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ABSTRACT

Deuteron wave functions with a repulsive core are obtained
numerically from a fully relativistic wave equation introduced by
Gross. The numerical technique enables analytic solutions for
classes of interactions composed of the relativistic exchanges of a
single pion and a single phenomenological meson, sigma. The pion is
chosen to interact as a mixture of pseudeoscalar and pseudovector.
The amount of mixture is determined by a free mixing parameter, A ,
ranging between 1 (pure pseudoscalar) and 0 (pure pseudovector).
Each value of A corresponds, then, to a different interaction.
Solutions are found for A =1, .9, .8, .6, and O,

The wave functions for each interaction come in a group of
four. Of the four wave functions, two are the usual § and D state
wave functions, while the remaining two, arising out of the
relativistic prescription, are identified as 3P1 and 1P1 wave
functions (P state wave functions).

For the interactions solved for, the D state probabilities
ranged between 5.1 percent and 6.3 percent, while the total P state
probabilities ranged between 0,7 percent and 2.7 percent.

The method of obtaining solutions was to adjust the sigma
meson parameters to give the correct binding energy and a good
quadrupole moment,

All wave functions obtained are applied to relativistic N-d
scattering in the backward direction where the effect of the P states
is quite measurable,



CALCULATION OF DEUTERON WAVE FUNCTIONS

WITH RELATIVISTIC INTERACTIONS



I. INTRODUCTION

This thesis presents new sets of deuteron wave functions
obtained by solving a relativistic wave equation.1 Each set is
composed of four wave functions:

1. u, the S state wave function
2. w, the D state wave function

3. Voo the triplet P state wave function
4. Vs the singlet P state wave function

0f these four wave functions, only u and w appear in the usual
non-relativistic theories. Non-relativistic wave functions have been
obtained by many people. We will compare our results with those of
Reid.2 His u and w, which correspond to non-relativistic representa-
tions of upper component Dirac wave functions, were the result of solv-
ing coupled Schrodinger Equations with potentials that were fit to N-N

phase shift data, His analysis did not include the P states, v, and
Vg which are smaller than u and w by one order of v/c, and which

correspond to the two additional degrees of freedom of a Dirac
particle contained in the lower component wave functions. Furthermore,
the overall parity of our P states is the same as for our § and D
states in analogy with the Dirac upper and lower component wave

functions for the Hydrogen atom.



The P states were first obtained in a semi-relativistic

calculation by Hornstein and Gross.3 The identification of v, and v

as P states is discussed in Section II. This calculation obtained

v, and Vg through the use of an iteration process using the Reid u and

W as generators.

In contrast to the above calculations, we calculate, using the
three-dimensional wave equation appearing in Section II1, all four wave
functions numerically from exact relativistic interactions involving a
one pion exchange and the exchange of a phenomenological spin-isospin
scalar meson, sigma,

To compare with the semi-relativistic model mentioned above,

we considered the pion interaction to be a mixture of pseudoscalar
5 2 AV
( ¥7) and pseudovector ( Y 3’ ) and found solutions for several

values of the mixture parameter, ’\, ranging between )\= 1 (pure ,’5)

and A\ = 0 (pure )'”)’ 5).

The wave functions, u, w, v_, and vy, were obtained through

t
their.relationships with the invariant amplitudes, appearing in the
d-NN vertex function, which is tailored to the deuteron's spin
channel. The criteria for good solutions'were to fit the deuteron's
binding energy, B, taken to be 2.22466 MeV, and produce a non-

relativistic quadrupole moment, Q, near the experimental value of
25.5 e/’

To get the values of the binding energy and quadrupole moment



listed above, the phenomenological mass of the sigma,/qs_, and
coupling constant, 9:/'[7]' , were adjusted,

Once the sclutions were obtained, two deuteron processes were
calculated to get a feel for the significance of these new wave
functions:

1. pionic disintegration of the deuteron (77d -» NN)

2. N-d scattering at 180°
The first process, F*d =pNN, calculated by E, Delacroix and F. Gross4,
which is not contained in this manuscript, gives a cross section
compatible with the data near threshold which is remarkably higher
than previous calculations of the pole term. Delacroix and Gross show

that their calculated cross section is very sensitive to v, and vy

(the deuteron's P state wave functions), a fact not known before.
‘Their relativistic calculation of the cross section, with no other
mechanisms folded in, shows that relativistic deuteron wave functions
have an important effect.

The second process, N-d scattering at 180°, calculated by
F. Gross, E. Remler, and this writer,s is discussed in Section V.
Here, too, we find that the P state wave functions give important
contributions to the differential cross section calculated from the
one nucleon exchange (ONE). It is pointed out in Section V that other
(non-relativistic) attempts to calculate the ONE contribution without
other mechanisms have failed.

Good relativistic deuteron wave functions are essential in

order to perform calculations in addition to those mentioned above,



It is hoped that the wave functions illustrated in Section IV will
give reliable estimates in future calculations.

The examination of other relativistic N~-N channels will tell
us more about the deuteron's interaction channel and will furnish
additional constraints on the choice of interactions. The
relativistic triplet N~N scattering phase shifts, important as an
additional constraint on our deuteron interactions, can be calculated
and at this writing, a program is underway to do just that,

In addition to presenting relativistic deuteron wave functions,
this work includes calculations of formulae for Hydrogen-like atoms
using our relativistic techniques. These calculations can be found in

Appendix D.



II. THE WAVE EQUATION

We use a three dimensional wave equation to describe the

1
deuteron, The equation is written as:

~ “ 3
(I"C")w(g) = -ij—f_- cg :c)/l (k,w}(r'c) (K)

(2 ) t‘fﬂ .V)’ ‘l n (1)

where the two body Green's Function is

[t (e8] [Mew- (X -K)]
H(KJWJ = 2E, MJ (’_E“ - MJ) (2)

and the subscripts 1 and 2 denote the Dirac indices of nucleons

1(A'HY") and 2 (p'y"™) respectively,6 where nucleon 1 is on its

mass shell and nucleon 2 is off its mass shell so that

($+4) = ($+1) = 1" 2
W= 0y, 8)

Md = mass of deuteron = 2M + B

M = nucleon mass = 936.8 MeV

C = charge conjugation matrix

B = deuteron's binding energy = -2.22466 MeV (4)
The external nucleon 4-momentum, q, and the internal nucleon

4-momentum, k, are defined as:



s o
$(50)8)  goE-%  Elaw3”
K= (KOJ -K’) Ka':'. EK" ';_—h EK== Mz"f' -’2 *
” -

2= 3/1%1 K= R/IRI )

where the interaction kernel;]gr, is a sum of single particle
exchanges, one of which is the pion. Thg kernal will be discussed in
detail in Section III below.
~
The vertex function of the deuteron,’1 , was first introduced

by Blankenbeckler and Cook,7 and for one nucleon on shell and one

nucleon off shell takes the form:8

Fig) =] F-a#] §-H 5 - k]G -an]ss + W= ©

where F, G, H, and I are Lorentz invariant amplitudes, f is the
deuteron's polarization 4~-vector, and the invariants are linearly
independent.

In diagramatic form, equation 1 is:

Wit
gl 1 $rl ‘
fe re
W —— = W iv
~ 2
éf' K %E..f}

..s_p_

Figure 1
The "x" in figure 1 indicates the on shell nucleon.
1f one thinks in terms of the 4-dimensional Bethe-Salpeter
Equation,9 the 3-dimensional nature of equation 1 may be puzzling.

