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ABSTRACT

+ For the first time, external uniaxial stress has been used in
a U SR experiment. The stress dependences of the following parameters
were obtained for Fe crystals: the muon precessional frequency, V., the
transverse (longitudinal) depolarization rates, 1/T5 (1/Ty), and Fp/Fp,
the ratio of the probabilities for the muon to find domeins with trans-
verse/longitudinal fields. The shift in v,, was -0.34 + 0.023 Miz per
100 micro-strain along the <100>-axis., Changes in other parameters depend
on the sample history but they, in general, increase with stress.

External stress changes the muon occupsational probability at
each site which significantly affects the dipolar field averaged over
interstitial sites of the same initial symmetry. This change in the
averaged dipolar field is shown to be the main cause of the shift in v,,.
To calculate the dipolar field at each site, the finite extension of tﬁe
muon probability density and displacement of neighboring host atoms around
the site are explicitly taken into account. From the experimental results
and the dipolar field calculation, it is possible to estimate the aniso-
tropy of the double-force tensor, (Pl-Pg), for the muon in Fe. This clearly
shows that in Fe, for reasonable muon wave function shapes, the muon is
more likely to occupy the UT(0) site configuration.

For a random distribution of domains among the six easy axes of
Fe, the dipolar field averaged over a region of the sample should be zero.
However, the external stress breaks this randomness and with a certain
magnitude of tensile stress in the z-axis, domains will align along the
+ z~directions. A muon with its initial spin aligned perpendicular to the
z-axis does not distinguish the stress induced domain alignment from the
saturation along the + or - z direction. The experimental result shows
the same stress dependence of v,, for both the stress induced and the ex~
ternally saturated domain alignments. As expected the change in v, with
low stress is very small without the application of an external saturation
field., Also, the change in FT/FL is consistent with that in v indicating
that this parameter is a good measure of the domain alignment.

Similar results were obtained for polycrystalline samples. The
interpretation made on the single crystal result is applicable to these
results and it is possible to explain why local strains in Fe tend to
reduce the magnitude of vu.

xiii



A 1.l+SR STUDY OF UNIAXIAL STRESS INDUCED

SYMMETRY BREAKING IN AN FE SINGLE CRYSTAL



I. INTRODUCTION

Polarized muons implanted in a ferromagnetic specimen will pre-~
cess with their Larmor frequencies in the locel magnetic field. Through
its parity-violating decay with a mean lifetime of 2.2 Fsec, & muon emits
two neutrinos and a positron. The direction of positron emission is pre-
ferentially the direction of the muon spin at the time of éecay. Such an
anisotropic emission of positrons and the precessional motion of muon
spins give rise to an oscillatory component in the time dependence of the
counting rate of positrons in a given direction.

The local field, BF , averaged over a certain region of the
specimen, can be obtained from the oscillation frequency of the signal in
the positron counting rate. One contribution to Bp comes from the Fermi
type contact field which is called the "muonic hyperfine field". The

hyperfine field, B £ that a muon experiences in the interstitial sites

h
of a ferromagnetic crystal is the consequence of the interaction between
the muon and the surrounding local electronic environment.

If an ensemble of muons sees a range of averaged local fields,

the signal will be damped in amplitude with a characteristic time T In

2.
the presence of the longitudinal component of the local field the spins
of the muons will be flipped to reach an equilibrium distribution between

the two spin states. This relaxes the muon spin polarization towards

equilibrium with a characteristic time Tl'



Once stopped in a crystalline solid, muons start diffusing through
the interstitial sites. The role of diffusional motion has been shown to
affect drastically the measured local fields. Especially in Fe the fast
diffusional motion of the muon averages out the different dipolar fields
at the interstitial sites which are crystallographically equivalent but
may yet be magnetically inequivalent.

Preparation and purity of a sample influence both the local
field and the diffusional motion. For example, in Fe, BP and T, are

2
1,2 It has been suggested2

greater in well annealed samples of high purity.
that the strains associated with dislocations and impurities might be
responsible for the decrease in By .

Dislocations and impurities produce rather complex strain distri-
butions.3 Thus to investigate the effect of strain on the internal field
distributions the use of uniformly applied stress would be desirable.

Butz et al.h have measured B, in Fe and Ni under hydrostatic
pressure. They found that BP decreased (increased) linearly up to the
maximum applied pressure of Tk bar in Fe(Ni). For hydrostatic pressure, i
the crystal symmetry remains unchanged so that the interpretation of the
results is relatively simple.

On the other hand, a uniaxial stress applied to a crystalline
solid causes a lowering of the crystal symmetry while keeping the volume
of the sample almost unchaﬁged. In this work we applied external uniaxial
stress to Fe specimens, This thesis is a report on the first results of

a series of uniaxial stress H+SR experiments which was started for the

following reasons:



1) The strain induced by lattice imperfections can be more
closely simulated by the strain induced due to uniaxial stress. This is
true, especially, when the type of imperfection is a dislocation.

2) 1In Fe the dipolar fields on the muon will not average out
to zero‘because of the lowered symmetry. Since the dipolar fields are
very different at the different interstitial sites in Fe, this may help
us to determine the site that the muon occupies.

3) The change in By can be measured by applying the external
uniaxial stress along different directions. This will give us more infor-
mation, compared to the hydrostatic pressure experiment, on the behavior
of muons in solids.

4) Since uniaxial stress changes magnetic domains and disloca-
tion structures, the study of the interaction between muons and lattice
imperfections can be enhanced.

A detailed discussion on the current status and problems in H+SR research
on ferromagnetic materials will be given in this chapter following a

brief introduction to the P+SR method.

A. Decay of Muon andAngSR Method

Muons are decay products of pions, which, previously, are pro-
duced by the following reactions

P+P —— 01+ P +tm

P+mn —— @[7"  +pP t+t P
Typical nuclei used for pion production in accelerators are copper and

beryllium, and the minimum kinetic energy required for pion production

in such a nucleus is about 145 MeV, the threshold energy. Positive pions



-

decay with a mean lifetime of 26 nsec in the parity-violating process:
Th— §" ¥
The decay of a positive muon can be written as
Pr—m &'+ Y 4 )7’,

with an average lifetime of:

Ty = 2.1994 6) psec

The decay is governed by the weak interaction which leads to a violation
of parity.

From the four fermion current-current interaction one can write

the positron decay spectrum in the following way:5’6
2
dNw.e) W (3-zw)[1- p 1= 2w cose] (1.1)
dw dt 21 3-2wW

where P is the degree of muon polarization, and 4§ is the angle between
the positron momentum and the direction of muon spin at the time of decay.
W is the positron energy in units of its maximum possible energy
(w = E/Emax)' The maximum kinetic energy is
My *(1- Me MeV
Emay = —FS - Mec (1- Me) = 52.32 Me
2 mP
Assuming that all positrons are detected with the same efficiency, one gets

d N [ ( ¢ -
= I+ & peose
dt AT 3 )

However, the efficiency of positron detection depends on the energy of the

positron. Then, one can write

dN® _ (14 A wse) (1.2)
da 4T



where A is the average asymmetry. From the form of equation (1.l), one
immediately sees that reducing the efficiency of detecting the low energy
positrons makes A greater than 1/3. This means, by placing absorbers be-
tween the muon target and the positron detectors, the measured asymmetry
will be increased but it will decrease the counting rate. The functional
form of the term in the bracket of equation (1.2) is shown in Figure 1.

In a typical experiment the polarized positive muons are stopped
in the material to be studied. Unless the local magnetic field is exactly
parallel to the initial muon spin direction, the spin will precess with

the Larmor frequency

w = %Be . %B - 13.65 (kHz/_) - B
2T 4T my 2T 4

From equation (1.2) the probability of emitting positrons along a fixed
direction of detector is proportional to (1 + X cos 6 ). Considering
the precessional motion of the muon, the angle § will be replaced by
90 + a)f,t, where 90 is the angle between the incoming beam and the
detector (see Figure 2). Regarding these facts, one may write for the

experimental time dependence of the counting rate:
-the,
N@.t)=No e {l t Aok -P® cos (upt ¢ e°++)j + BKG (1.3)

where No is the overall normalization constant, BKG is the accidental
constant background, ¢ is the initial phase angle caused by very small
rotation of the spin during the stopping process and the location and the

finite size of the detector, and P(t) is the relaxation function of the

muon spin polarization. A discussion of the physical nature of P(t) will
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a=1/2

-2

-1

r={1+acos8)

Fig. 2

Plot of the (1+ a cos) distribution for various a values.



be given in A. The generalized form of equation (1.3), including the
longitudinal relaexation process, is found in Appendix B.
In the experiments two positron detectors at 90 = 0 and 90 =T

give two histograms N(0,t) and N(T ,t), respectively. These two histograms

are shown in Figure 3.

B. The Muon as a Microscopic Probe of Magnetism

A muon entering a target with a kinetic energy of 50 MeV will
lose its energy by scattering from electrons, until its velocity approaches
that of the valence electrons of the atoms7(corresponding to an energy
2 ~ 3 keV). 'The total time it takes the positive muon to slow down to
2~ 3'keV in  condensed matter is estimated to be about 10 ~°~ 10~ sec.
Depolarization during this stage could only be due to the spin-dependent
forces in the scattering process with electrons on nuclei. In both cases
as Fond et al.8 and Wenzel9 have shown, such depolarization effects are
extremely small and negligible.

After stopping in a solid the fate of the polarized muon depends
critically on whether or not muonium, a hydrogen-like atom consisting of

P+ and e , is formed. In the muonium the muon will precess in the hyper-
fine field produced by its single electron. The observed muon frequency
directly measures the hyperfine field. In solids this gives information
about the electronic environment. However, muonium formation seems to
be restricted to a few insulatbrs and semiconductors.

In metals muonium has not been found. This is attributed to the
screening of the muon charge by the conduction electrons. The bare muon

will probe the local magnetic field BF at interstitial sites. In a
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ferromagnetic material the local field BF is written as

- - - - - -
B',= Bet + B, t+ Bdem + 84 t Bhf (1.4)
g . . R W 3
where Bext is the externally applied magnetic field, BL = —§—-MS is the
-y

Lorentz cavity field in a domain (MS = ggturation magnetization),
e g - -
Bdem = NMé is the shape dependent demagnetizing field, Bd is the dipolar
field due to the magnetic moments of host atoms inside the Lorentz cavity,

- 2
and Bhf is the hyperfine field. All terms, except Bhf’ in the right hand

side of equation (1.4) can readily be calculated. Thus measuring gﬁ enables
o

us to obtain Bhf'
The hyperfine field, -ﬁhf(-ﬁ)}' }, results from the interaction

between the polarized conduction electron cloud around the muon and the

muon itself. One writes
-
B,,f,;(l?,,)=‘[d7( Dy d-B) M) (1.5)

-
Here, M(¥) is the local conduction electron magnetization and

.« = (VT -4 o P)L - 250 ]
Dyjd) = (w9 -4 55 ) Tk - 24V (1.6)

The first term in equation (1.6) transform as a spherical harmonic of
order 2. Therefore, for a spherically symmetric screening cloud, only
the second term contributes to the hyperfine field (see Appendix C).

From equation (1.6) one obtains

Bug (B = T A (1.7)
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Therefore, the measured hyperfine field is of great interest in
solid state physies because it provides information on the local electronic
structure at the interstitial sites. The other parameters like Tl and T2

which are measured at the same time give information on muon diffusion and

the defect structures in the crystal.

C. Hyperfine Fields in Pure Ferromagnetic Materials

The advantages of using the muon to probe the local microscopic
fields are (i) it probes the interstitial sites, (ii) by having only one
muon at a time, an infinite dilution of the impurity in the host is pos-~
sible, and (iii) having no core structure of its own, it is the simplest
system of a magnetic dilute alloy.

However, the positive charge of the muon perturbs the local
electronic environment and the measured hyperfine fields are referred to

this perturbed system. In this sense, equation (1.7) should be rewritten as

-y
Buyg u_z’,,) = % Q) Moy - Mo-) Me (1.8)

where
N4 0) - N-(0)

MNot = Ne-

g(O) =

is the ratio between the local magnetizations after and before the per-

turbation due to the muon is introduced, and fJB = 9.27 x 10-2ll —4125,
W/m

the Bohr magneton.
Table 1 shows the results of measurements of Bhf in several
elemental ferromagnets. Also shown in the table are the types of inter-

stitial sites for muon stops in these materials. The discussion on the
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Table 1. Compilation of some properties of the ferromagnetic metals in-

vestigated and summary of the HSR-results. All data are ex-

trapolated to T = 0 K.

Sat. Hyperfine

Struc- magnet. Local field at field

ture M [kG] muon B [kG] B . [ka] Muon site
Fe  bee 1.750 - 3.67 +0.10 - 11.1 #* 0.2 ?
Co hep 1.415 - 0.317 + 0,010 - 6.1 + 0.2 octahedral
Ni fee 0.528 + 1,48 + 0.10 - 0.71 + 0.01 ?
Ga hep 2.010 + 1.10 + 0.05 - 6.98.i 0.10 octahedral
Dy hep 2,995 +12.30 + 0.20 - 25.2 or ?
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site problem will be given in the next section and only the problems
directly related to the hyperfine field will be considered in this section.
The value of Bhf in Ni at T = 0 K, extrapolated from low tem-

perature measurements, is -0.71 kG, The minus sign of Bhf means that
its direction is opposite to that of Ms. The unperturbed spin density at

the octahedral site of Ni, as measured by Mbok,lo is
PB Moy - No.) = -0.0088 t 0.004 Ps/Ao3

which corresponds to a field of -0.66 + 0.32 kG. This means that the spin
density enhancement factor ¢(0) is close to unity.

Petzinger et al.,ll who performed a spin density functional
formalism calcuation on Ni, predicted ?(O) to be 12.5. To explain such
a large discrepancy between the results of experiment and their calcula-
tion, they postulated a model in which the relatively unpolarized s band
in Ni does the screening of the muon change and the localized 3d wave
functions are essentially undisturbed by the screened potential of the
muon.

Jdena et al.12 performed similar calculations on transition metals
and Gd. They found §(0) to be 12.4 in Ni and 9.74 in Fe. In the case of
Fe, there is no unique value of the local magnetization measured by
neutron scattering experiments (see Reference 13). If one takes the value of

13

the magnetization > to be -0,0L4 + 0.00k4 F2/A°3, which is averaged over

a 0.5 A°3 cube centered at the tetrahedral site of Fe, Bhf will be

=11 kG. This value is very close to the experimental result. This indi-

cates that the basic mechanisms related to Bhf in Fe and Ni may be quite

different.
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J. Kanamori et al.lh have performed an ab initio calculation in
Ni and obtained the values of Bhf -0.72 kG and -1.8 kG at octahedral sites
and tetrahedral sites, respectively. These preliminary results in Fe were
shown to be ~13.0 kG for tetrahedral sites and -15.5 kG for octahedral
sites. There have been other theoretical approaches to the hyperfine
field in Ni. Keller and Pa.t'berson15 obtained -0.59 kG from a cluster cal-
culation. Using KKR methods, Katayams et al.l6 obtained -0.72 kG and
with super cell band structure methods, Jepsen et al.lT predicted ~0.463 kG.

A1l these theoretical calculations assumed rigid positions of
the host ions and the muon. However, muons are believed to undergo vibra-
tional motions and also to create local distortion around them while re-
siding in a crystal. Then one mey wonder how the theoretical calculations
give results close to the experimental result without counting these
physical effects. Does this mean that these effects are negligible or do
they somehow cancel each other?

P. F. Meier et al.18’19 have pointed out that, due to computa-
tional complexity, the above methods are inconvenient to study the in-
fluence of these physical effects on the spin density. They have per-
formed a series of theoretical calculations with a model based on a RKKY=type
interaction between the localized moments of the ferromagnetic host and
the conduction electrons. Their computational results were parameterized

by a dimensionless quantity ﬂ defined by

4(2 - 2 (u':)"’(uf'z)
3 a*

where ¢ Um2> and (U},E) are the mean square displacements from the
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equilibrium position of the ion and muon, respectively. Their results
show that the influence of the zero point motion on the spin density at
the octahedral site of Ni is much smaller than for Gd, Dy or Fe. For

this reason Ni seems to be a good candidate for rigid microscopic theories.
This means that for other ferromagnetic specimens, especially in Fe which
is the sample used in this work, the motion of the muon around an inter-—
stitial site and the lattice distortion due to the muon should be included

in a full snalysis of experimental results.

D. The Muon Sites in Ferromagnetic Materials

Since the hyperfine field must be different at different types
of sites, it is important to know at which site the field is being mea-
sured. The importance of the site problem can be viewed in a different
direction. The diffusion of hydrogen in o -Fe 1s of great interest
because of its technical importance. In spite of this, there is a lack
of reliable experimental information on the diffusion mechanism and loca-
tion of solute hydrogen in o -Fe, Although the sites of muons and hydro-
gen may not be the same in a solid, knowing the site of the muon certainly
helps to determine the site of hydrogen.

Both A. Seeger20 and Nishida et al.zl once pointed out that the
muon stopping site in o -Fe should be the tetrahedral site. For this
they gave the following reasons: The neutron data show that the magnetic
moment density is negative at the tetrahedral site and is positive at the
octahedral site, the muon hyperfine field in «~Fe is negative, and the
tetrahedral site in a BCC crystal is more spacious than the octahedral
site. However, Seeger and his colla.borators22 have more recently suggested

that both tetrahedral and octahedral sites might be occupied above LOK.
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In connection with the idea of Meier et al., mentioned in the
previous section, one can expect that the muon may sample the fields over
different types of sites due to its vibrational motion. This is to say
that the wave function of a muon, centered at a particular site, can
spread out to reach other neighboring sites. In addition to this, the
lattice distortion around a muon may be severe enough to completely alter
the local electronic structure. Therefore, the sign of the local magnetic
moment density from the neutron scattering data will not determine the
muon site in a ferromagnet. As stated earlier in this chapter one of
the purposes of this uniaxial stress experiment is to study the muon site

problem in Fe.

E. Organization of the Thesis

This thesis reports the first results of a uniaxial stress
H+SR experiment. The experiment was performed at the Swiss Institute
for Nuclear Research (SIN) at Villigen, Switzerland. Both single and
polycrystal samples were used in this experiment.

Chapter II presents a brief introduction of SIN facilities, a
description of the apparatus used for this work, the results of the neu-
tron activation analysis of various impurity concentretions in the samples
and the procedure of data analysis.

The theoretical background of this work is given in the next
two chapters. Chapter III gives a review of some fundamental aspects in
ferromagnetism. This leads to predictions of the domain wall movement in
Fe in response to the externally applied stress. The occupational prob-

ability of a muon at an interstitial site of the crystal changes with the
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application of uniaxial stress. Such a change will be discussed in
Chapter IV in terms of the interaction between the elastic dipole of a
muon and the external stress.

The experimental results are presented and explained in Chapter V.
As will be seen in that chapter, the muon frequency decreases with the
tensile stress applied along one of the crystal axes of Fe. Such a de-
crease in frequency again occurs in the polycrystal sample and it is
explained in connection with the result obtained from the single crystal
sample., From these results it is shown that the frequency in an Fe
sample with a higher concentration of dislocations shouldbe lower than

that in a sample with a lower concentration.



II. EXPERIMENTAL DETAILS

The TE3 beam line at the Swiss Institute for Nuclear Research
(SIN) was the source of the surface muons used for this work. The at-
tractive features of this beam are the low energy and high intensity of
the muons. Since the samples had small thickness, a low energy beam would
have maximum stopping rate. The surface area of each sample was not large.
A collimater (2mm x 5mm) was used to pass only the muons which would im-
pinge upon the sample., This reduced the intensity of the beam significantly.
If the original intensity of the muon beam had not been high the time re-
quired to stop a sufficient number of muons would have been too long.

