
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

1999

Accurate visualization of distributed system execution Accurate visualization of distributed system execution

Dennis Lee Edwards
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Edwards, Dennis Lee, "Accurate visualization of distributed system execution" (1999). Dissertations,
Theses, and Masters Projects. William & Mary. Paper 1539623957.
https://dx.doi.org/doi:10.21220/s2-haf6-qw88

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at
W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an
authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623957&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623957&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-haf6-qw88
mailto:scholarworks@wm.edu

INFORMATION TO USERS

This manuscript has bean reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACCURATE VISUALIZATION OF DISTRIBUTED SYSTEM

EXECUTION

A Dissertation

Presented to

The Faculty of the Department of Computer Science

The College of William and Mary in Virginia

In Partial Fulfillment

Of the Requirements for the Degree of

Doctor of Philosophy

by

Dennis L. Edwards

1999

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 9961700

UMI*
UMI Microform9961700

Copyright 2000 by Bell & Howell Information and Learning Company.
All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

Bell & Howell Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPROVAL SHEET

This dissertation is submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Dennis L. Edwards

Approved, December 1999

Phil Kearns
Thesis Advisor

W illiam Bynum

Virginia Torczon

Rex Kincaid
Department of Mathematics

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my parents and brother.

Thanks for never giving up.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

List o f Figures x

Abstract xi

1 Introduction 2

1.1 Performance T o o ls .. 4

1.2 Debugging T o o l s .. 7

1.3 Graphical T ools... 9

1.3.1 Time-Space D iagram ... 9

1.3.2 Hasse D ia g ra m .. 10

1.3.3 Concurrency Map .. 12

1.4 Structure of the Dissertation ... 13

2 The Basic M odel 14

2.1 Distributed S y s te m s ... 14

2.1.1 Communication P a ra d ig m s .. 15

2.1.2 E vents .. 16

2.2 Event O rder... 18

2.2.1 C a u sa lity .. 19

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2.2 C o n cu rren cy ... 22

2.2.3 Partial O r d e r ... 28

2.3 Clocks and T im e .. 29

2.3.1 Vector Time ... 30

2.4 A b strac tio n ... 36

2.4.1 Process A b s tra c tio n .. 37

2.4.2 Behavioral Abstraction .. 38

2.4.3 Molecular A bstraction ... 39

2.4.4 Event A b strac tio n .. 39

3 T he Concurrency M ap 41

3.1 Map C reation .. 41

3.1.1 An Example ... 44

3.1.2 The Inaccuracy.. 45

3.2 Quad R ing ... 52

3.3 q* and Concurrency M a p s ... 59

3.3.1 Partitions of h .. 66

3.4 Transformation of the concurrency m a p ... 73

3.4.1 Transforming the blocks of partition B ... 74

3.4.2 Transforming the blocks of partition A ... 82

3.4.3 Transforming the blocks of partition C ... 90

3.5 Significance of q * .. 113

3.6 Evaluation.. 115

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 An A ccurate Technique 116

4.1 Display C o o rd in a tes .. 116

4.2 The A lg o rith m ... 127

4.3 An Exam ple.. 137

4.4 Relaxation of R estrictions... 148

4.5 Evaluation... 149

5 D istributed lYace Visualization Tool 151

5.1 Required Code M odifications... 151

5.2 Ttace Files .. 155

5.3 Constructing The D isp lay ... 160

5.4 Usage of D T V S ... 164

5.4.1 Information W in d o w s... 164

5.4.2 Concurrent R e g io n s .. 166

5.4.3 Predicate Evaluation.. 169

5.5 An Exam ple... 172

6 Conclusions 182

6.1 Future Research .. 184

6.1.1 Software Enhancem ents.. 185

6.1.2 T heore tica l... 187

A N otation 189

B Exam ple M P I Program 192

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography 197

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.1 An example Kiviat g r a p h .. 5

1.2 A “good” execution and a “bad” e x e c u tio n .. 7

1.3 A time-space d ia g r a m .. 9

1.4 A lattice of possible event occurrences.. 11

1.5 A concurrency map of event occurrences... 13

2.1 Concurrency is not tra n s itiv e ... 23

2.2 Subgraphs of H with girth > 5 are not po ssib le .. 25

2.3 The relationship between causality and co n cu rren c y 27

2.4 Graph interpretation of vector c lo c k ... 33

2.5 Process abstraction .. 38

2.6 Molecular a b s tra c t io n .. 39

3.1 Concurrency map of server/client execu tion .. 45

3.2 Event execution and the derived concurrency m a p ... 46

3.3 Simplified concurrency map of N = 3 process system 47

3.4 Producer/Consumer with 2 processes 48

3.5 A 2 process quad r i n g .. 53

3.6 A multi-process system producing q*s .. 54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.7 A 2 process q* .. 54

3.8 A 3 process q* and a 4 process q* 56

3.9 Configurations of h with 6 or 0 arcs .. 60

3.10 Configurations of h with 5 a r c s .. 61

3.11 Equivalence of 5 arc nodes .. 61

3.12 Configurations of h with 4 a r c s .. 61

3.13 Equivalence of 4 arc nodes .. 62

3.14 Configurations of h with 3 a r c s .. 62

3.15 Equivalence of 3 arc nodes .. 62

3.16 Configurations of h with 2 a x e s .. 63

3.17 Configurations of h with 1 arc .. 63

3.18 Possible non-quad ring configurations of h ... 63

3.19 Directed graph derivations of h ... 64

3.20 Directed graph derivations of A ... 66

3.21 Block arrangements forming a q* with a block from B 69

3.22 Block arrangements forming a q* with a block from A 71

3.23 fi and a with sets A, B , and C ... 73

3.24 Special cases in the transformation of b G B ... 76

3.25 Special cases in the transformation of a € A ... 83

3.26 Special cases in the transformation of c 6 C ... 91

3.27 Transformation example ... 115

4.1 Time space diagram for example trace.. 118

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Display of events v and 1/ ... 122

4.3 Snapshot of the DisplayEvents program... 147

5.1 Example MPI program ... 154

5.2 Example MPI program after preprocessing... 155

5.3 Layout of DTVS trace f i l e s .. 157

5.4 DTVS display of four process ex ecu tio n 163

5.5 DTVS display of event information w indow .. 165

5.6 Snapshot of the DTVS d isp la y ... 167

5.7 Correct execution of token ring mutual exclusion.. 174

5.8 Correct execution of token ring mutual exclusion with additional messages. 175

5.9 Incorrect execution of token ring mutual exclusion... 176

5.10 Incorrect execution of token ring mutual exclusion with additional messages. 178

5.11 Assertion indicates mutual exclusion violation... 179

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

The concurrent execution of processes in a distributed system makes the interactions be­
tween them difficult to understand. A clear image of the execution sequence that occurs as
well as possible alternative scenarios is paramount to providing the software engineer the
understanding needed to create reliable software.

In this thesis, we examine several representation methods of presenting a pictorial view
of the execution of a distributed system and evaluate each in terms of three criteria. First,
only those relationships that are created during the execution can and must be presented.
Second, the presentation must be such that a reasonable amount of information can be
extracted from the picture. Third, the technique must be scalable to an arbitrary large
system.

We begin by examining an informative and scalable technique. We expose a simple
graph that, if present in the system’s execution, prevents accuracy from being achieved
in this technique. We prove that the absence of this graph is sufficient to ensure th a t an
accurate representation is possible.

Our own technique is developed next. We first prove that the technique is accurate in
that a representation of an interprocess relationship is presented if and only if it actually
exists in the execution being displayed. While being theoretically scalable to any number
of processes, the practical use of the technique is limited to a small distributed system that
is relatively short-lived. In addition, the display is of only moderate use since it quickly
becomes too complex for information to be extracted by the software engineer.

We conclude by presenting our second technique that is accurate, scalable, and informa­
tive. The technique does not attempt to display the complete set of relationships in a single
picture. Instead, an accurate subset is presented and the engineer is allowed to easily alter
the selected subset. We show that the presentation is clear and concise. An implemented
prototype demonstrates the utility of the technique in providing the software engineer with
a tool that can be used to develop software that is less likely to suffer from concurrency
related problems.

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACCURATE VISUALIZATION OF DISTRIBUTED SYSTEM

EXECUTION

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

Parallel and distributed programs are difficult to write. Not only are the problems general­

ly larger and more complex than those solved with sequential programs, but the solutions

themselves are more complex. The processes that comprise the system operate autonomous­

ly, communicating through messages. It is this individuality that gives the system its power

and its complexity.

In order to write correct code, the software engineer must understand the interactions

among the constituent processes. A visualization technique will convey the interactions

quickly to the engineer. However, the technique cannot be arbitrary. It must maintain the

following three properties to be considered acceptable.

P ro p e rty 1.1 Accurate

It is not acceptable to present the software engineer with a representation that

indicates the impossibility of an occurrence when that possibility does exist.

Likewise, a representation indicating that an occurrence can happen when it is

in actuality not possible, is not acceptable.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 3

P ro p e rty 1.2 Informative

It is not acceptable to present the software engineer with a representation from

which valuable information cannot be extracted. Although the needed informa­

tion may not be immediately obvious, it must be obtainable though moderate

cognitive exertion.

P ro p e rty 1.3 Scalable

It is not acceptable to compose a representation that is adequate for only small

systems. The technique must be scalable in, preferably, a linear fashion to an

arbitrarily large distributed system.

A technique that meets all three properties will be considered acceptable. We now look

at three classifications of research results that have taken positive steps toward these ac­

ceptance goals. Although it is not a complete taxonomy of execution visualization systems,

these three classifications are adequate for the division of techniques representative of the

current literature. Few techniques fit into a single category. Instead, most contain methods

representative of each class.

The first classification is for systems that display the concurrent strength of the system

as measured in terms of possible concurrency. The objective of these techniques is to provide

feedback to the software engineer to facilitate more optimal solutions to the problem at hand.

These techniques, categorized as performance models, dominate the current literature.

The second classification of visualization techniques is designed with the elimination

of logical errors in mind. These techniques are extensions in the distributed domain of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 4

sequential debuggers and offer limited insight into the complexities of the examined system.

The category for these techniques is debuggers. We have seen several recent entries into this

category.

Last we have the graphical class. This is a hodgepodge of visualization methods dedi­

cated to the explanation of execution possibilities. Each is designed to foster further un­

derstanding of the system. Most of the entries in this category could also be placed in one

or both of the previous categories. We now look at some typical examples of each class.

1.1 Performance Tools

A common feature of most performance monitoring and display techniques is their presen­

tation of quantitative information using three standard techniques: Ghantt charts, Kiviat

graphs, and time-space diagrams. Ghantt charts and Kiviat graphs are used to display met­

rics such as the number of I/O references, CPU memory references and event occurrences.

Time-space diagrams (discussed in detail later) present message passing information depict­

ing communication patterns. The techniques that display concurrency do so as a relative

measure compared to possible speed-up. For example, the Kiviat graph shown in figure 1.1

shows that processes numbered 0,3,5 and 7 are executing at a near optimal level while

processes numbered 2 and 4 are performing poorly.

Traceview[30] uses Ghantt charts to present several metrics including concurrency which

is a percentage of a theoretic maximum as derived by symbolic execution of the source code.

ParaGraph[23] employs all of the listed display techniques and includes facilities for incor­

porating new techniques as they are developed. The Parade[42], Kanoko[34] and Pavane[38]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 1. INTRODUCTION 5

Po

P.

Figure 1.1: An example Kiviat graph

visualization environments create different views of program execution specifically for the

application being examined. For example, a system modeling the interaction of molecules

may be displayed as a black box with floating spheres. The views created by Parade are

built with the Polka[43] animation system that allows the view to be altered as the system

parameters change. Kanoko and Pavane differ in creating three dimensional animation-

s where Polka views are two dimensional. Hart, et al[22] use the Pavane system along

with two dimensional graphs and charts to present distributed computations. Continuing

with the molecular example, the spheres could be animated to coincide with the program’s

computations.

The visualization component of the AIMS[27] toolkit is composed of multiple “kernels”,

each with a different display type. The ACTS [40] toolkit is designed to foster the creation

of parallel, object-oriented programs by displaying processor and message activity on a

time line. It also presents several views of profile information derived from the system

execution. The Meander[46] programming environment provides the software engineer a

graphical environment to construct parallel programs as a collection of program components.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 6

A visualization system allows the execution of the program to be displayed as interactions

among the components.

A time tunnel[37, 33] arranges processor activity in a cylindrical fashion with the point

of view placed at one end of the cylinder. Lines along the edge of the cylinder represent the

execution of a particular process with message transfer depicted as directed arcs connecting

the process lines. This type of display becomes unusable as the number of messages increases

even with the stereoscopic displays available with some systems.

An activity matrix is the only graphical display available with MPPE[31] from MasPar.

In a system with 1024 processing elements, a 32 x 32 binary matrix is presented. An “on”

bit in element a, b represents processor activity in that processor. Work by Stavely[44] uses

derivatives to characterize the concurrency of the system but offers no direct implementation

as a display technique.

SMILI[28] represents a method of displaying gathered system or process statistics in

a way that possesses a “mnemonic advantage” by relating program function to a human

emotional state. As the authors have noted

...not much [information] can be extracted if one has to scan 128-point Kiviat

graphs or a Ghantt chart displaying processor activity for 128 nodes.

Here each variable of a p-dimensional data set is represented as a feature on a cartoon face

with “bad” data being represented as a sad or angry face and “good” data being represented

as a happy face. Some of the features th a t may be used to represent data include the height

and length of the brow, the height and width of the eye, nose and mouth, and the overall

ovalness of the head.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 7

Figure 1.2 shows faces representing both a “good” execution and a “bad” execution.

Suppose that the shape of the mouth is used to characterize concurrency. A grin would

indicate optimal execution while a frown would indicate poor performance. Data that falls

between the two extremes would be presented as an arc somewhere between a grin an a

frown depending on a value relative to optimal.

f o o
A

\ w
Figure 1.2: A “good” execution and a “bad” execution

Data can be presented in either of two ways. In one case, the data represents a complete

execution of the system. This allows different runs to be compared. The second case presents

the execution of a single process. Here, process function is compared. In either case, all the

data is clustered into a single picture.

Recently, Kanoko[34j has extended the use of faces into three dimensions using the work

of Chernoff[9]. While the informative content has not changed, the aesthetic qualities have

improved. Also included in the Kanoko display technique are aural indications of processor

activity and color-coded simulations designed specifically for the application being displayed.

1.2 Debugging Tools

Some distributed debuggers are simple extensions of sequential debuggers with limited

execution control imposed via message passing commands. Ddbx-LPP[13], Blit[7] and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 8

DPDP[47] have replaced the control commands nex t, step , etc., with their distributed

counterparts. Each allows breakpoints to be inserted into a process and examination of

variables and context of stopped processes but provides no visualization other than high­

lighted source text. The Blit debugger does provide a window interface to its facilities, but

the visual extension ends there. Multiple windows are also provided by DPDP with the

source code of a single process occupying each window. An arrow indicates the current

statement, and relationships between statements are only visible through the constraints

placed on execution steps.

Other debugging tools, for example, Xab/Hence[4] and I-Pigs[36], represent the system

as a collection of visually connected processes. The Xab/Hence technique colors each process

to indicate its current state: not ready, executing, completed, exited, warning or error.

I-Pigs not only colors processes to indicate either executing or waiting status but also

highlights process connections to indicate message transmission. Concurrency in each case

is shown as multiple processes in the executing state. Possible relations other than those

derived from the execution order are ignored. A graphical programming environment is

used to construct the displays available in PDG[6]. Trace records obtained through a

specialized debugging kernel are used in conjunction with the graphical specification of the

distributed system being debugged to create a representation used to animate the program.

Although this method holds certain promise, errors in the original specification may produce

anomalous behavior in the display of an otherwise correctly operating program.

Task graphs form the basis of TraceViewer’s[25] display. Function calls written in IBM

parallel Fortran are displayed as event occurrences with directed vectors indicating the

direction of the call. The technique allows the selection of a “current event” and then

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 1. INTRODUCTION 9

provides facilities to highlight those events that happen before, are concurrent to, and

happen after the selected event. Boolean operators are used to combine multiple queries.

1.3 Graphical Tools

We will examine three representatives from the graphical class of visualization tools. The

tools describe the relationships between events of the system with varying degrees of accu­

racy and informative content.

1.3 .1 T im e-S p a ce D iagram

One of the first methods used to display the execution of a distributed system was the

time-space diagram[29] shown in figure 1.3. Each vertical vector represents the execution

:x :

Figure 1.3: A time-space diagram

of one constituent process. Hash marks on the process line indicate the execution of am

event within that process. The temporal order of events of a process is indicated by the

total ordering of events on the verticad time line. Horizontal separation between process

lines represents physical spatial separation of processes. Directed arcs connecting events on

separate processors identify message transmission amd receipt.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 10

This technique displays the transitive reduction of the relationships between events and

neither looses nor falsely includes relationships between events. Therefore, property 1.1 is

obtained. While it is easy to deduce the relative order of events that are closely connected

in the graph, it is difficult to determine the order of remote events. Therefore, property 1.2

is violated. This technique is also difficult to scale to any system larger than a “toy” which

violates property 1.3. For these reasons it is not generally considered a viable method

of expressing the execution of a generic distributed system but is an alternative for less

complex systems.

Time-space diagrams are one visualization technique used by Vampir[18], a trace visual­

ization toolkit designed for use with MPI. The processor lines include a color code to indicate

the state of the process at that time. Color codes are assigned to the time lines according

to the values of local processor clocks. Messages are then added to the already constructed

time lines. It is possible that temporal anomalies are created if process clocks are not closely

synchronized. A message could arrive at a time prior to the time of transmission thereby

resulting in a backwards arc in the display.

1.3 .2 H asse D iagram

A Hasse diagram[21] is used by Cooper and Marzullo[ll] to display the execution possi­

bilities of a distributed system. Each node represents a set of events. The set contains

one event from each process. Events in a node are capable of executing given the previous

nodes of the graph have occurred. A node containing (2,3) indicates that the second event

from the first process and the third event from the second process are ready to be executed.

Directed arcs indicate the occurrence of a single event. Multiple arcs emanating from single

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 11

node represent multiple possible event executions. Each path through the diagram defines

a total ordering of events consistent with the partial order defined by the system execution.

The Hasse diagram of figure 1.4 represents the same execution shown in figure 1.3.

Several observations about this type diagram are immediately obvious.

(t , t)

<XX>
(2V2)

<X>
(J- .-l)

Figure 1.4: A lattice of possible event occurrences

• The width of the tree is an indication of the concurrency present in the system. A

tree with only a single path from the initial to the final node is representative of a

sequential program.

• The nodes of the diagram can be transformed from system events into system states.

In this case, each node would represent the state of the system at the point where all

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 12

events up to those in the current node have been executed. Arcs are then viewed as

state transitions resulting from event execution.

• Synchronization points are identified by the narrowing of the diagram. Referring

to the above example, the system must enter state (2,2) before either process can

continue execution.

• In the worst case, the width of the lattice grows exponentially with the number of

processes in the system.

We see that all possible executions are depicted, thereby satisfying property 1.1. To deter­

mine whether or not selected events are concurrent, the entire lattice must be searched for a

state containing the events. However, the last bullet signifies the major weakness associated

with lattice representation - the exponential growth as system size increases. The width of

the graph is directly proportional to the amount of concurrency in the system. As the size

of the system increases, so does the concurrency and, therefore, the graph.

1.3 .3 C oncurrency M ap

The concurrency map[45] uses a single static diagram to display the relationships between

all events of the modeled system. Events are placed in a two-dimensional grid where the

column indicates the process where the event occurred and the row indicates the relative

order of events. In the left column of figure 1.5 the send event is shown to occur before

the receive event in that process. Two events can occur simultaneously only if they axe

displayed at least partially in the same row. Referring again to the figure, the two send

events can occur simultaneously since they are both included in the first row.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 13

Po_______ Pi

compute
send

compute
send

receive
compute
compute

receive
compute
compute

Figure 1.5: A concurrency map of event occurrences

Linear scaling is achieved since the inclusion of another process adds a single column to

the grid structure. As the figure demonstrates, it is a simple m atter to discern the relative

order of events in a concurrency map. However, display accuracy is sacrificed to achieve the

other two properties. Under some conditions it is not possible to display all relationships

in the system. For this reason, we consider this method unacceptable.

1.4 Structure of the Dissertation

Each technique we have examined has had both positive and negative aspects. Most provide

valuable information limited to its designed purpose. In chapter 2, we present the basic

model of a distributed system and provide a brief discussion of abstractions used to reduce

the complexity of the underlying system. This model is then used in chapter 3 to explain

the failure of the concurrency map. Chapter 4 will present a general technique based on the

information obtained from the concurrency map that is accurate but not optimal according

to our required properties. In chapter 5 we will describe an accurate technique that partially

fulfills the other properties. Conclusions and future research are detailed in chapter 6.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

The Basic Model

2.1 Distributed Systems

The notion of program execution in a sequential environment is well-defined. A statement

is executed at some time r and at a later time, t + 5, the next statement is executed. A

process is instantiated at the beginning of execution and remains live until execution has

completed. Even in multiprocessor machines where executing programs migrate between

processors, execution remains sequentialized. A single locus of control is maintained until

the program is terminated.

A value computed by one statement that is needed for execution of another statement

is a simple matter in a sequential environment. The value is written to a memory location

and later read from the same location. Communication between statements is accomplished

via direct memory accesses. We assume that no shared memory exists in the distributed

environment.

Distributed applications are designed to profit from the advancements in network tech­

nology. Individual machines cooperate to collectively solve a problem that either cannot be

solved by a sequential program or that requires an unacceptable amount of time by a single

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. THE BASIC MODEL 15

machine. Each machine is given a program that has been designed to solve a portion of

the problem. The machine will instantiate a process to execute its program just as in the

sequential case. In the remainder of this work we will refer to the executing portion of the

program assigned to a single processor as a process.

D efin ition 2.1 A distributed system is composed of a set o f N processes, {Po,. . . ,

cooperating to solve a problem.

2 .1 .1 C om m u n ication P arad igm s

As the processes execute, they may need to communicate intermediate results to other

processes. Each communication datum is encapsulated in a message and sent across a

network. The process originating the message is the sender and the target process is the

receiver. We first consider only well-behaved networks that function without loss and in a

point-to-point, first-in-first-out manner. That is, if two messages are sent from process Pi

to process Pj, both messages are guaranteed to arrive at Pj in the order Pi sent them. No

restrictions are placed on either the time a message is in transit or on the receipt order of

messages with different senders or receivers.

Several types of message passing appear in the literature. The two most prominent are

asynchronous and synchronous. Messages sent in asynchronous mode are commonly moved

from the memory space of the sender to space reserved for the process implementing the

network facilities. At that point, the sending process continues to execute without further

interruption. The physical transfer of the message from the machine executing the send to

the machine executing the receive takes place without the interaction or knowledge of either

the sender or receiver. When the message arrives at the recipient machine, the receiving

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. THE BASIC MODEL 16

process can request the message to be placed in its address space. The only execution

interruption that is present in this type of communication model is at the receiving end.

If 1) the receiver process requests a message from the underlying network facilities, 2) the

message either has not yet arrived or has arrived and is not yet ready for delivery, and 3)

the receiver is in blocking mode, then the receiver will block, suspending execution and wait

for the delivery of the message. If the message is ready for delivery or the receiving process

is in non-blocking mode, no interruption of execution occurs.

Conversely, process blocking is the basis of synchronous communication. When either

the sender or the receiver executes a communication statement, execution is blocked until the

matching statement at the other process is also executed. Only when both the transmission

and receipt of a message can be executed, is the message transferred and execution resumed.

When a matching send/receive pair is executed, the processes involved attain a temporary

synchronization, or rendezvous.

2 .1 .2 E v e n ts

The execution of a single process is modeled as a totally ordered sequence of discrete actions.

Each of these actions is assumed to be atomic and instantaneous. In practice, an action

is begun, executes for some amount of time, and then completes. Our model uses either

the time of initiation or completion as the representative time of the action. The choice is

arbitrary but must be consistent. Individual actions are referred to as events. For simplicity,

we let an event represent the execution of a single statement from the source code of the

process.

D efin ition 2.2 The execution o f a statement o f a distributed program is an event v.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. THE BASIC MODEL 17

D efinition 2.3 The function V[v) identifies the process in which the event v was executed.

The A:^ event to be executed in process Pi is denoted v f. Although events correspond

to the execution of program statements, event order and statement order may be different.

Statements are ordered as lines in the source code of a program while events are ordered

by their temporal occurrence during the program’s execution. Each process is assumed to

have an initial event of- and a terminal event v j . Let £* = { v f - ,v f , t^ , . . . ,v ? } be the set

of events executed in process Pi, and let E represent the set of all events in the system,

including system initial and system terminal events.

N - 1
E = (J Ei U {t/x ,t/T}

t=0

Each event is classified as send, receive or computation, and is referenced by the sets 5,

R, and L respectively. (Computation events, by nature, directly effect only the state of the

executing process and are therefore considered "local.”) The set of communication events

is collectively referred to as Af = S U R. In our context of message-based communication,

a send refers to the transmission of an encapsulated message and a receive refers to the

receipt of an encapsulated message at the destination process. Given that m represents a

unique message, the sending event of m is S(m) and the receive event of m is R(m). Note

that the receipt of a message occurs at some time later than the arrival of that message at

the receiving machine. The term arrival indicates that the message is physically within the

buffers of the destination machine. When the message is transfered to the data space of the

process and the process is informed of that transfer, the message is received.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. THE BASIC MODEL 18

In other contexts, send and receive events may have different meanings. For example,

if we were given an environment where the notion of shared memory was implemented, the

send event may refer to the writing of a message to a well-known location in that shared

memory, and the receive event may refer to the reading of that location by the recipient

process. However, in all cases, a send event is the locally necessary action that initiates

an inter-process communication, and a receive event is the locally necessary action that

concludes an inter-process communication.

2.2 Event Order

The framework of time in a single process, sequential system is not present in its distributed

counterpart. By definition, processes in a distributed environment execute independently

until some communicative interaction is required. Varying processor speeds and interned

clock drift account for part of a complexity not found in sequential and tightly coupled

parallel systems. In heterogeneous environments, execution of individual instructions are

likely to require different numbers of machine cycles, thus adding to the disparity between

process executions.

These impediments to serialization of events can, at this point, only be partially over­

come. Observations about the relationships of events allow a partial order to be placed on

E. The work of Lamport [29] defines these relations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. THE BASIC MODEL 19

2 .2 .1 C au sa lity

Given two events, v and t/, we are assured of two facts. First, if both events occur within

the same process, then a temporal order must exist between them; i.e., one event must be

the first to occur. If event t; is executed before event t/ , then the temporal ordering is given

as v happens before v'. This relationship is represented as v —► t/. We may also say that

the execution of v can possibly have an effect on the execution of vr. For this reason, we

say that v causally precedes v '. The right arrow can be read as either “happens before” or

“causally precedes.” The two are equivalent.

Second, transmission of a message also assures us of a relationship between events. If v

is the sending event of a message and v' is the receipt of the same message, then v —► v '.

In other words, the receipt must happen after the transmission of the message. Together

with the intraprocess temporal ordering, the basis of event order in a distributed system is

formed.

Definition. 2.4 Event v causally precedes event v ', written v —► v ', if

1. v occurs temporally prior to vr in the same process,

2. v is the sending of a message and v' is the receipt of the same message, or

3. there exists event v" such that v —► v" and v" —► v '.

The causal relation is neither reflexive nor symmetric, but is transitive as exemplified

by the third case of the definition. Causality, —>C E x E , is the smallest relation such

that a preceding event has a possible effect on its successors. Although the causal relation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. THE BASIC MODEL 20

transcends the communication paradigm employed, slight alterations in case 2 of the defini­

tion must be made if the asynchronous transmission mode is not employed. If synchronous

communication, as supported by CSP[26] is used, the sending and receiving events of a

message represent a single, distributed rendezvous event. Assuming that v is the sending

event and v' is the receiving event, the distributed assignment is given as v/v '. Case 2 of

the definition is then written as:

2. v is the synchronous transmission of a message and v' is the synchronous receipt of

the same message then the two events rendezvous and are considered a single, joint

event v /v ', or

This notion corresponds to the distributed assignment axiom[26]. Other work by Black,

et. al.[5] has formalized the extension of —> into the synchronous domain by adding addi­

tional constraints to those given in the definition. We define a graph H to represent the

causal relationships of the system’s events.

D efinition 2.5 The graph H represents the transitive closure of the causal relationships

derived from the execution of the distributed system. Vertices indicate the execution of a

communication event and a directed edge w f exists i f and only i f v —¥ v'.

From the nature of distributed systems and their execution we can define two properties

about H. We assume that temporal anomalies are not present in the execution; i.e., there

are no cases where both v occurs temporally before v1 and v' occurs temporally before v.

We also assume that each event in the system is represented by at most one vertex in H.

The first property of H is derived directly from the transitivity of the causal relation.

It states that if a path exists between any two nodes, then an arc must exist between those

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. THE BASIC MODEL 21

two nodes. In other words, the transitive closure of the causal relation is displayed. This is

in contrast to the time-space diagram which displays the transitive reduction of the causal

relation.

P ro p e rty 2.1 All vertices reachable from v are adjacent to v.

Proof: Assume there exists a path from v to v' such that vv" and v"v' are edges in H .

by Def 2.5 (2.1)

by Def 2.5 (2.2)

by the transitivity of —► (2.3)

by (2.3) and Def 2.5 (2.4)

■

From our assumption that no temporal anomalies sire found in the execution we derive

the next property. Each node in H represents the occurrence of an event, and arcs represent

the possibility of impacting the execution of the tail event. Since a single event cannot

precede itself, we do not allow our graph to represent this occurrence. From property 2.1

we know if a path exists from a node, through some other node(s) and back to the original

node, then an arc must also exist from the original node to itself. Therefore, no cycles are

allowed in H.

P ro p e rty 2.2 No cycle exists in H .

Proof: Follows directly from the irreflexive, antisymmetric, and transitive properties of

the causal relation. ■

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

v"v' =► v" —► v'

v —> v" A v' —y v' =► v —> v'

v —t v ' =$■ vv'

CHAPTER 2. THE BASIC MODEL 22

The definition of the causal relation provides our first opportunity to divide the events

of the distributed system into sets. The events included in a set are causally equivalent,

that is, all events included in a set possess the same causal relation to events not in the set.

Causally equivalent regions are defined by the occurrence of communication events since

the inter-process causal relation is based on inter-process communication.

D efinition 2.6 A causally equivalent region, TZf, is a contiguous set o f non-communication

events bounded by the communication event u* and the next succeeding communication event

in Pi-

'R-i = {u : V {v) = i A v £ A f A v f —► vA fiv1 G M : uf —► v' —► w}

Note that the definition of a region does not include the communication events in any

region. It would be equally precise to include receipt events in the region that immediately

follows the receipt. The causal relationship defined with respect to the receive event does

not change until the next communication event occurs. In other words, a receive events

is causally equivalent to the set of contiguous, local events that immediately follow the

receipt. Likewise, a transmission event could be included in the preceding region. However,

the definition is designed to simplify the execution of a distributed system to the execution

of communication events interleaved by causally equivalent regions which we will model as

single entities.

2 .2 .2 C oncurrency

Events that are not causally related can have no effect on each other. Given two events, v

and v', if neither causally precedes the other, then their order is undefined. This absence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. THE BASIC MODEL 23

of order is defined as the concurrent[29] relation between events. Two executions of the

same distributed system with identical inputs may produce different temporal orderings of

concurrent events regardless of their temporal order in a single execution. It is not precise to

refer to events that are concurrent as “happening at the same tim e” Instead, concurrency

implies that the events can be executed in any order.