A simple explanation lies in the fourth component integration (dKo)



of the Bethe-Salpeter equation.
The Bethe-Salpeter energy denominator (ED) for two propagating

internal nucleons is given by:

ED= [Mo- (¥+K)—ie J[M> (%-K) e ]

= (E+ B o ) (B W g e B g e v )

(7

The K0 integration of the Bethe-Salpeter Equation is performed by
chooging the pole, K, =E - Md/2, go that the dominant part of the

two pion exchange diagram is the first iteration of the one pion
exchange cI:i.agram.]'0 The residue of this pole gives the energy
denominator of equation 1:

We can define positive (4"*) and negative (\I/-) energy wave

functions of the Dirac type, expressable in terms of the d-NN vertex

function, F 1,3 as: ) - -~
w .  Ba@nep( re), (£)
T 5 Gey )
- (S5) ,~ A
o -M d, BT L @) (rc), (5)
t’:-s %) [&m mﬂj?’] & Es MJ =4 (9b)

where the Dirac spinors, U and V, are defined as:



X 27
» EAM - +M %’PM 1,
T
Et-f-ﬂ

-

T (10

'I = nucleon spin wave function

. + - .
Furthermore, ‘P and ‘l’ can be case into two-compeonent

3,8,11

form and written as:

+ == = -
Y = 5,‘,‘:‘)‘&.[“‘31- “—,;%’(3%”-5 58 -q'o;)]:(

IM (11a)

Y’Zg. = = ) Té'-{g)(&:*gz)‘i - 7£(g-’) @f“%)f]:{‘
K

@)%l & ZM(11D)

where 'x 1 are the spin wave functions of two spin -1/2 particles

-
coupled to a spin 1 particle with projection M and where 0"1 and 03

the Pauli spin matrices, act on nucleons 1 and 2,

Equation 1lb contains the triplet, Vs and singlet, v, wave

functions which are the coefficients of terms linear in momentum as
they should be for P states (€ = 1). In equation 1lla, u, the S state
wave functioﬁ, enters with a term constant in momentum (,{ = (), and
the D state wave function, w, enters with a term quadratic in momentum
(‘ = 2). A detailed analysis of the spin and angular momentum
structure of equations 11, along with how these wave functions behave

under the parity operation, has been done by Horns;tein.8



10
Using equations 10, one can reduce equations 9 to equations 11.
The deviation can be found in reference 8, where relationships

connecting the wave functions u, w, Veo and v to the invariant

amplitudes F, G, H, and i appearing in equation 6 result, These

relationships are:

1 g
U= 3%5@55—%)[ GOt -anes 1)

-~V (Eg~M) 5
_——L———w -
W= By £y G5 '!!)IF{ [?)1-(353'”)”[.]] (12b)

. 4 2,
i)+ VITM B M /3—"'”5)

(12c)

-1
- 2y, EJM |
UG = ﬁ?r‘“%f"l{ (%) -6(3) + %: I/i')]
(124)
normaliéed so that :
32 L 2 2 2
%_53 Jg[mg) +WE)+Y )+ ‘bgc‘a’)] =1 (1)

where u, w, Ve and vy correspond to the 3S 3D 3

1* Dyp» Ly state wave

P By

functions respectively.1’3’8’11

Once F, G, H, and I are obtained, equations 12a-d are used to

generate the momentum space wave functions.
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To obtain the position space wavefunctions, Fourier transform

was performed on the momentum space wave functions:

4= 2 ¥k danug
P 284 fanwa)

- 20847 4,080

%9- 2 (39 3,08 % )

where ie(qr) are the Spherical Bessel Functions.

(14a)

(14b)

(l4c)

(144)



III. THE RELATIVISTIC INTERACTIONS

We now restrict the interaction kernel,K, to be composed of
the relativistic exchange of only two mesons, the 77 meson which has
been known for some time to correctly describe the long range nuclear
force, and a spin-isospin scalar, or ¢ meson, which many people
employ to describe the intermediate attraction known to be necessary

to bind the deutercrn.12

Wk Yry ek Hes K4 By
|

= TP~k + o P=3-k
!

W-k %-% Y¥-x w-¢ ¥k X-g
Figure 2

In this initial calculation of relativistic deuteron wave
functions, we chose to uge the sigma ingtead of the more exact and
harder to calculate two pion exchange contributions. The rho meson,

a two pion resonance, together with the omega meson, a three pion
resonance, can easily be added to the interaction to give us, perhaps,
more information concerning the short range nature of the nuclear
force. However, for this work, we chose the simple interaction kernel
composed of the one pion and the one sigma exchanges as an initial
test of our equation's ability to describe the deuteron's dynamics.

12
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Our gigma exchange represents those two pion exchange
diagrams which are not contained in the one plon exchange. Some
of these diagrams, represented by the sigma, are illustrated in

Figure 3.

' ! : _ i i
AN ! '! :
(a) (b)
Figure 3

Figure 3b represents the full box diagram minus the first

iteration of the one pion exchange, and figure 3a is the crossed

box diagram.
The sigma meson, therefore, is a phenomenological represen-

tation of the twe pion continuum,
Since the ¢ is a spin-isospin scalar, its ¢F -NN coupling is

simpl , where is a unit operation in the Dirac space of

mply %ﬂ'i! 1, P P

nucleon one. The 777, being a pseudoscalar, is usually described by

a YS coupling; but, recentlyl it was shown, using a semi-relativistic
approximation of equation 1, that a pure ¥ 3 interaction produced

too much repulsion and that when more of the )’5 Xdinteraction

was added, the repulsion was reduced., So, to examine the effect of

mixed 3’5 - 3'53”“ interactions in a fully relativistic framework,
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the pion coupling was chosen to be

AR AT A BN

(15)

where k is the mixing parameter for the XS and xsb"“:’mteractions,
f" is the nucleon isospin operator, and the subscript 4 is a shorthand
for the Dirac indices of particle one. Both the mass shell 77-NN
interaction and the long range part of the nuclear force are
independent of ,\ . The nuclear force's dependence on A comes

from the off mass shell JT -NN interaction which affects the short

range force only.

a 2

In what follows, ga./qyr and 30'/‘/”' will be referred to
as the @ -NN coupling constant and the 77-NN coupling constant
respectively.

Since a calculation of the two pion exchange kernels have to
have a regularized one pion exchange kernel as input ,10 both the one
pion exchange and the one sigma exchange kernels are regularized
with the same regularization mass.

Two types of regularization were used. One is written as:

2 2 &
f(py = (Ma T Hex)
_ ( MR'-'— - rz ) (16)

and the other is written as

£(pY =

My
(-7
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where

MR = regularization mass

,‘{ex = exchanged particle mass, ,‘901‘ ,qa_

p=q-K
This regularization procedure is flexible enough not only to
guarantee convergence of our equations but to allow the possibility
of using it as a form factor (see Section 1V).

Hence, the regularized pion kernel is

-3 (;) )“';"‘a% b’é(_t-A)_L [Ax“’-- 2—’;7: bj(-l-AZ] )

”) /# z__Pz (18)
v

and the regularized sigma kernel is

/q 2_ PZ. (19
where/qf and/44r are the pion and sigma masses respectively.
/4

For the sake of simplifying the discussion below, equation 16
is taken to be the form of the regularization,
So, folding equation 16 and the exchanged particle propagators

together and expanding as

(Mg cxz) -‘L 1 M -'//
@‘—P‘ (4‘/")(&-?) 4P~ MP (‘n’?’f—&ﬂ“”’

and then substituting into relations 18 and 19, three terms result

from each substitution. Considering for the moment terms independent
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of M.R, equation 1 becomes with the MR independent interaction kernels,

i =~ G (DAL [fkon) - 03-

(avr):?' AM, Ek (5‘5&"”‘!, )('qu" ?"‘—;)

+ _g_,,.i f 4%k ( g-l-,l(-f-M)F(K)(M"—g-f-K)
E1? ) " A ME (RE-M) 4 —p?) (21)

Since nucleon 1 is on its mass shell,
2 2 2

(Eik)= (Y +5) = m
(22)

and ¥/2 + 4 = M when acting to the left, then

[ %) +a% st ‘A)](%.é tKHM) = ¥ (¥ +K+M)

(23)

Thus, equation 21 reduces to

g - 397 S‘P" b'sf-fhmf«t) Pi(m-¥+0)¥ ™
&)’ aM; E§<(5255K~A{J)<?1;j£fgi)

_ 33;@ & b’s(-{—f +K+M) ﬁs)(u-gi Ky
MG | M ELQE -M )42 p?)

