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ABSTRACT

The development of anisotropy in an initially isotropic spec-
trum is studied numerically for two-dimensional magnetohydrodynamic
(MHD) turbulence. The anisotropy develops due to the combined effects of
an externally imposed dc magnetic field and viscous and resistive dissipa-~
tion at high wave numbers. The effect is most pronounced at high mech-
anical and magnetic Reynolds numbers. The anisotropy is greater at the
higher wave numbers.

The statistical structure of two-dimensional MHD turbulence is
also considered. It is shown that the three known rugged invariants of
the isotropic case reduce to two for the anisotropic case. Randomness
and ergodicity are also briefly discussed.



ANISOTROPY IN MHD TURBULENCE

DUE TO A MEAN MAGNETIC FIELD



I. INTRODUCTION

In the last few decades a systematic theory of magnetohydro-
dynamic (MHD) turbulence has emerged. This theory has addressed itself
to understanding the incoherent, non-linear, random fluctuations of the
velocity and magnetic fields (i.e., MHD turbulence) associated with a
highly agitated magnetofluid (a magnetofluid being a fluid with a rela-
tively large electrical conductivity, which allows for the existence of
electric currents and their corresponding magnetic fields). This theory
has become, in view of the random nature of MHD turbulence, largely a
statistical one.

The statistical theory of MHD turbulence has primarily been
developed utilizing certain symmetry assumptions about the statistics of
the fluctuating vector fields, such as isotropy, homogeneity and station-
arity. Although these assumptions have proven very useful and lead to a
much-reduced mathematical description, we note that in many physical
systems MHD turbulence takes place in the presence of an externally im-
posed mean magnetic field, Since this mean magnetic field cannot be re-
moved by a coordinate transformation (as can a mean velocity field) it is
clear that a mean magnetic field introduces an anisotropy, or preferred
direction, into the description of the physical system.

In the present work, the structure of MHD turbulence in the
presence of the anisotropy induced by a mean dc magnetic field is investi-

gated. Specifically, the time evolution of the turbulent magnetic and



velocity fields of a two-dimensional magneto-fluid is determined numeri-
cally, using an incompressible, spectral method MHD code. This procedure
yields a recorded time history of the evolving magnetic and velocity
fields, allowing diagnostic analyses to be performed which illuminate the
nature of anisotropic MHD turbulence. The details and results of this
analysis will be discussed in the following chapters.

It would have been preferable to have studied anisotropic MHD
turbulence with a three dimensional code rather than a two dimensional one.
However, the amount of computing power necessary for such an endeavor is
generally not available (because of resource scarcity and expense, and
current technological limitations). It will be seen, nevertheless, in
comparison with pertinent experimental results, that a two-dimensional
model of anisotropic MHD turbulence contains many of the features which
appear to be central to the three dimensional case.

The two-dimensional numerical simulations were performed on a
Digital Equipment Corporation VAX 11/780, time on which was generously
provided by the Oceanic Division, Westinghouse Electric Corporation (at
Annapolis, Maryland). The VAX is a virtual-memory machine very similar
to the IBM 370/158; benchmark tests have shown that the two~dimensional
code used here runs only 9% slower on the VAX than on the IBM 370. For
the purposes of the research related to this dissertation, a total of
about 600 VAX cpu hours were utilized.

The outline of this work is as follows. In the second chapter

a brief historical sketch will be given, in order to provide the context



in which this work is imbedded. In the third chapter, the pertinent
experimental papers will be discussed, while in the fourth chapter,
important preliminary theoretical and numerical papers will be discussed.
The next half dozen chapters will address the current numerical results
and will be followed by a concluding chapter. Finally, there will be
two appendices on the statistical theory associated with two-dimensional

anisotropic MHD turbulence.



ITI. HISTORICAL SKETCH

Megnetohydrodynamics and plasma physics, though less than a
century old, have had an interesting history, which has been recorded,
to various extents, by numerous authors. Two sources of particular note
are to be found in the book of Ferraro and Plumpton (1966), Magneto-

Fluid Mechanics, and in the article by C. J. H. Watson (1972), "Introduc-

tion to Plasma Physics," which appears in Plasma Physics, a collection

of articles derived from the Culham Summer School lectures. Another text

which is also useful is An Introduction to Plasma Physics, by W. B.

Thompson (1962). It is primarily from these sources that the following
historical sketch has been drawn.

Although the basic physical principles (and their mathematical
expressions) had existed before J. C. Maxwell formulated his equations
of electrodynamics, the impetus which gave rise to MHD seems to have
occured around the beginning of the 20th century. In 1899 Bigelow saw in
the shapes of coronal plumes a similarity to the structure of the lines
of force around a uniformly magnetized sphere. This led him to con-
Jecture that the sun was a giant magnet; Schuster then expanded upon this
idea to suggest that every large celestial body was a great magnet. It
appears that these speculations may have led the astronomer Hale +to
look for solar magnetic fields; indeed, in 1908, Hale discovered, through
the Zeeman effect, that magnetic fields of several thousand gauss were

associated with sun spots. For the first time a celestial body other



than the earth (and a gaseous one at that) had been found to possess a
magnetic field.

This discovery led Larmor, in the next few years, to put forth
a theory which explained the existence and stability of sun spot magnetic
fields in terms of a highly conducting fluid (the solar gas) moving
across an initially weak magnetic field and dynamically creating a local,
intense and long lived magnetic field. Although the details of Larmor's
theory were shown by Cowling in 1934 to be somewhat erroneous, the idea
of a self-sustaining "dynamo" proved very useful. Particularly important
was the combination of fluid mechanics and electrodynamics to attempt to
explain a novel physical phenomena; the field of magnetohydrodynamics
was beginning to take form and gain substance.

Concurrent with these theories concerning astrophysical
phenomena, laboratory experiments with highly conducting fluids were
being conducted. ~ In 1928, Irving Langmuir was working with arc discharge
tubes, and invented the term "plasma" to describe the ionized gas he ob-
served in the discharge tube. Although Watson (1972) states, "[Langmuir]
called it a 'plasma' because of a fancied resemblance between impurity
ions in a plasma and white corpuscles in a blood plasma, an analogy which
seems rather far-fetched today," Tonks and Langmuir (1929) give a
different origin.

In experimenting with a low pressure mercury arc discharge,

Tonks and Langmuir (1929) observed what they called "Plasma-electron

oscillations. When the electrons oscillate, the positive ions behave
like a rigid jelly with uniform density of positive charge ne. ITmbedded

in this jelly and free to move there is an initially uniform electron



distribution... The word 'plasma' will be used to designate that portion
of an arc-type discharge in which the densities of ions and electrons are
high but substantially equal." (The Greek work plasma means "something
molded or formed," according to the standard dictionary definition.)

In this time period, and in the following decades, there was
much theoretical and experimental work begun in plasma physics and MHD.

In astrophysics, contributions were made by international researchers

such as Alfven, Lundquist, Chandrasekhar, Cowling and others. Among those
who performed laboratory experiments were Hartmann and Lehnert, while the
plasma pinch effect was first analyzed by Bennet (1934) and Tonks (1939).
The first substantial technological applications of these new disciplines
were in ionospheric radio wave propogation and in the design of flourescent
lights and mercury arc rectifiers.

Although the plasma pinch effect was seen in the 1930's, and,
even earlier in 1928, Atkinson and Hautermans had suggested thermonuclear
reactions in hydrogen at high temperatures as a source of the sun's energy,
no one apnears to have considered combining these two ideas. It was not
until World War II began and large groups of scientists came together to
work for military purposes, that these ideas coalesced. Then, during
the war and afterwards, there was much classified fusion research.

In the 1950's, as this fusion research expanded, there were a
growing number of experimental observations of laboratory plasmas. These
plasmas were not well-behaved; in fact, they were seen to develop pinches,
detached pinches and many other forms of instability. These instabilities

did (and still do) plague fusion research work throughout the world.



In the 1950's, the English joined a growing (and still classi-
fied) international plasma fusion research community by performing re-
search on the ZETA device at the Culham laboratory at Harwell. In the
late 1950's there was some initial optimism concerning "cheap energy"
when the ZETA device began producing relatively large neutron fluxes.

It turned out that these neutrons, which were mistaken for those produced
by a thermonuclear deuterium reaction, were actually produced "anomalously"
by a few deuterons accelerated by plasma instabilities.

These plasma instabilities gave not only the English, but also
the rest of the international fusion research community a seemingly
impenetrable barrier which they tried for many years to surmount. The
principal countries involved in (classified) fusion research at this
time - The USA, UK, and USSR - eventually recognized the magnitude of
the task and declassified their fusion research efforts. "One conse-
quence of this decision was the rich harvest of papers at the 2nd
International Conference on the Peaceful Use of Atomic Energy at Geneva
in 1958, which perhaps marks the beginning of modern fusion plasma physics"
(Watson (1962)).

These instabilities are still a formidable problem for the
development of practical fusion reactors. Researchers are still optimistic
(because of the enormous benefits a working fusion reactor would provide
for mankind) but there is a general recognition that new surprises and
problems may lie waiting in the future.

In addition to toroidal plasma research devices such as ZETA

and the Macrotor Tokamak at UCLA (both of which will be discussed in more



detail presently) and many other torcidal machines throughout the world,
there are other devices for which an understanding of plasma dynamics and
instabilities are critical, These devices, whose complete description is
beyond the scope of the present work, include plasma focus devices, laser
fusion machines,high speed electric switches, MHD generator and propul-
sion systems, and (currently classified) charged particle beam weapons
and so~-called rail guns.

In the two and a half decades since plasma fusion research was
declassified there has been an enormous amount of research effort, both
theoretical and experimental. In the previous paragraph, many experi-
mental areas were mentioned; theoretically, there has been much work in
so-called linear theory, particularly in relation to magnetofluid stability.
There has also been a growing effort to understand the non-linear dynamics
of magnetofluids (e.g., MHD turbulence). It is along this branch of

current plasma theory that we extend our research efforts.



IIT. EXPERIMENTAL RESULTS

There seem to be very few published results concerning labora-
tory measuremenis of MHD turbulence. The reason, of course, is that one
must take local measurements of a plasma in order to determine turbulent
effects; the insertion of material probes into a hot plasma usually re-
sults in their destruction, however. (The longevity of a material probe
depends not only on the temperature of the plasma, but also on its den-~
sity and length of time the high temperature is maintained. A "hot"
plasma could be defined as one where the numerical value H = (electron
density x electron temperature + ion density x ion temperature) x (mean
length of time at high temperature) is above that for which, say, a
quartz probe is destroyed. The temperature and density values of various
plasmas are shown in Figure 1, which comes from Thompson (1962).)