As mentioned in the previous chapter the main feature of the
present experiment is the application of external uniaxial stress to
ferromagnetic specimens. Both single and polycfystal samples of Fe were
used. Since the changes in physical parameters due to external uniaxial
stress can be well defined in the single crystal, experiments were mainly
concentrated upon the study of stress effects on the Fe single crystal.

In this chapter a brief description of the production and char—
acteristics of the beam lines at SIN is given and this will be followed

by detailed discussions on the samples, equipment and procedures.

A, The SIN Facility

The SIN User's Handbook (August 1981) is the best source

for detailed information on the various beam lines at SIN; only a few

19
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central parts related to the TE3 beam which we used are given in this

section.

a. General Layout of the Accelerators and Beam Lines

The primary beam is produced by the accelerator system which
consists of two separate machines, the T2 MeV injector cyclotron I and
the 590 MeV ring accelerator, as shown in Figure 4. The proton beam is
initially accelerated in the injector cyclotron which produces protons of
72 MeV with intensity up to 170 FA. These are injected into the ring ac-
celerator producing a 590-MeV beam which is used for secondary beam pro-
duction at two external targets. The pion beam for TWE3 is produced at

target station E using a 12 cm long beryllium rod.

b. T E3 Pion Beam and Surface Muons

The pion beam T E3 is a low energy beam produced at 90°
from target station E (Figure 4). An additional installation was made in

this beam line and is called the "

T E3-appendix". The purpose this ap-
pendix is to provide an intense pion beam of extremely low momentum
(40 ~ 100 MeV/c) with little contamination and neutron background.

The pion beam line has been modified so that muons from the de-
cay of pions stopped in the pion production target (so-called "surface
muons") can be transported to the experimental area. The complete layout
of the beam is shown in Figure 5(a) and its envelope in Figure 5(b).
Figure 6 shows the measured intensities of muons as a function of the

central momentum where the thickness of the degrader for electron separation

is zero. The muon-positron separation for the 380 Ijm mylar foil is shown
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i 11100p Asec

p* .

26 27 28 29 30 31 32 33 34 [MeVk]

Fig. 6. Measured muon rates in the TE3 beam as a function of the central
momentum in the first bending magnet. The degrader thickness
for electron separation is zero. The production target is
22.2 g/em® beryllium. However, the effective target length
seen from the channel is only 3 cm. The accepted solid angle
is 50 msr.

Curves 1:

The accepted momentum band is chosen to be Ap/p = 4% FWHM in
order to see a sharp drop in the muon rate near 29.5 MeV/c.
Curves 2: :

Maximum intensities with full momentum band Ap/p = 10% (FWHM).
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in Fig. 7. Muon intensities and electron contamination for wvarious de-
grader thicknesses and the magnet settings for the usual pion and muon

modes are summarized in Table 2(a) and (b) respectively.

B. The Samples

The Fe single crystal sample was mainly studied in this experi-
ment., Thus a detailed description of this particular sample will be
given., This crystal was supplied by the Monocrystals Company, Cleveland,
Ohio. According to the information provided by the manufacturer, the
steps of growing and preparation can be summarized as follows:

1) A polycrystalline ingot was prepared by cold rolling the
raw material after melting and cooling., As a result of this operation
the ¢(100) axis of each grain was preferentially oriented along the
cylindrical axis.

2) Starting with a 3/8" diameter bar, the single crystal was
grown from the center outwards and towards the surface by the anneal-
strain-anneal method. The growth anneal was performed at 800°C for long
periods.

3) After growth the crystal was etched in NITAL solution (5%
HNO3 acid in methanol) to expose the good material on the surface. Then,
the x~-ray Laue spot picture was taken to determine the orientation and
angles for cutting out the desired specimen.

4) Thin wheel abrasive saws and a sharp (knife edge) single
point milling tool were used to prepare the sample and sample surface.

5) The specimen was mechanically polished followed agein by
chemical etching to remove surface damage introduced in the shaping

operation.
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Table 2(b) Magnet settings for usual pion and muon modes

Setting for 28 MeV/c u'

Magnet 102 MeV/e
no foil 190 1 380 u 570 u i
QIB T1 - Th6 - Th6 - Th6 - Th6 - 2734
QTB T2 + 423 + 423 + 423 + 423 + 1540
ASK T1 + 436 + 436 + 436 + 436 + 1588
ASK T2 + Lok + 395 + 365 + 327 + 1575
QSK T1 - 170 - 170 - 170 - 170 - 660
QSK T2 - 165 - 165 - 165 - 165 - 1158
QSK T3 - 273 - 253 - 236 - 215 - 1045
QSK Tk + 210 + 210 _ 210 __ 208 + 1200
QSB T1 - T30 - 650 -10%0  =1370 -
Q8B T2 +1035 + 950 _1018 +1025 -
ASK T3 - 965 - 908 - 832 - Th5 -
STA T1 +1000 +1000 +1000 +1000 + 3300
STA T2 + 50 + 50 + 50 + 50 0

QSB T3 + 470 + 450 + 450 + L2o -
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The sample thus prepared is a thin slab of dimension: 1 x 4.6 x 46.13 mm.
The orientation of the sample is such that the (100) direction is along
the long axis. The direction normal to the wide surface deviates from
{010y by about 10°,

The polycrystalline Fe sample was prepared at Centre d'Etudes
de Chemie Metallurgique (CECM), Vitry, France, from zone refined iron.
It was annealed for 12 hours at 850°C under a purified hydrogen atmos-

phere. The average grain cross section was estimated to be about 2mm.

C. DNeutron Activation Analysis

The purpose of this measurement was to measure the purity of
the samples. It was performed by the staffs at CECM using the neutron
beam of the Osiris reactor at Saclay, France. Impurities in the sample
undergo & nuclear reaction with a neutron, for example,

Fmm(n,¥) o> Cpn
and the intensity of Y-rays subsequently emitted are compared to that
for Y-rays emitted from samples with known concentration of each im-
purity. The general procedure is summarized as follows:

1) A small piece of material is cut from each sample and irra-
diated with thermal neutrons. After irradiation each piece is dissolved
in acid (25% nitric acid and T75% hydrochloric). '

2) The dissolved sample is put in a container and the Y -ray
radiation is detected by a Ge(Li) detector connected to a multichannel
analyzer. By dissolving the sample, the measurement is less dependent
upon its position relative to the detector than for solid samples.

The concentrations of various impurities in the Fe {(100) and

Fe polycrystal samples are presented in Table 3 and Table 4., For better
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Impurity concentrations in units of wt PPM. Both samples were

irradiated for 60 minutes with a neutron flux of 1.1 x 10

2
neutrons/cm” sec.

1k

Samples
Elements Fe <100> Fe Polycrystal
Ce < 0.8 < 0.5
Co 39(3) 0.21(1)
Cr 16.5 (10) 11.27 (10)
Cs < 0.07 < 0.0k
Hf <0.06 £ 0.02
Ni < 2.5 < 1.8
Rb < 0.9 < 0.2
Sc 6x10-h(2) < 610~
Ta 0.03 0.005
Zn 0.3 0.02
Zr <6 <5
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Table 4(a) Samples were exposed to 3 x lOl2 neu‘c.rons/cm2 sec for 1 minute

Samples

Elements Fe <100> Fe Polycrystal
As?t 49(5) 0.31(2)
Au < 0.02 < 0.02
Cu* 800( 30) 1.30(4)
c% 2 T.9 < k.2
Ga <3 <1
K <1 <0.9
La 5(1) < 0.b
Mn 500(15) 10.5(10)
Na < 0.1k £0.15
Sb < 0.3 < 0.07
W < 0.k < 0.4

Table 4(b) Sample was exposed to lOlh neu’c,rons/cm2 sec for 1 minute

Samples
Elements Fe <100> Fe Polycrystal
#%%
AR < 100 2.0 + 2

.i.

Letting the radioactivity decrease for 48 hours still allowed one to see
the As and Cu lines

*
Checked not only on the 511 keV line but also on 1346 keV (6hCu) line
55 ) 56

*%
The analysis was based on the reaction

56 )56

Ma(n, ¥ Mn but the reaction

Fe (n,p)” Mn interfered with the former reaction. Therefore, Mn con-
centration in the Fe-polycrystal sample is believed to be less than 1 PPM
£ X3
The Mn contained in the sample prevents one from obtaining an accurate

measurement for the Fe <100> sample.
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resolution three separate measurements were performed for each sample.
It must be noted that there is an interfering effect on such impurities

as Cr and Mn. Due to the following reactions

e ua) — ¢,

% Fe (np)— My
samples appear as if they contain Cr and Mn impurities even though the
samples may be free of these impurities. The concentrations of impurities
so produced are believed to be about 10 PPM. Therefore, the concentration
of Cr and Mn in Fe polycrystal sample is believed to be less than 1 PPM

(see Tables 3 and L4).

D. The Pulling Device and Strain Gauge

Figure 8a shows the arrangement of the puller constructed at the
Physics Machine Shop of the College of William and Mary. Each sample
was glued to the sample holders in a specially designed jig to prevent
misalignment between the stress axis and the long axis of the sample.
A supporting piece made from aluminum was attached to the sample holders
by two small screws ﬁhile the sample was in the jig. The supporting
piece was carefully released after the stress transmitting rods were en-
gaged to the sample holders. The steps were reversed when the sample
was taken out of the puller. With this process the external mechanical
disturbance to the sample was minimized.

The sample holder assembly was insulated by a vacuum jacket.
Ethand was circulated at a constant rate through the 1/8" copper tubing
attached to the sample holder assembly. The temperature of ethand was
regulated by heating and cooling. Hence the temperature in the sample

was kept constant at 302°K during the entire run with a very slow variation
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within + 1XK. The vacuum chamber has 1" diameter windows on each side
which are.sealed by 3 mil thick mylar film. The mylar window on the up-
stream side passed muons to the sample without stopping. The other
window allowed "see-through" adjustment of the sample position. The
position of the sample was checked by a telescope aligned with the beanm
line.

The stress gpplied to the sample was produced by the multipli-
cation of N2 or air pressure by the area ratio between the sample cros-
section and the piston. TFigure 8b shows the piston arrangement. The
tensile strain induced on the sample by the external stress was measured
by a strain gauge. Strain gauges were purchased from Micro-Measurement
Company, Romulus, Michigan. These wire type gauges had exactly 3500 of
resistance when unstrained and a gauge factor of 2.06'1 0.5% which is
very insensitive to a small change in temperature. The fractional changes
in the resistance and the length of the gauge are related by the gauge

factor as

AL AR

fo GF Ec

The change in the resistance, AR, due to external stress was directly
measured by the change in the voltage across the strain gauge using a

nano-voltmeter. TFigure 9 shows the circuit for this measurement.

E. Data Acquisition

There was no modification made for this experiment to the al-
+
ready existing data collection system built by the M SR group at the
University of Zurich. For this reason only a few general features of the

system will be outlined.
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Muons and positrons are detected by plastic scintillation de~
tectors (NE 102) mounted via light pipes on photomultipliers (xp 2020).
Figure 10 shows the arrangement of detectors and a block diagram of the

H+SR electronics. The major functions of the electronics system which
was interfaced to a PDP 11-40 are:

1) It detects a muon stopped in the sample and also the posi-
tron emitted from the decay of the corresponding muon, then, records one
positron event according to the time interval between the above two
detections. It distinguishes whether the positron is detected in either
the forward or backward counter and records the event accordingly.

2) The system accepts only one muon event during a fixed period
of time (k4.5 ysec) to properly correlate the detected positron to the
corresponding muon. Otherwise, the obtained histogram will be distorted.

3) To form a histogram each positron event must be recorded
at the proper location in the memory space of the PDP computer. For
this operation the time interval between the detection of the muon and
positron is converted to a voltage signal by a TAC (Time to Amplitude
Converter) and is subsequently digitized by an ADC (Analog to Digital
Converter).

For these basic operations the following logic signals are

used to identify the events:

INC : M~Fl + F2 + Ft = incoming muon

IST : INC-(Fl +F, + Ft7’= incoming stopped muon

EF : (Fl + F2)-FT-ZM + R + Rt) = forward positron

ER : R-RT'(Fi + F, + F, ) = backward positron

)
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During step (3) the system is essentially turned off for
12 psec by & JAM signal (Fig. 10(a)) and no new muon event is accepted.
The above three steps are repeated until a sufficient number of positron
events ( ~ 3M million) is collected. When this is finished the informa-
tion stored in the PDP is written onto a magnetic tape.

The data thus collected for each run consist of 8192 words on
the magnetic tape followed by a block of 256 words for a run label. Each
integer word in the histograms represents the total number of positrons
detected between Ti and 'I‘i + At. Here, At is the effective time per
channel which was 2.14136 nano-sec for this experiment. Time zero channels
were obtained by removing the anticoincidence requirements on EF and ER
and observing muons passing through the muon and positron detectors.
These were the 15Tth and 156th channel in the forward and backward histo-
grams, respectively.

A detailed general description of the }fSR data acquisition
system is found in Reference 23 and that specially for the SIN T E3 is

given in Reference 2k.

F. Data Analysis

The raw histograms of most of the runs were fitted to a model
function obtained from equation (1.3) by including longitudinal depolari-

zation (see Appendix B for derivation):

1 - A -
Nrgct) = No, @ tp[l % F[F-.etfrWFr et’ﬁwéa%*&’]j* BKfpg (2.1)

where P ='Aeff-P(t = 0). The parameters FT and FL are defined in Appen-

dix B.
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Time t is the only independent variable in the above equation.
To determine the values of the unknown parameters the data were fitted
to equation (2,1) using a non-linear least-square fitting routine.
An improved grid-search method was employed to minimize the difference

between unity and the normalized 4&2 defined below.

2

N
‘)= 3 [Y., -'F:(y)ydeanee\s 2 freedom (2.2)

i=l G:

where % = (xl,xa, ...,xn) are the variable parameters, N is the number
of data points to be fitted, Yi and 6?12 are the measured values and
their variances and Fi(i) are the values predicted by the fitting equa-
tion, Since the emittedpositrons follow the Poisson distribution, the
variance 6712 can be replaced by Fi (see Reference 25). The number of
degrees of freedom is the total number of data points minus the number
of parameters.

In the actual fitting process F_ in equation (2.1) was factored

L
out of the bracket to replace FT by p = FT/FL which approximately cor-
responds to the ratio between volumes of domains perpendicular and
parallel to the initial muon spin orientation. The forward and backward
histograms of each run were analyzed simultaneously using one value for
each parameter which, in prineciple, should be the same in both histograms.
For runs with long lasting signals the first 1000 data points from each
histogram were fitted and varying the range up to 3000 points gave es-

sentially the same results for the values of important parameters such

as UOF . FL/FL’ l/Tl and l/T2.
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In other cases, for example, runs on the cold worked Fe ¢100) ,

the oscillation amplitude damped out rapidly and replacing e-t/T2 by

"62 ° gave better results., This judgment was made from the wvalue

of xz; with the exponential relaxation function of e-t/Tz, A =values
2,2

obtained were not less than 1.5. Using the Gaussian function of e~ t R

ﬁ'z's were close to unity. In these cases the first 350 data points were
fitted. A discussion of the physical origin of the relaxation function

parameter is given in Appendix A.



*
ITI. PHENOMENOLOGICAL ASPECTS IN FERROMAGNETISM

In 1901 Piere Weiss put forward the "molecular" field hypo-
thesis that each atom of a ferromagnetic material is a magnetic dipole
and is acted upon by an intense magnetic field proportional to, and
parallel to, the magnetization in the region surrounding it. This met
with considerable success in accounting for spontaneous magnetization
and its variation with temperature. Weiss realized that the molecular
field had to be more intense than could be accounted for by ordinary
magnetic forces, but he was unable to trace its origin.

It is now known that the molecular field is a representation
of the net effects of exchange interactions. The elementary dipoles be-
have as if they were experiencing an intense magnetic field as a result
of exchange interactions between them. The proportional dependence of
the molecular field on the intensity of the magnetization existing in a
domein reflects the fact that the net exchange couple tending to turn an
ion into a particular direction will be proportional to the excess num-
ber of its neighbors already pointing in that direction. The intensity
of magnetization is a measure of the number of such excess ions averaged
over a volume containing a very large number of atoms.

Most known ferromagnetic substances are metallic. This fact
immediately introduces a difficulty which is not really peculiar to

*
Discussions on these subjects are found in references 26-31.

41
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magnetism. The problem is the more general one of how to describe the
state of motion of the electrons in a metal. When atoms combine to form
a metal the most tightly bound electrons are hardly affected by the
neighboring atoms and remein localized on separate nuclei. The outermost
electrons, on the other hand, are as close to one nucleus as to the

next and they tend to move extensively through the lattice of positive
ions, The "magnetic" electrons in ferromagnetic rare earth metals are
in Uf states and, being screened by the 5s and 5p electrons, probably
remain tightly bound and localized on parent nuclei. In transition
metals and their alloys, the electrons responsible for ferromagnetism
are those which are derived from 3d states of free ions and unscreened
from neighboring atoms in a solid sample. Therefore, they probably
exist in states which are itinerant, or at least intermediate between
being localized on parent nuclei and being freely itinerant.

The atomic ground states of 3d transition elements as deter-
mined by Hund's rule predict net magnetic moments from the unpaired
electrons in 3d shells. The values of the magnetization at 0 K, extrapo-
lated from low temperature measurements, show that each atom of Fe, Ni
and Co carries 2,22 PB’ 0.6 HB and 1.7 “B’ respectively, where pB is
the Bohr magneton. The Weiss model for localized electrons cannot ex—
plain these non-integral numbers of Bohr magnetons. On the other hand,
the collective-electron model due mainly to Stoner deals with almost
free itinerant electrons. This model provides a satisfactory general
account of the main magnetic and thermal properties of transition metals
and alloys. However, the collective electron model fails to explain

some important facts in ferromagnetism such as the existence of spin
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waves. Formulating a single simple theory which deals adequately with
the localized and itinerant characters of electrons at the same time has
not been successful.

Despite such difficulties in the theoretical description of
ferromagnetism the role of ferromagnetic materials and their alloys is
very important in technology. For this reason the magnetic>and mechanical
properties of ferromagnetic substances have been studied extensively for
the last several decades. The theories developed during this period
successfully describe the physical process of ferromagnetic states of a
material in response to external influence., External stress, especially
a uniaxial stress, applied to a ferromagnetic material alters its mag-
netic states through the change in mechanical structure of the material.
Such effects by the external uniaxial stress on the ferromagnetic states
of a material are seen from the magnetic domain reorientation, motion of
Bloch walls, the change in the magnitude of the spontaneous magnetization
and stress induced anisotropy. In this chapter the basic phenomenological
aspects in ferromagnetism which are related to the uniaxial.stress H+SR

experiment will be discussed.

A. Exchange Theory of Ferromagnetism

The most general definition of the exchange energy for a two~
electron system with a Hamiltonian not containing terms describing the
magnetic interaction is connected to the possibility that two types of
ground states may exist: a singlet with zero spin S = 0 and an energy
lé , and a triplet with 8 = 1 and an energy 3& . The exchange energy

J is defined as half the difference between these two energies:
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J= zc'e - 3) (3.1)

From this one sees that for J ) 0 energy 3é 4 1( » and in the ground
triplet state the spins of two electrons are parallel (more precisely,
the projections of the spins onto the quantization axis have the same
sign in the case of ferromagnetism), while for J { 0 the spins would be
antiparallel (case of antiferromagnetism).