D efinition 2.7 Events v and vr are concurrent, written v\\v', i f and only i f v - f t v ' and

v’ -ft v.

As with causality, the concurrent relation is defined on the cross product of system

events: || C E x E . Notice that the concurrent relation is not transitive. For example,

consider the three process scenario shown in figure 2.1 where Pq sends a message to Pi and

Figure 2.1: Concurrency is not transitive

Pi executes a local computation. If these are the only events in the system, then we have

uo||u2 and V2IIV1 since no interaction was made between Pi and either of the other processes.

However,

« o l | v 2 A u 2 | | v i ^ v 0 | | v i

since we know by definition 2.4 that vq —► t»j..

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. THE BASIC MODEL 24

Display techniques generally succeed in detailing an accurate representation of the

causality present in a distributed system execution. In effect, H is correctly characterized.

However, the complexity of the concurrent relation and its non-transitive nature provide

the fodder for inaccurate representations. The graph H is the undirected complement of H

and represents the concurrent relations of the execution.

D efinition 2.8 The graph H represents the concurrent relationships derived from the exe­

cution of the distributed system where the vertices indicate the execution of a communication

event and an undirected edge joins vertices v and v' if and only i f v\\v'.

In both H and H, the relationships between vertices are explicit. The transitive causal

relationships are shown as directed arcs in H instead of indirect paths as in the time-space

diagram. This explicit display allows H to be constructed directly from H by connecting

only those vertices in H that were disjoint in H. Since transitivity is explicit in H , we are

assured that disjoint vertices are not causally related. The lack of causality indicates the

presence of concurrency and, therefore, an undirected arc in H.

We can identify the subgraphs of the concurrency graph that are legitimate. As shown

in the following property, subgraphs of H with girth1 greater than four are not possible. It

may be possible to find a simple cycle of length greater than four in H . However, there will

always be another simple cycle of length four or less between the same vertices.

P ro p e rty 2.3 There does not exist an induce& subgraph h G H such that the girth of that

subgraph is greater than four, t.e., Vh G Hg(h) < 4.

‘The girth of a graph, g(JT), is the shortest cycle in H.
2 An induced subgraph h of H is one that contains all edges w ' o /H if both v and v' are vertices in h.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. THE BASIC MODEL 25

Proof: We prove the property by contradiction. Assume that their exists a subgraph of H ,

h, such that g(h) = x and x > 5. Let h be the subgraph of H such that h is the undirected

complement of h. Also let the vertices of h be numbered (using arithmetic modulo the

number of vertices in h) such that vertex v,- is adjacent only to vertices tJ,_i and We

select five vertices of h as shown in figure 2.2.

i-2 ' i - I

h

i-2 'i-I

i+I

h

Figure 2.2: Subgraphs of H with girth > 5 are not possible

The absence of an edge in h from iii to Vj implies the existence of a directed edge in h

between Vi and vj. Although we cannot discern from h the direction of the arcs in h, we

can make some observations about their relative direction.

If arcs are placed between the selected five vertices such that each vertex has one incom­

ing arc and one outgoing arc, a five vertex cycle is created. Since cycles are not allowed in H

(by property 2.2) and thus not allowed in h, we know this cannot be the case. Therefore, at

least one vertex must have two incoming arcs. Let v* be the vertex in h with two incoming

arcs. That is, both u,_2Ut and v*+2Wi are in h.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. THE BASIC MODEL 26

If the direction of the arc between t/j_2 and Vi+i is Vi+ivt-_2, then we violate the original

constraints of h. Specifically, the existence of arcs r/t+iUt-2 and Vi-^Vi imply, by proposi­

tion 2 .1, the existence of arc which is known to be absent in h since Vt||vi+i in h.

We must assume that the direction of the arc between v,-_2 and ut+1 is ut_2Ut+i - A similar

argument is made for the arc between vt-_i and u,+2 forcing the direction of the arc to be

V i+ 2 V i- l -

We now consider the direction of the remaining arc between vt_i and t/t+i. If we let the

direction of the arc be t/,_iut+i, then we transitively create the arc Vi+2 vi+i which is not

present in h. If we instead let the direction be vt-+i«t-_i, then the arc Vi-2vi - i is created

through transitivity. This arc is also not present in h. Therefore, it must be the case

that u,_i Vi+i and Uj+i -ft- By definition, Ui-i|[yi+i- Since concurrent vertices are

connected in h, there exists a cycle between the selected five vertices that does not include

v. We conclude that the girth of h is x — 1 which contradicts the original assumption. ■

Events that are concurrent can, by definition, have no effect on the execution of each

other. In some circumstances it is possible for concurrency to be problematic in the dis­

tributed system. Assume that both events v and v', where V{v) ^ P(u '), represent the entry

into a critical section and the events are not causally related. It is possible, though not cer­

tain, that their occurrence could have been simultaneous. Given a system with concurrently

related critical sections, multiple execution tests may not reveal a critical section violation.

However, it could be the case that after the software has been put into production, the right

circumstances occur to cause the concurrent events to happen simultaneously, violating the

mutual exclusion property of critical sections.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. THE BASIC MODEL 27

The relationship between causality and concurrency is evident from their definitions.

The following three properties refer to the execution depicted in figure 2.3 and provide the

groundwork for latter use. The first property states that the range of concurrency of an

- - V2

— V

Figure 2.3: The relationship between causality and concurrency

event is contiguous. That is, if we are given an anchor event that is concurrent to both

the beginning and ending events of a causal chain, then the anchor is also concurrent to all

other events on that chain.

P ro p e rty 2.4 Vui, V 2 , v : ui —► t/2 A ui||t; A t^lln =► Vt/ : t/i —► v' ► V 2 , v'\\v

Proof: Assume that v' and v are not concurrent. Then either v' —> v which implies t/j —* v

through transitivity, or u -> t / which implies v —f «2- In either case, we contradict the

assumption. ■

Each process in the system has a set of contiguous events that are concurrent to an

anchor event v. Each set except the one from V(y) may be empty. The union of these sets

is referred to as the concurrent region with respect to v. Definition 2.9 follows directly from

property 2.4.

D efinition 2.9 A concurren t reg ion with respect to v, CRo, is the set of events that are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. THE BASIC MODEL 28

concurrent to v.

In the second property, we are again given an anchor event and a causal chain. This

time, we are only assured that the anchor event is concurrent to the last event in the chain.

This is enough, however, to imply that the anchor does not precede the event beginning the

chain.

P ro p e rty 2.5 Vt/i,«2,t; : ux —i► «2 At?2 ||u ^ v ■/* Vi

Proof: Assume that v —► v\. Then by transitivity, we have v -> t/2 which contradicts the

assumption. ■

The third proposition is similar to the second. In this case we assume concurrency

between the anchor event and the event beginning the chain. We can deduce that the

anchor event cannot causally follow the chain ending event.

P ro p e rty 2.6 Vui, V2 , v : v\ —► t/2 A v||vi => t/2 -f* v

Proof: Assume that t/2 —> v. Then by transitivity, we have v\ -+ v which contradicts the

assumption. ■

2.2 .3 P a r tia l Order

The causal relation defines a partial order among all events in the distributed system[29].

For any two events v and v', given that v —► v', v is ordered before v' in the partial order.

If these two events are not causally related, t/||t/', then there exists no order relative to the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. THE BASIC MODEL 29

two events. Hence, the ordering of E is only partial if there exists any concurrency in the

system.

Note that the accepted definition of a partial order relation requires that the relation

possess three basic properties: reflexivity, antisymmetry, and transitivity[19, 20, 35]. As

stated previously, the causal relation is non-reflexive since an event cannot precede itself.

For this reason, the causal relation has been dubbed an irreflexive partial order{29] or the

reflexive reduc£icm[24] of the partial order. In the remainder of this work, the relation will

simply be referred to as a partial order.

2.3 Clocks and Time

Given a global clock where each process has identical notions of the current time, a total

ordering of events is possible. In this case, events can be ordered temporally. Concurrency

will be ignored given the sequentialized view of the execution. However, the concurrent

nature of the problem still exists. Our concerns regarding a seemingly correctly operating

program failing as a direct result of tim ing errors are still valid. The temporal ordering of

one execution may provide a false sense of ordering based on random temporal occurrences.

We instead rely on the partial ordering based on causality. To model this order, we employ a

technique developed independently by Mattern[32] and Fidge[14]. Their technique models

the causal order of execution without introducing false relationships based on temporal

occurrences.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. THE BASIC MODEL 30

2.3 .1 V ector T im e

Each process m ain ta ins a local vector which represents the current “causal clock” value. The

vector is of length N . The vector at Pi is t* = (ri[0], r*[l],. . . , r,[iV — 1]) with initial value

Vk ^ i : Tj[fc] = 0, r,[z] = 1. Each significant3 event v in Pi causes Tj[t] to be incremented.

The updated value of t; is then associated with the event, and the vector time of that event

is t (v). Note that rj[t] is an accurate indication of the number of significant events that

have occurred on Pi-

Message transmission events, both sends and receives, require further updates to main­

tain the isomorphism between vector time and causality. The vector time of the sending

event is appended to the outgoing message m as r(m). On receipt of message m at Pi, the

local vector time of Pi is updated by a two-step process. First, the entire local vector is set

to the component-wise maximum of the local vector and the vector attached to the message

m. Then the t**1 element of the local vector time is incremented to reflect the occurrence

of the receive event. It has been proven that vector times updated in this manner are

isomorphic to the causal relationships of the underlying distributed system[39].

D efinition 2.10 A vector clock of Pi, Ti, is isomorphic to the causal relationships in the

represented system i f Ti is initialized as = 0 , rt-[z'] = 1 and updates are as follows.

1. I f the event is a local computation:

(a) Ti[z] 4-

(b) the event is stamped with Ti

3The definition of significant is intentionally left nebulous. The events concerning the software engineer
will include the communication events but may also include other events.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. THE BASIC MODEL 31

2. I f the event is a send event:

(a) T, [i] + +

(b) the event and the message are stamped with Ti

3. I f the event is a receipt event of message m:

(a) Vi,Ti[j] = max(Ti[7]TT(m)|>l)

(b) Ti[i] + +

(c) the event is stamped with Ti

The vector times of any two events can be compared to identify any causal relationships

between the events. As shown in the following definition, event v occurs before event v ' if

and only if r(u)[t] < r(i/)[t] for all i and the times are not identical. On the other hand,

if comparisons show r(u)[i] < t (v ') [t] for some i and r(v)[i] > T { v ') [i \ for other t, then the

times are incomparable and the events are concurrent.

D efinition 2.11 Given two events, v and v ', and their vector times, v v' if and only if

t (v) < t(u ') and u ||t/ i f and only if T(u)||r(t/), as expressed in the following expressions.

• t (v) < t (v ') i f and only i f Vi : r(t;)[t] < r(u')[i]

• t (v) < t (v ') i f and only i f t (v) < r (v1) A t (v) t (v ')

• r(u)jjT(u') if and only ifT(v) £ r(v ') A r(u ') ^ r(u)

Vector clocks may initially seem unnecessarily bulky. However, work by Charron-Bost[8]

has proven that a vector of length N is both necessary and sufficient to accurately represent

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. THE BASIC MODEL 32

the causality of an IV-process distributed system. This work was based on the assumption

that no prior information concerning the communication patterns of the system is known.

We believe that this is a reasonable assumption that only generalizes the proof.

Although definition 2.10 is the traditional definition of a vector clock, we can alter the

definition to allow a better graphic interpretation by replacing rule 3.(6) as follows.

3. (b) Tt[i] = max(rt) +-1

The altered vector clock retains the property that the local component of the vector clock

is larger than the local component of the vector clock preceding it in the same process. We

have added the property that the local component is also larger than all components of

causally preceding vector clocks. Theorem 2.1 proves that the altered vector clock remains

isomorphic to causality.

T heorem 2.1 The modified vector clock is isomorphic to causality.

Proof: The modified vector clock differs from the original clock only in the local component

of a receive event. Let Vi 6 Ei be the receipt event of message m, and let Vj € Ej be the

send event of message m. Also let v[€ Ei be the event in Pi that immediately precedes v

That is, fiv : v\ —► v —► Vi.

Prom vector clock update rule 2(6), we know that r(m) = r(t/J). Using the original

vector clock update rules, rule 3(a) sets the local component of r(ut) to the maximum of

r(i^)[i] and T(m)[i] and then rule 3(6) increments the local component by one. Therefore,

we have r(nt-)[z] > r(w<)[t] and r(u,-)[t] > r(uj)[i].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. THE BASIC MODEL 33

The modified vector clock update rules only differ in rule 3(6) which sets the local

component of Vi as follows.

T(«i)[<] = max(Vj : r(m)[7],r(tf£)[>1) -F1

This assignment insures that r(wi)[i] > r(t/'-)[i] and r(t7j)[i] > r («,••)(*].

While the increase in the local component of the vector time is no longer always one,

the local component does increase at every event. We have shown that the sole difference

between the original and modified vector clocks does not alter the relationships between the

altered components. Since the original vector clock is isomorphic to causality, the modified

vector clock must also be isomorphic to causality. ■

We can let the iV-component vector clock represent coordinates on an iV-dimensional

graph. Each axis of the graph represents execution in a process with time increasing with

distance from the origin. For simplicity, we present only an N = 2 case. Figure 2.4 shows

a simple two process execution and the graph of the vector times of the executed events.

Po P.

send m0 [1.0] send m2 [0 .1]
send m, [2,0] recv mQ [1.2]
recv m2 [3,1] recv m, [2.3]
send m3 [4,1] send m4 [2,4]
recv m4 [5.4] recv m3 [4.5]

Figure 2.4: Graph interpretation of vector clock

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. THE BASIC MODEL 34

We now make two observations about our altered vector time and the concurrency graph.

In theorem 2.2 we show that the closest axis to the coordinates of an event corresponds

to the process executing the event. For example, in the two dimensional case, the events

executed by process Pq are drawn to the Pq side of the diagonal.

T h eo rem 2.2 For all events ut* with vector clock Ti, the distance from the display coordi­

nates of Vi to the Pi axis is less than the distance from the display coordinates o f V{ to the

Pjjti axis.

P roof: We compute the distance from t* to the closest point on the Pi axis, (0,..., [t],..., 0).

Each component of the sum of squares is Ti\j] — 0 except the component, which is

Tj[i] — Tj[t]. In the following equation, r t[i]2 is removed from the summation.

A i = V t M 2 + n [l]2 H F Ti [i ~ l]2 + Tj[i + l]2 H----------F T i \ n — l]2

A similar formula is constructed for the distance from r, to the Pj& axis. The component

is zero in this case. Therefore, r,[j]2 is removed from the following equation.

Aj = \Ai[0]2 + Tt[l]2 H h T i [j — I]2 -I- T i [j I]2 H h T i [n — l]2

Let dij be the sum of the squares of all components except t and j .

d ij = Ti[0]2 -I + Ti[n - l]2 - Tt[t']2 - Ti\j}2

Substituting dij into the previous two equations, we have

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. THE BASIC MODEL 35

A j = y/dij + Ti[i]2

Prom vector clock update rule 3.(6) we know that Tj[t] > r,-[j] for all j ^ t making At- < Aj.

Therefore, the distance from t, to the Pj axis is less than than the distance from Tj to any

other axis. ■

Suppose the origin of the graph is translated to the display coordinates of a particular

event. In figure 2.4 we have arbitrarily chosen the receipt of message m 2 in process Pq

and have drawn the translated axes as dashed lines. W ith respect to the translated origin

of a two processes system, all events displayed in or on the border of quadrant I happen

after the selected event. Likewise, all events displayed in or on the border of quadrant III

happen before the selected event. Events that are displayed in neither quadrant I or i n are

concurrent to the selected event. The figure shows that events in the unshaded areas are

the concurrent events while those in the shaded areas are causally related to the receipt of

m2 • Both the first two events of Pq and the first event of P\ happen before the receipt of

m 2 .

We can describe this visual attribute using vector clock differences. If the difference of

the vector clocks, and therefore the display coordinates, of events v and v' is completely

non-positive, then the relationship must be v happens before v '. Similarly, if the difference

is all non-negative the relationship must be v happens after t/ . This result is a direct

application of definition 2.11 in the visual domain.

T h eo rem 2.3 Given two events v and v’, v is displayed no further from any axis than v'

i f and only i f v —+ v'.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. THE BASIC MODEL 36

Proof: Assume that v —> v'. We know from theorem 2.1 that r(v) < t(u ') . That is,

Vj,r(v)[j] < r(v') \ j]A3i : r(u)[t] < r(t/)[*]-

Since the event is displayed at the coordinates specified by it’s vector clock, v must be

displayed no further than v' from any axis.

Assume that v is displayed no further from any axis than v1. Then all components of

the display coordinates of v must be less than or equal to the display coordinates of v'.

Therefore,

Vj, t(u)(j] < T{v')\j\.

Furthermore, if v and v' are separate events they must differ in some component.

Vj, t(u) \j] < T{v')\j) A 3i : r(u)[t] / r(v')[*]-

From definition 2.11, we know that v —> v' . ■

Obviously this type of display is limited. As the number of constituent processes in­

creases, so does the dimensionality of the display. It is an interesting and solvable mental

exercise to extend the technique into three dimensions. In chapter 4 we will expand this

idea to construct an accurate display.

2.4 Abstraction

Even in a simple distributed system with minimal concurrency we are faced with an over

abundance of information. To reduce the cognitive strain on the software engineer, this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. THE BASIC MODEL 37

information is boiled down to a more easily absorbed form. We have seen in a previous

section that multiple consecutive local computation events can be modeled, without loss

of accuracy, as a single local computation event. This type of abstraction is one of several

that have been suggested in the literature.

Although abstraction plays an important role in the understanding of the system, its

application to the display of concurrency is limited. If the software engineer needs to know

what events in each process are concurrent to a selected event, abstraction techniques that

hide events in larger, more complicated structures may prevent that knowledge from being

accessible.

2 .4 .1 P rocess A b stra c tio n

The modular design methodology is the driving principle behind process a6sirocfton[10].

Each process is created such that it is composed of cooperating independent modules.

Each module has interface points through which it communicates with other modules. The

obvious advantage to writing programs in modules is that it allows the software engineer

to concentrate on a single module without regard to the entire system. Once the module is

operating correctly, it need only be connected via the interface points to the remainder of

the system. A visualization tool for such an abstraction may create a display similar to the

one in figure 2.5.

When the communicating modules of a process have been constructed and tested, they

can be abstracted into a meta-module with its own interface points. Repetition of the

technique is claimed to yield an arbitrarily simplified view of the system. However, the

interaction among modules is not displayed. While each module may operate correctly in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. THE BASIC MODEL 38

Mod■*— (M odModule----------
Interface--------
Point

Communication
Line

Mod,Mod

Figure 2.5: Process abstraction

isolation, the system may fail is inter-module relationships are ignored.

2 .4 .2 B ehaviora l A b straction

Two phases, filtering and clustering, compose behavioral abstraction]^]. We previously stated

that we would consider only significant events in the display. This is also the goal of filtering.

All events deemed insignificant are ignored just as we ignored the multiple consecutive local

computation events. Insignificance is not limited to the local events. It can be composed

of events from the execution of a portion of the process that is thought to be correct. From

the other point of view, we can select certain sections of the source code from which events

are considered significant. With care, entire processes may be filtered out as insignificant.

After filtering has removed the initially determined insignificant events the clustering

phase is begun. Here events are clustered together to form meta-events. When both phases

are complete, the process can be repeated. This time the filtering will attempt to remove

unwanted meta-events and the clustering will create meta-meta-events. The process is

repeated until a significantly simplified view of the system is achieved.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. THE BASIC MODEL 39

2.4 .3 M olecu lar A b stra ctio n

A somewhat different approach to abstraction was given by Ahuja, Kshemkalyani, and

CarIson[l]. This method groups corresponding send and receive events into atoms of exe­

cution. Multiple atoms are combined to form molecules such that if the send and receive

events of the atom have different causal relationships to the molecule, then the atom is

included in the molecule. Figure 2.6 shows the molecular structure of an execution of a

six process system. Horizontal arrows represent the passing of time in a single process and

diagonal arrows represent message transferral. The molecules are shown as events inclosed

in a dashed figure.

M,

Figure 2.6: Molecular abstraction

Note that molecules Mo and M4 are also atoms. Since they are set apart from the other

communications, they are not included with other atoms in a molecular structure. The

figure also shows the relationships of the molecules after the first abstraction. In this figure,

the ovals represent molecules and the arrows show the direction of causal flow.

2.4 .4 E ven t A b straction

The condensation of several primitive events into a single representative event was first

introduced by Cheung[10] in his dissertation. As shown in the definition of causally equiv­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. THE BASIC MODEL 40

alent regions, this may be easily accomplished if all the primitive events to be combined

are consecutive, local events. However, care must be taken to maintain the irreflexive and

transitive properties of causality if communication events are included in the abstraction.

According to Cheung, any group of events can be combined as long as these properties

are maintained and event abstraction may be applied multiple times until a significantly

reduced graph is constructed.

In her concurrency map, Stone[45j uses a modified form of event abstraction. Although

not explicitly stated in her paper, a single abstraction creates blocks of events that are

similar to our causally equivalent regions. In the next chapter we will present an algorithm

for creating event blocks and explore the concurrency map in more detail.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

The Concurrency Map

Stone’s concurrency map[45] is a postmortem display technique for distributed systems. The

concurrency map uses a single static diagram to represent both the causal and concurrent

relationships between all events in the system. Event abstraction is used to create event

blocks that are placed in a two dimensional grid. The relative position of two blocks indicates

the relationship between them. Both causality and concurrency are shown explicitly, which

is in contrast to the implicit display of concurrency in the time-space diagram.

3.1 M ap Creation

Although not explicitly stated in her paper, Stone uses event abstraction to group causally

equivalent events into groups called blocks. A block differs from a causally equivalent region

in that communication events are included in a block. A send event is included in the block

of events preceding it while a receive event begins a new block.

Algorithm 3.1 formalizes the construction of blocks as used in the concurrency map. A

single pass is made through the list of events to create the blocks. This algorithm cannot

be repeated to yield a more compact representation.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY M AP 42

for i = 0 . . . N — 1 do
it = 0

B f = {}
w hile more v 6 2?,- are found do

if
B f = B f U {i/}
jfe= fc+ 1
B* = {}

elseif v 6 fl
k = k 4- 1
B f = {v}

else
B f = Bf U {»(

fi
o d /* while */

od /* for */

/* iterate over each process */
/ * start with block 0 */

/* block 0 is initially empty */

/* this event is a send event */
/* add event to current block */

/* begin new block */
/* new block is initially empty */
/* this event is a receive event */

/* begin new block */
/* this event is first event in block */

/* this event is a local event */
/* add this event to the current block */

Algorithm 3.1: Creating blocks of events through event abstraction

Placement of blocks inside the grid is based on two factors: the process that executed

the block and the length of the caused chain leading to that block. Blocks that are executed

by process Pi are placed in column i in the order they were executed. The first block is

placed at the top of the grid. Blocks are not allowed to overlap. Further restrictions on

vertical placement of blocks is based on causal relationships.

Rows display the relationships between blocks occurring in different processes and are

numbered from 0 at the top of the concurrency map. Interprocess relationships are identified

by the vertical separation of blocks executed by different processes into different rows. If

two blocks in different columns are at least partially contained in a common row, then the

the blocks are concurrent. On the other hand, if two blocks, B and B ', are positioned

without a common row, then a causal relationship exists between them. Furthermore, if B

is located above B ’ {B is in a lower numbered row than B'), then B —*■ B '.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY M AP 43

D efinition 3.1 The image of a block in the concurrency map, 1 (B), is the set of rows on

which that block is mapped.

D efinition 3.2 The minimum (topmost) row of 1(B) is [B \.

D efinition 3.3 The maximum (bottommost) row of 1(B) is \B~\.

The original definition of the concurrency map was given in vague prose. For example,

the construction algorithm was given as the single statement,

... any successor event that is reached by a chain of interprocess dependencies

of at most n is in row n + l.[45]

We provide a more formal definition of the concurrency map based on the definition of the

image of a block and the original paper.

D efinition 3.4 A concurrency m ap is a two dimensional grid representation of the ex­

ecution of a distributed system where

1. event abstraction (algorithm 3.1) is used to construct causally equivalent blocks,

2. blocks executed by process Pi are placed in row i in non-overlapping temporal order

such that B —> B ' if and only i f [B~\ < _B'\,

3. causally related blocks from different processes are placed such that B —* B ‘ i f and

only if \B) < \B 'J, and

4. concurrent blocks are placed such that i f B\\Br then 1(B) Pi I (B ') ^ 0.

with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY MAP 44

The following corollary follows directly from definition 3.4. In fact, it is simply a re­

statement of the final item in terms of the minimum and maximum of the images of blocks.

These terms will be utilized in the proofs to follow.

C orollary 3.1 S f ||2?j i f and only i f [B^] > [Bjj A [B*J < [Bj"|.

3.1 .1 A n E x a m p le

As a demonstration of the utility of the concurrency map, consider the case of a multiprocess

system with a single process serving as a work server. Process Po sends a unit of work to

each other process. These processes independently compute results which me returned

to Po to be assembled. When all processes have reported, new work loads are calculated

and sent, restarting the procedure. The algorithms for the server and clients are shown in

algorithm 3.2.

rep ea t re p e a t
foreach 1 < j < N re c e iv e (tuork) from Po

sendCwork) to Pj compute O
re p e a t send (.response) to Po

re ce iv e (.response) from any P forever
un til all P have responded

forever

Algorithm 3.2: Algorithms for server and computation processes

The block relationships become obvious when viewed as a concurrency map. Figure 3.1

shows the map constructed from a trace of a four process system. Since the intersection

of the images of P2’s block and the [recv m 4] block of Po is not empty, we can correctly

deduce a concurrent relationship between them. However, the disjoint images of the block

in P3 and the [recv 7714] block of Po imply a causal relationship that is present in the trace

due to message m 3 and the temporal occurrence of the receipts of Pq.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY M AP 45

Pb Pi p2 Ei
send m0

send m,

send m2 recv m0

recv m x

compute

send ms

compute

send m4

recv m2
compute
send m3

recv m3

recv m4

recv ms

Figure 3.1: Concurrency map of server/client execution

In this concurrency map, both causality and concurrency are explicitly shown. But

in a more complicated example, one without global constraints, problems arise. In these

cases, the greatly simplified view of the system’s execution is possible only at the expense

of sacrificed accuracy.

3 .1 .2 T h e In a c c u ra c y

Assume we are given a three process system. Suppose each process is a sequence of events

that follows the pattern {compute, communicate, compute, . . . } where communication

is either a message receipt or transmission. In Stone’s paper, we are given an example

execution which we will use to demonstrate the problem. The traced events are shown in

figure 3.2. Construction and placement of blocks into the concurrency map grid results in

map also shown in figure 3.2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY MAP 46

Po Pi P2
compute compute compute
send ml recv m l recv m2
compute compute compute
send m2 send m4 recv m4
compute compute compute
send recv m3 send ms
compute compute compute
recv m5
compute

Po Pi P2

compute
sena m2
compute
sena m3

B[j compute'
compute

compute [.
recv m5
compute

recv m2
compute

recv ml
compute
send m.

recv m4
compute
sena m.

recv m

compute

computecompute

Figure 3.2: Event execution and the derived concurrency map

On the surface, the concurrency map appears to identify the relationships between the

blocks in a manner conducive to understanding the system. Closer examination reveals a

subtle problem. Some causal constraints present in the concurrency map are not present

in the trace from which it was derived. For example, since blocks B q and B f are shown

separated into different rows, a causal link is implied; i.e., Bq —► B*. In the trace, however,

it is the case that B^ ||B j. A naive attempt to correct the situation may move Bq down to

show the concurrency with B{. This would require that B£ also be moved down to maintain

the display of the causality between Bq and B \, thus preventing the display of B^lfB^. In

fact, no matter how cleverly we place blocks in the map, it is not possible to accurately

represent the causal relationships of the traced system without including spurious causality.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY MAP 47

0

1

Figure 3.3: Simplified concurrency map of N = 3 process system

The difficulty stems from the block relationships exemplified by the simplified concur­

rency map of figure 3.3 involving three processes. Note that there must exist more blocks

than those shown for this situation to be possible. Specifically, there must exist a receive

event in either Po or Pi for the message sent from Pi. We consider only those blocks needed

for identification of the problem. Here we have the transmission of a message from from

Po to Pi. In addition, two blocks in Pi are each concurrent to both the send and receive

blocks. Since the causally related blocks must be separated by a row division and blocks

in the same process cannot overlap, all the concurrency cannot be displayed. Theorem 3.1

proves this impossibility.

T heorem 3.1 The constraints present in figure 3.3 cannot be accurately represented as a

concurrency map.

Proof: We proceed by contradiction. Assume the concurrency map can be accurately

constructed.

|B?J < [B$\ corollary 3.1 and (3 .1)

[P2J ^ rS0°l corollary 3.1 and B \^B q (3.2)

fSgl < |B?J definition 3.4 (3) and B§ -+ B° (3.3)

Po Pi P2

B°0 compute
sena m B°2 compute

sena
recv m
compute B'i compute

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY M AP 48

L ^ J < rS2°l (3.1), (3.2) and (3.3) (3.4)

\B%\ < IB±\ definition 3.4 (2) and B \ -> B \ (3.5)

False (3.4) and (3.5) (3.6)

■

Distributed systems in which this type of causal/concurrent pattern is found are com­

mon. Suppose we are given system of at least three processes. If two processes concurrently

send a message to a third process, the pattern will be present in the trace. One would

be hard-pressed to construct a realistic system of at least three communicating processes

which does not contain this pattern. Referring back to the concurrency map of figure 3.2,

blocks B q, By, By and B \ have this relationship.

P0 P.

B°0

B'o

Bl

Bn

B*o

compute
send m0
compute
send m,
compute
send m2

compute
send m.
compute
send m4

B\

B\

B\

recv m0
compute
recv m,
compute
recv m2
compute
recv m3
compute
recv mA
compute

Figure 3.4: Producer/Consumer with 2 processes

Another fault in the concurrency map is revealed if we are given a two process sys­

tem functioning in a producer/consumer fashion as shown in figure 3.4. Assume we are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY M AP 49

attempting to represent a two process system where Po sends several consecutive messages

to Pi which, in turn receives those messages. As before, a map for this system cannot be

constructed.

Before we prove that the concurrency map for this scenario cannot be accurately con­

structed, we first prove lemma 3.1. The lemma makes a strong statement about the place­

ment of two blocks, B f and By, if 1) the B f and By are concurrent, and 2) the block

preceding B f is concurrent to the block following By. If a block does not precede B f , then

we consider the relationship of the process initial event to the block following By.

L em m a 3.1 J /B f||B j-A B f_1||Bj+1 then [BfJ = [Byl-

P roof: We proceed by contradiction. Assume that [P f J ^ f P j l .

|B fJ < fB jl corollary 3.1 and B f ||By (3.7)

[BfJ < \Bj1 (3-7) and assumption (3.8)

fB f"1] < [BfJ definition 3.4 (2) and P f -1 -*• P f (3.9)

[Bf_1l < r*|-l (3-8) and (3.9) (3.10)

(Bj-l < L^j+1J definition 3.4 (2) and Bj -»• P j+l (3.11)

fP f~ ll < LBj+1J (3.10) and (3.11) % (3.12)

fBf_1l > LBj+1J corollary 3.1 and P f " 1 ||P j+1 (3.13)

False (3.12) and (3.13) (3.14)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. TH E CONCURRENCY MAP 50

Theorem 3.2 proves the impossibility of constructing a concurrency map representation

of the two process producer/consumer system shown in figure 3.4. As with the previous

example, this communication pattern is not uncommon. Systems need not maintain a strict

producer/consumer relationship. The necessary conditions for the theorem to hold require

only five or more messages to be sent and received before a return message is sent.

