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ABSTRACT

Monitoring a program'’s execution is fundamental to the debugging, testing and mainte-
nance phases of program development. This research addresses the issue of monitoring the
execution of a distributed program. In particular, we are concerned with efficient tech-
niques for evaluating global state predicates for distributed programs. The global state of
a distributed program is not well-defined, making the monitoring task complex compared
to that of a sequential programs. Processes of a distributed program execute concurrently,
and the events of the program cannot be totally ordered. Each process has its own local
memory. and the local memories are physically separate.

Despite the difficulties of defining a distributed computation’s states. monitoring a dis-
tributed program requires reasoning about constituent processes’ execution as a single col-
lective entity. We have extrapolated the semantics of the sequential program'’s assert state-
ment into the distributed context. A distributed assert statement is a global predicate that
is anchored at a control point of one processes. and that is evaluated when that process
executes the assert.

We have developed a runtime method for monitoring both stable and unstable properties
that does not disrupt the computation of the distributed system. A distributed assert
statement is evaluated with that statement’s causal global state which incorporates the
state of the system as a whole as it may have causal impact upon the assert statement. A
runtime protocol has been implemented that constructs the causal global state and evaluates
the assert statement. No additional synchronization or message passing is imposed on
the distributed application although some message sizes are increased to propaga te state
information. The causal global state is immediately available providing real-time feedback.

..
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Chapter 1

Introduction

1.1 Monitoring Sequential Programs

Observing a program'’s execution is fundamental to the debugging, testing and maintenance
phases of program development. Debugging is premised on the ability to examine the value
of a variable at chosen points during the execution of a program. Testing involves detecting
erroneous threads of execution and invalid variable values. Maintenance relies on the ability

to follow a program'’s execution and detect deviations from anticipated behavior.

The ability to observe a sequential program'’s execution is straightforward since a single
thread of execution defines a total temporal order on the program’s atomic operations. The
execution of each atomic operation results in a new program state, where a program state is
a function from variables to values {12]. An ordered sequence of states is defined while the
program is executing, and at any point of execution the state of the program is immediately

available since all variable values are stored in the same local memory.
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CHAPTER 1. INTRODUCTION 3

Debugging, testing and maintenance examine a program'’s execution by comparing states
with expected behavior. One common method of conveying the expected behavior of a
programn utilizes state predicates. A predicate used in this manner is a boolean function
on a program state and is evaluated by replacing variables of the predicate with their state
values [12]. Predicate evaluation is straightforward in a sequential program since a state is

well-defined and immediately available.

Choosing appropriate predicates is dependent on the application and the activities mon-
itored. Predicates can be chosen to detect program malfunction and. if skillfully designed,
relay a strong clue about the location of the bug leading to the failure. Particular points
of a program’s execution may be crucial, and predicates should be designed for evaluation
at these points. Evaluating a predicate after the execution of an identified atomic opera-
tion is consistent with Hoare-style axiomatic program verification techniques [14]. Complex
verification statements such as loop invariants. upon which a proof of partial correctness is
usually hinged. make obvious candidates for conversion into predicates. Debugging break-
points and diagnostic print statements indicate positions for developing appropriate predi-
cates. Independent of the application. predicates are a powerful monitoring tool throughout

the program’s life cycle.

1.2 Monitoring Distributed Systems

This research addresses the issue of monitoring the execution of a distributed program. In
particular, we are concerned with efficient techniques for evaluating global state predicates

for distributed programs. The global state of a distributed program is not well-defined,
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CHAPTER 1. INTRODUCTION 4

making the task of monitoring complex compared to sequential programs. Processes of a
distributed program execute concurrently, and the events of the program cannot be totally
ordered. Each process has its own local memory, and the local memories are physically
separate from one another. A process is only immediately aware of its own local state.
Access to the state of a remote process requires communication and incurs a delay which is

usually substantial and often unpredictable.

1.2.1 System Model

A sequential program’s execution and the execution of a single process of a distributed pro-
gram are similar. The i** atomic operation or event of a sequential program is represented
by e;. and the resulting state is represented by S;. The execution of a sequential program

is modeled as
0’=S()-e—l>sl -2)32

The notation S;_;, —» S; denotes the execution of event e; which causes a transition from

state Sij—; to S;.

A distributed system consists of a fixed number of distinct processes I = { Py, ... .Py_}.
These processes share no memory and interact only via message passing. Each process con-
sists of a totally ordered sequence of atomic events. The i*? event of P; is represented by

e;, and the resulting local state is represented by 5".7 The execution of P; is modeled as

b3
e=

el
. 1ol 51, @2
o'/J—S_,?—-—)SJ-——)Sj...
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CHAPTER 1. INTRODUCTION 5

In both a process and a sequential program, it is possible to say which event or state
happened before another event or state since the events of both are totally ordered. The
execution of a distributed program is viewed as a set of events £ = EgU---U Eyx_; where

E; represents the events of P;, and an irreflexive partial order is defined on these events [19]:

—-CExE.

The — relation is commonly referred to as happened before. Fore. f € E. e — f if and only

if e has potential causal impact upon f.

1.3 The Happens Before Relation

Interprocess communication defines the happens before relationship among events on dif-
ferent processes. Asynchronous communication occurs when a process places a message “on
the network.” and continues execution. The process receiving the message blocks until it

receives the message. then continues execution.

In an asynchronous communication regime. — is the smallest relation satisfying the
following three conditions: (1) if e and f are events in the same process, and e happens
before f. then e — f; (2) if e is the sending of 2 message and f is the receipt of the same

message, then e — f; and (3) ife — f and f — g, thene — g.

If e & f. we say that e causally precedes f and that f causally succeeds e. If e /4 f
and f # e, then we say that e and f are causally unrelated or concurrent, denoted el|f.

and neither can causally affect the other.
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CHAPTER 1. INTRODUCTION 6

1.3.1 Asynchronous Message Passing Library

We have developed a library of asynchronous communication functions for writing dis-
tributed programs that communicate asynchronously. Each process’s program is written
in the programming language C[16] with the addition of the asynchronous communication
functions for message passing between processes. Appendix B covers in detail the asyn-
chronous functions. but the two of primary interest are async_send and async.recv. The

function async_send has the following format:

async.send(z. msg. len).

The message pointed to by msg of length len is sent to process i. If i is -1. the message is
broadcast to all the processes of the distributed program. The function async_recv has the

following format:

async_recv(i, msg, len. waitsecs).

A message from process i is copied into the address msg. The length of the received
message is len. If a message does not arrive within waitsecs. asyncrecv returns with a
value of -1. If ¢ is -1, the message is accepted from any process of the distributed program.
If waitsecs is 0, the process waits until the message is received. When presenting example
programs, only the fields of i and msg for both async_send and async.recv will be indicated.

The field waitsecs of async_recv is assumed to be 0 unless otherwise indicated.

The asynchronous library routines implement reliable FIFO (First In First Out) commu-

nication by default. Unreliable or non-FIFO communication can be configured by functions
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CHAPTER 1. INTRODUCTION 7

described in the appendix. The example asynchronous distributed programs that appear in

this document are based on reliable and FIFO communication unless specified otherwise.

1.3.2 Partial Order of Events

When a distributed program executes, a partial order of the program events is defined.
The order is not total because some events on different processes are causally unrelated.
Figure 1.1 is a distributed program of two asynchronously communicating processes. The
dots denote statements that are not relevant to the communication. A time-space diagram
of the program'’s execution is given in figure 1.2. Each vertical line corresponds to a process’s
execution where the direction of the line indicates time increasing, and each tick on that
execution line corresponds to an event. A diagonal arrow between two processes denotes a
communication. The following are some of the concurrent (||) and causal (—) relationships

that exist between the program’s events:

Concurrent Causal
eg 1] ei e(l, — e%

1 ol 3 2
eg Il ecls 0 — e(li
eg [ e; e$ > eg
ed || €} ey — €

1.3.3 Multiple Partial Orders

The communication of a distributed program is classified as defining either a single partial

order or multiple partial orders. The classification is based on the control constructs and
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CHAPTER 1. INTRODUCTION 8

8
‘
Py Py 6 e .8.
1 - 1 - '
2 =0 2 async.recv(0. &z); s
3 asyncssend(l. &z) 3 - 5 4
4 - 4 1 3
5 5 3 2
6 async_recv(l.&r): 6 - 2
7 - 7 async.send(0. &=z) ! !
8 8 . Po P,
Figure 1.1: Asynchronous program Figure 1.2: Space-time diagram

the communication functions they affect. The remaining statements of a process do not

affect the partial order. and therefore are ignored.

If none of the processes have control constructs affecting the communication functions.
the classification is a single partial order. If one or more of the processes have a control
construct selecting among multiple communication functions, the classification is multiple
partial orders. The partial order defined when the distributed program executes may differ

according to which communication function is selected by the control construct.

Figure 1.3 is an example of a distributed program that is classified as defining multiple
partial orders. The if/else control construct of P, selects one of the two groups of commu-
nications functions to execute. The two possible partial orders are shown in figure 1.4. The
function async_send(1,w) is represented by i. function async_send(2,w) is presented by
J. function async_recv(0,3) is represented by k. and function async_recv(0,z) is repre-

sented by .
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CHAPTER 1. INTRODUCTION 9

Py P Py
w=i+1 async_recv(0.y); async.recv(0.z)
if (w > 0) : :

asyncsend (1. w);

async_send(2. w);
else

async.send(2, w);

async_send(1l. w):

Figure 1.3: Multiple Partial Orders

A A A A A A

j//’ : 1
A

Po Py P Py P P

Figure 1.4: Space-time diagrams

1.4 Outline of the Dissertation

Chapter two presents several distributed programs that will be used in discussing distributed
monitoring methods. The programs range from a single partial order program with repeat-
ing communication patterns to a multiple partial orders program with complex communi-

cation patterns.

In chapter three we review well-known monitoring methods that appear in the literature.
Problems that these monitoring methods incur are discussed. Both runtime and postmortem

methods are reviewed.
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CHAPTER 1. INTRODUCTION 10

In chapter four our methodology for monitoring a distributed system is presented. The
terminology and notation corresponding to our methodology is defined. This chapter also

contains our initial algorithms.

Chapter five examines the affects of our initial algorithm to the execution of a distributed
program and defines the messages that are sufficient for implementing our method of mon-
itoring a distributed system. Chapters six and seven present algorithms for optimizing our

initial results.

In chapter eight we apply our methodology for examining the execution of a distributed
program to the programs of chapter two. Chapter nine concludes with possible avenues for

continuing our research.
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Chapter 2

Distributed Programs

Five distributed programs appear throughout this document to demonstrate and clarify
concepts for monitoring distributed programs. These programs are described in detail in
this chapter. The communication complexity of the programs varies greatly and is discussed

with each program.

2.1 Set partition

SETPART. the set partition program. by Dijkstra [7] partitions disjoint integer sets S and
T. SETPART exchanges an element of S with an element of T until the elements of § .
are less than the elements of T. The original sizes of S and T are maintained after each
exchange. SETPART consists of two distributed processes, Py and P,. P, maintains S.
and P; maintains T. Processes Py and P, exchange an integer to determine if the sets are
already partitioned correctly, then P, initiates an integer exchange with P, if there exists
an element of S that is greater than the element previously received from P,. For the

exchange, Pj sends the maximum element of S to P, and removes this value from its set.

11
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CHAPTER 2. DISTRIBUTED PROGRAMS 12

P, receives the integer from Py and adds this integer to T, then P; sends the minimum
element of T to Py and removes this minimum value from its set T. Py receives the integer
from P, and adds this integer to S. Fy continues to initiate an exchange until it determines
that the sets are partitioned correctly. If the last value Py receives from P, is greater than
or equal to the maximum of S. then no element of T is less than any element of S. And Py

can conclude that partitioning is complete.

Set Partitioning’s communication behavior exhibits conversational continuity [31]. which
is interactive communication between processes where a continuously repeating communi-
cation pattern is formed. The number of communications between the SETPART processes
is dependent on the input data, but the communication pattern is static. Figure 2.1 is the
distributed SETPART program for Py and P,. The function max returns the maximum in-

teger of the operand set. and the function min returns the minimum integer of the operand

set.
Pg:: Py
I  mx = max(S) 14  while(true)
2  asyncsend(l. mx) 15 async._recv(0. y)
3 S=85-{mx} 16 T=TuU({y}
4  async_recv(l. x) 17 mn = min(T)
5 S=Su({x} 18 async_send(0, mn)
6 mx = max(S) 19 T=T- {mn}
7  while (mx > x) 20 endwhile
8 async.send(1, mx)
9 S =5- {mx}
10 async_recv(1l, x)
11 S=SuU {x}
12 mx = max(S)
13 endwhile

Figure 2.1: Algorithm for Set Partitioning Program
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CHAPTER 2. DISTRIBUTED PROGRAMS 13

2.2 Mutual Exclusion

The circulating token mutual exclusion protocol can be embedded in distributed processes’
application code if global mutual exclusion control is needed. The protocol defines a log-
ical cycle through the processes, and the communication pattern is not influenced by the

distributed system'’s application.

P(i)::
1 do
2 async_recv((z + N — 1) mod N. token. waitsecs)
3 if message received
4 if want_cs;
5 in_cs;=true: critsec;; want_cs;="false
5 endif
7 asyncsend((Z + 1)mod N.token)
8 else /* async_recv timed out */
9 do_other;
10 endif
11 enddo

Figure 2.2: MUTEX

MUTEX [21]. shown in figure 2.2, is a token-based protocol for administering mutual
exclusive critical section entry for a distributed system of N processes. The protacol al-
lows only one process to enter its critical section at a time. Only one token exists in the
system, and a process can neither create a token nor destroy the token. The processes are
responsible for circulating the token around the system so that every process eventually
receives the token. Process P, receives the token from P(;; x_1)modn) and sends the token
t0 P(i+1)modN)- A process indicates that it wants to enter its critical section by setting
want_cs to true. A process only enters its critical section when it receives the token and

want_cs is true. Immediately before the process enters its critical section, in_cs is set to
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true. Process P; passes the token to its neighbor Pi; jmoqn either when P; completes its

critical section or when P; does not want to enter its critical section.

2.3 Bubble Sort

This distributed bubble sort algorithm is based on the odd-even transposition variation of
the sequential bubble sort [43]. A total of q integers are sorted in ascending order with N
processes where N < q. The processes are connected in a logical ring so that P;’s neighbors

are P,_; and P;;,. Initially each process is assigned a list of g/N elements. and each list is

sorted locally using a sequential sort.

The distributed sort consists of N phases, numbered 0 to N — 1. If the phase number is
even, each even numbered process sends its sorted list to its higher numbered odd neighbor.
and each odd numbered process sends its sorted list to its lower numbered even neighbor.
Each process merges the received list with its own list and sorts the resulting list. Each odd
numbered process retains the last ¢//V elements of the list as its sorted list. and each even

numbered process retains the first ¢/NV elements of the list as its sorted list.

If the phase number is odd, similar steps are followed as for an even phase number.
Each odd numbered process sends its sorted list to its higher numbered even neighbor, and
each even numbered process sends its sorted list to its lower numbered odd neighbor. Each
process merges the received list with its own list and sorts the resulting list. Each even
numbered process retains the last ¢/N elements of the list as its sorted list, and each odd

numbered process retains the first g/NV elements of the list as its sorted list. Processes 0
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and N — 1 do not participate in odd numbered phases.

After N phases are complete, all ¢ numbers are sorted in ascending order where P; has
the elements i x g¢/N through (i + 1) x ¢/N — 1 of the sorted list. The bubble sort algorithm
is shown in figures 2.3 and 2.4. Figure 2.5 shows the communication pattern for a bubble
sort with a six process distributed system.

P;::

integer pid. phase:
arrays list. recv_ list

1 pid = process’s id

2 read g/N elements into list

3 sort list

4 for phase=0to N -1

5 if phase is even

6 if pid is even

7 asyncsend(pid + 1. list)

8 async.recv(pid + 1. recv list)

9 list = mergesort(list.recv.list, first)
10 else

11 asyncsend(pid — 1, list)

12 asyncrecv(pid — l.recv list)

13 list = merge_sort(list. recv list, last)
14 endif

15 endif

16 if phase is odd && pid '= 0 && pid '= N -1
17 if pid is even

18 asyncsend(pid — 1,list)

19 async.recv(pid — 1, recv list)

20 list = merge_sort(list, recv_list. last)
21 else

22 async_send(pid + 1,list)

23 asyncrecv(pid + l.recv_list)

24 list = merge_sort(list, recvlist, first)
25 endif

26 endif

27 endfor

Figure 2.3: Bubble Sort
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merge _sort(list, recv_list, half)::
array merge_list

1  mergelist = merging of recv list and list

2 sort mergelist

3 if half= first

4 return first half of elements in merge_list
5 else

6 return last half of elements in merge_list
7  endif

Figure 2.4: Local Sort

-
-
.
-
-

SAVAN
Po PP P P P Ps

Figure 2.5: Distributed Bubble Sort
2.4 Tree Sort

The N processes of the tree sort distributed program are arranged in a binary tree. The
number of processes required for this sort is 27 — 1, where p > 1. 2P~! processes are leaf
nodes. The process which is the root node of the tree initiates the sorting of ¢ numbers,
g > N. The root process splits the list in half and sends one half to each child process. If

the receiving child process is not a leaf, it repeats the same steps as the root process. If the
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number of elements in the list is odd, the left child receives one more element than the right
child. If the receiving child process is a leaf node, it sorts the list and sends the sorted list
to its parent process. Once a parent process has received both of its children’s sorted lists,
the parent merges the two lists into one sorted list. If the parent node is not the root node,
it sends this sorted list to its parent. The sort is complete when the root node receives two

sorted lists from its children, and merges the two into one sorted list of ¢ numbers.

The tree sort algorithm is shown in figure 2.6. Figure 2.7 is the binary tree formed by

15 processes (p = 1) Py ... Py, and figure 2.8 shows the tree sort for the 15 processes.

Py:: (root node) P;:: (parent node)

integer child. childs integer child, . child,, parent
arrays list, list,. list, arrays list. list;, list,

I  read q elements into list 1  asyncrecv(parent, list);

2 split list into two halves: list.list; 2  split list into two halves: list|.list,

3  async_send(child,.list;) 3  asyncsend(child,,list))

4 async_send(childs. list,) 4  asyncsend(child,, list,)

5  asyncrecv(childy.list,) 5  async_recv(child,,list))

6  async_recv(childy, listy) 6 async.recv(childs, listy)

7  merge list, and list, into list 7 merge list; and lists into list

8  asyncsend(parent. list)

P;:: (leaf node)
integer parent
array list
I async_recv(parent.list)
sort list
3  asyncsend(parent.list)

Figure 2.6: Tree Sort
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Figure 2.7: Distributed Processes
2.5 Positive Ack/Retrans Protocol

The positive acknowledgement/retransmission protocol presented by Tannenbaum [41] en-
forces reliable communication between two communication nodes, CN, and CN,, on an
unreliable physical transmission line. The communication node CN, only sends data mes-
sages. and the communication node C N, only receives data messages. Associated with CN,
is at least one host that supplies the data for the outgoing messages. and associated with
CN; is at least one host that consumes the data of the incoming messages. Once CN, has
transmitted a message. it does not send another message until the message is received by
CN, without errors. The node CN; informs CN, with an acknowledgement message when-
it has received a message without errors. If CN; does not receive an acknowledgement

within a predetermined amount of time, it retransmits the data message.

Since the communication line is unreliable, the data message and the acknowledgement.
message can be lost or corrupted. There exists a problem with retransmitting the data

message when the acknowledgement message is lost. Suppose CN; has received an uncor-
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Figure 2.8: Distributed Tree Sort

rupted data message and sends an acknowledgement. If the acknowledgement is lost, CN,
retransmit the same data message. The node CN, does not realize the data message is

being retransmitted and interrupts the retransmitted message as a new message.

One bit appended to the data message provides the information for the receiver to
distinguish between a retransmitted message and a new message. The node C N, maintains
a bit by alternating the bit when it receives an acknowledgement and appends the current
value of the bit on data messages. The node CN, maintains a bit by alternating the bit
when it receives a valid data message. The receiver only accepts a data message as a new

message if the bit on the message matches its bit value. Following is the described protocol:
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Procedure CN;::

MsgBitSend : bit /¥ alternating bit */
sbuffer: message /* buffer for outgoing data message */
event: (MsgArrival, CksumErr, TimeQut) /* different interrupt events */
1 MsgBitSend = 0 /¥ initialize alternating bit */
2 FromHost(sbuffer) /* get the data message from host */
3 repeat
4 async_send( r,sbuffer, MsgBitSend)
5 StartTimer: /* time to wait for acknowledgement */
6 wait(event) /* possibilities MsgArrival, CksumErr, TimeOut */
7 if event = MsgArrival
8 async_recv(r, ack) /?* receive the acknowledgement */
9 FromHost (sbuffer) /¥ an acknowledgment has arrived intact */
10 inc(MsgBitSend) /? increment by I then mod 2 */
i1 endif

12 until doomsday

Procedure CN;::

MsgBitReceive : bit /* alternating bit */
IncomingBit : bit /* incoming message's bit */
rbuffer: message /* buffer for incoming data message */
event: (MsgArrival, CksumErr) /¥ different interrupt events */
13 MsgBitReceive = 0 /?* initialize alternating bit */
14 repeat
15 wait(event) /* possibilities MsgArrival, CksumErr */
16 if event = MsgArrival /* a valid message has arrived */
17 async_recv(s. rbuffer, IncomingBit) /* accept the message */
18 if IncomingBit = MsgBitReceive
19 ToHost(rbuffer) /¥ pass the data to the host */
20 inc( MsgBitReceive) /¥ increment by I then mod 2 */
21 endif
22 async.send(s. acknowledgement)
23 endif

24 until doomsday

The async.send command transmits a message (data message and bit) over the com-
munication channel, and the async_recv command accepts a message from the communica-

tion channel and assigns the data message to rbuffer and the bit to IncomingBit. Procedure
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StartTimer () starts the timer and enables the Timeout Event. Procedure Wait () waits for
an event to happen, and returns the event type when one occurs. The procedure FromHost ()
fetches a data message from the host, and the procedure ToHost () delivers a data message

to the host.
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Chapter 3

Monitoring Methods

3.1 Global State

A partial order is defined on a distributed system’s events when the system executes. The
notion of a system state is complicated by the lack of a total order among events. An
additional complication is the difficultly of capturing a system state since local memories are
physically separate from one another. Despite the difficulties of a distributed computation’s
states, monitoring a distributed program requires reasoning about constituent processes’
execution as a single collective entity. Previous work [28, 4, 38, 37, 29. 33| has defined a
global state for unified reasoning about the distributed processes. A global state is analogous
to “gluing” together local states, one from each process, such that the local states can

happen at the same “time”. The “gluing” produces one possible state of the system.

Global states provide a means to monitor a distributed system’s execution with global
predicates. A global predicate for a distributed system is comprised of relationships among

variables from different processes. Once a global state is constructed, a global predicate
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is evaluated on this state. Constructing a global state and evaluating a predicate on that

state helps in any rational scheme for debugging and monitoring the distributed program.

3.2 Runtime Methods

Despite a global state’s usefulness. problems exist with distributed system monitoring based
on global states. A major problem is the difficulty of capturing a global state during the

distributed system’s execution.

Runtime methods of capturing a global state has been addressed by many researchers.
Several papers that stand out in the literature are briefly described. Chandy and Lamport
[4] were the first to define a global state as a global snapshot that could have occurred if
all processes took a snapshot of their local states simultaneously. Their global snapshot
algorithm assumes FIFO asynchronous communication. and each process has at least one
incoming and outgoing unidirectional communication channel. Process P, communicates
directly with P; if a channel exists from P; to P;. otherwise P, communicates indirectly

with P; through intermediate processes and channels.

The snapshot algorithm consists of two phases. In the first phase. each process takes
a snapshot of its state. In addition to the recorded local state information, the messages
in-transit when the local snapshots are taken will be included in the global snapshot. The in-
transit messages are flushed through the channels before the local snapshots are assembled
into a global snapshot. A process initiates a global snapshot by (1) saving its local state, (2)

sending a snapshot token message on each of its outgoing channels, and (3) beginning the
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recording of messages on each incoming channel. The token informs the receiving process
that a snapshot is being taken, and it flushes the messages in-transit so they are included
in exactly one process’s local state. When a process receives a token. it performs the same

three steps as the initiating process.

A process continues to record incoming messages for a channel until the process receives
a snapshot token on the channel. Once a process has received a token on each channel, the

process’s local state is complete for the global snapshot.

In the second phase. each process disseminates its local state information to form a
global snapshot. Each process must send its state information to each of its neighbors.
and when a process receives other processes’ states, it must relay this information to its
neighbors. This type of dissemination ensures that the process requesting the snapshot

eventually receives the global state.

Every process receives the global snapshot with Chandy and Lamport’s algorithm.
Kearns and Spezialetti [38] improve the efficiency of the global snapshot algorithm by
reducing the message-passing load for disseminating the global state. Only the process
or processes that initiate the global snapshot receive it. The process(es) that initiate the
snapshot by passing snapshot tokens include their process identification with the tokens.
The tokens continue with their original purpose of informing other processes to record their
local states. Once a process has completed recording its local state. the local state is only
sent to the process that prompted this process to take a snapshot. Once a non-initiating
process has sent its local state to the initiating process, it has completed the giobal snapshot

since it no longer has the responsibility of sending neighboring processes’ state information
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through the network.

Lai and Yang [18] extend the original global snapshot algorithm by removing the FIFO
restriction. One status bit is associated with each process and is piggybacked on all mes-
sages. Each process’s bit is initially 0. and a process sets the bit to 1 when it initiates a
snapshot. When a process receives a 1 status bit. its status bit is set to 1, and it takes
a snapshot. Since the channels are non-FIFO, messages sent before the snapshot can still
be in-transit after the snapshot is taken. These message must be incorporated into the
global snapshot. Each process keeps a record of all messages it has received and sent for

calculating the in-transit messages.

Mattern [28] develops an algorithm similar to Lai and Yang's for non-FIFO channels,
but it does not reqhire the processes to record messages. The algorithm ensures that the
result of a process initializing a global snapshot is a consistent cut. A consistent cut is a set
of events that are not causally related (concurrent). and each process has exactly one event
in the cut. If an event e; happens before P;'s cut event. and ¢; happens before e;, then e;
must happen before P;’s cut event for the cut to be consistent. This condition disallows
messages sent after the cut to be received before the cut. The only messages in-transit-
after the cut are messages with a status bit of 0 being sent to processes with a status bit
of 1. The global snapshot comprises the local states resulting from the cut events and the

in-transit messages.

The global snapshot algorithms described share a common problem, they add causal de-
pendencies to a distributed system's computation. To expose this problem, consider Chandy

and Lamport’s snapshot algorithm. The recording of P;’s local state and propagating the
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Figure 3.1: Local Snapshot phase of Global Snapshot Algorithm

snapshot token are events added to the distributed computation by the local snapshot phase
of the algorithm. Figure 3.1 is a time-space diagram of a three processor system. The asyn-
chronous messages of the computation (without the snapshot algorithm) are denoted with
solid lines. The dashed lines represent snapshot token messages. The notation snapshot;
indicates the local snapshot of P;. Figure 3.1 shows both the local snapshots being taken
and the propagation of the token. given that P, initiated a global snapshot after e3. Assume
no messages are in transit when the local snapshots are taken and the only communication
channels are Fy’s outgoing channel to P, P;’s outgoing channel to P, and P»’s outgoing
channel to Py. The global state obtained by this global snapshot is denoted by global_state,
which is (J;_q_, snapshot;.

The token messages add causality to the computation. For the events e}, 3, e3, e} of
Py, events €3, €5, el. e of P, and events €3, el%, el! of P, there exist no causal relationship

between e" and eff for ¢ # j, according to the distributed computation. For example, €3 and
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€} are concurrent in the underlying computation. The token messages add (false) causality

to these events as defined by the happens before relationship. Event e happens before e}
according to the causal relationship added by the token transmission from Py to P,. The
concurrent execution of e? and e} is inconsistent with the causal order defined by the token
messages. Events e} and e} are causally related to e].e} and e}'. e} and €§ are causally
related to e}, ef and el!. and €] and e}’ are causally related to e} and e} due to the three

token messages. For example. e — e and e§ — ell.

Adding causality to concurrent events invalidates legitimate global states of the under-
lying computation. For example. the cut consisting of events e},e] and e}! is consistent in
the underlying computation. but is an inconsistent cut due to the causality added by the
token messages. Since the cut of e}, e] and e}! is not consistent, the global state consisting
of the local states after the execution of e}, e} and e}! is not a valid global state. The global

state defined by e}, e} and e}! is valid in the underlying computation.

Global snapshot algorithms require that obtaining a global state should not disrupt
the computation of the distributed system, but these algorithms do interfere by imposing
order on concurrent events. Distributed system monitors should be based on the uncorrupt
computation of the system. and should not allow a method that invalidates legitimate global

states.

An additional problem with global snapshots is their usefulness. Global snapshots are
only adequate for detecting stable properties. Once a stable property occurs, it persists
until the system is terminated. Examples include deadlock and termination. Predicates

expressing stable properties are called global stable predicates. By taking global snapshots
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periodically, a stable property can be detected by a predicate evaluated on the sequence of

snapshots.

Distributed monitoring and debugging properties are, in general. not stable. Predicates
for detecting unstable properties are called unstable predicates. Repeated snapshots are
inadequate for evaluating an unstable predicate, as the property expressed by the predicate

may have occurred between snapshots, and gone undetected.
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Figure 3.2: Set Partition

Counsider the distributed program SETPART. A reasonable and informative global pred-
icate to evaluate after each exchange of maximum and minimum datum values is SNT = 0.
If this predicate evaluate to true, SETPART is correctly updating the sets after an exchange.
But many global states are possible after an exchange. A simple execution of SETPART

is shown in figure 3.2. Each dashed line represents a possible global state after the first
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exchange. Figure 3.2 represents a valid execution of SETPART, but the evaluation of the
global predicate may be either true or false. The predicate’s evaluation does not provide
insight into the correctness of the execution. If the global states are restricted by P, initi-
ating the global snapshot after if receives x and adds z to S. two global states are possible:
S= {1.3}. T = {1.2.5} and S ={1.3}. T ={2.5}. One resulting in a false evaluation of the
predicate, and the other resulting in a true evaluation. Although SETPART’s communica-
tion has a simple repeating pattern, it exemplifies the deficiencies of monitoring unstable

properties with existing runtime methods.

Cooper and Marzullo (5] propose an algorithm, Currently, for evaluating an unstable
predicate while the system is executing. A process sends a monitor process. Ppon, its local
state if the local state might affect the outcome of a known global predicate ®. Ppon
maintains the last received state of each process. and evaluates ¢ each time it receives a

process’s state. [f @ evaluates to true. Pp,,, has detected an undesirable global state.

When a process enters a state that might falsify the evaluation of ®. it freezes and sends
a block message to Ppon before informing P, qp of its new state. The process remains blocked
until Pp,,, has received all in-transit messages from the other processes. This flushing of
messages allows Pp., to obtain in-transit states that might detect the predicate. Once
the messages have been flushed, the blocked process sends P, its state and continues

execution.

Although Currently’s objective is detecting unstable predicates, it is equivalent to taking
snapshots periodically, and it can miss a state on which ¢ evaluates to true. Currently

incurs the same problem as the previously described algorithms, legitimate global states are
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invalidated by imposing causal relationships on concurrent events. When processes send
state information to Pp,, and receive acknowledgements from P,.y,, order is imposed on

concurrent events.