. _£_ S Jx (J,{-:-xm) Faa(m-¥+K)
@Y ) AMERE~M ) (43~ p?)
(24)
To keep the bookkeeping under control, the first and third
terms of equation 24 will be calculated presently and the remaining

term, T (the 1-); term), will be calculated afterwards.
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"
Define N (K) as

N = PR (M- Y+K)

_ F'OMZ MJ F ﬁfi

= - B~y -F5VW +aks(F- (M-d). &,
M /? e {(F-G+1 o ,_)1-_...;(”& 25
where ¢4=("‘.—.¢'K)2' and Mz-‘-uzng(aEx- M;)

Therefore, equation 24 becomes
A 5‘ ‘.
e = Q—%;SY (—,{—6 +;<+u) N (k) XS_JSK,,’
™ 3 ¢
+@Lﬂ)38(.g-f+z+n4)mk)a’ kK + T
(26)

where

Pt = 3 92 d°k
LS RM E.REM)(4%pY)
2 1
k. = 3z 4K

3 2 M £, K(‘;’Ek"’@)(/q:- 7°)
d'k = RdR d¢, d=
AN

a: 3-k (27)

Now, substituting for I’ and N, equation 26 takes the form
(P2~ (% 3055 + B
"‘C_%)g Sb’%ﬁé +K+M) v’[;{(nz*),f— Ffi +ak§(F-& +I‘§'—f7‘f
~Cks o 1%, -f-é.;,;'jsg{ ¥k 1—M)[- %(nf-u)ﬁ -Fgy

+ab§(F—6+I‘g-§’%))+ gk.g¢]f§_‘ + T (28)



18
Using the identities derived for the integration of Cld’k in

(F "‘”)/? B (G-UWps+ EuiW
= 43 S ) gL A
+ almu-dgf-cgiw-e§ (F-G +T )
— [Mla-cl)g.g-c gip-ef] & W}
+@-‘n:)z.5clz Is’; - M( Ha)+b W]% (nl_“)j/_.["[m) 4%]’7 }6
+ afuard)g s+ sy f(F-6+1 Y5)

+ [M(Q+J)g-$+ C'a-fy/-ﬁe/?] T«C? ﬂg

+

(29)
After a little algebra and equating the coefficients of the

independent invariants /f’, gﬁ, 6*? , and 6-} }/, equation 29 takes

the form when T is neglected

s SJ:S [yt + bHF 2 (F - 6+1“‘““))]

(30a)
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T

,ﬂ:
M

%?P'

SJ"’ [Eutsy-n-aF + g G

[ BH
4-(_’3254"-,%[-5 M=) -MUta)+ 5 ]

3

e_an). A (3 rgy O
-(§-2)=2 (s famei)fF-6 oot
cmr S 2
T ] Haf I [aniard)-g a7 ey)

+C 'pcylz % ] .
7%, 5"&[’2‘3 (F-Gf-I(m)—(a-J)G-]

@'m)z s I3 :[ac (F-6+T an,_)-l'(a-[-:l)e,,]

(304d)

The set of equations 30a-d can easily be cast into a compact matrix

notation. The dZ integration can be performed with little effort

using Appendix A,
Thus, the final result is written

-

Fig-n2r J Kk Ga (43, AR mcz,«a 65
& 74 GE.
Ry M E GEM) ) wgmEar) TR,

where'né is the contribution to T, and %‘(x)'s are the Legendre

Polynomials of the Second kind with
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<
Ay~ AM + 2E Eq

X=

2 Kg (32)
and ' 2 2 2 ]
[11{5}*J%§94*fz%'£JJ o -6!442;7ﬁbe§£; ’:5%61-@)
7 . - ¢
G, A M (D +G)  E z[é’f_,@. j - Bl YYD
-MZ(A'--‘po) -Eﬂ, _g—r("i“) o
—‘;M’Z; 2 ( ‘») ’
- M, 1”3':‘) Y £ (M)
-
(33)
e+ %5:-" +M(A ;gi L (- NA R+ ) 5'_:';."'

o | aM(R4,) _zg-z{@-”?w)] 2B 4 Y)W
h W (A +4) -E_ ~gof-s) o

2.4

L %4 -l - %22 AL

(34)

Both ¢ and /3 range from 1 to 4 such that F, =F, F:2 =G

F3=‘H,F4=I.
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Now, 2; is calculated using the very same techniques as

- degeribed above for the other two terms and is written

. r
’T," _3(1—)«)% Kdk %(@,@@@)QE)

(35)
* ATy, B B ,)
where ’jjg ‘gﬁ’agﬁﬁa[ , ’ < '7
T -EM(E- 2
r+(ﬁ,]sr .z_f;’_g_i ‘(‘l"“)‘?‘;{; o
2z

& e LGN apamy L

. 2,0 o SAME
#‘r: Irﬂg(é ’2) M.
«d {
s -mp el o 0 P
- / L — y ¢ _1 QJ
§ % he %'3(?@] -t ) o
iabl ing i Gzr G‘r d H?r defined i
and all variables appearing in g %’ an e are defined in

Appendix A.

So far, we have only calculated the contribution to equation 1
of the first term in equation 20. That is, we have calculated

equation 1 independent of any regularization,

First Regularization

First Regularization is defined as the contribution to
equation 2 of the second term in equation 20.

As is readily seen from equation 20, the form of First
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Regularization is exactly the same as was just calculated above,

with the only difference being that the regularization mass, MR,

replaces the exchanged meson mass.
Therefore, to arrive at First Regularization, we replace

the pion mass,,I;r , by the regularization mass, M.R, in equation 31

and subtract this result from the pion contribution in equation 31
(terms with A dependence). We do a similar operation for the sigma

term.

Second Regularization

We define Second Regularization as the contribution to

equation 2 of the remaining term in equation 20, R.
R= - Mg~ A
( Mﬂa-' F%)Z 37

We see that by considering first derivatives of the Legendre
Polynomials of the second kind, R is easily incorporated into
equation 31 in a similar fashion as First Regularization., We replace

2 2 ¢

the g"s in equation 31 by = (HR'JIQ)G_’( /RK&. (see Appendix A).

Thus, with the incorporation of the full regularization
procedure, equation 31 represents relativistic interactions dependent
upon the mixing paratﬁeter,)t , having a range from 0 to 1.

To use equation 17 as the regularization instead of

equation 16, it is only necessary to multiply the result just obtained
L .,z
by ”R/ (M "’cx)



IV. WAVE FUNCTIONS AND OTHER NUMERICAL RESULTS

The process of computing wave functions from equation 30 is a
fairly straightforward matter with the help of the numerical
techniques described in Appendix C and the relationships between the
wave functions and the invariant amplitudes (equations lla-d). This
section's purpose is to display and discuss the wave functions and
other numerical results obtained.

