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ABSTHACT

The aubject of thia theais 12 an analysiz of results from pasodospectral
aimulakion of the Strauss equations of reduced three-dimenaional magnetohydre-
dynamica. We have soived these equations in a rigld cylinder of square cross
section, o cylinder with perfectly conducting side walls, and periodlc ends.
We assume that the uniform-denaity magnetoflukd which £ills the cylinder is re-
aistive, but inviscid. SBitusations which we are conaidering are in several es-
sentinl mays similar to & Eokemak-1ike plesms; an eaterna) magnetic fleld is
imposed, and the plasma carries a net current which produces a peloidal mag-
netic fleld of sufficient atrength to induce current disrgptions. These dis-
ruptiona sre characterized by helical ™ =1, n = 1" current filaments which
urap themselves arouynd the magnetic axis. An ordered, helical velocity Eield
grows out of the broad-band, low amplitude moise with which we initinlize the
velocity £ield. Kinetic energy peaks near the time the helfcal current fils-
ment disappears, and the curcent column broadens and flattens iteelf out. We
find that this i3 » nonlinear, turbulant phenomenon, in which many Bourfer
modes participate. By raising the Lundquist number used in the simulatjon, we
are able to generate mituaticns in which multiple dlaruptions are induced.
When an external electric field 1s fmposed on the plassa, the Initial disrup-
tion, from a gquiescent state, i5 found to be very simllar to those obasrved in
the undriven runs. after the lobed "m =], n = 1™ atream function pattern de-
voalops, however, a quasi-stesdy state with £low is mainteined for tens of
Alfven trannit times. If viscous dumping is §ncluded in the driven ptobles,
the steady state may be avoided, and additionsl disruptions produced in o time
lesa than a larqge-scale resistive decay tinme.
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1. TORAMAK DIERUPTIONS

The tokamak is one ¢f the most widely atudled apscies of the genos "mag-
netic fusion confinement device.” In essence, the tokamak 13 a torus-shaped
wagnetic bottle. Two baaic coniining maghetic flelds are present In m tokamak,
A toroidal fleld Bq and a peloidal field 534 ses Fig. 1a. The toreidal field
is produced by an external toroldal sclenoid. The toroldal plasea itself
serves as the secondary of a tranaformer. A changing magpetic £ield in the
primacy produces an ejectric current in the toreidal direction of the plasma.
Thia current Ohmically heats the plasma, and generates a poloidal magnetic
field which assists the stronger externally lmpased magnetic field in con-
fining the plaams,

Although o tokamak is a good precurscr for a confineaant fusion device, it
13 far from & final state reactor. Two fundamental types of plasma confinement
problems exist for e tokemak plasma, problems shared with obther magnetic fusion
confinenent devices. The primary difficulty is that the plaska haz a myriad of
instabilit{ies associated with jt. Some of the most dangerous, disruptive in-
stabilities, even lead ta the termination of the dlacharge, and can seriously
damage the device. A complementary problem js that fusion-oriented devices
operate in a temperature range which makes internal diagnesis of the dynamics
troublesome. Accurate (if any) ewperimental cbservations of many necessary
quantities - ion denajties, varying magnebic fields, fluld velocities, and
current distributiona, for example - are difficult to obtain. Thus, in crder
to generats the ,iaﬁ B’“S ﬁhu.cs“r[ﬁ. {lijit.-h;r story) for what happens when these
Instabilities take place, it 13 necessary tao augsent experimental observaticns
with extrapolative theoretical modelling. For problems of intersat, it ia in
gensral important te implement computational methods, to generate as much in-

2



formaticen ap possible on the dynamics of the plasma.

One of the moat central questicns in the whole subject of tokemak confine-
ment has been “what happens in the disruptive instability?™ {Bickerton {1977};
Rutherfaord (1908). Rebinson (1982)). Only when the disruptive process is rea-
sonably well understcod, and contrelled, may the tokemak evolve into & practi-
cal fusion resctor. 1Ib 13 w class of jdealized plasma probleas velated to dis-
roption which we explore in the body of this work.

Following a brief I{ntroductisn to the tokamak, and its present sxperimental
status, experimental obeervations of the disruptive instabllities afe conaid-
ered, with particular emphasis on interpal Jdigruptions. After a purvey of the
varicus emergent intecrpretations and medels of these obaervations, this ap-
proach to the problem of current disruptions in a boopded magnetofluid is de-

mcribed.

A. The Tokumak.

Figure 2, after Robinson {1982), shows s standard arrangement for & tra-
ditional tokamak. Table |, produced by Bickerton (1977}, 15 a list of repre-
aentative tokamak devices. Mote that scme devices no longer have an iron core
but rather an air core. Also, for some devices, vertical coils with feedback
have replaced the copper stabilizing shell. A feed-back arcangement becomes
neceasary when shaped cross-sections, with better atability properties, are
waed. Thiz ar7angement 1s glso wore convenlent (Bickerton (1977); Robinaon

(1982})).

1. Diagnestica.
According to Bickerton (1977), it ia "astonishing™ that we st!1] have no
direct way to measure the poloidal magnetic field, or equivalently, the radial

variation of the current denaity. It is calculated by assuming that the tor-



oidal current denaity j?{r] varies as the alectron tempersture, T. , to the 372

pomer, and that the effective charge of the plasmsa ions 13 uniform across the
plashs.

The slectron density and temperature, and the lon temperature, all can be
measured by Thomson scattering, the scattering of laser iight by £lectrona. In
a review article, Magar {1981} explains that an election placed in the £ie1d of
a laser beam will be accelersted and hence emit radiation. Irregularities in
the density distribution give rise to net scattering. HRandos nonuniformities
produce "incoherant scatbtering™; the rexultant scattered power 18 proportional
to the electron density. Since electrons form a polarizing shield around fens,
scattering off these coherent clouds allows the observer to determine the phase
velocity of the density fluctuations, and hence of the ion temperature. Analo-
gously, by scattering off individual electrons, one can infer electron tempera-
tures. These measurements have been made practical by the sdvent of the high
power pulsed leser. The pulaing ia & drawback; only & few measurements may be
taken per discharge.

Although less accurate than Thomson scattering. analyais of x-ray smission
yields the electron temperature as & continuoua function of time. Bickezton
{1977 describes this as & chordal line of aight measurement which requizres some

unravelling to give T (r,t); it ylelds the highest temperature in a sight lipe,

G111 (1981) discusses s-ray dlagnostics in depth. Be gives formulae that allew
one to convert the measured radiation in s plasma into information about Lthe
tlectron temperature, assuming the plasma is Maxwellian, snd that no discrete
enissfon lines are present. He also deacribes the x-ray pinhole technique,
which has been ysed (von Goeler, &t al (1974)) to study the magnetohydrodynamic

activity of the hottest part, the central reglon, of & tokamak plasma. By com-



paring signal phases at varicus positions in the plasms, the periodicity of
the disturbance may be inferred.

Another dimgnostic tcol is the external sagaetic pick-up coll, which allowa
aone to detect small magretic £luctuations outside the plesma. These Eluctum-
tiohs can be mweasured at seversl locations around the plasme, apalysed into
theit Fourier components, and interpreted in terms of magnetohydredynamic (WHD}
moder (Wesacn (1981}).

Morten {1976), and Butchjinson (1976} carefully inserted magrebic probes to
follow the development of internal magretic £ield structures in the Lokamak
LT-1. Hotchinson dedyces the toroidal current denalty from thes: measurments
by wasuning cylindrical symmetry.

Blckerton (1977) mentions that Son temperatures ma¥ 4lsc be measured by an-
alysig of the fast neutral atoms leaving the plazma. Purther, although the
measurement of current and loop voltage are relatively atraightforward, he warns
that even in deriving the resistive part of the voltage, difficulties may ensue.
In short, he suggests that a good general principle 18 Lo measure everything

With two methods, and “to trest all results with initiel dishelief”.

2. Paremeters, Timescales.

Bickerton (19%77) atates that the basic question about toksmaks 1s whether
or not they can be made to contain a pla=sa which will satisfy the reactor cri-
terion Eirst aet forth by Lawson in 1950. The reactor criterion is a atatement
about what §is necesaary in the way of plasms confinement, to achleve fuslion.
The plasma must be dense enough, and stay in the machine long enough, with
enough thermal energy te overcome the Coulomb repulsion between nuclel, for a
useful amount of energy to be produced, 1f & mixture of deuterium and tritium

i3 used {n the tokamak, the ballpark “enoughs* are that the temperatute of the



plazma b+ on the order of 5 to 1P ke¥, and the product of the particle density,
n, and energy confinement time, 7., be at least ll"F cn’ mec (Bateman (1978)).

1t is estimated that the next generation machines, JET in partjcular, will ap-

proach this criterion (Rutherford (1980)}.

It 15 alz2o pecessary to monlter other, less dramatic figures, on the way to
the goal of fusion. Observation and theory muzt be comparable, for any use to
be made of their ceexistence. FPor these comparisons to take place, the language
of theery must agree with that of experiment st some level. The most basic
bridge between theory and experiment 1a that bullt by dimensionless numbers and
general timescales. Por instence, the value of a #ingle dimenzionless number,
the Reynolds number R = [ (characteriatic velocity) * (characteristic langth) ¢
(kinematic viscosity) ) allowns sn estimate of whether » flow {5 laminar or tur-
bulent, and conseguently which sert of theory say spply.

in order to obtaln w straightforward view of the piasmas under investiga-
tion, we calculate similat numbers for some existing fusion devices, using for-
sulae from Bruginskil (1965), and typical plasma parameters of the current gen-
eration fusion devices from Bickerton (1977). Results of thess calculations

are in Table 2. The constants, in cgs units, used to create this table are

those given by book (196F). wWhere the bracketed numbers refer to formula num-
bers in Braginskii's article, symbols used are:

i 27 1 C. = perpendicular electron conductivity.

{2231 *u = fon dynamic viscesity coefficient.
[ 2224 )] V3 = tfon drnamic viscesity coefficient.
f632] D, = magnetic diffusivity, f( S ).
(7.18] F = mass density.

[ 8.19] V¥4 = Alfven speed, f{l? ).

From these coefficients are calculated:



Te = realstive decey time iminor udius‘.ﬁif D, -

Tn » Alfven transit time (major radfua) / Y, -

5 = Lundquist aumber = Te/m ® Ly
P, = Bagnetic Prandtl number = [“/p] /D, .
P, = magnetic Prandtl number = [n.u’f'] fD,.

Mote that for all numbers calculated, we: wassume that 2z, the charge state, i3
unity; use the spitzer logarithm {Epitzer (1962)); designate the directions

L0 to mean perpendiculur / parallel to the external magnetlc field.

2. General Hacroscoplc DifEiculties.

The struggle to create & productive fusion reactor has spanmed decades, and
is 2til] continuing. A sajlor difficulty iz an engineering one, aspociated wikh
the cperation of the machine. Another, more serious difficulty is the follow-
ing. BEven present ganeration machines cannot be run in posaible regimes of
large current with arbitrarily shaped current density profliles and large num-
ber densities. Physical instabilitien resatrict the operation of tokamsks, teo
the point that the devices will only wark in 1361uted windows of parameter
space.

A very important tokamak number is the “"safety factor™, q. This parameter
ia a measure of the relative fleld strengths toroidelly to poloidaliy, or the
number of times & £leld Jine wraps the long way around the terus divided by the
number of times it wraps poloidally, in the limit of an infinite number of
windings. Prom the geometry of £field lines, when the murfaces on which the
field lines lie have circular cross section, qi{rj = { r B?} FURD, )L
is found that the most dangercus unstable modes tend to be these in which the
helicity of the perturbation 15 the same s that of the tokamak’s magnetic

fieald, since » perturbatjon with this shape involves the lemst bending of ex-



isting magnetic £ie¢1d 1ines. This perturbation can be written in kermn of E{r)
*exp [ 1 (m@-nP ) ];wheng=n/n, the perturbation helix matches that
of the field, and the poseibility of almple, linear instabllity arisea (e.g.,
Hlnh!ilerfriﬂﬂi}}. These ideas w1l be treated in more detail in Chapter 3,
with n g =~k z /A, R -> 1.

At this polnt, ysing this terminology, we can briefly categorize the five
macroacopic tokamak instabilities, according to Bateman (1978).

Firat seen wan what im often termed the sausage, or m = § instability. The
{nstability has no poloidal dependence. IL is suggestively called the sausage
instability, since the plasma column tenda to pinch iteelf into & form resem-

bling links, when subject to this instability.

When a modezate longitudinel magnetic field was imposed on the plazas col-

dsn to atabilize the w = 9 Instabllity, another highly macroscopic instability
appeared, the = = 1. This instability 15 also known as the kink instability,
because when this mode is active in the plasma, the plasms column itself may
distort and weap 1taelfi hellcally about the sagnetic axis. The safety factor
*o* i3 usefyl in determining the linear onzet of this instability. Por q{r =
plansms edge) = quJ: < 1, is may be shown that a plasma column which dees net
touch the confining wall is unstable to » helical " = 1, n = 1™ pertyrbation,
even in o straight cylinder. If L) > 1, the plasma 13 not aubject to thia
instability. The criterion q. ;21 i; called the Xruskal-Bhafranov stability
criterion (Rruakal, et al tl&El;; Shafranov {(1978); Bateman (19781}).

Hitnov oacillations mere observed scon after the m = 1 instabllity was
seen. These osciliations were detected ao small perturbations in the magnetic
fleld at the edge of the plasms column. Feorier decomposition of the signals

yielded informaticn about thair "m’s" and "n's", their peloidal and torcidal



wave numbera; m running from 6 down throwgh 2, with n = 1, is common early in
a discharge.

Found neat were sawtooth oscillaticns. Inm 1974, von Goeler, Btodiek and
Swutheoff observed reproducible oacillations in soft x-rays esitted from the hot-
ter central reglon of the plasmes. Yhese indicatlons of diaruptive activity
within the plasss are so named becauze the x-reys which preduce them generate a
sawtooth pattern on the oscillescope scresn.

Throughout the history of Cokamak operstion, the diaruptive instability

would frequently appear. This i3 o generic name for a wide class of unex-

plained, abrupt tranaitions of tokamak plasmas, which often occur without wWarn-
ing. The disruptive process 12 frequently characterized by expanaion of the
plasss column, and & large, negative voltage spike kicking back against the
tranaformer. The understanding of disruptive behavior iz of paramount jmpor-
tance in the tokamak fusion effort. We turn now to s closer look at some ex-

pecimental studies of large scale disruptive activity in tokamak plasman.

B. Focus on Disruptive Activity.

Rapid, explosive-like tokamak dieruptions range from internal disropticns
that occur at regular Intervala deep within the plazma, with no visible effect
on ¢lobal discharge parameters, to sajor disruptions ihat may lead to termina-
tion of the discharge in a aingle burst of activity (Blskamp (1979)). Radomtsev
(1984) categorizes an abrupt Elattening of the electron temperature, or equiva-
lently, o power of the toroldal current density profile, as a function of ra-
dius, an interna} disruption. WMe classes non-internal, or éxternsl, disrup-
tisns a8 varying in deqree from minor to major. A plasma with current will
survive & minor disruption, but mot a major one.

External disruptions have been seen since the earlieat times of Lokamak
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operation. Major disruptione are cbhaerved as catastrophic interrupticns of
glasma current denzity and electron temperature (Sauthoff, et al (1978)),
thorough documentation comes about far less sasily than observation. Only &
few agreed-upon festures mark the existence of a generic external disruption.
Accerding to Fadomtsev (1975, 1984), the plssma column 1tself sxpands along
the minor radius at the onset of the disruption, followed by & redistributicn
of the current density, a negative spike on the measured lcop voltage, and an
abrupt decresse in the major radius of the plasma column.

The external disruption, then, can not ba classed as a phenomenon which is
either indepepdent of the plamma free surface, of {ts toroldicity. Humerical
simulation of such s aeries of events 15 entirely beyond the present capabll-
ities of wvailable computers. Nonetheless, attempts have besn made tc model
aspects of the external disruption (Waddell, et &1 (1978}, (1979); BDicks, ot al
(1981}, {1982); Dimmond, et a) (19B4)). ®e will pot pursus that course here.

Instead, the focus in this work Will be on the internal disruption. &Since
this subclass of disruptive instabilities occurs deep sithin the plasma, It may
resdily be arqgued that particuiar edge affects play a less cruclal role, HWe
epbark on & study of the internal disruptive inatability with the hope that ex-
ploration of it will lead to a clearer vision of the underlying cauzes of dis-

ruptive activity in a wide varisty of situatiens.

1. Eaperimental Ooservations of Internal Disruphtions.

According to Bateman (1978), s breakthrough in the Eleld of Slagnostics
came when von Goeler, =t al (1974) first used sensltive, moveable soft x-ray
detectors to obderve continuoua, reproducible oscillations st the center of the
ET tokamak. This %-ray emimalon with sawtooth mtructure wasz also obaserved in

other tokamak discharges (Jahna, et al (1978}). Eadomtaev {1984) considers the
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obzervations of von Goeler, Stodick and Sauthoff ta be even more than s major
technical advence; be conjectures that results of thelr work may hold the key
to underatanding disruptive proceases.

In 1974, von Goeler, et al (19%74) obtained "images” of the BT Lokamak
plasma colukn by means of a =lot aperture. The x-ray emisajon from Alffarent
regions of the plasma, filtered throogh 1- and 31- mi]l Be folls, was measursd
with atlicon surface barrier detectors, meveable in the image plane. Thejr
mobility allows an observer to sample Aifferent chords of the plasma cross
section. Radiation intenaity is eald to be a function of the elettren density,
n-, and temperature T. , and ¢f the impurity concentration, while the fluctua-
tions in the radiation are predominantly caysed by fluctuations in T . The
oscilloncope tracer of these [luctuationz show a “sawtoobh-1like* pattern, with
slow rise and fast drop near the center of the column. 5canning slightly fur-
ther out in plasma radiuas ylelds an “inverted" sawtocth, with & fant rise and
slow, exponential drop. By assuming s stationary discherge and & constant
value of Impurity concentrstion across the current column, they calculate the
safety factor, q(r), derived from Thomson scattering, to find that qir = #) =
#.6, and qir = 2 cm.) = 1.0. They meanure relative sawtcoth amplitude as »
function of radial chords, and find that the sawtoobh amplitude has a node at
the q = 1 point. It 18 cutside that point that the sawtooth 1s inverted. By
aimultaneously measuring the ssawtooth at different locations poloidally and
toroidally, they observe that the sudden break of the sawtooth orcurs at the
sahe time everywhere, They ceonjecture that this indicates independence of varl-
ation in 6 snd 9. i.e. the sawtooth behaves like and m = #, 1 = ¥ mode, an "in-
ternal disruption®. They report that, inside the g = 1 surface, T. sharpens
until the sawtooth breaks,then flattens, causing » decrease of 1. 1nside, and

increase just outside the g = 1 surface. The outer {ncrease dles off exponen-
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tially during the reheating of the central part.

Bachk Internal disruptien, or abrupt flattening of the T. profile, 1s pre-
ceded by » growing sinuspidel "kink mode™ oscillation, with *m =1, n = 1" (8,
9) dependence. ¥on Goeler and coworkers (1974) infer the pololdal mode number
m and toroide) mode number n of the disturbance by comparing phase relatlon-
ships among X-ray traces taken at a variety of chords.

Jahns, et al (1978} describe the evoluticn of sawtooth cacillationa in
CRAMAR, and give exaaples of the soft z-ray signals taken Erom the hot, ¢entral
plasma of that tokamak. From many particular cases, they nes that, in ORNAK,
sawteath are generally characterized by a repetition time of £.5 to 2.5 milli-
seconds, and u disruption, or Enl] time, of about one tenth of that. The ob-
served m = 1 oscillation has & frequency in the neighborhood of one cycle in a
kanth of & millisecond. Beyond some radius, the sawtooth signals are "in-
verted”, with a fast rise coincident with the disruptive fall of the “"inside”
sawteeth. The inversion radius, or q = 1 surface, ranges from 3 to 0 cm. Re-
calling from Table ! that ORMAX's mimor radius is 22 cm., it 1s clear that the
inner region of the paumtocth activity fo separated from the wall of the device,

Bateman (19708) also refers to ORMAR data in bis description of the scenatlo.
e adds to the desacription given by Jahns, et al (1978), when he states that
the smplitude of the m = 1 oacillation, atrongest in the neighborhood of the
q = 1 surface, does not meem to be directly correlated with the strength of the
samtooth oscillation. In general, homever, it 18 observed that the m = 1 oacil-
lation grows during the rise time of the interlor sawtooth, and vanishes just
after the dimruption. Bateman {1978) alao notes that in 1976 the TFR group es-
tablished that the x-ray sawtooth is primarily due to changes in T. , ané¢ not

due to density varistions,
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Bauthoff and co-workera, (1379), describe internal disruptive instabilities
in PLT. Apparently, the mass of data acquired in PLT {with snd without neutral
bsam injection} is not as straightforward as that obtained from ORMAK. They
present informatiaon about the evelution of m = 1 modes, bursts of which can
either be correlated to internal discaptions or decay without a disruptive
event. Their zignals of line-integrated emizsivity display m » 1 oscillations
at a fundamentul rotation frequency ¢> visible on traces whose signals orig-
inate from the center, out through chords + 8 cm. Erom the center. They note
that the central trace exhibits 2.0 behavior, since the hot epot passes within
viaw tuice par revolution. (According to Bateman (1978), the rotation fre-
gquancy of the m = ), n = 1 helical structure 1z not understood; 1t may be due
to diamagnetic effects, or to rotation of the torus as a whele.)

Sauthoff, and coworkers, (1979), report that an inward spival trajectory of
the peak after disruption is slsc seen, better observed in o relatively small
sawtooth. The peak emissivity may be seen to Elrst spicral out tor * 6 cm. A
burst of x-ray activity is observed even in radil beyond 12 cm., which sug-
gested that the peak Tegion creates a locallized protrusien into the previous
concentric circulnr structures. After this "disruption™, the pesk ealssivity
region then spirals back toward the center, Sauthoff, et al (1979), conjecture
that the two different outcomes of bursts of m = § activity may be related to
the sxtent of the radial excursion of the magnetic axis; the cleser the axis
approaches the g = 1 surface, the wore energy ls lost from the center,

A new systes of fast data scquisition and high performance amplifiers used
an the TFPR soft x-ray arraya of surface barrier detectors added new information
to the observations of sawteeth in tokemak devices. Dubols, et al (1983) de-
acrite the obsarved sawtooth pheromena in TFR s being charecterized by a re-

generntion part, during which the temperature, and hence the x-ray emizajvity
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profiie, becomes peaked. An oscillatjon of m = 1 parity bagins to grow. The
captral signal abruptly drops as the electron temperatore profile flattens, in-
dicating that an internal disruption has occurred. 1In Some cASes, however, the
disruption itself generates complicated signals, sharp 3pikes In the emissivity
near the time of maximom dl=ruption. Dubols, ot al (1%83) report that thess
features seem to be present in al] internal disruptions, and were not detected
previously because their amplitude relative to the m = 1 mode and ts the total
temperature variation was wuch less; @more delicate time resolution then pre-
viocusly employed was pecessary to observe thenm.