3.3 Postmortem Methods

Instead of capturing a global state while the system is executing, the postmortem algorithins
Definitely and Possibly by Cooper and Marzullo [5] construct a lattice of all consistent global
states based on trace data gathered during execution. Possibly ® evaluates to true if there
exists a global state which causes ® to be true. Definitely ® evaluates to true if for all
tatal orders there exists at least one global state in each total order which causes ¢ to be
true. Possibly and Definitely provide a meaningful evaluation of unstable predicates since

all global states are considered.
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Figure 3.3: Two asynchronously communicating
processes Figure 3.4: Lattice of global states
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While the distributed system is running, each process informs Pp,,, of each local state
it enters. Pp,,, maintains a FIFO list of these states for each process. Once the execution
has completed. Py,0n assembles the local states to construct a lattice of all consistent global
states. Figure 3.4 shows the lattice constructed for the 2 processor distributed execution
of figure 3.3. Point S;; of the lattice is the global state where ¢ events have occurred on
P,. and j events have occurred on P;. The level of §; ; is i+j. A possible total ordering of
states is a path starting at the level 1 global state, and each subsequent global state has a
level increase of one. Possibly is true if at least one point in the lattice satisfies ®. Definitely

is true at least one point in every total ordering satisfies ®.

Definitely and Possibly provide a meaningful predicate evaluation methodology by con-
sidering all global states. The outcome of evaluating & provides unambiguous information
about the system’s behavior. Although they provide meaningful results, the inability to
monitor the system at runtime is a significant weakness of both algorithms. By waiting for
the system to complete execution, on-line corrective actions such as recovery or abortion
can not be made for invalid execution behavior. Real-time feedback is crucial for life- or

mission- critical control applications.

We have developed a runtime method for monitoring a distributed system that is mean-
ingful for both stable and unstable properties. Predicates are evaluated with all the pro-
cesses’ state information that may affect the evaluation. Any invalid system state, indicated
by evaluation of the predicate, is detected. Evaluation is only with system states that can
occur in the distributed computation. and legitimate global states are not invalidated. The

following chapter describes our methodology, both in terms of design and implementation.
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Chapter 4

Causal Distributed Assert

Statement

Some sequential programming languages [39, 40| facilitate predicate evaluation with assert
statements. An assert statement [30] (or library function. depending on it’s implementation)

generally has the form
assert(P)

where P is a predicate defined on the state of the program. The semantics of this assert
statement are that P is evaluated, without side-effects. on the program state at the point
at which the assert () is executed. If P is true then the program continues its execution.

If P is false, however, the program is aborted, and a diagnostic message is produced.

We have extrapolated the semantics of the assert statement for sequential programs
into the distributed context. A distributed assert statement is a global predicate that is

anchored at a control point of one process, and that is evaluated when the process executes

32
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the assert. A distributed assert statement monitors a distributed system’s execution, but
only a subset of the system states of the execution are relevant for evaluating the assert. Two
possibilities exist for which portion of the execution the distributed assert monitors. One
possibility is the distributed assert statement monitors the global states that are defined
by consistent cuts including the assert statement. This interpretation is in accord with
the global predicate evaluation methods described in chapter 3. If the distributed assert
monitors concurrent execution, then any consistent cut of the system that includes the
assert event defines a valid global state for predicate evaluation. A simplistic three processor
system is shown in figure 4.1. The broken lines represent all possible consistent cuts, and

the x represents an assert statement.

The only previous work that resembles this interpretation of the distributed assert state-
ment is Cooper and Marzullo’s Currently[5]. Currently evaluates the global predicate &
while the system is executing and is claimed to be appropriate for unstable predicates. But
Currently is incomplete: global states can be missed that cause a true evaluation of ¢ [33].
Currently is also intrusive of the system'’s execution since it introduces extra synchroniza-
tion into the monitored computation, and it can cause a significant degradation in system
performance. Every modification of a variable in ¢ can be considered a possible invalidation
of @, causing the network to be congested with block and acknowledgment messages and
causing the process about to execute the modification to freeze until all in-transit messages

to Ppon are received.

Another interpretation of the distributed assert statement is that it monitors the exe-

cution that has the most recent causal impact on the assert statement. We have developed
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Figure 4.1: Consistent Cuts of the Assert Statement

a methodology for evaluating a distributed assert statement in accordance with this in-
terpretation. Qur methodology does not have the problems associated with global state
reasoning. The state of the system necessary for evaluating the predicate is well-defined,
and the evaluation result relays unambiguous information about the state of the system.

Our distributed assert statement is characterized by two properties:
A1l The asserted predicate is evaluated during execution of the program. We do not gen-

erate and analyze traces post mortem.

A2 No additional synchronization or message passing is added to the original distributed
application in support of the distributed assert statement. We do increase the size of

some application messages.
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4.1 Model and Notation

Recall that a distributed program consists of a fixed number of processes [1 = {F..... Py~ }.
and the happened before relationship, —, is a partial order on the program’s events. For
event e in P;, LCP(e, j) where j # i. denotes event es latest causally preceding event in Pj.
We define LCP(e, j) = f if and only if f is an event in P;, such that f happens before e.

and there does not exist event f’ in P; such that f happens before f' and f’ happens before

€.

Definition 4.1 For some event e € P, the latest causally preceding event in P; where

J # 1. denoted LCP(e, j), is event f if and only if

1. fe P,
2. foe

3. Bf'ePi:fof —e

One of possibly many partial orders is defined when a distributed system executes. This
is due to branches in control of execution and to the fact that communication delays and
process speeds are unpredictable. Hence sends and receives will “match up” unpredictably
in general. Consider the source code of a three process distributed system shown in figure
4.2. One of possibly two partial orders is defined when this program executes. The two
possible partial orders, PO, and PO,, are shown in figure 4.3. Set P is the set of possible

partial orders of a distributed system’s execution. For the distributed system shown in
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Py::
begin
z=1
async_send(1,z)
=2
async.send(1,r)
end

figure 4.2. P = {PQOy, PO,}. For a given execution of the distributed system. one partial

order. a € P. is produced.

For a partial order. a € P. at most one LCP event exists in each process for any event
e. Each partial order may identify a different LCP(e, j). The maximum unique LCP events

of P; for event e is bounded by the number of partial orders. i.e., the size of set P.

Lemma 4.1 For a partial order a € P of a distributed system and an event e of P;, at

P

begin
if
async_recv(0,z)
async_recv(2,y)
else
async.recv(2,y)
async_recv(0,r)
endif
async._recv(0, 1)
assert(z = y)
end

most one LCP(e. j) ezists for j # i.

Proof by contradiction. Assume two LCP(e, j) events, € and €”. exist for the one partial

Py
begin
y=3
async.send(1,y)
end

Figure 4.2: 3 process distributed system

order a. According to the definition of LCP events (definition 4.1),

1. € — e, and there does not exist another event f such thate' = f —» e

2. €’ — e, and there does not exist another event f such that ¢’ — f — e
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AN

Po P P, Po P, P>

PO, PO.

Figure 4.3: Partial orders

From 1. and 2.. ¢ /4 €" and ¢” /A € . therefore €'|le”’. The concurrency of ¢’ and €” is a
contradiction since both are events of P; and the events of one process are totally ordered.

Consider event e in process P;. A causal cut through e is the set of events consisting of

e and the LCP event of e of each process for a partial order a.

Definition 4.2 A causal cut through event e. denoted CC(e), is defined as

cCle)={etu| [J {LCP(e.i)}
0<j<N
J#i
Intuitively, CC (e) is the “latest” set of events of IT which can have a causal impact upon e.

In figure 4.4, the causal cut through Py, P;, and P, for event e is shown as a dashed line.

An event f is said to be before causal cut CC/(e) if there exists event g € CC(e) such that
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f = g; [ is after CC(e) if there exists event g € CC(e) such that ¢ — f. Accordingly, we
use CC to define a notion of global state to be used in the evaluation of a distributed assert

statement.

PO, PO:

Figure 4.4: Causal cuts for event e

A causal cut does not necessarily include an LCP event from each process since each
process may not have an event that occurs before an event e. For each « € P. there is one
causal cut for a given event. Also, the LCP events that comprise the causal cut for an event
and one partial order may differ from the LCP events that comprise the causal cut for the

same event and a different partial order.

Theorem 4.1 For a partial order a € P of a distributed system and an event e of P;, at

most one CC(e) exists.

Proof. This follows directly from Lemma 4.1 and Definition 4.2. Since each process has at

most one LCP(e, j) for each a« € P (lemma 4.1) and CC/(e) is comprised of the LCP(e, j)
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from each process (definition 4.2), at most one CC(e) can exist. a8

For event e in process P;, let pre(e) denote the local state of P, in which the execution
of e is begun. Execution of e effectively terminates state pre(e). If e is the execution of
a causal distributed assert statement in P;, then the causal global state. anchored on e, is

simply

CGState(e) = {pre(f) : f € CC(e)}.

CGState is the set of process states which immediately precede the causal cut through e.
the execution of the assert statement. CGState thus incorporates the state of the system as
a whole as it may have causal impact upon P; at the point the assert statement is executed.
Events which are after the causal cut through e cannot affect the execution of e. All events

which happen before the causal cut will have their effect on e through transitivity.

r=2

r=l1

Py P, P Py P, P

PO[ PO’.’

Figure 4.5: Causal Global State for an Assert
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Figure 4.5 shows a causal distributed assert statement being evaluated in process P;.
The horizontal lines across the process time lines represents events, and the dashed line
represents CC (assert(P)). The individual process states compromising the causal global
state anchored on the assert is denoted by x’s on the process time lines. Partial orders
POy and PO, each have a corresponding causal cut and causal global state. Although
in this example the causal cut and causal global state are identical, in other distributed
systems they can be different. The causal global state is Py.z = 2 and Py.y = 3 for both

partial orders.

4.2 Implementation

Our implementation of the causal distributed assert statement ensures that when an assert
is executed. the relevant components of the causal global state are immediately available at
the process executing the assert (Property Al). To that end, process P; maintains its current
view of the CGState in the causal global state buffer. CGSBuffer;. Processes maintain their
causal global state buffers independently. Buffer maintenance requires no message-passing
or synchronization beyond that required by the underlying application (Property A2). Each

causal state buffer consists of tuples of the following form

(process id, variable name, variable value, vector timestamp)

The meaning and use of vector timestamp is discussed below. A process maintains its causal

state buffer to contain only the latest (causally speaking) state information for each process.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. CAUSAL DISTRIBUTED ASSERT STATEMENT 41

When an assert statement is executed in P;, say at event e, CGSBuffer; will contain all

components of CGState(e).

A process receives state information from each process in the system by having the
processes piggyback state information on application messages. When a process sends an
application message. it piggybacks its CGSBuffer on the message. Process P; acquires
state information from P; when P; directly communicates with P; or when P; indirectly
communicates with P;. Process P; directly communicates with P; by sending a message to
P;. Process P; indirectly communicates with P; by sending a message to another process
P, and F; either directly or indirectly communicates with P;. If P, does not directly or
indirectly communicate with P;, then P; does not contribute to P;’s causal global state. In

this case, LCP(e. i) does not exist.

Consider the communication pattern shown in figure 4.6. P, receives state information
for Py from two different sources: the message P sends to P, and the message P, sends to
P;. When P, and P communicate, P; requires a mechanismn for determining the causally
latest value of x. P> has one value of z in CGSBuffer, from its direct communication with
Fy. and a new arriving value of z is piggybacked on P,’s message to P;. In fact, the newly
arriving value of z is stale and should not overwrite the tuple for £ in CGSBuffer,. Vector
time [29] is the mechanism we adopt for determining the latest causal values associated

with variables.

Timestamping a set of events with vector time has been shown to be isomorphic to
the causal partial order on those events [33]. Each P; maintains a vector V; of N integers,

(Vi[0], . .. Vi[N —1]), where V;[i] is the counter of the number of events which have occurred
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on P,. Vi[i] is incremented before each event in P;. V;(e) is the vector time of event e
of process P;. The vector time associated with event e is also associated with the state

resulting from e. The rules for maintaining asynchronous vector time are:

—

. Initially. for each P, Vi[j]=0for0<j< N

. Vi[i] = Vi[i] + 1 when an event occurs on P;.

™~

(2

. Suppose P; sends a message to P;, and e; and e; are the corresponding send and
receive events, respectively. If V; = (V{[0]..... Vi[N —1]) corresponds to e; and Vj =
(V;[0],....V;[N —1]) corresponds to e;. then as a result of P; and P, communicating,

P; updates its vector clock to
Vi(e;) = MAX((Vi[0],....Vi[i]+1.... . ;[N =1]).(V;[0]..... Viljl+1..... ViIN-1})).

where MAX designates component-by-component maximum.

A [ A
‘ =0 DO [122)

T 2.2.0) L [4,0.1]

x ) 14.00] /
’ + / [4,0,0]

r=1 [300] L “\\p.“\ - (2,10}
/ \*4 1
- [2,0,0] -

r= 1-/
. =0 [1,0,0] -

-

T 1 1 (000 L 100 1000
Py Py Pg Po Pl P
Figure 4.8: Latest State Figure 4.7: Vector Time
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Vector time can be used to indicate the relative “causal timeliness” of state information.
Suppose P; propagates a state datum stamped with a vector time to P. If the datum
is a variable of P;, it will be timestamped with the vector time of P; just before the
communication with Pg. If, however, the datum is not local to P; or P;. then it must reside
in CGSBuffer; (it is being propagated in order to handle the indirect communication), and
the vector time of the component’s tuple in C'G'.S’Bu,ﬂ'erJ will be used. Upon receipt of
the vector timestamped datum (assume the datum resides at P;), the ith component of its
timestamp is compared with the ith component of the vector timestamp of the tuple in
CGSBuffer, associated with the appropriate variable of P;. If the ith vector component of
the tuple in CGSBuffer, is greater than or equal to the ith component of the timestamp
on the incoming datum, then the copy in CGSBuffer, is the valid latest causal value of the
variable. and the tuple is not updated. Otherwise, the incoming datum is causally later
than the value of the variable stored in CGSBuffer,. and the tuple must be overwritten

with the incoming datum.

Figure 4.7 is derived from figure 4.6 by adding vector time. Note that P, receives
two copies of the datum for Py's variable . It receives z with value 1 and vector times-
tamp (3,0.0] when P, sends a message to P». The tuple (Fy,z.1.[3,0.0)) is inserted into
CGSBuffer,. When P, sent a message to Py, the tuple (P, z,0.[1,0,0]) was inserted into
CGSBuffer;. When P, sends a message to P», P, forwards a datum for z with value 0 and
vector timestamp [1.0,0] to P> to account for the indirect communication between P, and
P>. However, when P; receives the second datum for z. the first component of the datum’s

timestamp, 1, is compared to the first component of the vector timestamp for Py's r in
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CGSBuffer.,. 3. Process P> then knows to discard the second datum.

The causal state propagation is implemented by the protocol shown in figure 4.8 on each
communication. This protocol is not intended as a final implementation but as a foundation

for a more efficient result.

Protocol: Causal State Propagation

P; sends to Pj: P; receives from P;:
Vil = Vili] +1 Vilil = Vili] + 1
send (msg, V;.CGSBuffer;) to P, receive (msgsuger. Vi, Tmp_Buffer) from P;

Update( CGSBuffer,. Tmp-Buffer)
V; = MAX(V..V})
consume(msgpyfer)

Figure 4.8: Propagation Protocol

To simplify the presentation. the above pseudo-code assumes that each process keeps its
local state in its causal state buffer along with remote state components it has acquired via
message passing. The Update procedure in figure 4.9 is invoked to alter the local causal

state buffer based on this communication.

Procedure Update(B1,B2)
Updates local state buffer Bl based on contents of remote buffer B2.
Recall that buffer tuples contain fields (Pid. var. value. V)

for all tuples T in B2 do
if (T.Pid,T.var.*,*) not in Bl
insert T in Bl
else /* Let T’ be the tuple in Bl matching T. */
if T".V[T'.Pid] < T.V[T.Pid]
replace T’ with T
endfor

Figure 4.9: Update Causal State Buffer
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The asynchronous communicants piggyback state information on all messages to track
the causal global state. Although this does guarantee that the causal global state is imme-
diately available for the process evaluating the assert. we piggyback all state information
on all messages. Optimizations of this naive approach are addressed in chapters 5, 6 and

7.
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Chapter 5

Optimization

5.1 Timing Results

Our evaluation of an assert statement alters the distributed system by piggybacking data on
existing messages, resulting in increased message sizes. Intuitively, one way message trans-
mission time is linear in size of the message. To verify linear transmission time increases.

we have conducted an experiment with datagram communication on real systems.

Two processes, Pyenger and Preceiver- cOmmunicate with each other through UDP/IP
datagrams. Pyender's and Preceiver s only function is communicating with each other. This .
provides an adequate environment to measure the full impact of increased message length
on execution time. Pyepger sends to Preceiver 1,000 datagrams, and for each datagram sent,
Piender Waits for an acknowledgment from Pyeceiver before sending the next datagram. One
thousand samples of Pyenger’'s execution time are gathered to obtain a sufficient number of
samples to determined Py, 4. 's average execution time with 95% confidence. For the first

1,000 samples, the datagram size is 50 bytes. The datagram size is incremented by 50 bytes,

46
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and samples are gathered for each datagram size. This experiment is completed after the
samples are gathered for a 3500 byte datagram. The experiment is conducted between two
Sun workstations running SOLARIS 1.1. The average execution times and associated 95%
confidence intervals are plotted in figure 5.1. The same experiment is conducted on two
additional machine platforms and similar results are obtained. For one platform. the sender
is an [BM RS6000 workstation running AIX 3.23. and the receiver is a Sun workstation.
For the other platform, the sender is a DECstation 5000 workstation running Ultrix 4.2A.

and the receiver is a Sun workstation.

Figure 5.1: Datagram experiment

In all three datagram experiments, the execution times are roughly linear as message
size increases. Common to all three experiments is a fluctuation in execution time when the
message size is approximately 1500 and 3000. The significance of these numbers lies in the
maximum transmission unit (MTU) for the Sun which is 1500 bytes, and datagram frag-

mentation into packets occurs for every MTU. The Internet protocol (IP) layer, or network
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layer, is responsible for fragmentation into packets and reconstruction of the datagram. The
overhead of fragmentation occurs when the message size reaches an MTU multiple. The
important conclusion gained from the datagram experiment for assert statement evaluation
is that increasing the message size does increase the execution time of a distributed system.

but the increase is linear in the size of the piggybacked data.

5.2 Piggybacking messages

The naive implementation described for a causal distributed assert statement constructs
a causal state buffer consisting of each process’s causally latest state information. Each
process piggybacks its entire causal state buffer on the application messages. This does
ensure that all data is available for assert statement evaluation, but one expects that a
majority of the data is not necessary for the evaluation. The amount of state information
gathered in the causal state buffers and piggybacked onto messages can be reduced by

preprocessing with regard to the assert statement.

If the messages that are not necessary for delivering the CGState can be identified. the
number of messages marked for piggybacking can be reduced. The LCP events are the
means by which we reduce the number of messages piggybacking state information. The

first step in achieving our reduction is showing that LCP events are communication events.
' Lemma 5.1 For event e of P;, each LCP(e, j),j # i. is a communication event.

Proof. According to the happens before relation and the definition of LCP events (defini-

tion 4.1), if there exists an LCP(e, ), then there must exist a communication event f in
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Pj such that f — e, and there does not exist another communication event f’' in P; such
that f — f' — e. Events in P; either occur before or after f. Consider an event g # f in

P;. There are two cases:

1. Assume g = f. Since g = f — e and an event that occurs before f is not LCP(e, ),

it follows that g is not LCP(e, j).

2. Assume f — g. Since there does not exist a communication event after f that happens

before e, we know g /4 e. Therefore g is not the LCP (e, j).

We can conclude from 1. and 2. that LCP(e, j) is the communication event f. [ ]

For asynchronous message passing, each LCP event is a send. We will be concentrating
on results for asynchronous message passing, but our results can easily be extended to (the

less practically significant) synchronous message passing.
Lemma 5.2 For event e of P;, each LCP(e. j), j # i. is a send event.

Proof. We know from lemma 5.1 that each LCP event is either a send or receive event.
Assume that the event e;x; = LCP(e.j) is a receive event. For e; to be the LCP(e. j),

ej — e and there does not exist another event € such that e; — €’ — e (definition 4.1).

For an event of P; to happen before an event of P; process, there must exist a causal
chain of communication events from P; to P; where the causal chain begins with P; sending
a message and ends with P; receiving a message (definition of —). For e; to happen before

e there must exist a send event ej’ in P; that happens after e; and that happens before the
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event e. Since e; — €] — e and €/ is a send event, the receive event e; can not be an LCP

event. a

assert assert

¥

Py P Py Py P Py

PO, PO:

Figure 5.2: LCP and LCP’ events of the Assert Event

Corresponding to each LCP send event is a receive event, denoted LCP’'. A causal cut
for event e consists of LCP send events. The LCP and LCP' events of the distributed
program shown in figure 4.2 are shown in figure 5.2. The wider communication line
indicates the message of the LCP and LCP’ events. The LCP and LCP’ events of a partial
order comprise the conmunication events that are sufficient for delivering the CGState data

to the process evaluating the assert. Before proving this property, the following definitions

are necessary:

Definition 5.1 A communication path of length t + 1 from eg to e, where t is odd and

Jj #1, is a series of communication events eg,..‘,eﬁ such that

1. eg is the only communication event of P; in the path,
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2. e is the only communication event of P; in the path,
r+1

3. ep — e[, where k # 1 or k =, and there does not ezist an event €' that is an event

of the path such that e, — €' — e[ *!.

4. for e}, and e{“, where k # 1 and r is even, ¢ and e,"‘" are ¢ send/receive pair (e,

being the send and e[ *' being the receive), and

5. for ef.ef *! where k # . the next event of the path (if it ezists) must occur on Pj.

denoted e]**. and the the event following e{*’z is not an event of P,.

If €. ;. €. €. €. € is a valid communication path of length 6. € is a send to Py, e is

the receive corresponding to eg, e? is a send to P, €} the receive corresponding to €2, and

e/ is a send to P, and e} is the receive corresponding to e}.

Definition 5.2 4 non-repetitive communication path is a communication path such that
when two communication events of P, occur in the path ..., e,';.e,';“. ..., no other events of

P can occur in the path.

A non-repetitive communication path differs from a communication path in that

e if P has events in the path. k£ # j. and k # i, then exactly one send and one receive

of P, occurs in the path.
e P; has exactly one event in path, the send event eg, and

o P; has exactly one event in the path, the receive event ef.

A non-repetitive communication path is a special case of a communication path.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5. OPTIMIZATION 52

Lemma 5.3 If a communication path ezists from e? to ef, then at least one non-repetitive
communication path ezists from P; to P; consisting of a subset of the events of the commu-

nication path.

Proof by contradiction. Assume a communication path exists from e? to ¢! but a non-

repetitive communication path does not exist from P; to P; consisting of a subset of the

events of the communication path.

Consider the communication path from e? to €,

Case 1 .
The communication path from eg to e! is not a non-repetitive communication path due

to there existing at least two send commands and two receive commands of the same

process. Pr. k # j.k # i. in the path. Let p=éJ,... cefhel ... etleltH e

represent such a path where P is the only process that has multiple send and receives

in the communication path. The events e,~' and ei"" are receive events of Pi. and

the events e[*' and ef**! are the send events of P,. We know from the definition

of a communication path that e;™' — e — e[*' — e[*'*!. We also know that

0 r—1

r+l+1 ¢
ej,»..’ek

is a non-repetitive communication path and that € y... € iS a non-

1 r+i+1 ¢

repetitive communication path, therefore eg ...e.e T, ... el is a non-repetitive

communication path.

Case 2 .
The communication path from e‘} to e! is not a non-repetitive communication path

due to there existing in addition to the send command eg at least one send and receive
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of P; in the path. Let p = g, - ,e;", e'JT, ..., € represent such path. The event e;-"l

is a receive event of P; and e is a send event of P;. We know from the definition

of a communication path that e — er!

"~" — e7. We can conclude that e] ...etisa

]

. non-repetitive communication path.

Case 3 .
The communication path from e to €} is not a non-repetitive communication path due
to there existing in addition to the receive command e! at least one send aud receive
of P; in the path. Let p= eg ..... e !, el.....e! represent such path. The event ef"
is a receive event of P, and €] is a send event of P;. We know from the definition of
a communication path that e{~! — e/ — ef{. We can conclude that e‘}...ef “lisa

non-repetitive communication path.

If a non-repetitive communication path exists from event e; to event e;, then event
e; happens before e;. Also. if event e; happens before event e;, then there exists a non-
repetitive communication path from P; to P; where the first event of the path happens after

e; and the last event of the path happens before e;.

Lemma 5.4 Event e; happens before e; if and only if there ezists a non-repetitive commu-

nication path from a send of P; that happens after e; and a receive of P; that happens before

ci.
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Proof

If e; — e;, then there exist a non-repetitive communication path from a send of P; that

happens after e; and a receive of P; that happens before e;.

Assume e; — e; but there does not exist a non-repetitive communication path that
starts with a send event of P; that happens after e; and ends with a receive event of
P; that happens before e;.

¢

For e; — e;, there must be communication path, e?...e,

. such that e¢; — €9 and
el oe(e j can be e‘J’- and e; can be ef). From lemma 5.3 we know that there must
also exist at least one non-repetitive communication path from P; to P; that consist
t

of a subset of the communication path ef...¢f.

If there exists a non-repetitive communication path from a send of P; that happens after
e; and a receive of P; that happens before e; then e; — e;.

Proof. Let eg be the send event that happens after e; and €] be the receive event that

happens before e;. From definition 5.2, we know that e; — ejand therefore e; — e;.

Theorem 5.1 For each LCP(e;,j) event of CC(e;), there ezists a non-repetitive commu-
nication path from LCP(e;,j) to an LCP' of P; such that each event of the path is either

an LCP event or an LCP’ event.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5. OPTIMIZATION 55

Proof.

CASE 1 For each LCP(e;,j) event of CC(e;), there exists a non-repetitive communication

path from LCP(e;, j) to a receive event €} such that € — e;

Let e; = LCP(e;,j). From lemma 5.2, we know e; is a send event. From definition
4.1 we know e¢; — e;. From lemma 5.4, we know there exists a non-repetitive

communication path from e; to some receive €] such that e — e;.

CASE 2 The non-repetitive communication path that exists from LCP(e;, j) to receive event

e, consists of LCP and LCP' events.

CASE 2.A The send events of the path are LCP events.
In order for every non-repetitive communication path that exists from LCP(e;, j)
to event €] not to consist of LCP send events, in each path there must exist at
least one send event in Py, e, that is not an LCP event.
Since ey is a send event of a non-repetitive communication path from e; to €],
we know from definition 5.2 that e, — e;. For e, to not be an LCP event. there
must exist another event, €. of P such that ex — €} — ¢;; i.e.. €}, is LCP(e;, k).
From this follows a contradiction. If €} exists then there does exist a non-
repetitive communication that includes LCP(e;, k) = €} according to 5.4. If e},
does not exist, then e; is the LCP(e, k).

CASE 2.B The receive events of the path are LCP' events.

We know from case 2.A that the sends of a non-repetitive communication path
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from e; to €] are LCP events. And from definition 5.2, the receives of the path

correspond to the sends, therefore the receives are LCP’ events.

The following theorem is the basis for reducing the number of messages on which state

information is piggybacked.

Theorem 5.2 If the state data of the processes are piggybacked only on the messages of
the LCPs and LCP's of the CC(e) of the current execution, the process erecuting the assert

statement is delivered ezactly the CGState prior to the assert statement’s execution.

Proof. This follows directly from theorem 5.1. From theorem 5.1 we know there exists
a non-repetitive communication path from each LCP event to an LCP' of P, that consists
of LCP and LCP' events. If a process only piggybacks its local state information. and the
state information it has received from other processes. on the message corresponding to its

LCP event, the data will be revcived by P;'s LCP' event(s). [ ]

Our first objective in reducing the amount of piggybacked data is to analyze the source
code of the distributed processes to determine all possible partial orders and the LCP and
LCP' events of each partial order. Chapters 6 and 7 explain our static analysis methods

for achieving this objective.
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Chapter 6

Static Analysis

6.1 Goals of Static Analysis

The causal state propagation protocol presented in chapter 4 satisfies the two properties of

the distributed assert:

A1l The asserted predicate is evaluated during execution of the program. We do not gen-

erate and analyze traces post mortem.

A2 No additional synchronization or message passing is added to the original distributed
application in support of the distributed assert statement. We do increase the size of

some application messages.

This protocol can be improved by reducing the amount of data piggybacked. We know from
the timing experiments in chapter 5 that these reductions will result in less interference with
message transmission time. Hence, the “natural” time in the program can be preserved.

The objective of static analysis is to determine which send and receive events are the LCP

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 6. STATIC ANALYSIS 58

and LCP' events of the assert. By piggybacking data only on these messages, the assert

statement is evaluated with the CGState and the amount of data piggybacked is reduced.

The first step in our static analysis is to examine the source code of each process and
generate a flow graph. From the flow graphs. communication analysis matches send and
receive events to generate a tree called a partial order graph (POG). We prove that the
POG represents all partial orders of the distributed system (property 6.12) and that each
path of the POG from root to a leaf node represents a unique partial order (property 6.13).
After analyzing the source code and generating the POG. our technique detects the LCP
and LCP’ events for an assert statement. Properties 6.14 and 6.15 are our concluding
properties of our analysis. and these properties establish that our technique for identifying

LCP and LCP’ events is valid.

By performing this analysis before execution. a reduction in the amount of piggybacked
data is achieved by tagging the LCP and LCP’ events as piggybacking events, and properties
Al and A2 are upheld. Before presenting algorithms for identifying the LCP and LCP'

events, Taylor’s static analysis technique is discussed.

6.2 Static Analysis in the Distributed Domain

Taylor [42] has developed an algorithm for statically analyzing the synchronous commu-
nication of a distributed program. Synchronous communication occurs when the sending
process blocks until the message is received by the destination process. Effectively, the

rendezvous of the send and receive appears as a distributed assignment, var = ezpr, that
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takes place in the context of both processes. The sender evaluates ezpr, and the receiver

stores the value into var.

The transformation of the — relation into the synchronous communication regime only
affects condition (2) of the three conditions stated in chapter one for asynchronous com-
munication. All the conditions are repeated for completeness: (1) if ¢ and f are events
in the same process. and e happens before f. then e — f: (2) if e and f are a send and
receive pair which rendezvous. consider e/f as a single event (the rendezvous which effects
the distributed assignment) on both the sending and receiving processes: and (3) ife = f

and f — g, thene — g.

Taylor’s algorithm matches all possible synchronous communications for the program-
ming language Ada [44]. The following is a discussion of Taylor’s technique as modified
(by us) to deal with communicating sequential processes (CSP)[15] . CSP is a well-defined
language which supports strictly synchronous communication. The semantics of CSP con-
structs have been formalized. and sound and relatively complete verification methodologies
for CSP are well-established [20, 21. 3]. Two message transmission operations are available
in CSP. Process P; sends a message, msg_out, to process P; by a matching send/receive pair.

F; executes the send operation j!msg_out, and P; executes the receive operation i?msg_in.

As part of the static analysis, each process is represented by an annotated flow graph G;,
which is a modification of a sequential program’s flow graph derived from flow analysis [13].
A distributed program is represented by {Gg,G1,....Gn-1} such that G; = {V;, A;. i}
where V; is the set of nodes, A; is the set of arcs, and r; € V; is the root node of G;.

In contrast to a flow analysis flow graph that usually represents all statements, nodes of
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G, represent only the statements necessary for communication analysis. In particular, the
following commands are represented by nodes: send and receive communication commands,
guards comprised of communication commands, and repetitive and selective constructs
- comprised of communication commands. [n addition. the root node of G; represents the
beginning of P;'s execution (begin node), and the node whose out-degree is zero represents
the completion of P;'s execution (end node). Arcs show the possible paths of execution
between the nodes. and all paths of G; are assumed to be executable. Figures 6.1 and 6.2
demonstrate two distributed programs’ flow graphs. The horizontal lines of the flow graph

represent the nodes.

Gz GS
begin begin begin
Go G, 2? i 1t 2! .
begi begin alternative o alternative
. R o! [11]
alternative alternative 1!
; @ ;
2 repititive L end
0! 0!
end end

end end
Figure 6.1: Flow graphs of a 2

process system Figure 6.2: Flow graphs of a 4 process system

For any node v; of G;, the set of immediate successor nodes is the set of all nodes v! -
for which there exists a path p from v; to v} in G; such that there is no node v (v #v; ;
v}’ # v]) on the path from v; to v]. Succ(v;) denotes the set of immediate successors of v;.