Using the expansion
-%a N
5,'(3): e ; C}; L.c2)

where Li(z) are Laguerre Polynomials and F1 =F, F, =G, F, = H,

F, = 1, and

4

Z= —l—[Sm’n-l 4“,-—1)] (38b)

a mapped variable enhancing convergence of our equations, to express

the invariant amplitudes appearing in equation 31, and fixing MR,

A, and grz'/#]r , we obtain a set of coupled algebraic equations
from a set of four coupled linear integral equations to be solved

with two parameters for the dimensionless coefficients, Cji' The

two parameters are the sigma coupling constant, zls,ﬂﬁy', and mass,

.ugr. We set “%p and solved the equations numerically for the

23
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eigenvalue, 9,.2/y7r The requirements for a solution were that the
adjusted 'ﬂr and 372/4‘7/' give wave functions corresponding to the
correct deuteron binding energy, B = 2,22466 MeV, and a good non-

relativigtic quadrupole momeﬁt, Q, given by

9= (e fuw - 7]

o

(39

The experimental value of Q in the above units was taken to be 25.5,

As was stated earlier, the mixing parameter for the

XS and 35)/"{ interactions is denoted as )\ This parameter is
free to take on any value between zero and one. Each value of

corresponds to a different interaction. In this work, solutions
5

were found for)\ equal to 1. (pure ¥ 7), .9, .8, .6, and O

(pure ¥ 55”“) .

Convergence of the Numerical Procedure

Convergence criteria are discussed here. The uninterested
reader can go directly to the discussion of the solutions.
The parameter, n, appearing in equation 38a, is determined by

the number of integration points, ny, necessary for the integrals

(equations C.8) to converge. The optimum n is equal to n,. - 1, using

I
a numerical quadrature formula of the Gauss Laguerre type. This
condition, together with equations 38a-b, was first introduced by
Y. Chao and A. D. Jac:kson.]'3 Their techniques were verified and

used in the course of this work.
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To test the Chao and Jackson criteria for the convergence of
n,/‘_ was given the value of 500 MeV, A was set at 1, 9:.’/97[ was

taken to be 14.0, MR was set equal to 4M, and n, was taken to be 8.

Using the single pole regularization (First Regularization) and using
ﬂ:/‘ﬂr as the convergence parameter, we obtained for n = 4, n = 7,
n = 8,0 -NN coupling constants of 25.1, 23.8, 23.8 respectively.

it is clear from this data that for ny = 8, n converges at 7,

The number of integration points, n., was chosen by examining
P I
g;/gl as n, was increased., For 4, 8, and 12 integration points,

j:/gly' had the values 16.1, 19.3, and 19.4 respectively, with

M= 450 meV, =1, = 4M, 2 = 15,0, n = 4, and using
I M (v /

First Regularization. This data indicates convergence for n = 4 with

ng = 8. From these findings and the results obtained above for the

determination of n, the number of integration points was chosen to be
8 and, therefore, n was chosen to be 7.
Thus far, results have been quoted for the single pole

regularization (First Regularization) only. These results were for

the )\ = 1 (pure )’5) interaction. When the double pole regulariza-
tion (Second Regularization) is taken into account for )\ = 1,
g;’/ff changes by less than 0.02 percent, In fact, for First
Regularization and Second Regularization, ?;-' /4]’ has the values of
53.30 and 53.29 respectively for)(af 625 MeV, n = 7, and

z .
gr/f/”‘ = 14.0. It is not expected to obtain these respective values



26
S
of the O -NN coupling constant for >‘ # 1 since the 3’ ¥ inter-
action carrieg with it an additional power of momentum in the numerator
of the pion kernel.

Thus, the number of integration points set equal to &, n = 7,

3
r A

the 77 -8N coupling constant, 9”_/,'1”‘ , set equal to 14,0 (that of

Reid's) and the regularization taken to be Second Regularization is

the parameter package used for all solutions obtained. We now turn

to a discussion of the solutions themselves.

Solutions for High Mass Regularization (Case I)

In this first case of two to be discussed, the regularization
used was equation 16, and we required that the regularization mass,

‘MR’ be large enough so that a further increase of M.R will not change

the dynamics gsignificantly. Measures of the dynamics were taken to
be the ¢ -NN coupling constant and the non-relativistic quadrupole

moment. For M =M, 1.5M, 2M, 3M, 4M, the resulting 3,"/4;;- had
values of 17,16, 15.52, 16.32, 16,20, 16.19 respectively and the
corresponding quadrupole moments in units of e/M d2 for the M 's

cited above had the values of 27,97, 27.61, 27.39, 27.27, 27.26
respectively with ,'({r = 450 MeV, 8:/417 =15.0, n =4, =1,
and the number of integration points being 4, Convergence is clearly

obtained at MR = 3M,
Thus, for this high mass regularization case M.R's were taken

E X
to be 3M and 4M. With 3’/471' = 14.0 and M, = 4M, a solution was
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foundfor J = 1 (denoted A4 = 1). Table 1 contains the parameter

data and the physical quantities associated with this interaction.
Table 1 also contains the relativistic quadrupole moment obtained
from equation B.3 and the magnetic moment obtained from equation B.4

associated with ,\4 = 1.

Figure 4 illustrates the position space wave functions for

' )M.= 1 compared to those obtained by Reid2 non-relativistically.

Since the interaction is composed of the relativistic exchange
of the 77" and O mesons, and because in the non-relativistic limit
both of these mesons give potentials which are purely attractive, the
repulsion exhibited by the wave functions (u and w) in figure 4 are
due to the relativistic nature of the wave equation, a ''relativistic'
Ieffect.14
An obvious feature of these wave functions is the oscillation
of u and w at short distances. This behavior may partially explain
the success of hard core models,15 and can arise naturally when there
ére several coupled angular momentum channels even though all of the
potentials are regular. Oscillations have also been obtained
.breviously from unitary transformations of potentials, and are
associated with the additional non-locality introduced by the trans-
formations at short distances.16 In our case, the potentials produced
by the interaction are both regular and non-local at short distances,
and the oscillatibns are characteristic of the solutions obtained

from this model.



Table 1.

Data for all solutions obtained: PD is the D state
probability, Pt and Ps are the triplet P and singlet P

state probabilities respectively; Q, the quadrupole
moment, and,Az; , the magnetic moment, are measured in
units of e/Md2 and nuclear magnetons respectively. The
values of the mixing parameters :‘a, :\3, and Jh‘u

correspond to MR's of 4M, 3M, and Mtd (omega mass)

respectively.

28
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Figure 4.
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S and D state wave functions (labeled u and w
respectively) for >3 = 1 displayed at short distances,
The Reid hard and soft core wave functions are shown

for comparison.
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Solutions were also obtained for N\ = 1, .9, and .6 with

M, =3M (interactions denoted )3). Position space wave functions

are {]lustrated in figures 5, 6, and 7 respectively. The two cases

)‘4 = 1 and )‘3 = ] are identical and confirm the high mass

regularization criteria. The repulsion exhibited by the wave

functions in figure 5, 6, and 7 noticeably decreases as A3 ig

decreggsed. This is a verification of the semi-relativistic findings
predicted by Gross, cited earlier,

Table 1 contains the relevant data associated with the )\ 3

intergetions and figure 8 shows the non-relativistic quadrupole

dependence on the sigma mass for a given A3. It is shown in

figure 8 that physical solutions exist for only a few values of 4\3.
It wi1l be an easy matter to find solutions for h3 = .8 and .7
using the same parameters as in the )3 interactions previously
obtained. However, our inability to find solutions in the "low )\3"
interactions is apparently due to divergences of the kernels. As
stated earlier, the pure xsx"‘ (AS = 0) interaction has an
additjonal power of momentum in the numerator of the /7 kernel,

This extra power of momentum does not appear in the pure yS

(33 = 1) kernel. With the high mass regularization of 3M or 4M, the

divergence is very sensi.tive to >\ . What we must find is an MR with
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Figure 5. The four relativistic deuteron wave functions for }‘3 = 1.
The small circles are values of Reid's u and w shown for

comparisgon.
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Figure 6, The four relativistic deuteron wave functions for ;\3 = ,9,
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Figure 7. The four relativistic deuteron wave functions for }\3 = ,6.
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Figure 8.