The basic, repetltive atory of ipternal disruptions, then, is that sum-
mar {zed by Eadomtsev (1975). He ignored the plasma rotation and described, from
tha work of von Goeler, et al (1974}, that a slowm =1, n = ! instability or-
curs in the plasma, and grows to an order of about IP %t of the total radiation.
This instabillty then gives Way to an abrupt disruption, corresponding to a ra-
pid ayemetric cooling of the central region, and heating of the peripheral re-
gion. He interprats thess results in terms of a cylindrical, helical flux
function, where 0 is replaced by 2. The curl of this flux function generates
an suxiliary msgnetic fleld B,= B, - (T B;/R) £, . The suxilisry field
vanishes at the g = 1 surface, creating & aituation which is unstable to per-
turbatlons. Because of finite resistivity, he conjectores that the lines of
B ,break and "rscloss” at an x-peint Jocated on the q = 1 surface. Thia re-
cloging becomes progressively more rapid, and cannot stop until the entire in-
ternal reglon is reclosed with lines of the external field, nnng* has acquired
one sign throughout the plaswa, i.s&., the safety factor q has become greater
thap unity everywhere. Heating of the plasma colukn occurs, causing B, to

again develop a singulsr surface, and the scepario to repeat. These ldeas will
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be discussed in further detail in Chapter 3.

2. Numerica] Expariments.

KadoatEev's acenaric led Waddell and co-workers (1976) to perform a single
helicity (f{r, T = a0 + kz), only) numerical calculation to test the above hy-
pothesis. tThey describe this hypothesis as one in which the m = | mode resis-

tively allows the plasma to evolve from a state in which helical flyx contours

are clrcular, to n lower anerqy state in which helical fiux contours are aguin
circular, thereby Elattsping the current density and incressing q at the oriqin.
They 50lved a palr of equations for the fluld verticity and magnetic heli-
cal flux function in & stralght cylinder geometry, in which B, 2> B, (self-con-
sistent) and g ~1; the plasma was asmumed to be an Incompressible magneto-
fluid. By allowing the plasae to completely £i11 the cylinder, the bourdary

candition ¢n the magnetic field at the edge of the plasms Was the same as the

one at the edge of the computational domain. They chome the condition that the
time derivative of the flua function at the wall (r = &) wad constant. An jni-
tially peaked-on-axls mede]l for the unperturbed torpjdal current density was
enployed, with reslativity mcdelled to vary as the inverse of the initial cur-
rent profile. A Lundguist number of 5 = 5 1 19 uas chosen, where 5§ == / T, |
for Ty=a® "ﬁ ., Tam(pYm/ (k$; ), with 5{ = characteristic value
of the resistivity. The spatial resoluticn was not reported. The initial per-
turbaticn to the aystem was an b = 1 smode.

By monitoring the kinetic energy of the aystem, they followed the evolution
of the dynamics. They found that by the time kinetic energy was & manimum, the
toroidal current hat flattened inzide the q = i surface, with o akin current at
the x-point, and q(r = ¥} ~ 1. As the kinetic energy decreased alowly, the

contours of helical flux evolved, but remzined complex, strictly differing from
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Indomt=zev's conjecture that they would return to & circular state. The flux

function was fairly uniform acrose the center, however, Flow patterns remained

epsentially unchanged as the instebl]ity progresaed, except that the vejocity

at the plasma center was noted to increase relative to that at the singular
layer, as the instability developed. They reported ne additional burats of ac-
tivity.

In 1976, Sykes and Wesaon (1976) reported results from a three-dimensional,
hydromagnetic simulation. Resistivity, viscosity, Ohmic heating and an energy
loss were included in the equations solved, mith the remistivity varying aa Ii%ﬁ
a varying fuaction of poaition and time. They choze v. n = # for the velocity
fleld boundaty condition, where i is the unit normal vector to the surface and
v is the plasma velocity, and for magnetic fleld conditions they supplied an
appropriate electric field st the wall to mainteln constant curtrent. Although
their computational grid was only 14 * 14 * 18, they qualitetively obaerved a
relaxatien oscillatien in the central value of the pressure, similar to experi-
mentally obaerved sawteeth. This escillation they attributed to the Chaic
heating of the plasme and consequent channeling of the current. After some

computetjonal time, they found that for the calcuelations reported, the oscll-

lations decayed away and the instablility finally took the form of a stationary
helix. 1In order to better understend the magnetic field structure, they "un-
wound”™ the magnetic field, transforming to a coordinate system in which B = B_,
snd BE? =B, - 27 rBp/ (cylinder length), In this Erame, they cbserved that
at t = &, q > 1 throughout the magnetofluid. Sybsequent concentration ef cur-
rent led to q <1 in an inner region. An instebillty arose, in which the origi-
nal magnetic axis moved to ope side, and m new ope appeared on the opposite side
of the plasma where a magnetic "island” had formed arcund the q = 1 aurface.

The nes island then displaced the old, with apcther axisymmetric confiquration
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formed, the value of g now greater than vnity. Eubssquent cycles behaved Aif-
ferently from the Eiret. A new maghetlc izland was formed on the surface of
minimum g, when ¢ £=11 below unlty. This {sland did not remove the original
Island, but was it=aelf expelled by a resurgence of the origipna)! island heving
q>1. Jn summary, they sad features ainilar to experilment, and results sup-
portive of Kadomtsev's {nterpretation.

Also in 1976, Straues (1976) published his equations of reduced three di-
pensicnal WHD, which may be further reduced to the single helicity set used by
Waddell, et al (1976), but do not a priori Ilmpose & aingle fined helicity on
the system. These equations ate probably the simplest possible MAD deacription
that retalns scme three-dimensicnality of MED turbulence in a current-carrying
bounded magnetofluid. Though inadequate in sitpaticns In which the currents
are strong enough to generate ipternal magnetic fields as sktrong as the exter-
nally-imposed dc magnetic fieids, they appear as the lagical first step in ac-
quiring computational experience with reallstic geometries. We shall discuss
these equations at more length in Chapter .

Strauss (1976) reported results of numerical sipulation of these equations
in rectangular geometry, at unapecified, non-zero walues of viscosity and re-
sistivity, with boundary conditions such that ?HELHH *ne v) = 9 f.e. boun-
dary conditions appropriate for riqid, tree-slip, perfectly conducting walls.
The viscaosity and resistlvity were necessary to damp the highest harmonics.

Eis numerical sclutions of the equations confirmed the existence of faat grow-
ing fiked-boundary kink modes in non-circular tokamaks.

These equations wers later used by Waddel]l, Carreras, Bicks and Holmes
{1979) (and Hicks, et al (1961)), and Piskamp and Welter (1962) to study situa-

tions In which many modes nonlinesriy interact, in circular cylinder geometry.
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Waddell, &t al (1979) concentrated on situations perhaps appropriste to the

major dimruptive situation, seeking to cbserve interactions of the m =2, n =1
and m = 3, n = ) modes, by selecting q profiles initially £lat in the plasma
core and high valuen of § § ~ 10° ). Biskamp and Welter (1982} chosa very
large values for § (-5 X 1#% ), and imposed boundary conditions corresponding to
constant current. The conssgquent time-dependent behavier of the imposed elec-
tric field at the wall can model the behavier of the Joop voltage in a maier
disruption. Their sisulations sdmittedly soffared from the imability to re-
scive the small spatial scales which are generated by the nonlinear terms. When
they tan their simulatione for long times, however, they reperted obsearvation of
explogive simultaneoun growth in both ssall-scale Alfven turbulence, and large
acale modes; in this poorly resclved regime, they observed that e the energy of
the dominant modea peaked, the applied electric field went negative. These sim-
ulations, although eeminal, may be dangerously 11l-resolved.

Dnestrovskil, et al (1977) used AQifferent sets of equations te piece toge-
ther a full simulation of internal disruptive activity. They described three
gtages: 1n stage (13}, the plasma heated and giaxis) decreased; the energy
balance and current diffusion equations were simulated in this stage. The ra-
pid disruption stage, (2}, saployed equations which followed Erom the MBD
theory of reconnection of magnetic surfmces. In stage (3}, they resumed the
integration of equations emploved in stage (1), and g(r = §) again decreased.

A cyclic procedure was thus envisaged.

Simulations of other syatems have alsc begun to be performed in investiga-
tion of these resistive iniernsl modes in tokamak plasmas, modes which depend
on & third dimension for their axistence. Gome go to higher orders in Inverse
appect ratio expanmion, (for exwwmple, Izzo, et a)] (1981)), while others aliow

tor fully three-dimensional motion of the magnetofluid (Pateman, et al {1974);
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Schnack, et al (1963); Aydemir and Barnes (1984)). Ayedsir and Barnes (1984)
teport the sbsence of total recomnection, and the obaervation of multiple
changes in sign of the & = ] vorticity pattern, when they choose an inverse as-
pect ratlo of 1/3.

Other fusion devices are also simulated. 1t {3 interesting to nolz that
Wakstani, et al (1983) observe that results they cbtained from simulation of
{nternal disruptions in HELIOTRON £, a5 well ay those recently obteined for re-
verned field pinches (Caramana, ¢t al (1983)) seem Lo suggest that the pictute
of internal discuption based on the Kadomtsev [1975) raconpection model may
apply to all magnetic confinement mystems wnstable to m = 1 moden. 1t 15 even

more important, therefore, to discover all we can about these internal diesrup-

tions.

3. Theoretical Studies,

Although Eadomtsev's model appears in essence to sgree sith beth experimen-
tal and simulstion results, many difficyities remain. Jahbns, et a) (1970),
iwaddell, et al (1978)) expanded on the basic idea by develeping & model for
the time evolution of the electron temperature and the shear at the magnetic
surface, to obtain & value for the repetition time of ORMAR'S sawteeth which
agrees noderately well with experisents. They conclude that resistive insta-
bilfties and magnetic reconnection, in conjunction with resistive heating, are
responsible for sawteeth cscillationa in tokamaks.

Dubois, et al (1983), however, cite the esperimental results which point ta
*incompiste reconnaction® {Bauthoff, et al (1979)) 48 evidence thet the Ltotal
reconnection sdel is inadequate, They suggeat that the sgreement between ex-
periment and theory in Lhe model of Jabne and co-workers (1978) is not suffl-

ciently convincing, because line-of-sight integration, and a realiatic x-ray
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eminnivity function were not takan into account. They demonstrste that a kine-
matic mode] in which turbuience, starting in the region of the q = 1 surface
and propagating toward the core of the plaswa, gives & better description of
the behavior of internal disruptions.

Lichtenberg (1984) suggeats intrinsic stechasticity, generated by non-
linear interactions of the m = 1, n = ] mode with a mode arizing from the
torcidal equilibrium, as the mechanism for the disruptive phase of the m = 1
oscillation. BHe, too, objects to the concept of the magnetic lnland growing
to £i11 the entlite region within the g = 1 surface, pointing to experimental
results in which the island persists after disruption. Be suggests that growth
of the "m = L, n = 1¥ {sland could be countered by an increase in the thickpess
of the stochastic layer from the more rupid growth of mecond order islands.

An altogether different hypothesiz, ostensibly generated to axplain major
dipruptions, 1ia the idea of Montgomery (1982). Be conjectures that en alterna-
tive explanztion to “tearipg mode" theory is one expressed in terms of inverse
magnetic helicity ceascades, where magnetic helicity {8 defiped as the Integral
{volume averaged) over apace of the magnetic field dotted finto itm vector po-
tential. Be desonstrabtes that the Lnverse cancade behaviar, qensrated from a
varjety of poasible sources of small scale turbulence, would appear as an at-
tempt of the current to flatten itself. That the onset of major disruptive
activity is unpredictable 13 noted to be suggestive of the appearance of an
inverse helicity cancade, alne,

It {3 clear that ndditional, accurate information about dizruptive MBD ac-

tivity resulting from various current disruptions would be welcome.
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C. Qur Approach.

In this work, we consider o pituation which 15 tokamak-l1ike in the follow-
ing ways. 1Imagine cotting the tokamak torus, and straightenlng it into & cyl-
inder, one with periodic ends. For computational convenience, conaider this to

be n eylindet with rectangular cross section, where "poloidal™ translates into

a function of x and v, While "toroidal" is replaced by z;, see Fig. 1b. The
large toroldal magnetic fleld. then, becomes a field which iz externally im-
poded in the z-direction, and the corrent induced in the plasma alac polnts in
z. The rigid metal walls of the device are assumed to be parfectly conducting,
with free-slip boundary conditions imposed.

With the Strauss squations (Strauss [1976); Montgomery {1982)}) of reduced
three-dimensional MBD as our model, we address the genera] problem of MHD dis-
ruptive Instabilities. Considering gqulescent inftial conditions - smoobh
current profiles and low amplitude random noise Iln the veloclty field - we
perform nueerical simulations to discever what sorts of turbulent behavisr such
laminar conditions can generate.

We numerically aslve the Strauss equations by means of a FORTRAN code Wwrit-
ten for the problem. The aligorithm 15 fully pseudospectral ip space, ulth an
eupliclt form of time-stepping. All posaible Foorier fcdes have béen kept in
the ajmplakien. Diasipatjen {a sufficient to resolve any genecated amall scale
apatial atructure. The results are thus nurerical solutions of the full physi-
ca] model.

This theals demonatrates the value of realistic computer simulations a3 a
ugeful dlagrostic tool. The Strauss egquations are time-advanced in » periodic,
rectengular boX, and current Jdiaruptions are accurately observed.

The equations and notatisn are introduced in the second chapter.

Kadoatsev's mode]l will be cons!dered in more detall, in the third chapter, ths
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1ast of the introductory chapters. 1n the fourth chapter, cur Simulation ma-
chine will be described, and how the "knobs" y and B, may be adjusted. We
Wwill discuss free-decay code results, for various parameters, in the fifth
chapter. A low-order mndel of the Strauss equations will be derived in the
sinth chapter; thia model contains some features of the fres-decay simulation
reaults, and may be used to generate predictions for the driven simulatien re-
sults. In the seventh chapter wre resylts from simulations in which a censtant
sxternal electric field 1s imposed for all time. The eighth chapter contains a

summary, and suggestions for further work.



II. THE MOTATION AND EQUATIONS VEED

A. Bingle fluld, three-dimensional, incompressible MBD.

The equations of continuity and motion which deacribe flows of an incom-
pressible, conducting fluid are:

?_\_{:9 i1
Y 4
— . - _ r - = rL
{){.atfyvfj ?rq-{:'vvr _E._.:tE {2")
together with & phenomenclogical Che's law,
iy o
c(E+Z-8)= 3
and the relevant Maxwell's equations,
TB=D
. & y 2E
8= =4t Tt (3
26 ]
B

These are a set of squations which may be taken to govern the behavior of an

incompressible megnetofiuid, where v(x.y.z.t) = velocity fiald of the fluid,

t«) & g x v = fluld vorticity, f = fansity, here assumed uniform and

) = kinematle vincosity; !ﬁ:.r.:.t] = gagnetic field; j = x#:’E =
23

constant;
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current density; < = conductlvity; ¢ = speed of light in wacue; lndiE = elpe-
tric field.

The equstions of MHD, and the approkimations necesssry to gepnerate them,
are discussed at length in a varlety of places (e.g. Alfvén (1962); Praginakii
{1965}; Chen (1974), Bateman {1978); Montgomery (1983)). The essential mpea-
sures of applicability are set forth by Braginakii (1%85). Bis derivation of
transport equatiens from kinetic equations is valid under the assumptions that
the average gquantities in a plasoa (number of patticles par unit volume, mean
velocity of these particles, and kipetic temperature) change auch mors slowly
in time and space than the time and distance 1t bakes for the distribution
functiona, which charackerize each particle cemponent, to relax to local Max-
wellians, Be also masumes that the effect of the magnetic field on the colli-
aion itself may be ignored, or the Larmor radiua is Jarge compared wlth the
Debye radius, 1.e. B? << 87 cZ [(mass density of a spscies). Although these
oessures ate freqoently unjustifled, the eguations apparently are valuable in
& Wide variety of situvations., Thiz siapler wodel, the MHD model, i2 gensrally
applied to the atody of large acale plasma phenomzna, in situations whers more
sophisticated models are too complicated to be of value. We will use the sin-
gle fluid (e.q. Braglnakli (1965)} MAD mode] here,

An aiditional approximation is that of incompressalbillty. Montgomery {(19B83)
applied an argument similar to the one which esatabl!ahes the incompressibility
of a nen-condecting fluid to a magnetofluld. FHe showed that 50 1ong as we con-
sider m "high beta” plwsma, bazically one In which the Alfven speed is less
than the apeed of sound, the approximation = valid. That is, since § =
p/ (BZ/7 8m), and the speed of sound in g fluid {3 the thermal speed, £ =
(gpeed of aound}lf (Al fvén aptrdll. where we have represented the pressure p as

(number densalty} * [Boltzmann's constant] * [temperature]. an Alfvsn spesd =
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B/ (47 p)) and where we take a thermal speed to be (2 p /p )2 . Be notes
that the sddition of an external magnetic field B_ to the dynamica of the ays-
tem relaxes this conatraint somewhat, for the case in which B, 1s large com-
parad to the fluctuating B. Then, 1f the ratio of B to B_ is much less than
t(B, ), incompressibility of the fluid is a good approwimation. Tokamak plas-
mas have very large external fielda imposed on them, which somewhat justifies
the incompressibility aasumption. This assumption is also very convenient. No
equation of state, nor one for internal energy is necessary; instead, the pres-
sure may be computed from a Polsson equation which is immedistely derivable
from the momantum equation. Further, the diffusivities of both fields will be
approximeted as time-indepenient scalare.

1gnoring high-frequency effects in Paraday's law, an equatien may be ob-

tained for the time-sdvarcement of the magnetic field from Ampere’s law,

Iy -

T = v 4 1
s v -VEB = B 11‘5‘;?'@ {4")
wubhere s ncalar magnetic diffusivity, -"1,' c?/ (4 v ), is {ntroduced through

Ohm's law. If sn fnitial magnetic fileld is properly solenoidal, 1t will remain

that way a5 a function of time.

B. Dimenaionkeas Unite.

We follow Pyfe and Montgomery (1976} in the way the eguatlons are made 4i-
meneaionlens. Let U, be some characteristic velocity of the fluld, L a charac-
teristic length, and ﬁ 2 charncteristic density which we will choosse to be
{dn ]"+ The other variables are defined in terms of these. A dimensicnless,
eddy turnover time is create? by seans of a dimenajonless distunce divided by
s dimensionless velocity, while, for instance, pressure is measured §n units of

pouoi . and the magnetic field in units of (4 Fﬂﬂul )<
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when these dimensionlens variables are introduced in to the primed equations

of the previous maction, the following set 15 obtained:

T

£ ovey s p gt ety
VB = 4 €
38 . 2
- . = (4}
S TYVET Bvy e mvig

Mow -} is the irverae of the Reynolds number baged on U, , and i {8 the in-
verse of o similar Reynolds number, with kinematic wviscosity replaced by labora-

tory magnetic diffusivity. 1t can be either & magnetic Reyrnclds number (when U,
is & flow speed) or a Lundyuist number (when U is an Adfvep gpeed).
Por quiescent initial conditions, ones in which the magnetlc energy, B, =

-;:J_ 5333 3’ is such greater than the fluld's kinetic energy, £, =

7 sl
teristic quantity other than the flow speed, The sBcaling we chaoss 15 the

J 4%w v* ., it 1n most convenient to scale the squations by o charac-

Afven speed, ¥, =8/ (477 p, )% Times are thus measured in teras of Alfven
transit times: & distance of one unit is traversed in one onit of time, when
V, = 1. The inverse of % becoen the Lunéquint number, 6 = L, ¥, / [labora-
tory magnetic diffusivity), while the fluid Reynolds number becomes L, V. /

[kinematle viscosity]. 1t is this sitvation which 1 considered here.

C. Tokamak Ordering.

The magnetic field in & tokamak plasma {s most simply comprised of tWo types
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of field. The poloidal Eleld arises self-consimtently from the Ohmic current,
while the toroidal field is lergely generated by external ceila. This torojdal
field 1o at ieant an order of magnitude greater than the self-consistent poloi-
dal Eleld, Mumerical studjes by Shebalin, Matthaeus ardé Mon.Jomery {(1983) dem-
onstrate that spectral transfer in incompressible MAD turbulence is inhibited
in the direction parallel to a strong, externally imposed magnetic field.
These results imply that more spectral transfer cught to be empected to occur
in the peicidal plane, perpendicular te the external field, and less in the di-
rection parallel to that field. Good use can be made of this inhibition of
ewcitation in what is here the z-direction; any turbulence in the sagnetofluid
may be expected to be anisobropic, and moestly eccurring poleidally. It is nat-
ural, then, ko conjecture that derivatives which consider poleidal wave numbers
Will be larger generally tham those which are taken with respect to .

Pollowing Monbgomery {1982), we generate a series of equations {Btrauas
{1976)) from the full three-dimensional set, from order of magnitude considera-
tions alone, by means of an expanzicn parameter € . This parameter may be in-
terpreted am an inverse aspect ratio; typicel values of the inverse aspect ratio
for current generation machines are listed in Table 2.

Let the large external magnetic field be represented 48 B, /< everywhere
in the aystem. Upon exapanding the self-consiptent fields !p powers of this

parameter, the following series are obtalned:

G - BEM* ¢ E{l’: 4ot Bh‘h .
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Vo U{ﬂ + £ v(*'] 4+ £° }_;('1"} .

Inserting these series inte the squations, the results are considered order
by order. At each order, it 1s demanded that V. v™= 4, v o9,
n »#,  An order of magnitude must be assigned to the time derivative; noc ze-
roth order populstion of Alfven waves is allowed to ewist, which seans that
the time derivative is 0{1}.

Tyl

By considering O(c '), B

and v " aze meen to be at moet functions of e z.

v. _!“':= #, and V¥ lr“:'t %, are used, to obtain B,

R I TC W N S H
and 3!“ V ¥ Wiry,cz t) &, Where A i3 the magnetic vector potential and
Y is the velocity atream function.

At the newt order, O(1}, the fast spatial wvariation of gi'}md v I"’i: aver-
aged over, leaving the gentler ¢ z dependence unaltered. At thia order, the

formal parameter, € , i® than aet egual to unity.

D. The Strauss Equations.
The very plausible and convenient 3et of eguations which resultes at first
order are the Straves eguations of reduced :hree-dimensions] MAD (Strauvss

{1976); Montgomery (1982)).