T heorem 3.2 The constraints present in figure 3-4 cannot be accurately represented as a

concurrency map.

Proof: We proceed by contradiction. Assume that the concurrency map is accurately

constructed. Let S{mi) € B q and R{rni) € B \ (B q —> B\) for all 0 < * < 4 as shown in

figure 3.4. These are exactly the blocks constructed by algorithm 3.1.

Ifljj = TB?1 lemma 3.1 and -Boll-®? A B q\\B\ (3.15)

r a j = r a i lemma 3.1 and B q\\B{ A B q\\Bx (3.16)

W 8J = \-B ai (3.15) and (3.16) (3.17)

iB ji = r a n lemma 3.1 and A Bq||Bi (3.18)

r a n < r a i definitions 3.2 and 3.3 (3.19)

r a n > r a n (3.17) and (3-19) (3.20)

ra s i < r a j definition 3.4 (2) and B q -> B q (3-21)

r a i = r a j (3-20) and (3.21) (3.22)

r»o3] = r a n (3.18) and (3.22) (3.23)

ra ° i = r a n (3.16) and (3.18) (3.24)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY MAP 51

W l < [A'J definition 3.4 (2)and B f —► B f (3.25)

&II5. (3.24) and (3.25) (3.26)

T B J1 = L flfJ (3.23) and (3.26) (3.27)

TBJI > [B } J corollary 3.1 and B q\\B\ (3.28)

W l > w i (3.27) and (3.28) (3.29)

fBgl < IB J J definition 3.4 (2) and Bq —► B q (3.30)

LBo3J < ffio 3 l definitions 3.2 and 3.3 (3.31)

\B i\ < f B j l (3.30) and (3.31) (3.32)

r -B j i = r a i (3.29) and (3.32) (3.33)

[Bg 1 < (BjJ definition 3.4 (3) and B q —► B f (3.34)

TBJI < LB?J (3.33) and (3.34) (3.35)

W l > [B ? J corollary 3.1 and B q^\B\ (3.36)

False (3.35) and (3.36) (3.37)

We have shown that some common execution sequences cannot be accurately represented

as a concurrency map. In the next section we examine the nature of the concurrency

map and it’s underlying graph interpretations and implications. We will see that a simple

subgraph is the cause of its inaccuracies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY M AP 52

3.2 Quad R ing

Given the concurrency graph H of an execution, we define a quad ring to be the maximally

girthed induced subgraph of H . From proposition 2.3 we know that the maximum girth of

any subgraph of H is four. If we are given four nodes comprising a quad ring, B°, B l , B 2

and B 3, then B^WB1 ||B2 ||B 3 ||f?° and B° —»• B 2 and B 1 —*• B3. Definition 3.5 formalizes

this notion.

D efinition 3.5 A quad ring is a maximally girthed, four-node induced subgraph o /H , i.e.,

h C H : g(h) = 4.

A quad ring can involve events from either two, three or four processes. Since H is a

result of concurrency, and a quad ring is a subgraph of H , we know that a single process

cannot produce a quad ring. We also know from proposition 2.3 that there are no quad

rings involving more than four events, so we cannot involve more than four processes in its

construction.

Consider a distributed system where process P, sends a sequence of messages to Pj with­

out an intermediate returned message. This scenario will produce a quad ring. Figure 3.5

shows a time-space diagram of an execution that fits the prescribed parameters. Also shown

in the figure is the complete concurrency graph for the execution of Pi and Pj with the arcs

forming a quad ring shown in bold.

It is possible to display some quad rings using a concurrency map. For example, the

nodes representing blocks B 2, B f, B® and B j of figure 3.5 can be accurately displayed in

a single row. However, if an additional constraint is added, then accuracy is no longer

possible.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY M AP 53

Figure 3.5: A 2 process quad ring

The concurrency in a quad ring requires tha t all involved blocks be at least partially

within the same row. Suppose that a row division must appear between the blocks of the

quad ring. Such a circumstance would occur if two of the causally related blocks were from

different processes. In this case, we can no longer accurately present the concurrency and

the concurrency map fails. When a causal link is present that must be placed within the

quad ring, we define it to be q*.

In the two process case, we define a graph qm to be a quad ring where a causal link is

found between a block that occurs before the quad ring in one process and another block

that occurs after the quad ring in the other process. The requirement does not limit the size

of the distributed system to two processes however. For example, consider the execution

shown if figure 3.6 where processes Pj and P* produce a quad ring between B j, B j, B j and

B j. Prior to the quad ring, Pj sends a message to Pi and after receiving that message, P,-

sends a message to P*. The message is received a t P* after the quad ring has been formed.

These two messages form the causal link necessary for a two process q*.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY MAP 54

P. P.i I

Figure 3.6: A multi-process system producing q's

Definition 3.6 formalizes the notion of a two process q* and includes the relationships

between the additional blocks and the quad ring. Figure 3.7 shows the simplified concur­

rency graph for a two-process q". Note that two additional quad rings are formed in this

figure. Namely, B , B°, B 2 and B 3 form a quad ring and B°, B l , B 3 and B r form a quad

ring.

(B°

Figure 3.7: A 2 process q“

D efinition 3.6 A two process quad ring containing the blocks B°, B l , B 2 and B 3 where

B° -> B l and B 2 —► B 3 is a q* i f and only if there exist blocks B and B ' such that the

following relationships hold:

• B ^ B '

• B - + B ° , B \\B 2 and B\\B3

• B 3 -)• B ’, B'\\B° and B'\\B1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY M AP 55

Any execution, that contains a two process qm as a subgraph of the concurrency graph

cannot be accurately represented as a concurrency map. Lemma 3.2 uses the definition

above and the construction of the concurrency map to formulate a proof.

Lem m a 3.2 A two process q* cannot be accurately represented as a concurrency map.

Proof: Assume we are given a six node subgraph of H as defined in definition 3.6 and

shown in figure 3.7.

i s ' j = r s 2i B l \\B2, 5 ° ||S 3 and lemma 3.1 (3.38)

|B ‘J = fB3l B l \\B*, B°\\B' and lemma 3.1 (3.39)

r s 2i = i b 3i (3.38) and (3.39) (3.40)

i b 3j < r s 3i definitions 3.2 and 3.3 (3-41)

fB2l > |B 3J (3.40) and (3.41) (3.42)

r« 2i < i b 3j B 2 —> B 3 and definition 3.4 (2) (3.43)

r s 2i = i b 3! (3.42) and (3.43) (3.44)

lb3j = r« i B3 ||B, B2 ||B° and lemma 3.1 (3.45)

m = [b 2i (3.44) and (3.45) (3.46)

m = l b ’j (3.38) and (3.46) (3.47)

i b 'i - rB»i B'HB0, B3!!# 1 and lemma 3.1 (3.48)

r s ° i < i b ‘j B° -* B l and definition 3.4 (2) (3.49)

IB'J < LB'J (3.48) and (3.49) (3.50)

LB'J < fBl (3.47) and (3.50) (3.51)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY M AP 56

IB 'J > \B \ B ' —> B and definition 3.4 (3) (3.52)

False (3.51) and (3.52) (3.53)

A quad ring that contains blocks from three processes has the row division needed to

produce a g*. Consider the execution of figure 3.6 again. Blocks B f, B f, B f and B \

form a quad ring. A message is transmitted from Pj to Pi creating an inter-process causal

relationship. This relationship is displayed by separating the send and receive blocks into

different rows of the concurrency map. The blocks in P* are concurrent to both the send

and receive blocks and temporally related to each other. Note that the causal link could

be transitive instead of direct. We only require that the link exists. All three process quad

rings are also g*s. Lemma 3.3 proves the impossibility of representing a three process g* as

a concurrency map. Figure 3.8 (a) shows a simplified three process concurrency map that

will be used in the proof.

L em m a 3.3 A three process q* cannot be accurately represented as a concurrency map.

P roof: We proceed by contradiction. Given a three process g* such th a t shown in fig­

ure 3.8 (a) where B° ->• B l , B 2 -► B 3, and V(B°) # V { B X), assume that an accurate

11

(a) (b)

Figure 3.8: A 3 process qm and a 4 process g*

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY MAP 57

concurrency map can be constructed.

L s 'j < r s 2i B l \\B2 and lemma 3.1 (3.54)

[b 3j < rB°i B 3 ||B° and lemma 3.1 (3.55)

r s j i < lb3! B 2 -*■ B 3 and definition 3.4 (2) (3.56)

IBM < LB»J (3.54) and (3.56) (3.57)

LB‘J < re ° l (3.55) and (3.57) (3.58)

rB°i < lb ' j B° —► B l and definition 3.4 (3) (3.59)

False (3.58) and (3.59) (3.60)

The necessary row division in the concurrency map is also present when the blocks of the

quad ring are from four processes. Blocks B f, B°, B f and B f of figure 3.6 form a four process

quad ring. Processes Pj and Pk concurrently send messages to Pi and Pi which concurrently

receive those messages. Note that this is not the only execution that could produce a quad

ring. The causal relationships between processes could be transitive instead of direct. We

only require that the causal relationships exist. Just as in the three process case, all four

process quad rings are considered q*s. Figure 3.8 (b) shows a simplified time-space diagram

of a four process q* and lemma 3.4 proves the impossibility of accurately displaying the qm

as a concurrency map. Note the similarity between the proofs of lemmas 3.3 and 3.4. The

three-process case attributes one causal link to temporal order while the four-process case

attributes both causal links to communication. The sources of the links accounts for the

only difference between the proofs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY MAP 58

L em m a 3.4 A four process q* cannot be accurately represented as a concurrency map.

Proof: We proceed by contradiction. Given a four process qm such that B° -* B l and

B 2 —*■ B3 as shown in figure 3.8 (b), assume that an accurate concurrency map can be

constructed.

[B lj < \B 21 B LjjB2 and lemma 3.1 (3.61)

[£ 3J < [B°] B3 ||B° and lemma 3.1 (3.62)

[B2] < [B3J B2 —► B3 and definition 3.4 (3) (3.63)

Lf?M < LB3J (3.61) and (3.63) (3.64)

LBlJ < rB°l (3.62) and (3.64) (3.65)

rB°l < LB1] B° —► B 1 and definition 3.4 (3) (3.66)

False (3.65) and (3.66) (3.67)

We have considered q* graphs for systems of two, three and four processes. As stated

earlier, since the graph is based on concurrency, there are no such graphs for a single

process system. The events of a single process are totally ordered and are not concurrent.

Lemma 3.5 proves that there are no q* graphs for systems of five or more processes.

L em m a 3.5 /9 k-process q* where k > 4.

P roof: A q* is defined as a quad ring with an additional constraint. Namely, that an

interprocess causal link is present. By proposition 2.3 we know that the quad ring contains

no more than four events. Therefore, the q* can contain no more than four events. If each

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY MAP 59

event is from a different process, there are only four processes involved. Hence, there sure

no fc-process 4*s where k is greater than four. ■

The next section lends credence to the importance of q*. We show that not only is

the construction of an accurate representation by a concurrency map impossible if the q*

subgraph of H is present, but it is guaranteed if a q‘ subgraph is not present.

3.3 q* and Concurrency Maps

If we are given an execution that contains any 4* as a subgraph of the concurrency graph,

then an accurate representation as a concurrency map is not possible. Since there are only

three cases in which a 4* is defined, and each has been proven, the proof of the theorem is

straightforward.

T heorem 3.3 If there exists a 4* subgraph of H then an accurate concurrency map repre­

sentation of H cannot be constructed.

Proof: Follows directly from lemmas 3.2, 3.3 and 3.4. ■

As stated in the previous section, this is not the limit of the influence of the quad

ring. We now show that an accurate representation as a concurrency map is guaranteed if

the 4* subgraph is not present. We proceed by induction on the number of blocks in the

concurrency map. As a base case we show that all four-node subgraphs that are not a 4*

can be represented as a concurrency map. Then we show that a construction technique can

be used to add nodes to an accurate concurrency map producing an accurate representation

of a A; + 1 node graph for all values of k.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY MAP 60

L em m a 3.6 All induced four-node subgraphs, h C H : h ^ q* can be accurately represented

as a concurrency map.

Proof: We proceed by exhaustive enumeration. There are only two circumstances under

which an induced four-node subgraph, h C H, is not a q*. Either h is a two-process quad

ring where the additional constraints do not hold or h is not a quad ring. Construction of. a

correct representation of a two process quad ring which is not a g* by a concurrency map is

trivial. As indicated previously, a single row in a two column concurrency map is sufficient

to display this situation. We now consider each possible alternate configuration of h that

are not a quad ring. We will consider all possible arrangements of arcs between four nodes.

Let us first consider the cases where either all four nodes are fully connected, or where

none of the nodes are connected. Figure 3.9 shows the only two possible configurations that

these two situations can produce. These two graphs are numbered 1 and 10, respectively,

in the final list of figure 3.18.

m :o— o o o
I 10

Figure 3.9: Configurations of h with 6 or 0 arcs

If five arcs are present of the possible six, we must consider (®) = 6 different graphs.

Each one shown in figure 3.10 has a different arc removed. It is easy to see that graphs

1 and 2 are isomorphic. Likewise, graphs 3, 4, 5 and 6 are isomorphic. In figure 3.11 we

show a labeling of graphs 1 and 5 indicating the isomorphism of the graphs. Graph 2 of

figure 3.18 represents the only possible configuration of four nodes with five arcs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY MAP 61

Kf 17o— o o— o
I 2

Figure 3.10: Configurations of h with 5 arcs

ib a

d6 O

Figure 3.11: Equivalence of 5 arc nodes

If four arcs are present, there are (®) = 15 different graphs we must consider. These

graphs are shown in figure 3.12. In this case, graphs 13, 14 and 15 represent forbidden quad

ring's and are not considered. Of the remaining graphs, numbers 1 through 8 are rotations

and inversions of each other. They are therefore isomorphic. Graphs numbered 9 through

12 are also rotations and inversions of each other, and are isomorphic. From these two

remaining graphs we show numbers 1 and 9 in figure 3.13. The labels attached to the nodes

indicate the rearrangement that will produce one from the other. These are also the same

graph which is number 3 in figure 3.18.

3 3 H K M
5 6 7 8x m n,o

o

Figure 3.12: Configurations of h with 4 arcs

If only three arcs are present in the graphs, there are (^) = 20 different graphs we must

consider. These graphs are shown in figure 3.14. The graphs can be divided into five groups

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY MAP 62

X 1 dXdCr— Oc a O Oc

Figure 3.13: Equivalence of 4 arc nodes

of four each. Graphs 17 through 20 are in one group because they are rotations. Graphs 13

through. 16 are in another group since they are also rotations. The remaining twelve graphs

have representatives in figure 3.15. Numbers 1 through 4 are represented by the graph

on the left, graphs 5 through 8 are represented by the graph in the center, and graphs 9

through 12 are represented by the graph on the right. Each representative graph is labeled

to show that they are isomorphic to the same underlying graph. Therefore, we have three

different graphs with three arcs which are numbered 4, 5 and 6 in figure 3.18.

0— 0Xo o
I 3 Xo— o

3 3303u8

Xd-—
o o -X o10

Mu z12 X13 3ZIS 33 X18 3 K20

Figure 3.14: Configurations of h with 3 arcs

»Q——P b aO Ob »Q Od

d O Oc c O O d c O Ob

Figure 3.15: Equivalence of 3 arc nodes

We next consider the graphs with only two arcs where we have (®) = 15 possibilities.

These possibilities are shown in figure 3.16. Note that the arcs either share a common node

or are disjoint. Graph number 7 in figure 3.18 shows two disjoint arcs while graph number

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY MAP 63

8 shows two arcs that share a common node. All the two arc graphs in figure 3.16 are

isomorphic to one of the two arc graphs in figure 3.18.

U H K K U X Z n M °A
I 2 3 4 5 6 7 8 9 10

y v l l ^ yO O O O w w u u o o
II 12 13 14 15

Figure 3.16: Configurations of h with 2 arcs

There are (®) = 6 graphs we must consider with a single arc. These are shown in

figure 3.17. By rearranging the nodes we can easily transform one of the graphs into

another. The single arc graphs are isomorphic to number 9 in figure 3.18.

O O O O O-----O----- O 0 0 0 . 0

o o— o o O o o o o o o
1 2 3 4 5 6

Figure 3.17: Configurations of h with 1 arc

We have considered all possibilities of undirected arcs in a four node graph. The order

of the nodes will become important when we consider the graphs h from which each h could

have been derived. However, the position of a node in h is irrelevant. We have rearranged

the position of the nodes to show that all possibilities are represented by a set of ten graphs.

These are shown in figure 3.18.

O r—HD O- 0 ° i ? 9 ----- 9 9 .o Q O O o Q o 9 o o o

Figure 3.18: Possible non-quad ring configurations of h

o o o
10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY M AP 64

Given that the absence of an undirected edge B \B i in h implies a directed edge, either

B 1B 2 or B 2 B 1 , in h, we can enumerate the possible configurations of h. Figure 3.19 shows

that there axe 41 possible directed graphs that have one of the h graphs as an undirected

complement. To clarify the derivations of the directed complements of each h, we present

table 3.1. Each of the numbered h graphs is listed to the left while the right portion of that

table shows which of the 41 directed complements were derived from it.

•
•

•
•

• •
2

71
3

71
4

n
5

71
n

71
12

71
13

71
14

71
15

71
21

N
22

n
23

N
24

71
25

Ho - — o
31 32

m
33

o — * o

c > - - o
34

0
35

H 71
to

Q -Q Q «Q

O-—O O—-O nnn
16 17 19 20

26 27 28 29 30

T 7 ? M TS7T T v ?
O—“O o—^o » »

36 37 38 39 40

41

Figure 3.19: Directed graph derivations of h

Some of the directed graphs of figure 3.19 represent impossible executions of a distributed

system. For example consider the directed graph numbered 3 in the figure. From proposi­

tion 2.1 and the transitivity of the causal relation we know that B" => B —y B " .

However, the graph indicates that B —> B f -» B" but B\\B". In other words, an arc from

the top left node to the bottom right node should be present, but is not. Therefore the

graph does not represent a possible execution of a distributed system. The cycle present in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY M AP 65

h derived digraphs
1 1

2 2

3 3 45
4 6 7 8 9
5 10 11 12 13
6 14 15
7 16 17 18 19
8 20 21 22 23 24 25 26 27
9 28 29 30 31 32 33 34 35 36 37

10 38 39 40 41

Table 3.1: Directed graphs derived from each h

directed graph number 14 disqualifies it as well.

Only nodes with solid vertices do not violate either proposition 2.1 or proposition 2.2.

For each of the possible directed graph representations, it is impossible to determine whether

the causal links are due to interprocess communication or to intraprocess temporal order­

ing. For this reason, multiple concurrency maps are possible for a single directed graph.

Figure 3.20 shows the 70 possible concurrency maps derived from the valid directed graphs

of figure 3.19.

Again, we supply a cross reference that indicates which concurrency maps were derived

from the directed graphs. Notice that some of the concurrency maps have multiple entries

in table 3.2. This indicates the difficulty in deducing the number of processes involved in the

graph. For example, consider the last graph of figure 3.19. Since all nodes of the graph are

causally related, any number of processes from one to four inclusive could be represented.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY MAP 66

□ □ M □ □ II □ 12 □ U 0 M

□ □ □ D □ □ □

0 □ □ □ □ □

□
□

□ □

□
□

□
□

□
0

□
□

□ V 0
D □

0 □
□ □

□ □
□

0

□□
□

□

□□
□
□

□
□ 0

□

□
□

□ □

□
□

□ □

a B
□ <■ntol m r

0 i d
□ J l Id

0 0
□I Idl

□ 1
□ □ □

oD
0 0 Bso ” 9

0
□ □ □

n 0 1 ao□ 0 0Li □10 □ f lB - B
□i

n 1°u i 0
.iDiaiaiai

Figure 3.20: Directed graph derivations of h

By exhaustive enumeration we have established that any four-node subgraph of H which

is not isomorphic to q* can be accurately represented as a concurrency map. ■

3.3.1 P artition s o f h

Assume we are given a fc-node induced subgraph, h C H , such that q* %. h and a node

n € H such that n £ h. Let h! be an induced subgraph of H with the nodes of h and the

node n, such that q* 2 h'. We can define three partitions of the nodes of h based on the

relationship of each of these nodes to n.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. TH E CONCURRENCY M AP 67

digraphs derivative concurrency maps

1 70

2 61 60

4 55 62

5 55 62

7 20 53 54 59

10 52 58

13 51 57

15 19 47 48 49 65

18 21 50 56

21 15 17 43 44 45 46 64

27 16 18 39 40 41 42 63

28 13 14 36 37 38 69

33 11 12 33 34 35 68

35 9 10 28 31 32 67

39 1 2 3 4 5 6 7 8 22 23 24 25 26 27 66

41 1 2 3 4 5 6 7 8 22 23 24 25 26 27 66

Table 3.2: Concurrency maps derived from each directed graph

D efinition 3.7 A = {B : B € h A n —► B }.

D efinition 3.8 B = {B : B € .h ,AB —► n}.

D efinition 3.9 C = {B :B G ftA -B ||n } .

The three sets are after, before, and concurrent. They contain the nodes of h that

causally succeed, causally precede, and are concurrent to node n, respectively. Prom defi­

nitions 2.4 and 2.7 we know that all nodes of H are either causally or concurrently related.

Therefore A, B , and C represent a valid partition of any induced subgraph of H . We also

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY M AP 68

know the following properties hold. No proofs are given since the derivation is directly from

the definitions of causality and concurrency.

P ro p e r ty 3.1 Va 6 A,V6 6 B ,b —»■ a.

P ro p e r ty 3.2 Va G A, Vc 6 C, a -f* c.

P ro p e rty 3.3 Vb € B,Vc € Cyc 6.

Since we are assured that no quad rings are present in either h or h', we can deduce

several impossibilities for the concurrency map with k + 1 nodes. In lemma 3.7 we show

that under some conditions we can be certain of the processes in which blocks are executed.

We are given two causally related blocks from partition C and a single block from partition

B. If the later block of C is concurrent to the block from B, then we are assured that both

blocks from C are executed by the same process and the block from B is executed by the

same process as n. If either condition was not met, a forbidden q* would be formed.

L em m a 3.7 Vc, d G C V6 G B : d -)■ c A c||b =► P(c) = V{d) A V{b) = V(n)

Proof: Assume we are given c, </ € C and b € B such that d —*■ c and 6 ||c.

d -fab property 3.3 (3.68)

6 d d —> c, c ||6 and property 2.5 (3.69)

c'||6 (3.68) and (3.69) (3.70)

If either V(c) ^ V{d) or V{b) P(n), then the set {c, d , b, n} C h' is a three process q*.

Consider figure 3.21 where concurrent relationships are shown as solid, undirected lines,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY MAP 69

and causal relationships are shown as dashed arrows. If exactly one of the causal links is

interprocess, then a three process q* is formed. If both V(c) ^ V(d) and V(b) ^ P(n) then

the set {c, d , b, n} C hr is a four process q*. Referring again to figure 3.21, a four process qm

is formed when both causal links are interprocess. Either case contradicts the assumption

that qm % h!. Therefore, P(c) = V(d) A V{b) = P(n). ■

Figure 3.21: Block arrangements forming a q‘ with a block from B

In lemma 3.8 we assume only that there exist two causally related blocks in C. By

definition, we know that these blocks are concurrent to n. That provides sufficient leverage

to restrict the existence of blocks of B. Since a block from B that is concurrent to c (and

therefore concurrent to d) would form a quad ring if either c and d were executed by

different processes or the block from B and n were executed by different processes. If either

[6] > [cj or V(b) 'P(n), a forbidden qm is formed.

Lem m a 3.8 Vc, o' € C : d -*• c =>flb 6 B : > [cj A V(b) ^ V(n)

P roof: We proceed by contradiction. Assume there exists 6 € B such that [6] > |cj and

V { b)^ V { n) .

b -f± c [61 > [cj and definition 3.4 (3.71)

c-fob property 3.3 (3.72)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY MAP 70

6 ||c (3-71), (3.72) and definition 2.7 (3.73)

V{b) = V{n) d —► c, (3.73) and lemma 3.7 (3.74)

False V(b) ^ V{n) and (3.74) (3.75)

■

Where the previous two corollaries show the necessary configuration of causally related

blocks from C and a block from B, the following two corollaries show similar properties as

they related to blocks from A. Lemma 3.9 again assumes that we are given two causally

related blocks from C. Also assumed is a block from A that is concurrent to the preceding

block from C. The proof shows that the processes executing all three blocks are defined

relative to each other. Specifically, both blocks from C are executed in the same process

and the block from A is executed in the same process as n.

Lem m a 3.9 Yc,d E C 'ia E A-. c -¥ d A c||a => V{c) — V{d) A V(a) — V(n)

Proof: Assume there exists c,d E C and a E A such that c —► d and c||a.

a -ft d property 3.2 (3.76)

d -f* a assumption and property 2.5 (3.77)

d\\a (3.76) and (3.77) (3.78)

If either P(c) ^ V[d) or V(a) / P(n), then the set {c ,c \a ,n} C h' is a three process q*.

Consider figure 3.22 where concurrent relationships are shown as solid, undirected lines,

and causal relationships are shown as dashed arrows. If exactly one of the causal links is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY M AP 71

interprocess, then a three process q* is formed. If P(c) ^ V{d) and Via) # V{n) then the

set is a four process q*. Referring again to figure 3.22, a four process q* is formed when

both causal links are interprocess. Either case contradicts the assumption that q* £ h'.

Therefore, V(c) = V(d) and V{a) = V(n). ■

Figure 3.22: Block arrangements forming a qm with a block from A

To avoid the creation of a quad ring in the concurrency map given a pair of causally

related blocks of C, we restrict the placement of blocks from A in much the same way we

did for blocks of B. Blocks from A which are concurrent to c (and therefore concurrent to

d) must be executed by the same process as n. Otherwise, (c, d, a, to} would form a quad

ring. If a block from A is concurrent to both c and d , we are also assured by the previous

lemma that the two blocks from C are executed in the same process.

L em m a 3.10 Vc.c' € C : c -> d => jQa 6 A : [aj < M A V{a) ^ V(n)

P roof: We proceed by contradiction. Assume there exists a € A such tha t [aj < [c| and

P(a) #7>(to).

c ■/> a assumption and corollary 3.1 (3.79)

a -f* c property 3.2 (3.80)

c||a (3.79), (3.80) and definition 2.7 (3.81)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY MAP 72

V{a) = V(n) premise, (3.81) and lemma 3.9 (3.82)

False assumption and (3.82) (3.83)

Let the two values, a and 0 represent the limits of the A and B sets. The smallest

numbered row of the concurrency map in which a block from set A appears is labeled a and

the highest numbered row in which a block from set B appears is labeled 0. Figure 3.23

shows six blocks from B, four from A, and three from C. Also shown are the locations of

0 and a in the concurrency map. It is possible that either A, B or both may be empty,

in which case special care must be taken in the definitions of the set limits. The following

definitions insure that a > 0.

D efinition 3.10 Given h C H such that h ^ q*, the partitions A, B, and C, and the

accurate concurrency map representation of h, we define 0 as follows.

„ f max([6'|V& e B) i f B ^ t o
\ 0 otherwise

D efinition 3.11 Given h C H such that h ^ qm, the partitions A, B , and C, and the

accurate concurrency map representation of h, we define a as follows.

f min([aJVa G A) i f A ^ to
\ max(fw]Vu € h ,0 + 1) otherwise

Let $ be an accurate concurrency map representation of the relations in h. From

If we construct \F, a concurrency map that accurately depicts the relations of h'. The

construction is based on the images of blocks in Both or and 0 are used extensively in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY M AP 73

Pin)

h
m m

r a

m
m FI1___

s a

. a .
■ a I “

Figure 3.23: 0 and a with sets A, B, and C

the transformation. The next section defines the transformation of ’if into $ by altering the

images of each block in 'Jf and placing the additional block n.

3.4 Transformation of the concurrency map

We now transform the known correct concurrency map, into 'f, the concurrency map

correctly displaying the relationships of with the addition of n. The image of each

block of \fr is used to calculate the image of the corresponding block in 'P to preserve the

relationships in Although not explicitly stated in the construction, we assume that the

temporal order of nodes of ^ is preserved. That is, multiple nodes enclosed within a single

row cannot be reordered in the construction. Two nodes of a process completely enclosed

in a single row would maintain a correct image relationship even if they were temporally

reversed in the associated concurrency map. Only the relative order of the reordered blocks

would be incorrect.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY M AP 74

We begin by placing n in 4f in rows that will ultimately be between the blocks of B and

A. By using the values of 0 and a, we take into account all blocks from both B and A .

The image of n in 4?, T(n), is from row 0 + 1 to a 4- 1.

I (n) = {0 + l . . . a + 1} (3.84)

Later transformation equations will show that we shift the blocks of A down by two

rows. By leaving the blocks of B placed before 0 + 1 and moving the blocks of A to after

a -F 1, we free rows 0 4- 1 to a 4- 1 for the placement of n.

In the next section we will show that this assignment insures the accurate display of the

causal relationships among all blocks of B and A with n. Elements of C are not taken into

account expressly since they will ultimately be shown concurrent to n. Their individual

transformations will insure that part of their images fall in the range (0 4- 1 . . . a 4 - 1). All

blocks from process Pi are placed in column t in both ’Jr and 4*.

3.4 .1 T ra n s fo rm in g th e b locks o f p a r t i t io n B

The blocks of partition B retain their original positions in most cases. However, some situ­

ations force blocks to be moved. We will examine the transformation of the minimum and

maximum values of the image of blocks from B in turn. The transformation equations (3.85)

and (3.86) collectively identify where they should be placed in 4'.

We begin by examining the maximum of the image of each block. We know that n will

be placed beginning at row 0 + 1, and all blocks from other processes that causally precede

n must be found higher in the map, i.e., [5) < 0 + 1. From the definition of 0 we are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY M AP 75

assured that the images in of the blocks of B meet this criterion. Hence, no alteration

is needed and [6] = f f r] . However, if for some 6, V{b) = V(n), then we must consider the

possible relationships with both the other blocks of B and the blocks of C.

It is possible that some c € C, concurrent to both b and n, is placed such that |_cj = 0+1.

In which case, to show the concurrency between 6 and c, we must let fo] = 0 + I as well.

Under most conditions the images of all b € B where V(b) = P(n) should be extended

into the 0 + 1 row. The following paragraphs identify the circumstances under which the

extension should not be performed. Equation 3.85 defines the transformation.

' 0 + 1 if [V{b)=V{n)\
r t i - A [& * b" £ B - w) = * (*) * w) A 6 -►v A m > L«/J] n
1 ' “ l A [flv € B U C : V(v) ^ V(b) A 6 u A [uj < 0\ 1 ’

otherwise

Consider the situation shown in figure 3.24(a). The block b is executed by the same

process as n. If we were to extend the maximum of the image of b into row 0 + 1, we force

b' into an incorrect position. Since blocks are not allowed to overlap, we must place b' such

that | 6'J is also 0 + 1. Since b" and n are executed by different processes, the placement

of y will not change, and the concurrency between If and b" will not be correctly shown.

Therefore, the image of b is not altered in this situation.