Figure 6.3 list some of the successor sets for figures 6.1 and 6.2.

Taylor defines a concurrency state C as an ordered N-tuple (vg,v1,...vN—-1) Where each
v; is a node of G; or is an inactive marker. Each v; denotes the next node to be executed in

P; or indicates process inactivity. A concurrency state C has successor concurrency states
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Successor sets of figure 6.1 Successor sets of figure 6.2
Go: Gi: Go: Gr:

succ(begin)=alternative succ(begin)=alternative [succ(alternative)=1?.3? succ(alternative)=0!,2?
succ(alternative)=1?,1! succ{alternative)=07,0! [succ(repetitive)=2?

succ(1?)=end succ(0?)=end succ(2?)=repetitive,end

suce(1!)=end succ(0!)=end

Figure 6.3: Successor sets

based on the successor sets of the nodes of C. A concurrency state C' =(vp,v,....vy_,)

is a successor of C, SUCC(C), if and only if

1. Foralli.0 <i< N -1, either

(a) v! € succ(v;),
(b) v} =wv;, or

(¢) vi = end and v} = inactive
2. There exists at least one v} which represents application of case a or c.

3. Adherence to the communications semantics of CSP is reflected in the application of
the three cases a-c. If v; is a send or receive command. v; can not be replaced by an
element of succ(v;) until the command’s matching communication command occurs
in the concurrency state. When a matching send/receive occur in the concurrency
state, either both or neither are replaced by their respective successor nodes for the

successor concurrency state.

A matching send (v;) and receive (v;) in a concurrency state indicates the CSP commu-
nication between P; and P; can occur. The communication between P; and Pj is an i/o

rendezvous between P; and P;.
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A nonterminal concurrency state has at least one successor state, and a terminal concur-
rency state has no successor states. Taylor’s concurrency history is a sequence of concurrency

states Cy,Cy,....,Cny such that

1. Cy =(beging, begin,,.... beginy_,), Cy represents the initial state of the distributed

computation.

2. Fori,0<i<m-1.Ci;) € SUCC(C;)

A proper concurrency history is a finite concurrency history such that C,, has no successors;
i.e.. C, is a terminal state. A complete concurrency history of a distributed system is the
collection of all possible proper concurrency histories. A directed graph provides a visual
representation of a complete concurrency history, where each node of the graph represents
a concurrency state. For the distributed program in figure 6.1. the complete concurrency

history is shown in figure 6.4.

Relating Taylor’s algorithm to previously defined distributed system terminology, we
see that each proper concurrency history corresponds to a possible total order of the syn-
chronous communications. A proper concurrency history where C,, does not contain all
inactive markers represents an execution that does not allow all the processes to complete
their execution. For example, if process P; executes the receive j?, but P; does not send a
message to F;, then P; hangs on the receive and can not complete execution. The complete
concurrency history corresponds to all possible communication patterns since all execution

paths are considered possible.
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(b.b)

Legend: (17.07) (12.00) (1%.07) (1,01)
a: alternative \/
b: begin
e: end (e.e)

Figure 6.4: Complete Concurrency History of figure 6.1

Taylor’s algorithm has been modified and expanded for various. distributed system'’s
applications [27, 45, 22, 8. 26]. We have developed algorithms. motivated by Taylor’s work.

designed to identify the LCP and LCP* messages in each process for an assert statement.

6.3 Communication Analysis for Asynchronous Message

Passing

In this work, the processes of a distributed program are written in the programming lan-
guage C. The language has been augmented with three commands: async_send, async_recv,
and assert. The statements async_send and async_recv are for asynchronous communication
between processes and are described in detail in chapter 1. The assert command has the

format assert(P) where P is a predicate. The predicate P is a boolean expression over the
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variables of the distributed program. Currently, the placement of async_send, async._recv
and assert statements is restricted to the main function of the program. In this chapter,
the language does allow nested if and if/else constructs, but it does not allow loops. This is
done for ease of presentation. Loops are added to the language and handled by our analysis

in chapter 7.

Each process P; is represented by a control flow graph (FG;). A distributed program is
represented by { FGy, FG\,.... FGy_, } such that FG;={Vi. A;,r; } where V] is the set
of nodes. A; is the set of arcs. and r; € V;. The root node 7; represents the start of P;’s
execution. The nodes of F'G; represent either computation statements or control constructs
of the source code. Assignment. async._send, async_recv. and assert statements are
classified as computation statements. The if and else constructs and begin and end
delimiters are classified as control constructs. An end node represents the completion of
P;’s execution. The arcs represent P;'s flow of execution. If an arc exists from node n to
node n’. n’ can be executed following the execution of n. Although multiple branches may

exist in the flow of execution, all flow of execution will terminate into a single end node.

Consecutive assignment statements that occur between control constructs and other
types of computation statements are grouped into one node labeled ASSIGN. The com-
mands async_send, async_recv, and assert are represented by SEND. RECEIVE, AS-
SERT nodes, respectively. The control constructs if and else are represented by nodes
labeled IF and ELSE, respectively. The end of the if side of an if/else is represented by
a END_IFSIDE node. The end of an if statement is represented by an END_IF node, and

the end of the else side of an it if/else is represented by a END_ELSE node.
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Each FG; is generated by parsing the source code of P;. First a lexical analyzer reads
in the source code, and scans this code to recognize tokens. The software tool Lex has been

used to produce the lexical analyzer.

The lexical analyzer passes the token to a parser. The tokens are parsed according to
the ANSI C grammar that appears in Appendix A. This grammar is LR(1). The soft-
ware tool Yacc helped produce the parser. The productions of the grammar that are
relevant for describing the algorithm for generating the FG;s are postfix_expression,

unary.expression, assignment_expression, and selection_statement.

Actions are embedded in these productions to call functions that collectively generate the
control low graphs. The algorithm, Create_FG; (). implemented by these function calls. is
described. For grouping consecutive assignment statements into one node, each assignment
statement of the node is an entry in a linked list. and the assignment node references this
linked list. A stack is employed to match the begin and end of control constructs. An entry
in the stack is a pointer to a node of FG;. The variable TopStack is a pointer to the node
referenced by the top entry of the stack. The variable CrtNode is a pointer to the current
node of FG;. Associated with each node of FG; are two fields that are for constructing
the flow graph. The fields are HoldPtr and AddEdgeFlag. HoldPtr is a pointer to a node of
FG; and AddEdgeFlag is a boolean flag. The input for Create_FG; () is the source code of
P;, and the output of Create FG; () is the flow graph FG;.

Create.FG;() /* Input: P;; Output: FG; */

Create the ROOT node of FG;

CrtNode = ROOT node

if an assignment statement is recognized
Add assignment statement to the tail of the linked list
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if an async_send is recognized
if the linked list is not empty
AddNode (CrtNode, ASSIGN)
linked list is set to empty
AddNode ( CrtNode. SEND)
if an async_recv is recognized
if the linked list is not empty
AddNode (CrtNode, ASSIGN)
linked list is set to empty
AddNode ( CrtNode, RECEIVE)
if an assert is recognized
if the linked list is not empty
AddNode (CrtNode, ASSIGN)
linked list is set to empty

AddNode (CrtNode, ASSERT)
if an if statement is recognized

if the linked list is not empty
AddNode (CrtNode, ASSIGN)
linked list is set to empty

AddNode ( CrtNode, IF)

Push CrtNode onto the stack

TopStack = CrtNode

if an else is recognized

AddNode ( CrtNode, END_IFSIDE)

if the linked list is not empty
Set field in CrtNode to point to linked list
linked list is set to empty

TopStack.HoldPtr = CrtNode

CrtNode = top entry of the stack
CrtNode.AddEdgeFlag = true

if the end of the else side of an if/else is recognized
AddNode (CrtNode, END_ELSE)
if the linked list is not empty
Set field in CrtNode to point to linked list
linked list is set to empty
CrtNode.HoldPtr = TopStack. HoldPtr

CrtNode.AddEdgeFlag = true

/* Set HoldPtr of the IF node to the

66

/?* for the assignment statements */

/* for the assignment statements */

/* for the assignment statements */

/? for the assignment statements */

/¥ for the if statement

Y/

Y/
/* address of the END_IFSIDE */

/* Flag an edge needed from END_IFSIDE node */
/* to the first node following END_ELSE node

Y/

/* for the ending of the else side */

/* Move the address of the END_IFSIDE */

/? node to the END_ELSE node */

/?* Flag an edge will be needed from END_IFSIDE */

/* node to the first node following END_ELSE node */

Pop the stack

if the end of an if statement is recognized
AddNode (CrtNode, END IF)
if the linked list is not empty

/* for the ending of the if statement */
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Set field in CrtNode to point to linked list
linked list is set to empty

CrtNode.HoldPtr = TopStack /* Set the HoldPtr of END_IF node */
/* to the address of the IF node */
CrtNode.AddEdgeFlag = true /* Flag an edge will be need from the IF node */

/¥ to the first node following the END_IF node */
Pop the stack
if the current control construct or statement is not recognized
Generate an error and halt
if the end of the source code is recognized
AddNode(CrtNode, END)
If the linked list is not empty
Set field in CrtNode to point to linked list
linked list is set to empty
end algorithm

The algorithm Create FG; () calls the algorithm AddNode().

AddNode(CrtNode. type)
NewNode = Allocate a node
Create a directed edge from CrtNode to NewNode
if CrtNode.AddEdgeFlag
Create a directed edge from the node CrtNode.HoldPtr to NewNode
/* An edge is added either from END_IFSIDE or IF node to NewNode */
if type = ASSIGN
Set field in NewNode to point to assignment linked list
CrtNode = NewNode
end algorithm

When a node is added to FG;, if the previously added node is the end of the else side
of an if/else. the END_IFSIDE and END_ELSE nodes must both have an edge to this
newly added node. Figure 6.5 shows the adding of NewNode. The dashed lines indicate
the edges AddNode() creates to NewNode. The END_ELSE is CrtNode so the edge from
END_ELSE to NewNode is added by the second line of AddNode(). But creating the edge

from END_IFSIDE to NewNode is more complicated. When END_IFSIDE is added to FG;,
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the address of this node is stored in the IF node. This is accomplished with the following

line from Create _FG;():
TopStack.HoldPtr = CrtNode

When the END_ELSE node is added. the address of the END_IFSIDE node is moved from
the [F node to the END_ELSE node. This is accomplished with the following line from

Create FG;():
CrtNode.HoldPtr = TopStack.HoldPtr

By moving the address of the END_IFSIDE. when a new node is added and CrtNode is
equal to END_ELSE. the address of the END_IFSIDE node is available in CrtNode to add
the edge from END_IFSIDE to NewNode. The flag AddEdgeFlag of the END_ELSE node is
set to true to indicate that function AddNode () should add an edge from the END_IFSIDE

node to NewNode.

. .t
NewNode

Figure 6.5: if/else portion of control flow graph
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Figure 6.6: if portion of control flow graph

Figure 6.7: Flow graphs for a simple 3 process system
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Figure 6.6 shows the adding of a new node when CrtNode is a END_IF node. When
the END_IF node is created, the address of the IF node, which is available on top of the
stack. is stored in the END_IF node. This is accomplished with the following line from

Create.FG;():
CrtNode.HoldPtr = TopStack

When NewNode is added to FG;, the address of the IF node is available in CrtNode so that
an edge from the [F node to NewNode can be created by AddNode (). The flag AddEdgeFlag
of the END_IF node is set to true to indicate that function AddNode () should add an edge
from the IF node to NewNode. Figure 6.7 is the resulting control flow graphs for the source
code of figure 4.2. Another example of a flow graph is figure 6.9 which is the result of one

process’s source code with nested if constructs shown in figure 6.8.

P;::
{
a = random number
b=a-1
if(a>1){
if (b>1) {
async.send(0. a)
b=b*2
}
else {
async.recv(0, b)
a=b*2
}
}
a=b
}

Figure 6.8: P;’s source code
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f

end

Figure 8.9: FG;
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As we know from the definition of F'G;, the nodes of FG; represent syntactic constructs
in the source code of P,. The execution of P; may be viewed as a traversal of FG;, starting
at the root node and ending at the end node. An event in the execution of P; corresponds
to the locus of control passing through a node of F'G;. In the remaining discussion of the
flow graphs, the symbol representing a node of FG; is also used to represent the event
corresponding to the execution of the source associated with that node. The context of the
use of the symbol determines whether it is representing a node of FG; or an event. For

example, if the context is @ — b. the symbols ¢ and b represent events.

We make use of the following properties of a FG;.

Property 6.1 A path ezists from node a to node b in FG; if and only if a — b when both

a and b are executed.

Proof.

PART 1. [fa path exists from node a to node b. then a — b when both a and b are executed.

CAsE 1. First consider a process’s source code in which no if or if/else statements
exist. The resulting control flow graph contains only nodes of type ROOT.
ASSIGN, SEND, RECEIVE. ASSERT and END, and one path exists from the
ROOT node to the END node. Since execution must follow the edges inF'G;, a

path from a to b implies a — b.

CAsE 2. Now consider the case in which if and if/else constructs exist. According
to the construction algorithm, flow graphs of the form shown in figure 6.10 are

generated for an if control construct and an if/else control construct.
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For the if control construct. the branch of control resulting from the falsifying of
the if statement is the edge from the [F node to S2. When the condition of the
if statement evaluates to false, the statements represented by S2 are executed
next. and therefore I[F — S2. Let node a occur before the IF node in F'G;, and
let node b occur after S2 as are shown in figure 6.10. Two paths exist from node

¢ to node b. Independent of which path is followed in an execution P;, a — b.

D

-

Figure 6.10: if and if/else flow graphs

Next consider the if/else control construct. For the branch resulting from a true
evaluation of the condition of the if/else, a path is created by Create_F'G;()
from the IF node to the END_IFSIDE and from the END_IFSIDE to S5. If

the condition evaluates to true, the statements represented by S3 are executed
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then the statements represented by S5 are executed. Therefore, [F — S3 —
END_FSIDE — S5. For the branch resulting from a false evaluation of the
if statement, a path exists from the IF node to the END_ELSE and from the
END_ELSE to S5. If the condition evaluates to false. IF - S4 - END_ELSE
— S5. Let node e occur before the IF node in FG;, and let node b occur after
S5 in FG; as are shown in figure 6.10. Two paths exist from node a to node b.

Independent of which path is followed in an execution P;, a — b.

PART 2. If a — b when both a and b are executed. then a path exists from node « to node

bin FG,‘.

Assume a — b but that a path does not exist from node a to node b in FG;. Two

cases can exist in F'G; such that a path does not exist from node a to node b.

1. there exists a path from node b to node a. or

2. node a occurs in one branch of a if/else and node b occurs in the other branch

of the if/else.

If a path exists from node b to node a, we know from part 1 of this proof that b — a -
when both b and a are executed. This contradiction stands in to our assumption that
a — b. therefore a path cannot exist from b to a. Now consider case 2. Only one
branch of the if/else will be executed for any execution of P;. Therefore, a /A b. So

we can conclude that if ¢ — b, a path exists from node a to node b.
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Property 6.2 Each path of FG; from ROOT node to the END node represents an ezecu-

tion of P;.

Proof. Assume there exists a path from the root node to the end node that does not
represent an execution of P,. For such a path to exist. there must exist at least two nodes
v and v’ where v is a parent of v’ , and it is not possible that v — v’ for any execution of

P;. This is a contradiction of property 6.1. [ ]

Property 6.3 For each path, the occurrence of the nodes in the path represents the total

order of events if this path is erecuted.

Proof: For each statement and control construct of the source code. a node is generated in
FG; (algorithm Create_FG;()). From this observation of Create_.FG;() and properties

6.1 and 6.2, it follow that this property is true. [ ]

Property 6.4 FG; represents all execution paths of P;.

Proof. This property may be falsified under two conditions:

ConbpITION 1. Flow graph FG; only represents a subset of execution paths of P;, We know
from Create_F'G;() that every statement and control construct is represent in FG;.
For a path not to be represented in F'G;, one or more directed edges between nodes

are omitted. Three cases exist when an edge can be omitted:

1. an edge from current node to new node is not added,
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2. an edge from END_IFSIDE node to first node following the END_ELSE node is

not added, or

3. an edge from IF node to first node following the END_F node is not added.
For any of these cases to occur. the AddNode () algorithm is contradicted.

CoNDITION 2. FG; represents an invalid execution of P;. For this to be true. at least one
path from the ROOT node to the END node represents an invalid execution of P;.

This contradicts property 6.2.

For each communication node. v, of FG;, an immediate successor set S(v) is determined

from FG;. Node v' is an immediate successor of node v if

1. there exists a path from v to v,
2. v’ is a communication node or END node. and

J. there does not exist a communication node v” on the path from v to v’ such that

v # .

Concurrency communication states (CCSs) are generated from the flow graphs
{FGy, FG,.....FGn_,} of the constituent processes of the distributed system. Each CCS
is an ordered N-tuple (vg,vy,....vnx_1) where v; is the root node of FG;. a communication
node of FG;, or the END node of FG;. In the examples, an underscore denotes the END

node. If v; is a communication node, v; denotes the next communication command ta be

executed in P;. The communication commands of a CCS represent the events that may
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occur concurrently. Not all communication commands are ready to be executed: ie.. a
receive is not ready if its corresponding send has not been executed. All the communication
commands of a CCS that are ready to execute are concurrent. A series of CCSs are
generated, as described shortly, to mimic the execution of the distributed system represented
by {FGo. FG,..... FGy_,}. Collectively, a tree. H, of CCSs is generated that represents
all the possible partial orders P of the distributed system. Figure 6.11 is an example of
an H tree where each node of the tree represents a CCS. The concurrency among the
communication events is preserved in H by not imposing a total order on the concurrent

events.

Associated with each send command in a CCS is a counter. If »; is a send to P;. the
counter associated with v; is how many messages have been sent to P; including this send.
Assume we have a four process system. and v; € CCS is equal to 5:async_send(0). This
five means four messages have been sent collectively to Py from P,.P, and P; prior to
this message. Associated with each receive command whose matching send command has
already been executed is also a counter. If v; is a receive command and has an associated
counter. the counter is how many messages have been received by P; including the message

received with v;.

The initial concurrency communication state. CCSp, contains the root node of each
flow graph {FGy, FG\,....,FGN_1},CCSy = (rg,...,TN—1). Successor CCSs of CCS are
determined from S(r;),0 < i < N. The successors of CCSy are a set of concurrency com-

munication states denoted by SUCC(CCSp). The following steps determine SUCC(CC Sy):

1. Generate a successor of CCSy by replacing each r; with an element of S(r;): i.e.,
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CCS = (vg,...,vn-1) is an element of SUCC(CC Sy) if each v; is an element of S(r;).

2. Generate SUCC(CCSy) by repeating step 1 until all unique CCSs are generated from

the root nodes’ immediate successor sets. The number of successor CCSs of CCSy is

IS(ro)} * - -+ % |S(rn -y )| = ISUCC(CCSyp)|

A CCS. where each v; is a communication node or an inactive marker, has at least
one successor, CCS' = (v, v],....v)y_,), if CCS has at least a send command or a ready
receive command. If node n of H represents the concurrency communication state CCS,
the successors of CCS are represented in H as the children nodes of n. The predecessor of
CCS is represented in H as the parent (immediate ancestor) of n. A ready receive means
that the necessary send command for this receive command occurred in the predecessor
of the CCS or in a ancestor of CCS. A message queue. Msg_Q;. is maintained for each
process. [f v; € CCS is a send command to P;, the entry j is added to the queue Msg_Q;
following the generation of SUCC(CCS). If v; is a receive from P; and Msg.Q; contains a

J. the receive is ready and the first j in Msg_Q); is removed.

Associated with each Msg_Q; is a counter that is incremented each time an entry is
placed in the queue. The current value of the counter is appended to an entry when it is
added to Msg_Q;. An entry in Msg.Q; has the format <counter, process id>. The value of
counter is also appended to the send entry of the CCS node of H that generated the entry
in Msg_Q;. Send commands that are syntactically identical in a process's source code are
distinguished in the CCS nodes of H by their associated counter. When a receive v; from
P; is ready, the counter associated with the first j entry in the queue Msg_Q; is appended

to the receive entry in the CCS node of H. Not only are syntactically identical receives
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distinguishable, the counter provides a method to match sends with corresponding receives.

The use of this counter for matching sends and receives will be seen in a later algorithm.

A CCS may contain multiple sends and ready receive commands. For example,
CCS = (asyncsend(l), async_send(0), async_recv(3).-) has the two sends. and a possible
ready receive. If M sg_Q2 has the entry <counter. 3> to indicate that P; has sent a message
to P, but the message has not been received by P, vy (v = async.recv(3)) is a ready
receive. If vy is a ready receive, the value of counter is appended to async.recv(3) in the
H node. If CCS has no sends and no ready receives. CCS has no successor states. The
successor concurrency communication states of CCS. SUCC(CCS). are determined from
the immediate successor sets of CCS’s send and ready receive commands. The following

steps determine SUCC(CCS):

1. In CCS. find the send and ready receive commands.

2. Generate a successor of CCS. CCS'. by replacing each v; of CCS that is either a send
or ready receive command with an element of S(v;). If the element of S(v;) chosen is

the end node. replace v; with the inactive marker.

3. Generate SUCC(CC'S) by repeating step 2 until all unique CCS’s are generated from
the send and ready receive immediate successor sets. For example, if CCS has two

sends, vy and v;, and one ready receive, v3, then the number of successor states of

CCS is [S(vo)| * [S(v1)] * [S(v3)| = [SUCC(CCS)|

A CCS containing more than one send and/or ready receive commands signifies these

commands happen concurrently. If a CCS consists of no send commands and one or more
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receive commands, where the receive commands are not ready, the CCS has no successors
and is an invalid terminal state of the distributed system. A CCS comprised of all inactive

markers is a valid terminal state.

A proper CCS history is a sequence of concurrency states CC Sy, CCS,..... CCS;, such

that

p—

. CCSO = (1‘0.7’1 ..... T'N—l)v

[

. Foralli.0<i<m-1.CCS;; € SUCC(CCS;). and

3. CCS8S,, has no successors ( CCSy, is a valid or invalid terminal state).

A complete CCS history of a distributed system is a collection of all possible proper
CCS histories. The complete CCS history is represented by a directed graph H = (N. A, 1)
where W is the set of nodes, A is the set of arcs. and r € N is the root node of the graph.
The nodes represent the CCSs. r represents CCSg. and an arc exists from the node that
represents CCS to the node that represents CCS' if CCS’' € SUCC(CCS). A path from
the root node to a node of the graph that has no successors (out-degree is 0) is a proper
CCS history. Figure 6.11 is a complete CCS history for the distributed system shown in
figure 6.7. The underlined communication events are the sends and ready receive events.

The number preceding the communication event is the counter associated with the event.

The following algorithm, Crt_H(), generates the graph H to represent the complete
concurrency history. The graph H is built breath first. that is. one level of the tree is
created before the next level is begun. A node of H counsists of two entries, CCS and

FGnode[0... N-1]. The entry CCS is the CCS this node represents. The array entry
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(ra,r1,r2)

(l:asyncsend(1), (l:asvncsend(1).

async.recv(0), async.recv(2),

2:asyncsend(1) ) 2:async.send(1) )

(3:asyncsend(1). (3:async.send(l).

l:async._recv(0),

—)
(—

2:asvnc.recv(2),

—)

l

(—

3:async_recv(0).

—)

l

(—— )

2:async.recv(2),

—)

l

( —.
1:async_recv(0).

—)

l

[
J:async.recv(0).

——v)

i

Figure 6.11: Tree H for simple 3 process system
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FGnodeli] is the node of FG; that v; of CCS represents. The array FGnode is set to the

appropriate values by algorithm Crt_H() and is used later by algorithm Crt_P0G().

An array of size N of integers is maintained, counter{0], . ... counter{N —1], by algorithm
Crt_H() for counting the number of messages that have been sent to each process. The value
of counter{i] is the number of messages that have been sent to P; and the number of entries
that have been placed in Msg_Q;. In addition to the Msg_Q; queues. another queue CCS.(Q) is
maintained for recording the CCSs that are to be added next to H. An entry in CCS_Q con-
sists of four parts, a CCS. a linked list representing the set SUCC(CCS), the values of the
queues Msg.Qq.. ... Msg-Qx_, that correspond to CCS after SUCC(CCS) has been deter-
mined. and the value of array counter that corresponds to CCS after SUCC(CCS)) has been
determined. The format of an object in the queue is <node. list.Msg_Qp..... Msg_-Qn-_1,
counter>. An entry in the linked list list consist of two two values. CCS and the variable
FGnode corresponding to this CCS. The input to Crt_H() is {FGy. FG,,.... FGx_1}. and

the output is the tree H.

Algorithm Crt_H() calls function Determine SUCC() to determine the successors of a
CCS and to place the appropriate entries in the Msg_Q queues and CCS_Q queue. Function
Determine _SUCC() calls function Generate_SUCC() to generate all the successors of a CCS.
The variables employed by function Generate SUCC() to generate the successors are S_v;
and indez. Corresponding to each send and receive node of FG; is an array S_v; that
contains the successors of node v;, S(v;), in FG;. If v; is an entry in a CCS, array S.v;
is the successor nodes of v;. The maximum number of successors of a node is MAXKIDS,

and the dimension of each S.v; is MAXKIDS+1. Each S_v; array is filled with -1 for
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unused entries. Variable indez is an array of NV integers. Function Permute() determines
a successor of CCS by selecting an index into each S.v; array for each v; € CCS that is a
send or ready receive. The array inder contains indexes into each Sw;. If v; € CCS is a
send or ready receive. indezfi is an index into the array S.v;. If v; € CCS is neither send
nor ready receive, indezfi] is a -1 meaning this v; should not be changed in the successors
of CCS. Function Generate SUCC() calls function Permute() to obtain the indexes for a
successor of a CCS and continues to call function Permute () until all successors of a CCS

are generated.

Crt H()

Initialize queues Msg_Qy..... Msg.Qn-1. CCS.Q to empty

Initialize array counter{0] ... counter{N — 1] to 0

Create root node r

r.CCS = CCSy

Determine SUCC(r.CCSy. Msg_Qo,.... Msg.Qn-, CCS.Q)

while CCS_Q is not empty
item = behead(CCS.Q) /* format of item is <node.list.Qy... .. Qn-1. counter> */
Parent = item.node
LL = item.list

counter = item.counter

for each < CCS.FGnode> entry in LL
Create a node n in H
n.CCS = CCS
n.FGnode = FGnode
Create edge from Parent to n
Determine SUCC(n.CCS, Msg.Qq,.... Msg_.Qn_,, counter, CCS_Q)

end for

end while
end algorithm

Determine SUCC(n,CCS, Msg_Qy,.... Msg-Qy-1, counter, CCS.Q)
Msg_Q%.... .Msg-Q'Nn-1 = Msg_Qy,.... Msg.Qn_,
counter’ = counter
if (n = root node)
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SUCC(CCS) = Generate SUCC(n) /* < CSS.FGnode> is entry in SUCC(CCS) */
if (SUCC(CCS) # NULL)
Add <n.SUCC(CCS).Ms9_Q%.-... Msg.Q’'n—y.counter’> to the tail of CCS.Q
end if
else
fori=0to N—-1
if (v; of CCS = async_recv(j))
if (Msg_Q’; has entry < counter. j >)
/* vi is a ready receive */
item = behead first < counter, j > entry in Msg_Q’,
append item.counter to v; in CCS /* item.counter-async_recv(j) */
end if
end if
end for
fori=0to N -1
if (v; of CCS = async.send(j))
counter(j]'++
Add <counterfj]". i > to Msg.Q’;
Append counter(j]’ to v; in CCS
end if
end for
SUCC(CCS) = Generate_SUCC(n)
if (SUCC(CCS) # NULL)
Add <n.SUCC(CCS),Msg-Q%.. ... Msg.Q 'y -.counter’> to the tail of CCS.Q
end if
end if
end function

Generate_SUCC(n)
SUCC(CCS) = NULL
indez[0] ... indez/N — 1] = -1
for i=0to N —1
if (vi € CCS = send OR v; € CCS = ready receive OR v; € CCS =1;)

indezfif = 0
end if
endfor
do
CCS' =n.CCS

FGnode™ = n.FGnode
fori=0to N -1
if (indezfi] # -1)
v; € CCS' = commo command or inactive marker for node S_v;findezfi]]
FGnodefi] = S_vifindezfi]]
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endif
endfor
Add < CCS',FGnode> to the tail of linked list SUCC(CCS)
while (Permute(indez) = true)
return(SUCC(CCS))
end function

Permute (inder)
current = N -1
while (indez[current] == -1) AND (current > -1)
current = current ——
endwhile
if (current > 0)
index[current/++
else
return(false) /¥ indez is all -1's */
endif
while (current > 0) AND (S_vcyrrentfindez{current]] = -1)
indez[current] = 0
current ——
while (current > 0) AND (indez[current]| = -1)
current ——
end while
if (current > 0)
indez{current/++
endif
end while
if (current < 0)
return(false) /* have been through all permutations */
else
return(true)
endif
end function

The following are useful properties of H. In proving these properties. the function p

maps an event e to the process of the distributed system in which the event occurs.

pley=i€llifeec P,
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Property 6.5 If

e v; and v; are events in the execution of a distributed system,
e U; Uy,
o v; € CCS and v; is a send or ready receive. and

o v; € CCS' and v is a send or ready receive,

then CSS is an ancestor of CCS'.

Caske 1 For p(v;) = p(v;).
Proof by induction.

Basis. If

e v; €CCS.
e v; is a send or ready receive.
o CCS occurs on level ! of H.
e v; € S(v;), and
e v; €CCS'

then CCS' occurs on level [ + 1.

Proof. We know that the SUCC(CCS) are children of CCS in H. According
to the construction of H, SUCC(CCS) is determined with the S(v;) for each v;
that is send or ready receive. Node v; is represented in at least one CCS' €

SUCC(CCS) which occurs on the next level, { + 1. of the tree H.
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INDUCTIVE HYPOTHESIS. If
e v; €CCS,
e v; is a send or ready receive,
e CCS occurs on level [ of H.

® Ui = Ug.

p(vi) = p(vi), and

U € ccs”.

then CCS" occurs on level [ +n for n > 2.
INDUCTIVE STEP. If

® v is a send or ready receive,

® v; € S(vg), and

e v €CCS'
then CCS' occurs on level I +n + 1.

Proof. We know from the inductive hypothesis that CCS" occurs on level [ +n
and that CCS" is an ancestor of CCS. Since v; € S(vk), we know from the basis
that CCS’ occurs on level { +n + 1. We can conclude that CCS’ is an ancestor

of CCS.

Caske 2. For p(v;) # p(vi).
Proof. Since v; - v;, we know from lemma 5.4 there exists a non-repetitive commu-
nication path from P; to P; from a send of P; that happens after v; ( or v; is this send)
t

and a receive of P; that happens before v; (or v; is this receive). Let NCP =¢J, ..., €;
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be this non-repetitive communication path. Two possibilities exist for v;: either v;
and e are the same event, or v; occurs before e?. Two possibilities exist for v}, either
v; and €} are the same event or v; occurs after ef. In the remaining proof we assume
without loss of generality that v; and e? are the same event. and v; and ej are the

same event.

The events of the path NCP correspond to one or more messages. Consider the

following 2 cases:

CASE 2.A. NCP corresponds to one message.
Event v; is the sending of a message to P;, and v; is the corresponding receive
of the message from P;. Let the following be true for the nodes CCS and CCS’
of H: v; 'e CCS and vj € CCS'. According to the construction of H. when v;
is ready. the i entry in Msg_Q; corresponds to v;. For the i that corresponds to

vi to be in Msg.Q;. CCS must be an ancestor of CCS'.