There are alternatives to the insertion of probes into a plasma:
measure local properties remotely by the use of laser doppler velocimeters,
perhaps; this concept, unfortunately, is not an advanced enough state of
development. Another alternative is to place the probes outside the
plasma; this procedure, however, yields only large scale structures
(which may be useful for gross instability studies) while obscuring the
small scale, turbulent structures of interest here. Another, and cur-
rently more viable alternative is to work wi£h a "cool" plasma, so that

various probes may be inserted without destruction.

10
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This last procedure has proved a fruitful one for two groups
of researchers upon whose published works we can draw for pertinent ex-
perimental results., The first group is from the Culham Laboratory of the
United Kingdom Atomic Energy Authority (UKAEA). This group has reported
on MHD turbulence measurements on the ZETA Toroidal Z-pinch machine in
three principal papers: Robinson, Rusbridge and Saunders (1968),
Rusbridge (1969) and Robinson and Rusbridge (1971). The second group
has performed experiments on the Macrotor Tokomak at UCLA; their results
have been presented in two published articles: Zweben, Menyuk and Taylor
(1979) and Zweben and Taylor (198l1).

In order to get a better picture as to the nature of these two
machines, Figure 2 is a reproduction of a figure from an article by
Brickerton and Keen (1972). In this figure, the essential difference be-
tween the Zeta mode and Tokomak mode of a toroidal pinch system is illus-

trated.

ZETA Experimental Results

In the experimental measurements on the ZETA device electric
and magnetic probes were inserted into a cool plasma (here we will only
be concerned with the magnetic probes and their corresponding measurements).
Pertinent information related to the experiments performed on ZETA have
been drawn directly from the aforementioned papers related to ZETA, and
are reproduced in Figures 3 through 6. This information will be drawn on
as necessary in the following discussion.
The magnetic field configuration and total current density existing

in ZETA during experimental measurements is shown in Figure 3. After an
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Summary of experimental parameters. °

! Initial pressure 0.5 mTorr 3 mTorr

Density 5X108¥ ¢m™3 4X 104 ¢cm™3

Electron temperature 15eV 6cV

Mecan magnetic field (at the 1500 G 1500 G

- - center of the discharge) :

rms turbulent velocity 10 cm/sec 1.5X10%cm/sec
fluctuations

rms magnetic field 10G 4G
fluctuations

Kinetic energy of velocity 42 ergs/cm? 7.5 ergs/cm?

) fluctuations
Ratio of energy in velocity - 10 1.5

fluctuations to magnetic
field fluctuations :

Input energy from capacitor ~1.5X10¢ ~1.5X10°
bank, 125 K] - ergs/em? ergs/cm?®

OB .‘o
06
04
02
- 3 0 15 T
| Sepuration (cm) . Separation {em)
' ' (a) : (b)

,‘ Correlation function of magnetic-field fuctuations
&:5, % (a) filling pressure S-mTorr Dy; (b) filling pressure
I-mTorr Dy: © direct measurement, -~ derived from structure
function measurement. Solid curves represent Eq. (1) with
paramieters given in Table II. Gas current 150 kA, 0= 1.7.

Figure 4.- Experimental parameters and radial correlation function for the ZETA
discharge; from Robinson and Rusbridge (1971).
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initial concentration of plasma was created in ZETA it was lost to the
torus walls in about 0.1 millisecond, while the current pulse lasted for
1-3 millisecy +this current pulse was sustained by reinjecting cold
neutral gas. The measurements were thus not taken on a single long-
lived concentration of plasma but instead on a sequence { ~ 20) of short
lived plasma configurations, The recorded measurements came from the
central part of these short lifetimes, during which the plasma was in a
"quasistationary state". These measurements were then combined and
averaged to produce, for example, measures of correlation length of the
radial part of the magnetic field, as are shown in Figure 4. In Figure L
the critical parameters of the ZETA machine are also tabulated.

The measurements of magnetic fields were made by probes in-
serted into the plesma, at various distances. Since the presence of
these probes could possibly affect the measurements, it was necessary
to check the results with other modes of measurement to determine if any
error was indeed introduced. This was done by comparison with spectro-
scopic and microwave measﬁrements, with the conclusion that probe per-
turbation was not a serious problem for ZETA.

The magnetic probes themselves consisted of small pickup coils
of 500 turns and 0.5 cm in diameter. Gradient measurements were made
with two coaxial coils separated 0.3 to 15 cm apart. The coils were
mounted in a quartz envelope 2 meters long, 2.5 cm in diameter, which
narrowed to a 1 cm diameter tip. The upper limit on frequency response

was 1 MHz and the spatial resolution of measured fluctuations was 1 cm.
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The magnetic field measurements on ZETA, as shown in Figures
3 through 6, yield the following observations:

1) A fluctuating signal on a reproducible background (back-
ground is that part of signal below T7-10 kHz).

2) Dominant magnetic field fluctuations at 1-3 kHz correspond
to heliral distortions of whole current channel and were correlated over
the whole discharge.

3) Fluctuations above ~ 7 kHz were correlated only over
5-10 cm.

4) Necessary signal averaging time was 5 millisec (for a 5%
error); needed to average over many discharges ( ~ 20).

5) The high pass filtered fluctuation ( ~ 10 Gauss) were con-
stant in magnitude over the central region of the discharge (radius of
~ 20 cm).

6) Axial correlation lengths for the turbulent field were

= 60 cm.

Macrotor

The Macrotor device is also a toroidal machine but it is a
tokamak, as opposed to ZETA, which is a Z-pinch (see Fig. 2). (The dif-
ference in these toroidal pinch systems is illustrated in Figure 2; the
essential difference is that the toroidal magnetic field in the Zeta mode
is peaked at the center of the toroidal cross~section and reverses sign
near the walls, while in the tokamak mode, the toroidal field maintains

the same direction throughout the cross-section and is roughly constant.
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The poloidal fields in both modes have the same qualitative shape, al-
though the ratio of average toroidal field magnitude to average poloidal
field magnitude is greater for the tokamak than the Zeta mode.) Pertinent
tabular and graphical information related to magnetic measurements in
Macrotor are taken from the aforementioned papers of Zweben and collabora-
tors and presented in Figures 7 and 8.

Other than being run in a tokamak mode, Macrotor is physically
very similar to ZETA. The plasma characteristics were slightly different,

however. Zeta had a lower electron temperature ( ~ 10 eV) than Macrotor

(~r 100 eV) while Macrotor had a lower electron density (~ L x 1012 cmf3)

L

than ZETA (5 x 1013 to 4 x 10t cm73). The mean axial field in Macrotor
( ~ 2 kG) also was higher than that in ZETA (~ 1 kG).

In Macrotor, glass, rather than quartz tubes, were inserted
up to 15 cm into the plasma without damaging the tubes or perturbing the
plasma too much. These glass tubes contained magnetic pickup coils, whose
construction is shown in Figure T3 checks were also run on these probes
to ascertain that the experimental measurements were not unduly affected.
The insertion of the probes did not affect the plasma current, voltage,
density or ultraviolet light emission in their vicinity. The magnetic
spectrum and correlation length was the same when observed with coils
inside both 2 cm and 0.5 cm diameter tubes. The presence of a second
probe as close as 1 cm away from the first did not affect signals from
that probe. Finally, a pair of coils inside a single tube gave the same

magnetic structure as did two coils, each in a separate tube. (These

checks were done for frequencies less than 100 kHz.)
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Figure 7.~ Macrotor parameters and magnetic probe characteristics; from Zweben and
Taylor (1981).
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2. (a) Spectrum of B, taken at 10 cm into the 5 L ' +
plasma during the steady state of a typical discharge. - 0 . ) M
(b) The variation of |B,| vs coil position for f ~25 kHz. : o 0 100Khz
The spectrum shape remains fairly constant over this

range of coil positions. Also in (b) is ||,/ profile
as measured in the ion saturation current of a Langmuir
probe. The ion-saturation-current profile itself looks
similar to the profile of |B,|.

3. (a),(b) Spectra of wH, for two coils radially
separated by 4 cm, (c) cross-correlation function, and
(d) correlation spectrum for this case. (e) Averaged
radial correlation length vs frequency.

Figure 8.- Typical plasma characteristics and radial magnetic field structure for
the Macrotor Tokamak; from Zweben, Menyuk, and Taylor (1979).
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In Macrotor, the time-dependence of the radial component of the
magnetic field (i.e., ﬁr) was measured by & coil located 10 cm inside the
limiting aperture of the torus near the equitorial plane. The signal
(similar to that seen in ZETA) was seen to consist of two parts: 1) low
frequency ( A T kHz) coherent oscillations (termed "Mirnov oscillations"),
and 2) high frequency, broadband, incoherent structure. This signal
structure was seen in all Macrotor observations.

The Brspectrmnshown in Figure 8 was derived from data taken
over 15-20 millisec and slide-averaged over ~ 3 kHz. As seen in Figure 8,
the spectrum slopes down relatively smoothly from the coherent, energetic
low frequency part to the high frequency region, which is broadband with
no excessive peaks. (This spectrumwas "derived" because what the probes
actually measured was éf’ which has a spectrumdiffering in magnitude from
that of B, by a factor of w> ; the |Br| spectrum is thus derived by
dividing the lér‘ spectra by ¢O .)

In the Macrotor articles, Zweben, et al., define the cross

correlation between two time signals Sl(t) and Sz(t) to be

T
Ctvr)s T S.(4) S, (r-9) oA t

o

They also define the correlation spectrum to be

| L E*%w) Fa )]

w) = {N(W) o = :

where

{ > : average over AW~ 3 kiz

Fl, F2 are Fourier transforms of Sl’ 82 .
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They then define the correlation length as
L : 2 x coil separation for N (W) = 70%.

Using these definitions, Zweben, et al., determine the following
results for correlation lengths of the radial part of the magnetic field:

Radial Correlation:
L(w)& 10 cm for )25 kHz

Poloidal Correlation:

()~ L (ew)

Toroidal Correlation:

() D) 1(e0) .

These results are, though taken from a device operating under

a different toroidal mode, consistent with those of the ZETA group.

