
W&M ScholarWorks W&M ScholarWorks 

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 

1985 

Turbulent disruptions from the Strauss equations Turbulent disruptions from the Strauss equations 

Jill Potkalitsky Dahlburg 
College of William & Mary - Arts & Sciences 

Follow this and additional works at: https://scholarworks.wm.edu/etd 

 Part of the Plasma and Beam Physics Commons 

Recommended Citation Recommended Citation 
Dahlburg, Jill Potkalitsky, "Turbulent disruptions from the Strauss equations" (1985). Dissertations, 
Theses, and Masters Projects. William & Mary. Paper 1539623754. 
https://dx.doi.org/doi:10.21220/s2-h52a-7y67 

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at 
W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an 
authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu. 

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623754&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/205?utm_source=scholarworks.wm.edu%2Fetd%2F1539623754&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-h52a-7y67
mailto:scholarworks@wm.edu


INFORMATION TO USLR5

Mn r e p m d t L e t i o i i  was m a d e  I rum a r o p y  d f j  L lnetmienl  sent  <o us Feir nt ie ruMl i i i in i i .  

Whi le  the ni(tel  advaneed  leei i iHikiny has hoen  used to [ d m t d ^ r a p l !  and  re - | in i jU fo  

< H i s d o c u m e n t .  1 Ul- ( | tui l i t y ul 11 ic re p r o d u c t i o n  is heav i ly  d e p e n d e n t  upu i i  th e  

' . |u,il i tv ( d ' M i e  mater ia l  suh i i i i l l ed .

I l u 1 I ' d l l i m ' n i p  o \ p k m a h i ’ ri n  1 iechmL|ues is p m v u l e j  t o  h e  I p  c l a i M y  il l; i r k  int is o r  

i K l t a t l d l l s  W llTL 1l IlildV a p p e a l 1 'Ml  l l l i s  I v p i ' O l l U i  t l u i l .

I T h e  sifclll o r  ‘ ' t a t p c t ”  h u  paj res a p p a r e n  1 l y  l a c k i n g  I huii t i l e  d o c u m e n t

f > l n t n ^ l ' L i p h e e l  is " M i s s i n g  Put lL ' fs i ” , M i l  w a s  p o s s i b l e  I d  o b t a i n  t h e  i l l  

p a g c l s !  o r  s e c t i o n ,  t h e y  are  s p l i c e d  i n t o  t h e  I ' i lu i  nlnirijo. w i t h  a d i nc L ' s i l  plages.  [ h i s  

m a y  h a v e  n e c e s s i t a t e d  c u t t i u j i  1 hrou js l i  a n  i m a g e  a n d  d n  p l i c a !  i n g  i i d i a c m !  p a g e s  

I d  a s s u r e  c o i n p i l e t e  e o n  tu rn  i l y .

J.  W h e n  ; in  i m a g e  o n  t i l e  h i m  is o b i  d e r a t e d  w i t h  li n n i n i l  b l a c k  m a r k ,  it is a n  

I l i d  l e a  E i o n  01 e i l h e t  h l i t t l e J  c o p y  b e c a u s e  i d  m i n e  m e  n t d u r i n g !  e \ p > o s t l l e .  

d u p l i c a t e  a i p \ ,  d r  c o p y r i g h t e d  m a t e  r ia ls  ( l u l l  s h o u l d  n o l  b a s e  b e e n  l i  l i n e d .  I <u  

b l u r r e d  p a g e s ,  a g o o d  i m a g e  o f  t h e  p a g e  c a n  l i e  l o u n d  in  I h e  a d j a c e n t  I r a n i e . i t  

e i i p y  r i g h t e d  m a t e r i a l s  were'  d e l e t e d ,  a l u r g d  n o l e  w i l l  u p  p e a r  l i s t i n g  Ehc p a g e s  in  

t h e  a d j a c e n t  i t a m e .

W h e i l  a  l l l tk|s. d r a w i n g  o r  c h a t ! ,  etc  .. is p a r t  o |  t i l e  l n a l c t h d  b e i n g  [ ' ■ h o l o g r a p h e d ,  

a d e l i n i l e  m e d i o d  <>|' " s e c t i o n i n g 11 l l i e  i i i u 1 e r i ; d  I n i s  b e e n  I 'ul  l o w e d .  I t  is

e t i s t H i n i L i r y  En b e g i n  I d m i r i g a l  t h e  u p p e r  lef ' t  h a n d  c o r n e r  i d  a l a r i ' s 1 s l i e e l  a r i d  t o

c o n t i n u e  t n n n  le1l  t n  r i g i d  ill d p m l  s e e i i n i i s  w i I h  s m a l l  o v e r l a p s .  I I  n e c e s s a r y ,  

s e e i i L i n i i i | !  ts c o n t i n u e d  .■ m.;hlii b e g i n n i n g  b e l o w  l l i e  I n s t  r o w  a n d  c o n t i n u i n g  < m  

u n t i l  c o m p l e t e

- I .  I ’hu  i l l d s h a l u i i i s  i h a t  c a n n o t  he s a l i s l u e t o r i h  r e p r o d u c e d  I k  s e r n g i  a p d i i c  

m e a n s ,  p h o t o g r a p h i c  p r i n t s  r a n  h e  p u r c h a s e d  at  a d d i l i d i i a l  e i i s l  a n d  m s e r l e d  

i n t o  y t u u  x e r o g r a p h i c  l <i p y . I ' l i ese p r i n t s  a r e  a v a i l a b l e  u p o n  i e i ] u e s |  I n n a  I l k 1 

D i s s e r t a t i o n s  ( T jhI-i hn u- r S e r v i c e s  D e p a r t m e n t .

s.  S i j 11u ■ p a g e s  in any  d o c u m e n t  m a s  h a v e  i n d i s t i n c t  p r i n t . I n  a l l  v ases  l l i e  hes!

■ n  i i i l a h ' l e  c o p y  has b e e n  h l n i r d .

University
Microfilms

International
3flt) N Zseb Huae.
Ann Artinr. Ml  4 B 1Q6





6515335

D a h l b u rg , J i l l  P o lk a l l t s k y

T U R B U L E N T  D IS R U P T IO N S  FRO M  THE S T R A U S S  E Q U A TIO N S

The College of William sod Mary iff Virginia P h.D .

University
Microfilms

International 300 N. Zeeb ftoad. Ann Artor.ktl *6106

Copyright 1985

by
Dahlburg, Jill Potkalitsky 

All Rights Reserved

1 S 6 5





PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy. 
Problems encountered with this document have been identified here wilh a check mark V

1, Glossy photographs or pages_____

2, Colored illustrations, paper or print_______

3, Photographs with dark background  ____

4, Illustrations are poor copy __

5, Pages with black marks, not original copy______

6, Print shows through as ihere is text on bath sides of page_______

7, Indistincl, broken or small print on several pages

0. Print exceeds margin requirements______

9. Tightly bound copy with print lost in spine_______

10. Co m puter p rinto u t pages with ind istin ct pri n i_______

11, Page[s)____________ lacking when material received, and not available from school or
author.

12 Page(3) ..______ seem to be missing in numbering only as text follows.

13. Two pages numbered Text follows.

14 Curling and wrinkled pages______

15. Dissertation contains pages with print at a slanl. filmed as received_________

16. Other

University
Microfilms

International





TURBULENT DISRUPTIONS 

PR OH

THE STRAUSS EQUATIONS

A Dissertation

Presented to 

The Faculty of the Department of Physics 

The College of Hilllam and Hary in Virginia

In Partial Fulfillment 

Of the Requirements for the Degree of 

Doctor of Philosophy

by

J il l  Potkalltsky Dahl burg 

IMS



APPROVAL SHEET

This dissertation is submitted In partial fulfillment of 

the requirements for the degree of

Doctor of Philosophy

J il l Potkalitsky Dahlburg

David C. Montgomery

>Vm£, C
George Vahala

c T / T r ' ^  ■
Eugene Tracy

J  CA
Roy champion *

/

George T. Rublein



© 1965

JILL P0TKALIT5KY DAHLBURG 

All Rights Reserved



TABLE OP CONTENTS

Ptge

ACKNOWLEDGEMENTS.....................................................................  l v

ABSTRACT............................................................................  V

I - TOKAHAK DISRUPTIONS........................................................  2

I] ,  TBE NOTATION AND EQUATIONS USED.................................. 23

I I ]  CYLINDRICAL MODELLING....................................................  32

IV. TBE SIMULATION CODE........................................................ 41

V, SIMULATION RESULTS, DECAY..............................................  46

Y l. LOW ORDER MODEL...............................................................  fi2

V II. SIMULATION RESULTS, DRIVEN..............................................  76

V III. DISCUSSION.......................................................................... 66

APPENDIX A: TWO-DIMENSIONAL NUMERICAL EXPERIMENTS:

SPECTRAL VERSUS PSEUDOSPECTRAL . . . .  94

APPENDIX B; SIMULATION OP THE LINEARIZED STRAUSS

EQUATIONS WITB CASE 2 PARAMETERS . . .  114

APPENDIX C: RESULTS FROM AN UNDRIVEN SIMULATION

WITH CASE 4 PARAMETERS................  116

REFERENCES..................................................................... I l l



acknowledgements

The suggestion of this work cuie fro i my thesis advisor. David Montgomery. 