34

The quadrupole moment of the deuteron, Q, versus the

sigma mass for fixed values of :\3 as indicated on each

curve. The dotted line is the experimental value for Q.
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a value such that all of the kernels momentum dependence is virtually
ingensitive to h, varying only the sigma meson's coupling constant
and mags., Once that is found, solutioms will exist for all A - This

value of MR has not yet been found. An alternative, that was found but

not included in this discussion, is to raise gr"/qtyr to obtain

additional solutions.

Solution for L.ow Mass Regularization (Case II)

For this case, the form of the regularization was taken from

equation 17. Since the M‘R chosen for this case is the omega meson

mass, Mw

= 784 MeV, this low mass regularization can be thought of
as a form factor.

The choice of MR = Mw is a natural one. The sigma meson, a

representation of the 2 continuum, can be thought of as coupling to
the rho meson, a 2 resonance. By coupling, it is meant that the

sigma form factor mass be the rho mass, mp. Similarly, the 37 .

continuum which couples to the pion, while not of the right quantum
numbers to be a real meson, could be roughly approximated by a
peaking in the vicinity of the omega mass. Because the sigma is

phenomenoclogical and Mo is approximately equal to m‘u, the choice of

MR = Mw was made.

The literature contains several papers which use a number of

values for form factor masses. Recently, a calculation by W. Nutt
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and B, Loiseau quoted a form factor mass very near that of Mw .17

Another example of form factor mass choices can be found in
reference 18; form factor masses quoted there are 450, 650, and 850
MeV.

Interactions using the low mass regularization are denoted

by )‘ld and solutions were found for hw= 1, .8, and 0. The
data for the Aw interactions along with the A4 and 33

interactions appears in table 1. Figures 9, 10, and 11 illustrate

the position space wave functions for )w interactions, Notice

that for h‘a = ], there are no oscillations, and for Aw= 0, v

t
is mostly negative. In fact, u and w in the Alu= 1 interaction
resemble very strongly the Reid Soft Core (RSC) wave functions.
Indeed, as is indicated in Section V, >\‘o= 1 gives the same result

as RSC (for v, =v, =0 everywhere). The h‘d = 0 interaction with

a negative v, ig in agreement with the predictions of the semi-

relativistic treatment of Gross; for a pure )’5 Y“ (A=0
interaction, the short range behavior is dominated by the sigma, not
by the pion.

Figure 12 shows the quadrupole moment versus the sigma mass

for the Ald interactions. Again, solutions were restricted to only

a few values of )\” .
Figure 13 illustrates the s state wave functions u for

)3 =1, .9, and .6, It is shown there that the higher values of A3



Figure 9. The four relativistic deuteron wave functions for A
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Figure 10, The four relativistic deuteron wave functions for A, = .8.
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Figure 11, The four relativistic deuteron wave functions for Aw = 0,
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Figure 12. The quadrupole moment of the deuteron, Q, versus the sigma

mass for fixed wvalues of )w as indicated on each curve.
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Figure 13. The short range structure of u for >\3 =1, .9, and .6.
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force the wave function further away from the origin; an indication of

repulsion. Hence )3 = ,6 exhibits a softer core than does }|3 =1,

This behavior of u is consistent with semi-relativistic predictions.
Further wave function dynamics are illustrated in figure 14.

There, v is shown for hw =1, .8, and 0. The behavior of £ for

these values of )‘0 is again consistent with semi-relativistic
-predictions. TFor Aw = 1 (pure YS), the pion dominates the
structure of V- Hence, its long range shape. For )tu = 0 (pure
3'5 X’“), the sigma meson of shorter range dominates vt's structure.
The overall sign of V. for )‘v = 0 can partially be explained by
Gross' semi-relativistic off-diagonal potentials, The hfa = .8

cage is part of a transition, then, from pure pion dominance to pure
sigma dominance.

| The momentum space wave functioms displayed in figures 15
through 20 are obtained from the invariant amplitudes F, G, H, and I
through the formulae 12a-d, The dimensionless coefficients, Cji’
appearing in equation 38a, which generate F, G, H, and I, are listed
in tables 2 through 8.

The invariant amplitudes F, G, H, and I are shown in momentum

space for all the )i4, A3, and )lw interactions discussed above in
figures 21 through 28, Recall that )|4 and A 3 have equivalent

properties.



Figure 14. Overall view of v, for )w =1, .8, and 0.
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Figure 15. The momentum space S state wave functions, u, for )3 =1,
.9, and ,6. The right most curves are to be read from

the right scale.
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Figure 16.

The momentum space D state wave functions, w, for

My =1, .9, and .6.
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Figure 17.

The momentum space P state wave functions, \ and Voo

for A3 =1, .9, and .6.
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Figure 18.

The momentum space S state wave functions, u, for
;ﬁa, =1, .8, and 0, The right most curves are to be

read from the right scale.
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Figure 19.

The momentum space D state wave functions, w, for

Ay=1, .8, and O,

48



35 | T I | |

30F

2.5F

20

X |

1.5

M-z

'.O 18

05F

q (Gev/c)



Figure 20.

The momentum space P state wave functions, v, and V>

for )w =1, .8, and 0.
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THE NORMALIZED DIMENSIONLESS COEFFICIENTS

TABLE 2

G, FOR THE 7\4 = 1 INTERACTION

F, =F F, =G Fy = H F, =1
Cyy 3.1666 53.6432 50,8629 8.056
Cyp - .7390 - 5.2345 - 4.7053 -3.5277
Cys - .8966 - .87935 - 1.5899 - .0666
Gy 4515 1.3489 .9734 .4001
Cy5 .2869 .0109 .1317 - .0787
Cs6 - 2025 - L1405 - 0855 - .0565
c - .02435 .0189 .0088 .0016

37
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THE NORMALIZED DIMENSIONLESS COEFFICIENIS

TABLE 3

Ciy FOR THE J\3 = ] INTERACTION

F, = F F, =G F, = H F, =1
c:j1 3.1638 53.6549 50.8360 8.0522
cj2 - .7303 - 5.2288 - 4.6802 -3.5238
cj3 - 9047 - .8883 - 1.6009 - .0687
c:J.4 4525 1.3527 .9733 40025
cjs .29146 0114 .1342 - ,0785
Cjﬁ - .2055 - .1l416 - .0859 .0566
C - .0256 0179 .0071 .0019
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THE NORMALIZED DIMENSIONLESS COEFFICIENTS

C.. FOR THE N, = .9 INTERACTION

ji

TABLE 4

3

F, = F F2 =G F3 =} F4 =1
le 3.0045 53.3690 45,7736 9.3906
Cj2 - .5920 - 5.1909 - 4.,4830 -3.2431
Cj3 - .8135 - .6324 - 1.1731 - 04615
Cj4 .3763 1.1804 .8016 .3535
st .2682 - .0335 .0746 - .0753
Cj6 - .1936 - .0744 - .0448 - .0370
c - ,0202 .0057 - .0024 .0047
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THE NORMALIZED DIMENSIONLESS COEFFICIENTS

TABLIE 5

C,; FOR THE "3 = .6 INTERACTION

F, =T F, =G Fq = H F,=1
€51 2.5164 52.5196 30.6370 13.8877
Cya - .1720 - 5.1178 - 3.7358 - 2.5853
€43 - .5578 .2156 -~ L0414 .0956
Ci4 .1979 .5025 .2507 .1604
Cs5 .1136 .0197 0131 - ,0205
Ci6 - .0803 .0315 .0248 .0028
c - .0028 - .00355 - ,0123 .0011

j7
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THE NORMALIZED DIMENSIONLESS COEFFICIENTS