Experimental Result Summary

The basic result of these two sets of experiments is that the
turbulent (high frequency) part of the magnetic field associated with a
toroidally confined plasma has a correlation length of ~ 5 cm perpendi-
cular to the mean axial field and a longer correlation length of ~~60 cm
parallel to the axial field. In addition, the turbulent spectra were
broad band with a notable absence of excessive spikes or peaks. (In fact,
the ZETA group described the observed plasma turbulence as occuring in

long convective rolls.)
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These results are pertinent to the theoretical and numerical
investigation to be described in the remaining portion of this disserta-
tion in the following regards. The observed MHD turbulence (the high
frequency part of the experimental measurements) is homogeneous, as evi-
denced by the flatness of the rms turbulent fluctuations in the central
part of the discharge; it is (quasi-) stationary, since the results are
derived from measurements taken during relatively stationary time seg-
ments; and anisotropic, since the turbulence is occuring in the presence
of a large mean magnetic field. These three assumptions - homogeneity,
stationarity and anisotropy - are centrael to the analysis that follows.

This analysis is predicated on the assumption that the plasma
discharges of Zeta and Macrotor can be modelled in terms of magnetohydro-
dynamics. This assumption is valid if the processes under observation
occur primarily at frequencies considerably lower than the plasma fre-
quency wp’ at length scales considerably longer than the Debye length

>‘D and at velocities such that (v/¢)2(< 1. Here, wp 2= 10 - 100 GHz,
)\D o~ 3 microns and the rms turbulent velocity fluctuations are ~106cm/
sec; since the observed frequencies are less than 1 Miz and the spatial
resolution is no smaller than 1 cm and (v/c)2 <~ 10_9 {{ 1, the appli-

cability of MHD is strongly indicated.



IV. PRELIMINARY THEORETICAL AND NUMERICAL RESULTS

The subject of MHD turbulence, though not as intensely investi-
gated as the linear theory associated with research into the nature and
control of plasms instabilities, has still had a long and interesting de-
velopment. Along with the general upsurge of plasma research that began
during and after WWII, came efforts to understand MHD turbulence. These
efforts were directed by some, such as Chandrasekhar (195la), Cowling
(1957), Kovasznay (1960) and Tatsumi (1960), to understanding the turbu-
lent plasmas which occur in the astro-and geophysical realm. Others
concentrated on MHD turbulence as it appears in plasma fusion machines;
many of the results connected with these efforts are contained in the
text by Kadomtsev (1965),

The reason for this interest was, of course, the fact that
turbulence is the means by which energy is transferred from large length
scales to smaller and smaller ones in a_plasma or MHD system, finally to
wind up as heat. This turbulent decay, with its myriad of large and small
"eddies", all interacting with one another, naturally inspired researchers
to seek g statistical description. Attempts to understand the statistics
of MHD turbulence was begun by many people: Batchelor (1950), Chandrasekhar
(1951 a,b) and Kraichnan (1958), among others. These individuals sought
to understand the nature of homogeneous, isotropic (and stationary) tur-

bulence, Building on these beginnings, statistical theories concerning

26
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turbulence were formulated by Edwards (1964, 1965), Herring (1965) and
especially Kraichnan (1957, 1958, 196ka, 1964b, 1964c, 1965, 1966, 1971a,
1971b, 1972).

Concurrent with the development of isotropic statistical theories
of turbulence was the investigation of certain aspects of MHD turbulence
in the presence of a mean field. The studies of Lehnert (1955), Moffatt
(1961) and Nihoul (1963, 1965) suggested that turbulent motion along the
mean field direction would be damped and tend toward a limit of two-
dimensional turbulence. These suggestions are, of course, compatible
with the experimental observations on ZETA and Macrotor, as discussed in
the previous chapter.

Toward the end of the 1960's the development of computers was
reaching a point at which they would be sufficiently powerful to allow
numerical studies of MHD turbulence to be done. In conjunction with hard-
ware development came software development, i.e., numerical techniques,
through which the systematic study of simulated MHD turbulence was finally
within grasp. Thus the pioneering work of Orszag (1971) and Patterson and
Orszag (1971) and others, resulted in the creation of highly accurate and
rapid de-aliased, fast-Fourier transform based "spectral" method tech-
niques.

The code utilized in the numerical studies in the present work is
a direct . descendant of a code inspired by the work of Orszag. This
earlier code (i.e., various versions of it) was used by Fyfe, Joyce and
Montgomery (1977 a,b) and Matthaeus and Montgomery (1980, 1981l) to study

forced dissipative turbulence, selective decay processes, and the evolution
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of the sheet pinch (all in the presence of periodic boundary conditions).

A similar code was used by Orszag and Tang (1979) to study small scale
effects in two dimensions and Pouquet (1978) has published closure calcula-
tions for the same geometry. A general review of two-dimensional (iso-~
tropic) turbulence has been given by Kraichnan and Montgomery (1980), while
details of the numerical procedure can be found in the cited works of
Orszag as well as in the Ph.D. dissertation of Matthaeus (1979).

In spite of the large amount of work in MHD turbulence, very
little has been done systematically to study such turbulence in the
presence of a mean magnetic field. Such an anisotropic situation is
assumed to be présent, in one form or another, to derive the so-called
Strauss equations (Strauss (1976), Montgomery (1982)). These equations
are a reduced set of MHD equations (weak dependence in the direction
along the mean field) intermediate in dimension between two and three.
Although they have found wide applicability to the dynamics of toroidal
fusion machines, particularly tokamaks, it is not clear how to proceed in
their derivation if a strong anisotropy is not initially present.

This is one of the questions that this work will attempt to
answer: does an initially isotropic spectrum evolve into an anisotropic
one in the presence of a mean field? It will be shown that for a two-
dimensional magnetofluid in the presence of a mean field and dissipation,
this does indeed occur. It would have been preferable to have
shown this for a fully three dimensional magnetofiuid; this, however, was
(far) beyond our computational resources, so that the only real alterna-
tive was to consider the (non-reduced) dynamics of a two-dimensional

magnetofluid.
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In the following chapters the results of the present work will
be detailed. The dynamical equations will be described and the computa-
tional technique discussed briefly. Computational results will then be
presented and these will show the development of the strong anisotropy
from initially isotropic conditions. These will be seen to correlate
well with the ZETA and Macrotor observations.

The dependence of anisotropic development on mean field strength
and Reynolds number will then be discussed in the concluding chapter,gw
where a summary of results will be presented, In addition, there are two
appendices; in the first, the absolute equilibrium ensemble theory of an
anisotropic, homogeneous, stationary (non-dissipative) magnetofluid is
given. In the second, the ergodicity and randomness of the MID model

system dynamics are briefly commented on,



V. DYNAMICAL EQUATIONS

The incompressible, dissipative MHD equations in two dimensions
are used. The magnetic field consists of a constant mean field part
Bo = Boéx, plus a time-dependent zero-mean turbulent B = (Bx,By,O) =
v x(@za). The magnetic vector potential is gza(x,y,t) so that the Cou-
lomb gauge is employed. For all variables, d/9d z = 0. The velocity field
v = (vx,vy,o) = Y?’x(@zﬂr) is expressed in terms of a stream function
i gl Y (x,y,t) and has zero mean. In what has become a standard set
of dimensionless variables, the vorticity @ = U"éz = wa'r', so that
W = -Y2+. Similarly, the electric current J = j8,, with ¥ °a = -j.
Magnetic fields are measured in terms of the initial root mean
square turbulent field strength B. Velocities are measured in units of
the Alfvén speed corresponding to B. The dimensionless viscosity and
resistivity V and.?l are the reciprocals of mechanical and magnetic

Reynolds humbers, respectively. The simplest form of the dynamical equa-

tions is, in the two~dimensional geometry,

%4;_)—+V-Vw= E-vg+vv’w+6,%§'— (1)
and
%—?— +V:Va = 1nV3a + BOQix: (2)

A brief digression on the origin of (1) and (2) is in order

here. For a full, three dimensional treatment, four sets of equations are
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required: 1) Maxwell's equations; 2) the equation of magnetofluid motion
(extended Navier-Stokes equation); 3) the equation of continuity; U4) the
appropriaﬁe thermodynamic equations., Let us consider each of these in

turn and see how they reduce for the case of two dimensional, incompressible,
dissipative flow. (A complete discussion of these equations may be found

in Ferraro and Plumpton (1966).)

Maxwell's equations are

(i) V0= £ (ii) <+B=o0O
- b 2 - (3)
(iii) VxH= j + %PF (iv) ngz-%-g

where D is the electric displacement, H the magnetic field, E the electric
field and B the magnetic induction; also, g : charge density and 3 :
current., The classical MHD approximation is to neglect the displacement
current in (ii) i.e., assume 3D/ o t = 0; this is equivalent to ignoring
terms of order (v/c)2 or higher. Then, using (ii), (iii) (neglecting the
displacement current) and (iv) along with Ohm's Law, -; =8(E+7Vx3B)

produces

%
®L
!

= Ux(IxB) + qV8 (%)

v
-+

h - C e
where 4‘.‘: ('“'6) ! ) S cohduC'fovl'ty b.‘n"‘\‘

M i magnetic permea

Since V-ﬁ = 0 implies B= Vx K, this equation can be "uncurled" to give

3. Ux@ +avA 4 Ve (5)
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If we assume ﬁ-@z = 0 (i.e. that B is two-dimensional) and that B has &
constant external part in the x direction, 33. = Boléx + Vx( a.é‘z) then

2= (yBo + a)@z. Placing this in equation (5) yields (2) (here W = 0).
Since a = a(x,y), the Coulomb gauge condition V-K = 0 is automatically
satisfied.

The extended Navier-Stokes equation (Navier-Stokes + electromag-~

netic and gravitational body forces) is, for constant density (incompres-

sibility),

-> - - 2 -
P(H +Vv0) = ~9(p+pd)t gxB+ vV V

P : density

P : pressure (6)
é : gravitational potential

vV : viscosity

Helmholz's theorem tells us that if we know the curl and divergence of a
reasonably well behaved vector field, we can determine the vector field
uniquely (see Arfken, 1972). Thus we can study the extended Navier-Stokes
equation by taking its curl and divergence. Taking the curl, and assuming
7= Vx(“{f(x,y)'e‘z) (i.e., ¥ is two-dimensional and solenoidal) yields
equation (1). Taking the divergence eliminates the time derivative term
and yields a Poisson's equation for the pressure field. The equations (1)
~and (2) are now self contained and self consistent and we do not have to
explicitly consider the thermodynamic equation (the heat equation and

equation of state). The equation of continuity, because ¥ is solenoidal,

reduces to 4 p /dt = 0, i.e. P is constant.



