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ABETRACT

In thie thesim & theaory of aasocintive detachment
{A™ + B -> AB + & ) in pressanted. Tha theory ie based on
the close-coupliog theory of Wang and Deloa, but is more
genaral in that final states of the nuclei {(AB) are treated
gquantum mechanically. This is necessary since the moleculs
May be in a&any one of seaveral vibrational states. The
Schroedinger esquation is reduced to mp iofinite set of
coupled equations using carefully chosen assumptions, Tha
coupled equations are uncoupled mpd the resulting aquation
for the wave function aof the neagetive ion 12 azolved to mero
and first arder. The first ordear solution i’ then used to
find the wavae function for the Tinal states of the wolwaculs.
Two aystoms wora examined: H (D) + Cl1™ and H (D) + F~ .
In both cases the survival probability of the nagativa 1on
showed a wstriking isotope effect, with the survival
probabjlities found for D + C1"and D + F~ much amaller than
thoae found for H + C1l"and H + F™ . Exparimental rete con-
atants weres raproduced for H + Cl” aad H + F~ .

vii



A THEORY OF

ASBBOCIATIVE DETACHMENT



A. Introduction

There has been e great dea]l of interest in
negative jfone in recent raurlT* Negative lonh reactlons are
important in a variety of fields: flame chexilstry, studies
of the upper atmosphera, and plasms Fh?llﬂl! Thare iz much
recent experimental data on the various reactions of
pegative lonos, and aleoc of lonization pProcosses.

These remsctiona include:

A + B —-=» AB + &~ associative 1.1
detachmant

AB + & -——-> A + B dissociative 1.2
attachment 2~%

A + B --- A+ R + 8™ direct 1.3
detachment ¥.'#

- +

A + B ~~-> A + B + @ Penning 1.4
ionization t%.00

A" + A - {ﬁB]* + . associmtive 1.5
ionlzationd!

{nnf + g ——> A + B dissociative 1.6

racombination?

A common aspackt of these reactions is the close coupling
between =8 single state of tha systes in which thers is no
free alectron and statea in which the aystem containe a free
electron. The free electron states form a2 continuus which

interacts atrongly with the discrate atate.



In this thesis we wil]l examine the case of
sasocintive detachment, =studying the reactions H(bP) + C1° ->
B{D}Cl + & and H{D) + P -> H(D)F + ». 4 queantum mechanical
theory will be developed to study these reactions. By the
use of cartain approximations, the theory may be shown ta

2d,3)

lead to the cloma—coupling theory of Weng and Delas, and

-2
from there the local-complex-potential model may be durivadf* ¢
Our theory meay eaaily be extended to apply to direct
detachment or dissociative sttachment,. With more effort, it

can be further extended to wpply to ionization processes o

well.

8. Overview

In this wsection we give s brief description of
this work. The next section is davoted to a description of
asmociative detachment with a discussion of the experimentsl
dote that is available. The following section will darl
with the background of the present theory, the complex
potential modal and with the zero-range potential model.”” >
The latter has bean used successfully to find rate constants
for assoclative detachment in some systems.

In chapter I¥ the sssumpilons used in this work
are presented and a sat of coupled equaticoms for the nuclaar
wave functionm is derived uming the assumptions. The
nuclear wave functions are: 1} = single discrete state for

the negative ion and 2) & continuum of states in which there

ilm a fras alactron. The couplad squations are uncoupled in
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chapter III, This results in & single integro-differentinal
aquation for the nuclear wave function of the nagative ion.
A ftunction O_ (R,A° } ims introduced which describass the
tranaitions from the negative ion state to the continuua,
and from the continuua to the negmtive ion stata.

The intagro—differentinl equation found in
chapter III is wsolved to Egero and first order in the
following two chapters. A complex momsptum WiR! g
defined which contmnins the function G_, (R,R° ). The complex
momentum 1s umed to find the survival probability of the
neagative iaon. In chapter ¥ tha complex momentum is
written in terms of a time 7 and the clome coupling
theory of Wang and Delos is found using 7 T) . From hers
the complex potential model may be derived.

In chapter ¥I the bound states of the moleculas
are discussed. The probability of associative detachmeent
intoe excited vibrational stetes is found. In the final
chaptar the equations are applied to the systems H (D) + cl”
mnd H (D) + F~ . The detachmeat rate constant k(T) is

compared with experimental results in the case of H + Cl

C. Associatlive [Detachment

Asmociative detachment (1.1) is likely to occour
oniy at very low snergias. If the collision enargy is asbove
the binding energy of the resulting molecule, direct
detachment (1.3) may occur. For much collision ensrgles

direct detachment is more likaly ta take plece than



sssociative detachmant. Typically experimental studies of
associativa detachmeant sre done at thermnl ennr[ialf'" At
these low anergies, the reaction has a rate constant that ia
naar the Langavin limit for most of the aysteams studied,

The Lungevin limiting rate constant is obtained
in the following way. IfT = is the polarizability of the
target, the potential may be writtan as

L]

e
Vir) o = g 4

mo that the total energy of the system is

LY
E = tmtr,.‘*.-li‘}- :l"'l'

The incoming atom will be in & circular orbit about the

targat at r‘

Ve

e X [;ff?f%;tl Va = 1Y

The impact parameter corresponding to this radius ias

l Yay
(.“,u-‘ )
Then in the Langevin limit, any collision with an impact
parsmeter less than h: will reasult in eaa reaction, while
there will be noe reaction if tha impact parameter im greater
than h‘ .

The systems that have been mtudied experimentally

- =
include F + H(D]‘. cl™ + H“ I + H."' and 0~ with various

dintomic tarlutn“" The molecule produced by aAssocintive
detachment usually occupiam the higheat energetically

available vibrational state. Thus cooe would expact the



anergy of the detached slectron to ba smmll, The avarasgze
energy of the detached slectron has been fTound tao be roughly
half of the difference in energy betwaan adjacent

vibrational states of the molecule in severml cases.

D. Theoratical Background

Some measurements of electron detachment from
nagative ifone have been successfully described using =
local complax potential medel in which the potential energy
of the bound state of the nagative ion is assumed to cross
into & continuum of free alectronic states, The discrete

state then becomes 8 rescnance with a complex energy

with the survival probability of the negative lon given by
- IRy g
Py = &

The time dapendence of the crossing of ths curves was

I

assumed to be linear by Demhkov and quadratic by Taylor and

Delos.?¥. 3%
A dynamical complex potential theory developed by

*%433 allows one to use an arbitrary time

Wang and Delas
dependence for the crossing of the negative ion potential
energy and the lowest continuum state.

The zewro range potential has been used by Gauyncg
to calculate detachment probabilities, rates constants and
detachment rates for F* + R and C1™ + HTH*'IH this theory the

electronic wave fupction is assumed to be significant only at



o lerge enough distance from the nuclel that their influence
on the electron may be reduced to a boundary condition on the
wave function at the origin:
AN JULF IR R
A coamon feature of the complex potential modelws
and of the zero-range potential model]l in its application to

direct detachment 18 that the motion of the nuclei is

- described clesaically or eemiclassically, mo the wava
function for the electron obeyas n time dependent
Schroadingar equatiaon. For collisions leading to

asnociative detachment, n sesmiclamsical theory would not be
adequets for describiog the bound wvibraticonal states of the
Bolecule resulting froem the reaction and therefore s fully
quantum mechanical theory is neadad, The theory deavelopad
here follows meinly nlong the lined developed by Tavior and
by Wang, but differe from their approach in that the presant

theory treats the nuclel according to gquantum sechanics.



CHAPTER II
THEQRETICAL BACEGROUND

A. Introductien

The Schrodinger agquation canpot be solved axactly
for negative ion collisfions. It is therefars necesesary to
make maveral simplifying assumpticons. The most important
of these involve the wave functions whiech describe the
outer electron. The assumptione will be discuswed in this
chapter; they result in a fully guantum mechanical aset of
aquations for the nuclear wave Tfunctions. The coypled
sequations may be used to describe many of the reactions
discussed in Chapter I. In particular, dissociative
attachment and asaocclative detachment differ only in the
boundary conditiona, which are discuaswed in this chapter.
In both resctions any one of saveral vibrationally excited
states may ba occuplied by tha molecule AR 1in the final
state and at collision msnergies above the binding mpergy of
AB direct detachment may take placae. Both possibilities

are implicit in tha coupled sgquations.

B. The Comsplete Schrodinger Equation

The Schrodinger equation in caoprdinate reprasen-
tation is:



(g - HeR ;&) LALEL R 2.1

Aa mhown in Figure 1, R is the intarnuclear distance snd T
is the coordinate from the nuclaus of the nagative ion to

the outer alectron. The Hamiltonian is written nas

HUF: A)m T + AtF R) 2.2

whers T 1is the nuclear kinetic anergy and hf?;ﬁ} is an

electronic Hamiltonlan.

JIF;E}. T;' + 'U'{.I',f} 2.3

T is an eleactronic kinetic energy and I is the potential

af
energy, which includes all of the binary Coulombic inter-

actions among thea alectrons and nuclei. The wava functian
‘E{F;ﬁ} isa expanded as a product of electronic and nuc-
lear buawsis functions, which are denctaed by #1[?1ﬁ] and

uiiﬁ} reppectively:
G LR Rim g F; R w_ (E)

v Jolk o, cphf.,f'_-,f.'.l U (R)

Tha subacript -1 refera to the state in which the slectron
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is bound, 8nd k refers to the free states in the continuum.
is the density of states 1ip the continuum, which 1is
discussed 1in Appandix A. The electronle wave fubction
q%{?;ﬁ} is nassumed to be centered on the nucleus of the
colliding negative ion throughout the collision. As the
atoms appronch, this bound etate must be deformed to some
extent, but it maintaine its character as m bound state.
The continuum states M'th;ﬁ] describe m free electran
with energy &, , which is related to k by
x
€, " h‘k"’(:w}
The continuum states are also centered on the nucleus of
the colliding atom.

In principle it ism possible to calculatme the
elecironlic functions & and ¥y but thia would be a major
undertaking, which ia not attemptad in this work. Instead
wa develaop a theory that is based upon certain asssumptions
about these functions and their wmatrix elements. In
practice, the calculations are dooe using a square well
avode]l which will allow one bound state in place af the
actual potential of the loosely bound outer alectron. This
model ,which is diecuesed 1in Appendix A, has been used
succagafully by Tarvlor and Halnl'h{‘and by Wang and Dﬂlﬂltha

If the wlectronic basis functions are orthogonal
{apsumption {1)), then eq. 2.4 implicitly defines the aat of

nuclear wave functions:
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U (RY=2 JoF oliF, Ky (P B

U lE) = Folf op Ff ;&) qer; R

A differential eaquation may now he obtained for the vector

of nuclear wave functiona u[ﬁ].

(o~ A=-Fua Fv,e2)") uly=o 2.8
whera the matrices §j and P nra
- & 2.9
A; = JdP @ F Ry AP R @ F )
o+
Z.10

Py = T Jof a9, a0

The most important assumptions to be made concarn
the nature of the alectronic besis functionm and the
resulting matrix elements of h and P. The basis states are
assumed to form a pertlaelly diabatic and partiaelly adiabatic
rapresentation with the following prupartianf‘ {ii) Thare in
ohe bound state ¢, and one continuum [ q'hj . (113}
The coupling between the bound state and continuum atates is

rapresented diabatically, with P negligible and h . non-

negligibhle. {iv) Intra-continuum coupling is negligibla, so
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that

2.11
. » O
H‘thn- L) =0 P'lt"“!J

According to this ammumption, transitionns
cccur from the bound atate to the free atates, and vice-
versa, but direct transiticons from one frea state to another
are neglectad, The naglect of free—frae transitions may be
juatified by consldering the collision classically. It is
known that an electron colliding with a molecule doss not
excite the molecule vibrationally unless the electron i
captured, becauges the welactron is too light to have an
effect on the heavy nuclei. An altarnstive argusent leads to
the seme conclustion. As a detached alectron escapes from a
molacule, the nuclei continue to move as tha wslactron
travels naway, apnd the smotion of the nuclei can affect the
slectron's wmotion, changing ite epergy ar ite directtiaon.
However, wsuch effects should be small because= tha velocity
of the escaping electron is npormally much larger than the
nuclear velocity. In the came of assccilative detachment a
typical detached electron has an energy of 0.0]1 au and the
nuclear kinetic energy is on the order of lav.' Tha velocity
of the detached wmlectron is then » factor of 10 larger than
that of the nuclei. In the time 5600 au {10"'* sec),
corresponding to a vibrational period ar te the coeollision
tima, the electron has moved 40 a, . Hence the electiron is

out of reach of the nuclear Iinfluence long before the puclel



I3

have moved very far.

The coupled eguation 2.H may oow be writtan

Wae also apasume {v) that the sangular momentum of the nuclel
i omsentially conetant through the collision. 1In a typical
collision, the nucilei have nsome hundreds of gquants af
angular momentum, while the light electron might carrcy off
only ona or two quanta, g0 the angular momantum quantum
number does not change significantly during a2 collision.
Thia approximation can be expressead mathesatically by
writing the nuclear wave functioo as &8 sum of producte of

radial factors anod spherical harmonic angular factors,

ol A}
widy s & —a Yy (0 B 2.13
The aspherical harmonics T'”{ﬁ, ¥ ) are wealgenfunctions of

the angular part of the nuclear kinetic energy with eigen-

values J{4 + L) A",

AY AN 9D g V(e 8 s A Yeote, @) 218

A new radial poteantial msnergy may be defined using eq. 2.14.
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)

L 3
(b - B Yag) R Ve te ) 2.15

S s HERD e Yemie0)

£% fid+1) 2.16
ooy = At 2 m R

One TfTurther ampsumption is necessmary to do the
calculationn: (vi} the continuum curves ?kk are assumed to

be parallel. Then the continuum potential eanergy is

y‘hh{nj. Vee LRI + E 2.17

where V__ (R) le the lowest continuum curve. The potential

energy matrix may now bhe written as

v, ! Vo ntR2
B - -I - —— — - - - - -
Py 2.148
VAL v ©
VARLL II" ALY
o ..

A et of typical potential eanargy curves ?ael{ﬂj and ¥ _ _ (R)
are mphown 1in figure 2. The assusptions liasted abhove are
baliaved tov be gquite ganarally applicable to a wide varisty
of collislon systems. They laad to an infinite met of
coupled differentisal eguations for the nuclear wave fun-
ctions u_,{(R) and u h{n}: by substituting eq. 2.17 intoc aq.

