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Abstract

The discovery of tunneling magneto-resistance has led to a great deal of interest
in the study of ferromagnet-insulator-ferromagnet (FIF) systems due to potential
sensor and magnetic storage applications. An analysis of the band structure of the
3d ferromagnets shows that the conduction electrons become spin polarized by the
molecular field. The transmission coefficient of these electrons across a tunneling gap
therefore depends upon the relative alignment of the molecular field between the two
ferromagnets.

In this work the manufacture of such tunneling gaps through compression
molding of powdered ferromagnetic iron with a high performance polyvimide has been
studied for the first time. The percent change in the resistance with applied magnetic
field depends critically on the volume percentage of ferromagnetic material in the
composite. A peak in the tunneling magnetoresistance (TMR) occurs at a volume
concerntration just beneath the percolation threshold of the ferromagnetic material.
The change in resistance relative to the resistance at zero field. AR/Ry. obtaius a
room temperature peak value of -4.5% at 20% iron volume concentration.

Granular conducting systems near the percolation threshold are also subject
to variable range hopping (VRH) conduction. The charging energy of small metallic
grains results in an energy barrier for the acceptance of an additional electron. Elec-
tronic conduction requires thermal activation over this barrier along with tunneling
through the insulating regime. The result of these two combined processes is a tem-
perature dependent tunneling distance and a conductivity of the form Ino « T77.
with 1/4 <z <1/2.

The theoretical development and experimental measurements of TMR and
VRH in iron polyimide nanocomposites are thoroughly developed and analyzed in
this work. Ferromagnet particle size and band structure effects on TMR are also
explored in an effort to optimize the material for sensor applications.

ix
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Chapter 1

Introduction

In the classical limit conduction across a system containing randomly situated
conducting particles in an insulating matrix will occur only when a continuous cluster
of the conducting particles spans the svstem. Percolation theory provides a tool for
the study of such systems [1]. The volume concentration at which a spanning cluster
is formed across an infinite system is called the percolation threshold. p.. Below this
critical concentration there will be no conducting paths across the system so that
the material will be an insulator. Experimental measurements on iron polyimide
composites confirm this general behavior. Increasing the volume concentration of
the fine iron particles across the percolation threshold causes the conductivity of the
composite to change by several orders of magnitude. The system, however, continues
to conduct beneath p.. Quantum mechanical tunneling across small insulating gaps
allows electrons to continue to flow across the system. Of particular interest is the
case when the conducting particles are also ferromagnetic. These systems have been
studied since 1975, when Julliere first showed that the transmission coefficient for
this tunneling process varies with the angle between the magnetic moments of the

ferromagnets on either side of the barrier [2]. The conduction across the gap decreases
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with increasing angle between the moments. In other words, the conduction is a
maximum when the spins of the majority electrons are aligned and is a minimum
when the moments of the two ferromagnets are antiparallel. This general result
has been verified repeatedly and the theory of the conduction mechanism more fully
developed as interest in the phenomenon has grown [3-12]. The search for a tunneling
magnetoresistance sensor, in which a natural antiferromagnetic alignment can be
overcome by a small external field. is now well under way. In such devices an external
field is detected by a sharp decrease in the resistance of the sensor.

Production and optimization of tunneling magnetoresistance (TMR) devices
have been focused on thin film materials [7-10]. where careful fabrication techniques
have led to room temperature TMR values (AR/Ry) of greater than 20% [10]. Gran-
ular TMR devices have also been explored through cosputtering a ferromagnetic ma-
terial with an insulator [11.12]. This technique has produced much more modest
rootn temperature TMR values of approximately 0.6% for Ni based systems and 4.5%
for Co based systems [12]. An alternate method of production of TMR junctions first
explored here is compression molding of fine ferromagnetic powders in a nonconduct-
ing polyimide matrix. At a volume concentration of the ferromagnetic material just
beneath the percolation threshold tunneling gaps exist throughout the bulk material.
In the completely demagnetized state the clectron spins will be randomly oriented.
The presence of an external field, however. will create a favored magnetization direc-
tion. As the magnetic moments rotate to this lower energy state the resistance of the
material decreases. Advantages of compression molded TMR devices over sputtered
systems include lowered production cost and the possibility of better control of some
fabrication variables, including grain size and molecular concentration of constituent
materials.

In order to investigate the possible applications of TMR devices manufactured

through compression molding a detailed study of the physical properties of compres-
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sion molded iron polyimide composites has been performed. Samples were fabricated
by compression molding micron sized iron particles with a high performance poly-
imide [13] in powdered form. The distribution of the iron particles throughout the
composite was then studied with various microscopy techniques, including optical.
scanning electron, atomic force, and magnetic force. These microscopy studies veri-
fied the required interparticle distances of tens of nanometers for samples with iron
volume concentrations near the percolation threshold.

The electronic transport properties of the samples. as a function of iron volume
fraction. was determined through 4 lead resistivity measurements. Measurements as a
function of applied magnetic field confirmed TMR for samples with iron volume con-
centrations near the percolation threshold. A peak room temperature TMR of 4.5%
was recorded for a sample containing 20% iron volume concentration, just beneath
the predicted percolation threshold of 20.1%. Lowering the iron volume concentration
leads to a decrease in the TMR to approximately 3% for 15% iron volume concentra-
tion as the thickness of the average tunneling gap increases. Increasing the volumne
concentration of iron above the percolation threshold again lowers the TMR. This is
due to the formation of percolating paths across the system acting in parallel with
the paths containing tunneling gaps. For iron volume concentrations above 60% the
magnetoresistance of the system changes sign as bulk anisotropic magnetoresistance
begins to dominate.

Measurements of the conductivity of the composites as a function of tem-
perature verified the existence of variable range hopping conduction. The charging
energy of individual iron grains in the composite produces a barrier for the accep-
tance of additional electrons. Thermal activation over this barrier is required in
addition to tunneling through the insulating gap. The result of these two combined
processes is a temperature dependence of the conductivity of the form, Ino o« T°7,

with 1/4 < z < 1/2, which has been observed for samples near the percolation
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threshold [14,15].

As the iron volume concentration increases, percolating paths across the system
are formed and begin to dominate the conduction mechanism. This is observed in the
temperature dependence of the resistivity as a function of iron volume concentration.
The temperature dependence makes a transition from the variable range hopping
form given above to that expected for a bulk metal. with the conductivity increasing
with decreasing temperature as scattering due to phonon vibrations are inhibited.

In this dissertation the theory of both tunneling magnetoresistance and variable
range hopping in iron-insulator composites are thoroughly developed. Percolation
theory is used to define the critical concentration around which these effects are
expected in the randomly mixed samples of the present study. These theories are then
tied together in a computer simulation in order to predict the physical properties of
iron polyvimide nanocomposites.

In the following chapters the theorv of the clectronic conduction mechanisms
introduced above are fully developed. A computer model based upon the developed
theory is then presented and used to predict some of the transport properties of iron-
insulator composite systems. Of particular interest in these calculations will be the
clectrical resistance of the material at the percolation threshold and the change in
this resistance caused by an external magnetic field.

The theoretical and modeling results are followed by experimental data, begin-
ning with the detailed sample preparation and fabrication procedure. Experimental
measurements of the density, particle size and distribution. interparticle separation
distances, magnetization, resistivity, and magnetoresistance are then presented for
samples with Fe volume concentrations of 15, 20, 23, 34, 44, 54, and 64%. In addition,
the temperature dependencies of the magnetization, resistivity and magnetoresistance
are experimentally determined. A discussion of the experimental results based upon

the previously developed theoretical background is presented.
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A summary of this dissertation is presented in the final chapter. Conclusions
are also drawn as to the potential of iron polyimide nanocomposites for magnetic field
sensing and digital storage applications. Areas of future study that could improve
the sensing capabilities of compression molded TMR devices beyond that which is

presented here are also suggested.
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Chapter 2

Tunneling Magnetoresistance

The basis for the theory of TMR begins with the work of Julliere [2] in the
1970's and is followed shortly thereafter by M.B. Stearns (3]. J.C. Slonczewski [4]. and
most recently by J.NL MacLaren [5]. Each of these authors considers. to a heightening
degree of complexity. the transmission coefficient of a spin polarized electron across
a potential barrier. In this chapter the theory of tunneling magnetoresistance will be
developed based upon the work of these authors and specialized to the iron polyimide

nanocomposites of the present study.

2.1 Original Model

The theory of tunneling magnetoresistance was proposed by Julliere [2] based
upon the superconductor-insulator-ferromagnet tunneling work of Tedrow and Meser-
vey [16,17]. The hypothesis of spin conservation across a tunneling gap was invoked
to yield a relationship with the conductance proportional to the product of some
effective tunneling density of states in each spin channel. Julliere used the fraction

of conduction electrons whose magnetic moments are aligned in the direction of the
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external field as this effective tunneling density of states. The variables a and a’ are
used to represent this density of states in the first and second ferromagnets respec-
tively. The conductance for parallel magnetization of the two ferromagnets is then
given by summing the majority to majority and minority to minority contributions

and can be written as:
Gy xad + (1 -a)(l-a) (2.1)

Similarly, the conductance for antiparallel magnetization is given by summing the

majority to minority and minority to majority contributions:

O]
(O]

Gy xa(l —a')+ad(l—-a) (2.

The change in conductance between parallel and antiparallel spin alignments
relative to the conductance of the parallel alignment is then:

AG Gy =Gy fad + (1 —a)(1=a")] = [a(l =) + d'(1 = a)]
G G - aad’ + (1 —a)(l —a’)
(200" —a —a'+1) = (a+a = 2aa’)
2aqa' —a —a' + 1
daa’ —2a —2a’' + 1
2a' —a—-a +1 (2.3)
2(4aa’ — 2a — 2a' + 1)
2(2aa’ —a —d' + 1)
_ 2(2a—-1)(2a' - 1)
14 (2a-1)(2a - 1)
2PP
T PP

Here P = (2a—1) and P’ = (2a’—1) are the conduction electrons spin polarizations of

the two ferromagnetic materials. Tedrow and Meservey [17] have calculated this spin
polarization for many ferromagnetic materials based upon superconductor-insulator-
ferromagnet tunneling experiments. The value they quote for iron is P = 44%. Based

upon equation (2.3), this corresponds to a conductance variation AG/G = 32%.
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2.2 Connection to Electronic Band Structure

M.B. Stearns [3] expanded upon the Julliere theory by making a connection
between the spin polarization of the 3d ferromagnets and the band structure of the
itinerant d-like, d;, electrons. The calculated band structure of the majority and mi-
nority spin electrons is shown in Figure 2.1 {18]. Note the parabolic, free electron like
structure of the bands which cross the Fermi energy level. These bands correspond
to the d; electrons with effective mass of about that of a free electron. This leads to
the simplifying approximation of treating the d; Fermi surfaces as spheres of radius
ky. The energy level diagram for tunneling between two ferromagnets in this approx-
imation is given in Figure 2.2. A physical interpretation of the quantity a of Julliere

and Tedrow et al. [2.16,17] is thus given by:
a = kH/(k} + k) (2.4)

and the spin polarization P = (2a — 1) is:

o
(W]
N

P = (k= kp)/ (k] + ky) (

The treatment given by Stearns has reduced the problem of finding the change
in conductance for tunneling between parallel and antiparallel magnetizations to that
of finding the Fermi surface wave vectors of the majority and minority electrons.
Table 2.1 shows the calculated results for Fe, Ni (in units of 2£) and Co (in units of
02—\}%), where a is the lattice constant of the metal. [3.18]. The results for the spin

polarizations are in close agreement with the experimental results of Tedrow and

Meservey who found Pr, = 44% and Pe, = 34% [17].
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Figure 2.1: Calculated band structure of Fe. The electron states which correspond to
the d; electrons are drawn in bold. Ej is indicated by the dashed line.
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Figure 2.2: Simplified energy level diagram for 2 band ferromagnet with parabolic
energy bands.

Table 2.1: Estimates of the Fermi wave vectors for the d; like electrons and the
calculated spin polarization from equation (2.5).

k! kit Calculated P
Fe 0.5 0.19 0.45
Ni 0.65 0.53 0.10
Co 0.9 0.45 0.33
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2.3 Barrier Height Effects

The theory of tunneling magneto-resistance set forth above still appears inad-
equate. A major inconsistency is the invariance of the barrier effects on the change in
conductance due to the relative spin alignments across the barrier. The work of Slon-
czewski [4] helps to remedy this problem. Slonczewski considers two ferromagnetic
conductors separated by a plane nonmagnetic barrier, and solves for the quantum
mechanical tunneling coefficient. The geometry of the problem is shown in Figure
2.3.