The definition in equation (3.1) suggests a means of writing
the exchange part of the electrostatic énergy for a two-electron system
as the scalar product of spin vectors. To do this, one writes the energy

of the system as

€=2Cer)-Ffxde-%) (X=21) (3.2)

here, for X =1 £ = 3é , and for X= -1 €= lé . The square of the

total spin vector for the system g = gl + §2 in units of # is
2 2+ 9
§%=3 42583, = ss+1) (3.3)
2
Therefore, one gets an operator
(£ + 23,-3,) (3.1)

with an eigenvalue [S(S + 1) = 11 : for S = 0 the eigenvalue is -1, and
for 8 = 1 it is +1. The eigenvalues coincide with the possible values
of ® in equation (3.2),

By replacing K in equation (3.2) with (3.4), one obtains the

following energy operator for the system:

H - & -273.3, (3.5)



45

which has the required eigenfunctions relative to the spin and accurate
eigenvalues of the energy. Here, €, = ('e + 3& )/4 is the mean energy
of all four spin states. Equation (3.5) does not depend on any of the
assumptions made during the usual treatment of the problem.

Denoting 4’3(?1) and 4>b(?2) as the single electron wave-
and r

functions for the electrons positioned at r with spin states a

29,31,32

1 2

and b, respectively, the exchange energy J can be expressed as

J' - ezjj ¢:G{.) ¢:dz) 470-61'2) 4>.,(2.) Aﬂqdﬂz (3.6)
IE - Zzl
which is the exchange integral. Equation (3.6) was derived by neglecting

the overlap integral
iSablz = J b ) by h) dulla) b)) ddis (3.7)

Suppose the two electrons belong to the same atom, but do not
complete a closed shell. The form of the Coulomb interaction and of
the atomic orbitals +a and ‘}b is such that J is positive; the electron
spins tend to line up to meke the maximum total spin consistent with the
numbers of independent states to be filled in the shell. This is Hund's
rule, which explains why the electrons in an incomplete d-shell of an ion
of a transition metal tend’'to combine to give a large permanent magnetic
moment to the ion.

However, we are concerned here with the interaction between

the spins of electrons on different ions. It turned out that J almost
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always comes out negative, favoring antiparallel spins on neighboring
sites. The simplest case of this is the Heitler-London model of the
hydrogen molecule, where the bonding state has electrons paired. On
this basis, therefore, it is difficult to explain the fact that many
metals, usually "transition" elements, are ferromagnetic. The problem
is further complicated by the fact that the d-electrons are not strictly
localized on particular ions but lie in states that overlap from atom to
atom to form a narrow band. This band, in turn, hybridizes with the
ordinary s-band, where electrons conduct very freely. Despite these
difficulties the Hamiltonian in equation (3.5) successfully explains
many phenomenological aspects in ferromagnetism.

In problems concerning ferromagnetism usually only the spin
dependent term of equation (3.5) is of interest. For two atoms, i and

j, that have one electron each the exchange Hamiltonian is

H o= -2l % (3.8)

where Jij is the exchange integral for the two electrons. If each atom
has more than one electron with an unapired spin, the exchange Hamiltonian
is

M o= -27; ‘5’:.‘5'3 (3.9)

where Si ==Z Si and S, = Z Sj are the total spins of atoms i and Jj, res-
v

J

pectively. Here, it is assumed (a) that all the electrons have the same

exchange integral Ji and (b) that the exchange between electrons of the

J

same atom is constant, and hence can be omitted. Further, the exchange

integral is usually neglected except for nearest neighbors. The
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Hamiltonian of an entire crystal is
-5
H=-22Z Jsj ‘g;-fﬁ
DA

where the summation on j is over the nearest neighbors of atom i. If
the exchange integral Jij is isotropic, equal to Je, one gets

H o= -27e L -3 (3.10)

l‘nd

In certain problems, particularly in domain theory, it is both
appropriate and convenient to consider the spin matrix operator of
equation (3.10). For a one-dimensional array of spins making small angles

with neighboring ones, this equation can be rewritten as

H=F = -27.53 cosdy (3.11)
J

where CPij is the angle between the directions of the classical spin

angular momentum vectors. If the angles between neighboring spins are

very small, cos 4; ~l - L 4> 2. The variable part of the exchange
? ij =~ 2 Tij

energy is given by

E = Je S”Z#; _ (3.12)

” ~ ’
Let Ui and Uj be vectors parallel to the spin vectors of adjacent atoms

i and j, and let rij be the displacement vector between the atoms. Then

~

A
oSy = Uy-Ur =0 0h; + Ozidls; +olzio; (3.13)

where o(l, 0(2 and 0(3 are the direction cosines of a unit vector. Since

the angle between the unit vectors ﬁi and U, is small, the direction

J
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A
cosines of UJ may be expanded in a Taylor series in the direction co-
N

sines of Uj' For example,

. - 2 2
dl"’dh = o, (0(.‘-_ f /Lij'VO(![ } é (/L,'J‘-V) - AR BRI )

Substituting this expression into equation (3.13), one can calculate the
sum in equation (3.12).

In the case of a cubic crystal, it can be shown
that
2 A
Teosdj = E+ g Zagl-du, (3.14)
J
N

where the subscript on Ui was omitted. By considering only the variable

part of the energy, the exchange energy is therefore given by

=F = .38 5 4070
H=E -3 a5 07

Using a vector identity, the above equation can be written as
%S5 22 2 2 2
H=E = ST [ (o) (Vo) () ]

For cubic structure, either simple, body-centered, or face-centered, the

expression 2[ rij is equal to 6a2, where a is the lattice spacing. Hence
J

one gets finally

H=E = 2%Sal(WP+ v+ (ves) ] (3.15)

as the exchange energy for one cube of edge sa.

B. Crystalline Anisotropy

3 9
The exchange energy depends on the scalar product of Si'S

J

which is invariant with respect to the choice of the coordinate system.
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Experimentally, however, it is found that the magnetization tends to lie
along certain crystallographic axes. This indicates that the internal
energy of a magnetic system depends on the direction of the magnetization.
An energy of this kind is called a magnetic anisotfopy. Generally the
magnetic anisotropy energy possesses the crystal symmetry of the material,
and we call this a crystalline anisotropy.

The existence of crystalline anisotropy may be demonstrated
by the magnetization curves of single crystal specimens. Magnetization
curves for single crystals of Fe, Ni, and Co for various orientations of
the applied field with respect to the crystal axes for room temperature
are shown in Figure 11, It is clear that much smaller fields are required
to magnetize the crystals to saturation along certain directions than
others. These directions are the easy magnetization directions of ferro-
magnetic substances.,

For cubic ecrystals such as Fe and Ni the anisotropy energy can
be expressed in terms of the direction cosines ( °‘l; o o> o 3) of the
magnetization with respect to the three edges of the cube. The anisotropy
energy can be expressed in a polynomial series in o(l, oo and 0(3. Those
terms which include odd powers of the o i must vanish because a change in
sign of any of the o(i should bring the magnetization vector to a direc-
tion which is equivalent to the original direction. The expression
must be invariant to the interchange of any two o(i's, so that the terms
of the form o(g_ o(jm o(kn must have, for any given combina.tion of ¢, m,
n, the same coefficient for any interchange of i, j and k. The first

2 2

term, therefore, should have the form o(l + 0(2 + 0(32, which is always 1.
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Fig. 11. Magnetization curves of single crystals of (a) iron,
(b) nickel, and (c) cobalt. The direction of the applied
field with respect to the crystallographic axis is indicated
for each curve. (After Honda and Kaya.)
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Next is the fourth orde? term which can be ;'educed to the form 55 0(120(32
by the relation 17
ot oatrad = 1 - 20 ur Foadd o)
Furthermore, by the relations
) o b ol b Al o 1 - 3 of t olely b s ) + Bogoie

4 2 4 2
ool +otted + o5 4 oot + ool +otol
2 2
= 3 (0GoE totia +oGel) -G Aa o3

every sixth order term can be reduced to 2 0(12

2 2 2 2
j)i O(J and °<l 0(2 0(3'

Thus we have the expression

Ea= K (oo tonos + ofo}) + Kaolotsols + ==+ (3.16)

where Kl and K2 are the anisotropy constants. For Fe at room tempera-

1:u:r'e33

K, =4.8 xio erg/ cm?
Kz=t& Xi0* &g/ cm®

and for Ni at room temperature,

Ki = -45 x10% erg/cmd

Kz = 2.34x 0% erg/cnt
When Kl) 0 the first term takes on its minimum value at all directions
of [[100]], whereas when Kl { 0 it does so at all directions of [[111]].

These, then are the directions of easy magnetization.
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The origin of the anisotropy energy is believed to be the re-
sult of the combined effects of the spin-orbit interaction and the
partial quenching of the orbital angular momentum (by inhomogeneous
crystalline electric fields and by orbital exchange interactions with
neighboring atoms). In other words, the magnetization of the crystal
"sees" the crystal lattice through the agency of the orbital motion of
the electrons; the spin interacts with the orbital motion by means of
the spin-orbit coupling and the orbital motion in turn interacts with
the crystal structure by means of electrostatic fields and overlapping

wave functions associated with the neighboring atoms in the lattice.

C. Magnetostriction and Magnetoelastic Energy

When a magnetic substance is exposed to a magnetic field, its
dimensions change. This effect is called magnetostriction. It was dis~
covered as long ago as 1842 by Joule, who showed that an iron rod in-
creased its length when it was magnetized lengthwise by a weak field.
The fractional change in length 4¢/g is simply a strain, and, to dis-
tinguish it from the strain € caused by an applied stress, it is tra-
ditionally denoted by a symbol X :

A= Ay,

The value of A\ measured at magnetic saturation, or technical saturation,
is called the saturation magnetostriction As.

Magnetostriction occurs in all pure substances. However,
even in strongly magnetic substances, the effect is small: As is

typically of the order of 10—5. The smallness of this strain may be
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better appreciated if it is translated into terms of stress. If Young's
modulus is 30 x 106/PSI, a strain of lO-5 would be produced by an applied
stress of only 300 PSI or 0.2 kg/mm?. In weakly magnetic substances the
effect is even smaller, by about two orders of magnitude, and can be
observed only in very strong fields.

Although the direct magnetostrictive effect is small there
exists an inverse effect which causes such properties as permeability
and the size of the hysteresis loop to be highly dependent upon stress
in many materials. Magnetostriction therefore has many practical con-
sequences, and a great deal of research has accordingly been devoted
to it.

The value of the saturation longitudinal magnetostriction As
can be positive, negative, or, in some alloys, zero. The value of XA
depends on the extent of magnetization and hence on the applied field.
Figure 12 shows a typical variation of A with H for a substance with
positive magnetostriction.

The magnetoelastic energy is that part of the energy of a
crystal which arises from the interaction between the magnetization and
the mechanical strain of the lattice. The magnetoelastic energy is de-
fined to be zero for an unstrained lattice. It must be made clear that
this strain interacting with the magnetization is a spontaneous deforma-
tion of the lattice.

The close physical relationship which exists between the ani-
sotropy and magnetostriction is not revealed clearly in the standard

discussions of the energy relationships in ferromagnetics. It is of
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Fig., 12, Variation of magnetostriction with field H (schematic)



55

primary importance to recognize that there will be no linear magneto-
striction if the anisotropy energy is independent of the state of strain
of the crystal. Magnetostriction occurs because the anisotropy energy
depends on the strain in such a way that the stable state of the crystal
is deformed with respect to a cubic lattice. That is, a crystal will
deform spontaneously if to do so will lower the energy.

The mathematical expression of magnetostriction has been de-
rived by many authors. Since the magnetoelastic energy plays one of the
most important roles in the uniaxial stress experiment, & detailed
treatment will be given in this section. Outlined below is the derivation

by Kitte13"

following the discussion of Becker and Akulov.
The elastic energy density in a cubic crystal is given by
(Love, 1944, p. 160)3°

2 2 2 2 2 2
fot = LCuiGutey+eq) + 3euiet o+ en) (3.17)

+ Gz (€yy €3z t @x€az + Sy €yy)

where the Cij are the elastic moduli and the e.,, are strains. The

i3

anisotropy energy density in an unstrained cubic crystal is of the

form

2 2 2 2 z 2
Fo = Kot + o5ols + a0t )

to the first order. To express the dependence of the anisotropic energy

on the strain we expand the energy in a Taylor's series in the strain:

+K = (£, +.%\ (#K/ae;j)oég oo (3.18)
“2

Considering the lowest order terms dependent on orientation, we may take
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from symmetry considerations

éﬁ‘. = E,d?

o€ (3.19)

2 _ Badid;
24

where Bl and 32 are constants which may in principle be calculated knowing
the details of the interactions in the solids. The B's are called mag-
netoelastic coupling constants. Substituting equation (3.19) into
equation (3.18), we get

2 2
‘}K = K (¥ + otz +oGod) + B, ZX; e

.20
t B.Z Xick, @5 (3.20)

i<j

The equilibrium configuration of the crystal, that is, the
stable state of strain, when magnetized in the direction & may be found

by minimizing the total energy f = fel + fk with respect to the eij'

Since we have six independent components of eij's, there will be six

equations for of/ aei = 0. Solving these simultaneous equations,

J

the solutions are obtained:

Qi; = Bn[ Ciz "O(:,:L(Cu + ZC:z)]
(cu- G2) CCuv2G2) (3.21)

Cj = ~Bacid /¢y Gi%))

The conventional first order maghetostriction equation which
is frequently used in the analysis of experimental measurements on cubic
crystals is

2 2 Z 2 2
éﬂ =%A|oo (JP( + szz, + d3F3 '%)

ra (3.22)

+ 3N (oafiPat+ 4P3 Pifs + ot Pafi)
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N
where o = (o(l, 0(2, ®,) is the unit vector in the direction of the mag-

3
. . no_ . . . . . . .

netization, p = ( Fl’ PE’ PB) is a unit vector in the direction in which

S,Q is measured: )\100 and )\lll are the saturation magnetostrictions

in the directions (100) and <(111) , respectively. The next step is

to relate the magnetostriction constants )\100 and )‘lll to the magneto-

elastic coupling constants, B. and B2, which have more fundamental signif-

1

icance.
Suppose a position vector r between two points of an unstrained
crystal becomes ’r" by the strain induced in the crystal. The components

.I)" can be expressed in terms of the components of ??:

X = (nfeu)x,w%é e;%;

hence

2
§€) = 2800 = 28 2 4B
i./J
From this we have

5 emp (3.23)

Ly

On substituting the wvalues of the eij given by equation (3.20) we get

e ___ B (dfpf'h(,,"pf»r oép:) + 3CaB.
L Ci- Gz i+ 262) (G - Gz) (3.24)
B2
- @olapiPr + o3 PiPs + ofaots Papa)
which may be written in the form of equation (3.22) if we set

)\ = .2 _B'__

e 3 C“ - CIZ (3- 25)
Al = - Bz

[
3 CM
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and drop a residual term which is constant with reépect to Q and ﬁ .
The room temperature values of these parameters in Fe are:26’33
Moo = 21 x 1070
>111 = -21.2 x 10"6
C,y = 2.4 x lO12 dyne cm-2
Cip = 1.46 x 10%° dyne o2

1

0y, = 1.21 x 10 2 ayne em™2

B, = =2.9 x 106 erg/cm3
T 3

B, = 6.4 x 10" erg/ecm” .

So far, only the spontaneous deformation of the crystal has
been discussed. The next thing one needs to consider is the contribution
of external stress to the magnetoelastic energy of the crystal. Suppose
a uniform tensile stress of magnitude & is applied to a crystal such
that Xl’ 32, 53 are the direction cosines of & with respect to the
crystal axes. The stress components are «., = G'Ui Fj' The resulting

ij

strains are:

2
ei; = -5[ S - Si2) ¥, ¢ S.z]
(3.26)
. - -L .
where sij's are the elastic compliances. By substituting the above ex~

pressions into equation (3.20), we have

Fre= B [(Su - $2) (F07+ o + o 13
(3.27)
-B,0 San (0L ¥, & + 0203 Nalf3 + 0306 U3 1)

Equation (3.27) can be rewritten using equation (3.25). The total energy
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f=f +f can be written as
k me

2
:fk,m - K («fo{fi- «;o(g-+ d;‘,(f-) - %)\,ooc(d,’b’ho(fb’; + OGV:) (3.28)

BNt (ol T Wz + Oy N X5 + Oizc, W3 57)

Equation (3.28) represents the interaction between the domain magnetiza-
tion and the external uniaxial stress. As a result of such an interaction,

domains in a specimen rearrange in response to the applied stress.

D. PFerromagnetic Domains and Domain Walls

The concept of magnetic domains was hypothesized by Weiss along
his molecular field theory. In the unmagnetized state a ferromegnetic
specimen is broken up into a large number of domains and the directions
of spontaneous magnetizations in domains are such that the magnetization
averaged throughout the specimen is zero.

The origin of domains may be explained by considering the struc-
tures shown in Figure 13. In (a) the magnetic poles formed on the surface
of the single domain crystal will create a magnetic energy E%F-J szr.

p)

The magnetic energy for a square cross will be of order Msgc: 10 ergs/cm3.
Here MS denotes the saturation magnetization.

In (b) the magnetic energy has been reduced by a factor of
roughly one-half as a result of dividing the crystal into two domains mag-
netized in opposite directions.3h The subdivision process may be carried
further as in (c): With N domains it turns out that the magnetic energy

is reduced to approximately 1/N of the magnetic energy of the saturated

configuration (a).
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The subdivision process may be expected to continue until the
energy required to establish an additional boundary layer or interface,
separating two domains maghetized oppositely, is greater than the reduc-
tion in magnetic field energy consequent on the finer subdivision. It
may be appreciated that a boundary layer does indeed have a certain amount
of energy associated with it: on opposite sides of the boundary the mag-
netization is directed in anti-parallel directions; since the exchange
forces favor parallel and oppose anti-parallel orientations of the mag-
netization, it will naturally require the expenditure of energy to establish
a boundary layer.

It is possible to devise domain arrangements such as (d) for
which the magnetic energy is zero. In (d) the boundaries of the triangu-
lar prism domains (termed "domains of closure") near the end faces of
the crystal make equal angles (45°) with the magnetization in the rectan-
gular domains and with the magnetization in the domains of closure.
Therefore, the component of the magnetization normal to the boundary is
continuous across the boundary, and no poles are formed anywhere in the
crystal. As there are no poles there is no magnetic field associated
with the magnetization. Therefore, as far as the magnetic energy is
concerned, the closure domain of (d) is not different from that of (e).
However, the experimentally observed patterns of domain structure of Fe
single crystals show the patterns of (e). As was discussed in the previous
section, the unit cells of Fe are longer along the magnetization direction.
This means that the triangular prism domains in the configurations (4d)
and (e) are compressed to minimize lattice mismatch. Since the compressed
volume is smaller in the configuration'(e), the elastic energy ié lowef

and this configuration is favored.
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The domain structure in Fe is much simpler than that of Ni be~
cause the easy magnetization directions of Fe are the érystal axes. Even
in the case of Fe, if the physical boundary of a specimen is not exactly
perpendicular to one of the crystal axes the formation of closure domain
is not possible at the surface. Figure 14 (a) shows the so-called "free
patterns" on the surface of a Fe single crystal which is slightly tilted
from the (100) plane. The domain structure inside a crystal is believed
to be as simple as the configuration (e) in Figure 13 (3) and it is shown
in Figure 1k (b).