Most of the detailed effort Implicit here also arose as a consequence of his 

helpful guidance. The scalar version of the simulation code generated for this 

thesis could never have existed without the greatly appreciated instructions 

and suggestions of Thomas Zang. Major contributions by Will Ian Matthaeus in the 

generation of the vectorized version of the free decay code are noted with sin­

cere appreciation. Conversations concerning this research effort, with Russell 

Dahlburg, Murshed Bossaln and George Vahala, were at tines extraordinarily use­

ful. Thank you a ll .  Additional, active participation In this project, on the 

part of Cary Doolen is also gratefully acknowledged.

iv



ABSTRACT

The subject of thlo thesis Is an analysis of results fro* paeudospectral 
simulation of the Strauss equations of reduced three-dimensional magnetohydro- 
dynamlcs. We have solved these equations in a rigid cylinder of square cross 
section* a cylinder with perfectly conducting side veils, and periodic ends.
He assume that the uniform-denslty magnetofluld which f i l ls  the cylinder is re­
sistive. but inviscid. Situations which we are considering are In several es­
sential mays similar to a t ok amah-like plasm*; an asternal magnetic field I t  
Imposed, and the plasma carries ■ net current which produces a pololdal mag­
netic fie ld  of sufficient strength to induce current disruptions. These dis­
ruptions are characterised by helical ™* ■ 1, n ■ 1" current filaments vhich 
wrap themselves around the magnetic ails* ftn ordered, helical velocity field 
grows out of the broad-hand, low amplitude noise with which we In itia lise  the 
velocity fie ld . Kinetic energy peaks near the time the helical current f i la ­
ment disappears, and the current column broadens and flattens itse lf out. He 
find that this Is a nonlinear, turbulent phenomenon, In which many Fourier 
modes participate. By raising the Lundquist number used In the simulation, we 
are able to generate situations in which multiple disruptions are Induced.
Hhen an external electric field is Imposed on the plasma, the In itia l disrup­
tion, from a quiescent state, is found to be very similar to those observed in 
the undrlven runs. After the lobed "a ■ 1, n * 1" stream function pattern de­
velops. however, a quasi-steady state with flow is maintained for tens of 
Alfven transit times. I f  viscous damping is included In the driven problem, 
the steady state may be avoided, and additional disruptions produced In a time 
less than a large-scale resistive decay time.

v
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I . TOMKAK DISRUPTIONS

The t ok oak id one of the most widely studied species of the genus Mag­

netic fusion confinement device.” In essence, the tokaaak Is a torus-shaped 

magnetic bottle. Two basic confining magnetic fields are present in a tokamak, 

a toroidal fie ld  Brp and a poloidal fie ld  B0t see Pig. la. The toroidal field  

is produced by an external toroidal solenoid. The toroidal plasma itse lf 

serves as the secondary of a transformer- A changing aagnetlc field in the 

primary produces an electric current in the toroidal direction of the plasma. 

This current Ohmlcally heats the plasma, and generates a pololdal magnetic 

fie ld  which assists the stronger externally imposed magnetic field in con­

fining the plasma.

Although a tokamak is a good precursor for a confinement fusion device, it  

Is far from a final state reactor. Two fundamental types of plasma confinement 

problems exist for s tokamak plasma, problems shared with other magnetic fusion 

confinement devices. The primary d ifficu lty  is that the plasma has a myriad of 

Instabilities associated with i t  Some of the most dangerous, disruptive in­

stab ilities , even lead to the termination of the discharge, and can seriously 

damage the device. A complementary problem is that fusion-oriented devices 

operate In a temperature range which makes internal diagnosis of the dynamics 

troublesome. Accurate ( if  any) experimental observations of many necessary 

quantities - ion densities, varying magnetic fields, fluid velocities, and 

current distributions, for example - are d iffic u lt to obtain. Thus, In order 

to generate the (likely story) for what happens when these

Instabilities take place. I t  Is necessary to augment experimental observations 

with extrapolative theoretical modelling. For problems of interest, it  Is In 

general Important to implement computational methods, to generate as much in­

2
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formation as possible on the fly n o  Sen of the p l im .

One of the most centreI questione In the whole subject of tokamak confine- 

sent has been "what happens In the disruptive Instability?* dicker ton (1477); 

Rutherford (19B*); Robinson (19BU), Only when the disruptive process is rea­

sonably well understood, and controlled, way the tokamak evolve into a practi­

cal fusion reactor- I t  1* a class of idealised plasma problems related to dis­

ruption which we esplore in the body of this work.

Following a brief Introduction to the tokamak, and Its  present eiperlaental 

status, experimental observations of the disruptive Instab ilities are consid­

ered, with particular emphasis on internal disrupt tons- After a survey of the 

various ewergent interpretations and models of these observations, this ap­

proach to the problem of current disruptions In a bounded magnetoflutd is de­

scribed-

A. The Tokaaak.

Figure 3, after Robinson <1982), shows a standard arrangement for a tra­

ditional tokaaak. Table 1, produced by Blckerton (1977), is s l is t  of repre­

sentative tokuak devices. Note that soae devices no longer have an iron core 

but rather an air core. Also, for soae devices, vertical coils with feedback 

have replaced the copper stabilizing shell. A feed-back arrangement becomes 

necessary when shaped cross-sections, with better stab ility  properties, are 

used. This arrangement is also more convenient (Blckerton (1977); Robinson 

(19B2)).

1. Diagnostics.

According to Blckerton (1977), i t  is "astonishing" that we s t i l l  have no 

direct way to measure the poloidal magnetic fie ld , or equivalently, the radial 

variation of the current density. I t  Is calculated by assuming that the tor-
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oldal current density J^(r) varies as the electron temperature, , to the 3/2 

power, and that the effective charge of the plasma ions l i  uni fore across the 

plasma.

The electron density and temperature, and the Ion temperature, a ll can be 

aeasured by Thomson scattering* the scattering of laser light by electrons. In 

a review artic le , nagar (19611 explains that an election placed in the field of 

a laser beaa w ill be accelerated and hence eait radiation. Irregularities in 

the density distribution give rise to net scattering. Random nonunlfonlties 

produce ''incoherent scattering" i  the resultant scattered power is proportional 

to the electron density. Since electrons fora a polarising shield around ions, 

scattering off these coherent clouds allows the observer to determine the phase 

velocity of the density fluctuations, and hence of the ion temperature. Analo­

gously, by scattering off individual electrons, one can infer electron teapera- 

turea. These measurements have been aade practical by the advent of the high 

power pulsed laser. The pulsing is a drawback} only a few aeasureaents may be 

taken per discharge.

Although Less accurate than Thoason scattering, analysis of x-ray emission 

yields the electron temperature as a continuous function of tlae. blckerton 

(1977) describes this as t  chordal line of sight measurement which requires soae 

unravelling to give T ^ r . th  i t  yields the highest temperature in a sight line. 

Cl11 (1961) discusses H-rav diagnostics in depth. Be gives formulae that allow 

one to convert the measured radiation in a plasma into Information about the 

electron temperature, assuming the plasaa is Maxwellian, and that no discrete 

emission lines are present. Re also describes the x-ray pinhole technique, 

which has been used (von Goeler, et al (1974)) to study the magnetohydrodynsaic 

activity of the hottest part, the central region, of a tokaaak plasaa. By c o b -
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paring algntl phase* at various positions In the plasma, the periodicity of 

the disturbance say be Inferred.

Another diagnostic tool Is the external magnetic pick-up coll, which allows 

one to detect M i l l  Baguette fluctuations outside the plasu. These fluctua­

tions can be neasured at several locations around the plasma, analysed Into 

their Fourier components, and interpreted In terms of magnetohydrodynamlc OiHD) 

■odes (Wesson (1961)).

Horton (1976), and Hutchinson (1976) carefully Inserted aagnetlc probes to 

follow the development of Internal magnetic fie ld  structures in the tokamak 

LT-3. Hutchinson deduces the toroidal current density froa these measurments 

by assuming cylindrical symmetry.

Blckerton (1977) mentions that ion temperatures may also be leisured by an­

alysis of the fast neutral atoms leaving the plasma. Further, although the 

measurement of current and loop voltage are relatively straightforward, he warns 

that even in deriving the resistive part of the voltage, difficulties may ensue. 

In short, he suggests that a good general principle Is to leisure everything 

with two methods, and "to treat a ll results with In itia l disbelief".