2.8, we obtain



Froung &

Perenrza. Encagrns

| ]
W
\ T T VT

E = cailision enkrqy

£ elecirg, lntrjy
L2 by
i Urd stose energy

V"i—lfnfrl < E
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"I. !l
I.J-'-l{l} u V‘.’"{ﬂ} - ;H.-. d! 2-19

{E - H-...,U"JJ' U_(R) = ;dkuph '\"_,h_(lj U LR} 2.720
X ;‘j_‘_-' 2.21

Hu{m T Vi RiRr~ 3R gt
(E -—Hu.fmjuh:m = Vk _’{R.‘I L., (R) 2. m3g

In this thesis we develop techniques for sclving
sauch infinite sets of couplad aguations and we wsolve thews
for the boundary conditions of assoclative detachment.
Specifically, the collisjons of €1~ + H -> HCI + o, F~ +
H -> HF + £~ are studied,

In those calculationse, wmpecific mssumptions and
approximations are made about the potential ensrgy rcurvas
apd about the coupling matrix elements vh-f In particular
(wviii) the approxismaticn is wade that Vi (R) and L (R)

are aqual and have a meparable R and & dependance, so that

i
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V. LR 2 giR) Oh--

In the work of Wang and n-lnllh‘ﬁ some additional
assuNptions wars made. The most jimportant of theam 1s that
the asemiclassical approximation may be uaed to describe
nuclear motion. In this way, the staticonmry Bchroesdinger
equation wae reduced to 8 ‘time’'-dependent electronic
Schrosdinger equation. Thelr treatment is applicable to =
reaction wesuch as direct detachment, but it canoot be
applied to associative detachmant mince in the final state
the vibrational motion of the nuclei 1is quantizad, and =
clasmical -trajectory description of the nuclear motion is
not appropriate. The major purpose of this work is to
obtain a theory similar to that of Taylor, Wang and Delos,
but in which puclear motion is dascribed quantum
aechanically. The theory is in this regard more gasnearsl,
mo it is not limited to systems in which the nuclei are
bound in the final atmte, but may be appliad to direct
detachment ns well. Dissociative attachmant may alao be

describad by this theory.

C. Projection Operators end Bamis States

It is wsometimes more canvenient to deal with
abetract vectors ilnatend of wave Tunctions. In this mection
we rapeat the development given in the preaceding section,

but wusing Dirac bre and ket notation instead of wave-
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1

function potation., Later projection operators which grastly

simplify the analysis will be defined, and they are wmuch
more simply expressed in terms of bras aand kets than |In
tarme of wave-functions.

The Bchroedinger egquation im

{E ~H)I¥) » & Z.24

with the wstate vector |"¥) related to the wave fTunction

~ (£:8) by

AT (P, Ry » <RIWD .25

JR> is & position eigenstate with the following properties
J®RE « \r> RO | & ¥
CmIRD> = FIR-R)
JodmiRx ot =1

EIEE
L P> = Flr-r-) LRl es 2 F(R-R)

Jarirxri = 1 Jol & 1R MXeR1 = 1,

The ket IT) isa an esigenket of the electronic poasition
aparator r, and IRYD iz an eigenket of the nuclear radius

oparator R. [(&&2X is an eigenket of the nucleaar angle
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oparntors & and $

|"€> has bean expandad ap & product of slectronic and
nuclear states, and in vector notation, the wave function

of aq. 2.4 is

> e 1= 123> + Jork 'phllt} I ke >>

f ~t2) = ;L Pt g 33 1w 3D

i kdy = ;.lhq,}} | 4 avud>

the double bracketas denoting nuclear states and single
brackets electronic states, Since the electronic basis
function @ ; [F:ﬁ] depands parametrically upon the puclear
coordinate B, we are required to use Dirac’s notation in =
slightly unconventional way. The state vectors arm relatad
to the electronic basis functions and nuclear wave functions

as follows.

TS Y
I LIRS 2.28

PP B qrigadl = {KRIL

Yo lad) - k0T 1 imD
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. (F; - §] u;*t.m Y@ T = RIiDIPS | A 3D

Again, | -1> representas the state of the nagative iopn,
iR} i & contivuum elactronic state, and | -1, nand
lh,» mre nuclear states corresponding to u’ (R) and uyg (R).
Throughout this derivation and those that foallow, we will
conslder the collision to take place at a fixed value of 1
{by nmssumption (v)), and the sus over angular womentums
states will be dropped. Then u _} (R) and u : (R} are

u_ (B} and u ' (R of aqe. 2.19 to 2.22. The sum over
angular momentum wtatem will return for the calculation of
thea rate constaots end cross sectlicons. We may then rewrite

FED> » 1=t> 103> t Falkp, k> 1h2> 2.32
P=1dd 2 d-1,30 5 kx> =ik,

It follows from the orthogonality of the
elactronic beais Tunctions (sssumption (1)) thet the elac-
tronic state vectors have the following orthogonality

properties.

=1 ]=12>» 1
Ch) Ry = SURTKD
Py
2,33
C-tlh> = DO

L 11D = O

E



The ealesctronic hasls vactors will

define two projection operators, P and ¢
P = |=1% -t}

a ™ fd"Pn P RX & |

Ege. 2.29 may be usad to show that:

Pt = F

a* = q

af = o
PO *0O
Q+P = 1

20

be uymed to

Z2.34a

2.34b

2.3b5m

2.356b

Theae projection oparators provide a convenient way to

derive coupled equations for the nuclear

L-t55 and Ik >»* since by oq. 2.27,

P17 ED = 1 -2 112>

state veactaors

2.36m
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S 1Ey - _.t*.g..,r&f..,"t TR 1R3> 2.36b

D. The Coupled Equations

Using the defipitiona in aq. 2.30, a Ffew trivial

manipulations way be pesrformed on wgq. 2.24

(E -HY(P+OIE> = & 2,37

FCE~RH)PIE> = PHO ITE)D

QILE-H)AQJWY¥ ) = qhPiIE) 2.39
{E~PHP)PIY)) = Puq Qg 2.40n
LE - qHa) al¥) = quP PIi) 2.40b

It is not obvioua, but in coordinmte notation the above
aquationa are the infinite aet of coupled differsantial

(R}

equationas thet epecify the nuclear wave functions u_ '
and u A (kY. Eq 2.8, or, under the assumptions atated
earliar, eqs 2.18 and 2.19 may be obtained from sgqe. 2.40 by
operating on the Iatter with ( O and wusing the

orthogonality properties of P and Q.
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Firat, let um copwider the Hamiltonien matrix
elements PHP, PHQ, GHF and QHQ. An operator 0 is relmted to

itas corraaponding coordinate space operator ﬂ{?;ﬁ} by

ORI 2 fodR ' ¢RICIRD Z.4la
aitm) FiR) = JodR' <R )0 iR xR 19D 2.41b
olW¥) » foaR |@> olR) ¥iR) 2.42a
FT(m) = LRIT) 2.42b
s that
CRIGIRD « O S(R-R) 2.43

Then 1n order to find the coordinate space form of PHP we

sust firast evaluate <RIPHFPIR}> yuging ]-1 X -1] for P,

L@IPHPIRYD) 2 ¢@RI-IN -t HI=sX =) &) 2. 44

(RIPHPIR'> 3 Pamy SdR™ [CR1-i¥ -4 R

.46
LRYHIR™XR>I 1% —I[R") 2

We will first evaluate -1/ Hi-1) using egs. 2.2B to
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2.31, w0 that

CritHI=1d o« LuR“So/®~[ <-11R*D> 2.46
LRI HI R xR -1D>]

L-lint-t) « foy R folR*[I1R*>) @7 (&*)

( WCRe) SIRY-R™) @t~} <R™] ]

- Now H{f:f} is the coordinate apace Hemlltonian defined in

aqg. 2.2 as
HCF; B) = T e et U -
a T + AR
with the nuclear kinetic operator T
[ ]
[ B
T o= -39 2.48

Beplacing the Hawmiltonian H{ & )} with T + h{#fR ) will give

us

(~1iHI=-1y =2 faR* Jal @ [ 18%0) o R*)

-

9l + ACRYI) SRS - R 2.49

(~a

QL™ ) <« 't"l]

This will be avaluated in two parts. First coneider the

intagral containing the slectronic Hamiltonian hi{g* ).
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Joak™ QLR SR - AY) @_(a*) & v 2.60
» A ) @, (R AR

The integral containing the nuclesr kinetic snergy must be
Tound uming integration by pearts, since at present it

cottmine the second derivative of a delts function. Then

Joaig> (- 35 9i. Slmrom®)) @ (&) ar”]
- . Z2.51
x Jo B Ja ke [5pe-Ew (-4 e

s (Eu_ !h)) 9., LR™ m’"l']

LY
= _.Jj;' t tql- lt‘u-i"’} 'ﬂ_.t"}!*}“-“z 2.02

- Jal AY (e, MR -Re )9, @ (F =) «r™ l)j

2 . . 2.563
B S Ve R R “ R
Combining eqs 2.50 and 2,54 and integrating will give us a

more tractable form for {-11H1-1) :

S-bHI-1D) = Jor*{ 1n*X
2.54

Gr LR (= BT QY 4 hrD g ey «rt)

Now
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SuR o SR fupr

and by eqe. 2.9 - 2.10, integrating over r will give us

. 2.88
L-1imi=> = for e i rey -0 a1k 600] «v?)
This may be substituted into eq. 2.44 to glve us
(M| PWPIR > = 2.56

(Rmi=-1> Joid” IR {-.5; A *..l.,_,_;u*JJa.n-u.-nﬂ?

We are now ready to conaider the coordinate space form of

FPhprPi¥):

S RIPHPITY »n JdR AR IPH P IAXR" 1) 2.67

CRIPHPIE) v foi®R {RI-i1D> JuaB* [ IR*S

2.58
EF S LA R Y TIPS LIPRTY VT G PY|
CAtTHPIE) = JalR’ () 4R fai B[ 1Moy .
(-f;‘ ﬂ.‘; t L, LR} hRYURD PLLRD i(n'}]
We know that
2.6

w_,(8) = JoIF @ (R FIR)
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so that in coordinate space, <& |PH P! LY i Jjust

LRIPHPIEY » faI R a_m) S Brjes mIR®D

&
(=25 Ih 1 ALSRD) QRYIRD) UL L) 2.60
Now recall that the potential #'l‘,{Hj ia h__._I {R) with an
anguiar momentum terms added. Then integrating over the

nuclaar angles,
CRIPHPIE) o Joln® @ () JolR® [ SCR-R®

¢~ Ve + 2D 4 ALSRTD agrd] 2.8

2.62
CRIPWPIED = _co> (-8 So + Vofr)) UCR)

This is the Hamiltonien H_ _ (R} of eq. 2.19 operating on

/
the nuclear wave function of the negative ion multiplied by
the electraonic wave function s JN

Now consider PHQ. The coordinate apace operator
corresponding to PHQ will be found in the same way that the
coordinate aspace oparator corresponding to PHP was found.

The wmajor differance between the two is the integral over

fres slectronic states in PHG. In coordioate space we have
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{RIPHG T Y o feim {RIPHO IR KR | E)

(ﬂ[?“ﬂl’i) Elfelgl’¢a | =1 %=1 H IN*F. ThX k| R'X&1 -'u'} 2.64

{RIPHAIEY » Josm Jotke A KR I-e%-1] N1 kX R BU°X & 17%)

Once ngain, we will first consider (HTH)) k> . In

coordinete space it is
CRLLIERE RY IR » faiR” faim™ [ R | 2.68
K=IiR*XAT [ RIRY XR* [ k> IR]

{CRIK-IIKI &> IR = foam*foi®» [ « R R*DD 387

PoROI[HIR) SR —R™)) q (A% LR*IRD

. ‘s .
CRI<-11 HIRDIRDS o form® Sat®™ [ F(R=R*) -
P m"}f{( *.-’;?-e,.‘l. L ICR™)) SR RY)]
cF"{.'ﬂ"'J $ ¢ mor -l')]

As bafore, thias is

CRIC-NHIRIIR > = formv[Stp-R")

LS " o .
*-Tfl*.if';% ﬂ;. + 4 (R) @ (RDE(RT R')) 2.69

Once agmin the nuclear kinetic anargy operates on a dalta
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function. Intagrating by perte as bafore will give us the
off-diagonal alements of the matrix Fh_'(-q. 2.10). Bince

{iii} this hes been asaumed to be negligible, we have

K RIC-ITRIRI R o geR=-RD A, MR 2.70

Substituting this into eq. 2.85 will giva us

SRIPHAIT) = fol®’ Soik Pe CRI-1D> JofR™ [ 1r*>

2.71
Krric-ti iy Jon™ (1 RY 3¢ R* |
(RIR XR I D))
(PO 1) v SR fel h‘p* P AR R folR*[im">) 2.72

Tet@™ L4, (%) S(RY-R*) LR™[RD> Q2 ®) H(R)

CRIPHOIT Y = Jelhp, @ (RIV, (R UylR) 2.73

Von® <A (R

Coordinate space forms of QHQ and QHPF may be

derived in the same way. Then we have

2.74
(RIqHa|dY = Jorhpe, @,a) Hanl®) U g (R



2.78
CRIQUPIED = Solhp, F(RIY, (R} U_(R)

The coordinate reprasentations of aqs. 2.40 are therafore

@ AR CE — Harmlmy) u R w @R Lalhp, v, (R 4 (R 2.76w

—

Sothpy Ppl@Y g LRI U (R

Now using the orthogonality of the P.'s we have

2.20
(€~ Ho (R U i lR> = Jolkp, R UL (R
(E - HRalRD UglR)e V) (&) U,(R) 2.22
which im the desired result. Then egqe. 2.40 are the vector

form of the coupled integro-differantial equations derivad

in the preceading section.

B. Boundary Conditions

Ansociative detachment [(AD) is set apart from
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direct detachment by the boundary conditions of the resc-
tion. Tha energy of the collision ils uaually below the
asymptotic limit of V¥_ (e}, no that the only reaction
possible i AD. This results in s free alactron and a bound
molecule. The molecule may be vibrationally excited, but as
discumsed earlisr, i assumption (xix)}, there is negligible
change in the nuclesr rotational wmpgular somentum. Then
when the nuclei are far apart, the only stnte that is
accossible to the system im that in which the elactron is

bound. Thue the first boundery condition is:

fivms "ELF; !} = Lo @_r(i"’ﬁ.} U, (e)
R = g Lo o=
As the electronic coordinate r becomes large, the
bound electronic wave function @_, f?:ﬁ} vanishes, =moc that
the only contribution to ¥ comeas from frea elactron
states. Thean
s FE-B) v lom Jolkp, @F iR U (r) z.78
e d Fge
Thara s ane further problem to be considersd.
Eq. 2.40 involves an integrml over all continuum energies,
howaver the wmolacule has only a few gquantum mechanically

a)lowad bound statss, for which the wave functione LV, are

solutions to the homogeneous continuus Hamiltonian

2.79
Neo (R) VailRI = Ep ¥m(R)
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whers

L 2.8Q

Hoo (R} » Voolft) -iﬁﬂ_ AR
Now copmervation of energy implies thmt the total initim)
energy E must be equal to the final anergy E_ + €, » where

again E ims the {discrete) enpargy of tha n“ bound

L.
vibrational stats of the Meleculs, and Eh is the enargy of
the escaping electiron. It follows that as 5 -> ~ , the

integral over h wmust collapse into m discrete sum, with

€y, » E ~E, 2.81

The boundary conditions can then be exprossed in
the following way. The wave functions v, (R} form =
cosmplete seit and therefore the continuum functions ldk mBYy
be written in terms of them:

]

U, (R~ né:p-‘ 1r, LR 4.82

wherse %:'il defined by

. . . L 2.83
oy a Sl B Lol v e ®F (P Fr R

Then as r-> =~ , the full wave function must bas

. 2.84

bme  E(PLE) 2 LML @ (B R VL(R)
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A proof of this result, that the integrel (2.47) reduces to
the diserate wsum (2.84) is given in Appendix B, Also,
boundary conditions for the raversa processa, disscociative
attachmant, asnd for diraect detachment are given in Appendix

c.