CASE 2.B. NCP defines two or more messages.
Let NCP=¢).....el. et . e" ™. .. e\ wherem+2 < t.and e} € CCSand is
asend. e € CCS" and is a receive. eft*' € CSS" and is a send, e]""* € CCS™"’
and is a receive, and e;- € CCS’ and is a receive. We know from case 1 that for
events el*,el**! of NCP. where el € CCS" and ef**! € CCS", that CCS"
is an ancestor of CCS" We know from case 2.a that for events ef**!, e**? of
NCP, where e*! € CCS" and €**? € CCS", that CCS™ is an ancestor of
CCS"™. Therefore, CCS" is an ancestor of CCS™. If el is the receive event

immediately following €? in NCP, then from case 2.a we know that CCS is an
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ancestor of CCS". Therefore, CCS is an ancestor of CCS"'. If e{"*z is the send
immediately preceding €’ in NCP, then from case 2.a we know CCS" is an

ancestor of CCS’'. We conclude that CCS is an ancestor of CCS'.

Property 6.6 The sends and ready receives of a CCS are concurrent.

Proof. Assume for v;,v; € CCS that v; = v;. This contradicts property 6.5. a

Property 6.7 If CCS is an ancestor of CCS'. v; € CCS and v; € CCS’, and v; and v;

are either sends or ready receives, then v; = v; if one of the following is true:

CAsE 1. p(v;i) = p(v})

CASE 2. v; is send to Pj, vj is a ready receive from P;. and the next i entry in Msg_Q;

corresponds to v;.
CASE 3. v; = vg and vy — v; where vy € CCS" such that vi is either a send of ready

receive. CCS is an ancestor of CSS". and CCS" is an ancestor of CCS'.

Proof.

Case 1.
For v; to occur in CCS' that is a descendant of CCS. v; € S(v;) or
v; € S(S(...S(v;) ...)) where the nesting of immediate successor sets is two or greater.

Therefore v; — v;.
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CAsE 2.
According to the algorithm for constructing H. for v; to be a ready receive and the

next ¢ entry in Msg_Q); to correspond to v;, v; must happen before v;.

CASE 3.

This follows directly from the transitive property of the happens before relationship.

We know from property 6.6 that the sends and ready receives of a CCS are concurrent.
We can deduce concurrent sends and ready receives that occur in different CCSs. Entries v;
and v; are concurrent if v; € CCS. v; € CCS’, v; and v; are either sends or ready receives,

CCS is an ancestor of CCS’. and v; # v;.

Before stating and proving the next property, lemma 6.1 is established. The execution
of a communication event in P; represented by node n in F'G; is possible if there exists at
least one path from the root node to n such that the communication events occurring in the
path prior to n are either sends or ready receives in H. In other words. the communication
event of node n has a possibility of being executed if the communication events that occur
prior to it are executed. If a receive is possible, its execution is then dependent on a message
being sent, and the receive is labeled as ready when the necessary message is sent. If the
necessary message is not sent, the receive does not become ready and does not execute. If
a send is possible, it executes since a send’s execution is not dependent on the occurrence

of a communication event in another process.
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FGo:: FG,:: FGa::

async.send(0) async_send(0)

&Y

asyncsend(1)

vac.recv(l)

async_recv(1)

(i)
YAV

END

Y

Figure 6.12: Possible and impossible receives

An example of a possible receive event and an impossible receive event is shown in figure
6.12. In FG; there exists a path from the root node to the first async_recv(1). We know
from the construction of H that async_send(0) will be an element of a node of H. and
async_send(1) will be an element of a node of H. The first async_recv(1) of FG, will
occur in a node of H as a receive, but this receive will not be ready since the sending of
a message from P, to P, does not exist. This receive occurs as an entry in an H node
to represent the receive waiting to execute. The communication commands of P, prior to

the first async_recv(1) are executed, and async.recv(1) is possible although it will not
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execute. Since the first async_recv(1) of P> can not execute, the second async_recv(1)

of P> will not occur in a node of H and is therefore impossible.

Lemma 8.1 If node n of FG; is a communication node and the ececution of n is possible,

then n is a send or receive in al least vne node of H.

Proof.

Basis.
If node n is a successor of the root node of FG;, n € §(r;). then v; = n for at least
one CSS € SUCC(CCSy). CCSy occurs on level 0 of H. therefore each CCS €

SUCC(CCSp) occurs on level 1 of H.

Proof. According to the construction of H. the SUCC(CCSy) is determined by S(r;)

for all i. Node n of FG,; is represented in at least one CCS € SUCC(CCSy).

INDUCTIVE HYPOTHESIS.
If node n’ is a communication node of FG;, n’ is an immediate predecessor of node n

in FG;, and the execution of n’ is possible. then node n' is represented in CCS' on

level z of H.

INDUCTIVE STEP.
If node n € S(n’) and the execution of node n is possible, then node n is represented

in at least one CCS € SUCC(CCS’) on level i + 1 of H.

Proof. From the inductive hypothesis. we know n’ is represented in node CCS’ on
level i of H. For the execution of node n to be possible, node n’ is either a send or

ready receive element of CCS'’
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In the construction algorithm, SUCC(CCS') is determined by S(v;) for all i of CCS’
that are sends or ready receives. Let v, = n' in node CCS'. Since v/ is a send or a
ready receive of CCS’ and n € S(v!). we can conclude that node n is represented in

at least one CCS € SUCC(CCS') on level i + 1 of H.

Property 6.8 The tree H derived from { FGy,....FGy_) } represents all partial orders

of the distributed system represented by { FGyg..... FGy-1 }-

Proof.

1. From properties 6.1. 6.3. and 6.4. we know each F'G, represents all execution paths
of P;. and the occurrence of the nodes of a path of F'G; represents the total order of

events of P;.

2. From properties 6.5 and 6.7. we know all the happens before relationship among

local and non-local events of the distributed system are correctly represented in H.

3. From lemma 6.1. we know that if the execution of a communication node of FG; is

possible, then the communication event is represented in H.

From (1), (2) and (3). we can conclude all possible executable events of each process are
represented in H. and all happens before relationships among these events are correctly

represented in H. Therefore all partial orders of the distributed system are represented in

H. a
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In some cases, two or more branches of H represent the same partial order. Consider the
portion of tree H for a four processor system in figure 6.13. In this example, the receives
of the CCSs are not ready. The sends of each CCS are replaced in the child CCSs with
an inactive marker. Both leaf node branches indicate that Py does not complete execution.
The two branches shown represent the same partial order. From the tree H, a partial order
graph, POG, is constructed that combines branches that represent the same partial order
into one branch. Also. only the sends and receives that are executed in a partial order are
represented in the POG. In other words, the sends and ready receives are presented in the

POG.

(ro.r1,ra,ra)

(asynerecv(2), (async.recv(3),
L:asvnc_send(0). 1:async_send(0),
L:async_send(1) l:async_send(1)
2:asyncsend(1) ) 2:async.send(1) )
(async.recv(2), (asyncrecv(3),

—) —)

Figure 6.13: Same partial orders

A POG is a directed graph (N, A, s) where N is the set of nodes. A is the set of arcs.
and s € N is the root node of POG. The nodes of the POG are generated from H’s nodes

such that the POG nodes represent the sends and ready receives command of the H nodes.
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In the remaining discussion of POG nodes, the following format of an entry is a POG
node is adapted for conciseness. A send entry has the format c : 2S5 where c is the counter,
i is the process executing the send and j is the destination process. A ready receive entry
has the format ¢ : iRj where c is the counter, i is the process executing the receive and j is
the sender. The POG is constructed by traversing H breath first, starting at the the root
node of H. and generating the nodes of the POG in breath first order. The algorithm for
constructing the POG determines whether CCSs have equivalent send and ready receive
communication entries. CCSj,.... CCS, have equivalent communications if the following

conditions are true:

1. If at least one C'CS:1<4<: contains one or more send and/or ready receive commands.

(34

If vi is a send command of CCS;.1<q4<e. then each v; in all CCSy.1<r<; is the same!

send command.

3. If v; is a ready receive command of CCSy:1<4<:, then each v; in all CCS;. <<, is the

same receive command and is a ready a receive.

If CCS; and CCSj have equivalent communication commands, the equivalent communica- .
tion commands of CCS; and CCS;; are all the send and ready receive commands that occur

in CCS; and CCS;.

The algorithm for constructing the POG relies on the function EQUIV(). The input to
EQUIV() is a set of H nodes, node_set, and the return value is a subset of node_set. If node_set

contains two or more nodes that have equivalent communication commands, EQUIV() re-

! Same meaning each v; represents the same node of FG; and the counters are equal.
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turns these nodes, else EQUIV() returns @. Nodes of H that have equivalent communication
commands are called equivalent nodes. If EQUIV() finds a subset of node_set that have

equivalent communication commands, EQUIV() removes these nodes from node._set.

If node_set contains two or more equivalent node subsets. EQUIV() nondeterministicly
returns only one of these subsets. For example, let the CCSs of node_set equal {(2:0S1,
3:1R2. 2R0. 3R0), (2:0S1. 3:1R2, 2R1, 3R1). (1:0R1, 1R3, 2:250. 3R0). (1:0R1. 1RO, 2:250,
3R0)}. The first and second entries in node_set are equivalent and the third and forth
entries in node_set are equivalent. EQUIV() will return either the nodes corresponding to
{(2:051.3:1R2.2R0. 3R0), (2:051.3:1R2.2R1,.3R1)} or {(1:0R1.1R3.2:250.3R0). (1:0R1,
LRO. 2:250.3R0)}. To select a node from a set of H nodes for testing if a subset of
the nodes are equivalent. function EQUIV() calls function Select(). Function Select()
randomly picks a node element from a set of nodes. removes the element from the set. and

then returns this element.

If the return value of EQUIV() is not NULL. the returned nodes are represented with
one node in the POG. This POG node is labeled with the sends and ready receives of the

returned nodes.

The POG construction algorithm, Crt _POG(), places information about the newly added
nodes of the POG in the queue data structure VisitNodes. An entry in the VisitNodes queue
has the format <node_ptr,node_set>. The entry node_ptr points to a node of the POG,
and node_set is a set of one or more H nodes. The set node_SuccSet is a set of H nodes that
is built from the successors of equivalent nodes. The string Commos is set to the sends and

ready receives of an H node and is for labeling the nodes of the POG. For example if the
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CCS of a node is (1:051, 3:150), then Commos = *“1:051.3:150". The following algorithm

constructs the POG from H:

Crt_P0OG()
Initialize queue VisitNodes to empty
Create root node S (labeled root)
Add <S.SUCC(root node of H)> as the first entry in the queue VisitNodes
while ( VisitNodes not empty )

item = behead( VisitNodes) /* format of item is <node_ptr, state_set> */
POG_ptr = item.node_ptr
node_set = item.node_set /¥ state_set= {CCS,..... CCSnp},m>17*

while ((EQUIV _set = EQUIV(node_set) # {)
Commos = the sends and ready receives of the CCSs of EQUIV _set
Create POG node N and label with Commos
Create an arc from node of POG _ptr to N
node_SuccSet = ()
for each node of EQUIV _set
node_SuccSet = node_SuccSet U SUCC(node)
end for
Add the entry <N. node_SuccSet> to the tail of VisitNodes
node_set = node_set - EQUIV _set
end while
for each node € node_set
if ((Commos = sends and ready receives of the CCS of node) # NULL)
Create POG node N and label with Commos
Create an arc from node of POG_ptr to N
Add the entry <N.SUCC(node)> to the tail of VisitNodes
else
Create POG node N and label as END node
Create an arc from node of POG_ptr to N
endif
endfor
end while
end algorithm

EQUIV(node_set)
node_set’ = node._set
EQUIV._found = false ‘
while (node_set” # @) AND (EQUIV._found = false)
Node_1 = Select(node_set’)
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EQUIV_set = {Node_1}
Commos = the sends and ready receives of Node_1.CCS
FGnode = Node.1.FGnode
local_set = node_set’
while (local_set # 0)
Node_2 = Select(local_set)
Commos.2 = the sends and ready receives of Node_2.CCS
FGnode2 = Node_2.FGnode
if (Commos = Commos_2) AND (FGnode = FGnode2)
EQUIV _found = true
Add Node_2 to EQUIV _set
end if
end while
end while
if (EQUIV _found=true)
return{ EQUIV _set)
else
return(@)
end function

The POG represents the causal and concurrent relationship among the communication

events. The first four properties of the POG are derived directly from the properties of H.

Property 6.9 Ife; — e, where ¢; and e; are communication events, and ¢; is an entry in
node N of the POG and e; is un entry in node N' of the POG. then N is an ancestor of

N'.

Property 6.10 The communication events represented in a node of the POG are concur-

rent.

Property 6.11 If POG node N is an ancestor of POG node N' and e; € N andej € N',

then e; — e; if one of the following is true:

1. p(2) = p(y)
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2. e; is a send to Pj, e; is a receive from P;, and e; is the corresponding receive for this

send.

3. e; = e and ex — e where ex € N” such that N is an ancestor of N and N" is an

ancestor of N'.

Property 6.12 The POG represents all partial orders.

The construction of the POG prunes the tree H with the EQUIV() function so that one
branch of the POG from root to leaf node represents an unique partial order a € P. The
nodes of the POG are minimized from the nodes of H to represent only the communication
commands that occur in an execution of the distributed system. The properties of H remain
true in the POG since the construction does not eliminate or create new information about

the occurrence of the communication events.

Lemma 6.2 The construction of the POG from H preserves the causal and concurrent

relationships represented in H.
Proof.

CASE 1. Nodes of H with equivalent communication commands do not exist.
Function EQUIV() always returns @ for nodes of tree H; i.e., there exists no nodes of

H that have equivalent communication commands.

Algorithm Crt POG() traverses H in a breath-first order with the use of queue Visit-
Nodes. The next entry in VisitNodes represents the next group of nodes in H to be

represented in the POG. Consider creating the nodes and edges of the POG.
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NODES.

If a node of H, h, has at least one send or ready receive. the node is represented
in the POG by creating a POG node and labeling it with the corresponding
sends and ready receives of A.CCS.

If a node of H does not have at least one send or ready receive, a node is not
created in the POG to represent this node. A node of H, h, that does not
have at least one send or ready receive means no communication commands are
executed after the sends and ready receives of h's parent. and therefore node h

does represent any causal or concurrent relationships among events.

EDGEs.
If a node of H. h. is represented in the POG by node n and if a child of A
is represented in the POG with node n'. then an edge is created from node n
to node n' of the POG. Therefore, causal and concurrent relationships among
nodes of H are preserved in the POG. Since all nodes of H that have at least one
send or ready to receive are represented in the POG. all causal and concurrent

relationships are preserved.

CASE 2. Nodes of H with equivalent communication commands do exist.

Function EQUIV() finds nodes of H that have equivalent communication commands.

The nodes that are input to EQUIV() are nodes that occur in the same level of H. If
the nodes of H, { h; ...h; }, are equivalent (the CCSs have equivalent communication
commands) one node n is created in the POG to represent these t nodes and is labeled

with the equivalent communication commands. Then set node_SuccSet is built so that
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node_SuccSet = SUCC(h1)U---U SUCC(h;). Set node_SuccSet is placed in the queue
VisitNodes for generating the children of node n. Therefore nodes of H that represent
the same causal and concurrent relationships are represented as one node in the POG.

and all causal and concurrent relationships that are represented by the successor nodes

of { hy...h, } will be represented in the POG as children of n.

root root
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o - o= i
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2R0

g

Figure 6.14: 2 possible POGs

A partial order & € P is represented in the POG by a path beginning at the root

node and ending at a leaf node of the tree. The process of generating the POG guarantees
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that there exists only one possible representation of a partial order in the POG. Figure
6.14 is the time-space diagram of a distributed system’s execution and the two possible
unique path representations of the partial order defined by the system’s execution. From
property 6.11 we can determine from either of the two paths the following relationships:
1:051 — 1:052,1:051 — 1:1R0.1:052 — 1:2R0, and 1:051 and 1:052 are concurrent. Of
the two paths shown in figure 6.14. only the path to the left is generated by the Crt_POG()
algorithm. Since the POG is derived from H. algorithm Crt_H() dictates the path that will
occur in the POG for a partial order. The H generated by algorithm Crt H() is shown in
figure 6.15 for the execution shown in figure 6.14. The left path in 6.14 is generated from

this H.

Lemma 6.3 For partial order a € P. there ezists one possible representation of a in the

POG.

Proof.

A partial order is represented in the POG by a path beginning at the root node and ending

at a leaf node of the tree.

Assume there exist two different representations of a in the POG. thus there must exist
two differing paths from the root node to a leaf node that correspond to a. For this to
occur, H must have at least one path from the root to a leaf node that corresponds to each
path of a in the POG (according to algorithm Crt POG() and lemma 6.2). Let p be one
such path of H, and let p’ be the other path of H. The nodes of paths p and p’ must differ

in the order that the sends and ready receives occur in the path to generate two different
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Figure 6.15: H tree

representations of a in the POG (according to algorithm Crt_P0G() and function EQUIV()).

For p and p’ to differ in this manner. there must exist a node n of H that is common to
both paths that has at least two children that mark the differing of paths p and p'. Let c be
a child of n that corresponds to path p and let ¢ be a child of n that corresponds to path
p’. For nodes c and ¢ to correspond to different paths in the POG, nodes ¢ and ¢ must
consist of different send and ready receives (according to algorithm Crt_P0G() and function

EQUIVQ)).
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For node n to have children, node n must have at least one send or ready receive. Let v; € n
where v; is a send, ¢Sj. The children of n, SUCC(n), are determined by the successors of
iSj. S(iSj). For SUCC(n) = {c.¢'}, S(iSj) must have two entries. For S(iSj) to have two
entries, there must exist two branches in FG; from the node of FG; that corresponds to iSj
such that each branch includes a successor of iSj. In FG;, a branch indicates a different
total order of events of P,. Therefore ¢ and ¢ of H mark the beginning of two different
partial orders. and the POG paths that are derived from p and p’ represent two different

partial orders. A contradiction to our assumption has been reached.

Let v; € n where v; is a ready receive. iRj. Since SUCC(n) = {c.c/} occurs under the

same conditions as when v; = iSj. the same contradiction is reached for v; = iRj. [ ]

Property 6.13 Each path of the POG from root node to leaf node represents a unique

partial order
Proof.

Assume two paths of the POG represent the same partial order. Two cases are possible for

this to occur.

CASE 1 . The two paths are identical.

For this to occur, there must exist a node of the POG that has two children that are

identical. This contradicts function EQUIV().

CAsE 2 . The two paths differ but represent the same partial order.

This contradicts lemma 6.3.
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Figure 6.16: POG derived from H of figure 6.11
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Figure 6.16 is the POG of the distributed program in figure 4.2. and this POG is
generated from H shown in figure 6.11. Notice that the two partial orders of figure 4.3
are each represented as a path from root to a leaf node in the POG. In particular. the left

path of the POG represents P0,;. and the right path of the POG represents PO,.

6.4 LCP and LCP' Events

For an event e;. each process’s LCP and LCP’ events can be determined from the POG.

From theorem 4.1 and lemma 5.1 , we know that for a partial order « and event e;, at most
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one CC(e;) exists and this CC(e;) consists of LCP events which are communication events.
The causal global state for event e; is identified by CC(e;). From theorem 5.2. we know
that by piggybacking state data on the LCP and LCP’ events. the CGState(e;) is available

in P; for event e;.

Before determining the LCP and LCP' events of the assert statement e;. the last LCP’
receive event that occurs in P, must be identified for each execution path of P; that includes
e;. ~Last”™ means the receive event corresponding to the last of the latest causal messages
that will piggyback state information to P, for evaluating the assert statement. Since the
assert statement and all possible executions of P, are represented in FG,. the last LCP'

event(s) of P, is(are) identified from FG;.

The algorithm Bound_Assert () determines the last LCP’ event(s) of an event. Referring
to figure 6.7. note that an async_recv(0) of P, has two parents. Since a node of FG; can
have more than one parent. the parents of each node are maintained as a linked list of
node pointers. The variable current_list is set to this linked list. The variable NexztBranch
is a stack. and an entry in the stack is a linked list of FG,; node pointers. The variable
Local_LCPs is a linked list of FG; node pointers, and at the completion of the algorithm

the entries in this linked list are the last LCP’ receive events of an event in P;.

The input to Bound Assert() is FG; and assert_.node. The variable assert_node is a
pointer to the assert node in F'G;. Algorithm Bound Assert() begins the search for the
last LCP' events of assert_node with the first parent node in assert_node’s current_list. The
search continues by traveling up the tree until a receive event is found or the root node

is reached. Each possible path from assert_node to the root node of FG; is searched for a
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receive event. In the case that multiple paths exist from the assert_node to the root node, a
different receive.event may be found on each path. If a receive event is found on the path,
this receive event is a last LCP’ event and is placed in the linked list Local_LCPs, and the

search is stopped on this path. The output of the algorithm is Local LCPs.

Bound. Assert()

/* input: FG; and assert_node */
current_list = the parent nodes of assert_node
NextBranch = NULL
Local LCPs = NULL
crat_node = first entry in current.list
Remove crnt_node from current_list
receive_found = false
do

while (receive_found=false) AND (crnt.node # root node of FG;)
if (current_list # NULL)
Push current_list on the stack NeztBranch
endif
if crnt_node = receive
Add crnt.node to Local . LCPS
recetve_found = true
else
current.list = parent nodes of crnt_node
crnt_node = first entry in current_list
Remove crnt_node from current_list
endif
endwhile
if (NextBranch # NULL)
receive_found = false
current_list = Pop(NeztBranch)
crnt_node = first entry in current_list
Remove crnt_node from current_list
endif
while (NeztBranch # NULL)
end algorithm

From Bound_Assert() we have identified the last LCP’ events in FG;. The next step

is to identify these same events in the POG. Each entry in Local_LCPs is represented in
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the POG at least once if the execution of the receive is possible. To access the POG node
that corresponds to an entry in Local_LCPs. it is necessary to know which send and receive
commands of the control flow graphs each POG node represents. When creating a POG
node, a linked list of pointers is built that identifies the send and/or receive nodes of the
control flow graph that the POG node represents. Also. each send or receive node of FG;
has a linked list of pointers to the POG nodes that represent this communication event.
For each entry in Local . LCPs, which is actually a pointer to the appropriate receive node

in FG,;. the POG node(s) that represent the receive can be accessed.

If an entry in Local_.LCPs is represented by a POG node. then this receive is a LCP’
event of assert_node in P,. If an entry in Local_LCPs is not represented by a POG node.

then this receive can not be executed and therefore is not an LCP' event.

Continuing with the distributed program shown in figure 4.2. we find the last LCP’
events of P, from figure 6.7 using algorithm Bound_Assert(). Process P, has only one
such message. async_recv(0). This is the async_recv(0) that immediately precedes the
assert statement in F'G,. Two nodes of the POG represent this communication command,
one for partial order PO, and the other for partial order PO,. These two POG nodes are

shown in figure 6.17 with double circles.

From theorem 5.2 we know for assert event e; there exist a non-repetitive communication
path from each LCP event to an LCP’ event of P; that consists of LCP and LCP’ events.
The algorithm Find LCPs() accesses the POG to find these LCP' and LCP events for
the assert event e;. For each partial order branch of the POG corresponding to an entry

in Local_LCPs, the algorithm traverses the branch in an upward direction beginning with
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Figure 6.17: LCP and LCP' events

the receive event of Local_LCPs up to possibly the root node to find these non-repetitive
communication paths. Since the branch is traversed upward, the receives (LCP's) of the

messages are encountered before the matching sends (LCPs).

When a receive event, c:jRk, is encountered in a POG node, it is a candidate LCP'

event if:

1. a non-repetitive communication path has been found from P; to P; that occurs after

c:jRk and a non-repetitive communication path from P to P; has not been found, or
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2. the receive event is an event of P; and a non-repetitive communication path from P,

to P, has not been found.

The reason for candidate is the receive event c:jRk is not an LCP’ event of P; if another
non-repetitive communication path from Py to P, is found before? the matching send of

c:j Rk is encountered in the POG.

When a send event. c¢:jSk, is encountered in the POG, it is an LCP event if:

1. the matching receive. c:kRj, has been encountered, and

2. receive event, c:kRj. is a candidate LCP’ event.

Six data structures are employed by algorithm Find LCPs() to find the LCP and LCP’
events when traveling up a branch of the POG. Three of the six data structures are
sets of process numbers. These sets are FoundProcs. Sends. and Rec.wo_Sends. The set
FoundProcs contains the entry j if the piggybacking message for P;, consisting of the send
event of P; and the matching receive event, has been determined from the POG. Set Sends
contains the entry j if the send event for piggybacking data from P; has been found. Set
Rec_wo_Sends contains the entry j if the receive end of a piggybacking message has been
found for P; but the matching send has not. The other three data structures are queues:
RwoSQ, SendQ and RecvQ. The queue RwoSQ contains entries for receive commands
whose matching send command has not been found in the POG. An entry in RwoSQ has

the format <c,i,j, POGnode> where c is the counter, 7 is process number of the receiver,

?Before in this context meaning the path happens after the matching send since the POG is traversed
upward
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J is the process number of the sender, and POGnode is a pointer to the POG node that
contains the receive. The queue Send@ contains an entry for each LCP send event. and an
entry has the format <e,j. POGnode> where c is the counter. j is the process number of the
sender and POGnode is a pointer to the POG node containing the send event. The queue
Recv@ contains an entry for each LCP' receive event, and an entry has the format <c, j,
POGnode> where c is the counter, j is the process number of the receiver and POGnode is

a pointer to the POG node containing the receive event.

Find LCPs() /* Input: Local_LLCPs Output: SendQ, RecvQ */

for each entry in Local_LCPs where the event format is c:iRj
for each POG node that contains c:iRj
POGnade = POG node that contains c:iRj
FoundProcs = Sends = 0
Rec_wo_Sends = {i}
RwoSQ = NULL
Insert <c.i.j., POGnode> in RwoSQ
POGnade = ParentOf( POGnode)
while (POGnode # root node) AND (FoundProcs # ({ 0. ... .N-1} - 1))
for each receive. c:jRk. in POGnode
if ((j € Sends) OR ( j = i)) AND (k & FoundProcs)
AND (Rec.wo_Sends does not have entry jRk)
Insert <c.j,k. POGnode> in RwoSQ
Rec_wo_Sends = Rec_wo_Sends + j
endif
endfor
for each send, c:jSk. in POGnode
if (k € Rec_wo.Sends)AND((Recv_POGnode = SearchQ(c.k.j)) # NULL)
if (RwoSQ does not have an entry with k as the receiver)
Rec.wo.Sends = Rec_wo_Sends - k
endif
Sends = Sends + j
FoundProcs = FoundProcs + j
Insert <c,j, POGnode> in SendQ
Insert <c,k, Recv_POGnode> in Recv@Q
endif
endfor
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POGnode = ParentOf( POGnode)
endwhile
endfor

endfor
end algorithm

The if statements of the algorithmn are complex and require explanation. When a

receive event c:j Rk occurs in a POG node, the following check is made:

if ((j € Sends) or ( j = i)) and (k € FoundProcs)
and (Rec_wo_Sends does not have entry jRk)

The value j being in the set Send indicates a non-repetitive communication path has
been found from P; to P; that occurs after this receive. Any data received by P; from
receive event c:jRk can then be piggybacked on the messages of the path to P. If j = i.
then the receive is a local event of the process evaluating the assert. The data piggybacked
on the message of this receive event will be available to the assert statement without having
to piggyback the data on additional messages. The value & being in FoundProcs indicates
the LCP and LCP' events for piggybacking the state information of P; have been found.
and the message associated with this receive is not needed for piggybacking data from P

to P,. If the if statement evaluates to true. the receive event is a candidate LCP’ event.

Assume P; has two or more jRk receive events, and one jRk is already inserted in
RwoSQ. If the other jRk receive events are encountered by the algorithm, they should
not be considered as LCP' events since there execution occurs before the jRk that is
represented in RwoSQ. The last condition of the if statement prevents these events from

being considered.
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When a send event c:jSk occurs in a POG node, the following check is made first:

if (k € Rec.wo_Sends) and ((Recv.POGnode = SearchQ(c,k,j)) # NULL)

The value k being in the Rec_wo_Sends set indicates P has a receive event that is a candidate
LCP' event and the matching send event has not be found. For this send to be the matching
send event. the receive for P, must be expecting a message from P;. The function SearchQ()
searches the queue RwoSQ@ for the occurrence of the entry <c. k. j. POGnode>. If found. the
entry is deleted from RwoSQ and POGnode is returned. If not found. NULL is returned.
The if statement evaluating to true indicates this send, ¢:jSk. is an LCP event and the
matching receive pointed to by Recv_POGnode is an LCP’ event. The nested if statement

checks whether k& should be removed from Rec_wo_Sends.

if (RwoSQ does not have an entry with & as the receiver)

If. after SearchQ() removes the entry corresponding to c:jSk. RwoSQ has an entry where
Py is the receiver of a message. then there is a possibility that P has additional LCP'
events. The value k should remain in Rec.wo_Sends to indicate that receives of P, are
candidate LCP’ messages. If RwoSQ does not have an entry where P; is the receiver of a

message, then the value & is removed from Rec.wo_Sends.

Since we have identified the last LCP' events of the distributed program shown in figure
4.2, we next identify the LCP and LCP’ events. For each partial order. the LCP and
LCP’ events are determined with algorithm Find LCPs(). The steps taken by Find LCPs()

to find the LCP and LCP’ events of partial order PO, are given. For each iteration of
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the algorithm’s loop, the variables values are shown. The values of the variables before

executing the loop are:

Rec_wo_Sends = {1}
FoundProcs = 0

Sends =

i=1

RwoSQ = (<3,1.0,3:1R0>)
Send@ = NULL

RecvQ = NULL

POGnode = 2:1R2

For the first iteration of the loop. the if statement ((j € Sends) OR ( j = 1)) AND (k
¢ FoundProcs) AND (Rec.wo_Sends does not have entry jRk) evaluate to true for event
2:1R2. The values of the variables after this iteration are:

Rec_wo_Sends = {1}
FoundProcs = 0

Sends = 0

i=1

RwoSQ = (<3.1,0.3:1R0 >. <2.1.2.2:1R2 >)
SendQ = NULL

RecvQ = NULL

POGnode = 3:051,1:1R0

For the second iteration of the loop, the if statement (k € Rec.wo.Sends AND (Recv_POG-
node = SearchQ(c,k,j)) # NULL) evaluates to true for event 3:0S1. The values of the

variables after this iteration are:
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Rec_wo_Sends = {1}
FoundProcs = {0}

Sends = {0}

i=1

RwoSQ = (<2,1.2,2:1R2>)
SendQ = (<3.0.3:051>)
Recv@ = (<3,1.3:1R0>)
POGnode = 1:0S1. 2:251

For the third iteration of the loop. the if statement (k € Rec.wo_Sends AND (Recv_POG-
node = SearchQ(c.k.j)) # NULL) evaluates to true for event 2:2S1. The values of the

variables after this this iteration are:

Rec_wo_Sends = ()
FoundProcs = {0.2}
Sends = {0.2}

i=1

RwoSQ = NULL

SendQ = (<3.0.3:051>. <2.2.2:251>)
RecvQ = (<3.1.3:1R0>. <2.2.2:1R2>)

POGnode = root

The condition of the while loop evaluates to false, and the LCP and LCP’ events for
PO are identified in SendQ and Recv@. The LCP events are 3:0S1 and 2:2S1. and the
LCP’' events are 3:1R0 and 2:1R2. For PO, algorithm Find LCPs() identifies the LCP
events 3:051 and 2:251. and the LCP’ events 3:1R0 and 2:1 R2. These events are underlined
in figure 6.17. In this particular example. the LCP and LCP’ events are the same for both

partial orders, but this is not always the case. Notice that the send and receive of the first

‘\
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message from Py to P, are not identified as LCP and LCP’ events. This message need not

be used for piggybacking data.

The properties resulting from this algorithm are:

1. Event ¢, is an LCP event if and ouly if event ¢, is an eutry in SendQ.

2. Event e; is an LCP' event if and only if event e; is an entry in RecvQ.

These two properties establish that our technique for identifying LCP and LCP' events is

valid. Two lemmas are prerequisites for proving these properties.

Lemma 6.4 IfFind LCP8() udds send event ey to Send(@, ex is an event of a non-repetitive

comnmunication path, and ey is an LCP event.

Proof.

