h_2 >x i,/i-i*x 2 ,/i-i’ • • • ’ x h - i ,h - i 'vh -2)- The 

maximum congestion is now (h — l) ( t  — 1) +  3. In general, for request (ulK,v LK) € B lh, 

k  =  1 ,2 ,. . .  , h  — 2, Gr ee d y J I o u te I  may assign the route

(,uki •c 1 ,k + 1 > —  i x h—K—2,K+lix h—K—l,h—lT - -  ’Xh—l 'h - l i VK)-

When the last request in (u \,v \)  €  cr  ̂ arrives, it is assigned the route

( u l > z i,2> • • • i z h - 3 , 2 ’ Xh - 2 , / i - l ’ I h - l , / i - l > u l )  >

which causes the maximum congestion to be (h — l)( i — 1) +  h =  (h — l) t  4-1. ■

Finally, we can use Lemmas 3.6 and 3.7 to prove Theorem 3.3:

P ro o f o f  Theorem  3.3

By Lemma 3.7, after Gr ee d y J I o u t e I  has finished routing the entire request sequence a ^  = 

° ° "  ' ° ah> E could have incurred congestion

fi =  (h -  l) i  +  1. (3.14)
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To rewrite n  in terms of m , we first notice from (3.13) that

2 Vi
m

h2 + h - l '

By substituting (3.15) into (3.14), we see that

>  (* - 1  ) { - t 

=  Q (\/m ) .

(3.15)

Since /i* =  1 by Lemma 3.6, it follows tha t the competitive ratio of GreedyJ IouteI  is 

fi (v/rn) on layered networks. ■
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Chapter 4

Online Algorithm  Gr e e d y J I o u t e 2

4.1 Introduction

In this chapter, we consider a more refined greedy online algorithm for routing permanent 

virtual circuits . 1 Greed y_Route2 differs from Greed yJ I o uteI  in that it bases its routing 

decision only on the m axim um  congestion of the routes that can be assigned to the request, 

rather than on the maximum congestion in the network. We will show tha t there are 

classes of networks on which Greedy  J I o u te2  is guaranteed to have a  competitive ratio 

that is polylogarithmic in the number of network nodes. Furthermore, Greed y  J I o u te2 is 

as simple and fast as GreedyJ I o u te I  in the worst case. (However, Gr ee d y J I o u t e I  is still 

faster than Gr ee d y J I oute2 in the best case.)

4 .1 .1  T h e  A lg o r ith m

The online algorithm we study in this chapter is formally defined as follows:

l A preliminary version of the results in this chapter appeared in [43].

99
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Figure 4.1: An example of a network graph. 

A lgo rithm  Greed y  _Ro u te2

For request f j ,  assign any route P  € Vj which minimizes

max
eep

Ties are broken arbitrarily.

In other words, G reedy_R ou te2  considers all routes for a request and assigns the one 

that would have the m in im u m  congestion if the request were assigned to it. Consider again 

the network from the previous chapter, redisplayed in Figure 4.1. Recall tha t if an online 

algorithm receives the request (s j ,  t j , 1 , r ) , it can assign any of the following six routes:

1 . ( S j , V i , V 4 , V s , t j ) ,

2. (Sj, Ui, V \ ,  U5, U2> £ j ) i

3. ( S j , V i , V 2 , t j ) ,
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Route a =  1 . 0 1 a =  1 . 1 a =  1.5 P II CO a =  1.99 Rank
1 . 0.00400198 0.0401842 0.203469 0.368897 0.406263 5
2 . 0.00499751 0.0497599 0.244778 0.434895 0.477138 6

3. 0.00299353 0.0293806 0.136864 0.232743 0.253113 1

4. 0.00399005 0.0390489’ 0.179956 0.303428 0.329424 4
5. 0.00299452 0.0294732 0.138647 0.237429 0.258549 2

6 . 0.00398806 0.0388584 0.175934 0.292109 0.316116 3

Table 4.1: Costs computed by Ex p J I ou te  for the example.

4. (sj ,V4,V5,V2 , t j ),

5. (sj ,v4 ,vs, t j ) ,  or

6 . ( S j , V ( i , V 7 i V s , t j ) .

If  an online algorithm used either of the first two routes, the resulting congestion on either 

route would be 9. If an online algorithm used any of the next three routes, the resulting 

congestion on each route would be 6 . However, if the algorithm used the last route, the 

resulting congestion on that route would be only 3. Gre e d y _Route2 would therefore select 

the last route. On the other hand, Gr e e d y _Ro u t e1 could have chosen any of the last four 

routes because no m atter which it chose, the resulting network congestion would be 8  (on 

link (vi,v4)).

For comparison, if w  =  10, the algorithm Ex p _Route  [4] would choose the third route, 

for a  wide variety of values for a. The exponential costs that Ex p -Ro u te  computes for 

each route are shown in Table 4.1. Notice tha t Ex p _Route  favors short routes, until the 

congestion on those routes reaches a  high enough threshold. Also notice how the algorithm 

distinguishes between routes 3 and 5, which have almost identical congestion on their links.

Since Gr e e d y _Ro u te2 limits its consideration to just the links tha t could possibly carry
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the request to its destination, an adversary like the one used to prove Theorem 3.2 cannot 

fool Greedy J Ioute2 into choosing bad routes in the same way that it can fool GreedyJIouteI. 

Consider what happens when GreedyJ Ioute2 is presented with the constructions used to 

prove Theorems 3.2 and 3.3. When presented with network Gh,i and request sequence 

cr/jj (in the proof of either Theorem 3.2 or 3.3), GreedyJIoute2 can incur congestion h 

in the same way that GreedyJIouteI  can. But when presented with network G^.i and 

request sequence a^i,  for i > 1, GreedyJ I oute2 will incur congestion at most h, whereas 

GreedyJ IouteI  could incur congestion (h  — l) i  +  1.

The behavior of Greedy  JIo u te2  on network Gh,i and request sequence ah,i proves only 

tha t the competitive ratio of Greedy  J Io u te 2  is f2(m), where m is the number of network 

links, i f  the length of the longest path is fi(m),  in effect proving a lower bound on the 

order of the longest path length d =  maxy maxpg-p^ |P |. In Section 4.3, we will strengthen 

this result by showing that the competitive ratio of GreedyJIo u te2  is Q (d +  log (n — d)). 

Therefore, the greedy algorithm, when applied to routing, no longer has a  logarithmic 

competitive ratio for general instances.

We can also use a result from the previous chapter to infer an upper bound on the

competitive ratio of GreedyJ I oute2, since Theorem 3.1 holds for GreedyJ Ioute2 just as it

does for Gre e d y J I outeI .  The proof of this fact is identical to the proof of Theorem 3.1,

primarily because Lemma 3.2 holds for GreedyJ Ioute2 also. We restate this result for

Greedy J Ioute2 here for completeness.

T heorem  4.1

The competitive ratio of Greedy J Ioute2 is O VCm

In Section 4.2, we will show that a  stronger upper bound on the competitive ratio of
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Greedy JtouTE2 is possible on some networks. Specifically, we will prove that the competi

tive ratio of Greedy_Route2 is O (dlogn) if there exist pairwise edge disjoint routes for the 

requests. (The actual optimal path requirement is slightly less strict and arises from the 

proof technique. The same result holds if the ratio of the m aY im m n to m in im u m  band

width requirement is constant and the maximum number of optimal paths th a t intersect 

is bounded by a polynomial in n.) We believe that a  s im ila r  (or better) upper bound will 

still hold if the optimal paths are not disjoint. We provide some intuitive support for this 

conjecture at the end of Section 4.2.

Consider for a  moment instances that obey this optimal route requirement. In this 

context, our result indicates that if the network has paths whose lengths are O(logn) (or 

O(logm)) (e.g., splitter networks) then the competitive ratio of Greedy_Route2 is guaran

teed to be a polylogarithmic function of the number of network nodes, which comes very 

close to matching the problem lower bound of fl(logn). If the length of the paths is constant 

then Greedy J Ioute2 is asymptotically optimal.

4 .1 .2  T radeoffs B etw een  T im e  C o m p lex ity  and  R o u tin g  E ffic ien cy

Consider the pseudocode for Greedy_Route2 in Figure 4.2. Similar to GreedyJIouteI, 

Greedy J Ioute2 requires only Ylpep} 1̂*1 comparisons and YlpeVj l- l̂ additions in the worst 

case to assign a route to request f j .2 However, the best case time for GreedyJ I oute2 is 

the same as the worst case, unlike GreedyJ IouteI  which can require as few as |Pjj com

parisons and additions. Summarizing, GreedyJ IouteI  can be faster than GreedyJ Ioute2,

2 As was the case with GreedyJIquteI, if the algorithm has available to it O(m) bytes of. working memory, 
then the values (̂ [i} (e) +  ^  can be computed once for each path, bounding the number of additions by 
O(m).
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Greedy JIoute2
f o r  each  f j  £ a  do

Pj <— Assign_GREEDY_RouTE2(j) 
end f o r

fu n c t io n  Assign_GREEDY_Route2 (j )  
f i '  4 -  o o  

^ 4 - 0
f o r  a l l  P  £  Vj  do

temp 4 -  rnax^gp {/i7 (e) +  }

i f  temp < y! th e n  
y !  4 -  temp 
P 7 4- P  

end i f  
end fo r  
r e tu r n  P 7

Figure 4.2: A pseudocode representation of Greedy_Route2.

but Greedy_Route2 can assign better routes than Gr ee d y J I o u te I .  As was discussed in the 

previous chapter, both algorithms make their decisions more quickly than Ex p J I o u te [4]. 

The real time difference would be accentuated on networks in which a large number of 

exponential computations is required.

As was the case with Greed yJ I o u teI ,  Greed yJ I q u te2 can be expected to perform worse 

than Exp  J I oute  when paths can be relatively long. This factor of d makes intuitive sense in 

the competitive ratio of Gr eed  yJ I oute2 when one compares GreedyJ Ioute2  to Ex p  J I o u te . 

When all routes for a  request have unit length, both algorithms will choose a  route with 

the m inim um  congestion. As the maximum lengths of the routes increase, Ex p  J I ou te  will 

be more discriminating than  Greed y  J I oute2  and the gap between their competitive ratios 

will increase.

This can be illustrated with a few examples. First, suppose that both algorithms are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. ONLINE ALGORITHM  GREEDY_R0UTE2 105

confronted with a choice of two routes — one containing one link with congestion c and 

another containing 100 links with maximum congestion c. Whereas Greedy_Route2 will not 

discriminate between the two routes, Exp J Ioute will choose the shortest one. Exp J Ioute 

will be more discriminating even if the two paths were to have the same length. For 

example, consider two paths with 5 links. The first path  has congestion 5 on one link and 

no congestion on any other link. The second path has congestion 5, 4, 3, 2, and 1 on its 

five links. Exp J I oute will clearly choose the first path, which is intuitively a  much better 

choice, while GreedyJIoute2 will not discriminate. This phenomenon was also illustrated 

in the example associated with Figure 4.1. We quantify in this chapter the degree to which 

the competitive ratios of Greedy J Ioute2 and Exp J Ioute differ.

As was discussed previously, the competitive ratio of GreedyJIoute2 is polylogarith- 

mic when d = O (logn) (at least for feasible instances). Therefore, we should expect tha t 

Greedy J Ioute2 would perform well in these cases. It seems reasonable to expect large net

works with arbitrary topologies to have relatively short paths between most nodes. For 

example, by using the tr a c e ro u te  program, one can see that between most pairs of ran

domly selected IP addresses in the United States, there is a site to site route containing a t 

most 15 nodes. While one could probably concoct a route with many more nodes, only these 

relatively short routes axe used in practice. By restricting GreedyJ Ioute2 or GreedyJIouteI  

to a set of relatively short routes a priori, one would expect good performance based on 

our results for these algorithms (assuming the optimal algorithm is also restricted to these 

routes). This method of considering restricted sets of paths might be used with success on 

any network with small diameter. Another good scenario for Greedy J Ioute2 might be one 

in which the traffic pa ttern  favors source/destination pairs which have short routes.
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4.2 An Upper Bound

In this section, we prove our new upper bound on the competitive ratio of Greedy_Route2. 

The method we use to prove the result is adapted from a technique used by Azar, Naor 

and Rom [17, 18] to show that an online algorithm similar to Greedy_Route2 is O (logn) 

competitive for an online load balancing problem in which each job can be assigned to 

exactly one of a subset of n  identical machines. Intuitively, their idea was to conceptualize 

the online algorithm’s assignment on each machine as a partition of a  number of successive 

layers. 3 The sum of the weights of the jobs in each layer (which we will call the layer’s 

width) is equal to the optimal load, except for possibly the last layer which contains the 

remaining weight less than the optimal load. (All subsequent layers after this last nonzero 

one have width 0.) They showed that, for any :, the sum of the widths of all the i th layers 

is at least as large as the sum of the widths of all subsequent layers. From this step, the 

logarithmic competitive ratio follows in a relatively straightforward way. In our proof, we 

adapt this method to work with paths, rather than single machines. Our idea is to consider 

the final online congestion caused by Greedy_Route2 on each optimal path and partition the 

congestion on each of these optimal paths into layers with width at most A, the maximum 

bandwidth requirement divided by the capacity of the network links. We then show that, 

for any t, the sum of the widths of all the i th layers, multiplied by a  certain factor, is at 

least as large as the sum of the widths of all subsequent layers, and our result follows.

3The meaning of layer in this section is unrelated to layered graphs discussed in previous chapters.
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4 .2 .1  N o ta tio n

Before formally stating our theorem and its proof, we will present the notation we will use, 

along with several useful facts. (Some of this notation was defined in the previous chapter; 

we restate it here for convenience.)

• P* is the path chosen for request f j  by an optimal algorithm.