2 25 (5)
‘ﬁ + FVJ_-‘E?J_EJ_ = ~- Vs ja + Eu,' Vi _E_!u_ + E'au 3T

+ VRV,
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where B, - (Ex}B»?,'D}: "?J-"A{x:';j]z.t)gi
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and

o
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These equations are quite similar to the equations of two-dimenaional MAD. The
only z-derivatives that appear in the system are those which are multiplied by
the large toreidal field B, E}. All other derivatives are taken with reaspect
ta ¥ ar y.

It is & consequence of this ordering that the velocity and magnetic fields

in the z-direction are passive scalarp at this order.

> 2
{E'_t* f;'vl} ¥, = El' Fl.vf -+ B'n- 2 BE’ + "]_)FJ_? VE {73

[: %L* vin) Bt By miBy e B 5 ve YT B @

1f they are initinlly zero, they will remain sc. They ate initisalized to zero
in the simzlations described im this sork.

Thus, se are leaft with a system of four equaticns to selve, rather than
5ix. tThis system may be reduced further, by taking the curl of the momentum

equation, and removing the curl from the magnetic field equation, to obtaln
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This s n system of tmo equetions to time-advance, one for the vorticity,
eJi{x,¥.2.t), and another for the vector potentjial, A{m,y,z,t}. The additional
term which appears in (14), E_. , may at most be the gredient of & scelar.

The guadratic constants of the motion for the Strauss equations sre the
same as those for the Full three-dimensional set: the total epergy,
E = éiLLid?r[U’+Eq; the cross helicity B, '.f%ﬂh lj{-g 3% ; wna, formally,
the magnetic helicity, B,, = fELI Bg‘SﬁJiu As will be seen later, efficient

pseudospectral simulation of these equations is possible when conservation of

energy 1s pseudospectrally enforced.

L. Boundary Conditiens.

The boundacy conditions {mposed on th: =yatem are those appropriate to &
periodic eylinder with rigid, free-slip, perfectly conducting side walls. For
infinitely conducting walls, the normal component of the magnetic field must
qo to zeto at the wall. This will result if the vector potential 13 constant,
at the wall at any instant of time; Cthip constant {8 here set to gero. In
this current version of the Stravss code, the boundary cendition impored on the
velacity fleld at the wall is that obly the normal component of the velocity
field go to zero at the wall, or gg-i = 9, where N 18 & unit vector normal to

the wall. !n analogy with the magnetic quantities, this condition 15 met 1f



L1

the velocity atream function is s constant st the wall, a conatant which may be

set to zero. Finlte conductivity within the floid gives the condition that the

tangential component of the current must go to zero at the wall.

._1-.f:;[5+f:-[:5__') , from Ohm's law
A = CE| v S{uBy- VB )|
O o, l*am 1 l'ra-n
becomes a i il = O ., Since the tangential

component of the electric field is continucus, and must be zero inside a per-
fect conductor.

1f the stream function and the vector potential are expanded in half-ranqge
Fourfer sine series in n and ¥y, and full coaplex Fourier seriem in z, all these
conditions are sutomatically met. Hepce, thia 1s the choice of expansion

functions sade for our simulation code (hereatter, the “sine-Strauvss code}.



IIT. CYLINDRICAL WODELLING

A dlfficulty srises when attempting analytical srguments in a geometry with
two non-ignorable coordinates. In erder to gain some comprehension of the ait-
yatjon later treated numerically, polar coordinates are here eaployed Lo aum-

marize some exlsting approaches which are beginnings to satisfactory analytl-

cal treatments of tha problem.

A. The Internal B = ) Mode, in a Clrcular Cylinder.

Folloming Hlnhuineff(?gii}. instabilities are sought in the linearjzed
Strauss equationa in polar ceordinates. If (m,¥) -» (r.9), only 2-indepen-
dent equilibria without flow are allowed, and perturbations of the form

£(r) * exp( im@ - lkz ) are snpumed, equation {3) becomes

g
9t (s _ ¢ s Da )
St Bt glheg® ey

ML (o i E f
B35 3 80 i 300 - B, (ki)

ilefrm 814"+ By 2 50

where F B lehy t - k By, and perturbations are assumed to vary as exp{:t),

the following may be ohtained

1 N e {'\l a .

32
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e UxB), = ¥ (rBy) - w35 8

with a‘(rﬂ -1 (TBE:&;}

and (11) may be written

g . 1 . . 0y
VWM F T (r8) - B (12)
B o 2F O*F
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Eince LY 'l.r-ll and l;F,i-'l

i" r'.uprf"}

{1y _l
Ve T moor

and rmoar
LS M TORVIR
Also &J[E ?rv)= v 3f“’g - v Ve

These egualities allow the re-expression of (12), where the superscript (1) lo

dropped.

o -
T{#E‘ ( ¥ d}'l' (rv T\J\,’_ I_"‘u"‘-]
—F (+ 3 G g (g - "2 By )

B ‘EJ'I.F
¥ '?Ef { 3 *E? AR S

(13)
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At this point, o way to express B. in terms of v_ is needed, if possidle.

Turning to equation (6), and employing the same perturbations as were used for
(9], (6) yinlds:

¥8)y = Vr(¥rEY) - Nur (vxB))

- { [
= -Vll?l..g. n‘]* Elﬂ- ‘E?J_VJ_ ~* E,DE"%':

—

N -H?ng)r

1f Y is zmall enough to be neglected,

.V E {2 E II.?',ER;\.U‘H;
-Efl?nr = T ( ] E if v o ,}
= B?;kuf
= =ik B, ¢ “FE,7 0
LF Y
C, = ";Er (14)

Ineserting (L4) into (13} yields

T:‘Lﬁ(_fﬁ(rﬁh— mivr-]
FLoo Oy Eiﬁﬂrfv”?ﬂ + oV F )
“ errF [ﬁ'f% ar T 0 ?.51'1‘:']

il

_b'r L
- - aur }F
— F r H

@ 1 3 -
_ & . 3
And aince ¥ ‘:.r("" v ‘vﬂ- - (3¢r v+ 13 _ﬂgﬂ‘f



3%

) | u o
({8 %) [:?"ar r v Uf:‘l = () ve (3245 7) %)
- 1 B¥r 2F
287 57 3¢

or

Sl (er 1)) Hovem ey (y2FN Y, a8

White (1983) remarks of (16) that when r* s’ is neglected with respect to
r? %, the equation say be ocbacrved to exhibit a singular nature in the neigh-
borhood of P = f. Since F = I:'l ft -kB,~- B—rf_'m{ B -rnB, /(B R)I,
F=0wheng=m/n, i.e. vhenr =nm I{ir} (k B.}. This radiva is defined to
be the singular radius, r, .

Manheimer examines the behavior of (16) in the nelghberhood of r = B, From

v, ofF
(15), when t ~ 9, =F 13 == 5. ->f. That leaves
&y ar

[ o
:gr‘ra {H’r T o (v -my an

oy N - e

Solutions to (17) are of the form v = {5 r", or vr, =BT Vo T E r
v‘bluat be discarded because it is not well-behaved in the neighborhocd of Che
origin, and v = Er"‘" remains.

This sslution ylelds the information that for m > 1, v_(r~#) = P, or the
plesms center dves not move, If m = 1, however, v =ﬁ . Bence, near the

|
origin, (mnhellerﬁ,h!ﬂa)].

Yy TR&.[g.(.t‘ﬂ+39+n&,mf})[makz—imkijj
= 6[@591&05!@ + 5m95mkz]

Atz =P,
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similarly, E,r o l;" sm B Cos k2 + eos B BP“LQE:“

-onE? oat z:=0

p T
o = —_
E;x , ﬂ.t Fa zk

That is, the solution is seen to be one in which the velocity field locally
points towards increasing vector potential, A

A helical perturbation i3 obssrved in both fields  Ir {8 apparent, then,
that the m = 1 linear instab{lity may be of use in medelling internal disrup-
tive activity. 1t is the only m conaidered in the remainder of this chapter.

Elpce the aoluotion found is constant near r = @, and ‘1{-11'.1” =@, only

all
v.= ¥ could satisfy the boundary condition. Fer {nteresting behavior to be

found in a cylinder with gircular cross section, ether terms in the sguatieons
nust be sllowed, e.g. a nonzero valus of the resistivity. Note rhat this sit-
uation does not hold necessarily for c¢ylinders with non-circular cross-section.

In 1976, Edery, Laval, Pellat and Soule showed that the stahility of them = ¢
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{deal mode, the internal kink mode, is very sensitive to small distortions of &
circular cylindrical equilibrium.

Even though it is found to be necessary at this order, resistivity say not
be important everywhere in the plassa. Hunheile;ﬁ}ggﬂ%} argques that 1f the
time for a mode to grow 1z much greater than the time 1t sould take for Alfven
waves to 2atablish a pressure balance, away froe the singular reqion, then pres-
sure balunce can be maiptained almost everywhere. oOutside a narrow layer, it
1s conceivable that constant solutions can exist.

Insids the layer, near F = @, {(14) 43 no loenger the appropriaste governing

equation. Reaistivity cannoet be neglected, or

F
€, = —;—"4 ?ﬁ?vig‘)r (18)

In this case, {15) cannot be obtuined from (13), but poasible growth rates must
be calculated from the coupled (13) and {18). <Coppi, Pellat, Rosenbluth ang
Rutherford (1377) have calculated such rates for the genersl cese, where B, may

alao be s function of radius.

B. Kedomtsev's Sceparie for an Internal Disruption.

This complicated route is not necessary in order to understand a process
that may esplain an internal diaruptfon. The process whereby the plasma may
first develop an internal heljcal perturbation, then flatten, was described in

a gingle helicity framework by Kadombssy in 1975,

1. Eingle Helicity.

Strauss {19}6) showed that for a perturbation of the form exp{ 1(md + kz) ),

4 ke

vt o and for *v1 =g, =4, equation (19) may be rewritten:



K]

o h k @
BT A Biw sy
_ o [ 3% . 2
E’aﬁ[lr g v ?f]
= By VYR
©
ot _ﬂt + El-*?l(:P = O
B, ker?
mhere -?h‘hE- 02; -AE-Ehg.forﬁg-I:Ei Since Emi.h

in time-{ndepandent,

%% s Vv o= o (19)

It may be shown that j‘ is £lux through a helical ribbon at radivs r and
piteh defined by © = kz + we, by integrating A slong & Dath tangent to ';E -
% e, [(White (1983)). That ts, 5@-&5 - S‘Fr&-&é'—ﬂﬁ-dﬁ ; the helical
flux, ﬂ? is flux through & helical ribbon, or th: line integral ot’_{ around
that ribbon.

Similarly, 1f a perturbation of exp{ i(wé - kz) ) !5 employed, a hellcal
flux function Q= A, + 1%: Ag i5 obtained. In this case, ‘E?ft?ﬁi- B, -
¥ rBe,, 1.0, Fadomtsev’s £ield, B,2B, - T EB,e,, for k =n /B re-

call that B_ is the externally impossd By .

2. The Description.

From the observations of an Internal dlsruption in vonh Goeley, et al (1974),
Radomtaev (1975) conjectured that since the q = | surface was reported to lie in
the plasma, the unstable mede wan of & form m = 1. Be thos speciiled his choice

of hellcity to m/n=1,0r B, =8, - é B2,
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Note that B, = A when B | = % !EEB_ or equivalently when q = 1. B, is

greater than zero, or has counterclockwise orientation, for ¢ ¢ 1. Also, it fe

lass than zero, with clockwise ariantation, for B, < B, o1 for g > 1. A

X
<
potentinlly dynamic configuration thus exists, one highly snalegous to the fa-
millar sheet pinch geometry (Dahlburg, Montgomery, Zang and Hussaini (1983)).
Emal]l smounts of resistivicy added to the MBD description will serve to make
reconnection of the magnetic field linez pozaible. Random nonuniformities then
may trigger the instability in the region of a nascent x-point. Reconnection
will begin to take place. Xadomtsev suggested that the reclosing of the fieid
Wwith itseli will Intenaify the £ield in a reglion opposite to the reclaning

regicn, ganerating u ferce that will sgueeze the internal column toward the
oppoeing fleld. The process will pacome thus progressively more rapid, and not
be able to stop until the £ield E* acquires tha pame aign throughout the
column (q > 1), and the current has become redistributed.

Incompreseibility of the fluld, solenoidality of the magnetic fleld, and
negilgible resistivity in regions eway from the singular surface lead to the
1dea that flux 18 distributed to n definite rodius r. Dbeyond the radius r of
the g = 1 mingular surface. The disturbance starts in the neighbarhood of . ,
and works itz way out from r. , and toward the origin. By the completion of
the reconnection process, the inner £lux has reclosed with an equal amount of
cuter flux of opposite sign. Eeyond r, , the helical £lux function remainz yn-
perturbed. It is generally possible, then, for & discontinuity te erise in the
fEirst derivative of the helical flux function with respect to radius; that is,
a sheet current may be observed at ¢ = r, , with sign opposite to that of the
inner current column.

Kadomtsev (1975) gives & simple example, to demonstrate these features, in
which (Sl{t M) = mf; (re? - 127 2). #He finds that the energy 1n B, #f-

ter recloeing woyuld be about 93} less Ehan 1t was at t = #,



This energetically favorable mechanism is one which plausably explains a
single sawtooth. IE the flux function returns to & helically unperturbed state
at the end of the reclosing, as he conjectures, and the velocity £ield goes
away, external heating can ance again drive the current to a sacothly steepened
profile, with a q = 1 surface again in the plasma. The single helicity disrup-
tion can then repeat.

Although this reasonable aingle helicity scenario cannct be sxpected to
hold enactly in & three-disensional plasma with a croas-aection that ia other
than circuler, 1t may provide an approximate dencription of the events which
take place in a quiencent plasma which has & ¢ = 1 singular surface embedded in
the large-scale vector potential. We proceed, now, to & nonlinear, multiple
belicity calculation of these conditions, & numerical simulation of the Stravss

equations In rectangular gecmetbry.



1¥., THE SIMULATION CODE

We turn to & discussion of the method we use to gain information from the

Etrauss equations.
A, hlgerithm for the Bine-5trauss Code.

1. ¥Focus on the Two-Dimensional Bquare.
1t 13 eanier to flrst consider the two-dimensicnal, bounded poloidal
crosg-gectjon of our calculatien. Let the steeam function and the vector
potential be expanded In the sine series in x and ¥.  MWe now have twe Bpaces
we can think about, a phyaical (x, y) space, and a mavenumber (k_, tT] dpace.
The sine aeries are glicbal and orthogonal,
-1
:5? sin (Y gia ( T"—El\) T %}* éjk
Bence, If we are given values of the velocity atream function and the magnetic
vector potential everywhere on the bounded x.y grid, their real Feurier coeffl-
clenta, thelr counterparts® on the bounded wavenumber t“'k? gtid, may be ohtained.
Fotr instance, §if we assign values to the stream function which correspond ko
sin{z)%sin{y) at all grid pointe X and Yo - the Fourier space would have pne
non-2éro point, tJlt w1, tT # J. We would efficiently {Gottlieb &k Qrazag, 1977)
obteln this informstlicen, numerically, by uxing aome veraion of Cooley and
Tuksy's (1965) fast Pourier trmnsforms (PPTs). MBere we uze Temperton's PPTa

(1981), & vactorized vearalon of earlier scalar FFTA.

2. The Full Expansions.

It 18 naturel to expand the varlabli#s in full, complex fourler eserles ipn the

periodic "toroidal® direction. The full, three-dimensicnal expansions, then,

1
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are sine seriea in x, aine serjes in y, and complex exponentials in z. Since
the equations are nonlinear, care sust be taken to normalize the sums “on the
way Lo Pourier space”, to wvoid inserting unconsidered factors of W in the
time atep size,

For ememple, the vecter potentlisl 18 expanded

nee Moo
Ay 200 2 2 A Sia(mx)

LA F'Mfa
*sinlnyay expl ipzy )
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values of the stream function and the vector potential et every grid peint,
then, are all that is needed to generate any of the other MHD variables required,

at & given time.

3. Time Advancesent.

We are not conajdering static solutions, hosever. The equaticns have par-
tial derivatives with respect to time, which also must be treated. PFor con-
venience, an explicit, weakly unstable method, the mecend ¢rder Runge-Kutta

scheme, 18 chosen. For .i:_Sor 4 , and £ - the right hand aide of equa-
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o
tion (87 or {1H), :é% =} i3 discretized with second order Runge-Kukbba:

Ny At
hﬂ/i - Mh‘, __?_, }P‘i

U™ pun e s

where At is the timentep and n 1s the time index.

Our time atep is smail enough that accuracy i linearly assured for approx-
imately nine hundred Alfven transit times, (Dahiburg, et 1 {1985)) even withaut
glasipation. It im possible to demonstrate that the method mey be atablized,
in » model linear probles, by a suitable cheice of diftyuaivity. The con-
venience, then, im not outweighed by any errors generated by this method, and
we find it to be & satisiactory one.

The nonlinear ferma in the Strauss equations also present u source of po-
tentinl numerical diféicultien. A standaréd way to treat these terms iz to re-
move all aliaping errors genernted by them, at each time step (Orszag (1971)).
thia dealiasing process cen at sorat alew s code down by about a fector of two
for each dimenzion. We would consequently prefer to solve the equations in a
auch more efficlent form than the dealiased Galerkin form.

A good candidate for an efficient form is that of collocation, where by
coliocation 18 meant that the equations themselves are entorced at each grio
poiat. The nonlinear terme would then be evaluated in the actusl physical
apite of the problem, st each grid point, and ne further manipulation would be
performed on Lthems.

Collocaticn, combined with a spectral evaluation of the derivatives, was

termed *pssudsspectral™ by Orm2eg (1971). In twe papers, (Orazag (1972); Fox
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and Orszag (1973}), he reported that the pseudospectral method generates go-
lgtions which are nearly identical to the more careful spactral, or dealinsed,
method, when an amount of viscosity sufficlent to remove unresclvable small
apatial structure is introduced. These results were obtained for the kwo-dimen-
sionu]l Mavier-Stokes equation, In its vorticity formulation. They Further re-
ported that more accurate selutions were generated by the code when the equa-
tions were weitten in a form which peevdospectrally conserved kinetic energy.

We performtd a series of numerical experiments on the two-dimensional MED
equations. OQur results were in bapic agreement with the findings from the
Mavier-Stokes equation, with & single exception. We obaerved intense numeri-
cal inatability, unless the equations were written in a form which pseuds-
apectrally conserves total energy. Go, we choose to time advante the equationa
in a form which would seml-conserve total energy in the absence of any disslpa-
tion. By running & two-dimensional wersion of the code, we find that indeed the
energy 18 congerved to within o few percent, for many Alfven trsnsit times. In-
cluding dissipation in the problem yields the necessary result that spectral
and pseudospectral results agree remarkably well for long times. These

findinga are discussed at greater length 1n Appendix A of this thesis.

4. Algorithm.

Clven vorticity, édtk,.ky.z]. snd vector potential, A{h;.h?.z}. everywhere
on the (k,.lT.I} grid at the n-th time step, we solve for the verticity and vec-
tor potentlal at the (n + first) step, and 50 on. Because the code is pseude-
spectral, time advancement can be perforsed in the most convenient space.

He wish to run this code on & vector computer, & CRAY-1, and consequently we
must consider its small core semory. 1f we wanted to write the code with a com-

pletely straightferwazd algorithm, sbout fourteen three dimenaional arrays would
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be needed, arrays like 0" and "PX", and 80 forth, could then be used, where
the array name would directly correspond with the info-mation the array con-
tained. Thim slgeritha would have the disadvantage of not Eitting in the ma-
chine for any tealistic grid sige. Hence, st perform the entire calculation in
just six arrays, 1 constraint which makes an Intricate algarithe necessary.

The key featurex of the algorithm are the followming. All nonlinear product
terms are formed in the actuasl physical space of the system. Derivativas are
taken in the suitable Fourier space. The Strauss approximation iz such that
the only z-derivatives ever needed are on the stresm function, and the curreat.
Only these two arrays, then, sre ever transformed to the full, complex Pourler
space in z. This afficient feature of the code comes about berause we are
using a pseudospectra] scheme, rather than a spectral one. In other words, the
pseudospectral code is even sore efficient than the esrlier eatimate given
would indicate. Again, for convenlence, the actual time-sdvancement s
performed in a hybrid (k,.t\r. r) space. Hith this fully-vectorized algorithm,
we Find that the 32 % 32 # 16 grid code takes about 0.7 sec/timestep on a

CRAY-1 supercomputer.

5. Chojces of the small parameter, KR
Before we actually begin reporting physical computations, one more question

muat be resolved: how much dissipation is necessary to keep all nonlinearly
generated 3patial scales within the available computational limits? The ans-
wer to this can only be estimeted, a priori. A rule of thumb for finite 4if-
ferenca codem is that there is about a one to one correspendence betwsen num-
ber of grid peints in any one dimension, snd the value of the Reynolds number.
This would mean, for example, that a grid of LEE * 166§ * 1000 points weyld

be necesasary to properly resolve a ajmulation with s Reynold's number of 1084,
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Mditienal factors of four, or so, may alter the estimate by suggesting that
in genera] = spectral code needs about one fourth the resolution a comparable
finite dlfference code would require, for the pame degree of accuracy. This
leaves us with only crude estimates; we must turn to empirical tests.

we find that much small scale spatial structure is generated in the simu-
lation near the time of a kinetic energy peak. By examining plots of cur total
spectral enecgiea at these times, we way determine whether or not the simgla-
tion waz o numerical sufcess. We find that op a 32 ® 32 * 16 grid, with a
Lundquist number, };L, of 100, we indeed have enough resclution t¢ believe the
resnits, This may be easily read off a contour plot of modal energy. The axis
ia K-perp = sqrt( &k, %k, + k_'kr}. while the ordinate 1a K-par = ti. This con-
tour plet, then, gives a good ides of what im happening te the total medal
energy in the full Pourier spice avallable to the calculmtion. The lowest val-
ae of modal energy plotted is 1 + 1077, It s evident that thie simulation
avolved with & svificlent amount of remolution; see Fig. Ja.

1f the Lundgoist number i3 raised by enly a factor of five, while leaving
the grid size unchanged, the simulation is not so successful. A plot of total
modal spectral energy, scaled identicaliy to the one above it, shows that the
resolution ham been seversly excesfed, as displayed in Fig. Ib. In this case,
the numerical results are deemad untrustwerthy.

We are able to run at Lundquist numbers > 100, however, We find that 1t is
necessary to increase the grid alze, in order to do so. The last plet of mpec-
tral energy, again scaled as above, shows the total modal spectral entcgy for

our most embltious run, one with k. oy a4, k = &4, and tilﬂaa = |§,

¥ orehip
and a Lundguist number of 4#F. Agaln We obmeyve basically suificient reselu-
tion to qenerally accept our simulation’s results, as showp in Plg. 3c.