As was mentioned before,there is an energy associated with the
domain boundary wall which separates two oppositely oriented domains.
This transition layer has a finite thickness and the motion of this layer
in response to the external field is important in the magnetization process.
The transition layer, called the Bloch wall, also moved by an external
uniaxial stress and such a motion will be discussed in the following
section.

Figure 15 shows the 180° Bloch wall which appears in the domain
structure of Fe. The essential idea of the Bloch wall is that the entire
change in spin direction between adjacent domains magnetized in opposite
directions does not occur in one discontinuous jump across a single atomic
plane. Rather, the change of direction will take place in a gradual way
over many atomic planes. The reason for the gradual nature of the change
is the fact that for a given total change of spin direction the exchange
energy is lower when the change is distributed over many spins than when

the change occurs abruptly.
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Fig. 14, Domain patterns of Fe-Si single crystal. (a) Typical tree
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From equation (3.12) the exchange energy between two spins making

a small angle 9 with each other can be written as

Wer = T S°¢" (3.29)

If the change occurs in N equal steps, then the angle change between
neighboring spins in ?/Np)and the exchange energy between each pair of

neighboring atoms is
I 2 2
Wey = TeS (7))

The total exchange energy of the line of N + 1 atoms is thus-

Wey = Jesl‘?z/N (3.30)

The energy in equation (3.30) is certainly lower than that in equation (3.29).

It é=1 , W L Would be 27es° from equation (3.10), while W = Jeszn 2 /N

e
from equation (3.30).

Since the exchange energy of a domain wall is inversely propor-
tional to the thickness, the wall might spread out until it filled a
sizeable portion of the crystal, were it not for the restraining effect
of the anisotropy energy, which acts to limit the width of the transition
leyer. The spins contained within the wall are largely directed away from
the axes of easy magnetization, so that there is a certain amount of
anisotropy energy associated with the wall. The amount of anisotropy
energy will be roughly proportional to the thickness of the wall, since

the thickness is a measure of the total volume directed away from the

axes of easy magnetization,
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The actual thickness and the energy of the transition layer are
the result of a balance between the competing claims of exchange energy
and anisotropy energy, the former tending to increase the thickness and
the latter tending to decrease the thickness.

The energy per unit surface area may be represented to a good .
approximation as the sum of contributions from exchange and anisotropy
energies:

Ew = Eex + Eanis
The exchange energy is given approximately by equation (3.30) for each
line of atoms through the wall and normal to the plane of the wall. There

are 1/a2 such lines per unit area, where a is the lattice constant. Hence

Eo = T2/ Na? (3.31)

The anisotropy energy is of the order of the anisotropy constant times

the volume, or
Eanis = KNa (3.32)
so that

Ew = (TTZJ}G"/Na?') + KNa (3.33)

which is minimum with respect to N when

Eaai—w =0 = - (I SYN) + Ko

or

N & [1%eSY/ kd] " (3.34)
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The numerator in the bracket of equation (3.3%4) is the exchange energy
between two neighboring but opposite spins. The magnitude of this ex-
change energy is the same as that between two parallel spins which is

comparable to kBTc where Tc is the Curie temperature. To an order of

magnitude, in Fe,

NalkTe/kal% & [103/65 1023]%
e~ jooo A°

o 300 fathce constants

E. The Magnetization Process

A typical magnetization curve, showing the relation hetween B
and H in a specimen initially unmagnetized, may be divided into three
main parts. As is seen in Figure 16, the curve in the first region
starts from the origin with a finite slope 4B/dH = HO' This portion of
the curve is usually said to be reversible because the curve is retraced
approximately (not exactly) when the external field if turned off.

The second part of the magnetization curve has the greatest
slope and is irreversible. The path when H is decreased is quite dif-
ferent from the upward curve. In the third part the slope is very small
and is reversible. When Ms is plotted against H, the slope will approach
zero in this part (see Fig. 11).

In the unmagnetized state the directions in which the domains
are saturated are either distributed at random or in some way such that
the resultant magnetization as a whole is zero. Application of a magnetic
field changes only the direction of magnetization in a given volume, not

the magnitude.
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Fig. 16, Typical magnetization curve
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The first part of the magnetization is known to be caused by the reversible
domain boundary displacement, The gradual change in direction of spins
in the Bloch wall (Fig. 15) makes the wall motion possible. Suppose that
a field is applied along the upward spin direction. The spins oriented
parallel to the field are in the lowest Zeeman energy state. In the
Bloch wall the spin right next to the favored domain has a slightly higher
Zeeman energy than the lowest state and tends to turn around along the
field direction. This perturbs the balance between several different
types of energy contributed to form the Bloch wall and the domain struc-
ture. Since the wall tends to keep the thickness constant, the smali
angle rotation of the first spin causes the same motion of the following
spins. Therefore, the Bloch wall moves to expand the volume of the
favored domain by turning the spin vectors one by one into the field
direction like collapsing dominoes. If the field is not parallel to the
favored domain direction, these spin vectors will turn around to point in
the favored magnetization direction.

As domain boundary walls move to expand the volume of domains
along a certain direction, the average magnetization is not zero any more.
The non-zero value of the average magnetization creates a distribution of
magnetic poleson the surface of the specimen such that the field due to
these poles is opposite to the applied field. To keep the internal field
constant the applied field must accordingly be increased.

However, a constant but very small internal field is not able
to move the Bloch walls as far as they can go. The important restreining

effects on Bloch wall propagation originated in lattice imperfections,
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These include impurities and dislocations. In the case of Fe, a very
pure sample usually contains various impurity concentrations less than
10 ~ 20 PPM but the dislocation density might be about 106/cm2. Therefore,
there will be at least 10,000 dislocation lines passing through a small
domain of an unmagnetized specimen. As will be discussed later, Bloch
walls interact with impurities and dislocations and such interactions
cause effective potential barriers along the paths of the Bloch walls.
Figure 17(b) shows such an irregular shape potential hill that

30,34,36

a Bloch wall encounters along its path. If a 180° wall moves

through a distance x , as shown in Figure 17 (a), then

Ey = 2HMsx A

assuming that the total area of the wall is A. Thus, there is an effec-
tive pressure on the wall, given by
';Tzﬁ=z”"4$ (3.35)
Figure 17 (c) shows the pressure on the Bloch wall from the potential hill
that opposes the motion of the wall. Suppose that the magnitude of H is
just enough to bring the wall to the point A. If the field is turned off
at this point, the wall would return to its original position at 0. How-
ever, if the magnitude of H is slightly higher than that which is needed
to bring the wall to A, the wall suddenly jumps from A to E. Turning off
the magnetic field at this point causes the wall to move to point D.
Since the potential is in its local minimum, the wall would stay there.
The first part of the magnetization curve represents the motion

of Bloch walls between points 0 and A. Since each Bloch wall encounters
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a potential of different shape, the reversibility of wall motion through-
out a whole specimen would not be exactly perfect. The irreversible
domain wall motion in the second part of the magnetization curve has
already been explained. The evidence of this wall jump is found in a
detailed magnetization curve in the second part which shows small discon-
tinuous steps. Such a jumping motion was first seen by Bahkhausen and
the effect was named after him.

When the applied field is removed after saturation is reached,
Bloch walls move back along the paths to restore the original unmagnetized
state. This returning motion of each Bloch wall ends at the position cor-
responding to the point D in its path. As a result, the unmagnetized
state is not obtained and the specimen is partially magnetized. Such
a partial magnetization is called the remanence, as seen in Figure 18.

To recover the unmagnetized state, it is necessary to apply a field which
is in the direction opposite to that of the previously applied field.
This field enables the Bloch wall to move back from D to the original
point 0. The magnitude of this inverse field needed to restore the un-
magnetized state of a specimen is called the coercive force.

From the discussion given above, it is clear why the first part
of the magnetization curve.is reversible while it is irreversible in the
second part. The magnetization at the beginning of the first part can
be related to the applied field by a constant which is called the initial
permeability. The initial permeability is a measure of the intrinsic
restoring force on the wall for a small displacement, while the coercive

force is a measure of the maximum restoring force on the wall. The
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Fig. 18. Typical hysteresis loop of ferromagnetic substances showing
remanence at D and coercive force Hc at E.
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coercive force tells us the field strength needed to carry a wall from
one potential energy valley to another, past the highest intervening energy
hump.

Since the irregularly shaped potential that each wall encounters
is produced by lattice imperfections, the initial permeability and coercive
force are sensitive to the mechanical structure of a specimen. Thus it
has been experimentally observed that metallurgical treatment and change
of chemical composition significantly affect the values of these quan-

37

tities.

F., Motion of Bloch Walls by External Stress

Any arbitrary external stress can change the domain structure
of a specimen provided the externél stress is not hydrostatic. The ef-
fect on the domain by a complex stress can always be explained on the
basis of the effect by a uniaxial stress. It is seen in equation (3.28)
that an external stress ékplicitly contributes to the energy of a crystal

and the contribution is dependent on the signs of K, A\ and G .

100° Alll
Since the interaction between the magnetization and the stress depends

on the angle between them, domain rearrangement always proceeds to reach
the proper energy state of the crystal. The fundamental difference in
the wall movement by the magnetic field and the uniaxial stress must be:
the external field takes only one direction of magnetization, while due

to its bilateral nature the uniaxial stress equally favors both directions
of magnetization, which are opposite to each other along certain axes in

the crystal. The movements of domain walls by an external magnetic field

and uniaxial stress are shown in Figure 19.
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Either a magnetizing field or an external stress is thermody-
namically equivalent to a hydrostatic pressure within each domain, acting
on its domain walls, This is because the unit of fk,me is energy per unit
volume which is equivalent to pressure., The basic idea is that when a
wall divides two regions with different energy density it tends to move
to reduce the total energy of the crystal by expanding the volume of the
domain with the lower energy density. This is to say that the wall moves
by virtue of net pressure acting on it and this pressure is the difference
between the energy densities in the domains divided by the wall.

Before the motion of a Bloch wall is considered it may be useful
to inspect equation (3.28). Suppose two domains in Fe, say y and z do-
mains, are subjected to an exte;nal uniaxial stress applied along the z-
axis. From equation (3.28), which is rewritten below,

P me = Kitaios +oZos 4 dio’) - % MooS (o 7+ Aol + diTa)

(3.28)
“3M0S (0 T, t ozl o X ¥ oo, B3 Y,)
we can write the energy density in each domain at the moment when the

stress is applied. For the z-domain, it is

‘Fg = ‘% }\wc»¢

while fy = 0, If the stress is tensile the sign of o is positive, and

6

since )\100 = + 21 x 10 ~, the total energy will be lower in the domains

- oriented in the + z-directions. If the stress is compressional fx will be
positive and is higher than fy. FSuppose that the magnetization vector
originally pointing along the y-axis is rotated toward the z-axis in the

¥y-z plane, The angle dependence of fme is immediately written as

oK
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2
T)tk,‘me =K, CO;GSMI%Q-—%/\wo Qo cosée (3.36)

where @ is the angle between the magnetization vector and the z-axis,

Taking afme,k/ae = 0, we get

-l
- L 3 zZ
0. =sim[z- % Atoo 6] (3.37)
where Qc is the direction of magnetization for the maximum fme k at a
L
fixed value of O . ¢ is plotted in Figure 20 as a function of 6 for

me,k
&y 0. If lacl) 0 the magnetization vector oriented along the y-axis,
@ = 0, cannot immediately turn around toward z because fme,k(o) is at
the local minimum. A sudden turning motion of the magnetization vector
will only happen when ec becomes zero in the classical picture. Substi-
tuting the values of kl and >‘100’ the magnitude of tensile stress to

make Qc = 0 will be

o, . 2 K
2 Aioo

‘\32"'"4'8"'°6/zf)<|o“

e (.624 % lo'oerg/i";’-" (:dgme/c,r?')

= |.524 x 104 ban
which is about 30 times larger than the yield strength of an Fe single
crystal at room temperature. The rotational motion of a spin from the
z~axis to y-axis requires a compressional stress of the same magnitude
applied along the z-axis.

Since rotational motion of the magnetization is not possible

by an external stress, we now turn our attention to the motion of Bloch
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Fig. 20. Angular dependence of f o k? where 6 is the angle between
the magnetization and tﬁe’%tress axis.
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walls in Fe. The translational motion of Bloch walls activated by an
external stress will be resisted by the irregularly shaped potential hills
s discussed in the previous section., To complete their motion, that is
to expand the volume of favored domasins as far as possible, the Bloch
walls must pass over the highest potential humps they meet. The average
pressure on the walls must be the same as that which is needed to bring
the sample from its partial magnetization at remanence (Fig. 18) to the
unmagnetized state., Then the Bloch walls can move beyond the highest
hills. This pressure is estimated to be "‘Mch’ where MS is the spon-
taneous magnetization and Hc is the coercive force. The value of MS in
Fe at room temperature is 1740 Gauss and Hc is about 1 Gauss.

The net pressure on a 90° Bloch wall can be written in a simple

form:
| Pasl = ::Z Moo | ¥ - 42| 151 (3.38)

Further, it can easily be seen that the net pressure on a 180° Bloch wall
is always zero regardless of the orientation of the axes along which the
uniaxial stress is applied.

The magnitude of the critical stress applied along a crystal

axis of Fe to complete the domain wall motion is thus estimated to be

(I3

Aoo® 2 (740 dyme/cni
S0,

o é
'\ 74 i 55 x 10 dg'mz/cynz = 55 bor

2
G =5 ——
3 2ixiw0

This critical stress for domain wall motion is about one +tenth of the

yield strength of an Fe single crystal, which is about 530 bar.



80

In the case of Ni, the easy magnetization directions are along
the eight equivalent (111) orientations. Therefore, a description of
the motion of Bloch walls is very complicated. However, the value of Kl
in Ni is 5 x 10h erg/cm3, which is smaller than that of Fe by an order of
maghitude so that rotational motion of the magnetization vector is pos-
sible. By a calculation similar to equation.(3.37) the critical stress
for domain rotation is estimated to be about 240 bar when the stress is
along one of the crystal axes. The basic difference in Ni is that the

favored orientations of the magnetization are perpendicular to the stress

axis if it is tensile, which is opposite to the case of Fe.



IV. POINT DEFECTS AND ELASTIC DIPOLES

An impurity introduced in the lattice of a crystal creates a
local distortion. Such a distortion is either isotropic or anisotropic
depending upon the symmetry at the position of the impurity in the host
lattice. It will be shown that the local distortion due to an impurity
at an interstitial site of a ﬁCC crystal is anisotropic., This local

38 This ap-

distortion can be related to the "elastic dipole" concept.
proach has been developed in analogy with the classical electric dipole.

An immediate consequence of such an interaction to this uni-
axial stress P+SR experiment is that the stress tends to align the elas-
tic dipole associated with a muon along a certain direction. The
principal axis of the elastic dipole at an interstitial site of a BCC
crystal is determined by the orientation of the tetragonal axes passing
the site (section A). The dipolar fields at each interstitial site in Fe
are also determined by the orientation of the tetragonal axis (Appendix C)
of the site, Therefore the site occupation probability of a hopping muon
will be different for sites with differently oriented tetragonal axes and
this will cause a drastic change in the field acting on the muon.

The first part of this chapter is a discussion of the symmetry
associatéd with a point defect in a crystal. The second gives the basic

idea of the simplest case of the "stress-induced point defect relaxation"

summarized from reference 38.

81
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A. Crystal and Defect Symmebtry

The symmetry of a perfect crystal is most fully defined by its
space group, which is the collection of symmetry operations that take the
atomic arrangement into an identical (indistinguishable) one. For the
present purpose, we are interested only in the rotational type of sym-
metry operations, not in translations. The reason for this choice is
that the applied stress is always taken to be uniform, so that the type
of site is important only as far as the response to stress is concerned.

Consider a crystal which contains Jjust one point defect. This
defect may be as simple as an extrs or missing atom, as complex as a
cluster of several foreign or diaplaced atoms extending over several lat-
tice sites., The presence of a defect destroys the translational symmetry
of the crystal, and the resultant crystal may be thought of as a large
molecule. For brevity, the point-group symmetry of this defective
crystal is called the defect symmetry., The defect symmetry may be lower
than or equal to that of the perfect crystal.

We consider two types of point defects. There is the elementary
point defect, which consists of either a single substitute atom, a
vacancy, or an interstitial atom. The second type of point defect is a
composite one more complex than those belonging to the first type. Since
a muon in a crystal should belong to the first type of point defect, we
will only examine this type.

In the case of the first type, it is easy to see that the de-
fect symmetry is simply the site symmetry. This is valid unless the sur-
rounding lattice atoms relax to cause a further lowering of the symmetry.

But in most cases the relaxation occurs with no change in symmetry
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of the defect, since it takes place in a manner which is symmetrical
both with respect to the atoms comprising the defect, and to the site
about which they are situated. The term site symmetry denotes the point
symmetry of the perfect crystal at which the defect is created.

The defect symmetry of the first type is illustrated in
Figure 21, Site a, at a cube corner, has full cubic symmetry (see Ref-
erence 40 for notations), Oh’ while site ¢, at a face center has full
tetragonal symmetry th with the tetragonal axis perpendicular to the
page. BSide d, on the edge center, also has th symmetry, but now the
tetragonal axis is parallel to the y axis. Such a symmetry consideration
on the two-dimensional lattice can easily be extended to a three-
dimensional BCC or FCC lattice. Figure 22 shows the symmetry at intersti-

tial sites in a BCC lattice.

B. Elastic Dipoles

The insertion of a point defect into a crystal produces a local
elastic distortion. As a result, there will be an interaction between
the defect and an external stress (not hydrostatic) applied to the crystal.
In some way this interaction is analogous to the interaction of an elec-
tric dipole with an applied electric field. Accordingly, a defect which
produces local distortion has been called an elastic dipole. A major dif-
ference is that, whereas an electric dipole moment is characterized by a
vector quantity which determines its interaction with the (vector) electric
field, an elastic dipole is characterized by a second-rank tensor since
it interacts with a stress field.

Suppose an electric dipole in a crystal is defined by a dipole

moment , H » and by its orientation relative to the crystal axes. In
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Fig. 21. Illustration of defect symmetry in a two dimensional square
lattice,
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Fig. 22, A BCC unit cell containing a point defect at (&) octahedral
site (b) tetrahedral site. Possible displacements of
neighboring atoms are also indicated.’
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general there wiil be several, say n, crystallographically equivalent
orientations which the dipole mey assume in the lattice. The magnitude
of P of the dipole moment is independent of its orientation, but its
particular direction relative to a set of axes fixed in the crystal does
require specification. Accordingly, the dipole is denoted by the vector
if(P). The energy of interaction of such a dipole with an electric

field is given by

(k.1)

Up = 2 1" E;
In the absence of the electric field, the energy of the dipole in any one
of the n crystallographic equivalent directions is the same. Equation (4.1)
shows, however, that the presence of the field serves to split the energies
of the various crystallographic orientations so that, in general, they are
no longer equal.

Consider Up in equation (4.1) as the energy per unit volume per
unit concentration of dipoles all aligned in the Pth direction. The
(P)

quantity Pi is then regarded as the dipole moment per unit volume per
unit concentration. In terms of these definitions, equation (L4.1l) leads
readily to the analoguous expressions for the elastic dipole. If a num-
ber of defects are all aligned in the same orientation in a stress field,

the energy of the interaction with the stress field, Up, per unit volume

per unit concentration is given by:

Up = Z, v ‘"Grj z -zr.g.j )\;j"’s,j (4.2)

Since z’ij has the unit of volume, it is convenient to introduce the

dimensionless parameters Xij’ as in equation (4.2), by factoring out the
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(p)

atomic (or molecular) volume -7)'0. The quantities ?)-i 3 are components of
pure (not involving a rotation) strain exhibited by the crystal when a
unit concentration of defects is introduced into the crystal, all aligned

in the Pth orientation. Thus:

» €, P o€, L
oy = (70 a'nr) ;N = ( '/acr) (4.3)

where ¢ ;3 8re the strain components, np is the number of defects per

J
unit volume in orientation p, and cp =n 7)-0 is the mole fraction of
defects in ori-entation P.