The second clause, illustrated in figure 3.24(b), considers blocks from both partitions B

and C. If there exists a block from another process that causally follows b situated in ^ at

least partially above 0, then the image of S cannot be stretched into the 0 + 1 row. The

reason for retaining the original position in this case is that the other block, either in B or

C, will not be moved below 0 + 1. If the block is in B, it will retain its original position

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY M AP 76

Pin) Pin)

b ' P

(a)

Pin) Pin)

L iil L id

FI P P FI
(b)

Figure 3.24: Special cases in the transformation of 6 G B

since it is executed in a process other than V{n). A block in C meeting these criteria will

never be moved lower than row (3 + 1. If 6 was allowed to stretch into (3 + 1, it would

incorrectly be shown concurrent to the block that causally follows it.

The minimum of the image of each block of B is transformed in a manner simila r to the

transformation of the maximum. In most cases, no alteration is needed to correctly display

the relationships with other blocks of the system. However, if the block in question is in

the same process as n then we must consider other possible scenarios. Referring again to

figure 3.24(a), consider the transformation of br. If we ignore 6", we are unsure whether

the maximum of b should be stretched into row f i 4- 1. If it is, then to avoid overlapping

images, we must also move the minimum of b! into (3 + 1. The movement to (3 4- 1 requires

that another block must temporally precede b1 as b does in the figure. It also requires that

a block with concurrent relationships to b and b' such as 6" in the figure does not exist in

If either requirement is not met, the minimum of b' must remain in its original position.

If it was allowed to be moved into fi 4- 1, then it would no longer be shown concurrent to

6" .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY M AP 77

On the other hand, if the temporally preceding block (6) is found in ¥ and the concur­

rent block (b") is not found, then the movement can take place. Both the m in im u m and

maximum of the image of if as well as the maximum of the image of 6 are moved into row

P + 1. The minimum of the image of 6 is considered in a similar manner and may be moved

into P + 1 as well. Equation 3.86 formalizes the transformation.

0 + 1 if[7>(6) = V{n)\
_ I A [36' 6 B : V{b') = V{b) Ab' —>• 6]

L J “ ' A [£&" € B : 7>(6") # V{b) A r&"l > |6J]
[6J otherwise

(3.86)

Using these equations we prove that the causal relationships among all blocks in B are

maintained through the transformation. We begin by showing that the causal relationships

in are preserved in the transformation. The proof is based on the definitions of P and

B as well as the definition of a concurrency map. In the first case we assume that both

blocks of B are executed by the same process. This allows us to ascertain their transformed

positions relative to their original positions. In the second and third cases, we assume that

b and b' were executed by different process. Case two assumes that b was executed by the

same process as n while case three assumes the opposite.

L em m a 3.11 V6,b 'E B :b -* U = $ -b —* y .

Proof:

C ase 1 : V{b)=V{V)

W < L&'J 6 - t 6', V{b) = V{b') and definition 3.4 (2) (3.87)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY M AP 78

f5l = [6] b-+ b' and (3.85) (3.88)

[6'J < ft definition 3.10 (3.89)

[S'J = L&M V [S'J = p + 1 (3.86) (3.90)

L&'J > 1X1 (3-89) and (3.90) (3.91)

(61 < [S'J (3.87), (3.88) and (3.91) (3.92)

5 —► 6' (3.92) and definition 3.4 (2) (3.93)

C ase 2: V{b) ^ 7>(6') A V(b) # P(n)

m < [b'\ b -+ 6', V[b) ± V{b') and definition 3.4 (3) (3.94)

r&l = [b] P{b) # V{n) and (3.85) (3.95)

[Sj > fS] (3.94) and (3.95) (3.96)

[6'J < P definition 3.10 (3.97)

[S'J = [6'J V LS'J = p + 1 (3.86) (3.98)

[S'J > [6'J (3.97) and (3.98) (3.99)

r&l < [6'J (3.96) and (3.99) (3.100)

6 S' (3.100) and definition 3.4 (3) (3.101)

C ase 3: V{b) ^ V(b') A V(b) = V(n)

m < Lfe/J b —f 6', V(b) ^ V(b') and definition 3.4 (3) (3.102)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY M AP 79

\P '\< P definition 3.10 (3.103)

r s i = r&i b -* b' , V{b) ^ P(b'), (3.103) and (3.85) (3.104)

r*i < L^J (3.102) and (3.104) (3.105)

L&'J > L^J P(b') # V(n) and (3.86) (3.106)

m < i&'j (3.105) and (3.106) (3.107)

b-+b' (3.107) and definition 3.4 (3) (3.108)

We have accounted for all possible cases, therefore, b —► V. ■

Lemma 3.12 proves that the concurrent relationships in ' t among blocks of partition

B are accurately represented in 'Er. Prom the definition of concurrency we know that the

events in question must have been executed by different processes. Therefore at most one

of the events could have been executed by the same process as that which executed n. We

arbitrarily choose b' and assume that it was not executed by the same process as that which

executed n. Without assumptions concerning the process or original placement of 6, we can

conclude that the concurrency is properly shown in We base our proof on the definition

of a concurrency map as it relates to the display of concurrent events.

L em m a 3.12 V6, 6' € B : 6||6' => 6||6'.

P roof:

V{b) V{b') 6||6' and definition 2.7 (3.109)

V{b') ^ V{n) arbitrary assumption (3.110)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY M AP 80

L6'j = Lfr'J (3.110) and (3.86) (3.111)

m = r&n (3.110) and (3.85) (3.112)

lb] < P definition 3.10 (3.113)

r6i = r & i v r & i = / ? + i (3.85) (3.114)

fb] > [b] (3.113) and (3.114) (3.115)

m > l&j b' || b and corollary 3.1 (3.116)

!AI = !AI (3.109), (3.116) and (3.86) (3.117)

X (S)nz(6') # 0 (3.111), (3.112), (3.115) and (3.117) (3.118)

b\\b' (3.118) and definition 3.4 (4) (3.119)

In addition to the relationships of the blocks of B, we can show that all blocks of B are

shown causally preceding n in 'If. We are given that the placement of n is between rows

P -F 1 and a + 1. The definition of a tells us that it is greater than 0 in all cases. Therefore

the minimum of the image of n is j8 + 1. The definition of jS is such that no block in B

is found lower in $ and the transformation allows only those blocks executed by the same

process as n to extend into ft + 1. We have assumed that the temporal order of blocks in a

process is not reversed, so the transformation must properly show the causal relationship.

The proof of lemma 3.13 is composed of two cases. The first assumes that blocks b and n

are executed by different processes. The second assumes that they were executed by the

same process.

L em m a 3.13 V6 € B : 6 —»• n.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY M AP 81

Proof:

C ase 1: V{b) # Pin).

r&i<0 definition (3.10) (3.120)

r&i = r&i P(b) P(n) and (3.85) (3.121)

r&i < 0 (3.120) and (3.121) (3.122)

|_nj = 0 + 1 (3.84) (3.123)

r&i < w (3.122) and (3.123) (3.124)

b —¥ n (3.124) and definition 3.4 (3) (3.125)

>E 2: V{b) = Pin).

r&i < 0 definition 3.10 (3.126)

fb] = r&i v rsi = p + 1 (3.85) (3.127)

fb] < 0 + 1 (3.126) and (3.127) (3.128)

LnJ = 0 + 1 (3.84) (3.129)

R»1 < W (3.128) and (3.129) (3.130)

6 —> n P{b) = Pin), (3.130) and definition 3.4 (2) (3.131)

We have accounted for all possible cases, therefore, 6 —m . ■

We have shown that in all cases, the relationships among any two blocks of partition

B are maintained in the transformation. In addition, we have shown that the causal re­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY M AP 82

lationship between a block in B and n is properly displayed in the new concurrency map.

The next section will consider the relationships among multiple blocks of partition A, the

causal relationship between a block of partition B and a block of partition A , and the causal

relationship between the n and a block from A.

3 .4 .2 T ransform ing th e b lock s o f p a rtitio n A

Transforming the images of blocks causally succeeding n is performed in a manner similar

to those preceding n. Instead of retaining the original position of most blocks, we translate

their images down by two rows to make room for the placement of n. Since the blocks were

originally found at or below row a, they are moved to or below row a + 2.

Note that the definitions of and a do not require that a be exactly one larger than /3.

It could be that c t > j 8, in which case the translation would not be required. Room would

already exist between the blocks of B and the blocks of A in the map for the placement of n.

The transformation equations could be extended with more elaborate cases to accommodate

this circumstance and produce a transformed graph of minimal size. We have opted for the

less complicated transformation that still produces a correct concurrency map.

The minimum of the image of a block causally succeeding n is generally translated down

by two rows. It is possible that a block c 6 C could be placed in such th a t the maximum

of its image is in row a + 1. If c is concurrent to some a € A then the image of a must also

include row a 4-1. In this case [aj is assigned the value a + 1. However, some conditions

prevent this assignment.

Consider the situation shown in figure 3.25(a). The image of a" must continue to

display the causal relationship with n after it has been translated to its new position. So

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY M AP 83

the minimum of the new image of a" must be a + 2. W ith this in mind, consider a'. To

show the concurrency with a", the translated image of a' must extend into a + 2 as well.

To avoid overlapping the translated images of a' and a, we are forced to assign a + 2 to |a j .

Pin) Pin) Pin) Pin)
a

a+1
a+2

M
- a ' -

1“ t

Q a

GO a+1
a+2

R
(a) (b)

Figure 3.25: Special cases in the transformation of a 6 A

Figure 3.25(b) demonstrates another condition under which the transformation must

revert to the default assignment. A block v from either A or C causally precedes event a in

a process other than V{a). Blocks that proceed a in Via) are not considered. If v is found

at or below row a in 'Jf, then we must again revert to the default assignment.

If v is a block in A, then it will be placed such that the m inim um of its image is below

a + 1. Since a and v are executed by different processes, the m inim um of the transformed

image of v must have moved down by two rows. To properly display the causal relationship

between v and a, the image of a must be below the image of v which will not be the case

if [aj is assigned the value a + 1. Equation 3.132 formalizes the transformation.

a + 1 if [P(a) = V{n)\
I A [£ a \a "E A:V(a’) = Via) # Via") A a ' - + a A |a"J < K l] „ . ^

A [yfluG AU C:V{v) ^ Via) A v —► a A [V| > a] ' ' '
[a j + 2 otherwise

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY M AP 84

When constructing the m axim um of the image of a, we must consider the transformation

of the m inim um of the image. In most cases, those where a is executed by a process other

than the process executing n, we translate downward by two rows. If a was executed by

the same process as n, then we must consider other blocks as well.

If two blocks, a and a', are found in P(n), it may be necessary to have a 4-1 in the images

of both. Suppose that a -+ a' and both are concurrent to some c € C. The transformed

image of c will never exceed a + 1 . To continue to show the concurrency between a' and c,

we must set (a'J to a + 1. This implies that [a] is also a + 1.

Suppose instead that a and a' are executed by different processes and are concurrently

related. Since, by definition, a! causally succeeds n, we must make fa'] at least a + 2. If we

allow [aj to be a + 1 we will incorrectly show a causal relationship between a and a'. The

inequality [a"J < fa] of equation 3.133 identifies those blocks that either causally precede

or are concurrent to a.

' a + 1 if [P{a) = P(n)\
A [3a' e A : P(a') = P(a) A a -+ a] .
A [,3a" € A : P(a”) ? P(a) A [a"J < fa]]

fa] + 2 otherwise

Any two blocks are either causally or concurrently related. Lemma 3.14 proves that a

causal relationship between two blocks a and a ' from partition A is accurately preserved in

the transformation. The proof is divided into three cases. The first case assumes that a and

a' are executed by the same process. This assumption allows us to be certain about their

relative placement after transformation. Although the necessary information is not known

to determine the exact placement of the causally succeeding block, we can determine a range

«1 =

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY M AP 85

over which it may be placed. That range is sufficient to show the relationship is properly

maintained. The second and third cases assume that a and a' are executed by different

processes. Case two also assumes that a and n are also executed by different processes,

while case three assumes the opposite.

L em m a 3.14 Va, a! 6 A : a —► a' => a -> a!.

P roof:

C ase 1: V(a) = V{a!)

m < iy j V(a) — V{a!) and definition 3.4 (2) (3.134)

fa] > a definition 3.11 (3.135)

fa] = a + 1 V fa] = fa] + 2 (3.133) (3.136)

fa] < fa] + 2 (3.135) and (3.136) (3.137)

La'J = fa'J + 2 a —* a' and (3.132) (3.138)

fa] < fa'J (3.134), (3.137) and (3.138) (3.139)

a —y a! (3.139) and definition 3.4 (2) (3.140)

\SE 2: V{a) # V[a!) A V[a) # V{n)

[a] < fa'J a —y a', V{a) ^ V(a') and definition 3.4 (3) (3.141)

Ta] = fa] + 2 V(a) # V{n) and (3.133) (3.142)

fa] > a definition 3.11 (3.143)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY M AP 86

[a'J = [a 'J + 2 a -»> a', P(a) ^ P (a '), (3.143) and (3.132) (3.144)

fa] < [a'J (3.141), (3.142) and (3.144) (3.145)

a -*• a ' (3.145) and definition 3.4 (3) (3.146)

A.SE 3: V(a) ^ P(a') A P(a) = V{n)

fa l < La'J a —y a ', V{a) V{a!) amd definition 3.4 (3) (3.147)

[a] > a definition 3.11 (3.148)

fa] = a + 1 V fa] = fa] + 2 (3.132) (3.149)

fa] < fal + 2 (3.148) and (3.149) (3.150)

La'j = [a'J + 2 V(a') ^ V{n) and (3.133) (3.151)

fa] < [a'J (3.147), (3.150) and (3.151) (3.152)

a —y a! (3.152) and definition 3.4 (3) (3.153)

We have accounted for all possible cases, therefore, a, —* a.'. ■

The accurate transformation of concurrent blocks of partition A is proven in lemma 3.15.

Since the blocks are known to be concurrent, we are assured that at least one block is

executed by a process other than the process which executed n. In the proof, we arbitrarily

assume that a' is executed by a different process than n and show that the concurrency

remains accurately displayed after the transformation. The definition of a concurrency map

tells us that the intersection of the images of concurrent blocks is non-empty. Our proof is

based on that fact and shows that transformation forces the intersection of the images to

retain a common element.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY MAP 87

Lem m a 3.15 Vo,a' 6 A : a||a ' => a ||a '.

Proof:

7> (a)#P (a ') a||a' and definition 2.7 (3.154)

V {a!)*V {n) arbitrary assumption (3.155)

L«'J = l < l + 2 (3.155) and (3.132) (3.156)

ran = r a ' i+ 2 (3.155) and (3.133) (3.157)

[aj > a definition 3.11 (3.158)

|aj = a + 1 V |aj = |aj + 2 (3.132) (3.159)

(aj < [_aj + 2 (3.158) and (3.159) (3.160)

La'J < M alfa' and corollary 3.1 (3.161)

|a] = fa] + 2 (3.154), (3.161) and (3.133) (3.162)

1(a) n i (a ') £ 0 (3.156), (3.157), (3.160) and (3.162) (3.163)

ails' (3.163) and definition 3.4 (4) (3.164)

When n is added to the concurrency map, it is placed in a specific location. Namely,

where the maximum of its image is in row a+1. Only when a block of partition A is executed

by the same process as n is it possibly allowed to extend into row a + 1. By assuming that

the temporal order of blocks is maintained through the transformation we insure that the

causal relation is also maintained. Blocks of A executed by other processes, or that do not

fulfill the other requirements for inclusion in row a + 1, are moved to rows below a + 1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY M AP 88

These blocks are shown to causally follow n after the transformation. Lemma 3.16 proves

that all blocks of A are shown to causally follow n in 't .

Lem m a 3.16 V a6 A :n - ^ d .

Proof:

CASE 1: P (a) ^ V{n).

[aj > a definition 3.11 (3.165)

[aj = |a j + 2 V{a) # V{n) and (3.132) (3.166)

[aj > or + 2 (3.165) and (3.166) (3.167)

fra] = a + 1 (3.84) (3.168)

r»i < l« j (3.167) and (3.168) (3.169)

n -+• a (3.169) and definition 3.4 (3) (3.170)

!: -p(a) = V{n).

La J > « definition 3.11 (3.171)

[aj = a + 1 V [aj = [aj 4- 2 (3.132) (3.172)

[aj > a + 1 (3.171) and (3.172) (3.173)

fnl = o + l (3.84) (3.174)

M < L«J (3.173) and (3.174) (3.175)

n —> a (3.175) and definition 3.4 (2) (3.176)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY MAP 89

We have accounted for all possible cases, therefore, n —> a. ■

Causal relationships between the blocks of B and A are easily shown to be retained in

the transformation as given in lemma 3.17. The definitions of 0 and a tell us that a. is

always larger than 0. Furthermore, the blocks of B after transformation do not trespass

into rows below 0 + 1 and the transformation of blocks in A forces them into rows no

higher than a + 1. These three facts provide all that is necessary to prove that the causal

relationships found between B and A in are also found in 4?.

L em m a 3.17 Vb € B ,a € A : b -+ a => b —► a.

P roof:

01 < 0 definition 3.10 (3.177)

r$i = 0 +1 v rsi = 01 (3.85) (3.178)

01 < 0 + 1 (3.177) and (3.178) (3.179)

[_aj > a definition 3.11 (3.180)

[aj = a + 1 V |a j = [aj + 2 (3.132) (3.181)

IAI > a + 1 (3.180) and (3.181) (3.182)

0 < a definition 3.11 (3.183)

01 < L«J (3.179), (3.182) and (3.183) (3.184)

6 —► a (3.184) and definition 3.4 (3) (3.185)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY M AP 90

We have now partially shown that blocks of partition A are correctly transformed by

equations (3.132) and (3.133). The inter-partition relationships, both causal and concurrent,

have been proven correct as have the causal relationships between blocks in B and blocks

in A. The placement of n has been shown to be correct with respect to A as well. The next

section defines the transformation of blocks that are concurrent to n, the blocks of C, and

uses those transformations as a basis for proving the remaining relationships are correctly

transformed.

3 .4 .3 T ransform ing th e b lock s o f p a rtitio n C

Transformation of the images of blocks concurrent to n is accomplished by ensuring that

the image of the concurrent blocks includes a row in which n will be placed. Equations

(3.186) and (3.187) give the transformation of the minimum and maximum of the images of

a block in partition C based on its original position and the positions of other blocks also

in C.

In order for the blocks of partition C to be shown concurrent to n, their images must

be at least partially contained in the range 0 -hi to a + 1. The transformation of C is such

that some portion of the image is in the defined range.

Equation (3.186) gives the transformation of the minimum of the image of a block in

C. Notice that the default action is to retain the original position. If the m inim um falls

between 0 and a , we simply translate the image down by one row. An original image outside

the range must be stretched to show concurrency with n. Knowing that the m axim um of

the image of n is a + 1 tells us that we must pull the minimum of the image of c back to

a + 1 if it is found after a .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY M AP 91

Other factors must be considered if the minimum of the image of c is found before as

expressed in the first case of the equation. We can deduce th a t no event from B causally

follows c, and we know that the original concurrency map is accurate. If no other event of

C causally precedes c then there is no need to alter the m in im u m of c’s image. Assume that

some d precedes c. From the definition of /?, we know there exists some b concurrent to

both c and d . Specifically, there must exist a b causing the value of 0 to be non-zero. If & is

executed by a process other than Pin), or if c and d are executed by different processes, or

both, then {6, c, d , n} forms a forbidden q’ . Therefore we know that b and n are executed

by one process and c and d are executed by another process. Furthermore, as shown in

lemma 3.7, there can exist no other blocks in B concurrent to c without form in g a similar

q* subgraph. Figure 3.26 (a) shows a case where the m in im u m of c must be moved to fi + 1

to allow the maximum of d to also show concurrency with n. The relationships with b are

also preserved through the transformation of B and C.

Pin) Pin)

Ml
P+l

Pin) Pin)

c
a

IE]
a

a+1

a+2

(a) (b)

Figure 3.26: Special cases in the transformation of c 6 C

Mi
\\jii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY MAP 92

lcj =

' 0 + 1 i£ [\c \< 0 \K [3 d e C - .d -+ c]

Lt V T r f f > lcJ,< a l (3.186)a + 1 if [|cj > a] v
[cj otherwise

Transformation of the last row of the image of c is similarly accomplished. If fc] is

found in the concurrency map prior to 0 , then we know the concurrency between c and n

cannot be shown unless the image of c is stretched to include 0 + 1. If fc] is between 0

and a , then we simply increase fc] to fc] + 1 in order to retain the relationships with other

blocks of partition C. If the maximum of the image of c is at least as great as a , we must

again consider other blocks of C.

As shown in figure 3.26 (b), it is possible that another block d causally follows c. See

lemma 3.9 for a proof concerning the process placement of the constituent blocks. In order

to show the concurrency between d and n in the transformed concurrency map, we must

allow the minimum o i d to be a + 1. To avoid overlapping images, the implication is that

the maximum of the image of c must be a + 1 as well. If d does not exist, the maximum of

c is translated down by 2 rows to retain possible relationships with blocks from a.

r/J + I if[M</3]
fc] + 1 if [0 < fc] < a]
a + 1 if [fc] > a] A [3c/ € C : c
fc] + 2 otherwise

(3.187)

Lemma 3.18 shows that causal relationships between blocks of partition C remain un­

changed through the transformation. The proof considers five cases based on the placement

of blocks of tlf.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY M AP 93

Lem m a 3.18 Vc,d E C :c —t d => c —► o'.

Proof:

C ase 1: \d \ < P

36 G B : T61 = p Lc'J < P and definition 3.10 (3.188)

d f , b property 3.3 (3.189)

w i < r*i [c'J < P and (3.188) (3.190)

6 •/¥ d (3.190) and definition 3.4 (3) (3.191)

b\\d (3.189), (3.191) and definition 2.7 (3.192)

P(c) = P(c') c —► c', (3.192) and lemma 3.8 (3.193)

M < Lc'J c —> d, (3.193) and definition 3.4 (2) (3.194)

M < P Lc'J < p and (3.194) (3.195)

|c) = p + 1 (3.195) and (3.187) (3.196)

ld \= /3 + i Lc'J < p , c - + d and (3.186) (3.197)

rai = Lc'J (3.196) and (3.197) (3.198)

c —► d (3.193), (3.198) and definition 3.4 (2) (3.199)

C a se 2: p < \d \ < a A V(c) = P (c ')

fc] < \d \ c —► c', P(c) = P (c '), and definition 3.4 (2) (3.200)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY M AP 94

\c\ < a [c'J < a and (3.200) (3.201)

Tel = max(rcl,/S) + l (3.201) and (3.187) (3.202)

Lc'J = Lc'J + 1 p < Lc'J < a and (3.186) (3.203)

Lc'J > Tel + 1 (3.200) and (3.203) (3.204)

Lc'J > p -+- 1 P < Lc'J and (3.203) (3.205)

Lc'J > max(fcl,/3) + 1 (3.204) and (3.205) (3.206)

Tel < Lc'J (3.202) and (3.206) (3.207)

c -*• c' (3.207) and definition 3.4 (2) (3.208)

C ase 3: p < Lc'J < a A V{c) # V{d)

[c] < Lc'J c -> c', V{c) # P(c'), and definition 3.4 (3) (3.209)

Tel < a L^J < « and (3.209) (3.210)

\c\ = max([c], P) + 1 (3.210) and (3.187) (3.211)

Lc'J = Lc'J + 1 P < Lc'J < a and (3.186) (3.212)

Lc'J > [cl + 1 (3.209) and (3.212) (3.213)

Lc'J > P + 1 P < Lc'J and (3.212) (3.214)

Lc'J > max([cl,/?) + 1 (3.213) and (3.214) (3.215)

Tel < Lc'J (3.211) and (3.215) (3.216)

c —»• c' (3.216) and definition 3.4 (3) (3.217)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY M AP 95

CASE 4: Lc'J > a A fc| < a

Lc'J = a + 1

[cl < a + 1

m < Lc'J

c —* c'

C ase 5: fc) > a

3a G A : (aj = a fcj > or and definition 3.11 (3.222)

a •/* c property 3.2 (3.223)

M > L°J Tel > a and (3.222) (3.224)

c 7̂ a (3.224) and definition 3.4 (3) (3.225)

a|[c (3.223), (3.225) and definition 2.7 (3.226)

7>(c)=7>(c') c —> c', (3.226) and lemma 3.9 (3.227)

[cl = a + 1 Tel > a , c -> c' and (3.187) (3.228)

M < L^J c —> c', (3.227) and definition 3.4 (2) (3.229)

Lc'J > a [cl > a and (3.229) (3.230)

Lc'J = a + 1 (3.230) and (3.186) (3.231)

Lc'J = L Ĵ (3.228) and (3.231) (3.232)

c —* c! (3.227), (3.232) and definition 3.4 (2) (3.233)

We have accounted for all possible cases, therefore, c —► &. ■

Lc'J > a and (3.186) (3.218)

[c] < a and (3.187) (3.219)

(3.218) and (3.219) (3.220)

(3.220) and definition 3.4 (3) (3.221)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY M AP 96

In lemma 3.19, we assume that two blocks from partition C are concurrently related

and show that the transformation preserves that relationship. Since is assumed to be

accurate, we know the intersection of their images is not empty. We consider the five

possible cases for the intersection of their images. Initially, we assume that the maximum

of the image of one block is less than fi which implies the intersection is also less than fi.

We then consider the case where /? is an element of the intersection. The next case assumes

that the intersection is between fi and a but contains neither. We then consider the case

where a is an element of the intersection. Our final case assumes that the m i n i m u m of one

block is greater than a, implying that all elements of the intersection are greater than a .

Note that the cases are not mutually exclusive. It could be the case that both fi and a. are

included in the intersection of images. We do, however, consider all possibilities.

L em m a 3.19 Vc,c' G C : c||c' =» c||c'.

P roof:

C ase 1: \c\ < fi

[c}= fi + I fc| < fi and (3.187) (3.234)

i / J < M c||c' and corollary 3.1 (3.235)

Lc'J < fi T e l < f i and (3.235) (3.236)

L ^ J < 0 + i (3.236) and (3.186) (3.237)

r*i > 0 + 1 (3.187) (3.238)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY M AP 97

1(c) n l (c ') ^ 0 (3.234), (3.237) and (3.238) (3.239)

c||c' (3.239) and definition 3.4 (4) (3.240)

C ase 2: 0 E l (c) n 1 (d)

Lc J

Lcj = 0 + i v |c j = LcJ

LcJ < 0 + 1

Lc'J <0

\d\= 0 + iv \e\ = Lc'J

\d \< 0 + 1

{ c] > 0 + l

\ * \ > 0 + i

1(c) n i (d) # 0

cilc'

C ase 3: 0 < 1(c) n 1 (d) < a

ifr E 1(c) fi 1 (d) assumption (3.251)

i!> < a 1(c) n 1(d) < a and (3.251) (3.252)

t{>>0 0 < 1(c) n l (c ') and (3.251) (3.253)

Lcj < (3.251) and definition 3.1 (3.254)

0 € 1(c) (3.241)

(3.241) and (3.186) (3.242)

(3.241) and (3.242) (3.243)

0 E 1 (d) (3.244)

(3.244) and (3.186) (3.245)

(3.244) and (3.245) (3.246)

(3.187) (3.247)

(3.187) (3.248)

(3.243), (3.246), (3.247) and (3.248) (3.249)

(3.249) and definition 3.4 (4) (3.250)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY MAP 98

Lcj < a (3.252) and (3.254) (3.255)

Lcj = max09, Lcj) + 1 (3.255) and (3.186) (3.256)

Lcj < + 1 (3.253), (3.254) and (3.256) (3.257)

L Ĵ < ^ (3.251) and definition 3.1 (3.258)

Lc'J < a (3.252) and (3.258) (3.259)

Lc'J = max(/3, Lc'J) + 1 (3.259) and (3.186) (3.260)

Lc'J < i f + 1 (3.253), (3.258) and (3.260) (3.261)

fc] > (3.251) and definition 3.1 (3.262)

[V| > /? (3.253) and (3.262) (3.263)

[c] > min(a, fcl) + 1 (3.263) and (3.187) (3.264)

Tel > i> + 1 (3.252), (3.262) and (3.264) (3.265)

Tc'i > ^ (3.251) and definition 3.1 (3.266)

Tc'l > P (3.253) and (3.266) (3.267)

fc'l > min(g, fc/“l) + 1 (3.267) and (3.187) (3.268)

fc'l >i> + 1 (3.252), (3.266) and (3.268) (3.269)

X(c) n i (c ') # 0 (3.257), (3.261), (3.265) and (3.269) (3.270)

c||c' (3.270) and definition 3.4 (4) (3.271)

C ase 4: a € 1(c) nZ (c ')

H > a 0 6 1(c) (3.272)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY MAP 99

[cl = a -F 1 V fc] = fcl + 2 (3.272) and (3.187) (3.273)

[cl > a + 1 (3.272) and (3.273) (3.274)

r«n > “ a 6 X(c') (3.275)

Tc'l = a + 1 V \cT[= [cT\ + 2 (3.275) and (3.187) (3.276)

fc'] > or -F 1 (3.275) and (3.276) (3:277)

[cj < a + 1 (3.186) (3.278)

[c'J < a + 1 (3.186) (3.279)

X(c) f ll(c ') / 0 (3.274), (3.277), (3.278) and (3.279) (3.280)

c||cf (3.280) and definition 3.4 (4) (3.281)

IE 5: Lcj > a

[c| = a + 1 Lcj > a and (3.186) (3.282)

Lc'J < a + 1 (3.186) (3.283)

TcH > Lcj c||c' and corollary 3.1 (3.284)

Tc'l > a Lcj > a and (3.284) (3.285)

fc'] > a + 1 (3.285) and (3.187) (3.286)

1(c) n i (c ') ^ 0 (3.282), (3.285) and (3.286) (3.287)

c||c' (3.287) and definition 3.4 (4) (3.288)

We have accounted for all possible cases, therefore, c||c'. ■

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY M AP 100

By definition, we know that blocks from C must be concurrent to n when the trans­

formation is complete. We need only prove that the intersection of the transformed image

of each c and the image of n is not empty. The conditions defined in corollary 3.1 are

that the maximum of each image is less than the minimum of the other image. The proof

demonstrates that this is the case for all blocks in C.

L em m a 3.20 V c € C : c|[n.

P roof:

[nj = a + l (3.84) (3.289)

fn] = £ -F 1 (3.84) (3.290)

Lcj < a + 1 (3.186) (3.291)

[£ \> 0 + 1 (3.187) (3.292)

I (n) n l (c) # 0 (3.289), (3.290), (3.291) and (3.292) (3.293)

c|| n (3.293) and definition 3.4 (4) (3.294)

With the exception of n, a block of C can be either causally or concurrently related to

any other block in the system. We consider each case in turn and prove that the original

relationship is retained in the transformation. We begin by examining the possible relation­

ships between c and a block from B, and then consider the relationships between c and a

block from A.

If b from B is causally related to c in 'P, then b will be causally related to c in 41. This

is proven in lemma 3.21. We know from property 3.3 that b happens before c. We first

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY MAP 101

consider c and b from the same process, then the two possibilities for c from a different

process than b. First, c may be placed such that it is above P- T hat is, the m a x im u m of

the image of c is less than or equal to fi. The alternative configuration is one in which the

image of c is at least partially following ft, i.e., the maximum of the image of c is greater

than p.

L em m a 3-21 V& G B ,c G C : b —*■ c => b —*■ c.