F. Summary

An ipfinite set of coupled integro-differential
aquations has beown derived for a caresfully chosen electren
basim =met. The assumptions which were made about the slec-
tron basis sat and the metrices kb and P are simtlar to thomse
which had been used by Wang and Delos. However 1n the
preasnt work, the nuclei ars treated quantus wechanically
rather than semi-classically. The boundary conditions for
assaciative datachment have been discussed and these sy
easily be axtended to apply to direct detachment. In the
next chapter the coupled equationa 2.40 will be uncoupled

uning a dreenw function sclution to the continuom equation.



CHAPTER III

AN INTEQRO-DIFFERENTIAL EQUATICN
FOR THE NEGATIVE JON WAVE FUNCTION

A. Intraoduction

The coupled aquations 2.40 may be uncoupled uming
n Green’'sa function solution to the continuum equation 2.40b.
The resulting equation, when trenaformed inteo coordinate
apace, is mn integro-differential equation which has am its

salution the wave function u_l[H}.

B. The Continuus Greap's Function

The projection of /¥3onto the continuum states,
Qlt>, may be found in teras of itm projection onto the bound

state P 1¥)» using 8 Green's function @, . G_q is the

solution ta

(e-ana)le, = a

80 that
o = (e -aHal) o

Normally the operator form of e Green's function 1 the

i3
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splution to

{E ~H)G =~ 1 3.3

Here the matrix ¢ is 5 unit matrix for the continuum, which
is & restricted portion of the vector spacea (the full vector
apuce ham P+Q as its unit operater). Bince the equatien
which 4is to be asoclved usming the dGQreen's function is
reamtricted to the continuum , @ may be used mss s anit matrix

in this derivation. Then with the continuum equnation

(E~aFHG)Q 1 Ers arRP FIED 2.40D

we have
Qld> = {E-quJ“q aHr PI¥2 3.4
3.6

RIED> = Gy G HP PIE>

By tranaforming eq,. 3.3 to coordinate wspace, wWe
will show that the coordinate space oparator corresponding

to Gq is & Green's function,
FTAR CEME-GQHAI IR XR] Gal K™D = <& | &R 3.6

Tod &L E <RIRD « §fta-R") Lotk Po Lolk” Pusl @ty )

Myoo (R Py 0?2, pU} G (R RS = 3.7

Jeth py @1 P D @y err; RO SCR-RY)
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The conptinuum electron states have tha property that

otk p, @2 et R @ (P B = UK, &) 3.8
GQUF A7) = Joils B UF PoyomeP, Fo
Then
(E= N LRUIQLr, FOGA R, R)) = O(F ,FIXR-R) 3.9

G Q.{H,H' ) ia the Qreen's function for the continuum
Hamiltonian "thn}'

{Iq may also be written as a sum of solutions to
the homcgenecum equation

CE~QaWal iU ) £ 1&,:D 3.1o

Racalling that

aHa = Solh Py IRXRINIRX R! 3.11

LRININY = SO/ R Jor® 1D [ ) (R

3.12
MR FIR-R) @yt RIJ& R
with
HaniR)® S 7 @,F (s R Q&)
we have
Hopn = SRINI ’J
3,13

CtHIRD « JoIR IRy Haptt? «K\
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Then, since

VaallD = Vaalse) + €, 2.17

QUK = [oth py (€, FV+TIrikI 3.14

The complete set aof atate vectors |0 with sigenvalues B,

definad in eqs. 2.79 and 2.80 are wolutions to

(T + Yao JImdd a E . imD

These rapresent the eigenstates far nuclear motion 1in the
potential energy V, _(R}. For B_ < ¥, _ (%}, Imd> is the n*"
vibrational state. (For higher energies, the state vectar
represente free nuclei eand tha sum over n beacomss an
integral ovar fraee statea. #s described in Appendix B, the
free asatates result from direct detachment, while the bound

states are the rasult of sasociative datachment.) Then with

(E-QNHad | m>imdd = (B - ,~E,) (k> 3.16

we may write ﬂi aa

P I X< 9.17
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This is » solution to 3.1, as may be seaen by bringing (EB-

QHQ) inside the sum and integral:

L3 )maXeml< k) 3.18
(E-a¥NQA)Ga = Z Jolkp (E-QHA) “g T -8,

3.19
LE ~GQ HA) Ga = L Solhpy [ R> Imdxcalth]

(E-~qHG)YGa © QG

since the nuclenr state vectors |Im} form a complets set,
With this defipition of ﬂq y WwWe are ready +to
uncouple aqes. 2.40. The projection Q I'f? aay be written Iin

terms of P|4)> using G a

(E-QuaIql¥E> =+ AHFP FITH 2.40b

14y = Gg awP PIY) 3.21

l<kel 3.2

ity » £ fothp, SRUBEEEEE awe PO 2

Then 3.22 may be used in 2.40ma to give an eaquation for
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PlE).

LE =M PIT) = PHo, Gl XD 2.40m

(C-PHE)PIEY » PG L g Juhpy,
I MudXem & il
] —"-m"ﬁrh

The orthogonality properties of tha atate vectors (A) given

in eqa. 2.28B to 2.43 way be umnd to wimplify =eq. 3,23,

IRY [ wdpd it R 3,24
il [ J +
i-t.-e, "ML

(K =PuPIPIEr = PHE Solhp,

w2, o]
(E-Puk) P i) m farhpy PHINY £ TTELSS, <R iup) ) 3.26

Substituting t-v w—} for P, sq. 3.256 may be written as

=i LE~ &=1tMi=d) |=1d> = 1-:;-{;::&9,,:—::":&;

et LL LT .
T -wronryR UV EIDS BEES 3.26
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Thin may bhe writiten MOT W compactly as
I e 300k et 3.27
(& ~H. . )LI=-t) = fathp, W,y L ETETd Mo, (215D

Now defining an operator J_ as

1 v P i
G_, = fothp, Ho\ & —;_-:?‘E—;—-;!‘,. Wy 3.%8

allows um to writs

(E~H_ )1-0> = G_ 1737 3.29

A will be sean in the next maction, “-q. 3.29 ie

an integro-differentinl equatlion for u_I{Hj.

C. Tha dreen"s Function in Coordinate Space

tn this wection G_ will be transforwed to the
coordinate aspace function u_l{n.n’J which will be avaluated
using an approximation to the k depandance of the coupling
potantial energy “qh{H)' Since the electronic and nuclear

boamis states are lndependent of each ather, the integration
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over k in wq, 3.25 may be perforssed without affecting the

witate vactors

Defining G_, (R,R"} as the coordinate space vermion

(;‘,_ﬂR,n.’):«an-.lE‘)} 3.0

Uning 3.28, this is

i S, e 4
G (R,R") = «erlfdkop Ho,, Z EM%E_,.._—_ELh Wy, IR

e (R,RY s JoAR* JedR™ [ R Jalkpy Ho g IR

e A | . 3.31
“r*l £ é-;:,-eh 11*»«::*!",,-,1!»]

Now we muat hava
dRIH_ gl RD =\ LR S(R—-R"] 3.32

o that, with the Hamiltonian of I1 B,

& R IR D)
E- - Eﬁ-E.

G_(RyRY= ol k p Vo a (R & ViR 3.33

Naw the vector atates !A3 are eigenfunctions of the
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contiouus Hamiltonian H,_  {eq., 3.13) and thersfore correa-
pond to the eigenfunctions aof the Hamiltonian H__ (R)

discussed in II K.

. = ERImeD

b

Then with

b = KRI-13) 3.35

es ipn aq. 2.27, wa hava

Selr’ G, (R,R) U_(RD =

RY . .36
Joir? etk py v (R & TEEEEEL VasR? HA)

SR G-, LR, R} L, (R) =
3.37

V. (R
¢ F oar (R N R VRSl Re AR

Now defining I*L{R,H'] as

LIRS 3.38

Lo CR.RY = Solhp, Ypb=eaes

we may write G#‘{H.R’} an

G, (R, %) » & TmtR) ImlRRI A, cr7) 3.39
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v, *{R] is given in Appendix A for = mquars well
potantial energy with one bound state and a continuum of
frae states. The integral I _ (B,R7 ) was avaluated
numerically by Taylor and Delos for the cease in which V
has ne R dependence. " We will take Ve (R} to have =

meparable R and Ek dependence.,

A
Vi - (RI= GRS L 3.40
Than
$n
! i b = ’ 3.4}
G, (R,R) = Z 1 (R g R) et o, E——_IE—”E_—E‘g{KJWEj

The following was found to be a good approximation to tha

numerical evaluation of the integrel I_ .

L I a
IR R e (i) TgemqRD ghgg, E£eE, 3.422

1 .
TR R)= f;% (a—fl;w—}h S{E}r?(E’J b T £z e, 3.42b

ba
.o Oy * Oy LE—E ) s Q.lm-E.l) 3.42¢
N Temem -Gt * 1 EoEn7aDS
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G, = 2.or? Qg = .3 PO ¥?
Qy = doR2 P O =n—-f. 535 4 3.42d

Then with I,“{H.H'} of eqe. 3.42, eq. 3.39 may be writtaen

, " At A Awy M , e
G (R, R) = T (am) [ﬂf’l‘n 9*5“’ LR} "IJ',.,[RJJ( ?
3.41
-
2 (R) A, L) nry RS GERY)
4-‘fi"""lr-!nrﬂ‘ g ] o 3

The sum over n iz s sum over eigenatates, which have aigen-

values E_ . Since 8.0 is defined only for n such that E >
':a; y there may be only a finits nusber of terme 1in the
firest sum. Brag 19 the highent sigenvalues which is smallar

than E. The sncond sum containe all the terms for which B <«
E, - In physical terms, E,_. is the energy of the highest
allowed vibrational state, max being the vibrational quantus
number for that state. The second sum ie then a sum ovar
forbidden wstates, since their snergies are higher than the
total kinetic enargy E.

Equation 3.43 may be rewritten in such s way that

the second term becomes A Creen's function of the

Hamiltonian H__(R). First we will define A, an

a2 fx* Q,
Aa s N [ﬂm t'ﬁ; - E—iﬁ-ﬁﬂt.} 4 Hax 3.44
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Then eq. 3.42 is

MNax
G_(RA) = Z 9., LRI AL (R LR g(R7)
a - - ERY 3.45
2 /X% A (R L7 ’
» w3 ) e, £, 9 P A gt
Lat um conaider the second tesrms
aq L A (R} Ll K]
Ay . !
v Lamm L R T ESE §eRD 3.48

HNow v__ (R) is &ap eigenfunction of the Hamiltonian H , _ (R},

snd the Green's function of this Hamiltonian may be written

] )
L. LRRY z £ pR) U(RY 3.47
LY M map g - Em —O,
with

{. E -QI - “-.LKJJ l'l‘.r_,.,.h'-l (F—Fua _Em..} qr“_, 3!- 48

Then eq. 3.4% contains a Green'as function of the eqauation

(E —ay ~ How } by LR R = J(R-R?) 3.49

The ‘energy’ in eq. 3.49 has besn shifted by an amount =

1 ]
Then 0 _ may be written as
Moun
G.UR,RY « L, B §ER) UmlR) V(R GURD
1.50

+ C gt _.,-bg_;::'hk‘.l g’}
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e
e = g (Fx) -

{For the came of direct detachment the gsum over allowad
states becomea an integral over the comtinuum aes before,
with E as the upper limit.)

The function & way also be written as a product

of solutione to the homogenscus equation

{E —Qy - HpslR)) YR} =0 3.51

S8ince the shifted anergy is unlikely to bas an eigenstate of
the Hamiltonian, there are no soiutions which fulfill the
boundary conditions. Of the two solutione, ome ( ¥, {(R)})
is finite Bt the origin and infinite at B -> oo , while the
other ( ¥ , (R}) is finite at large R and infinite at the
origin. With W as the Wronsmkian of these two functiona, we

may write

A
HORRD = (5 MARD AR, R, R, =Rk 3.52

W BUr S g R - (SR wiRy) ARy 3.53

where R , and R - mre the smaller and larger of R and R',
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rospectively. A good approximation to the sigenfunctions Vo y
%, snd %(R) may ba found using the WKP approximation, with
Airy functions used at tha turning points. This is dis-

cussed in Appendix C.

D. An Integro-Diffarential Eqguation

We have found the represeptstion of the operator Q
in coaordinate spaca, and now must transform the rest of eg.

3.29 into coordinata space.

"E."“-l-r}l'l}} - G-,i“l}} 3.249

J ol R RRICE N IIRIXCRI~1D 3.55
FoIR KRG, [RXC R 1-1

- Now by aqe. 3.30 and 2.29, the right hand side of this i»s

[ ]

fatr G (R, RY u_ (R 3.58
-]

and the left side in

2 ‘ 1.587
; oR’ (E~ W, (R) S(R-Y w_ (RY .

which was ahown in section II D. to ba

L 1
(E - Vot + 3 Ja ) usdn) 3.58
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we then heve an integro-diffarential esquation for the wave

function u_ (R).

T gt
(E ~ Vo tR) + 5 ) a(r) =
3.58
.fmtﬁ‘ G, LR, '} u. (R")
| ]
- This is & msingle integro-differential aquation for u_ . {R);

'
it describams the sffecta of trensitions into and out of the

allowad bound states by means of the term on the fight hanbhd

side containing the Green’s Tunction.

. Sumsary

An integro—differential squetion has been found
for the wava function u_‘{RJ using & Green’'s function
solution to the contipuum equation 3.4ob. The function
ﬂ_¢{R.H’ ) which describes transitions into and aut of the
continuum contains two parts: & sum over the allowed bound
vibrational astates, and a Green'a function with a wshifted
energy, R - LI For ehergles below . the contribution
of the second tarm le negligible, so that the anly tran-
sitions which need be conmidered are to and from the bound
stataa. In the next chapter a zero order solutton to aq.
3,57 will be found using the semiclammical approximation.
This in turno wil] be used to find & first order solution to

egq. 31.57.



CHAFIER 1V
A FIRST OGBDER WAVE FUNCTION

A. Introduction

In the previous chapter we derived an integro-
differential aquation which has as its solution the nuclear

wave function for the negative jon state u_, {(R). In this

')
chapter the wave Tunction u_, (R} will be found to zaro
order and to first order. Trensitions into and aout of the
contipuum, which are naglected in the Zero order

approximatian, are included in the first order

approximation.