Since the )‘ij(p) are components of pure strain, they constitute
a symmetry tensor (see Reference 41). The tensor )‘ij(p)’ (for brevity it

is called the "A ~tensor"), can be transformed to take a diagonal form:

M o 0

< ' (4.1)
o A2 o
6 © A3

The quantities ’\l’ )\2 and /\3 are called the "principal values" of the
A -tensor, and may be represented by a strain ellipsoid, as shown in
Figure 23, Since all defect orientations, p=1, 2, ... n, are crystal-

(p)

lographically equivalent, it follows that each tensor )\ij must have
the same set of principal values. Thus three values )‘l’ )2 and )\ 3 are
independent of p. However, it must be noted that the )\ -tensor is not
the only method for characterizing the behavior of a defect in the
presence of stress.

Kanza.k:? 9has introduced the following very useful concept for a

theoretical description of the strain field around the point defect in a



88

Aa

A

N

Fig. 23. Three principal values of a A-tensor represented by a strain
ellipsoid. These principal axes can have any orientation
relative to the crystal axes a, b, c.
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crystal. The actual displacements of the lattice atoms by the defect

can be stimulated in a defect-free lattice by applying virtual forces fjm
(called the Kanzaki force) to each lattice atom m (with its position ;(m)
from the defect site). The force distribution can be described by a
multipole expansion in analogy to a charge distribution in the electro-

static case. It turns out that for most cases it suffices to take only

the "dipole part" of the force distribution

(I | (k.5)

| m
the double-force tensor. Furthermore, only forces on a few atoms (for
example, only up to the next nearest atoms of the defect) are necessary
to give a good description of the displacements.
To be consistent with notation conventions used in the elastic

(p) to specify the

(p)
J

defined as a negative stress to maintain constant strain per unit concen-

dipole, the double force tensor will be written as Pi

J

orientation of the defect generating the tensor. Since the Pi are

tration defects introduced into the orientation p,

(r) G 6 .
(5 s - 1] = ‘?)-o ’ (""06)
By equations (4.3), (4.6) and the stress-strain relation, we get
¢ 1)) (4.7)
. - Z C“" A
?‘J 'U.n k,l Jkl ke
or
P 4 : ‘P
A 3}. Sijka Py, (1.8)
Cijkn and Sijkn are the elastic stiffness and compliance tensor com-

ponents,respectively, The change in volume of the crystal by defects

can be written in terms of the parameters defined previously:
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A\//v = z é;; = CoTA«)\]J‘ = g—? K T"L?‘(J- ()'l'09)

O
o

where

CD=ZCF
? (L.10)

K= 3(S,t 282) = 3/(¢, + 2C)
and K is the compressibility of the crystal. Since the A -tensor is
independent of p, the superscript p is not used in equation (4.9). The

quantities AV/V and C, can be measured. Thus Tr /\ij is obtained.

0

C. Thermodynamics of the Relaxation of Elastic Dipoles Under Uniaxial

Stress

Suppose there are m equivalent defect orientations in a crystal.
Upon the application of an external stress, the degeneracy of the free
energy level of elastic dipoles will be removed. Such a split in the
energy level causes dipoles along a certain orientation to be energeti-
cally favored by the stress. To reduce the total interaction between
elastic dipoles and the external stress, the reorientation of less favored
dipoles should take place. This reorientation of elastic dipoles can be
accomplished by the migration of point defects from their original sites
to others. Such a process is called the "stress induced ordering" and
this process continues until the equilibrium distribution of elastic di=-
poles is reached.

It is most convenient to describe the state or order in the

crystal by the parameter ﬁfp which is defined as

41? = Cr - (Co/m) (?:I;Z, srem) (L.11)
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If C0 is conserved

For simplicity, assume that there are only two possible orientations which
are equivalent in the absence of stress., Therefore, m = 2. Further sim-
plification is made by assuming that the stress is applied along a prin-
cipal axis of one of the dipolar orientations. The tensile strain can be

written:
Z )
€ =Ju6 + 5 X2 Mp + LT~ Trep) (k.12)
1=

The constant Ju represents the ordinary instantaneous compliance (see
Reference 38) and the last term takes into account the thermal expansion

of the specimen. Since m = 2, equation (4.12) can be rewritten as
€ =Jus + SN, + L(T - Tae) (L.13)

where SA=A"_A\¥

For a given temperature T and the state of stress, the equilibrium
value of the order parameter 711 is completely determined. Thus, a
thermodynamical Gibbs type free energy function may be written as a func-
tion of T and & only. On the other hand, the change in ‘ql is not in-
stantaneous, but it is rather controlled by atom movements governed by
an Arrhenius-type equation. Consequently, it is possible by some treat-
ment (for example, application of external stress, followed by lowering
the temperature) to hold the order variable, 4[1, at given value while

nmeasuring the conventional thermodynamic properties of the system. It is
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possible to define a pseudo free energy function in which & , T and 'q,,
are taken as independent variables. If this function G( ¢ , C, T) is
expanded gbout & =0, C = 0 it must take the form

G(S,C,T) = GL0,0,T) + 346" + ban), + £ ¢ +de (k.14)

for small values of & and 111, where G(0, 0, T), a, b, ¢ and 4 are in

general, functions of temperature and C The absence of a term 111,

0.
alone follows from the fact that for & = 0, /ql must be zero.
Recognizing that the G function is a generalized Gibbs free

energy, we note that its differential form must be
dG = -Ve€ ds - SdT - Ady, (k.15)

where VO is the molar volume of the crystal at Tref’

A is a thermodynamic variable conjugate to ‘41 which is often called the

S is the entropy and

"affinity". In thermodynamic equilibrium at constant & and T, the re-
quirement that G must be a minimum, means that A = 0. Under non-
equilibrium conditions A may be taken as a measure of the driving force

toward equilibrium. Comparison of equation (L4.14) and (L4.15) shows

€=-+ 26 _-__.J.(as*fbn'wt) (4.16)

|
Vo aG
Finally, comparison of the above equation with equation (4.13) gives

az-Volu, b=-Ve(8)), d=-Vo L(T-Trep) (b.17)

Now, we define a quantity Ag as the difference in the free
energy when a specific dipole is converted from an orientation of type 2

to one of type 1. It is given by
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26 | o4 |
g2 —&~ = — —— = UG + —
43% N, T W o, U BNG t - e, (k.18)
where
G' =G - (-TScf)
NA = Avogadro's number.

The quantity scf’ the configurational entropy, arises from the configura-
tional degeneracy which is not present in an Einstein crystal. However,
in a crystal with defects the sites are equivalent but distinguishable.

In the ideal lattice gas theory, the contributions to the entropy can be
written as a sum of two terms. The first term comes from the number of
ways the A distinguishable atoms can be distributed améng B labeled sites,
which is given by

B!
A1(B-A)! .

The second term comes from the pure vibrational motion of de-
fect atoms in a potential well supplied by the host lattice. Since we
may not want to include the contribution from Secf, its contributions to
G and ¢ were subtracted in equation (4.19). Equation (L4.18) states that
the free energy difference between a dipole in an orientation of type 1
and type 2 depends, in general, on both the stress and the state of order.
The dependence on stress is just the splitting of the free energy levels
of the two crystallographically equivalent orientations by the application
of stress, which provides the basis for the redistribution among sites,
and therefore, for the existence of a relaxation process., The last term

of equation (4.18) is somewhat less obvious. If ¢ is not zero, it means
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that the existence of a state of order will, in itself, result in a
splitting of states. Such a term was first proposed by Zener, represents
an interaction among the dipoles, and is therefore referred to as an
"interaction term".

In the p+SR experiment with an external uniaxial stress the
interaction term explained above is completely negligible since an in-
finite dilution of the point defect is always possible, Hence in this

work we use the simpler form of equation (4.18) which is written as
49 = -U BN S (4.20)

The physical meaning of equation (4.20) is illustrated in Figure 2k,

Equation (4.20) can be rewritten in a more convenient form:

Aﬁ = -(Su -S2) (P, -Pr & (L.21)
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Fig. 24(a). Schematic illustration of the splitting of the free energy
levels by stress for a set of three equivalent dipoles. Dashed
lines: before application of stress; solid lines: after stress
applied.

ORIENTATION

Fig. 24(b). Illustrating the activation barriers before (dashed lines)
and after (solid lines) the splitting of free-energy levelsg
by stress. Ag is the activation energy before the applica-

. tion of external stress.



V. RESULTS AND DISCUSSION

A, Results on Fe (100) Sample

The presentation of results on this sample is essentially
divided into four steps:
l. application of uniaxial stress without an external magnetic field
2. application of an external magnetic field without the uniaxial stress
3. application of uniaxial stress with a fixed external field
k., repetition of step 1.
To check the reversibility, an additional measurement was always performed

following every measurement with an external uniaxial stress.

a, Step 1l

Figure 25 shows the change in frequency as a function of the
tensile strain induced along the long axis of the sample. As indicated
in the figure, two measurements were performed before the sample was put
in the stress rig ("in air" measurements). The frequency on one face is
48,413 MHz and on the other face is 48.507 MHz. This difference in fre-
quency is assumed to be caused by a slight surface tension which was not
removed after the crystal was grown.

After this sample was placed in the puller by the process de-
scribed in Chapter II the frequency of the first face dropped down to
418,308 MHz. Even though metal crystals are known to be very difficult to

handle without mechanically disturbing them (Cottrel, 1952, p 101)3, such

96
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a droé in frequency is rather surprising. However, when a strain of

28.3 x 10-6 was induced the frequency went slightly below the frequency
previously measured (in air) on this face. Upon the removal of the ex—
ternal stress, the frequency fell between the two values in air. This

can be thought of as relieving some of the initial residual strain dif-
ference between the two faces and of the possible disturbance created by
the handling process. The rest of the measurements were performed on this
face.

Also seen in Figure 25 is that changes in frequency were slight
in the low strain region, an effect associated with the existence of do-
maeins aligned in directions other than the stress axis. As discussed in
Chapter IIT, Bloch walls in Fe move to expand the volume of domains aligned
along the axis of tensile stress. Beyond the critical strain, about
65 x 10-6 in this case, the frequency dropped linearly in strain indica-~
ting a full alignment of domains along favored directions.

Figure 26 shows the change in ‘XT(= l/T2) in this step. In the
low strain region where domains are not fully aligned along the stress
axis, the values of XT’ or the differences between the stressed and re~
leased state, do not show a clear tendency. On the other hand, in the
high strain region (induced strain ) 65 x 10—6) XT increased systematically
and also recovered well upon release of the external stress.

According to Arrott et a.l.2 the local strain in an Fe crystal
always decreases the frequency. Such a decrease in frequency was shown
to be accompanied by an increase in ‘XT as confirmed by Grynszpan et al.l

The effect on 'XT was attributed to dislocations in both works. This
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indicates that the volume of material strained by dislocation increased
upon application of the external stress and then returned to the original
state when the stress was released.

It is well known that any dislocation line, not exactly parallel
to the stress axis, moves when an external stress is applied to a specimen.
This motion of the dislocation line is blocked either by impurities or
other dislocations in the crystal. If the dislocation line is blocked at

two points, called the pinning points, it bends.3’h2’h3

Such a bending of
dislocation lines can happen even under a very low external stress (far
below the yield strength) and thus always increases the volume of material
assoclated with the local strain. Although the increase in 'XT can be ex-
plained by the above argument, it is only qualitative and there is no
clear evidence that the bending of the dislocations is the sole physical
origin of the effect of stress on )‘T'

According to the Frank-Read dislocation multiplication mecha-

Lo 43

nism, a severely bent dislocation line forms a closed loop. Once
created in the crystal, the closed loop can only be removed by a proper
heat treatment. On the other hand, & line which is not severely bent re-
turns to its original shape upon release of the external stress. The
recovery of )\T in the high strain region clearly indicates that the for-
mation of closed loops is negligible.

The yield strength of an Fe single crystal is about 520 bar at
room temperature.hh The strain along the <100) -axis corresponding to

6

this stress is 403 x 10" . A slip motion occurs when a single crystal is

subjected to a high external stress. A portion of the crystal is divided
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by thin discs (a few hundred angstrom thick) to form a slip band under a
stress beyond the yield strength. In the slip band the relative motion
between discs is constrained along certain directions on a crystallogra-
phic plane., The direction of slip motion is (111) on the (110) plane for
a BCC crystal.LlL2 The critical shear stress in the (111) direction of an
Fe crystal is 27k bar and it corresponds to a tensile stress of 577 bar
along the ¢100) direction. The Frank-Read mechanism was proposed to ex-
plain the slip motion in a crystal. Therefore, by applying an uniaxial
stress far below the ylield stress, the formation of closed loops should
not be serious.

The explanation of the effect of stress on ‘KT in terms of the
local strain immediately raises a question. If ‘KT is increased by an
increase in the local strain, whereas the effect of the local strain has
been confirmed to decrease the frequency then was the decrease in frequency
upon the external stress shown in Figure 25 due to the local strain? The
answer is no. This will become clear from the observation of results in
later steps.

Results on.‘klf= l/Tl) are plotted in Figure 27. The values
scattered all around,showing no general tendency. However, for each pair
of measurements AIJis higher in the stressed state than it is in the re-
leased state. The mathematical expressions of AI‘and )\T can be obtained

from the Redfield theory and are written as follows:h5

Xe=2 = ¥2(<Biy+ ¢y T

R AL pe?) o
2 2

A= o W <Bg T L
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where z:c is the correlstion time of the P+ at each site, a% is the
precessional frequency of the F+ spin and z is the direction of the
domain magnetization. In the region free of local strain <Bl‘x2> and
(B'lyz) are zero. This means the change in.,AI'will be very sensitive
to a local strain introduced into the region in which a muon diffuses.
Therefore, the parameter ‘XL can easily be affected by any irreversible
change in the crystal and the fluctuation in values of )\L in Figure 27
results,

Figure 28 shows the change in FT/FL as a function of the induced

strain. The expressions for these parameters (defined in Appendix B) are

rewritten here.

Fr =dhosmox t 4y euiey + §; sin’es

Fu = fx cos®oy + §y cas®@y + f;5 cos™ 03
If we take the stress axis as the z-axis, the fractional volume of domains
along the x-axis (i.e., oriented + x) will be the same as that along the
y-axis. Thus one gets: fx = fy. The sample was positioned such that

Gx = /2 - ey and @, = T/2. Then, Fp=1f +f and F, = £ . This

clearly indicates that FT/FL should increase as fz increases at the ex~
pense of fx and fy. For an ideal crystal, without any local strain, the
value of FT/FL must be infinity when domains are fully aligned along the
stress axis which is perpendicular to the initial muon spin orientation.
As shown in Figure 28 the largest value of this parameter was obtained
when the sample was placed in the stress rig. This and the corresponding

point in Figure 25 indicate that an accidental tensile stress was applied

to the sample during this particular measurement. However, the value of
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FT/FL returned to its original value after the first stress cycle. After
relieving the initial tension during the first stress cycle, subsequent
measurements should have been unaffected by the arbitrary initial condi-

tion.
b. Step 2

In this step the measurements were performed by applying only
the external magnetic field along the long axis of the sample., The change
in the frequency is shown in Figure 29 as a function of the external field.
Assuming the sample geometry is ellipsoidal, the demagnetizing field
estimated with the formulas given by Osbornh6 is about 125 G when technical
saturation is achieved. Since the direction of'gﬂ is opposite to fhat
of ﬁs, the application of an external field which penetrates the sample
must decrease the frequency and this is seen from the last three points
in Figure 29.

The increase in frequency seen with the applied field lower than
the demagnetizing field cannot be explained in a simple way. A model is
proposed to explain this rise in frequency in a weak applied field and it
will be discussed later in this section.

Figure 30 shows ‘AT as a function of the applied field. The
pecularity with .XT's in this step is the rapid increase in magnitude upon
the applied field. Since the geometry is not ellipsoidal, tﬁe demagnetiz-

ing field is not uniform in the sample. At He = 125 G where the technical

xt

saturation is believed to be reached, )\T = 1.89 ( Fsec)-l. This value

of )T corresponds to AHl/2 of 45 G. This almost agrees with the calcu-

lated inhomogeneity of the demagnetizing field in Appendix D. To explain
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the rapid increase in 'AT beyond this point, many ideas have been proposed
but none of them is satisfactory. Thus it will not be discussed further.
The field dependences of AI‘and FT/FL shown in the next two figures

(31 and 32) also have some peculiarities. The increase in ‘XL by a weak
applied field might be explained by the motion of Bloch walls in response

to the field applied to reach saturation. This is because when Bloch walls
tend to move or change their shape, the dislocation structure is altered

by the interaction between Bloch walls and dislocation lines. Such an
interaction usually causes a repulsive force between them. The effect is
likely to increase the degree of local strain which increases )‘L' Then,

the sudden decrease in ‘AL at H = 125 G must result from the mutual

ext

stable rearrangément between dislocations and Bloch walls since most of
the walls passed over the highest potential peaks in their paths. The next
point of ‘KL at Hext = 150 G has the highest value measured in this step.

b7

According to Trauble, 90° Bloch walls produce long-range internal stresses

and the interaction between these walls and dislocations is much stronger
than that of 180° Bloch walls and dislocations. This means that 180° Bloch
walls are moremobile than 90° Bloch walls. In addition to this, the
pressure on 180° Bloch walls is twice that on 90° Bloch walls at a given

H Therefore, only the motion of 180° walls is believed to be finished

ext’
at Hext = 125 G and 90° walls are yet to pass over the potential peaks.

Then, at the external field higher than 125 G, only the 90° walls move.
Because the interaction is stronger, the local strain increase
in this process is higher, resulting in a high value of AII Upon finishing

the motion of 90° Bloch walls )\L returned to its value at Hex =125 G

t

and it is seen at the point at Hext = 200 G.
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The change in FT/FL shows a drop at He = 125 G. This is not

xt
understood and will be left unexplained. Besides the peculiarity at

Hext = 150 G the values at the last two points are slightly annoying.

Otherwise, the dependence of FT/FL on He is what one can expect.

xt
By applying the external field along the {100) -axis, the mag~

netostriction '*10

change in length of the sample but at He

o Vas also measured. Up to Hext = 80 G there was no

<t = 125 G it was measured to be

_ -6 .
AJDO = 26 x 10 ~ and was kept constant at higher values of Hy oo
value is somewhat higher than the usual one of 21 x lO"6 but it depends

This

on each individual sample and its history.
c. Step 3

Here, measurements were performed by applying uniaxisl stress
under an external magnetic field along the same direction to that of the
previous step but its magnitude was fixed at 150 G. Since changes in )‘T
and )‘L are more difficult to understand in this step, only a few points
will be discussed.