Because the boundary conditions impeaed on the velocity field are the free-
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slip conditions, the majority of =ine-Strauss simulations are run with no vis-
cosity whatever. A consequence of the Alfvén effect is that at high wave-
pumbers, kipetic end magnetic energles approach egquipartition. By virtue of
this, If one £feld's Pourier coefficlents are belng dissipated in the high wave-
number portion of phase space, so alsc will the other field's Fourjer coef-
ficientas be diminished. Therefore, only one diffusivity, here the inverse
Lundquist number, 18 necessary to drain off small scale structure in both

fislds (cf Kralchnan (1269); Fyfe, Montgomery and Joyce [1377]).



¥. SBIMULATION REBULTE, DECAY.

We now embark on n discunalon of the numerical simulation results generated

by the aine-5trauss code,

A&. Choices of the large parameter, ¥ .

A cruclal large parameter musi be set in the calculationz. Thia parameter
is the field strength of the externally imposed magnetic field, B, . For
$,7 1, we expect, from the work of Shabalin, et &l {1383), that the spectral
transier sould be reduced to near tWo-dimensionality. For B, too small, the
Strauss approximation would break Jown. We find that for a middie range of wal-
ues of B, we are able to Induce current disruptions, proceases which thrive on
apectral trapsfer in all three Fourier dimensions. Recall from the derivation
of the Btrauss equations in the second chapter that the small formal expansion
parameter (interpretable am the ratio of minor radius to major radius) multl-

L '7
pliea Doth B, &nd z everywhere; that is, E€B, 2y = B 33

e ¥ill now exhibit results from a trio of simulations. All three are

initial value problems, wibth the same initinl current prefile:

Stm%,fj: 30 S x Simy E@P['5(>-Tﬁ}2- 6.-Tiz) )

!

Por each of the three runs, the velocity f£ield is inltielized with broad-band,

low order cendom noise:

—

s~ Gty doe g ey e (4,83, ke ()

The diFference between the first and the sacond simulation 15 that we choose
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9. =B for CASE 1, and B, * 4.3 for CABE I. Both of theme runz were performsed

on grida with ky =k, =32, and k; = 0, with Lundquist nember = 100. It {»
iy LT3 ] iy _—

in values of Lundquist number, the grid size, end particular values of .;L(t =

F) that the second and the third runs d1ffer. CAEE 3 was tun on a doubled,

64 * 64 ® 32 grid, with a Lundquist number of 484,

B. !ﬂ=ﬂ."ﬂiljl.
CASE 1, the run with the large value of B., {3 an inhibited simulution. Af-

ter a brief burst of activity, we find that the modal tranafer quickly becomes

almost enclusively two-dimensfonal.

1. Geometry,

The simulationa themselves are performed in a three-dimensional box in physi-
cal space, with a box of identical magnitude in Fourier mpace. #e find it most
useful to focus on n few slices in the cylinder, when displaying our selutions.
In particular, the ones shown here will be the (g,y,z=7) slice, a “poloidal
cut®, and the (w,z,y=" /1) slice, » “toroidal cut"; see Fig. 4. It {8 con-
venlent to remember that the {nitial magnetic axis is a dot in the middle of

the poloidal cub, at (x -%r. ¥ -E}. and im a line up the center of the torei-

dal cut, at (x = TW/2}.

2. Initial Conditions.

We use Chese slices to display contours of the initial conditions, in Fig.
S. The cross-sections are the poleidal (x.y,z*T) slices, while the serjes of
parallel lipes are the (x,z,y=7/2) slices, The externally imposed magnetic
field points along these contours. MNote that the contours of initial vector po-
tential, and of corrent, sre very smooth and unperturbed. A peleidal cut of the

stream function suggests s velocity field which is random, and of not much
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atrength.

The initisl omnidirectional energy spectra are displayed in twe ey, in
Fig. 6. To the left are "sountaintop plots", wmhers the contour values are
chosen nt egually spaced iptervals. To the right are "posers of 2" plots: con-
tour values chosen here are separated by powers of two. Also, this column of
plote are all contourad with the same values, a feature which enables us to ses
equal levels of small scele spatinl structure in the kinetic energy, the mag-
netic energy, and in the combined, totml epergy.

This type of dlagnostic 1s useful for two repsons. One js that by exmmining
the spectral plots we can Immediantely detect where wmost of the magnetefluid en-
efqy 1{s centered in the computation's Fourier space, The other, 1ess physical
reason, 1a that by frequently observing these plota, we are able to see the mag-
nitade of saall scale apatial structure gentrated In the simulation, and conse-

quently deternine {f nmmerical resclution is grossly exceeded.

3. <€lobal disgnostice.

We aleo £ind it useful to copaider the global quantitien, a3 o function of
time. Pot instence, w find the kinetic epergy to be the most valuable herald
of interesting activity, see Fig. 7u. Magnetic energy 12 less sensitive; Lthe
overall decay of Lthe mtan cyrrant 1s the dominant feature of this quantity,
as may be observed in Fig. 7b. A ratio of kinetic te magnetic energy wil] often
highlight the relative amounts of activity in the two fields, plotted in Fig.
Jc. By monitering the net, wvolume averaged current, Fig. 7d, we can nes bhat
the integrated current in the cylinder does not decay such st all during this
simylation. The change of magnetic energy with respect to time varies as the
square of the curcent; this quantity shows us, in Pig. 7e, that magnatic en-

ergy weais &Way smcothly, anmd without any pericds of enhanced dissipation.
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We consider thia run to be & non-dlaruptive one, since no disturbance is
able to rise up out of the initial, very low-level neise in the velocity fleld,
and gzroM to dominata, The current column kinka & ssall amount, but only
that., The major activity in the simolation, long bdefore we berminated it, was

the unrelieved Ohmic decay of the magnetic field.
4. Calculating 4.

Anather dimgnostic, one which might posaibly explain why this run 1is so un-
eventful, is the safety factor "0". ¢ has x formula in & right circolar cylin-
der. In a cylinder of square cross mection, hosmever, it must be obtained numer-
ically.

The standard definiticen for the safety factor, @, in a fusion device is the
number of times s magnetic field line winds toroidally divided by the number of
times the field 1ine winds poloidally, in the limit of an infinite number of
wirdings (cf Bateman 1978). We apply that defipition here to a cross-section in
which neither of the coordinates (x,y) 1a ignerable. The key feature of our al-
gorithm in thal we use the equation for s magnetic field line to obtain the ratie
of torcidal (z) distance tiaversed to a single tranait pololdally.

At any instant t, the sine-Btrauss code produces a vector potential A(k.,k:,:.t}
for all Pourler coefficients k,, ty =§8, ..., 8% z=80, ..., 2"7M(81)M
We transfora this arcey to the full, complex Fourler apace in k., , ty and ky, snd
read off the real two-dimensional afrey h{k,.hr.ti-l.t}. te obtein w vector poten-
tial which has been toroidally averaged. We use this array to form 2-averaged
values for B,(k,.k,) and B, (k,.k,). Interpolsted values for 8, (n.y) and B {x.y)

may be obtained from these Pourler coefficients. PFor instance:
M-1 o

B’[f‘%\}: Z_ meﬁ Y (mx ) Eos‘:h:&)

“"‘I:H‘Lp !
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whers x and ¥ are not necessarily the grid points.

Adding & constant small increment 4 to z, and generally starting at a grid
point {‘j =TI i/M, y=16T/32, £=4), { € (N/2,0-1), we step along a magnetic
fleld line by means of the equation

dx  _dy _ d#
B, By B, )

After one loop peloidally, we find ourselves back within the computational (x.y)
elemental grid square from which we began the circult. MWe then calculste, for

one trip arcund the center of the aquare,
g = (z distance stepped)/(length of the square cylinder).

For moderate $istances off the center of the smquare at (T /2,7 /2), this g-value
is nearly equal to that given by the formula for the g-value over & length L of

of & straight circular cylinder,
_ o anr Bz (9

whete B8, 1= {2 - 1) and !Bt IIY[:.? =T /2). Typically, We piot @ va,
x for the reglon of interest.

Upon calculating *g" profiles for this run, we £ind that they are smoothly
increasing functions of distance from the magnetic axin. Initlally, the " = 1"
surface is within the plasma, in Pig. Ba, but by t = 0.82 the surface has leit
the plasma, npever to return, w5 displayed in Fig. 6b.

5. Quiescent results; t = 6.82.
Contours, Fig. 9, at t = B .02 show » largely unperturbed state,

Spectra at this time, Fig. 19, yield the informaticn that most of the
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energy is located In the k z" ? modes, the two-dimensjonal ones, This re-
sult substantiates the two-dimensional work of Ehebalin, et al (1983), in

thiz geomet1y.

c. B,=4.3, ﬂll s

This simulation begins with all the same parameters and conditions as the
one just presented, except that here B, = 4.3, instead of 8.0, Here, after
only a few Alfven tranait times, an unstable “a=1*, “n=1" mode rises dramatic-
ally out of the nolme, and comes to dominate the velocity field. Corrent fiia-
ments form, and helically wrap themselves around the magnetic axls, The flla-
sents contract towards the outer rim of the disturbance.

Wear the time of the first pesk {n kinetic energy, the corrent profile
abruptly becomes flat, with much smal) scale spatial structore visible ip the
shell of the current column.

The Kinetic energy decreases, tﬁe;. ard current filaments sgain form, teo
once More Wrap themselves about the axis. The helical senas is still ccunter-
ciockwise, the helicity of the initial unperturbed £ield. The dissipation hanm
brought abaut a decrease In the amplitvden of higher order Fourier modes, how-
ever. This time, the run soon becomes quieacent, with the disruptive behavior

p feature of the past.

1. ¢-Profileat t = F

Again we compute an tnitisl Q" profile, to fipd that Q" dips wel] below
unity on axis. This is perhaps unrealistic for a tokamak. We feel that this
choice 1 justified for two reasons. The first is that, since this is a freely
decaying run, the initial current must be quite peaked for us Lo observe any

disroptive bebavior befors Ohmic dissipaticn becomes overwhelming.
Ment, note the value of *(” near the wall of the cylinder, in Pig. 11. This

value 18 not so unrealimtic, nor unreported. e may allow, then, that this “Q*
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profile exinte within the realm of the poseible, for a tokamak plasma.

2. Global Quantibjes.

The qiobal guantitiss of this run suggest a much different history from
the dynamics of the previous run. We observe dramatic growth in the kinetic
energy, energy which rlises orders of magnitude above its initial value, in
Pig. 1ia.

We find this quantity points to times of diaruptive activity in the magne-
tofluid. In the following aections, we examine contours and spectra during the
periods of enhanced motion, to explore this activity.

Again, we note that the integrated current, Plg. 12h, does not vary much
thraugh the ron, although steady Ohmic decay of the mean profile iz occuring,

a5 may be 2een in Pig. 129.

3. A Time HBistory of the Run.
L= 4.44.
We follow the development of this eruption. Contours at © = 4 44, Pig. 13,

show that the current has begun to kink about the snis. Chatacteriatic lobes
of the “m=1", “n=1" pattern have grown out of the poise in the stream function,
a poloidal craoss section of which is shown. Woke that the vector potentisl con-
tours are bardly distorted from thelr initial state.
If we take a closer look at the poleidal cut of current density. by means
ef & three-dimenaional perspective plot, Fig. id4a, we find that the current pro-
fila ham developed a flatter region, tn the side cpposite to the current maximum.
We are also able to exwmine the behavior of the three-dimensicnal magnetic
field lines, by means of a £ield line tracing code. The code, written for this
problem, employs a third order Lwgrange interpclating pelynomial to obtain

values of the magnetic field betwean computational grid points. MWe follow the
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line by means of equaticn (20), storing z,y values ench time the followed field
Iine apirals through the 2 =7 plene. Results from thie code are plotted in
Pig. 14 b,¢. In Fig. }4b we see & clomed, crescent-shaped flgure emerging,
while Pig. ldc diaplays snother shape, that of an oval, centered on & different
x.¥ point. The crescent corresponda to the flattensd region in the current per-

spective plet, and the oval surrounds the current maximsum.

The *sountaintop plot™ of the kinetic energy spectrum shows that the pertur-
bation is predominantly in the &, = ] band of wavenumbers, ang that a variety
of perpendicular wavenumbers combine to form the "a=]" lobes.

L= 6.6,

At this Inter time, contours of Conatant current aré seen to trace an even
greater disturbance, as shosm in Pig. 16. Again, the vector potential contours
are only slightly rearranged, We obzerve that the stream function smplitude is
increasing, conaistent with the time history of the kinetic energy.

L« 7.8,

The stream fonction lobes have grown in emplitude, aps may be observed in
Fig. 17, a3 has the velocity field they imply. In the (x,y.z2=r") plane, thix
field points in the direction of the current maximum.

We mee that the corrent Eilament haa bagun to tighten up, the heiical fila-
ment pulling toward the periphery of the disturbance.

Muin, the contours of constant vector potentiml are only slightly disturbed.
By apectral plete, Fig. 18, we see that the "n = 1, n = 1" mede is qrowing
in strength, with mote and mere Pourler coefficients nonzero.
1% im quite apparent that the vector potential is very unperturbed, when we
look at the "bBlow-up* of the toroldal cross section, in Fiq. 19x. At this same

time, the current crosa-section, plotted in Pig. 1%b, is guite perturbed. The
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cyrrent 13 the negative Laplacian of the wveckor potential, and as such, displays
the activity of the smaller scales more clearly, We see here thet there ia
much amalil scale spatinl actlvity, particularly in the neighborhood of the cur-
rent magimum.

Foloidal cuta augment the vwiew cited above. Contours of constant vector po-
tential, plotted in Flg. 29a, are very smcoth and nearly urperturbed. No hint

of & magnet!ic izland can be found. As above, we gee 8 distorked current,
Fig. 206, wlth the maximom drawing iteelf towards the outer edges of the per-
turbed region.

Poincare traces throogh the %, ¥, z =7 plane, at this time, display the in-
formation that linea of the magnetic fleld lie on surfaces much more closely
paralleling surfaces of constant current than conatant vector potential. Three
separate traces are plotted in Fig. 21. Only the smallest, ciosed oval, forms
in a clockwise sepse, indicating a safety factor g ¢ 1 in that region.
t=08.76.

At this time, a 1ittle after the kinetic energy peak, the current has be-
come quite broad and widaly flat, in Fig. 23. Only a vestige of the helix re-
mains. This flattening of the current we find to be & nonlinear proce#as, and
one in which many Pourier coefficients participate. Even at this Lundquist num-
bar, of 10F, we ss¢ (wall-resolved) wsmall ascale turbulepce, particularly in
the neighborhood of the vestigal current maxinum,

L= B.8&2

It 1a interesting to note that carrent density perspective plets, at £ =
B.82, Plg. 23, depict flattened profiles, with only a small positive blip in
the vicinity of where the current maximom had been. To the outside of thia

ateepened current a3 & current "dip”, & well-llke region where the current nearly
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jets negative.
t = 19.980.

We can see in Fig, 24 that the mazlmue velocity field 18 now peinting in a
direction oppositely to the way it had peinted previcusly. The current fila-
ment, as #ell, 18 Yipking up everywhere opposite to its previously perturbed
state. EKeadomtsev's (1975) conjecture of maturation followed by a long period
of quiescence 1= apparently not borne out, in this geomstry.
t=17.52.

The stream function lobes now eshibit & shell-like pattern, {n Fig. 15,
with the newest "m = 1" pair at the center. Very little 12 happening in the
current, and even less in the vector potential. The contour plot of the vectos
potential (x,y.2z=7'} at t = 17.52 shows that the simulaticn 13 in a near equili-
brium state. At this same time, the curtent (x,¥,2=7) depicts an only siight-
ly perturbed current. This is the final solution ¢f the run.

It i3 intereating tec note that as the peloldal magnetic field strengbth de-
creases and the effective toroldal fileld strength increases, the saall scale se-
tion becomes more and more two-dimensional; see Fig. 26. Maln, this is what
Wwe would expect from the work of Shebalin, et al (1883). Theae spectra may
also be viewed as evidence that the Strauss approximation i3 valld, for the con-

ditions.

4. Mdaitional Dlagnostics.
Something of the run's history can be seen in 4 time series of plotz of “g°

versus radiua, in Fig. 27. "Q* pear the anls ot x = /2 increases until after



58

the first kinetic energy peak. At this time, the § = 1 surface can ne longsr

be faund in the magnetofluid. Then, "Q* dips slightly, for a short time. Af-

ter this, it resumes its resistive riss,

Another way to obtain a global view of the run !3 to cons!der the energlies
in various ki's. in Pig. 2B8. Kinetir energy is plotted with a dashed line,
shile magnetic energy is plotted with the so0lid lipe. The "E=1", “h=1" mods
qgroWs up in lti = 1, 85 all the spectral plots have suggested. That most of the
kinetic energy 13 located In this wavenumber may also be seen in Pig. 28a. The
magnetic energy of ky = 1 and the kinetic energy of ka = 1 are Just about
exact]ly out of phasze with one ancther.

Enhanced sxcitation near the time of the disruption may alsc be found in
the energies With k5= 2 and k; z 3. While the ki = 2 epergles peak at alight-
Iy different times, the modes in the k1== 3 band are excited sipultanecusly, as
may be aeen in Figs. 28 b,C.

Although the energy scales down by a factor of ten in each plot, it is clear
that this phenomenom L3 a nonlinear one, in which many modes participate. In
arder to dlscover bow nonlinear this disruptive process can be, at Lundguist
numbars of oply 188, 1t is pecessary to conaider the linearized Strmuss equa-
tiens. FResglts freom simuleting the linearized Strauss equations, using these
CASE 2 paraneters, are discussed inp Appendix II. A comparison among linear and

nonlinear solutions 12 set forth there.

D. B, =43, v = &0

We pove on now to results from a2 large grid run, CASE 3. The initial con-
ditions are virtually ldentical to the previous nonlinear run discusgsed above.
Rere, howsver, ue choose a Lundquiat nuaber of 4P, on the q9tid of size 64 * 6

+ 2.
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I. Global Quantities.

An immediate difference from CASE 2 is seen in the plot of kinetic energy
versus time, in Pig. 29. [Inatead of only one klnetic enerqy peak, more than
cne was attained. The plot of 3%*§ versus time 15 also qualitatively different:
the i*j peak points to a time of ephanced disslpation of magnetic energy. This
enhanced dissipation !s even vislble on a plot of magnetic energy versus tlme.
Pinally, it i5 interesting to note that the net current does not change much at

all throughout the run.

2. A Time Histery of CASE 3.
t =17 32,

Like in the Lundguist number 104 run, the curreant dsvelops helical flla-
aents, which wrap themzelvez about the magretic axis, as way be seen in Flg. 30,
A negative fllament haz formed, to the outside of the inner, very positive one.

A three-dimenaicnal plot of the current(x.y.2=1 ), Fig. 3la, ciearly showz a
rippled corrant profile. shoss maximum i5 no longer at the geomebric center of
the cylinder. The developing negative jet i3 also wisible. As In CASE 2, we
ebserve the suggesjon of a variety of clesed regions in the 2 = 7 plane
Fuincan'pluts of magnetic field Jines, Fig 31b. Here, too, & crescent shaped
flgure corresponds te s pronounced curcent shelf.

t = 13.26

In Pig. 32, we dinplay close-up pleks of current (37a), wveloclty field
{32b}, and polcidal magnetic field lines (3Zc). From Fig. 3Za we 3ee that the
negative cyrrent sheath lies very close to the most positive part of the cur-
rent. & small disturbance is set vup in the fluld to the outside of thia aheath,
with a velocity field pointing toward the current jet, in Fig. 32b. Foloidal

asgnetic field lines, in Fig. 3¢, wre strongest in the nelghborheod of this
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gheath.
t = 14.52.

As in the Lundquist number 188 run, the helical filament of current has
nearly removed itself from the current column, st this time, & time near the
first large Kkinetic energy peak, Fig. 33. Much small scale spatial structure
has developed, with a shallow negutive current "mecat™ encircling a positive cur-
rent sheath, Within this region, the current 15 rejatively flattened.

At this point 1t is necesssry to add & warning sbout the resclution of this
Lundquist aumber {§) = 4FF simulation. It 38 clear from Figs. 33e and £ that
modal enerqgy spectra are very well-behaved even at this time. The simulation
is Eully trustworthy, in a}] its particulars, through &t -~ 12. Beyond this time,
such small-pcale spatial structure 1s genetated, and the current density dia-
playa an increasing tendency to 'Jet' more and more, both positively and
negatively.

Since the energies remain fully well-behaved, howaver, it is highly likely
that this ron may be trusted throughout, a8 far a2 groms suggestive behavior 1is

concerned,

The goestion of why the simulation slightly exceeded its allotment of reso-
Jution may be raised. Most probably, § = 4P8 ja somewhat too large for a grid
of 64 * &4 ® 32, A narcowedr internal layer than could be resolved attempted
to evolve, Increasing the grid (to an imposaibly expensive size), with this
valus of 5, would cure the difficulty.

A three-dimensional plot of the current contourm of the previcus coptours
show the intenaity of the negative jet, an well a3 an abundance of mmall-acale
spatial structure. Random nonunifermities wre particularly obaervable to the

outside of the current column.
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b= 16.26.

Bear the loral kinetic energy minimum, the current profile once again
displays muck internal strocture in Pig. 35. The column is in the process of
kinking up in & way opponite to its previcus helical deformation, as even the
toroidal cut of vector potential indicates.

The sharp, forwing curcent cliff is viaible In & perspective plot of cur-
rent density, PFig, 362, ap well as the oversl]l asymmetry in the channel itself.
Potice the "hole” near » =70, y = F; this demonstrates the overall distortion
of the current colusmn, Fig. 36b shows crescent shaped Poincare plots of meg-
netic fleld Iine braces in the z =T plane.

t = 17.46,

Finally, we consider sclutions near the second kinetic energy peak, in Fig.
37. Mmsin, most of the current varlation 1s Jocated in the outer reglons of
the column; within this shell, the cutrent is once again gquite flat.

He can imagine thie osciliatory process, pechaps reminimcent of the Incom-
plete dloruptions obaerved by Sauthoff, et al (1979), continuing for longer

perlods of time st higher valuer of the Lundguist number.



¥l. LOW ORDER MODEL

In the disroptive results from free decay simuvlations, reported in the
fifth chapter, an "m = ], n = 1" large-acale mods is s2en to grow and eventual-
1y dopinate the dynamica, ln conjunctlon with much small-scale turbujent struc-
ture. For & clearet understanding of the proceas, the isolated Interaction
among the largest scalea in the evolution of the discuptive behavior can b=
studled, by means of a low-order truncation mode] of the Strauss agquations.

