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ABSTRACT

Quantlitative verification of the existence of static
acoustic displacements generated by acoustic waves
propagating In single crystal samples of intrinslic silicon
is presented. Measurements are made of the static
dispalcements generated by 30 MHz acoustic compressional
waves propagating along the [111], [110], and [100]
crystalline directions. From these measuremencs the
nonlinearity parameters are calculated and found to have
the value 3.87 along the [111] direction, 4.23 along the
[110] direction, and 2.13 along the [100] direction. Thesc
results are in agreement with values obtained ilndependently
from harmenic generation and pressure derivative
measurements. Implicatlons of the present work to the
thermodynamics of single crystals are discussed.
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INTRODUCTION

Nonlinearity must be accounted for in order to give a
statisfactory description of the behavior of a soulid. For
example, thermal expansion,l the temperature dependence of
acoustic velﬂcity,2 and optical rectlfication3 are all
nonlinear properties of a sclid. To describe the nonlinear
behavior of solids at the macroscopic level, the internal
energy is assumed to be a function of the Lagrangian straips.
The internal energy 1s usually expressed as a Tayler series
expansion in the Lagrangain stralns® and the constant
coefficients of that expansion are {dentified as the Brugper
elastlic constants. If the internal energy 1s expanded in
terms of the displacement gradients, the coefficients are
refered to as the Huang elastic constants or propagation
constants. The presence of terms higher than second order
are attributed to the nonlineer behavior of solids.

It {s well-known that when an initially sinuspidal
finite amplitude wave propagates through a continuum second
and higher harmonics, which grow linearly with the distance
4-9

of propagation, are generated. This phenonmenon is

observed in liquids, gases and solids. The amplitude of the



second harmonic is directly proportionmal to the
nonlinearity parameter of the medium. In solids the
nonlinearity parameters are related to the generalized
Griinelsen parameters.lﬂ’z?

Hecent theoretical investigations of finite amplitude
acoustic waves Iin solids have predicted the existence
of a static dlsplacement component generated by the
fundamental driving signal in addition to the harmonically
generated one.il'13 However , there has been no direct
experimental evidence of this acoustic radiation-induced
statle displacement until wvery recently.la_lb’aﬁ

The abjective of the present research s to provide
further quantitative verification of the existence of the
static acoustlc displacement. We do this by measuring Che
static displacement pgenerated by an acoustic compressional
wave propagating in single crystal samples of intrinsic
silicon along the {111], [110}, and [100] directions.
From these measurements the pure mode nonlinearity
parameters of silicon are calculated aml compared to values
ohtained by other meth:::-:ie:.f"l?'_IE

In section Il the nonlinear acoustic wave equation is
solved to glve the relationship among the acoustic static
displacement, the nonlinearity parameters, and the energy
density of the propagating wave. The analysls also provides

the expected shape of the static displacement signal,. In

section [II the experimental technique and procedure are



described and in section IV the experimental results are
given. S5ection V discusses iImplications of the present

work to the thermodynamics of single crystals. Calculations
of generalized Grinelsen parameters with the assumptlon of

the presence of static strain are given in appendix L.



IT. THEORY
A. Fupdamentals of the theory of finite deformation.

In the present Investigation the wavelengths of the
acoustic waves prapagating in the solid samples are Jarge
compared to the inter-atomic spacing of rthe solid. The
rativ of the inter-atomic spacing te the acoustic wave-
length is of the order lﬂ'& te 1. Consequently the solid
can be approximated as an elastic contiuum, and much
information can be cobtained from consideraticon of the
thermcelastic properites of such a continuum.

4,19-21 is based

The thermcelastic theory olf solids
on the geometry of strain, and on three physical pro-
positions: The first and second laws of thermodynamics,
Newton's second law, and fhe rotational invariance of the
state functions. According to this rheory, the equilibrium
states depend only on the configuration, denoted by LI
and the entropy or the temperature per unit mass of the
solids. Subsequently the state functions used In the
thermoelastic theory are the Helmholtz free energy per unit
mass or the internal energy per unit mass. Through the use

0f these state functions other thermodynamic relaclions,

such as the stress—straln relation and the wave equation,



are derived. lraditionally, the state functions are
approximated by a series expansion in terms of their
independent variables. Thermodynamic relations are then
derived from these approximated state functions, We [ollow
this approach and obtain a nonlinear elastic wave equation
for solids. From this nonlinear wave equation, we show
that a staric strain is generated by an acoustic wave
propagating in a solid.

in the feollowing sections we present elements of the
thermoelastic theory pertinent to our study ol solids.
First the finite deformation of solids 1s described by
introducing the concept of the Lagrangian strains. The
internal energy of solids is then written in terms of the
Lagranglan strains. Using the internal enerpgy expression in
Lagrange's equatlion, the first order nonlinear wave eguation
i1s derived. The equation describing rthe elastic displace-
ment due to the presence of an acoustic wave is then
cbtalioed In the last section of this chapter.
1. The Lagranglan strains.

Consider an elastle continuum and let alm{alﬂaz,a33
be the {artesian coordinates of a material point {n the
solid at time €, in the unstrained state. Let
® ;{xl,xz,le be the Cartesian coordinates of the same
material point at a later time t in the deformed state.

The displacement of a material point In the sclid from its



initcial unstrained state to its final deformed state is
U o= Xy - oAy

Under a homogeneous deformation the Cartesian coocrdinates

in the deformed state is

Ky - &+ uijaj . (£}

where u, . are the displacement gradiencs.
Using equation (1} and equatioen (2}, the separation
between the position of a material point Iin {ts unstrained

and strained states becomes

2 2 .
rT - r = RiXy - a;d; - Enjkajak . 13)

where

Ny ot 5 Upy s Uy UyegYie 4 ) , {4}

are the Lagranglan strains.

The Lagrangian strains can also be expressed in terms

of the Jacoblian elemenks as

L p {9)

PRI LERIWE MR ;

where



P M
g - %, Cd, ! Iki

are the Jacoblan elements, and

S | (7]

i 1]

arce the usual Kronecker deltas.,
Mot{ce that under a finite rigid rotation of the
material

- 9

v , {8

Teidi;
and the lLagrangian strains are identically egual to zero.
Thus the Lagranglan strains are invariant under a finite
rigid rotation of the material. When the second order Cerms
of the displacement gradients are neglected the Lagrangian
stralins reduce to

Eij = UCTRIRRUT . (9)

i
which are the Iinfinitesimal straln measures In the lincar
elastic theory,
2. Internal energy of a strained solid.

Since the velocity vf sound in a svlid [s several

order of magnitude larger than the rate eof heat



e

diffusion, the material deformed by a high frequency sound
beam is, to a good approximation, done so adiabatically.
The state function which characterizes this deformation
process is then the internal energy.

The internal energy of a solld depends only on the
relative positions of all the material particles and the
entropy per unit mass. Recalling equation (3) we see that
the relative positions of all the material particles In
a solld are completely speciiled by the initial
configuration a, and the Lagrangian stralns 0y

Accordingly, the internal energy of a solid is
¢1ai,nij,5} \ (10)

Since the deformation from the inirtial configuration @,

to the final configuration x; Ls usually small, it {s
convenient to expand the internal energy abeut the initial
coniiguration a, in terms of the Lagrangian strains nij'

To conflguration a in terms of the Lagrangian strains nij'

To third order of the Lagrangian strains,

, 1.
L S R AT R S e

1
T Ctik1mn™i "k1™mn , t11)



10}

where

%

11 anyy ‘n:ﬂ ,

2
c . 2@
Ljkl = 2ng dmy, ‘n=U

and

¢ . ¢ |
iiklmn anijankjbnmn 0.0 _ 112}

are the Brugger first, second, and third order elastic
CDHEEH“EE.EE

Notice that since the Lagranglan strains are invariant
under a finlte rigid rotation of the material, the
internal energy gliven Ln equation (11} also satisiies the

same invariance property.