Based upon the results of Stearns, the free electron approximation is again used
for the spin polarized conduction electrons inside each ferromagnet. The effective one-

clectron Hamiltonian can then be written:

1/ d\? —
H::——(—-) L UE) - T(E) -7 (2.6)

> 2\ €
Here the svstenn of units incorporates unit electron mass and unit Planck con-
stant. U is the potential energy. /' is the molecular field. and & the Pauli spin
operator. Considering a spin up incident plane wave having unit particle flux in fer-
romagnet 1. the solution to the Hamiltonian in each layer is given by the following

wave functions:
¢ =re ks
Un = kf”e‘*'f + rye ke
oy = Age ™ + B,e"
Vgy = toe'te (69

Here 0 =1, |, and 71,7}, A, B,. and t, are coefficients to be determined by matching

the wave functions and derivatives at the boundaries. The change in spin quantization
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Figure 2.3: Schematic potential diagram for tunneling between two metallic ferro-
magnets separated by an insulating barrier. The angle between the molecular fields
in the two ferromagnets is given by 4.

direction at € = d requires that the wave functions satisfy the spinor transformations
vy = trpacos(6/2) 4 eyasin(f/2)
(2.8)
Yy = — P sin(8/2) + ¢y cos(6/2)
with similar relationships for the derivatives.
The set of equations to be solved for the unknown coefficients, in matrix no-

tation, is

(-1 0 1 0 1 0 0 0 w (r,\ (k;‘/‘-’\
ik 0 - 0 " 0 0 0 r iky/*
0 0 end 0 erd 0 —cos § ~sin § A 0
0 0 —kend 0 nerd 0 —ikycosd —ik sinf A )
} = (2.9)
0 -1 0 1 0 1 0 0 By 0
0 ik 0 -k 0 K 0 0 B, 0
0 0 0 e—~d 0 end sin § ~cos & ty 0
\ 0 0 0 —re~nd 0 re~d ikg sing —ik) cos %/ \tl ) \ 0 )
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Slonczewski solves this set of equations in the limit of large barrier thickness d.
He is then able to get an approximate solution for the coeflicients, accurate to leading
order in e7*¥. The solutions for the coefficients are available in the literature [4].
They are not reproduced here as little insight is gained due to the complicated form
of the solutions. The existence of the approximate solution. however, allows for the

calculation of the probability flux across the barrier [19].

T(T. 1) = ;r’—’(:c(q;"vl,x:»). (2.10)

Generalizing this result to the spin transmissivity in one dimension, in the system of

units defined carlier, yields

Ldig
T.=3) ov; R (2.11)

e
Slonczewski shows that the ratio of the magnitudes of the spin up to spin down wave
functions in the barrier region. for a spin up wave incident from ferromagnet 1. is
approximately equal to ¢, In the limit of large d. the ¢ = -1 contribution can

therefore be neglected giving
T, = %(——) (2.12)

for the particle transmissivity across the barrier. The tunneling conductance for a

two-band ferromagnet as pictured in Figure 2.2 is calculated using [4]

7= (grap) () + T 213

where T),;. T}, are the transmissivities for the majority and minority electrons incident
from ferromagnet 1 respectively.

The solution to this equation is of the form

G= Gfbf(l + bez Ccos 9) (2.14)
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with the ferromagnet-barrier effective spin polarization given by
(k= k)(K* = kiky)
(kt + k) (K% + kiky)
and the mean ferromagnet-barrier-ferromagnet tunneling conductance given by

K CK(R2+kai)(kT+kl)>2 o o
" hd ‘ n ) e 2.16
Crni hd( T/ + kD) (2 +k2) ) (2.16)

Py, = (2.15)

The treatment given here which follows that of Slonczewski has added a second
term to the spin polarization defined by M.B. Stearns in equation (2.5). This new
second term gives the barrier height effect. For any value ) < & < oc, equation
(2.15) predicts a diminished spin polarization and therefore. from equation (2.3), a
diminished TMR due to the barrier or interfacial factor.

In an Fe-Insulator-Fe junction, the values of A:IT and kfl are given in Table 2.1
as 0.5 and 0.19, in units of "[—:’ The energy required to remove an electron from iron,
the work function of iron. can be used as a rough estimate for the barrier height.
The work function of iron is 4.31 ¢V [20], giving x = 0.486%—?. The effective spin
polarization for an Fe-Insulator-Fe barrier in the Slonczewski approximation is then:

(k1 — ky) (K2 = kiky) .
y = =0.45 x 0.43 = 0.19. 2.17
= Gtk AR x (2.17)

This result, by equation (2.3), predicts a conductance variation AG/G of 7.0%. This

is much lower than the result of 32% found when barrier effects were ignored.

2.4 Barrier Thickness Effects

Slonczewski's result has come under question as experimental results have ob-
tained TMR values much greater than that given by the theory described above. An
obvious point of contention is the large d approximation used in solving the matrix
equation (2.9). This issue has been addressed recently in the work of J. M. Ma-

cLaren [5]. MacLaren looks at the same tunneling geometry as Slonczewski, shown in
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Figure (2.3). but makes an initial simplification by looking for solutions only at § = 0
and 180°. His approach also differs from Slonczewski's in that a closed form solution
is not sought. The set of equations generated by matching wave functions and deriva-
tives at the boundaries is instead solved numerically for given values of k¢, k!, &, and
barrier thickness. This work, described below. remedies many of the inconsistencies
of the earlier results and matches well with experimental measurements.

MacLaren’s approach of calculating the conductivity only for parallel and an-

tiparallel spin alignments reduces the wave functions given in equation (2.7) to
P o= l\:fl/Qeik'E + re 18
‘,’jb = A(z_".5 + B(j"'£ (2]8)

‘l,/)") = telkz(s-d)

The transmission coefficients for majority to majority. minority to minority. and
majority to minority conductance are then calculated by letting &y = by = &y by =
ky = ki, and ky = ky:hy = ky. respectively.

The matrix equation to be solved for the unknown coefficients is now

1 1 -1 0 A k2
—K K Ikl 0 B illwfll/z
= . (2.19)
e~~d et 0 -1 T 0
—re™™ ke 0 —iky t 0
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Inverting the matrix to solve for the transmission coefficient yields

-1

1 1 -1 0
—K K tky O N
o—nd 0 —1 -
—ke™™ ket (0 —iky

Cd'ckl(-k-z - 7h'.) Cd'{(—/'i + lk_g) klk'_) + ?:I'Ck'_) K+ ll\l

(:‘_d'{kl(kg - H‘i) C—.d“(—li - ZA_)) —l\,‘lk-_) - jh'k-_)_

K — l:lxl
« (2.20)
—¢r> + iyrko —~K + iGhy 2inky 2k
2ink, W —GR? + Kk, YR = icky
" — 1 _ ond _ -nd ~ — ohd ,—n~d
with a = TR RS = ¢ e, and v = e + 7N,
Multiplyving the inverse matrix through equation (2.19) gives

[ A
B
T

\ !

[chy(=ky —in) e (—n+iks) hikp+inks  nik [k
e~k (ky — in) e (=K —iky) —kiko — inks K — ik ikl/?

a ‘ (2.21)

—6K2 + ivkks —vK + ik 2ikks 2K 0

\ 2ikk, 2K —sk? + ivrk, vk — sk 0

The coefficient of the wave function in ferromagnet 2 is then
PRV
t = dirk, : (2.22)
(exd — e7~d)(K2 — kiha) —i(e™ + e ™) (r(ky + k2))

The normalization condition on ¢, gives unit probability flux input from fer-

romagnet 1. The transmission coefficient is therefore given by the probability flux in
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ferromagnet 2.

T = 3(; V)

= tt*kz
] _— 22
{lext = e ) (k2 — kika)} + {(ex + e ) (m(ky + ka))}?

16k k2 ke

T {(1 = e22) (k2 = kyk2)}2 + {(1 + ) (k(ky + k) )2

where the wave vectors are assumed to point perpendicular to the barrier.

Equation (2.23) can be simplified by taking the limit ¢ > 1. This limit will
be accurate for most tunneling situations, where the reflection coefficient is close to
unity. Applving this limit yields

16/\71 H'_)k.le—'.’dn'
(W% = Rika)? + [R(Ry + k)2

Equation (2.24) is the transmission coefficient used by MacLaren [5] to numerically

T = (2.24)

solve for the conductance ratio between ferromagnetically and antiferromagnetically
aligned systems.

The tunneling conductance is calculated using the Landauer-Biittiger formula

e2 ) . -
G = W/d'knT(ku) (2.25)

where kj is the component of the wave vector parallel to the boundary and is con-
sidered conserved during the tunneling. The wave vectors, Ay, k2, and «, can be
written as a function of ky as k; = \/(Qm/hg) N =k ke = \ﬂ"_)m/h:’)Vg — ki, and
K= \/(2m/h2)V¢, + kﬁ. Here, the zero point energy is defined to be the Fermi energy

level, consistent with Figure 2.2.
The calculation for the conductance variation across an Fe-insulator-Fe barrier
with parallel and antiparallel spin alignments can now be performed. The conduc-

tance for parallel alignment of spins is given as the sum of majority to majority and
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minority to minority conductance, while that for antiparallel alignment is the sum of

majority to minority and minority to majority conductance. From equation (2.24)

we have

T 16k3k7e =20 16k7 K2 e

T (k2= k)24 (26k)? (K2 +47)?

16’\?2 ,26—'.‘(1'.1 16}1 2 —2dn
Ty =13 ’l’: 2= - 7\2 (2.26)

(k% = k7)? + (2xk)) (n-+A.l)-

].Gkri{.zk G_de 16k h" Al(’_QdA
Ty=Ty= 1 = I

(K2 = kyk)? + [(hy 4+ k)2 K+ K2(K 4+ AF) + AR

where &y = k‘z — k2 k= klg — k2 = /Vy+ k2. and V}, is the barrier height
! f e ™l f f Il

above the fermi energy level.

Substituting these values into (2.25) yields

c? C16(RYT = A2V, + k2)e ~2d, [V k3
G = /d"k” f I I
2 )2 'T'-’ )2
(27) (k) + Vi) -
16¢2 k] 2 o v oy T
- ( kydky (k} = ki) (Vi + Ay)e VAL

owh(k} + Vp)?

. /d'lkl“" F— K3)(Vp + A2)e
H (27)%h I (Al'+l/¢,)3

16¢ K 12 _ oy o 2y, -2y /Vekkd
= 3 k”dk'”(kf - k“)(‘/b + kﬁ)e ",
2rh(k;” + V)2

and

G 16(V; +1‘[| \/7’LTZ ’»2 (klz - k2) -2, [V +kj
n= _——2_/ dl A i _
(2m)2h (Vs + k)2 + (Vo+k“)(k} +k} —2k3) + (k] — KDY — kD)
2 2 oy —2d, [Vy+k?
162 (5 (Ve KD (k) = KK — k) VN
N 2mh W 2 12 12 1212 .
0 (VI)"'*'Vb(kf +kf)+kf kf)

—
1

2.29)
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Table 2.2: Calculated conductance variation between ferromagnetic and antiferro-
magnetic spin alignments in iron across a tunneling gap.

Barrier Height Barrier Thickness (nm) Slonczewski
(eV) 1 15 [10 ][50  [100 | 500 Model
0.1 23.0% | 26.9% | 27.2% | 27.4% | 27.4% | 27.4% 27.6%
0.5 9.51% | 10.6% | 11.1% | 11.4% | 11.4% | 11.5% 11.6%
1.0 6.41% | 2.20% | 2.48% | 2.72% | 2.74% | 2.77% 2.8G%,
2.0 13.9% | 0.60% | 0.32% | 0.18% | 0.17% | 0.16% 0.21%
3.0 23.1% | 4.22% | 3.41% | 2.93% | 2.87% | 2.83% 2.85%
4.0 30.4% | 8.28% | 7.03% | 6.27% | 6.18% | 6.12% 6.12%
4.31 32.4% | 9.46% | 8.09% | 7.25% | 7.16% | 7.08% 7.08%
5.0 36.2% [ 11.9% | 10.3% | 9.28% | 9.17% | 9.08% 9.07%
10.0 51.7% | 23.3% | 20.4% | 18.6% | 18.4% | 18.2% 18.2%

Equations (2.27) - (2.29) can be used to solve for the conductance variation
between ferromagnetic and antiferromagnetic spin alignments for any any tunneling
gap given the values of A‘}. Ar}. barrier height. and barrier thickness.

Solving for the specific case of iron to iron tunneling we have. from Table
2.1, A:} = ().5. and k} = 0.19. As a first approximation the barrier height can be
taken as the work function of iron, assuming that the polvimide is a perfect insulator.
This approximation gives V, = &% = 4.31eV’ = 0.486%(22)%. Finally. as a reasonable
tunneling gap thickness take d = 10nm = 218(3-). Substituting these values into
equations (2.27) - (2.29) gives 3¢ = 8.1%.

Table 2.2 displays the calculated conductance variation over a wide range of
barrier heights and thicknesses. The Slonczewski results. which are independent of
barrier thickness. are displayed for comparison. The Julliere Model predicts a con-
ductance ratio 33.6% independent of the barrier thickness and height.