2. Parameters, Timesealea.

Blckerton (1977) states that the basic question about tokamak* is whether 

or not they can be made to contain a plasma which will satisfy the reactor c ri­

terion first set forth by Lawson In 1956. The reactor criterion Is a statement 

about what is necessary in the way of plasma confinement, to achieve fusion.

The plasma must be dense enough, and stay In the machine long enough, with 

enough thermal energy to overcome the Coulomb repulsion between nuclei, for a 

useful amount of energy to be produced. If  a mixture of deuterium and tritium  

Is used In the tokamak, the ballpark "enoughs" are that the temperature of the
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plasma be on the order of 5 to I t  keV, end the product of the particle density, 

n, end energy confinement tiae, Tt „ be at least i f  ca'? aec (Bateman (1978)),

I t  Is estimated that the neat generation Machines, JET in particular, w ill ap­

proach this criterion (Rutherford (198V)).

I t  Is also necessary to Monitor other, less draiatlc figures, on the May to 

the goal of fusion. Observation and theory punt be comparable, for any use to 

be Made of their coexistence■ For these comparisons to take place, the language 

of theory lust agree with that of experiment at soar level. The post basic 

bridge between theory and experiment Is that built by dlpenslonless nuabers and 

general timescales. For instance, the value of a single disensionless nuaber, 

the Reynolds nuiber R * ( (characteristic velocity) * (characteristic length) /  

(kinematic viscosity) ] allows an estimate of whether a flow Is laiinar or tur­

bulent, and consequently which sort of theory May apply.

In order to obtain a straightforward view of the plasMs under Investiga­

tion, we calculate slallar nuabers for soae existing fusion devices, using for­

mulae from Braginskil (1965), and typical plasaa parameters of the current gen­

eration fusion devices froa Blckerton (1977). Results of these calculations 

are in Table 2. The constants, In cgs units, used to create this table are 

those given by Book (196V). Where the bracketed nuabers refer to foraula nua­

bers in Braglnsfcll's artic le , symbols used are:

I 2 .7  1 m perpendicular electron conductivity

1 2.23 1 v k'i ■ ion dynamic viscosity coefficient.

I 2.24 ] E Ion dynamic viscosity coefficient.

f 6 32 1 P Magnetic diffuslvlty, f(c51 ).

I 7.18 ] f ■ Bass density.

t 8.19 ] vA P Alfven speed, f(B(f ).

Froa these coefficients are calculated:



T k ■ resistive decay time ■ (minor radius)1/ .

■ Alfven transit time * (major radius) /  VA .

B ■ Lundgulst number ■ T* /  *  1 -

Pffli ■ magnetic Pranfltl number ■ t I '  / f  ] /  DM ■

P ■ magnetic Frandtl number ■ [^ i /p  I /

Note that for i l l  numbers calculated. Me; assume that e. the charge state, is 

unity; use the Epitser logarithm (Bpitier (1962)); designate the directions 

i  /  a to mean perpendicular /  parallel to the external magnetic field.

2. General Macroscopic D ifficulties.

The struggle to create a productive fusion reactor has spanned decades, and 

Is s t i l l  continuing. A major d ifficu lty  is an engineering one, associated with 

the operation of the machine. Mother, more serious difficulty Is the follOM- 

lng. Even present generation machines cannot be run in possible replies of 

large current with arbitrarily  shaped current density profiles and large num­

ber densities. Physical Instabilities restrict the operation of tokamiks, to

the point that the devices w ill only work in Isolated windows of parameter

space,

A very Important tokamak number is the "safety factor", q. This parameter 

1s a measure of the relative field strengths toroidally to pololdally, or the 

number of times a fie ld line wraps the long way around the torus divided by the

number of times I t  wraps pololdally, In the limit of an Infinite number of

windings. Prom the geometry of fie ld lines, when the surfaces on which the 

fie ld lines He have circular cross section, q(r) -  { r ) /  ( R ). It  

Is found that the most dangerous unstable modes tend to be those In which the 

helieity of the perturbation Is the same as that of the tokamak’s magnetic 

fie ld , since a perturbation with this shape involves the least bending of eu-
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isting magnetic field lines. Tbla perturbation cm be written In terms of f(r)  

* eap [ 1 I i  0 - n f  ) ]| when q ■ m /  n, the perturbation hell* Bitches that 

of the fie ld , and the possibility of simple, linear instability arises (e.g.,
£** I

Manheimer'(1904)). These ideas w ill be treated in acre detail in Chapter 3, 

with is (l * k i  /  1 , R -> I .

At this point, using this terminology, we can briefly categorize the five 

■acroscoplc tokamak instabilities, according to lateman (1970),

First seen was what Is often termed the sausage, or m ■ I  instability. The 

Instability has no poloidal dependence, i t  is suggestively called the sausage 

Instability , since the plasma column tends to pinch its e lf into a form resem­

bling links, when subject to this instability.

When a moderate longitudinal magnetic field was Imposed on the plasma col­

umn to stabilize the ■ ■ • instability, another highly macroscopic Instability 

appeared, the *  ■ 1, This instability Is also known as the kink Instability, 

because when this mode Is active in the plasma, the plasma column Itse lf may 

distort and wrap Itse lf helically about the magnetic amis. The safety factor 

"q" is useful In determining the linear onset of this instability, For q(r *

plasma edge) > ^ ^  < 1, is may be shown that a plasma column which does not
0

touch the confining wall is unstable to n helical *m ■ 1, n ■ 1" perturbation, 

even in a straight cylinder. I f  * 1. the plasma Is not subject to this 

instability. The criterion is called the Kruskal-Ehafranov stability

criterion (Iruskal, et al (1950)} Ehafranov (1971)} Bateman (197B)).

Hirnov oscillations were observed soon after the m -  1 Instability was 

seen. These oscillations were detected as small perturbations In the magnetic 

field at the edge of the plasma column. Fourier decomposition of the signals 

yielded Information about their "m's" and V s " , their poloidal and toroidal
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wave numbersi w running froa 6 down through I ,  with n -  1, is c o » n  early In 

a discharge.

Found next were sawtooth oscillations. In 1974, von Goeler, Stodlek and 

Sauthoff observed reproducible oscillations in soft x-rays emitted froa the hot­

ter central region of the plans, These indications of disruptive activity 

Ml thin the plana are so nned because the x-rays which produce then generate ■ 

sawtooth pattern on the oscilloscope screen.

Throughout the history of tokamak operation, the disruptive Instability  

would frequently appear. This is a generic naie for a wide class of unex­

plained, abrupt transitions of tokaaak plasmas, which often occur without warn­

ing. The disruptive process Is frequently characterized by expansion of the 

plasJH coI u m , and a large, negative voltage spike kicking back against the 

tranafomer ■ The understanding of disruptive behavior is of par mount impor­

tance In the tokamak fusion effort. Me turn now to a closer look at some ex­

perimental studies of large scale disruptive activity in tokamak plasmas.

B. Focus on Disruptive Activity,

Rapid, explosive-like tokamak disruptions range from internal disruptions 

that occur at regular Intervals deep within the plasma, with no visible effect 

on global discharge parameters, to major disruptions that may lead to termina­

tion of the discharge In a single burst of activity (Blakamp (1979)). Kadomtsev 

(19B4) categorizes an abrupt flattening of the electron temperature, or equiva­

lently, a power of the toroidal current density profile, as a function of ra­

dius, an Interna) disruption. Re classes non-internal, or external, disrup­

tions as varying In degree from minor to major. A plasma with current w ill 

survive a minor disruption, but not a major one.

External disruptions have been seen since the earliest times of tokamak
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operation. Major disruptions ore observed as catastrophic interruptions of 

plasma current density and electron tempers tore (Bauthoff, et s i (1978)), 

Thorough documentation comes about far less easily than observation. Only a 

feu agreed-upon features mark the existence of a generic external disruption. 

According to Kadomtsev (1975, 19(H), the plasma column Its e lf expends along 

the minor radius at the onset of the disruption, followed by a redistribution 

of the current density, a negative spike on the measured loop voltage, and an 

abrupt decrease In the major radius of the plasma column.

The external disruption, then, can not be classed as a phenomenon which la 

either Independent of the plasma free surface, or Its  toroldfcity. numerical 

simulation of such a aeries of events is entirely beyond the present capabil­

ities  of available computers, nonetheless, attempts have been made to model 

aspects of the external disruption (Waddell, et al (1978), (1979); Blebs, et a) 

(1981), (1982); Diamond, et al (19B4)). He w ill not pursue that course here.

Instead, the focus in this work H ill be on the Internal disruption. Since 

this subclass of disruptive instabilities occurs deep within the plassa, I t  may 

readily be argued that particular edge effects play a less crucial role. He 

embark on • study of the Internal disruptive instability with the hope that ex­

ploration of i t  H ill lead to a clearer vision of the underlying causes of dis­

ruptive activity in a wide variety of situations.