The thermodynamic tensions of the system arve defined

as 18-20
g .2
1j 7 an;; . {13)

Using equation (11]) and equation (12}, the thermodynamic
tensions of a solid are expressed in terms of the

Laprangian strains as



11

C {14}

1
%1y = %5 ' Cina™a 7 Cojklmn ki®mn

Note that in an Initially stress [ree configuration the

Lagrangian strains in equation (14) vanish, and

Cij = 0 . (15)

We may thus write the internal energy of a solld with

no intctial stress as

—

: 1.
¢-; k1™ 3™ T 6 Yijklmn"™i i k1 Mo '

(16]

Gince there are four indices for the second order
elastlc constants and six indices for the third order
elastic constants, there are a total of 81 second order
elascic cvonstants amd 729 third order elastic constanks.
Fortunately, the crystalline symmetry of solids reduces
the number of independent elastic canstantﬁ.la For a
cubice crystal , such as silicon, there are only three
second order elastic constants and six third order
elastic constants.

From equation {4}, we see that the Lagrangian strains
are symmetric. Therefore only six of the nine strain
elements are independent af each other. Using Chis

symmetry property, we can simplify eruation (16} by



12
contracting the subscript notation according to the
Volgt (1928) convention, in which one index replaces a

pair of indices according to the following scheme:

11—>1 22—»? 33 -~—»3 23— 4 13—5 12==%6

Using the Voigt notation the complete set of second and
third order Brugper elastic constants for cubic crystals

reduces Lo

i1 0 Gz s g *

and

G C

Ci11 0 112 5 G913 0 “eaa 0 Cies v Case

From this scheme, the second and third terms of the

internal energy can be written in the following forms:

1 1. 2 2 2
TS5k 7“1 ™Mt Bz Pay)
CiplPyqfyn + Mypfag v BagyBy ) +
L2 7 2 2 2
Cag!Pyz ¢ Mgy + Mgq v By + Mgy + 2



13!

and

1
% C4gkimn™ "1 ma -

1. 3 3 3
§ C1111041 * Ngp ¢+ n3ql o+
L C [nz in + n,.) 4+ r12 in I & D B n2 tn + Naegll
7 L2t i, 33 22733 11 3371 22
+ 0 gy ngongyd + Cugeling, v g llngg + ngpll ngy 4
. 2 2 2 2

n31}J + Llﬁ&[nllinij + njﬂ} + r122Ifn3I1 + nlEJ '

2 7 , 2 2
n33{n12 ' nEll] . Llﬁﬁ[inl2 + n21}[n11 + n22} +
{n§3 : ngzurl:12 Fngy) [n§1 . nfa}{nja ¢ 0] (17}

S5ince i€ is the displacements ol the macerial points

thar one usually measures In an experiment, it s

convenient to write the internal energy in terms of the

displacement gradients. To third orderEE

1

1
¢ -5 ALJKIYE Y1 Y % A1 jkimnte 3%k Yen , 18]

where



14

AY fkl __¥e . (193

duy oy
and
3
A. . = o’ &
1
fJktmn aluijauklaumn

are defined as the second and third order Huang elastic
constants or the propagation constants. The relation-
ships between the Huang and Brugpger clastic constants
are obtained readily by eliminating the Lagrangian
strains in equation {16) in favor of the displacement

gradients. Since gll the u, , are I{ndependent, the

1]
coefficlents Iin equation (16} and equation (18) musc
be equal
ﬁ . = (.: ]
1kl 1k} C20)

+ C

At klmn = € jlmn® ik ijnlgkm + Cjknmgim * £ jklmn

It is necessary to point out that in obtaining equation

(20) we have identified Pfu, .} with @{nij}. Therefore,

1]

the internal energy glven in equation (148) 1s

rotationally invariant.



B. The equations of morion.

Under the conditions for which the attenuation
and dispersion are nepgligible the displacement field of
an acoustic wave in a continucus medlum can be derived

from Lagrange's equation 26

Jr o+ gL -32L -0 (21)

where the Lagrangian oif a solid is

L - %ﬁﬂiﬂi - & (22
In equation (22} ﬁi is the particle velocity and.f%:is
the unstrained mass density of the solid, Substituting
equation (22) into Lagrange's equation, we pet
G, - 99% (23}

aajauij

Using equation (18) in equation (23) and collecting the

displacement gradient terms up to second order we

obtain
au 21._I
Ay T VALt *"ijklmna—am-’ﬁ-—ag- (24)
n j= 1
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Since we are considering plane waves propagating in a
given direction, we can simpliify equation (24) by

introducing a rotational transformation R
a, = R, (25)

defined such that the a_-axis [5 oriented along the

1
wave propagatlon direction a,.
Since the elastic energy is a scalar, we may write

for a finite rigid rotacion of the material that
diny = i} - E[H R it . (26)

or

1 - - 1 - _
¥ 7 T ™ ™ * & Cogkemntt §Mke P t27)
In terms of the Huang elastlc constants we obtain

R :
= A, (28)

1 - —
§= 3 Eijktuijukt N 1Jktmn ij kt mr

The elastic constants in the initial coordinate frame
are raelated to those In the rotated coordinate frame by

the following transformations:



17¥

C = R, R. R _R

1jkt ip”jgq kr Lscpqrs .

and

CIjktmn - Rlpﬁjqﬂkrﬂtskmuancpqrsuu : e9)

The relationships between the Huang elastic
constants and the Brugger elastlc constants in the
rotated coordinate are the same as those given in

equation (20} except A; ;.. 1s replaced by A; ...

Eijkt by Cijkt’ etc.
The wave equation in the rotated ccordinate frame
is
a, - ( & A 25, , QG {30}
Poi = A et AMjkemn =t F S8 :
da_ dajaat

For a plane wave with propagation direccion parallel

to the 51— axis

. _ 3 _
- T ou u
At 7 U ARyt E11k1m15§“" %;:% ' (31)
1 ﬂl
27,28

To simplify egquation (21} we deflne the matrices

ilkl ik
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and

=D

A k1ml 1km . .y

Using these definitions the wave equation simplifies to

_ 2.
. u au
Aol = U+ Py 0k k t93)
&al 9
dz
1
Since uik is a symmetric matrix, an orthogonal

transformation % ls guaranteed to exist such that

5 Srl

transformation by

quqr is diagonalized. Defining such a

, [34)

and applying the transformatlon to equation (33} we get

: 2
. ge
S 05, q —1 . J
oplTig—5 = 5_ b, 5 —_—
fo’p 132 pi 1k“kq 55;.1*
2
-1 . . aPran

5 b 5 ————
pi ikm“kr ms o= =2
92, daj , (35)

where the superscript -1 dencted the inverse

transformation. Since S is orthogonal,
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spiuikskq = kplrpq . {36)

and the wave equation (35) becomes

25
gl}q + " Bpr 3'15

F =
_2 - —2 ! {37)
aal aal 331
where
-5 iy
B~ Cqivik kg {318}

are the eignvalues for the matrix Uik and

qus - S;iulkmskrgmﬁ (39
are known linear combinacions of the second and third
order elastic constants, Equation {37) is exact
through the lowest order nonlinear terms. A
straightforward perturhation calculation shows that tche
mutual resonant terms ( i.e. those such that the Indices
r=f=8 } are several order of magnitude larger than the
remaining nonresonant terms. Keeping only the mutual
resonant terms, we find that the equation of motion
for a plane wave with propagation direction along the

51- axls becomes



2

»r 5P , Ay P,
e R My v ' 140
81 1 1

In eqguation {40) the repeated j's are not summed. The
index j specifies the polarization direction of an
acoustic wave.