•  H* is the network congestion incurred by an optimal algorithm.

• dj =  minpg-p^ |P | is the length of the shortest path  between nodes Sj and t} .

•  Dj = maxpg-pj |P | is the length of the longest path  between nodes Sj and tj.

•  d = maxi<j<jfc D j  is the length of the longest path th a t can be assigned to any request.

•  A =  mini<j<*/j and A =  maxi<j<j. axe the minimum and maximum bandwidth 

requirements, respectively.

• A =  where w  is the width of the network links. Also, for any j ,  1 <  j  < k, let

• V  =  maxi<j<fc

Fact 4.1

H* > A.

Fact 4.2

• C  =  j  is the ratio of the maximum to minimum bandwidth requirement.
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•  e* € P* is an edge e €  PJ satisfying /x(e) =  /x(P*). Ties are broken in favor of the 

link with the smallest index.

• 1  =  maxeG£ |{ j  :e* =  e , l  < j  <  A:}| is the maximum number of optimal paths P* 

whose edge e* is the same.

The following fact is true since I  is a lower bound on the maximum number of optimal

paths that intersect at the same edge.

Fact 4.3

— W

For all i >  1, 1 <  j  <  k, Wij =  <

A, if /x(P*) > *A

m(P/) -  (i -  1 )A, if (i -  1)A < Ai(P/) < *A •

0 , otherwise

As discussed above, we partition the congestion on each edge e* into layers with width

at most A. W l0  is the width of the ith such layer.

Fact 4.4

For all j .  r t P ; )  =  ' £ i W i j .

is the portion of Wij on edge e* that was added by request / r , 1 < r  < A:, in the 

online route assignment (divided by w).

The following fact is true because if W[j > 0 for more than two layers, then lr > A,

which is impossible.

Fact 4.5

W [ j  >  0 for at most 2 values of i ,  which must be consecutive.
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•  Sij =  {r : Wjr > 0 for some I > i} is the set of indices of optimal paths P* such tha t 

f j  traverses e* in a  layer greater than i in the online route assignment.

The following fact is true because f j  traverses |P ,| <  Dj  links, each of which may be

e* for a t most X  optimal paths P*.

Fact 4.6

For all i  and j ,  |5y | <  |Soj| <  DjX.

•  Rij = YlrzSij (jj  ~  ^ t r )  ^  total congestion incurred by f j  in all layers greater 

than i.

Let us explain this definition in more detail. The quantity we are describing is at

most equal to  lj times the number of edges e* to which f j  adds congestion after layer

* (which is \Sij\-lj). We must say “at most” because it is possible, if f j  adds congestion

to layer t +  1 on some edge e*, that some congestion was also added to layer i. (No

congestion could have been added to a  layer before i by Fact 4.5.) Thus, to get Rjj.

we must subtract off this quantity, W/r , for each edge on which this is the case. On

the other hand, if f j  does not add any congestion to any edges e* in layer i  +  1 , then

Rij =  |Sy | • lj. The equation above takes into account both of these possibilities

because in the second case, W/r =  0 .

Fact 4 .7

For all i and j ,  Rij < |Sy | • lj < D f l k .

. Wi = E ‘=1 Wij.

• Ri =  E ‘=l Rij-
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The next fact follows simply from the definitions. On the other hand, Fact 4.9 requires

an explicit proof.

Fact 4.8

*0 <!£?=, (*>jb)-
Fact 4.9

=  £ «  m -

Proof

Notice that

j = 1

= £ £
j - 1 r € S i j

= £  £  {b~wi)
r = l  j : r € S i j

= £ £ ^
r = l  l>i

=  £ X > *
i > t  r = l

=  £ ^
l>i

by the definition of R  

by the definition of Rij 

by changing the order of summation 

(see below)

by changing the order of summation 

by the definition of Wt.

A more lengthy explanation is in order for the fourth equality. The term

£  ( b - K )
r-reSij

refers to the total bandwidth of all requests f j  (divided by w) that cross e* after layer 

i, m in u s the portions th a t fall in layer i. I n  other words, this is the total congestion
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on edge e* after layer t. (See the text accompanying the definition of Rij for an 

explanation of the W/r” .) By definition, this quantity is simply the total width of 

all the layers of e* after layer i, or Wjr . ■

The last fact follows from Fact 4.9.

Fact 4.10

Ri =  Ri_! -  Wi.

4 .2 .2  P r o o f  o f  th e  U p p er  B o u n d

We can now formally state our upper bound result for Gr e e d y _Ro u t e2:

Theorem  4.2

The competitive ratio of G re e d y _ R o u te 2  is 0  (d  m in {£ ,X } log ^ minfcj:} )  )  •

We will use the following three lemmas to prove Theorem 4.2.

Lem ma 4.1

(i < maXj fi(Pj) +  A.

P roof

Consider an edge e e £  which satisfies /i(e) = (j.. Let f y be the last request assigned to a

path containing e (so e €  Py). Notice that since A > ly,

My(Ptf) =  My(e) =  A* -  M -  A. (4.1)

Also, by the definition of Gr e e d y _Ro u t e 2, we know that, for all P  € Vy, including P*,

tb/(P) > fb,{Py)- (4.2)
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Combining (4.1) and (4.2), we see that Hy{Py) > n  — A, which implies that

^  <  fh/(Py) +  A <  DMUCfl(Pj)  +  A. ■

Lem m a 4.2

For all i and j, D j l  - Wij > Rij.

P roof

We divide the proof into three cases. The lemma follows trivially in the first two cases; the 

main part of the proof is contained in the third case.

C ase 1: Rij =  0.

In this case, the lemma is clearly true since the lefthand side is always non-negative. 

C ase 2: Wij = A.

In this case, the lemma is also clearly true since, by Fact 4.7, Rij < DjTk.

C ase 3: Rij >  0 and Wij < A.

Since Rij >  0, we know, by definition, that #  0 . Let r  be an arbitrary member of 

Sij. Then, by the definition of for some I > i, W ^  > 0. This means that j 3 crossed 

edge e* and therefore

e;  e  Pj.

Now notice that since W\j < A, the tth layer of e* is the last nonzero layer, and thus 

n(Pj)  < iA by the definition of Wij.  So clearly, Hj{Pj ) < iA and, since Hj{Pj) < Pj(Pj)
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b y  th e  d e f in i t io n  o f  G r e e d y _ R o u te 2  a n d  e* €  P j ,  w e  k n o w  t h a t

<  iA. (4.3)

Also, notice that, since W[r >  0 for some I > i ,

fij+i(er) > *A. (4.4)

In other words, (4.3) and (4.4) tell us tha t just before f j  was assigned to route Pj, the 

edge e* 6  Pj had congestion less than iA  (but greater than (i — 1)A since lj <  A), and just 

after f j  was assigned, e* had congestion greater than iA. Thus, the value lj added to the 

congestion on edge e* is divided between layers i and i +  1: W ’r is added to layer i and 

W{i+l)r is added to layer * +  1 . Thus,

> H ( er)

— (i ~  1)A +  (A — Wlr). (4.5)

We next need to show that

Wa-Dj = A. (4.6)

Assume, for contradiction, tha t W ^ i ) j  < A. This implies that (i{Pj) < (i — 1 )A, and 

therefore fij(PJ) < (* — 1 )A. But this means that f j  should not have been assigned to Pj

since Hj{Pj) > (t — 1)A. Thus, (4.6) is true. Now, by combining (4.6) with the assumption

that Wij < A, we see that

li(P')  =  (« -  1)A +  (4.7)
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Using the facts above, we can deduce the following:

114

(i -  l)A + = M P j )  by (4.7)

> f*j{Pj) by the definition of Greedy_Rout£2

> (i -  1)A +  (A -  W(T) by (4.5).

Thus,

> A — W{T. (4.8)

Finally, we can conclude tha t

R i j  =  ( h  “  W'ti) by the definition of Ri j
rZSij

< D j l  ■ Wij by Fact 4.6 and (4.8). ■

L em m a 4.3

For any i, R i  <  ( s S i )  R o -
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P ro o f

By Lemma 4.2 and the definitions of Wi and R,, we know that

w ,  = ] T w „
3=1

> 1

~ X U D>

3 = 1

~  d I Rt-
(4.9)

From (4.9) and Fact 4.10, it follows that

Ri <  Ri- 1 — -Rj-

Therefore,

d l
*  ~  d f T T  Rl~1'

(4.10)

Finally, by recursively applying inequality (4.10), we conclude that

Finally, we can prove the main result of this section: 

P ro o f  o f  T heo rem  4.2

First, let

b = (nrnTc,!})! - iOS( W  (mlipTf})
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Thus,

/ dX -t-lN6  >  m l  
\  dX )  ~  min {£, I } '

Then we can deduce that

Rb < *  by Lemma 4.3

£  ( ^ T j *  ^  by F act 4 8

v 7 j= l

r , £ 5 = 1  (< y i)
< -Drain{ £ ..!} — — ^
~  m

< D m in { £ ,Z } /j* by Fact 4.2.

Now notice that, for all j ,

fi{P;) = J 2 WH by Fact 4.4
t

= I > « + £  "Vi
i = l  i>b

< ' b w >i+ ' E w ‘
t = l  i>b
b

= Wij + Rb by Fact 4.9
t=i

<  6 A 4 - V  min {£, T} \i by (4.12) and the definition of Wt].

(4.11)

(4.12)
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Thus,

maxn(P*) < b A +  V m i n { £ , Z }  (x*
3

( m in { £ ,! } )  

By Lemma 4.1, this implies tha t

A + D  min {£-Z}  fx".

A +  A +  V  min {£, 1 }  fx‘

So the competitive ratio  of Greedy_Route2 is

JL < Il!!S5ft>.  ̂+ ̂  + V'nin jC .I)
!x• fxm

< (m » ic j ) )  | + P m in { £ ,I }  by Facts 4.1 and 4.3
m a * { £ ,A }

< < g A h g ( g f e r ) + 2 A
+  'D m in{£, 1} by Lemma A .l (in Appendix A)

m a x { ^ ,A |

= 0 (dmin{AI>

Combining Theorem 4.1 and Theorem 4.2, we have the following result.

T h eo rem  4.3

The competitive ratio of GreedyJRoute2 is 0  (min (d m in  {£, 1 }  log ( .

We can state the following corollaries giving tighter upper bounds for circumstances in 

which the optimal congestion is small. The first result follows directly from Theorem 4.2.
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C oro llary  4.1

On instances in which the optimal routes are pairwise edge disjoint, the competitive ratio of 

GreedyJIoute2 is O (d logn ).

The second corollary is more general. Recall that a feasible request sequence is one for

which there exists a  route assignment with congestion n* < 1 .

C oro lla ry  4.2

On feasible request sequences, the competitive ratio of Greedy_Route2 is

f O ( i £ l o g ( ^ ) ) ,  £ < Z  _  /  »  / m»N<,
\ 0 ( < f ? l o g n ) ,  X <  £  — V A \  A i /

P ro o f

If p* <  1 , then by Facts 4.1 and 4.3, A < w and I  < j -  The corollary follows by substituting 

into the result in Theorem 4.2. ■

On feasible instances in which the m inim um  required bandwidth of a request is at 

least a constant fraction of the link capacity tu, the competitive ratio of Greedy_Route2 

is O(dlogn). Specifically, suppose that, for all j ,  lj > j ,  for some 0  =  0(1). Then, 

X ^  X — & and the competitive ratio of Greedy_Route2 is 0(d/31og(/3n)) =  O (dlogn). 

We cam cilso claim that the competitive ratio of Greedy_Route2 is O(dlogn) on feasible 

instances ifw  =  0 (1 ).

4 .2 .3  F in a l N o te s

The existence of the factor T  in the previous theorem is not intuitive and we do not t hink 

tha t it belongs in the competitive ratio of Greedy_Route2. It is easy to show that when the 

problem instance is such th a t adl of the optimal paths intersect (and I  =  k), the competitive
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ratio of Greedy_Route2 is at most C. To see this, notice that when all of the optimal paths

intersect, the optimal congestion is a t least &■. The congestion of any route assignment is

a t most Thus, the competitive ratio of any algorithm is at most C.

T h e o re m  4.4

If the optimal paths for an instance all intersect at one link, then any algorithm is £  competitive 

for that instance.

This result gives credence to the idea tha t as X  increases, the competitive ratio decreases,

contrary to the theorem.

Another interesting, but unrelated, phenomenon is evident by looking at instances which

force Greedy_Route2 to assign routes which all overlap. The following theorem states that

if Greedy_Route2 is given an instance tha t forces it to increase its congestion with every

request, then the competitive ratio of Greedy_Route2 for th a t instance cannot be worse

than d. The instance (whatever it is) tha t generates the worst case for the competitive

ratio  is thus not the worst case for Greedy_Route2 and therefore the  com petitive ratio of

Greedy_Route2 is less than  k.

T h e o re m  4.5

If the paths chosen by Greedy_Route2 for an instance all intersect at one link, then 

Greedy_Route2 is d competitive for that instance.

P ro o f

For all j ,  1 <  j  <  k, let lj = jj. Also, let z3 =  h- Notice tha t each request f j  adds 

lj to the congestion of each link on its path. Also notice that, in order for the congestion 

of the instance to be z*, the assignment of every request f j  must increase the congestion 

by exactly lj (assuming the routes are acyclic). In other words, after every request f j ,
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1  <  j  < k, the congestion must equal Zj on some link e 6  Pj. Therefore, Pj must intersect 

every previously assigned path Pj, 1 <  i <  j ,  at at least link e. Furthermore, in order for 

G r e e d y _ R o u t e 2  to have chosen P j ,  every path P  €  V j  must have had congestion Z j _ i  after 

request / j _ i ,  and therefore every path P  G  Vj  must intersect every previously assigned 

path Pi, 1 <  z < j .