1. Experimental Observations of Internal Disruptions.

According to Bateman (1978), a breakthrough In the fie ld  of diagnostics

came when von Goeler, et al (1974) f irs t used sensitive, moveable soft x-ray

detectors to observe continuous, reproducible oscillations at the center of the

£T tokamak. This x-ray emission with sawtooth structure was also observed in

other tokamak discharges (Jahna, et al (1978)). Kadomtsev (19B4) considers the
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observations of von Cooler, Btodlck and Bauthoff to be even more than ■ major 

technical advance; he conjectures that results of their work hay hold the key 

to understanding disruptive processes.

in 1974, von Goeler, et al (1974) obtained "Images'* of the £T tokamak 

plasma column by means of a slot aperture. The x-ray emission from different 

regions of the plasma, filtered  through 1- and 3- mil Be fo ils , was measured 

with silicon surface barrier detectors, moveable In the image plane. Their 

mobility allows an observer to sample different chords of the plasma cross 

section. Radiation intensity is said to be a function of the electron density, 

n: , and temperature Te , and of the impurity concentration, while the fluctua­

tions in the radiation are predominantly caused by fluctuations In Te . The 

oscilloscope traces of these fluctuations show a "sawtooth-like1' pattern, with 

slow rise and fast drop near the center of the column. Scanning slightly fur­

ther out in plasma radius yields an "inverted" sawtooth, with a fast rise and 

slow, exponential drop. By assuming a stationary discharge and a constant 

value of Impurity concentration across the current column, they calculate the 

safety factor, q (r), derived from Thomson scattering, to find that q(r ■ I )  - 

1.6, and q(r *  2 cm.) ■ 1.1. They measure relative sawtooth amplitude as a 

function of radial chords, and find that the sawtooth amplitude has a node at 

the q *  1 point. I t  Is outside that point that the sawtooth Is Inverted. By 

simultaneously measuring the sawtooth at different locations pololdally and 

toroids 1ly , they observe that the sudden break of the sawtooth occurs at the 

same time everywhere. They conjecture that this indicates independence of vari­

ation In S and 9 , i.e . the sawtooth behaves like and m * I ,  n ■ f  mode, an "in­

ternal disruption". They report that, inside the g “ 1 surface, Tt  sharpens 

until the sawtooth breaks.then flattens, causing a decrease of Te Inside, and 

increase Just outside the q a 1 surface. The outer Increase dies off exponen-
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t ia l ly  dorijig the reheating of the central part.

Bach Internal disruption, or abrupt flattening of the Tt  profile, la pre­

ceded by a growing sinusoidal "kink lode" oscillation, with *■ *  1, n ■ 1* (0, 

p) dependence. Von Coeler and coworkers (1974) Infer the poloidal sod# nwiber 

»  and toroidal lode nuaber n of the disturbance by comparing phase relation­

ships among i-ray traces taken at a variety of chords.

Jehus, et al (1970) describe the evolution of sawtooth oscillations in 

DflHMt, and give exaaples of the soft s-ray signals taken froa the hot, central 

plasaa of that tokaaak, Froa nany particular cases, they see that, in ORNAK, 

sawteeth are generally characterised by a repetition t l ie  of (.5  to 2.5 ■1111- 

seconds, and a disruption, or fa ll tlwe, of about one tenth of that. The ob­

served m ■ 1 oscillation has a frequency In the neighborhood of one cycle in a 

tenth of a i l l 11 second. Beyond some radius, the sawtooth signals are "in­

verted", with a fast rise coincident with the disruptive fa ll of the "inside" 

sawteeth. The inversion radius, or q * 1 surface, ranges fro i 3 to 0 ca. Re­

calling fro i Table 1 that ORHtt's alnor radius Is 23 c m , , i t  is clear that the 

inner region of the sawtooth activity is separated froa the wall of the device.

Bateman (1978) also refers to ORMAK data In his description of the scenario. 

Be adds to the description given by Johns, et al (1978), when he states that 

the amplitude of the ■ ■ 1 oscillation, strongest In the neighborhood of the 

q ■ 1 surface, does not sees to be directly correlated with the strength of the 

sawtooth oscillation. In general, however, I t  is observed that the ■ * 1 oscil­

lation grows during the rise time of the interior sawtooth, and vanishes just 

after the disruption. Bateman (1978) also notes that in 1976 the TFR group es­

tablished that the K-rey sawtooth is primarily due to changes in Te , and not 

due to density variations.
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sauthoff and co-workers, t l 9-79), describe internal disruptive instabilities  

In PLT. Apparently, the m s s  of data acquired In PUT (with and without neutral 

bean Injection) is not as straightforward as that obtained froa OflMAK. They 

present Information about the evolution of a -  1 nodes, bursts of which can 

either be correlated to internal disruptions or decay without a disruptive 

event, Their signals of line-integrated ealssivlty display a ■ 1 oscillations 

at a fundamental rotation frequency O visible on traces whose signals orig­

inate froa the center, out through chords ± fl ca. froa the center. They note 

that the central trace exhibits 20  behavior, since the hot spot passes within 

view twice per revolution. (According to Bateman (197ft), the rotation fre­

quency of the a *  1, n ■ 1 helical structure is not understood: I t  aay be due 

to diamagnetic effects, or to rotation of the torus as a whole)

Sauthoff, and coworkers, (1979), report that an inward spiral trajectory of 

the peak after disruption Is also seen, better observed In a relatively sm II 

sawtooth. The peak ealssivlty aay be seen to firs t spiral out to r *  6 cm. A 

burst of x-ray activity Is observed even In radii beyond 12 ca,, which sug­

gested that the peak region creates a localized protrusion Into the previous 

concentric circular structures. After this "disruption"1, the peak ealssivlty 

region then spirals back toward the center, sauthoff, et al (1979), conjecture 

that the two different outcomes of bursts of a * 1 activity aay be related to 

the extent of the radial excursion of the Mgnetlc axis: the closer the axis 

approaches the q * 1 surface, the wore energy la lost from the center.

A new system of fast data acquisition and high performance amplifiers used 

on the TFH soft x-ray arrays of surface barrier detectors added new Information 

to the observations of sawteeth In tokaaak devices. Dubois, et al (1903) de­

scribe the observed sawtooth phenomena in TFR as being characterized by a re­

generation part, during which the temperature, and hence the x-ray emissivity
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profile, becomes peaked. An oscillation of « 1 1 parity begins to grow. The 

central signal abruptly drops as the electron temperature profile flattens, in­

dicating that an Internal disruption has occurred. In some cases, however, the 

disruption Its e lf generates complicated signals, sharp spikes in the emisslvity 

near the time of maximum disruption. Dubois, et al (1963) report that these 

features seen to be present in a ll Internal disruptions, and were not detected 

previously because their amplitude relative to the n -  1 mode and to the total 

temperature variation Mas much less; more delicate time resolution than pre­

viously employed ms necessary to observe thee.

The basic, repetitive atory of Internal disruptions, then, is that sum­

marized by Kadomtsev (1975). He ignored the plaama rotation and described, from 

the work of von Coeler, et al (1974), that a slow m = 1, n = 1 instability oc­

curs in the plasma, and grows to an order of about I I  I  of the total radiation. 

This instability then gives way to an abrupt disruption, corresponding to a ra­

pid symmetric cooling of the central region, and heating of the peripheral re­

gion. He interprets these results in terms of a cylindrical, helical flux 

function, where 0 is replaced by z The curl of this flux function generates 

an auxiliary magnetic field B,  ■ Bd - (r B£ / B) e# . The auxiliary field 

vanishes at the q * 1 surface, creating a situation which is unstable to per­

turbations Because of fin ite  resistivity, he conjectures that the lines of 

Bt break and "reclose" at an N-point located on the q * 1 surface. This re­

closing becomes progressively more rapid, and cannot stop until the entire In­

ternal region is reclosed with lines of the external fie ld , and has acquired 

one sign throughout the plasma, i .e . ,  the safety factor q has become greater 

than unity everywhere. Heating of the plasma column occurs, causing to 

again develop a singular surface, and the scenario to repeat. These Ideas will
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be discussed In further detail In Chapter 3.

2 , Numerical experiments.