In this chapter, we derive such a model. He then add & forcing term to the
vector potential equation, and & viscous term to the stream fonction equation,
i discoss consequences these new terms might imply. Analogous studies of the
poasible tramsition to disorder in the Benard convection problem have Besn pec-

formed by Lorenz (1963}, and meat recently continued by Curry, et &l (1984).

A. Implication from Code Resulta,

Mearly all contour plots of the welocity stream function generate the sug-
gestion that the dominant k;= 1 mode is of the form ain(x)*sin(2y). Thia sug-
gestion may be pubstantiated by the examinatien of numerical values of these
modes. Although the largest mede 1s not always Y. :(ky= 1, ky= 2, ¥z = 1)

or qﬁ;(h, =2, ky "1, k3 = 1), a linear combination of this pair may general-

¥
ly be found to contribute more to the mean sguare stresm function than any
other single modal element. The spame 1» observed te be true of the vector po-
tentinl. Hence, we approximate the “a =1, n = 1" ¢isturbance a3 sin(x) *
in{2y) * exp[ & 12 ) wnd sin{2x) * sin(y) * exp[ piz].

The largest mode in the k, = # band of wavenuabers is A . (k, = 1.k, =1,

k.=0). An egxamimatlon of the k = part of atream function solutienz shows

4
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that only very low order noise exists in this wavenumber. We thus teke

A (x,=1, t,], ], hit #) to be the only mode retained in the t;= # band.
B. Truncation Model.

#We begin with the Strauss eguation=s (9) and (10). Mriting each term enpli-

citly,
oW i) DLy ? 2 L
S A T AR VR R AL
oA D
L os k- VB B3 ¢ qpap ek, (22)
Por now, we set "V = B = F.
Let
Alky=0)7 A7 2 A Sk Sumy
T Ak
- - ﬂL .
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Mlthough we will show that mere general combinations are allowed, let Lhe

pair of counterciockwise helical perturbations be the following:
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The nonlinear terms in (23) way be rewritten.
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The nonlinear terms in (23) may be rewritten.
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By means of trigonometric identitias P and G may be re-expressed:
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Feo % [0sin e+ Sinx) sim 2y ) 033
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Neglecting terms with X, , k > 2, we have
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How, consider (22).
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This separates into an equation for the kE = | component of A
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and an squation for the kl= § component of A:
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Ahgain, neglecting teras with k, , t’.l' > 2.
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where we neglect terms with x, , l:\; > 2, kg L

Equation (25) becomes
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or, (23'), (24") and (25") are:
% (k- %al«
o Zu-rdp -y @n
dt *
a'_‘;_{: - -%ﬁﬁ_ ,-_ﬂ,.iL,l_ (20)

1. More General Perturbations.

In crder for (26) - (28) to be useful, the perturbations nonlinearly gen-
erated by the large grid code must be compatibie with the form assumed by the
equations. Although the form A' =of, ¥ [31 te assumed in the derivation,
more general perturbations are also allowed.

Mumetical values for the domipant modes with k., , k‘f {3, kE < 2, in CASE

Z, are listed in Table 3. oOther cases #xh|bit exactly =similar behavior. From

that table it is spparent that k., k,T <13, tE ¢ 2 perturbations are basjcally

of the form

AJ““"‘{'&E*E%] (29

Y- E['E{-é%] (30

where, as before, ][? SM xSk (0S4t S Y Sitie g T =

’
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2. Descnstrution of Applicability.

Using {29) and (39), we recompute terms that form equations {23'), (24"
and ¢25%). Gtarting with (23'), where
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where as before we neglect terms with 'l; N P
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Also, .5% = 55 (0454 E:a']j = - Sel( §4+€f). Thus, the form of (231),

of equivalently (26), is unchanged.

The more general perturbations also generate eqation (24';, as may be Seen
by considering

WB\ID'- f..;:*%_*’ E%aa% * 'bka'mti ﬁﬁE'EF'EHE

and

e pats Ry - B3 pat-ec- b1

That is,
WBy - v'B, = Eal-€f el cH T ]

= Fale LB i)

- ?_I;J_ .':;._"L'*i'..-

e
where agaln we neglact tarms with k Iu:\]r > 2. Purther, mince Li+ -
2

-[3{' EE *E%] , the form of (24'), or equivalently (27) is atill valid
Pinally, we conalder (25*)

. the nonlinear term, U'E-T'-u'ﬁ,', must be re-
evaluated. Usaing the notation of above,

A R A R R LIS Py
+Ep a%ﬂw ‘°‘ maa“—i )

'[5-"41}[%{1& 35 'an]»
z xR t%i-ui_l] [-% L\-B

Where we neglect terms With In:}= \ kY ¥ 2, ti} 1. A5 laong as we impose the
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constraint that [ §+€[ = 1, » restriction that we are free to demand, the
form of {(23'), or (28), is also unaltered. Thus the form of perturbations gen-
erated from nonlinear simulation are not incompatible with the form used in the
derivation of the low-order truncation medel, equations (26), (27) and (20).
For the particular CAEE 2, & and ¢ are greater than 2ero. I1f bthey were
of opposing aign the same reasults would be obtained, as may be sesn by setting

+3 to - 5 everywhate in the above demonstration.

C Results from the Medel, E, = .
Tn the inviscid decay problem, only one critical point exists, where by

critical peint i3 meant solution to the time-independent equations (26) - (28).

The critical point 13 ¢ p. o, OO (¥, 7, 9], as may be seen from the following:

_ 94 o or 0 = EGB.,‘

Equation t26y =» 0 = B,

6 9
0 e

Equation (27) = O = -511q~5up+ T:;F or o = %—5; B.
_ 0

Equation (281 = 0

11
Ir

Gepeama w o2

B
For simplatsd (positive) 5l and B, . F would have to be imaginary, which is

pot allowed.

1. Linear.

In order to obtain information about the behavior of solutions to the low-
ordsr model, we first examine a linearized version of them. Since is the
amplitude of the eguilibrium, hisin{xi®*sin{y)}, it 18 reasonable to treat as
a parameter Egquation {26} and (27) become a pajr of linsar, coupled ordipary

differential squations, and thelr solutioen is.
P = 4 (I:u Vhts sac ) At d (b - "ibh*-hu) At
o ! Z¢ €+, e TS
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for JURRE SIS { 26 m2+ 4B, - Lo Ga-8)
mere 3= B3 A, b=S er 3 4B
ere = By g A, v and 4 5

To underztand what this solution does &8 & function of the parameter i,
firat note that, generally, the only criticsl peint of (26) and (27) 1a (f= 4,
= B). The behavior of (}9) can be Jdetermined locally in the neighberhood of
{,E- #,0. = 1) by considering the algenvaluez A: )

From Bender and Orszag (1979), we know that;

T T e A N L . | RO

aplral ko (& =B, =) 28 &
function of time.

complex conju-
gates, with
real part < 4,

1 I
IF ). ARE | TRAJECTORIRS | (=9, ==018
______ - e e L
both real, | alligoto(F=F.o 2f)pas g |
bath < ¥ | function of time. i a stable nede.
------------------ |--.----------------------..---_-----|——---------------———
both rea], | gato([=d,0 »8)1n the |
Il B | direction of v., mnd leave in | a saddle point.
IR | the direction of v,. I
.................. |..---------------.._-f.------_------;--,-------------_---
| [
} [
{ |
t [

. T b N W W R R — — 7 — | S o — — e ———

where v , is the vector which corresponds to A » while v _ ja the vector that

corresponds to X .

Por > 20 B, / 9, an unrealistically iarge value, ,L_ suggest that (f = ¥,
o. = @) {9 & stable spiral. By setting - to zero, d-t is seen to be a poaltive
function of ﬁ . or the apiral is counterclockwise, as may be observed in numer-
ical solution of (26) and (27), where We have used the second-order Runge-Kubka
acheme on the time derivative,

When A L 208,/ 9%, HIth abp2ed (B, NS w RV, (B 0, A= #) be-
comes a stable node.

For A=28,/9, 15- constant, with a(t > ) -3 ] !_.,r-r‘ (15 ."}



H
in the reglon 4 B, /3 { A C 208,/ 9, {'et #,00=10) 15 & saddle point.
Trajectories enter the reglon of (f=4, oo = #) in the (5f,7ec) quadrants,
Wwith a limiting slope of
¥ . 20 ga-8,)

g 511 v’i‘fn"l«ﬁwﬁ“ - E.,]' B_u_ {J,q)_

and leave the neighborhood of {ﬁ= P,z #) in the {+F'. o ) quadrants, with
a limiting slope of

.l
E 5N J ".HI {% ‘E\HLE:A\]

A _hl'-\‘
L"":‘
L___

Thie behavicr may De seen by numecrical solution of (26) and {27}, depicted in

Fig. 4l.
Mhen A= 4 B, /3, £ = arbitrary constent, while (k> ) >4

For < 48,/ 3, the other root of /v s 4B Tyl -~ 7 turns the
critical point {E= P, 0= 8) Into s stable node.
1f Ji¢ 4B, /713, (@- B, .= #) 13 once again a stable mpiral; from o= 8,

g9r #, the solution may be meen to spiral In a clockwlae sense, as mey be ob-

af
served 1n another numerical solution of (26) and (27), shown In Pig. 42.

2. Nonlinear.

When equation (28) ia sclved simultaneously with (26) and {27), the behn-
vier of « and £ in the neighborhood of [|5= #, Q= P) still must vary as &
function of 4 . Per fnatance, aa /1 decays from an Initial value greater Lhan
4 3,/ 3, but less than 20 B, / 9, the selutions o and f £irst behave in
the neighborhood of [r* = 8, o * @) as §f that point was a saddle peint, then as
1f it was a stable spiral. If of =nd £ are not very small, they measurably
modulate the decay of 4(t). These behaviors may be seen for a few initial

conditions and parameters, in Fig. 43.
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D. Compariscn with Code Repults.

1n order to compare the behavior of the nenlinear fyll-grid simulation
results with results from the low-order model, we obtain " ;" and "o ™ from
the full-grid stored sclutions, as indiceted in Table 3. The "llq ", *n " and
“Ck" from CASE 2 are plotted In Fig. 4. Solubions ef (26) - [28), from
conditione and parameters of CASE 2 are plotted in Pig. 45, Although the
sgreement is only qualitative, it is noteworthy that even in a model based only
on the very large scales, quasicyclic behavior of the solutions |5 observed, be-
havier in which both magnetic field and velocity field pezrturbations partici-
pate. fHowever, subsequént bursts of the quasi-cyclic activiby are anlike the
first; F’,lnd i both grow together only in the firat svent of the sarjies.

We must turp to driven simulaticns in order to observe repeated, simulta-

necus growth aof f6 and x|

g, heous growth of fﬁ and % Tarm, the Extérnal Electric Field B. .

1f we add o forcing term to the Streuss equations, by aetting E. to a posi-
tive constant, the mean field cannot decay to zero. It is phyalcally meaningful
for T, to be non-zero; an electric fleld is imposed at the wallas of mest fusion
devices, to waintaln the current. When #dded to the Etrauss medel, the driving
mechanism can be respensible for repeatsd parlods of joint growth of ; and =
for suitable cholces of parameters B, , B, and 1y . In this section, we will

explore the behavior of the driven, inviscid, lew-order model.

1. The Equations.
T™he dominant sinuscidal mode in any positive constant wmould be of the form
sin{x}*sin(y), kl = §, tThe driving term !a sdded to equation (2B), then. We

choose £~ 2 %GD. and (28) becomes

YA

SvaEIEE RN BRI C Y (3
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{26} and (27) are unaltered,

Wo critical point exinsts for (263, (27) and (30} at (f= W, oi= 9, (4 = 1),
Thie point, by inspection, ia replaced with ( S =0, X =8, (i=d,). A multi-
tude of sdditional time-independent solutions exist: the line £ = constent,
th (1= (1= 4B,/ 3, and X =¥ contalns the (g= #,% §) critical point aa
4 ppecial case.

Two sdditionsl critical points, ( s =g , o = o, , (A =20 B,/ 9), and
Cg=f, o=o, [l =20 8,79, also may be identified, where

Thede peinty exist in the presence of substantial forcing, when Ay 2B, /9

3. Solutions.

Eamples of the dynamical systems behavior which may be generated by this
driven, dissipative syatem are shown in Figs. 46 - S2. Table 4 13 & chart of
the purameters and initiel conditions used to generate the solutione shown in

these figures, slong with brief depcriptions of the observed behavior.

1, The Mdition of Viscoaity.
If we add a disstpation term to the equation for the amplitude of the
stream function perturbation, we have

op §
ot fﬁo'ﬂu]o{‘g'ﬂﬁ

{31
shere ) * (kinematic viscosity) / (¥, L,), a8 defined In the secend chapter.
One critical peint of the system (31}, (27) and (30) is atill (g> 9, = ’,
(A = 5\‘,}. Intere=tingly. the line r_‘;- conatant, & = §, and .j_‘ ..:-‘,* 18,713

no jonger aolves the time-independent syatem. In its place are two critical
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points [ﬂ '|£j{ﬁ*1 o -E-'“}"l Lj" = :';1* ]; tmuo more, r-“"ﬁ*"j' I:ﬁ:-ﬂJ._,{:]' A= 4.9 Ay

also be [ound, where

—e— e

{X+1—V15{¢)\3(‘1J E:.J-}

and 1{:,4-;._i—i'
f;a*_'-f“?"iqyna{ 2B

The latter pair of solutions, Eunctions of :ﬁa. reduce to the two non-trivial
critical peints of the driver inviacid model described in section (1) above.
This altered system, {31), (27) and {39}, s explored in Pigs. 53 - 55,
Table 4 again wccompanies the figures. Flgure 55 i= of particoler intersst;
exhibited there ig & solution with features very similar to those found in the
Lorenz (1963) model, for certain classes of conditions, Note that the low order
mode]l preeented here differs significantly from the Lorenz model in that qua-
dratic nonlinear tecrms made up of the other two amplitudes appenr in each of

the three smplitude equations {31), (27) wnd (38}, while in the Lorenz model

such terms only appear in two of the three equatiens of that model.

sustalnment of noplinear behavior is obsarved in both the driven, {nviscid
model, (26}, (27) and (3P}, and the driven, viacous sodel, (313, (27) and (30).
This sustainment ought to be n feature of the time-dependent melutions of the
driven Strauss equations, a8 well; reaults from full grid simulstion of theme

equationa is the subject of the next chapter.



¥II. BIMULATION RESULTS, DRIYEN

Cf the simuletiona spprepriate to internal disruption, which were discyssed
in the £irst chapter, most were performed In the presence of some form of ex-
ternal forcing and verisble resistivity. These terms were employed to inhibit
the resistive decay of the current profile. Two combinations were dominant,
both of which imposed a resistivity profile which varied as the inverae of the
initial current depsity. ©of the aimulations considered. only Sykes and Wesson
{1976) then allowed the resitivity profile to evolve. In sddition to the use
of variable resistivity, some simulations were petformed in the presence of an
electric fleld which saintained a constant current (e.g. Biskamp and HWeltar
{1983}). Others (e.g. Waddell, et al (1976)) imposed an equilibrium toroidal
electric fleld, €, , at the wall, which initislly set Y j =&, or prohiblted
the realtive decay of the initial current density. Altheugh convenience i3 2
primary reasen for keeping the variable resistivity fixed in time, Waddel)l, et
al (1976} noted that since the important medes grow up on time scales which are
faster than resistive decay times, results should net qualitatively depend an
the specific realativity profile chosen.

In the simulations described in this chapter, the resistive decay of the
initial current profile {s countered. A resistivity profile which varies in
space a8 the fnverse of the inftial current prefile, approaching values of O(1)
at the walls, is chosen. Since the vector potential is poloidally expanded in
sine functions, the value of this quantity is sutomstically zero ip the very re-
sistive region at the wall. Hence, {n order to prevent the resistive decay of

the initial corrent profile, E, i® chosen to be a small positive constant which

balances 'Llift = §) at a1l the internal grid points. The simulation resglts

78
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reported in this chapter are fundamentally different from thome discussed in
the fifth chapter, in that both a nen-zero value of the ewternal electric fleld
B.1s chosen for sll runs, and a variable resistivity is employed. BSince the
reslstivity is now a function of n and ¥, the 1Tj ters in equation (14) may not
be generated in aine-Fourier space, but tather in physical space, with the
ether nonlinesr terms of eguations {9) and (1),

Three pets of conditions, CASE 4, CASE 5, and CASE & are consldersd. Both
CASE 4 and CASE 5 are simulated onp & 32 * 32 ® 16 grid, with resistivity pro-
files Tp(ay) = [ 200 % exp{ -1.2 (- /20" -L2 (y - W/ } 17 ease s
and CASE § differ only in the initial asplitudes of the current density pro-

files, and the values of the externul flelds, B, and ED . HWhile CASE 4 hag
ﬁ!li:_t:Oj: Y E',‘yFE‘|-2{¥-W2‘31-|-1{H‘W1\_]1] N Bﬂ-_ 3 MJ Eu: I"',"_'i;,_;j
I

CABE 5 is run with
S0y B pClTi (T By 24 sed £ i

Although the disruptive events occur at 3lightly different computstional times
in the two casen, the features of the events are very similar. CABE 6, tun on

a b4 % 54 * 32 grid, 1o initlalized with

N . L - i AR 1 TARTE ._,"'" - . -

a0y b oonp 0T g g, B2, b g
In all three cases, the vorticity Fourier coefficients are initialized with
random noize of O(19 ") in « broad dand of wave numbers, k, , k. ¢ [4, 8],
ke [1, 4],

In order to addrees the effects generated by the altered current profile,

and the variable resistivity, we performed an unforced, inviacid simulatien
with CASE & parameters and conditfaons. This run, discussed in the third appen-

dix, displaya features similar to the conatant resistivity decay runs of the

fifth chapter, in that msagnetic and veloclty field perturbations first grow to-



gether, then apparently attempt to oscillate In sign a3 the soluticns repidly
damp to zero in the very remistive fluid. This queasi-cyclic behavier i3 not
obaerved in the inviscid, driven simulations.

Disruptive behavior |e observed after only & few Alfven transit times ip
the inviscid driven runs of CASE &, CASE 5, and CASE 6, followed by a peatly
steady situation with sustained, finite flow, which can be mainteined for tens
of AlEvén transit times. This state is reminiscent of that suggested by the
low order wodel for the dtiven, inviacid case; aolutions with constant eguili-
brium amplitude .., constant, arbitrary stream function amplitude £, and
2ero value for the vector petential perturbation amplitude & , do exist.

CASES 4 and 5 are repeated with non-zero values of Eluid viscosity. IE j=
aszumed Lhat neglect of the ne-slip boundary conéition does not invalidate the
results, since the relevant medes grow up far In the interior of the computa-
tional cylinder. Fuorther, note that wlthoogh a viscosity, or "smeothing™ term
fs frequently added to the velocity field equation molved in many simulations,
{e.9. Sykes and Wesson (1976}, Strauss (1976); Ayedmir, Barnes, Caramana, Mirin,
Rebel, Schnack and £gro (1984)), the condition generally imposed on the velo-
city fleid is that appropriate for fres-slip, rigid side walls (Sykes and
Wesson (1976); Strauss (1976); Schnack, Baxter wnd Caremana (1983); Aydemir and
Barnes (1984)), Upen the inclusion of & viecoua term, n disturbance which is
repetitive is here cbserved, with a period that 12 Ear longer than the periodi-
clty of the free-decay bursts. In these driven, diaruptive burats, the velo-
city field does not change 2ign, rather, & single-signed perturbation repeat-
edly grows and decays. Once again the qualitative behavior of the low-order
model may be correlated with that of the large-grid simulation; ne sustained,
steady-state velocity field is observed in the vizcous, large-grid simulations,

shile the addition of a viscous term to the low-order mcdel removes a posxaible
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solution with A = constant, ﬁ* constant > #, apd X = B,
We turn to apecific results from these aimelations, CAEES 4, 5 and &, which

support the shove description.

Ao Bo=30, vy [ W rerp { (LK - T/ LAY -W/AN T
Bere we conszlder simulationa for which the Initial poloidal sagnetic energy
only variez by a few percent frem that gquantity in CASES 1, 2 and 3. The ex-
ternal magnetic £isld B, i3 chosen 3p that the mafety factor Q(x =772, ¥y =T/2,
E=0) 206 =28,/ J(x=/2, y =T/ 2, t = W) Anexternal electric field,
constant in space and time, is imposed. This driving term, £_ . exactly
balances the *w{l.f} * y(x.¥,t = F) ters with an amplitude of 4. 85, Contour

plots of the initial conditions are displayed in Pig. 56.

1. V=60

We first consider the inviacid CASE 4 simulation. Out of the broad-band,
low otder vorticity perturbation, "m = i, n = 1™ helical stroctures emerge to
dJomintte the spectra of both perturbed fields. The growth of these structures
may be traced in time histories of global guantities, shown in Pig. 57; of
primary intereat iz a plot of kinetic energy, E. , versus time.

A the kinetic enetgy grows, & helical current Iilament wraps itself around
the line (x =7/ 2, y =T /2, z), while bean-shaped counter-rotating stream func-
tisn lobes generate a velocity field which points across the pololdal cut to-
ward the tegion of maximum current density. as say be seen in Fig, S8, t = 16.%¢6.
With behavior similar te that observed in the undriven simulations deacribed in
the f1Eth chapter, the current filament intensified in regions toward the edge

of the disturbence, while the velocity field grows stronger; psee Fig. 53, t =

20.64. By t = 26.4F, the current column approaches a flattened state. This

ptakte 18 virtually achieved py t = 36.24, as may be seen in Fig. 61. Through-



¥

out this time, wlthough the kinetic energy peske again, near t = 32, the " = 1,
n=1" stream fuonction pattern 12 cbhserved to remalin unaltersd in sign, only
varying in smplitude.

The velocity field perturbation continues to exlst for tens of Alfven tran-
ait times, alwoat in a steady state, os may be seen at a semple time of 42, in
Fig. 62. An unusual horseshoe-shaped current filament, hellow to the center of
the poloidal cut, has developed, which co-exists with the long-lived velocity
field. By comparing Flgs. &2b with 62d, it {s clear that the velocity fleld
points across the center af the peloidal cut, away from the reqion of lesser
current denzity and toward the “base” of the horseshoe-shaped current f!lament.
Apparently, this filamentary structure is nct paralleled in sorfaces upon which
magnetic field lines lie; no *horseshoe-shaped islands” can be detected in
Poincare traces of magnetic field lines in the z = T plane, at t = 42; see
Flg. 6&3.