The important fact is the change in the frequency without initial
hesitation in the low strain region of Figure 33. Because the technical
saturation already has been accomplished, domains were aligned along one
direction on the stress axis. With this the question which arose in
Step 1 can be answered. The decrease in the frequency must be due to
the pure tensile strain induced on the unit cells in the region of the
crystal free (or nearly free) of local strain induced by lattice imper-
fections, mainly dislocations. If the decrease in frequency had been
caused by the enhanced local strain then its dependence on the induced

strain should have been of the same form in both Figures 25 and 33.
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It is undoubtedly true that the frequency decreases in domains
aligned along the axis of tensile stress. This means we need to prove
that the frequency must increase in domains perpendicular to the tensile
stress axis to explain the small change in frequency in the low strain
region of step 1. 1In the case of the dipolar field it is trivial to prove
that the sum of fields, in domains oriented along three different axes
but strained in the same way, is always zero. However, the sum of hyper-~
fine fields in three different domains cannot be shown to be zero. For
this reason, the increase in frequency in domains perpendicular to the
tensile stress axis will be proved later in this section after the inter-
pretation of frequency decrease in favored domains.

The results for FT/FL plotted in Figure 36 are satisfactory
in the sense that they are higher than those shown in Figure 28. This
indicates that there existed a portion of domains not aligned along the
stress axis in step 1. This is not surprising because each individual
Bloch wall encounters different potential barriers along its path and a
perfect alignment cannot be expected by a tensile stress alone. The
values  of FT/FL in Figure 36 are generally lower than those of Figure 32
and thus is not explained because in this step the tensile stress is be-
lieved to enhance the effect of the applied field in saturating the sample.
The fluctuation of values of this parameter in Figure 36 also is not

immediately explained.
d. Step 4

After turning off the external field, measurements were repeated.
Since results in this step are similar to those of step 1, only a few re-

marks will be made.
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The critical strain of domain alignment is seen to be 38 x 10~
in this step (Figure 37). This is much smaller than that of 65 x lO-6
in step 1. As was discussed in Chapter III, the removal of external field
after saturation always leaves the sample in a partially magnetized state.
At this stage domain walls can easily move to expand the volume of

favored domains without facing high potential barriers. Therefore, the
eritical strain for the domain alignment must be less in this step.

Results on )\L plotted in Figure 39 show a completely different
pattern which has never been observed in previous steps. Except for the
first two points, the change in ‘XI'is very systematic and recovers well
upon releasing the external stress. An indication from this result is
that repeating the stress cycle under an external field in the previous
step must have caused some drastic changes in the magnetic and structural
properties of the sample. At the present moment we do not know what
were the effects of such a treatment on the sample state.

Figure LO shows the result on FT/FL in this step. The first
point at zero strain has a high value because the sample was partially
magnetized. After this, the sample was strained (22 x 10-6) and FT/FL
dropped slightly from its previous value. This is opposite to the change
in FT/FL predicted by the wall motion due to a tensile stress.

Furthermore, when the stress was released it dropped down to
2.17, which is lower than any value previously obtained. Also, this
value of FT/FL is very close to 2.0 for an ideal Fe single crystal sample,
free of lattice imperfections, where domains are randomly distributed

among the easy axes. The value of )\L in Figure 39 corresponding to this
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point of FT/FL is also‘very low, indicating small variations in the longi-
tudinal components of the local field, and seeming to imply that this FT/FL
corresponds to an almost random distribution of domains.

An unmagnetized sample cannot be magnetized by an external
uniaxial stress along, nor can a partially magnetized sample be brought
into the unmagnetized state by a uniaxial stress along the magnetizetion
axis,33 provided that the external stress does not alter the shape of the
potential surface, keeping the sample partially magnetized. Then, one
might think that the small induced strain has affected the potential to
bring the sample to & nearly unmagnetized state. This may be true but

there is no clear evidence to support this argument.

B. Interpretation of the Results from the Fe <100) Sample

From the discussion given in the previous section it is clear
that the stress dependence of certain parameters, like ’XT and.,XL, can-
not be explained further. This is because they strongly depend on the
history of the sample and it is extremely difficult to trace back the
effect of previous treatment (mechanical and/or magnetic) in later measure-
ments of these parameters., Therfore, in this section the interpretation
will be made mainly upon the stress dependence of BP , the local field
at the muon.

The slope of aBP /ae was taken from the results of step 3
(Figure 33) for an obvious reason. The average of the frequencies in re-
leased states was calculated to be 47.Th + 0.125 MHz. The result of the
stright line fit for four points gave ';BF /}ae =+ 25.1 + 1.70 G/lOOF
strain. The sign of the slope was taken to be positive because the de-

crease in the magnitude of u%, means BF is less negative.



123

a. Contributions to the change in BF

From the expression of'§“ :
-y

S S - -
B"‘ =B|_f84|+ Bh{‘.*Bett*Bdem

the last two terms are independent of the induced strain and thus will not
be considered. If we allow the Lorentz shpere to distort as the strain is

induced in the crystal, the deviation of B. from hﬂ'MS/3 is -0.7 G/100 H

L
strain. This value is obtained by assuming that Mg is not changed by
the external stress. Of course this is not true,but it will be seen to be
negligible., However, ifvone calculated the dipolar field, Bd’ inside a
perfect sphere in the strained lattice the Lorentz field is still (LT /3)MS-
and the only thing to be considered is the change in MS by the external
stress.

As far as we know, no direct measurement of the dependence of
Ms on the external uniaxial stress has been reported on pure Fe. The
thermodynamic relation between variables including Ms and & , uniaxial

stress, can be written3o

(.é)*.s_) =

oH - (%)

S Iy,

where ,As is the saturation magnetostriction along the external field H and

the left hand side of the above equation is called the magnetostriction of

48

paraprocess or the forced magnetostriction (see Figure 12). Calhoun et al.

have measured ( aAS/;aH) along various directions in a single crystal

G,T
L]
disk of pure Fe and the value along <100)> was 2.3 x lO_lo/G at room
temperature with no external stress. Therefore, we take ( aN%/EG')H =
L]

2.3 x lO-h G/bar and this is not expected to be significantly changed with
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a high stress. From this one gets AsMs 2 0.12G at the yield strain of
4oo x 10_6. The smallness of this change in the saturation magnetiza-
tion is indirectly confirmed by Belov's measurements in Fe alloys.hg He
demonstrated that ( 3 MS/ Ny )H,T was anomalously high in alloys and it
was almost undetectable in pure ferromagnetic metals. Furtherfore,

( aMs/ 26 )H,T had a peak in the vieinity of the Curie temperature.

On this basis, we conclude that the contribution of AMs to B, is neg-

L
ligible.
Under the experimental conditions of this work all terms contrib-

uting to BH are collinear and the vector notation is not needed.

Differentiating Bl‘ with respect to the induced strain, we have

Byt = B4/, 2¢ t 2%/ a¢

Terms in the right hand side of the above equation are written as deriva-
tives of averaged fields. This is because in Fe the rapid motion of a

muon always averages both B and Bh over magnetically inequivalent

d T

sites. The dipolar field at each site (not on the muon) is shown in
Figure Ul.

If an Fe crystal is unstrained Ed is zero because the free

energies of sites of each type (octa- or tetrahedral site) are the same.
When the crystal symmetry is lowered by an external stress {other than
hydrostatic pressure) '];d is not zero any more and it can be calculated
(see Appendix C). Hyperfine fields at magnetically inequivalent sites

may also be different but we know that B Bh £ under the situa-

#B . =
hf, 7 “he, 3

tion illustrated in Figure U4l.
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B.=-2B,,=18640G

B,=-2B, =-5235G

Fig. 41. The dipolar field at each site with (a) octahedral and
(b) tetrahedral symmetry in the absence of the muon.
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b. The change in Bhf

The hyperfine field at a muon is usually written as

By = - L0 o - m5)

where‘q(o) represents the spin density enhancement by the presence of the
muon and (no+ - no-) is the intrinsic local magnetization at a site that
a muon is to occupy. It is usually assumed that the change in (no+-n0_)
roughly follows that in Ms'

From the result of Hartman et al{ it is seen that
AﬁﬁzQQ1ﬁ4€¥ggsq for a volume strain of 300 x 10'? which corresponds to
6

a linear strain of 100 x ;I.O- . If we assume that A%..f =é %AB,‘M = AB“H
in the case of Hartman's experiment, the change in Bhf’idue to the external
uniaxial stress can be estimated.

Combining experimental results of aﬂﬂ"%/ar = -0.28 x 10_3/k barSO
and  almVfop = -0.59 x 1073/k bar,” one gets A= alxomsk . With
this it can be estimated that AN% = 0.234% G per the volume strain of

300 x 10~6, by the application of a hypothetical inverse hydrostatic

6

pressure, which corresponds to a linear strain of 100 x 10 ~. Thus we
can say that the linear strain of 400 x 10_6 by the inverse hydrostatic
pressure will produce A MS = 0,936 G. This value is much higher than

that of 0.12 G previously obtained for the uniaxial strain of 400 x 10-6.

92533 an external hydrostatic

According to Kondoroskii et al.,
pressure changes values of exchange integrals by changing interatomic
distances. Such changes in exchange integrals alter the molecular field

acting upon the conduction electrons, thus affecting Ms' The transfer of
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electrons from the s band to d band, or vice versa, occurs under lattice

compression (see References 50, 52 and 53 for details). Therefore, the

smeller value of AB% by a uniaxial stress,compared with that caused

by a corresponding hydrostatic pressure, indicates that the effect on the

local electronic structure must be smaller in the case of uniaxial stress.
A shift of A&Bhf ~-0,3 G for a linear strain of 100 x 10-6 by

a uniaxiél stress applied along the ¢100) -axis of Fe is obtained

with the assumptions summarized below:

i) a linear relationship between (n. - no-) and M_

0
ii) no significant difference between changes in‘ﬂ(O) by

hydrostatic and uniaxial stress

iii) A,Ehf = A Bhf from the measurements by Hartman et al.
It should be noted that, by (iii) above, we are tentatively assuming the
same (or almost same) magnitude of the hyperfine field at sites of each
type. This means that the hyperfine field should not significantly de-
pend on sites of one type. Figure 42 shows the local magnetic moment
distribution in an Fe unit cell deduced from the neutron scattering ex-

periment.sh According to this figure, the local magnetization is the

same at the three sites of octa- or tetrahedrasl symmetry.

¢. The change in the muon-occupation-probability at an interstitial site

Host atoms aroﬁnd an interstitial site occupied by a muon dis-
place to form an elastic dipole as discussed in Chapter IV. Not consid-
ering the magnetostriction, that is the fact that the edge of a unit cell
in Fe is slightly longer along the direction of Ms’ elastic dipoles at

three sites, with the same symmetry, are initially in the same free
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Fig. 42. Local magnetization in an Fe unit cell measured by neutron
scattering experiment. Reproduced from Reference 5k.
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energy level. An external stress applied along the <¢100) axis removes
the degeneracy of this energy level as shown in Figure 24. From equation
(4.21) the difference between energy levels is

49

-(Su-SY(P-P2)O

= -(Su‘Sn?.)/S" ‘(?I‘Pz) SuS

The factor (sll - 312)/811 is estimated to be 1.37h and Sllc' is the strain
induced along the <{100) -axis. Hence the above expression of 4 g can

be rewritten as, in the case of Fe,

Ag = -1.374 (.?o = P2) €00

The notation convention is: Ag = g - & and &) is the free energy of
site 1 where the tetragonal axis is parallel to the stress axis. For

example, for octahedral sites, Pl > P, and by a tensile stress g becomes

2
lower than gg.

The value of (Pl - P2) is not available for the muon in Fe.
However, from the results of calculations by Sugimoto et al.55 in Nb we
can approximate a value for Fe. Their results for the muon in Nb are
reproduced in Table 5(a). The configurations of 1T, LT(0) and 6T are
shown in Figure 43. They also studied for hydrogen the effects on the
numerical results when the lattice parameter is reduced. These are shown
in Table 5(b). From this they found that the reduction of the lattice
parameter always tends to stabilize the 4T(0) configuration. For hydro~
gen, this can be seen from the values of ElT - EhT in cases 1 and 3
in Table 5(b).

Since the lattice constant of Fe is smaller than that of Nb

(2.87 A° vs. 3.3A°), parameter values in Table 5(a) should be different
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Fig., 43. Three possible occupational configurations of interstitials
in a BCC crystal.



133

for Fe. Yor a simple comparison, (Pl'PQ) was calculated for each config-
uration from line 1 and line 4 in Table 5(b). The magnitude of (Pl-P2)
increased by 9.7% and 5.3% for 1T and 4T(0)-configurations, respectively,
upon reducing the lattice parameter from 3.3 A° to 3.0A°. Assuming
linearity, changes in (Pl-Pg) will be 13.9% and T.5% for 1T and LT(0)-
configurations, respectively, by reducing the lattice parameter from

3.3 A° to 2.87 A°. Applying the same rates of change, values of (P -P,)

1 2
for the muon in Nb are estimated as given below.
Configuration (Pl-Pz)for 3.3 A° (Pl-P2) for 2,87 A°
1T =1.075 -1.23
4(0) 3.466 3.73

The unit of (Pl'Pe) is electron-volt. We assume that values of (Pl-PE)

in Fe should be close to those in the second column.
d. The stress dependence of BlJ

In part ¢ of this section the change in B, _ at any site has

hf

been estimated to be about-0.3 G per 100 }Jstrain. Since several assump-
tions have been made to get this result, the numerical value may not be
accurate but the order of magnitude should be correct. Hence neglecting

this change in the individual B, _, we can write

hf

3B, _ 5 [2Bdi a# 4 B,
B g (S o) 1 F

If we assume B =B (=B

hf.l hf.2 ), the last term vanishes. Then the
s ’

hf,3

change in BF upon the external stress results from the change in Bd’ and

the interpretation of the stress dependence of BP is straightforward.
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Remembering that the direction of ﬁF is opposite to that of

e ~ -
MS, it is clear that B, must be parallel to MS. As shown in Figure L1,

a

for octahedral sites, the muon spends more time at site 1 when the unit

cell is strained along M . The dipolar field at site 1(2) is +18.46

(-9.23) kG and so even a 0.1% increase of the muon correlation time

for site 1 will cause an increase of 27.7 G in the averaged dipolar field.
In the case of tetrahedral sites the muon spends less time at

is negative there. Thus the resulting effect on B, will

1 d

be the same, that is, positive. Therefore, regardless of the type of

site 1 and B
d,

sites that the muon occupies, Bd always contributes to a decrease in the
frequency if the domain magnetization is aligned with the axis of the
tensile stress applied along one of the crystal axes.

The slow decrease in frequency at low strain regions of steps 1
and 2 can easily be explained. For this we do not need the assumption
that the Bhf,l's are all the same. BSuppose there are three unit cells
all strained in the same direction but magnetized in different directions.
We can overlap these unit cells such that three different octa-or tetra-
hedral sites are brought into a point and their magnetizations point in
one direction. As shown in Figure L4k, the resultant crystal is spherically
symmetric about the origin and the total dipolar field at this origin
must be zero (see Appendix C). Therefore, the decrease in frequency in
the domain aligned along the stress axis is always compensated by the
frequency increase in other domains.

If we assume that Bh .'s are all the same at sites of octa-

f’l
or tetrahedral symmetry, Bhf should be zero. Even though they are not
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. Fig. bb. Overlapping of the three sites of (a), (b) and (c) forms a
crystal which is spherically symmetric about its origin as
shown in (d). These show that the dipolar field averaged
over a region of the sample must be zero.
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the same, we can see that B should be close to zero in the low strain

hf
region. This is because the summation of Afi over the three ith

sites
in (a), (b) and (c) of Figure L4 is almost zero and the same is true for

tetrahedral sites. This means that AB fin the low strain region should

h
be zero or very small. Hence if domains are randomly distributed among
easy axes, there will be almost no change in frequency upon the applica-
tion of external tensile stress. Since the tensile stress breaks the

randomness of the domain distribution, the slight decrease of frequency

in the low strain region is well understood.

e. (Pl-P2) estimated for the muon in Fe from the experimental result

The estimate of values of (Pl-P2) was made assuming that the Bhf,i's
are the same at sites of each octa-or tetrahedral symmetry. Such an assump-
tion is supported by the fact that the local magnetization density measured
by neutron scattering does not show any difference between sites of the

same symmetry. This can be seen in Figure 42, With this assumption,

2B /3¢ = © . Therefore, we get a simple equation

=L ztéfi.‘ i iezo) + im,;(ew)]
YA Y ¢

B,
where, from the experiment, %;f—= 25.1 G/100 H strain.

Writing f

1= fo(l +c € ), we can easily obtain

and

P - - RT In [2L1+ CGéoo)
LT Lame, [z,-c,e ]

100

For a point like muon (or with a short ranged spherical wave

function) which does not produce a local lattice distortion around it,
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B a1,0 is calculated to be 18.64 kG for the octahedral site and -5.253 kG
for the tetrahedral site. gé%ia; is also calculated to be -11.9 G/100

istrain and -5.4 G/100 pstrain for the octehedral site and the tet-
rahedral site, respectively. The (P1~P2) thus calculated are 0.85 eV
for the octahedral site and ~2.39 eV for the tetrahedral site,

Comparing these values of (Pl-P2) with those given in the

second column of the table in part d, the agreement seems to be better
in the case of the tetrahedral site. Then does this mean that muons pre-
fer to stop at tetrahedral sites in Fe? The answer is no. This is because
without having the local distortion of the lattice around the muon (Pl"Pg)
is indeed meaningless. If we simply assume that the muon displaces the
neighboring atoms in Fe as it does in Nb, with the information given in

Table 5(a), can be calculated to be 13.563 kG and -3.726 kG for

Ba1,0

octa- and tetrahedral sites, respectively. Then (Pl-P is 1.1T7 eV for

5)
the octahedral site and -3.42 eV for the tetrahedral site. Since the
lattice parameter of Fe is smaller than that of Nb, the ratio u/a should
be larger in Fe resulting in larger magnitudes of (Pl-P2) in both cases.
However, the further correction can be shown to be small. TFor example,

if we take Up, = UNﬁ x 3.3/2.87, then B in the octahedral site

di,0
becomes 12.99 kG which gives (Pl-Pz) = 1.21 eV.
Up to this point we have treated the muon wave function as
spherically symmetric and very short ranged. Since the interstitial sites
of BCClattices possess tetragonal symmetry, the muon wave function is not

likely to be spherical. For this reason, we chose a particular form of

the muon wave function so that the probability density is
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= ! TR
I\I'FGH o(’pn'-”/z e o e

-7 A .
for a site with the tetragonal axis parallel to Ms = MSZ and calculated

(see Appendix C)
<Byy = [ By i) W l*di

Wave functions of the muon in N‘b are shown in Figure 45 for both

25

configurations. By a visual comparison, the value of « was estimatéd
to be about 0.19 for both configurations and B is expected to be close
to «/J 2. Since we do not know the value of o in Fe, in the calculation
o was varied from 0.15 to 0.25 for the 4T(0)-configuration and from
0.15 to 0.22 for fhe 1T—configuration. The functional form of

po) = et

is shown in Figure 46 for several values of & .

Figure 47 and Figure 48 show the results of the calculation of
Bdl,O in the 4T(0) and 1T-configuration, respectively. Similar calcula-
tions were performed on Bd1 and Bd2 with 6100 = 100 x 10-6 for both
configurations. The calculated results of BL‘SBE%B‘JC are plotted in the
next two figures.

Figure 51 shows the result of (Pl'Pz) for the 4T(0) configuration.
Two curves are drawn for o = P and o = IEP . Because of the tetra~
gonal symmetry of interstitial sites we consider the values of (Pl'Pg)
along « = ,/—2-? as more realistic. If we assume o = 0.2 for Fe,
(Pl-Pz) should be about 1.8 eV. On the other hand, from the result for

the 1T-configuration, shown in Figure 52, (Pl-P ) should be close to

2
-6.0 eV for o« = 0.2,
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Fig. 45(a). Ground-state wave functions of a proton, a triton, and a

: positive muon in the 1T configuration in Nb. Variation of the
amplitude in some principal directions on the (00l) plane is
shown.,
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Fig. L45(b). Potential profiles and ground-state wave functions of a
proton and a positive muon in the UT configuration in Nb.
Variation along the line AA' in the inset is shown.