Kadoateev’s scenario led Waddell and co-workers (1976) to per fork a tingle 

hell city (f{r , 'T ■ mO +■ kz), only) numerical calculation to teat the above hy­

pothetic They describe this hypothesis as one In which the k * 1 kcde resis- 

tlvely allows the plasma to evolve frok a state In which helical fluh contours 

are circular, to a lower energy state In which helical flux contours are again 

circular, thereby flattening the current density and increasing q at the origin

They solved a pair of equations for the fluid vortidty and kagnetlc heli­

cal flux function In a straight cylinder geometry, in which Be »  B, (self-con­

sistent) and q -  1; the plasma was assumed to be in Incompressible magneto- 

flu ld . By allowing the plasma to completely f i l l  the cylinder, the boundary 

condition on the magnetic field at the edge of the plasma was the suae as the 

one i t  the edge of the computational domain. They chose the condition that the 

time derivative of the flux function at the wall (r ■ a) was constant. An in i­

t ia lly  peaked-on-asIs model for the unperturbed toroidal current density was 

employed, with resistivity modelled to vary as the inverse of the in itia l cur-
4

rent profile. A lundquist number of E 1 5 i l l  was chosen, where E -  ^  ^  ,

for T*« «* /  ^  , 'U *  ( f  ) !m /  (k&jt ) ( with ^  -  characteristic value

of the resistivity. The spatial resolution was not reported. The In itia l per­

turbation to the system was an m * 1 mode.

By monitoring the kinetic energy of the system, they followed the evolution 

of the dynamics. They found that by the time kinetic energy was a maximum, the 

toroidal current had flattened Inside the q ■ 1 surface, with a akin current at

the x-polnt, and a(r *  • )  ~ 1. As the kinetic energy decreased slowly, the

contours of helical flux evolved, but remained complex, strictly differing from
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ladoatsev's conjecture that they would return to ■ circular state. The flux 

function me fa irly  uni fora across the center, however, Flow patterns remained 

essentially unchanged as the instability progressed, except that the velocity 

at the plasm center ms noted to Increase relative to that at the singular 

layer, as the instability developed. They reported no additional bursts of ac­

tiv ity .

In 1976, Bytes and Hesaon (19761 reported results frea a three-dimensional, 

hydromagnetlc simulation, Resistivity, viscosity. Ohmic heating and an energy 

loss were included in the equations solved, mlth the resistiv ity varying as Tt "\ 

a varying function of position and time. They chose v- n -  f  for the velocity 

fie ld  boundary condition, where n is the unit normal vector to the surface and 

v is the plasma velocity, and for magnetic fie ld conditions they supplied an 

appropriate electric fie ld  at the m il  to maintain constant current. Although 

their computational grid was only 14 *  14 *  Id, they qualitatively observed a 

relaxation oscillation In the central value of the pressure, similar to experi­

mentally observed sawteeth. This oscillation they attributed to the ohmic 

heating of the plasma and consequent channeling of the current. After some 

computational time, they found that for the calculations reported, the oscil­

lations decayed away and the instability finally  took the form of a stationary 

helix. In order to better understand the magnetic field structure, they "un­

wound” the magnetic fie ld , transforming to a coordinate system in which B* * Br , 

and B^ -  Be -  2 rr rB? /  (cylinder length). In this frame, they observed that 

at t  ■ I ,  q > I throughout the magnetofluid. Subsequent concentration of cur­

rent led to q < 1 in an inner region, An instability arose, in which the orig i­

nal magnetic axis moved to one side, and a new one appeared on the opposite side 

of the plasma where a magnetic "island" bed formed around the q * 1 surface.

The new island then displaced the old, with another axisymmetric configuration
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formed, the value of g now greater than unity. Subsequent cycles behaved d if ­

ferently from the firs t. A new magnetic island was formed on the surface of 

minimum q. when q fe ll below unity. This island did not remove the original 

island, but was its e lf cupelled by a resurgence of the original island having 

q > 1. Jn sunary, they saw features similar to experiment, and results sup­

portive of Kadomtsev's interpretation.

Also in 1976, Strauss (1976) published his equations of reduced three d i­

mensional WHD. which nay be further reduced to the single hellcity set used by 

Waddell, et al (1976)* but do not a priori impose a single fixed helicity on 

the system. These equations are probably the simplest possible HAD description 

that retains some three-dimensionality of HBD turbulence in a current-carrying 

bounded aagnetofluid. Though inadequate in situations in which the currents 

are strong enough to generate internal magnetic fields as strong as the exter­

nally-imposed dc magnetic fields, they appear as the logical firs t step in ac­

quiring computational experience with realistic geometries. We shall discuss 

these equations at more length in Chapter 2.

Strauss (1976) reported results of numerical simulation of these equations 

in rectangular geometry, at unspecified, non-iero values of viscosity and re­

s is tiv ity , with boundary conditions such that ^ * B) * n • v) -  0, i.e . boun-
-  wftll WM

dary conditions appropriate for rigid, free-slip, perfectly conducting walls 

The viscosity and resistivity were necessary to damp the highest harmonics 

Bis numerical solutions of the equations confirmed the existence of fast grow­

ing fixed-boundary kink modes In non-circular tokamaks.

These equations were later used by Waddell, Carreras, Hicks and Holmes 

(1979) (and Hicks, et al (1901)), and Biskamp and Welter (1982) to study situa­

tions in which many nodes nonllnearly interact, In circular cylinder geometry.
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Wmddell, et el (1979) concentrated on situations perhaps appropriate to the 

major disruptive situation, seeking to observe Interactions of the i  ■ 2 ,  n -  1 

and ■ *  3, n ■ 2 aodes, by selecting q profiles in it ia lly  fla t in the plasma 

core and high values of B < ~ I I 5 ) . Blskaap and Welter <1982> chose very 

large values for & ( 5  X I I s ), and imposed boundary conditions corresponding to 

constant current. The consequent time-dependent behavior of the Imposed elec­

tric  fie ld  at the m il can aodel the behavior of the loop voltage in a major 

disruption. Their simulations admittedly suffered from the inability to re­

solve the s u l l  spatial scales which are generated by the nonlinear term. When 

they ran their siaulations for long tim e , however, they reported observation of 

esplosive simultaneous growth In both small-scale Alfven turbulence, and large 

scale modes; In this poorly resolved regime, they observed that as the energy of 

the dominant modes peaked, the applied electric fie ld  went negative. These sim­

ulations, although seminal, may be dangerously Ill-resolved.

Dnestrovskil, et al (1977) used different sets of equations to piece toge­

ther a fu ll simulation of internal disruptive activ ity . They described three 

stages: In stage ( 1), the plasma heated and q(axis) decreased; the energy

balance and current diffusion equations were simulated in this stage. The ra­

pid disruption stage, (2 ), employed equations which followed from the HBD 

theory of reconnection of magnetic surfaces. In stage (3 ), they resumed the 

Integration of equations employed in stage ( 1), and q(r -  I )  again decreased. 

h cyclic procedure ms thus envisaged.

simulations of other systems have also begun to be performed In investiga­

tion of these resistive internal modes in toksmak plasmas, modes which depend 

on a third dimension for their existence. Gome go to higher orders in Inverse 

aspect ratio expansion, (for example, izzo, et al (19B3)), while others allow 

for fu lly  three-dimensional motion of the magnetofluid (Bateman, et al (1974);



19

Schntck, et al (1903)j Aydewir and Barnes (19B4)). Ayedmir and Barnes (1904) 

report the absence of total reconnection, and the observation of multiple 

changes in sign of the ■ ■ 1 vortlctty pattern, when they choose an Inverse as­

pect ratio of 173.

Other fusion devices are also sliulated. It  Is Interesting to nolo that 

Hakatani, et al (1903) observe that results they obtained from simulation of 

Internal disruptions in HELIOTROM E, as well as those recently obtained for re­

versed fie ld  pinches (Caramana, et al (1983)) seem to suggest that the picture 

of internal disruption based on the Kadomtsev (1975) reconnection model may 

apply to a ll magnetic confinement systems unstable to a ■ 1 modes, lt  Is even 

more important, therefore, to discover all we can about these Internal disrup­

tions.

3. Theoretical Studies.

Although Kadomtsev's model appears In essence to agree with both experlmen- 

ta l and simulation results, many difficulties remain. Jthns, et al (1978), 

(Waddell, et al (1978)) expanded on the basic idea by developing a model for 

the time evolution of the electron temperature and the shear at the magnetic 

surface, to obtain a value for the repetition time of ORHM’ s sawteeth which 

agrees moderately well with experiments. They conclude that resistive insta­

b ilit ie s  and magnetic reconnection, In conjunction with resistive heating, are 

responsible for sawteeth oscillations in tokaaaks.

Dubois, et al (1963), however, cite the experimental results which point to 

"Incomplete reconnection" (fiauthoff, et al (1979)) as evidence that the total 

reconnection model is inadequate, They suggest that the agreement between ex­

periment and theory In the mode) of Jahns and co-workers (1978) is not suffi­

ciently convincing, because lUe-of-sight Integration, and a realistic x-ray
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ealeslvlty function were not titan Into account. They demonstrate th it *  kine­

matic model in which turbulence, starting in the region of the g *  1 surface 

and propagating toward the core of the plasma, givee a better description of 

the behavior of Internal disrupt Iona.