33

Without the B0 terms, eqs. (1) and (2) become those considered
previously. In a recent derivation (Mbntgomery, 1982), the Strauss (1976)
equations were re-derived using a perturbation expansion of the full set
of incompressible MHD equations in three dimensions, in powers of B/BO.

It was necessary to assume in the derivation that the time derivatives

d / d t remained of 0(1), or that no zeroth-order population of Alfven
waves was present. (The linearized solutions for the three-dimensional
case, as for eqs. (1) and (2), is just a superposition of Alfvén waves
with angular frequencies LO(T&) = j-_-l;-go, where T{ is the wavenumber.) An
objective of the present computation is to see how a spectrum evolves
which does contain an initially isotropic spectrum of Alfvén waves. It

will be shown that the spatial dependence of such a spectrum on the paral-

lel spatial coordinate x becomes progressively relatively weaker with time.



VIi. COMPUTATIONAL TECHNIQUE

The essence of the computational method is that all physical
fields are expanded in truncated Fourier series. The Fourier coeffi~
cients are stepped forward in time and are saved at predetermined time
steps to provide a history of the dynamical evolution of the field vari-
ables. To be explicit, Fourier representations of ¢ and a (for example)

are (see, e.g., Fyfe et al, 1977a,b):

W (R, = Z W(k,r) exp(<k-X (7)
o (50 = T ik exe (4K (8)

-t

where k = (kx’ky) and k_ and ky_ are integers. Thus the dimension of the
square box is chosen for convenience to be 2 W . The Fourier coefficients

. . . 2 =) 2 .
retained lie in the range k ., = 1% lkl < k , Wwhere k 1s essen-

min max max

tially limited by available computer time., Limitations on the Reynolds
numbers are provided by the requirements that <V and N be large enough
so that the Fourier coefficients for l‘i:l E kma,x are suppressed.

The numerical code is a fully de-aliased, isotropically trun-
cated (Galerkin) spectral method; please see Orszag (1971) and Patterson
and Orszag (1971) for specific detail. The equations which the code
solves are obtained if (7) and (8) are placed in (1) and (2); the result

is similar to that of Kraichnan and Montgomery (1980):
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(& +vK)w k) = .'o‘%-i: M, (BB [wedswed - S5 @) (9)
+ 4 By ky § (k)

(35 +a k)5 = 3%{”_2 My G,B) [G@pwi - wed§idy]  (10)
+ 4 Bo kx w(k)

where

Mz("{)fs): -5; e

w
r~~
a4
X
"ot
N’
oL
+
a0b
P
©

[}

~
=,

»

The essence of the code is to solve the nonlinear terms by transformation
to x space, evaluation of simple products and transformation back to k
space, rather than direct evaluation of the k space convolution sums. The
time~stepping is done by a second-order predictor-corrector method.

The first test of the code was to run it with the dissipative
terms removed. Conservation laws can then be tested and comparisons can
be made between the computed behavior of the Fourier coefficients and the
predictions of the (unphysical) absolute equilibrium ensemble theory (see,
e.g., Kraichnan and Montgomery, 1980).

The second step was to compare dissipative results from two runs,
one having twice the other's value of kmax’ and thus having twice the
spatial resolution. The third step was to run several cases with varying

values for 1V and M at a particular value of B., to determine the

0’
influence of the Reynolds numbers. Finally, the last step was to run a
number of cases which differed only in the value of BO’ thereby investi-

gating the effect that varying mean magnetic field strength has on the

dynamiecs.



35

Initial Fourier coefficients were chosen so that they would be
non-zero only within a given annulus in'E-space. The o (k,t) were
initially non-zero only for kl.’:. k< k,, and the a(k,t) were non-zero only
for kg £k< k). Within their respective annuli, the values of the e (k,0)

. -

were chosen so that all |v(k,0)| = |bo(k,0)| /k were equal, and the

- -h o -b
a(k,0) were chosen so that all IB(k,O)‘_ = kla(k,o)l were equal.
The phases of the a(k,0) and OD(E,O) were assigned randomly. The speci-
fication of the initial Fourier coefficients was completed by giving values
for the magnetic energy EB?- ZE \-ﬁ(k,t)l 2/2 and the kinetic energy

- - 2 =
E 2 g |F(k,t)] “/2 at ¢ = o,

The total energy is E & EB + E_, the "eross helicity" is
P'éi-l-{{r'(k',t)-ﬁ*(ﬁ,t)/z. The mean square vector potential is Az Z,-lz la(k, )| 2/2.
E, P, and A are significant quantities in the theory of two dimensional
MHD turbulence in the absence of a mean field: +they are the only known
non-dissipative invariants which remain invariant under truncation of the

0
If B, # 0, E and P still have this status, but A does not. We may define

Fourier-expanded (¥ = 0 =% ) version of egs. (1) and (2) with B, = O.

R= EB/Ev as the ratio of the energies.

About a dozen different sets of initial Fourier coefficients have
been used for various runs. Many of the sets exhibited similar behavior,
The number of different sets of initial conditions presented in this paper
has been kept to a minimum, but for the runs discussed, there are others
unreported for which the behavior was similar. Details of the runs ex-

plicitly discussed here are collected in Tables 1 and 2.



VII. NON~DISSIPATIVE TESTS

To test the spectral code, several cases were run with v =7 =0,
and the results compared with absolute equilibrium ensemble theory. Such
results are, of course, unphysical, and should be regarded as preliminary
to the dissipative results presented in Chapter 8.

Equilibrium ensemble theory for the Bo = 0 case was given by
Fyfe and Montgomery (1976); the case B, # 0 is recovered by simply de-
leting the third "rugged" constant of the motion A. The prediction is a
simple equipartition, <|?r'(l-:')' 2> = <'§(E)| 2> = const., independently
of K. This is true for all realizable values of <E> and {P) . The ratio
{R)E (EB) /<Ev> = 1, in sharp contrast to the By = 0 case. There is

no crowding to the long wavelengths as kmax-éao » as there is when B, = 0,

0]

Non-dissipative computations were carried out with BO = 0 and
BO = 1 for different sets of iniital coefficients. Time averages were
made of phase functions of the Fourier coefficients and these were compared
with ensemble averages. The two should be equal to the extent that the
system is ergodic.

The results of a single set of Fourier coefficients will be pre-

sented here, call it set A, For run Al, B. = 0, and for run A2, B0 =1,

0

For both runs, k = 16, E = 1.0, the time step was (256)'1. The total
number of time steps was 12,800. For these conditions, kl = k3 = 3 and

k2 = kh = 5, Time averages were performed over the last 11,520 time steps.
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Table la, Non-dissipative runs (V = 0 =7]) for comparison with absolute
equilibrium ensemble theory [Time step: (256)—1. Total no. of time steps:

12,800, Averages taken over last 11,520 time steps. ]

Time % Change
Initial Final Average (Initial-Final)
Al(BO = 0)
B 1.000 0.971k 0.9782 2.9
P 0.2354 0.2167 0.2227 7.9
A 0.03288 0.03286 0.03288 0.06
A2(B0 =1)
B 1.0000 1.0150 1.0062 1.5
P 0.235h 0.2277 0.2313 3.3
A 0.03288 0.01k97 0.01k489 54,5
Table 1b.
R = By/E,
Time :
Initial Final Average Theoretical
Al 1.0000 1.0058 1.0608 1.0484

A2 1.0000 0.9825 1.000L4 1.0000
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The comparison between the numerical results and the ensemble
predictions is given in Table 1 and in Figures 9 through 12. In Table 1,

the behavior of E, P, A, and the evolving ratio Rt = EB/Ev is shown as a

function of time. The invariants E, P, and A for B. = 0 and E and P for

0

B0 = 1 are conserved to a few percent in all cases. Non-dissipative runs
PR} . 0 '3 nntt — -— _]; 2 2 =
for initial conditions "B (EB = E, 5> 3 10,

kS~ = 13) will not be reported in detail.

k% =5 k°=8,k

In figures 9 through 12, the directionally averaged magnetic and
kinetic modal energies are presented for time averaged data. (Directional
averaging means averaging over all values of'ﬁ corresponding to a parti-
cular k2.) At the lower values of k, where the number of degenerate'f's
is sparse, occasionally large anisotropies necessarily appear, but no
systematic directionality was observed. An explicit comparison of these
runs with corresponding dissipative runs will be presented in the next
section, after suiteble measures of anisotropy are defined. It will be
seen that the non-dissipative runs, in contrast to the dissipative ones,
show no anisotropy when averaged over long times.

In Figures 9 through 12, the spectral predictions of the absolute
equilibrium ensemble theory are shown as solid lines and the plotted points
are the time-averaged results of the computations, No significant de-
partures from the predictions of the absolute equilibrium ensemble theory
have been observed in these runs, and in others not reported here (except,
perhaps, for the presence of certain spikes, which will be briefly com-
mented on in Appendix B). Typical behavior for almost all the individual

Fourier modes (those with kx # 0) is that of the Alfvén wave of angular
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-
frequency a:(ﬁ) = +k«B This is the principal qualitative difference

0
in the time behavior observed between the BO = 0 and B0 # 0 cases.
Superposed on the Alfven-wave oscillations is a slower transfer of ex-
citation between the Fourier modes.

In the next few sections, we pass to a consideration of the dis-
sipative cases. In order to maintain a common thread throughout the
discussion, we will primarily use set A as the initial conditions for
the dissipative runs to be presented. The principal quantities to be

varied are the spatial resolution kmax’ the values of the dissipation

coefficients ¥ and % , and the external field strength BO'



VIII. APPEARANCE OF ANISOTROPY: EFFECTS OF VISCOSITY,

RESISTIVITY{ AND SPATIAL RESOLUTION

In this section, we describe dissipative runs. The presence of
dissipation is always central in the evolution of any real turbulent field.

We use primerily the same initial Fourier coefficients as those
in Chapter 7. The most striking effect we have observed is that when both

dissipation and a mean B, are present, anisotropy appears. The'E spec-—

0

trum evolves into one peaked perpendicularly to the mean field'ﬁb. We
describe the dependence of this anisotropy on the dissipation coefficients
and the mean BO’ after first remarking upon some considerations of nec-
essary spatial resolution.