Let I  < d be the number of links that Pj has in common with P\. First, suppose I  = d. 

Then Gr e e d y _Ro u t e 2  must have assigned f j  to Pj =  Pi because all routes P  € P \ — Vj  

intersect Pi- Therefore, in any assignment, the routes for f \  and f j  must intersect P i. In 

addition, as stated above, all routes for every subsequent request must also intersect Pi- 

Thus, since Pi contains d links, the optimal congestion must be at least \*jf\.

Now suppose I  < d — 1. Then, from above, for 2 < j  < k, every path P  € Vj  must 

intersect P\ at at least one of these I  links. In this case, the optimal congestion is at least

Therefore, the competitive ratio, with respect to congestion, is at most

If Zk < d ,  then the competitive ratio is at most

(This follows because Zk < d => Zk-i  < d => |*7 p r j  ^  =  M  On other hand, if

Zk > d, then the competitive ratio is at most
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Therefore, in all cases, the competitive ratio is a t most d. ■

We point out that if Greedy_Route2 breaks ties in favor of the route with the fewest

maximum congestion links, then the d in Theorem 4.5 becomes d — 1.

Corollary 4.3

If k  > d, the competitive ratio of Greedy_Route2 is strictly less than fc.

P roof

Suppose that the competitive ratio is at least k. Then the congestion incurred by 

Greedy_Route2 is /x >  fc/x* >  fcA. Since this is the maximum possible congestion, it must 

be the case tha t fi =  fcA. But then, by Theorem 4.5, the competitive ratio is a t most d < fc, 

which is a  contradiction.

■

4.3 A Lower Bound

In this section, we present a lower bound on the competitive ratio of Greedy_Route2. Our

lower bound improves upon the lower bound of d that can be inferred from the construction

in the proof of Theorem 3.2. (See the introduction to this chapter.) For small values of d,

the lower bound is close to the upper bound in Theorem 4.2. Our experience indicates that

the  true competitive ratio of Greedy_Route2 may be closer to  th is lower bound than to the

upper bound in Theorem 4.2.

Theorem  4.6

The competitive ratio of Greedy_Route2 is fl (d +  log (n — d)) for arbitrarily large values of d 

and n.
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To prove the theorem, we will first construct an arbitrarily large network Gh,i (for any 

h > 1 and i >  1) and a corresponding request sequence that can cause Greedy_Route2 to 

incur congestion equal to h +  i. We will then show that this quantity is equivalent to the 

quantity in Theorem 4.6.

4 .3 .1  T h e  N etw o rk

For any integers h > 1 and i > 1, Gh,i is a directed network with unit capacity links. The 

vertex set of Gh,i is defined to be

V ( G h,i) = {u t : 1 <  t  <  2i -  1} U { z0,t : 1 <  t <  2*}

U {art,2 * — l}u{ut : l < i <  h}.

The directed edge set of Gh,i is defined to be 

E(G h,i) =

i

U  { (tt2‘“ l ' a'0,2‘_ l ) > (u 3-2‘- l i x 0,3-2‘- 1) > (u 5-2‘ - 1 7 ®0,5-2‘- 1) >••• » (u2*-2‘“ l 7 ^0.2*-2‘- 1) }
L—l

i
u  { (u 2 . - i , ^ 0 ,2 -2 l_1) 7 (u 3-2t — 1 7 ®0,4-2*—1) 7 (u5-2l_l 7 x0,6-2‘_1) 7-- - 7 (u 2l-2 t_l 7 ) }

L=l

U {(za .,2:l+i,2») 2} U {(xo,*, wi): 1 ^  1 2 l}

U {(x/,_i,2*7Ul)} U { (x t(2» ,u ,.+ l): 1 <  t <  h -  1} U { ( « i ,u j :  2 <  t <  h} .

As an example, G ^j  is shown in Figure 4.3. Notice that Gh,i has

n = 2i+1 + 2/i-2 (4.13)
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« 3

« 4

« 5

« 6

« 7

U2

W3

U4

Figure 4.3: The network G4 ,3 .

vertices and

m =  2, + 1  +  2‘ +  3/i -  5

edges.

4 .3 .2  T h e R eq u est S eq u en ce

We will define the request sequence a/,,* for network Gh,i to be the concatenation of two 

subsequences 0 7  and alh. Each request f j  requires unit bandwidth and has arrival time 0, 

and so we denote each request simply by (Sj , t j ). The subsequence 0 7  consists of 2‘ — 1
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requests organized into i  phases. In phase t, 1 < t < t, we issue the 2‘~l requests

( U y - l , U l)  , ( U 3 - 2 - 1 i v l ) - ( “ 5-2‘- 1. U i)  , . . . , ( « 2 ,  _ 2 . - l , V i  ) .

For example, when i = 3 (as in Figure 4.3), we have the following 7 requests:

• Phase 1: («i,ui), (u3,ui), (u5,«i), (u7,«i)

• Phase 2: (u2 ,ui) , (u6,ui)

• Phase 3: («4 ,ui)

The request subsequence a \  contains the following h requests:

(x0,2l 1 v2) 1 (X1,2'1V3) 1 • • • 1 ix h-2,2'ivh) > {xh—1,2*» wl )  •

Notice that the longest path that can be assigned to a request in G^i has length

d = h +  1. (4.14)

Thus, we are issuing

k =  \<rh4\ = 2 *  +  / i  — l  =  2 * + d  — 2  

requests on the network Gh,i-

4 .3 .3  P r o o f  o f  th e  L ow er B o u n d

We can now use the preceding construction to prove Theorem 4.6. To this end, we first 

present three lemmas that describe the behavior of Greedy_Route2 and the optimal al

gorithm when they are given this instance. Lemma 4.4 and Lemma 4.5 together imply
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that GreedyJIoutb2 can incur congestion h  +  i. Lemma 4.6 shows that the optimal route

assignment has congestion 1.

Lem m a 4.4

Suppose we issue the request sequence ert on network Gh,i, for any integers h >  1 and i  > 1. 

At the end of phase i, 1 <  t  <  *, Greedy_Route2 can incur congestion t on each of the links in

{ ( Z 0 ,2 ‘ , V l ) , (x o ,2 -2 ‘ »V l ) , (a:o,3-2* 1 (^0 ,2*  - 2 M U i )  }  U

{ (^ 0 ,2 *» 1̂.2*) > (X1,2'1X2,2') »• • • 5 i x h.—2,2i> x h—\,2l ) > ( x / i - l , 2 1’ u l )  }

and no link in the network can have congestion greater than i.

P ro o f

The proof is by induction on l.

B ase case (t =  1). The requests in phase 1 are

(u i, VI) , (u3, V l  ) , (u5, 7/1) , . . . , («2« -1, Ul ) .

For each request (u K, v i ) ,  k  =  1 ,3 ,. . .  ,2* — 3, Greedy_Route2 will arbitrarily choose either 

route — ( u K, x o yK, v i )  or (uK,xo,/c+i»ui) — since no links on either route have been used 

before. For request (u2*-i! ui)? GreedyJIoute2 may also arbitrarily choose either route — 

(u2* -i5a;o,2 , - i» ,;i) or (u2 , - i 5xo,2, > î,2»>'''  i x h - i & i v i )  — f°r the same reason. By choosing 

the latter route for each request, the base case is satisfied.

Induction step  ( i  > 1). The requests in phase i  are

(«2—i , Ul) , («3-2‘"‘ > vl) > (“5-2*-1 > ul) i • - • » («2‘-2‘~i i V1) ■
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E a c h  r e q u e s t  ( u k .2i - i  , v\ ) , k =  1 , 3 , . . .  , 2 , _ l + l  — 3, m u s t  b e  a s s ig n e d  t o  o n e  o f  t h e  fo llo w in g  

r o u te s :  ( u K,2. - i , x 0iK.2. - ! , « i )  o r  < uK.2t- i , x 0,(K+ i) -2‘-* > wi ) -  R e q u e s t  ( u 2. _ 2i - x , u i )  m u s t  b e  

a s s ig n e d  t o  e i t h e r  ( u 2«_2i - i , x 0,2*-2‘- 1>u i )  o r  (u2' - 2L~lixo,2'ixi,2' i ' '  * ixh-i,2i v̂i)- B y  

in d u c t i o n  h y p o th e s is ,  e a c h  o f  t h e  l in k s  in  t h e  s e t

U  { ( ^ O ^ - i . W l )  > (* 0 ,(k+1).2‘- i , « i ) }  U { ( x 0,2* -2 ‘- i - « l ) }  U
k=1,3  2*- ,+ 1 —3

{ ’ x\,2' ) > {x l,2'ix2,2i) »• • •  » 2,2* ’ xh—l ,2' )  » (^ / i—1,2* i u l )  }

c a n  h a v e  c o n g e s t io n  l — 1 p r i o r  t o  t h e  a r r iv a l  o f  a n y  r e q u e s t s  in  p h a s e  t. L e t  u s  s u p p o s e  

t h a t  t h i s  h a s  h a p p e n e d .  T h e n ,  w h e n  e a c h  r e q u e s t  i n  p h a s e  i a r r iv e s ,  b o t h  o f  t h e  r o u te s  t h a t  

c a n  b e  a s s ig n e d  to  th i s  r e q u e s t  h a v e  c o n g e s t io n  i — 1. T h u s ,  G r e e d y _ R o u te 2  m a y  a r b i t r a r i l y  

a s s ig n  e a c h  r e q u e s t  to  e i t h e r  r o u t e .  I f  G r e e d y _ R o u te 2  a s s ig n s  e a c h  r e q u e s t  t o  i t s  l a t t e r  r o u t e  

( a s  p r e s e n t e d  a b o v e ) ,  t h e n  e v e r y  l in k  in  t h e  s e t

{ {.xQ,2l 1 U l) > ( s o ,2-2* > V l) , (xo,3-2‘ 7 )7 • • • , ( x 0)2. _ 2. , Vi) } U

{ (so ,2 * )S l,2 * ) 7 (I 1,2, 1I 2,2‘ ) >•••  7 {xh-2,2'ixh-1,2‘ ) 7 {xh-l,2l 7 v l )  }

w i l l  h a v e  c o n g e s t io n  t .  F u r t h e r m o r e ,  s in c e ,  b y  t h e  in d u c t io n  h y p o th e s i s ,  n o  l in k  in  t h e

n e tw o r k  h a d  c o n g e s t io n  g r e a t e r  t h a n  l — 1 p r i o r  t o  p h a s e  t ,  n o  l in k  c a n  h a v e  c o n g e s t io n

g r e a t e r  t h a n  i a f t e r  p h a s e  i. ■

L e m m a  4 . 5

For any integer h  >  1 and i  >  i ,  suppose every link of network G h , i  in the set

{ ( :C0,2, 7X l,2*) 7 ( s i l2i ,X 2 2 i )  , . . .  , (x /l _ 2j2.,X /l_ i i2. )  , (s fc _ x t2» ,U i)}
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has congestion c and every other link in the network has congestion at most c. Then, if we issue 

the requests in request sequence a lh , Greedy_Route2 can assign routes such that, after the j tb 

request in a \ ,  every link in the set

{ (xj - l , 2*> xj,2*) ’ ix j,2'yxj+l,2') ?••• » (x h-2,2'yx h~l,2') » (x/i-l,2*' }

will have congestion c + j  and no link in the network will have congestion greater than c + j.  

P ro o f

The proof is by induction on j.

B ase case  ( j  =  1). The first request in crlh is (x0 t2 .,t>2 )- Greedy_Route2 must assign 

to this request either the route (xot2 i,Xit2 , >̂ 2 ) or the route (x02, , x l2. ,• • - , x fl_ l 2y,^2 )- 

Since both routes contain the link (xo2 . , x 12*)’ both routes have congestion c. Thus, 

Greedy_Route2 may arbitrarily assign either route to the request. If Greedy_Route2 as

signs the la tter route, then every link in the set

{ (x0,2* > x l,2*) i (z I,2, jX2i2>) i x h-\,2‘) t (z /i-l,2M vl) }

will have congestion c +  1. Since every other link in the network had congestion a t most c 

before the request arrived, every link must have congestion at most c -I- 1 after the request 

has been assigned the route.

In d u c tio n  s te p  ( j  > 1). We partition the induction step into two cases.

C ase 1 ( j  < h): If j  < h, then the j th request in a \  is (xj_ 1 2 ,,Uj+i). Greedy_Route2 

must assign one of two routes — (zj - i , 2 *> xj,2i > vj+ i ) or (x7 - i > > xj,2 *> " '  —
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to this request. By the induction hypothesis, every link in the set

128

{ {.x j — 2,2*i x j —1,2’) * {.x j —l£ ' ixj£i ) »••• i (,x h—2,2*’ Xh—12') » {x h— 1,2*» U1) }

can have congestion c + j  — 1 when this request arrives. Assume that this is the case. Then, 

since both routes contain the link {xj-i ,2' i xj,2l) no link can have congestion greater 

than c + j  — 1, both routes have congestion c + j  — 1. Thus, Greedy_Route2  may arbitrarily 

assign either route to the request. If Greed y J I o u te2 assigns the latter route, then every 

link in the set

{  {x j —1,2*> x j,2')  ' (x j,2%i x j+l,2') i —  i {x h—2,2li x h-l,2l) » {xh—1.2* > u l )  }

will have congestion c + j .

C ase 2 (j  = h): If j  = h , then the j th request in a \  is (x/l_i>2*,ui)- Gr eed  y _Ro u te2 must

assign the route this request. Since, by the induction hypothesis, the link

ix h- ! 2», Vi) has congestion c + h — 1 when the request arrives, it will have congestion c + h

after the assignment. H

L em m a 4.6

For all integers h >  1 and t >  1, the set of optimal routes for request sequence <Jh ,i on network 

Gh,i is pairwise edge disjoint.