Llchtcnberg (1404) suggests intrinsic stochasticlty, generated by non­

linear interactions of the a c 1, n * 1 node with a node arising from the 

toroidal equilibrium, as the nechanlsn for the disruptive phase of the s * 1 

oscillation. Be, too, objects to the concept of the Magnetic island growing 

to f i l l  the entire region within the q ■ 1 surface, pointing to eiperlwental 

results in which the island persists after disruption. Be suggests that growth 

of the ■ 1, n *  1* island could be countered by an increase In the thickness 

of the stochastic layer froi the wore rapid growth of second order islands.

An altogether different hypothesis, ostensibly generated to eiplaln major 

disruptions, is the idea of Montgomery (1982). Be conjectures that an alterna­

tive eiplanatlon to "tearing mode" theory is one espressed in terms of Inverse 

magnetic heliclty cascades, where magnetic hellcity is defined as the Integral 

(volume averaged) over space of the magnetic field dotted into its vector po­

tential. Be demonstrates that the inverse cascade behavior, generated from a 

variety of possible sources of small scale turbulence, would appear as an at­

tempt of the current to flatten Itse lf. That the onset of major disruptive 

activity is unpredictable is noted to be suggestive of the appearance of an 

inverse hellcity cascade, also.

I t  is clear that additional, accurate Information about disruptive MBD ac­

tiv ity  resulting from various current disruptions would be welcome.
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c, out Approach,

In this work, we consider a situation which Is tokamak-llke In the follow­

ing ways. Imaqine cutting the tokamak torus, and straightening i t  into a cyl­

inder, one with periodic ends. For computational convenience, consider this to 

be a cylinder with rectangular cross section, where ’’pololdal" translates into 

a function of x and y, while "toroidal" is replaced by z; see Fig. lb. The 

large toroidal magnetic fie ld , then, becomes a fie ld  which Is externally im­

posed in the z-direction, and the current induced in the plasma also points in 

z. The rigid metal walls of the device are assumed to be perfectly conducting, 

with free-slip boundary conditions imposed.

With the Strauss equations (Strauss (1976); Montgomery (1962)) of reduced 

three-dimensional HBD as our model, we address the general problem of MUD dis­

ruptive Instabilities. Considering quiescent in itia l conditions - smooth 

current profiles and low amplitude random noise in the velocity field - we 

perform numerical simulations to discover what sorts of turbulent behavior such 

laminar conditions can generate.

Ue numerically solve the Strauss equations by means of a FORTRAN code writ­

ten for the problem. The algorithm is fu lly pseudospectral In space, with an 

explicit form of time-stepping. All possible Fourier modes have been kept in 

the simulation. Dissipation is sufficient to resolve any generated snail scale 

spatial structure. The results are thus numerical solutions of the full physi­

cal model.

This thesis demonstrates the value of realistic computer simulations as a 

useful diagnostic tool. The Strauss equations are time-advanced in a periodic, 

rectangular box, and current disruptions are accurately observed.

The equations and notation are introduced in the second chapter.

Kadomtsev's model will be considered in more detail, In the third chapter, the



last of the Introductory chapters. In the fourth chapter, our simulation Ma­

chine Mill be described, and hon the "knobs" ^ and Bfl imv be adjusted. He 

will discuss free-decay code results, for various paraneters, in the fif th  

chapter, k  lou-order model of the Strauss equations w ill be derived in the 

siKth chapterj this nodel contains some features of the free-decay simulation 

results, and nay be used to generate predictions for the driven simulation re­

sults In the seventh chapter ire results from simulations in Hhlch a constant 

external electric field is inposed for a ll time. The eighth chapter contains a 

summary, and suggestions for further nork.



I I ,  TIE NOTATION AND EQUATIONS USED

A. Single flu id , three-dimensional, incompressible HDD-

The equations of continuity and motion which describe flows of an Incom­

pressible, conducting fluid arej

V - o  (1)

p  C -  _ V j o  +  ' *  ~  *  &

together with a phenomenological Ohm's law,

c U + I *  ? >  j

and the relevant Maxwell’s equations,

9  6 '  0

4 -rr i *5 £
c

12’ )

1 6

H  1 ■ t < 7 ‘ -

These are a set of equations which may be taken to govern the behavior of an 

Incompressible magnetofluld, where y(x ,y .e ,t) -  velocity field of the flu id, 

t ; '1 *  y  n v ■ fluid vorticlty; p *  density, here assumed uniform and 

constant; o> * kinematic viscosity; B fx.y.z.t) * magnetic field; J * V i  i



24

current density; £> * conductivity; c ■= speed of light in vacuo; end E = elec- 

trie  fie ld.

The equations of MHD. end the approximations necessary to generate then, 

are discussed at length in a variety of places (e.g. Alfven (1962); Braginakfi 

(196S); Chen [19?0, Bateian (1976); Montgomery (19&3)). The essential le i ­

sures of applicability are set forth by Braglnskll (1969). His derivation of 

transport equations froi kinetic equations is valid under the assumptions that 

the average quantities in a plasma (number of particles per unit volume. mean 

velocity of these particles, and kinetic temperature) change such sore slowly 

in tise and space than the tise and distance it  takes for the distribution 

functions, which characterize each particle component, to relax to local Hax- 

wellians, He also assumes that the effect of the magnetic fie ld  on the c o lli­

sion its e lf nay be ignored, or the Larmor radius is large compared with the 

Debye radius, i.e . b 2 «  6X  c 2 [wass density of a species). Although these 

measures are frequently unjustified, the equations apparently are valuable in 

a wide variety of situations. This simpler model, the HDD model, is generally 

applied to the study of large scale plasma phenomena, in situations where more 

sophisticated models are too complicated to be of value. We w ill use the sin­

gle fluid (e.g. BreglnaUi (1969)) KBD model here.

An additional approximation is that of incompresslbillty. Montgomery C19B3) 

applied an argument similar to the one which establishes the incompressibility 

of a non-conducting fluid to a magnetcfluld Be showed that so long as we con­

sider a "high beta" plasma, basically one in which the Alfven speed is less 

than the speed of sound, the approximation is valid. That is, since p = 

p i  (62 /  enr), and the speed of sound in a fluid is the thermal speed, f  = 

(speed of sound)1/  (Alfven speed)Z, where we have represented the pressure p as 

(number density) * [Boltzmann's constant) * [temperature), an Alfven speed =■
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*  /  t*  ̂p )'< and where we take a thermal speed to be (2 p /  p ) 2 , Be notes 

that the addition of an external magnetic field t Q to the dynamics of the sys­

tem relaxes this constraint somewhat, for the case In which B0 Is large cod- 

pared to the fluctuating B. Then. I f  the ratio of ft to ft- Is much less than 

f,(B,3 ) . lncompressibllity of the fluid is a good approximation. Tohamak plas­

mas have very large external fields Imposed on them, which somewhat Justifies 

the IncompresslbiUty assumption. This assumption is also very convenient. No 

equation of state, nor one for Internal energy is necessary; instead, the pres­

sure may he computed from a Pols son equation which is Immediately derivable 

from the momentum equation. Further, the d iffusivltles of both fields w ill he 

approximated as time-independent scalars.

Ignoring high-frequency effects in Faraday's law, an equation may be ob­

tained for the time-advancement of the magnetic fie ld  from Ampere's law,

&
^ = - ■* 1/ v  6 - B v 2 6 (4*)

~ — *■ *" I

where a scalar magnetic dlffuslvitv, c*1/  (4 tt<t }, is Introduced through 

Ohm's law. i f  an In it ia l magnetic field is properly solenoldal, l t  w ill remain

that way as a function of tise,

B. Dimenslonleas Units.

He follow Fyfe and Montgomery (1976} in the way the equations are made di-

mensionless. Let UQ be some characteristic velocity of the fluid, L„a  charac­

te ris tic  length, and a chirscterlstlc density which we w ill choose to be

The other variables are defined In terms of these. A dimenslonleas. 

eddy turnover time is created by means of a dlmenafunless distance divided by 

a dl mens Ion less velocity, while, for instance, pressure Is measured in units of 

p(1Uf)J1 , and the magnetic field in units of (4 ) J .
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when these dlmenslonleis variables ire  Introduced In to the prlaed equations

of the previous section* the following set Is obtained:

\=j_ ^ v - V v  - Vp -t 6 -t - j V * v  <Z)

V > B  -- 3 <3)

—  t  v VB -  & p v  +■ ^ v 2 5
t>L *” f ^

How v i a  the Inverse of the Reynolds number based on ufl * and Is the In­

verse of i  s li lla r  Reynolds number, with kinematic viscosity replaced by labora­

tory magnetic diffuslvity. I t  can be either a ugnetlc Reynolds number (when Ur, 

is a flow speed) or a Lundquiat ntuiber (when Us is an Alfven speed).