Event e; is the assert event of P;.

Basts.
If e = c:kSi. k € Rec_wo.Sends and RwoSQ has the entry <c.i.k. POG_node>, then

c:kSi is an event of the non-repetitive communication path c:kSi.c:iRk and e; is an

LCP event.

Proof: By definition 5.2, c:kSi.c:iRk is a a non-repetitive communication path.
The send event c:kSi is the LCP event of P if c:kSi — c:iRk and there does not
exist another send event €| such that c:kSi — €}, = c:iRk — e;. Since c:kSi is

the corresponding send to c:iRk (RwoSQ has the entry <c,i,k, POGnode> ) then

c:kSi = c:iRk — e;, and since k € Recv_wo_Send, €. does not exist.
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INDUCTIVE HYPOTHESIS.
The events jRk,jSI.IRj,... mSi,iRm form a non-repetitive communication path of

length n, and iRm — e;.

INDUCTIVE STEP.

If e, = c:kSj. then

1. the send event c:kSj is added to the non-repetitive communication path jRk,
JSL. IRj. ....mSi.iRm to form the non-repetitive communication path kSj,

JREk. jJSUL LRj. .... mSi.iRm of length n + 1, and

2. the send event c:kSj is an LCP event.

Proof:

The event c:kSj is the corresponding send of c:jRk. and the relationship c:kSj —
c:JRk is true Therefore, kSj. jRk.jSI.IRj.... .mSi.iRm is a non-repetitive commu-
nication path (definition 5.2) of length n + 1. Event c:kSj is added to Send@ by
algorithm Find_LCPs() when it is found to be part of the non-repetitive communica-

tion path.

We know c:kSj — e; since c:kSj is an event of kSj, jRk.jSI.IRj,....mSi,iRm and
iRm — e;. From the basis and c:kSj — e;, we can conclude that c:kSj is an LCP

event.

Lemma 6.5 If Find LCPs() adds receive event jRk to RecvQ, jRk is an event of a non-

repetilive communication path and jRK is an LCP’' event.
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Proof.

For event jRk to be added to Recv@, k must first be an entry in Rec_wo_Sends and RwoSQ

contains the entry for c:jRk. For these to exist, we know from algorithm Find LCPs()
® j € Sendsor j =i. and
o k & FoundProcs

Consider the two possibilities:

1. j € Sends and k € FoundProcs.

From lemma 6.4. if j € Sends, a non-repetitive communication path exists from
a LCP send of Pj, jSl. to a LCP' event of P, iRm: jSI,....iRm. And for k ¢
FoundProcs, the LCP and LCP' of P, have not been found in the POG. We can
also conclude that jRk — jSI. For jRk to be added to RecvQ, the send kS; must
have been found in an ancestor node of the of JRk (from algorithm Find LCPs()).
Therefore. kSj — jRk. From this we can conclude the send event corresponding to
JRk, kSj. is found and is an LCP event (Lemma 6.4). jRk is an LCP' event, and

JREk is an event of the non-repetitive communication path £Sj, jRk, jSI..... iRm.

2. j =i and k € FoundProcs. Event jRk is a receive event of the process evaluating
the assert, and the LCP event of P; has not been found. Then for jRk to be added
to RecvQ, the send kSj has been found in the POG, is the LCP event of P, and
forms the non-repetitive communication path kSj,jRk (lemma 6.4). Since jRk is

the corresponding receive of kSj, jRk is an LCP’' event.
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Property 6.14 Event e; is an LCP event if and only if event e; is an entry in SendQ.

Proof.

PART 1. Ife; is an LCP event, then e; is in Send@Q.
Proof by contradiction.

Assume e; = jSk is an LCP event but is not in SendQ. Since jSk is an LCP event,
there exists a non-repetitive communication path jSk.kRj.kSl.IRk..... mSi.iRm
that consists of LCP and LCP' event where jSk — kRj — kSl — IRk — --- >
mSi — iRm (theorem 5.1 and definition 5.2). For jSk to not be in Send@Q, kRj is

not in RwoSQ and k is not in Rec_wo.Sends. For this to occur either

1. j € FoundProcs or

2. k & Sends.

1. For j to be in FoundProcs. another €} exists where €/ is in Send@ and ¢/, is an
LCP event of P;. But since P; can have only one LCP event (lemma 4.1) a

contradiction has been reached.

2. For k & Sends, kSl, the LCP event of P, is not in SendQ. The same reason-
ing holds as to why each LCP event of the non-repetitive communication path
JSk,kRj, kSl IRk, ... . mSi,iRm is not in Send@Q except for mSi. For mSi to
not be an LCP event, iRm is not recognized as an LCP' event. For iRm to not
a LCP' event, m must be in FoundProcs. For m to be FoundProcs, a send event

emn and a receive event ¢ exist where mSi — iRm — e, — €}. Thus e, is the
t 3
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LCP event of P, (definition 4.1). A contradiction has been reached since mSi

is the LCP event of P,,.

PART 2. If e; is in Send(Q. then e; is an LCP event.

Proof. This follows directly from lemma 6.4.

a
Property 6.15 Event e; is an LCP' event if and only if event e; is an entry in RecvQ.

Proof.

PART 1. [fe; is an LCP’' event. then e, is in RecuQ.

Proof.

Ife; = jRk is areceive LCP’event. then j Rk is part of a non-repetitive communication
path to an LCP’ event of P; that consists of LCP and LCP’ events. jSk.kRj, kSl IRk,
....mSi.iRm (theorem 5.1). We know the LC P sends are entries in SendQ (property
6.14). If the sends are entries in Send@. then the corresponding receives are also entries

in Recv@ according to algorithm Find LCPs().

PART 2. If e; is in RecvQ, then e; is an LCP’ event.

Proof. This follows directly from lemma 6.5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 6. STATIC ANALYSIS 121

6.5 POG and Taylor’s Complete Concurrency History

Taylor’s work motivated our static analysis to generate the POG for representing the pos-
sible executions of a distributed system, but our static analysis algorithms have been de-
veloped independent of Taylor's work. The only portion of our static analysis that is a
derivation of Taylor’s static analysis is representing each process with a flow graph and the

successor relationship between nodes of the graph.

A path of the POG has a different meaning from a path in Taylor’s complete concurrency
history. A path of Taylor’s history represents a possible total ordering of i/o rendezvous
and does not represent the concurrent execution of i/o rendezvous. Each path of the POG
represents a partial order of the distributed system. and a path does represent the concur-
rency of the communication commands. One or more of Taylor’s paths can correspond to
one path of the POG since one or more total orders can correspond to the same partial

order.

6.6 Static Analysis in the Parallel Domain

Work in the parallel domain that is most closely related to ours is the automated paralleliza-
tion of sequential code. Parallelizing compilers collect data flow information for a source
program and use this information to detect potential parallelism, determine an appropriate
grain size, and then transform the program into a functionally equivalent parallel program
that can exploit the underlying architecture. These compilers also aim at automating the

selection of data distributions and reducing nonlocal data accesses in distributed memory
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systems.

The majority of the data flow analysis performed by these compilers is dependence
analysis. Two computations that have a dependence relationship means that constraints
on their execution order are present. By identifying these constraints with dependence
analysis, it can be determined whether transformations of the source code will alter the

semantics of the computation.

Two types of dependencies that can be identified with data flow analysis are data and
control. Consider two statements. a and b, of a sequential program. Statement b is control
dependent on statement a. if ¢ determines whether b executes. Statements a and b have a
data dependence if they cannot be executed simultaneously because of conflicting uses of

the same variable.

Dependence analysis performed at the procedure and function level is useful for identify-
ing coarse grain parallel transformations [35. 17. 24. 23. 36]. Dependence analysis performed
at the loop level is useful for identifying fine grain parallelism [6. 10. 11. 9, 25, 36]. Lan-
guages. such as Fortran D [34], provide commands the programmer uses to annotate the
sequential program with data decompositions. The compiler then performs dependence
analysis to determine the computation decomposition [2]. Other languages [32, 2] exist in
which the compiler determines both data and computation decompositions with the aid of

dependence analysis.

The objective of the compiler is to produce parallel code in which the execution is
maximally parallel and nonlocal data accesses are minimized. Dependency analysis provides

information for achieving this objective.
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Initially our static analysis appeared similar to the static analysis performed by paral-
lelizing compilers. By comparing the two more closely, the similarities are only superficial.
A parallelizing compiler generates control flow graphs of the sequential program and per-
forms sequential data flow analysis. The compiler uses these resuits to create a functionally
equivalent parallel program and decompose the sequential program’s data. As part of this
process, the necessary communication commands are also created. Our work generates
control flow graphs for the source code of the distributed processes to analyze the commu-
nication. The source code is already comprised of communication commands. We do not

perform dependence analysis and we do not add communication to the distributed system.

In the next chapter. the analysis of distributed programs with the addition of loops
is described. The distributed programs in chapter 2 are analyzed in chapter 8. and the
LCP and LCP' events determined. These programs further demonstrate the benefits of
identifying LCP and LCP' events for reducing the number of messages that piggyback

data.
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Chapter 7

Loops

Chapter 6 presented algorithms for creating the FG;, H and POG graphs. Algorithms
where also presented for determining the LCP and LCP’ events of an assert statement from
the POG. These algorithmns did not support loops in the source code of the distributed
processes. In this chapter we make the additions to the algorithms to allow loops. and
the algorithms are modified so all properties and lemmas of chapter 6 are preserved. By
concluding with the preservation of properties 6.14 and 6.15. we demonstrate that our

technique remains valid for identifying LCP and LC P’ events.

7.1 Control Flow Graphs

Three loops constructs can occur in the source code of a process: do - while. while, and
for. Each loop has one unique entry point and one unique exit point. Nesting of loops are
allowed. but each loop has its own entry and exit point. Neither goto nor break statements
are allowed in the source code since either can create additional entry or exit points for

loops.

124
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Algorithm Create_FG; () requires additions for representing loops in FG;. Each loop in
a process’s source code is represented as a cycle in the process’s corresponding flow graph.
The cycle is accomplished with a back edge from the exit point of the loop to the entry point
of the loop. The concept of a dominating node is necessary to define a back edge. A node
a of flow graph FG; dominates node b of FG,; if every path from the root node of FG; to
node b passes though «. If (a.b) is an edge, then ¢ is the initial node and b is the terminal
node. An edge is a back edge if its terminal node dominates its initial node. An edge of a

flow graph that is not a back edge is referred to as either a forward edge or an edge.

The control flow graph for a process. FG;, requires additional node types for representing
loops. The entry point of a loop is represented with a head node, and the exit point of a
loops is represented with a tail node. The head and tail of a while loop are nodes labeled
WHILE and END_WHILE. respectively. The head and tail of a do -~ while loop are nodes
labeled DO and END_DOQ. respectively. The head and tail of a for loop are nodes labeled
FOR and END_FOR. respectively. The nodes that occur between the head and tail nodes

make up the body of the loop.

The while and for loop are similar in that the loop condition is evaluated at the head
of the loop. The loop body is executed zero or more times. This type of loop is referred
to as a precondition loop. The loop condition of the do loop is evaluated at the tail of the
loop so the loop body is executed one time before testing the condition. This type of loop

is referred to as a postcondition loop.

Algorithms Create_FG; () and AddNode () are repeated from chapter 6 with the additions

required for the loop constructs. Figure 7.1 shows the three loop constructs represented
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by a portion of a control flow graph. The dashed edges between nodes indicate the edges
added by algorithm AddNode () when NewNode is added to the flow graph. A back edge is
added by Create_FG;() for any one of the loop constructs from the tail of the loop (e.g.,
END_WHILE node) to the head of the loop (e.g.. WHILE node). The back edge creates a

cycle in the graph.

Three additional stacks and three additional variables are required to handle loops in
algorithm CreateFG;(). The stacks are WhileStack. DoStack and ForStack. The three
pointer variables are TopDoStack, Top WhileStack, and TopForStack. Each pointer refer-
ences the top entry of its respective stack. The stacks are initially empty, and the pointers

are initially NULL. The stacks are used to match the begin and end of the loop constructs.

Create_FG; () /¥ Input: P;; Output: FG; */
Create the ROOT node of FG;
CrtNode = ROOT node
if an assignment statement is recognized
Add assignment statement to the tail of the linked list
if an async_send is recognized
if the linked list is not empty
AddNode (CrtNode, ASSIGN) /* for the assignment statements */
linked list is set to empty
AddNode (CrtNode. SEND)
if an async_recv is recognized
if the linked list is not empty
AddNode (CrtNode, ASSIGN) /* for the assignment statements */
linked list is set to empty
AddNode(CrtNode. RECEIVE)
if an assert is recognized
if the linked list is not empty
AddNode (CrtNode, ASSIGN) /* for the assignment statements */
linked list is set to empty
AddNode (CrtNode, ASSERT)
if an if statement is recognized
if the linked list is not empty
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AddNode (CrtNode, ASSIGN) /* for the assignment statements */
linked list is set to empty
AddNode (CrtNode, IF) /* for the if statement */

Push CrtNode onto the stack
TopStack = CrtNode
if an else is recognized
AddNode (CrtNode, END_IFSIDE)
if the linked list is not empty
Set field in CrtNode to point to linked list
linked list is set to empty
TopStack.HoldPtr = CrtNode /" Set HoldPtr of the IF node to the */
/¥ address of the END_IFSIDE */
CrtNode = top entry of the stack
CrtNode.AddEdgeFlag = true /? Flag an edge needed from END_IFSIDE node */
/?* to the first node following END_ELSE node */
if the end of the else side of an if/else is recognized
AddNode(CrtNode, END_ELSE) /* for the ending of the else side */
if the linked list is not empty
Set field in CrtNode to point to linked list
linked list is set to empty
CrtNode.HoldPtr = TopStack.HoldPtr /* Move the address of the END_IFSIDE */
/¥ node to the END_ELSE node */
CrtNode.AddEdgeFlag = true /* Flag an edge will be needed from END_IFSIDE */
/* node to the first node following END_ELSE node */
Pop the stack
if the end of an if statement is recognized
AddNode (CrtNode. END_IF) /* for the ending of the if statement */
if the linked list is not empty
Set field in CrtNode to point to linked list
linked list is set to empty

CrtNode.HoldPtr = TopStack /* Set the HoldPtr of END_IF node */
/* to the address of the IF node */
CrtNode.AddEdgeFlag = true /* Flag an edge will be need from the IF node */

/* to the first node following the END_IF node */
Pop the stack

if a while statement is recognized
if the linked list is not empty

AddNode (CrtNode, ASSIGN) /* for the assignment statements */
linked list is set to empty
AddNode (CrtNode, WHILE) /* for the if statement */

Push CrtNode onto WhileStack
Top WhileStack = CrtNode
if a for statement is recognized
if the linked list is not empty
AddNode (CrtNode, ASSIGN) /* for the assignment statements */
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linked list is set to empty
AddNode (CrtNode, FOR) /¥ for the if statement */
Push CrtNode onto ForStack
TopForStack = CrtNode
if a do statement is recognized
if the linked list is not empty

AddNode (CrtNode, ASSIGN) /* for the assignment statements */
linked list is set to empty
AddNode (CrtNode. DO) /* for the if statement */

Push CrtNode onto DoStack
TopDoStack = CrtNode
if the end of a while loop is recognized
AddNode (CrtNode. END_WHILE) /* for the end of the while loop */
if the linked list is not empty
Set field in CrtNode to point to linked list
linked list is set to empty
Add back pointer from CrtNode to Top WhileStack  /* create cycle in the graph */
CrtNode.HoldPtr = Top WhileStack /* Set the HoldPtr of END_WHILE node */
/* to the address of the WHILE node */
CrtNode.AddEdgeFlag = true  /* Indicate an edge will be needed from the WHILE */
/* node to the first node following the END_WHILE node */
Pop WhileStack
if the end of a for loop is recognized
AddNode ( CrtNode, END_FOR) /* for the end of the for loop */
if the linked list is not empty
Set field in CrtNode to point to linked list
linked list is set to empty

Add back pointer from CrtNode to TopForStack /* create cycle in the graph */
CrtNode.HoldPtr = TopForStack /* Set the HoldPtr of END_FOR node */

/* to the address of the FOR node */
CrtNode.AddEdgeFlag = true /* Indicate an edge will be need from the FOR */

/* node to the first node following the END_FOR node */
Pop ForStack
if the end of a do loop is recognized
AddNode (CrtNode, END_DO) /* for the end of the do loop */
if the linked list is not empty
Set field in CrtNode to point to linked list
linked list is set to empty
/* create cycle in the graph for loop */
Add back pointer from CrtNode to node reference by TopDoStack
Pop DoStack
if the current control construct or statement is not recognized
Generate an error and halt
if the end of the source code is recognized
AddNode (CrtNode, END)
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If the linked list is not empty
Set field in CrtNode to point to linked list
linked list is set to empty
end algorithm

The only valid exit point of a postcondition loop is from the tail of the loop. Algorithm
AddNode() creates an edge from the END_DO node to the first node added to the graph
after the END_DO node (NewNode). The only valid exit point of a precondition loop is
from the head of the loop. Algorithm AddNode() creates an edge from the WHILE node

and the FOR node to the first node that occurs after the loop’s end node.

AddNode(CrtNode, type)
NewNode = Allocate a node
if CrtNode # END_WHILE, END_FOR
Create a directed edge from CrtNode to NewNode
if CrtNode.AddEdgeFlag
Create a directed edge from the node CrtNode.HoldPtr to NewNode
if type = ASSIGN
Set field in NewNode to point to assignment linked list
CrtNode = NewNode
end algorithm

Algorithm AddNode() does not require additional code or modification to create the
edge from the exit point of a do-while loop. Additional code is required for the exit point
of the while and for loops. To create an edge from a WHILE or FOR node to NewNode,
the same steps are taken when an edge is added from an IF node to the END_IF node. The
description of this process is presented in terms of the while loop, but is generalized to any
precondition loop. When the END_WHILE node is added, the address of the WHILE node,
available on top of WhileStack, is stored in the END_WHILE node. This is accomplished

with the following line from Create FG;():
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Figure 7.1: Control flow graph of the loop constructs

CrtNode.HoldPtr = TopWhileStack
When NewNode is added to FG;. the address of the WHILE node is available in CrtNode
so that AddNode() can create an edge from the WHILE node to NewNode. The flag
AddEdgeFlag of the END_WHILE node is set to true to indicate that function AddNode ()

should add an edge from the WHILE node to NewNode.

Properties 6.1 through 6.4 correspond to the control flow graphs. Properties 6.2 and 6.4
are not affected by loops, but property 6.1 requires some modification when loops occur in

the source code.

First we will consider precondition loops. Consider the while loop shown in figure 7.2.

If the loop is executed zero times, the happens before relationship among the nodes is:
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WHILE — S2
If the loop is executed one time, the happens before relationships among the nodes are:
WHILE — S1 - END_WHILE — WHILE — S2

A new iteration of the loop is begun when the first node of the loop body is executed. In
this example, node S1 is the first node of the loop body. The last node of an iteration is the
WHILE node. If i iterations of a precondition loop occur, the WHILE node is executed i+ 1
times. and the back edge is followed i times. Consider the case when the loop is executed

two times. The happens before relationships are:
WHILE — S1 - END_WHILE — WHILE — S1 - END_WHILE — WHILE - S2

The following summarizes the happens before relationships and the beginning and ending

of loop iterations for the while loop.

WHILE— S2

WHILE — S1 —> END_WHILE —WHILE—> §2
~— "
iteration 1

WHILE — S1 —> END_WHILE —WHILE—> S| —> END_WHILE —WHILE— S2
~ - ~ P
iteration 1 iteration 2

DO—= S1— END_DO — S2
~ yd
iteration 1

DO — S1— END DO —DO—> S1—> END_DO — S2
N~ Ve N e
iteration 1 iteration 2
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The happens before relationship and the beginning and ending of loop iterations are also

shown for do-while loops, which will be discussed next.

Figure 7.2: Control flow graph with a while loop

According to property 6.1. if a path exists from node a to node b. then a — b when both
are executed. By examining the happens before relationship between the S1 node and the
END_WHILE node, we see that property 6.1 requires updating. A path exists from node
END_WHILE to node S1 in figure 7.2, but it is not the case that END_WHILE — Sl when
one iteration of the loop occurs. Consider two iterations of the loop. The END_-WHILE of
the first iteration does not happen before the S1 of the first iteration, but the END_WHILE
of the first iteration does happen before the S1 of the second iteration. In general,

END_WHILE - S1if

1. the loop is executed 2 or more times

i
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Figure 7.3: Control flow graph with a do - while loop

2. END_WHILE occurs in iteration i of the loop, and

3. S1 occurs in iteration ¢ + 1 or greater.

Next we need to examine the postcondition loop. Figure 7.3 shows a flow graph for a
do loop. If the loop is executed only one time. the happens before relationships among the

nodes are:
DO — S1 - END_DO — S2.

The happens before relationships for two executions of the loop are:
DO — S1 -+ END_DO — DO — S1 - END_DO — S2.

The boundary nodes of an iteration for a postcondition loop are different than those of a

precondition loop. The first execution of DO begins iteration 1 of the loop, and END_DO
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completes that iteration. If the loop is iterated  times, DO and END_DO are executed i

times, and the back edge is followed i — 1 times.

Consider the happens before relationship between S1 and END_DQ. A path exists from

the END_DO node to the S1 node, but the relationship END_DO — S1 is true only if

1. the loop is executed more than once,
2. END_DO occurs in iteration 2, and

3. S1 occurs in an iteration greater than i.

Property 6.1° subsumes property 6.1 to account for the occurrence of loops. The property
is given in two parts for completeness, but only part 1 is modified. The variable ! is used

to denote a loop.

Property 6.1’

PART 1. If a path erists from node a to node b in FG;, then a — b when

1. a and b are both ezecuted and a back edge is not part of the path from node a to

node b, or

2. a and b are both ezecuted. the back edge of loop | is part of the path from node a
to b, node a occurs in iteration i of loop | and node b occurs in iteration j, where

Jj>1, of loop L, or

3. a and b are both ezecuted, the back edge of loop | is part of the path from node
a to b, loop | is a precondition loop. nodes a and b occur in the same iteration,

and node b is the head of the loop.
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PART 2. Ifa — b when both a and b are ezecuted. then a path erists from node a to node b

in FG;.

Condition (1) of part 1 is equivalent to property 6.1. Conditions (2) and (3) quantify
which happen before relationships are possible with the addition of back edges. Coudition
(2) of part 1 allows the relationship END_.WHILE — S1 of figure 7.2 when multiple iter-
ations of the loop occur, and S1 occurs in a later iteration than END_WHILE. Also notice
that this condition allows the happens before relationship WHILE — WHILE where the
first WHILE occurs in an earlier iteration than the second. As for postcondition loops. the
condition S1 — DO is allowed for figure 7.3 when two or more iterations occur. Condition

(3) of part 1 allows S1 - WHILE when both occur in the same iteration.

7.2 H Graph

With the possibility of loops in the source code of each process of the distributed system.
loops are also possible in H. In the algorithm for constructing H, additions are required
for detecting the repeated execution of communication commands and representing these

repetitions as cycles in H. Cycles occur in H if

1. a send command is in the body of a loop and the send is possible.

2. a send command is possible, the matching receive is ready, and both occur in the body

of a loop. or

J. a combination of (1) and (2).
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Cycles are created in H with back edges. The graph retains the properties of a tree; there
exist a root node and leaf nodes. The terminology ancestor, descendent, parent and child
will remain in use for the relationships defined by forward edges. The relationships between

nodes defined by back edges will be discussed following the modified Crt _H() algorithm.

Properties 6.5 through 6.8 and lemma 6.1 correspond to the H graph. The substantial
changes to the H graph construction algorithm do not invalidate these properties and
lemma. The node relationship ancestor is fundamental to properties 6.5 and 6.7, and these
properties remain valid with the clarification of the ancestor relationship. Properties 6.6
and lemma 6.1 are not affected by loops. Property 6.8 is discussed following the modified

Crt H() algorithm.

Py 2
do do
async_send(1.x) async_recv(0,y)
while while

(foFy)

(1:async_send(1),
async_recv(0))

(MH

Liasync,_recv(0) Laasync,_recv()

™\

(3:async_send(1), (3:async_send(1), [E=8 (=, (—. (=
= — 2:async_recv(0) ~ 2:async_recv(0)) —)  async_recv(0) )

(4:async_sead(1), (:)’ (4:async_send(1), (4:async_send(1), (=, (—.
'T) -) 3:async_recv(0)) 3:!!’“_:“(0)) -)

Figure 7.4: Example 1
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(roo1y)

(1:async_send(1),
async_recv(0))

(2:async_send(1), (—-,
1:async_recv(0)) 1:async_recv(0))

(""'
(3:async_send(1), (— -, (-
R e 2:async_recv(0)) —-) async_recv(0)) —-)

T~

("‘v (""v (""v
-) async_recv(0)) —-)

Figure 7.5: Example 1 with back edges

The detection of loops in H requires significant additions to the Crt H() algorithm.
Two examples. useful for describing the additions to Crt_H(). demonstrate the occurrence
of loops in H. The first example is a two process distributed system. The source code of
each process and the graph resulting from algorithm Crt _H() in chapter 6 is shown in figure
7.4. The graph H can not accurately represent the execution of this distributed system
without back edges. Communication commands are repeatedly executed, but the loops are
not shown as cycles in H since this version of the algorithm does not detect loops. A pattern ‘
can be observed in H. The nodes (2:async.send(1), l:async.recv(0)) and (3:async_send(1),
2:async_recv(0)) of figure 7.4 represent the same state of the system. Although the counters
corresponding to the sends and receives differ, the send in each node represents the same
command in Py, and the receive in each node represents the same command in P;. Another
system state is represented by nodes (3:async_send(1),—) and (4:async_send(1),—) of figure

7.4. The complete H graph with the inclusion of back edges is shown in figure 7.5.
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P, P,
do do
async_send(1,x) async_recv(0,y)
async_send(1,x) async_recv(0,y)
while while
(ro.ry)
(1:async_send(1),
async_recv(0))
(2:async_send(1),
1:async_recv(0))
(3:async_send(1), (—.
2:async_recv(0)) 2:async_recv(0))
(4:async_send(1), (4:async_send(1), (l-.\ (—.
3:async_recv(0)) —) async_recv(0)) -)
(5:async_send(1), (-, (—l-.\(sﬁy“_c:ﬂig):
4:async_recv(0))  4:async_recv(0)) —) =)
l: (-1.'\(“" ©: " send(1),
async_recv(0)) -) =)

. H
. .

Figure 7.6: Example 2
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Py P,
do do
async_send(1,x) async_recv(0,y)
async_send(1,.x) async_recv(0,y)
while while
(ro.y )

(1l:async_send(1),
async_recv(0))

|

(2:async_send(1),

1:async_recv(0))

(3:async_send(1), (-t
2:async_recv(0)) 2:async_recv(0))

("'v (-“'

(4:async_send(1),
async_recv(0))

(=, (5:async_send(1),
-) -=)

Figure 7.7: Example 2 with back edges

Loop detection is more difficult in the example of figure 7.6. The nodes (2:async_send(1),
l:async_recv(0)) and (3:async_send(1l), 2:async_recv(0)) syntactically appear to represent
the same state. but they do not. The node (2:async_send(l), l:async_recv(0)) repre-
sents the first send of Py and the first receive of_ P,, whereas the node (3:async_send(1),

2:async.recv(0)) represents the second send in Py and the second receive in P;. Nodes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 7. LOOPS 140

(2:async_send(1), l:async._recv(0)) and (4:async_send(1),3:async_recv(0)) represent the same
state of the system, and nodes (3:async_send(1),2:async_recv(0)) and (5:async_send(1),4:
async_recv(0)) represent another state of the system. The complete H graph representing

the execution of the distributed system with back edges is given in figure 7.7

Additional information is required to detect and represent loops in H. For each node,

n, of H the following information is needed.

e A temporary back edge. temp_back. used by Crt H() is a field of n.

e An array of node pointers that are the children of n. KidsfMAXEDGES] is a field of
n. Each entry represents a child that is the result of a forward or back edge. The

forward edge children occur first in the array.

e An array of integers Kid_type/[MAXEDGES]. where Kid_typefi] indicates the type of
edge for Kidsfi/. is a field of n. A zero entry indicates a forward edge. and a one entry

indicates a back edge.

e An array of pointers to the parents nodes of n. Parents/2]. is a field of n. Entry
Parents[0] is the parent of n that is defined by a forward edge. Each node has a
parent from a forward edge. If a node is pointed to by a back edge, then the node
also has a parent that is defined by a back edge. The entry Parent/1] is the parent
of n that is defined by a back edge or NULL if the n is not pointed to by a back
edge. An example of a parent resulting from a back edge is node (3:async_send(l),

2:async_recv(0)) which is a parent of (2:async_send(1), l:async_recv(0)) of figure 7.7.
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When node n is added to H, a check is made to determine if the state represented by
this node has already been represented by another node in n’s execution path. This is done
by comparing n with its ancestors. First n is compared with its parent. If the parent does
not represent the same state, theu the grandparent is compared against n. This continues

until either a node that represents the same state of n is found or the root node is reached.

Two comparisons are required to determine if node n and its ancestor node, n'. represent
the same state. The first comparison identifies syntactically identical nodes. Syntactically
identical meaning that for each entry. ;. in n. there exists v} in n’ which is identical with
the exception of the counter value. [f nodes n and n’ are syntactically identical. the second
comparison is necessary to determine whether the nodes represent the same state. For
each pair of entries. v; and v}, where v; and v} are not equal to the inactive marker. the
test insures that FGnodefi] of n is equal to FGnodefi] of n’. If FGnodefi] of n is equal to
FGnodefi] of n’. both point to the same node of FG;. Passing the test implies that v; and
v} represent the same command of P;. If the test is true for each pair. (v;, v}). then the two

nodes represent the same state.

If the ancestor node n' represents the same state as node n. then n’ is possibly the entry
point of a loop, and the parent of n is possibly the exit point of this loop. The next decision
is whether to add a back edge from the parent of n to n’ to form the loop. Two cases exist

for the relative location of nodes n and n’ in H.

1. The parent of node n is also node n'.

2. The parent of node n is not node n’. Node n' is an ancestor of the parent of node n.
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(rg.r) (To.1y)
(l:async_send(1l), (1:async_send(1),
async_recv(0)) async_recv(0))

T

2:async_send(1), 2:async_send(1),
node n’ (Sasync. send(l) node n’ L O

1:async_recv(0)) 1:async_recv(0))

(3:async_send(1),

node n
2:async_recv(0))

Figure 7.8: Case 1

If case 1 is true then a loop has been detected in H. A back edge is added from n'
to itself. and node n is removed from H. Figure 7.8. the portion of figure 7.4 needed
to demonstrate case 1. shows the transformation of H when the loop is detected. Case 2
requires more information to determine whether a loop has been found in H. Figure 7.9
is a distributed system that demonstrates case 2. Nodes n’ and n represent the same state,
but adding a back edge from the parent of n to n’ would be incorrect. The state represented
by node (5:async_send(1), 2:async.recv(2), —) does not recur after node n. Additionally,

the state represented by nodes n and n’' does not recur after node n.

Continuing to generate nodes of the execution path that includes n and n’ is necessary
to determine if a loop exists in H. If the nodes from n’ to the parent of n are duplicated
immediately after n. a loop exists in H. A back edge is added from the parent of n to n’

creating a cycle. Node n and its descendants are removed from H.
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The algorithm Check Loops() checks for cases 1 and 2. Determining whether a back
edge should be added for case 2 requires the use of field temp_back. Whenever case 2 is
true. Check_Loops () sets the field temp_back of n’s parent to point to n'. Figures 7.10 and
7.11 demonstrate the use of temp_back. The dashed edge represents the value of temnp_back.
Figures 7.10 and 7.11 show the generation of H in figure 7.6 as each node is added. Only

the portion of H relevant to the addition of a back edge is shown.