B. A Zero Order Wave Function

The intagro-differential eguation for the negstive
ion wave function m a4y be ppolved to Bero arder using the
semiclasmical approxilntian?“’r Thisa i» beased upon tha
asaumption that the momentum of the nagative ilon doas not
change significantly with R, =o that % 2 (R ) << &1 (R)
throughout most of the collisten, i.e. naway from the
classical turning points. The momentum & (R} is defined in

the usur] way:

]
& crp=LarE =V, fr)] 2

48
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In thes zaro-order approximmtion tha coupling
between the diwcrete state and the contlnuum is neglected.
The gura ordar waves function uf' {(R) is=s than the

appproximate solution to the homogeneous equation

{(g=H ") ulin) a0 4.2
With eq. 4.1 mnd
M. .R) == ;3”:‘ ;T—:ﬁ W AR 4.3
we have
(B ~ S Wlam=o 4
mo that eway from the turping points whers &_ (H) = 0,
tac, (R) =—¢(iﬂh(té E:"HM- fﬁf&l_lﬂﬂ) 4.5

R>Rr

The phases 21 %/4 have been added so that the wave Tunction
ham the form which an Airy function Ai{-x} haw as ¥ becomas
large. Hear the turning points the potential may be
approximated was a straight line. Then the molution to ey,
4.2 1a a linesr combinmtion of Airy functionm Ai(a(R-R,, 1))
and Bi(a(R-R,, )). To the left of the turning point (in the
forblidden region) we know that the wave function wmust
decranse axponentially. Eq. 4.5 1is mtill walid but the
momentum is imaginary in that region so thmt the earo ordar
selution is

R P
n _I{”&_.{R*Jufﬂ‘fil 4.6
ulimae [TE € R<Ren
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whare the axponentially increasing part of the solution has
been discardad. Now aq. 4.6 1w the asymptotic form of
ﬁi{n{ﬂ—ﬂir Y] ms n(R—H,, Y1 - om Then, since the
asymptotic form of !i{n[H—Ht,_)} im the (discarded)

exponentitally increasing solution, we may azay

2l (R) ¥ Ai{~a(R-Ryp) Rar,, 4.7
- 4.8
ﬁ:._ u',", (R 3'.& ‘;_:_I{R,,J LR-~Rep) W (R) A x Ryp
with
I{’
a = [‘-"t-; jv—|:¢(ni.}t] 4.8

Then the wave functlon to zero order is:

y x
e (5] sim fo S eRanI Ry 4 W) RO R,

- of ﬂi("‘ﬂcn"'gtr}) Ro> R,, 4.10

ra | *ﬁ?_,tﬂ‘JﬂfE'b
f.{f:.) < {”' * R-‘-E.‘p

The constants € and C’ are detarmined by the condition that

u_, {R} be & smaooth continuous function of H.

¢ = 1 ,
e mer (3 tvamol]

4.11
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C. A First Order Solution
l. A Bemi-Classical Approximation

As stnted mbove, the zero order msolution describes
an mlastic collision with no posmible traopsitions.
We are now ready to find a first order solution to the

integro-diffarential equation {1$9). The wave function u_ (R)

'
may be written in terme of an lpcoming part send an ocutgoing

part:

o LR} * -Iﬁ‘l!xpl-'t[!:f;.-ﬂn‘ifnm':dn';...u.-;.,}

¢ . Ker 4,12
[} - f "J - LW *
—- Exp ﬂ{u’-.dl s -3 ; AL ql)

Again, the phames are included mo that the wave Tunction is
in the form which an Alry function AL(x) takes at large
negative x. Eince thare i only one equation (4.5) and
there are two unknowns, we are free to choose f, and f_ in
such a way that

. R} expl 4 IL"." AR’ -E**‘“‘"' + imvy]
4.13

" . L3 Y .
o semrenpl- H(L TR + § 4 et t) ~®

Then the derivatives of uu‘cn} are
g K ) rv]
i dﬂ.'*f-’idnj"t “
_.._l——"dul;_"’ = —cdm LW J':'l“‘?[-ﬂ{,:“ *

[ ‘v f ry- i 4.14
+ Lup [-i‘ig‘g-.d“ *[4.cr ¥ - 17 ] ‘))
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- Je !
RO S N

IGIF[#{ 5'-:"""";“ d R ifrsy] 15

e -f’ * %«t £ Yenpl-d ¢ g‘e,,,ulﬂ*{-!nlﬂq"tﬂ}.,]}

By subatituting this forms of u_ | (R} imnto wmq.

3.57, an equmtiop for f, and f_ may be found which is valid
in the nilowed region. HNow with the momentum of 2q. 4.1, we

may write the integro-differentiel equation {(3.87) awm

(£3 + ) ugr = 4% fdﬂ'ﬂ-_,t_n,nﬂ .k} 4.186

oand using eqs 4.2 to 4.4, we have the following aquation.

o it -i-;;- - E{(-;_Jur[i'{if..ug-,;{,dr}an]

+ Lqi'l * {* Llexpl- ﬂi‘:-td"'!'?.ﬂm')“*m”

—
iy

3_% ?dﬂ.'ﬁr (A, R} LR}
] a =t

This may be partially uncoupled using the conditicn given in

ogq. 4.13.
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———L""E“ {teexpl- i‘ {2 5:..4!'1 f{ L 1 3an*) "i-'“?t]
-y

f.A00 =
" 2 - 4.18
- i % Lxp C-%¢ 2N ;,dn*-.-u:;.,,] {d.l G (R, A IU_LN)
F * RF R+ ;t"'*'f ‘.)ﬂ! l’}" 1‘"!1}
— X =
e - AT (e LG
L G - ar’) + Py )
+ 1) + . (E.rp[.*]sl' fj'f' L ] .19

X j‘nl.l,' &'-|£Rlﬂ{, u'l{ R*‘)

The aquations mey be simplified further uming the
following approximation. To the right of the turning point,
#., (B) 1is purely reml and up{iqﬂ‘.,rf{i,f £3)/ 0 ) s

’

rapidly oscillmtory. In addition, # ®] (R) is smsll com-

paread to G‘:[H} over mosat of the space. Then
e + tf;p..tl-il:‘.h“-ﬂ £l ] dr’
§ %y, explfa U

R r ¥
&« £ I:..,‘,..M“_1 ak

and
r

T & ga o« R!
; AP o < i‘_'w-i ol

so that the exponential partm of the first terms on the rhs
of eqe. 4.18 and 4.19 may be dropped. Physically this masns
that the colliding nucleus iz wunlikely to change the
directiaon of its motion from incoming to ocutgoing except

through internction with the continuum. We then hava
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LR , R "l
ihal o r:kr.i:q N *i"‘a."}"n?‘f
ity g -4 e, 4.20
. ;dn'f...,m, R‘) u..m'.ﬂ
b ke ' {i e, ol + .I'u SR} r iy 4
"-Ll}’-’ ,;’_‘ -l:#_' [E.* 4P L .21
» JolR? Gra(RRDIULR]
A Zero ordar approximation may be madas to f, and
f_ which will give the zero order wave function u® {R).

Then, away from ths turning point

X 4.22
;1 - ‘: ¥ ‘g
:h B,
S T 4,23
so that f: and f' ara

Skt i@.. +£$.J' iy -
;

Ll £ dR' G_ (R, RIU_LR) 4,24

LRI Ry

] x
'hL L“q_' + .1 ;..] +18A -
-

IR
$limy= L OFo Jaw’' G (x,ry oy 425

We then have for u__ (R),

=¥
Exp(th Fitwreir’) o (o] © 4.26
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Y
L LR} - -'EJE‘ L&lr[ *LE;:..:IE.’-II £ -ﬁ:dn*}-r il'l';q]

- ‘“fL"‘N—[i.‘f’-ldr*fﬁ'dk’}-lm“] 4,27

(R)

is the Egerc order wave functionm found in the preceding

When thare are no transitions, f_ and f_ are zero, mo u_,

section.

In finding f, and f_, an additional approximation
is =made: we asaume that the transition term, contelning
ﬂ_‘(H.H'). i=s pmall, add we will use in this tarm the zero

ardear approximmation to u_  {R"}, Thean using sque. 4.22 and

1
4.23, we have

n
-'"t L?—u‘f';‘h" -

§, (R = —ajaﬁ“_‘ e Jerv' G (A3 ulny .28

]
I A &, ' + 1Py .
oo (8 o M Jar & xxrulery  4.29

¥We may now write the firat order wave fupction u_'{R}:
:‘ F = ijﬂ

A LRY = -IE [ E*Eﬁ“'”m‘ '-""FI- idn‘;@r g“* At

"
] ”{ 'cr—| Ll‘-. ‘.J u.: mh] dlhl - t * %..' ' ‘ 4 . 3“

R —
& 550N J AR G LRIRT LS mﬂJ}
-]

utnp[#fﬂ“'-‘g—: «

Eq. 4.30 is our bamic formula for w_ . (R) in the claswmically
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allowed region.

2, The Turning Foint Reagion

It fis claar that the solution found in the pre-
vious section is not valid near the turning point. One
approach which m=may be taken in that region is the uniform
appraximatian, in which the potential is sassumed to be
linsar over a short range near the turning point =so that
u l{R) may be written tn terms of Airy functioos may be
Tound.

AB before, the potantial near Rir may be

approximataed as a etraight lines using a Tavlor eaexpansion.

Then the integro-differential equation i=s

| 8
(. - 3& \‘,.‘:_,Lﬂ'tp‘ Ln."ntpj + ﬂ-i'l-j W, LR

o - . ’ ’
= &3 E::.-_.m,n:*—h.f-ﬂﬂﬂ

The wsolution to the corresponding homogengous equation is
known to be an Airy function. The Alry functions Ai and Ri
and their derivetives 4i” mnd Bi° are related to the

exponentials in ag. 4.1 by *°

Y
& o Al Ly
e a* *F '_-. '%_: (@il-a (R™Ra) 4.32

wiBi{=ain-Rerd)



E N
.-. 9,.-1 (]
& o WA F (G0 alR-Repl) 4.33

~ i All=alR~-Rqpl))

A
) w1 Wy .
foo e¥ W = (-a caltR~Rep)) 4.34
$LB 1 (matr~Rep))}
] l n
gt K N Chibe

no| & g —d E-(-n*.‘c-ul.l"ﬂtri} 4.35
it l~G(R-Rapll)

Then replacing the exponentials of eq. 4.07% by theair
correaponding Alry functionm, we havae
+ n ]
, twk*H b o
3 DB
“-#;{RJ - -E—r lLﬁi-‘tﬁ' rﬂ.
L4 58l dn‘} 4.36
o LRL+1E0L) @

As before, there is one squation (4.31) and two
unknowns. We will chocose fL and f' so that

'ﬂudr
Lm-atai;';:.* - LRl ALB Ve - O 4,37

By replacing the Alry functionas with thair asymptotic forms
for large R, we may see that f, and f' correspond to those
defined in wq. 4.22 for the allowed region. Than the
derivativas of u_, {R) are

R
IF = -a E {pininn t-* W

ot 1 ’ 4.38
-k 1 % QR '
+ (AL +iBLY) @ i‘ A }
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d"“q c’ "':l.".!
o' 5 |t imin) -.*‘r' '

!

- ¥ ol R :
+imi*4iBi")a *'c* - &% [ tar-coin) £, 4.138

,‘*‘:";""‘ -i.::_‘:m‘

- N siBl) i e

Substituting this into eq, 4.31 gives us an equation for f:
and f';

!
, , J“'dl'
~o Bl b sy e ¥4%

..j,_f:u.u’ -

- dwrsisin ¢l e 4.40

A% Foar G IRRD ULLRD
L

ul

Using eq. 4.37. this may be written as

- ‘t'!l““ -iBE) iRl atpi) narf.n]

n . ] [
¢! £ Jn‘hd“I « 3 JAR'GLIRRY utRY 44
] * 'E- ]

- %n.‘ 4+ [ Lnir-18i2 -2—';-'5-:—% — (A ecaif]

. R . .
‘H"""Rj 1.1 'j',.rc.._u.,n'hu..m';
[ ]

Flime A

Now mince
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Wiri,BL) = Y 4.43

wa hava

l ] L)
_ agq’ # t=irmw) 1l t-ﬁ {3, oK

a aLel B¢ 4.44
- " ’
- 1ﬁﬂr idR' C,._.lﬂ,l) u—l"'n’)
alf _ -t - h?- £/ ol R
- = * YL s' v 4.45

_:ﬁ fdgi G-_*{.!‘R‘J' I:.I-:,LR')

Now throughout this derivation, it has basn assumed that

N is mmull. In mddition, the region near the turninpg

point where the Airy function asolution is valid is very

ssall. Therefors wa will sssume that

L
- $on YL L S £
> -F;Lm=*{ r R i B JdR G R u k) 446

R
. g I £IAR i
4 stmetd e B & (ai-in0 fureie i 447

Then

. Ry .
* f fecl® e
e T atac’

Fﬂl".’" +L 818 'Idlq'cr_,,ti‘;n.} UJJ"J 4.4H
9
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-i-. L] rl ¥ifrH ~ h r - b -
¥ F flar ® GRGEr Jawiai-iBY JolRTGLIRR YU _(KV)  4.49

Bl py

The wave Tunction near the turning point is then

TR 'E‘ [t.m.-& lt}.t.-.pl_-{: .‘i%%, Edg'tm

F ]
+i8:) JalR* G, (R, RY) UL, tav)]

s (ReelB) eaplh BE farica
~¢B8) fdn.'r.;..cn-; R*) u..(re*)

Replacing the Alry functions in eg. &.60 by the asymptotic
forms at large negative R will give the wave functioen found
in the previous section. Thus the two forms Tor u_ '[R} BAre

compatible.

2. The Forbidden Region

We musmt now find & solution to the intagro-
differential equation which ia wvelid in the forbidden
ragion. Carea nmnust bhe taken here gince the wave function
u_‘{ﬁ] must go to zero at the origin. Tharafore, u_, {R)
must go to garc feater than R as HE ->» 0. In addition, our
wave functionp in the forbidden region must match the turning
point wave function io the reglion where both are valid., The
wave fTunction for the turning paoint reglon glven in eq. 4.60
contnine Bi{—a{H—H‘P_}}. which becomes an exponeantimlly

increasing function st large -n(H—H‘P}, or at wmall R. Then
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it BoaEE that replacing the Alry functions with
qup(tuE?L!hl} in the forbidden region will gilve » wave
function which does not satisfy the boundary conditioos.
Throughout this wsection, tha exponsntially increasing
aalution will be used in addition to the exponentimally
decrensing solution. In the end, it wall be ahown that the
wave function obtajined in thia way does matisnfy the boundary
conditions. In addition, by keeping the exponsntially
incressing part of the wave function, tremsitions inte and
out of the continoum wmay be included. The alternative,
uming the rero order wave function to the left of the
turning point, rcesults in the omismicn of transitions
between tha continuum and negative ion states.