For quiescent In it ia l conditions, ones In which the magnetic energy, Ee ■ 

ivsj ) 6 3 1® wch greater than the flu id's kinetic energy, t  , ■

i U i  J  f I t  is most convenient to scale the equations by a charac­

te ris tic  quantity other than the flow speed. The scaling we choose is the
I,

Alfven speed, *  6 /  ( I rf ) L. T ins are thus measured in terns of Alfven 

transit times: a distance of one unit is traversed in one unit of tine, when 

V  ̂ ■ 1, The inverse of ^ becomes the Lundqulst number, 6 ■ Lb /  [labora­

tory magnetic d lffusivity), while the fluid Reynolds niaber becomes L , VA /  

[kinematic viscosity], l t  is this situation which is considered here.

C. Tokamafc Ordering.

The magnetic fie ld  In s tokamak plasma is most simply comprised of two types
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of field. Die poloidal field arises self-conslstently fro* the Ohwic current, 

while the toroidal field Is largely generated by internal colla. This toroidal 

fie ld le at least an order of wagnltude greater than the self-conelatent polol- 

dal field. numerical studies by Shabalin. Natthaeus and Hon..go«ry (1983) dew- 

onatrate that spectral transfer In inexpressible Mb turbulence Is inhibited 

In the direction parallel to a strong, externally laposed wagnetlc field.

These results iwply that wore spectral transfer ought to be expected to occur 

in the poloidal plane, perpendicular to the external field, and Less in the di­

rection parallel to that fie ld . Good use can be wade of this Inhibition of 

eacitation In what Is here the i-direetioni any turbulence in the wagnetofluld 

way be expected to be anisotropic, and lastly occurring poloidally. I t  is nat­

ural, then, to conjecture that derivatives which consider poloidal wave nuwbers 

w ill be larger generally than those which are taten with respect to x.

Following Montgowery {1982), we generate a aeries of agnations (Strauss 

(1976)} frow the fu ll three-dlwensional set. frow order of wagnitude considera­

tions alone, by weans of an expansion paraweter e . This paraweter way be in­

terpreted as an Inverse aspect ratio; typical values of the inverse aspect ratio 

for current generation wachlnes are listed in Table 2.

Let the large external wagnetlc field be represented as 60 / £  everywhere 

In the system, Upon expanding the self-consistent fields In powers of this 

parameter, the following series are obtained;

b -  e ‘°  * £ b " 1 * 4*  b 1,1  ̂ ..
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V ■= v lo >  -» £ -» +J-LT- ,-«>■ ^

Inserting these series into the equations, the results are considered order 

by order. At each order, i t  Is demanded that 7 *  v f° *  I ,  V f ,

n >, l .  An order of Magnitude Bust be assigned to the tlae derivative; no ze­

roth order population of Alfven Naves Is allowed to eirist, which Means that 

the tlae derivative Is O(L).

By considering O ( t ' ) ,  B'Vl and v^ 'are  seen to be at lost functions of t  z,u- l̂_l

v -  I ,  and ? yf:*  I ,  are used, to obtain B ^  x A(«,y. <: r ,t) e£ 

and v / JI“ V a , t )  e; . where A is the lagnetlc vector potential and

^  is the velocity streai function.

At the nest order, 0(1), the fast spatial variation of Bj and y t  'is aver­

aged over, leaving the gentler c z dependence unaltered. At this order, the 

foraal parameter, € , Is then set equal to unity.

p. The strauss Equations.

The very plausible and convenient set of equations which results at firs t  

order are the Strauss equations of reduced three-dliensional MBD (Strauss 

(1976) i Montgomery (IM 2)>.

-̂Bj /El
 ̂ j. + B r  ■* B0 a?

+  W ?  Y i

^ ^  + V i  V i 8 i  -  B x ' V i V i  ■+ + - V j v ±  B i  (6>

where f t j .  = ( 6 , ,  B7 , o )  =



29

w  -  (  ia  , v f o ' )  -  P x *  4 , f > ,  £ * )

and

g '  -  A £ j ~ ? j. *

'  ^ x 2 ^  = *A *  V i

These equations ire quite s il l ie r  to the equations of two-dimensional HAD. The

only i-derivatives that appear i n  the system are those which are multiplied by 

the large toroidal field B„ ef . All other derivatives are taken with respect 

to a or y.

I t  is a consequence of this ordering that the velocity and Magnetic fields 

in the z-direetion are passive scalars at this order.

(. yt  - t .  V i') v, = | i  v, vt ■* B „ J i  f V  Vi  (7>

C Y t 1 V f  - 6  A P l  B2 *  B „ 1 J  v z + V i1 6 j. <*)

I f  they are In itia lly  zero, they w ill rewain so, They are in itia lized  to zero 

in the sisulations described in this work.

Thus, we are left with a aystew of four equations to solve, rather than 

sin. This systea say be reduced further, by taking the curl of the wonentuw 

equation, and resovlng the curl frow the sagnetic fie ld  equation, to obtain
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^   ̂  ̂ + B1-3- ^ ^ + + (9)

= ^ ‘ ( y i * S O  + e . y *  *  ^  a  + e o U l)

This Is a system of tMO equations to t  1m ~ advance, one for the vorticlty, 

tO ( i,y .z ,t ) ,  and another for the vector potential, A(n.y,z,U. The additional 

te r* which appears in ( I I ) ,  E„ , way at most be the gradient of a scalar.

The quadratic constants of the aotlon for the Strauss equations are the 

sue as those for the fu ll three-dimensional set; the total energy,

E -  “  the cross hellcity Bc ■ |  a'V ; and, forwally,

the magnetic hellc ity , HM  ■ | As w ill be seen later, efficient

pseudospectral slBulatlon of these equations Is possible when conservation of 

energy Is pseudospectially enforced.

t, Boundary Conditions.

The boundary conditions imposed on thu system are those appropriate to a 

periodic cylinder with rigid, free-slip , perfectly conducting side walls. For 

in fin ite ly  conducting walls, the normal component of the magnetic field must 

go to zero at the wall. This w ill result i f  the vector potential is constant, 

at the wall at my instant of timet this constant is here set to zero. In 

this current version of the Strauss code, the boundary condition imposed on the 

velocity field at the wall is that only the normal component of the velocity 

fie ld  go to zero at the wall, or v > n -  I ,  where n is a unit vector normal to 

the wall. In analogy with the magnetic quantities, this condition Is met I f
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the velocity atreaa function is a constant >t the M i l ,  a constant which say be 

set to aero. Finite conductivity within the fluid gives the condition that the 

tangential component of the current suet go to eero at the well.

J C ! t  + V y B ") , fro* Oha’s law

C t  I + G ( lA ^  - V B> ) j
It :

becoses  ̂ jwi'K '  ^ * 8lhCC tangential

component of the electric field is continuous, and suet be eero inside a per­

fect conductor.

I f  the stress function and the vector potential are expanded in half-range 

Fourier sine aeries in s and y, and fu ll cosplen Fourier series In z ,  a ll these 

conditions are autosatlcally set, Hence, this is the choice of expansion 

functions Mde for our simulation code (hereafter, the “sine-Strause code).



I I I .  CYLINDRICAL MODELLING

A difficulty crises when attempting analytical arguments In a geometry with 

two non-lgnorable coordinates. In order to gain sow comprehension of the s i t ­

uation later treated numerically, polar coordinates are here eiployed to sum­

marize some eslstlng approaches which are beginnings to satisfactory analyti­

cal treatments of the problem.
■

A, The Internal a * 1 node. In a circular Cylinder.

Following Hanh*imer^(1984), Instabilities' are sought in the linearized 

Strauss equations In polar coordinates, i f  (e,y) -> ( r .8) , only z-indepen> 

dent equilibria without flow are allowed, and perturbations of the form 

f ( r)  *  espl im9 - lkz ) are assumed, equation (9) becomes

ft

Br *  S „  - r  J
<0 — D (*’1 .(.1

Hherc r a >  Be V r -  k B0 ■ and perturbation* are 

the following may be obtained

k 80 , and perturbations are assumed to vary as e ip ('t)

(11)

32
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-  t I t- C ' B O  -  v i e  e r  

^  '  T  I f  6 ^ 0  - £  Br ‘ -1

a '“O  y  t?  <r " V O

"  ̂2 F )rrm  d r  »

and ( 11) My be written

Y t O t 0 = i F  U  T r ^ ee ' ’ )  -  V

♦ I t l ' V^  L 5 h r  b r J J 

Since V  * y  •  I ,  and 7  * B ■ I ,
m  a #

\ / * (0  -  1  i  r » tO- nn T>r f

D  Cl)  * 9 . . .  r  D  C O
end M& ~ m  'b'r r

( i \  \  i J L  r y  fl  ̂ L™ w CO
Also, 40 - '̂■’ V } - r  9 ~ r  r

These equalities allow the re-expressIon of (12), where the superscript

dropped.