Step 3 of figure 7.10 shows the first occurrence case 2. Nodes n and n' represent
the same state and a temporary back edge (temp_back) is added from the parent of n
to n’. A back edge can not be added until it is known that the state represented by
node (3:async_send(l). 2:async_recv(0)) occurs again immediately after node n. The node
added in step 4. (5:asyncsend(l), 4:async.recv(0)). represents the same state as node
(3:asyncsend(1). 2:async_recv(0)). A temporary back edge is added from the parent of
n (4:asyncsend(l). 3:async_recv(0)) to n' (3:async_send(l). 2:async_recv(0)). When this
temporary back edge is added. n’ also has a temporary back edge that points to node
(2:asyncsend(1). l:async_recv(0)). This indicates that the state of nodes (2:async_send(1),
l:async_recv(0)) and (3:async_send(1). 2:async_recv(0)) are repeated by (4:async_send(1),
J:async_recv(0)) and (5:async_send(1), 4:async.recv(0)) nodes. The temporary back edge
of node n’ becomes the back edge, and the nodes after n’ are removed as shown in the

resulting H.
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Py

async_send(1,x)
do

async_send(1.x)
while(...)

node n’

node n

P,

async_recv(0,y)
d

while(...)

(Four1u13)

'

(1:async_send(1),
async_recv(0),
2:async_send(1))

;

(3:async_send(1),
1:async_recv(0),
---)

|

(4:async_send(1),
3:async_recv(0),
-)

(5:async_send(1),
2:async_recv(2),
-)

(6:async_send(1),
4:async_recv(0),
-)

i

(7:async_send(1),
async__nicva).

%

Figure 7.9: Case 2

o
async_recv(0,y)
async_recv(2,y)

P,

async_send(1,z)
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(roo1y) (ro,11)
1) Addition of node: (%s%, (lmyuc.sen(do()l)).
| async_recv
(2:async_scnd( 1 ). v é yne
1:async_recv(0)) l
2: d(1).
:async_send(1) node
1:async_recv(0))
(r0.1y) (fosF1)
2) Addition of node: (1:async_send(1), (1:async_send(1),
async_recv(0Q)) async_recv(0))
(3:async_send(1), __>
2:async_recv(0)) l l
(2:async_send(1), (2:async_send(1),
1:async_recv(0)) 1:async_recv(0))

(3:async_send(1), node n
2:async_recv(0))

(rg.1y) (r.ry)
(1:async_send(1),

3) Addition of node: a :async..sen(do()l) ) -4
async_recv async_recv

é l ) b
y Ay

(4:async_send(1), l

3:async_recv(0))
node n’

(2:async_send(1), (2:async_send(1),
1:async_recv(0))

1:async_recv(0)) ¥
i

(3:async_send(1),

(3:async_send(1),
2:async_recv(0)) 2:async_recv(0)) |
(4:async_send(1),
3:async_recv(0))

Figure 7.10: Detecting a loop

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 7. LOOPS

(rp1y)
4) Addition of node: (1:async_send(1),
async_recv(0))
(5:async_send(1), ;
4:async_recv(0)) L

(2:async_send(1),
1:async_recv(0))

]
(3:async_send(1),
2:async_recv(0))

]
(4:async_send(1),
3:async_recv(0))

(ro1y)

(l:async_send(1),
async_recv(0))

l

(2:async_send(1),
1:async_recv(0))

Resulting H:

(3:async_send(1),
2:async_recv(0))
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(roo1y)

(1l:async_send(1),
async_recv(0))

l % K

(2:async_send(1),
1:async_recv(0))

N

y )
(4:async_send(1), !
3:async_recv(0)) ,

(S:async_send(1),

4:async_recv(0)) node 7

Figure 7.11: Detecting a loop
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When node n is added to H, algorithm Crt H() invokes algorithm Check Loops() to
check for the existence of a loop with the additional node. Algorithm Check Loops() checks
the ancestors of n for a node representing the same state as n. If one is found, the variable
Poss_Head is set to the matching node, and variable Poss_Tail is set to the parent of n.
I[f Poss_Head and Poss_Tail refer to the same node, an occurrence of case 1 is found, a
back edge is added from Poss_Head to itself, and node n is removed from H. If case 2 is
verified, nodes from the parent of Poss.Tail to Poss_Head are traversed checking for values
in temp_back. If all nodes have values in temp_back, then the loop has been repeated. In
Poss_Head, the value of temp_back is replicated as the back edge. If any node has no value

in temp_back. the potential loop body has not been repeated.

When a loop is added to H. nodes require removal. If a back edge is added for case 1,
then only node n needs to be removed. When a back edge is added for case 2. the nodes
and their children that were created to duplicate the loop body must be removed. When
traversing H from the parent of Poss_Tail to Poss_Head. the variable prev_traverse is set to
the previously checked node. If a back edge is added. node prev_traverse and its children
are removed by the Remove Nodes() function. Entries may remain in CCS.Q for children
of the removed node. When a node is removed from H, the queue CCS_Q is scanned for
entries whose parent is the removed node. If any are found, they are removed from CCS.Q

by the RemoveQ() function.

Crt HQ)
[nitialize queues Msg_Qy,..., Msg_-Qn_;, CCS-Q to empty
Initialize array counter{0] ... counter{N —1] to 0
Create root node r
r.CCS = CCS,
Determine SUCC(r,CC Sy, Msg_Qy,..., Msg_Qn_;, CCS-Q)
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while CCS_Q is not empty
item = behead(CCS_Q) /* format of item is <node.list,Qy,....Qn -1, counter> */
Parent = item.node
LL = item.list
Msg.Qo,. .. Msg_Qn_| = item.Qp, ... .item.Qn -,
counter = ilem.counter
for each <CCS, FGnode> entry in LL
Create a node n in H
n.CCS = CCS
n.FGnode = FGnode
AddEdge( Parent, n)
Determine SUCC(n,CCS. Msg.Qy..... Msg_Qn-, counter, CCS.Q)
end for
end while
end algorithm

Determine.SUCC(n, CCS, Msg_Qo,.... Msy_Qn_1. counter. CCS.Q)
Msg.Q%.....Msg.Q'n_y = Msg_Qq..... Msg_Qn_,
counter’ = counter
Loop = false
if (n = root node)
SUCC(CCS) = Generate.SUCC(n) /* <CSS.FGnode> is entry in SUCC(CCS) */
if (SUCC(CCS) # NULL)
Add <n.SUCC(CCS).Ms9-Q%..... Msg_Q 'n_\.counter’™> to the tail of CCS.Q
end if
else
fori=0to N -1
if (v; of CCS = async_recv(j))
if (Msg-Q'; has entry <counter, j >)
/* v; is a ready receive */
item = behead first <counter. j > entry in Msg_@’
append item.counter to v; in CCS /* item.counter:async_recv(j) */
end if

fori=0to N—1
if (v; of CCS = async_send(j))
counter[j ] ++
Add <counter[j]’, i > to Msg_Q’;
Append counter([j]’ to v; in CCS
end if
end for
Loop = Check_Loop(n) /* Changes for loop start here */
if (Loop = false)
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SUCC(CCS) = Generate_SUCC(n)

if (SUCC(CCS) # NULL)
Add <n,SUCC(CCS),Msg_-Q%,.... Msg_Q’x_,,counter’™>
to the tail of CCS.Q

end if

end if /* Changes for loop stop here */
end if
end function

Check_Loop(n)
Found_Match = false
Poss_Head = n.parent[0] /* Check if an ancestor of n represent the same state of n */

while (Poss_Head # ROOT) AND (Found_Match = false)
Found_Match = Check Dup(n, Poss_Head)
if (Found_Match = false)
Poss_Head = Poss_Head.parent[0]
endif
endwhile
if (Found_Match = true) /* Poss_Head represents the same state as n. Does loop erist? */
Poss_Tail = n.parent(0]

if (Poss_Head = Poss_Tail) /* Case 1 */
Add_BackEdge ( Poss_Head. Poss_Tail)
RemoveNodes(n)
return{true)

else /* Case 2 */

traverse_node = Poss_Tail.parent(0]

while (traverse_node # Poss_Head) AND (traverse_node.temp_back # NULL)
prev_traverse = traverse_node
traverse_node = traverse_node.parent[0]

end while

if (traverse_node # Poss_Head) OR /? a potential back edge */
((traverse_node = Poss_Head) AND (Poss_Head.temp_back = NULL))
Poss_Tail.temp_back = Poss_Head
return(false)

else /* a loop exists. add the back edge */
Add_BackEdge ( Poss_Head.temp_back, Poss_Head)
RemoveNodes (prev_traverse)
return(true)

endif

endif
endif
end function
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Check Dup(node!l. node2)
CCS!1 = nodel.CCS
CCS?2 = node2.CCS
i1=0
Equal = true
while (i < N) AND (Equal = true)
if (v; € CCS1 = v; € CCS2) /* Do not compare counter that may be appended to v; */
if ( nodel.FGnodefi] # node2.FGnodeli])
Equal = false
end if
else
Equal = false
endif
i++
end while
return{ Equal)
end function

Remove Nodes(n)
inder = 0
while (n.Kidsfindez] # NULL)
Remove Nodes (n.Kids[indez/)
index++
end while
Delete n
RemoveQ(n)
end function

RemoveQ(CCS)
item = head of CCS_Q
while (item # NULL)
if item.parent = CCS
Remove item from CCS-Q
end if
item = next entry in CCS_Q
end while
end function
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AddEdge (parent, n)
i=0
while (parent. Kids[i] # NULL)
i++
end while
parent.Kidsfi] = n
n.Parents[0] = parent
end function

Add_BackEdge(n, parent)
i=10
while (parent. Kidsfi] # NULL)
i+
end while
parent.Kids[i] = n
n.Parents[1] = parent
end function

The addition of back edges to H represents the repeated execution of a portion of the
distributed system’s execution. When following a possible execution path of H and a back
edge occurs in the path. this back edge represents an iteration of the loop associated with

the back edge. If. when considering only the forward edges of H.

e nodes a and b are in an execution path in H.
e nodes ¢ and b are both nodes of the same loop, and

e node a is an ancestor of node b.
then. when considering forward and back edges,

e b is an ancestor of a when b occurs in iteration 1 of the loop and a occurs in an iteration

greater than i, and

e a is an ancestor of b when a occurs in iteration i and b occurs in iteration i or greater.
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Referring back to figure 7.7, node (2:async_send(1), l:async.recv(0)) is an ancestor of
node (3:async_send(1), 2:async_recv(0)), and node (3:async_send(1), 2:async_recv(0)) is an
ancestor of (2:async_send(1), l:async_recv(0)). The first ancestor relationship is inherent,
but the second is only possible with the addition of the back edge. The second relationship
is true only when node (3:async_send(1), 2:async_recv(0)) occurs in iteration ¢ and node

(2:async_send(1). l:async_recv(0)) occurs in an iteration greater than i.

If node a is an ancestor of node b, then b is a descendant of a. The children of a are the
descendants of ¢ whose path length from e is equal to one. This path can be a forward or

back edge. If b is a child of a. then a is the parent of b.

Property 6.8 states that tree H represents all the partial orders of the distributed
system. Without back edges in H. the number of partial orders is finite. If H has back
edges. the partial orders are known but the number of partial orders is potentially infinite.
A bound is not known for the number of times a loop can be iterated. Each path from the
root to a leaf node that includes a back edge represents a group of partial orders that have

a repeating pattern. Graph H continues to represent all the partial orders.

7.3 POG

In chapter 6. the input to the algorithm Crt POG() is the tree H and the output is the
POG. With the possibility of back edges in H. the POG can also have back edges. Only
the function EQUIV() of algorithm Crt_P0G() is affected by the addition of back edges in

H. Properties 6.9 through 6.13 and Lemmas 6.2 and 6.3 correspond to the POG. We
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demonstrate that these properties and lemmas are maintained with the addition of back

edges.

Function EQUIV() serves the same function as described in chapter 6. However, the
inclusion of back edges requires additional tests to determine equivalency of H nodes. Sup-
pose CCS and CCS' are found to have equivalent communication commands. and the nodes

that represent CCS and CCS’ are n and n’. Function EQUIV() must check whether

1. n or n’ is pointed to by a back edge. or

2. n or n’ has a back edge.

Function EQUIV() calls function Check Back() to determine if either (1) or (2) are true.
If neither (1) nor (2) occurs. n and n' are equivalent. Both cases require further tests to

determine equivalence.

In case (1). if only one of the nodes is referenced by a back edge. then n and n' are
not equivalent. When nodes n and n' are each pointed to by a back edge, both node n are
entry points of loops in H. The next test determines whether the loop associated with node
n is equivalent to the loop associated with node n'. The recursive function TreeCmp() of

algorithm Crt_POG() determines the equivalence of the two loops.

Node back is the node that has a back edge to node n, and node bacK is the node that
has a back edge to node n’. Nodes n and back define a subtree. Node n is the root node, and
the nodes that are descendants of n but not the descendants of back comprise the nodes of
the subtree. The variable subtree is the subtree defined by nodes n and back. Nodes n’ and

back' also define a subtree, subtree’. The two subtrees are traversed in lock step, starting at
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the root node, in depth first order. The current node of subtree, c, is compared against the

current node of subtree, /. If

1. the CCS of node c is equivalent to the CCS of node ¢, and

2. the number of children of ¢ is equal to the number of children of ¢

then the traversal of the subtree continues. If either condition is false, the loops are not
equivalent and the traversal stops. If both subtrees are completely traversed without falsi-
fying either condition, then the loops are equivalent. If the loops are equivalent, then nodes
n and n’ are represented by a single node in the POG. The nodes of the equivalent loops,
that are not the entry and exit points of the loop. will be united by the original EQUIV()

algorithm.
If case 2 is found to be true, then the following two tests are required to determine the

equivalence of n and n':

1. both n and n’ have a back edge. and

2. the H node pointed to by the back edge of n is equivalent to the H node pointed to

by the back edge of n'.

Function Check Node() is called by EQUIV() to determine if these two tests are true. If

both tests are passed, both n and n’ will be represented by a single node in the POG.

The equivalent H nodes described in test 2 will already be represented by one node

of the POG as a result of the previous case. A single back edge will be added from the
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POG node that represents n and n’ to the POG node representing the equivalent H nodes

pointed to by the back edges of n and n'.

One additional field is added to the H nodes to transform H into the POG. The field
POGnode is added to point to the POG node representing this H node. More than one H
node may have the same value of POGnode since one POG node represents equivalent H

nodes. The POG nodes also require additional fields that are replicated from the H nodes:

o Kids[MAXEDGES]
o Kid_type[MAXEDGES]

e Parents/MAXEDGES]

These POG node fields are functionally equivalent to their H node counterparts. Field

"idsfMAXEDGES] is an array of pointers to the children of the POG node. Each entry
represents either a forward or back edge. Field Kid_type/MAXEDGES] is an array of integers
indicating the type of edge for each entry. Forward edge have a zero entry, while back edges
have a one entry. Pointers to the parents of the POG node are maintained in the array

Parents/MAXEDGES].

Algorithm Crt POG() and function EQUIV() are shown with required back edge addi-

tions. Supportive functions are also shown.

Crt POG()
Initialize queue VisitNodes to empty
Create root node S (labeled root)
Add <S8, KidsOf(root node of H)> as the first entry in the queue VizitNodes
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while ( VisitNodes not empty )

ttem = behead( VisitNodes) /* format of item is <node_ptr, node_set> */
POG_ptr = item.node_ptr
node_set = item.node_set /* node_set= {node,,...,nodep}. m>1 */

while ((EQUIV_set = EQUIV(node_set) # ()
Commos = the sends and ready receives the CCSs of EQUIV _set
Create POG node N and label with Commos
AddEdge(POG ptr. N)
Node_SuccSet = §
for each node of EQUIV _set
Node_SuccSet = Node_SuccSet U KidsOf(node)
end for
Add the entry <N, Node_SuccSet> to the tail of VisitNodes
node_set = node_set - EQUIV _set
end while
for each nodeofnode_set
if ((Commos = sends and ready receives of the CCS of node) # NULL)
Create POG node N and label with Commos
AddEdge(POG_ptr. N )
Add the entry <N. KidsOf(node)> to the tail of VisitNodes
else
Create POG node N and label as END node
AddEdge(POG ptr. N )
endif
endfor
end while
end algorithm

EQUIV(node.set)
node_set = node_set
EQUIV _found = false
while (node_set’ # () AND (EQUIV _found = false)
Node_1 = Select(node_set')
EQUIV_set = {Node_1}
Commos = the sends and ready receives of Node_{.CCS
FGnode = Node_1.FGnode
Back_Found! = Check_Back(Node..1)
local_set = node_set’
while (local_set # 0)
Node_2 = Select(local_set)
Commos_2 = the sends and ready receives of Node_2.CCS
FGnode2 = Node_2.FGnode
if (Commos = Commos_2) AND (FGnode = FGnode2)
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Back_Found2 = Check_Back(Node_2)
if (Back.Foundl = Back_Found?2)
case Back_Foundl
0:
EQUIV_found = true
Add Node_2 to EQUIV_set

if (TreeCmp(Node_1, Node.2, Node_1.parent[1], Node_2.parent/[1]))
EQUIV _found = true
Add Node_2 to EQUIV _set

end if

if (Check.Node(Node_1, Node_2))
EQUIV _found = true
Add Node_2 to EQUIV _set
end if
end case
end if
end if
end while
end while
if (EQUIV._found=true)
return( EQUIV _set)
else
return(®)
end function

Check. Back(Node)
/* Check 1: Is Node pointed to by a back edge? */
if (Node.parent[1] # NULL)
return(1)
/* Check 2: Does Node have a back edge? */
i=0
while (Node.Kids[i] # NULL)
if (Node.Kid_Typefi] = 1)
return(2)
end if
++
end while
/* Neither check I nor check 2 is true */
return(0)
end function
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Check Node (Node_I, Node.2)
i=0
while (Node_1.Kid_Typefi] = 0) /" find back edge in Node_1 */
i++
end while
BackNodel = Node_1.Kid[i]
t=0
while (Node_2.Kid_Typefi] = 0) /* find back edge in Node.2 */
i++
end while
BackNode2 = Node_2.Kidsfi]
if (BackNodel.POGNode = BackNode2.POGNode)
return(true)
else
return(false)
end if
end function

TreeCmp(Rootl. Root2, Terml. TermZ2)
Kids! = Rootl.Kids
(ids2 = Root2.Kids
if ((Kids! has no entries AND Kids2 has no entries) AND (Root!.CCS = Root2.CCS))
return(true)
end if
if ((number of entries in Kids! # number of entries in Kids2)
OR (Root1.CCS # Root2.CCS))
return(false)
end if
i=0
while (Kids1[i] # NULL)
if ((Kids1[i] # Term1) AND (Kids2[i] # Term2))
if (TreeCmp(Kids1[i], Kids2[i], Terml, Term2) = false)
return(false)
end if
else
if (((Kids1[i] = Term1) AND (Kids2[i] # Term2))) OR
((Kids1fi] # Term1) AND (Kids2[i] = Term2)))
return(false)
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end if
end if
++
end while
return(true)
end function

KidsOf (node)
kidset = NULL
i=0

while (node. Kidsfi] # NULL)

if node.Kid_typefi] = 0
Add node.Kidsfi] to kidset

end if
i++

end while

return( kidset)

end function

Properties 6.9. 6.10. 6.11, and 6.12 are derived directly from the properties of H and
are affected by back edges as described in section 7.2. Lemmas 6.2 and 6.3 and property
6.13 remain true with the addition of loops in H and the POG. Modification of algorithm
Crt P0OG() is limited to additional checks for equivalency of nodes of H. The construction
of the POG continues to preserve the causal and concurrent relationships in H. Property
6.13 states that each path from the root node to a leaf node of the POG represents a unique
partial order. If there exists a path from the root node to leaf node n that contains a loop,

then a different path exists from the root to n when the nodes of the loop are repeated.
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7.4 LCP and LCP' events

The last modifications pertain to the algorithms Bound_Assert() and Find LCPs() that
determine the LCP and LCP’ events. Lemmas 6.4 and 6.5 and properties 6.14 and 6.15
correspond to the identification of the LCP and LCP' evenis. These lemmas and properties
are not affected by the possible occurrence of back edges in the POG. Two modifications
are required for Bound_Assert (). The first modification stops searching a path for the last
LCP' event when the ASSERT node occurs in the body of a loop. Without back edges in
flow graph F'G;. the search stopped when either a RECEIVE node or the root node was
encountered. With back edges the search should also stop if the ASSERT node itself is
encountered. When Bound_Assert() searches for a RECEIVE node in the flow graph of
figure 7.12 two paths are searched. One is the path including only the FOR node and the
RECEIVE node. The search stops at the RECEIVE node. The other path starts at the
FOR node. proceeds to the END_FOR node by following the back edge. The next node
in the path is the ASSERT node. The search terminates since a receive does not exist on
the path from the ASSERT node back to itself. If a RECEIVE node exists between the
END_FOR node and the ASSERT node, as shown in figure 7.13. the RECEIVE is a last
LCP' event and is added to the linked list Local_ LCPs. In this case. the search succeeds

when the RECEIVE node is encountered.

The second modification is needed when a loop occurs in the path being searched, but
the ASSERT node is not part of the loop body. Without modification, the nodes of a loop
will be followed infinitely if the loop occurs prior to the ASSERT node and a RECEIVE node

is not found. The flow graph in 7.14 demonstrates the problem. The path ASSIGN, FOR,
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END_FOR, SEND, FOR, END_FOR, SEND, ... is repeatedly traveled unless a modification
is made. When searching a path for a RECEIVE node, each node is flagged as visited when
it is encountered. Before following a parent of a node in a search path, the visited flag
of that node is tested. If it has not been set, then this path is searched. If it has been

previously visited. this path is not searched.

For completeness, we repeat algorithm Bound_Assert() with modifications.

Bound_Assert () /? input: FG,; and assert_node */
current_list = the parent nodes of assert_node
NeztBranch = NULL
Local . LCPs = NULL
crnt.node = first entry in current_list
Remove crni_node from current._list
receive_found = false
do .
while ((receive_found=false) AND (crnt_node # root node of FG;) AND
(crnt_node # assert_node) AND (crnt_node has not been visited))
if (current_list # NULL)
Push current_list on the stack NeztBranch
endif
Mark emnt_node as visited
if crnt.node = receive
Add crnt_node to Local .LCPs
receive_found = true
else
current_list = parent nodes of crnt_node
crnt_node = first entry in current_list
Remove crnt_node from current_list
endif
endwhile
if (NeztBranch # NULL)
receive_found = false
current_list = Pop(NeztBranch)
crnt_node = first entry in current_list
Remove crnt_node from current_list
endif
while (NeztBranch # NULL)
end algorithm
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v

Figure 7.12: Assert in the loop body

Algorithm Bound_Assert() constructs a linked list, Local.LCPs, that are the last LCP
events of the assert. This list is used by algorithm Find LCPs() to determine the LCP and
LCP' events of the POG. The search for LCP and LCP’ requires Find LCPs() to visit
the ancestors of each POG node represented by an LCP event in Local_LCPs. Changes are
necessary to Find LCPs() to contend with back edges encountered during the search. Back
edges in the POG define additional causal relationships as demonstrated by the portion of

the POG shown in 7.15. Without considering the back edge, the causal relationships are
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Y

Figure 7.13: Assert and receive in the loop body

1:081 > 1:1R0 — 1:250 — 1:0R2. The causal relationships 1 : 0R2 = 1 : 250
— 1:1R0 — 1 : 0S1 exist with the back edge. When determining the LCP and LCP'

events, all casual relationships, including those derived from back edges, must be considered.

A node with a back edge pointing to it has two parents. One parent is the result of a
forward edge. and the other parent is the result of a back edge. In the original version of
Find LCPs(). only parent nodes which result from forward edges are searched. To consider
all the causal relationships in the POG, paths that include parent nodes that are the result

of back edges are also searched.
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Figure 7.14: Assert not in the loop body

In the POG shown in figure 7.15. the assert occurs in P;. and the receive of node last
is the last LCP event of P,. The search for LCP and LCP’ events starts at node last. The
send of node n, 1:0S51. is found to be an LCP' event. Node n has two parents. one resulting
from a forward edge and one resulting from a back edge. At this point the search branches
into two paths. The path that includes the parent of node n resulting from a forward edge is
searched by the original Find LCPs(). The path that includes node n’ and node n” shouid
also be searched by Find LCPs() since these nodes are ancestors of node n. The receive of

node n” is an LCP event and the send of node n’ is an LCP' event.
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Figure 7.15: POG with a back edge

Notice in the POG of figure 7.15 that when the path follows the back edge parent
of node n. the path last.n.n”.n’ can repeat indefinitely. When a back edge is encoun-
tered. the back edge must be followed to consider all causal relationships. By following
the back edge once, all additional causal relationships defined by this back edge are con-
sidered. Additional variables are required in algorithm Find LCPs() to follow paths that
include parent nodes resulting from back edges and to not visit a parent that is the re-
sult of a back edge more than once in the same search path. A node is placed in the
set VisitOnceif the node is a parent node resulting from a back edge. and the node is
visited by the current search. Since the search can branch into two different paths, the

state of the search prior to the branch is saved. The branch resulting from a forward
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edge is visited first. When the search of this branch has been completed, the other branch
is searched by restoring the saved state and continuing the search at the branch point.
An entry in the queue StateQ is the state of a search. The format of an entry in StateQ is
<POGNode, RwoSQ, Send@Q, RecuQ, FoundProcs, Sends, Rec_wo_Sends, VisitOnce>. The
variable POGNode is the parent node resulting from the back edge. The remaining items
are the values of variables before the branch. Algorithm Find LCPs() is repeated with the

appropriate modifications.

Find LCPs() /* Input: Local.LCPs Output: SendQ, RecvQ */

State = NULL
for each entry in Local_ LCPs where the event entry is c: iRj
for each POG node that contains c: iRj
Lastnode = POG node that contains ¢ : iRj
POGnode = Startnode
FoundProcs = Sends = VisitOnce = §
Rec.wo.Sends = {i}
RwoSQ = NULL
Insert <c.i.j, POGnode> in RwoSQ
POGnode = Parent0f (POGnode)
while (POGnode # root node) AND (FoundProcs # ({ 0. ... .N-1} - 1))
while (POGnode # root node) AND (FoundProcs # ({ 0. ... .N-1 } - 7))
for each receive. c : jRk, in POGnode
if ((7 € Sends) OR ( j = i)) AND (k£ ¢ FoundProcs)
Insert <c, j, k, POGnode> in RwoSQ
Rec_wo_Sends = Rec_wo_Sends + j
endif
endfor
for each send, c: jSk, in POGnode
if (k € Rec.wo_Sends) AND
((Recv-POGnode = SearchQ(c, k,j)) # NULL)
if (RwoSQ does not have an entry with k as the receiver)
Rec_wo_Sends = Rec_wo_Sends - k
endif
Sends = Sends + j
FoundProcs = FoundProcs + j
Insert <c,j, POGnode> in SendQ
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Insert <c,k, Recv_POGnode> in RecvQ
end if

end for
POGnode = Parent0f (POGnode)

end while

if (State@ # NULL)
item = behead(StateQ)
POGnode = item.POGnode
RwoSQ = item.RwoSQ
SendQ = item.Send(Q
Recv@ = item.RecvQ
FoundProcs = item.FoundProcs
Sends = item.Sends
Rec_wo.Sends = item. Rec_wo_Sends
VisitOnce = item. VisitOnce

end if

end while
end for
end for
end algorithm

Parent0f (POGnode)
if (POGnode.Parent(1] # NULL) /* if POGnode has two parents */
AND (POGnode. Parent[1] not in VisitOnce)
Add entry
<POGnode.Parent(1]. RwoSQ, SendQ. RecvQ, FoundProcs.
Sends, Rec_wo_Sends, VisitOnce>
to StateQ
end if
return( POGnode. Parent[0])
end function

The changes to algorithm Find LCPs() to facilitate searching paths including back edges
for LCP and LCP’ events do not affect lemmas 6.4 and 6.5 and properties 6.14 and 6.15.
The entries in SendQ are the LCP events, and the entries in RecvQ are the LCP’ events.

No alterations to the method of adding entries into these queues results from the changes
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to Find LCPs(). We conclude that our technique for identifying LCP and LCP’ events

remains valid.

The next chapter analyzes the distributed programs of chapter 2. The resulting POG

is shown for each program, and the LCP and LCP’ are determined from the POG.
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Static Analysis of Distributed

Programs

We presented five distributed programs in Chapter 2. In this chapter. we apply the al-
gorithms of chapters 6 and 7 to determine the LCP and LCP’ events for each distributed

program.

8.1 Set Partition

SETPART. the set partition program, is reproduced from section 2.1 with the addition of

an assert statement A, in process P;.

169
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Po:: P1
1 mx = max(S) 14  while(true)
2  asyncsend(l. mx) 15 async_recv(0. y)
3 S=5-{mx} 16 T=TU {y}
4  asyncrecv(l. x) 17 mn = min(7T)
5 S=Su{x} 4, assert(y = max(S) > mn > zA
6 mx = max(S) IS| =|Sol ASNT =y )
7  while (mx > x) 18 async_send(0, mn)
8 asyncsend(1, mx) 19 T=T- {mn}
9 S =8 - {mx} 20 endwhile
10 async._recv(l. x)
11 S=S5uU{x}
12 mx = max(S)

13  endwhile

An assert statement in either process is adequate for expressing expected system execu-
tion behavior. Placing the causal assert statement A, between lines 17 and 18 is useful for
detecting incorrect execution and for locating errors in both Py and P,. Assert statement

A, is evaluated on each exchange.

A false evaluation of A4; indicates erroneous execution of the program. SETPART’s error
is identified by the assert’s falsifying clause. If y is not equal to max(S); Py did not send
the correct value. If max(S) 2 mn: processing should have stopped on the last exchange.
and a likely error is Py's exchange loop condition. If mn ¥ z: either a value other than
the minimum of T was chosen. or Py has erroneously altered the variable z since the last
exchange. If the new size of S has changed. P has not correctly added or removed a value
from S since the last exchange. If the intersection of S and T is not equal to y; either S
or T has not been correctly updated since the last exchange, and the results of the other

clauses help in identifying the incorrect set.
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Figure 8.1: Flow Graphs for Set Partition
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Figure 8.2: H for Set Partition

Suppose the programmer mistypes line 8 by sending = instead of mz to P;. This mistake
is detected by clause y = max(S) of A;. The negative evaluation of this clause identifies
an erroneous value sent by Py. Alternatively, suppose Fy's condition to initiate another

exchange is incorrectly a > instead of a >, then line 7 is

7  while (mx > x).
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Figure 8.3: POG for Set Partition

This error prevents Fy from detecting the sets are partitioned. and causes SETPART to
enter an infinite loop. The clause mn > r of A; detects this error the first time an invalid

exchange is attempted by P and eliminates the infinite loop problem.

Static analysis is performed by the algorithms of chapter 7 since loops are present in the
program. First, algorithm Create FG;() constructs the control flow graphs. The resulting

flow graphs are shown in figure 8.1.
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Graph H is constructed by algorithm Crt H() from the flow graphs. The resulting
graph H is shown in figure 8.2. The back edge represents the continuous exchange of data
between the two processes until the set is partitioned. The POG is constructed from H

and is shown in figure 8.3.

Algorithm Bound_Assert () determines the last LCP’ event of the assert statement in
P,. Node async.recv(0) of FG, is returned by Bound_Assert (). This node is shown in
figure 8.1 with double circles. The event async_recv(0) of P, is represented by two POG

nodes. One node has the entry 1:1R0, and the other node has the entry 2:1R0.

Starting with node 1:1 R0 of the POG. we identify the LCP and LCP’ events. The LCP’
event is 1:1R0. and the LCP event is 1:0S1. For node 2:1R0, the LCP' event is 2:1R0. and
the LCP event is 2:0S1. The nodes with double circles in figure 8.3 represent the LCP
and LCP' events. Since the assert is in Pj. it is not necessary for P, to propagate state

information to Py. Our static analysis allows us to not piggyback messages from P, to P;.

8.2 Mutual Exclusion

Assume a three process distributed system implements mutual exclusion by embedding
the circulating token protocol in its distributed application. Additional assumptions are
that process P, starts the token circulating, process P, evaluates the the assert statement
A;, and each process P; initializes variable in.cs; to false. Assertion 4, detects mutual
exclusion violation. The distributed application may incorporate message passing, but we

only analyze the mutual exclusion code. The messages of the application will not affect our
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analysis. Below is the portion of the code we analyze.