(a) Potential profile in the undistorted lattice, (b) proton,
and (c¢) muon.
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Previously, we estimated values of (Pl-Pz) for Nb with the lat-
tice parameter of 2.87 A°. These are 3.73 eV and -1.23 eV for the LT(0)
and 1T-configuration, respectively. Comparing these with values esti-~
mated from the experimental results, we see that the agreement is much
better in the UT(0)-configuration. Furthermore, if we include the correc-
tion for U/a for Fe, the magnitude of (Pl-P2) will increase by about
0.05 eV in each case, From this we conclude that the muon should have
the 4T(0) occupational configuration in Fe.

55

As discussed by Sugimoto et al.,”” lighter interstitial iso-
topes appear to be larger in sizeiand the preferred occupation in a BCC
erystal is the 4T(0)-configuration. Such a trend is verified in their
calculation by showing that in Nb the more stable configuration is 1T for
hydrogen, while it is 4T(0) for the muon. Also, the reduction of the
lattice parameter always tends to stabilize the LT(0)-configuration in a
BCC crystal. Therefore, the stable site of a muon in Fe should probably
be the 4T(0)-configuration.

The above discussion is also consistent with the calculated
result of Johnson et al.,56 who showed that large sized interstitials,
C, 0, N, occupy the octahedral sites of Fe and V by drastically lowering

thé potential energy with ocutward displacements of the two nearest-

neighbor atoms.
f. TFurther discussion on (P —P2)

We now turn our attention to possible corrections to the wvalue
of (Pl_Pz) obtained from the experimental result. The first thing to be

considered is the calculation of Bdl 0 or Bdl' In the calculation we
’
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assumed that the dipole moments are not affected by the presence of the
muon but this probably is not true. The direction of the magnetic moment
of atoms close to the muon may deviate from the direction of the domain
magnetization. This would be especially so for the nearest-neighbor atoms
around the tetrahedral site.

The Z-component of the dipolar field at the tetrahedral site
due to the four nearest neighbor atoms should be reduced if the direction
of their magnetic moments deviates from the Z-axis. Since the contribu-
tion of the four nearest atoms to B at the tetrahedral site is -8.92 kG

1,0

(96% of the total magnitude), the decrease in B can be significant.

d1,0
If this is so, the magnitude of (Pl_Pz) calculated should be even larger
than 6.0 in the 1T-configuration. Figure 53 (a) shows the deviation of
the nearest neighbor moments from the Z-axis in the case of the 1T-
configuration and (b) shows that there is no deviation for those around
the octahedral site.

The next thing to be considered is another assumption we made in
the dipolar field calculation. We assumed that each atom carries the same
effective number of Bohr magnetons, As pointed out by Stronach et al.,57

either the free itinerant electrons or the localized electrons can con-

tribute to B in Fe. If we assume that B

he we arises mainly from the localized

electrons belonging to the nearest neighbor ions, we can no longer consider
the effective number of Bohr magnetons carried by these ions to be the same
as that for an ion located far from the muon. Then the contribution to
the dipolar field by the nearest neighbor ions would decrease and it will

subsequently increase the magnitude of (Pl_Pz) in both configurations.
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These factors reinforce our claim that the 1T-configuration is not cor-
rect for the muon occupation in Fe,

There are some other corrections we can think of. For example,
we assumed that the probability of muon occupation at each site is the
same when the sample is unstrained but this is not true. As experimen-

tally verified by De Vries et a.l.,58

interstitial carbon atoms prefer to
occupy octahedral sites with tetragonal axes perpendicular to the domain
magnetization direction. We can think that this is the same for the muon
in Fe but the correction to the result for (Pl'Pa) is negligible. We
may also assume that the hyperfine field is not the same at octa-~ or

tetrahedral sites with different orientations of the tetragonal axis.

However, due to lack of information we will not discuss it further.

C. Other Results

After the four steps of the experiment already described, the
Fe <100) sample was put in a vise and was pressed to induce a permanent
deformation on a small portion of its wide face. By pressing on one face,
the sample was bent and when the external tensile stress was applied one
face was under tension while the other one was under compression. Results
from this experiment are shown in Table 6. Since the sample was bent
(permanently), its shape before the application of external stress was
not recovered by releasing the stress, Therefore, the comparison between
the stressed and the released state is not obvious. A few points will
be mentioned instead of giving rigorous interpretations:

1) To objain values of x? very close to unity, the transverse

-t/T

relaxation term e in the fitting equation had to be replaced by

2.2
e-'w t . This indicates that the motion of a muon was restricted to a

certain small region in the crystal.
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Table 6. Face 1 was under tension and face 2 was under compres-—

sion by the application of an external tensile stress.

(MHzZ )

Face Frequency F./F Weight(kg) State

48.196

+0.0424 2.70 c.0

47.595 S¥
+0,0565 2.36 .
9.8k
148,396

+0.07L40 1.58 R

b7.9kL s
+0.0242 L. L9

5.98
48,143

+0.058k4 1.35 R

+0.0769 1.0k
0.0 *
h1.9k2

+0.0735

k7.892 S
+0.079

5.98
47,943

+0.094 R

*
S and R indicate the stressed and released states, respectively

*%
performed under the same condition
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2) With a few éxceptions the frequency in face 2 stayed around
Lb7.94 MHzZ,which is close to the 47.9 MHz measured in a rolled Fe sample
as reported by Arrott et al.

3) FT/FL and A‘L were not obtained in later experiments on
face 2,indicating a pure transverse relaxation.

Inducing a permanent deformation in a crystal is known to in-
crease dislocations and more unit cells were distorted in this experiment.
It is not clear what is the origin of the effect restricting the motion
of a muon in this case. Generally, it is assumed that an impurity atom
is repelled from the compressed region above an edge dislocation while
it is attracted by the extended region below the dislocation. If this is
true it is possible that muons were trapped in the extended region of
the crystal.

Since the distortion of unit cells around a dislocation is not
uniform, it is necessary to see the effect of arbitrary distortion of
unit cells on the frequency. For this we applied an external tensile
stress to the Fe-polycrystal sample. Results from two separate measure-
ments are presented in Figure 54. Because of the small collimator used
in this experiment and the large average grain size of this sample it is
possible that muons might have been stopped in a few grains oriented close
to the stress axis. To exclude such a possibility, this result was com-
pared with the result from a very similar sample using a larger sized
collimator,

As seen in Figure 54 results from these two experiments show

almost the same pattern except the downward shift of the points in the
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o0ld result. This shift is easily explained by the fact that in the old
experiment the sample was clamped to sample holders which were held to-~
gether by screws and it caused a tension on the sample surfaces. The
change in frequency in these polycrystalline samples exactly resembles
that in the Fe <(100) sample.

The elastic dipole model certainly explains the frequency drop
in polycrystalline samples, This is illustrated in Figure 55. Here, for
simplicity, it is assumed that the stress is homogeneous in the sample
which means any odd effect by grain boundaries upon transmission of the
stress is not counted.

From the concept of magnetostriction it is true that if a unit
cell is elongated along a direction of crystal axes by 22 x 10_§ the
magnetization of each atom should point the same direction. If the strain
in a unit cell is not along a crystal axis the magnetization will align
along the crystal axes closest to the strain axis. In fact the stress
within a certain region around a dislocation is strong enough to distort
unit cells so that the local magnetization deviated from the domain mag-
netization direction to follow the local distortion.

Therefore, with the argument used to explain the frequency drop
in the polycrystal by an external tensile stress, the decrease in frequency

in the region around a dislocation can be explained.
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Fig. 55.. Schematic illustration of. domain alignment in a grain of an.
Fe polycrystal specimen due to external tensile.stress. (a) is. '
a typical case prior to application of stress, (b) shows align-
ment under stress, (c) and (d) represent two different possible
orientations of the magnetization relative to the stress axis.



VI. SUMMARY AND CONCLUSIONS

A, Summary

In this experiment we observed the shift in BP upon externally
applied uniaxial stress. This change in BP can arise from changes in
the average field due to the localized dipoles on the Fe atoms and from
changes in the hyperfine field. Since the strain dependence of the dipolar
sum depends upon the muon site we have been able to provide evidence for
a 4T(0) site preference.

We have found that aB'J /ae is dominated by site occupancy
change. Assuming that the hyperfine field is the same for crystallog-
raphically equivalent sites, using the best estimates we could make for
lattice relaxation, and muon wave function extension and oblateness, we
obtained the muon lattice double force tensor components Pl-P2 or equi-
valently the free energy difference between magnetically inequivalent
sites.

The FT/FL ratio is a measure of the domain alignment., We have
observed that for external fields greater than 125 G the internal domains
align. This is in agreement with bulk magnetization measurements on the
sample, With the application of tensile stress along é crystal axis of
Fe after the external field had been turned off we again observed domain

alignment at approximately 1/8 of the elastic limit which,as far as we

knowsis the first time stress induced domain alignment internal to a
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sample has been observed. These same effects were also observed in the
frequency shift, for with randomly distributed domains one expects the

average shift to be zero and it is until FT/F becomes large.

L
We also applied tensile stress to polycrystalline Fe samples
and obtained results similar to those for the single crystal. Combining

these results, we were able to explain why local strains tend to decrease

the muon frequency, i.e., the magnitude of BF ,» in Fe,

B. Future Perspective

The present experiment was performed at room temperature only
and the shift in BF was explained by a site occupancy shift of the muon.
To check the validity of this model, it is necessary to perform experi-
ments at different temperatures. To see the effect of changing tempera-

ture, let's consider the following:

=] ~ .
_BE' €00 = Z' B‘F. BA;,O € oo
€00 L ae.,,,o

= ‘_';: (Bdio - Bdy.0) Ag/kf

where

A9 = -1.374 (B-Ta) €ioo

Therefore, not even counting the increase of Bdi 0 with decreasing tem-
b}
perature, we should get a an‘/ae twice as great at T = 150 K than at

room temperature., With the change of B it will be even greater.

di ,0
To explain some peculiar results obtained for A‘T and )\L,
especially for the increase of )\T upon the external field, we proposed

a field inhomogeneity contribution due to surface irregularities of the
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sample. Therefore, a suggestion from the present experimental results
is to use samples with very smooth surfaces and a muon beam which would

be stopped closer to the center of the slab samples.



APPENDIX A

The Depolarization of Muon Spins in Solids

The initial spin polarization of muons starts relaxing as soon
as the muons are stopped in a solid. As mentioned in Chapter 1, there are
two different mechanisms, namely, longitudinal and transverse relaxations.
The time dependences of these relaxations provide the information on the
behaviors of muons in solids.

The longitudinal relaxation process always involves an exchange
of energy between the system of muon spins and its surrounding, which is
the lattice. The time dependence of this process can easily be shown to
be exponential and it will not be discussed here.

On the other hand, the transverse relaxation, which does not
alter the energy of the spin system, originates from the local field in-~
homogeneity in the solid. The time dependence of this process is often

either exponential or Gaussian, i.e.,

P = P e (A-1)

for the exponential depolarization, and

th

-S
PH) = Py e (A-2)
for the Gaussian depolarization. The physical origin of this process is

the fact that the muon precession frequency is distributed with a finite

width which causes the vector sum of muon spins to decrease as time elapses.
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If the muons execute random jumping motion among their sites, the
width of the frequency distribution will be reduced, i.e., motionally
narrowed. With very fast jumping motions of muons, the relaxation can be
shown to be exponential. Conversely, if the motions are slow or the muons
are immobile, the relaxation will be approximately Gaussian. In this

appendix we will discuss the physical nature of the relaxation processes.
a. The Ensemble Average of An Observable

Suppose we have a system which can be characterized by a wave
function 4>(7L.,7L;, e /-iu,t) = { q‘(f)cﬂak(ﬂﬂﬁ’«). The probability that the system
will be in a given state at a later time t' is proportional to the number
of times it passes that state in time. However, instead of thinking of
the system at different times, we can just as well think of identical
(in different states) systems at the same time. Thus, instead of averaging

over time, we can average over the ensemble. Then
s f S £ FD de

where £ is the physical quantity of interest, <#n(t) is the wave func-
tion of the nth system and dt = d?ld;g... d¥N' The ensemble average of

is shown to be

LY =
(A-3)

where

Lyt

¥
e
~
e
~
~
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*
a - O
md e Lz clece

which defines the density matrix. One can immediately notice that, for the
above treatment, we used the Schrodinger picture by assigning an explicit
time dependence to the wave function. |

However, for our present purpose, we may want to describe the
evolution of an observerable in time from an initial state, To do this we
will use the Heisenberg picture. Since the two pictures are eventually
the same, we can use the results in equation (3) but the expression of the
density matrix will have g different form.

The density operator expressing the initial state of the ensemble

is given by
N
P = 05;‘ T 14 <A (A-k)

where Pi is the probability that the system will be found in the state of
%y and the |4;)! are the basis vectors. The time evolution of L (%)

is written as

HE/y St/
Ly = e L) e

where H is the Hamiltonian of the system. Then

i

(L) = Ta ?.C,(t)

1]

E S ALRAPI (4-5)

N Tt/ St
T pctile e e R gy
vl
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b. The Depolarization of Muon Spins

A muon implanted in a solid interacts with a large number of
localized magnetic dipoles. The interaction between the muon and a

localized dipole with its magnetic moment )’,_t.f .

2 -2 3
H = Y"x:t\ (g "f _ 3(3!"2)(]:'/1«))
pe 23 f A2
L5

can be rewritten, in a polar coordinate, ~ as
1, X
Hur = =2 =(A+B+Cct D+ E+TF)
3

where

A = IESF% (1-360619)
with 8 the angle between the radius vector r and the Z-axis. All other
terms except A have operators which alter the spin state of the system
and will be excluded. Then the Hamiltonian representing the interaction

between a muon and the N localized dipoles will be

N
2 _2

H = L %51, (4-6)

'E
where
B p G- 3eage '

o(J- 3 Nz j) (A-T)

3

Following the general treatment given in part a, the density

operator representing the initial spin ensemble can be written as

y=zcamxm
s



163

where

‘%7 = |¢;>|’m|7|/m1_) ...... m")

which span a 2(21:+1)N dimensional space,

{

,q,H" Ve (14>, ¢ -2 )

H

and M,y describes the spin state of the ith localized moment. Then the

ensemble average of the x~component of & muon spin will be

(S'D) = Ta (o)
p ) (1-8)

- t
Z Cn <l e "t/“c"‘ W, Y

it

Since we have only one initial muon spin state, say {4;7 R Cn must be
(ZIH)-N . Due to the motion of the muon, GJ. in equation (A~T7) changes in
time and subsequently equation (A-_8) becomes
;ftdt'ﬂ @) Lfdt"# Y
<'c’ry(t)‘] = Z(’"le e 7 Gr'x ﬁ" ny (A-9)
(ZI«H)

The Hamiltonian H, is now a stochastic function of time.

To evaluate the diagonal matrix elements in equation (VA-9), we

write the exponential term as

S z?‘ P
e_-!ﬁj'dt oy S AT

In the adiabatic approximation, a.j(t) can be shown to be

t t
b’;b’: z” G ">> dt' at”

L4

fl

[aJ-w]z

Zb’ b’gtf t-7) <o((t)o(u>)) dr

il

2 2 3
zb’r, :h J‘ t-7) am dt
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where T = t' - t" and g(t ) = <°(j L'C)dj )Y, is the correlation function,

Here we assumed that
GG Y, = <o~ o o)y,

Then

e BB . z_3
IS L TS, T,

2 {nle ‘ol e Il P

N Y
V2 - e Qi
(el\'|=‘a', ) + el«ﬂd y'3 l)

1
I

2 (A-10)

=) cos( aJ-(t)/mJ-)
m

I

DMz

To simplify the above expression, let's consider the following:

N
L Sm(1 adim)

o 3=
N
=233 sm(iawym) , mz.r o0, ...
m‘ g mN J=' J
=0
So, equation (A-10) can be rewritten as
N . N
Z cas(Z a; ) + o 2 Sim (Z Agthrmy)
n =l J n 1
- N -
= Z evJ?;I Glj(t)’md‘
n
~Ia) - D S RIadby  _iTauw
= (e t e to e ) o )

N I

L cos a; k) m;

g=! mj:-r

Using the trigonometric relation

sm[zmen) 32]

[ %
"ZL + Z 60517( =
t=t z5m3z

We get the final result for an ensemble of muons
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N - L
’-P(t) = 'P(D)‘Tr Sin [ 2r+1) 2 0)({:)]

$=t

(A-11)

(2I+1) sm-z'ajt’c)

Applications of the above result to some special cases were
discussed by Seeger59 and we will follow his treatment. The expansion

of the sine terms in equation (A-11), valid for small t, gives

N 2
N 2 -+1ren 2 [a@)]
—'— . 'L J
':P‘“/y(o) = 1- 6£(IH)JZ='_|[0J(’¢)] ~ e 3= (a-12)
(1) If the muons are immobile:
The otj's are time independent. Then gj(t') = gj(O) = 0(32 and
2 2. 2 .2 {:z
[aj(t)] = b,f' ¥ h ﬁ; (A-13)

Therefore, from (A-13)

~

LTI (3 o)t
6k isl Y

Pd) 2 Po) @ !

and the relaxation is certainly Gaussian as in equation (4-2).°

N “tle N
(2) If 3 g8 =c"“3 [ bhw]® , then
3=t J = J
N t -t N
5 [ajm]z-_- b’;Y:t,zzr t-the 3 b )] dt!
32 ° 3=

(=

-t N
bﬁf:ﬁzztt[e ! + tfe -1] b3 [13.(0)]z
< J=

-t
Z,G'Z'C: [Q /(c ' -t/(‘ -l]
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where ¢, 1is the correlation time of the muon and

2 2 2

2 N z
S =Y h 2 [bw)]
# =Y

As €. decreases, i.e., the diffusional motion of the muon becomes faster,

-t/
[e "¢ tle, -1] — the .

Therefore,

2
-26¢C . t

Pt =Pere

which has the same form as equation (A-1), i.e., exponential.

As mentioned before,we used the adiabatic approximatioﬁ through-
out this treatment. By using this we assumed the slow motion of muons
in the sense that the muon jump frequency is less than the precessional
frequency of the localized dipoles. In a non-magnetic substance these
localized dipoles are the dipole moments of nuclei and in a ferro-
magnetic substance these are the magnetic moments of ions. The condition
for the adiabatic approximation is satisfied for muons in most materials

except cobalt (see reference 59).



APPENDIX B

The Depolarization of Muon Spin in an Fe Single Crystal

The purpose of this appendix is to provide the underlying
physical meaning of the fitting equation mainly used in this work. For

this, we will derive the mathematical expression of <c;n(t) s (0)>

n
in the case of Fe where G'n(t) is the component of the muon spin vec-
tor along its initial direction.

First, consider a single domain meking an angle § with 7 which is

the unit vector in the direction of the initial muon spin, as shown in

Figure 56. Then
A
g =s,b+3. ,

s, - 3-8/ = 3-b

and

déiat = E&X s + ndavation

where ooo is the precessional frequency of the muon,
The Bloch equations for the component of muon spin parallel to

the local field B can be written as

roa A3
Wy = Aoy = - >/ (B-1)

-
and for the component perpendicular to B,

6‘& = asoxgl - é“‘
/at /TE (B-2)
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To solve these equations, we need to decompose the muon spin vector into

the three orthogonal unit vectors shown in Figure 56. TFor this, we write

P A A A A A
G =3-(bbtHM +nm,)
where
A A A A A A
M= NXb y N, = by, ,
A A
X bl
Then
- A AA A
(woxG)'%‘ = wo(bx'n‘z)'%l G-'ﬂz_
:-wos’”z .
Similarly,
2 A
(woxG)""z = wos:n‘ .