Figure 2.4 displays a three-dimensional plot of the resultant conductance ratio
for iron-barrier-iron tunneling as a function of barrier height and thickness. and Figure

2.5 shows a plot of the ratio for a fixed barrier height of 4.31 eV.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



<
&
o
&
%"&
8
10 .
03 |
0.2
AG/G .
0.1 S 7

':‘ 2 il LY.
AR ey T ST A £ T A LTS
LTI T i furi i e o T LI

ARODT AN L N Wt

Barrier Height (eV) 5

Figure 2.4: Plot of conductance ratio % for iron-barrier-iron tunneling as a function
of barrier height and thickness .
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Figure 2.5: Plot of conductance ratio for iron-insulator-iron tunneling as a function
of barrier thickness at a barrier height of 4.31 eV.

[t is clear from this treatment of spin dependent tunneling through an insulat-
ing barrier that the properties of the barrier layer are critical. The results in Table 2.2
for the specific case of iron to iron tunneling show a dramatic variation in the condne-
tance ratio, from less than 0.2% to over 50%. depending upon the barrier properties.
The Slonczewski results, based upon the large barrier thickness approximation. agree
relatively well for barrier thicknesses greater than approximately 10 nm. As the bar-
rier thicknesses decreases below 10 nm the results of the Slonczewski and MacLaren
models quickly diverge. The Julliere results provide an adequate approximation of
Fe-Barrier-Fe tunneling only in a narrow regime of barrier heights near the work
function of iron and barrier thicknesses near 1 nm.

It must be noted that this model of spin dependent tunneling is also a vast
simplification of the physical realities. The free electrecn model and a simple step
barrier have been assumed throughout this work. A more accurate account of spin

dependent tunneling must account for the actual band structure of the ferromagnet.
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Research in this area is ongoing [5], although conductance ratios calculated using this
approach agree rather poorly with experimental data. Surface effects on both the
band structure and the barrier qualities must also be considered in a full theory of

the phenomena. Rescarch in these areas is in its infancy.
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Chapter 3

Variable Range Hopping

This chapter details the theory of variable range hopping (VRH). This theory
was originally proposed by Mott [23] in 1968 to explain conduction of clectrons in
insulators near the metal-insulator transition. and has since been expanded upon by
many authors. Of particular interest to the present study is variable range hopping
in granular systems. which has recently been summarized by T.G. Castner [24] and
P. Sheng [25]. The conduction mechanism is a result of the combined processes of
thermal activation and tunneling. and plays a strong role in the transport properties
of the iron polvimide composites with iron volume fractions near the percolation

threshold.

3.1 Electronic Conduction and Localization

The electronic conduction of a material can be roughly characterized by a plot
of the energy versus density of states. In an insulator, all the bands will be either
completely filled or empty, prohibiting any electric current flow. A conductor will

have partially filled bands through which conduction will take place [20]. Figure 3.1

24
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Figure 3.1: Electron density of states for normal metal (a) and insulator (b).

displays a density of states diagram for a normal metal and an insulator. In this
figure Ey is the Fermi energy level, E, is the top of the filled band in the insulator
(valence band). E. is the bottom of the empty band (conduction band). and E, is
the energy gap between the valence and conduction bands in the insulator. In order
for current to flow in the insulator electrons must be activated above the energy gap
into the conduction band. Materials with small energy gaps through which this type
of conduction is common are known as semiconductors.

The situation becomes more complicated when disorder is introduced into the
lattice. Anderson [26] showed that the introduction of a random potential at each
well in a crystalline lattice can dramatically alter the conduction properties of the
material. The random potential has the effect of destroying the phase coherence
of the wave function as it passes from one potential well to the next and reducing
the density of states at mid band. If the disorder is greater than the width of the
band a wave function which would otherwise span the lattice can become localized
around a point rg in space. This phenomena is known as Anderson Localization, and
is summarized by Mott (27, 28] in the development of the theory of metal-insulator

transitions.
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Figure 3.2: Anderson localized states inside conduction band.

If the disorder is not large enough to produce localization throughout the band.
Mott [29] showed that states in the band tails could still become localized. These
states would then be separated from the extended. non localized. states by a sharp
cnergy cutoff. Cohen [30] coined this energy value. E.. the mobility edge. If the
energy of a band electron is less than E. the electron will be localized. Mott [28]

summarizes this behavior as

o(E) =0 (E < E.), o

o(F)>0(E>E,).

Figure 3.2 shows a modified density of states diagram for an Anderson localized
electron wavefunction. The system depicted will be nonconducting even though the
Fermi surface electrons occupy an unfilled band.

In a system with localized states as depicted in Figure 3.2, conduction can
occur by excitation of the charge carriers to the mobility edge or by hopping from

one localized state to another. For the first case, thermal excitation of the charge
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carriers, the conductivity will have the form

o = goe~(E=Ep/kaT (3.2)

The second process. hopping conduction, is described in the following section.

3.2 Hopping Conduction

Hopping conduction describes the process in which an electron in an occupied
state just below the Fermi energy level receives energy from a phonon which enables
it to move to a nearby state above E,. This conduction process was first proposed
by Miller and Abrahams [31] to describe impurity conduction in doped and compen-
sated semiconductors. The electron movement is described as a series of hops from
one localized state to the next. where hopping is assumed to occur between nearest

neighbor sites only. The conductivity of this process was found to be
o = aqye3/knl (3.3)

where €3 is the smallest energy difference between neighboring sites. This value can

be estimated from the density of states at the Fermi energy level.
N(E; +dE) — N(Ey)

9(E;)dE = -
N(E; + dE) — N(E)
dE = 3.4
9BV (3.4)
1
AEmin = ———.
g(Ef)V

Here N(E') is the number of states with energy less than or equal to E, V is the volume
of the site and AE,,;, is the minimum energy difference between states, corresponding
to N(E; + dE) — N(Ey) = 1. For nearest neighbor hopping V ~ a®, where a is the

distance between nearest neighbors. This gives

1
€3~ W (3.5)
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for nearest neighbor hopping.

Mott [23] first examined the consequences of removing the requirement that
hopping occur only between nearest neighbor sites. He argues that the energy differ-
ence between states, €3 of the previous work. can be reduced by increasing the volume
over which a state is chosen. For a given hopping radius. R. the minimum energy
difference is determined by equation (3.4) which now takes the form

1
(47 /3)R3g(Ey)

AEmin = (3.6)

An electron hopping over a large distance, however, will be required to tunnel through
a classically forbidden region. The conductivity must therefore contain a factor asso-

ciated with this tunneling. given as
=9 D d
g x e 2R (3‘)

where 1/a is the decay length of the localized wave function. Combining equations
(3.3). (3.6), and (3.7) yields
3

h dmhgTR3g(Ey) | (3.8)

o xexp|—2aR

Equation (3.8) describes the process of variable range hopping. At a given
temperature the electron will tunnel over a distance R which provides the least resis-
tance. maximizing the conductivity. This distance is therefore found by maximizing
o with respect to R.

3

g% = <‘2“ + 47rk3Tj)24g(Ef))exP [_QQR T Ik TRg(Ey) | (3.9)
Setting do/dR = 0 gives
2a = - 94 .
drkgTR'g(Ey) (3.10)

9 1/4
R= .
(87rak‘BTg(E'f)>
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Substituting this value of R back into equation (3.8) yields

9 1/4 3
o x exp|—2a« - )
p[ <87rakBTg(E,)) kT (sramptaey) Y *9(Er)
o’ 2x9 2 14
= exp|— +—)/T .
C\p[ {kug(Eﬁ( m 97r>/ } ] (3.11)

1/4
0=onp[—<—7%> } or

ng o« =T~ 4,
The final result of equation (3.11) is Mott’s T~/ law for variable range hop-
ping conductivity. Experimental results often obtain an exponential factor somewhat
higher than 1/4 [24]. and it has been argued that the inclusion of electron - electron

interactions will change the factor to 1/2 [32]. The theory thus modified can be stated

Inox -T7", 1/4<v<1/2 (3.12)

3.3 Variable Range Hopping in Granular Metals

The theory of hopping conduction in granular metals [25] is a slightly modified
version of theory developed in the preceding section. The model system here is a ran-
dom mixture of nanometer sized conducting and insulating grains. The conduction
across the system is from one conducting grain to the next. For a volume concentra-
tion of the conductor greater than the percolation threshold metallic conduction is
predicted. Hopping conduction will occur when the metal volume concentration falls
beneath the percolation threshold.

Within the insulating regime. electron flow from one metal particle to the next
will occur by tunneling through an insulating gap. The conductance between two

grains, i and j, can then be written as

Gij = Goexp(—2xS;; — Ey;/ksT). (3.13)
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In this equation x is the tunneling constant. S;; is the distance between the particles,
and Ej; is the activation energy required to move an electron from particle i to j. This

activation energy is a result of the charging energy of the particle.
W=QV =Q*kC (3.14)

where C is the capacitance of the particle and & is the effective dielectric constant.
The capacitance of an isolated spherical particle is C = 4ma. The activation

energy for the addition of an electron to a small metallic grain is then
E, = ¢*/imka. (3.15)

For a dielectric constant of 3¢y and a particle radius of 10 nm the activation energy is

;
El AN -~ . )
a (47. 3(dm x 1077¢2) ) 10*)

(B x 1071) (3.16)
10-17

E,’J' ~ 50meV.

In a randomly mixed granular material there is expected to be a distribution of
particle sizes throughout the matrix. As is evident from equation (3.15) the charging
energy will be smaller for a larger particle. Minimizing the charging energy will
require an increase in the tunneling distance as more particles are sampled. As in
the previous section, maximizing the conductivity results in an optimum temperature
dependent tunneling distance.

The calculation is performed using the critical path method {33] as outlined by
Sheng [25]. In a granular conductor-insulator system the conductance between two

grains will contribute significantly to the overall conductivity only if

Go exp[—-‘.)xS’,-- - Eij/k,BT] = Gij > GC (317)
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where G is the conductance of the entire conduction path. Taking the natural

logarithm of both sides of equation (3.17) gives
In(Go/Gc) 2 2xS;; + Eyy /ksT. (3.18)

Equation (3.18) sets a limit on the maximum tunneling distance. S,,. and particle
charging energy, E,,.

Sm = (1/2x) In(Go/Ge). and
(1/2x) In(Go/Gc) (3.19)

Em = kBTIIl(G()/G()

[t is now necessary to consider the formation requirement of a percolating net-
work. One such requirement is that the number of bonds emanating from a site must
exceed a critical bond percolation number. b, [34]. The number of bonds a particular
site is able to form will increase with the density of states in the vicinity of the Fermi
level. g(Ey). the maximum possible tunneling distance. S,,. and maximum activation
energy. E,,. At the percolation threshold this number of bonds is a dimensionless

constant. It is then reasonable to assume
3 B
b’: = f g(Ef)E"lSyn («3-2())

where f is a dimensionless proportionality constant.

As an example consider two systems of the same dimensionality, both at the
percolation threshold. The two must then have the same b.. If one of the systems
has a larger E,, for example, it must also have a smaller S, or g(Ey) than the other
in order to remain at the percolation threshold. Equation (3.20) is the simplest way
to derive a dimensional number from these three quantities. This result has been
confirmed in a detailed calculation by Sheng and Klafter [35].

Substituting (3.19) into (3.20) gives
b kgT

= -[In(Go/G¢))*. or

FolEp) = Qe m(Co/Gell’ o

In(G.) x =T~/
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Again, experimental measurements often find the exponential factor to be 1/2
[24.25]. Sheng argues this is caused by an interpolation between low temperature

hopping. T~/ and high temperature activation. T-!, behaviors.
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Chapter 4

Computer Simulation

This final chapter of the theoretical work develops a computer model of the
conduction across iron polyimide nanocomposites based upon percolation theorv. Per-
colation theory provides a framework from which to explore the metal-insulator tran-
sition. as well as enabling the calculation of transport properties at the transition.
The transition point. the percolation threshold. can be calculated by treating the indi-
vidual iron particles as randomly distributed conducting spheres within an insulating
matrix and searching for conduction paths across the system as the volume percent-
age of iron particles within the matrix increases. The point at which direct contact
conduction first occurs is the percolation threshold. A computer model to perform
this calculation has been developed and will be presented in this chapter. The model
also performs calculations of the sample resistivity at the percolation threshold or as
a function of iron volume concentration. In addition, the effects of spin dependent

tunneling are incorporated enabling calculations of the TMR.

33
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4.1 Two-Dimensional Percolation Simulation

The model developed here is based upon close packing of iron particles within
the polyimide matrix. For the two-dimensional case. spherical iron particles are ran-
domly added to unfilled sites on a trigonal lattice. The percolation threshold is
determined by finding the concentration at which a connected network first forms
across the system. Conduction is assumed between nearest neighbor pairs only.

The system is searched for the existence of a percolating network each time
a particle is added to the matrix. The occupancy of lattice sites which are nearest
neighbors to the location of the added particle is determined. QOccupied sites on
neighboring lattice positions are grouped with the original site into a cluster. The
occupancy of all sites neighboring the cluster is then determined and occupied sites
arc added to the cluster. This process is continued until all the neighboring sites of
the cluster are vacant. At this point it is determined if the eluster spans the system.
A spanning cluster is recognized as oue which contains particles at both extrema of
the system. If a spanning cluster is found the system. by definition. percolates and
the percolation density is given by the fraction of lattice sites which contain iron
particles. If the cluster does not span the system an additional particle is added to
the system. beginning a new search.