Now, wWe khow that

. A
tows | J e RIdR LE_L i
R o !.F

and we must have

[ PP, W tr) = o
R-+o
Supposna that

n A .
1L Paarly, 11 T AR, %53, dx
. {RY = ':ﬁ:' [ (e *.s -l e 'E" "') e i

L3
'.'_. lkr-.dﬂ- P‘.

. 4.52
" . . ,
Lhy Sl ln.J " A4 anm

+

+ie

Then in order that u_'[H] be zerc at the origin, wea Bust

havs
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[ ! ) . R
G e '} $-dss (e -;:.‘f' _ '_-* L. ) .o 4.53
That this condition is met by u_, {R) will be shown in this
aaction.
Ams hefors we have one equetion and two unknowns.
The condlition on f: and f' is similar to that which was

chosen io the allowed region {(eq. 4.13):

H - If'-n‘n'fhl e ’ 1 t"'d‘f
'_c(t £ g - tlk‘:"—uﬁ*fll) .t'{u t*{
4,54

] . R
- | "-l‘l' ' ﬂ-‘ d“jtl - L
2 e M "’"'*-.u-;'“' Jomwe ¥ ¥

Than

" . , .
A E BB R/RY 1Sy PaciRYK] .\.:;_
u - - e r

s SLATCR ' e

|

_,,"l-dﬂ‘ful a" xl ” , .55
' (-e ' Ye el '#lﬂja-*;i_nll

L - r
'?--JL * I_':;-é!. U, R - E [thmil 4 *Iﬂ-llgﬁjt't-,::“dih

- o ' 4,56
-:::.“"":"dw")#_i Wi dR + (Fhm - 1oty

F] Ls 'B d-t‘
(~e 't'qul e, ir.‘!:*""dl Vey o * r g

Now since the momentum ipn the forbiddem region 1is purely

imagionary, the integro-differential egquation (3.59) may bea

- writtan as
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L N L B -
(- l:a' 4 ﬂl-m.)u_,r.m: ﬁ{dn'&.,u,n‘) U LRy 4.57

a0 that with eqa. 4.52 and 4.55

* ]
) A Tl 13, & Vi
- ﬁ: {[l‘;'F’lhmnﬂ-.' e L ~ile "% )

-ﬁ r “fd"‘] - (.. -é- 1. | t.l'.l} * |q'_,|’}(... E-lttﬂ “l 4.58

L

.3 n .
ie:.‘":..;ﬂ) t-{;;_dn an

e 33 JeiR'GR, RIULRD

"y

+/— separation may be performed using aq, 4,54, Once again
we have equations for f_ and f_which are coupled only in

the axponentials uxp{:£ I fr Fi

E e ety (gt

i{:u-ll’f‘j)( M8, 10 .‘IJF..H.I)} { W e 't{hdf

=138,/ l' 130 M)

-5

d' -* '4-59

- 130yl "‘lﬁ'-ufﬂ-l

g‘: [ 1:31 ft-a Yeotle ) TR, JIC R
- - Ly ,
(-€ [T WA i:."""""')} e kti 4.60

r —-I"ﬂjtl
y SR f(-e ~15®um i L t.i Lean' o

viettny o frar | oan [ R’ (R 4 RD
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_ im -y i) ' ,
ﬂ.ti I’-ll ‘-- il > i‘“"lx.l "',I'.ﬂ'.} e t!“rdu =

~ 10 L eI | 1%kl '_{3:!..-“:‘

.- e P, itllﬂ..”u‘) t-i E%.lll ]

F
r 3R Jar G (R U_LR)

8 ’
; { =wi) __i: £ ol
H;T’E" 'F"I t-umtl _Et_l"-u'l.l "_LR) e & =

. %, ok’ 4.62
-B el PRV LI 175 E-J‘:

=150y i) . ., - "
ele Pl _ . o Iﬂr.) e J'.,,f;_ng

+ ﬁ ?dR'G-..,'LI, R U (')

We then have

. R AR’ x IRy -aliPyxl ATy 0 | i-EL
ti‘- = =m' € +4-T }"

— R L4 Pear
e 2P0y o A .E'

- Fam &

+ (e

15 ) . Wil ' " 4.83
+ .%1 (e Sl * ie )Idn G LR,E) U (K

i Y YT N - 1
-krl‘»_-lﬂ - -Hﬁ?—':-l' Ilt T §1 BV . e."‘"""’*-) t.*‘f*'

- 3135 & - AR’
+le 2} ml.l_:‘_ . t:l.l -.u.'t) . & £ %

1P ] * - ‘
4 ‘."-J‘E, i P ..u!J TaR G r,R) U R) 464



66

Again, T and f_ will bes separated into egero and first

L

order teras, with the i’;: being the firat term of aqm. 4,63

apnd 4.64, Thean

$AR)= FoRI ¢ £)LR) 4,66
Smya 20y 4 BAemy 4.66
Then
- . L&) -2l '“r._nt'l;t ‘ ;u:.r..du'!;t
S, 0 e [Le . 3 e * )

q ’ ittt rioelr’ 4,87
. Lt'ligrt-‘dlut* e_al.c':-ld‘ V‘)E- t{ -t

3 .
’ o ar’ ;&OLnl-l.
gron s ner | -3t N R e

A
. &
Le.* f“" "m‘J*{l-Ali‘:q Ve Q- ‘;r.i“_ g 4.68

Now in ®q. 4.53, f_ and - f_ ware required to mpprosch sach

o=
other at least as Tast as 'fk-j‘-lﬂ in the limpit as B -> 0,

Now in order that the exponantially increasing terms of eqgp.

4.57 and 4.8 cancal, we wust also have

X n x’
- E:rq‘.g..dl’!ftt‘iil*ﬂ“-} ) =@ 4.859
Ryo
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That this conditiop is met as R -> 0 will be shown later.
Than dropping the exponentially small terms and cancelling

the axponentially large termm of eqs. 4.67 and 4.68 we have

L l'-l l' 41:?“
gf (R) = =« ?- F-XT- W}

FL N 4.71
aF,)

S X S
Once again we find that if d_ (R,R’ ) im= zero {so that f,
and t' are zero) we have the zero order wave function for
tha forbidden reglon found in section IV B. Following the
derivation of u_, {R) in the allowad ragion, wa will use the

goro order wave function in finding f: and f: . Then

]
Lt % Ay
L SO - o Pt AN i eIFnd) a.72

fu K'G LR, R U a7

Fy(R) &

R
-i i‘- "E —I"'lf"-l ':rll'-l-ftl’)

$lene = ot le =<
4.3
F

JoI R GLR,RY) UL R")

Using f: in the exponants of eqe. 4.72 and 4.73 wa have

=139-./0} o,
Fimy = —J::E.l le a1ty 4.74

fd R' G (R,R°) UL LR')
»
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3%l . S'E-Ifti
plimy = ~he (e -ie! )

;’.-J R’ Ge LR, R°) ut, LR)

4.75

The wave function in the forbiddan region is now

woiny = dea [ e . G UL S I ,L-fn'ﬂt'-

ol Farre ity an ]
+t¢--i:: dﬂftl*‘t ::'_!".ulml L:r[‘gﬁdl'“‘ b,p 76

g .  d . e
-ie s M) e ARG (R, RY) u-.u-")]}

Barlier we found that replacing the exponentials
of tha wallowed region with Airy functiops gave the wave
function which was derived in the turping peint reglon. Now
we find that replacing the Alry fupnctions of the turning
point wave function {eq. 4.50) with sxponentiais will give
um u_ I(H] of ag. 4.76.

We must now conmider the behavior of the wave
function as R -> 0. An was stated in the beginning of this
amction, the wave function must go to zero ast the corigin.
The exponentially large terms of the wave function must
tharefore cancel, and the wave function goes as
axp(—)§ ®../A). This 18 consistent with the requiresment of
eq. 4.89. Now the exponentimlly incressing part of u_ {R}

im
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A l.;l':‘ [-'-'rvﬂ.'l'!‘_" le. G R RIUSE") n TR
L] '-n‘"l..l LF{ (? ‘&—
- & 3o I‘
-“ﬂ"’ LR R RUIR"Y
and it must be on the order of uxp[—\,;‘ﬂ'.,lﬂi]. so that

.Lﬂ... ikl

exp L T S‘du e o fdu"c. AR AN G L))

2 dd ! * R LR 4.77
-!tm-{ir‘w“l.}ih ﬂ!j'r1jdlrﬁrtn )
SRy

Once again using the assumption that @ (R,R") ian emall,

-
and that the argument of the sine is exponentially small, we

have

E"PL E .E:‘R‘ tli:ﬂﬂlﬂ‘.['ﬂi""' 'ﬁ'-.‘-l';l"iu..f.uijj
-—Ii}hqt. ] ) 4.78
B e

f#' G“Lnj R u‘lt" R")

_:.lﬂ*gﬂ““'*'ﬂ

L e

Earlier wa found ﬂ“{R.R"} in terms of the

elgenfunctionns for the Hamiltonian R, (R). These
eilgenfunctions Vo (R} are found in Appandix D using the
uniform approximetion. In the forbidden region, we have

G (B R) = :.,“ m,atnl r (R ) Taln’) at_n')

L',E'J 3- ﬁ‘u
*

+ G 3““ acn'.l -3.-“

with
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| A
' ALY 4.79
AL AR~ SELA T & -

kM

whare the momentum of the n vibrational state 1

L
1
Pt * LAMLE -V tr))] 4. 80

Eq. 4.7T8 is then

p ¥ il
Mas A ¢ ' ﬂ-u,l"fi - P
txpl T L, Srbor e W -~ R Au]
A
L o ViHTx) 4.8)

: - s V1 A
.?$ crmy o e e %f—-

-

Now suppose that the momentum @&_,(R) goes as R~ as B -2
0, while P k) goes as R .- nas R -> 0. Then
L
R, = FoR B, giR) VptR) ul (') 4.82
150, rx £ 1R )
- = B2 L
o= 4 .83
c:tlj‘ﬂ',..};._ - Etm /hia-a)l Q- 21

Using these approximations to the momenta, #q. 4.8]1 may be
written in terms of powerm of R as

il 4 "L .-.'J"In-llj

"R g Ny a
exp[F & Jax * ¢ a.]
sty -
o E A R'-I- -r-ﬁr"t"-" }"'-“ -ﬁ t.-- ak “2 41:54
L3 L

There are three cagsas that must be considered.

Ficrst suppose that a = 0. Then
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' 4.85

E'F-{‘#R . ISP
Therafora 1f &, and ©®wn hava the sames behavior in the
forbidden ragion, the wave function 1is waxponentislly
decreasing in that ragion. Now if a < 0, the v _ (R) goam to
gerc at the origin faster than a:tp{-l.ff_.,dit'[fli]fm." , BO
that the wave function is again exponentially decreasing in

the forblidden region. The third cese, 1in which a > 0 1=

slightly different. Here the exponential term dominastes:
‘.I--II
4.8B6

L n‘- -
‘ - nulvﬂlhu .-:I'."‘_“'-}J " E_Ldl"k‘ E
!wplidu AR e

2 =i

R, - K ro =Ny,
expl B LAn LaR " e j“g‘é’“"' 4.87
I e

~

| Bt

explzan, @ R”hhj = £ Au ety ot 4.88

@R T et 4 R 1.89

Now 1if the momentum of the beound state & ., [(H] im ne
smaller then R¥*" @ (R) as R -> 0, and if the product of the
momenta goes to infinity no faster than R*™" s B -> 0,
the wave function will be exponentially small ir the
forbldden region. Therefores the wave function derived 1in

this wsection has the correct behavior in the forbidden
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ragion in most cases.

b. Bummary

In this chapter we have found the wava function to
garo order using the upiform approximation. The zero ordar

solutiaon wam then used to find m first order wsolution in

aach of threa ragions: allowad, turning point, and
forbidden. In the next chapter a complex momantum will bhe
definad uwsing f_, (R) and f_ (R). This will be umad to

simplify the wave function.



CHAPTER ¥

A COMPLEX MOMENTUM THEORY

A, Introduction

The incoming mnd outgoing parts of the first order
wave functicon derived 4in the previcus chapter will be
written here in terms of complex @momentm. The complex
momanta will than be related to the nonlocal complax
poitentiael of Wang and Delni?"“j'.l'ha compleX Bomenta may be
used to find the murvival probabiiity of the negative ion as

n function of the ion's kinetic snergy and impact parameatar.

BR. The Copplex Momenta

In the previocus chapter a first order wave
function was found in three regions: near the turning point,
to the right snd to tha left of the turning peint. .
w.cr) = J, f(e b e'hml), pl-4 0w funte S

+£¢"r *""‘_}r;-—-rfd R* G (R, R*) n-,tl"ﬂ
+ Le wife 0t “‘u‘&..;m ) l.r[tmrdn {e
: . lfht‘) w Idl"'(r.;l-l-;ﬂ-"} u_.gg*)j}

el 9
r L
. mi v B Ihn*r-.,t aamut}

5.1m

1"%{!

[} ‘-n.r

R
iRl = 'i"" Juni-ial) l.:p[,'i' i'-'%' ;‘“

rtﬂhlﬂﬂllr[i m Id.ll‘lli'i ﬂ”Idl"fr.-
12

LI’I“'J'“.“H"" 5.1b
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. X 4
TR ; I‘F‘ i ¥ b expl E AR’ gl

e'*':-"' e r-m'r--.r.r RY)uS tr*)]

5.1c
-* l'.':-t—l'-‘"n' enp L%id!'#—g
{, {.r.. 1iftyy o

JadrG_n,r% u_.r.n"JJ} > Rep
We would like to use R = 0 am the Jower limit on the
integrals of the transition terms (those with d_ II(H.H' 3y,

This say be done by defining two functicns as follows.