For an accurate solution to egs. (1) and (2), we must resolve
the smallest dynamically significant spatial scales that v and 7 permit.
An estimate for these is provided by the Kolmogoroff "dissipation wave

number", constructed by dimensional analysis based on the rate of dissi-

pation of energy. For MHD in two dimensions, it is

Ka= [N |dEg/at] + v"ldsv/a»rl]'/“ (11)

where ldEB/dtI and IdEv/dt, are the ohmic and viscous energy dis-

sipation rates, respectively. Ideally, k. should be less than kma for

d X

accurate solution of egs. (1) and (2) and this provides at present the
most severe limitation on turbulence computations, both Navier-Stokes and

MHD. Tor some purposes, it may be that when the smallest scales are

Ll
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dynamically insignificant, k. somewhat larger than kmax may be tolerated,

d
but k a >> kmax must always signal uselessness in a turbulence computation.
Other measures of mean length scales for the turbulent field, such as
those of Pao and Taylor (see, e.g., Leslie 1973) may be used to charac-
terize turbulent activity, but the Kolmogoroff scale is the one most
widely accepted and we shall use it hereafter.

The dissipation wave number may be adjusted empirically, for a
given set of initial Fourier coefficients, by raising <9 and M wntil
the computed kd remains no greater than kmax’ We consider here only the
case V ="M (unit magnetic Prandtl number).

In the initial set of dissipative cases, there are six runs

(A3 through A8, see Table 2), having B, = 0 and B, = 1 for ¥ =M = 0.005,

0 0

0.01 and 0.02, The following characteristics were common to these six runs:
kmax = 32, time step = (256)-1, total number of time steps = 1280, ini-
tial Fourier coefficients: set A. The temporal evolution of the variables
E, P, A, and R, for the runs with VY =7 = 0.0l are shown in Figures 13
and 14. (Qualitatively similar behavior was observed for V =7 = 0.005

and 0.02, the decay times simply increased and decreased, respectively.)

When BO = 0, roughly twice as much magnetic as kinetic energy

develops; when B 1, the ratio remains approximately unity. E, P, A

0

all monotonically decay for B, = 0, but when B, = 1, A actually increases

0 0

at times, but overall decays.
To measure anisotropy in the‘i spectrum, a set of angles were

defined for each Fourier-decomposable field.

be= e [ F KyIQENI®/F RlE] ") (12)



Table 2.

Set A:

Set B:

Run Parameters

16
16
32
32
32

32
32
16
16
16
16
16
16
16
16
16
16
16
16

.005
.005
.01
.01
.02
.02
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01

.0025

HFORROFHOFOHO

=
NN
(ool ol

o\

1/k
1/2

oD
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Total # of
Time Step Size Time Steps
1/256 12800
1/256 12800
1/256 1280
1/256 1280
1/256 1280
1/256 1280
1/256 1280
1/256 1280
'1/128 640
1/128 640
1/128 640
1/128 640
1/128 6L0
1/128 640
1/256 1280
1/512 2560
1/1024 5120
1/2048 10240
1/128 3200
1/128 3200

initial equipartition of energy in Fourier modes such that
9 = k2 = 25; Fourier modes outside the annulus initially set

to zero.,

initial equipartition of kinetic energy in Fourier modes such
that 5= k2 =8, and magnetic such that 10 k2 13; Fourier
modes outside these annuli initially set to zero.

2

2

Initial rms values of B® and v~ were both equal to one for Sets A

and B.
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where Q is any one of the fields ’Y’, Vﬂ w , a, ﬁ, or j. For a gispec—
trum purely normal to ﬁ R GCQis 90°, and for an isotropic spectrum, L45°.

Temporal evolution of the angles for Bo = 0 and B0 = 1 is illus-
trated, for runs A5 and A6, in Figures 15 and 16, which both refer to
YV =M =0.01. For B, = 0, the angles roam unsystematically about 450,
indicating isotropic development. The anisotropy in Figure 16, for
BO = 1, is typical. Notice that the angles tend to increase in the fol-
lowing order: B.,.(BV( O,, and @ a< QB < 93’ the anisotropy is most
pronounced at the shorter wavelengths. Also, when we consider VY = N = 0.005
and 0.02 as well, we see that the degree of anisotropy tends to decrease
with increasing P and N . The results are summarized in Table 3, which
displays averages of the O Q for YV = M = 0.005, 0.01, and 0.02 be-
tween times 1.5 and 5.0.

Also calculated were the dissipation wave number kd (eq. (11)),
mean square vorticity G2 ==ZEE \ao(i,t)\z, and mean square current
J = Zi 'j(l?,t)l 2; the latter two quantities are required to. evaluate
eq. (11). The temporal evolution of § and J for runs A5 and A6
(v =m = 0.01) is shown in Figure 17. Table 4 displays the maximum
values of kd’ §2 , and J for the six runs A3 through A8. In Table 4, it
is apparent that the maximum dissipation wave number decreases with in-
creasing 7 and 4\ , a8 do the maxima of J and §2 . The presence of a
finite BO also apparently enforces a more nearly equal partition of dis-
sipation betweén S and J.

From the foregoing results, it is clear that the maximum k

d

which will fit inside the resolution kma.x = 32 occurs for runs A5, A6,
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Table 3.

Vo1

.005

.02

Average Angles between t = 1.5 and 5.0

0
L
53.4

51.6

L8.T

418.5

46.5

54.8

50.8

le

64,0

60.5

53.6

52

[#)
—q‘cp
L]

wvi

6L4.0

56.6
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- Table 4. Maximu Values of k and J for runs A3 through A8

d’

Max Max Max
Run y,n EQ. _fﬂi S g
A3 .005 0 k9.6 25.0 51.8
Al .005 1 48.3 30.6 38.0
AS .01 0 32.2 . 17.0 39.0
A6 .0l 1 31l.4 21,4 27.8
AT .02 0 21.0 17.0 26.8

A8 .02 1 20.8 17.0 20.3
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where VY =N = 0.01., To test the effect of lowering the resolution

below k __ on the results of runs A5 and A6, runs A9 and AlO0 were made
with identical parameters to A5 and A6, but with k = 16. (We also
showed that halving kmax allowed doubling the time step.) In runs A9 and
A10, the time histories of the angles 6 Q and the quantities kd,ﬂ ,

and J were essentially the same as those for A5 and A6. This insensitivity
to halving the spatial resolution, so that kmax falls well inside k a?
gives us some confidence in the validity of the results of such runs at

the higher Reynolds numbers, such as runs A3 and Al, where kma.x lies out-
side k ar

We whould remark at this point on the question of the anisotropy
of the non-dissipative runs. In Figure 18, we display the evolution of
the angles O v and 9B for a non-dissipative run Bl and a dissipative
run B2 (¥ =M = 0.0025). Both runs have the same initial Fourier coef-

s s . 2 _ 2 _ 2
ficients with kl =5, 1«:2 =9, k3

= 10, kh2 = 13; B, = E_ for both runs,
and the non-vanishing Fourier coefficignts have equal amplitudes within
their respective -annuli, and random phases. (See Table 2.)

Referring to Figure 18, we can see that for Bl, although 2] v
and eB initially rise to about 51° and 55° respectively, they subse-~
guently fall and oscillate about 45°, Run B2, however, shows ev and

e g rising to maxima of approximately 66° and 68°, respectively, and
then oscillating near those values. At the beginning of the dissipation~

less run, there apparently is a tendency toward anisotropy which

cannot maintain itself; the ¥V = 7N = 0.0025 run remains strongly



56

%
(DEGREES)
0 5 1] 15 20 25
TIME
70 "
60 —
9V
(DEGREES) =
50
- 40 o i ) L B |
0 5 10 15 20 25
TIME

( Figure 18. The angles ev and SB for runs Bl (Bo =1, v=n= 0) and B2

(13o =1, v =n = 0.0025).
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anisotropic, however. This behavior, involving the necessity of small

but finite dissipation in the maintenance of anisotropy, corresponds, to

a simple physical effect which is discussed in Chapter 10. It is our
belief that no long~time anisotropy is to be expected without the presence
of dissipation, and (for reasons given in Chapter 10) that the smaller
the dissipation coefficients, the greater the degree of anisotropy is
likely to be. A computation which could afford the spatial resolution to
resolve significantly higher values of kd than we can resolve would see

proportionately higher degrees of anisotropy.



IX. EFFECTS OF VARIABLE MEAN FIELD STPENGTH

Having discussed the effects of the spatial resolution kmax and
the dissipation coefficients ¥ and 7 on the results, we pass to a
consideration of the effects of varying the mean field BO. Set A is
chosen for the initial Fourier coefficients, and k = 16. Thus the runs

max

in this section are initially similar to A9 and AlO, except that B, takes

0
on the values 1/16, 1/8, 1/4, 1/2, 2, 4, 8, and 16. These values corres-
pond to runs All through Al8, respectively. (Parameters for all runs
considered appear in Table 2.)

Rather than display a multitude of graphs similar to those pre-
sented for runs A9 and A10, we display mainly graphs of time averaged
angles 6 Q In Figure 19, we show e Q’ averaged over times 1.5 to 5.0,
as functions of BO' In Figure 20, we show, as functions of BO, the maximum

value of k., the time when this maximum occurs, the maximum enstrophy S .

d’

and the maximuy mean square current J.
Figure 19 and 20 illustrate a number of interesting effects.

First, there is anisotropy which develops as BO increases from zero.

Second, the effect saturates: beyond a value of B, of about 2, further

0

increase in BO results in no further increase in anisotropy, for these
values of kmax’ vV , and ¥ . Third, the values of S2 and J approach
each other as BO increases, reflecting a progressively more Alfvén-wave-

like behavior at the dissipation scales. The anisotropy continued to be

58



59

o - '
* € Yjdudaals P81y uesw Jo uorqouny v s® Adoxjosthe Jo saxnseoy ‘6T °Ind1g

YA 61 9 o
OV 1 1 1 [ S O T | _ “w.n.u.v
5 2F
BS - "
005
69 —L ¢z5
. . -
32 g1 8 3
&V | S | 1 1 t 1 ” @ﬁ.
. ch
%] 9@
L ———— 85
. -
ag k -



60

g JO uofgouny ® s®

JUSIIMD 21BNbS UBAW UMWIXEW (P mom JO uoTrqoumy ® 8B hp«oqaﬁo> saenbs

ugaul szaﬂxds (° m@x xsul Jo aurl (q mom JO uot3ouny w 8% vx unuixsy (® °0g 2anStg

Bz o1 ‘@ 8 oz g1 9 o
L1l 1 1 AN a1 _r_w_..__ 30
- !
—— L 4z i _.x
o ro
oy cg”
-y ,
Jl M_M - NE_L-
) ar @ g1
6z a1 °9 5 a2 ol 9 o
L1l 11 | I I | a1 b._.ﬂ._.L_ 27
f -
N\ - -
.. /&T.GN Qbax
1xcmm. | xoy
i w
5 BEe Q) e




61

most pronounced at the highest wave numbers: O, and Qj were larger
than‘the other angles.