Now let us rewrite the nonlinear wave equation in

the form
2
aPFk ni Viiy of fP,
N T Yiid 24 } .
3 TR T: a1

and define the acoustic nonlinearity parameters for solids

by 10

B - _E-U_-i (42)

and the infinitesmial amplitude wave velocity for sollids

by

c. - (M1 h . (43
j fo

Wicth these definitions the nonllnear wave equation

simplifies to



21

2 2

r P P,
ity .;? | - pJLi L] . (4ih)
atz 351 353

The nonlinearity parameters for an acoustic wave
propagating along the [111], [110], and [100] directions
ol a cubic crystal are glven in table (1}. It is
important to point out that when bj - 0 the nonlinear

wave equation reduces to the linear wave equation

2 7
P, p

ary 2 (45)

3.2 ] 352

Writing equation {453) In the Lorm

(i.-ca )(é..+cj§51_1)1:.=a , (46

it jéa_'l It J

we readily see that for an acoustic wave propagating
in the positive coordinate direction an appropriate

form of the linear wave equation is

aPJ ar.
at - -Cjaal 1 (473
AP,
in which the particle velocity SEJ , the displacement
JF .
gradients ~:J are directly proportional to each other,
a

1



22

8
9GSV o91 + B2lng

8
+881Topz + ¥rinzy +811pg +111 5

£
Yrov + 2loz +11)

[t11]

¥ 2
{o171]
991921 + 2TIhe + 111H ¥Poz + &ln + 11y
Tily Tip {oor)
By | NOLLOJHIa
y . tg
el

‘eNo1Lo3aIq [111] anv ‘[o11])

‘[001] 404 SHALAAVHVA ALISVANIINON

Table t1)



24
In order to obtain a corresponding relationship between
the particle velocity and the displacement gradient for
the case of nDanrt}ﬁj ., we assume that the particle

velocity can be expressed as a functionm of the

displacement gradients in the form 37
JP. P
i I f(a—-j-) , (48)
dt da

where £ Is some continuous differentiable funcricn of
aijaﬁl . Differentiating equation (48) with respect to

time t plives

2 2
a_P% _ £ LASH {49a)
de LERT: 1 a

while differentiating with respect to the Lagrangian

corrdinate El gives

2 2

3P, 3P

Z 1. g —% . {AUb)
atJE] da

Here [' denotes differentiation of { with respect to
anfaﬁl . Substituting equation [49b] Into equation (49a}

we et
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8F; - enfd ]y : (50)
9.2 35%

comparing equation (30} with the nonlinear wave equation

(44) we obtain the ldentity:

[‘;cjtl—ﬂja_P_iJ% . (51
3,

Integrating equation (51) with respect to éijéﬁj and
recalling that f' - )ijat , we obtaln the relationship
between the particle velocity and the displacement

gradient for a nonlinear wave equation in the form

3
¥ 2 . PLY2 3 c.
= - =i —p._j - 5] . (52}
3t j{j( J El) ]

The integration constant in equation {(532) is obtained

for the condition that the partlcle velocity 1s zero
when the displacement gradients 1s zero. Solving
equation (52) ftn'infaﬁl and expanding the result to

the second power of the parrbicle veloclity we obtain

4P, _ 18P, +E£2 . (533
25, cc A132)
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C. Static dispiacement generated by an acoustic wave
propagating in a solid.
The particle velocity solution of the monlinear

wave equation [(44] subject to the boundary condition

that
AP, ;(ﬁ sinwt (54)
dt or

aq
at alzﬂ has been solved by Fubini. His solution is

written in the form

b 3P .\ . _

—1 ={ == sinfwt-kKa, ) +

dr ( d l 1
3P AL A - _
__j)_]shﬁ.alsln‘.?_{wt—kalj . 159}
ArY ch J

et ¢ be a gquantity which 1s a function of time and

material coordinate ay - We define the time-average of

0 by

r

{Q)- tim=§ aqre',ade . (56
L —= t o 1

Using the Fubini solubtion in equation (53) and time

averaging the results, we [ind

)p 1a,2
(aa-,]) "‘Q‘ﬁj" “}jji . (575
j
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Equation (537) cvan also be written in terms of the

energy density of the acoustic wave in the form

JPJ> _ 1@:(;:} (58]
($3) "= m" ’
B‘a]
where
(E):-%-#jtpjlg : (59

For a solid with nonzero,ﬂj equations {5¢) and (38}
predict the existence of an acoustically-indured static
straln accompanying the propagation of an acoustic wave
in a solid.

Equations (57) and {38} are cbtained for a
continuous wave propagating Iin 8 semi-infinice half
space. In the present Investigation, however, a gated
acoustlic pulse or toneburst 1s propagted through a
sample of finite size. Let us consider the theoretical
implication of such an experimental situwatlion. Conslder
an acoustic tonebursc of length L, amplitude Pj, and
frequently [ as shown in the top panel of Figure {17,
The energy density of the acoustic signal is nonzero
only within the spatial extent of the toneburst. Hence
the acoustically-induced static strain is defined only
within that region of space as shown in panel (b} ot

the figure. 1f the measurement technique used in
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measuring the acoustic signal is sensitive Co the stativ
strain amplitude, the signal detected will be a square
pulse as shown. In our experiment the detector used s
sensitive only to the acoustic displacement amplitude.

Integrating along the length of the acoustic pulse gives

51
1,2 2 -

T - {F. 'd;r.
EJ .I 7 k ﬂu JJH aj

a

1 .2 2 -

~—rk pj{Pj}U ay : (bU}

From this equati{on we see that the statlic displacement
amplitude 1is a right-angled triangular pulse. The slope

of this static acoustic displacement pulse is

AP 1 .2 2
cjﬁt cj

Equation {61} gives the displacement amplitude of the
static displacement accompanying the propagating tone-
hurst Inside the solld. When this displucement pulse
reaches the free end of the solid {ts amplitude doubles

Lo
P -.Tkzpjup.::f_i A, (62)

in order to satisfy the stress [ree surface houndary
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condition.

We see from equation {62} that the static
displacement 1s directly proportional to the nonlinearity
parameter. A poslitive nonlinearity parameter produces a
positive static displacement sipgnal, while a negactive
nonlincarlity parameter produces a negative statlc
displacement signal. Mest cubic and isutropic materials

3,6

have positive nonlinearity parameters. However,

fused siiica has a negative nonlinearity pﬂrameter.?’H
Consequently for most solids the presence of an
acoustic wave produces a statlic expansion while for

fused silica the presence of an acoustic wave produces

a static contraction.



IT1. APPARATUS, PROCEDURES, AND SAMPLES.

A. Experimental conslderations.

The primary objective of the present investigation is
to provide quantitative confirmetion of the existence of
the acoustically induced static displacemen[é by
accurately determining the value cof the nonlinearity
parameters appearing In equaticn {61) for each sample
under study. In order toc make such quantitative
measurements both the slope ol the acoustic static
displacement and the amplitude of the fundamental must
be determined absclutely. We note from eqguation (&1) that
the static displacement is propurticonal teo the square of
the frequency of the fundamental wave. Hence, a high
frequency fundamental signal is preferred for better
signal-to-noise ratio. However, equation {61) is obtained
under the assumptions that attenuation and dispersion can
be neglected. Thus, to assure the success of the
experiment, careful consideration in selecting the
frequency range for the measurement is necessary. the most
important considerations are those of phase cancellatlion

effects, attenuation, and diffraction.

30
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1. Phase cancellation effect.
For simplicicty let us consider a plane wave impinging
on the lower surface of a specimen as shown Iin figure 12},
I1f the angle of incidence of the acoustic wave is small,
the phase angle of the wave at position T relative to

point a can be approximated by

w

b - r sin{a} \ {673)
where W [s the frequency, and ¢ is the velocity of the
groustic signal. Thus, we can express the spatially
averaged amplitude of an acoustic signal implnging at

the lower surface at time L, in the form
) )
E:TJ;AD sin{We + p } dr . [ 64}

UDsing a tripgonometric identity we can write

J
A - A sin@t) % .L cos(p) dr

§

#‘c: cos(WE) J sintpl dr . {65)
o

LT

Carrying out the Iintegration we obtain
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———

sinéllsina
A L ) sinfwt + _‘eslnl} \ (66

A
© %sina
where
b
N - T (67)

whenn 1s small

%- ~ [ 1 - tsin(adt +¢ ) ' LaH)
o
where
| (xey’
o HT(T . (69
and
- artanfEfk . {70}
¢ 5)

From equation (68) we see that the nonparallelism of the
sample surfaces {ntroduces an apparent attenuwatlon to
the ampliitude and a change in the phase angle ol the
acoustic signal. An acoustic wave having a [requency in
the range of a few MHz will have a wavelength ol ahout

4

107" m for most solids. Thus to assure that the apparent
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attenuation ® of the acoustic signal due to
nonparallelism of the sample surfaces is within one
percent, & must be of the order of a few microns. It is
not difficult to achlieve parallelism with such tolerances
by carelul polishing. lt does, however, become
increasingly difficult to polish the surfaces to the
telerances required when the [frequency of the acoustic
signal increases to about 10{ MHz.