Proof:

C ase 1: V{c) = V{b)

V(c) V(n) c||n and definition 2.7 (3.295)

V{b) ^ V{n) V{c) = V{b) and (3.295) (3.296)

[6] < Lcj b c and definition 3.4 (2) (3.297)

rSl = T&l (3.296) and (3.85) (3.298)

r&l < Lcj (3.297) and (3.298) (3.299)

m < p definition 3.10 (3.300)

["Si < P (3.298) and (3.300) (3.301)

Lcj = Lcj V Lcj > P + 1 (3.186) (3.302)

Lcj > T&l (3.299), (3.301) and (3.302) (3.303)

& —*■ c (3.303) and definition 3.4 (2) (3.304)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY M AP 102

C a se 2: V{c) ± V{b) A [cj < 0

f&J < LCJ 6 —> c, V(c) ^ T f̂c) and definition 3.4 (3) (3.305)

[b] = r&l 6 -> c, P(c) / 75(6), [cj < 0 and (3.85) (3.306)

[cj = 0 + 1 V Lcj = [cj |cj < 0 and (3.186) (3.307)

Lcj > [cj [CJ < 0 and (3.307) (3.308)

r&J < Lcj (3.305), (3.306) and (3.308) (3.309)

b —*■ c (3.309) and definition 3.4 (3) (3.310)

C ase 3: V(c) ^ V{b) A (cj > 0

m < 0 definition 3.10 (3.311)

[Si = f&l V rSl = 0 + 1 (3.85) (3.312)

\b]< 0 + l (3.311) and (3.312) (3.313)

Lcj = Lcj + 1 V Lcj = a + 1 Lcj > 0 and (3.186) (3.314)

a > 0 definition 3.11 (3.315)

\c \> 0 + 1 Lcj > 0 , (3.314) and (3.315) (3.316)

fb] < (cj (3.313) and (3.316) (3.317)

b —»• c (3.317) and definition 3.4 (3) (3.318)

We have accounted for all possible cases, therefore, 6 -> c. ■

In lemma 3.22 we show that the relationship between c and & is also maintained if it is

concurrent rather than causal. The proof considers the two cases based on the existence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY M AP 103

or absence of d of C which causally precedes c. If d does exist, then we can accurately

determine the position of both b and c and show that concurrency is indeed displayed after

the transformation. If, on the other hand, d does not exist we are faced with multiple

possibilities. However, all but one are discounted because they indicate the creation of a

two-, three- or four-process q* in

L em m a 3.22 V6 6 B, c € C : 6[|c =► 6[[c.

P roof:

[b] < 0

W < [b]

Lcj <0

C ase 1: f id e C . d c

Lcj = Lcj f id e C : d ->• c, (3.321) and (3.186) (3.322)

(cl > 0 + 1 (3.187) (3.323)

rSj = T&l V [b] = 0 + 1 (3.85) (3.324)

f a > [b] (3.319) and (3.324) (3.325)

L6J = L&J v L6J = 0 + 1 (3.86) (3.326)

\b \< 0 + 1 (3.319) and (3.326) (3.327)

Lcj < [b] (3.320), (3.322) and (3.325) (3.328)

fcl > L&J (3.323) and (3.327) (3.329)

definition 3.10 (3.319)

fr||c and corollary 3.1 (3.320)

(3.319) and (3.320) (3.321)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY MAP 104

6 ||c (3.328), (3.329) and corollary 3.1 (3.330)

C ase 2 : 3d € C : d -+ c

lcj < P 3 d € C : d -+ c, (3.331) and (3.186) (3.331)

P (b)= V (n) d -*■ a, 6 |[c and lemma 3.7 (3.332)

c||n definition 3.9 (3.333)

n c) ± V(n) (3.333) and definition 2.7 (3.334)

\Tii2ST d —► c, 6 ||c and lemma 3.7 (3.335)

e now show that the second clause of (3.85) must be true. Assume 36' € B : v m =

b) A 6 —► b' . If this assumption is not valid, the clause would immediately be verified.

V {b ')= V {n) V{b') = V{b) and (3.332) (3.336)

c > 6' property 3.3 (3.337)

m > ib'j (3.337) and definition 3.4 (3) (3.338)

w > m d —► c, (3.335) and definition 3.4 (2) (3.339)

Lcj > L&'J (3.338) and (3.339) (3.340)

J3b" : f6"l > [cj A V{b") £ V{n) c ' - f c and lemma 3.8 (3.341)

/3b" : m > L&'J A P (6") ^ 7>(n) (3.340) and (3.341) (3.342)

/3b" : f6"l > |6'J A V{b") ± V{b') (3.336) and (3.342) (3.343)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. THE CONCURRENCY MAP 105

To verify the third clause of (3.85), we refute the assumption 3v G B U C : b —¥ v A [y\ <

0 A P { b) ^ P (v)

m < l« j b -* v , P{b) ^ P(v) and definition 3.4 (3) (3.344)

w < r&i 6||u and definition 3.4 (4) (3.345)

Lcj < L«J (3.344) and (3.345) (3.346)

LCJ < H lv\ < r«l and (3.346) (3.347)

V { v)^ P { n) V{b) ± P(v) and (3.332) (3.348)

v<£B (3.347), (3.348) and lemma 3.8 (3.349)

v e C v G B U C and (3.349) (3.350)

lb-] < 0 LuJ < 0 and (3.344) (3.351)

3b' ■. r&n = 0 (3.351) and definition 3.10 (3.352)

T e l < Lcj c' -*■ c, (3.335) and definition 3.4 (2) (3.353)

rcn < l« j (3.346) and (3.353) (3.354)

c' —> V (3.354) and definition 3.4 (3) (3.355)

v -frb ' (3.350) and property 3.3 (3.356)

M > L&'J (3.356) and definition 3.4 (2) (3.357)

Lvj < m L«J < 0 and (3.352) (3.358)

v\\b' (3.357), (3.358) and corollary 3.1 (3.359)

P(v) = Pic') (3.350), (3.355), (3.359) and lemma 3.7 (3.360)

c'll n definition 3.9 (3.361)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY M AP 106

c||ra definition 3.9 (3.362)

c-f* b' property 3.3 (3.363)

Lc'J < \tT\ (3.354) and (3.358) (3.364)

b' -/* c' (3.364) and definition 3.4 (3) (3.365)

c'||6' (3.363), (3.365) and definition 2.7 (3.366)

Lcj < m (3.346) and (3.358) (3.367)

b' ■/¥ c (3.367) and definition 3.4 (3) (3.368)

c||6' (3.363), (3.368) and definition 2.7 (3.369)

(c ,c ',v ,b ,b \n } = q9 b -> u, (3.361), (3.362), (3.366) and (3.369) (3.370)

Since we have assumed that no qm exists, the supposition must be false. We have therefore

verified all three clauses of (3.85).

0 1 = 0 + 1 (3.332), (3.343), (3.370) and (3.85) (3.371)

fcl > 0 + 1 (3.187) (3.372)

1(b) n l (c) ^ 0 (3.331), (3.371) and (3.372) (3.373)

6 ||c (3.373) and definition 3.4 (4) (3.374)

We have accounted for all possible cases, therefore, 6 ||c. ■

The following two lemmas show that the relationships between blocks of A and C are

properly maintained in the transformation. We begin, in lemma 3.23, by assuming that the

relationship is causal. From property 3.2 we know that there is only one possible causal

relationship between c and o. Namely, c must happen before a. We consider the possible

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY M AP 107

placement of the maximum of the image of c in relation to the defined value of a . We

first assume that c and a are executed by the same process. We then consider two possible

arrangements when c and a are executed by different processes. Either the maximum of the

image of c is greater than or equal to a , or it is less than a.

L em m a 3.23 Vc E C,a E A : c -*■ a => c —*■ a.

Proof:

Case 1: V{c) = V{a)

P(C) * v{n) definition 3.9 (3.375)

V { a)^ V { n) V(c) = V{a) and (3.375) (3.376)

M < L«J c —> a, V(c) = V(a) and definition 3.4 (2) (3.377)

[dj = [aj + 2 (3.376) and (3.132) (3.378)

Tel < |c1 + 2 V [cl = P + 1 (3.187) (3.379)

[cl < [aj + 2 V |cl = 0 + 1 (3.377) and (3.379) (3.380)

[aj > a definition 3.11 (3.381)

L«J >P + i a > 0 and (3.381) (3.382)

Tel < LaJ + 2 V fcl < LaJ (3.380) and (3.382) (3.383)

r a < L«J (3.383) (3.384)

c —f a (3.384) and definition 3.4 (2) (3.385)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY MAP 108

C ase 2: P(c) ^ P(a) A fc] < a

|a j > a definition 3.11 (3.386)

(aj = a + 1 V [dj = (aj + 2 (3.132) (3.387)

[aj > a + 1 (3.386) and (3.387) (3.388)

fcl < a + 1 fcl < a and (3-187) (3.389)

[cl < [dj (3.388) and (3.389) (3.390)

c —> a (3.390) and definition 3.4 (3) (3.391)

ASE 3: V(c) ^ P(a) A fc] > a

[cl < [a] fcl > a, V{c) ^ V{a) and definition 3.4 (2) (3.392)

LaJ = LaJ + 2 c a, fcl > a and (3.132) (3.393)

Tel < fcj + 2 fcl > a and (3.187) (3.394)

fcl < faj (3.392), (3.393) and (3.394) (3.395)

c —► a (3.395) and definition 3.4 (3) (3.396)

We have accounted for all possible cases, therefore, c —> a. ■

Lemma 3.24 shows that a concurrent relationship between c and a is also maintained

in the transformation. In a manner similar to that used to show the concurrency between

c and 6, we consider two cases. Either a block d from C exists that causally precedes c,

or it does not. In the first case, we can accurately determine the placement of the blocks

in and deduce the correct display of concurrency. In the second case, we can directly

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY MAP 109

determine the placement of c. To avoid creating a two-, three- or four-process q* in 4?, we

can reduce the possibilities of the placement of a.

Lemma 3.24 V c 6 C , a 6 A : c||a => c||a.

Proof:

(aj > a

M > L“ J

Tel > a

C ase 1: Ref e C : c - * c f

[cj < a + 1

[a] = a + 1 V fa] = fa] + 2

fa] > a

fa] > o + l

fal > Lcj

m = M + 2

fcl > fa] + 2

faj = a + 1 V faj = LaJ + 2

LaJ < LaJ + 2

LaJ < fc]

definition 3.11 (3.397)

c||a and corollary 3.1 (3.398)

(3.397) and (3.398) (3.399)

(3.186) (3.400)

(3.133) (3.401)

fa] > (aj and (3.397) (3.402)

(3.401) and (3.402) (3.403)

(3.400) and (3.403) (3.404)

(3.399) and (3.187) (3.405)

(3.398) and (3.405) (3.406)

(3.132) (3.407)

(3.397) and (3.407) (3.408)

(3.406) and (3.408) (3.409)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY M AP 110

c||a (3.404) and (3.409) (3.410)

Case 2: 3d e C : c -► d

fc| = a + l (3.399), 3d EC-, c ^ d and (3.187) (3.411)

7>(o)=‘P(n) c —► c', cija and lemma 3.9 (3.412)

c||n definition 3.9 (3.413)

V {c)* V {n) (3.413) and definition 2.7 (3.414)

V (e)= P (d) c —> c', c||a and lemma 3-9 (3.415)

We now show that the second clause of (3.132) must be true. Assume 3a' € A : T V) =

V{a) A a ' -> a. If this assumption is not valid, the clause would immediately be verified.

V (a ')= V (n) p(a!) = V(b) and (3.412) (3.416)

a' -frd property 3.2 (3.417)

Ta'l > Lc'J (3.417) and definition 3.4 (3) (3.418)

M < L^J c —y c', (3.415) and definition 3.4 (2) (3.419)

M < Ta'l (3.418) and (3.419) (3.420)

/3a" : La "J < M A V{a!') # P(n) c —► d and lemma 3.10 (3.421)

ySa" : \a"\ < Ta'l A V(a") ± V{n) (3.420) and (3.421) (3.422)

£a" : La"J < fa'] A V(a") # V{a!) (3.416) and (3.422) (3.423)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY M AP 111

To verify the third clause of (3.132), we assume it is true and then refute the assumption.

Assume 3u € A U C : V(v) ^ P(a) A v —► a A fv"| > a .

|V| < [_aj v —»• a, V(v) ^ P(a) and definition 3.4 (3) (3.424)

LaJ < fc] a||u and definition 3.4 (4) (3.425)

Luj < Lcj (3.424) and (3-425) (3.426)

Luj < Tel LUJ ^ M and (3.426) (3.427)

V(v) # V(n) V{v) ± V{a) and (3.412) (3.428)

v <£ A (3.427), (3.428) and lemma 3.10 (3.429)

v e C v e A l i C and (3.429) (3.430)

LaJ > a fuj > a and (3.424) (3.431)

3 a ': (a'J = ot (3.431) and definition 3.11 (3.432)

fc] < Lc'J c —► c ', (3.415) and definition 3.4 (2) (3.433)

M < L^J (3-426) and (3.433) (3.434)

v —)■ c' (3.434) and definition 3.4 (3) (3.435)

a' -fi- v (3.430) and property 3.2 (3.436)

fa'J > Luj (3.436) and definition 3.4 (2) (3.437)

M > La'J H > a and (3.432) (3.438)

u||a' (3.437), (3.438) and corollary 3.1 (3.439)

V{v) = -p(c') (3.430), (3.435), (3.438) and lemma 3.9 (3.440)

c'||n definition 3.9 (3.441)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY MAP 112

c||n definition 3.9 (3.442)

a' -/* c property 3.2 (3.443)

k i < rcq (3.434) and (3.438) (3.444)

c' A a' (3.444) and definition 3.4 (3) (3.445)

c'||a' (3.443) and (3.445) (3.446)

La'J < M (3.426) and (3.438) (3.447)

c ^ o ' (3.447) and definition 3.4 (3) (3.448)

c\\a' (3.443) and (3.448) (3.449)

{c,c ',t;,a ,a ',n} = q* v a, (3.441), (3.442), (3.446) and (3.449) (3.450)

Since we have assumed that no qm exists, the assumption must be false. We have therefore

verified all three clauses of (3.132).

|a j = a + 1 (3.412), (3.423), (3.450) and (3.132) (3.451)

1(a) n l(c) ^ 0 (3.411) and (3.451) (3.452)

a||c (3.452) and definition 3.4 (4) (3.453)

We have accounted for all possible cases, therefore, 6 ||c. ■

In this section we have detailed the transformations required to insert a new block n

into an accurate concurrency map to produce another accurate concurrency map. Both the

original map and the new map accurately display the relationships between all included

blocks if no q*, either two-, three- or four-process, exists in the underlying concurrency

graph. The next section expands on this to show that the connection between the q* graph

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY M AP 113

and the concurrency map is that the existence of one is sufficient to imply the nonexistence

of the other.

3.5 Significance o f q*

The preceding barrage of lemmas has set the stage for the theorem 3.4. We have shown that

all four-node subgraphs of a concurrency graph can be accurately displayed as a concurrency

map. From here we construct an inductive proof based on the transformation equations

of the previous section and their proofs of correctness. We show that if no qm exists in a

concurrency graph then it can be accurately displayed as a concurrency map.

T heorem 3.4 I f there does not exist a q* induced subgraph of H then an accurate concur­

rency map representation of H can be constructed.

Proof: We proceed by induction.

Basis: All induced four-node subgraphs h C H : h ^ q* can be accurately represented as a

concurrency map. This is proven by lemma 3.6

Induction : Assume that ^ is an accurate concurrency map representation of a Ar-node

subgraph of H for some k > 4. We add node n € H to ^ as directed by transformation

equations (3.84), (3.85), (3.86), (3.132), (3.133), (3.186) and (3.187). The previous sections

have proven that when constructed in this manner, is an accurate concurrency map

representation of a k ■+■ 1-node subgraph of H if the induced subgraph does not contain a

qm-

Therefore, an accurate concurrency map representation is possible for all executions

where there does not exist a q* induced subgraph of H. ■

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY MAP 114

We saw in theorem 3.3 that the construction of an accurate concurrency map representa­

tion of a distributed system execution is dependent on the absence of a q' in the underlying

concurrency graph. Together with theorem 3.4 which states th a t an accurate concurrency

map representation is possible if no q* exists in the concurrency graph, we can show the

relationship between q* a n d 't .

T heorem 3.5 An accurate concurrency map depiction of a distributed system execution

is possible i f and only i f there does not exist a qm subgraph of the concurrent graph of the

execution.

Proof: Follows directly from theorems 3.3 and 3.4. ■

To determine whether or not an execution can be accurately displayed as a concurrency

map, we need only determine whether or not a q* subgraph exists in the concurrency graph.

An algorithm to accomplish this feat will be exponential since it must construct and criticize

each set of four and six events. However, that is a marked improvement over the challenge

of creating and checking every possible concurrency map representation of the execution.

Although neither technique will likely be implemented, we have shown that a better way

exists. If we assume that an execution exists where q* cannot be found in the concurrency

graph, then the technique can be used to construct an accurate representation of the dis­

tributed systems execution. Figure 3.27 demonstrates the transformation of i n t o w i t h

the inclusion of n. Notice that all blocks in B with the exception of those occurring in the

same process as n retain their original position. Also notice that all blocks of A with the

exception of those occurring in the same process as n are translated down by two rows but

otherwise retain their relative order.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE CONCURRENCY M AP 115

c ©
LJ
f ”c"' ©

0 0' ---- 7

© ©

C 0 ©LJ
(IT' 0■ V _> f

R
c

LJ

© ®

P+l

a+1

a+2

Figure 3.27: Transformation example

3 . 6 E v a l u a t i o n

Stone’s concurrency map displays the causality and concurrency of a distributed system

in a clear and concise manner. Events that are causally related are shown separated by

a vertical bar across the display. The technique also shows the possibility of concurrent

execution of events by overlapping events in a single row.

However, under some conditions the concurrency map is not accurate. Through the

proofs in the preceding sections, we have shown that the problems concerning the concur­

rency map are intrinsic. A two dimensional grid structure is inadequate for the display of

the concurrency relation. The non-transitive nature of concurrency prevents representation

using a geometric model.

In the next chapter we develop a technique that is theoretically accurate for the display

of an arbitrarily large distributed system. We show that the implementation of the model

is hampered by the limitations in display technology, resulting in the accurate display of a

subset of the events of the execution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

An Accurate Technique

The concurrency map uses vertical positions to identify the relationships among blocks of

events. Concurrent relationships are shown by placing blocks such that their rows overlap,

and causal relationships are shown by non-overlapping block placement. Horizontal sep­

aration only identifies the process that executed the block of events. Therefore, a single

dimension is used to display both the causality and concurrency of a distributed system.

As proven in the preceding chapter, this technique cannot accurately depict most execution

scenarios. In this chapter we develop a technique that will accurately display both the

causality and concurrency of a distributed system. The technique does so by restricting the

number of processes that can be simultaneously displayed.

4.1 Display Coordinates

Assume that we are given a trace of the execution of the distributed system. The traced

events need not contain vector times since the algorithm will reconstruct them. Also assume

that the system uses lossless, point-to-point FIFO communication. That is, all messages

sent from Pi to Pj arrive in the order they were sent.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. A N ACCURATE TECHNIQUE 117

A n example four-process trace is given in table 4 .1 . The events are represented as either

S (message transmission) or R. (message receipt). Each event is followed by a number

indicating the index of the rn m m n n ira .t-.irm partner process. For example, the first event of

process Po is & message transmission (send) to process Pi. Since local computation events

affect neither concurrency nor causality, they can be ignored without loss of generality.

^0 Pi P2 Pz
S 1 SO SO R 2
S 3 R 0 S3 RO
S 2 R 2 RO S 2
R 2 R 0 S 1 SO
S 1 S 3 R 3 R 1
R 1 S 2 R 1 R 2
R 3 S 0 S3 S 1
R 1 S 0 RO R 1
S 2 R 3 RO
S 2 R 2 S 1
R 2 S 3 SO
S 1 R 0
R 1

Tkble 4.1: Four process trace.

The time-space diagram from the example trace file is shown in figure 4.1. In the time-

space diagram, the dotted-line labeled C iv)1- indicates the beginning of CR„, the concurrent

region of event v, and follows the last event in Pj, for all j , that causally precedes v. As

discussed in chapter 2 , we assume that the execution of each process begins with an initial

event. These events are not shown in the figure, but have vector times where all components

are zero. Vector time comparison shows that any initial event causally precedes any non­

initial event so that an event exists in each process that causally precedes v.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. A N ACCURATE TECHNIQUE 118

V

P. P: P,

Figure 4.1: Time space diagram for example trace.

D efinition 4.1 For some process Pj, the cut C iv)1- intersects Pj between events Vj and t/'-

if and only if

1. Vj - + Vj,

2. Vj —► v,

3. Vj -ft v, and

4. fiv" E Pj : Vj - > v" - > v'j.

The dotted-line labeled C(u)T indicates an alternate cut defined with respect to event

v. This cut marks the end of CRy and precedes the first event of process Pj, for all j , that

causally follows v. Events between C iv)1- and C{v)T are in CR^. We assume that each

process ends its execution with a terminal event that has a vector time with all components

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. A N ACCURATE TECHNIQUE 119

set to infinity. Vector time comparison shows that any terminal event causally follows all

non-terminal events so that an event exists in each process that causally follows v.

D efinition 4.2 For some process Pj, the cut C(v)T intersects Pj between events Vj and v'j

if and only if

1. Vj - + v'j,

2. v-f>vj,

3. v —> v'j, and

4. v'j € Pj : Vj -> v" -> Vj.

The system cuts C iv)1- and C(v)T partition the events of the system into three sets

with respect to event v. Events that precede C iv)1- are referred to as the “before" events

(set B in chapter 3) and are those events that happen before v. Events that follow C[v)T

axe in the “after" set (set A in chapter 3) and are the events that happen after v. The events

that fall between C(u)-1- and C(u)T are in the “concurrent" set (set C in chapter 3) and

are the events that are concurrent to v. Note that the symmetric property of concurrency

insures us that if event v' is in the concurrent set of event v, then event v will also be in

the concurrent set of v'.

We represent each cut as a vector of real numbers, derived directly from system vector

time. Suppose that C iv)1- immediately follows event v' in process Pj. We assign to C iv)-*-[7]

the value of the component of the vector time of v' after it has been increased by 0.5.

The increase is to clarify the display. Event v1 will be shown to begin at k — 0.5 on the

P,-axis. Definition 4.3 formalizes the assignment of values to components of C iv)1-.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. A N ACCURATE TECHNIQUE 120

D efin ition 4.3 The system cut C(v)-1- is represented as a vector of real numbers where, for

al l j ,

c '(u)'L[7] = Ti.v')\J] + 0.5

i f V W) = Pj and C(u)_L immediately follows v' in Pj. Note that C(v)-L[t] = r(u)[z] — 0.5

since v' immediately precedes v in Pi.

In a similar manner, the components of C (v)T are computed from the vector times of

the events immediately following C(v)T . Suppose that C(v)r immediately precedes event

v' in process Pj. We assign to C{v)~\j\ the value of the component of the vector time

of v' after it has been decreased by 0.5. Since the cut precedes event t/, we must show that

the concurrent region does not include v1. Event v* will be shown to end at A: + 0.5 on the

Pj-axis. Taken together with the previous definition, we see that all events executed in a

single process have non-overlapping regions.

D efin ition 4.4 The system cut C(y)T is represented as a vector of real numbers where, for

all j ,

C{v)T\j] = r(t/)[?] - 0.5

if P(v') = Pj and C(v)T immediately precedes v’ in Pj.

Note that it is possible for the cuts C(u)-1- and C(v)T to intersect a process at the

same point. This will be the case if no events in that process are concurrent to v. Since the

difference in the local components of the vector times of events is one, and we alter the vector

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. A N ACCURATE TECHNIQUE 121

times by only 0.5 in computing the components of C iv)1- and C(v)T , we are assured that

C(v)T > C iv)1- for all v. If no events in Pj are concurrent to v, then C7(u)T(y] = C(t;)-*-[7].

These two vectors are used to plot the events on a two-dimensional grid that preserves

both the caused and concurrent relationships between displayed events. Each event will be

represented as a rectangle with coordinates derived directly from the concurrent regions of

the event. Two processes will be chosen and all events from only those processes will be

displayed.

D efinition 4.5 The display of event v, V{v), given that V(v) = Pi and Pj is the second

process chosen for presentation, is defined by the diagonal vertices (C'(u)x [t],C(i;)-L[7]) and

iC iv)T \i],Civ)T\j]).

We can compare the values assigned to the displays to determine whether or not the

graphical representations of the displays will intersect. If the maximum value in any dimen­

sion of one event’s display is less than or equal to the m in im u m value of another event’s

display in the same dimension, then the events’ displays are disjoint. For example, consider

the two events, v from P, and v' from Pj, shown in figure 4.2. The values of the displays

are as follows.

!>(») = {(1.5,2.5), (3.5,6.5)}

V iv') = {(4.5,3.5), (7.5,7.5)}

In the Pj-dimension the maximum of event v is 3.5 and the m inim um of t f is 4.5. Since the

maximum is less than the minimum, we know that the displays do not intersect. We do not

consider figures that share a common border to be intersecting.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. A N ACCURATE TECHNIQUE 122

j

nun x
max x j C (vf,

max yC(v)
max y

D(v’)
D(v)

mm y
C(v-f

Figure 4.2: Display of events v and v'

We now show that the displays constructed as given above accurately display both the

causality and concurrency of the distributed system. We begin by proving that causality is

correctly characterized. That is, that the representations of two events are disjoint only if

the events are causally related. We use the notation V(v) fl 'D{y') to indicate the graphical

intersection of the representations of events v and v'.

T h eo rem 4.1 Events v and v' are causally related, v jf v ', i f and only ifT>(y) flD (i/) = 0.

P roof: Let v 6 Ei and v' 6 Ej.

We first show that v Jf v' =*• T>{v) (1 'D{v') = 0. Assume that v —► v'.

v precedes C(u')x v —*■ v' and def 4.1 (4.1)

^ T(t,)[*] +0 .5 (4.1) and def 4.3 (4.2)

C{v')x \j] > T(y')\j] - 0 .5 Def 4.1 (4.3)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. A N ACCURATE TECHNIQUE 123

v' follows C(v)T v —► v' and def 4.2 (4.4)

C7(v)T£7] < r(u')[i] — 0.5 (4.4) and def 4.4 (4.5)

C(u)T[t] = r(u)[t] + 0.5 Def 4.2 (4.6)

C(«/)-L[7] > C(v)T \j] (4.3) and (4.5) (4.7)

C(u')'L[i] > C7(t?)T[t] (4.2) and (4.6) (4.8)

V(v) n V(vr) = 0 (4.7) and (4.8) (4.9)

We next show that X?(v) fl T>{v') = 0 => v Jftvr. Since the displays are disjoint, either

C iv '^ li] > C(v)T[i] or C(u)x [i] > C(u/)T[t]. Assume that C(«/)X[*] t. C(u)T[i]. The other

case is proven similarly.

C (t/)X[i] > C{v)r [i\ T>{v) fl 2?(t/) = 0 and def 4.5 (4.10)

C(u)T[i] = r(v)[t] +0.5 Def 4.2 (4.11)

C(u/)'L[i] > r(u)[z] +0.5 (4.10) and (4.11) (4.12)

v precedes C(u,)"L (4.12) and def 4.3 (4.13)

v —>■ v' (4.13) and def 4.1 (4.14)

Therefore, v Jf t / if and only if V(v) fl T){v') = 0 . ■

Corollary 4.1 shows that the displays of two events intersect only if the events are con­

current. It is a direct application of the preceding theorem and the definition of concurrency.

C oro llary 4.1 Event v\\vr i f and only i f V{v) nZ>(t/) ^ 0.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. A N ACCURATE TECHNIQUE 124

We continue by proving that the direction of causality is correctly shown. Given two

causally related events, v and v', where v —► v ', it must be the case that the display of v

lies closer to the origin than does the display of v'.

T heo rem 4.2 Given two causally related events, v and v ', P(v) is closer to the origin than

T)(v') i f and only i f v —*• v '.

Proof: The distance from V{v) to the origin is computed as follows.

A„ = ^/<7(uHt]2 + C(t;)-L[7l2 (4.15)

We first show that v —> v' =► A„ < A ^ .

C(u)x [i] = r(u)[i] — 0.5 Def 4.3 (4.16)

£'(t,/)X[*] ^ r (u)[t] +0.5 v —*■ v1 and def 4.3 (4.17)

C (t/)x [z] > C{t»)-L[t] + 1 (4.16) and (4.17) (4.18)

C(u')X[i] > C(u)x [i] (4.18) (4.19)

G{v)T\j] < r{v')\j] - 0.5 v -* v1 and def 4.4 (4.20)

<?(*>)X[7l < r(v')\j] - 0.5 tf(«)X[fl < C(v)T \j] and (4.20) (4.21)

£(*>') X[j] = T(y)\j] +0 .5 v —y v’ and def 4.3 (4.22)

C(v)XW < C (i /)x [;] - l (4.21) and (4.22) (4.23)

C (v)^ \j\ < C [y Y \ j \ (4.23) (4.24)

Av < A„> (4.19) and (4.24) (4.25)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. A N ACCURATE TECHNIQUE 125

We next show that Av < A,/ => v v '. There are two possibilities for the inequality.

C(n)x [i] < C(n,)-L[t] VC(t/)x [j] < C'(v')x [j]

We first assume that C(u)x [i] < C(u')X[*]-

C(v)x]i) = r(u)[i] 4-0.5

t (u)[z] 4-0.5 < C (r /)x [»]

C{v')x follows v in Pi

v —> v'

We now assume that C(n)x [j] < C'(u,)x [7’].

Civ')1- }̂ = r(u')[?] + 0.5

C'(u)x [7] < T { v ') \ j] 4- 0.5

C(n)x precedes v ' in Pj

v ' -/* v

v -4 v '

A„ < Ay> and (4.15) (4.26)

Def 4.1 (4.27)

(4.26) and (4.27) (4.28)

(4.28) and def (4.3) (4.29)

(4.29) and def 4.1 (4.30)

Def 4.1 (4.31)

(4.31) and (4.27) (4.32)

(4.32) and def (4.3) (4.33)

(4.33) and def 4.1 (4.34)

v Jf v' and (4.34) (4.35)

Therefore, the display of v must be closer to the origin than the display of v' if and only if

v —> v'. ■

We can select any two processes and accurately display the relationships between the

events of those processes. Suppose we choose to show the relationships between events of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. A N ACCURATE TECHNIQUE 126

event C (v)x C (v)T
[0.50, 0.50, 0.50, 0.50] [1.50, 1.50, 2.50, 1.50]

v l [1.50, 0.50, 0.50, 0.50] [2.50, 2.50, 2.50, 1.50]
[2.50, 0.50, 0.50, 0.50] [3.50, 2.50, 2.50, 4.50]

v$ [3.50, 0.50, 1.50, 0.50] [4.50, 3.50, 5.50, 4.50]

vl [0.50, 0.50, 2.50, 0.50] [6.50, 8.50, 4.50, 1.50]
v l [2.50, 0.50, 2.50, 1.50] [6.50, 8.50, 4.50, 2.50]
v l [2.50, 0.50, 2.50, 2.50] [6.50, 8.50, 4.50, 3.50]

[2.50, 0.50, 2.50, 3.50] [6.50, 8.50, 7.50, 4.50]

Table 4.2: Vectors and display coordinates.

Pq and P3- We construct the grid by assigning one process to each axis. Table 4.2 shows

the values of vectors C (v)x and C (y)T for the first four events of processes Po and P3 of

our example. We can derive all other coordinates from these two coordinates due to the

regularity of the figure. The i-axis is used to show possible event occurrence with respect

to process Pj.

In the next section we describe an algorithm that will compute both C(u)_L and C (y)T

for all events in the system. The internal structure of the algorithm will maintain vector

times for the two cuts. Only when the final values are output do we increase or decrease

the integers by 0.5.