P ro o f

To prove the theorem, we simply present the pairwise edge disjoint route assignment. First, 

to each request (ut>vi) e  <Ju l =  1,2, . . .  ,2* — 1, we assign the route {ul, xq+,v\ ) . These 

routes axe clearly disjoint since the values of t are all different. Second, for each request
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( x ly2i , v t+2 ) €  a 'h , t = 0,1,... ,h  -  2, we assign the route { x L̂ , x L+l2l , v L+2)-  Again, 

these routes axe clearly disjoint because the values of l are all different. They are also 

clearly disjoint from the set of routes assigned to the requests in cr,. Lastly, for request 

(x/i-i,2' , ui) £ 0^, we assign the route ui)- I

Finally, we can use the preceding three lemmas to prove Theorem 4.6.

P roof o f  T h eorem  4.6

Recall that the request sequence er^ consists of the concatenation of the subsequences ct 

and a lh. By Lemma 4.4, Greedy_Route2 can incur congestion i after the ith (and last) phase 

of subsequence cr,. Specifically, Greedy_Route2 can incur congestion i on every link in the 

set

{(*0,2- , x 1.2' ) * (x l,2*> x2,2*) »• • • i {x h-2,2l i x h-l,2')  > {x h-l,2'ivl)  } •

By Lemma 4.5 then, after GreedyJIoute2 has assigned routes to all the requests in 

the link (xh_ li2.,oi) has congestion i +  h.

Now notice that, by (4.13) and (4.14),

i  — log(n — 2d + 4) — 1.

Thus,

i +  h =  log(n — 2d + 4) + d  — 2.

On the other hand, by Lemma 4.6, an optimal algorithm can always find a set of edge 

disjoint routes with congestion 1. Therefore the competitive ratio of Greedy_Route2 is 

Q(d +  log(n — d)). ■
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4.4 A Lower Bound for Layered Networks

In this section, we consider the case where all the paths for all the requests have length d. 

and prove a lower bound on the competitive ratio of Greedy_Route2 that is almost as high 

as that in Theorem 4.6. Similar to the result in Section 3.4, this lower bound also implies 

a lower bound on the variation of Greedy_Route2 which breaks ties in favor of the shortest 

path.

T h eo rem  4.7

The competitive ratio of GreedyJIoute2 is Q, {d +  log ( j  — d)) on layered networks for arbi

trarily large values of d  and n.

To prove the theorem, we will first construct an arbitrarily large network Gh,i (for any 

h > 1 and t >  1) and a  corresponding request sequence that can cause Greedy_Route2 to 

incur congestion equal to h + i. We will then show tha t this quantity is equivalent to the 

quantity in Theorem 4.7. The proof of this result is very similar to the proof of Theorem 4.6.

4 .4 .1  T h e  N e tw o r k

For any integers h > 1 and i > 1, Gh,i is a  directed network with unit capacity links. The 

vertex set of Gh,i is defined to  be

V{G^i)  =  {ut : 1 <  t <  2i +  h -  1} U K  : 1 <  t <  h}

U { x K,t : 0  <  k  <  h ,  l < L < 2 t +  h  — l } \  1 <  k  <  h  — 1, t  =  K +  2 ‘ } .
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The directed edge set of G ^ , i  is defined to be

i

E { G h , i )  =  {('u2*_ l »x 0 ,2*-*) » (u3-2‘- 1iJI0,3-2‘- 1) > (u5-2‘- l >x0,S-2‘- 1) *••• > («2*-2— 1 » x 0 2 ' - 2 ' ~ l
t=l

i

LJ { (U2‘"1» x0 ,2 -2‘- 1) > (u3-2l~1 1 x0,4-2‘- 1) > (u5*2*_ 1 > x0 ,6-2‘- 1) i • • - » (u2*-2‘-1i x0 ,2*) }
i=l

U {(x«,t,a;)t+i,t): 0 < k  <  h  -  1,1 < i  < 2*} U {(x ^ .u i): 1 < t < 21}

U {(«2 -,i0,2*)}u {(xh,2M«i): 2 < t < h }

U { (^n Xo,t) i (xo,t> Xtfl) , . . . , (xt_W—2,d Xt_;V—l,i) j (Xt_JV—lti, >

(xt—AT,2*» xt—Af+l,i) > (xi—N + l , t i  3* i—N + 2 , i )  » • • • » (XA— l,i> %h,i) ,

(xĥ i»t- 2v+i): 2 i +  1 < t < 2 * +  fe -  1 , Af =  2 4} .

As an example, (*4,3 is shown in Figure 4.4. Notice that G/i,, has

n =  (h +  2)(2*' +  fc— 1)4-1 (4.15)

vertices and

m  =  ( h  -F 3)2* +  A2 +  2 h  — 4

edges.

4 .4 .2  T h e  R e q u e st  S eq u en ce

As in the previous section, we will define the request sequence 07^  for network G h , i  to be

the concatenation of two subsequences er* and a \ .  Each request f j  requires unit bandwidth

and has arrival time 0, and so we denote each request simply by (S j , t j ). The subsequence
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£ 0 ,1  Z l , l  %2,1 ®3,1 a:4,l

^3,2 S4.2

S 3 ,3  S 4>3

S3,5  S 4 5

S 3,6 S 4,6

SO,8 S i ,8  12 ,8

S0.10  S i ,

Figure 4.4: The layered network G4,3 .

<7i is identical to that in the previous section and consists of 2 * — 1 requests organized into 

x phases. In phase t, 1 < t < t, we issue the 2l~L requests

( U 2 i —l , U i )  , ( u 3 .2 t - l , U l )  , ( u 5 .2 . - l , U l )  •

The request subsequence cr̂  contains the following h requests:

( U 2t ,  U2) , (tl2 i+l, U3) ,... , ( U 2»+fc_2, v h) , (s2.+fc_lt «x).

The subsequence a \  differs from that in the previous section in that each source node xt>2« 

is replaced by u2.+t.
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Notice that the longest path that can be assigned to a  request in Gh,t has length

d = h + 2. (4.16)

Thus, we are issuing

k  =  107,̂ 1 =  2l +  /i — 1 =  2* -Fd — 3 

requests on the network Gk,i- 

4 .4 .3  P r o o f  o f  th e  L ow er B o u n d

Lemmas 4.4, 4.5, and 4.6 from the previous section apply to the situation here with few 

modifications. The modifications arise from the introduction of layers into the network and 

the corresponding changes in the request sequence.

P roof o f  T heorem  4.7

As in the proof of Theorem 4.6, we can infer that Greedy_Route2 incurs congestion i +  h. 

Notice that, by (4.15) and (4.16),

i = log -  d 4 -  3  ̂ .

Thus,

- - d  + 3 j + d - 2 .

On the other hand, an optimal algorithm can always find a set of edge disjoint routes with 

congestion 1. Therefore the competitive ratio of GreedyJIoute2 is (d -F log ( j — d)).  ■

i + h = iog 0 4
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Chapter 5

Online Packet R outing and  

Scheduling

5.1 Introduction

Up to this point we have considered online greedy algorithms for routing virtual circuit re

quests. In this chapter, we consider online greedy store-and-forward scheduling algorithms 

for moving packets in a packet-switched network. As discussed in Chapter 1 , we are inter

ested in a  model in which each packet is assigned a route and a  schedule at the source. This 

model has the advantage of simplifying switches on the network, and also has theoretical 

interest stemming from its proposed use in past literature (e.g., [72, 82]).

Simplifying the notation from Section 1.1, we will denote a  sequence of packets as 

a  = p i , P 2 , . . .  ,Pit> where each p j  — (S j , t j , a . j ). The values s3, t j ,  and a.j are as defined 

earlier: Sj  is the packet’s source node, t j  is the packet’s destination node, and a, is the 

packet’s arrival time. If  Pj is the route assigned to packet pj,  then let Pj{i) denote the

134
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i th link in the route. A schedule for packet pj is a function Sj : { 1 ,2 ,... , | i j |}  —> {aj +  

1 , a, +  2 , . . .  , } where Sj(i) is the time step during which packet p3 will cross link Pj{i). If 

Sj(i) Sj[i — 1 ) +  1  then pj waits in the queue, or is delayed, a t the head of link P,(z) 

during time steps Sj(i  — 1) + 1 , Sj ( i  — 1) +  2 , . . .  , Sj(i) — 1. The schedule Sj  must be feasible, 

that is, it must obey the capacity constraints of both the links and the queues during each 

time step.

Like most related models in the literature, we will assume tha t clocks are synchronous 

and time is measured in discrete time steps. Each time step t > 1 refers to the continuous 

time interval (t — 1 , £]. During one time step, up to w packets may cross each network 

link. If a packet arrives during time step a7, the earliest it will cross the first link on its 

path is during time step a, +  1. We consider the dynamic problem in which arrival times 

are arbitrary and any number of packets may originate or be delivered to any node. This 

is in contrast to a static permutation routing problem in which a3 =  0 , for all j ,  and an 

equal number of packets originate at every node. Whereas a  perm utation routing problem 

is a good approximation to a  system in which nodes produce equal numbers of packets 

at the same rate, a  dynamic problem resembles systems with less predictable and more 

general behavior. Let Cj  denote the completion time of packet pj,  which is the time when 

Pj reaches its destination. The goal of an algorithm is to minimize the makespan of its 

schedule, defined to be max., Cj.

In this chapter, we will assume that packets are not delayed due to full queues. Equiva

lently, we assume that q(v) > pw  • indegree(u) for all v € V,  where p. is the congestion of the 

o n lin e  route assignment. We note tha t this assumption is quite c o m m o n  in the literature 

(e.g., [6 8 , 31, 72, 82, 83, 8 8 , 64]), in which bounds are proven on the expected size of queues
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a posteriori.

136

5.2 Bounds on Optimal Makespan

We can state both lower and upper bounds on the makespan of any optimal schedule.

In general, let S =  maXj {ay 4- |p.*| j ,  where P* is the route assigned ’to packet pj by an

optimal algorithm, and let A =  max {[^x*] ,5}, where p.* is the congestion of the set of

routes assigned by an optimal algorithm. The following states a trivial lower bound on the

makespan for any schedule.

Fact 5.1

The makespan of any optimal schedule is at least A.

It turns out that, for any static packet scheduling instance, the optimal makespan is

always within a  constant factor of this lower bound. The following theorem is due to

Leighton, Maggs, and Rao [59, 57].

T heorem  5.1 ([59, 57])

Let V  be a set of routes with maximum length d  and congestion p  for a static packet routing 

instance on an arbitrary network. Then there always exists a schedule for this instance with 

makespan O (p + d) = 0(A ) that uses only constant length queues.

A schedule whose makespan matches this bound can be found by a centralized offline algo

rithm  [58].
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5.3 Greedy Fixed Priority Scheduling

Define GFP to be the online scheduling algorithm that schedules each request immediately 

in the order it appears in the sequence and does not delay a  packet a t any link e during 

time step t unless there are w  previously scheduled packets already assigned to e during 

t. Recall that this is the simple scheduling heuristic proposed by Mao and Simha [72] and 

Rivera-Vega, et al. [82].

GFP creates a  greedy, fixed priority schedule. The schedule is greedy in the sense that 

packet pj is delayed at a  link e during time step t only if w  other packets are already 

traversing e during t. It is a  fixed priority schedule because it is as if packet pj has priority 

j  and is only delayed by packets with higher priority * <  j . 1

This scheduling technique has advantages over other techniques, primarily from an engi

neering point of view. First, each packet need only carry its priority to encode its schedule. 

On the other hand, other global scheduling algorithms (e.g., [57, 91, 8 ]) need to have packets 

carry more explicit information about their entire schedule. Second, very little work is re

quired locally at the network switches to forward packets. During each time step, a switch 

need only examine the packets waiting for each adjacent link e and send the w packets 

with the highest priorities. (The algorithm need not decide which packets to send on which 

l in k s  since the route for each packet has been assigned in advance.) O ther local scheduling 

a lg o r i th m s , such as the one which forwards packets with the farthest distance yet to travel, 

require slightly more work and bookkeeping.

I t has been shown in the literature [82, 30, 31, 67, 6 8 ] tha t greedy schedules in general

‘We use greedy in this way to reflect the terminology used in the literature. Notice that a global syn
chronous time base is necessary for the priority scheme to work properly.
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exhibit quite good worst case guarantees on certain sets of routes. Mansour and Patt-

Shamir [67, 6 8 ] proved the following bound on the makespan of any greedy schedule on

shortest paths. The result holds even for dynamic instances.

T heorem  5.2 ([68])

In any greedy schedule that follows shortest paths, each packet p j  arrives at its destination 

within dj +  [^jpj time steps.

Previously, Rivera-Vega, et al. [82] had shown that GFP specifically achieves the above bound

on shortest paths when w  =  1 .

Note that this result is not useful for analyzing the competitive ratio of an arbitrary

greedy scheduling algorithm. For example, consider a graph consisting of 2 nodes and k

unit capacity parallel links. An algorithm assigning all packets to the same link would be

using shortest paths, and would therefore deliver all packets within k time steps. However,

an optimal algorithm would assign each packet to its own link, giving a competitive ratio

of k, the worst possible.

Without using this result, we can however prove a  trivial upper bound on the competitive

ratio of any online greedy sc h e d u l in g  algorithm th a t always uses the same route as the

optimal algorithm. (This would be the case on a tree, for example.) Let d =  maxi<j<jt \Pj\

denote the length of the longest path assigned to a  packet.

T heorem  5.3

The competitive ratio of any greedy online scheduling algorithm which always chooses the same 

route as the optimal algorithm is at most min{/j,d +  1}.