It [s important fo peint out that the nonparallelism
of the sample surfaces does not {ntroduce a static
component Into the detected signal. Further the
frequency of the acoustic signal remains invariant

under such condition.

2. Attenuation consideration.

Since acoustic attenuation is neglected in vbraining
equation(&1), we must choose to work In a frequency
range where acoustic attenuation is not signiticant.
In general acoustic attenuation Increases with increasing
frequency, and in the MHz frequency range 1t 1s
preportional to the square of the frequency. Thus to
ignore the effect of attenuation we must work in the

low MHz frequency range.
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3. Diffraction constideration.

One other experimental consideration which must be
addressed {5 the diffraction of the acoustic heam as it
propagates away from the transducer. 5ince the
transducer used in the experiment is of [inlte size, the
acoustic wave radiating from the Cransducer will spread

out subtending an ::mglne"13

. 51.1’1{1.22%} , (71)

where a is the dlameter of the transducer. To minimize
the diffractlon angle a transducer with a large diameter
must be used in the mecasurement. We have chosen a 5%

inch 30 MHz transducer for the experiments. The
diffraction angle is calculated tu he about one degree.
The apparent attenuation due to diffraction is therefore
unimportant in the present experimenl and no diffraction

corrections are used.
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B. Apparatus and measurement technique.

A block diggram ot the experimental setup s shown
in figure (3). A pgated 30 MHz ultrasonic signal is
obtained by mixing a 30 MHz continuous RF sighal
generated by a Hewlett-Packard 606B signal generator
with a square pulse generated by a loglc/timing unlt.
The resulting RF pulse is then filtered by an 8 MHz

passive high pass filter to remove any leakage of the

37

gating pulse Chrought the mixer. The amplified KF signal

is fed to a 13 MHz passive high pass [ilter, and the
filcered signal is then used to drive a 30 MHz narrow
band Lithium Niobate transducer bonded to one end of
the sample,

When the transducer is excited by the gated 30 MHz
electrical signal, it launchs a 30 MHz gated acoustic
wave [nto the sample. The ultrasenlc wave is detected
at the opposite end of the sample by a capacitive
transducer. The signal from the capacitive transducer
is then [ed cither to the 30 MHz preamplifier for
fundamental displacement amplitude measurements, or to
the low frequency preamplifier for static acoustic
displacement measurements.

Since the [undamental signal 1s a gated RF signal
and the static gcoustic signal is a short duration
pulse, the band width of the amplifier must be wide

enough o reproduce short duration acoutic tonebursts.
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In cur experiment a broad bhand ENI model 3001 RF
amplifier with a 40 dB gain is used to amplify the
fundamental acoustic signals, and a Princeton Applied
Reasearch model 113 low-frequency {3-300 KHz}
preamplifier is used to amplify the static acoustic

displacement signals.

1. Ultrasonic transmission-receiving assembly

The amplitude ol the fundamental acoustic wave
generated by a lith{ium niocbate transducer is typically
ol the order of a fuw Angstroms. The nonllnearity
parvameters calculated from che second and third order
elastic uunstant523 typlcally range from a value of
2 to 20. According to equation (60], then, rthe statlic
acoustic displacements are of the order 1D'2 Angstroms.,
We see that our recelving transducer not only must have
a wide frequency bandwidth but also must have sufficient
sensltcivity to detect very small amplitude signals. For

this regson a capacitive transducer was constructed to

receive the acoustic signals for these experlments.
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a. Mechanical parts of the transmission-receliving
assembly.

A diagram of the mechanical parts of the
transmission and receiving assembly is shown in figure (4}
The assembly consists of an ultrasonic wave transmission
unit and a signal recelving unit.

The sample rests on bthe outer ground rlng of the
recelving unit so that cne end surface becomes the top
plate of a parallel plate capaciter. The detecting
electrode at the center of the receiver forms the other
surface of the parallel plate capuacitor. The detecting
electrode is Isvlated [rom the ground ring by a glass
plate. A blas voltage, about 50 wvolt, [s applied across
the parallel plate to create an electric field in the
gap spacing. Therefore, when the acoustic signal impinpes
cn the sample surface the gap spacing varles and converts
rhe acoustlc vibratlons inlo an electrical signal.

A 30 MHz compressional lithlum nicbate transducer
is bonded at the other end of the sample by a thin
layer ol phenyl salicylate. The ground ring of this
transmission unit rests on the outer surface of the
sample and a copper electrode in the center of the
transmission unit provides electrical contact with one
end of the llthium nicbate transducer. Figure (5] shows

the detector assembly before the sample is mounted ,



Flgure 5. -

The detector assembly before the

sample {s mounted.

41
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Figure &. - The dector assembly with the sample

in place.
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and fipure (6] shows the entire system with the sample

in place.

b. Construction of the receiving capacitlve transducer.
Since we need to calibrate the system for absolute
displacement measurements, the gap spacing of the parallel
plate capacitor must be determined accurately. 1t is ,
therefore, necessary to grind and polish the surfaces of
the detecting electrode and samples as [lat as possible.
To meet such specifications the signal receiving unit of
the assembly is constructed according to the lollowing
procedure . A thin sbim, about seven microns thick, is
placed between the detecting electrode and the glass
plate. The receiving unit {s assembled and then lapped
to optical flatness. The flatness of the surfaces are
checked by placing an optical [lat on the surface under
consideration and (1luminating it with a green light
spurce to create a Newten's ring pattern. The surface is
considered flat when the fringe density is minimized
and a symmetrical pattern is obtained. Flatnesses
corresponding to one wavelength of green light across
the surfaces are routlnely obtained. ln the present
experiment nc more than one fringe is allowed over the

gntire surface of the detecting electrode .
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After the surfaces of the receiving unit {s lapped to the
desire flatness, the shim between the electrode and the
glass plate 1s removed. The upit Ls reassembled and the
position of the electrode Is adjusted. The green light
source and optical flat are again used to assure that the
surfaces are parallel to each other, and that no more
than one fringe appears across the entire surface of the

electrode.

¢. Bonding of the lithium nivbate transducer.

The lithium niobate transducer is cemented Lo the
sample by a thin layer of phenyl salicylate according
to the following procedure. Both sides of the transducer
are cleaned thoroughly with alcohol before bondlng. The
phenyl salicylate crystals are melted by warming Iin a
clean beaker. After the crystals melt, a small drop is
applied to one end of the sample with an eye dropper.
The transducer is then placed on top of the liguid so
that a thin layer of liquid phenyl salicylate is furmed
between the transducer and the sample surface. To
gssure the uniformity of the bond, a slight pressure Is
applied to the center of the transducer. The bond is
then left undisturbed for about an hour. Lf the surfaces
between the bond are clean, the phenyl salicylate will
remain in liquid state, To solidify the bond quickly ,

a small crystal ol phenyl salleyiate 1s applied to the
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to the edge of the transducer. The whole setup is then

lefc undisturbed [or 24 hours.

2. Proucedure for measuring the acoustic signals.

From equation (61) we see that in order to determlne
the value of the nonlinearity parameters, the velocities,
the frequency, and the absoliute amplitudes of the
fundamental acousktic signels, together with the slopes of
the static dcoustlc displacements the frequency of the
fundamental signal is monitored by a Hewlett-Packard
5316A universal counter and the velocitles of the
acoustic waves are ohtained from data compiled by Truell,
Elbaum, and Chick. 18

The slopes of the static acoustic displacements and
the amplitudes of the fundamental displacements are
determined by a substituticnal technique in which a
Thevenin equivalent network replaces the capacitive
transducer and accompying stray capacitance . An
approplate substituticnal electrical signal into the
network is used to simulate rthe signal penerated at the
capacltive transducer by the acoustics. By comparing
the response of the approplate substiturional signals
with those of the acoustic signals, the slope of the

static acoustic displacement and the amplitude of the

fundamental displacement of an acoustic can be
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determined. The procedure for callbrating the acoustlc

signals is given in more detail below.

a. Equivalent circuit for absolute displacement
measurements .