Figures 4.1 through 4.3 displays the results from three separate runs for the
calculation of the percolation threshold for a 50x50 trigonal array. In these figures
the particle size is scaled to equal the lattice parameter. such that nearest neighbor
particles will touch. The trigonal lattice is displayed in gray under the spherical
particles. Particles that are members of the spanning cluster are shown in black
while particles in the system which are not members of the spanning cluster are
drawn in gray. The data shown in Figure 4.1 and 4.3 percolates across the system in

both the horizontal and vertical direction. In contrast, Figure 4.2 only percolates in
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Figure 4.1: Percolation simulation results for 50x50 trigonal array. Calculated perco-

lation threshold p. = 50.5%.
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Figure 4.2: Percolation simulation results for 50x50 trigonal array. Calculated perco-

49.1%.

lation threshold p.
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Figure 4.3: Percolation simulation results for 50x50 trigonal array. Calculated perco-

49.96%.

lation threshold p,
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Table 4.1: Calculated results of average percolation threshold and standard deviation
for trigonal lattices.

Iéitlce 10x10 | 15%15 | 20x20 | 25x25 | 30x30 | 35x35 | 40x40 | 45x45 | 50x50
B 0516 | 0.515 | 0.514 | 0.505 | 0.498 | 0.497 | 0.4997 | 0.4996 | 0.502
pe 0.078 | 0.055 | 0.056 | 0.043 | 0.040 | 0.031 | 0.034 | 0.028 | 0.025
0.6
T
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Figure 4.4: Graph of calculated average percolation threshold and standard deviation
for trigonal lattices.

the vertical direction.

The finite size of the simulation has introduced some errors into the calculation.
It is known that the percolation threshold for a trigonal lattice is p. = 0.5 exactly [1].
The values calculated in Figures 4.1 thru 4.3 are seen to closely approximate this
value, with an error of less than 2%.

The results of repeated simulation runs for the 50x50 array give an average
Pe = 0.502 with 0 = 0.025. Table 4.1 and Figure 4.4 show the average percolation
threshold and standard deviation for various lattice sizes. The results clearly converge

to the exact value of 0.5.
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The agreement between the known exact value of p. and the value calculated
through the Monte Carlo simulation described above gives confidence in the model
and cnables its use as a building block in more complicated calculations as described

below.

4.2 Three-Dimensional Percolation Simulation

The two dimensional percolation model described in the previous section can
be expanded into three dimensions in a straight forward manner. Particles are again
randomly added to an underlying lattice. with conduction only between nearest neigh-
bor occupied sites. For this work the hexagonal close-packed (hep) lattice was used.
This lattice describes one of the natural stacking arrangements for hard spheres and
is therefore appropriate for the consideration of spherical iron particles in a noninter-
acting matrix. The lattice is constructed by first stacking two dimensional trigonal
arrays directly above cach other to form a hexagonal lattice. Two such hexagonal
lattices are then interpenetrated to form the hexagonal close-packed lattice. The sec-
ond hexagonal lattice is displaced from the first such that each trigonal net rests in
the depressions left in the center of every other triangle of the layer beneath it [20].
If the ratio of the height of the hexagonal array to the length of the lattice vector in
the plane of the trigonal array c¢/a = \/8/_3 the lattice is an ideal hep structure. The
ideal hep lattice was used throughout this work.

Figure 4.5 displays a hcp lattice composed of five stacked 10x10 trigonal lat-
tices. The number of nearest neighbors in this lattice, for sites not on a boundary. is
twelve. This compares to six nearest neighbors in the two dimensional trigonal lat-
tice. The increase in the number of nearest neighbors suggests that a smaller volume
fraction of sites need to be filled in order for the system to percolate.

Figure 4.6 displays two views of the results for the calculation of the percolation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



40

Figure 4.5: HCP lattice composed of five stacked 10x10 trigonal lattices.

threshold in a 4x4x4 hep lattice. In this figure black circles correspond to the unfilled
lattice sites. The particles which form the percolating network are drawn in white
while other particles in the system are colored gray. The percolation criteria for this
simnulation was the formation of a connected network along the z-axis. Note that this
system does not percolate along the x or y axes. The calculated percolation threshold
of 28.12% is well below the 50% value obtained in the two dimensional simulation.
The results of a second simulation run using the same percolation criteria are shown
in Figurc 4.7. Here the percolation threshold is calculated as 18.75%. This system is
seen to percolate along both the y and z axes.

As in the two dimensional case, the finite lattice size introduces considerable
errors into the calculation of p.. In the two dimensional case it was shown in Table 4.1
and Figure 4.4 that increasing the lattice size reduces the variability of the calcula-
tion, with the calculated results converging to the true value of p.. The corresponding
data for the HCP lattice is shown in Table 4.2 and Figure 4.8. For lattice sizes above
15x15x15 p. remains within 0.5% of 20% with the standard deviation decreasing with

increasing lattice size. The percolation threshold for an infinite ideal HCP lattice
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Figure 4.6: Percolation simulation results for 4x4x4 HCP array. Calculated percola-
tion threshold p, = 28.12%.
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Figure 4.7: Percolation simulation results for 4x4x4 HCP array. Calculated percola-
tion threshold p. = 18.75%.
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Table 4.2: Calculated results of average percolation threshold and standard deviation
for hexagonal close-packed lattices.

Lattice | 10x10 | 15x15 | 20x20 [ 25x25 | 30x30 | 35x35 | 40x40 | 45x45 | 50x50
Size x10 x15 x20 x25 x30 x35 x40 x45 x50

Pe 0.215 | 0.206 | 0.204 | 0.204 | 0.203 | 0.201 | 0.201 | 0.201 | 0.201

o 0.031 { 0.023 | 0.015 | 0.011 | 0.008 | 0.007 | 0.007 | 0.007 | 0.006
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Figure 4.8: Graph of calculated average percolation threshold and standard deviation
for HCP lattices.

is inferred by extrapolating the finite lattice data out to ever increasing lattice size.
Using this approach the simulation data predicts a percolation threshold of approxi-
mately 20.1% + 0.6% for an ideal HCP lattice. At an iron volume concentration well
above this calculated value of p. metallic conduction across the system is anticipated.
Similarly, dielectric behavior is expected for iron volume concentrations well below
20%. Near the critical value p. a transition between the two regimes should be seen.
The experimental work of the following chapter will concentrate on measuring
the electronic transport properties across the percolation threshold in bulk iron poly-

imide composites. In particular, measurement of tunneling and hopping conduction
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will be performed for samples with iron volume concentrations near the percolation
threshold. First, the simulation model developed here will be used to predict some of

these transport properties.

4.3 Resistance Calculations in Iron Polyimide Com-
posites

The results from the previous sections can be built upon to provide a means
for calculating the electronic transport properties in iron polyimide composites. In
this section calculations of the sample resistivity at the percolation threshold are
performed.  In addition. a simple calculation for the tunneling magnetoresistance
across a granular sample is presented based upon the results of the previous sections
combined and those of Chapter 2.

The calculations in this section proceed directly from the two dimensional
percolation calculations of Section 4.1. The network of conducting particles in the
insulating matrix is analyzed using mesh current analysis [36]. An unknown current
is assuined to flow clockwise around each triangle (mesh) of the lattice. as indicated in
Figure 4.9. The total resistance around mesh i is represented as R;;. and resistances in
common between meshes i and j are labelled R;;. The resistance across the network
is a function of the resistance between ncarest neighbor sites, R,,. For this work the
resistance in arbitrary units is taken as R,, = 1 if both sites are filled. If either of
both of the neighboring sites are empty the resistance between the sites is taken as
R = 10°. It is now necessary to apply Kirchhoff's second, or voltage. law to each

mesh of the circuit. Kirchhoff’s voltage law states

Z&'j = ZRLIL (4.1)
J k
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Figure 4.9: Mesh current analysis for 3x3 trigonal array.

Applying Kirchhoff's voltage law to the circuit of Figure 4.9 gives the set of equations

= Ryl - Rialy — Rygly,

m,
—

2= =Ry Iy + Ryaly — Rogly — Rosls.

(m

3= —Raly + Ryzl3 — Ryl

(L)Y
W
|

1 = —R.m[:; -+ R.Ml.t - R.r;[’,'.

(809
-
|

g5 = —Rsals + Rssls — Rsels — Rsglg.
£ = —Resls + Reols — Rorl7.
e = —Ruly — Rrgls + Re7l; — Rygly,
eg = —R7gls + Rgsls.
In the case presented here the electromotive force around any mesh, ¢;, is zero.

The driving force is external to the trigonal lattice, as drawn in Figure 4.10. This

adds one additional mesh to the network and one corresponding equation to the set
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Figure 4.10: Mesh current analysis for 3x3 trigonal array with external drive.

L0

of equation (4.2).
g = —Rigly — Raols + Rygly. (4.3)

A final point used for the calculation of the resistance across the lattice is
to set the resistance between lattice points at the measurement boundaries equal to
zero. For the lattice pictured in Figure 4.10 this would mean zero resistance along the

top and bottom edges. Using these conventions the matrix equation for the network
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voltage of Figure 4.10 is

(0\ (2:10‘) -10° 0 0 0 0 0 0 —10“\ (ll\
0 -10%  3r10° -10° 0 100 0 0 0 0 I
0 0 -10% 14 10% -1 0 0 0 0 0 I3
0 0 0 -1 1+ 2r10° 0 0 —-10° 0 0 Iy
o=l o 108 0 0 3r105 100 0 o - ||| (4.4)
0 0 0 0 0 —10% 14 106 -1 0 0 Is
0 0 0 0 —108 0 -1 1+ 2r10%  —106 0 I
0 0 0 0 0 0 0 —10% 2rioh 0 Iy
\v) \—10“’ 0 0 0 -10° 0 0 0 '_m()"') \I,,)

In order to calculate the resistance across the latrice the drive voltage is taken
to be unity and the unknown mesh currents are solved for by multiplying through
by the conductance matrix [G] = [R]™!. The resistance across the lattice is given
by R = Vy/Iy. Since all elements of the voltage vector are zero except for Vy = 1,
Iy =[Gy and R, = [Glgy ™"

For the resistance matrix in equation (4.4) [Glgg = 800003/1600000. This
gives the calculated lattice resistance as It = [G]gg_l = 1.9999925. In this case the
resistance across the lattice shown in Figure 4.10 is easily found by inspection to
be exactly 2.0. The calculated results are seen to be quite accurate, although the
use of a finite resistance between unoccupied sites on the lattice causes the mesh
current analysis to slightly underestimate the resistance across the lattice. The error
is extremely small. less than 0.003% in this case.

Although the example performed above is a trivial case, the methodology can
be systematically extended to an arbitrary size lattice. The only constraint here is
the required computer memory which can be quite high. The size of the matrix to be

inverted, for an n by n lattice, is 1 + 2(n — 1)(n — 1), or approximately 2(n — 1)? for
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Figure 4.11: Percolation simulation for 20x20 trigonal lattice. Calculated p. = 52.5%
and calculated R/ R, = 13.4.

large n. The inversion of a matrix by standard methods requires loading the entire
matrix in RAM. For a 2(n — 1)? by 2(n — 1)? matrix this necessitates the storage of
4(n —1)* double precision floating point numbers. For a 32 bit processor this equates
to roughly 185 Mbytes of RAM for a 50x50 trigonal lattice. and 3.1 Gbytes for a
100x100 lattice. In this work the maximum lattice size was limited to 45x45 in order
to accommodate the accessible computer systems.

Figures 4.11 and 4.12 display the percolation simulation and resistance calcu-
lation results from two separate runs on a 20x20 trigonal lattice. In each case the
resistance is calculated along the vertical axis and is normalized to the resistance
between nearest neighbor occupied sites.

The calculated resistance as a function of grid size is given in Figure 4.13. This

graph displays the calculated mean resistance and standard deviation for ten separate
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Figure 4.12: Percolation simulation for 20x20 trigonal lattice. Calculated p. = 48.25%
and calculated R/R,, = 19.5.
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Figure 4.13: Calculated resistance as a function of grid size.

runs at cach grid size. The values are divided by the number of possible bonds along
an edge of the mesh. n-1, showing that the resistance scales roughly linearly with the

grid size.

4.4 Model and Simulation Results for Tunneling
Magnetoresistance

Calculation of tunneling effects are incorporated into the model of Section 4.3
using the results of Chapter 2. The resistance between neighboring sites is no longer

fixed but related to the nearest neighbor magnetization directions by
G = Gfbf(l +be2 cos ). (2.14)

The resistance between sites when either or both of the sites is empty is again taken
as R = 10% or G = 107°. In equation (2.14), Gy and Py, are defined in Chapter 2 to

be the mean ferromagnet-barrier-ferromagnet tunneling conductance and the effective
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ferromagnet-barrier spin polarization, respectively. As discussed in Chapter 2 several
values of the effective spin polarization have been reported. For iron reported values
range from 0.45 [3] to 0.19 [4]. The work of J. M. Maclaren indicates that the value
of Py is not constant but dependent upon both the barrier height and thickness [5].
These results are summarized in Table 2.2 and Figures 2.4 - 2.5.