P ro o f

For a  particular problem instance, let pj denote the packet tha t finishes last in the online

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5. ONLINE PACKET ROUTING AND SCHEDULING 139

schedule. Notice that

Cj  <  dj +  dj +  (fi — 1 )dj <  5 -+- [ft — 1  )d.

According to Fact 5.1, the optimal makespan is at least A. Therefore, the competitive ratio 

of any algorithm is at most

5 + ( p - l ) d  ^  A +  ( p - l ) A
 r  <  t =  (5.1)

Alternatively, we see that

Combining (5.1) and (5.2), we can conclude that the competitive ratio of any greedy online 

scheduling algorithm is at most min{fi, d + 1 }. ■

5.4 Linear Array Networks

In this section, we analyze the competitive ratio of GFP on full-duplex linear array networks. 

A network is called full-duplex if packets can move in both directions concurrently between 

each pair of adjacent nodes. On the other hand, a network is called simplex if packets 

can move in only one direction between each pair of adjacent nodes. Formally, a full- 

duplex linear array network consists of n  nodes {uo,ui,. . .  ,un- i}  and 2 (n — 1 ) directed 

links {(«i, ut+i ) , (u,•+!,«*): * =  0 ,1 ,. . .  , n  — 2}, each with capacity w. We will naturally 

assume that all packets follow acyclic routes.
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Recall that we are interested in situations in which an arbitrary number of packets 

may be requested between any source/destination pair, and packets can arrive at arbitrary 

times. Some simpler cases are trivial. For example, if there is only one source and all arrival 

times are different, there is never any congestion. This is also true in a  permutation routing 

problem.

Our results actually apply more generally to any network in which each node has indegree 

one. This includes simplex linear arrays, simplex ring networks in which all links axe directed 

either clockwise or counter-clockwise, and arborescences directed from the root toward the 

leaves. The latter network might model communication from a server process at the root 

to client processes in a  client/server system. In the context of more general networks, the 

results in this section apply to situations in which the network can be partitioned into lines 

of nodes, and each packet’s route resides entirely on one line. Moving packets on linear 

arrays is also a fundamental problem in the design of many algorithms for multidimensional 

arrays. For example, in a two dimensional array, or mesh, packets are often routed along 

their row and then their column, or vice versa. Each half of the route is equivalent to a  

linear array.

We will prove the following theorem, showing a tight competitive ratio for GFP on linear

arrays (and the other types of networks discussed above).

T heorem  5.4

The competitive ratio of GFP is 2 — ^  on linear array networks.
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5 .4 .1  T h e  Lower B o u n d

We first bound the competitive ratio  of GFP from below. We construct an instance on a

simplex linear array since this network is contained in any network in indegree one. 

L em m a  5.1

The competitive ratio of GFP is at least 2 -  ^  on a simplex linear array network.

P ro o f

Assume w  =  1. Let k  =  n  — 1 and each pj  =  (vo, Vj, 0), 1 <  j  < k. Note tha t 6  = n — 1 and 

p — p* — n  — 1 since all packets must cross link (uo, ui). GFP schedules the packets in this 

instance in order, so tha t the last packet arrives at vertex un_i a t time (n — 2) 4- (n — 1) =  

2n — 3. On the other hand, an optimal algorithm will schedule the packets in reverse order, 

achieving a  makespan of n  — l . 2  Thus, the competitive ratio of GFP is a t least

2n — 3 1 ' 1
 =  2  =  2  . ■
n — 1 n  — 1 A

5 .4 .2  T h e  U p p er  B o u n d

In this section, we show that the lower bound in Lemma 5.1 is tight. Recall that we can 

infer from Theorem 5.2 above th a t the makespan of a  schedule constructed by GFP is at 

most cij + dj +  if pj  is the last packet to reach its destination. Much earlier, Valiant 

and Brebner [94] noted that the specific greedy algorithm that gives priority to packets that

2We note that this result holds in more general situations as well: in any instance, if there is at most one 
packet destined for each node and the packet that has the farthest distance yet to travel is given priority at 
each step, then every packet will reach its destination in at most n  — 1 steps ([54], page 161).
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have moved at least one step toward their destinations delays each packet a t most A: — 1 

times on a linear array. K~a.iifm a.nn and Sibeyn [51] showed tha t if w = 1 and all packets 

arrive at the same time, then any priority scheme will result in a  packet being delayed 

at most (i — 1 times on a  linear array. We note however tha t in a  dynamic problem, an 

arbitrary priority scheme could result in a  packet being delayed up to (n — l)(/x — 1 ) times. 

This will happen if, as a  packet enters each node on its path, p  — 1 new packets with higher 

priorities arrive at that node. By assigning priorities that correspond to arrival times, we 

can avoid this situation; we will show tha t packets are delayed fax fewer times with GFP. 

Kaufmann and Sibeyn also proved tha t the scheduling algorithm tha t always forwards the 

packet that has the farthest yet to travel is optimal for the static problem in tha t it always 

achieves a  makespan that is a t most the worst case optimal.

The following lemma bounds from above the maHnnim completion time of a packet 

in a schedule constructed by GFP. Prom this lem m a  we will infer an upper bound on the 

competitive ratio of GFP, which will, together with Lem m a  5 .1 , imply Theorem 5.4.

To simplify notation, we define

maXggPj |{»: 1  < t <  j ,e  €  Pj}]'
w

Lem m a 5.2

For any packet pj, Cj < a3 -F dj 4- Cj -  1.

P roof

Denote the completion time of pj  as Cj  =  aj + dj 4- x, x  >  0. For contradiction, suppose
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tha t x  > Cj  — 1 . Consider link Pj(l),  where p j  is delayed last, and notice that

Sj(l) = a j + x  + l. (5.3)

Also, notice tha t / > 1. Otherwise, by the definition of GFP, w earlier packets must cross 

Pj(l)  during each time step a7 +  1 , . . .  , a , j  + x,  which implies that

a  contradiction.

Let X ( r )  = {pi: i <  j  and pi crosses link Pj(l) during time step r} . Also, to simplify

notation, let t  =  Sj(l — 1) +  1. Then X ( t ) , X ( t  +  1 ) ,... ,X(Sj ( l )  — 1) are the sets of

packets (each with cardinality w )  tha t delay p j  on link Pj(l). Additionally, there may be

sets of packets X ( r ) , X ( r  +  1 ) , . . .  , X ( t  — 1) with cardinality w for consecutive time steps

r, r  +  1, - . .  , t — 1. If there are no such additional sets, then let r  =  t. Formally, we define

r  =  m in{r : 2  <  r  < t, |X (r) | =  w for all r, r  +  1 , . . .  , t}.

We first prove the following lemma under the assumption that x  > Cj — 1.

Lem m a 5.3

For al! packets p  € X[t), r  < t  < Sj(l) — 1, p must have crossed link Pj(l — 1 ) previously. 

P roof

Suppose that there is a packet pi G X ( t ), for some r < t  < Sj(l) — 1, that did not cross 

link Pj(l  — 1 ). Then, P ,(l) =  Pj(l).  Therefore, by the definition of GFP, w  earlier packets 

must cross Pj(l) during each time step a,- +  1 , . . .  , r  — 1 . Since w  packets also cross Pj(l)

^  ’((a7 + x) — (aj +  1) 4- l )w + 1
Cj  ^  "

w
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during each time step r , . . .  , Sj(l) — 1 and Pj crosses Pj(l) during time step Sj(l),

.  ^  I " — 1)  — [o i +  1)  +  l ) u;  ■+■ 1
Cj  £J 4it

=  (aj 4- x  +  I) — Oi by (5.3)

>  x + 1 since aj > a* and / >  1 .

But this is a  contradiction.

We now continue with the proof of Lemma 5.2. Let X  — U r< r< t-^(T) *-* iPj}- By

Lemma 5.3, the (t — r  +  l)tu +  1 packets in X  crossed link Pj(l  — 1) before time step t.

Thus, at least one packet p € X  must have crossed link Pj{l — 1) before time step r  — 1 .

Since p crossed link Pj(l) during a  time step greater than r  — 1 , p must have been delayed

by w  packets crossing link Pj(l) during time step r  — 1 . This set of packets must be the set

X ( r  — 1). But, by definition, X ( r — 1 ) contains strictly less than w  packets, a contradiction.

Therefore, x  < Cj — 1, which implies that Cj < aj +  dj 4- Cj — 1. This concludes the proof

of Lemma 5.2. H

Lem m a 5.4

The competitive ratio of GFP is at most 2 —

P roof

Let pj denote the last packet to complete in the schedule constructed by GFP. By Lemma 5.2, 

we know tha t Cj < aj + dj + Cj — 1. On the other hand, by Fact 5.1, the optimal makespan 

is a t least A =  max{|’p],(J}, where 6  =  maxj {aj + dj}. Therefore, the competitive ratio of
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GFP is at most

aj +d j  +Cj — I ^  6  + \(i] — 1 ^  ^ 1  u
max{f/*l,£} ”  m ax{f/i],J} “  A '

5.5 Tree Networks

In this section, we analyze the performance of GFP on trees. A tree is an undirected graph 

with a  unique simple path between any pair of nodes. In a  full-duplex tree network, each 

undirected edge is replaced by two directed links, one in each direction. In a simplex tree 

network, each undirected edge is replaced by one directed link. Any result for full-duplex 

tree networks can be applied to general networks by having packets follow paths that lie on 

a spanning tree.

Recall from the discussion a t the beginning of Section 5.4 that Theorem 5.4 applies to

trees directed away from a designated root. In the following subsection, we will consider

trees directed toward the root. Then we will discuss how to combine these results to schedule 

packets on arbitrary full-duplex trees.

5 .5 .1  T rees D ir ec te d  T ow ard  th e  R o o t

We can infer from Theorem 5.3 th a t the competitive ratio of GFP on a balanced tree is 

O(logn) since the length of the longest path  is O(logn). In this section, we show that this 

result holds tight for GFP on any tree directed toward the root. We prove the following 

theorem.
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Theorem  5.5

The competitive ratio of GFP is © (logn) on trees directed toward the root.

T he U pper B ound

Consider a tree with links directed toward the root. For any link e in such a network, let 

11(e) =  {e} U {e': there is a pa th  between the tail of e' and the head of e}.

We will use the following lemma to  prove an upper bound on the competitive ratio of GFP

for this case.

Lem m a 5.5

Suppose f i >  1 . If Sj(h) > aj +  2/A, for any integer / >  0. then |II (P ,(h))| > 2l — 1.

P roof

The proof is by induction on /.

B ase case (/ =  0). When / =  0 we need only show that {II (P_,(/i))| >  0, which is trivially 

true.

Induction step (/ >  0). Let g =  max{t: Pj was delayed a t link Pj(i), 1 < i < h}. Note 

that there exists such a  g since pj  was delayed for a t least 2/A — h > A > 1 time steps 

before crossing link Pj(h).  (We note tha t this also implies th a t g > 2, since pj could have 

been delayed a t most \x — 1 <  A — 1 times on one link.) Since, by definition, p3 is not 

delayed between the time it crosses link Pj[g) and the time it crosses link Pj(/i), we know
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that

S j ( g ) = S j ( h ) - ( h - g )

> S j ( h ) - { d j - 2 )

> aj + 2/A -  A

=  aj +  (2/ -  1)A. (5.4)

Now consider the time step during which pj crosses link Pj(g — 1). Using (5.4) and the fact 

tha t pj could have been delayed a t link Pj (g) for at most p  — 1 time steps, we see that

S j { g -  1) >  Sj(g) — p

> aj + (21 — 1 )A — p

> aj + 2(1 -  1) A.

Applying the induction hypothesis, it follows that

|II (Pj(g — 1))| > 2 l_l — 1 . (5.5)

Now let X ( t ) — {pi'- i < j  and Pi crosses link Pj(g) during time step t} . Also, to sim

plify notation, let t = Sj(g — 1) +  1. Then X( t ) , X ( t  + 1 ) ,.. .  ,X(S j (g)  — 1) are the sets 

of packets, each with cardinality w, that delay Pj at the head of link Pj (g). Additionally, 

there may be sets of packets X (r) ,A ’(r +  l ) , . . .  , X ( t  — 1 ) with cardinality w for consecutive 

time steps r , . . .  , t  — 1 . If there are no such additional sets, then let r  =  t. Formally, we

define r  =  m in{r: 2 <  r  <  t, |X (t )| =  tw for all r , r  -I-1 ,. . .  ,t} . Notice that, by definition,

r  > Sj(g) - ( p -  1). (5.6)
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To continue, we prove the following two lemmas.

L e m m a  5.6

For all packets p €  X ( t ) ,  r < t  < S j ( g )  — 1, p  must have crossed some link before it crossed 

link P j ( g ) .

P ro o f

Suppose there exists a packet Pi G X ( t ), r  <  t <  S j ( g )  — 1, that did not cross link P j { g ) .  

Then P*( 1) = P j ( g )  and, by the definition of GFP, w  earlier packets must cross link P j ( g )  

during each time step a* 4- 1, a* 4- 2, . . .  , r  — 1. Since w  packets also cross link P j ( g )  during 

each time step r, r  + 1 ,... , S j ( g )  — 1 and p j  crosses P j { g )  during time step S j ( g ) ,

((Sj{g) -  1) -  (at +  1) 4- l)tu + 1  
w

> aj +  (2/ -  1)A -  at

> A

by (5.4)

since a3 > ai and I > 0 .

But this is a  contradiction. ■
L e m m a  5.7

There is at least one packet pi €  X(q),  for some q, r  < q < t, that must have crossed a link 

other than P j ( g  — 1 ) immediately prior to crossing link P j ( g ) .