The algorithm can either be executed in conjunction with the underlying computation

or can be performed on trace files. In vitro execution does not require additional messages

until the computation completes but does increase the size of most messages. The time

complexity of the algorithm is linear in the number of events and is scalable to an arbitrary

number of processes. Space complexity of the basic algorithm is exponential in the number

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. A N ACCURATE TECHNIQUE 127

of messages in the worst case but can be bounded by inserting additional messages into the

system’s execution.

4.2 The Algorithm

For each message in the system, we need to know the time that each other process becomes

causally aware of that message. When a message arrives, the current time as well as the

message originator (transmitting process) are noted.

Later, when a message is sent back to the originator, the noted values are appended.

We will refer to the appended values as an acknowledgment even though they do not fit the

traditional definition. The appended values perform two functions. First, they inform the

originating process of the time the receiving process became aware of this and all causally

preceding messages. This time is used to update C(v)T. Second, by forwarding the values

to other processes, the transitivity of causality is preserved.

For example, suppose that Pi receives messages 1 and then 3 from Pj while message

2 was sent to another process. When message 3 arrives a t Pi, the causal information of

message 1 and 2 also arrives regardless of whether the messages are physically at Pj. The

acknowledgment that will eventually be sent back to Pj will inform Pj of the time when Pj

became aware of messages 3 and 2. Our algorithm maintains C (v)r to indicate the time

that a process became causally aware of a message. Note that the maintained values are

not the same as the resulting values. When the acknowledgment arrives as Pj, it is used to

update the C(v)T vectors of the events preceding the tr a n s m is s io n of message 3 , which will

include the transmission of message 2 .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. A N ACCURATE TECHNIQUE 128

Each event is represented as a four-tuple, (type, partner, causalVT, concurrentVT).

The type of each event is either send or recv and the partner is a process identifier that

indicates which other process is involved in the communication. A vector time is maintained

in causalVT which represents C(t»)x and is initialized to the 0 vector to indicate no events

from any process causally precede this event. An additional vector is kept in concurrentVT

which contains the known components of C(u)T. The values of this vector’s components

axe initialized to oo indicating undetermined values.

In addition to the underlying computational content which is ignored in the post mortem

algorithm, each message will have data appended to it. Messages will be of the format

(vectorTime, appendList) where vectorTime is the vector time of the transmitting event.

The appendList is a list of acknowledgments, each an originator/vector time pair, that are

to be returned or forwarded to the destination process. These times represent the causal

dependencies carried by this message.

Processes are slightly more complex than are events or messages. Each processes is

represented as a six-tuple, (P ID , vectorTime, eventList, inputList, outputList, lastAcked).

The P ID is the processes identifier and vectorTime is the current vector time of the process.

This time will be used to stamp events as they are processed. All events are inserted into

the eventList at the beginning of the algorithm and are updated in place. Messages sent

to Pi are inserted into the corresponding inputList by the sending process. Messages

contained in Pi.inputListj are those messages send from Pj to P, but not yet consumed.

Data to be appended on the next message sent to Pj will be found in Pi.outputListj.

Stored in Pi .lastAckedj is the highest indexed event of Pj with an acknowledged inserted

into Pi.inputListj.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. A N ACCURATE TECHNIQUE 129

foreach process Pi do
w hile traceFilei n o t e m p ty do

read event from traceFile
foreach process Pj do

event.causalVTj = 0
event.concurrentVTj — oo

o d - /* foreach Pj */
eventListi = eventListi U {event}

o d /* while not empty */
foreach process Pj do

Pi.inputListj = <p
Pi.outputListj = <f>
Pi.vectorTimej = 0
Pi-lastAckedj = 0

od /* foreach Pj */
od /* foreach Pi */

/* iterate of over entire file */
/* event type and partner processes ID */

/* initialize event vectors */
/* no causally preceding event */

/* all events assumed concurrent */

/* events are kept in order */

/* create empty lists */
/* no incoming messages */

/* no causal links to forward */
/* process vector time */

/* last event acknowledged */

Algorithm 4.1: Algorithm initialization.

Algorithm initialization, as shown in algorithm 4.1, opens and reads events from the

trace files. As each event is read, it is used to construct a record with two vector times

initialized to 0 and oo as described above. The record is then inserted into the eventList.

Also in the initialization phase, each process creates N inputLists and N outputLists, all

empty. A vector time is kept for each process which represents the current vector time and

is used to stamp events as they are processed. This vector time and the lastAcked vector

are initialized to all zero values.

Pi.vectorTimei + +
event.causalTime = Pi.vectorTime
event.concurrentTimei = Pi.vectorTimei -f- 1
message = (Pi.vectorTime, Pi.outputListj)
Pj.inputListi = Pj.inputListj U {message}
Pi.lastAckedi = Pi.vectorTimei
Pi.outputListj = <f>

/* a new event ID */
/* stamp new time on event */

/* only concurrent to itself in Pi */
/* contains no data if post mortem */

/* message transmission */
/* no need to acknowledge this message */

/* new, empty list */

Algorithm 4.2: Processing a send event.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. A N ACCURATE TECHNIQUE 130

After initialization, the algorithm cycles through the processes from Pq to Pn - i until

an entire pass is made without consuming an event. This indicates that either all events

have been processed or deadlock has occurred. During each pass, the events of process Pi

are examined to determine their type. If the event is determined to be a send event of a

message from Pi to Pj, we follow algorithm 4.2 that first increments the Ith component of

the process’ vector time. The updated vector time is then used to set the event’s causal and

concurrent vectors. A new message is created which contains the updated vector time and

the possibly empty output list for Pj. This message is appended to the input list at Pj for

future consumption. We then set the component of the lastAcked vector to the index of

this event since we are already aware of its time of occurrence in P, . Finally, a new, empty

output list is created and we continue with the next event in Pi-

If the event is a receive, we check to insure that a message is ready to be consumed. If

no message is in the input list from the partner (sending) process, the receive event must

wait. We simulate this wait by continuing with the next process and retrying the event

during the next round. Algorithm 4.3 shows this test.

if Pj. inputListj .isE m p ty /* blocking receive, no message waiting */
con tinue with next process /* try receive again next round */

fi /* Pi.inputListj = <f> */

Algorithm 4.3: Insure a message can be received from Pj at P,-.

If a message is available in the input list from P j , it is removed from the list and processed

in two parts. We first consider the message proper as shown in algorithm 4.4. The vector

time of the process is incremented to indicate the occurrence of an event and then set to the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. A N ACCURATE TECHNIQUE 131

component-wise maximum of the new vector time and the time stamp of the message. We

now have an updated process vector time that accurately reflects the causal dependencies

of this event. We set the causal vector time of the event to the updated process vector

time. To show that this event is only concurrent to itself in Pt, we set the ith component

of the concurrent vector time of the event to the Xth component of the process’ vector time.

If the message has not been acknowledged, a new message appendage is constructed' with

the identifier of the sending process and all components of the vector set to oo except the

ith and j th components which are set equal to their associated components of the process’

vector time. This new appendage is inserted into all output lists to indicate the receipt of

the message. Since this message has now been acknowledged, we set the j th component of

the lastAcked vector to the j 01 component of the process’ vector time.

Processing the message content inserts information into the output lists to indicate the

time of the receipt of that message. However, we have not only become aware of this

message but all other messages that preceded it. The appended list is processed to update

local event C(v)T and forward the transitive arrivals to other processes.

As shown in algorithm 4.5, each appendage is processed in turn. We begin by extracting

origPID , the identifier of the originating process. The originator may be any process in the

system except Pj. If the vector time of the appendage has a larger value in the origPID

component than does the lastAcked vector, then the message has not been previously

acknowledged. Note that it is not possible for the message to pass this test and to have

originated at P,- We update the last acknowledged vector and the ith component of the

appendage’s vector time. The newly updated appendage must be forwarded to all processes

that still have oo in their component of the appendage’s vector time. The oo value indicates

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. A N ACCURATE TECHNIQUE 132

msg = Pj. inputListj .nextM essage /* get next message from input queue V
Pi.vectorTimei + + /* a new event ID */
foreach process P* do /* update vector time */

Pi.vectorTimeic = max.{Pi.vectorTimek, msg.vectorTimek) /* component-wise max */
od /* foreach Pk */
event.causalTime = Pi.vectorTime
event.concurrentTimei = Pi.vectorTimei 4- 1
| f msg.vectorTimej > Pi-lastAckedj

Pi.lastAckedj — Pi.vectorTimej
append.PID= j
foreach process P t do

append.vectorTime/c = oo
od /* foreach Pt */
append.vectorTimei = Pi.vectorTimei
append.vectorTimej = Pi-vectorTimej
foreach process Pk& do

Pi.outputListk = Pi.outputListk U {append}
od /* foreach Pk */

fi /* msg.vectorTimej > Pi.lastAckedj */

Algorithm 4.4: Processing the message content.

that the message hasn’t yet been seen by that process. It must also be sent to the originator

of the message so that the concurrency time of the sending event can be updated.

Suppose, however, that the message originated at P,. We must then use the information

contained in the appendage to update C(v)T of the sending event of the message. By

extracting the ith component of the attachment’s vector time we can obtain the event

number (index) of the send event being acknowledged. Beginning at this event and working

backwards through the event list, we examine C(y)T of each event. Each component of

C(v)T is compared to the corresponding component of the appendage. If the appendage

component is smaller, we set the event’s component to that value. When the event list is

exhausted we stop processing. We may also stop processes when we check all components of

/* stamp new time on event */
/* only concurrent to itself in Pi */

/* receipt needs to be acked */
/* remember the acknowledgment */

/* Pj originated the message */
/* initialize appendage vector */

/* no processes aware of message */

/* Pi is aware of message */
/* Pj is aware of message */

/* add message to output lists */
/* forward to Pk */

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. A N ACCURATE TECHNIQUE 133

foreach append € msg. appendList do /* what other messages were transitively sent */
origPID = append.PID /* originating process identifier */
i f append.vectorTimeongPID > PidastAckedongPiD /* receipt needs acknowledgment */

Pi-lastAckedorigpip = append-vectorTimeorigPiD /* only acknowledge once */
append.vectorTimei = Pi.vectorTimei /* time seen at Pi */
foreach process Pk& do

if append.vectorTimek = 0 0 /* Pk isn’t aware */
Pi.outputListk = Pi.outputListk U {append} /* forward to Pk */

fi /* append.vectorTimek = 00 */
od / * foreach Pt */
P ;.outputListgrigp[p = Pi.outputListorigPiD U {append} /* send ack to Pj */

e lif origPID= i /* message originated at Pi */
eventNum = append.vectorTimei /* index of send event */
chanaed = true /* flag indicating changes are complete V
w hile (eventNum > 0 and changed) do /* no more events or no change */

prevEvent = Pi.eventListcventNum /* got event from eventList */
chanaed = false /* toaaled in loop if changes are made V
foreach process Pk^i do

If prevEventconcurrentTimek > append.vectorTimek /* a new minimum */
prevEvent.concurrentTimek = append.vectorTimek /* new time */
changed = true /* a change was made */

fi /* prevEvent.concurrentTimek > append.vectorTimek */
od /* foreach Pk */
eventNum - - /* previous event in Pi */

od /* (eventNum > 0 and changed) */
end if /* origPID= i */

od /* append 6 msg.appendList */

Algorithm 4.5: Processing the appended information.

an event’s C(v)T and none are altered. This indicates that the concurrent region identified

by the appendage does not include this or any previous events.

By updating C(v)T of events in this manner, we are assured that no event will be visited

more than N — 1 times. When an event is changed, at least one component is updated to

the correct value. While it is possible that some components will be changed again to reflect

a different path through the causal chain, the one minirrmm will not be changed. If the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. A N ACCURATE TECHNIQUE 134

event is visited N — 1 times, then all components will be correctly set and processing will

not visit preceding events.

In addition, by forwarding appendages only to those processes that are not previously

aware of the message, we reduce the size of each message. While it would be ideal to insure

that we do not forward an indication of a message to a process that is already aware of that

message, it is not possible to do so. We must instead be satisfied to forward appendages

only to those processes that we do not know are already aware of the message.

Suppose for example that a message is sent from P* to Pj. When that message is

received, an acknowledgment appendage is inserted into the output lists destined for each

processes except Pj. If a second message is sent from P{ to Pk, it will contain information

regarding the first message. A third message sent this time from Pj to Pk will have an

appendage noting the causal relation with the first message. Since Pk is already aware of

the first message, the appendage is redundant. It will, however, be sent by Pj and discarded

at Pfc.

When iteration stops, either because all events have been processed or deadlock has

occurred, we send one final round of messages as shown in algorithm 4.6. These messages

have the sole purpose of transferring the output lists of each process to their intended

destination. Since they are not sent until the underlying computation has terminated,

they impose little overhead on the distributed system. Each process will send a message

containing only the current vector time and the contents of the output list to each of the

other processes. When this portion of the algorithm completes, each process knows whether

or not each message it sent arrived at each other process. Furthermore, for each message

that did arrive either directly or transitively, the time of the arrival is known.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. A N ACCURATE TECHNIQUE 135

Pi.vectorTimei + 4-
message = (Pi.vectorTime, Pi.outputListj)
foreach process Pj& do

Pj.inputListi = Pj.inputListi U {message}
Pi.outputListj = <f>

od /* foreach Pj */

/* one greater than last event ID */
/* contains no data */

/* message to each other process */
/* message transmission */

/* new, empty list */

Algorithm 4.6: Transmitting the output lists.

Algorithm 4.7 shows the steps needed to process the incoming, final round messages at

Pi. As messages are received, each appendage is checked to insure it represents a message

originating at Pj. Only acknowledgments of messages originating at Pj are of use. Others

are discarded without being processed. Those not discarded are used to set the components

of the concurrent vector times of the send event they represent and events preceding that

send event. Just as in the previous receive algorithm, only when a component will be

lessened by the change is the alteration performed.

When all appendages of a message have been processed, the vector time of the message

is used to compute a value for infinity. If a: is the index of the last event executed in process

Pj, then the j th component of the message vector time will be x + 1. Since the value oo

represents the end of time for the process, we can replace it with the new value of the

end of time without compromising the algorithm. The replacement also provides a usable

value of (7(e)T for the display of the event. Each event in the event list of P* is checked to

see if the component of its concurrency time is greater then the j th component of the

message’s vector time. If it is, the vector time component is copied into the concurrency

time component.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. A N ACCURATE TECHNIQUE 136

foreach Drocess P j* do /* iterate over all processes */
msg = Pj. inputList j . nextM essage /* get message from input queue */
foreach append € msg. appendList do /* only process the appendages */

if append.PID— i /* only process if originated at Pi */
eventNum = append.vectorTimei /* index of send event */
changed — true /* flag indicating changes are complete */
w hile (eventNum > 0 and changed) do /* no more events or no change */

prevEvent = Pi.eventListwentNum /* 9 et event from eventList */
changed = false /* toggled in loop if changes are made */
foreach process Pt^i do

i f prevEventconcurrentTimek > jappemLvectorTimek /* new min */
prevEvent.concurrentTimeic = append.vectorTimek /* new time */
changed = tru e /* change made */

fi /* prevEvent.concurrentTimet > append.vectorTimek */
od /* foreach Pk */
eventNum - - /* previous event in Pi */

od /* (eventNum > 0 and changed) */
fi /* append. PID= i */

od /* append £ msg.appendList */
eventNum= Pi.numEvents /* look for infinity */
changed = tru e /* toggled in loop if changes are made */
w hile (eventNum > 0 an d changed) do /* no more events or no change */

prevEvent — Pi.eventListeventNum /* get event from eventList */
changed = false /* toggled in loop if changes are made */
if prevEvenLconcurrentTimej > append.vectorTimej /* a tight infinity */

prevEvent.concurrentTimej = append.vectorTimej /* new infinity */
changed = t ru e /* change made */

fi /* prevEvent.concurrentTimej > append.vectorTimej */
eventNum - - /* previous event in Pi */

od /* eventNum > 0 and changed */
od /* process Pj^i */

Algorithm 4.7: Processing the final appendages.

W hen this part of the algorithm completes, a ll events in P i will have valid values for all

components of their causal and concurrent vector times. The next section steps through

the first round of processing, listing the values o f each variable.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. A N ACCURATE TECHNIQUE 137

4 . 3 A n E x a m p l e

To demonstrate the algorithm we will step through the first round of execution using the

four-process trace of table 4.1 as input. The first three events in Po are message transmis­

sions and can be executed without delay. Each event causes the process vector time of Po

to be incremented and stamped onto the event. This vector time and the empty output

lists are used to construct messages. We then append these messages to the input lists of

the recipient process. Since the fourth event is a receive event and no message is waiting in

the input list of Po, we begin processing Pi- When Po has finished this round, its process

vector time is [3,0,0,0] and each of the other processes have a message from Po in their

input list.

Process Pi executes the first event in its event list, a transmission to Po, in the same

manner as did process Po- The process vector time is incremented and stamped onto the

event. A message is then created with the vector time of the event and an empty output

list, and added to the the input list of Po-

Next to be processed is a message receipt from Po- Since an incoming message is ready

to be consumed, that is, Pi .inputListo is not empty, the event is processed. The process’s

vector time is incremented and then updated to reflect the causality transferred through the

message. Since no messages from Po have previously been acknowledged, a new appendage

is created and added to the output list destined for each other processes. This appendage

has the structure (0 , [1, 2 , oo, oo]) indicating that the message to be acknowledged originated

in process Po as event number 1 and was received in process P i by event number 2. Values

of infinity for the other two components indicate that the message has not yet been received

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. A N ACCURATE TECHNIQUE 138

at P2 or P3 . No more events in P i can be processed since the next event is a receipt from

Pi and no message is currently waiting to be received.

Processing the first three events in Pi is similar to that already described. The first

two events are message transmissions to Po and then P3 which increment the process vector

time and include empty appendages with the messages. The third event, a receipt from Po,

updates the process vector time and inserts message acknowledgments (0, [3,00, 3 ,00]) into

the output lists for each of the other processes. When the fourth event, a transmission to

P i, is processed, the output list destined for P i contains the acknowledgment of the receipt

from Po- When the message with the appendage arrives at Pi, it will not only carry the

causal information about the message but also causal information about previous messages.

Processing cannot continue in this process since the next event is a message receipt and the

message is not in the input list.

Receipts from P2 and then Po are processed by P3. Appendages (2, [00, 00, 2,1]) and

(0 , [2 ,oo,oo,2]) are added to the output lists and included in messages sent to P2 and Po-

The message from Pi is not ready to be received so processing at P3 stops, ending the first

round of processing.

At the end of round 1, the processes’ structures contain the information shown in ta­

bles 4.3, 4.4, 4.5 and 4.6. The two vectors shown with each event v are r(v) and C(v)T.

The text string INF indicates a values of 00 and messages without appendages are marked

with [NULL].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. A N ACCURATE TECHNIQUE 139

Process PO (13 even ts)
: v ec to r tim e [3 , 0 ,
: lastA cked [3 , 0,
: cu rren t event : : 4 of 13

:: Event L is t ::
s 1 [l , 0 , 0,
s 3 C 2. 0, 0.
s 2 [3, 0, 0.
R 2 C 0, 0, 0,
S 1 C 0, 0. 0,
R 1 I 0, 0 , 0,
R 3 I 0. 0, o.
R 1 L 0, 0. 0,
S 2 [0. 0, 0.
S 2 [0, 0, 0,
R 2 C 0, 0, 0.
S 1 [0, 0, 0,
R 1 [0, 0 , 0,
Output L is t (appendages) :
PO
PI
P2
P3
Input L is t (messages) : :
from PI [0, 1,

[NULL]
from P2

[NULL]
from P3

(2 , [

0, 0]
). 0]

0] 2, INF, INF, INF]
0] 3, INF, INF, INF]
0] 4. INF, INF, INF]
0] INF, INF, INF, INF]
0] INF, INF, INF, INF]
0] INF, INF, INF, INF]
03 INF, INF, INF, INF]
0] INF, INF, INF, INF)
0] INF, INF, INF, INF]
0] INF, INF, INF, INF]
0] INF, INF, INF, INF)
0] INF, INF, INF, INF]
0] INF, INF, INF, INF]

0]

0]

4]
1])(0 , [2, INF, INF, 2])

0,

C 0, 0, 1,

C 2, 0 , 2.
INF, INF, 2,

Table 4.3: Po after round 1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. A N ACCURATE TECHNIQUE 140

Process PI (12 events)
:: v ec to r tim e C 1> 2,

: lastA cked C 1, 1,
cu rren t event
Event L is t : :

: : 3 of 12

S 0 C 0, 1, 0 ,
R 0 [1, 2, 0,
R 2 [0, 0, 0,
R O C 0, 0, 0,
S 3 C 0, 0, 0,
S 2 C 0, 0. 0 ,
S 0 C 0, 0, 0 ,
S 0 c 0, 0. 0,
R 3 C 0, 0, 0,
R 2 C 0, 0, 0.
S 3 C 0, 0, 0,
R O C 0, 0. 0,
Output
PO

L is t (appendages)

(o , C
PI
P2

1. 2, INF,

Co, C
P3

1. 2, INF,

(o, C 1, 2, INF,
:: Input L is t (messages) ::

from P2 [3 , 0,
(0,

0 , 0]
», 0]

0] c INF, 2. INF, INF]
0] c INF, 3, INF, INF]
0] c INF, INF, INF, INF]
0] c INF, INF, INF, INF]
0] c INF, INF, INF, INF]
0] c INF, INF, INF, INF]
0] c INF, INF, INF, INF]
0] c INF, INF, INF, INF]
0] c INF, INF, INF, INF]
0] c INF, INF, INF, INF]
0] c INF, INF, INF, INF]
0] c INF, INF, INF, INF]

INF])

INF])

INF])

4. 0]
. INF])

C
C 3 , INF, 3

Table 4.4: Pi after round 1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. A N ACCURATE TECHNIQUE

P rocess P2 (11 events)
: : v ec to r time C 3 , 0 , 4 , 0]
: : lastA cked [3, 0 , 4 , 0]
: : cu rren t event : : 5 o f 11
: : Event L is t : :

s 0 z o, 0, 1. 0] INF, INF, 2, INF]
s 3 c o. 0, 2, 0] INF, INF, 3, INF]
R 0 L 3. 0, 3, 0] INF, INF, 4, INF]
s 1 c 3, 0, 4 , 0] INF, INF, 5, INF]
R 3 [0, 0 , 0. 0] INF, INF, INF, INF]
R 1 c 0. 0. 0. 0] INF, INF, INF, INF]
S 3 [0, 0. 0, O] INF, INF, INF, INF]
R 0 [0. 0, 0, 0] INF, INF, INF, INF]
R 0 [0, 0, 0, 0] INF, INF, INF, INF]
S 1 [0, 0 , 0, 0] INF, INF, INF, INF]
S 0 [0, 0, 0. 0] INF, INF, INF, INF]

: : Output L is t (appendages) : :
: : PO

(0 , [3, INF, 3 , INF])
: : PI
: : P2
: : P3

(0 , [3, INF, 3 , INF])
: : Input L is t (messages) ::

from P3 [2 , 0, 2, 3]
(2, [INF, INF, 2 , 1])(0 , [2, INF, INF,

Table 4.5: P2 after round 1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. A N ACCURATE TECHNIQUE 142

Process P3 (8 events)
: v e c to r tim e C 2, 0 , 2, 4]

: : lastA cked [2 , 0, 2 , 4]
: : c u rre n t event : : 5 of 8
: : Event L is t : :

R 2 C 0 . 0 , 2, 1] C INF, INF, INF, 2]
R O C 2, 0 , 2. 2] c INF, INF, INF, 3]
S 2 C 2, 0 . 2. 3] c INF, INF, INF, 4]
S 0 [2 , 0 . 2, 4] c INF, INF, INF, 5]
R 1 C 0 , 0 , 0 , 0] c INF, INF, INF, INF]
R 2 C 0 , 0 . 0 , 0} c INF, INF, INF, INF]
S I C 0 , 0 . 0 . 0] c INF, INF. INF, INF]
R 1 C 0 . 0 , 0 , 0] c INF, INF, INF, INF]
Output L is t (appendages) : :
PO
PI
(2 , C INF, INF, 2, 1])
(0 . C 2, INF, INF, 2])
P2
P3
Input L is t (messages) ::

Table 4.6: P3 after round 1.

Each round processes events until all events have been consumed. The fifth round does

not consume any events and the main processing loop exits. At this point, each process

creates a final message for each other process. These messages contain the appendages

remaining in the output lists and are inserted into the input lists of the other process. After

the messages have been sent, each process reads the messages and processes the appendages

to update the concurrency time vector of its events. After processing of the final messages

has completed, the structures of the processes contain the information shown in tables 4.7,

4.8, 4.9 and 4.10.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. A N ACCURATE TECHNIQUE

Process PO (13 events)
:: v ec to r tim e (14, 8,

: lastA cked [12, 8,
: c u rren t event : : 14 of 13

:: Event L is t : :
s 1 c 1 , 0 , 0
s 3 c 2 . o , 0
s 2 [3 . o , 0
R 2 c 4 , 0 , 1
S 1 [5 , o , 1
R 1 c 6 . 1 . 1
R 3 c 7 , 1 .
R 1 c 8 . 7 , 4
S 2 c 9 . 7 , 4
S 2 [1 0 , 7 , 4
R 2 c 1 1 . 7 , 11
S 1 c to 7 , 11
R 1 [13, 8 , 11
Output L is t (appendages) :
PO
PI
P2
P3
Input L is t (messages) ::

Table 4.7:

1 1 , 43
L, 43

0] 2 , 2 . 3 , 23
0] 3 , 3 , 3 , 23
0] 4 , 3 , 3 , 5]
0] 5 , 4 , 6 , 53
0] 6 , 4 . 6 , 53
03 7 , 1 0 , 8 , 83
43 8 , 1 0 . 8 , 83
43 9, 1 0 , 8 , 8]
43 1 0 , 1 0 . 8 , 83
43 U , 1 0 , 9 , 83
43 12 , 1 2 , 1 2 , 93
43 13, 1 2 . 1 2 , 93
43 14, 13. 1 2 . 9]

Po after processing is complete.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. A N ACCURATE TECHNIQUE 144

Process PI (12 events)
: : v e c to r time E 12, 13,
: : lastA cked E 12, 11,

: cu rre n t event : : 13 o f 12
:: Event L is t ::

s 0 E 0, 1. 0
R 0 E l . 2, 0
R 2 E 3. 3. 4
R 0 E 5. 4. 4
S 3 E 5. 5. 4
S 2 E S. 6, 4
S 0 E 5, 7. 4
S 0 E 5, 8 , 4
R 3 E 5. 9. 7
R 2 E 10, 10, 10
S 3 E 10. 11. 10
R 0 E 12, 12, 11
Output L is t (appendages) :
PO
PI
P2
P3
Input L is t (messages) ::

Table 4.8:

11 » 73
L. 73

0] E 6, 2 . 6. 53
0] E 8. 3 , 6, 53
0] E 8, 4 , 6. 53
0] E 8, 5 , 6, 53
0] E 8. 6 , 6 , 53
0] E 8, 7, 6, 63
0] E 8, 8 , 8, 83
03 E 13, 9 , 12, 83
73 E 14, 10, 12, 83
73 E 14, 11, 12, 83
73 E 14, 12, 12, 83
73 E 14, 13, 12, 93

Pi after processing is complete.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. A N ACCURATE TECHNIQUE 145

Process P2 (11 events)
: : v ec to r tim e [10, 7 , 12, 4]
:: lastA cked L 10, 7 , 11, 4]

: c u rre n t event : : 12 of 11
: : Event L is t : :

s 0 c 0. 0. 1, 0] [4, 3. 2, 1]
s 3 [0, 0, 2 . 0] C 7, 3, 3. 1]
R 0 c 3, 0, 3 , 0] [8, 3 , 4. 5]
S 1 C 3, 0, 4 , 0] C 8, 3, 5, 5]
R 3 I 3, 0, 5 . 3] C 11, 9, 6, 6]
R 1 C 5, 6, 6 , 3] L 11. 9. 7. 6]
S 3 C 5, 6, 7 , 3] [11. 9, 8. 6]
R 0 C 9. 7, 8 , 4] [11. 10, 9. 8]
R 0 [10, 7, 9 , 4] C 11. 10, 10. 8]
S 1 C 10, 7, 10, 4] [U . 10, 11, 8]
S 0 C 10, 7, 11. 4] [11. 12, 12, 9]
Output L is t (appendages) : :
PO
PI
P2
P3
Input L is t (messages) : :

Table 4.9: Pi after processing is complete.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. A N ACCURATE TECHNIQUE 146

Process P3 (8 even ts)
: : v ecto r time [10, 11, 10, 9]
: : lastAcked [10, 11, 10, 7]

: cu rren t event : : 9 o f 8
: : Event L is t : :

R 2 [0, 0 , 2, 1] C 7, 9, 5, 2]
R 0 [2, 0 . 2, 2] C 7, 9, 5, 3]
S 2 L 2, 0. 2, 3] [7, 9, 5, 4]
S 0 [2, 0 , 2, 4] C 7, 9, 8, 5]
R 1 C 5, 5, 4, 5] [14, 9, 12, 6]
R 2 t 5. 6 , 7, 63 I 14, 9 , 12, 73
S 1 I 5 , 6. 7, 7] I 14, 9, 12, 83
R 1 C 1 0 , 11, 1 0 , 8] L 14, 13, 12, 9]
Output L is t (appendages) ::
PO
PI
P2
P3
Input L is t (messages) : :

Table 4.10: P3 after processing is complete.

This data is translated into four-dimensional coordinates and written to files for later use.

We have written a simple program that constructs the display grid using the information

stored in the output files. Figure 4.3 shows the window created by the program. The

buttons along the bottom allow the selection of any two processes for display. Also along

the bottom of the window is a button for including labels on each displayed event. If labels

are desired, event v f will be labeled on one side as v^.

Events from the lower numbered process, Po in the figure, are colored red, while the

events from the higher numbered process, P3 in the figure, are colored blue. The color

assigned to a process is indicated by changing the color of the button’s label at the bottom

of the window. Event labels are drawn using the same color scheme as events. Also notice

that the rectangles representing the events are slightly offset. This is not part of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. A N ACCURATE TECHNIQUE 147

r 1

4

4

4

4

4 I □ 4 4 4 4° %

4

4

u
4 4 4 4 Hi 4

em t
" • 1 on* 1

II _i pi ^ ^ ^ R W PS VMM 1

Figure 4.3: Snapshot of the DiaplayEvents program.

theoretic result but an artifact of implementation. To prevent the first events drawn from

being overwritten by the second events drawn, we offset each group. The events from Po are

drawn one pixel to the left and one pixel down from the original location. Conversely, the

events from P3 are drawn one pixel up and one pixel to the right of the original location.

In the figure, we can see the relationship between all events of processes Po and P3. Since

the rectangular display of event vf intersects the rectangular display of event vfj, we know

that the events are concurrent. If we examine the time-space diagram of figure 4.1, we see

that the events are correctly displayed. Also shown in the picture is a causal relationship

between events and Vq. The rectangular displays of these events do not intersect so the

relationship is causal. Furthermore, since the display of U3 is closer to the origin (in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. A N ACCURATE TECHNIQUE 148

lower left corner) t h a n the display of Vq , the direction of the causal link must be v | —► Vq.

Again, by examining figure 4.1 we see that the causality is accurate.

4.4 Relaxation o f Restrictions

We began this chapter by assuming that the communication paradigm underlying the system

was lossless and point-to-point FIFO. We now consider the implications of relaxing these

restrictions.