A physical feeling for the configuration-space manifestations
of the anisotropy may be obtained from Figure 21. There, contour plots
are given for the vortiecity ¢ (x,t) and current j(x,t) at various times

with a zero and a non-zero value of B,. For the plot in which B, = 2

0

it is clear that, at time t = 2,0, the vorticity and current contours

0

have elongated in the direction of the mean field, reminiscent of the
elongations, that were reported in the ZETA and Macrotor devices. 1In
addition, Figure 22 shows the difference in spectral development for dis-
sipative runs with and without a mean field. (In this figure it must be
kept in mind that the spectra are slightly elongated vertically, due to
printer characteristics; small tic marks signify 45°, -45°, 135° and

-135°.)
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X. DISCUSSION

The linearized MHD equations in two and three dimensions result

from discarding the right hand sides of

13

W - B .yB-vviV= R VE-VVV-TP

n

FX; °
and
28 ~8,.vV-7V8= B-vi-V-VB
S+ (1k)

-
subject to V¥ ¥ =0 = V-B. Temporarily ignoring the dissipation and

pressure gradient, (7) and (8) can alternately be added and subtracted to

yield
3L _g,-vyL =LC-vR
orT
. oL (15)
i& + Bo'vn = R.VL
o+

where R=B -VvandL=8+7 Irf \§0| is assumed large with respect to
\T) ana ﬁ‘l, then the nonlinear terms on the right hand sides in (9) can
be ignored in a zeroth order approximation; then 'l?is simply a super-

position of right~travelling (Alfvén) waves and i is a superposition of

left-travelling waves:

ol

= = R(R) exPlik-(%-Bot)]
k (16)

U= =T@) exp[iR(F+81]
k

6L
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-J

- - - -—
where ( k) = R (-k), (k) = £.*(-k). Here, the frequency of the waves is

9

e (k) = k-B..
0

Assuming that eqs. (16) are a satisfactory zeroth order solu~
tion to egs. (13) and (1k4), we may inquire, within a perturbation-
theoretic framework, about the effects of directionality on the modal
transfer. We may substitute the linear solutions (16) into the right
hand sides of egqs. (15) and proceéd iteratively to calculate the first
nonlinear correction to the linear fields. Inspection of (15) immediately
shows that there is no net coupling between the right-travelling waves
with each other or the left travelling waves with each other. The only
non-zero couplings are between right and left travelling waves.

To resonate effectively with a third, initially-unexcited
Fourier mode, there are matching conditions on both frequency and wave~
number which must be met. These are very restrictive when it is taken
into consideration that one interdcting wave must be right travelling
and the other left travelling. If the two waves have wavenumbers El’

-—h . .
k2, the conditions that they be able to excite a third wave resonantly

l-

ith ber & Tt (R#Bt) =%, -(%4B t) + K, (%-Bt)
with wavenumber k3 are that k3 —-Ot =k, (x Ot kye\x-Byt), or
k3= K. -+ kq_ ( )
T L) = W (k) — Wk,

- -t -
Since ¢o(k) ='E'BO, egs. (17) have a solution only if either hJ(kl) =0

-
has zero component along BO'

Thus, a three-wave resonant interaction can result in the excitation of

-t - -t
or aJ(kz) = 0, so that either k; or k,

a wave with a larger value of Ikyl than that of either of the other

two, but never with a larger value of Ikxl . It is clear that excitations
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may readily transfer energy by this process in the perpendicular direc-
tion in'i space but not in the parallel one.

An initially’isotropic distribution in k space elongates in the
perpendicular direction until something stops the migration to larger

lkyl . In the present computation, that is either k_, or, for the trun-

d
cated non-dissipative model, kmax’ In the latter case, eventual isotro-
pization occurs as a consequence of higher order processes. In the
presence of finite dissipative decay, the anisotropy persists, as in
Figure 18.

The above-described mechanism seems to be responsible for the
observed anisotropy of magnetic fluctuations in toroidal devices. For a :

given level of excitations, k_, increases as 1/ and 7 decrease, so the

d
effect should_be mést pronounced at high Reynolds numbers. The indepen-
dence of further increases in BO’ beyond a certain modest level, must
simply mean that transfer in the parallel'E-space direction has been
effectively frozen relative to the transfer perpendicular to'§ beyond a
value of BO Just a few times the mean fluctuating field strength.

The natural directions into which these investigations can be
taken are to some degree obvious. UFirst, considerably higher Reynolds
numbers, with their necessarily higher spatial resolution, could be in-
vestigated. Second, spatially inhomogeneous vacuum fields could be added
to ascertain the effects of mean field curvature on the anisotropy.
Finally, the effects of the mean fields on the small scales need to be
ascertained: how does B, affect current filamentation, x-point behavior,

0

and magnetic re-connection?



APPENDIX A

ABSOLUTE EQUILIBRIUM ENSEMBLE THEORY

The equations of two-dimensional MHD flow in the presence of a

mean magnetic field in the x direction are, again,

-
%—"'—:-=V«rwi + VUL + 8,8, + VixVa (A1)
bé = V¥ xVa +mV'a + 8,9 (A2)

Here, all dependent variables are functions of x and y, and the vector
euantities in Al and A2 are in the z direction, e.g., 2= a?. 7V and
N are the inverses of the fluid and magnetic Reynolds numbers, res-
pectively. Also, W = (/9 x, 9/dy) = (9x, dy) here.

In the system where the vorticity e (= -V 2"]") and vector
potential a (where the current j = - Y 2a.) are periodiec in a two~
dimensional box of side length 2 TI , there exist certain quantities which
remain constant during the time evolution of the fields ¢ and a (ac~
cording to Al and A2). To determine these constants of motion we define

the spatial average of a quantity q to be [q] where

Lqa] = (zm*//%d"")' (43)

Since the fields ¢ and a, as well as " and j and the velocity
-
v= -2 x VY and magnetic fields B = -2 x Y/ a are periodic over the

box of side length 2 7T , then the spatial average satisfies the following

67
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[4] = [g+VR + 3] : (Ab)

where R and.§ are sums and products of the periodic fields and their
derivatives. The [ VR] and [ V-8] terms represent differences on
parallel boundaries and are zero for periodic boundary conditions. They
arise, for example, in integration by parts.

Using the relations Al through Ab4 it can be shown (after much

mathematical manipulation) that the following equations hold.

A28 = -[vw? +747] (15)
=[aa = - (v+) ][]

o%[-ia’-] = - [8] + B.[a7] (aT)

The quantity [%-(52 + §2)] = E, is the total energy,*% [8.&3] = P, is
the "eross-helicity" and [%-az] = A is one half the mean square vector
potential. (These are the "rugged" invariants of 2-D MHD flow; for fur-
ther discussion, please see Kraichnan and Montgomery, 1980. For a dis-
cussion of 3-D rugged invariants, see Matthaeus and Goldstein, 1982.)

It is apparent from A5, A6, and AT that if our periodic system
is inviscid (i.e., W =7 = 0) then E and P are constants of the motion.
Furthermore, if fhere is also no mean magnetic field (B0 = 0), then A

is also a constant of the motion.: When the periodic fields are repre-

sented by truncated Fourier expansions, an interesting statistical éystem
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results. Using the expansions

WLk t) = Z w (k)1 exp(ik-R) (18)
o (%,4) = = a(k,h exp(4R-K) (49)
K

The equations of motion Al and A2 can be transformed to k-space forms,

(similar to those of Kraichnan and Montgomery (1980)):

O RY = .2, MG [w@p g -4 7e]

p-l-%-
VK (R 4 Ak Bo fCR) (10

2‘.(&') =-'5-_=;‘ M, (zg)p)[g'(f)wc,b‘)- ;’cp‘)wcg‘)]
P+% . . (A11)
..'ylkzgcm + A ky By (i)

where
M Z,B = $2-RxB)(p?-¢2)
Mo (i“a) = Ji-é‘:(%x )j,‘o'-;-"ll P-:g 2
“and g'LTc’): K2 a cik)

It is obvious from Al0 and All that & o (k)/9ew (k) = 0 and
Q a(k)/d alk) = 0. The system thus satisfies a "detailed Liouville
Theorem" when V = M = 0. Also, Fyfe and Montgomery (1976a) have shown

that the various inviscid constants of the motion E, P, and A (if B, = 0)

0

are still conserved for a truncated system if the system equations and
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expansions are properly de-aliased, i.e., if only E such that the con-
dition k . £ |kl & k . 15 constantly adhered to.

This system can be considered a quasi-closed statistical sys~
tem (particularly the numerical modelling of such a system, since the
model system is interacting weakly with the "outside" through round-off
error, numerical approximation error, etc.). As discussed by Kraichnan
(1975), Fyfe, et al., (1976 a & b) and Kraichnan and Montgomery (1980),
the statistical properties of the model system can be described by a

canonical distribution function, D,
D = C exp(~aE -gP-%A) (A12)

where C is a normalizing constant and o , @ and ¥ are "inverse tem-

peratures". TFor the case BO # 0, the term YA does not appear in the

exponent of Al2.

In the truncated representation, the constants of the mction

appear as
— 2R + PR eR)
E= =% % kol = 21" i
= X2 Z [M%k) y
A 3 Z g /k

Thus the canonical distribution D in (A12) is a distribution in a phase
space whose dimensions correspond to the independent real and imaginary
parts of the Fourier coefficients o (k) and (). The normalizing coef-

ficient C in (Al12) is determined by requiring

/Oa\/= l (ah)
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where dV is the hypervolume

JdV = 1E<T d W, (&) o (k) ol g i) ol ;i)

where the product, again, is over the independent coefficients (i.e., if
X is ineluded, X is not, since oo(-l-:..) = w*(-i'), etec.); also,
w (k) T _(F) + 1w (%),

Rather than explicitly performing the integration (All) here
(it is essentially the integration of a gaussian distribution) we merely

reproduce the result of Fyfe, et al. (1976a):
C = T C; (A15)
where

Ca = (&% +dysk* ~ B23)

(A15a)
k ™ K9

As Fyfe, et al (1976a) show, this form of CE allows for the calculation
of expectation values of such quantities as Bz(f) = lﬁ(f)lg = kzaz(k) =

jz(k)/k2 in the following manner:

{ B* (%)) =/B’n':) DdV

w .
k’l
- 'olallﬁ)cijzlé)

2 -1
= (& + ¥/~ @ a)
Similarly, the expectation values of the other individual modal contribu-

tions to E, P, and A (as given in Al3) can be determined:
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VDD = (a4 ¥/i2) (22,0 - 8Y)7

v - (ALT)
< B(i)-Vé§)> = —_g_ (,(2_._0_!_{ _ p"z/‘*) {

®?