P ro o f

We know from the previous lemma that all packets p  €  X( r ) ,  r  < r  <  t, crossed some link 

before crossing link Pj(g)- For contradiction, suppose tha t all these packets crossed link 

P j ( g - l ) .  Let X  = Ur<r<5 j(s)-i X (r)U{py}. Notice that, since the (t — r + l)to + 1  packets 

in X  crossed link Pj{g — 1) before time step t, at least one packet p  6  X  must have crossed
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link Pj(g — 1 ) before time step r  — 1. Since p  crossed link Pj(g) during a  time step greater 

than r  — 1 , p must have been delayed by w  packets crossing link Pj(g) during time step 

r  — 1 . But this set of packets must be the set X ( r  — 1 ) which, by definition, has cardinality 

less than w,  a  contradiction. ■

We now continue with the proof of Lemma 5.5. By Lemma 5.7, there exists a  packet 

P i  € X(q),  t  < q < t, that crossed a link Pi ( f )  #  Pj(g — 1) immediately prior to crossing 

link Pj(g). Packet pi crosses Pi{f)  no earlier than during time step r  — 1 . Otherwise, GFP 

would have assigned pi to link Pj(g) during time step r  — 1  at the latest, since fewer than w 

packets that appeared before p* cross Pj(g) during tim e step r  — 1 . Using (5.4) and (5.6), 

we see that

U(f )  >  r  -  1

>  Sj(g) -  (p -  1) -  1

>  aj -I- (21 -  1)A -  (p  -  1) -  1 

>Oi + 2 { l -  1)A.

Hence, by applying the induction hypothesis, it follows that

|n(Pi ( / ) ) | > 2 |- l - L  (5.7)

Lastly, we need to show that II(P i(/)) n  II(Pj(g — 1)) =  0. For contradiction, suppose 

tha t there exists a  link e' such tha t e' 6  H (P i(/)) and e' € II(Pj(p — 1)). Then there is a 

path  from the tail of e' to the heads of bo th  Pi(f )  and Pj{g — 1 ). Since both Pi(f )  and 

Pj(g ~  1) are immediate predecessors of Pj(g),  and Pi( f )  #  Pj(g — 1 ), these axe two distinct
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paths between link e' and the tail of Pj(g).  But this contradicts our assumption that the 

network is a tree. Thus, by combining (5.5) and (5.7), we can conclude that

\U(Pj{h))\ > mPj ( g ) ) \

z m P i i M + m P j b - m  + i 

>  2 l -  1.

The 1 in the second inequality counts Pj(g) & U.(Pi(f)) U Yl(Pj{g — 1)). ■

L em m a 5.8

maxj Cj <  0(logn)A .

P ro o f

If /x =  1, then no packets will be delayed and competitive ratio is 1. Thus, assume y. > 1 . 

Consider an arbitrary schedule constructed by GFP and let p3 be the last packet to finish in 

this schedule. Let / >  0 be the integer satisfying

2/A <  Cj -  aj < 2(1 +  1 ) A.

Thus, Sj(dj) > aj +  2/A. By Lemma 5.5, we know that |U (Pj(dj))\ > 2l — 1 . Thus,

Cj < aj + 2(1 +  1 )A

< a j  + 2 (log (|n (ij(c /j))| +  1) +  1) A 

<  2(log(m +  1))A +  3A

=  0(logn)A . ■
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T h e  Low er B o u n d

Leighton, Maggs, and Rao [57] constructed an instance that shows tha t the competitive

ratio of any deterministic algorithm that chooses the order in which packets pass through

a node independent of the paths that the packets take after they pass through the node (a

nonpredictive strategy) is Cl ( l0gfcgW) on a binary tree. Notice that this result applies to a

number of intuitive scheduling algorithms, including fixed priority algorithms, FIFO, and

any algorithm that bases its decision on how long a packet has been waiting in a queue. It

does not however apply to the algorithm which gives priority to packets with the farthest

yet to travel. By using the same network with a  different request sequence, we will show

that the competitive ratio of GFP is fl(logn) on a binary tree.

T h e o re m  5.6

The competitive ratio of GFP is fl(logn) on a binary tree.

P ro o f

For arbitrary positive integers c and d, we consider a full, directed binary tree of height 

d — 1 with one extra node x  connected to the root by a single edge. The edge between any 

two nodes is directed toward the node on the higher level. The edge connecting x  to the 

root is directed toward x.  We will say tha t x  is on level 0, the root of the full binary tree 

is on level 1, etc. Label the I =  2d~l leaves vi , vz , . . .  ,V[ from left to right.

The request sequence consists of the k = c-1 packets in the set

(Pij : ! < < < / ,  l < J < c } .
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10: P ia .3  

11: P13.4 

12: P i s , 3 

13: P i s . 4

13: P S .3

1 *  P 8 .4

10: P4.3 15: P i s .3

18: P i s ,4

12: P s ,3

13: Ps,4

8: P 14.4
9: P 4 .3 9: P i s .3
10: P4

10: p i s . 4 4: P lS -3

5: P is .4

8: P a .3 6: P i s . 3

7: P i s . 4

1 1: P l S . l  1: P14.1 1: P i s

2: P u . a  -  p i s . a  2: p i s . a2: Pia.a 2: p is.a
.3  3: p i s .3  3: p i s .3  3: P i s .3  

.4  4: P14.4 4: P i s . 4 4: P i s .4

3 : P 13.3  3 : P 13

4 : P ia .4  4 : P 13

Figure 5.1: An example with c =  4 and d =  5.

Let S{j and Uj  denote the source and destination of packet pxj ,  respectively. The sources 

and destinations of the packets are defined as follows: s* j  = vx and

ancestor of vt on level d — 1 , 1  <  j  < [§]
t i j  =  ancestor of Vi on level d — h — 1 , Tf 1 +  1 < j  <  c, t  odd, h =  1 , 2 ,

x, r | l  +  l < J < c ,  i = 2d- 2 , 2 d~x
. ,d  — 2

The packets all arrive at time 0 and are ordered lexicographically by index in the sequence.

The last packet, pj>c, arrives at its destination at time c +  (d — l)(c  — 1) =  (c — l)d  +  1 . 

For example, see Figure 5.1. An optimal schedule has length d- f- f  — 1. Therefore, if we set 

c =  d, the competitive ratio is Q(d) =  fl(logn). ■
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5 .5 .2  A r b itr a r y  Trees

Let us now consider arbitrary full-duplex tree networks. We naturally assume that packets 

follow acyclic routes. For any packet pj,  let top (j) denote the node in Pj that is closest to 

the root. Notice tha t each path in an arbitrarily directed tree can be partitioned into two 

subpaths. First, a  packet follows a (possibly empty) subpath tha t is directed toward the 

root from node Sj to node top(j) and then it follows a (possibly empty) subpath that is 

directed away from the root from node top(j) to node tj.  If an instance consists of packets 

whose routes are directed only toward or only away from the root, then either Theorem 5.8 

or Theorem 5.4 applies to that instance, respectively. For more general cases however, 

neither of these results applies directly.

Consider what happens if we use GFP to schedule packets on paths which are directed 

toward and then away from the root of a tree. In order to apply the previous results, we 

need to view the instance in terms of two request sequences: the original request sequence 

and one describing how each packet arrives a t the node a t the top of its path. The first 

sequence is considered to be on a  tree directed toward the root and the second is on a set 

of linear arrays directed away from the root. By Theorem 5.8, each packet will arrive at 

its top node within 0(log n)C* time steps. However, Theorem 5.4 does not apply to the 

schedule assigned to the second (virtual) sequence because the priorities that the packets 

were assigned a t their sources may not correspond to their arrival times at the top nodes 

on their paths.

We can fix this problem by reassigning a priority to each packet at its top node based on 

the time the packet arrives at its top node. Since GFP knows these times, it can assign these
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second priorities a t the source. In other words, GFP assigns a  priority to a  packet based 

the packet’s arrival time and then, based on the time the packet will reach the top node 

on its path, GFP assigns the packet a  second priority for use on its subpath away from the 

root. Let C3 denote the time pj reaches top(j) in the schedule constructed by GFP. Then, 

by Theorem 5.4, pj  will reach its destination by time Cj < Cj + d + p — 1 <  O (log n)C*. 

The only caveat about this approach is th a t the schedule for a packet pj on its path away 

from the root is not necessarily known when the packet leaves its source, since packets may 

arrive later than pj  a t their source nodes but earlier than pj at their top nodes and thus be 

assigned higher priorities and eventually delay pj.

5.6 Ring Networks

In this section, we consider full duplex ring networks. In a full duplex ring, there axe exactly 

two routes tha t any packet can follow to  reach its destination. Therefore, we will need to 

combine routing and scheduling for the first time.

Because Greedy_Route1 and Greedy_Rqute2 can choose arbitrarily long routes on arbi

trary networks, a routing and scheduling algorithm which combines either Greedy_Route1 

or Greedy_Route2 with GFP scheduling can perform badly on a ring. For example, consider 

an n  node ring with nodes indexed vq ,v\, . . .  ,un- i-  Given one request from node vq to 

un_i, both Greedy_Route1 and Greedy_Route2 may assign the long route, taking n  — 1 

time steps, while an optimal algorithm will clearly assign the short route, t a k in g  just one 

time step. Therefore, we have the following theorem.
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T heorem  5 .7

The competitive ratio of any algorithm that chooses routes with either Greed y_Ro u te1 or 

Greedy_Ro u t e 2 is £l(n) on ring networks.

As an alternative, we need to consider algorithms that give some preference to short 

routes. In the next subsection, we will consider the online algorithm th a t always chooses 

the short route and schedules packets with GFP. For convenience, we will call this algorithm 

Rin g _Ro u te  and prove that it is at most 3 — ^  competitive. In the special case that till 

packets originate a t the same node, we will show that the algorithm is a t most 2  competitive. 

Later we will show that the competitive ratio of any algorithm is a t least 2  — e if the 

algorithm always assigns a packet to its shorter path if the path has length at most fin, 

for some Q < fi < \ .  This result applies to the dynamic algorithm of Sibeyn [8 8 ], the only 

dynamic algorithm for packet routing on a  ring of which we are aware. To beat this lower 

bound (if possible), we will need an algorithm that is adaptive in some sense.

5.6 .1  M in im u m  H op  R o u tin g  and  GFP S ch ed u lin g

Every simple path  on a  full duplex ring is contained in one of two disjoint simplex rings. 

We will call the simplex ring with links pointing clockwise the right ring and the simplex 

ring with lin k s  pointing counter-clockwise the left ring. A routing algorithm must decide 

whether to route a  packet to its destination via the left ring or the right ring. The algorithm 

Rin g _Ro u te  will always choose the simplex ring which conta in s  the shorter route for each 

request. The packet’s schedule is then assigned by GFP.
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Before we prove our result, we define some useful notation. Let

156

A = { j :  P j  =  P ; }  and B  =  {j :  P j  *  P ' }  .

Furthermore, let A  = Ai U A r where Ai  is the subset of indices in A  of packets which the 

online algorithm routes in the left ring and A r is the subset of indices in A of packets which 

the online algorithm routes in the right ring. Similarly, B  = B iU B r . Therefore, R i n g _ R o u t e  

routes the packets with indices in Aj U B [  in the left ring and the optimal algorithm routes 

the packets with indices in A, U B r  in the left ring. The symmetric property holds for the 

right ring.

We will use the following two lemmas in the proof of our upper bound result. For a set 

of requests S , let

\ { j e S : e e  P j ]|us  =  max —------------------—.
e€E W

Us is defined analogously for the optimal route assignment.

Lem m a 5.9

M B , <  M b , a n d  M B r <  (*Br-

P roof

We will show that m b , < M b , -  The argument for B r  is symmetric. Recall tha t the set of 

requests in Bi  are assigned shortest paths in the left ring in the algorithm’s route assign

ment, but are assigned long paths in the right ring in the optimal route assignment. Let 

(vi, U(i+ 1)m0<jn) denote the link tha t satisfies the definition of fig, . Let S  C Bi  be the subset 

of requests tha t are assigned to (ui,U(i+i)modn) in the algorithm’s route assignment. (So
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fiBt =  | S | . )  Now partition the nodes of the ring into two sets: let

X  = |u t : t = ( i  + |^ j  + l) mod n , ... , i j

and let

Y  = : l = (t + 1) mod n , ...  , (t + [" ĵ j  mod n j .

Notice that the source of every request in S  is in X  and the destination of every request in

S  is in Y,  since the requests are following shortest paths. Therefore, since all the requests

in S  are assigned to the opposite direction in the optimal route assignment, every request

in 5 must be assigned to the link )modn) in the optimal route

assignment. Thus, n mBl > |S| = nar  ■

L em m a 5.10

M < 2m*- 

P ro o f

In the worst case, the total congestion incurred by the online algorithm is

H < max{fiAl + MB,, PAr +  MBr } •

The inequality is an equality if, in the simplex ring with the maximum congestion (say the 

left ring), the link e that satisfies MA,(e) = MA, also satisfies MB,(e) = MB,- 

Without loss of generality, suppose ha , + MB, > MAr + MBr- Then,

M < I*A, +  MB,

< Ma, +  Mb,

<  2 m‘-
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The second inequality follows from Lemma 5.9. ■

We can use the preceding lemma to prove the following theorem.

T heorem  5.8

R in g _Route  is 3 — ^  com petitive on a full duplex ring.

Proof

Let pj  denote the packet that completes last in the online schedule. Since the schedule on 

the full duplex ring is equivalent to two disjoint schedules, each on a simplex ring, we know 

from Lemma 5.2 that

Cj < a j  +  | P j |  4 -  Cj -  1

< max {ai +  |} +  [ > 1  -  1I

< *  +  2 |V l  - 1 .

The second inequality follows because packets are assigned to their shortest routes by the 

online algorithm. The last inequality follows from Lemma 5.10. Therefore, the competitive 

ratio of Ring_Route is at most

6 + 2 |>»1 — 1 1  

max{|Vl,<J} “  A '

■

In the special case that all packets arrive at the same time and originate at the same

node, we can show th a t Ring-Route is 2 com petitive.