N 3 .
i Parelfiy) XLy
= JIEI‘( e ~; +iL & o ) Raft,,

awriry = §~5ED (RicaiRRerd) + i pilacR-Rep2)) R~RYS. 2

r i
L JE b hpano
-y
o =lR’ oLl
JF[:“ RIEAL et iaT ) nere
- L) .
w,lh = - E'qtf‘{ﬂ“-""n'“*h’-’ - ;i;:;.n;_g-ur‘;” n,-..g”ﬁ.ﬂ

‘AL
LE :..* it,un + LRy

Then u_l i) may bae written
& SRR id:"f-.ﬂ LR S CR”)

W - (1) --i_'_ wr, (R} &

-4 fﬂ IR ALY f-ll-*ﬁ-..tli'-') H:‘-R'J] 5.4
v Wl e
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This must be normalised so that at largs R the incoming term

is
W ™ (R) 2 w7 (R)

In this way we will have unit incoming flux when the sum
over angular momentum states has been performed. Then the

wave functlion iwm
. - [
W try = = K[ weir) eap( £ ({ar W) + Jarwoiry)
[
JeR™ G (R R ) uer”) )
’ ’ "G LR, R*IUSLRY)
v v imy Exp L ar wnied LR GRS -

We will oow defipe two complax EoRehts

T’ {R} and T7'_ (R} a=

A
Tie LR} ’LE" R°WL LR ,.J,,.f,,__.._“.))‘g'dn.,@_ﬁ_lmqj 5.7

xuﬂtl‘*.lj
| E
WoRys f[lRDNIRY JolR” G (R, RY) U2 (R") 5.8
Then
‘Tq[l, . Tf'_"n
L., (R) ““k{‘hﬂtt}t* ‘e r wLiR) g* }) 5 9
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Figures 3-4 show calculations of the wave fupction

and complex momenta, both incoming end outgoing. Am  wanm
expected, T, LR) and i, {(R) are largest in tha

ragion whare thea bound states ara largest. The incoming and

outgoing momenta are related as followsa. Recalling that

[ Y
o !
Co(RRD = & B gLR) TalR) VuiRT GCRY

+ C gl 3“1'] -&._%‘:JR'J

and that w_ (R) = w2 (R)., as is shown in eqs. 5.2 and 5.3,

a Tunction Pm_[H} may be dafined ans

o -
Prit)s [dRIGLRD e (D W (RY) JeiR™ g (R insuliny 5.10

than
2 A PalR) 5.11
LW - | .
AN VL S P €4
Map
My -
WetRy = L S Pato) ¢ L AulPut@l=PllM)) ¢ .q  5.12

fuy
LR " “E. A (2 RMEe(Pata)) - PA (RYD 5.13
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Mup
Taimy = f.. % Pmic) + L ﬂ-...‘f:lﬂ %il"l'b;.{_g‘]u;_n') 5.14

fu RYGCR®JAn(RY) ud W]
Since the Green's function G_, (R,R‘) contmins a sum over the
aliowed vibrational atatess, it is clear that the structure
of T, and 7. are dictated by the number of bound
vibrational states v__ (R) with eigenvalues E_ which are less
than the kinetic energy of the negative ion E. In addition
the overlap integral hetween the zero order wave fTunction
u_ () and the eigenfunctions of the bound etates v, (R)

detersines the contribution of each term in the sum.

C. The Survival Probability

The survival probability Fe im given by the
magnitude of the outgoing part of the wave function squmared

am # —->m™ ., Then

. R
P, = lwr,ie) &xpl & o wr(af)

- L
. Sant G, R LLeres] |

-y

5.16

Using the complex momentum defined in the previous section,

this is

- * ,,p,..,t_T'_,U'JJ
Py = €& 5.18
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P, = - @ L B laRELFmISID)) 5,17
F )

Ae 18 wshown in Figure #, thia can have a good deal of
structure when it is found as o function of the ion's
kionetic wenergy. The wsurvival probability has a local
minimum near the epnergy of each bound vibretional state E. .
When a collision takes place slightly above this energy,
detachment into the state n is very likely, s9 the survival
probability decreasas there. The survival probability in-
creages A8 the wave function end the highest allewed bound
atate eigenfunction become dissimilar. This will be dis-

cussed more fully in Chepter 5.

D. Stationary Phase Intagr=tion

The complex momenta may be Ffound by evaluating the
integrals of eoqs. 6.7 and 6.8 using statichary phase
integration. Tha reader is referred to reference for =a
complete discussion of stationary phaae integration. Each of
the intagrals invelved haw w stationary phass point at the
crossing of the potential of the negative ion and a wehifted

continuum potential W _(R)

L mi) s E"EBau ¥ VeuilR) 5.18

If there is ho croasing in the allowsd region the method of
stespest deacents must be used.

Neglecting for the =moment the paossibility of
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direct detachment, let us consider the following. Using the

form of G_ (R,R’) given 1in eq. 3.6 in the following

integral from mq. 4.32, wa have

-~ o 5.19
x § AR GLRY) ar (") uf, (rY)]
Now in the allowed region, v_ (R) is given by
[,

Ar tit) = 1 Sg_ som( § P dRY, ¥ p) (@tRa =)
as wWas shown in Appendix C. Then in the allowed region,
using eq. 5.3 for w,_ (R) and uf& {R) given by eq. 4.% , the
integral has the form

. B F)
=, L £ TR L S i *
F (RS = Ei{dﬂE o Vo7 5‘-”,]%; Sumd f Omin ATl
5.20

- =~
+ £ l";,—:‘i: 8 (R} :d-{{:-. * V) s Ef-- v ¥y

Now this =may ba evalusted Ly tha stationary phass

method if the exponents are large away from the stationary

phase point. A stationary phame intagral 1."

o o 1 rn
I:f e fexdolx 5.21
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with the conditions that

§ <<d Aidx, 5B
at?
d.':p---l "‘l'l]'l.'ﬁ :(I.l E
H
Wyl »
"¢ v 8 pr1

and exp{iqx)/¢& ) muat oscillate rapidly away frem the
stationary phase point so that the c¢ontribution to the
integral of function in the region away from the stationary

phase point is pneagligible. Then

i Wiy 4 L I;""'U!‘”"-'*“"fﬂ l Cpt_ l#' LYl

¥ Fixad) & | Pt P

The =aign of the phaae ifr/2pis thet of the derivative,

Then our integral is:

| . n’ l"n - ?
paths = -n> foin gl [ MRS TR T
E.‘i"- ufp" ht’-}} St ”j%_..':}_ [ &l &"'W{d'-hi'-‘ﬂ._

.22

{l"‘r -l':'} . A "
£ 4] G"‘“nﬂ"'L""J

y 2

* R
tiheg R g i J

Dropping the teras without stationary phase points, we have
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Then integrating the inner tarm only,

A "’
PoiR) ® H"Iﬂﬂ!ﬁ:} E*{{':ﬂ-i-'ﬂj

{Re) [ 'E‘-“:‘f" -E‘rﬂ.}ti'-"?u
ST CRI Ol | & ¥ -

e..ktfzf--‘tﬂdﬁ“-ﬂ[ 2 "’*

gl - 'Ll'q,

+

P_(R) & FPulRd)

A fTurther stationary phase Iintegreation gives mn result
similar to the Landau-Zenner formula, shown in agqg. 5.34, for

the crossing of meveral discrete potential curves.
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e
[ 4 ‘.q_ '~
Puty s - amd ﬁﬁﬂ' T T g‘i“t-:' 1~ 5.25

ReRy
L:;'ﬂ'fq (i[.l!‘ﬁ‘ l;r o
Lol -y =~
o lt!. i_lﬁ)!i'fﬂ}
Similarly, if we define an integral J as
”~ . -
y=f W tR AR Jaet G (R R WS (RY) 5.26
whers
o (R = ar) (a) 5.27
we have

T e Pail)

* L - Ll ﬂ-l' ’-)
PatR) = an® ,,-.:?ﬁ; ,m!":i-'.‘.'f‘ g,* ~e L 5,28

. ity m‘{tttfﬂ -bﬂ'"'} + “.’H)

Now by eqse. 5.14 and 5.17,

Tetoe)n L 4, 2 RelPalos) 5.29

ahd

- Wl D) Rl Pt
Pl L L ilit - 5.30

Then
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Mkn
Pa s expl-& L ity (2 :;F::'-J 6.31
. L N x,
219 -Pn ';,_) cos (kL § o - f:w..) £ 7))
Se that with

Pt RIw mowr 5.32

aF = TR el -ei )

tha survival probability is

ol i
P’ 3';!-?[-1‘“'”&'. dﬂ'{.""') %%L 5,33

:Jll‘{ﬁ*(f::rq -~ i:th r “?H!]

The Landau-Zennher result for the croasing of

two potential anergy curveas with a constant coupling

potential anergy Vo, is

L]
- R 5.34
P’ = 8,

where F, and F. are the forceas, given by

: LR} P
Once again, as aach bound state bacoman

energetically accessible another term is added Aand the sur-

vival probmbility decressen.
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and a numerical integration of the survival probability are
coapared io Figure 10 for the collision H + C17 .

Thera are sapnergies for which the steationary phase
intagruation ias not the major term of the intagral., Whan the
momenta of the ionic and svlecular states are similar
throughout the allowed region the zero order wave function
u“" {(R) wmay ba nearly the same as the bound state
eigenfunction v_, {(R)}. At these energies, the overlap

ilotegral is roughly
[ - -
JaR vain) u.‘u:aml > g 5.36
°

gLRy = 5 5.37

It is this that is responsible Ffor the peanks in the survival

probebility, which ie now

-~ B §h
Py o o K miK 3

The wstationery phase tarm in the survival probability then
applies only when there is no significant overlap between

the wave fupnction u_, (R} and the eigenfunctioon v (R}.

E. A Complex Potential Approximation

It haa not besn poesible to define a time depen-

dence for asmaciative detachment, since a clasaicnl
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trajectory for the npuclei would come to n stop with the
formation of the molecule, The formulas which have been
derived may, however, be written in termes of a time depen-
dance for energias above the diract detachment threshold.
Using =& time dependant formuletion, the non-local complex

potantial formsulas of Weang and Delos may ba dnrivud»ﬁ”*:1

Pefining a time T as ??

LS C S n© 5.39

ol ™ T s

the integrals of the momentum ., (R} used in chepter IV in
finding u_ t{H} any be changed to integrals of the

potential energy over time as follows

R~ ¥ - 5.490
P, dR’ {E.‘F.TF:.‘ T "
w”
N R’ r o v v 5.41
—_ - [ ] -
lo.on = Jo eze g

Throughout thia derivation, it will be sssumed that the
petential eanergy curves ¥ (R) apd ¥ _ _ (R} are similar

-]

enough that we may say that

[P Pa = !h%%l:z 5.42

Then



[ T
C.dR’ = {dr’{az =W T =V, (T4)) 5.43
-r
The wave function of aq. 5.5 is then
“l
J&,an' r'ﬂ.:ﬂ] -k P = WY R oF
un-;:-:.!glfe - - ia 5,44

T = TR)
In the nllownd ragion, this is

[ . L —
@y * TS CT) - { P-olw’ =L (™)
wiry v =il &, (e.#i'-' B AL ) 648

In mdditiom, the incoming part of the wave function is
asmocinted with =& negative time, while the outgoing part
roefers to positive time. The coupling betwasn incoming and

outgoing waves must be dropped, mo that with

. R
~ F-.'u’ i' +* *’T-‘- IT'J
* ‘i"’ 5.46

U, LTan) = EJE €

b {oaars L™
[

u_,(Tre) s =tda, © 5.47

The integro-differential equation then has the following

first order solution

-

(e = Hoot™) U1 ) m JalT G o, 0wl ()

.M
. I E = AL )]
unem e “E[E ¥ 5.49
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L

$ jurr'(as ~aLT) gx =

f.i7}a Jﬁ:" & Py _.I;_d‘rfc;-_,r}a' ~ou iy 6.681

The complax momenta written in time dependent form are then

. g
mo T - ¥ SedTeac- aon)
T e HE .Ld'r"-EE e
ol
ry b J (LB -8 E0)) 5.62
n_d d?*-‘fﬂg G AT T & k
.*'-}' faE=nit)
r - o2l E-
a iR .
Tel™) = TLie) + g Jotv J'g:'._ e
, =T 5.53
3 Jog & [REAE =aie))

alcd™ T o ) e

Tha limit R --> & gof the incoming wave is changed to =
limit as t -=> - o= . In addition, the momentuw integrals

may be written as:

| ., T -
- * Igﬂll-ﬁ(tl} i—f:arqfuﬂt . i“.['-“""'"-’ *J.WE* 649

e

m T ~
Tome W far W far ooy 5.55
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, ¥ o Hi )
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T L
Tor) o Thie) + ¢ Idr‘g'-' ,rnn-*#:

5.56
& e i e
« GLST) & o ol 418
Simtlarly,
e, R ety
Jo 5t oar s [ T e 5.67
L 4y - M
We thepn have
 {, e
o cln’
UL, (i) w =4 E e 'I""
5.58

b
™ oy h C2E(TT) 4 [ BLE)
alnp [ 3 .{-d?'.'.[.d?' G imiT e hoaee '+ ]

This ie now valld for both t > 0 and ¢ ¢ 0.

The Green's function may be written as

2 M

. FIE
% * - e
A R D R N oy

\.,r.‘rr-;, 6.59

is now the memiclessical Green's fTunction for the con-

tinuua function with E 'i'“ (oa )

1 »
CE =6 = Yoy +_i"ﬁ 5":4} u: = o 5.60
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Jdep, _Edr-' Vo ct) g WERELE e 5.61

'*!tﬁ,‘*taﬁ *LIEE?"—*L‘J i-;?'hﬁwﬂr'"
t E_ \‘-‘{{F-J}

With the approximation that the coupling potentisl senergy
Van{R} is a eslowly varying function, we may mot ¥, equal
tao th} ovar the range io which the integral is significant.

Than as T - o |

A
% JP.clm’
Lo, LT % - :-Fg:: e " Lap } '{‘t_IcJ'r'"

- *‘rv el b 5.62
- o ir T =g f ale
Jetep, JV._‘t'i"‘Hi_{‘ cl e ¥ i }
When the wave function is normalized at t = - , we have
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E (T o) v« & enpl " fd™ Step,
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which is the most genersl formulm for direct detachment
collisions derived by Wang and Dalos. From this, the local

couplex potential formulam mey by derived.

F. Summary

In this chapter a form of the wave function for
the negative jon wes derived. Using this formula, the
equations of Wang and Delos and a stationsry phase formsuls
ware derived. Transitions directly from incoming to out-
going parte of the wave function ware dropped, but such
transitiones ware kept with the intermediate step of &8 trao-
sition into the continuum,. In the next chapter, the
probahlility of detachment into esach bound state will be
derived and the probebility of detachment intoc a state with
an energy betwesn bound states is discusssed (and found to be
vary amell}. Two sayetemns with widely difforing potentinle
- will be studied in the following two chapiers: H + €C1° and

H+ F~™ .