Using Al3, Al6 and Al7 yields the following expressions which relate the

expectation values of E, P, and A to the inverse temperatures & , (3

and Y :

{E)

. (2 + ¥/K?)
> {r (& +d¥/u* ~3%y)

{f2

1 - p/a
T % (R + a¥/k* - @8 %4) (A18)

- R/ k>
(AY = 2% Tlravin @7

(sum over all available modes.) The expectation values for the kinetic

and magnetic energies can also be given:

o +¥/k*
k(A +dv/k?- %)

<EVD

L
2

(A19)

- L ol
<Eg) = T T WEravicc=677)

Many interesting relationships can be derived from Al8 and Al9.

For example, consider the following:

a (EY + BLP) +¥<LA)

=+ 2 2a? + d ¥/ -0 + ¥I P
e 1 I3 (42 -+ dx/kz_ﬁz/q)

:%_1 = N

(A20)
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where N is the total number of modes (both dependent and independent) in
the range k ., £ X\ % k. Thus, the distribution function D, as
min max

given in Al2, when evaluated at the expectation values of E, P, and A can

be written:

0

)]

C exp(-N)

exp [ F Lals® +a¥/s-piy) ¥ RO -N] (A21)

In A21 the sums are over only the independent modes, i.e., only over half

the total number of k's., The inverse temperatures ol , p and ¥ appearing

in (A21) are related to the expectation values of E, P, and A through A18.
Suppose now that we wrote the distribution Al2 with the values

of E, P, and A which we know to be constant (i.e., constants of the

motion) for our model system. Call these constant values of E, P, and A

E, §, and A, respectively. Then the distribution Al12 can be written

,

D = Qex’of-ug—@ﬁ-b’ﬁ]
= exP [LC-aE-pf-54] (A22)
Since this is the value of the distribution function of a system in equi-
librium we expect the system to be in a state of maximum probability.
Thus, we require D' in A22 to be at a maximum value for a given set of
constants of the motion E, P, and A. Since the free parameters in A22
are ol , @ and ¥ , we require that they be chosen so that D' is a
maximum. This is the same as requiring that the argument of the exponen-

tial in A22 be a minimum with respect to o , @ , and Y ; that is, the
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partial derivatives (with respect to ol , e - ¥ ) of the argument of the

exponential must be zero; which leads to the following relations:

= _ D - L 2R+ ¥/k*

E= 35 MC =2 % (o +ol¥/k2 - O¥4)

P = & = 2 X _=6A

P = E) A C 2 K (X*tav/k-p7/4) (A23)
A = > = 2 = /K%

A= Sy &C 2 T (KT +av/k*-g%4)

Here the sums are again over all allowable modes. Comparing A23 with A18,
we see that the inverse temperatures & , p , and ¥ determined from
the expectation values of E, P, and A are just those values of o , e »
and ¥ corresponding to the most probable equilibrium state (or states),
a result which is consistent with canonical distribution theory.

A useful quantity in the absolute equilibrium ensemble theory
of two dimensional MHD systems is R, the ratio between the magnetic and
kinetic energies: R = <EB> /<Ev> . Since the total energy is

<E) = <EB) + <Ev> ’<EB> and <E‘>are related to <E> through R as

follows:

Eed = o £
<EVD= g LED

These relations can be used with Al8 and A19 to produce the following

(aA2k)

relations among {E) , (P) . <A) » Rand £ , @ , and ¥ (for some

economy of notation E, 5, and A will be utilized in place of <E> . <P>

and <A> ):

AE *+ BP+Y¥A =N (125)
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=/1-R A=
o E —-7-) A =0 (126)

*& E. _
T U B4 )

Plé

(A27)

here N is, again, the total number of k's in the range kmi & \i\ LK

n max
The set of equations A25, A26 and A27 can be solved for the in-

verse temperatures o , @ ,» and Y in terms of the constants E, -15, 2

and N, and the parameter R. The result is

= NCI+R) (2L E 2)

_ _ o2 - (428)
GB=~wpC1tr) (E°R2

Yy = NCU-RY(2LA2)

where Z, the common factor in the denominators of A28, is
z = )= L P LI+R) 2
RL g (429)

The expressions in A28 can also be inverted to give E, P, and A in terms

of o , e > Y s N, R. These expressions are, for completenéés,

= N (H+R) (2d )

my

- (A30)
~ne (o s)”!

o/
"

-1
= NU-RY(2Y S)
where
| - &
S = ‘Iol
The results up to this point have primarily focused on the case

when B, = 0.

0 When B # 0, A is no longer a constant of the motion, so



76

that the term YA no longer appears in the argument of the distribution
function. Thus, all the formulas derived so far reduce to those for

B0 # 0, i.e., two constants of the motion by setting YA = 0 wherever

it appears. Doing this in A28 yields the equilibrium inverse temperatures

o/ and @ when B0 # 0, as well as a requirement on the ratio R:

R =]
-, 27"
o = %’- [l-q(p/z)] (A31)
g = -4nP [E*-4pT"

Also, when B0 # 0, it is clear from Al6 and Al7 that when terms con-
taining ¥ are removed from the individual modal expectation values,
these values are all equal. Thus, the expected energy and cross-~helicity
spectra are equi-partitioned for B, # 0.

Now to calculate the equilibrium entropy. Using the classical

definition, we have

§= - Dwp AV

4§+@?+¥ﬁ—/¢nc (A32)

where A12, Allk and Al5 have been utilized, and the multiplicative Boltzmann
constant has been omitted. If we require the equilibrium entropy to be
an extremum with respect to & , 8 , and ¥ we get the relations A23.
(The extremum is, in fact, a minimum; Khinchin, 1949, discusses this
procedure for the case when only E = const.)

These equations, however, were seen to result from requiring

the value of the distribution function to be a maximum when the system



T

was in an equilibrium state. Indeed, Liouville's Theorem tells us that
as the system point moves about in phase space, this value will remain
constant. Thus, the syétem stays in those areas of its phase space where
the density of states, and, hence, the entropy is greatest.

An interesting formal parsmeterization of the entropy in terms
of the ratio between the magnetic and kinetic energies of the system can
be effected through the use of o (R), @ (R) and X(R.). It must be
stressed, however, that this parameterization has no inherent physical
meaning because the entropy is a time averaged quantity while the ratio R
is a temporally evolving quantity which fluctuates about some average
value.

When the expressions for the inverse temperatures ol , e
and ¥ as given in (A28) are placed in the expression for the entropy
(A32) through the use of (Al5) and (A20) they yield an expression for the

expected equilibrium value of the entropy in terms of Ry

SecrRY= N —=4nC

(A33)
= N - 2&; L Cp
where
cn o cELR*(I4RY" + C3U-RYR® - ca (14R)Y ]
“ T2 KY [R=CyC1+R)*]*
and

!

"

2

C'=5§ >y €= =3 ) c3=iik=

g]]
»

and the sum is over the independent '1? modes only.
The inverse temperatures ol , @ > and ¥ can now be found by

minimizing S(R), i.e., by finding the real value of R so that
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d. ) = (A3h)
25 (s« Yy =0

This is, of course equivalent to solving the equations (A23) (which do
not contain R explicitly). The advantage of using (A33) is that it is

a function of a single variable R. This allows S(R) to be quickly
plotted by a computer graphics routine, revealing the approximate loca-
tion of the value of R which minimizes the equilibrium enpropy. If this
value is not sufficiently accurate, it can be used as a very accurate
initial value for use in an algorithm which numerically solves for a
more accurate value. Once a suitably accurate value of R such that (A3Y4)
is solved sufficiently well, o (R), @ (R) and ¥ (R) can be determined.
Then, by utilizing (A16) and (A1l7), theoretical values of the modal expec~
tation values- of the kinetic and magnetic energies can be calculated and
compared with the numerically determined values (as is done in several
of the directionally averaged modal spectra graphs presented in this
paper).

The expression for the entropy given by (A33) is a rather com-
plicated function of R. It would be nice to fully analyze the algebraic
structure of the various parts of (A33) in order to fully characterize
the solutions to (A34). To do this completely is beyond the scope of the
present work. A simpler case of the general expression (A33) can be con-
sidered here, and this should hopefuily illuminate general aspects of
the complete solution.

Consider then the case where the cross-helicity P= 0, i.e.,

C2 = 0. The entropy in this case is
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S (R)= lm[ ”'0] szu[l-rR*Cs("R)] (A35)

W KT,

Since the values of R are always non-negative, the first two terms in
(A35) always remain real. The third term, however, becomes imaginary

whenever R is such that
1+R + C3(1-RYL O

which leads to the conditions for S(R) to be real:

C3 +/
R < = (C3>1) (A36)
R > -1 1)

= C C<& (A37)

Since R % 0, (A37) is always satisfied and we need not concern ourselves

with cases when C'3 &£ 1. TFor cases where C3 >1,i.e., for k2 £ %, we

see that 03 = E/A ,(kz = 1), puts a limit on the maximum value R can be
before the entropy gains an imaginary part. Thus, for the case P = 0,

we must have

E +4
o< RL -4 (A38)

This limits us to only a bounded range of R to search through graphically
for the minimum of S(R) (when P = 0). Since E Y74 in most of the cases
studied herein (as determined.by the initial conditions), the range of R
t0 be considered is not very great.

For the case P = 0, the condition (A34) takes the form

(c, = E/Akz)

3
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- =1
E. (1-R) _
? D T <,+m) = =N (A39)

(sum over all f modes. )

For the general case when P # 0, it is expected the qualitative
features discussed in the P = 0 case remain. There should be a minimum
value of R above which the equilibrium value of R will not lie. It is
also expected that there will be only one real minimum in the allowed
range of R. This has proved true for graphical analysis of all the

runs specifically considered herein.



APPENDIX B

RANDOMNESS AND ERGODICITY IN MHD MODEL SYSTEMS

In this appendix, some interesting topics, whose systematic
investigation is beyond the scope of the present work, will be touched
upon briefly. Speci®ically, these topics are the extent to which random-
ness and ergodicity are to be found in two-dimensional models of MHD
flows.