T heorem  5.9

If all packets arrive at time 0 and have the same source, then Ring_Route is 2 competitive on 

a full duplex ring.
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P ro o f

Recall that R i n g - R o u t e  assigns the requests whose indices are in At and Bi to the left ring 

and the requests whose indices are in AT and Br to the right ring. Therefore, by Lemma 5.2, 

the makespan of the algorithm’s schedule is at most

max {4 +  ( |4 | +  \Bt\) -  1, dr + (\Ar\ +  |Br |) -  1} ,

where 4  and dr are the lengths of the longest paths in the online schedule in the left and 

right rings, respectively. The optimal algorithm assigns the requests whose indices are in 

Ai and Br to the left ring and the requests whose indices are in Ar and B( to the right ring. 

Notice that all of the requests in Bi and Br follow paths of length at least ^ in the optimal 

schedule. Therefore, since all such requests have the same source, the optimal makespan 

can be bounded from below by both |  +  |4 |  — 1 and 5 +  \Br\ — 1, if Bi 0 and Br ±  0, 

respectively. The optimal makespan can also be bounded from below by both |4 I  and |4 |-  

Without loss of generality, suppose that di +  ( |4 I  +  |Bj|) — 1 > dr +  ( |4 |  +  |Br |) -  1. If 

Bi = 0 then the competitive ratio of R i n g - R o u t e  is at most

4  +  1 4 1 - 1  
max (4 , |4 |}

Otherwise, the competitive ratio o f  R i n g _Rq u t e  is at most

|  +  ( |4 I  +  |Bf|) ~  1 
max { |  4- \Bi\ -  1, |4 |}  ~
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5 .6 .2  A  L ow er B o u n d

We can show that the competitive ratio of any online algorithm which consistently assigns

certain packets to their shortest paths must be at least 2  — c, regardless of the scheduling

algorithm.

Theorem  5.10

The competitive ratio of any routing algorithm which always assigns a request to its shortest 

path if the shortest path has length at most (3n, for any 0 <  0  < 5 , is at least 2 —e for arbitrarily 

small positive e.

Proof

Consider a  ring w ith n  nodes and a  sequence of k  >  ( 1  — 2 f3)n packets, all with source vq, 

destination u^gnj 1 and arrival time 0. The algorithm will assign all these requests to their 

shortest path, resulting in makespan \fin\ + k  — l. On the other hand, an optimal algorithm 

will assign fafc] packets to the shortest path and [ ( 1  — o)k\ packets to the long path, where 

a  =  l +  l̂~2^ n • The makespan of this schedule will be less than  Therefore, the

competitive ratio for this instance is at least

2 ( 1 M ± ± z l
\  n  +  k

For an arbitrarily large value of k, this quantity approaches 2. ■

Therefore, among the class of algorithms considered in Theorem 5.10, R i n g _Ro u t e  is 

asymptotically optim al if all packets arrive a t the same time and originate at the same 

node. This is somewhat remarkable since one would think that an algorithm that gives 

priority to the packet that has the farthest yet to travel might beat an algorithm using GFP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5. ONLINE PACKET ROUTING AND SCHEDULING 161

scheduling. However, in the worst cases (when many paths have the same length), GFP is 

just as good, and simpler.

Sibeyn [8 8 ] designed an algorithm for the dynamic case that assigns a packet to its 

shortest pa th  if the shortest path has length a t most |  and alternates the directions assigned 

to other packets. Packets are forwarded locally by giving preference to the packet tha t has 

the farthest yet to travel. Sibeyn conjectured that this algorithm might be worst case 

optim al for k-k  distributions based on examples. While this may be true when packets are 

evenly distributed over the network, it follows from Theorem 5.10 that the algorithm is 

clearly not optimal for arbitrary distributions of packets.

Theorem 5.10 implies that any deterministic algorithm with a competitive ratio better 

than 2 must be adaptive in some sense. An adaptive algorithm would examine the network 

state and then assign a  route accordingly. This is an interesting area for future research.

5.7 Arbitrary Networks

In C hapter 2, we showed that the competitive ratio of any online routing and scheduling 

algorithm on a  layered network is Q(logn) with respect to makespan. This result is based 

entirely on the network congestion the instance forces the routing algorithm to incur.

Cidon, Kutten, Mansour, and Peleg [30, 31] constructed a route assignment on a  certain 

non-layered network which forces a  greedy, fixed priority scheduling algorithm to assign 

a  schedule with makespan fi ( k  +  d y /k j , where d is the dilation of the set of routes. In 

the construction, both d and k  are O(n). If either Greedy JIouteI or Greedy_Route2 were 

given as input the same underlying network and request sequence, they could choose the
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same bad set of paths because every path for every packet shares a  common first link. The 

optimal makespan for the instance is O(d+k) since all the packets can be routed along a  line 

contained in the network. Thus, the competitive ratio of Greedy J I o u t e I  or Greedy_Route2 

combined with GFP scheduling is

even when d ,k  = O(n).

It is interesting to note, however, tha t if Greedy J IouteI or Greedy_Route2 chooses the 

shortest minimum congestion route for every packet in this instance, it will choose the 

optimal set of routes, which all lie along the aforementioned line of nodes.

5.8 Other Algorithms

In this chapter, we explored the feasibility of scheduling arbitrary dynamic packet sequences 

according to a  priority scheme based on arrival times. This method was shown to perform 

well on a  few simple, but common networks. On a  linear array, for example, an arbitrary 

priority scheme can result in worst case makespan for a  dynamic instance while GFP con

structs a schedule w ith makespan less than twice optimal. In this section, we briefly discuss 

other possible algorithm ideas that fit into our model of interest.

5.8 .1  G reed y  A lg o r ith m s  in  G en era l

Is GFP the only online greedy scheduling algorithm that can construct schedules in advance? 

Recall that a  greedy schedule must not delay a packet a t link e during time step t unless 

there are w packets assigned to e during time step t. GFP is the natural way to construct
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such a schedule. However, there are other possibilities. For example, a greedy, fixed priority 

algorithm need not assign priorities based on arrival times. An algorithm could assign the 

priority of a  packet at the source so that local nodes are forced to let it go in front of 

packets tha t arrived earlier. Another idea would be to leave “gaps” in the schedule to allow 

future requests to jump ahead of past requests, but then the nodes would need to locally 

“compact” the schedule if the gaps are not filled when a  packet that has been scheduled to 

wait arrives at the node. For example, suppose packet p arrives at node v  a t time t and 

has not been scheduled to cross its next link (v, w) until time step t + 2. But at time t only 

to — 1 packets have arrived at v tha t are scheduled to cross (v,w) during time step t +  1 . 

Then the node would choose to send p (or another packet in the same situation) across 

(u, to) during time step t +  1, earlier than it was originally scheduled. In this scenario, the 

schedule allocates time guarantees rather than absolute times. Packets could cross links 

ahead of schedule, and arrive at their next links earlier than originally scheduled. Notice 

that a schedule is allowed to change from its original form by moving packets earlier only; 

packets may not be moved later than originally scheduled.

There are many interesting questions regarding GFP on general networks. For example, 

is there a set of paths in any network for which GFP gives a short schedule relative to the 

optimal schedule? Is there an online algorithm that can find a good set of paths? We could 

use a  minimum spanning tree in an arbitrary network, but then we would have to show a 

relationship between this set of routes and an optimal set of routes to prove anything about 

the competitive ratio.
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5 .8 .2  A n  E x p o n e n t ia l S ch ed u lin g  A lg o r ith m

The question of whether a variant of Ex p -R o u t e  can be used to route and schedule packets 

on general networks is compelling. A good algorithm for general networks needs to both 

choose short paths and minimize congestion, both  of which are done by Ex p -R o u t e . This 

approach was applied recently by Awerbuch, Azar, and F iat [8 ] with some success to a packet 

routing model in which both link and queue capacities may be exceeded. They showed that 

a variant of Ex p _Ro u t e  can produce a schedule th a t is simultaneously 0  (log (T Yle^E  c(e)) ) 

competitive with respect to congestion, where T  is the maximum packet delay, and 0(1) 

competitive with respect to average packet delay.

Can this approach be used to construct schedules tha t do not exceed capacities? Un

fortunately, a  straightforward modification presents several problems. First, if we minimize 

the exponential function only over feasible schedules, then the current competitive analysis 

is no longer valid. Second, the algorithm as it stands has each packet pj either enter a 

queue at its source or cross the first link on its path during step a.j -1- 1. But this may 

not be possible if we respect capacities. Therefore, a  packet must be allowed to remain in 

the initial queue at its source indefinitely. But if we assign initial queues infinite capacity 

and incorporate this into the exponential function, then the algorithm, as it stands, will 

always choose a feasible schedule with zero congestion by waiting sufficiently long at the 

source. This will clearly have a bad impact on makespan, delay, and response time. We 

have explored several adaptations so far without success.

The exponential algorithm packet routing algorithm does not necessarily send a packet 

out on the first available route. It may hold the packet until the first link on another, better
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route is available. It would be interesting to know whether we can prove a lower bound on 

the competitive ratio  of an algorithm that always uses the first available route.

5 .8 .3  U s in g  a n  O ffline A lg o r ith m

Another approach to our problem is to simply wait for all the packets to arrive and then 

schedule them optimally offline. If k is finite, then this approach would result in makespan 

at +  C m <  2(7* — 1, since C* >  a* +  1 . Therefore, the competitive ratio of this algorithm is 

2 — e. However, there are a few problems with this technique. First, it is NP-hard. Second, 

the shortest packet completion time is greater than (7*. On the other hand, our results for 

GFP include bounds on the completion time of any individual request. Third, this won’t 

work on infinitely long sequences, unless we violate capacity constraints. This approach 

was taken in [8 ] to get an algorithm which is 3-competitive with respect to makespan and 

2 -competitive with respect to congestion.
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Chapter 6

Conclusions and Future Work

We have defined a general problem in which data  transfer requests on a network become 

known to an algorithm one at a  time and the algorithm must efficiently assign a route 

and/or a schedule to each data transfer request without knowing future requests. The 

arrival process may be arbitrary. We measure the efficiency of an online algorithm by its 

competitive ratio, the maximum ratio, over all request sequences, of the cost of the online 

algorithm’s solution to tha t of an optimal offline algorithm that knows the entire request 

sequence in advance.

We identify two distinct variations of this general problem. In the first, data transfer 

requests are permanent virtual circuit requests and the goal is to minimize the network 

congestion caused by the route assignment. In the second variation, data transfer requests 

are packets and the goal is to minimize the completion time of the last packet. In the 

next two sections, we will summarize our results for these two problems and outline related 

future research directions. In the last section, we mention a novel new model for routing 

and scheduling problems that we hope to investigate further in the near future.

166
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6.1 Online Permanent Virtual Circuit Routing

We have given several results concerning the efficiency of algorithms that assign routes to 

arbitrary sequences of permanent virtual circuit requests in an arbitrary communication 

network with equal capacity links. We first presented a  new proof showing that the com

petitive ratio of any online algorithm for permanent virtual circuit routing is at least 3 

with respect to network congestion. This result also implies a  lower bound of with

respect to makespan for an online routing and scheduling algorithm. The congestion re

sult improves by an additive factor a previous lower bound result of Aspnes, et al. [4, 5]. 

Compared to that construction, ours requires a smaller network and approximately half as 

many requests, and shows how to raise the lower bound for a  randomized online algorithm 

against an adaptive online adversary. The lower bound is tight with respect to the number 

of requests, up to an additive one.

We analyzed the competitive ratio of two greedy online algorithms for permanent vir

tual circuit routing. The simpler greedy algorithm, Greedy-RouteI, was proposed by Mao 

and Simha [72]. We showed that the competitive ratio of Greedy_Route1 is © (^V'Drnj on 

arbitrary networks when the bandwidth requirements of requests are approximately equal, 

where V  is the ratio of the longest to shortest path for any particular request and m  is the 

number of network links. When bandwidth requirements are arbitrary, our upper bound is 

increased by a factor of O  > where C is the ratio of the maximum to m in im u m  band

width requirement. We showed that a second greedy algorithm, Greed y_Route2, is superior 

to Greedy J IouteI  when the length of the longest path in the network is small relative to 

the size of the network. Specifically, at least when the set of optimal routes for a request
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sequence has a  small amount of overlap, Greedy_Route2 is max jo (d lo g n ) , O ('y V rr^ j j  

competitive, where d  is the length of the longest path assigned to a request and n  is the 

number of network nodes. If d =  0(log n), as is the case in many common networks, then the 

competitive ratio of Greedy JIou te2  is polylogarithmic; if d is constant, it is asymptotically 

optimal. We also showed that the competitive ratio of Greedy_Route2 isCl(d + log (n — d)) 

on arbitrary networks and Q (d +  log — d)) on layered networks.

These results answer open questions posed by Mao and Simha [72] and also present 

alternatives to the asymptotically optimal, bu t computationally more expensive algorithm 

of Aspnes, et al. [4, 5]. We discussed situations in which the greedy algorithms can be 

expected to perform well in Chapters 3 and 4. Since there is a tradeoff between speed 

and efficiency in the choice of algorithms, the decision of which to use really depends on 

the requirements of the situation. We would like to further investigate these questions in 

the future through simulations. It will be im portant to find appropriate networks for this 

purpose. One can always construct a  network that makes the algorithms look good; we 

would ideally like to find real networks on which these algorithms would be appropriate.