Consider two messages, m i and m2, sent from process Pi to process Pj and received out

of order. The current algorithm has no method of determining what message has arrived

when a receive is executed. However, the addition of a sequence number in the trace file

rectifies the problem. When each message is transmitted from Pi, the local component of

the vector time, r (m) j , is added to the information written to the trace file. When received

a t Pj, r (m) j is also appended to the traced information. This provides a means to display

the receipt of the message th a t was transmitted. Instead of simply testing to see if a message

is in the input queue, the test is now whether or not a particular message is in the input

queue. If the particular message is located in the queue, it is consumed regardless of its

queue position.

The effect on the display algorithm is negligible. The causal information contained in

m i is also contained in m 2 by definition of causality. Upon arrival of m 2 the concurrent

regions between Pi and Pj are formed. When m i arrives at some later time, it contains no

useful information and is discarded.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. A N ACCURATE TECHNIQUE 149

Now consider the impact of a lost message on the display algorithm. If message m \ is

sent from Pi to Pj and never arrives, there are two possibilities. First, another message, m2,

sent after my can arrive. In this circumstance, we are presented with exactly the situation

just explained. Two messages are received out-of-order. The first to arrive is used to update

the concurrent regions. Since message m i never arrives, we are spared the bookkeeping task

of discarding it.

However, if message m2 is never sent, or if all succeeding messages from Pj to Pi are

also lost in transit, the concurrent regions between P, and Pj are never updated. This is

the correct result. The transmission of a message has no effect on causality or concurrency.

Only when a message is received is the link formed. The display algorithm correctly surmises

that the region of concurrency extends to the end of the process’s life.

4.5 Evaluation

This technique has the merit of accurately displaying both causality and concurrency in a

single static picture. However, several major downfalls are present.

• The model is limited to the simultaneous display of only two processes. It is difficult

to extract much useful information from such a small subset of the system. This

technique will fail in a complex system where the interactions of many processes are

needed.

• The number of events is irrelevant only in the theoretic model. The complexity of

the display increases with the number of events being simultaneously displayed. More

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. A N ACCURATE TECHNIQUE 150

than a few events from each process create a representation from which little useful

information can be extracted.

• While causal relationships are accurately shown, the messages creating those relation­

ships are missing. It would be difficult for a software engineer to locate the source of

an error based solely on the information presented in the figures.

We have shown in the previous chapter that the concurrency map, while being scalable

and informative, does not accurately present the relationships of the system. In this chapter

we developed a technique that accurately presents both causal and concurrency relationships

at a cost of being unusable in practice. We believe that any technique showing causal and

concurrent relationships using geometric means will fail to meet a t least one of our criteria.

In the next chapter we reconsider the time-space diagram as the basis for a software

engineering tool. We present a prototype and show how it can be used to quickly find and

identify erroneous behavior in a complex distributed application.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Distributed Trace Visualization

Tool

An important result of this research was to develop a prototype display system called the

Distributed Trace Visualization System, or DTVS[12]. In it we use a time-space diagram

to display the relationships between events recorded during execution. Our implementation

includes facilities for dynamic predicate definition, placement and evaluation as well as

facilities for displaying a subset of the concurrency relationship.

The original implementation of DTVS displayed the execution of a distributed system

using only synchronous message passing. It has been expanded to display the traces gener­

ated by programs using synchronous, asynchronous or broadcast communication paradigms.

Currently, only programs written in C using a subset of the MPI[L5, 16] libraries are traced.

5.1 Required Code Modifications

A header file is included in the source code to enable the tracing facilities of DTVS. This

header contains the prototypes of several user callable functions. Preprocessor macros

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. DISTRIBUTED TRACE VISUALIZATION TOOL 152

replace selected MPI function calls with their equivalent DTVS function calls. Table 5.1

lists the MPI functions that are available with the DTVS tracing facilities. Other MPI

constructs remain functional but are not included in the prototype.

Initialization and termination
MPLInit Initialize the MPI execution environment
MPLFinalize Terminate the MPI execution environment

Message transmission
MPLSend Transmission (nonblocking in DTVS)
MPLBsend Transmission with user-specified buffering
MPI_Rsend Ready transmission, blocking
MPLSsend Synchronous transmission, blocking
MPIJsend Nonblocking transmission

Broadcast (send and receive)
MPLBcast Broadcast message tr a n s m is s io n or receipt

Choice depends on target process ID

Message receipt
MPLRecv Blocking receive
MPLIrecv Nonblocking receive
MPLSrecv Synchronous receive, blocking
MPI_Wait Returns when nonblocking receive has completed
MPLTest Returns true only if nonblocking receive has completed

Table 5.1: MPI functions available with DTVS.

For example, consider the following macro for MPIJ3end().

#define MPIJSendCarg.. .) DTVS_Send(_FILE_, _LINE__, #arg , arg)

Each call to MPI_SendO is replaced with a call to DTVS_Send(). The macro argument

a rg . . . is a GNU extension to the ANSI C preprocessor that allows the remaining arguments

to be used as a single entity. We prepend the name of the input file, the line number of

the MPI function call, and a quoted version of the original argument list to the argument

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. DISTRIBUTED TRACE VISUALIZATION TOOL 153

list. For example, suppose that the following MPI function call appeared on line 27 of the

file “example. c” whose execution is to be traced. After preprocessing, the resulting code

would be the DTVS function call also shown below. Notice that the original argument

list is quoted before any other substitutions are made. This allows the tracing system is

accurately reproduce the call without consulting the source file.

MPI_Send(buffer, 2 , MPI_INT, node, ty p e , MPI_COMM_tfORLD) ;

DTVS .Send ("exam ple. c " , 27, "b u ffe r , 2, MPI_INT, node, ty p e , MPI.COMM.WORLD",
b u f fe r , 2 , C(MPI_Datatype)6) , node, ty p e , 91);

Macros provide the DTVS functions all the information needed to trace the execution

of the program without requiring the software engineer to alter the program. Initial and

terminal events as well as communication events are traced when the header is included.

The additional functionalities listed below are available at the cost of changes to the source

code.

• Variables can be traced by identifying them with the DTVS.trace.variable macro.

This must be done before the M PI_Init() function is called.

• Statements whose execution will create significant events can be identified using the

DTVS_Local macro.

• Locations where values of variables should be recorded can be identified using the

DTVS .checkpoint O function.

As a demonstration of the alterations needed to use the tracing facilities, an example

MPI program is given in figure 5.1. The program creates several processes, the number

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. DISTRIBUTED TRACE VISUALIZATION TOOL 154

being dependent on command line arguments to the MPI initialization script. Each process

enters a loop where it exchanges messages with each of the other processes. Repetition

of the message exchange loop is controlled by a constant, NUMCYCLES. Communication is

asynchronous using only the MPI_Send and MPIJlecv functions. The result of preprocessing

is shown in figure 5.2. For brevity, only the main function is shown.

#include "mpi.h"
#include "DTVS_trace .h"

#define NUMCYCLES 1

void m ain(argc,argv)
in t argc;
char *argv[] ;
{

in t me, nproc, c y c le , type * 1 , b u ffe r [2] , node;
MPI_Status s ta tu s ;

DTVS_trace_variable (me) ;
DTVS_trace_variable (node);
DTVS_trace_variableCbuffer CO]) ;
DTVS_trace_variable(buffer Cl]) ;

MPI_Init (fcargc, fcargv) ;
MPI_Coram_rank(MPI_COMM_WORLD, fane) ;
MPI_Comm_size (MPI_COMM_WORLD, fcnproc) ;

fo r (cycle * 0; cycle<NUMCYCLES; cycle++)
fo r (node = 0 ; node<nproc; node++)

i f (node != me) {
DTVS_Local (bufferCO] = me) ;
DTVS-Local(bufferCl] = node) ;
M PI-Send(buffer, 2, MPI_INT, node, type, MPI_C0MM_W0RLD) ;
MPIJlecv (b u f fe r , 2, MPI-INT, node, ty p e , MPI_C0MM_V0RLD, t s ta tu s) ;

}

MPI f i n a l i z e () ;
}

Figure 5.1: Example MPI program

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. DISTRIBUTED TRACE VISUALIZATION TOOL 155

void m ain(argc,argv)
in t a rg c ;
char *argv[] ;
{

in t me, nproc, cyc le , type * 1 , b u f fe r [2] , node;
MPI-Status s ta tu s ;

DTVS_trace_var("me", fc(me)) ;
DTVS_trace_var("node", fc(node)) ;
DTVS_trace_var ("b u ffe r [0] " , fc(buffer [01)) ;
DTVS_trace_var("buffer [1] " , fc(buffer [13)) ;

DTVS_Init("example.c", 18, " ta rg e , fcargv", fcargc, fcargv);
MPI-Conmuank(91, fcme) ;
MPI_Comm_size(91, fcnproc);

fo r (cycle = 0 ; cy d e< 1 ; cyde++)
fo r (node = 0 ; node<nproc; node++)

i f (node != me) {
b u f fe r [0] * me; DTVS-LocalC'example.c", 25, " b u ffe r [0] * me") ;
b u f fe r [l] * node; DTVS-Local("exam ple.c", 26, " b u ffe r [l] = node") ;
DTVS_Send("example.c", 27,

"b u ffe r , 2 , MPI_INT, node, ty p e , MPI_C0MM_W0RLD",
b u ffe r , 2, ((MPI_Datatype)6) , node, ty p e , 91);

DTVS_Recv("example.c", 28,
"b u ffe r, 2, MPI_INT, node, ty p e , MPI_C0MM_tf0RLD, fcsta tus",
b u ffe r , 2, ((MPI_Datatype)6) , node, ty p e , 91, fcsta tu s);

}

DTVS-Finalize("example.c" , 31);
}

Figure 5.2: Example MPI program after preprocessing

5.2 Trace Files

As the program is executed, three files are created for each process. The main file is

named pxx. ou t where xx is a two digit process identifier. In MPI terms, the identifier is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. DISTRIBUTED TRACE VISUALIZATION TOOL 156

the rank of the process where Pi has rank i. The other two files are p2z .0ut.Dppv and

pzz.out.Dppe and contain variable values, indexes and offsets needed by the predicate

evaluation subsystem. All trace files are stored in ASCII format for simplicity.

The main trace file is divided into two sections, variable declaration followed by execution

trace. As shown in figure 5.3, the variable declaration section consists of a single line that

lists that names of the variables in the order they were traced. Records representing event

execution begin on the second line of the main trace file. Trace records represent the

occurrence of a single event v and are of variable length. Each record is stored on a single

line and begins with a one character indication of the record type followed by a variable

name and a value. Since MPI uses buffers to send and receive messages, the value of the

variable is always zero. This is not meant to imply that zeroes are sent and received,

but that the information was not traced. The rationale is clarified when we consider the

recorded value of an array of complex structures.

Each traced event v is considered significant and has a unique vector time associated

with it. This vector time is the fourth item in the trace record. If the event is either a

message transmission or receipt, a communication indicator is put in the record to quickly

identify the direction of the message and the communicating partner event. For example,

the string “R(P1.4)n would indicate that this event is the receipt of a message sent from

process Pi at local time 4. The event number included in a send event is the number of the

send and not the event number of the receipt.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. DISTRIBUTED TRACE VISUALIZATION TOOL 157

3i

?3
3

i i
93
s i
I I
i f

| ' §
i i

I ' |
I #8 8

(3 5 ill i
i _ — n"m3©* " M * T?
.1 ifLx K «U I) Ml

4
3 3'
S |
33z I
§ |
i s
i i
i f
E g”l _l
i i
p i P i

I f

I 8

« 5L5L.I

a
a. e iS on
S o =■
^ 1 5—. IS IS
5*2 2
S 3*
£ W W ^ ^ W y ® t ^
• i i i f e t i !■£.§■. i
E x x w “ x a t» « S* sr »

© _ © j
°-^S*i a |© v

— w«jS <2 e » *
i r r f
S 5 « ”
V p -. C»« o® ^

© © . © . . ; o o. ©.
o ' © ©I „* N <2
O o o 1 1 ^

i i ?

J ws ac
— ©. © Tj o. r̂ i— © ©_ « o' V
®:°® S:EijS Ji ~

? j S ?

i- . <
S gOC s

ii
sH
If
i s r

*.5

f #X 8i ac I t - . 1
I s !
« ?r— S
= 2 S =i
i l l s
£ I l i« « g*
« r? — »nU — V y

t £ £ - i
i £ “ i- 5 » 8 -J T. T. ——i X- ^ •
5 s J s 5
: : ? = 5
— jS “

IQ
i
f

— — NNpO — —o — «fm N « n a 0 « » ? 9 9 > O < n Q 6 -— — t s n ^ ’f'nr'P ‘ « 5 o

— — — n v ^ ^ r » « e « a o x i

© 2 g © ^ ' O a o ^ a o © M f l C c * « ^ '

:.. - - 1 ..fT1 S ... 1
fca 8 8 R

a l ?
8 gn n ; 2 2 S

— © "7 ■
©

. — o — © — « ©I © e* © o o o N o n e m o o

Figure 5.3: Layout of DTVS trace files

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. DISTRIBUTED TRACE VISUALIZATION TOOL 158

Next is the source code file name and the line number of the statement causing the

event. A free form textual comment completes the record. In the current implementation

of the tracing facilities, the comment is the source code line that caused the event. The

file name and line number make this repetitious if the source file is available. The record

format is given below and each item is briefly identified.

recJ.ype var val r commo {filezline} comment

rec-type A single character indicating the type of event being traced. Currently limited

to a (a local computation), i (initialization), s (message send), r (message receipt),

q (termination), and 1 (label for next event).

var The name of the variable sent or received. If the event is not a communication event,

the special value indicates the absence of a variable.

val The value of the variable sent or received. Always zero in the current implementation.

r The vector time associated with event v in the form [r(u)[0], r(u)[l],. . . , r(u)[n]].

com m o If present, either S (Px. e) or R(Pz. e) where x is the process ID of the transmitting

process and e is the local clock value of the send event. A value of L is also possible

if the event is a local computation event. This is only to maintain compatibility with

a previous version of DTVS.

file The name of the source code file.

line The line number in file causing the event to occur.

com m en t A textual comment associated with the event. Currently the source statement

causing the event.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. DISTRIBUTED TRACE VISUALIZATION TOOL 159

Each time either an event occurs or DTVS-checkpoint () is executed, the values of all

traced variables are recorded. When an event is written to the main trace file, the set of

values for each variable is written to the variable value trace file (pzx.out .Dppv). Values

are those attained since the previous significant event and are listed on a single line with

the most recently acquired value listed first. Variable order is the same as in the variable

declaration section of the main trace file. As with the main trace file, the variable value file

is composed of variable length records.

The event index file (pzz. o u t .Dppe) is a fixed format file with a single record corre­

sponding to each event recorded in the main trace file. Each record contains three, nine

digit numbers separated by spaces and followed by a return character. Record i in the

event index file begins with the byte offset in the variable value file where the values for

event Vi begin. The next value in the index file is the record number of the last preceding

communication event. The last value in the index file record is a byte offset into the main

trace file where the record for event t/, begins.

Consider record number 5 (starting at zero) from the event index file of figure 5.3. The

record contains the following values and matches event v where t q (v) = 6 . (Remember that

the local component of the vector clock is initialized to 1.)

128 4 392

To locate the event record in the main index file, we read a line beginning at byte offset 392,

the third value. We can locate the variable values associated with that event by consulting

the first value in the record. They are found at offset 128 of the variable value file. To find

the latest preceding communication event, we use the second value, 4. By multiplying this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 5. DISTRIBUTED TRACE VISUALIZATION TOOL 160

value by the size of a record in the communication index file (thirty bytes) we compute the

offset of the needed index record.

5 . 3 C o n s t r u c t i n g T h e D i s p l a y

The main trace files for all processes are read at once. As events are processed, they are

assigned a height that indicates the distance from the bottom of the time-space diagram

that they should appear. For example, the initial event from each process should have a

height of 1 and the next event, if not dependent on an event from another process, should

have a height of 2. The display is not drawn a t this point, only the lists are created. A

list of messages is also constructed during file input. Algorithm 5.1 is used to construct the

lists of both events and messages.

One event from each main trace file is read. These events are current A height counter

for each process is initialized to 1 and a loop is begun that determines which of the current

events are ready to be added to the display. The decision is based on the vector times of

the current events. The vector time of each event is compared to the vector times of each

of the other events to determine a causal relationship. If it is determined that all causally

preceding events were processed on a previous iteration of the loop, that is, v' ■/> v for all

other v' that are current, then v is ready to be displayed. In other words, the height of an

event is one greater than the maximum height of any causally preceding event.

Each time a ready event is found it is assigned the value of the height counter. Another

event is then read from the trace file but is not immediately made current Instead, all newly

read events are made current and the height counter is incremented before the next iteration

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. DISTRIBUTED TRACE VISUALIZATION TOOL 161

begins. The result is an assignment of a relative display coordinate, (process,height), to each

event.

Message-List = { }
for t = 0 to N do

current,• = read_event () from Pi
EventJjisti = { }

od
current.height = 1
w hile more events to process do

/* find ready events */
for t = 0 to N do

ready { = t ru e
for j = 0 t o N , j ^ i do

if currentt- —* currentj
ready i — false

fi
od

od

/* set ready events and messages */
for i = 0 to N do

kif ready ̂
Event-Listi = Event-ListjU {currentcurrentJieight}
if currentj.rec-type = ’r ’

commo = currenty commo
h = h e ig h t jof (commo)
Message-List = Message-List U { (commo.x,h), (i, current Jieight)}

fi
current,• = read_event() from Pi

fi
od

od

Algorithm 5.1: Construction of event and message display

Construction of the list of messages is also done during the input of the main trace files.

The decision was made not to display messages that were never received. In other words,

lost messages do not appear on the display. The send event is displayed without a message

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. DISTRIBUTED TRACE VISUALIZATION TOOL 162

arc leaving the node. Messages that are received are given two relative display coordinates.

The first coordinate is the (process,height) of the event that sent the message and the second

coordinate is the (process,height) o f the event that received the message. The order here is

important to display the arrowhead at the proper end of the message line.

When a message receipt event is found to be ready and assigned a height, the mes­

sage coordinates are computed. By design, the trace record contains an easily accessible

indication of the transmitting process ID and event number. We require that the string

R(Pz. e) where x is the process ID of the transmitting process and e is the event index in

that process, follow the vector time. This may seem repetitious since we are also maintain­

ing vector times for each event. However, a message may not be correctly identified by a

receive event’s vector time if receipt order is not identical to transmission order.

We know that the send event must have previously been assigned a display coordinate

since it causally precedes the receipt. Otherwise the receipt would not be ready. We use the

event number to retrieve the display height, h, of the sending event. We can now construct

the display coordinates of the message as [(x,h),(process,height)]. These coordinates are

added to the list of messages.

The maximum height of events and the number of processes are used to draw the time

lines. Events are drawn using the display coordinates from the list. A directed line is added

to the display to represent the message. Figure 5.4 shows the display constructed from the

trace files built from the execution of the example MPI program with four processes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. DISTRIBUTED TRACE VISUALIZATION TOOL 163

PI P2PO P3

Figure 5.4: DTVS display of four process execution

Two visual clues are provided to indicate the relevance of an event to the software

engineer. First, within the circular representation of an event is the event type. This is the

single character type extracted from the main trace file. Second, a label can be inserted into

the display using the DTVS-Label () function. This function takes two string parameters

that are applied to the next event to occur in that process. The first parameter is displayed

just to the right of the event oval and is usually a one word indicator of the specific event

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. DISTRIBUTED TRACE VISUALIZATION TOOL 164

type. The second parameter is displayed only when requested, thereby preventing cluttering

of the display.

5.4 Usage of DTVS

Once the program has been written, compiled and executed, the trace files are ready to

be examined. The DTVS program is executed with the names of the maun trace files as

arguments. The display is constructed as described above and presented to the user. Several

options are now available. Using the left mouse button, events, labels and messages can be

examined. The right mouse button selects amd event as am anchor and highlights the events

of other processes that are concurrent to the new anchor. Predicates can be defined amd

evaluated ais if they had been plau:ed in the source code directly after the amchor event.

5.4 .1 Inform ation W in d ow s

Although the events are tagged with a type indicator, the user is commonly interested in

more detailed information. We provide am event information window that is accessed by

clicking on the event in question with the left mouse button. As shown in figure 5.5, the

aidditional information about the event begins with the type of event being traced. In the

figure, we have selected event eight of process Pi which is a send event. The event type

explicitly states that the destination of the message is P2 .

Also included in the event information window is the variable being sent amd its value.

In the example, the variable b u f fe r was transmitted. Since the variable is am array, its

value is not displayed and we insteaid place a 0 in the value field. Events that axe neither

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. DISTRIBUTED TRACE VISUALIZATION TOOL 165

Ftoceu 1 Eventft
Type Send Message to P2

Variable buffer
Value 0
Time [4S.OO]

Source exaaple.c:27: Vl.Sead (buffer. 2. »r_MT. node. type. VIJHMjnRLD)

OK

Figure 5.5: DTVS display of event information window

sends nor receives do not contain a variable and therefore have a dash in that entry of the

information window.

The vector time associated with the event is presented as an ordered list of integers

delimited by square brackets. The event in the figure has vector time [4 ,8 ,0 ,0] . The title

of the window, event Vindov 1-8, indicates that the information is for event 8 of process

Pi. We can verify this by examining component r[l].

The final piece of information included in the event information window indicates the

source code that generated the event. This line, given next to the label Source, contains

three parts: the source file name, the source file line number, and a textual reproduction of

the source statement. Again referring to the figure, the message transmission was caused

by the execution of line number 27 of the file example. c. The source statement was as

follows.

MPI_Send(buffer, 2, MPI-INT, node, type , MP_C0MM_W0RLD)

In a similar manner, messages and labels can be examined. Clicking on the directed

arc depicting a message will cause the displays for the sending and receiving events to be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. DISTRIBUTED TRACE VISUALIZATION TOOL 166

displayed. If the arc emanating from event 8 of process Pi was selected, we would be

presented with the event information windows for both event 8 of process Pi and event 9

of process Pi- These are the send and receive events for that message.

Clicking the text of the label will display the full comment associated with that label.

For example, assume that the following statement was inserted into the source code.

DTVS_Label("loop", “Beginning convergence loop with, value 3.772")

When selected by clicking the word loop, a window would appear to display the remaining

information, “Beginning convergence loop with value 3.772.” This facility provides

the software engineer with the ability to easily annotate the display.

5 .4 .2 C oncurrent R egion s

The middle mouse button is used to select a particular event as an anchor event. An anchor

event is needed both to display a concurrent region and to provide an assertion point for

the predicate. As shown in figure 5.6, the selected event is filled in dark grey. A lighter grey

is used to indicate the regions of concurrency. The figure shows that the final ten events of

Po are concurrent to the anchor, a local computation in P L.

Computing the events of each process that are within the concurrent region makes heavy

use of event vector times. Suppose we wish to compute the region of events in Po that are

concurrent to an event v in Pi with vector time [4,6,0,0]. The definition of vector time

tells us that the last event in Po that causally precedes v is event number r(u)o — 1, or

3. Therefore, the first event that is possibly concurrent to v in Po is event number 4 if we

assume that asynchronous communication was used. If the transmission was synchronous

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. DISTRIBUTED TRACE VISUALIZATION TOOL 167

Figure 5.6: Snapshot of the DTVS display.

between v and event number 3 in Po, then the first (and only) event concurrent to v in Po

is event number 3.

Beginning with the first concurrent event, we sequentially search for the first event in

Po that causally follows v. In this case, all events numbered greater than 3 are included

in the concurrent region. If an event was found that causally follows v, then the preceding

event in that process would be the last event concurrent to v. Algorithm 5.2 shows how the

region of events in Pi that are concurrent to v is computed. The variables f i r s t and l a s t

indicate the bounds of concurrency in P,.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. DISTRIBUTED TRACE VISUALIZATION TOOL 168

first = r(v)i — 1
event = read_event (first)
if event —► v

first -+~f
fi
last = first - 1
event = read_event(last)
/* Search comvnication events until we find a causally succeeding event */

w hile v ■/* event do
last +-f
i f last > Number_Event s (Pi)

last = Number_Events (Pi)
b reak

fi
event — read_event (/asf)

od
/* We found first succeeding, previous is last concurrent */

last = last - 1
if last < first

re tu rn {}
else

re tu rn {first, last}
fi

Algorithm 5.2: Computing events in Pi concurrent to v

When the loop terminates, we compare the values of f i r s t and la s t . If l a s t is less

than f i r s t then there are no events in Pi that are concurrent to v. Any other circumstance

will indicate a concurrent region which includes events numbered f i r s t to l a s t . Events

in the concurrent region are highlighted in light grey. Events below the light grey region

happen before v and events above the light grey region happen after v.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. DISTRIBUTED TRACE VISUALIZATION TOOL 169

5 .4 .3 P red ica te E valuation

It is useful to be able to declare a global predicate and assert it in a program. In a

conventional environment, the predicate is evaluated while the program is executing and

the result is presented to the user. DTVS allows predicates to be defined after execution

and asserted immediately after the anchor event. The assertion is then evaluated using

three common methods and each result is presented to the user.

Definition of a predicate must adhere to certain rules. First, all variables must have

been identified with the DTVS-trace.variableO function. Should the user forget which

variables were traced, a window is available via the List Vars button that will list the

names of each variable traced from each process. Each variable name must be followed by

the process from which the value will be taken. The variable name and the process number

will be separated by an “at” symbol. For example, if the variable b u ffe r Cl] from P3 was

used in a predicate, it would be identified by the string b u ffe r [1] A3.

Second, the predicate must conform to the syntactical requirements of the Unix expr

command. Below are some of the more common operators that can be used.

relational | £ < < = = = = != >= >

numeric + - * / / .

string match su b s tr index len g th

The predicate of figure 5.6, meAO=*buffer [1] A3, tests the equality of the variable me in

process Po against the variable b u ffe r Cl] in process P 3. The current implementation of

DTVS only allows variables of simple types in the expression.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. DISTRIBUTED TRACE VISUALIZATION TOOL 170

Once the predicate is defined and an assertion point selected, evaluation can begin. The

first assertion evaluation method was introduced by Simmons[41] and is causal evaluation.

A single value for each variable is used to compute a causal value for the assertion. These are

the values the variables had in the latest causally preceding events. For example, the causal

value of meGO would be the value of me when the first send event of process Po occurred.

From the vector time of the anchor event we quickly identify the latest causally preceding

event in each of the other processes. Through the event index file we have two step indirect

access to both the event record and the values of the variables at that event. If multiple

values are present for a particular variable, their order becomes significant. The first value

found is the last value attained before that event occurred and is therefore the value we

require.

Two concurrent evaluation methods, definite and possible [11, 17] are also included. If

the assertion evaluates to true regardless of the total order of events, then definite is true.

This is indicative of a system that must have attained the values necessary to make the

predicate true during the examined execution. There is no temporal ordering of events that

would falsify the assertion. If, on the other hand, there is a single total order of events that

could have made the assertion true, then the value of possible will be true. A false value for

possible means that no total ordering of events could verify the assertion.

Notice that the result of the causal assertion in the figure is Unknown. When we attempt

to find a causally preceding event in P3 from which to obtain the value of b u ffe r Cl], we

fail. No event exists in process P3 tha t causally precedes the anchor event so we can neither

verify nor refute the assertion. Likewise, it may not be possible to evaluate an assertion

using the other two methods. If we include a variable from process Pj and the concurrent

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. DISTRIBUTED TRACE VISUALIZATION TOOL 171

region in Pj is empty, then no values exist for the assertion. Again, we present the Unknown

result.

Alternatively we could assume that a concurrent region exists but that no events within

the region were traced. We could also assume that the values a t the beginning of the

concurrent region were constant during the execution of the concurrent region. With these

assumptions, we know that the values of the variables at the end of the latest causally

preceding event should be used to evaluate the assertion. These values are the ones used in

causal evaluation. We do not replicate the result and dism iss this approach.

We begin concurrent evaluation by constructing a list of values and vector times for each

variable of the predicate. The lists are shown below. Each entry contains a set of values

and a vector time. For example, the penultimate entry for b u ffe r [1] has the value set

{ l, 3} and the vector time [1 2 , 4 , 4 , 7]. Each entry states that the listed values were

attained by the variable while executing the statements following the previous event and

preceding the event with the associated vector time.

mefiO {{0} [5,4,0,0]}, {{0} [6 ,4,0,0]}, {{0} [7,4,0,0]}, {{0} [8 ,4,0,0]},
{{0} [9,4,4,0]}, {{0} [10,4,4,0]}, {{0} [11,4,4,0]}, {{0} [12,4,4,0]},
{{0} [13,4,4,4]}, {{0} [14,4,4,4]}

b u f fe r [1]43 {{-1073742836} [0,0,0,1]}, {{-1073742836} [0,0,0,2]},
{{0, -1073742836} [0,0,0,3]}, {{0} [0,0,0,4]}, {{0} [12,4,4,5]},
{{3, 0} [12,4,4,6]}, {{1, 3} [12,4,4,7]}, {{1} [12,4,4,8]}

Once the lists have been constructed, we enter a loop that tests each com bination

of values from the constructed lists. A set of values is taken and their vector times are

compared. If the vector times are not concurrent, then the values are not considered.

For example, when the vector time [6 , 4 , 0 , 0] and [12, 4 , 4 , 6] are compared we

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. DISTRIBUTED TRACE VISUALIZATION TOOL 172

determine that the relationship is causal. Therefore, the values associated with these vector

times are not compared.

When all vector times are concurrent, as is the case with the first values for each variable,

predicate evaluation is done. If the result is true, we make possible true and if the result is

false, we make definite false. The loop continues until all possible combinations of values are

tested. It is possible exit the evaluation loop early if definite has been falsified and possible

has been verified. In this case, no further evaluation will alter the results. The results are

then displayed in the main window. If the loop finds no matching of values that can be

used to evaluate the expression, then the result is Unknown.

In the example, when 0 with vector time 15 ,4 ,0 ,0] is compared to -1073742836 with

vector time [0 , 0 , 0 , 1] , we know that definite is false. The next comparison between 0 with

vector time [6 , 4 ,0 , 0] and 0 with vector time [0 ,0 ,0 ,1] tells us that possible is true. The

loop is terminated at this point and the results displayed.

5.5 An Example

As an example of the usefulness of the visualization technique, we present a distributed

mutual exclusion algorithm based on token passing. To enter its critical section, processor

Pi must receive the token from its left neighbor, Pf-i- To release the critical section token,

Pi sends the token to its right neighbor, Pi+1- In each of the following examples mutual

exclusion was not violated during execution. The source code for this example is given in

appendix B.

Our example follows the token passing rules and begins with process Pn - i sending the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. DISTRIBUTED TRACE VISUALIZATION TOOL 173

token to Po. Each process enters its critical section twice before exiting. Figure 5.7 shows

the display constructed from the correct execution of a four process system. Notice that

a message transmitting the token lies between each of the labeled critical sections. This

ensures that no two processes enter their critical sections concurrently.

As shown in figure 5.8, the correct operation is no longer immediately obvious when

additional messages are added to the system. In this case, we have traced the same system

with non-token messages being exchanged. The post-critical section code sends a message

to each of the other processes. Before entering the critical section, all but one randomly

chosen message is accepted. The result is that causal relationships are formed that are not

part of the underlying mutual exclusion algorithm. With close examination, it can still be

determined that no critical section violation occurs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. DISTRIBUTED TRACE VISUALIZATION TOOL 174

PO pi P2 P3

Figure 5.7: Correct execution of token ring mutual exclusion.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. DISTRIBUTED TRACE VISUALIZATION TOOL 175

-o

fO PI n n

Figure 5.8: Correct execution of token ring mutual exclusion with additional messages.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. DISTRIBUTED TRACE VISUALIZATION TOOL 176

In each of the correct examples, the receipt of the token message was accomplished

with MPI_Recv, a blocking receive. That is, the function does not return until a message

has arrived and is ready to be processed. To introduce an error into the program, we

replace the function call with a textually similar function, MPI_Irecv. The new function

is a nonblocking receive. It indicates to the underlying system that a message is expected

and where it should be placed when it arrives and returns immediately without waiting

for the arrival. The user can later check to see if the message actually has arrived. With

nonblocking receives we incorrectly assume that the token has arrived when the function

returns.