CHAPTER V1

THE BOUND STATES

A. Introduction

The previous chapters have dealt sntirely with
the wave function of the negative iton state, Here, we will
discuse the vibrationally bound states of the molacule AB
and the probabilities of detachwent into those staten. In
addition, the wave function u‘_{H] may be found by =solving

the original continuum equation

(E “HenlRI) U (R = Ve (R U_(R) 2.22

B. Transitions into the Bound ¥Yibrational States

Twoe types of traneitions must be conmidered: those
in which enargy is conmerved and those in which it is not
coneerved. The latter may take place only in or near the
collieion region. Tha conservation of energy in the limit
a8 the electronic coordinate bacomes large resulta in boup-
dary condition eq. 2.84. This boundary condition also
stateas that ths molecule must be i an eigenstate of the

Hamiltonian H'. ir;R) as r =) o . where

g0
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Hoa (R} v (R) & Ea PwtR) 2.79

_ - "
s ELF R~ L o™ @ (B 8 v R 2.d4
e X

The projaction of I'¥) onto the continuum vector QIE»
is tharafore

QIE? v I Jorhp, o (R

o

bm (RIFI v €RI 2 wa™ I lwsimid>

= o
The probebility of detmcheent into a state with electron

anargy and nuclaar energy E_ is then

T NS N L O ¥ b

The probability of detachmsnt into m given bound atate n

with arbitrary electron energy we will define as « :

lmmt™ ™ I Solk op <hliam k)T 6.2
To find =, we sust begin with the continuum eguation
(E-QHQIG IM>= A uP PIEY 2.32h

Thett with the Gresp’s Function defined ip saction III B, wes
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have
s E JJk An2 im AXE g < b 3.17
o L Jdre, E-En -G,
so that
|- & Jnlhlph K-, -€p P Pl
A fotkpy oot | A3 lm>s a 6.4
(ki ia P €2

Now we wish to find two gquantities: -5: and q:: . Thia

aay be done ueing Gq as dafined in w»q. 3.5, and the

detfinitioons of P and @ given in eq. 2.34

RIE? = Cra@awP PrID 3.6

a0 that

Z ldhp, 10>l «

6.5
amtaeidel Py, | X R It =119)
L Telhpy tie> imad B~ -

Then using the orthogonmality of the electronic and nuclear

besim vectors, we have
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ik
St kpy ., Ih3imd> = 6.6

Ao H =iyl

which is equivalent to

G | W=D t=13> 6.7
E —EBmp—%pg

Jolh py 1> =%, = fuikpy 10>
Now the integral cver the continuum contalns a first order
poles at &€ = E - B, . Adding a small imsginary term to
E-E, and integrating around the cobtour of figure 10

ragultas in the following.

Jothp, wliny = Mg IRp, 2., vl Hy -y ) 120

I nated 6.8
- @ Latkp, 1ay Emiion

This 1is eimilar to the intnlrntiﬂn purfurlad in Appandix B
in the diwcuswion of the boundary condition as r-> = . The
contour was chosen soc that in the coordinste repressptation
the purely outgoing waveRim> would go to zoro as k

approached o oh the complex plane.

Now we know that

'_c:iu CRi Jol bk py L dikrimd>n L& ] z.«,.""-'h...nm.n

20 that at large ¢, =< should be equal to =™k Then

L]
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Loms CR [Jod Ap, stk INIImDD =

. oA emol M §=i>2
i <Rin oo, S

“hmid My o b 1P
) ""Em.-"‘.

*,‘:‘:i":"' o Idkp._ iep

ol | “L.-’ Ilin El lﬂ'

E"'m

- \

=

=
Kow > o oSl Hygo b =331 6.11
L L-F .

Egquation 6.11 im than tha probability that the syatam will
be in the state n when the electron ils Bt large r, or the

probability of transition to state n.

Eg. &6.]1 may be evaluated by first transeforming
it ta coordihate mpace. The readar is reafarred to saction
IT D in which it was shown that the coordinate space func-

tion corresponding to E['H im Hhﬂ (R}.

Loy ”h-t""l)b =

o L] 6.12
;,m![dn;' lhm | ROXE REY, | R72xg p7] =13

Then with
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UERI By tRI ™ Y, SCR-R")
we have

« Tt me mp® LA 6,13
mi B, =0« Jol nr (R WV, o LR

With the coupling potential enargy ?hﬂ(H] having
separable R and w depandence as discussed eariier, this

is

L] =
'{"MJ H._-.I"'IJ}I Vh"l ;dg'v;tgij B‘E'J u-"teaj Ea14

)
Jat P eRIGCR) U, L)
" - A

-c,.:'“' « i O,H
sa that tha transitioen prnhuhilitylﬂ:"fldapundl an the ovar-
lap beatween the bhound atate nuclear wave function and the
wave function of the negative ion u_ ‘{H} in addition to the
depandence of the coupling potential energy on the anergy of
the fres elactron.

As before, this integral may be evaluated either
numerically or with satationary phase intagration. Using
the first order wave function w_ (R of mq. 4,30, and the
aemi-clasaical v, (R} for the allowad region given |in

Appendix D.
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[ .
JolRary . cri gl > 28 #p | 5o {.{nw.. * W) .18

yonle 4 TR Uy e

This 1» similar to the integral that was svalumsted in sec—
tion ¥ E. Once again, it has a stationary phame point at the
croaning betwaen the two momenta &, and ®, . If there
is little mimilarity between the wave functione, mo that the

overlap integral is amall, a stationary phase ovaluation of

eq. 6.16 gives

- & Y
.Jc.il V_ER}E{EJH..LR} = H]_ 218, =P, | ]
n A Lo 6.17
.‘EL - +E " {'B,,JI
L -E(-L". ' {“@mj -
a
.\-ﬂt. .""5 ——
-e" & ‘;hp?'l = '&M @) 4 * "“"'LR”'}‘S
so that the trensitjon probability is, using eq,. 6.15,
n.. & iy ‘Qhu"ll H"t"t
I, 1" =2 fr 8~ K ZIPS =P |
6.1

]t}uw.,-wm Y L®) -i;-,cw_,-:a-...-’;‘r"_m‘:)}t
-l

- 2
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C. Cantipuum Statas

We will now consider transitiohms into states with
ah arbitrary nuclesar kinetic energy. A tranaition ilnte a
siate for which the free electron has a kinetic energy which
i not the differance betwsan the total kinetic energy and

the energy of a vibrationnal state:

isa wunlikely to occur, wsince the astate is bpot guantum
mechaspnically allowaed. The wave functione for these states

are saolutions to the continuum equatian

[,E.""H. ‘H.-LE'}} u-. = V“.-‘I u-l{—\ﬁ-]

Sipce the enargy is not that of 5 bound state, thes wave

functions u (iR} are not eligenfunctions of the homogeneocus

-
continpuum Hamiltooian H,_ and therefore may be found using

the continuum Green's fTunction of aq. 3.52.

3.52
-%':_q'(n_,r:n - W lRe) B (R3) /0
3.51
(E-Cy-loal R)) "I-fl (R) » o
Than
6.19

| o]
Uatry s fotee g ycr,m0) Vo par uoit®s)

This integral has been parformed numecically for

saveral sperglen. The probability of detachmant inta thesa
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stateas has bean found to be insignificant in comparison to
the probebility of detachment into the beund vibrational

states.

B. Rata Conmstantes and Croas Bectionnm

Tha wave function u_ (R} and the datachment

probabilities way be umed to calculate the crosa aection
for associative detachaent and the rate constants. The
detachmant cross mection is related to the survival

probmbility in the usual way:

=
. 23X Z (apen0-pth) 6.22

d;l,'l‘ NS

The reaction rate constant k Ls then

- - BT
. #ELEJJ—E{;E dE 6.23

The only experimental data that is available is at theraal

enorgles.

E. Summary

The detachment probabilities for the bound states
have beean found in the limit as r -> o=, Theae may bhe used
to find the detachment croms mection and rate constante. ID

tha next chaptears, the squations which have been derived



will be applied to collision syatems. The results

whers posmible he compared with experimentsl date.

99
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CHAPTBR Y11

SURVIVAL AND DETACHMENT PROBABILITIES

A. Introduction

Calculations of the reaction rate constant k,
detachment probabilities, and survival probabilities hays

besen performed for tha reactions
HIp) +C4 =* HiDsSl + o™

HMLD) + ¥ —p HEDIE + 2

In the case of H + C1 ™ » our rate constants were found to
be in good agreament with exparimental data. Na
experisental dete is sveilable for the reaction D + €17 -
DCl + e, but wa found a significant imotope effect in the
survival probability. In the came of H{D) + F— -> H (D} F
+ @~ there 1is & similar inctope effect 1in the survival
prabability. Again, no experimental rate constanta are
available for the case of D + ¥~ ., The rate constant for H

+ F* is known to ba 1,6 » 10~ cm ? Jaec. Our coupling

potential energy was chosen to give this rate copstant.

100
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B, H (D} + Cl1°

l}. The Potential Enargy
In order to performn the calculations, three
potential spergy curves are neaded: 1} the potential energy
of the pegative lon stmte, 2) the potential snergy of the
- molacule, and 3) tha coupling potantiml snergy ¥ . {H}.“'q"
The raegion near the minisum of Yoo (R} (tha
equilibrium distance of HCl) 1is well understoed. The
crogsing of the twoe curves ¥,  (R) and V_ _ (R) takes place
in this region and the atructure of the curves there
detarsines the final vibrational state distribution of the
moleacule HCL. In addition, the behaviar of Veu {R) and
?_hIER} at large R ie well known. There im mome uncertainty
regarding the exmct behavior af the potential curve V., . (R}
at intermedimtea dimtances {at B = 3, 4 &, }. The structure
of the curves in this region determines the probability of
detachsent .

Ne used a Morse potential fittad to the potential

enargy curves of Goldetein at. al. for ¥_ (R) and U..{R}TI

The coupling potential was nasumed to have the form

¥ \ (R) = - ‘i‘ axp{—.86H)}

h - N -

where the coefficients » . and ~.66 were chosen to fit the

meapured rate constants.

2. Tha Survival Probebillity
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The aurvival probability of the negative ion has
been fTound ma m function of the ion'w kinetic esnergy for
several values of the angular momentum quantum oumber 1, Ibn
both reactions (H + ¢C1” apd d + €l ), the wurvival
probability is oscillatory. The oscillationa aras relatad ta
tha anergies of the vibrational states of the molecule, as
is shown in figures T and # . The survival probabllity i»s
£iven by

B WARTI WY N3 MY

P, o e 5.17

where the suw ies over the vibrational wetates which have
energios less than the ilon's kinetic energy. The dapendence
of the survival probability ob the bound states energiess is
therefore not unexpected.

Assoclative detachment into a particular
vibrational state is most likely to take place whan thwe
ion's kinetic energy im near the energy of that astate, =so
that as sach bound etate becomes energetically accessible
the wsurvival probability may be expected to drop sharply.
This does not alwaye take place at E = E,,, as way be ssen
in figure 11. At low energles and large sangular momentum,
such as 1=30, the overlap integral ;:f—dll u (R) giR} v (R}
im at a maximsum clowe to E _ 80 the survival probaebility
is at 8 minimus there,

The change in P, with increnaing 1 must aleag be
conmidared. At small impact parameters and thersfore small

1, the molecules HC]l has three vibrational states below the
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ssymptotic limit of V_ _ (R}. As the angular @moEentum
increases, the lowsr statess become inaccessiblae. In the
caze of 1:=30, there are no accessible vibrational states
below ﬂh.{nu]. This axplains the lIarge osclllations of
this curve in relation to the survival probability at 1=10,
which bas three vibrational states below the wminimum ion
energy.

The isotope effect may mleo be explaiped by the
pomitions of the vibretional stataas. For the reaction D +
Cl®™ -> pCl + e~ the anergies of thae vibrational states are
clomer together than for associmtive detachment of H + CLl™

This reduces the effoct on the survival probability of the

bound atatas and reduces the magnitude of the oscillations.

4. The Rate Constante

The rate conostant for sssocliative detachmaot is

related to tha survival probahility aa follows

Rt e 25
f(ﬁ_}u,’_:‘tﬂj ’L L2 he) {1~ Py J 7.1
=y
u
[ 4 I R -E/nT
—Ri(T) = [‘ﬂ"ﬂtuﬂ"] JdE alB) & E. 7.2
whers o (E} is the totml crosm sectlon. Tha survival

probabilities discussed ibh the previous section ware used to
find the rate constants kE{(T) for sssocociative detschment.

The rate constant for associative detachment in
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€1 + H collimions has been measured for average asnergioa
below 150 meV by Howard et. nl:‘ The rate conmtant k(T} was
found to be roughly conatant as a fupction of temperature
with a value of about 9x 10°Y cm /mec. Aw is shown in
figure 8, our calculations are in good sgreement with the
axpearinental data above average energies of G0meV. Almo in
goog agreemant with the sxpesrimental points are values of
k(T} obteined by J. P. UOasuyacq using the =zero radius
potential approximation discuased in the intreduction. The
axporimental results are about half of the valus of the
Langevin rate constent. This ie smaller than rate constants
which have beesn obteined for other asscciative detachment
processes such as H + F& -> HF + =, The low rate coostant
may be due to & slight potential barrier itn the potential
¥ {R), or by ths fact that the lifetime of HCL is

g

comparable to the collision time.

4. Detwchment Frobabilities

The probmbilities for associative detachment into
the vibrational states were found for severml values of 1.
Detachment probebilities for the first five vibretional
atates are= shown ss a8 function of ensrgy in figure 14 at 1 =
30. Bach curve has a maxiwum at an energy & = (E_, +
Bpso, '72, or half way between the two bound state energios.
Then we would expect the energy spactrum of the detached

electrons to have a maximum at-~(E_ - E,1/2. The averaga
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epergy of the detached alectrons has hesen found to bhe about
half of the energy difference of the vibrational states.

It ia noteworthy that the detachment probability
for each state n bhecomes emall as additional states beacome
anargetically accessible. No mignificant contribution wam
BeBh from the ground vibrationnal atata, aither

experimentally or in aur calculations.

C. H (D} + F~

1. The Potentianl Energy

Again a Morse potential was used to fit tha
curves of Goldstein and Segal for HF end HF” kil S system
differs from the HC] in that there are five vibrational
states below the negative ion’'s potential ?_"*(H} am R -

o+ . The coupling potential snergy was chosesno to be
Y
Ve, (R} = .093 exp(-.76 R) ¥V _ _

Using this coupling potential our calculations give m rate
conatant of 1.6 » 107" cl’f-ac at tharmnl energy, which is

: This rate

the experimental result found by Howard at. al.
constant im close to the Langevin limit, =so that we can
expact the survival probabilitiess to be smaller than thoame

found for HC1 and DCI.

2. The Survival Probability
The survival probability for HF is small in
comparison with thet for HCL. This is in accordance with

the larger rate caonstant found for HF. Survival
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probabilities are shown in figuras 19 and 11 am & Tunction
of eanergy at two values of 1 for HF and DF. Thae imotope
affect was found to be similar to that found for thea

pravious collision syatens. A striking isotopa effect haw

- bean found for the distribution of detachment probabilities

ipto the vibrational states by Zweir &t. nl. The detachment
prohabilities for HF mre sharply peakesd, while for OF thars
is very 1little diffarence in the detachment probabllities
into the bound vibratlional states. Tha isotope effect on
the survival probability fcund in this work is in mccordmance

with the experimeptal resuwlts.

D. Summary

The experisental rate constants for the systems H
+ Cl - have been reproduced by our calculations, A large
isotope effect was found in the aurvival prohablility for
baoth ayatems studied. In the case of H(D) + F© , this was
not unexpectad, since a large isoctope effect has been seen

in the distribution of fival stetes of the molecule.



CHAPTER VIII
CONCLUSION
A, Summary

We have presented s gquamtum smechanical theory
of namociative detachment. The theory im based on the work
of Tavler, Wang and Delow, in which A clome-coupling theory
was used. Tha presant theory is more general in that the
nuclei are treated quantum mechesnically rather than somi-
classically.