An initial estimate of the tunneling magnetoresistance across the iron poly-
imide composite samples of the current study was performed by incorporating equa-
tion (2.4) into the computer simulation discussed above. A fixed value of Pp =
0.264575. P}’,, = (.07. was chosen for the ceffective ferromagnet-barrier spin polariza-
tion. This value of Pp lies within the range detailed above and agrees with early
experimental measurements of the conductance variation across a single tunneling
junction [2].

The calculation of the resistance across the lattice was performed at the calcu-
lated percolation threshold with the assumption that the resistance between nearest
neighbor occupied sites follows the form of equation (2.14). The calculation of the
resistance in the unmagnetized state was performed by assigning a random direction
to the magnetization vector at each site. The calculation was then performed a sec-
ond time with all magnetization vectors aligned along a fixed axis. The simulation

results for the tunneling magnetoresistance is then simply given by

AR (RBzBmaz - RB=O)
- 4.
R Rp=q (o)

where B = Bmaux is the state with all magnetization directions aligned and B = 0 is
the state with random orientation of the magnetization vectors.

Table 4.3 reports the calculated tunneling magnetoresistance across two-dimensional
iron polyimide composite samples at the iron percolation threshold. The table also
individually reports the resistance of the unmagnetized and magnetically saturated

states. In each case the data were averaged over twenty consecutive runs at each grid
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Table 4.3: Calculated tunneling magnetoresistance in two dimensional iron polyimide
composites at the percolation threshold.

L;Zf" 10x10 | 15x15 | 20x20 | 25x25 | 30x30 | 35x35 | 40x40 | 45x45
Finca | 6.68 | 1000 | 1350 | 17.14 | 20.97 | 2441 | 2667 | 33.89

p 200 | 322 | 473 | 463 | 677 | 859 | 930 | 9.77
Fpono ] 622 | 945 | 1259 | 15.96 | 1053 | 22.72 | 24.81 | 3L.59
. 192 | 303 | 441 | 433 | 628 | 7.96 | 869 | 90.10
AR/Bnwo | 0.067 | 0.064 | 0.067 | 0.070 | 0.068 | 0.069 | 0.066 | 0.068
p 0.012 | 0.011 1 0.000 1 0.006 | 0.007 [ 0.006 | 0.006 | 0.005

size. The calculated magnetoresistance is seen to remain nearly constant across the
range of grid sizes. with the standard deviation of the calculated results decreasing
with increasing grid size.

Figure 4.14 displays a plot of the tunneling magnetoresistance tabulated in
Table .3. The percentage change in resistance is nearly constant across the various
grid sizes. The average value of 6.74% is shown on the graph as a dashed line. This
value of the TMR is significantly less than given by equation (2.3). rewritten below.

AG  Gy—-Gy Ry—-Ry  2PF 2p?

_ - (2.3)
G G” RH 1+ PP 1+ P2

In this equation the value of P = 0.07 yields AR/R = 13.1%. This value is roughly

twice that calculated by the simulation model presented above. The difference corre-
sponds to the absence of a forced antiferromagnetically aligned state between neigh-
boring particles in the computer simulation. The results tabulated in Table 4.3 and
plotted in Figure 4.14 correspond to the difference between a random spin orienta-
tion across the sample and the magnetically saturated state. Equation (2.3) gives
the maximum change in conductance across the barrier, corresponding to tunneling
between ferromagnetic and antiferromagnetic alignment between the ferromagnetic
layers. Such an alignment will occur if the coercive field of the material on either

side of the barrier is different. As the system is cycled through a hysteresis loop

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



.09
£ .08
N
g 07 ] ] o .[ ] ]
T_"" E .............................................. _'_|
5 )
[}
& )
Z 05
.04 1 [ [ ] 1 2 Jy 4
10 15 20 25 30 35 40 45
Grid Size

Figure 4.14: Calculated magnetoresistance as a function of grid size.

the softer material will reverse its magnetization direction at a lower field level. The

magnetic moment of the harder layer will remain in opposition to the applied field

until the larger coercive field is applied. The field region between the two coercivities

will then correspond to an antiferromagnetic alignment of the two magnetic layers.

The presence of an antiferromnagnetically aligned state between neighboring sites is

unlikely to occur in the iron polyimide composites of the present study, resulting in a

predicted maximum TMR of roughly 1/2 that given by the calculations of chapter 2.
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Chapter 5

Experiment

The theoretical model for electronic conduction in iron polyimide nanocom-
posites presented in the previous chapters predicts some very interesting transport
properties in these systems. In particular. tunneling magnetoresistance and vari-
able range hopping conduction are anticipated for samples fabricated at iron volume
concentrations near the percolation threshold. In this chapter a sample fabrication
procedure is developed and the experimental methods for identification of tunneling
magnetoresistance and variable range hopping are described.

The important first step in detecting TMR and VRH in iron polyimide com-
posites is the sample fabrication procedure. Whereas most research in TMR materials
has focused on thin film multilayers [7-10], the sample fabrication procedure incorpo-
rated here is compression molding of fine ferromagnetic powders in a nonconducting
polyimide matrix. Compression molded TMR devices may have significant advan-
tages over sputtered systems, including ease of fabrication and lowered production
costs. The first section of this chapter will detail this unique approach to TMR
material fabrication.

A detailed study of the physical properties of compression molded iron poly-

53
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imide composites will follow the sample fabrication procedure. Experimental meth-
ods for the measurements of the density, particle distribution, magnetization, and
magnetoresistance are presented. In addition, experimental measurements for the
temperature dependence of the conductance and magnetoconductance are described.

A critical variable in determining the magnitude of the TMR is the average
iron particle separation distance. This separation distance. equivalent to the barrier
thickness described in chapter 3.3. is dependent upon several sample fabrication pa-
rameters including iron particle size and premolding material processing. In the final
section of this chapter a technique utilizing high energy ball milling to optimize this

tunneling distance will be described.

5.1 Sample Fabrication Procedure

Iron polyimide composites were manufactured through ball milling and com-
pression molding of powdered Fe with a high perforinance polyimide [13] in powdered
form. The commercially available Fe powder has a nominal purity of 99.5 at. % and
particle size of 6 — 10um [37]. Samples with Fe volume fractions of 0.15. 0.20. 0.23.
0.28, 0.34. 0.44, 0.54, and 0.64 have been prepared by combining the appropriate
amounts of Fe and polyvimide in a hardened steel vial with two 6 mm diameter stain-
less steel balls with a ball-to-powder weight ratio of 1:5. The vial was sealed in an
argon atmosphere to minimize oxidation of the iron. The material was then milled for
10 minutes in a SPEX model 8000-D high energy ball mill. Research performed by
other authors has shown that a similar milling procedure with a higher ball-to-powder
weight ratio and longer milling times can be used to reduce micron sized particles
into nanophase materials [38.39]. The primary goal here is to guarantee a complete
mixture of the two powders and only secondarily to reduce the iron particle size. Af-

ter ball milling, the powder was removed from the vial and poured into a mold. The
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bulk sample was prepared by compression molding the mixed powders at 300° C for
30 minutes under 3.5 MPa of external compressive load. The sample size as removed
from the mold was approximately 2.5 x 2.5 x 0.6 cm3.

The density of the samples is measured by applying Archimedes™ principle [40].
The mass of the sample is measured twice. first in air and then with the sample
submerged in de-ionized water. According to Archimedes’ principle the buoyancy.
measured as the difference between the weight in air and in water, is equal to the
weight of the fluid that the body displaces. This can be restated by dividing through
by the constant ¢g. In this form Archimedes’ principle states that the difference in
mass between the two measurements is equal to the mass of the fluid that the body
displaces. The volume of the fluid displaced is then found by dividing the mass of
the fluid by its density. For high purity de-ionized water the density is 1.0 gm/ce so
that the density of the sample is given by

m My

—_ J— |4
=== —. (5.1
P Vi omg,—m, )

Figure 5.1 displays the experimentally measured density of the as molded sam-
ples along with the full packing density. calculated by summing the product of the
volume fraction of the polyvimide and its density(p = 1.376 gm/cc) with the volume
fraction of iron and its density (p = 7.86 gm/cc). It is clear from this data that the
samples with Fe volume fractions less than 50% are tightly packed. while some voids
exist in the higher iron volume percentage samples. It has previously been found that
a much higher molding pressure is required in order to obtain complete packing in

samples with high iron volume percentages [41,42].
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Figure 5.1: Experimentally measured density and full packing density as a function
of iron volume percent for iron polyimide composite samples

5.2 Optical and Scanning Electron Microscopy

Optical micrographs of the samples were acquired using a Leica model NMEF4M
microscope. The as molded samples were hand polished to a smooth surface by dry
sanding, the final stage using 2400 grit sandpaper. Optical microscopy can provide
important information concerning iron particle size and distribution throughout the
sample. but does not give definitive results for the elemental distribution of the mate-
rials. In order to verify the iron distribution throughout the sample scanning electron
microscopy (SEM) has been performed. Scanning electron microscopy utilizes a finely
focused electron beam to irradiate the sample under test. Images are typically formed
by measuring the secondary electron (SE) or backscattered electron (BE) emission at
each point across the scan area. An important feature of electron microscopy is the
ability to perform elemental analysis on micron length scales. The x-rays emitted as
a result of electron bombardment at a specific location on the sample can be analyzed

with an energy dispersive x-ray spectrometer (EDS). Qualitative x-ray microanalysis
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is performed by matching the detected x-rays to the known characteristic x-ray peaks

of the elements [43].

5.3 Magnetic Force Microscopy Measurement Sys-
tem

Magnetic force microscopy (MFM) is a powerful tool for imaging surface mag-
netic fields at length scales down to 10 nm [44]. A subset of Scanning probe microscopy
(SPM). MFM utilizes an atomically sharp probe to interact with the sample under
test. The work deseribed here was performed using a Digital Instruments Nanoscope
I1Ia scanning probe system with a MultiMode™ [45] microscope.

A schematic diagram of the experimental setup for NIFM is displayed in Figure
5.2. The sample under test is mounted on a three axis piezoelectric tube scanner
directly under the probe tip. During a scan the position of the probe tip. formed at
the end of a cantilever. is monitored using a deflected laser beam. MFM is performed
in TappingMode™! [45]. In this test configuration the cantilever is excited at its
resonant frequence and the amplitude and phase of the tip oscillations are monitored.
As the sample under test interacts with the probe tip a dampening of the oscillations
will occur. The scanning probe microscope uses feedback from the photodetector
output to change the vertical position of the sample such that the oscillations of the
probe tip remain constant [44, 46].

In order to obtain an MFM image two interleaved scans are performed. The
probe tip is first brought into contact with the sample and a scan line acquired. During
this scan the atomic forces between the sample and the probe tip are responsible for
tip deflections, and the topology of the sample is recorded. A second scan along the

same line is then performed using LiftMode™ [45]. A fixed liftoff is added to the
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Figure 5.2: Schematic diagram of experimental setup for magnetic force microscopy.
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measured topology for each scan point along the line. The liftoff, typically 50 —-200nm,
is large enough to decouple atomic forces between the sample and the probe tip. The
probe tip, however, is coated with a magnetic thin film and will thus be influenced
by magnetic field gradients. Localized magnetic moments in the sample will create
such field gradients at the probe tip location.

The MFM probe-sample interaction can be modeled as that of a vibrating mass

in a magnetic potential.

V= =(x—h)2+U(h). (5.2)

o] 7~

Here & is the spring constant of the cantilever. & is the height of the probe tip above
the sample surface. and U(h) is the magnetic potential energy. The frequency shift
caused by the interaction of the probe tip with magnetic sources in the sample is

found by expanding the potential to second order about the potential minimuni.

3} 1 , OV
"=V + (r—h)— —(x — h)? 5.
‘/ 0+ (I )) ()J I=Iqy + Q(J h) 021 I=rIy ( ‘3)
As the potential is expanded about %‘T = (), and since a constant potential will not
influence the dynamics of the problem, the potential can be written
o1 0 o*U ,
The lagrangian is thus given by
1 ., 1 af,  OU
L= FMmi” — 5(1‘ — h) (k + e IO) (5.5)
and Lagrange’s equation is
2
mi + (z — h) (k + % m) = 0. (5.6)
The solution to equation (5.6) is
(z — h) = e~
. k18U \2 (5.7)
with w = (— — ) .
m = m 0%z Iz
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Taking wy = /k/m. the frequency of oscillation can be written

102U
W = wy 1+E@'—’x'

(5.8)

Assuming that the frequency shift caused by the magnetic potential is small.
the square root can be expanded as

119%°U
w=w()(1+szm+”') (5.9)

1 wWo C)')U

5% o (5.10)

W R Wy

such that

fo *U

Af =

In calculating U. the magnetization of the MEFM probe tip can be estimated
as that of a magnetic dipole of strength m.s; [47]. The magnetic potential is then

given by [48]

—

;f_,; 4. (5.12)

nt.