From these, we get three equations to solve.

They are:
ds,
= - G -
gy b/ﬂ (B-3)
for the longitudinal component and
dea,
= - WGy, - Sm
Jt e, (B-4)
dSn, _ P Gh'.. Sy, 5-5)
dt Ta (B-5
From the last two equations, we get
-t
C)_'n,(t) = & [Sn, cos U?,,t - sz SN M)pt] (3—6)
-t/

Sutl= @  [Sn SNWet + Gy, cos w,t]



Fig. 56.

Precession of the muon spin with an arbitrary initial angle with respect to the
domain magnetization direction.

691
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Now, we need to express Gn(t) in terms of o (), o. (%)
1

and sb(t) . Since

- A - A
SN = G-(ﬁb+m,%.+%zfr\tz)-n

n

Sn, (M- M) + Spih-2)

1

GIMZ\SI—'Wef T, <cos 8 P

S t)

-t/ -ty
e " 5,(0) S0 + & ‘sine [ Sn(0) Snmt + Sy,0) coswit] .
Thus

th,

- -th
Smib) Sp(0) = & e Zcos + & Esmpcos b [ Sn @S, 0Nt

+ Sy 0)G,(0) cos Wit] + Sy, (0) Syo) e't/T’- cosgsSo

-t

t e S0 [Sn‘(o) G, €0 smwst G (0) 6,(0) cosw;t] )

Then, by the facts that

(S,0) Sp Y =l ,

{Sn, (0) Gy, (0) ) = {Sn©) Sy, (0)y = | , and otherwise zero,
we get
-t e,
<Spt) Splody = te /r'cosze t e /rzsme cos wotj (B-7)

In Fe thei‘e are six possible directions of B because the mag-
netic domains are along + 1_1 with 1 = 1, 2, 3. Since the expression of
< o—n(t) G-n(0)> is independent of the signs of € and «,, We need
to consider only three domains along 11 with 1 =1, 2, 3. DNow, define
f. as the fractional volume of domains along + Z.. Then the <o (t) s, (0))

averaged with these weighting factors must be
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-t -t
{Spt) Sp0y =g /‘r'z, «f; <osze‘; t e /‘l}, coswt Z 4{3;_ SWR?@;

We will consider two special cases
(1) If the fi's are all the same:

"t/rz_

-t
Sy 2 o g ok (B-8)

{spt)syo) = +

il 2
3 3

(2) Ifg, =£ #f and O=Tfy :

_f/' -t/
<5n(‘£)5ﬂ(0)>=3cx e i + (‘px*'Pg) e rzcoswo{: (B-9)

The condition for case (1) is in fact for an ideal Fe
single crystal sample,but we can assume that it is satisfied in an un-
magnetized and unstrained Fe single crystal. The conditions for . case
(2) are satisfied if the uniaxial stress is applied along the z-axis and
the direction of the incoming muon beam lies on the x-y plane. With

these the fitting function should be

..1:/ -t/| y
NF,B({) = N"f,‘a e ﬁ‘l | £ ?[FLQ T +Fr e%zcos “"rt +4))]] + BK&F,B (B-10)

if we neglect the differences in frequencies in different domains when the

sample is strained.



APPENDIX C

The Calculation of the Dipolar Fields in Ferromagnetic Crystals

The dipolar field acting on a muon in a ferromagnetic crystal
can be divided into two parts. The first part, which is contributed by
the contact interaction between the muon and the conduction electron of
the host ion, is the hyperfine field Bhf' The second part has the contri-
bution from the localized dipole moments carried by the host ions at the
lattice sites of the crystal.

As discussed in Jackson60 (Chapter 5), the volume integral of a

magnetic field produced by a localized current distribution can be shown

to be

Bdi = 8 (c-1)
A¢R 3

if the total magnetic moment is inside the sphere of radius R, and

3
| Fd - 4R B (c-2)
(244 3

if all the current distribution is external to the sphere. §(O) is the
field at the center of the sphere. In the region where the wave functions
of the muon and the conduction electron overlap, as a result of the in-
teraction, the muon feels a type of field as of equation (C-1). We will

discuss Bhf and the field due to the localized moments in the following

sections.
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a. The Muon Hyperfine Field

The total magnetic Hamiltonian of a system consisting of a crystal

and a muon can be written as

/,'(z'}{Fa,fHFN*ZH*'Zei’ZN

where H e and H W are the interactions of the muon with electrons and

nucleus, and Z oo Ze and ZN are the Zeeman interaction terms of the muon;

electrons and nucleus. The Zeeman terms are of the form

Z=-3r{-'ag-qad:

and need no further explanation. Since the magnetic moment of an electron
is about 2,000 times larger than that of a nucleus, we neglect the term

in the case of ferromagnetic material., The general form of H can

i HN pe

be obtained as follows.

From the Pauli approximation we can write the Hamiltonian of

an electron as

1.[ =L P+ %K)z' t 2flg 3. tvxh)

zm {c=3)
where
H = Wye = 5—(F- R+ R-3) + 25 3-(xf) (c-k)

and A is the vector potential at the electron due to the magnetic moment
of the muon. Here, we will consider only the spin dependent term in

equation (C-4). We can rewrite this term as follows.



17k

2 <
pe = 2{lg So - (VXA)

2{lg e [VX (VX ﬁw/n)]

2ps [(Be ) (Fp-v) - Go- f F1 7 (c-5)

A > > 2 9
zpa[(se-v)(p,.-v)-é (fs’e'p,.) vz],{ - -g'f‘a(se' fu) v’i

= - -
where r=r ~1r, 6 .
e H
Since
A ¥ 9 >
3 3 S -1 B 11 3,0 7)
G nGpng == s
n n

" and

7(1) = -41éw ,

equation (C-5) becomes

i &dd _ 33
FQ = ZFE%KF[ ﬂf - “H . e (C—6)

\
for r # 0, and it corresponds to the classical dipole interaction. For
the 1imit of r— 0, we consider the matrix elements of the term with
the first square bracket of equation (C-5).
. A L5 s 214
[ oy, ) - § 8 8e, iy 7] 1
(c=7)

= Seaﬂi[ 3(Ze; - Zp ) (Fe - Zp) - & ﬂz]
/133 A,z
The term inside the bracket of equation (C-7) is exactly the spherical

harmonic Y with X= 2.
L,m 4

The solution of the Schrodinger equation can be constructed as
‘I’(ﬂ'9'4>)=%1—” Yem®4), Ir the interaction is Coulombic, the radial wave

L+
function U(r) must behave as r = near the origin.61 The contribution of

the first part of equation (C-5) to <¢¢“ﬁél&e7 can be written as:
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Lo
[ v [V Yom Yo d2) da

[4

The angular integral in the above expression is non-zero only if the con-
ditions
12-2"1¢g¢2've”

and

i
m+m’ = m

are satisfied.62 Since
2+ 240" = Lya0'-a- 10,

the whole integral, with the non-zero angular integral,
f% w9+¢+a”AA
°

becomes zero, as r, approaches zero.

0

Therefore, the interaction between the muon and an electron can

be written as
3
<‘te lz)"re“l/e? = —Lsé-]'r Hgb; gf‘ '_S?e (0—8)

in the region where their wave functions overlap. The interaction in
equation (C-9) is the well known Fermi contact interaction. This can also

be expressed as

<¢e[’74:e [fe) = %’lgr Ha'lg& y:’ (dzto)lz’gr,- 3. (c-9)

where uhoﬂz is the density of the conduction electrons at the muon site.

As a result, we can say that the contact field

‘ -
%h{c_%},) = -glf?l(l?r)
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. .
acts on the muon where M(RF } is the local magnetization of the conduction

electron at the muon site.
b. The Contribution from the Dipoles inside the Lorentz Cavity

The dipolar field at the muon contributed by the localized

moments of the ions in the host crystal is

Y 3 ﬁ ) A i ﬁ
= © Hi - ion
By (R = 2 —— (c-10)
m g
Am
2 I . . .
where r.=r - ﬁﬁ and the subscript { runs over all the lattice sites

in the crystal. The expression in equation (C-10) can be simplified by

using the dipolar tensor notation:

< « -3
%J (ﬁp) =7 D(jm) 'H;Mb (C-ll)
m
where
2
Da G) = _3Zm; Zm; = &35 om
§ o) = (c-12)
Aom
As discussed in Chapter I, the sum in equation (C-10) can be
divided into three parts: the summation over the lattice points inside

the Lorentz sphere, the contributions from the magnetic charges on the
Lorentz sphere and on the sample surface. The third contribution, which
arises from the demagnetizing field for a saturated specimen, depends on

the geometry of the sample and will be treated separately. Since the

second contribution, BL = E%;-MS, is independent of the radius of the’

Lorentz sphere, so is the summation within the Lorentz sphere. For this
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reason the calculation of the first contribution must be performed until

the summation up to the (n + l)th

h

nearest neighbor atom shell becomes the
same gs that up to the nt shell. However, due to its slow convergence,
the direct lattice summation of equation (C~10) is not appropriate.

The method developed by Ewald to calculate the total electrostatic

potential in an ionic ecrystal has been extended by Meier et al.63

for the
magnetic dipolar field calculation. The derivation of the result obtained
by Meier et al. is outlined below.

First, we rewrite equation (C-12) as

D) = (97 - L S v?) L (c-13)
J J 3V I7Lm|
and using
N e LY
WI f—TrJ dh e ’
we get

G - e 3 A2
’D‘J‘f""’h iy -éS:J- Vz)‘-F?ﬁ—[J‘dhemmM + Iap. e,m"" ¢ ]

. -1k
¢ (C-1k)

The second integral in equation (C-14) can be shown to be

oo

oe -,7)'”'1,12. ,L.’ N
—%I e dh = 2 f e dh= L enﬂc ( Ghm) (c-15)
Jﬁ:q /]mh_r 4'/|m /Lm

where erfec is the complementary error function. The derivative of erfc with
respect to %, is

(‘? 2
-Gn .
e .

2 ( = -2
o ghﬁc ™ T n

With this we obtain

22

w7 [ferte (0] = v ()| efean t £ [260 + 2GR e ’“] (c-16)
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if i # j, and

2 z 3 2T 2
<4 . “Gn
ViV [4 ede can] = viw id) er#c((m)fﬁl[ 6/L4¢ pALE Z{F]e
. ‘ n y5

which gives

..qvn‘z
vz[,_lber-fc(qw)]= %qge .

From the above two equations, we get

(%7 -4 [ erfe (gn)] = V%G [ech (64) +ﬁ(zq,.,+ 4306 ] (C-17)

Combining equations (C-16) and (C-1T),

[
2 2

;) [orfc (Grmt 2 (261t 2 Gy 2 T

dld—q

E‘J (RP) 'J Vz)

(N\—

Z(wwv
vt i

suv

(c-18)

Next, we consider the first part of equation (C-14). For this,
it is convenient to change the order of the calculation, i.e., rather than

calculate this term for single ?m, we will calculate the summation over

By

m —'/Lm I"I
VAQAEER TR )_.J dh e ﬁ‘

Any function F(?,h) which is periodic in ¥ can be expanded in a

Fourier series:

—-
4:

Fd,h) = g Fy et
where the Fg coefficients can be obtained as

3

3
Fp o=y Fime | dl
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and é is the reciprocal lattice vector. Then, in the same way, we write

ARg -2l h? 3.7
Z. e = Z Fg e.i
' E
and
_l'n’g-ilzhz 3. A-An
o4 (i Yoal
BR=vlie € d
2
-9/41F 3
o N g4 o
v W3
where N is the total number of lattice points in the crystal.

we can write

e R 3 T 3.2
_ _NT%* ST B
2;: - 3 3 e
vh 4
Hence
A Ne's
16,24 2 ¥
I wG-g&e 2 [
23 g - ’/ 2
_ T 7. { o2 ‘ﬂ' 3441
-ZTN_(V.V}-E&Jv)%e g"£dhe ‘1-'1‘3
Finally, we get
nec 5 "g’-" -4 /46>
E.. (?P)z-m_z (g,aj‘:al‘gu 32)/37-2 ?,.e “q
J V dso

Then

(c-19)

By appropriate choice of the parameter G, the rapid convergence

of the summation in equations (C-18) and {C-19) can be achieved and the

computing time to calculate

3 >

[2:r1 J
where

din 3 Aec
E;j(éﬂ) = E‘J ('E,,,) t+ EU (2',)
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can be significantly reduced. Equations (C-18) and (C-19) can be used to
calculate gd(ﬁr‘ ) in a strained sample but the strain must be uniform
throughout the crystal. Also, it must be noted that the above equations
are applicable only for the case of a point-like muon. Corrections for a
non-point-like muon and the effect of the local lattice distortion will

be discussed in the following sections.
¢c. The Correction for a Non-Point-like Muon

For a muon which has a non-delta function-like wave function
\f«(?‘), we have to average the dipolar field by weighting with 111(7{)
everywhere in the sample., Taking 7 as a radius vector from an interstitial site,
;m - T takes the place of —I,‘m: in equation (C-13). Then the averaged dipolar
field due to a particular atomic dipole can be written as
<{By,; 62’,,)),, = fdi’u (RN Bd,i Ry 3) (c-20)
- (97 - 18,5 [ 1B b/ (R 1
where the differential operators act only on T If we assume that the ex~

tension of the muon wave function is strictly limited to the interstitial

2 b 3
region, i.e., W[ =0 for (Al m,,.l,
oe ¢
1 = 3 (28+1) P (coS0) L
2 .7 f=o 2t
|/‘m - /LI Aom

Inserting the above expression into equation (C-20), for a spherically

symmetric wave function “}l (r),
(54‘; (-ér)h, = Bd; (??F)

which is the result for a point-like muon.
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’

However, the tetragonal symmetry of the interstitial sites of BCC
lattices suggests that the muon wave function will not be spherically sym~

metric, rather, it should be of the form, for its probability density,

= +4 z
P2 \ = o - 2
" = ;,P—H;,;‘ e e P (c-21)

for the octa- or tetrahedral site with the tetragonal axis parallel to
the z-axis.
To calculate the integral in equation (C-20), we take G = O which

means that

di
E:: (Tzr = E. m(% )+ E-{mc'z’r,) = E;;”“(Er)

J 3 Y

only. Then the integral we need to perform is

q

2 2 3 gt &
N i e FRCATH WXty _E
E = - 1 C 2
Performing tﬂe integral, we obtain
-(gx 'l'g’)“/". __a P/4
<E;J-(?<’,.)>4= .Z, 9:3; - uﬁ)/g e cesq ) (c-22)

The exponential terms in equation (C~-22) help the summation converge.
However, if one uses very small values of o and F , the convergence will
be slow. In actual calculations, the summation was performed within the
120th nearest shell centered at the origin of the reciprocal lattice

space. The results showed that for the values below « = ? = 0.05 the
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range of the summation we chose was hot enough because of a slow convergence.
For the values larger than 0.05 but smaller than 0.1, the exact point-like

muon results were obtained.
d. The Correction for the Local Lattice Distortion around the Muon

To calculate the effects of the local lattice distortion on the
dipolar field we need a totally different approach. This is because in
this case we cannot define the reciprocal lattice space and also we want
an expression of Bd(ﬁﬂ ) which is an explicit function of the vector ?m.

The expression

| P (- AW
- m
- = 2 e
m- al S

substituted into equation (C-13) gives

: SR Y e
Dij (i) = J’.“fjdiw;vj— 1§ [[dne” " T ] il
-2 T AN 5 7 A
= Iahtvv..lJ Je, " e o o B di

d?vﬁi
The integration over T can readily be performed to give the result

- k”(n-;“—)(n,ﬁx,» /L,z,,#) a- 'é)“;a

3.
__T_T_z___e e
AR (B h '
where A-HN_ 'B"H{fhf' . If we take 1 = J = 3,
(Dyy=-3 [ _dnh - 2h 2 by g )
i (PSR P

X e-‘w (/\mx + ﬂmy)/lf—o(zhz "hnmx/l‘l"Fsz
A
for the sites with their tetragonal axis parellel to M MgZ and
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<o

(Dy) = ___ﬁ—_J\ dh h- o} (n:y-z/‘:;i)
) 3T J Gl ,} l+‘ﬁ'}."’.[( a e )/H-o?hz']

2%

R N7 : kg
P VR

for the sites with their tetragonal axis perpendicular to ﬁé. Since the
above two equations are very complicated functions of h, the integrals
were performed numerically. The results showed that the upper limit of
hmax = 15 is more than enough. The calculation was performed for each
individual ion around the muon site,

To calculate the dipolar field at the muon in a crystal with the
local distortion we assumed that this distortion was substantial only up
to the second nearest ions around the muon. First, we calculated Bd(ﬁr )
for an undistorted crystal by equation (C-22). Then the contribution from

the undisplaced ions within the second nearest shell was replaced by that

from the displaced ones.



APPENDIX D

The Demagnetizing Field in a Thin Slab Sample

In this appendix we will discuss a computational method for a
somewhat oversimplified problem. To calculate the demagnetizing field we
assume that the atomic moments are arranged as in Figure 57(a) when
saturated by an external field. Figure 57(b) shows the actual situation
for a slab sample which we will not discuss.

As shown in Figure 57(c), we calculate the field at P produced
by a rectangular sheet of uniform pole density, with sideé a and b. The
field at P due to the elementary pole & dxdy at {x,y) is G'dxdy/r2 along r.
With y = stané , then dHr = g dxde /S and the compdnent along s is
st = o dx cose deé /S. Integrating with respect to & gives the field

due to the strip obdx/qs with a component parallel to 0X as

dHy =  bx dx/s?q

Integrating with respect to x from ¢ to {¢ + a) gives, for the whole sheet

. 21k > z.';'/z b
sz_sgm’i [(ctar+ 2°] S Letetb)Tt j (D-1)

[(ctart 2+ 8] %rb (Ctenh

the negative sign indicating that the field is antiparallel to the positive
0X direction for positive charges. The resolved field along 0Z due to

the strip is

184
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Alignment of magnetic moments (a) with an infinite aniso-

tropy energy, and (b) with a finite anisotropy energy. The

demagnetization field is calculated, as in (

c), assuming
the situation of (a). :
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shzdx sbz do
g, (e (L g+ b)) 2

Substituting x = z tan«k and integrating with respect to

gives

He =ssw"i (cta)b j - ssmt ( be ] (D-2)

[(ctaft 2®]% (e (G (Ere™)]"

the limits of# ‘peing 67":'1,(_2?%?7]% and Sm"&ﬁ‘%‘;’]—,&) « The first
term is always larger and when & is positive the direction is parallel
to positive 0Z.

To inspect the inhomogeneity in BP ,» We will calculate only HZ
in equation (D-2) for the Fe (100) crystal. The sample dimension is
1 x k4.6 x k6 mms. As shown in Figure 58, calculations were performed
along the five lines parallel to the z~axis in the rectangle ABCD. The
results are shown in Figure 59 with the rectangle at the surface of the
sample. Among the five curves drawn in the figure, the topmost one
corresponds to.the line segment CD in Figure 59. The results show that
Bdem almost depends on Z only. Figure 60 shows the results of the same

calculations with the rectangle at the center of the sample. This indi-~

cates that the y dependence is also negligible.



" Fig. 58.
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The demagnetizatioh field is calculated along six lines including line segments
DC and AB.
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