It {s well-established that the Thevenin eguivalent
circuit of a biased variable gap parallel plate capacitor
is that of signal source in series with the guiescent
capacitance.5 The signal source has a voltage magnitude
v = Ubufs where s 1s the inirial gap spacing, ¥V, the
hias voltage, and u the amplitude of the acoustic sipgnal.
We shall designate the transducer qulescent capacitance
and the accompanying stray capacltance as the Thevenin
equivalent network.

The Thevenin egquivalent network 1i1s shown In
figure (7} . The wvariopus circuit compeonents in the
equivalent network is determined as follows. First the
value of the stray capacltance is determined by
measuring the capacitance of the assembly before the
sillcon sample fis mounted in place. The system is then
assembled so that the surfaces of the sillicon sample
and the detecting electrode form a parallel plate
capacitor . The capacitance is then remeasured . The
capacitance of the parallel plate capacitor is obtained
by substracting the values of the capacltance before

and after the sample {s mounted in place
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The capacitance of the capacitors El and CE are adjusted,
respectivaely, to those of the parallel plate capacitor
and the stray capacitance.

The gap spacing of the detector ls determined by
using the relation s - fﬁfﬂl , where A& s the area of the
parallel plate, and ¢ is the permittivity constant.

After the Thevenin equivalent network is adjusted,
we are ready to measure the amplitude of the [undamental
acoustic displacement signal and the slope of the static
acgustic displacement signal by inputing the appropiate

Thevenlin sources to the network.

b. Measurement of slope of static acoustic displacement
pulse.

A Hewlett-Packard 3314A function generator is used
to generate a vight-angled trangular substitutional
signal having the same width as the acoustic toneburst,
This substitutional signal is then sent to the Thevenin
equivalent network. The output from the equivalent
network is amplified by a Frincetan Applied Reasearch
113 preamplifier. The amplified signal is fed to the
Biomation/Nicolet unit for signal averaging.

The equivalent network is now switched out and is
replaced by the capacltive transducer. Since the

preampliffer has a high pass roll off ar 300 KHz any
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fundamental and higher harmonle sipgnals will be removed
after passing through the preamplifier. The ampllfied
static acoustic displacement sipnal is then sent to the
Biomation/Nicolet unit for signal averasing. The

amplitude of the fundamental signal is adjusted until the
slope of the static displacement sipnal equals that of the
substitutional signal. The slope of the static displace-
ment signal is readily obtained from the substitutional

signal.

c. Measurement of toneburst amplitude.

The signal from cthe capacitive transducer s
amplified by an ENI model 3001 RF amplifier. Since rhe
amplitudes of the static adcoustic displacement and the
higher harmonlce signals are approximately one percent
of that of the fundamental displacement signal no
fiiltering is necessary before signal amplification. The
amplified signal is fed to the sample and hold unit. The
sample and hoid unit contains a rectifier/fllter circuit
which rectifies the input signal { see figure (8} ), and
a samplefhold circuit which holds the voltage at the
sampling position. When measurement of the fundamental
displacement amplitude is made, the sampling position is
ad justed to coinclde with the center of the rectified
acoustic toneburst. The ocutput from the sample/hold is

shown in Eigure (9). This output s sent to the Hewlett-



Figure 8.

-~ Envelopes of the fundamental signals.
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Figure 9, - Output from the sample/hold circuit.
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Packard 347BA voltmeter, and its amplitude recorded

The capacitive transducer is now replaced by the
Thevenin equivalent network. A 30 MHz continuous wave
substitutional signal Is sent to the equivalent network ,
and its amplitude adjusted until the voltage output from
the sample/hold circuit has the same amplitude as rChat of
the acoustic signal. The rms voltage of the
substitutional sipnal i{s then measured by a Hewlett-
Packard B405A vector voltmeter.

The absolute displacement amplitude of the
fundamental signal is deterwmined readily by substituting

into the equation

u o=V osf2v (73}

the measured values of V, Vi, and s , where
¥ = voltage of the acoustic signal,
V= the value of the bias weltage,
s = the value of the spacing between the parallel

plate ecapacitive detector.
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C. samples
S5ince the amplitude of the acoustic static strains
depend on the magnitude of the nonlinearity parameter Pj‘
an easily grown single crystal with large pj was sought
for the experiments. After a careful literature search for
crystals whose nonlinearity parameters had been measured

17,18 we chose silicon.

by other technigues,
The cylindrical silicon samples are manufactured by
Adolph Muller Co.,, Providence R1. . They are approximately
1.5 inches long and 1.25 inches in diameter. The
propagation (cyllndrical) axes of the three samples are
oriented along the [111]}, {110], and [100] directions ta
within 12 degrees., The end faces are perpendicular to the
cylindrical axes and are ground and polished to within

0.5 wavelength of visible light. The end faces are

parallel te better than 12 second of arc.

D. Determination of the nonlinearity parameters.
According to the presenl theory the generation of
the static acoustic displacement hy the fundamental
acoustic wave is due to the presence af the nonzero ﬁj.
The nonzeroc nonlinearity parameters are also responsible
for the continucous distortion of an acoustic wave as [t
propagates through the specimen. Thus, second harmonic
generation measurements, for example, can also be used

to determine the value of these nonlinearity parameters,
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There are, however, advantages of using acoustic static
displacement measurements in determining the value of the
nonlinearity parameters.

First, from figure (2} we note that the error in
determining the amplitude of an acoustic wave due to
nonparallelism of the specimen is directly proportional
to the inverse wavelength squared. Conseqguently, error
introduced by the second harmonic signal 1s much larger
than that of the static displacement signal., A clear
demonstration of this Is to use the model given in
section A2 and calculate the effect of nonparallelism of
the specimen surfaces on the acoustic static displacement
pulse. One such calculatien is made and the result {s
given in figure (10}, From the figure we note thar che
leading edge of the pulse becomes distorted, and the
width increases as &/a increases. The slope of the pulse,
however, remalns essentially constant. The distortion of
the leading edge is to some extent a manifestation of the
apparent attenuation of the high frequency components of
the acoustic pulse, and the increment of its width is
due to acoustic path difference beLwean points along cChe
wave front. ( e.g. points a and b in [igure (2} )

Second, we note from equation (61) that the acoustic
static displacement is directly scazled tec the amplitude

of the fundamental signal by the nonlinearity parameter.
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Thus, the sign of the nonlinearity parameter can be
determined gaslly by observing the polarity of the static
displacement pulse. In second harmonic generation
measurement the sipn of the nonlinearity perameter can not
be determined without [ndependent measurement of che phase

of the fundamental and the phase vf the second harmonic

Eignal.ju



IV, EXPERIMENTAL RESULT

&. Confirmation of the statlc displacement signal.

The nonlinearity parameters of the single crystal
5ilicon samples along the [111], [110], and [100]
directions are determlned by measutring the static acoustic
displacements generated by a 30 MHz acoustic compressional
wave propagating alung these pure mode propagation
directins a4t room temperature.

The voltage f{rom the capacitive transducer is equal
Lo -V %% s where Vi, is the bias voltage, 55 1s the gap
spacing of the transducer, and A is rhe amplitude of the
acoustic displacement signal. In the present setup the
capacltive transducer is positively biased, hence, an
acoustically generated static expansion is expected Co
produce a negative voltage from the capacitive transducer.
Amnd we expect the static acoustic signal to be of the
shape shown in flgure (11). An oscilloscope trace ol the
acoustic radiation-induced static displacement signal for
an acoustic wave propagating along the {110] direction is

given in the bottom of the of figure {12} and the 30 MHz

toneburst is displayed at the top of the figure. The

37
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Figure 12. - Static displacement signal from Che

capacitive transducer.
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static displacement pulse is negative and is in the shape
of & right angled triangle. Even though the nonparallelism
of the sample surface will Intreduce some distortion at
the leading edge of the acoustlic static displacement
signal, the slow rise time at the leading edge is mostly
due to the bandwitdth limitation of the preamplifier. The
slope of the static acoustic displacement signal, however,
is within the handwidth of the amplifier., Further, the
substitutional technlque used in the measurement assurcs
that the preampiifier bandpass is not a significant
factor in measuring the slopes of the static acoustic
displacement signals.