U=—-m-B=—-nm(=Voén) =ni(V

Here m, is the moment of the probe tip and m, is the moment of the particle under

test. For the specific case my || ma || I,

U, = i, - Vo2 Qm‘.,m’ (5.13)
z? T
Substituting equation (5.13) into (5.11) yields,
12 ma
Af m - 12 omumz (5.14)

k3
Several of the variables in equation (5.14) are available in the literature. The

value of m; has been estimated from equation (5.11) based upon measured frequency
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Figure 5.3: Amplitude and phase of cantilever oscillation as a function of drive fre-

quency.

shifts from a known magnetic source [47.49]. The cited works give m; = 107'? emu.
The value of the spring constant A is also found in the literature as & =~ 5x10*dyne/cm
46, 47).

The resonant frequency of the MFEFM cantilever was experimentally measured
by monitoring the cantilever vibration amplitude and phase as a function of drive
frequency using the experimental setup shown in Figure 5.2. Figure 5.3 displays
typical experimental results for the MFM probe tips used in this study. The resonance
frequency of fy = 86.66 kHz is clearly identified in the data.

The last unknown variables in equation (5.14) are m,, the magnetic moment of
the particle under test, and z. the distance between the probe tip and the magnetic
particle. In the iron polyimide composites considered here the magnetic particles are
iron. The magnetic moment of a small iron particle can be estimated as that of a

uniformly magnetized sphere. The fields are dipolar both asymptotically and close to
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the sphere, with magnetic dipole moment [48]

3
i = 4”3" M. (5.15)

Here a is the radius of the sphere and A is the magnetization inside the sphere. Using
the iron saturation magnetization of A, = 1.714 emu/cc [50] and a particle diameter

of 100 nm gives
4w -5 13 -13
my = 1714 emu/cc - ?(().5 x 107°cm)” = 9 x 10™ “emu. (5.16)

The value of z is found from the liftoff used in the interleaved magnetic force
scan. Taking a liftoff of 200 nm and assuming the the surface of the iron particle is
in the plane of the sample surface (with the particle center 50 nin below the surface).
gives & = 250 nm.

Substituting these values into equation (5.14) vields

12x 87 x 103 x 107" x 9 x 10713
5 X 10‘(2.5 X 1()_'))” (517)

Af =~ -
~ 20 Hz.

Similarly. the frequency shift for a 1 um diameter particle scanned at 300 nm from
the surface (& = 800 nm) would be Af = —60Hz.

The calculated frequency shift for a line scan across a 100 nm iron particle
with a liftoff of 200 nm is displayed in Figures 5.4 and 5.5. The particle is assumed
magnetically saturated, with m = “—”3“—3-Ms. In Figure 5.4 the magnetization direction
is taken perpendicular to the sample surface. Figure 5.5 shows the results when
the magnetization direction is parallel to the surface and along the scan line. The
calculation was performed with Mathematica™ using equation (5.11) and U given

as in equation (5.12). The particle center is located at probe position zero.
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Figure 5.4: Calculated MFM frequency shift for 100 nm diameter iron particle with
M perpendicular to surface.
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Figure 5.5: Calculated MFM frequency shift for 100 nm diameter iron particle with
Al parallel to surface.

5.4 Magnetization Measurement System

Magnetization data on the iron polyimide samples was obtained using a vi-
brating sample magnetometer. A cube of 0.25 x 0.25 x 0.25 cm? was cut from cach
of the original samples using a high speed diamond blade saw. Magnetization mea-
surements were performed on these samples using a Lakeshore Model 7300 VSM and
an iron core magnet with two inch pole faces. The samples were demagnetized be-
fore the applied field was ramped between £1.0 Tesla. A schematic diagraimn of the
experimental setup is depicted in Figure 5.6.

TM

A computer program was written in the Labview"* computer programming

language to automate data acquisition, storage and retrieval.

5.5 Magnetoresistance Measurement System

Magnetoresistive data was acquired using a Linear Research Model LR700 A.C

Resistance Bridge. Samples of dimension 0.6 x 0.6 x 2.0 cm® were cut from the as
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Figure 5.6: Experimental setup for magnetization measurements with vibrating sam-
ple magnetonieter.

molded material using a high speed diamond blade saw. Electrical connections to
these samples were made with a conductive silver epoxy in a four lead configuration.
The resistance measurcments were performed on the demagnetized sample and as
an external field of £0.5 Tesla was applied along the long axis of the samples. A
sitnplified schematic of the setup is displayed in Figure 5.7.

The Labview™ computer programming language was again used to control

(1)
NI

H applied ,

Figure 5.7: Simplified experimental setup for magnetoresistance measurements.
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the experimental flow and automate data acquisition, storage and retricval.

5.6 Experimental Setup for Temperature Depen-
dence Measurements

The temperature dependence of the resistivity for the composite samples was
determined using a CTI-Cryogenics Model 22 closed cycle helium refrigerator. Tem-
perature measurements were performed using a copper-constantan thermocouple at-
tached to the sample, and resistance measurements were acquired using a Linear
Research Model LR700 A.C Resistance Bridge. Temperature and resistance data
were acquired as the sample chamber was cooled from room temperature to a min-
imum of approximately 25 Kelvin. and then again as the sample was warmed back
to room temperature. Minimal variation in the data was observed between the data
acquired during cooling and warming cycles of the sample.

Magnetoresistance data was acquired at varying sample temperature by incor-
porating the variable temperature system described above with the magnetoresistance
measurement system described in section 5.5. Figure 5.8 displays the experimental
setup. The cryostat neck is mounted between the pole faces of the electromagnet. A
Lake Shore model 805 temperature controller was used to maintain a constant tem-
perature at the sample location. The controller measures the temperature and rate
of change of the temperature in order to determine the input current to a heating
element within the cryostat. The temperature set point is reached when equilibrium
between the cooling power of the helium refrigerator and the heat input is achieved
at the programmed temperature.

A comparison between Figures 5.7 and 5.8 shows that the sample orientation

has been changed between the room temperature magnetoresistance measurements
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Figure 5.8: Experimental setup for measurement of temperature dependence of mag-
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performed in air and the variable temperature measurements taken within the cryo-
stat. In the former case, the current flow and long axis of the sample were aligned
with the applied field. In the latter, the current and long axis of the sample are
perpendicular to the applied field. This change in sample orientation was required
due to the limited space within the cryostat.

As in the previous sections, computer control of the experimental procedure
T™

was achieved over the IEEE bus using the Labview'" computer programming lan-

guage.

5.7 Material Processing through High Energy Ball
Milling

In the preceding sections the fabrication and testing of iron polyimide nanocomn-
posites has been described. This section describes a process designed to improve the
magnetic field sensing qualities of the material. It has been shown that an important
parameter in determining the change in resistance across a ferromagnet-insulator-
ferromagnet junction is the insulator thickness. In the present study this corresponds
to the distance of closest approach of ncighboring particles. As shown in Figure 2.5.
reducing the interparticle separation is predicted to greatly enhance the conductance
ratio. In a randomly mixed composite this interparticle separation is related to the
volume concentration of the conductor and the particle size. At a given volume frac-
tion, a reduction in the particle size will reduce the average interparticle separation
and is thus expected to increase the magnetoresistance of the material.

In an effort to increase the magnetoresistance of iron polyimide composites
high energy ball milling of the powdered material was employed. High energy ball

milling has been shown to be a viable technique to reduce the diameter of fine particles
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[38.39.51]. As described above, a reduction in the iron particle size is expected to
reduce the average interparticle separation and thereby increase the conductance ratio
across the junction.

High energy ball milling was employed through the use of a SPEX model 8000-
D shaker mill. Appropriate masses of iron and polyimide powders were combined in
dual hardened steel vials with four 6 mm and two 12 mm diameter hardened steel ball
bearings in each vial. The resulting ball to powder weight ratio was approximately
3:1. The vials were sealed in an argon filled glove bag to minimize oxidation of the
iron. The secaled vials were then removed from the glove bag and loaded into the ball
mill. Ball milling was performed for 4 and 8 hours on 2 separate powder mixtures,
cach with an iron volume fraction of 0.20. Small amounts of powder were extracted
in an argon cnvironment from the 4 hour sample after milling times of 1.2, and 3
hours. Magnetization measurements were performed on the milled powders using
the vibrating sample magnetometer system discussed in section 5.4 and pictured in
Figure 5.6.

Iron polyvimide composite samples were fabricated through compression mold-
ing. As compared to the unmilled powders. a higher molding pressure was required
in order to reach the full packing density. All milled samples were molded at 11 MPa

as compared to 3.5 MPa for the unmilled materials.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 6

Results and Discussion

In this chapter the experimental methodologies introduced in the previous
chapter are used to present experimental verification of tunneling magnetoresistance
and variable range hopping conduction in iron polyimide nanocomposites. Optical.
scanning electron, and magnetic force microscopy data are presented which indicate
the presence of nanoscale tunneling junctions within composites fabricated with iron
volume fractions near the percolation threshold. Electronic transport measurements
on the these samples show a clear peak in the magnetoresistance near the perco-
lation threshold, in agreement with the theory of tunneling magnetoresistance. In
addition, variable range hopping conduction is observed in the temperature depen-
dence of the resistance for samples with iron volume fractions near the percolation
threshold. Experimental data is also presented for the temperature dependence of
the magnetoresistance, and the effect of material processing through high energy ball
milling.

Throughout this chapter the experimental results are discussed in the context
of the theories of variable range hopping and tunneling magnetoresistance, developed

in chapters 2-4.

70
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100 um

Figure 6.1: Optical micrograph of 20% Fe volume percent composite.

6.1 Microscopy Studies

Figure 6.1 displays an optical micrograph taken from the sample containing a
20% iron volume concentration. The iron particles appear bright in the reflected light
image. On a large scale. the iron is seen to be well distributed throughout the sample.
On a smaller scale, however. the iron particles appear to coalesce into networks of
connected chains across the sample. This self arrangement of the iron particles is
most likely due to an attractive magnetic force between neighboring ferromagnetic
particles. The ferromagnetic particles will tend to align with the dipolar field in the
material. Mixing of the ferromagnetic powder with the polyimide distributes the iron

particles globally across the sample while the local attractive force has a tendency to
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Figure 6.2: High magnification optical micrograph of 20% Fe volume percent com-
posite.

align neighboring particles.

Figure 6.2 displays a higher magnification image of the same sample. The
average particle size is seen to agree with the nominal size of approximately 6-10 pm.
The chain like conduction paths acrcss the sample are clearly evident in this figure.

The networks of contacting or nearly contacting iron particles observed in
Figures 6.1 and 6.2 will carry the conduction electrons across the sample. Small
gaps in these connected chains are the source of the tunneling gaps across which
magnetoresistive and hopping effects will be observed.

Figure 6.3 displays a backscattered electron image along with an EDS map

of iron across the scan area. The backscattered electron image looks very similar
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Figure 6.3: SEM and EDS images of iron polyimide composite.

to the high magnification optical micrograph. For the SEM image an arca with a
large concentration of strong electron backscattering was chosen so as to make the
EDS image easier to interpret. By comparing the EDS and backscattered image
it is clear that the bright areas of the backscattered electron image correspond to
arcas of high iron concentration. The large bright area in the image corresponds to a
cluster of iron particles with a cross sectional arca of approximately 500 pzm?. Much
smaller individual iron particles with dimensions on order of 1 um are also identified
in both the backscattered and EDS images. EDS on the darker. background areas
of the backscattered image found the majority contribution to be from carbon, in
agreement with the physical composition of the polyimide [13].

In order to isolate nanoscale particles and tunneling gaps between particles,
magnetic force microscopy studies were performed. Figure 6.4 displays topographic
and LiftMode™ magnetic force images for a 34% Fe Vol. composite sample acquired
with the scanning probe microscope described in section 5.3. An applied magnetic
field of =~ 2 kOe was applied in the direction normal to the sample surface during

data acquisition. The external magnetic field is used to rotate and saturate the
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Figure 6.4: Scanning probe topographic and magnetic force images for 34% Fe Vol.
sample. External field applied perpendicular to sample surface.

magnetization of the iron particles in the sample. The scan geometry for cach particle
is therefore equivalent to that shown in Figure 5.4, such that a drop in the frequency
at the location of the center of the magnetic particles is anticipated.

With reference to Figure 5.2, the MFM data is displayed as a phase shift be-
tween the piezo oscillator driving the cantilever and the photodetector output mea-
suring its displacement. The correlation between the measured phase shift and the
theoretical frequency shifts calculated in section 5.3 is through the cantilever reso-
nance curve shown in Figure 5.3. A close inspection of the data reveals a phase shift

of approximately 0.5 degree/Hz at resonance.
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The MFM graph in Figure 6.4 displays a phase range of approximately 30 de-
grees. corresponding to a 60 Hz frequency shift. The circular dark regions correspond
to the magnetized particles which, by equation (5.14) will produce the observed nega-
tive frequency shifts. The size of the individual particles appears to be on the order of
5 pm., consistent with the optical and scanning electron measurements of the previous
section.