Chapter 11 dealt with the boundary conditions
of the reaction and with two projection operators which
greatly simplified the analymis. In the neaxt chapter an
intagro-differential equation for the wave function of the
negative ion was derived and 8 ‘QGreen's function' des-
cribing tranpmitiopns into and out of the continuum was found.
The eaqueation was solved to firat order in the chapters III
and IV using complex momanta. These complex momenta then
were uaed to find the survival probability of the negative
ion. Transition probabilities and the wave function uw (R)

came in chaptar V1.
The equations were appliied to the reactions
H (D) + C1° -> HCL + o

107
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H (D} + F~ -> HF + =

In all cases, the rate constants were large at thermal
snergien. The isotops effect on the survival probabiltity

wasm found to be very large for both systenms.

B. In thea Future

A morea thorough study of the detachment
probabjilities into sach vibrational mtate would be worth-
while. The lsctope effect in these detachment probabilities
hams basn weasurad for H (D) + F~ . It would be
interanting to study that effect umsing this theaory.

The exteaosion of the theory glven here to
direct detachment and dissociative attachment would not be
difficult. The boundary conditions for deing so were glven
in Appendix €. It would be intaresting to apply this theory
to the direct detachment, for which thers is a great deal of
data and many calculetions. In nddition, many experimenta
have been dona on dissociative attachment. Ths relationship
between rate constants for associnative detachment and

dissociative attacheent would ba interesting to study.



In this appendix the coupling potential energy V
and tha density of states in the continuum 8sre discussed.
8ince it has been assumed that V has saparable R and
dopendance, we may use the model of Tarlor and Delos 1n
which the elactronic potential energy was sassumed to be n

square wall with one bound ltntnfa“

The potential enpergy was
alscv assumed to be independent of R. The density of atates
is that for a free #olectron and may alsc be found uwing the
sgquare well model.

The asingle electron states found by solving the

Schroedinger eguation for a square well model with one bound

state (shown in figure 12} are

J"" J&m{h.ll-) i Fy
d.irm - Al
-y iF= Py

j!. S thg, ) € re r.

JEE, enlle, )

P Lt Y
] + t_r'ﬁ.
vin (¥)] e J( 'E"._ cox b, n, ‘e
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'?iﬂﬁh.l‘,}f&
with
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N,, « YRmTEsvD / A3
gy ST A4
R, @ dﬁmli-r-?-:f-; A 5
ey, = AmE'r A6
vl g, )
Ne G v i %._ AT
L1
e .1y coa M) + Ein iR, ) A B

[T

The wave functions sre required to be zerco at the origin and
at L, where L is the length of the box in which the wave
functlione are normmlized. Later this will be mnllowed to go
to Infinity.

-,
Ther the coupling potential V, ., is
[ .
Vh-l - !ﬂ"-"‘ P, r) V.. m:‘tr.} A 9

Since the states 9, and o, are raal, Hh-. is equal to ¥,
The density of atntes P for o free particle in
found by applying the boundary conditjon at L to the free

wave functionm. Then
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A 10
-L..._tl-"rl] - .
o+ R (= *tc,aatlt.r.:-r u-‘m‘h-’i)}j g
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F - E.h al+2% a A ll
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Now Ph, i the deneity of states per unit wave number k, =mo

that

h'l.-L+? = N‘ﬂ" H-a‘f_l_.--

Then ma L ~> g,

Py~

It will be neacessary teo find the integral

- L]

Yoip Vy.
Tk g

The reader is referred to ref. for a full

A 15

discussion of

thise. Briefly, the integrand haa two poles on the real



axis, =t :njEE‘. On the imaginary axis thers are
%HS = B,. In the complex plane the normaliszastion
the continuua wave function %4 contributea an
number of first order poles, =making s numericaei
praferable to complex integration. The following
were found by Tayvlor aod Delom to be a good fit to

resulting from 2 numerical integration of eq. A 15
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also two:
tearm M of
infinite
solution
functions

the curve

Vo g® a a, A 1B
‘rdhlﬂl E -~ - Tra Ao’ & -y E «o

t i Gy + Ceg B
.I'n-'iP;'F:%t‘ . Fn e (s -*-‘-cﬁ-.%i') Ero A 17

Theas functions will be used for the inteagral in &9. A 15

throughout this work.



A proof that the boundary condition on the free

electronic states

Fag g

reduceas to a discrete sum over bound molecular atate enecgy

lavels
— = 2. 84
M.ui't#;ﬁ}'z-f- q;*ti’;nl nr, (R}
F =3 -
ia given ip thia appendix. In addition, it will be shown

that sach electronic wave fuhction in the final sum must be

purealy ocutgoing.

First consider the projection Q%> . If a met of
basis wvactors i1aud) area dafined as the vector represen-

tation of the bamim states vm‘{R}, so that

lradd = Ja R IR Am, LR)

with

Hot B vralR) 3 B, 1r ()
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nt

M tR)m = 508 ZTRs * Ve LR} B 2

wa have
k B 3

QIE)= Sodhpy L =, k>
]
with

sl L] HI=2I=id B 5

"'n-- 1 E"'Em'.h

as was shown in Chaptar VI.

Now it im known thaet in the liait s r =-)» &=

L
Cowe QUIMEI s X iy, >k

e

Now the coordinate rapresentation of |u3 is a mixed out-

going and incoming stete. Thean

I mr v hr
. AR « 8¢
m:ilmi’)- J'akpkg { TR T B 7

» o, L) amld.hlhl-l}l"*)}}

il wir

,
e -
fokon t S8 s emib o
.3 b 2 s

Now 8t lerge r, exp{ikr} is a repidly caclillating function
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so that when it is multiplied by a samooth function of k, the
integral ta zearo. Then, since < klBI-1} is a smooth

function on the real axis,

tihr B 10
. A — ey RiHI=I> 30O
m" Jlﬁ' Ph- !"E-m-H <

mo that as r —> % _,the integral is equal to the value of
ol
the residue at E-B,__ = 37 .

The cvontour,shown in figure 13, is chesen to lia
on the uppar half of the complex plane for the integration
on the outgoing part of the wave function and on the lower
half for the incoming part.'"' In this way the integral]
convergeas as |k § -» o | To find the Iintegral eof the
outgoeiog part of the wave function, ssall positive imaginary
part is added to the term (E-E__ ). Then we have

— L& a folbp 2 et TVSSTTPN
b, LR 1| X7 _'_r.-ul" f.r” A e b M

Fay oo

B 1l
- — -y
e Ea s o M e B

Py,
bows LRI FD> = = Mip, L ;j.hﬂ‘ L LB B 12

N B 13

Boc that only the pole on the positive real axizs is included

in the integration of the outgoing part of ths wava
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functien. The pole op the negative resl axis must be
included in the inteagretion of the incoming part so we again

add & amall imaginary ters to E-E, for this integral. Then

&
-k

r
g e el Hpo | =133 wvuik)
foh Py £ (TEBal™ +il+ SRR LR Rt s o0 ] - "]

B 14
u "lhﬁf
= =Tl & W dewel Ho\ o, [ =129 rmiR)
mo that
b P ;B)e i & p { n chmd Hine = =122
[ gt A ———m—‘"‘_—
B 15

o L =i} P
ﬂ -l H -y | 8 L] '1" tm

For E < E, the poles lie on the lmaginary axis and the
integration 1w performsed soc that the exponential term goes

to Zaro as r© -> ™ .,

Thuse the limit am r - af %Y ia mn sum over
vibrational westates =snd the slectronic wave functiona are

purely outgeing.
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MORE BOUNDARY CONDITIONS

The theory pressnted in this work way be aasily
extanded to the reactions direct detachment and diesociative
sttachment. The boundary conditions for doing mo will be
discussed in this appendix.

The boundary conditien on QI%N) was presentad in
saction 1] E. as a sum over bound vibrational states as r-:>
+ For direct detachment the enerxy is high snough that free

nuclear statam must be included, snd the sum becomeas

. LY L. c 1
m t 1AL PR L v, "o, Ta t L %n Pn, Ve
where w__ (R) are the free nuclear states. In the sum, they

are normalized over a space of length L, and there is =
copdition that w (L) = 0[. Now these states are similar to
the electronic states discussed in Appendix A, mno0o thet the
wus over Tras statea can bacoms an  integral over o

continuum, with a density of states defined am

c 2
Fu"k"

Than
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. s 'h-, hh cC 3
b Fefa)n Lo T T ¥ TdRA o @y 0tV

The limit as R > ie alao different from that
of associative detachment. Before, the bound states went to
Earo sxponantimlly at large R. Now tha free ptates must be
purealy outgeoing in the limit am R -> &= . Then in exactly
the wsame way as the electrohic atotaes .h. ware madea to be

purely outgoing in Appendix B,

R A
» fri, [ :k'l
4 Johp, TR iF R} ?4-" o e wa ARTE Ak,

The sum over bhound stetes has remained. @0 that the sabove
conditions permit aswociative detachment, direct detachment,
or bath depending on the energy and the presenca or absence
of bound nucleer states v (R}.

DPissoclative nttachment has boundary conditions
similar to those of associative detachment. In the limit as
R ~->w there is only one possible atate: u_, (R). It must
be purealy outgoing as R -7 o= . which changes the
normaligation given in Chapter IV. Suppose that the state
of the molecule corresponding to the incoming alectron is N.
Then u_ ; (R) may be found in the same way that ul‘{H} was

found in Chapter ¥: uaing o semiclassical Green's function.

In this case, 1t ins
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. My
o, nYan’
N (R RD . em e ¥ k™ c 6

#0 that
'.E.' H-I-IIJ u... - U-.u "u-#

(E = Hayo } B R, RV = Jer-1RY c 6

oy I
Woy by = o' A, ca,RY Vo bR Vi ir!)
The wave functlon is then
. .,'
o &0

*
(TR R - 5Y ¥ Eﬂl ..-'L 1,_.‘_'_-.] q'l-lﬂ (-R"J 1"” {R'J c 7

., R ne
vy I P '4!‘ o,
UatR) e % e turt = Vgl ey G8
’T.‘..' ‘c,J'R '—'Tr‘"‘-l 1~

] I *-

u*ﬂ,’,—q -~ &Im'i 2

. ) argtR
+ '!_"':"'"Joll & - - Vo LR ViR

The use of sn outgoing dresn's function has asutomatically
fulfilled the requiremsnt thast u_l{HJ ke purely outgoing at

large R.

The bound states bhave the condition that at large
r, thare 1is one state with sn incoming electronic wave
Tunction. Claspiceally this ie the astate of the wmolecule
betore the collision. Provision is made for the molecule to
change its vibrational state during the collision by
requiring that wave functiona of these stateas be purely
outgoing at large r. Than, drawing on the resulta for u_,

{R) and u .(R] foaund sarlisr, we havae
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- s
UntR) 3 (R = Hyutr)d vty JUR' A (k,R9V, 4R, © 10

=
(B -HuuRDU ) = folk’ G R, RV, (R ¢ 1l
G LR, R BV, try A, (R, RT V. 0 LR ¢ 1z
c 13

CE = Ny R} U tR) = v Ry u_ (e
s Ve -F"J{':J RYAL(R,R) Vo R Nt )
The derivations given in this work may then be
made to apply to othar reactions by extending the zsum over
bound satates into the continuum and/or changing the

normalization given in egq. 6.5.
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The nuclear eigenfunctions for the bound vib-

rational states v, (R} are solutions to the equation

Houg (R) iR} x E,, r tR)

A uniform approximation to the slgenfunctions will ba
presented here. There are up to 7 regions for which v (R)
sust be found, since the angular momentum peak aay result in
the potential having three turning points, as is saen in

figure

Semiclaasical smolutiona to the ragions away from

turning pointas ara"

] *i’ R
# P - - n 2
Ar i} = .&. e L. + -’6: = -
. RRAL
N S @
r ] P - ! N n 3
A (A 2 ‘& e L X '«-'1:.* J‘T&T‘ e -

Near the turning pointa, combinations of Al and Bi Are usad
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Ar (W} n'! "‘t‘l"-pﬂ..'}} ¥ l~ uf‘-""ﬂ'ﬂiﬂ"} b4
o

Thera are several conditions on the wave function.

First is the bound mtate condition on the snergy

e D5
.‘k 4 @ LRIci® v (med)W ~-nG, L,
Rer,

In this way in the absence of the third turning point the

wave Tunction goes to kero mm R -) 0 and R ~> ¢=» .  Then

R
YT LM
o * j{.:,_t.l.'- R

a LR) = L& . Fq..tl’)dﬂ' + @ B 6
'J"'h- 3 (t ‘iﬂ )

AATC, (e n ™ R LR Ry b) xRy,

Now if there im a third turning point
tunnelling is possible. The wave functlion must be purely
outgoing in the region cuteide of the outar turning point

and sust go to zero at small R am before. Then

! ? W RIIDRT 7
AR R, ) o U%. e b Teny P
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-t
LR T A, )= adF & laW) (Bl )
* LRI (aiR~Rypp,)))

R
(5 oal - »
nar{ ﬂ."‘dﬂln‘.r.'j = & L - * I."'m . t I {l o | )

f-l
RN Ay n au & lati— b ('R

]
- N :.rn:v.,t BilatR-Ral N}

Prol 3| (o tR=Rg))

i R

’ . " .

L o

The functions ¥, snd ¥, used in the Green's
function & may be found in a similAar way, but they hava

different boundary conditions. If thera nre only two

turning points,

lowu FUR) a o
A-w p 9

Lo F,000 = O
A -

It there are three, howevar

lavwws FHI(R) =
-

, M
@, R’
ar o X kT D 10

Then with the basic solutions in the separate ragions the

same am those for u’ul:li}. we have

A
] a'lre
= &i‘ﬁ ‘fJ

*:‘ltu}" bﬁ. T l""-r. D1l

[ * R
't . ’ ﬂ- R- .F;
» e ol r V)
"",‘f. Im I;:l jm{i'ﬂﬂ
"
*_oln'}
Rap, 15,. &
; - ug’ e ) = oy
R} = swf ,.. *

v CoS U.T‘fﬁ d‘F‘fﬂ-fli]‘ﬂ
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Connecting the solutions sc that the %1 are contipuous and

have the proper boundary conditions,

-

ot Rep,
Y LR Ryp e a0t (xRS Isadf o emn) P13
L

Rep
2 Bi(wlR-Repy)) + cos 5!H‘pv: Ty i (%R =Ry p3))

For thres turning points,

. Mup
Wl Ren) T N [l ese + Re) D 14
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A L
- L
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Repry i
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a4
Y LR>Repy ) x 5—[ f"“‘*{{ "'ifxr"""l)e. ’!1"'- b 15
~ Rep
n Lol (it:‘ +ﬁ;’u"| + ﬁ.ﬂﬂ{ 'L',:-P"L -+ ﬂ'{ﬁj

.*"‘
- %l . "
. * nfﬂ. s e L "R..P’FI' 1-?"!&(_} }

The above Torms of v. (R) and % were used in the

calculatione to find u_ (R) and the detechment

]
probabiltitien.
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