MUTEX
Py::
1 do
2 async_send(1, token)
3 async.recv(2, token, waitsecs)
1 if message received
3 if want_csq
6 in.csg=true; critsecy; want.csg=false
7 endif
8 async.send(1, token)
9 else /* async_recv timed out */
10 do_otherg
11 endif
12 enddo
P:
13 do
14 async.recv(0. token. waitsecs)
15 if message received )
Ay assert(in.csg =t Ain.cs| =t = in_csg = in_cs) V in.cs, — in.csg and
incs;y =tAincsy =t = in_cs; = in_css Vin_css — in.cs,) and
in.csy = tAin_csog =t = in_csg — in_csa Vin_css — in_csg)
16 if want_cs,
17 in.csy=true: critsec; want_cs|=false
18 endif
19 async_send(2. token)
20 else /* async_recv timed out */
21 do_other;
22 endif
23 enddo
Ps::
24 do
25 async.recv(l, token, waitsecs)
26 if message received
27 if want_csg
28 in_cso=true; critsecs; want_cso=false
29 endif
30 async.send(0, token)
31 else /* async_recv timed out */
32 do_others
33 endif
34 enddo
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Figure 8.4: Flow Graphs for Mutual Exclusion

Assume line 26 of P, is erroneously omitted, and then suppose the following occurs.
Process Py passes the token to P,, and P; enters its critical section. Process P, wants to
enter its critical section and has set want_css to true. While P; is in its critical section, the
async.recv on line 25 times out. The condition of line 27 is true, and P, incorrectly enters

its critical section while P, is in its critical section.
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Figure 8.5: Graph H for Mutual Exclusion

This invalid critical section entry by P, is detected by the assert statement A; when
the token circulates around to P,. The clause (in.cs; = t Ain.csy = t = incs; —
in.css V in.css — in.cs)) evaluates to false detecting that P, and P, entered their critical
sections concurrently. The combination of in_cs; being true and the timestamp of when
in_cs; was last modified conveys the last time P; entered its critical section. With this

information, the assert statement detects any of the processes violating mutual exclusion.
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Figure 8.6: POG for Mutual Exclusion

The flow graphs for the circulating token protocol are shown in figure 8.4. The do.other
statements in the source code are represented as a series of assignment nodes in the flow
graphs. The H graph generated is shown in figure 8.5, and the POG is shown in figure

8.6.

Algorithm Bound_Assert() determines the last LCP’ event of the assert statement in
P,, node async_recv(0) of FG;. This node is shown in figure 8.4 with double circles.
The event async_recv(0) of P, is represented by two POG nodes. One node has the entry

1:1R0. and the other node has the entry 2:1R0.
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Starting with node 1:1R0 of the POG, we identify the LCP and LCP’ events. The
LCP’ event is 1:1R0, and the LCP event is 1:0S1. For node 2:1R0, the LCP' events are
2:1R0, 1:0R2, and 1:2R1. The LCP events are 2:051, 1:250, and 1:15S2. The nodes with
double circles in figure 8.6 represent the events that are the LCP and LCP’' events. The
messages that implement the circulating token are also the messages that piggyback state
information for assert evaluation. The distributed program’s application messages will not

be tagged for piggybacking.

8.3 Bubble Sort

We continue with thg distributed bubble sort program from chapter 2 that consists of six
processes. The time space diagram for the bubble sort’s execution is repeated in figure 8.7.
The hashes on P,’s time line represent assertion evaluation. Two asserts in one of the six
processes provides a thorough erroneous execution detection method. The assert statements
can be in any one of the six processes and provide the same meaningful information. We
have arbitrarily selected P;. Process P's source code is shown below with the two assert
statements As, and Agy. The clause P.list < P;.recvlist in the assert statements tests .
whether every element in P,.list is less than or equal to all elements of P;.recv{ist. and the
clause P,.list > P,.recv.list in the assert statements tests whether every element in P,.list

is greater than or equal to all elements P;.recvlist.
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P,
integer pid, phase;
arrays list, recv_ list

1 pid=2

2 read q/6 elements into list

3 sort list

4 for phase=0t0 5

3 if phase is even

7 async_send(3, list)

8 async_recv(3. recv.list)

9 list = merge_sort(list, recv_ list. first)

Avg assert( P,.list < Py.recvlist A Py.recv list = Py.listA
Py list < Py.recv_list A Py.recv list = Py.listA
Py list < Py.recv list A Py.recv list = Ps.listA
P;.list > Ps.recv list)

10 endif

11 if phase is odd && pid '= 0 && pid'= N -1

12 asyncsend(1, [ist)

13 async.recv(l. recvlist)

14 list = merge_sort(list, recv_list. last)

A assert( P.list > Py.recvlist A Py.recv list = P,.listA
Py list > Py.recv list A Py.recv list = Py.listA
Po.list < Py.recvlist)

15 endif

16 endfor

merge_sort(list. recv list, half)::
array merge_list
merge_list = merging of recv_list and list
sort merge_ list
if hal f= first

return first half of elements in merge_list
else

return last half of elements in merge_list
endif

- U e D —

The clause P;.recvlist = P;y).list, for i = 2...4, of assert Ay, determines whether
process P; received the correct list from its right neighbor P;.,. The clause P;.recvlist =

P;_,.dist, for i = 1...2, of assert Ay, determines whether process P, received the correct
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P, P, P, P, P, P,

Figure 8.7: Time space diagram for Bubble Sort

list from its left neighbor P;_;. The clauses P;.list < P,.recvlist and P,.list > P;.recv list

ensure that merge_sort() correctly sorted and halved the merged list.

Assume line 9 of P; is mistyped. The function merge_sort() is passed last instead of
first. Function merge_sort() sorts and returns the last ¢/6 elements, and these elements are
assigned to list. The correct execution should have assigned to list the first ¢/6 elements of
the merged and sorted elements. In the next phase (odd), line 12 of P; sends this incorrect
list to P;. Assume P; is correct. In the following even phase when P; sends its supposedly
correct list to P, the clause Py.list < Py.recvlist of assert Ay, evaluates to false detecting

that P, executed incorrectly. This false evaluation singles out the error to P;’s execution

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 8. STATIC ANALYSIS OF DISTRIBUTED PROGRAMS 182

of merge_sort() in an even phase. In general, errors in merging, sorting and halving
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Figure 8.8: Flow Graphs for Bubble Sort

any of the process’s list will be detected by the two assert statements. The comparisons
Py list < Pa.recvlist, Py.list < P3.recvdist and Py.list < Py.recvlist of Ao, ensures the
correct execution of P» and its right neighbors. The comparisons P;.list > P».recv.list and

P, .list > Py.recvdist of Ay, ensures the correct execution of P, and its left neighbors.
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Figure 8.9: Graph H for Bubble Sort

In an even phase. process P; should send list to P,. But consider the case when P
mistakenly sends recv_list instead of list. Clause P.recvlist = Ps.list of Aj, evaluates
to false and identifies P, as sending the incorrect data. Assert As, ensures that P»’s right
neighbors have sent the correct data, and assert A, ensures that Py’s left neighbors have

sent the correct data.
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The source code for the other five processes is not shown in this chapter, but the bubble
sort algorithm in chapter 2 is sufficiently outlined for our static analysis. The flow graphs
are shown in figure 8.8. The resulting H graph is shown in figure 8.9. Each process has an
if/else branch in execution, and the combinations of different executions creates a large H
graph. Only those branches that contribute to a path in the POG are shown in H. An edge
with an asterisk denotes an incorrect decision made at the if/else branch of the processes.

The resulting POG is shown in figure 8.10.

Since we have two assert statements in P». algorithm Bound_Assert() is called twice
to determine the last LCP’ events. For assert A, the last LCP’ event is async_recv(3)
of FG,. The event async.recv(3) is represented by three POG nodes. The POG node
entries that represent this receive are 1:2R3. 3:2R3. and 2:2R3. For assert Ay, the last
LCP’ event is async.recv(1) of FG3. The event async._recv(1l) is also represented by
three POG nodes. The POG node entries that represents this receive are 2:2R1. 1:2R1,
and 2:2R1. All six POG node representatives of these last LCP’' events are underlined in

figure 8.10.

For each of the last LCP' events. the LCP and LCP’ events are determined by algorithm
Find LCPs(). The LCP and LCP’ events are underlined in figure 8.11. The messages that
piggyback state information are shown in the time space diagram of figure 8.7 as solid
directional lines. The LCP and LCP' events for assert 45, are identical to the LCP and
LCP' events for assert A2p. In this example, the additional assert statement did not increase

the number of messages piggybacking state information.
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Figure 8.10: POG for Bubble Sort
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Figure 8.11: LCP and LCP’ events for Bubble Sort
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8.4 Tree Sort

Referring back to figure 2.5, we see that the distributed tree sort program of chapter 2
consists of 15 processes. We have selected P, to evaluate assert statement A;. This assertion
ensures that processes Py, Py, Py, Py, Pg, Py and Py have correctly split, merged. and sorted
the list Py sent to P,. Since the left side and the right side of the tree are symmetric, a
similar assert statement would be placed in P; to ensure processes P», Ps, Ps, Py, P2, P13

and Py correctly split. merge. and sort the list P, sent to P».

P,:: (parent node)
integer child,. child,. parent
arrays list. list).listy
async.recv(0, list);
split list into two halves: list;.list,
async_send(3, list,)
async_send(4. listy)
async_recv(3.list))
async_recv(4, list,)
1: assert(P;.list is sorted A Pg.list is sorted A Po.list is sorted A
Pyg.list is sorted A Pj.list is sorted A Py.list is sorted A
((Pr.list U Pg.list U Py.list U Pyg.list) = P, .list) A
(Ps.list = Pylist) A (Pg.list = Py.listy) A
((Ps.list; U Py.listy) = Pylist = P list)) A
(Po.list = Pylisty) A (Py.list = Py.listy) A
(Py.list) U Py.listy = Py.list = Pylisty) A
(P .listy U Py listy = Py .list))
7  merge list; and listy into list
8  async_send(0,list)

e SOV e NS

In the correct implementation of tree sort, P; receives a list from P;, and then P3 is
responsible for sorting this list and sending the sorted list to P;. Assume P3; erroneously

sends the wrong list to P;. Following is the incorrect implementation of P;:
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Figure 8.12: Flow Graphs for Tree Sort

Pj:: (parent node)

integer child;. child,, parent
arrays list. list, lists
async_recv(l, list);

split list into two halves: list,. list,
async_send(7, list)
async_send(8, listy)
async_recv(7, list,)
async_recv(8, lists)

merge list; and listy into list
async_send(1, list;)

00 =~ O UV &

Line 8 is incorrect, P3 should send [ist to P,. Assert A, detects the error by two

clauses evaluating to false. These clauses are (P;.list) U P3.listo = Ps.list = P;.list;) and
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(P .listy U Py.listy = Py .list). The combination of these clauses identifies that P,.list; is
incorrect. Since none of the other clauses involving P3.list, and Pj3.lists evaluated to false,
the false evaluation of (Pj.list; U Ps.listy = P3.list = P,.list|) conveys that P,.list; is not

equal to Pj.list. With this information, the source of the error is easily found.

As another example of an incorrect implementation. suppose leaf process P does not
correctly sort its list. This error causes clause (Ps.list is sorted) of A; to evaluate to false.

None of the other clauses evaluate to false. and the source of the error is directly identified.

The flow graphs for Py, Py, P», and P: are shown in figure 8.12. The flow graphs for
P;. Py. P; and P; are identical to P,’s flow graph with the exception of the destination
and source of messages. Also. the flow graphs for P, Py, Pyg, P11. Pia, P3, P14 are identical
to P;'s low graph with the exception of the destination and source of the message. The
destinations and originations of the messages for the communication events are given in

chapter 2.

The H graph for the tree sort program is shown in 8.13. There exists only one execution
path since none of the processes have a possible branch in execution. The resulting POG
is shown in figure 8.14. Algorithm Bound Assert() returns the event async_recv(4) of
P, as the last LCP’ event. This event is identified in P,'s flow graph with double circles.
One POG node represents this receive event, and that node’s entry is 3:1R4. This event,
as well as the LCP and LCP' events determined by algorithm Find LCPs(), is underlined
in figure 8.14. Figure 8.15 is the time space diagram of tree sort’s execution with the six

messages that piggyback state information shown as solid lines.
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Figure 8.13: Graph H for Tree Sort
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8.5 Positive Acknowledgement/Retransmission

The two process distributed program implementing positive acknowledgement and retrans-
mission is repeated from chapter 2 with the addition of assert statement Ag. Process Py
sends a message to P}, and P; acknowledges receipt of that message. Process Py retransmits

the message until an acknowledgement for the message is received.

Py::
MsgBitSend : bit /¥ alternating bit */
sbuffer: message /* buffer for outgoing data message */
event: (MsgArrival, CksumErr, TimeOut) /¥ different interrupt events */
1 MsgBitSend = 0 /? initialize alternating bit */
2 FromHost(sbuffer) /¥ get the data message from host */
3 repeat
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4 async_send(1,sbuffer, MsgBitSend)

) StartTimer; /* time to wait for acknowledgement */
6 wait(event) /¥ possibilities MsgArrival, CksumErr, TimeOut */
T if event = MsgArrival

8 async.recv(l, ack) /* receive the acknowledgement */

Ag: assert(P,.IncomingBit = Py.MsgBitSend A Py.MsgBitSend # P,.MsgBitReceive A
Py.sbuffer = P,.rbuffer A P,.event = MsgArrival)

9 FromHost( sbuffer) /* an acknowledgment has arrived intact */
10 inc( MsgBitSend) /* increment by I then mod 2 */
11 endif

12 until doomsday

Py
MsgBitReceive : bit /¥ alternating bit */
IncomingBit : bit /¥ incoming message’s bit */
rbuffer: message /* buffer for incoming data message */
event: (MsgArrival. CksumErr) /* different interrupt events */
13 MsgBitReceive = 0 /? initialize alternating bit */
14 repeat
15 wait(event) /* possibilities MsgArrival, CksumErr */
16 if event = MsgArrival /* a valid message has arrived */
17 async_recv(0, rbuffer. IncomingBit) /* accept the message */
18 if IncomingBit = MsgBitRecetve
19 ToHost(rbuffer) /* pass the data to the host */
20 inc( MsgBitReceive) /¥ increment by 1 then mod 2 */
21 endif
22 async_send(0. acknowledgement)
23 endif

24 until doomsday

Assert A first determines if IncomingBit was correctly received at P, and was not erro-
neously changed by P,. The second clause of the assert, Py. MsgBitSend # P,.MsgBitReceive,
ensures that MsgBitSend and MsgBitRecv are correctly updated. The third clause, Py.sbuffer
= Py.rbuffer, determines whether P, received the correct message, and the last clause,
P, .event = MsgArrival, ensures that P; sent the acknowledgement only after it received a

message from FPj.
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Figure 8.16: Flow Graphs for Positive Ack/Retrans

In the correct implementation of this distributed program. process P, increments Ms-
gBitReceive when a new message is received. Suppose P; increments MsgBitReceive when
it receives any valid message. This error occurs if either line 18 is omitted or if line 20 is

placed after line 21.

Assume line 18 is omitted. Suppose the following events occur. P, sends a message to
P,. P, receives the message and correctly passes the message to the host and increments

MsgBitReceive. Process P; then sends an acknowledgement, but the acknowledgement is
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Figure 8.17: Graph H for Positive Ack/Retrans

lost. Process Py times out and retransmits the same messages. Process P receives a
duplicate message. Since line 18 is missing, P, erroneously passes the message to the host
and increments MsgBitReceive. Process P, then sends an acknowledgement to Py, and the
acknowledgement is received by Py. The assert statement is evaluated. The second clause

of Ag. Py.MsgBitSend # P,.MsgBitReceive, evaluates to false and identifies the error.

As another example of an incorrect implementation, assume P, sends an acknowledge-
ment for any event. This error occurs if line 22 is placed after line 23. Suppose the following
events occur. Process Py sends a message to P;. The message is corrupted in transit. Pro-
cess P; is interrupted and procedure wait returns a CKsumErr event. Line 16 evaluates to
false, but then P, incorrectly sends an acknowledgement to Py. Process Py receives the ac-
knowledgement. The assert statement is then evaluated, and clause P,.event = MsgArrival

evaluates to false. This clause identifies that P; sent an invalid acknowledgement.

The flow graphs are shown in figure 8.16, and graph H in shown in figure 8.17. Although

the two processes’ source code is short, the execution behavior of the distributed program
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Figure 8.18: POG for Positive Ack/Retrans

is complex. The main reason for this is the async_recv(1, ack) of line 8. Process P, will
continue execution regardless of whether Py receives P,’s acknowledgement. The result. as
shown in figure 8.17. is multiple branches of execution. The resulting POG is shown in

figure 8.18.

The assert statement is evaluated when the if condition of P, evaluates to true. Al-
gorithm Bound_Assert() identifies statement async_recv(1) of Py as the last LCP’ event.
This event is represented by three POG nodes which are underlined in figure 8.18. Only the
messages sent from P, to P; need to piggyback state information. Algorithm Find LCPs()
identifies the POG node entries that represent the send event of P; as the LCP event. Both

LCP and LCP’ events are underlined in the POG of figure 8.19.
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Figure 8.19: LCP and LCP’ events for Positive Ack/Retrans

The five examples analyzed in this chapter are diverse in their communication behavior.
Together they demonstrate the robustness of our static analysis technique. For each exam-
ple. the analysis identifies the latest causally preceding communication events. The assert
is evaluated with the causal global state obtained by piggybacking state information on the

messages of the LCP and LCP’ events.

8.6 Prototype

A prototype system has been written to demonstrate the feasibility of analyzing distributed
programs for evaluating distributed asserts. Our prototype is a two-pass compiler. The
grammar for our compiler is shown in appendix A. The C source files for the distributed

processes are the input of the compiler. For assert statement evaluation, code is added
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to the processes’ source files to create and maintain a causal global state, and the LCP
messages are identified and altered to piggyback this causal global state. The remainder of

the distributed program is not altered.

We will use the distributed program SETPART as our running example in the following

explanation of our system. The source code for SETPART appears below.

Py:

#include <stdio.h>
#include <async.h>
#include <sys/time.h>

int S{16];
int x;

main(argc,argv)
int argc;
char sargv(];

int count;
int numcount;

int len;
int i;
int mx;

if (argc < 2)
{
fprintf ( stderr, "USAGE: %s <st size>\n", argv[0]);
exit(1);
}

init_async (121, 0, 2, 0, 0.0, 0, 0 );
count = atoi(argv([1});
Init_List ( S, &mumcount, count, 0);

printf(*Initial set in PO\n\t");
for ( i=0; i<numcount; i++ )

printe("%6d *, S[il);
printf("\n\n");

mx = max( S );

x = -99999;
while (mx > x)
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async_send ( 1, &mx, sizeof(mx) );
Remove ( S, &numcount, mx );

len = sizeof(int);

async_recv ( 1, &x, &len, 60 );
Add ( S, &numcount, x );

mx = max( S );

}

printf("Final set in PO\n\t");

for ( i=0; i< numcount; i++ )
printf("%6d ", S[il);

printf("\n\n");

close_async();

Py

#include <stdio.h>
#include <async.h>
#include <sys/time.h>

int mn;
int T[16];
int y;

main(argc,argv)
int argc;
char »argv(];

int count;
int numcount;
int len;

int 1i;

int devdata;

devdata = 1;
if (arge < 2)
{
fprintf ( stderr, "USAGE: %s <set size>\n", argv(0]);
exit(1);
}
init_async ( 121, 1, 2, 0, 0.0, 0, 0 );
count = atoi(argv(1]);
numcount = Init_List ( T, &numcount, count, 1);

printf("Initial set in Pi\n\t");
for ( i=0; i<numcount; i++ )

printf("%6d ", T[i]);
printf("\n\n");
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while (devdata > 0)
{
len = sizeof(int);
devdata = async_recv ( 0, &y, &lem, 60 );
if (devdata > 0)
{
Add ( T, &numcount, y );
mn = min( T );
assert((max(CG._P0O_S.S) ==y) &&
(max(CG._P0_S.S) >= mn) &&
(mn > CG._PO_x.x) &t
(intersect(CG._P0_S.S, T) ==y) );
async_send ( 0, &mn, sizeof(mn) );
Remove ( T, &Znumcount, mn );

}
}

printf("Final set in Pi\n\t");
for ( i=0; i<numcount; i++ )
printf("%6d ", T[il);

printf("\n\n");

close_async();

The first pass of our compiler consists of four phases. The initial phase parses the source
code in each of the process input files and creates a control flow graph for each process as
described in chapter 7. A declaration table. VarMap. is created. Each variable in a process

has an entry in the table consisting of variable type. identifier and amount of memory

required.

When an assert statement is detected by the parser, an entry containing only the variable
identifier is added to the list assert.vars for each non-local variable that occurs in the
assert. Since processes can have identical variable identifiers, a notation has been developed
to distinguish the process in which a variable resides. Non-local variables of the assert must

be specified in the following format:

CG. Piid.id
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The process number is indicated by i, and the ids indicate the variable identifier. For

example, set partition’s assert is

assert((max(CG. P0S.S) == y) &&
(max(CG. PO.S.S) >= mn) &&
(m > CG. PO.x.x) &&
(intersect(CG.P0S.S, T) == y) );

The list assert_vars will have two entries, CG. P0_S.S and CG. PO_x.x, after parsing this

assert.

The second phase creates three files for each process: asserti.h. pigRecvi.c, and
pigSendi.c where i is the process number. Each asserti.h file defines a data structure
for the causal global state and will be included in P,. A structure exists in the included
file for each entry of assert_vars. The type and size of each item of assert_vars are
found in the table VarMap. The singular difference between asserti.h and assertj.h is the

initialization of vector time. The files assert0.h and assert1.h created for SETPART are

shown below.

assertQ.h:

#define MAXPS 2
struct
{
struct
{
int S[16];
int vtime;
} _PO_S;
struct
{
int x;
int vtime;
} _PO_x;
} CG, tmpCG;
int _vector_t[MAXPS] = {1, 0 };
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assertl.h:
#define MAXPS 2
struct
{
struct
{
int S[16];
int vtime;
} _PO_S;
struct
{
int x;
int vtime;
} _PO_x;
} CG, tmpCG;
int _vector_t[MAXPS] = {0,1 };

The symbol MAXPS indicates the number of processes in the distributed program. As
shown in procedure Update() of chapter 4. the integer vtime is used for updating the
causal global state. The variable CG is the causal global state. and the variable tmpCG is for
temporarily holding a received causal global state. Vector time is maintained in the array

_vector_t[].

The file pigSendi.c is included by process P,. This file contains the source code for
function Piggy Send() which piggybacks the causal global state onto an outgoing message.
This function is also responsible for updating the causal global state prior to piggybacking
state information. The Piggy Send() functions differ for each process. Piggy Send() for
process P; is only responsible for updating CG with the variables that reside locally in P,.

The files pigSend0.c and pigSend1.c for SETPART are shown below.

PigSend0.c

#include <stdio.h>
#include <async.h>
Piggy_send(i, data, sizedata)
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int i;

char =»data;

int sizedata;
{

char *dataptr;

dataptr=(char *)malloc(sizeof (CG)+sizedata);
memcpy (dataptr, data, sizedata);
memcpy(CG._PC_S.S, S, (sizeof(int) = 16));
CG._PO_S.vtime = _vector_t[0];

CG._PO_x.x = x;

CG._PO_x.vtime = _vector_t[0];

memcpy ((dataptr+sizedata), &CG, sizeof(CG));

return(async_send(i, dataptr, sizeof (CG)+sizedata));

}

PigSendl.c

#include <stdio.h>

#include <async.h>

Piggy_send(i, data, sizedata)
int i;
char =data;
int sizedata;

{
char =dataptr;

dataptr=(char *)malloc(sizeof (CG)+sizedata);
memcpy (dataptr, data, sizedata);
memcpy ((dataptr+sizedata), &CG, sizeof(CG));

return(async_send(i, dataptr, sizeof(CG)+sizedata));

The file pigRecvi. ¢ is included by process P;. This file contains the source code for func-
tion Piggy Recv() which receives an incoming message that has been piggybacked with a
causal global state. The newly received causal global state is copied into the variable tmpCG.
The Piggy recv() of P; updates P;’s causal global state with the latest state information by
comparing the vtime of corresponding entries in CG and tmpCG. The entry with the largest
vtime has the latest state information. This is consistent with the causal state propagation

protocol described in chapter 4. Piggy_recv() of P, only updates the components of the
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causal global state that do not correspond to it’s own variables. The files pigRecv0.c and

pigRecvl.c for SETPART are shown below.

pigRecv0O.c:

#include <stdio.h>
#include <async.h>
Piggy_recv(i, data, sizedata, time)
int i;
char =data;
int »sizedata;
int time;

char *dataptr;
int CGsize;

CGsize = sizeof(CG) + =sizedata;
dataptr=(char *)malloc(CGsize);

it (async_recv(i, dataptr, &CGsize, time) < 0)

return(-1);
ssizedata = CGsize - sizeof(CG);
memcpy{data, dataptr, *sizedata);
memcpy(&tmpCG, (dataptr + *sizedata), sizeof(CG));
return(*sizedata);

}

pigRecvl.c:

#include <stdio.h>

#include <async.h>

Piggy_recv(i, data, sizedata, time)
int i;
char =data;
int »sizedata;
int time;

char sdataptr;
int CGsize;

CGsize = sizeof(CG) + ssizedata;
dataptr=(char *)malloc(CGsize);

if (async_recv(i, dataptr, &CGsize, time) < 0)
return(-1);
sgizedata = CGsize - sizeof(CG);

memcpy(data, dataptr, *sizedata);
memcpy (&tmpCG, (dataptr + ssizedata), sizeof(CG));
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if (CG._PO_S.vtime < tmpCG._PO_S.vtime)

{ memcpy(CG._PO_S.S, tmpCG._P0_S.S, (sizeof(int) * 16));
CG._P0_S.vtime = tmpCG._PO_S.vtime;

}

if (CG._PO_x.vtime < tmpCG._PO_x.vtime)

{ memcpy(&CG._PO_x.x, &tmpCG._P0_x.x, sizeof(CG._PO_x.x));
CG._PO_x.vtime = tmpCG._PO_x.vtime;

}

return(ssizedata);

The third phase determines the LCP and LCP' events. The H graph and the POG are
constructed according to the algorithms Crt.H and Crt_POG given in chapter 7. From the
POG. the LCP and LCP’ events are determined. These events are found according to the
algorithms Bound-Assert and Find_LCPs also of chapter 7. This phase produces the same

results for SETPART that where given in section 8.1.

The last phase of pass one forks a child process that is the second pass of the compiler
and establishes a pipe from the first pass process to the second pass process. Through
this pipe the identification of the LCP and LCP' events are sent to the second pass. The
identification of each event consists of two numbers: process identifier and communication
node identifier. As the nodes of the control flow graph are created in phase one, a counter
commoNodeID is assigned to each communication node. The counter commoNodeID is ini-
tialized to one each time a new control flow graph is built and incremented each time an

async.recv or async_send node is added.

The second pass of the compiler reads the LCP and LCP' event identifications and
stores this information in the table IDMap. The distributed processes are parsed again by

pass two, and a new source file is created for each process. The name of each file is N. file. ¢,
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where file is the name of the original source file. If the names of SETPART's original source
files are proc0.c and procl.c, then N.procO.c and N.proc1l.c are the two new source files
created by pass two. These new source files are the result of altering the original files to

incorporate piggybacking of data on the LCP and LCP' events.

The first line written in process P;’s new file is #include “asserti.h". When a line of
source code is read by the parser that is not an async_send() or async.recv() function
call that corresponds to an LCP or LCP’ event, the line is written to the new source
file. The parsing of pass two does not create internal data structures, only a commoNodeID
counter is maintained as in pass one. When a send or receive command is detected during
parsing, the commoNodeID is incremented and the table IDMap is checked to determine if
the command is an LCP or LCP' event. If the command is an LCP or LCP' event and
is an async_send() function call, the function name is replaced with Piggy_send. The
parameters of the function are not altered. A line is also added after the function call to
update vector time. If the command is an LCP or LCP' event and is an async._recv()
function call. the function name is replaced with Piggy recv. Again the parameters of the

function are not altered. and a line is added after the function call to update vector time.

After the source file for P, has been parsed. two lines are added to the end of the
new source file to include the pigRecvi.c file and the pigSendi.c file, thus completing the

creation of the new file. Once all new source file are created, our two pass compiler is
finished. The new files for SETPART are shown below.
N.procO.c:

#include "assertO0.h"
#include <stdio.h>
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#include <async.h>
#include <sys/time.h>

int S(16];
int x;

main(argc,argv)
int argc;
char sargv(];

int count;
int numcount;

int len;
int i;
int mx;

if (argec < 2)
{
fprintf ( stderr, "USAGE: %s <st size>\n", argv(0]);
exit(1);

}

init_async (121, 0, 2, 0, 0.0, 0, 0 );
count = atoi(argv(1]);
Init_List ( S, &numcount, count, 0);

printf("Initial set in PO\n\t");
for ( i=0; i<numcount; i++ )

printf("%6d ", S[il);
printf("\n\n");

mx = max( S );
x = -99999;
while (mx > x)
{
Piggy_send(1, &mx, sizeof(mx));
-vector_t[0]++;

Remove ( S, &numcount, mx );
len = gizeof(int);
async_recv(l, &x, &len, 60);
_vector_t[0]++;

Add ( S, &numcount, x );
mx = max( S );

}

printf("Final set in PO\n\t");
for ( i=0; i< numcount; i++ )
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printf£("%6d *, S[il);
printf("\n\n");

close_async();
}
#include "pigRecvO.c"
#include "pigSendO.c"

N.proci.c:

#include "asserti.h"
#include <stdio.h>
#include <async.h>
#include <sys/time.h>

int mn;
int T[16];
int y;

main(argc,argv)
int argc;
char sargv(];

int count;
int numcount;
int len;

int i;

int devdata;

devdata = 1;
if (argec < 2)
{
fprintf ( stderr, "USAGE: %s <set size>\n", argv[0]);
exit(1);
}
init_async ( 121, 1, 2, 0, 0.0, 0, 0 );
count = atoi(argvi1]);
numcount = Init_List ( T, &numcount, count, 1);

printf("Initial set in PI\n\t");
for ( i=0; i<numcount; i++ )

printf("%6d ", T[i]);
printf("\n\n");

while (devdata > 0)
{
len = sizeof(int);
devdata = Piggy_recv(0, &y, &len, 60);
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_vector_t[1]++;

if (devdata > 0)
{
Add ( T, &numcount, y );
‘mp =min( T );
assert((max(CG._P0_S.S) == y) &k
(max(CG._PO_S.S) >= mn) &&
(mn > CG._PO_x.x) &
(intersect(CG._P0_S.S5, T) ==y) );
async_send (0, &mn, sizeof(mn));
_vector_t[1]++;

Remove ( T, &numcount, mn );

}
}

printf ("Final set in Pi\n\t");
for ( i=0; i<numcount; i++ )

printf("%6d ", T[i]);
printf ("\n\n");

close_async();
}

#include "pigRecvl.c"
#include "pigSendi.c"

The new files are ready for compilation and execution. After compilation, the executing
programs create and maintain a causal global state for the assert statements. The assert
statement is evaluated using the causal global state transmitted via the identified LCP
messages. Despite the potential disturbance to the timing of the distributed program’s exe-
cution by increasing message sizes, the timing changes of our technique are minor compared
to other existing techniques. We do not add messages to the distributed execution and exe-
cution is not suspended to gather state information. By preserving the causal relationships,

the distributed program maintains the same functionality of the original.
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Chapter 9

Conclusions

Our research addresses the difficult issue of monitoring the execution of a distributed system.
We have developed a runtime method for monitoring both stable and unstable properties
that does not disrupt the computation of the distributed system. We used the sequential
assert statement as the basis for our development of the distributed assert statement. A
distributed assert statement is evaluated with that statement’s causal global state. The
causal global state incorporates the state of the system as a whole as it may have causal

impact upon the assert statement.