In the absence of an applied field the magnetization of the individual particles
may not be given by the saturation value. In large particles magnetic domains will
form to reduce the magnetostatic energy, (1/87) f,. H?*dv, of the crystal [52]. The
magnetic moment M, will then be proportional to the volume of the magnetic domain
instead of that of the entire particle. If the particle size is sufliciently small. however,
the increase in exchange energy between atoms with different magnetization directions
will be greater than the reduction in magnetostatic energy achieved by forming a
domain wall. The result will be a single domain particle. In this case equation (5.15)
is correct (assuming spherical particles). Only the direction of the magnetization
vector can change. The critical size for domain wall formation in iron has been
estimated in the literature as & 30 nm [52.53]. As has been observed in the previous
microscopy data. a large fraction of the particles are much larger than this critical
size. It is anticipated. however, that the composite samples will contain some particles
in this size range and therefore some single domain particles.

Figure 6.5 displays optical and MFM images over the same area in a 20% Fe.
Vol. sample. A magnetic field of 2 kOe was applied normal to the sample surface
and then removed before the MFM data were acquired. The iron particles are clearly
evident in both figures, showing up as bright areas in the optical micrograph and
areas of negative phase shift in the magnetic force image. The magnetic force data
were acquired with a lift-off of 150 nm.

As previously mentioned, it is anticipated that intermixed with the large, ~
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Figure 6.5: Optical and magnetic force images for 20% Fe Vol. sample. MFM data
acquired in absence of external field.
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Figure 6.6: Magnetic force image of 20% Fe Vol. sample over 35*um? arca with 150
nm lift-off.
5 pm, particles much smaller particles on the order of 10-100 nanometers exist in
the iron polyimide composite samples. In section 3.3 it was found that particles in
this size range will contribute to variable range hopping in the granular materials.
In addition, it was shown in chapter 2 that tunneling magnetoresistance requires
interparticle distances on this same length scale. The identification of such particles
and interparticle gaps is shown in Figures 6.6 - 6.8. Each successive MFM image is
taken at an increased magnification from the preceding figure. beginning with the 80
pum scan of Figure 6.5.

The high resolution of the magnetic force microscope data in Figures 6.6 - 6.8
has imaged several particles with length scales on the order of 100 nm. In the upper
right hand corner Figure 6.6 an isolated single domain particle can be seen. In Figure

6.9 this portion of the figure is more closely examined. The MFM signature appears to
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Figure 6.7: Magnetic force image of 20% Fe Vol. sample over 15%m?® area with 100
nm lift-off.
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Figure 6.8: Magnetic force image of 20% Fe Vol. sample over 2.52um? area with 75
nm lift-off.
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Figure 6.9: Magnetic force image and line scan across single particle identified in
Figure 5.11.

be that of a single domain particle with magnetization parallel to the sample surface,
as can be seen by comparison with Figure 5.5.

Figure 6.10 displays two separate line scans across the magnetic force data
displayed in Figure 6.8. Several nanophase iron particles can be identified. Line 1
is drawn across a single particle with magnetization parallel to the sample surface.
Line 2 is drawn so as to cross several particles. A particle with magnetization parallel
to the surface can be identified in the upper right hand corner. at 1 gm on the
line. A particle with magnetization perpendicular to the surface (as depicted in
Figure 5.4) follows immediately, at approximately 1.4 gm. Continuing along line 2.
a more complicated multi-component pattern consistent with that of a multidomain
particle [54] is observed starting at about 1.8 pum.

It can be assumed that electron flow along paths such as highlighted in line
2 of Figure 6.10 will contribute to the electronic conduction of the iron polyimide
composites fabricated with iron volume fractions near the percolation threshold. In
chapters 2-4 it was theorized that conduction along such paths will result in tunneling
magnetoresistance and variable range hopping phenomena. The experimental verifi-

cation of these conduction mechanisms is presented in the following sections. First,
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Figure 6.10: Identification of closely spaced nanophase iron particles in iron polyimide
composite with 20% Fe Vol.
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however. the bulk magnetic properties of the composite materials are examined.

6.2 Magnetization Data

The magnetization curves for iron polyimide samples with Fe Vol. fractions
of 0.15, 0.20. 0.23. 0.34. 0.44. 0.54, and 0.64 are displayed in Figure 6.11. The
applied field axis has been corrected by the demagnetization field within the cubic
samples, with H; estiinated as that of a sphere. Hy = %”M . The figure also contains
data acquired on a 0.99999 iron thin sheet magnetized along the long axis. The
demagnetization ficld is taken as zero for this sample. The curves are typical of a soft
nmagnetic material. with the saturation magnetization increasing with amount of iron
in the composite. A complete hysteresis loop for the 20% Fe vol. sample is displayed
in Figure 6.12. An insert in the figure displayvs the low field region of the curve.

Table 6.1 lists the measured saturation magnetization, remanence. and coer-
civity of the samples used in this study. As discussed above. the saturation magneti-
zation increases roughly linearly with the volume percentage of iron in the composite.
The remanence of the composite samples also displays an increasing trend with per-
centage iron. The coercivity, however, appears to be nearly independent of the iron
volume concentration. with only a slight trend of decreasing coercivity with volume
concentration observed. All of the composite samples have a coercivity in the range
16 < H, < 20. An invariance of coercivity with packing fraction is predicted if the
magnetic hardness is dominated by crystal anisotropy, as is the case with spherical
iron particles. Shape anisotropy dominated coercivity, on the other hand, leads to
a decreasing coercivity with increasing volume fraction [55]. The data presented in
Table 6.1 suggest that the dominant factor for the iron polyimide composites of this
study is crystal anisotropy and secondarily shape anisotropy. This can be explained

by the presence of elongated or flattened iron particles intermixed with mostly spher-
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Figure 6.11: Magnetization curves for iron polyimide conmposite samples with varying
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Figure 6.12: Hysteresis loop for 20% Fe Vol. composite sample.
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Table 6.1: Magnetization data of iron polyimide composites with varying Fe volume

concentration.
Fe Vol.% M, (EMU/gm) M, (EMU/gm) H. (Oe)
15 104 1.15 20
20 115 1.23 18.5
23 127 0.95 15.8
34 150 2.10 18.0
44 166 4.00 17.6
54 175 4.25 16.0
64 180 10.7 16.06
100 217 3.85 3.20

ical ones. Such a mixture of iron particles is evidenced in the microscopy data of

section G6.1.

6.3 Magnetoresistance Data

Table 6.2 lists the room temperature resistivity and the magnetoresistance at
0.5 Tesla. (Ry5 — Ry)/Ry. of iron polyimide composite samples manufactured with
0.15, 0.20, 0.23. 0.28, 0.34. and 0.64 Fe Vol. fraction. The table also contains reference
data for a pure iron sample. Considerable sample to sample variation in the resistivity
is observed for samples with low iron volume concentrations. The conduction path
for these samples is along the meandering networks of particles as depicted in Figures
6.1 and 6.2. A uniform current flow across the sample does not exist. such that
the placement of the probe leads can dramatically alter the measured resistance.
The meandering networks of particles also appears to allow the sample to remain
conducting well below the predicted percolation threshold. As the volume percentage
increases beyond the percolation threshold the resistivity drops dramatically and
becomes much more stable as continuous direct conduction paths across the sample

are formed along with an accompanying uniform current flow.
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Table 6.2: Room temperature resistivity and magnetoresistance at (.5 Tesla of iron

polyimide composite samples.
Fe Vol.% Resistivity (Ohm-m) Magnetoresistance (Ry5 — Ro)/ Ry

15 6.1: 3.7 -0.03 : -0.027
20 10.0 : 16.7 : 2190 -0.041 : -0.034 : -0.031
23 2.04 : 5.1 -0.021 : -0.020
28 2.49 x 1072 -0.008
34 2.78 x 10~° -0.0018
64 9.28 x 10~" +0.0012
100 9.61 x 107%  [56] +0.003  [57]

In terms of the magnetoresistance, all samples with Fe Vol. % less than 64%
show a negative magnetoresistance associated with spin dependent tunneling through
insulating polvimide barriers. Figure 6.13 displays the magnetoresistance of the sam-
ples normalized to the resistance in the demagnetized state. A peak in the negative
magnetoresistance is recorded for the 20% sample. In section 4.2 the percolation
threshold for hexagonal close packing of iron particles was calculated as 20.1 % £0.6%.
The experimental data in Figure 6.13 and Table 6.2 can then be interpreted as show-
ing a peak in the magnetoresistance at the percolation threshold of the system.

The peak value of the magnetoresistance in the iron polyimide composites,
4.1%. is consistent with the expected TMR for a randomly mixed iron insulator sys-
tem at the percolation threshold. In section 4.4 the theoretical TMR for granular
iron insulator system at the percolation threshold was calculated as 6.7%. Many pos-
sible sources can account for a lower experimental value than theoretically predicted,
including spin flip scattering [9], parallel conduction paths [58], and band structure
effects at the surface of the ferromagnetic particles [5]. It should be noted that a large
variation in the calculated results is possible based upon the choice of the effective
ferromagnet-barrier spin polarization, as discussed in section 4.4. In section 2.4 it

was shown that along with the band structure of the ferromagnetic material, both
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Figure 6.13: Magnetoresistance curves for iron polyimide composite samples.

the barrier height and thickness strongly effect the effective polarization. The quoted
results were calculated assuming a value of P3, = 0.07.

Ounce the iron volume percentage increases above the predicted percolation
threshold of 20% a portion of the conduction is expected to occur through connected
paths which do not contain tunneling gaps. The presence of these connected paths
greatly enhances the conductivity of the samples and reduces the net TMR effect.
These percolating paths are responsible for the drop in TMR beyond 20% as displayed
in Figure 6.13 and Table 6.2. As the percentage of iron in the sample continues to
increase more connected paths appear and a transition to bulk ferromagnetic behav-
ior occurs. In most bulk ferromagnets an increase in the resistance is observed as the
angle between the current and the magnetic saturation direction of any domain de-
creases. This anisotropic magnetoresistive (AMR) is due to spin-orbit coupling which
causes the electron cloud about each nucleus to deform slightly as the magnetic satu-

ration direction rotates. The deformation of the electron cloud produces an increased
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scattering of the conduction electrons traveling across the lattice. thereby increasing
the resistance [57]. A transition between negative tunneling magnetoresistance and
positive bulk anisotropic magnetoresistance is observed as the iron voluine percentage
increases from 34% to 64%.

The experimental work and interpretation presented above is consistent with
the work of Milner and Gerber [11, 12] on granular thin film iron-insulator sys-
tems. These authors found a peak magnetoresistance of about 0.6% and 4.5% for
Ni;(8i02)100-2 and Co,.(Si0;)90-» respectively at x = 0.46 for the Ni and 7 ~ 0.41
for the Co systems. In this work the samples were prepared by coevaporation of
the starting materials using two independent electron beam guns. The samples had
dimensions of 8 x 2 mm with a thickness of 100 nm. In calculating the percolation
threshold it is reasonable to assume a two dimensional system. In section 4.1 the
percolation threshold for a trigonal lattice was calculated as 0.5. in agreement with
the known exact value. The data can therefore be interpreted as showing a peak in
the magnetoresistance at a volume fraction just below the percolation threshold of
the system, a common phenomena in granular TMR systemns.

A plot of the magnetization and magnetoresistance for the 20% Fe sample
is given in Figure 6.14. As predicted, the resistance is a maximum in the initial
demagnetized state. The application of an external field causes the electron spin
directions to gain coherence as they rotate toward the direction which minimizes the
Zeeman energy. As described in chapter 2 and given in equation (2.14), G = Gpp(1+
Pgycosf). The conductance across a tunneling gap is proportional to the cosine of
the angle between the spin vectors of the neighboring ferromagnets. Coherence in
the electron spins across the sample therefore results in a reduced resistance as the
magnitude of 6 decreases. The resistance continues to drop with increasing field
into magnetic saturation where the minimum resistance is observed. Reducing the

external field strength now brings the sample out of saturation, increasing the average
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Figure 6.14: Magnetization and magnetoresistance for 20% Vol. Fe composite sample.

angle between the spin direction on neighboring particles. The resulting increase in
resistance is apparent in Figure 6.14. The hysteresis effects are also quite clear, with
the peak resistance of the sample occurring at the positive and negative coercive fields

as the sample is cycled through the hysteresis loop.

6.4 Variable Range Hopping

Figure 6.15 displays the temperature dependence of the resistivity for compos-
ite samples fabricated with 0.20, 0.23, 0.28. 0.34, 0.44, and 0.64 Fe vol. fractions.
The plot also shows reference data for pure iron [56]. As noted previously, the room
temperature resistivity drops dramatically as the iron volume concentration increases
beyond the percolation threshold. Figure 6.15 shows that the temperature coefficient

of the resistivity also changes sign as the percolation threshold is crossed.
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In the samples with iron concentrations beneath the percolation threshold con-
duction across the sample must occur through insulating tunneling gaps. In section
3.3 conduction across such a system through variable range hopping was described.
For small particles thermal activation is required to overcome the charging encrgy for
adding an electron to an isolated metallic grain. The existence of a distribution of
particle sizes throughout the matrix then leads to an optimum temperature dependent
tunneling distance and a resistivity of the form Inp x T7%, with 1/4 < v < 1/2.