After tens of Alfven tranait times, when sofficient resolution must serious-
ly become suspect, the velocity field has decayed to o local minimum, at t =
1#1.84. After this time, another burat of kinetic activity ia observed, with
features very almilar to the firat, At t = L09.44, near the time of the zecond
kinetic energy maximum, & helical filaMent cnce again has formed, Ln the mame
physical location where the t « 16 filament had been, see Flg. 64. This fila-
ment behaves like the one near t = 16 did: 1t nearly disappesrs into the edge
of the disturbance as the current profile broadly flattens. Threugh this time,
the velocity field perturbation has growm in amplitude, with unchanged sign.

Foliowing this burst of activity, u horseshon-shaped current filament cnce
again developa, while the velecity fleld settles inte a nearly constant-ampli-
tude steady stete Flow pattern, as may be seen in Fig. 65.

As indicated sbove, this second burst of disruptive activity occurs under
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cenditions of uncertaln resoiution. Plobts of modal kinetic energy spectra dur-
ing this time, Fig. 66, are encouraging: the perturbation st low wavennmbers
wholly dominates. Amounts of excitation, of O(18°°, 10°°) do exist in the
highest wavenumbers through this time, however, and must generate copsiderable
aliasing error.

An 1dentical run performed on a 16 * )6 * 16 gzid was able to track the
same aplution through & ~ 65. The coarser grid zun's solutions then diverged
from the 32 ¥ 32 * 1é grid run's solutions, as may be seen In Pig. 67. It is
conjectuored that alissing error sustained the coarser grid ron's perturbation,
prohibiting & second disrvptive event from teking place. Although this euxili-
ary run established the numerical validity of the first event, the validity of

the second event 1s somewhat questicnable.

2. U= 8.1,

Multiple events of distuptive activity say be sccurately generated, however.
Incluslon of a viscous damping term, which can cause the sustained velacity
field perturbaticn to be diminished, leads to a tims histery depicted in Flg.
68. There it may be observed that, about 25 Alfven transit times after the
firet burat of kinetic epergy and net current, another similer burst occurs.

Because & second disruptive event was obsgerved in the inviacid CASE 4 sim-
ulation (under conditions of some numerical error), it is not possible to say
that the multiplicity of events only occurs through the wction of viscous
damping of a susteined velocity field perturbatlon. It is clear, however,
that development of the fluld flow depends stzongly on shether a viscons term
15 added to the equation of metlon. Inclusion of viscosity tends to damp the
Elow, and leads to pronounced submequent bounces.

He proceed to o study of & similar set of simulatlons, CASE 5, to establish

that this behavior occurs over s range of parameters.
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BB 2.4, MOy = [ WE*exp{-l2x-T /2 -l2Ay - T/

As in the CASE 4 simulations, Q{x =T/2, y = T2, t = #) = §.6 {n the CASE
5 simulations, described in this section. The values of 4(x =T/ 2 y =ms2,
t=8) [ =0.F]and B_[ = 2.4 ) are set to achieve this. To balance *1[!,?] ol

j(e,y,t =#), E_ =&/ 2M, for all time, at all interior grid points.

1. V=00

This simulation 1o quite similer to the CASE 4 inviscld, driven tun, a3 may
be seen in time histeoriea of some global quantities, Flg. 69. Following the
typical burst of disruptive activity, the cutrrent density develops a horseshoe-
shaped filament, while the velocity field agaln pointa toward the base of the
horseshoe. Theze features are Jepicted in Fig. 78, A current cross-sectional
slice at x =T / 2, v, 2 =T clearly exhibits the hellow center of the current
dennity, the amplitude of which drops from approximately 25% of the off-centar
aagimum, to a value J(x =T /2, y =T/ 2, 2 =) 4 4.3. Contours at a later
time, 35.84, show that the horseahoe filament is filling in, while the stteam
function perturbation remains nearly steady, and unchanging in sign; aee Pig.
71. %o additiopal bursts of activity were observed to occur in this aimulation,

through a computational time of 52.

2. Ve,

Upon the Inclusion of a viscous damping term in the equation of metien, how-
ever, a multitude of disruptive bursts of activity were generated. GClobals from
the viscous, forcad CASE 5 simulaticon, Fig. 72, point to burats of sctivity
taking place regularly, after an initial disruption at t = 32.1. A mecond
burat occurs at £ = 56.28, while & third happens at t = 90,46,

Each event 1 characterized by the formation, then disappearance, of an

"m=]), pn=1i" hellcal current filament, and the diminishing, then growth, of a
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single-gjgned helical streap function pattern. Prior to the first flattening
of the corrent density, both a Mell-formed filament and a large-amplitude velo-
city field petturbation may be seen, at t = 29.2B, in Fig. ?3. Follawing the
first kinetic enerqgy peak, the currept columh has becoms broadly flat, with
much small-scale spatial structure present toward the column sdges. Though
diminished in ampijitude, the same stream-function perturbation exists at
t = 3% 36 az had besn visible at t = 29.28; se+ Fig. 7.

A few Alfven transit times before the second kinetic ensrgy peak, a heli-
cal £ilament clearly has formed once again, in the same region as the t = 29 28
filament had been. The Streémm functjon perturbation, unchanged {n sign, has
grown in amplitude, these features are apparent at t = 54 .72, Fig. 75

The disraptive proceas described in this section 13 a repetitive one, with
each aubsequent burat of activity qualitatively mouch 1ike the first. The en-
veloping weplitude of the perturbed field weakens as the simulation proceeds,
howaver, It Im likely that highly reqular and uniform "sawtooth™ bursta of
disruptive activity may require plasma processes not included {n the Strauss

approximation.

CoByr2d, N = [ B renp (-T2 -y -TNTT

In the slenlationa, CASEE 4 and 5, only a small central region of the mag-
netofloid 18 exposed to a resistivity of G(¥.41) or leas. In order to estab-
lish that the small central region of variable reaistivity in CASEs 4 and 5 is
not a atabilizing factor which enforces the long period of nearly sheady-state
soluticns With floM, in the inviscid CASES { and 5, we perform an additional
driven, inviaciquz:nulatian. on & 64 * 64 * 32 grld, with ™ =1 / 354, and
wi{center) = %; ;?};?{‘n1fﬁ = 0. 00447, As in CASES 4 and G, we take the safety

T

factor Q(x = T /2, y =T/, b=} 2 @6 =28,/ J{x=T72, y=T72, =0

we choose B, = 2.4, and 3(t = F) = B exp ( —(x - T /2} - (y - T/2)}



The driving term E_ balances -*.1 (%,¥) * J{x,y.t = 1) at all internal peints,
with » value of 8 / 350,

Gelected globals for thia simulation, CASE &, are shown in Fig. 76. These
globals indicate that, following an initial burst of disruptive activity at
about t = 30, a quasi steady-stete with flow, siailar to the states attained
by the driven, inviscid CASES 4 and 5, is achievad. {ontours at t = 39 .24,
Pig. 77, display the dominant velocity fleld pattern. At this time, the cur-
rent density is peaked along the center line of the stresm function perturba-
tion. Only one magnetic axiam may be inferred from Poincere traces of magnetic
fleld 1ines in the z =77 plane; samples of traces at t = 39.24 are shoun in
Fig. 76.

The stream function pertuzbation apparent near £ = 39 continues to dominate
the k.= 1 spectrum. The lergest stream function modes in the k= 1 band,

averaged over u peried of time from t = 57.49 to t = 60 M6 are found to be
Yllg= 0= ~5.6v 0 2 [ SUn2y sy 052+ Smr Smiy Swnz ]

¥2. 2% 155 CSum ¥ S 1\?,- LONE - DWWy i a4 nan D

!

Eimilarly, the largeat vector potential modes in the “z—' 1 band, likewl=ze

averaged over a period of computational time from t = 57. 40 to t = 9.6 are:

A (l(;,g'—l\)i G.Q?IG'ZL:}ME)T bmﬂ'ffﬂ’ﬁzi- S K Sl s i)

v 2 [ s, Sy (0S2 - S iy na Y ~iv 2]

Employing the notation used ip the sixth chapter, these perturbations say be

re-written:
Y- gpl-ef- dgd
Ate o - 8F €9
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e () 5 - 05743 and MAVECAY « - u.56360. mhe Y ratios
average to % = - 1,567, Purther, -PE = - 9,956, or B()w 00644, while
Bb =093z, o Fr{h}' #.0649; the experimental valuss for 5 differ by only
about #.8). Gistlarly, -4 « B 0962, which yields o (&)= 9.0126, and n€ =
$.011, Which also gives oic)m @ {i} § §126. These perturbations are thus of a
type for which the low order model im applicable.

From the simulation described in this secticn, it is clear that the combine-

tion of wn increased grid aize and o conzequent msmaller ; dees not alter the

banic driven, invlacid scenario obsérved In CASES 4 mnd &.



Viil. DIBCUESION

Much effort has been devoted to the experimental and numerical study of
disruptive activity in corrent-carzying magnetofluids. Results from relevant
experiments, and from earlier computations, are summarized in the first chap-
ter. In this chapter, sfter uw brief comparison of the resulta reported in this
work with results from prior numerical studies, the applicability of our re-
sults to experimental observation is addressed. Possible future directions

will then bt suggested,

A. Bummary.

Alpoat every previous work considered employed some fora of external
driving. Surprisingly, not only our driven remults, reported in the seventh
chapter, but also ocur frees decay resulta, raported in the fifth chapter, agree
somewhat with the driven, single helicity calculations of Waddell, et al (1976)
and the driven three-dimensional results of Sykes and Wesson (1976). In all
three mimylations, “m = 1, n = 1* disturbances are observed to qrow. KWaddell,

et al (1976), only follow one flattening of the current, while the simulation
of Sykes and Wesson (1976) generates repetitive ewpulsions of the q = 1 aur-
face from the plasma. In our simulationa, we also abserve quazi-cyclic repeti-
tien of the activity; in the free-decay, constant resistivity simulations, the
sctivity repeats on nearly Alfvenic timescales, while in the driven, variable
reaistivity aimulations, the period of the disturbance ia in general much
longer.

Although Waddell, et al (1979) also perform simuiations with the Strauss
equationa, their cholce of a Elat, initial g-profile, as opposed to the
strongly-varying ones employed here, makes theit computations spparently incom-
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mensurable with ours. The electric-field dependent results of Riekamp and
Welter's (19683) simulations are pot exactly comparable with ours, since our
reported simulationa employ no “constant current® driving sechanism. Finally,
it is Aifficult ko correlate results from these simulations with simulations in
which different aspect ratio expansions wre smphasized.

One major difference which aeparates this work from previous simulations is
the values here chosen for the Lundquist number. We smploy ne "radial
smoothing™, nor do we use any "mode selection” for numerical stability or
reasonable temporal evoiution of spatial profiles. The Streuss equations are
simylated by means of an undistorted, three dimenmional grid in Pourler space,
in which all modes dynamically accessible are available to the time-dependent
sojutions, and many are active. Except where clearly indicated, our remsults
are well-converged numerical solutiens to tha puqfﬂ ptablem, with unrestricted
initial conditions.

In summary, we find that qualitative features of disrupting, bounded, cur-
rent-catrying magnetofluids cen be atudied by efficient (9.7 sec./timestep on
the CRAY] at 32 ® 32 # 1§ resolution) pseudospectral computatien, in the pre-
sence of resistive, free-alip boundary conditions. Appropriate initial condi-
tions are thought to be current and magnetic field profiles which have current
marima in the center of the channe] (but which are not analytic equilibria]
plus small amounts of random noise broedly distributed In Fourier space. From
such conditions, which relax quickly toward nearly quiescent equilibria, &
single digruptive event can develop and complete 1ts evolution {n relatively
few AlEven tranait timea and in far less than large-scale resistive decay times.
These events wte characterized by helical concentrations of "m =1, n = 1" cur~

rent and vorticity. BEven in the unforced problem, the disruptive process is
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abeerved to be cyclic, on an Alfven timescale, with repeated bounces of the
kinetic energy as a function of time. Results from the linesrized Strayss
equations, reported In the second appendlix, agree with the nenlinear ones for
a few Alfven trangit times, then diverge amlgnificantly from the disruptive,
nsonlinear results. A low order truncaticn mefel of the Btrauss equations, de-
scribed in the sixth chapter, is found to contain mome of the quasi-cyclic and
steady features the large-scale simulations exhiblt, but much of the inter-
esting dynamical systems behdvior of this mode] 1s apparently unparalle]ed in
the large-qrid reaults. The inclusion of an external electric field and wari-
able resistivity in the inviscid, larqe-grid simulationm give zise to an Ini-
tinl disruptive event which is much like the ones observed in the undriven
simulation=, followed by u nearly steady-atate situation with flow, which sur-
vives for tens of Alfven transit times. tThe wddition of u viscous damping term
to the eguation of motion leaves the initisl event basically unaltered. vin-
cosity tends to damp the genernted flow, and, following the {nitisl burst of
disruptive activity, pronounced subszequeat bounces in gqlobal guantitien as a
function of time accur in driven, viscous simulations.

A quantitative comparison of these results with the experimental observa-
tions of dimruptive activity is unremarding. One reason for this is that our
simulations represent idealized sitvations, without Eeatures which may affect
observed time scalen and signal wize, such as compraasibility, teroidicity, a
vacuum region surrounding the plasma, uneven walls, limlters, with which the
plassa interacts chemically, and gaz puffing, Anothe:r reason im that while
valoes of Lundguist number were chosen to insure numerically accurste selutlons
to the strayss model as a function of time, they are far less than those repre-
sented in Table 1, for current generation fusion devices; the enhanced values

of diffusion used here may lesd to a less pronounced separation of lmrge-scale
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resiative decay and Alfven transit timescales than exists experimentally.
Qualitative comparimcn, however, is instructive.

The fres-decay, quasi-cyclic ogcillatioens occur in the absence of forcing,
and with a parked genaration of small-scale turbulent structure at the peri-
phery of the current column. Several workers, notably DuBojs, eb al (1981),
and Licthenberg (1984), have suggested that turbulence in the neighborhood of
the reconnection region ia responsible for incomplete reconnection of the m = ]
evplotion, Qur simulation results agree With the hypothesis that turbulence is
generated io the neighborhood of the aeparatrix. Alsg, the quasi-cyclic nature
of the distuptive activity in the decay simulations indicate that helical
"m= ], n= 1" atructures exist throughoolt the event, §i.e. Kadomtsew's {1979)
suggestion of & symmetric state evolving after a single disruptive bounce, is
not realized tn cor simulations. It is possible, then, that the guasi-cyclic
ackivity obssrved in the free decay simulations is sipilar in nature to the
post-distuptive "m = 1, n = " activity reported by Sauthoff, et al (1979],
from experimental FLT dats.

Further, the inclusiop of atrong driving im the simulations can generate
repsated bounces an timescalea which are nat incompatible with the timeacales
of repetitive sawtesth (ven Goeler, et al {1974)); in both situations, the
timescales are longer than Alfveric timescales but sharter than the large-scale
resistive times. Our drivinao mechanism is imposed at every dgrid peint, rather
than only being allowed to resistively diffuse inward, We thus neglect many
sffects the turbulence might have on the driving mechanism. The addition of a
viscous damping term also reduces the level of generated small-scale apatial
structure. Here, although a amall post-bounce i8 generally observed in the

invigcid, driven sinulations, only isolated events are seen in the viscous,
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driven runs. OQur driven simulationa thus could simulate disruptive activity in
a lesp turbulent magnetofluid, one in which repeated, gquami-cyclic sttempts at

reconnection are not dominant.

B. Directions for Further Work,

In order to obaerve dynamic cascade behavicr of simuisted equations, tur-
bulence researchers bave added small, external forcing terms to the Solved
equations (for example, Pyfe, et al (1977), Bosaain, ¢t al {19831)), to ower-
come the stroncly damping effecta of necessarily lerqe diffusian corfficlents.
Attempts to include such forcing term= in the sine-Etrauss code have met with
fallure, WMo damping exists in the z-direction, in the Strauss equaticna. In-
stead, the actior of the strong external field B ii is depended upon to re-
strict nonlinear development in that direction. We have found that banded
small scale forcing teras generate much nonlinear development in all three al-
lowed directions, and resolution 1s quickly lost in the z-direction. Bence, to
observe impertant dynamical behavier of the MED equations in Strausa-like gec-
metry, with cutrent generation computers, 1t will be necessary to solve the
full 3-d MAD equaticns, with Etragss-like conditions and natural dissipation in
all three directions. Small-acale random forcing terms may then be added, with
simulation resolutjon not excesded.

A parallel study vaing & low order wodel 11ke the one propossd in the sixth
chapter, would be appropriate for sufficiently Strauss-like three-dimensional
conditions. A saa]l-szcele, random driving term added to the equation for Lhe
stream function perturbation could mimulate the poloidal smsll-scule structure
with k , = 1 dependence that is generated in the neighbothood of the recon-
nhection region, and would lesd to a means of eNploring what effects very small

scales could have on the largest modes available to the system.
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The clearest extension of the large-qgrid simulations reported in this work

to full three-dimensionality would be to perform simulations with & code which
employs a set of expansion functions that reduce to the ones used here. Such a
set has been proposed by Turner (1964). Upen the generation of this code, the
gueaticon of how an inverse cascade of the magnetic helicity may effect dizrcp-

tive behavier {Mentgomery {1902)) could be sccurately eRplored.



APPENDIX A
TWO-DINENGIOMAL MMERICAL EXPERIMENTS:

EPECTRAL VERSUS PSEUDOSPECTRAL SIMULATION

A&. Introduction to the Simulation Probles.

When turning te a digital cemputer a5 an aid In the understanding of a
phyaical process, it 18 fixceszary to 2elect & numerical wethod of solutlon
of the modelling equations as cerefully ss the equations themselves were
chesen, Spurious results say otherwise be obtained, or evan no results
at all,

Eeveral factors are generally zonsldered when creating & numerical
algorithm, among them efficliency, accuracy and stabllity. Although accuracy
is the most crucial of the three, stability, or the lack thereof, is pessibly
the first one approached when trying ¢ut a new method., If the correctly pro-
grammed numericel method is totally and esplosively unstable, no reliable
physical insights can ever be obtained from & simulation which eaploys this
algoritha.

The consequences of simulating the two-dimensional MAD equations, both
spectinlly and peeudospectrally, is the subject of this appendin. A further
categorization, that of representing Cthes nonlinear terms in two numer-
fcally different ways, 1s tntroduced. &y means of almulatjion, it wiil be
found that when the sguations are pasudospectrally solved in a forms which does
not conserve snergy, the simulatlon is s spectacularly numerically unstable
one. However, when the equations are again solved in thelr fully aliased,
or pseudompectral representation. 1In & way Nhich numecically conserves the total
enargy of the syatem, the solutions are quite well-bDehaved. It is further de-

9
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monstrated thet when s suiteble amount of dizmipation 1a introduted into the
the gystem, the conservation-form psevdospectral method sgain yields stable
resglts. These reaults are found to agree well with those gensrated by a

code which is fully spectral, a code in which all aliasing ertors have been

removed,

B. The System of EBquetiona Used t¢ Demonstrate the Problem.

As an jllustration of the Influence the algorithm chosen haz on a sin-
ulation, consider the numerical solution of the two dimensiocnal HED equations
for vorticity and vactor potential, computationally time advanced in the
following form (A-1).

& 1a)
(a) _bt,_. ?-[-f{.u_.!'i-ga”]-r-‘l.}?:k)

(»-1)
(5) % : Ve wAY e MVTA
These equations are a apecial case of the Strauas squations, discuased in
Chapter I1. They may be cbtuined from the Strauss equations by setting the
external magnetic field, Bu to zero, and allowing ne z-variation in L) or
A . ror convenience, the definitions of the now two-dimensional verisbles
used are repeated here. Let the vorticity () ba given by :(; *’*1’:"*-'1??5.
for ¥V , the solenoidal velocity field, and Yoo Y llj_.ﬁ , the acaler
streas function. Also, let A:Alv ui) be the vector potential, from which
the solenoidal, self-consistent magnetic flald, £ : WA EE , and the current
density, 5%? t’rg. = ?EAEE . Bay be obtaiped. The same set of dimen-
sicnless units a8 were gaed in the body of the work are used here,

The geometry of these aimulations will be any horizontal plane of the
full three-dimenzignal domain described in chapter 2. Aa there, walls bound

the fluld fn x and in ¥. For the runs deacribed in this appendix, the strictly
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two-dimensional magnetofluid is confined to n square in the x,¥ plane with
sides of length 7. The boundary conditions imposed are these appropriate
for rigid, free-alip, perfectly conducting walls, namely, the vector petential
and atreawm function vanish at the walla, as does the curcent density. Three
quadratic cenatants of the motion exist for the two-dimensional MED equations
{(A-1): total energy, E = - Sd’x (y24 BT}; mean square vector potential,

2 Vel

I t
= — 1% A* . and cross helicity, P = — \d% v.B (Pyfe and Hont-
(x Zwﬂdrh d zmg F LR
gomery, 1976). In the following, focus will be on the total energy as a use-

ful diagnostic,

C. Particulars ¢f the Method Employed.

The spatial and temporal dimensions are esmentially different in nature.
A boundaty value problem 13 posad in space, while in time, the conditions are
these of an initial value problem. The derivatives in these dimensions are
thus treated differently. Pirst, conaider the time derivatives.

The time-stepping chosen is identical to that used in the main simuln-
tion code, described in Chapter 1¥. Let E;%:{} where u would be either
or A, and and £(u) then would represent the right hand sides of (A-1) {a) or

{b). The second ¢rder Runge-Kutta, or Heun, methed employed 12
ne LU .b_t "
e = szu]
s 1 " AL ( el
W™ une)
where n i3 the time §ndex, and A{ is the timestep. This method is numerically

unstable when applied to a linear advection equation, as can be seen Dy per-

foraing von Meumann analysis on the model linear eguation
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with *ﬂ set to zero (Rossain, 1981). The weak instabllity can be removed by
a suitable choice of 1;] {Dahlburg, Mentgomery and Matthaeus, 1985). This is
a Lime stepping method which has previously been succeasfylly empioyed sven for
absolute equilibrivm studies of equations (A-1), Galerkin simulations in which

both dlffusivities are 32t to zero (Fyfe, Joyce and Moentgomery, 1977).

Baziz function® wre used for the spatial dimensions of the simulastion,
real Pourler =ine peries in both the x and y directions. The wvelocity atream
function and the magnetic vector potentinl mre expanded in these hali-range
Fourler series in both x and ¥. This corresponds to imposing the desired free
slip, rigld mall boundary conditlons on the weloclity field, snd peciectly con-
ducting boundary condittons on the magnetic field. Spatial derivatives atre
teken spectrally, in the sine-Fourler spece. Bpecifically, a phydical-space
quantity 1s tranaformed to the sine-Fourier space, 1Its coefficients are then
aultiplied by the appropriate power of wave nusber, and the result 1a returned
to physical space by means of a half-renge cosine series for a first deriva-

tive, and & half-range aine serles when twoe derivatives ares taken.