PO PI P2 P3

Figure 5.9: Incorrect execution of token ring mutual exclusion.

We begin by showing in figure 5.9 the display presented by DTVS without the additional,

non-token messages. It is again clear what has happened. Since all critical sections are

concurrent, we have obviously done something wrong. Selection of any event as an anchor

would show that all events of the other processes are concurrent. The sole message in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. DISTRIBUTED TRACE VISUALIZATION TOOL 177

system is the token being sent from Ppt-i back to Po. The receipt uses the blocking version

of the receive command and therefore actually receives the token.

If we overlay the additional messages back onto the execution, the problem is no longer

obvious. Figure 5.10 shows the display constructed from the execution of the system with

the non-token messages in place. It is interesting to note the near identical execution of

the correct version of figure 5.8 and the faulty version of figure 5.10. If we examine the

beginning of execution, we will notice that mutual exclusion is not violated. If we select a

critical section event from any of the processes during the first round, we will see that no

violation has occurred. This is due to the causality added by the non-token messages.

If we look at the top of the time-space diagram, we notice that the second entries into

the critical sections of processes Po and Pi seem to be concurrent. We can select either of

the events as an anchor and the concurrent section will be highlighted. This will indeed

show that the critical sections are concurrent. If the labels were not present, it would be

difficult to identify the events that are within the critical section and those that are not.

Concurrent regions may not be sufficient to notice the problem.

Suppose we select anchor event 14 from process Pi as shown in figure 5.11. The labels,

together with the concurrent regions, show that critical sections from processes Po, P\ and

Pz axe all concurrent to message receipt. The question remains as to whether they are

concurrent to each other. A simple predicate ran check whether the value of in_CS from

two processes is 1 at some concurrent instance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. DISTRIBUTED TRACE VISUALIZATION TOOL

po rt n n

Figure 5.10: Incorrect execution of token ring mutual exclusion with additional messages.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. DISTRIBUTED TRACE VISUALIZATION TOOL 179

Definite

Figure 5.11: Assertion indicates mutual exclusion violation.

The predicate we entered was in_CSfiO==lfctin_CS®l==l. This is the logical conjunction

of the two critical section entry variables. We are not concerned in this example with

the causal result. Instead we concentrate on the concurrent results. Since definitely is

false, we know that some event orderings will not have Po and P i in their critical sections

simultaneously. Since no runtime violation occurred, this must be the case. However, the

possibly result of true tells us that even though mutual exclusion was not violated during

execution, our algorithm does not guarantee it. In this case, mutual exclusion was a product

of temporal ordering of events and not causal ordering. The next execution may cause the

program to fail. The program may even function properly for months before the error

becomes apparent with a failure at the worst possible moment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. DISTRIBUTED TRACE VISUALIZATION TOOL 180

Now that our assertion has told us of the existence of an error, we begin searching for

its source. We first examine the events surrounding the critical section event. We begin by

looking at the events immediately following the critical section of process Po. The first event

we encounter is an uninteresting local computation. Next we find a send event without an

outgoing message arc. The event information window tells us that this is the transmission

of the mutual exclusion token. The absence of the message arc indicates that the token

was never received at the destination process. We now know what happened but have not

determined the cause.

Working backwards from the critical section event of process Pi we examine the events

preceding the critical section code. We find a local computation that sets the value of in_CS

to 1. The next event we examine is also tagged as a local computation event. The event

information window however shows the function call M PIJrecv as the source statement.

It may not be obvious why the function is labeled a local computation. But consider its

impact on the causal relationships of the system. Execution of a nonblocking receive simply

indicates where a particular message should be stored. It does not wait for that message to

arrive. Since no message has actually arrived, the causal link between sender and receiver

has not been formed.

If, after the nonblocking receive has been executed, the MPIJfait function is called, we

insert a receive event into the trace file. The semantics this function are to wait until the

indicated message arrives, store it as instructed by the nonblocking receive, and then return.

If an MPIJfait statement had been inserted immediately after the nonblocking receive, the

resulting correct execution would be almost identical to figure 5.8.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. DISTRIBUTED TRACE VISUALIZATION TOOL 181

Using the facilities provided by DTVS we have correctly identified the programming

error. Furthermore, the error as not indicated by the failure of the program to perform

correctly. DTVS is valuable in displaying not only the execution as it occurred but also in

determining possible future execution scenarios.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Conclusions

A program whose execution is intrinsically complex is commonly accepted as problematic

in the sense that it does not fulfill its intended purpose. The complex interactions between

constituent processes of a distributed system make a full understanding even more elusive.

This research has focused on the accurate display of the system’s execution so program

developers can debug complex normally misunderstood executions. Specifically, we were

interested in the accurate display of the concurrency between traced events.

This work was initiated by examining several existing techniques. While most were

adequate for their intended purpose, none met all three of our criteria for a general purpose

display: accurate, informative, and scalable. We closely examined the concurrency map, an

incorrect solution, to determine the underlying reason for its fault. This solution, although

not accurate, was both scalable and highly informative. During examination, a simple,

four node graph was discovered that we labeled a quad-ring. This graph represents a

common execution sequence of message transmission amd receipt statements. We have

rigorously proven that this graph, if present as a subgraph of the execution events, cannot

be accurately displayed as a concurrency map. The quad-ring revealed th a t the concurrent

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. CONCLUSIONS 183

relationships we were attempting to display lacked the transitivity needed to be represented

in two dimensions. This result lead our research to further investigate how many dimensions

are required to display concurrent relationships, and if the number of dimensions needed

depends on the number of processes.

We have developed a mathematical model that accurately characterizes both the concur­

rency and causality of the system. The model is theoretically scalable to any size system.

Implementation of the model into a usable software engineering tool is problematic. No

more than three processes can be simultaneously displayed. If more then a few events from

each process are displayed, the presentation become too cluttered to distinguish individual

events. While theoretically sound, the model has little practical value.

Our model furthered our understanding of the problem. We found that the unrestricted

display of concurrency, a non transitive relation, cannot be accomplished in a single com­

prehensible manner. Restrictions of some type are necessary, but restricting the number

of processes is not acceptable. As a result, we have developed a software prototype that

displays all processes of the distributed system at once. The display is based on accept­

ed graph models and presents the entire causal relation. The unavoidable but acceptable

restriction is on the amount of concurrency presented at one time.

Our prototype allows the user of the system to select a single event and display the

concurrency relation with respect to that event. Assuming that the user selects each event

in turn, then all concurrency will eventually be displayed. We began by building tracing

facilities on top of the widely used MPI message passing library and selecting the most

commonly used communication paradigms. For each paradigm representative functions

were selected from the myriad provided by MPI. Each function was augmented with tracing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. CONCLUSIONS 184

facilities to create a nearly transparent interface between program execution and display.

The merit of our software is demonstrated by its accurate and informative depiction of

the system. As an example, a simple distributed program is given that appears to operate

correctly. The program, a mutual exclusion algorithm, does not fail to perform its intended

task when tested. However, our display clearly shows that the correct operation is not due

to a correct implementation but is instead attributed to a fortunate random ordering of

concurrent events. It is possible that the program may operate correctly during testing and

fail when put into operation.

We have demonstrated that additional features of our prototype allow the software en­

gineer to quickly identify the cause of erroneous implementations. The software engineer

can examine events and messages to determine whether the associated program statements

are performing as expected. The ability to dynamically define predicates involving variables

from the processes’ executions has also been included. These predicates are asserted at loca­

tions in the program specified by the user and evaluated as if they had been present during

execution. The combination of examination and assertion evaluation features provides an

insightful and flexible tool for debugging complex distributed systems.

6.1 Future Research

Our developments have led us to several areas of future work. The first described areas

are related to implementation improvements of the software prototype. The later described

areas are theoretical in nature.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 6. CONCLUSIONS 185

6 .1 .1 Softw are E n h an cem en ts

Our tracing facilities are currently a separate entity from the MPI libraries. To use our

prototype the software engineer simply includes a header file. Macro definitions change

selected MPI functions to the appropriate DTVS equivalents. This approach has several

deficiencies.

We are required to create a DTVS function for each of the MPI functions we wish to

trace. As the MPI group adds functions to their library, we must add the DTVS equivalent.

A better, more permanent, solution would incorporate our tracing facilities into the base

functions of MPI. For example, most message transmission functions eventually call a single

routine, send_message, to perform the transfer. The same is true for message receipts.

Most user callable receipt functions eventually use recv_message to accept an incoming

message. Further research is needed to determine the consequences of incorporating our

tracing facilities into these underlying functions.

Some user-callable MPI functions cannot be accurately traced without changing lower-

level code. The synchronous send, for example, transmits a message and then waits for

an acknowledgement of receipt. To implement vector time, we need to append the vector

clock of the receiver onto the return acknowledgement message. This is not possible using

the current approach since the actual send and receive are buried beneath several layers of

software abstraction. We have instead used the standard MPI-Send and MPI_Recv functions

in the DTVS wrapper to simulate the synchronous communication. Although it is functional

and theoretically correct, it is neither an optimal nor elegant solution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. CONCLUSIONS 186

By introducing another level of software between the user program and the communi­

cation media, we increase the intrusiveness of the approach. It can be argued that adding

one more layer to the ten already separating the user from the communication channel in

the case of a basic send is not detrimental. However, we believe that every attempt should

be made to avoid any runtime difference between a system being traced and a system not

being traced. An advantage of incorporating the tracing facilities into the lowest level MPI

functions would be to reduce their intrusiveness.

Another way of reducing the execution penalty of tracing would be to reduce the amount

of data written to the trace files. This can be accomplished in several ways, some of which

were mentioned in the discussion of the prototype. Instead of including the source code

statement in the trace file, a file and line reference would be sufficient. This would require

that the file is present during the display of the trace but since the tool is used during

program creation, this should always be the case. It has been suggested that only the

local component of the vector time be recorded in the trace files and other components be

regenerated during display. More research is needed to verify this as a viable alternative.

The trace files should also be stored in binary format.

We currently require the user to indicate the locations in the program where the values

of traced variables should be recorded. Values are currently checked only when a significant

event occurs or the user inserts a DTVS.checkpoint function call into the source code. It is

possible that an important value of a variable is missed if checkpoints are not inserted in the

proper places. We intend to explore the feasibility of automatically checking variable values

without requiring the user to alter the source code. It is unclear whether an approach can

be found that will be both transparent and an acceptable burden on execution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. CONCLUSIONS 187

Another requirement of the current implementation is that an anchor event must defined

before a predicate can be evaluated. We believe that the ability to evaluate a predicate over

a user-selectable region not associated with an anchor would be beneficial. For example,

in the mutual exclusion program of chapter 5, we could have selected the entire program

and evaluated the predicate over all concurrent cuts. The results may not be helpful unless

some indication of the cut causing the evaluation results was present. A colored bar could

indicate the events from each process that were used when the value of possible became

true.

6 .1 .2 T h eoretica l

The ultimate goal of this research was to create a model that would allow the display of the

entire concurrency relationship in a single picture. We have shown that the non-transitive

nature of concurrency prevents the accurate display in a manner that clearly conveys the

relationships between events. Instead, we have developed a technique that displays a subset

of the concurrency relationship.

Each of the dimensions is used to show a particular aspect of the system’s execution. One

dimension indicates the physical separation of processes while another depicts the advance

of logical time as events are executed. A two dimensional figure is sufficient to display the

causal relationships between events. The third dimension is dedicated to the depiction of

the concurrent relationships between events. Each plane in the third dimension shows the

concurrent relationship with respect to a single anchor event. By selecting an event as an

anchor, the user identifies the plane to be displayed. Once the anchor is selected, only the

identified place is visible.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. CONCLUSIONS 188

We plain to continue our exploration by attempting to increase the number of visible

planes. Multiple planes may require the addition of color, texture or audible signals to

retain the clarity of the original depiction. We will also consider the inclusion of a virtual

reality display to allow the software engineer to be immersed in the execution trace.

Another possible approach is to reorient the displayed dimensions. It may be possible

to use one of the primary planes to display the concurrent relationships. However, when

increasing the information content of the picture, we must take care to retain a depiction

from which valuable information can still be gleaned and avoid becoming another “angry

fruit salad on drugs.” [2]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A

Notation

The following is a list of notation used throughout the paper. Each symbol is followed by

the page number of its introduction and a brief description of its meaning.

sym bol page defin ition

N 15 The number of processes in the distributed system

Pi 15 Process i of the distributed system

V 16 An event executed in the distributed system

P{v) 17 The process in which event v is executed

V ? 17 The kP1 event executed in process Pt

vi~ 17 The initial event (preceding event 1) of process Pi

v j 17 The terminal event of process Pi

E 17 The set of events comprising the distributed system

Ei 17 The set of events executed by process Pi

S 17 The set of message transmission events

189

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A . NOTATION 190

sym bol page defin ition

R 17 The set of message receipt events

L 17 The set of local computation events

M 17 The set of communication events

m 17 A message in the distributed system

S(m) 17 The event causing the transmission of message m

R[m) 17 The event causing the receipt of message m

-> 19 The happens before or causal relation between events

/ 20 A synchronous communication pair of events, a rendezvous

H 20 The graph of the causal relationships between events

R? 22 The causally equivalent region of events with respect to uf

II 23 The concurrent relation between events

H 24 The graph of the concurrent relationships between events

g(*0 24 The girth of graph G

CRy 27 The concurrent region of event defined with respect to event v

T 30 A vector representing causal dependencies

Ti\J] 30 The j** component of the vector associated with process Pi

r(m) 30 The vector attached to message m

t (v) 30 The vector attached to event v

B? 42 The k th block of events in process

T{B) 43 The image or vertical location of block B in a concurrency map

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. NOTATION 191

symbol page definition

qm 53 A quad_ring, or subgraph not displayable as a concurrency map

A 67 The events of E that succeed a selected event

B 67 The events of E that precede a selected event

C 67 The events of E that are concurrent to a selected event

a 72 The l 5* row of a concurrency map containing an event from A

P 72 The last row of a concurrency map containing an event from B

72 A concurrency map

C{v)± 118 A cut of the system execution that marks the beginning of CRy

C(v)T 119 A cut of the system execution that marks the end of CR^

V{v) 121 The coordinates in iV-space of event v

124 The distance from V(v) to the origin

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B

Example MPI Program

* Token_mutex.c
*

* Implementation, of token p assin g Mutual exc lusion
* algorithm .
*

* I f compiled w ith ERROR d e fin ed , a nonblocking rece iv e
* i s used to o b ta in th e CS e n try token - an e r ro r .
*

* I f compiled with. SIMPLE d efin ed , a l l non-TOKEN messages
* are removed fo r c l a r i ty .

include < std lib .h>
#include "mpi.h"
include "DTVS.trace.h"

#define NUMCYCLES 2

td e f in e TOKEN 111
#define MESSAGE 222

in t me, nproc, in_CS * 0 , h a l f ;
i n t * se n d _ lis t, * re c v _ lis t;

(* c a lle d before en try in to c r i t i c a l s e c tio n * /
void enter_CS()
{

192

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B. EXAM PLE M PI PROGRAM 193

i n t b u ffe r , l e f t ;
MPI.Request re q u e s t;
N PI.S tatus s ta tu s ;

l e f t = (me + nproc - 1) % nproc;

ifd e f ERROR

/* This i s a NONblocking rece iv e * /
M PI.Irecv (tb u f f e r , 1, MPI.INT, l e f t , TOKEN, MPI_COMM_WORLD, fcrequest);

e lse

/* This i s a b lock ing rece iv e * /
MPI.Recv (tb u f f e r , 1, MPI.INT, l e f t , TOKEN, MPI.COMM.WORLD, fc s ta tu s) ;

#endif

/ * I now have th e token * /
DTVS_Local(in_CS - 1);

>

/ * C r i t ic a l s e c tio n code * /
void do_CS_stuff()
•C

i n t gairbage ;

DTVS_Label("CS", "Complex c a lc u la tio n s in c r i t i c a l s e c tio n ") ;
DTVS.Local(garbage * 17);

>

/ * Post c r i t i c a l s e c tio n fu n c tio n * /
void leave_CS()

i n t b u ffe r , r ig h t ;

DTVS.Local(in_CS = 0) ;

r ig h t = (me +• 1) 'L nproc;

/ * Pass th e token to th e r ig h t * /
M PI.Send(tbuffer, 1, MPI.INT, r ig h t , TOKEN, MPI.COMM.WORLD);

}

/* randomize th e p ro cess l i s t * /

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B. EXAM PLE M PI PROGRAM 194

void s h u f f le ()
■C

in t p , j , tmp;

for(p=0; p<nproc; p++) {
/ * p ick an. element * /
j = randomO % nproc;
/* swap i t w ith element p * /
tmp * s e n d _ l i s t [j] ;
s e n d _ lis t [j] * s e n d .l i s t [p] ;
s e n d . l i s t Cp] * tmp;

/* p ick an element • /
j = randomO % nproc;
/ * swap i t w ith element p * /
tmp = r e c v _ l i s t [j] ;
r e c v _ l i s t [j] = re c v _ lis t [p] ;
r e c v _ lis t[p] = tmp;

>
>

/* Do something before the c r i t i c a l se c tio n * /
void pre_CSO
-C

in t p , b u ffe r ;
M PI.Status s ta tu s ;

s h u ff le () ;

/* Wait fo r a l l messages except 1 * /
/ * This should in troduce lo ts of c a u s a lity * /
/* We miss one to allow mutex v io la tio n o ccass io n a lly * /
fo r(p = l; p<nproc; p++)

i f (r e c v _ l is t [p] != me)
MPI_Recv(fcbuffer, 1, MPI.INT, r e c v . l i s t [p] , MESSAGE,
MPI_COMM_WORLD, k s ta tu s) ;

>

/★Do something a f t e r the c r i t i c a l se c tio n * /
void post_CSO

in t p, b u ffe r ;
M PI.Status s ta tu s ;

/* now send messages to a l l o th er p rocesses * /

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B. EXAMPLE MPI PROGRAM 195

fo r(p= 0 ; p<nproc; p++)
i f (sen d .lis tC p] !* me)

M PI.Send(tbuffer, 1, MPI.INT, s e n d _ lis t Cp] , MESSAGE, MPI.COMM.WORLD) ;

/♦ rece iv e message l e f t over from pre.CSO r e c e ip ts * /
i f (recv .listC O] !* me)

M PI.Recv(tbuffer, 1, MPI.INT, recv .lis tC O] , MESSAGE,
MPI.COMM.WORLD, A s ta tu s) ;

>

/ * i n i t i a l i z e every th ing * /
void i n i t i a l i z e (in t a rg c ,ch a r *argvD)
-C

in t p , b u ffe r ;

in.CS = 0;
DTVS_trace_variable(in_CS);

M P I.In it(ta rg e , ta rg v) ;
MPI.Comm.rank(MPI.COMM.WORLD, tone) ;
MPI.Comm.size(MPI.COMM.WORLD, tn p ro c) ;

/* i n i t i a l i z e the l i s t s of process numbers * /
s e n d . l i s t = (in t *)m a llo c (s iz eo f(in t) * n p ro c);
r e c v . l i s t * (in t *)m a llo c (s iz eo f(in t) * n p ro c);
for(p=0; p<nproc; p++) {

sen d .lis tC p] = p;
re c v .lis tC p] * p;

>

/* sh u ff le th e process l i s t s * /
s h u f f le () ;

/* Last process sends token to 0 to ge t th in g s s ta r te d * /
i f (me == nproc - 1)

M PI_Send(tbuffer, 1, MPI.INT, 0, TOKEN, MPI.COMM.WORLD);

ifn d e f SIMPLE
/* send wake-up messages to p rocesses to th e l e f t * /
for(p=0; p<me; p++)

M PI_Send(tbuffer, 1, MPI.INT, p , MESSAGE, MPI.COMM.WORLD);
#endif

/ + seed th e random number generato r * /
srandom(48271 * (me + 1)) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B. EXAM PLE M PI PROGRAM 196

>

/* s top ev e ry th in g * /
void f in a l iz e O

in t p , b u f fe r ;
M PI.Status s ta tu s ;

/ * now p ic k th e token * /
i f (!me)

MPI.Recv (tb u f f e r , 1, MPI.INT, nproc-1 , TOKEN, MPI.COMM.WORLD, t s t a t u s) ;

ifn d e f SIMPLE
/ * now p ic k th e rem aining messages * /
for(p=m e+l; p<nproc; p++)

M PI_Recv(tbuffer, 1, MPI.INT, p , MESSAGE, MPI.COMM.WORLD, t s t a t u s) ;
#endif

s l e e p (l) ;

M P I.F in a lize () ;
>

void m ain(i n t a rg c ,c h a r *argvQ)

in t cy c le ;

i n i t i a l i z e (a r g c , a rg v) ;

/* th e main p ro cessin g loop * /
fo r (cy c le = 0; cycle<NUMCYCLES; cycle++) -C

ifn d ef SIMPLE
pre.C S () ;

#endif
e n te r .C S O ;
d o .C S .s tu ff () ;
leave_C S();

ifn d ef SIMPLE
p o s t.C S O ;

#endif
>

f i n a l i z e () ;
>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] M. A h u ja , A. D. K shemkalyani, and T . C arlson. A basic unit of computation
in distributed systems. IEEE , pages 12-19, 1990.

[2] B. P . M il l e r a n d C. M c D o w e l l , e d s . Summary of ACM/ONR workshop on
parallel and distributed debugging. Operating Systems Review, 27(4):8-23, 1993.

[3] P . C. B a t e s a nd J . C. W il e d e n . High-level debugging of distributed systems: the
behavioral abstraction approach. Journal of Systems Software, 3:255-264, 1983.

[4] A d a m B e g u e l in , J a c k D o n g a r r a , A l G e is t , a n d Va id y S u n d e r a m . Visual­
ization and debugging in a heterogeneous environment. Computer, pages 89-95, June
1993.

[5] J . P . B l a c k , M. H. C o f f in , D. J . T a y l o r , T. K u n z , a n d A . A. B a s t e n . Linking
specification, abstraction, and debugging. Technical Report TR-94-02, University of
Waterloo, Canada, Department of Computer Science, November 1993.

[6] C h r is C a e r t s , R u d y L a u w e r e in s , a n d J . A . P e p e r s t r a e t e . PDG: A process-
level debugger for concurrent programs in the grape parallel programming environment.
Technical Report g95-01, Katholieke Universiteit Leuven, E.S.A.T. Laboratory, Hev-
erlee, Belgium, 1994.

[7] T . A. CARGILL. The blit debugger. Journal of Systems Software, 3:277-284, 1983.

[8] B e r n a d e t t e C h a r r o n - B o s t . Concerning the size of logical clocks in distributed
systems. Information Processing Letters, 39:11-16, July 1991.

[9] H e r m a n C h e r n o f f . The use of faces to represent points in k-dimensional space
graphically. Journal o f the American Statistical Association, 68(324) :361-368, June
1973.

[10] W. H. CHEUNG. Process and Event Abstractions for Debugging Distributed Programs.
PhD thesis, Univeristy of Waterloo, 1989.

[11] R. C o o pe r and K. M arzulo . Consistent detection of global predicates. In Pro­
ceedings o f the ACM SIGPLAN and SIGOPS Workshop on Parallel and Distributed
Debugging, pages 163-173, 1991.

[12] D e n n is E d w a r d s a n d P h il K e a r n s . DTVS: a distributed trace visualization system.
In Proceedings of the Sixth IEEE Symposium on Parallel and Distributed Processing,
pages 281-288. IEEE Computer Society Press, 1994.

197

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 198

[13] M . G. F ernandez and S . G hosh. Ddbx-LPP: A dynamic software tool for debugging
asynchronous distributed algorithms on loosely coupled parallel processors. Journal of
Systems Software, 22:27—43, 1993.

[14] C. J. F id g e . Partial orders for parallel debugging. In Proceedings of the ACM SIG-
PLAN and SIGOPS Workshop on Parallel and Distributed Debugging, pages 183-194,
University of Queensland, May 1988.

[15] M e ssa g e P a ssin g I n t e r f a c e F o r u m . MPI: A message-passing interface standard
(version 1.1). Technical report, MPI-Forum, http://www.mpi-forum.org, 1995.

[16] M e s s a g e P a ssin g I n t e r f a c e F o r u m . MPI-2: Extensions to the message-passing
interface. Technical report, MPI-Forum, http://www.mpi-forum.org, July 1997.

[17] J F o w l e r AND W. ZWAENEPOEL. Causal distributed breakpoints. In Proceedings of
the Eighth International Conference on Distributed Computing Systems, pages 134-141.
IEEE Computer Society Press, 1990.

[18] P allas G mbH. Vampir 2.0 tutorial. Technical Report VA20-WTUT-11, Forschungs-
zentrum Jiilich, http://www.pallas.com, December 1998.

[19] G. G r a t z e r . General Lattice Theory. 75. Academic Press, Inc., The University of
Manitoba, 1978.

[20] GEORGE G ratzer . Lattice Theory: First Concepts and Distributive Lattices. W. H.
Freeman and Company, The University of Manitoba, 1971.

[21] F rank Harary . Graph Theory. Addison-Wesley Publishing Company, Inc., April
1971.

[22] D e l b e r t H a r t , E il e e n K r a e m e r , a n d G r u ia -C atalin R o m a n . Interactive visual
exploration of distributed computations. In Proceedings of the Eleventh International
Parallel Processing Symposium, pages 121-127, Geneva, Switzerland, April 1997. IEEE.

[23] M ic h a e l T. H e a t h a n d J e n n if e r A. E t h e r id g e . Visualizing the performance of
parallel programs. IEEE Software, 8(5):29-39, September 1991.

[24] M A T T H E W S. H e c h t . Flow Analysis of Computer Programs. 5. Elsevier Scientific
Publishing Company, University of Maryland, 1977.

[25] D avid P. H e l m b o l d , C h a r l e s E. M c D o w e l l , a n d J lan- Z h o n g W a n g . TYace-
viewer: A graphical browser for trace analysis. Technical report, University of Califor­
nia at Santa Cruz, October 1990.

[26] C .A .R . H oare . Communicating sequential processes. Communications of the ACM,
21(8):666-677, 1978.

[27] S e k h a r S a r u k k a i J e r r y Y a n a n d P a n k a j M e h r a . Performance measurement,
visualization and modeling of parallel and distributed porgrams using the aims toolkit.
Software - Practice and Experience, 25(4):429-461, April 1995.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.mpi-forum.org
http://www.mpi-forum.org
http://www.pallas.com

BIBLIOGRAPHY 199

[28] R. KHANNA a n d B. McMlLLIN. SMELI: Visualization of asynchronous massively
parallel programs. Journal o f Systems Software, 19:261-275, 1992.

[29] L. Lam port . Time, clocks, and the ordering of events in a distributed system. Com­
munications o f the ACM , 21(7):558-565, 1978.

[30] Allen D. Malony , David H. Hammers lag , and David J . J ablonow ski. Trace-
view: A trace visualization tool. IEEE Software, 1991.

[31] MasPar Computer Corporation, Sunnyvale, California. MasPar Programming Envi­
ronment (MPPE) - User Guide, a5 edition, July 1992.

[32] F r ie d e m a n n M a t t ERN. Virtual time and global states of distributed systems. In
Proceedings of the International Workshop on Parallel and Distributed Algorithms,
M. Cosnard et. al., editor, pages 215-226. Elsevier Science Publishers B. V., 1989.

[33] O leg Y. N ickolayev , P hilip C. R o th , and Daniel A. R eed . Real-time statis­
tical clustering for event trace reduction. The International Journal o f Supercomputer
Applications and High Performance Computing, 11(2):144-159, Summer 1997.

[34] N oritaka O sawa. An enhanced 3-d animation tool for performance tuning of parallel
programs based on dynamic models. In Proceedings of the SIGMETRICS Symposium
on Parallel and Distributed Tools, pages 72-80, Welches, OR, USA, August 1998. ACM.

[35] A. D. P olim eni AND H. J . Straight . Foundations of discrete mathematics, chap­
ter 4, pages 132-164. Brooks/Cole Publishing Company, Belmont, California, 1985.

[36] M. C. P ong . I-Pigs: An interactive graphical environment for concurrent program­
ming. The Computer Journal, 34(4):320-330, 1991.

[37] D. A. R e e d , C. L. E lford , T . Madhyastha , W . H. Scullin , R. A. Aydt ,
and E. Sm irni. I/O , performance analysis, and performance data immersion. In
Proceedings of M ASCOTS ’96, pages 1-12, San Jose, CA, USA, February 1996.

[38] G. C. R oman , K. C. Cox , C. D .W ilcox , and J . Y. P lun . Pavane: A system for
declarative visualization of concurrent computations. Journal of Visual languages and
Computing, 3(1):161—193, 1992.

[39] R einhard Schwarz and F riedemann M a ttern . Detecting causal relationships in
distributed computations: In search of the holy grail. Technical Report SFB 124-15/92,
Department of Computer Science University of Kaiserslautern, 1992.

[40] Sameer Shende , A llen D. Malony , J anice C uny, and Kathleen Lindlan.
Poratble profiling and tracing for parallel, scientific applications using C + + . In Pro­
ceedings of the SIGMETRICS Symposium on Parallel and Distributed Tools, pages
134r-145, Welches, OR, USA, August 1998. ACM.

[41] Sharon Simmons and P hil K earns. A causal assert statement for distributed
systems. In Proceedings o f the Seventh IASTED /ISM M International Conference on
Parallel and Distributed Computing and Systems, M. H. Hamza, editor, pages 495-498.
IASTED/ISMM, IASTED-ACTA Press, October 1995.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 200

[42] J ohn T . Stasko . The PARADE environment for visualizing parallel program execu­
tions: A progress report. Technical Report GIT-GUV-95-03, Graphics, Visualization,
and Usability Center, College of Computing, Georgia Institute of Technology, Atlanta,
Georgia, 1995.

[43] J ohn T. Stasko and E ileen K raem er . A methodology for building application-
specific visualizations of parallel programs. Journal of Parallel and Distributed Com­
puting, 18(2):258-264, June 1993.

[44] A. M. Stavely. Algorithms for analyzing concurrent software systems using deriva­
tives. Journal o f Systems Software, 11:3—20, 1990.

[45] J . M. Stone . A graphical representation of concurrent processes. In Proceedings o f
the ACM SIGPLAN and SIGOPS Workshop on Parallel and Distributed Debugging,
pages 226-235, 1988.

[46] G uido W i r t z . The Meander language and programming environment. Programming
and Computer Software, 21(1):9-16, 1995. Original Russian Text Copyright ©1995 by
Programmirovanie, Wirtz.

[47] M. Zaki, M. Y. E l-N ahas, and H. A. Allam . DPDP: An interactive debugger for
parallel and distributed systems. Journal o f Systems Software, 22:45-61, 1993.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VITA

Dennis Lee Edwards was bom in Jackson Mississippi, January 20, 1966. He graduated from

Richland Attendance Center in Richland Mississippi, May 1984. He then earned an A.S.

in Data Processing from Hinds Community College in Raymond Mississippi, May 1986. At

the University of Southern Mississippi in Hattiesburg Mississippi he earned both a B.S. and

a M.S. in Computer Science, August 1988 and August 1991 respectively.

In August 1991, he entered the College of William and Mary as a graduate assistant

in the Department of Computer Science. He earned his Ph.D., Decemeber 1999. He is

currently an assistant professor in the Computing Department at the State University of

West Georgia.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Accurate visualization of distributed system execution
	Recommended Citation

	tmp.1539750766.pdf.sFOa1