An oscllloscope trace of an electronically generated
signal having the shape of a right-angled triangle 1s
stiown at the top of figure (13}, The output of the signal
after being sent rhrough the equivalent circult and the
Princeton Applied Research model 113 preamplier {s shown
al the bottom of the tigure. The slow rise time In the
leading edge of the slgnal Ls clearly shown in the figure.
The slope of the electronically generated signal is used
to callbrate the slape of the acoustic static displacement
signal.

To assure that the observed static displacement
signals are not generated by the electronic circuil, a
simulated 30 MHz tone burst Iis fed to the eguivalent

circult to check the linearity of the clrcuit. Bo static



Figure 1. - Substituticnal signal for the acoustic

displacement signal.
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displacement signal is generated even when the amplitude
of the simulated signal is above 20 A, Since the
amplitudes of the fundamental acoustic signals in the
present experiment are all less than 20 °A, the abserved
static displacement signals are not generated by Che
electronic circuit,

According to equation (61), the sign of the
nenlinearity plays a significant role in the polarity of
the acoustic radiation-induced static displacement
signal. Fused silica has a negative nonlinearity 31
parameter and s expected to generate a dilative static
displacement pulsa. This change in polarity with sillicon
and fused silica has heen observed in the present setup

and has been reported In the literature. 16

b, Nonlinearity parameters eof silicon single crystals.
According to the present theory, the slope of the
static displacement signal i{s directly propertional to
the square of the fundamental displacement amplitude
and the square of the propagatiocon number. The velocities
of the acoustic waves in the computation of the
propagation numbers are obtained from the data compiled

by Truell, Elbaum, and Chick. 18

[111] [110] [100]
9,35 9,13 8.47%
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5}. Plots of the square of the

{in units of cm/sec 107
static acoustic displacements are shown in figures {14],
{15), and {16} for silicon along the pure mode
propagation directions. The plots show the linear
dependence expected from the theory. Quantitative
confirmation of the theory is thus obtalned Lf the
nonlinearity parameters calculated from these plots agres
with the nonlinearity parameters obtained by other
measurements.

In order to calculate the nonlinearity parameters, a
least squares fitting of the slepes of the static
acoustic displacements versus the product of the
fundamental amplitudes are mede. The calculated least-
square-fit lines are plotted as solid lines in figures
{14}, (15}, and (16). The nonlinearity parameters obtained
Erom these curves are listed in table [(2). The
nonlinearity parameters based on stress derivative results
and those cbtained by the second harmonic generation
technique are also listed in the table. We see that the
nonlinearity parameters obtained from the measurement of
the static acoustlc displacements are consistent with Lhe
nonlinearity parameters obtained from second harmonic

17

1
generation and stress derivative measurements to

within the experimental uncertainty of the measurement

technliques.
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C. Estimation of the experimental errors.

1. Error introduced by nonparallelisms of the capacltive
transducer and of the sample surfaces.

Consider the one dimensional model of the capacitive
transducer configuration as shown in figure (17). For a
small angle & , the voltage from the capacitive

transducer at any instance of time is

v o 8 (74
C

where

L

1 J{ A dr
¢ = T 5+ re + n * L75}
s} 0

L is the diamecter of the transducer, & its surface ares,
and hir,c) is the displacement of the sample surlface at
positlon r and time €. Since er and hir,t}) are generally
small, equation [(74) can further simplified to

L
L' gﬁ | 1 + %-‘[ ire + h! gﬂ -
Ti_ ] Q

02
L,

L
1 j re h .Z 1 / dr .2
E o [—5-— + —] dl‘ + |:'E (re + h}*s— ]

5
o 0 a o

£ | {76}
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in the present analysls we wish to estimate the error in
measuring the capacitance of the parallel plate
capacitor, and the magnitudes of the scatic and harmonic
sipnals generated due to nonparallelism of the parallel
plate capacitive transducer. We, therefore, separate the
voltage V into two parts. The voltage which {s independent
of the acoustic amplitude h, and the veoltage V,  which
depends on the acoustic amplitude h. Collecting the h
independent part to first order, and the h dependent part

to second order, we have

L
_Q +lfﬁ
v C{l T Sd}+
] o o0
L 2
Rrtf o e
%] 0 ja] = =
[n] o
L L
E{[_l.f }‘Edr][lfhdr]+
E’DLOSD Lﬂqlﬂ
L
%{Itf%dr}2+
0 L] Lk
When h - O
1,
'U’=§fl+% ?-dr:-%{1+'5-g:
O L4} ] [n] 4]

ar
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-~ g
v {78)

therefore the first order correction for the capacitlve

transducer due to nonparallellsm of the parallel plates s

‘AE ‘ = Lo (79}

In the present experiment Le 1s less than one percent
af the wavelength of optical green light. Hence, there is
at most a one percent error In estimating the capacilance
cf the parallel plate capacitor. Since the amplitude of
the acoustic signal is inversely proporticnal te the gap
spaclng of the parallel plate capacitive transducer,
abhout one percent error is thus introduced in the absolute
displacement measurement.

MNow lek us consider the h dependent part. Ii we

neglect the second order terms i{n the h dependent partl,

we have

f %dr] (8O
Lo

Thus, to the first order approximation Wit} 1s directly

proportional to the amplitude of the surface displacement.
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In peneral, however, we see [rom equation (77) that the
voltage from the capacitive transducer alsc produces
static and second harmonic signals. Let us estimate these
second order terms for the case where h at any time t is
constant aleong the surface of the sample. This corresponds
to che condition whereby the wave front and the specimen

surface are parallel to each other. Under this condition

hie,t) - hic), and

g ; h _Leh h° h Leh | |
Vic) E[S =7 —f+—_f].
[a] L =) 5 5 =5
] o] 0 8]
-_%E .. (81}
DSD

Therefore, equation (B0} is correct to second order. For
the case where h is not constant along the specimen
surface, the second order terms, in general, will not
vanish, However, the static and harmonic signals Erom the

capacitive transducer are at most of the order

% by (§2)

Thus, the ralio of the fundamental signal and these second

order signals is

(83}

o

]
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For a typical fundamental dispalcemenC amplitude of

10 Angstroms and a gap spacing of 10 microns

In the present experiment

scatic displacement _, 109-¢

Fundamental displacement

Thus, the second order correction signals can be ignored

in the present experiments.

2. Error due to nonlinearity of the capacitive transducer
circuit.

A careful analysis of the capacitive transducer
circult by Gauster’ has shown that the second order signals
generated by the capacitive transducer system is of the
order h/s, . Therefore, the error introduced by this source
is of the same order as that introduced by nonparallel{sm.
Both are approximately 40 dB below the acoustic static

displacement signal and are ignorable in our measurements,



I¥. TMPLICATIONS TO THERMODYNAMICS.

The static strain generated by a finite amplitude
acoustic wave {5 due entirely to the inherent nonlinear
nature of solids. Acoustic radiation-induced static
strains do not exist Ffor an ideal linear harmonic solid.
Harmonic models are also insufficient to explain many
lmportant thermal properties of solids. For example, in
order to account for the thermal expansion of solids, at

32 In this model,

least a guasiharmonic model 1s needed,
the solid is considered to consist of a collection of
lattice particles vibrating with small amplitudes about
their equilibrium pusitions. Te account for the presence
of thermal expansion, the distances between the
egquilibrium positions of the particles are coupled to
the equilibrium energy of the vibrating particles by Lhe
generalized Grineisen parameters. [f the energy of the
particles increase due to an increase in temperature |,
the distances between the relative positions of the
paritcles increase. Recalling equation {58) we see that
the static displacement of an acoustic wave is also

coupled to the energy cof the acoustic wdve. It seems

reasonable to suspect, then, that a solid may aisa be

T4
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mocdeled as a collection of particles vibrating with
finlte amplitudes about their initial configureation. ln
order to justify our speculation a mathematical
comparison is made between the thermal static strains and

the acoustlc static strains.