There are a  few technical points related to  Greedy_Route1 and Greedy_Route2 tha t are 

topics of continuing research. First, we suspect that the O term does not belong in

the true competitive ratio of Greedy-RouteI .  In the proof, it appears that inequality (3.5) 

is weak; we would like to improve it to perhaps get a tighter result. More work also needs to 

be done on the competitive ratio of Greedy_Route2. While it was important to show that 

the competitive ratio of Greedy_Route2 is polylogarithmic for some cases, it is clear to us 

tha t this upper bound is not tight. The two terms in the upper bound of Theorem 4.3 do 

not really “mesh” ; the first term can be much larger than the second term for large values
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of d. Based on examples, we would conjecture that the competitive ratio of Greedy_Route2 

is closer to the lower bound of 0{d  -+- logn).

There are also more general questions that interest us concerning the greedy algorithms. 

First, can we improve Greedy_Route2 by breaking ties in different ways? For example, if 

Greedy_Route2 breaks ties in favor of the route with the fewest maximum congestion links, 

then we lose the additive d in Theorem 4.6. It might also be interesting to look into 

random tie breaking schemes. Second, what can we say about the algorithms in cases 

with arbitrary capacity links? The analyses of the greedy load balancing algorithm do not 

preclude a polylogarithmic competitive ratio in this case. It would also be interesting to 

learn something about how the two algorithms handle switched virtual circuits. In this case, 

the definition of congestion changes to incorporate time, and the arrival and departure of 

network traffic. Lastly, Rivera-Vega, et al. [83] proposed using a greedy algorithm related 

to Greedy_Route2 for assigning routes to file transfers in fully connected networks, but were 

not able to give any analysis for their algorithm. Can our analysis can be applied to this 

situation?

6.2 Online Packet Routing and Scheduling

We also investigated the quality of schedules constructed by an online greedy packet schedul

ing algorithm, GFP. We analyzed GFP on arbitrary online (dynamic) request sequences in 

which any number of packets may originate a t or be destined for any node. Each packet is 

simply assigned a priority based upon its arrival time and then no packet is delayed by a 

packet w ith a  lower priority during its schedule. We pointed out that this type of schedul
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ing, although not necessarily optimal, is advantageous in that network switches must do 

minimal work to forward packets. This type of scheduling was also proposed by Mao and 

Simha [72] and Rivera-Vega, et al. [83] but not analyzed by either group.

We showed that the completion time of any packet scheduled by GFP on a linear array, 

or any directed network with indegree one, is at most a.j +  d j  +  Cj — 1 , where Cj is the 

maximum congestion on any link of P j up to and including packet p j .  The competitive 

ratio of GFP is exactly 2 — where A =  max {[ju], max^ {a.j +  dj}}. We also showed that 

the competitive ratio of GFP is ©(logn) on a  general directed tree in which there is exactly 

one path between any two nodes.

On a  full-duplex ring, there are exactly two paths tha t any packet may follow to reach its 

destination. For this situation, we considered the algorithm that always assigns a packet to 

its shortest path and assigns a  schedule with GFP. For convenience, we called this algorithm 

R i n g J I o u t e  and showed that it is 3 — ^  competitive. If all packets arrive at the same time 

and originate at the same node then Ri n g _Ro u t e  is 2 competitive. Lastly, we showed that 

the competitive ratio of any algorithm for the ring which always assigns a packet to its 

shorter path if the length of the shorter path is at most (3n, for any 0 < /3 <  ^, is at least 

2 — e for an arbitrarily small positive e. This result implies that any deterministic online 

algorithm that is better than 2  — e competitive must be adaptive: the algorithm must use 

its knowledge of the past to make routing decisions.

The investigation of adaptive online a lg o rithm s for the ring is a primary topic for future 

research. We would also like to prove a tight competitive ratio for R in g _Ro u t e . We have 

so far been unable to construct an instance which causes R in g J I o u t e  to have a competitive 

ratio greater than 2. Lastly, we would like to analyze the competitive ratio (or performance
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ratio, as the case may be) of the algorithms proposed by Makedon and Symvonis [64] and 

Sibeyn [8 8 ]. These algorithms were only analyzed with respect to their worst case makespan. 

One of the algorithms in [8 8 ] is for dynamic instances and would fit into our model if it were 

not for the scheduling, which is performed by giving priority to the packet with farthest 

distance yet to travel. Prom our lower bound result above, we already know that the 

competitive ratio of this algorithm is at least 2 — e. It would be quite interesting to show 

that both R i n g _Ro u t e  and this algorithm match this lower bound. This would imply that 

farthest first scheduling is no better than GFP scheduling with respect to competitive ratio 

on a  ring. The other algorithms in [64, 8 8 ] are designed for static k  — k permutations but it 

would still be interesting to prove bounds on the ratio between the algorithm’s makespan 

and optimal makespan for each particular instance, in the spirit of competitive analysis. 

This was also mentioned as an interesting open problem by Kaufmann and Sibeyn [50].

There are several ways in which we may attempt to generalize or alter the network 

model in the future. First, we might consider files of arbitrary length or networks links 

of arbitrary capacity (although unit length packets and unit capacities are standard in 

the literature). Second, for long or infinite request sequences, it would be worthwhile to 

examine the competitive ratio of GFP with respect to the maximum or average delay (C j—a j). 

Third, it would be important to look at more general networks. A related issue would be the 

consideration of half-duplex networks. A network is half-duplex if packets can move between 

adjacent nodes in both directions, but not concurrently. Fourth, we would be interested in 

considering more realistic time models. We assumed, as most packet routing models do, 

that time is synchronous. This assumption is valid in parallel computer architectures, but 

it is not valid in general distributed systems. For these harder cases, one would need to
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base a  priority scheme on logical clocks rather than real clocks. It might also be possible 

to assume roughly synchronized clocks. W ith these more general, distributed assumptions, 

standard competitive analysis is no longer a  good measure of efficiency because, in addition 

to a  lack of knowledge about future requests, there is a lack of knowledge about event order 

and reliability. New distributed models of competitive analysis have been proposed recently 

[1 , 6 ].

Lastly, we wish to consider cases in which queue lengths are bounded, and therefore a 

packet may be delayed because the queue at the head of its next link is full. The routing 

and scheduling problem with bounded queues is clearly a  much more difficult problem [55]. 

Most scheduling models in the literature assume unbounded queues during the routing 

and then show expected queue sizes in their analysis. Far fewer papers, to our knowledge 

(e.g., [59, 56, 63]), have successfully addressed the issue of arbitrarily bounded queues in 

any non-stochastic packet routing problems. One interesting special case of this problem 

is hot potato routing or deflection routing, in which packets are never allowed to wait in 

intermediate queues. Rather, at each step, a node’s queues must be emptied and all packets 

sent on some adjacent link. Sometimes this means that a  packet must be derouted, or sent 

away from its destination temporarily. A special case of hot potato routing is direct routing, 

in which packets are never derouted: once a  packet leaves its source, it moves one link closer 

to its destination with each step. Symvonis [91] and Alstrup, et al. [2] designed offline direct 

routing algorithms for trees tha t first construct a certain order for the packets and then 

assign s ta rt times greedily. Bach of these algorithms is guaranteed to deliver every packet 

to its destination in at most n  — 1 steps. It would be interesting to study the online version 

of the problem in which packets cannot be ordered before start times are assigned.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 6. CONCLUSIONS AND FUTURE WORK  173

6.3 A Different Link Scheduling Model

The classical models of machine scheduling and load balancing do not accurately represent 

job  scheduling in m u ltip ro g ra m m in g  operating systems. The classical models allow for 

only one job at a time to execute on any machine. Some models allow an algorithm to 

preempt jobs. Depending upon the model, a  preempted job must either continue on the 

same machine at a later time without penalty [53] or be restarted a t a later time, possibly 

on a  different machine [85, 8 6 ]. In either case, the preempted job must leave the processor 

while another job is executing. Although m u ltip ro g ram m in g  can theoretically be modeled 

with the former model of preemption, to accurately do so might require that each job be 

split into thousands, or even m illio n s , of pieces. Instead, we propose a  model in which a  job 

may be started on a processor at any time without removing other jobs. Rather, the rate 

a t which each job executes on a machine is simply slowed in proportion to the number of 

jobs tha t are currently assigned to the machine.

For example, consider the following example on a single machine: job Ji arrives a t time 

0 and has processing requirement Af, and jobs J%, J3 , and J 4  arrive at time e and have 

processing requirement 1. If J\ is scheduled first and the others are forced to wait, then the 

sum of the completion times of the jobs is M  + (M  4-1) 4- (M  +  2) 4- (M  4- 3) =  AM  4- 6 . On 

the other hand, if jobs J2 , J 3 , and J 4  are allowed to start execution when they arrive, then 

the total completion time is 3(4 4- e) 4- (M  +  3) =  M  +15 4- 3e, which is close to the optimal 

time of (I +  e) +  (2 4  e) +  (3 +  «) +  (M  4- 3) =  M  4- 9 4- 3e. This problem can be viewed 

of as a  kind of parking problem, as depicted in Figure 6.1. A machine is represented by a 

rectangle with height proportional its processing power and length equal to the time interval
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J 2 J4

c 4 +  c M  M  + 3

Figure 6.1: An illustration of m u ltip ro g ram m ing  and serial scheduling models.

considered in the problem. Each job is represented by a rectangle with area equal to its 

processing requirement. The top illustration in Figure 6.1 depicts the multiprogramming, 

or shared, model while the bottom  illustration depicts the serial model.

We can also apply this idea to the problem of transferring file transfers in a network: 

we allow several files to share a  link at the same time. In the underlying network protocol, 

the files are transferred simultaneously over the same link by rotating use of the link on a 

packet-by-packet basis. However, modeling such a transfer at the packet level would be too 

cumbersome. On the other hand, pretending that links are switched on a  file by file basis 

is unrealistic.

In this model, as long as there is at least one file being transferred over any link, the 

link’s bandwidth is fully utilized and divided evenly among all the files using it. As a result, 

the speed of each file transfer a t a  particular moment is slowed in proportion to the number
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of files using the link. In particular, if a t time f, j  files are using link e, then the speed of 

the link is ^  as far as each file is concerned. We note th a t the bandwidth used by a  file 

may change with time as files finish or more files arrive a t the link. Although pipelining 

files is certainly possible, it is simplest to assume that a  complete file arrives at the head 

of a  link before it begins its traversal of the next link on its path. Once a complete file 

reaches a  node, it may be delayed there at the discretion of an algorithm. We note that 

these assumptions imply tha t nodes “understand” files in some sense.

Again, it is convenient to depict the construction of a  schedule as a kind of packing 

problem. The bandwidth available on each link is depicted by a  rectangle with height equal 

to its capacity and length equal to the extent of time considered in the problem. Each 

file transfer f j  is represented by a rectangle with area equal to the file transfer’s length lj. 

The object is to appropriately pack the area of each of the file transfers into the rectangles 

representing the links. If a  file transfer has length lj then it must occupy an area equal to 

lj  on each link in its path before it progresses to the next link in its path. For example, 

the example in Figure 6.2 illustrates a schedule assigned to an instance consisting of six 

file transfers — / i  =  (ui,u 2 ,20,0), / 2  =  (v2 ,u 3 ,9 ,2 ), / 3  =  (ui,u 3 ,4 ,4), / 4 =  (i72 ,u 4 , 4 , 4 ), 

h  =  (u2 ,t>5 , 5 , 6 ), and fe = (ui,u 2 , 8 , 7) — on four links — (t>i,u2) with capacity 4, (v2 ,t/3) 

with capacity 2, (u3 ,t/4) with capacity 2, and (u2> v$) with capacity 1. Further investigation 

of this model is left as a topic for future research.
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Figure 6.2: An illustration of routing and scheduling in the shared link model.
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Appendix A

Proof of Lemma A .l

The following simple lemma is used in the proof of Theorem 4.2 in Chapter 4. 

L e m m a  A .l

For any a,y  > 1. alny  < |"log(«±i) y"| <  alog2y + 1 .

P r o o f

lo g (a ± i)y  <  [log(«±i)y

^  <  [log(s f! )»  

a ln y  <  |~log(a-n) v

<  l° g ( 2± i) V +  1

< lo£2 +  i
iog 2  m

alog2y . 
~ alog2 (s±i)

<  a l ° s 2 y .,  +  1
iog 2  m c

< a log2  y t 1
log2  2

< a log2  y +  1 .
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Common N otation

The following is a list of the notation most commonly used in this dissertation, 

log n = log2  n

a-j is the arrival time of the j tb request 

c(e) is the capacity of network link e G E  

Cj is the completion time of the j th request 

d — maxi<7<jfc Dj 

dj =  minp6^  |P |

Dj =  maxpg-p^ \P\

V  = max!<_,<*

e E E  is a network link (also e*)

E  is a set of network links

f j  is the j th data transfer request
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G = (V ,E) is a directed graph representing a  communication network 

k =  \a\

lj is the length or bandwidth requirement of the j th request 

C =  -  A

m = \E\

n  =  \V\

Pj is the j th packet request

Pj € Vj is the path assigned to the j th request by an online algorithm

PJ E Vj is the path assigned to the j th request by an optimal offline algorithm

Pj(i) is the i th link in path Pj

\P\ is the number of links in path  P

Vj is the set of paths between Sj and tj

Sj is the source node of the j th request

S j is the online schedule assigned to packet p7

Sj(i) is the time step during which packet pj crosses link Pj{i)

tj  is the destination node of the j th request

V is a  set of network nodes

w  is a uniform link capacity

6 = maxi<j<k |a 7 + |p*||

A =  max {f/i’l ,5}
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A =  mini<j<* lj 

A =  maxi<j<klj

Mj(e ) =  Hi<j:e6P< itfe) 

n(e) =  îfc+i(e) 

f i j(P)  =  m ax eep /^e) 

l*{P) = Ht+xiP)

Hj  =  m a x c e s ^ e )

/x =  /ifc+i is the network congestion given by an online algorithm for a  problem instance 

Hm is the optimal network congestion for a  problem instance 

a  is a  request sequence
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