We have developed a runtime protocol that constructs the causal global state and evalu-
ates the assert statement where no additional synchronization or message passing is imposed
on the distributed application. The causal global state is immediately available providing

real-time feedback.

The protocol increases the size of only the messages corresponding to the LCP and LCP’
events. We refined our protocol by statically analyzing the distributed program in order

to reduce the amount of piggybacked data. Qur techniques are able to analyze complex

210
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distributed programs where each process has branches in execution and nested loops. The
POG is able to represent all concurrent and causal relationships and all possible paths of
the system'’s execution. By having this information condensed into the POG. we are able

to determine the assert’s LCP and LCP’' events.

In conclusion. our work provides a practical solution for monitoring a distributed sys-
tem'’s execution that is not only theoretically sound. but also implementable. Qur solution
provides a powerful monitoring tool that can be used throughout the system'’s life cycle.
and the only responsibility left to the distributed program developer is to assert predicates
as needed. The developer must understand causality to create informative predicates since

they will be evaluated with a causal global state.

9.1 Communication Systems

Two message passing systems are commonly used for writing distributed programs. These
systems are PVM (Parallel Virtual Machine) and MPI(Message Passing Interface). Both
can run on a variety of architecture platforms and provide a library of communication
commands. Our work has not been ported to these systems, but we will address what
would be involved.

PVM is the forerunner of MPI. PVM provides asynchronous reliable FIFO point-to-point
communication on a heterogeneous network of machines running Unix. A process sends a
message to another process with the command pvm_send(). The pvm_send() has the same

functionality as our async_send(). A process receives a message with one of the following

commands: pvm recv(), pvm_trecv(), or pvmnrecv(). The command pvm.recv() is a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 9. CONCLUSIONS 212

blocking receive and is equivalent to our async_recv(). As with our async.recv(), there
is an option to receive from any process instead of a specific process. This is achieved with
a -1 in the process identification field. We have not addressed this issue in our analysis,
although only minor modifications are necessary to handle the -1 option. Consider a four

process system with the following line in process P;.

async.recv(-1, y)

In terms of flow of execution, this is equivalent to the nested if/else statements shown below.
Since all paths of executable are assumed possible in our analysis. boolean expressions are
not necessary and the textual order of the receiving processes is irrelevant in the nested

if/else statements.

if ()
asyncrecv(l, y)
else if ()
asyncrecv(2, y)
else if ()
async.recv(J. y)

We are able to analyze communication commands embedded in nested if/else statements.
The only modification required to our analysis is to recognize the -1 option and treat this
as nested if/else statements.

The command pvm trecv() is a blocking receive with the ability to timeout after a
specified length of time. The command pvm nrecv() is non-blocking receive. If a message
has not arrived when pvm nrecv() is executed, it returns immediately. Qur async_recv()

has an option of specifying a length of time to wait for a message. Setting this field to zero is

equivalent to a nonblocking receive. We did not explicitly address nonblocking and timeout
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receives, but they can be analyzed with minor modifications. Consider a four process system

with the following line in process F,.

asyncrecv(l, y, 0)

The zero is the timeout. In terms of execution flow, this is equivalent to the if statement

shown below.

if ()

asyncrecv(l, y)

The only change to our analysis is to recognize the use of the timeout field and to analyze

in the same manner as an if statement and a receive command.

Multicasting is also possible in PVM. The command pvmmcast() is executed by the
sender of the multicast message. The sender of the multicast messages may send to all pro-
cesses except itself. An array of process identifiers is provided to the command pvm_mcast ()
specifying which processes should be sent the message. We do not have an equivalent com-
mand in our asynchronous library. If the array contains the values 1 and 2, this is equivalent
to two asynchronous send commands, one sending to P, and one sending to P;. Our anal-
ysis is able to handle a sequential series of send commands. The modifications necessary to
analyze a multicast command are to read the pids from the array and treat each entry as

a separate send command.

MPI provides reliable FIFO communication which can be either asynchronous or syn-

chronous indicated by the send command. Communication can also be either blocking or
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nonblocking. Both the send and receive commands indicate whether blocking is desired.
MPI’s and PVM’s blocking have different semantics. MPI attempts to improve system per-
formance by overlapping communication and computation. Nonblocking communication is
oune way to achieve this overlap. A nonblocking send is initiated with a command that
copies the message to a buffer and immediately returns. While computation is preceding,
the message is copied out of the send buffer. The send is completed with a command to
verify that the message has been transferred. Similarly. a receive command initiates the
receive operation and immediately returns. While computation continues. data is transfered

into the receive buffer. A separate command completes the receive operation.

MPT’s library of communication commands is large, and it is not necessary to discuss
each command. We will describe how each type of communication can be achieved with a
subset of the commands. Asynchronous communication can be achieved with the commu-
nication pair MPI_BSend() and MPI_Recv(). The B preceding Send indicates that message
buffering is to be used. The send blocks by default, meaning the send will wait until the
message is copied out of the sender’s buffer before it returns control to the caller. The
receive also blocks by default, meaning it returns only after the receive buffer contains the
message. MPI’s blocking asynchronous communication can be analyzed as we currently

analyze our async_send() and async_recv().

Nonblocking communication is indicated with an I in the communication commands:
MPI_IBSend() and MPI_IRecv(). The command MPI_IBSend() places the message in the
buffer. The command MPI_Test() verifies that the send has completed. We only need to

analyze the MPI_IBSend(), and it can be analyzed in the same manner as async_send().
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The contents of the send buffer reflect the causal information of the sending process. The
computation that occurs between the MPI_IBSend () and MPI_Test () do not affect the causal
global state and can be considered as occurring after the send. The command MPI_IRecv()
only initiates the receiving of the message. The command MPI_WAIT() is one of several
commands that can complete the receive. The command MPI_WAIT() waits for the receive
to complete. The commands that complete the receipt of the message should be analyzed in

the same manner as async_recv() since this is when the message is received by the process.

The commands for synchronous communication are MPI_SSend() and MPI_Recv(). Our
work will require modifications to analyze synchronous communication. Synchronous mes-
sage passing means that the sending process blocks until the message is received by the
destination process. We discussed synchronous communication when describing Taylor’s
work in chapter 6. Since the rendezvous of a send/receive pair in the synchronous domain
can be considered a single event on the sending and receiving processes. the algorithms
for constructing the POG and the H will require modification to correctly represent the
happens before relationships. The algorithms for finding the LCP and LCP’ events will

also require minor modifications.

MPI's communication commands have the same options that are available with PVM's
commands. We discussed the analysis of these options when describing PVM. For example,
the MPI receive command also has a wild card to indicate it will accept a message from any
process. MPI also provides commands for broadcasting. The analysis of these broadcast

commands can be handle in the same manner as with PVM maulticast commands.
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In conclusion, the major work for analysis programs written in either of these two
message passing systems is for synchronous communication. As described. the remaining
work will require minor modifications for recognizing the particular system’s asynchronous

communication commands.

9.2 Complexity issues of static analysis

The worst case performance of our static analysis is exponential in the number of possible
concurrency states. For the worst case. assume every node of a flow graph can occur in the
same concurrency state with every node from the other processes’ flow graphs. If we let T be
the number of nodes of all the processes’ flow graphs. then an upper bound on the number
of nodes of one flow graph is O(T). The worst case bound on the number of concurrency

states is O(T"). where N is the number of processes in the distributed application.

Although static analysis can have exponential performance. the time spent analyzing
does not affect the execution of the distributed system. The analysis is done prior to

execution. and provides insight into the application’s behavior.

Performance improving refinements to the analysis algorithms have been considered.
Localized portions of the POG can be constructed based on the location of the assert
statement. Only the events that occur before the execution of the assert statement need to
be represented in the POG. Representation of communication events that occur after the
last LCP’' events is not necessary to determine the remaining LCP and LCP' events. Our

algorithms can be modified to determine the last -LCP’ events before constructing H and
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POG graphs. When a last LCP' event is represented in H, construction of that branch of
execution can stop. This can result in a smaller H and POG. depending on the location of

the assert statement.

Space conservation is possible by not generating the complete H graph prior to gener-
ating the POG. As a portion of the H graph is generated. the corresponding portion of the
POG can be generated. This portion of H is no longer needed and can be discarded. The

space required to store the entire H graph would not be necessary.

9.3 Future Work

Our work can be extended in several directions. Three major areas are described.

9.3.1 Data Analysis

To minimize the amount of piggybacked data, we statically analyze a distributed program
and identify the LCP and LCP' events. This can greatly reduce the number of messages
piggybacking data. Additional reductions can be obtained by performing data analysis with
regard to the assert statement. In the simplest case, processes only send state information
regarding variables used in the asserted predicate. The amount of data piggybacked, and
the sizes of the causal state buffers are reduced to include only relevant variables. The
maximum size of a process’s causal state buffer is one tuple for each variable in the assert.
Since a process only piggybacks the contents of its causal state buffer, this maximum also

applies to the increased size of messages.
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Consider a distributed program where a process’s LCP event is executed more than one
time (e.g., it occurs in the body of a loop), as demonstrated in the distributed program
SETPART where process Py’'s LCP event occurs in a while loop. If Py’s state information
changes every time the LCP event is executed, then this state information should be pig-
gybacked to correctly propagate the state of the process. If, however, the state information

does not change. piggybacking duplicate state information is not necessary.

Sophisticated static analysis, such as data flow analysis [1]. can provide the information
required to determine whether the state of the process has changed since the last piggy-
backiug of state information. This type of static analysis. in combination with determining

the LCP and LCP'. can provide additional reductions in the amount of piggybacked data.

9.3.2 Maodifications to the Distributed Program

If we change the location of an assert statement or add assert statements to the distributed
application, the affects to our static analysis are minor. The POG does not require modifica-
tion since a different assert location does not affect the concurrency and causal relationships
of the distributed program. When an assert is added or relocated in process P;, P;'s flow
graph can be updated with the appropriate location of the assert node. As with all as-
sert statements, algorithm Bound.Assert() is called to determine the last LCP' events,

and algorithm Find LCPs() is called to determine the LCP and LCP' events of the assert

statement.

If the assert’s predicate is changed, this will only affect data analysis. Although we have

not developed these algorithms. we suspect that additional variables will not invalidate the
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prior data analysis. If variables are remaved. the corresponding portion of the data analysis

should also be removed.

[f the distributed program is altered. the effects to the already existing flow graphs and
POG are dependent on the type of changes. Changes to assignment statements will not
affect the POG but may alter the data analysis. Additions or deletion of control constructs
which do not alter communication events will not affect the POG. If control constructs are
added or deleted that affect communication events. or if communication events are added or
deleted. the POG is affected. The effects may be incremental. meaning that only a portion

of the commuunication analysis requires reevaluation.

Since distributed assert statements are initially intended as a tool for debugging, altering
the distributed program is expected. Incremental static analysis may provide a feasible and

efficient solution for updating the flow graphs and the POG.

9.3.3 Global Assert Statement

We have demonstrated the usefulness of evaluating assert statements with causal global
states. but distributed systems may remain which require their execution to be monitored
with global states. In chapter 3, algorithms that capture global states of the distributed
system’s execution, problems capturing global states, and the lack of meaningful predi-
cate evaluation with these states were described. Two of our conclusions about global state
reasoning were (1) the consideration of all global states of the system is required for a mean-
ingful evaluation of the predicate, and (2) obtaining global states should not invalidate other

global states. Our work can be extended by developing a meaningful run-time evaluation of
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a global assert statement, i.e., evaluation against all consistent cuts that include the assert

statement.

The POG is useful for evaluating a global assert statement. It provides the informa-
tion needed to determine the consistent cuts of the distributed system's computation that
include the assert statement. By examining a partial order of a distributed program. we
can determine a lower and upper bound communication event in each process that define
the region of execution that is concurrent to an assert statement. If P;’s lower and upper
bound events are lower; and upper;, then all events in P; that happen between lower; and
upper; are concurrent to the assert statement. A process’s LCP message is the lower bound
message of the process’s concurrent region. The upper bounds can be determined from the
POG by a similar method to LCP determination with node traversal occurring downward
instead of upward. Once the lower and upper bounds are found in each process, all valid

consistent cuts of the assert can be constructed from the concurrent regions’ events.

A run-time method of gathering the information of the consistent cuts is required for
global assert statement evaluation. One possibility is to send each local state and corre-
sponding vector time that results from the execution of an event concurrent to the assert
to a monitor process. The monitor process can glue together. using vector time stamps,
the received local states to form global states for assert statement evaluation. The moni-
tor process will have all the state information necessary for a meaningful evaluation of the
assert statement. An evaluation method based on gathering state information concurrent
to the assert is meaningful since evaluation is done with all global states that result from a

consistent cut including the assert statement.
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Admittedly, this is only a starting point for developing a global evaluation method, but

the majority of the static analysis exists in the POG.

9.4 Concluding Remarks

A meaningful and reliable technique for examining the execution of distributed programs has
been our goal. By developing both causal distributed assert statements and a static analysis
technique for determining the LCP and LC P’ events for piggybacking state information. we
have achieved our goal with minimal interference to the execution of a distributed program.
Existing run time debugging techniques are not reliable for detecting buggy programs since
they capture only one of many global states. The one captured global state may or may not
provide meaningful information. To capture a global state. these techniques add messages

to the distributed execution which alter the causal relationships among events.

Our resuits provide a practical tool for the distributed system engineer. As demon-
strated with our analyzed programs. the examination of an execution is easily achieved
by inserting assert statements that express the expected behavior of the program. Our
prototype evaluates the assert without requiring the programmer to alter the distributed
program or to log state information. The programmer will need to rethink his debugging
strategy. Instead of thinking globally, a causal view of the execution is necessary. Once this

is achieved, causal assert statements convey meaningful insight into the program’s behavior.
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Grammar

The italicized variables are nonterminals. and the all capitalized nonterminals are tokens in

the lexer. Terminals appear in monospaced font.

translation_unit — ezternal_decl

| translation_unit external_decl

ezternal_decl - function_defn
| declaration
Sfunction_defn — decl_specifiers declarator decl_list compound._stmt

| decl_specifiers declarator compound_stmt
i declarator decl_list compound_stmt

| declarator compound_stmt

| POUND < postfiz_ezxpr >

| POUND < postfiz_expr / postfiz_ezpr >

! POUND " postfiz_expr "

| POUND " postfiz_expr / postfiz_expr "

222
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decl_specifiers - storage_class_specifier

| storage_class_specifier decl_specifiers

| type_specifier

| type_specifier decl_specifiers

| type_qualifier

| type_qualifier decl_specifiers
init_declarator_list - init_declarator

| init_declarator.list , init_declarator
init_declarator - declarator

| declarator = initializer
storage_class_specifier — TYPEDEF

| EXTERN

| STATIC

| AUTO

| REGISTER
type_specifier — voID

| CHAR

| SHORT

| INT

| LONG

| FLOAT

| DOUBLE
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struct_or_union_specifier

N
l
|
struct_or_union —
struct_decl_list -
struct_decl —

specifier_qualifier_list —

struct_declarator_list —

SIGNED
UNSIGNED
struct_or_union_specifier

enum_specifier

TYPE_NAME

struct_or_union IDENTIFIER struct_decl_list
struct_or_union struct_decl_list
struct_or_union IDENTIFIER

STRUCT

UNION

struct_decl

struct_decl_list struct_decl
specifier_qualifier_list struct_declarator_list ;
type_specifier specifier_qualifier_list
type_specifier

type_qualifier specifier_qualifier_list
type_qualifier

struct_declarator

struct_declarator_list , struct_declarator
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struct_declarator - declarator
| : constant_ezxpr
| declarator : constant_expr
enum_specifier - ENUM enumerator_list
| ENUM IDENTIFIER enumerator_list
| ENUM IDENTIFIER
enumerator_list - enumerator
| enumerator_list , enumerator
enumerator - IDENTIFIER

| IDENTIFIER = constant_ezpr

type_qualifier - CONST
| VOLATILE
declarator — posnter direct_declarator

| direct_declarator
direct_declarator —  IDENTIFIER
| ( declarator )
| direct_declarator [ CONSTANT ]
| direct_declarator [ ]
| direct_declarator ( parameter_type_list )
| direct_declarator ( identifier_list )

| direct_declarator ()
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pointer —

type_qualifier_list —

parameter_type_list —

parameter_list -
l
parameter_decl -
I
|
identifier_list -
type_name —

abstract_declarator —

226

.
+ type_qualifier_list

* pointer

s type_qualifier_list pointer

type_qualifier

type_qualifier_list type_qualifier
parameter_list

parameter_list , ELIPSIS
parameter_decl

parameter_list , parameter_decl
decl_specifiers declarator

decl_specifiers abstract_declarator
decl_specifiers

IDENTIFIER

identifier_list , IDENTIFIER
specifier_qualifier_list
specifier_qualifier_list abstract_declarator
pointer

direct_abstract_declarator

pointer direct_abstract_declarator
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direct_abstract_declarator
— ( abstract_declarator )
I [l
| [ constant_ezpr ]
| direct_abstract_declarator [ ]
] direct_abstract_declarator [ constant_expr ]
| )
| ( parameter_type_list )
| direct_abstract_declarator ()
| direct_abstract_declarator ( parameter_type_list )
instiaglizer - assignment_ezpr
| initializer_list
[ tnitializer_list ,
initializer_list - initializer
| initializer_list , initializer
stmt - labeled_stmt
| compound_stmt
| ezpr_stmt
| selection_stmt
| iteration_stmt

| jump_stmt
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labeled_stmt - IDENTIFIER : stmt
| CASE constant_ezxpr : stmt

| DEFAULT : stmt

compound_stmt -
| stmt_list
| decl_list
| decl_list stmt_list
decl_list - declaration
| decl_list declaration
stmt_list - stmt
stmt_list stmt
ezpr_stmt - H
| ezpr ;
selection_stmt — IF ( expr) stmt
| IF ( expr ) stmt ELSE stmt
| SWITCH ( ezpr) stmt
iteration_stmt - WHILFE whileprod ( expr ) stmt
| DO doprod stmt UNTIL ( ezpr) ;
| FOR tempprod ( expr_stmt expr_stmt ) stmt
| FOR tempprod ( expr_stmt expr_stmt expr ) stmt
whileprod - {}
doprod - {}
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tempprod -
jump_stmt —

|

|

l
relational_ezpr —

|

l

|

I
shift_expr -

|

l
additive_ezpr -

multiplicative_exzpr —

cast_ezpr -

229

{}
CONTINUE ;

BREAK ;

RETURN ;

RETURN ezpr ;

shift_ezpr

relational_expr < shift_expr
relational_ezpr > shift_expr
relational_expr LE_OP shift_expr
relational_ezpr GE_OP shift_expr
additive_ezpr

shift_expr LEFT_OP additive_ezpr
shift_expr RIGHT_OP additive_ezpr
multiplicative_ezpr

additive_ezpr + multiplicative_expr
additive_ezpr - multiplicative_ezpr
cast_ezpr

multiplicative_ezpr = cast_expr
multiplicative_ezpr / cast_exzpr
multiplicative_ezpr \ cast_ezpr
unary_ezpr

( type_name ) cast_ezpr

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX A. GRAMMAR 230

unary_ezpr — postfiz_ezpr

| INC_OP unary-ezpr

| DEC_OP unary-expr

| unary.operator cast_erpr

| SIZEOF unary_ezpr

| SIZEOF ( type.name )
argument_ezpr_list - assignment_ezpr

| argument_ezpr.list , assignment_expr
postfiz_expr - primary_ezpr

| postfic_ezpr [ ezpr]

| postfiz_expr ()

| postfiz_ezpr ( argument_ezpr_list )

| postfiz_ezpr . IDENTIFIER

| postfizc_expr PTR_OP IDENTIFIER

| postfiz_ezpr INC_OP

| postfiz_expr DEC_OP

| SEND ( cast_ezpr , cast_expr , cast_ezpr)

| RECYV ( cast_expr , cast_expr , cast.ezpr , cast_expr)

| ASSERT ( ezpr)
primary_expr - IDENTIFIER

| CONSTANT

| STRING_LITERAL
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unary-operator

equality_expr

and_ezpr

ezclusive_or_ezpr

inclusive_or_ezpr

logical_and_ezpr

logical_or_exzpr

conditional_ezpr

( ezpr)

relational_ezpr

equality_ezpr EQ_OP relational_expr
equality_expr NE_OP relational_expr
equality_expr

and_ezpr & equality_expr

and_ezpr

exclusive_or_ezpr ~ and_ezpr
ezxclusive_or_ezpr

inclusive_or_expr | exclusive_or_ezxpr
inclusive_or_ezpr

logical_and_expr AND_OP inclusive_or_ezpr
logical_and_ezpr

logical.or_expr OR_OP logical_and_expr
logical_or_ezpr

logical_or_expr ? ezpr : conditional_ezpr
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assignment_ezpr — conditional_ezpr

| unary-ezpr assignment_operator assignment_ezpr
assignment_operator — =

| MUL_ASSIGN

| DIV_ASSIGN

| MOD_ASSIGN

| ADD_ASSIGN

l SUB_ASSIGN

| LEFT_ASSIGN

| RIGHT_ASSIGN

| AND_ASSIGN

| XOR_ASSIGN

| OR_ASSIGN
expr - assignment_ezpr

expr , assignment_ezpr

constant_expr — conditional_ezpr
declaration - decl_specifiers ;

| decl_specifiers init_declarator_list ;

D - [o-9]

L - [a-xA-Z]
H - [a~£A-F0-9]
E -  [Ee]+-]?D*
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FS = (£[F3jL)
IS - (ufUj2fL)*
AUTO - auto
BREAK - break
CASE - case
CHAR —  char
CONST - const
CONTINUE - continue
DEFAULT —  default
DO - do
DOUBLE - double
ELSE - else
ENUM —  enum
EXTERN -+  extern
FLOAT - float
FOR -+ for

IF - if

INT - int
INT —  FILE
LONG —  long
REGISTER — register
RETURN —  return

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX A. GRAMMAR

SHORT

SIGNED

SIZEOF

STATIC

STRUCT

SWITCH

TYPEDEF

UNION

UNSIGNED

UNTIL

VOoID

VOLATILE

WHILE

SEND

RECV

ASSERT

POUND

IDENTIFIER

CONSTANT

short
signed
sizeof
static
struct
switch
typedef
union
unsigned
until
void
volatile
while
async_send
async_recv
assert
#include
L(L|D)*
O[xX]H* IS?
| oD IS?

| D*IS?

| D*EFS?
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| D*.D+(E)?FS?
| D*.D*(E)?FS?
STRING.LITERAL -  “(\.|[["\")*"

RIGHT_ASSIGN - >=

LEFT_ASSIGN - <<=
ADD_ASSIGN - =
SUB_ASSIGN - -=
MUL_ASSIGN - *=
DIV_ASSIGN - /=
MOD_ASSIGN - %=
AND_ASSIGN - &=
XOR_ASSIGN - "=
OR_ASSIGN - =
RIGHT_OP - >»
LEFT_OP - <<
INC_OP - ++
DEC_OP - -
PTR_OP - =
AND_OP - &
OR_OP - 1
LE_OP 5 <=
GE_OP - >=
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EQ_OP - ==
NE_OP - =
’ - ’
{ -
} -}
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NAME

init_async - initialize the asynchronous message transmittion facility

SYNOPSIS

#include <async.h>

int init-async(group, procid, numprocs. vtflag, simlost, nonfifo, traceflag)
short group:
short procid:
short numprocs:
short vtflag;

double gimlost;
short nonfifo;
short traceflag;
PARAMETERS
group a positive short integer identifying the process group to which this pro-

cess is a member.

procid a short integer between 0 and numprocs-1 identifying the process num-
ber of this member of the process group.

numprocs a short integer indicating the number of processes in this process group.

vtflag a flag indicating whether or not vector clocks should be used during
this execution. The difference in execution speeds and message sizes for
most process groups is insignificant.

simlost a double floating point number representing the probability of messages
sent from this process being lost during transmittion. A value of 0.0
indicates that messages transmittion is reliable and a value of 1.0 will
cause all messages sent from this process to be lost.

nonfifo a flag indicating whether or not messages can be delivered out of or-
der. Message order is simulated using the Miller-Park random number
generator.

traceflag  a flag indicating whether or not traces of the execution should be con-
structed. If traceflag is true, then a file named progname.trace will be
created. Refer to the async.h header file for the exact layout of the trace
records.
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DESCRIPTION

init_async initializes the asynchronous communication facilities provided by the
libasync library. The first parameter identifies the group to which this process
belongs. The group id is a short integer that identifies the set of processes within
the distributed system. Processes are only allowed to communicate with other pro-
cesses within their group. In addition, processes are only allowed to begin execution
after all processes in the group have been started.

Each process in the system calls init_async to register with the process server and
obtain the list of addresses for the other members of the group. Only after all
members have registered are the processes allowed to proceed. If all processes have
not registered within a specified timeout period. failure responses are sent to those
pracesses that have registered and the group is removed from the registry. Later
attempts to register within the same group are considered requests from a new
group.
RETURN VALUES

0 Initialization failed. An indication of why should be printed to stderr.
1 Initialization was successful.
NOTES

The library containing this and other asynchronous communication related func-
tions, along with the C header files are located in dennis/public. To use them with
gec. the following command should be used.

gec source -Idennis/public/include -Ldennis/public/lib -lasync -lm -1l
EXAMPLE PROGRAMS

Here are two programs that use asynchronous communication to send a simple "Hello
World” string from process 0 to process 1. The receiving process then prints the
number of bytes received and the received message. Notice that the message length
is increased by 1 to insure the received message contains the '\0' string terminating
character.

Process 0
#include <stdio.h>

#include <async.h>
main ()
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char message[32];

/* group: 101, process: PO, 2 processes in group */
init_async(101, 0, 2. 0. 0.0, 0);

sprintf(message,” Hello World™);

/* send message to P1 */

async_send(1l. message. strlen(message)+1);
/* finished */

close_async():

Process 1

#include <stdio.h>
#include <async.h>

main ()

{
char message[32];
int msglen:

/* group: 101. process: P1. 2 processes in group */
init_async(101. 1. 2. 0, 0.0. 0):

msglen = 32:
/* receive message from PO */
async.recv(0, message. &msglen. 0);

printf("received %d bytes [%s|0. msglen. message):

/* finished */
close_async():

SEE ALSO

asyncsend(2), asyncrecv(2). close.async(2), recv_qinfo(2). inc_vtime(2),
get_vtime(2)
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NAME

async.send - send an asynchronous message to another process
SYNOPSIS
#include <async.h>

int async_send( procid. msg, len )
short procid;

void *msg;
int len;
PARAMETERS
procid a short integer between § and numprocs-1 identifying the target process

in the process group. If -1 is given as the target process identifier, the
message is broadcast to all other processes in the process group.

msg a pointer to the begining address of a message to be sent.
len the length in bytes of the message. (Currently restricted to
(MAXMSGSIZE) 10240 bytes.)
DESCRIPTION

If vector time is in use. the local component is incremented to indicate the occurrence
of an event. The message pointed to by msg length len is then sent to process procid.
If procid is -1. then the message is broadcast to all other processes in the process
group. (See init_async(2) for a description of process groups.)

RETURN VALUES
0 The message was lost during the send process.
1 The message was successfully sent to the other process and awaits de-
livery.
SEE ALSO

init_async(2). asyncrecv(2), close.async(2), recv.ginfo(2), inc_vtime(2),
get_vtime(2)
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NAME

async_recv - receive an asynchronous message from another process
SYNOPSIS
#include <async.h>

int async_recv( procid, msg, len, waitsecs )
short procid;

void *msg;
int * len;
int waitsecs:
PARAMETERS
procid a short integer between 0 and numprocs-1 identifying the transmitting

process in the process group. If -1 is given as the source process identi-
fier. the message is accepted from and process in the process group.

msg a pointer to the begining address of a message to be sent.

len a pointer to an integer to contain the length of the message in bytes. It
is initialized to the length of the message buffer. (Currently restricted
to (MAXMSGSIZE) 10240 bytes.)

waitsecs  an integer number of seconds to wait for the arrival of a message. If
no message has arrived within waitsecs seconds. the function returns a
-1. A value of 0 indicates that the timer should not be used and the
function will wait forever.
DESCRIPTION

If vector time is in use, the local component is incremented to indicate the occurrence
of an event. A message from process procid is copied to the address stored in msg.
The length of the message is stored in len. If procid is -1, then the message is
accepted from any process in the process group. (See init_async(2) for a description
of process groups.) This option will return the next message in the order of arrival.
If no message is available, the function will hang, waiting for an arrival. If no

message arrives within waitsecs seconds, then the function returns with a value of
-1.
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RETURN VALUES

-1 No message was available for delivery within the time specified by the
waitsecs parameter.

message length
The message was successfully received from the indicated process. Side
effects are to store the message in the memory area pointed to by msg
and to store the size of the received message in the integer pointed to
by len.

SEE ALSO

init_async(2). asyncsend(2). close.async(2). recv_qginfo(2). inc_vtime(2),
get_vtime(2)
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NAME

close_async - terminate the asynchronous message transmittion facility

SYNOPSIS

#include <async.h>

int close_async()

DESCRIPTION

close_async terminates the asynchronous communication facilities initialized by a
call to init_async. This function should always be called by the program using the
async library. Failure to do so could leave zombie children wandering about.

RETURN VALUES

1 Termination was successful. Does not return until termination has been
completed.

SEE ALSO

init.async(2). asyncsend(2). asyncorecv(2). recv_qinfo(2). inc_vtime(2).
get_vtime(2)
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NAME
recv_qinfo - check the status of the asynchronous message wait queues

SYNOPSIS

#include <async.h>

int recv_ginfo( procid )
short procid;

PARAMETERS

procid a short integer identifying the sending process from which messages
should be checked. A value of -1 indicates that messages from all pro-
cesses should be reported.

DESCRIPTION

recv_ginfo checks to see if any messages are waiting to be delivered to this process
from process procid.

RETURN VALUES

0 No messages are waiting to be delivered from the indicated process.
1 Messages are waiting to be delivered from the indicated process.
SEE ALSO

init_async(2). asyncsend(2), asyncrecv(2), close.async(2), inc_vtime(2),
get_vtime(2)
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NAME
inc_vtime - increment the local component of the vector clock

SYNOPSIS

#include <async.h>

int inc_vtime()
DESCRIPTION

If vector clocks are being used in the asynchronous communication facilities. this
function increments the local component to indicate the occurence of a significant
local event. )

RETURN VALUES

0 Vector clocks are not being used in this execution. See init_async(2).

local vector clock component
The value of the local component of the vector clock is returned after
it has been incremented to indicate success.
SEE ALSO

init_async(2). async.send(2). asyncrecv(2), close.async(2), recv.qinfo(2).
get_vtime(2)
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NAME
get_vtime - return the current vector clock values

SYNOPSIS

#include <async.h>

int get_vtime( vt )
unsigned int *yt;

PARAMETERS

vt a pointer to an array of unsigned integers where the values in the vector
clock should be placed.

DESCRIPTION

If vector clocks are being used in the asynchronous communication facilities, this
function stores the current value of the vector clock in the array of unsigned integers
pointed to by vt.

RETURN VALUES

-1 An error has occurred preventing the completion of the operation.
0 Vector clocks are not being used in this execution. See init_async(2).
1 The current values of the vector clock have been successfully placed in
the vt array.
SEE ALSO

init_async(2), asyncsend(2), asyncrecv(2), close.async(2), recv_qinfo(2),
inc_vtime(2)
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NAME

trace - Add a local event record to a process’ trace file

SYNOPSIS

#include <async.h>

int trace()

DESCRIPTION

trace is used with the asynchronous communication library event tracing facility.
It creates an event record of type TRACE_.LOCAL with the current vector time
and adds that record to the trace information. See init_async(2) for information on
initializing the tracing facilities.

RETURN VALUES

none No values are returned from this function.

SEE ALSO

init_async(2), asyncsend(2). asyncrecv(2). recv_ginfo(2). inc.vtime(2).
get_vtime(2). close_async(2)
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