4. Thermal strains and acoustic nonlinearity.

The thermal statlc strains of solids can be obtained
by using the gquasiharmonic model. In this model a solid
is considered as composed of N particles each vibrating
with a relatively small amplitude about 1its equilibrium

position. The internal energy of the solid is
Nt
Uu=u, + & {g+mn, ) fhad {86

where U  1s the potential energy when all particles are

at rest in their equilibrium positicns, and

a0/ kT .
n_ = [ e -~ 1) (87

is the average number of phoncons having frequenuy:ﬁr at

temperature T

Using equations (Bb6} and (87}, the Helmheltz free

enaergy is given by



il

[y
F = UU + 2 In [ 2 sinhPﬁh#fkT} A . [HH}
r=1
The thermodynamic stress of a solid is given by
EFfinii . Using equation (88), we can write the

thermodynamic stress tij in the form

3t aF ) (89Y)

b1 7 n ; * an,

In order to account for the presence of nonlinearicy
in the quasiharmonic medel, U_ and F are expressed as a
function of Py o Taking a Taylor series expansion of the
thermodynamic stress in terms of the Lagrangian stralns,

we obtgain to lowest ordaer

2 ,
au a%u i ]
ey - ﬁﬂ . ﬁa+ M - 2:-_’1" €, \ {90 ]
{j i 1?71
where
I‘ij - —‘J, g—:}r (91
r ij

is the generalized Grineisen parameters, and

1 .
E% = n. o+ 3 ) ﬁt% (921
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is the averape energy of the phoenons having frequency ﬁ.‘lr
For the case where all externally applied stresses

vanish,

e . -9F .4 ) (53}

If we alsgo assume that no reslidual mechanical stresses

are present

¢

U
(3 0 ) .0, (94 ]

and equation (90} becomes

) ) ij

Ci k™K1 "]-:-'Jr €. : (95!
For a cubic crystal we write

N nf” . (96}

Subsequently eqguation (%5) becomes

. ij
(,ijlfkln _ Erl’r 'S (97)

ar
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.
‘g"rjir{lj

n =
(98)
Cijliiijl

We shall refer to n in equation {98) as the thermal
static strains of solids.

Equatiaon (38) is expressed in terms of the
nonlinearity parameters. In order to compare the thermal
statlic strains and the acoustic static strains, we must
express equation {98) in terms of the nonlinearity
parameters.

The nonlinear wave equaticon may be written

2 2

P 2P P

—g.clii-p qjag . (99)
dt 4 993, dag

Comparing the nonlinear wave equation with the wave

equation
2 2
P F
3_51 ) ,,,,23_31
Jt qaal {100

We readlly see that a parametrized " natural wave

velocity for a finite amplitude wave with polarization g

and propagation direction N may be defined by 10,32



79

aF, o
- 1 -8 9
wiq,N) g { ﬁﬁ}ﬁl ] ) {101)

Now in the Debye model the lattlc vibrational frequency

{q,N] is directly proportional to the natural wave

valocity

W (g, NYOC wig,N) {102}

Hence, the generallzed Gruneisen temsor ol cquation t91)

may be expressed as 10,32

E

&

i1 _ 1 %%
T W inij
oo Law,
W “”15 {1073)
In equation (101) the natural wave velocity is
parametrized by the factor pqarqfaﬁl. Therefore to
evaluate (103) we must make use of the chaln-rule
differentiation
3 ¥gq adufeay, P78y,
My 4 B Ifgy ddu, faa.t Jia3p_foa,)
14 1 q 1
{104}

With the help of the identity
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I(Iup/Ia) 1
Tl rIka .+ s‘kqil (105}

equation {04 can be expressed in the following form,

8 _lg (g

)
= . [ S (106)
;nii 2 “kq

K + W, K.
ki 1] 117k j Q(Jl‘qa’aa—l]

Using equationi{li6) in equation{1dl), the generalized

Grunelsen tensor becomes

i . W
gli . _lg r Rk, 4R R . L W (107)
r 9 “kq ki™1j 117k) W a(sr flal}
q
where
1 Jw ip
T Woaen =y 304 (108}
LGP ER B

Finally the generalized Gruneisen tensor is expressed In

terms of the nonlinearity parameters as

1) _
3 E#q kg' Beifey * Roifeg ) (109)

Using equation{i0%! in equation{4¥ }, the Chermal static
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stralns may be written as

1
n = lzq Vi pqﬁkﬂfjklﬂli!{q;i} (110}
C

mmnn

R. Acoustle radiacion-induced static strains.,
The acoustic static stralns are coupled to the

energies of the acoustic waves according to the expression

g
(ﬁ'll>=a%(5‘“>j (111)

The acoustic static strains in equation(l1i] are not
referred to the {nitial Cartesian coordinate frame
embedded 1n the solid but rather to a rotated,
diagonalized frame. The thermal static strains on the
aother hand are referred to the initial reference frame.
Therefore, in order to compare the acoustically-induced
static strains with the thermal static strains, we must
transform equation{jii11}) back into the initial reference
frame.

We begin by transforming equation(i11i) from the
diagonalized form intc the rotated frame having the

a,-axis along the wave propagation direction



H2

H . kJ(__.l} k.%(mﬂ)j (112

Next, we transform equation{11Z) to the initial Cartesian

frame by using the rotational transformation
“mn T HkaJﬂ K j t113)
in equation(112). We cobtalin the equatiun

u

mn ~ Pkm En klp—i<h>1 ol {114)

which gives the displacement gradients in the initial
frame. In order to formulate rthe equation in terms of the

Lagrangian strains, we write

1
0 =E{ u *unm+urmurnl (1153
Neglecting the second order terms, the acoustically
Induced static strains referred to the inicial frame

become

E K R, _E 5, .
n - _km pn ' “kn"pm __ElEl ([ﬂi])‘s
mn 2 of 1l {116}
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We now assume that a solid consists of a colleccion of
finite amplitude vibrations which loosely correspond to
the phonons of the quasiharmonic model. Summing n_ . over

all vibrational modes

IK, R + Ry K. 1 .
“;n . Pkmtin " Mkaim bkjpj(uu}j (117}
i1 2 anj
From crystal symmetry we expect
HT = nT . {118)

Substituting equation (118} in (117¥) we obtain

T ! . EC11S.
" Z 2 B 1m°k 3 <2n 2 1119)
A

7.1

for the acoustic statlc strains.

Equation {119} which is obtained by Che acoustic
statlie strain model strongly resembles equation (110}
obtained from the gquasiharmonic model, For ease of

comparison we show the results of the two models together
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T . Ei{l]
Yacoustic ~ JE 7 kalebkj#j(—z-k—}j- (120)
A

e

i

~ 1 . E(1}
Mthermal = i1 2 kalebkjﬂj __ﬂ_jtl

Ll_l‘l_l"u”-f

where we have identifled &(j,1} with {Eill>j and replaced
1} by j in equation {(110).

We note a minor difference hebfween the acoustic and
thermal static stralns. For cubic crystals Couve 7B
{ where B is the bulk modulus) whereas “j in equation
{120) is a different combination of second crder elastic
constants which depends on the direction of propagation
of that particular acoustic mode. Nevertheless the

strong simularity between the two static strains is

obvious,



VI, DISCUSSION

The nonlinearity parameters along the [111), [110],
and [100] pure mode propagation directions of silicon
single crystals have been determined through measurements
of the acuustic radiation-induced static displacements
From these determinations the presence ol the acoustic
static strains Is confirmed.

The existence of these acoustic radiation-induced
static stralns have Interesting implicartions to other
anharmonic properites of sollds. For example, we have seen
in section IV that the acoustic static strains and the
thermal static stralns have almost ldentical mathematical
forms. Such simularity suggests that thermal expanslon
may be understand in the context of acoustic anharmonicity
by modeling the solid as a collection eof particles vibrating
with finite amplitude about thelr initial configuration .
Further investigation of this notion {s carried out in
appendix 1,

The model given in section IV focused on the
nonlinearity parameters of solids. The presence of such

nonzercs nonlinearity parameters are responsible for the

85



86
acoustic harmonic distortion leading to harmonic generation
as well as the acoustic static displacement. The nonlinear
interaction of a coherent acoustic wave with icself
{self-interaction} as well as with an Iincocherent fleld of
such waves may be of significance to the understanding of
nonrelaxational acoustic attenuation. In our present view
an acoustic wave sufters nonrelaxational attenuation
simply because the medium which supports the wave
propagation is nonlinear. Recalling equation {53] , we
see that if the medium is viewed as consisting of a set of
random acoustic waves plus a coherent acoustic wave
propagating through the medium the total signral amplitude

may be expressed as

Foral - acoustic + ramdom

ulx,t) + firandom]

By substituting this expression into the nonlinear wave
equation we find that the presence of the nonlineesrity
paramefers will couple the coherent acoustic signal te the
random waves existing in the medium. Althcough we shall not
pursue this Idea further here { we leave it for future
investigation ) we expect that the attenuation of che
acoustic wave must also be related to the modal Grineisen
parameters of the sollid. { The attenuation described here

relers vnly to the loss due to interaction of the acoustic
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wave with random waves, and does not Include losses due to
scattering at the grain boundary , relaxation mechanisms ,
etc .)