Kells and Orszag (1978) have investigated randommess in two
dimensional models of inviscid Navier-Stokes turbulence and found that the
behavior of model systems was random as long as the number of Fourier
modes was large enough (& 20) to insure that every mode was involved in
non-trivial non-linear interactions. Here, the number of modes (716) is
sufficiently high, so that the problem of too low an order is avoided.

In addition, the absolute equilibrium (canonical) ensemble formulsation
presupposes the modal amplitudes to be random variables, with a particu-
lar distribution function. The fact that the numericai results match so
well with the canonical ensemble predictions is again a strong indication
that the assumption of randomness is a good one.

A qualitative appreciation of the randomness present in the
model system used in this work can be seen in Figures 23 and 24. In
these figures the real part of a complex mode is plotted versus its
imaginary part, as a function of time; i.e., points corresponding to 0.5

units of time have been connected by straight line segments to show the
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time behavior of the mode<i = (0,1). Thus, the trajectories of both
"*"(E,O) and A(E) for E = (0,1) are shown for 50 units of time. The
starting points (when distinguishabie) have been denoted by an "x". These
modes are part of an inviscid run which had E = 1.0163, P = .0041Llk,

A = ,01376 and all the kinetic and magnetic modes initially equiparti-
tioned with random phases; time step size = 1/256 total number of time
steps = 12800, and K oox = 16. For Figure 23, By = 0; for Figure 2k,

Bo = 1.0, The phase point appears to be taking a random walk through
phase space,

We may also inquire as to the amount or randomness during the
evolution of & dissipative case. Again, & qualitative feel can be
achieved by considering Figures 25 through 32, which correspond to runs
A9 (BO = Q) and Al15 (B0 = 2.0; see Table 2 for more details). Although
these trajectories are plotted for only 5 time units, the randomness is
again apparent.

The ergodicity of the two dimensionel system, i.e., the equiva-
lence of time and ensemble averages, again seems to be a good assumption.
This is clear from Figures 9 through 12, where a comparison between time
and ensemble averages is made. There is one point here that needs further
comment , however,

This point is that the time averages, although close to the
ensemble averages, differ slightly from them, in that the time averages
appear to contain "spikes". These spikes may arise because not enough

time has been allowed for the time averaging (the averages were taken
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over the last 11520 time steps, i.e., the last 90% of the corresponding
inviseid runs). The spikes may also have another origin, which we will
now comment on.

In addition to recording the time averages of the directionally
averaged magnetic and kinetic energy spectra (Figures 9 through 12), the
means and standard deviations of all the individual complex modes
,j(i) = k2 a.(l-;) and oo (k) = k2 ""'(1?) were also determined over the same
time (the last 11520 time steps). In Figures 33 and 34, the relative mag-
nitudes of -the means and standard deviations of the modes associated with
run Al are presented in terms of ersatz three-dimensional plofcs. In
Figure 33 the averages of w(ﬁ) and j(l'\;) are represented by the magnitudes

"\;(:1?)-1 2 - \;(—E)\ 2/k2 and ‘-;i_(_l‘{-)lz = H—(_E-)] /k2, respectively. The
standard deviations for run Al are similarly represented in Figure 3k.
The means and standard deviations of run A2 (BO = 1) are similarly shown
in Figures 35 and 36. (In these figures, the empty mode (0,0) appears in
the center of the plot, and the other modes can be found by counting
the characters from this location: positive to the right and up, nega-
tive to the left and down. The characters are symmetric upon reflection
through (0,0) since 13(®)| = |3(®)] , ete.)

Several observations can be drawn from these figures. First,
there is a strong correlation between the spikes in Figures 9 through 12
and the largest rela.ti.ve means in Figures 33 and 35. (The correspondence
is: Figure 9 to Figure 33a, Figure 10 to Figure 33b, Figure 11 to
Figure 35a and Figure 12 to 35b.) The specific values of some of these

means and standard deviations are given in Table 5.



FOURTIER COCFFICIENT MAGNITUDES

INTENSITY LEVELS 1,. Lo lé " L r=+=D%SLOT0HE
CV{KRx, Ky ) ##2> TIME= 0. 115E+05 <B(Kx, Ky)#u2>
/. \

@ .

&)

o -

. +: i
> > . . ee
+. .. I N

- 0

0

@

\ /

Figure 33.- Relative magnitude of mean values of modal coefficients for run
Al (Bo =0, u=v=20).

94



FOURIER -COEFFIUIENT MAGNITURES

INTENSITY

CVKx, Ky ) #42>

YA
SAELTEASLALS
LEAALSLBP AN SAEA
ADVALAS LA LN ANL LAY S
YA YRS Y Y YA YA YAy AN AL
SIUAAGLLAG LN AL S EL
GALALLLL S RS LS SLS LA AS A
L AALUSLLAB LS E LA L AL AN
PEURAS LA AS LU ALATSGUSE p 458
I A A A3 A Ay A A - A S e
PRl -y A A A AT AN A S 2y A A
ARV YA A AR R A W A A A A A
AARERZASAEAS AL SORS AU LU LLSS
N ALA VLN LSS LRSS LASEE L LAULS
ASUESLAUSUAA LT IO SUSSUSEUS AL
SURAEHELUASASU L= =LA USUA T SSRULS
AATRASBUABEUSOLOL I UNLAT AL ES A%
SLANL S ERAL SSRGS LA A FUALSLDY
YN N AR AYAL I RS YA AV A A
PUSSEASAIIAAL LD LTINS LA LBSAS AL
ARy AL 3 el A Ay R Ay Ay A Ay Ay R Ay A iy A
JEIL Yol VK- Ay Ay A Ay T 3D Ay AT
PAD A AL VA YN YA i oy By oy A
SAST AT UTT LS RASSLAS L AL LALLL
LS LLSLI ST S SLLNA L L LL AL LS
PSS WA YA TN SR TN Y AN
SULALT LS LI LLAT LTS
SAAALLRLRLLL S LU AL ST
ASUEDLNEDASLASUL
YAV AL YA
A

.
fnla

Figure 34.- Relative magnitude of standard deviations of modal coefficients for
run Al (Bo =0, u=v=0),
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Figure 35.- Relative magnitude of mean values of modal coefficients for run
A2 (Bo =1, pu=v=20).
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Figure 36.~ Relative magnitude of standard deviations of modal coefficients for

run A2 (Bo =1, u=v =0).
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Table 5. Comparison of means and standard deviations for some modes of
runs Al and A2, computed for last 11520 time steps. [Format: (mean +

std. dev. of real part, mean + std. dev. of imaginary part)]

Al (B,=0) A2 (By=1)
w(0,1) (0.014 + .030, 0.005 + .028) (0.032 + .00k, ~.004 + .013)
w(0,2) (0.006 * .00, 0.015 *+ .O4T) (-.033 * .ohz ~.003 + .033)
w(0,3) (0.123 ¥ .060, -.115 * .10T) (0.134 ¥ .102, -.254% *+ .07T0)
w(0,h) (=.154 + .113, 0.173 * .102) (-.258 * .052, 0.125 + .072)
w(0,5) (-.248 + .120, -.268 + .139) (-.427 + .110, -.3LL4 + ,076)
w(1,0) (-.021 + .021, -.032 + ,015) (-.001 + .023, -.003 + ,034)
w(2,0) (0.013 + .048, -.008 + .052) (-.001 + .065, -.002 + .0k48)
w(3,0) (-.029 + .076, 0.032 + .070) (0.000 * .119, 0.002 + .108)
w(k4,0) (-.028 + .119, 0.002 + ,093) (0.003 + .103, -.003 + .098)
w(5,0) (-.006 + .125, -.054 + ,130) (0.009 + .130, 0.000 + .12T)
j(o,1) (-.022 + .027, 0.032 + ,008) (0.000 + .001, 0.001 + .002)
3(0,2) (-.009 + .061, 0.003 + ,09L4) (-.013 + ,008, ~.010 + .006)
J(0,3) (-.009 + .085, 0.027 + .105) (-.1%0 + .025, -.321 + .021)
J(o,h) (~.005 + ,106, 0,000 * .103) (-.266 + .042, -.375 + .051)
3(0,5) (0.019 + .133, 0.00k + .139) (-.239 + .077, -.145 + .060)
3(1,0) (-.064 + ,034, ~.065 + ,039) (-.001 #+ .033, -.001 + .022)
j(2,0) (-.011 + .054, ~.002 + ,088) (0.001L + .048, -.001 + .065)
3(3,0) (-.033 + .060, 0.055 + ,102) (-.001 + .107, -.003 + .117)
3(4,0) (-.030 #+ .131, -.004 + .090) (0.00k + .097, -.00k + .105)
3(5,0) (-.015 * .131, -.029 + .108) (0.005 * .127, 0.001 * .134)
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Second, if we look at Figures 34 and 36, which represent the
standard deviations, or fluctuations of the kinetic and magnetic modes,
we see no apparent anisotropy for thése inviscid runs, This is true for
the run Al (BO = 0) as well as A2 (B0 = 1); this lack of anisotropy was
also seen in Figure 18, for the inviscid runs Bl and B2.

These spikes and associated relatively large and stable mean
values were also seen in numerous other inviscid runs (so that Al and A2
may be taken as representative of a general type of phenomenon). The
question is, where do they come from? One answer is that, perhaps the
averaging times have not been long enough. Another is that the system of
inviscid MHD modal equations possesses a fixed point, or attractor, about
which the system point is orbiting in phase space. A third answer (per-
haps related to the second) is connected to the fact that there are several
constants of the motion.

In classical statistical mechanics there is only one constant
of the motion, the energy, which cannot be transformed away. The system
is resigned, effectively, to move about on & singie closed surface, a
hypersphere, in the phase space. Here, we have one or two additional
constants of the motion; each of these prescribes another surface in phase
space upon which the system point must move. The regions of phase space
upon which the system point can move are determined by the intersection
of the surfaces associated with each constant of the motion. It may
well turn out that this intersection is composed of a union of disjoint
séts; such a union is called "decomposable" by Arnold and Avez (1968)

and the system is defined as non-ergodic.



100

The resolution of these questions is very pertinent t: a full understanding
of non-dissipative MHD turbulent systems (as well as dissipative systems).
This resolution is beyond the scope of the present work, where we must be
content with merely calling attention to the phenomene which give rise to
these.questions. In the future, hopefully, the opportunity will arise to

investigate these problems in a more systematic and complete manner.
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