TABLE 6

54

C,; FOR THE P, " ! INTERACTION

F, =F F, =G F, = H F, = I
€1 3,219 51.9382 47.0125 4,2773
C:p -1.1355 - 3.1421 - 2.7044 -1.7328
C:q - .1699 - .3757 - .8708 - .2560
Ci4 .1006 .3373 .1552 .08025
C.5 .0924 .2030 .1760 .0203
Cs6 ~ .0143 .0288 0454 - .0102
c:, - .0163 .0002 .0037 - .00945




THE NORMALIZED DIMENSIONLESS COEFFICIENTS

TABLE 7

Cy; FOR THE ,\w= -8 INTERACTION

F,=F F, =G F, = H F, =1
Ciy 2.6585 50.3991 34,8232 8.4459
Cssy - .1102 - 2,8823 - 1.0785 -2.0986
€3 -1.2123 - .4381 - 1.07415 .2391
Cyy .9026 6467 .2679 - .0601
Cys - .1471 - .0056 .1165 - .0010
Cie ~ .2971 .0890 .0209 .0548
C 4113 .0052 .04765 - ,0686

i7
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THE NORMALIZED DIMENSIONLESS COEFFICIENTS

TABLE 8

C., FOR THE )  _= 0 INTERACTION
ji @

F, = F F, =G F, = H F, =1
G .6863 50.0865  -8.1706 26.0757
¢,y 2.9132 - 1.6461 4.14465 - 1.8845
Cy3 -2.3009 -~ .804  -1.0354 .1686
Ciy .5689 .3365 - .1785 .1167
C5 .2855 ,2640 .1847 .0117
Cy - .2858 - .0757 - .0508 . 04485
c ,1229 .0631 .0380 - 0013
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Figure 21.

57

The dimensionless momentum space invariant amplitude, F,

for A3 =1, .9, and .6.
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Figure 22,

58

The dimensionless momentum space imvariant amplitude, G,

for ;33 =1, .9, and .6. The right most curves are to

be read from the right scale.
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Figure 23.

59

The dimensionless momentum space invariant amplitude, H,

for )3 =1, .9, and .6.
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Figure 24,
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The dimensionless momentum space invariant amplitude, I,

for ;\3 =1, .9, and .6.



1.5

1.0

q (GeV/c)




Figure 25.
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The dimensionless momentum space invariant amplitude, F,

for =1, .8, and 0.
YR
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Figure 26.

62

The dimensionless momentum space invariant amplitude, G,
for )”= 1, .8, and 0. The right most curve is to be

read from the right scale.
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Figure 27.
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The dimensionless momentum space invariant amplitude, H,

for >¢

w= 1, .8, and O.
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Figure 28,
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The dimensionless momentum space invariant amplitude, I,

for M\ =1, .8, and O.
r-7]
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V. N-d SCATTERING AT 180°

There have been and are many attempts to explain the "hump"
in the N-d scattering differential cross section data in the backward
direction. Although the data has been around for many years,
difficulties in reproducing the data are still present. Indeed,
non-relativistic calculations of the one nucleon exchange (ONE)
diagram (see figure 29) fall short in describing the data adequately19

and hence other exchange mechanisms were folded in, such as the N¥,

Figure 29

Although the N* contributes a great deal to N-d scattering, its role
as a deuteron constituent is not clear.20
In this chapter, we show the results of calculating the ONE

22,23

diagram relativistically.21 This idea is not a new one, but the

deuteron wave functions we use are new ()‘3 and >|w interactions),

The calculated differential cross section at 180° using our

relativistic technique is
M L z 2
32| = $(8) Pmosuey s nicssios)
+ [M(o;- ,-a,a)[z+ :LIM(I,-&;o,la)I 2} 40)
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where 2

M4;1,%)= -a[e(u- "E!)Z-M'A(u— ':&')% 3% ]

Ml %;0,-%)= 0
Mk ;0,4) = ~ RO BEwYu-¥) - A (ut+EW) %

+fFA(u- 2 - 3m, "%]

M(o,4; 0, f8) = - [a(uﬁi‘ w)’}-;ﬁ‘A(uﬂfI WJI{,+3MJ1J;>.]
EP.-.'JMZ-F??' EJ _,JM;'-;.fz-
=1E,] =
P -
< ';i; (Ei; E%,)
=2V M+g* - M,

. mMeq
MM~ [M7+q%)

\Q) ~

> O

(41)

and the wave functions u, w, Voo and Vg have Q as their arguments.

The results obtained from equation 40 are illustrated in
figures 30 and 31. It is clear from these figures that ignoring

the deuteron's small component wave functions (vt, vs) in this process

is not a good approximation. The P states, v_ and v, are, in fact,

t

down from u and w by a factor Mﬁl; however, v_ and v, enter in

t

equation 40 with a factor of M.
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Figure 30. The ONE contribution to the differential c¢ross section

for N-d scattering at 180° with and without (v, = v, = O%Aﬂ%
the P states for ;\3 wave functions. The experimental

data is found in reference 24,
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Figure 31, The ONE contribution to the differential cross section

for N-d scattering at 180° with and without (v, = v, = 0)WR,
the P states for >ku wave functions. The experimental

data is found in reference 24.
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The slow fall off of the relativistic differential cross
sections is due to the variable Q;20 as the CM incoming nucleon momentum,

PCM’ goes to infinity, Q goes to a constant value of 3M/4. This fact

seems to have gone unnoticed in the literature. The data, on the other
hand, falls very fast with Q.

At low momentum, Q is approximately PCM/2. This, however, is

a well known result and is apparently used as the argument of the wave
functions in much of the literature,25 even though Q is defined in

the same way as in‘équation 41, Figure 32 illustrates the differential
cross sections for wave functions with an argument of Q and an

argument of PCMIZ. As can be seen from this figure, the difference

is dramatic.

An understanding of the effect that the proper variable, Q,
has on the differential cross section may be found when multiple
scattering contributions are included.

Furthermore, N-d scattering may furnish an important
constraint on the optimum value to be taken for )\ in deuteron

5
processes.



Figure 32.

70

The ONE contribution to the differential cross section
with Q (dashed curves) and P/2 (solid curves) as the

arguments of the :\3 = .6 wave functions, The data

ig the same as in figures 30 and 31,
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Vi. SUMMARY

This work has presented several new sets of deuteron wave
functions obtained numerically from exact relativistic interactions.26
Though the potentials arising from our interactions are purely
attractive in the non-relativistic 1limit, we conclude that the
repulsion is due to the relativistic structure of our equation.

The D state probabilities for all thé solutions obtained
ranged from 5 percent to 6.4 percent, and with the total P state
probabilities ranging from .6 percent to 2.8 percent, it was showm
that the enhancements obtained from N-d scattering were widely
varying and were due mainly to the amount of P state present,

A further demonstration of our relativistic techniques was
found in Appendix D, Here, calculations were performed for
Hydrogen-1like atoms.