Por instance, In one dimension, ]et

”'I P

™
Hevs T W smlo)),  x c Aa,ogrn N
[T

may be represented on (F,.2°7) by meana of & full complex Fourier series:
Mo - .
) <) . R
LP(IJ'“J: > Ve E:;F[thj] AT, s L

kf'”f; )
oo for ge )

The sine saries representation for ‘F in recovered 1f the real part of iF is

zero, Ty -5 Y, | and the reslity condition is imposed, so that “@L[-u}-

-5 Y.
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A derivative of the fuil complex series is taken in the following way

ERTOR Mz
A E-:f: i Leoston) + 1 sim o)

Por the ':F previously defined, -':Ekf 0, qfrk‘- £, 1t 18 seen that the reality

condition implies that only the coaine series survives

o ix ) Ea
=4 - - E_ k. q—’k Cav ey
q?.'}’_i' b - M;l 3

LTl

or, using the equivalence between b and W set forth above,

B ¥y ) v
220 T T e )
qbyj k= s
Bimilarly, ont can ohtain
-0
rk v .
i X SRS AR N
ory? by J
Product terms may also be considered.
AR Mol
. : _ - )
Vo) S0 = E ¢ smkﬁaﬁzﬂ 3y Sl £;)
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- M-
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Let My L Mz -1 _
Yop- 2 Ye™i ¥ 2 B e
k;-“}_‘xg _f‘._H_.f.;

where aqain only the imaginary parts of the Pourler coefficients are nonzers.

A fully aliased sum 18 obtalned for 51 Vi Fe S lev)d S s )
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ke
implies an aliased mum 2 (_S)m Lo m:{j

That 15, for the reality condition ts be met, only the cosine part of the
full complex peries murvives, The derivative of this preduct will bring
down an “ik™ from the exponentisl wrgument; mgain 4 sine series im cbtained,

by the reality condition.

A parullel arqument demonstrates that
V¥ - % v, ea0 (ex ) % %, Sw ()
M=}
= EI(_PM Sfm(wﬁiﬁ

where the complex Fourler series coefficlent for v would be real, only,
with V= +V (o,

Por later reference, we note here that dealinsing the product terms is
n simple matter: pad the complex Fourier coetficients with zeroes from -H/2-)
tn M and W/2 to M-1 when traneforming an array to physaical space to make &
product {Ormzay, 1971). FProm the conversion previoualy shown, 1t is clear that

padding the sine coefficients with zerces from N Lo 2N implies that the equl-

valent exponential coefficients are suitably padded with zeroes, and that a
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degliased sum will result.

D. tlluostrative Wumerical Experiment Runs Performed.
1. Without Dissipation; Diffusivities = 4.

The method chosen, the proposed series of numerical experimenta is now
embarked upon, beginning wmith what ahould be a simple numerical exercise.
For this first simulatien, RUN Al, the fully aliased sums ace used, and the
the equations are advanced with the apatiel parts written in the form {A-1}.
With ﬁ”’l =3, bt = 17258, and the arbitrary initial conditions, the sine-

Fonrler coefficients

Az 04, Ay .= 05, Aas ™ /a4
wnd
Wan = W, 7 -y © Wy = 4,

all other sine-Fourier coefficients zero. The code 13 set into metion. Within
only about 49 timesteps, a catastrophic instablility, of the numerical variety,
has forced the simulation to halt, by generating rumbers too lsrge for & com-
puter to deal with, This exploaion is demonmtrated in a plot of total energy
versas time, {n Plgure Al. It 18 spparent from this plot alone that no uae

can be made af any resulte which come from the equations numerically solved

in this fashion.

Cures for this blow-up of energy do erist. One cure is to dealias the
nenlinenr preduct terss which appear in equations {A-1). Deslinsing e ef-
fected, as described sbove, by padding the Fourier coefficients with zeroes
from |k, , l y =W to 2N when tranaferring the arrays to physical space to
make the product terma, and then time advancing the returned products in the

b, hT' 1,.. M-I sine-Pourier space. A dealiased run, RUN A, which starts
b ]



in

with the same initial conditions und parameters ap were psed in the fully
alinsed RUN 1, ¥ield atartlingly different cesults. Plgure Als shows u plot of
the very well-behaved total energy versus time, while Pigores Alb and Alc shew

plota of the kinetic energy ( E.k,:;_,_—:; l&d’x vL) versus time, and the magnetic
. L
LI
tablish that varlation doss exist ip quantities other than the total energy.

energy (C S&?r B%* ) versus time, respectively. Pigures AZb and A2c es-

The solutions change much as a function of time, az Figures A4 through Adg
show. Figure a2d is & Pourier space contour plot of alit-l]. and A2e ls a
Fourier apace contour plaot of E; (t=#). Pigures A2f and A2y are Pourier Epace
contour plots of E:li {t=8.76), and EI{B.?«E] reppectively; these Fourier
coefficients have evolved Erom thome depicted in Pigures AZd and Ale.

Results exactly identical to RUN A2 may be obtained by solving the egua-
tions (A-1) in the form

(a) E—%J‘t'- V-(—£w+§3‘}+ Vitw

(A-2)

2 .
‘%'- yr&ty +17"A

with the product terms dealiazed a5 they were 1n RUN A2, That the time eve-

(b}

lution of the Fourier cosfficients of this run, RUN A3, 13 identical i most
easily visualized by comparing Figure Adm, of E&i;t-a.m. slth Pigure A2f, and
Figure Adb, of Estt-s.?ﬁl, with Pigure AZg, to obmerve that the evelving
Fourler coefficients are tpdistinguishable.

When the appended zeroes are removed, however, and the samé parameters and
initial conditions are used, for RUN A4, the explosive aliasing instability
(Phillipa, 1959) is found te be wbsent. Instead, the scluticns are very well-
behaved, a2 is demonatrated by plots of total energy versus time, (Flg. Ma),

kinetic epergy versus Cime, {Fig. Ad4b), snd magnetic energy versus time (Fig.
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Mc). The instability cbserved in RUN Al was thus removed by writing the
time-advanced eagquations in & form {Zang, i902) which semi-conserves total en-
ergy pseudompectrally. That is, ignering any discretization errors, form (A-2)
enforces numerical conservation of energy. The solutions are thus bounded

as a function of time, and the aimulation may be run for tens of units of time.

2. Dissipative; Diffusivitles = 1/50.

1t is of more physical intetest to stody a dissipative system. The almu-
lations described sbove are now repeated, with finite amounts of viscosity and
resiativity.

Repeating RUN AL In RUN A5, where now - 11 = §.92, but all else is the
mame a3 above, it is seen that a reasonable amount of diffumion is inaufficient
to stabilize the aliasing instability. Flota of total snergy versus time,
{Pig. ASa}, kinetic energy versus time, (Pig. ASb). and magnetic energy versus
time, {Fig. ASc), demonstrate the solutions' lack of circumspection; the
coetficients can only be time-advanced for a uselessly short interval.

As before, dealiasing effects the cure. RUN AS {5 the same az RUN A2,
except that U "vt = #.02, #Here the solution behaves well as a function of
time, nt B4y be seen in Pigures A6a, AGb, snd Abc, which are plots of total en-
ergy versus time, magnetic energy versus time, and kinetic energy versus time,
respectively, Flgures Abd apd Afe are Dhysical apace contour plets of the in-
{tial conditions for (W and A used throughout, while Fiqure AGf is 8 physical
space contour plot of &ifttﬂ.?ﬁl. and Piqure Abg 15 & physical apace coptour
plot of A (t=8.76).

Repeating RUN A3 with - ¥ = #.92, 10 RUN A7, establishes the fact that
the egquationa may be disalpatively solved in either form {A-1) or in form (A-2).

Identical results are chtained a0 long as the product terms are solved for oh



1n

the grid espanded for dealiasing. This may be eagily observed by comparing
the solutions Ld?{I.r.t=i.?E} in Figure A7a with 6dga£ Figqure Abf, and
A9 (x,7.t=6.76) in Pigure A70 with A, of Pigure Asg.
Expensive dealianing may be avoided altogether, and the simulatjon still

retain integrity, as RUN AO demonstrates. HRUW AB is the repeated RUN Ad, with

V- ) = P02, Plots of totul energy versus time, (Fig. ASa), kinetic
energy versus time, {Pig. ABb)}, and magnetic epergy versus time, (Pig. AScC),
compare #t1] with the globals plotted in Pigures AGa, A6b, and Aéc. The sclu-
tions ), (t=8.76), (Pig. AB). and Ag(t=0.76), (Fig. ASe), are also phys-
ically slmilar, as cen be obaerved by comparing Figures AGf and Abg with
Pigures ABJ and ABe. The slight differences are less than & cell size in
dimension; such pletting discrepancies may be expected.

This agreement nllews the conclusjon that the more economical pasudo-

apectral method 1s a valld, and valuable technigue for mimulating the
MBD equations. #hen the equations sre numerically time-advanced in the
form which conserves encrqgy pseudospectrally, form (A-2), the nonlinear, of
aliusing inatability is removed. Ignoring time discretization errera, the
salutions then remain bounded. Adding a aufficieant amount of dizsipation
to the problem genersates the additional result that the solutions produced
by the conzervation form paeudospectral scheme aze peen Lo agree gquite well

sith truly spectral solutiona. GSisllar agreement was found in simulations of

the two-dimensional Mavier-5tokes equation (Orazag, 1972; Fox & Orszag, 1973).



APPENDIX 3
BIMULATION OF THE LINEARIIED STRAUSS
EQUATIONS WITH CASE 2 PARANETEIRE

1f we linearize equations (%) and (1#) about a zeroth order state hm.

el :
B and 3% (with finfte values of ¥ gliijlnﬂ w“alloued) the results

for the perturbation fields is

Jﬂ’—j-r - o . N 1] . . 1 it
(a) Yl v, (#EJ, j{ ¥, EI{ ‘.Iau‘:._d-ult‘luji L ul_{']ua.'![ﬂ) * E;E%;
{B -1) .
2 A" o - (=) (Y Y A R
(b) o -V R AT . v VAT S BES U A

P 5

1 AN NI
The zeroth order state A , B, , 1, with ¥y " and 0] may

either be sllowed to participate in the dynamics according teo

'Iﬂ“l
Pt

R T A
(B - 1) "
TR . - o
{h] ——EE- = - VJ_ : [:"J_ H ’ + -‘bﬂl‘j Ill;ju-lﬁﬂ 3

or may be approvimated by metling M, to zero. In the latter case we shall
refer to the zeroth order state §°° , A° BTy, .3 and v, ' as being
“frozen™, and In the former case, we shall say the zeroth order state in
"thawed”.

Only the frozen problem, becavse of the time-dependent zercth-order coeffi-
clents in equations {B - 1)a.b for the thawed case, leads to a sharply defined
1inear e¢igenvalue problem with a well-defined temporal growth rate. For very
high values of 5 (iow 'L}' the decay predicted by squation (B - 2)b will be
sufficiently slow that the distinction between the frozen and thawed linearized

104
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probless should be unimportant., But for the situstion simulated, we find that
cur values of 5 are low enough that A", B 1"' EROEEVAU) .."..J-{ﬂ and {,}mﬂt!r
pignificantly during the times of interast. Thus there are two more-or-less
relevant lineatlized problem:.

Since we wish to initialize the linear simulutions with conditione from the
honlinear run CASE 2, wWe must first determine the extent to which the sagneto-
fluid has reladed to something that can ressonably be called an “equilibrium"

state by, say, t = 1.74. This offers the most natural candidates for A", B/,

and jrn}lnd we form them from the total contributions from the hi = § components

{6l and

t

only of magretic quantities at t = 1 .74, feroth order parts of ‘Fat v
S

i) unre initialized in thia way, also, by, for inatance, setting the almost

f
negligible Lyt = 1.74, k. = §) equal to .} n? The extent to which these cen-

*
ditions represent wn equilibrive 18 tested 1n the folliowing manner.

We return to the primitive WAD variables, molve the Pojason equatlion for
the pressure p, obtain the welocities, wnd compute the individual terms in the
equatian of motion. The guestion becomes the extent Lo which the Temaining
terms compare |n magritude from point to peint with the magnitudes of those in
the appronimate equilibrium relation Vo - 3XB = B The departure from
equilibrium is systematically estimated by volume averaging the abszolute values
of each term in the zeroth order equation of motien. MWe Eind that ¥, p and
EJI jl; typically have magnitudes of O(1) separately, and the other terms in the
equation of metion typlically have magnitudes of i.".*[ll-tl Tt t =174, a time
neat the £irst minimum of the kinetic energy. Thuz we conclude that to a satis-
factery approwimation, the plasms has relawed to an eguilibrium state by this
time.

The zeroth order initial condition= now detarmined, we choose the first or-
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der quantities to parallel further the dynamics of the nenlinear ron as closely

ha’ill L'quﬂ, i{ﬂ, !J—Eﬂ

and j['“ﬁ’ﬁ from ki' 1 components of their nonlinear counterparts st t = 1. M.

fuj
Ay possibla. MWe {nitialize the perturbation fields t .

Conatent parameters agree with those of the ronlinear run CASE 2, also: B, =

= 12, Both frozen and tRheawed runs share

4.1, "1= ¥.11, and It,m# = h,fm”

these conditiona. In addition, for the thawed run, 11.- P. A1, while for the
frezen run, 'Wl = 1. ¥

Upon time-advancing these conditionm, we £ind that the linear perturbation
energies folliow the nonlinear l:}- 1 component of the energles for only o few
ALEvén tranait times, as may be seen {n Pig. Bl. FPig. Bla shows the k 5 = 1
component of the kinetic enevgy for the frozen, thawed and nonlinear runs,
while Pig. Blb displays the hit 1 component of the magnetic energy for all
three cases. In both a and b, the Erozen run's perturbation energies are
represented by short dashed l1ines, the thawed linear run's pecturbatien ener-
gles are drawn with unbroken linea, and the nonlinear k}' 1 compenents of the
ensrgles are traced with lorg dashed lines. The linesr frezen run diverges
from the nonlinear one Eirst, Each perturbation energy of the frozen fun grows
exponentially, settling into & constant growth rate of 0.7, where ue approxi-
mate & Inatantaneous growth rate ‘{ from the relation energy(t + &t) = en-
ergy(t) ® exp(2 ¥ & t1, for each perturbed field. The thawed linear ron fol-
lows its nonlinear counterpart for a somewhat longer time. A the disryptive
activity strengthens, the results of the linear, thawed and nonlinear ryns con-
clusively part company.

Figures B2 and B3 show contours Erom the three ryuns st the seme time, tinon-
linear] = 8.82; each of Figs. B2 and BY containa contour plots Erom all three
runy. Theae contours clearly show the extent to which the linear runs’ solu-

tiens are ne longer comparable to thosa of the nonlinewr case. For both linear
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runs, plotted are the zaroth aorder quantitie= to mhich their full perturbations
have been added.

Elices in the z =10 planes of vector potential A are shown for the ponlinear
run §n Pig. B2a; for the linear frozen run in Blc; and for the linear thawed run
In B2e. Theugh the linear frozen vector petential i3 somewhat more eskew than

the vector potential contours of the other two ceses, all three are similar.

Since the vactor potential dependa moat atrengly on the larger scales present
in the simulation, reflected in the similarity {& the agresmant of all] three
tuns at the largest spatin] scales. More differences may be seen by comparing
aodal magnetic energy spectra, plotted to the same xcale, in Fig. B2 B, 3 and &,
Plgures B3 & and b are current contours in the z =77 and y =TV / 2 planes
trom the nonlinear run; Figs. B3 ¢ and d wre identical current slices at the
same time from the linear frozen run; and Pigs. B2 e and £ are the same current
cross-sections from the linear thawed run. Multiplying this additiconal facter
of k. to the compared quantitiez affords us an even better glimpse at the dif-
ferences among the three eimulations. A= mlght be expected, the linear frezen
ryn's current 1= totally unlike that of the other two runs, with large regiens
of negative current growing near the center of the channel. Though the current
of the linear thawed run is free of such large negative bubbles, it, teo i
quite kinked, and peaked off axis. The nonlinear tun's current, at thiz same

Lime, has flattened and broadered inte a wide channel in which many Fourfier

modes are present, We thus draw the concluszion that it is only the presence
of many noenlinearly active Pourfer coefficients of higher wave numbers which

generate the full scenario of the discuptive activity.



APFENDIX €
RESULTS FROM AN UNDRIVEN SIMULATION
WITH CASE 4 PARAMETERS

The conditions and parameters of the simulations described in this ap-
pendix are those of CASE 4: Lhe pafety factor Q(w =T/ 2, y =T/ 2, bt = P) x
RE=28, FJ(TT2g 2, Wwfie, t=9), and a 32 # 32 * 16 grid 1s vsed. The
current proflle varies a3 the inverse of the resistivity profile, 56 that
™yt {x.y.t = #) = constant for &ll Interier points. Both the exter-
ne}l electric field and the viscous damping are ignored here; hence, the domi-
nant features ought to agres with those observed In CABES 1, 2 and 3,

Por purposts of numerical accuracy, 1t is cruclal that the average value of
the resistivity in reqions of magnetofluid activity not be much less than ({4 ¢
t,"uf ., 45 was discussed in the fourth chapter. On the other hand, numerical
atability of the z”ﬂ order Runge-Kutta time-atepping as applied to the diffusion
term of equation (1F) demands thet v) approach C(1) a5 & maximum value, for &
time-step of about 1/5#8 of an Alfven transit time. This dual requirement on
the velue of % constrains the proflles considered for 1 /v and conse-
guently for J; current density profilea with fairly gentle slopes must be
chosen, 1n order to a]lcu—q te vary as 1 / J(t = B) over most of the computn-
ticnal box. tThis requirement implies that the high wavenumber magnetic modes
are less excited, initially, than they were in CASES 1, 2 and 3.

Bince the time derivative of the verticity varies as EL-? J, & more qently
sloped current profile can lead to & slower temporal variaticn of &) . The ini-
tial value of the poleidal magnetic energy s nesrly the same here as it iz for
the ELfth chapter's CASES }, 2 and 3, with identical velocity Eield initisliza-

198
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3Hf
tion, and - :E '*Hv N Y=0.0EB67. Bowever, the Aisruptive activity in this
'+q
TUN t5on, and k]’ :E '*vahj:l PPB67. However, the Qisruptive activity in this

time 10r vAane < or IDIJIT[ 0.3, HECE]) LMNAT ENE BIMULALTION OI LABE & wWaf SCOQppeEq
at o computations] time of 17.52, because a near-equilibrium situation was at-
talned. The epergy in this simulation, by t ~ 20, 1 also much reduced.
Bence, it is difficult to compare post-disruptive activity betWween CABE 2 and
this run. A)though not much quasi-cyclic behavior is cbaerved in this run after
the initial burst of activity, indications thet the general featuies of thls
simulation sgree with those observed in CASES 2 and 3 may be found.

t™is run differs considerably from the forced CASE 4 run, discussed in the
aeventh chapter, as may be aeen in Pig. €1, FPig. Cla im a comparison plot of
the tota] magnetic energy in the two inviscid CASE 4 runs. While the total
magnetic energy in the unforced run decays by more than 6#%, the tetal magnetic
snergy in tha inviscid driven CASE 4 only decays by about 19% during the zame
period. tThe firmt buret of dimruptive activity slse taken piace at diffecrent
times, ap may be inferred from a time history of kinetic energy, in Fig. Clb.

Bowever, as the contour plots in Fig. C2 show, the initial burat of activ-
ity s much 1ike {ts counterparta in all the cases discussed. This= burat is
characterized by the sppearance of a helical current filament which wraps it-
aslf about the Iine (x =T 2, y =70/ 2, 2). This magnetic activity 15 accom-
panied by the formation of a counter-rotating pair of bean-shaped stream func-
tion lcbes which generate a velocity field that points across the center of the
poloidsl cut, toward the region of maximum current density. Wear the time of
the kinetic energy maximum, the curtrent filament has virtvally dissppeared,
With the corrent cross section becoming broad and Elat, as may be 3¢en in the
contours at t = 24.64, Flg. (3.

Following this burst, the velocity fleld spparently attempts to reverse
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itself, a3 may be seen at t = 23.52, in Fig. Ci.

Contours mt t = 40 88, Pig. C5, dispiay current cuts which indicekte excita-
tion of oppoaitely signed magnetic perturbations; the regions of maximum cur-
rent are sverywhere opposite to where they were at £ = 20.64. An extiemtly low
applitude atream function pattern indicates that regions with reversed flow
likewise enist.

In conclusion, then, the general features of dizruptive activity obaerved

in this aimulation are compatible with those of CABES 1, 2 and 3.
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Table 1. Representative Tokamaks; frowm Rickerton (1977)
MEPALELNTATINE TLRAMAKE
i . __IIP_-_ ’ Air or | Seahilieirg
DENICE COLNTEY Ry lend afcm} B freih T ] Ltun Shell
Cure Yos or Be
i ™1 USSR 1400 17 P ] 100 & Tzin tTas
| T-4 USSR 00 17 50 20H & Irun ¥ug
ORHAE 0 dr UsA an | 1A 200 1.9 Irun Tes
5T U 109 13 40 130 Tob lron Yes
AL WEA BE- 55 1111 0-%0 &0-200 L Aiv b
TFE FRapik 1. FLe a0 L 4.1 lran TEB
FULSATLE FRF: G 17 Fi.l =14} 3.4 Tran Tra
ALCATLH Lsm 54 5.5 5 103G L] At Tes
LITF 'k 111 13 K1 200 Iran Ka
FLT UEA 130 4n 33{uh) 600 3.4 ALE He
.: T-1u [+ ] 150 ir 350506 40u lion Te:
| DOUBLET 1TA | US4 1 5mil & lau b5 ALl Ha
IGECA CE 3 4B b} Aar [
Jr1-2 JAF AN i 2% 18 1450 yoc
| DA JAF AN r is lrops Vor
— I H —_——— —
FT 1TALY ‘ N} Il 1o 100 .ii.ll Tes
! rox USk L léD 45 L1 Pl AT B
ASTN FRC | 134 50 pid LSITR AsT ho
mynlreT B | Use ! 1400 4521%7 | Jk(4E] ' ThLCIGLOG AT o
T EUROTE | 2k 123310 P FEC0 Tra: kn
TFTR (L2 1ad .3 EF 4500 AT i,
TG0 JAF AN g (R]] L kL AT 1
t-70 IFs &R, % Ltali] oIeh L14] SO0 Tron Tes
£ L




118

Table 2. Parameters and Timescales for Aepresentative Tokamaks
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Table 3. Largest ¥ =1 Mode Coefficients, CASE 2
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Table 4. Chart of Sample Low-order Model Aunsg

Eolution apirals

i }
| I
17 - I o) away from injttal
10317456 AR I feritical) point.
! |
!