For the most part measurements of nonlinearity
parameters, whether by acopustic static strain or second
harmonic generation measurements, have been confined to
single crystals with a single phase over a wide
temperature range. >-8 A Tecent investigation 36 shaws
however, that the nonlinearity parameters of aluminium
polyvcrystals depend on the degree of mixture with the base
metals., In addition, it is well-known that attenuation
among the alloys are also strongly dependent on the degree
of alloying. Thus if the various contributions to the
attenuation of an acoustic wave can be ldentified, 1t
seems reasonable that such alloy systems may be studied
to separate out the relationship between the nonlinearity
parameters and the attenuation due to the acoustic-random
wave interaction.

Finally, the potential energy of solids are
parametrized by the elastic constants when they are
modeled as elastic continua. Ewven when the potential
energy of so0lids are constructed at the atomic level {(for
example, from the pseudo-potential theory) the accuracy
of such models are often tested by how well the second

order elastic constants caleulated from such atomic
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models match the measured elastic constants. Hoawever,
better insight of the model potentials may be obtalned by
comparing the calculated and measured hipher elastic
COnstanE5.33"35

The third order elastic comstants can be computed
[rom the three pure mode nonlinearity parameters for cubic
crystals, for example, i[ three additional i{ndependent
equations containing the third order elastic constants are

4,56,78 The additional equations can be obtained

given.
mast ewpedlently from stress derivacive measurements.

The determination of the third order elastic constants
through measurements of the noniinearlity parameters are
fmportant for solid modeling, whether at the continuum

17 i3

level or at the atomlec level.



APPENDLX

Calculation of generallzed Grienisen parameters with the
assumption of the presence of statlec strain.

When a solid is in its equilibrium state, the average
net force on any materlal point ip the solld must vanish.
Making use of this requirement a relationship between the
acoustic radiation-induced static strains and the normal
mode acoustic energies for a cuble crystal is formulated.
From this relationship an acoustic tensor {s defined. The
elements of the acoustic tensor aleng the [111], [110],
and [100] pure mode directions are calculated and compared
to the generalized CGrineisen tensor defined by other
authcrs.la’33

We begin by writing the total stress ac any point in

the solid as

p,. - 1., of
i ik (A1)
] ;ﬁ;}

where is the internal energy per unit voclume, and

gu

a

P

Jig = Tik * (A.2}

L
=

EG
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We expand s—-é-—— In cerms of the Lagrangian strains nki asn

Y | i 1
SEEE - Ckjmnnmn ] ijmnopnmnnﬂp oo (A.3)

SubstituLling equation (A4.3) into equation (A.1} and

taking the time and phase averages, we have

<F1k.>= ijmnsik{umn} ! ijmﬂsmn {uik> *

1 . 1
) {’kjmnsik’:urmurr} I ijmnﬂp;1k<umnuup>

3

+ 0tu™) . [A.4]

where

gu
Yij T 8a. y (A.5)
]
We assume that the system is composed of a set of
random acoustic waves having static and time-dependent
components In equilibrium such that the average tetal

stress which is composed ot static and time-dependent

components must vanish
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Hence, equation {A.4) becomes

. - 1
_Lijmn(umﬁ> - ijmn<umnuik) 7z (urmurn>cijmn

1
t ¥ Gijmnﬂp<umnuﬂp> N (A7)

In order to separate out the statlc and time dependent

companents we express the particle displacement in the form
u, = u¥ + u1 (A.H]
i 1 i

where u, is the total displecement due to the superposition

i
of all possible acpustic modes | u? is the time independenL

static part of the displacement components and u1 is a

i
superposltion of the displacements of a set of random
agpustic waves, we write u% iy

1 - -
u; - U (1} fltNJEI}xjili Vj{llt+eli + U L2, 4
{A.9)
where
U, = unit polarization vector,

Nj = unit propagatlion vector,

e - random phase.
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Hence the time and phase average of equation (A.9) 1is
(uly-o0 (A.10)
L .

Taking the spatial derivative of equation {A.%) we ocbtain

u
i _ ' ;
SEE-- UiEI}NjII}fl + U1{2}Nj[21f2 i tA.11)

where f' denotes the derivative of { with respect to its
argument. Consequently, substituting [(A.11} into [A.7) ,

and using the condition that the cross terms [lf2

phase average to zero, we obtain

]
€4 Ve 7 L Clgma Uil 7 S jonTikicMa

1 2
7 Yt jmnopYnoMnNp (e %) (A.13)

To estimate f. we come back to the equation of

motion

Vi 2
.- - 2 p . {A.14})
Pn;t aaj ij

where for convenience we have dropped the index r so that

vy ui{r}, Pij - Fij{r} etc. Let us multliply egquation



(A.14} by u, and write

Po d (uv,) _ Fﬂid U2 jl_{uiPijJ _ Pij}ui

dt dt Ja, 3o
i
(A
Since u, and v, are bounded we may write
d (u v, )
{fo S 1.0 (A.

Integrating the remaining terms over the volume of the

solid we obtailn

ES_ fp Yy gy fuP. ds (A.
(ED o Ll - LUy P

J

where we have used the Green's theorm

f} uiPij dav - /uipij dﬁj (A.

v %3 5

and have written the modal energy

<E>=<r°“3Eu”2> (A

973

193]

16}

17}

14]

1%)

Assuming the surface stress to be zero we write bto lowest

crder in the displacement gradients



( i c - u,u N.N_{(F' )2
Pij}_33>= i jmadU1 % = €1 jmnlsUnM Na{EE )

setting JL = Cijmnuiumﬂjﬂn we obtain

2 E MW
£ =
j(t 1<%y {—L“
Now we can write equation (A.13} in the form
C {Umndav (qij E
i jmﬂj v < = T}T( >T.'

where

£ 1
Q7 - [ ijanmUINnNk vz CijankUkNmNn *

U NN !

1 .
Z ILi"|n1r'|t:r|:r1']:r| onp’r

To the lowest order approximation,

Yoo+ l'1'1"|m = n

cijmn —_—y ijmn’ mn

[f we let

j_irm_ dV O 8D
m .

Y

(A, 20}

{A.21)

{Ah.22)

(A, 23)

(A&,24)

{(A.25)
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equation (A.Z22) becomes

A
Cijrnnanmn” - 5y (E.}r (A.26)
where we have defined the acoustic tensor Sij by

1]
-y : (A.27)
For a cuble crystal

{{ nmn}}_ nJrnn . (A28

therefore equation (A.26} becomes

cijmnimnn - st (B D , (A.29)
Comparing equation (A.2%9) with equation (%7), we find that
the acoustic tensor defined in equatlon t4.27]) must bhe
related to the generalized Gruneisen parameters of solids.
In table (A.1) the acoustic tensor debfined in equation
{A.27) and the generalized Crunelsen parameters defined by
two other authors are gliven for {1j- 11
Summary: In obtaining equation [(A.29) we assume the
presence of a set of ramdom acoustic waves propagating In
a ceontinuous medium. The total displacement of a material

point is equal tfo the superposition of the displacements al



Yi
the random waves and a static displacement. We find Chat
the static strzins are coupled to the energies of the
random acoustle waves by an adcoustic tensor Stj. Afrer
comparing equation [A.29) with the thermal static expansion
equation, we conclude that the acoustic tensor Sij is

related to the generalized Gruneisen tensor.
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