Our relativistic technique, the wave functions cbtained from
the technique, and the contribution that the combination gives to,
at least, N-d scattering and pionic disintegration of the déuteron,

suggests, perhaps, a new and exciting realm of inquiry.
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APPENDIX A

This appendix contains a description and a list of all the

identities used in performing the d¢k and dZ integrations., Also

contained here are definitions used for Second Regularization.

d ¢k Integration

To integrate fd4kK”’ there are only two 4-vectors that

contribute, g and W*. Hence a linear combination of q¥ and w™

expresses the result
L A _ ~ A
-Zﬂ'j‘!¢kk =ag +bw (A.1)

The coefficients a and b, being composed of inner products of
4-vectors, are written
Kweg-w- Wlk-ﬁ-

(eWI—wig* (4.20)

Aa =

WK — kW

b=
(gw)*— w"%’- (A.2b)

Similarly we have

ifrp&k"x= Cg-i +dg-34 + ey

(A.3)
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where
w. K .
C= 72 - “'{“‘?;. d
(A.4a)
d= 30 o Lxwr-Kiw?]
< R (6 w)l_w 2,32_
(A.4b)
2.
- (s’W)—W%?- N (K.W)z__ KZWL
- . T3 z-
3w w (A.4c)

We specialize now to the center of mass of the two nucleons,

thereby constraining our coefficients a, b, c, d, and e to be

- IKl
= _’S_?. - o
b " %l; a

(A.5)
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PO(Z), Pl(z), and Pz(z) are Legendre Polynomials of the first

<
kind and our metric is such that q2 = qo2 - ,a;’

Thus, using these integration identities,27 we construct

wr fddeke s = a g

Efldf = g vy

Gofd (G+K+m) = M(1+0) + L'y

AT O s kem)¥ ™= M(1-2)-L3F

£l Bk rtics = Mard)gf vc g v e
Ll VoMl = g - b e §
L[ VLAY X -2
ARG LV ST oY

Ky _
Y KNI amigg 1ty 127

(A.6)

where

’
-~ -
B-i-{-b X
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-~ — Z
X s 2e+@-1)am ""SLMJEéL'
Y- M E, ¢'~amM@a-d)+ 2.

P=g—-k
(A.7)
It is also useful to note that:
amE, ME b'M;
—_ L Cs K _ 4 -
it T M 7M - ©
~dEm M, aMB
M 2ZM aAM
i = E-ak,
M
Cl_ aEK—dEE
My
(A.8)

dZ Integration

The Z integration affects the Eg's and the exchange particle

propagators only.
Consider the e#change propagator:
;.__2:41(_’ ""2=ZZZ l_.
H-P° A GRIHE-K) A AR 4G -URNE I (EE)T (o
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Now using the following theor:em28

i !
P@)dz [HEY ]
eEler . L) X9z _ A =
, 2 ~hH& 72 j 7,/32—2 /3 Qf 72 (A.10)
- -7 |

where the Qg 's are the Legendre Polynomials of the second kind with

their arguments being Y1/Y2, we define
4= -f-IICI + 131’ (E, —-E)
g, = 2 lEll%l
(A.11)

Next, we cast equations 30a through 30d in the following symbolic

form:

Fe ZS 3;,:1’1:6 (B)E. ) 5dk Gu(B)E,
“ @M ) A E GE M) 4T) arﬂ M E, (E "’b)ﬂlg‘-ﬂ‘)
= M7 ( Kdrde GL@)F, %
A Kilkdz Ga () B
@m? g—ws Re-1)axgy2) T am -‘"W-"%f';)aka%-é)

=A@z S G5 (32, (kdk G
()'Wi M, E. Q5 -mM) +(‘”Tan'35 % ()

W E GE~M,)

(A.12)

Equation A.12 is now identified with'é'quation 31 where A, B, 4 , D,
’
E, B',é aDl, X, Y are just a, b, c, d, e, b', C', d', X, ¥

respectively with the Pz 's being replaced by the Qz 'g
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Second Regularization Procedures

Consider

’-
{ X2

Akz. (A.13)
So, p
dﬁ):_ig F’(x}dx_ ‘
ax < W = &) (A.14)

-1

The integral in equation A.14 is precisely the Second

2 =z
Regularization contribution within a factor, —~ (MK ’/‘{e,x)/zk%-

Therefore, replace Q’e by "(Mgz‘z%;)qe'/lkﬁ- .

We use:
R =1
F(a)=2

p(2)= 4 (32°-1)

Q=% 2a (£5)

@)= X §x) - 1

@)= 2xqx) -Lgx)- 2

(A.15)
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APPENDIX B

We list here the deuteron moment formulae used in this work,
Without further ado, the non-relativistic electric quadrupole and

magnetic dipole moments are well known and are written:

Q = MJZE fr?;lr[uw—- —J%-.L?_]
o

lo (B.1)

- -2
{/,-(’2-""2:_-)(’ 2%)"-6_'%’)0 (B.2)

where U and W are the deuteron's S and D state wave functions in

position space respectively, F1 = 1, F2 = -,12, PD igs the D-state

probability, and Q (Quadrupole Moment) and /fd .(Dipole moment) are
measured in units of e/Md2 and nuclear magnetons respectively.
The relativistic quadrupole momemt29 in position space is:
. oo 2
= ‘dv< w - = e = 5
@ 10 orJr[u it U v
A
A A ww
+ WU +uw - 55 |
+M[1+3E ] 2 (Erwa'-Twu-rww)
d 2d)dr A0M>
o

+ (B ) -w(2 Py - )]



! 2
b?i‘-'é‘M"z(—v ;JL—,&-I-MB)M 80

(B.3)

B is the deuteron's binding energy.
29
The relativistic magnetic dipole moment ~ in position space

is:

= (BrEN1-3F,B-5%8) - R (4

+h(FR+§R-4R+o

(B.4)

where Pt and Ps are the 3P1 and 1Pl state probabilities respectively.
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APPENDIX C

In this appendix, the method used to solve for the invariant
amplitudes F, G, H, and I are discussed.
We begin by considering reference 13 for an uncoupled-

homogeneous linear integral equation of the form

(c.1)

Where G(x,y) and K(x,y) are the kernels and is a number
to be determined so that equation C.l can be solved for f(x) (i.e.,
is an eigenvalue and £(x) is the eigenfunction).
The traditional methods used to solve equation C.1l are the
Gauss Quadrature techniques which give rise to often large and

hard-to-handle N by N matrices (N = number of gaussian points)

c.2)

W, are the weight functions and 1 and j cover the same range,

3

Convergence of the sums in equation C.2, for sufficiently
complicated kernels, may require that N = 96.

Because our kernels are complicated, the quadrature techniques
do not appeal to us, So; we follow reference 13 and make a change of

variables in equation C.1, yielding

(C.3)
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APPENDIX C

In this appendix, the method used to solve for the invariant
amplitudes F, G, H, and I are discussed.
We begin by considering reference 13 for an uncoupled-

homogeneous linear integral equation of the form

‘?(X) = ?SG(x,g)-c(’)Jj +SK(){,3)-¢(’)J3 (c.1)

Where G(x,y) and K(x,y) are the kernals and # is a number
to be determined so that equation C.l can be solved for f(x) (i.e.,
-’z is an eigenvalue and f£(x) is the eigenfunction).

The traditional methods used to solve equation C.1l are the
Gauss Quadrature techniques which give rise to often large and hard-

to-handle N by N matrices (N = number of gaussian points)

¥ N
-G()&) = 7(}52’;4}/ G{“:"'\;')%é )+ ?Zzl W Kéc., ,\;){:(x] ) (c.2)

W. are the weight functions and i and j cover the same range.

3

"

Convergence of the sums in equation C.2, for sufficiently
complicated kernals, may require that N = 96,

Because our kernals are complicated, the quadrature techniques
do not appeal to us. So, we follow reference ‘13 and make a change of

variables in equation C.1, yielding

$t2)=7((§ (e,i’)a(e’)g_g,«/e&- Ega‘)ﬁ(ﬂ:_fzij oz’

(C.3)
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P
Now, we expand -c in a power series of Laguerre Polynomials

Y- 2 ¢ @)

A=O

C.= coelCCicients : n<< N (C.4)

Py k]

and use the ortho-normality property of Laguerre Polynomials to

re-express equation C 3 as

,.Z-,, c (i, +i;)

-ib’ i;i
i g G(22)e L EZ)e [, (a),ﬁ Ja-c/g-
V.