I i Solution spirals

| 1 : DRTMSL |7 5%AEN 1 ! amay from inltial
4? ! 3 b bbb I[”” | 10 3EH5e w3 ! DI feritical) point.
e e e e Ll LTl B e et e e T T
| | I | I I I i A cycle 15 traced,
I L T - | 2.6018%3% 1 note that the IC's
4% 1 % Wbl 6.6y 51 {-0327M5p | et b (and -2 ,-% ) are
I i critical points.
Increassd forcing,
with all] other
conditions 1lke 48,
qensrake 1 cycle,

Lowering both for-
cing and it = @)
from 58 => cycle,

!

b

|

i

!

|

i

[

I

I

I

I

| ______________________
! Raising both the far-
{ ecing and i (t = 9}
| makes cycle 1ike 48.
I

I

I

I

I

I

I

I

)

I

t

I

I

I

I

[

I

I

R

Hote approach ko the
point £ = constant
2], =W, acritt-
cal point.

A R E s EEEE-,———— e ——— =

ey
o

Adding viscoaity to
IC'a of 5) change the

critical pojnt.n= 1

L
LM
N

]

Solutien Spirals
avay from {nitial
{eritical)] peint.

Behavior indicating

presence of Larenz-

4 11ke attractor is
SRR

o R o R e e W ey = M A A R L R e — — — —

LR
o
tah



12}

|
R a
i +* iy . e
Ma jor - minor
radius radius

Fig. 1. Fields and co-ordinztes nsed to define a torosdal pinch.

Pigure 1. - Ceometry: (&) f£ields and co-ordinates used to define w Coroidal
pinch; from Rebinson (1982), end (b} simulatien geomstry.
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Figure 2. - Standard dispoaitjon of coils and vacuum vessel for & toroidal
pinch: (a) general arrangement. and (b} meridiohal cress-sec-
tion; from Roblndon (19827
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Figure 4. - Pololdal and taroidal "cuts™ in the computational box. Tthe poloidal
cut 18 taken at z =7r , and the toroldal cut 1s & slice at ¥y =77/ 2.
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Figure é. - Contours of energy in Fourier space at t = 0.8
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6 {(a): equally apaced contours of constant kinetic energy.
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Figure 11. - Q-profile at + = 0. & for CASES 2 and 3.
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Pigure 12. - Globals for CASE 2, (H = #.0]1):
12(a): kinetic energy as & function of time.
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12({¢): total energy az & function of time,
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121d): ratio of kinetic to magnetic energy as a function of time,
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12fey: hali the mean sguare vorticity as & function of time,
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Flgure 18. - Contours of energy in Fourier space at t = 7.04, CASE 2.
16 (a): equally spaced contours of constant kinetir energy.
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18 td): contours separated by powers of two of constant kinekic rnergy.
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22 [b}: contoura of 3 = constant, poloidal cut,
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33 (¢}: contovrs of "= constant, poleidal rut.
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Figure 23. - Perapective plots of i(t = §.82) in the z =1 , plane, CASE 2.

Note: See Fig. Bi{3e! for contour plots of the seme guantity.
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24 (c): contours of Y= constant,
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25 (e): contours of W= constant, poloidal rut.

.I. —a | -j_#‘—/j_-_-- __4_:—_--.\—‘!”?
5 S Y
- = i
SR A E
| P g e S U e I R
, .-." , o - _," 1;-. -H"‘M.\__ H"‘"’ﬁfﬁ_ ]
Y d P N
2 ; . ooy \“‘Im H\\ \
. A N S R -
TNy
AN
| 1 ) t |, [|I O ] N _). ) [ 0 i
P e \'\L“\“‘;ﬂ/ Ay P
w T - e ¥ _____;f/,'i] -
A SRR -Ej fw J,ﬂ; 4 i ﬁ"
oy ) : T e vt ;E/n. ;.)' LFI l-'-h-
: . ! " } ; o]
- i \
v " _? - _,."JI gl
- - L _ -
v ! =
L_ 3 |1a T :.l-;? T §.hu
s

179



L4 I_IWE Q0

25 {4): contaurs of A = ronatant, tarsidal cut,

A- L o
T 1 |
r 3 + LA |
1. -
] L & E r
] L o ?1 -
i % I F 14
é -
| 1 F 1 L s
!
k
|
Th - I L K "
L. ! ] 1 o —
1. HLE ) l.2i L 1 [
[ )

G- B_OJErGyL

T T
|\ \ (fl I|' \ (
. A
A A h ‘ | ]
M
I |
| tul b |'|D R
N { L .I H H
\ AR
B ) _
! :hm_.l ...... J_-.J I, — L. __Q_N ) 4

25 (#7: contours of } = ponatant, toreidal cut,

lge



181

8.0 [ T - Wrnld Qs k.%TE- 0%
e —
1 I 1

. 0— —
(L)
bt ) )
[T, -
\

ﬁm;,f’

-t /
J |
h n';lli
."“'-..“,l
- | |
B 2.4 1.%3 \ PR )
k-1'l HI- |0

figure 26 - Contours of energy in Fourier space at t = 17.52, CASE 2:
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Lol b Hes? Goo3 .M eas

1 LIS
+ F| Ry I

26 (b): equally spaced contours of constant magnetic energy.



182

gon v L ) e P T
| I |
b — —
1
.-'-:_LA___.-._. I _ I
L. I P ) 9,45 u,0.
¥ - B alu!

26 (c). equally spaced contours of constant total energy.

_— l-.lH__Lil_ vre 1. 3.u%l du

B
1 T

26 {d): contours separated by powers of tWwo of conatant kinetic SNErgY.



183

L 1JILF o Kei7 10 3, 4% 04
[ St - .
[ |
1 —
1
-1
£
W
-l J__ .
I 1] o0t I-q.'.'.
¥ ElHL iy

26 [e): contours separated by powers of twe of conztant magnetic energy.

N L e el 9%

i ]

26 (f): contours separated by poMers of two of constant total energy.



S oHl

C R

- ' L |

&b
»

Filgure 27, - Q-profiles at.
2762): b = 4 44

1

T |
El
R
-
K
e
v
.l'/.
Y B | L ~—
e . H. LA t
L]

27(bY: t = .60

184



185

I.cl T - | - 1
I"_ ]
LA E / h
.--}f -
el SR | b ]
N o an RS [T )
x
2He):; b= 7. 88
B I - ;
."...
£
.'llll
[ .I'IIIII _l
_.-‘f
s
-
5
!
r
.
1 f{-r.
/f/
e
e
-‘_.-"
. —
. —_ _ -1 ___ [ | i
1. ' L ouE & Ak bt T Fa

]

2PidY: t = 6.76



27e): £t = 19.90

- .
Joadb B B
'

27(f): £ = 1} 7

186



187

2F(h). v = 17.52

I T~ |
/
s
..)r
/.
."-'." ]
-
-
L o S |
L £ ¢ dL Aen "
'



188

. kz=1

E-3

\
a
b

Figure 2B. - CASL 2, energiesiky) as a function of time, with dashed line

for kinetic energy, and sclid line for magnetic eNergy:
200a): k, =1,



kz=?

20(b3: k, = 2, and

1=
F -8

|
—_—

—

168



- i - I ,f T
fo
JII |
AR
.
.
o
|II (
|IlII
!
I.l
."I | IS
|I..I |: IlI Il.l '
.-'Ilr | || I|| .I|I
; Ly Loy
.-"; |I | I'x.':
: ! U
)
S :__ [ Y
. T I 1.k i
| vl
#8025

194

Figqure 29, - Globals for CRSE 1. ['1'
s & function of time,

29(ay: kinetic enerqgy
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29(b): magnetic energy a® a function of time,
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29(c): total energy as a function of time,
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23(E): half the mean square vector potential as a function of time,
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Figure 3¢. - Contowrs at t = 10 32, CASE 3.
19 (a): Contours of constant A, toroidal cut.

L L W N IR E- X.dkt«00
.__],___, —— e
il (] ‘I.. [ f
| 3
) ’
m I I
i ! 0 b
I ! II .
. ! n ;
|
|
1 5]
|
I i l[- -
I ’
[ g
\ ; "
H
s S "
|
|
\ ’
I | il
— _ B R W _
T RS i
a



1%

Rl TR

-
i } -,
; . .
. L Jn’
_|'-:lr ﬂli !’r . L. Jli_., J“"l \I". '
rﬁr H RN \|\

T 1 ) ¥ 18
I'. Il'rl l':{'l 2 - f
1{ L™ . A '
il -~
.. \'\;'_" N u | /). 1!-""’
oOTEN L L
Nt
-H
- kB
S (R SRR
) Lot | S
1

9 (b): cContours of constant 3, poloidal cut,



11 .IIII.- i ) ] o T,:i: L : f’ 1. 1.l
‘ i|| ll I \ :?‘ || o )
! : b 2
I .*: | .| ,-"IJ } !' Illu
LL _,.-"If | ,II | I.-i.f ; }{' g
I ﬁ? i 4
f J J;".
o A A
.'Ir | /! I ( / \IL
fl /w’ é] f
[P |n ]
| | f l “
| I . \!
Lot o
VoY l-___ I'.{:- W
SRR oY
ooy % \\
: %\ \Q \
8 Yooy VoY )
R k.\\ S
LA E'LHL\_
L. i L.9! ¢k il

i (c): Contours of constant 1, toreidal cut,

21



oL

3 {d): tontours

I g 1,00 s

28]

3.0Q 0

—
[ -+
I. -
T - N
b b . g
-’ - ‘::;I
1 L -
Wb
) L.
i i-
L -
Lo L ﬂ
i A
I:_.l . : ‘.!l:; ry
N L
v a
_ . |
(A £.3%
x

of conatant ¥, peloidal eut,



20N

.o 2.7
_l_. __.__._l.._._. _——— ——
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Figure 3}. - TASE 3, t = 1§, 32.
3 ia): Perapective plots of current in the 2 = -t plane, and
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Figure 33. - Contours at t = 14.52, CASF 1:
33 (a): Contours of constant A, toroidal cut,
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33 (d): Contoura of constant ¥, poloidal cut,
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33 (e): Contours of modal kinetic energy, spaced by powers of tuwo,
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Flgure 34: - Perspective plot of jix,y,2 =T .t = 14.52), CASE 3.



I= 1,08 -0

216

R LR R
LS - r—— ‘
gl A S
- 1
L b
l.'- - B .q\_
Lo . -
1 . \.-
| I, __F . "fl
X : : ¥ % '
IIII .Ir Al Lll . s " . I".II III|IH
b / i
| ' !
i % i ‘ \ 4
I L | N [ |
|I '| ¥ |{ ||H
II:- II'ru ' v i -"ll !
1 - . |I.'
B Mg s £ .-'L"
L8 1 1 S fy
u _ .
. - Y A
‘I - - K
P e T g
_ .
k-
B 3
) H b T
SR DR o _ 1
K L (L o
i

Flgure 35 - CABE 3, t = )§.26:

1% (a): contours of A = conatant, poeloidal cut,



17

3% (bY: conteurs of A = constant, toroidal cut,
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Pigqure 36, - CASE 3, t = 16.24:
l6ca): Perspective plot of current in the z = plane, and
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36(b): Poincaré plots of magnetic field line traces jn the z =7 plane.
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Figure 4F. - Mumerical solution of equations (26) and (27},
uith (A =15, B, = 4.3, and -.1'= #.0l.

Note: (A > 2R, /9.
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Figure 41. - kumerical solution of equations (26) and {27),
With 1A= 7.5, B =43, and o = 8.0

Note: 4B, /23 < (A ¢ 2B,/
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Figure 42. - Nunerica! salution of equations (26) and (27,
with (A= 375, B, = 4.3, and Ch 0§,

Note: < 4B, 71
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Figure 43, - Bclutions of the nonlinear, undriven low-prder model,
o= 0.6 A=15.0,

squations (2Z6), [27), and {38,
13(a): b, = 4.3, m=bMM, B= 01,
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300 B, = 43, w0000, g =08, o= L, A= 758,
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$3c): B, =43, W=9.MH5, 4 «-0B =130, A= 758,



23%

13¢d): B, = 4.3, =00, B = 01, wo=0§ A= 375,
Mote: t, = 0.0, and bt = 3988
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. 127) and (2B)
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: With A = amplitude of ain(x)*sin(y) at 4. 44 = 2 B4, and
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4500y with (L= 4 {t =444} 72=75



Figure 46. - Solution of (26), (27) and (3#) for an initial critical point:
B f, = 7 6666866,
e = 1. 0327956,
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Figure 47 - Solution of (26), t27Y and (39 for an initial eritical point:
B, = ) ddgddn, (&, = 7 GRE6E6E, L = 6.6666656,
= 3 Fa1000, o = ] 1327956, po= 2 09258196A9,
1 o= gHIN,
#ith ty,, = 0.8, apd t,.. = 59.60.
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Figure 48. - Solution of (26), (27) and (3®) for an initfal critical point:
o= 7 66HHEGE,
o o= 1 3327956,
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Figure 49. - Bolution of (26}, (27} and {3 for an Initlal peint:
B, =J.090148, = 7.099%4999 A = & HAFGGEEA,
M = 0.0EFRLN, o, = )} #327958, P = § §308254819809,
o= @ RFMNE,

with t, =90, ané t, =596
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Figure 58. - Bolution of (263, (27) and (39} for an initial point:
B, = 1.09008d, A = 7 99499504 A w § §EEREEG

w = FOOIRIE,  x = ) #3279%6, B = ¢.090925819889,
RN RITTTE

with t,,. = 0.0, and t, = 59.88.



244

e _/fT " —
)
1 .
! Fonil
[T II I[,'r
| |
| |
i 7.0 3
G,y l | |
y 1.1 2.6l 400 5.8 b .KD
HETRR »
7 80 I
i | _I
| - 140 .
, ;
I aq
| & Do
|
/
! Lad
\ / //
O R R _ 1 > L
Mo cuut G0l Er IS |71 #.01 e.Ge 5.0 4LB0
s |8 ]

Figure 51. - Belution of (261, {27) and (30 for an initial polnt:
B, = 1 gddmiig, f, = 90609990 A o= . pedenig,
W o= i TRl o = 1 0127356, F = 3 B0dIzZ5RL9RAY,
IR R 1111}
With t,,, = 9.8, and t,, = 5986,



S e R l l
NN
" [k -
S T Y R -
R oo s L]
b A | $.97 400 4,00 406 4.0
| I.".' "'."ll'\ | ] ]
| | I|I |-| || | ‘ ”I:il :I']:_|
! i V=il —
I || | I'. i 4 n'l .|I ! |! | _J....-f" —[ ]—
porn ,. i i | ) - ——
o i Fibb Y P e
J"ll ."I IIII lr / //'..’_ — H_\\ \\‘:
| -:T[ ! / Ill_.f' _.; \‘x\\l '\' ".II El
K ,u'll o .0 |I jl [ l{(’ Y )
A RSN
B u X L e A _|'I
r ) LY RE O
0.4 - . \ __— - -
| I a4 oomd ] - I I
R N 1. 1.1 91 4,40 4.00 [ el
HE 1A A

Figure 52. - Solution of (26}, {27) and (34) for an {nftial point:
B, = 1000000, o= 4 MOOEONE, (L = 4 daFides,
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o= AR,
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Figure 54, - Solution of (31), £27) and (38) for an initial critical peint:
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Pigure 55, - Solutien of (31), (277 and (30} for an inttial point:

Rots -

B, = 4000000, Ou= 6. 9000804, = 5_A0R0ed,
Y = L.A1i0ee, o= B 072136, £ = 1. 0§i72136,
 » 1.050904,

wtht, =60, andt = 50000

non-trivial critical points are ( A, , o: , A ), where
v= 5 343008,  ota= 2@ P524146, f.mt 0.33385098,
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Pigure 56, - Contours at t = B .8, for CASE 4.
56 [a): contours of A = constant, peloidal cut,
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56 (c): contours of 3 = constant, poloidal cut,
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Figure 57. - Globals, CASE 4, with Eo = 107208, =g,
57(a): kinetic energy s a function of time,
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57(b): magnetic energy as a function

of time,
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57(c): total energy as a function of time,
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57(d): half the mean sguare vector potential as a function of time,
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57(e}: half the mean square current as a function of time,
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S7(f). tatal jntegrated current as a functlon of time,
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57(g). total integrated vector potential &3 a fupetion of time,
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57{13: half the mean square vorticity as & function of time.
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Pigure 58. - Contonrs at t = 146.58, for CASE {4,
%8 {a) : contours of A = constant, taroidal cut,
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Figure 59. - Contours at t = 29 .64, for CASE 4, Ee 085, V=48,
59 (&) : contours of A = constant, toroidal egt,
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Fiqure 61. - Contours at t = 3§ 24, for CASE 4,

o= 095, U=14a.1

61 (a): contours of A = constant, polaidal cut,
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6l (b): contours of A = constant, toroidal cut,
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Pigure €2, - Contours at &t = 42.00, for CASE 4, Eo =485, V=144
62 (a) : contours ¢f A = constant, toreldal cut,
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Fiqure 63. - Poincare plot, t = 42.¥0, for CASE 4, ©,= €05, and V= 0.0
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Figure 64 - Contours at £ = 199 44, for CASE 4, CEo= 0,95, 4 = 0.§:
4 (a) : conptours of A = constant, torcidal cut,
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64 (b): contours of 3 = constant, poleidal cut,
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Piqure 65, - Contours at £ = 157,92, far CASE 4,
65 {(a): contours of A = constant, polojdal cut,

E.=0.85, Vv=ds
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65 {B): contours of A = constant, torojdal cut,
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65 (c): contours of j = constant, poleidal cut,
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65 (£): contours of ¥ = constant, toretdal cut.
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Flgure 66. - Spectra, CASE 4, with E_ = 8,95, 4 = 44,
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Plgure €7. - Ratio of kinetic to magnetic epergies for CASE 4, E, = #.05, V= F. 4,
Dashed line: 32 % 32 # 16 qrid,
Solid line: 16 % 16 * 16 grid.
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Figure 68. - Clobal quantitfes, CASE 4, E, = .05,
Dashed line:. V =1 H,
Bolid line: o =4d.H],
E8(a): ratic of kinetic to magnetic energies as a function of time,
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6B(b). total integrated currept as a function of time.
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Piqure 6%. - Globals for CASE 5, E, = 8/200, V= 0.0:
69fa). kinetlc srergy as a furction of time,
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69(c): Eotal integrated current as & function of time
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Figqure 78. - Contours at t = 26.76, for CABE 5, E, = 08/204, v=4.4:
70 (a) : contours of A = copatant, toroidal cut,



R o

FIE ']

o

78 (D). contours of j = constant, poloidal cut,
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70 (c): contours of J * constant, peloidal cut,
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Figure 71. - Contours at t = 35 .M, for TABE S, E. * g/, vt
71 {a) : contours of A = constant, toroidal cut,
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71 tb).: vontours of § = conatant, poloidal cut,
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71 (c): contours of | = conmstant, torojdal cut,
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71 {d) : contours of W= constant, poloidal cut,
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Figure 72.

L

- Clobals, CASE 5, with E, = 8s240, ¢ =0 0],
72fa): kinatic energy as a funpction of time,
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72(b). magnetic energy a9 a functien of time,
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72ic): total energy a&s & function of time,
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72(4): half the mean square Stream function as a fupetion of time,
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72(e: half the mean square vorticity as a function of time,



72{£): total integrated current as a function of time,
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72(9): total integrated vector potential &3 a function of time,
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72{h): helf the mean sguare vector potential as a function of time, and
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72(1): half the mean sgquare current a3 a fupnction of time.
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Pigure 73, - Contours at t = 29.28, for CASE 5, E, = 0206, U= 0.0]:
73 (a): contours of A = constant, peloidal cut,
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73 (b): contours of A = conatant, toroldal cut,
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71 {c): contours of i = constant, paloidal cut,

Jie



.o

73 (d): contours of ) = conatant, toreidal cut,
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73 {#): contours of W= constant, poloidal cut.
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Pigure 74. - Contours at t = 39.36, for CASE 5, E, = 8,200, v= 0.0
74 {a) ; contours of A = constant, toroidal cul,
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A2 (B): B,  as f(t},
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Figure Bl. - CASE 2.

Bl fa): kinet{c snergy (k 3= 1.t) for runs.
FROZEN (short dashed lire),
THAWED (a0lid line),

NONLINEAR (Jong dashed line}, and
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Bl (b): magnetic energy Ek} = ],ty for runs:
FROZEN (short dashad lipe),
THAMED {3al!d line),
NONLINEAR (long dashed line).
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B2 (f): apectra of modal magretic energy from NONLINEAR run.
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Fiqure C1. - Compariscn glebals for CaSE 4, U =~ 0 4.
€l ta): magnetlc energy as a function of time,
where dashed line: E.= 8,
and solid line: £, » 9.85, and
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€1 (p): kinatic energy as a function of time,
where dashed line: E, = ¥,
and sclid Iine: E = B ¥5.
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Figure €2. - Contours at t = 16.56, for CASE ¢, E.= &.F, V=01
£2 {8} . cantours of A = constant, toroidal cot,
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T2 (b): contours of 3§ = constant, poleidal cut,
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£2 (¢): contours of § = constant, toraldal cut, and



(RS S P I Lol G
- - - 0! - l
| i
Q
..-i
, L .
h .
o
', Nl
1 - '
. ks L
| ,‘; N
T H, |
.
i 4
! 1 _ _L . _| _."Il
T N
! N
l
a . )
~ }J- )
..o
_ — i
Ao ] A 4

€2 (d) : contoura of Y= constant, poicidal cut.
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Figure C3. - Contours at t = 29,64, for CASE 4,
C3 (a): contours of A = constant, pelojdal cut,
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C3 {b): contours of A = constant, toraidal cut,
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€3 {¢}: contours of | = conatant, peleidal cuk,
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€3 (d). contours of ) = constant, torsidal rut,
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C3 (f): contours of Y= constant, toroldal cut.
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Fiqure C4. - Contours at t = 33 52, for CASE 4, E.= 0.9, v=0L
cé ta) : contours of A = constant, toroldal cot,



i

el hovrat F B, . rrua

. . . _..._I_.___._. — —— e 1

1

. f.ad N

C4 (b): contours of § = constant, poloidal cut,
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€4 (d} : contours of ¥= copstant, poleidal cut.
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Figure C9. « Cantours at t = 4F. 98, for CASE {, E, =40, UV=4a.0:
05 (a}: contours of A = constant, poloidal cut,



Lok

LR IR ___i B LS
. ]_r___ ot
i |
|
:| M L 11
|
;l—
|
| | "
L
" [\
|
i
l | L1
|
!
. g '
S TS U S D S I R

% (b): contgurs of A = constant, toro{dal cut,
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€5 (c): contours of | = constant, polaidal cut,
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€5 {e): contours of ¥ = constant, poloidal cut, and
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C5 (f}: contours of ¥« constant, toroidal cut
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