The microscopy studies described in sections 5.2, 5.3. and 6.1 have confirmed
the existence of a large variation in iron particle size down into the nanometer reginme.
The resistivity data for samples near the percolation threshold is therefore expected
to obey the theory summarized above and detailed in Chapter 3. In Figure 6.16 the
experimental data for the 20% sample is fit to this theoretical model. The curve fit
contains a constant term independent of the temperature to account for the nearly
temperature independent resistance across large iron clusters. In the plot every tenth
experimental point is shown along with a solid line for the curve fit. The experimental
results are scen to fit well to a T2 dependence, in agreement with the theory.

Experimental measurements of hopping conduction performed by several other
authors support the results presented here. Sheng et al.. for example. found Ino
~T~Y2 for Ni_(Si0,)100_r With .08 < r < .44 over a temperature range 16 < T(K) <
400 [14]. Roth’s work with electrically conducting polymers found that the exponen-
tial factor could not be precisely determined, with the experimental data fitting well
to Inp x T~ over the range 1/4 < v < 1/2 [15].

The transition between phonon assisted hopping conduction and metallic type
conduction occurs between 28% and 34% iron volume percent. All the samples with
iron volume fractions greater than 30% display a positive coefficient of resistivity with
increasing temperature. This temperature dependence is well understood in terms of

electron-phonon scattering in the metal [59).
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Figure 6.17: Effect of sample orientation on measured magnetoresistance.

6.5 Temperature Dependence of Magnetoresistance

The previous section showed that the transport properties of iron polvimide
composites are highly temperature dependent. Samples with iron volume fractions
near the percolation threshold display an increase in resistivity of 2-3 orders of mag-
nitude as the temperature is lowered from room temperature to 100 Kelvin. In this
section the temperature dependence of the magnetoresistance is analyzed.

As discussed in the previous chapter, the sample orientation was changed be-
tween the room temperature magnetoresistance measurements performed in air and
the variable temperature measurements taken within the cryostat. A comparison
of the in-air measurements with those taken at room temperature within the cryo-
stat, displayed in Figure 6.17, shows the effect of sample orientation on the measured
magnetoresistance. The in-air data, with the magnetization along the long axis and

parallel to the current direction, shows a rapid drop in the resistance at low fields. As
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the applied field magnitude increases beyond approximately 3 kQOe a slight increase
in the resistance is detected. This increase in the resistance appears to be due to the
anisotropic magnetoresistive (AMR) effect [57], described in section 6.3. For parallel
alignment of the current and magnetic field the effect is observed as a slight increase
in the resistance at high ficlds, where the larger GMR is near saturation. The data
acquired for the sample in the cryostat, with the applied field perpendicular to the
current flow, does not show any increase in the resistance. With this orientation,
however, the demagnetization field is much larger. A correspondingly larger applied
field is therefore required to achieve the same sample magnetization as compared to
the parallel alignment. The resulting data for the perpendicular magnetization dis-
plays a slower drop in the resistance with applied field but a larger GMR in the high
field region due to the absence of positive AMR.

Magnetoresistance data was acquired on the 20% iron sample at tempera-
tures of 295. 175. and 130 Kelvin. The temperature setpoint was programed into
the temperature controller and the system allowed to reach equilibrium before data
acquisition was initiated. The temperature and heating element current were moni-
tored during each magnetization cycle to verify that the applied field did not effect
the temperature control circuitry.

Figure 6.18 displays the effect of the sample temperature on the magnetore-
sistance of the 20% Fe sample. The change in resistance is seen to increase with
decreasing temperature, from approximately 4.4% at 295 K to 6.6% at 130 K. Note
that, as shown in Figure 6.15, Ry for the sample increases nearly two order of mag-
nitude over this temperature range. The experimental equipment was limited to a
maximum resistance measurement of 2 A2, which precluded the acquisition of data
at lower temperatures.

A decrease in the magnetoresistance of ferromagnet-insulator-ferromagnet sys-

tems with increasing temperature has been observed in the past [7,9,10,58,60]. A
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theoretical basis for the effect described by Shang et al. attributes the tempera-
ture dependence to a temperature dependence in the electron polarization given by
P x (1 —aT??) [58]. At temperatures well below the Curie temperature the exci-
tation of spin waves is known reduce the spontaneous magnetization from its satura-
tion value by an amount proportional to T%?2. This temperature dependence of the
magnetization is known as the Bloch T2 law [61], and is the basis for the T%/2 de-
pendence in the Shang polarization term [58]. Increasing the temperature results in a
lower magnetization (polarization) which, by equation (2.3). reduces the conductance
ratio. Although the cited works are for thin filim multilayer systems, a similar mech-
anism appears to occur in the granular composite samples of the present study. This
mechanism is independent of the temperature dependence of the resistivity. discussed

in the previous section.

6.6 Material Processing Results

The saturation magnetization, remanence, and coercivity of 20% iron powders
ball milled for 0, 1, 2. 3, 4. and 8 hours are listed in Table 6.3. The data show a
strong trend of increasing coercivity with ball milling time. A similar increase in
coercivity with milling time was observed by Giri in iron-polyethylene samples and
attributed to the creation of single domain iron particles strongly bonded to the
polyethylene matrix [38]. The increasing coercivity with milling time in the present
study is believed to be due to the same mechanism.

It is known that the coercivity of fine particles increases with decreasing size,
reaching a maximum at the critical size for the formation of single domain particles
[55]. As discussed in section 6.1, the critical diameter for spherical iron particles has
been estimated as &~ 30 nm [52, 53]. High energy ball milling reduces the average

particle size toward this critical diameter, thereby increasing the coercivity toward
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Figure 6.18: Temperature dependence of magnetoresistance for iron polyimide com-
posite with 20% Fe Vol.
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Table 6.3: Magnetization data of 20% iron powders with varying ball milling times.

Milling Time (hr) M, (EMU/gm) A, (EMU/gm) H,. (Oc)
0 115 1.23 18.5
1 125 1.41 21.4
2 128 1.94 23.4
3 116 1.88 27.5
4 113 2.35 32.4
8 112 3.12 44.7

its maximum value. The intrinsic coercivity of spherical single-domain iron particles
with easy axes aligned with the field is 2K7/Af, = 2(4.8 x 10°)/1714 = 560 Oc [52].
Microscopy studies on the milled composites revealed a dramatic change in
the particle distribution as compared to samples fabricated from unmilled powders.
Figure 6.19 compares an unmilled 20% iron composite and a 20% sample milled for 8
hours. An increase in the number of the smallest particles reduces the average particle
size in the milled sample. In addition. a striking change occurs in the distribution
of the iron particles throughout the composites. High energy ball miiling of the iron
and polyimide powders destroys the chain-like networks of iron particles across the
sample. This redistribution of the iron particles was observed in all samples studied.
In section 6.3 the chain like conduction paths of the uninilled composite samples
were found to allow electron flow at volume concentrations beneath the anticipated
percolation threshold. The room temperature resistivity was shown to remain nearly
unchanged for samples between 0.15 and 0.23 iron volume fractions, with considerable
sample to sample variation for the 0.15 and 0.20 samples. Initial results suggest that
the redistribution of the iron particles with high energy ball milling significantly
effects the electron transport across the samples. The ball milled samples become
insulating very near 20% iron volume concentration. Indeed, the very high resistance
of the sample ball milled for 4 hours precluded data acquisition with the LR700

AC resistance bridge. The sample milled for 8 hours showed a significantly lower
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A) Unmilled

Figure 6.19: Optical micrographs of milled and unmilled 20% Fe composite samples.
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Figure 6.20: Magnetoresistance of milled and unmilled 20% Fe composite samples.

resistance, believed to be due to a slightly larger iron volume concentration caused
by experimental variation in the sample preparation procedure. The density of the 4
hour and 8 hour samples was found to be 2.665 gm/cc and 2.679 g /cc, corresponding
to 19.9% and 20.1% iron volume percentages respectively.

Magnetoresistance measurements on the 8 hour sample found a TMR of 2.5%
at 0.5 Tesla. Figure 6.20 displays the experimental results for the magnetoresistance
of the 8 hour milled sample in comparison with the unmilled 20% sample. The
vertical scale for the two plots has been changed to emphasis the overall shape of the
magnetoresistance curves.

In Figure 6.21, the low field region of the data plotted in Figure 6.20 is exam-
ined. The higher coercivity of the milled sample produces a shift in the resistance

peaks toward higher field levels. As discussed in section 6.3, the resistance increases
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Figure 6.21: Low ficld magnetoresistance of milled and unmilled 20% Fe composite
samples.

as the sample is taken out of saturation until the positive/negative coercive field
is reached. A decrease in average particle size and an increase in the particle size
distribution results in broader resistance peaks at higher field levels for the milled
sample.

The 2.5% TMR of the milled sample is significantly lower than that found in
the 20% unmilled sample. The redistribution of the iron particles, as shown in Figure
6.19, is expected to alter the percolation threshold of the system. The maximum TMR
may then occur at a volume concentration shifted from the unmilled studies. It is
anticipated that a peak in the TMR of the milled samples will occur at a slightly higher
volume concentration, accounting for the loss of the meandering particle networks

seen in the unmilled samples. A detailed experiment to more fully investigate the
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magnetoresistance versus volume percent for milled samples is being planned. In this
future study the volume fraction of iron will be controlled to 0.1% or better in the

vicinity of 20%.
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Chapter 7

Summary and Conclusions

7.1 Summary

Research in the area of tunneling magnetoresistance has grown rapidly in recent
years due to potential magnetic sensor and digital storage applications. It has been
shown that the tunneling current across a ferromagnet-insulator-ferromagnet system
is strongly dependent upon the relative magnetization direction of the two ferromag-
nets. An external field causes the magnetization directions of the ferromagnets to
align and results in a characteristic drop in the resistivity of the junction.

In this dissertation a new method for the fabrication of TMR materials via com-
pression molding of powdered ferromagnetic iron with a high performance polyimide
has been introduced. The procedure can be used to produce bulk TMR samples at low
cost from commercially available raw materials. It has been shown that the percent
change in the resistance with applied magnetic field depends critically on the volume
percentage of ferromagnetic material in the composite. A peak in the TMR occurs at
a volume concentration just beneath the percolation threshold of the ferromagnetic

material. The highest recorded room temperature conductance ratio for the iron poly-
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imide composites is -4.5% at 20% iron volume concentration, increasing to -6.5% at
130 Kelvin. This conductance ratio is lower than has been achieved in thin film mul-
tilayers fabricated through cryogenic evaporation techniques [10], but is comparable
to other granular TMR systems fabricated through coevaporation of ferromagnetic
and insulating materials using two independent electron beam guns [11,12]. The
ease of sample fabrication and lowered production costs of the compression molded
composites described here may make them advantageous for many applications. In
addition, future work described below has potential to enhance the TMR of the com-
pression molded composites, reducing the sensitivity gap versus the more exotic thin
film materials.

Along with tunneling magnetoresistance, iron polyimide composites near the
percolation threshold were found to exhibit variable range hopping (VRH) conduc-
tion. A temperature dependence of the conductivity of the form Ino x —-T7-1/2
was observed for iron polyimide composites with iron volume fractions near the per-
colation threshold. The strong temperature dependence resulted in an increase in
the resistivity of several orders of magnitude as the temperature was lowered from
room temperature to 100 Kelvin. This instability of the resistance with varying tem-
perature may limit the application of the material for magnetic storage or sensor
applications. Any future applications of the material will need to incorporate this
strong temperature dependence of the resistivity into the measurement scheme.

A theoretical model describing the electronic transport in iron polyimide com-
posites has been developed in this work. The model predicts the observed tunneling
magnetoresistance and hopping conduction in systems fabricated near the percola-
tion threshold of the ferromagnetic material. A computer simulation incorporating
the theoretical models has also been developed and used to successfully predict the

percolation threshold and conductance ratio of the composites.
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7.2 Future Perspectives

Further development in the research of compression molded TMR materials
should be concentrated on optimizing desirable transport properties based upon the
theorctical models presented in this work. In particular, improvements in the conduc-
tance ratio of the TMR could be used to develop the composites into useful electronic
materials. Material processing through high energy ball milling, described in sections
5.7 and 6.6. is a first attempt at improving the TMR based upon model predictions.
Along with continuation of this work, the extension of the sample fabrication for other
ferromagnetic materials is planned. Mechanical alloying and systems with more than
onc ferromagnetic material may greatly enhance the TMR of the composite materials.

Further development of the theoretical models and computer simulation are
also needed to optimize desirable transport properties. A better determination of the
band structure at the surface of the ferromagnetic material and the barrier height
of the polyimide is required in order to improve the accuracy of the models. The
computer simulation can also be greatly enhanced. Simulations incorporating the
combined effect of contact conduction and tunneling channels in a full three dimen-
sional lattice could enhance the development of new electronic materials based upon

ferromagnet-polyimide composite systems.
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