N~
(]

sy %5
{fk(::g,z)e L;.,-[eje. Z.(é)gg’JZ-lc/a- (c.5)

Integrals Uji and Vji are calculated to very good accuracy while the

equation for the coefficients is an n by n matrix and not an N by N
matrix.
We next extend this procedure to s coupled channels and define

the variable z. For s coupled channels (s = 4 in our case), we have

£00 =22 8,505y 3 (k 6Gody .

=1 >5

Transforming to z variable gives

s.(g_) 72 (G 622){3(2) 2 da’ ¢ 2 K (éejgle

M=l
and

(C.7)

~ -S2 n
£(3)= e _‘Z'c% L.(2)



Hence, the equation to be solved for the ccefficients is

- >
.= 3 ij [7( ”4?,« i uj”]

Al ;}b

vhere g ! |

JV _ fﬂ"‘ ‘ 'gﬁ -%4
U = G @20 L De L () 1L da'de

’ £

ju{zigg‘fb 2 2! -2 -3
ke LB L gk,
The dimensions of the coefficient equation is (s x n) by (s x n) and
not (8 x N) by (S x N).

Applying this coupled channel technique to equation 29.

2
A= Qo /47
A
G = transformed sigma kernal
A=
K =

transformed pion kernal

_ 2
Z= -—61? [Sink 1(%—/%_,)]

The mapped variable, Z, optimizes convergence of equations

(C.9)

C.7 by transforming the singularities due to the branch points of

the Legendre Polynomials of the Second Kind, Ql’ from the momentum
7
plane to the Z-plane.

Note: Other exchange potentials, such as rho and omega, can

easily be folded into‘k:
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Hence, the equation to be solved for the coefficients is

where.

(€.8)
The dimensions of the coefficient equation is (s x n) by (s x n)
and not (S x N) by (S x N).
Applying this coupled channel technique to equation 31.
G = transformed sigma kernel
K = transformed pion kernel
(C.9)

The mapped variable, Z, optimizes convergence of equations
C.7 and C.8 by transforming the singularities due to the branch
points of the Legendre Polymomials of the Second Kind, ¢ , from
the momentym plane to the Z~-plame.

Note: Other exchange potentials, such as rho and omega,

can easily be folded into K.
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APPENDIX D

Hydrogen-Like Atoms

We show in this appendix that the techniques used to formulate

equation 21 for the deuteron can also be applied to hydrogen-like

atoms.

Consider the interaction to be composed of a one photon

exchange as illustrated in figure 33. Anomalous and multiple exchange

contributions are ignored and the photon will be given a mass, & # O,

to facilitate analytic manipulation of the equations. Once the

equations are in the form we desire, the limit will be taken as g-20.

We now display the analytic equation corresponding to

figure 33.
e 2{ 13 yur0 &5
)= 22, SR YA+ M * TV -k em) T
ALt BN~ E + W), g2 )
_‘f-_; = p‘oﬁn aou ’:'j constant-

"y = proYon’s  mass
e = electron's mass
A= [‘Lﬂﬂufk mass
P= 8k

k= B = &



AN
g, P
-

Figure 33
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EK': (" + £%) -

2 P2HYa
& = binding enerqy

(D.1)

r' is now the vertex function corresponding to an arbitrary
énergy level within the atom.

Using the relations
(£+Kemp) = U (E) UE)
am’-, Spus

(W-K+ L (E su. AT
S T

._L - - e g
-~ Ré‘(fx Wﬂi);% (k) k)

(D.2)
and defining wave functions ?3_ and @ as
b= UAR) TC-E) [k
&;—h/-ﬁ- EK
@ (E) - &1:[’:} 7-{:_'(2) F(i‘)
E FW-E, 0.5

equation D.l can be written as a set of two coupled equations in é_,_

and ¢_ P
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(G- 4E) b= %,,_:j/& [Zearychpay-gepy %é)g £6)¢a) |
&) RE, [ .42, % (3-£) 2]

(é&,.w.%) ¢ G) = aC?l'é e IJ K[v'(s))’(g-g/d(x) Z"(g)d’ zg@é{&)]
)’ [J/ (3~ L)z_] o

(D.4)

where we have taken the static limit of the proton and used

KNP U@ = o

(D.5)

Next we evaluate the matrix elements of the spinors in D.4, keeping

only terms of order q/me compared to the leading term. The result is

(5084030 - i.,_e_e’-S siled+ & p@]

@7? RE 4%+ F2)

(EAw-E _ ame Jk[ (l:) - QF)
T )J R P d

(D.6)

Then, transforming equations D.6 to configuration space, we obtain

the coupled equations:

-Nr- , r .
- € ::.52 oV
EALL TN ¥ g‘) (7

(D.7)
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It is clear from D.7 that ¢_ is smaller than ¢+ by one
order of m_
e

Finally, uncoupling equations D.7 and keeping terms to the

-1
lowest order of m, , we obtain

_.Vz < 2 e =
(a?-;’e—é)@(r): i%-f @F é?,_{r)

(D.8) .

Ct’_{?‘) is identified to be the Schrodinger wave function
of an electron moving in a shielded Coulomb Potential. (The limit as
A= 0 gives the standard unshielded Coulomb Potential.)

g

For positronium, equal mass case, we obtain
2 -

—-é) 7)== €5 &
$P) = 2= = $.(P)

F=17]= 27
(D.9)

Evaluating the matrix elements of the spinors to next order

in q/m s equation D.4 gives

t £ 3';&__@‘:55 B 5. v lk)
(Zlfj) 431 = < (sl Themnighyy) 2200 %‘fﬁn_a]

(3'1)3 AE,; Corer72)

220 SEhie oz =
. & fror BT 120t

(D.10)
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Upon Fourier Transforming equations D.10, we obtain

ae,@-mE,) 7= e’-[ A" 2.9
a @)= &

-g—_ — o\ e-,"‘ _._.,' ..':- e"ﬂ"'_’z -
e 2 4”;{? 79- £ 5 ow)
iet S/ Vo (7
) > 7 (5 ) @)

(GWE) o e an
JLE;;5F € ;€>-'4¢7z2-g) 7V ‘s%='.;>d§i!7{)

ez_ -y =

-2 e 1L &=z
e s

(D.11)

Now, keeping all orders of m h up to and including orders of
- . 30
m, ", we obtain the Pauli Equation.

(t+H') B(F) = € B.(F)
H,= — 351 +V

r
V= -ss_ze'“ ims, 22 1
47 v A0 4T r

=_(€ V) -1 g
# M~ M v (‘é%i %é '55‘)
| (D.12)

where L and S are the total angular momentum and total spin vectors
respectively, and

Va
.. (5 -
(:Eg(ﬂg = 2:;:f) (iig (k)

(D.13)
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Finally, considering all orders of q/me, equation D.4 gives,
in momentum space, the Dirac Theory of the electron:
o ——
(f-me+¥°Vig)) Y(3) =0
o _x.%
/6’ s EX“~¥"%
E=ret¢c

wi3)

ALY
te)

(D.14)

where "k,_ and "k. are the positive and negative energy wave

functions expressed in terms of dJ_,, and ¢__ as:

lll;_(iz)=(£‘ "&) [QBE

AGE C‘f“m‘) [ AQRY-NGY

(D.15)

and V(q) is the momentum space Coulomb Potential and 3’, of course,
are the Pauli Matrices.

The above derivations of the Schrodinger, Pauli and Dirac
Equations from our relativigtic prescription is not surprising since
Grosslo has gshown that this relativistic prescription ecan be used tg

1
derive the Grotch-Yenunie Equation.3
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