(12)

( 1) Is

y [ 7 f r ( ^ f r r r o v  ' ^ v r ]

= *F C -F Iv ( ^ f ,  Cre,D- ‘£ 6 , 0
6 r  r  ,  cOF t

+ L 3 T f  + r  "aT* j
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At this point, s wsy to express Sr  In tens of vr Is needed, i f  possible. 

Turning to equotion 16), and employing the uae perturbations as were used for 

(9).  ( 6) yields;

V * ( y * e " ) ) r  -  n ^ V x  E l ) r 

" -  VL1 B ■* + Vj_Vj_ 'f  ■+ 'Vj tTl2 J? V

I f  is m i l  enough to be neglected,

- v i a .  ( ' - v » b » ” M  ,  fo o T - L r  J + L v~ a & ~ *■ J

-  6 v k v <-

c - i k  e ,  ► e / ” V / r

r  - F V/
f cr  -  - ^  U4)

Inserting (14) into (13) yields

cl

^  t  f f  ‘vy "]

'  F  [ -  f r  t  v 1  C r f  + ^ V y f ]

*  ™ r v r f  r  4 > f a )  ]

_ r z r  ^ v f V v f ^
-  r  ar  -  r 1 -xy- t -*■

-  eJf r 1 - ~ r  —*  r  v r

And since 1  ( 3 r i i  V , t  r *  ^  V ^r  ’t r ^ r ’br J it ^ i r  > r V  t  r ^ ~ i v r
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l ' ( * *  F s ) [  i f v  v < 0  = V r  U ’ * F ^  (15)

-  2 ? f *  ^  1 L
o r  ^  r

or

White £1963) rewarfce of (Id) that when r is neglected with reaped to 

? T , the equation My be obaemd to eih iblt a lingular nature in the nelgh-

F ■ I  when q ■ i  /  n* I .e.  when r * m t ^ ' /  (h l„) .  Thli radiua la defined to

be the eingular radiua, r $ .

Hanheiwer enaalnea the behavior of ( 16) In the neighborhood of r ■ I -  Proa

Solutlone to (17) are of the i o i m  v r ■ |3 r " ,  or vr  ■ p r * * . vr  ̂ ■  ̂ r ' ! v’ 

vf must be discarded because i t  la not well-behaved In the neighborhood of the

origin, andvf * ^ r *ft"1 rewains.

This aolution yield! the Inforwation that for ■ > 1, v ^ ( r ~ d }  -  I *  or the

plaeu center does not wove, I f  > ■ 1 , however. v r * ^  . Bence, near the
•■ul

origin, (Kanhelier*(19S3)),

borhood of P ■ f. Since F *  I  I  /  r - h i :

-> f .  That leavea

(17)

t

At l  -  I ,



J6

=> V

£ t t>% §
A

V

v  ■ C  M  &  +  f i n  ^  & 1r- $

pSx

M ?

S i m i l a r l y ,  6 f  -  X  [  '  S *  f  & » ! ,  k i  ■* U S  &  S i ^ k e  J

-  - * S ^  A t ? = o.

: o < e>,  » t  ? = 5 -

T h a t  i s .  t h e  s o l u t i o n  i s  seen  t o  be one I n  wh ich  t h e  v e l o c i t y  f i e l d  l o c a l l y  

p o i n t s  t o w a r d s  i n c r e a s i n g  v e c t o r  p o t e n t i a l ,  A

A h e l i c a l  p e r t u r b a t i o n  i s  o b s e r v e d  i n  b o t h  f i e l d s  I t  i s  a p p a r e n t ,  t h e n ,  

t h a t  t h e  m = 1 l i n e a r  i n s t a b i l i t y  may be o f  use i n  m o d e l l i n g  i n t e r n a l  d i s r u p ­

t i v e  a c t i v i t y  I t  i s  t h e  o n l y  m c o n s i d e r e d  i n  t h e  r e m a i n d e r  o f  t h i s  c h a p t e r  

S i n c e  t h e  s o l u t i o n  found i s  c o n s t a n t  n e a r  r = a ,  and v  ■ n )  .. = i ,  o n l yJ ci I \
v Y ~ 9 c o u l d  s a t i s f y  t h e  b o u n d a r y  c o n d i t i o n  F o r  i n t e r e s t i n g  b e h a v i o r  t o  be 

f o u n d  i n  a c y l i n d e r  w i t h  c i r c u l a r  c r o s s  s e c t i o n ,  o t h e r  t e r m s  i n  t h e  e q u a t i o n s  

must  be  a l l o w e d ,  e . g .  a n o n z e r o  v a l u e  o f  t h e  r e s i s t i v i t y .  N o t e  ^ h a t  t h i s  s i t ­

u a t i o n  d o e s  not  h o l d  n e c e s s a r i l y  f o r  c y l i n d e r s  w i t h  n o n - c i r c u l a r  c r o s s - s e c t i o n  

I n  1 9 7 6 ,  E d e r y ,  L a v a l ,  P e l l a t  and S o u l e  showed t h a t  t h e  s t a b i l i t y  o f  t h e  ri = 1
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ideal mode, the Internal kink aode, i i  very sensitive to saall distortions of a 

circular cylindrical equilibria*.

Even though i t  is found to be necessary at this order, resistivity « y  not 

be important everywhere in the pi taka. Hanhelner^fHS^l argues that I f  the 

tlae for a aode to grow la inch greater than the tlae i t  would take for Alfven 

waves to jstablish a pressure balance, away from the singular region, then pres­

sure balance can be Maintained almost everywhere. Outside a narrow layer, I t  

la conceivable that constant solutions can exist

Inside the layer, near F ■ i ,  (14) is no longer the appropriate governing 

equation* Resistivity cannot be neglected, or

6 r -- '-y-r - \  urn

In this case, (LS) cannot be obtained from (131, but possible growth rates aust 

be calculated fro* the coupled (13) and (18). Coppl, Pellet, KoaenbUth and 

Rutherford (1977) have calculated such rates for the general caae, where Ba may 

also be a function of radius.

B Kadomtsev's Scenario for an Internal Disruption*

This complicated route is not necessary in order to understand a process 

that may explain an internal disruption. The process whereby the plasma may 

f irs t develop an Internal helical perturbation, then flatten, was described in 

a single hellcity framework by Kadomtsev in 1975*

1* Single Relidty*

Strauss (1976) showed that for a perturbation of the fora exp{ l(md + kz) ),

- — %,, and for n A  -  E0 » #, equation ( I I )  aay be rewritten;oT: I
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- f - M

■= & „ & *

or ^  + V x  t ?i < y = 0

where * § ’  * e  '  ■ * * '  t :  ■ t0[ H  ‘  ~ l £  Bin"  ^  »

is  tiwe-independent,

3> _  _ n
(19)4 V i ' V x  Cp -  O

I t  aay be shown that j  is flux through a helical ribbon at radius r and 

pitch defined by T  * fcz + m , by integrating A along a path tangent to -  

e & (Hhite (1963)). That la . j g - d a - -  \  V v f \  ; the helical

flux, p  , la flux through a helical ribbon, or the line Integral of A around 

that ribbon.

Sim ilarly, I f  a perturbation of exp{ i (■& - kz) ) Is eaployed, a helical 

flux function ^  t  ^  A 9 is obtained. In this case, B^-

£  L e , Kadowtsev’s fie ld , B* * *e , for k -  n /  Ht re­

call that BQ is the externally inposed .

2,  The Description.

Proa the observations of an Internal disruption In von Goeler, et al (1974),

Radowtsev (1975) conjectured that since the g ■ 1 surface was reported to lie  In

the plasM, the unstable aode was of a fora ■ -  1, He thus specified his choice

of he llc ity  to ■ /  n ■ 1, * i L - B̂ ep.
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Mote that B t ■ I when B ± ■ or *<lufv*l®ntlY  when q ■ 1 B, is

greater than « ro , or has counterclockwise orientation, for q < 1. Mao, i t  Is 

leas than zero, with clockwise orientation, for ^  By or for q > 1. A 

potentially dynamic configuration thus exists, one highly analogous to the fa­

miliar sheet pinch geometry (Dahlburg, Montgomery, tang and flussalnl (1983)). 

Email amounts of resistivity added to the HBD description w ill serve to make 

reconnection of the magnetic field lines possible. Random nonuniformltles then 

may trigger the instability in the region of a nascent i-polnt- Reconnection 

mill begin to take place. Kadomtsev suggested that the reclosing of the field  

Hith itself u ill Intensify the field in a region opposite to the recloaing 

region, generating a force that mill squeeze the internal column toward the 

opposing field. The process will become thus progressively more rapid, and not 

be able to stop until the fie ld  B * acquires the same sign throughout the 

column (q > 1), and the current has become redistributed.

Incompressibility of the fluid, aolenoidality of the magnetic fie ld , and 

negligible resistivity in regions away from the singular surface lead to the 

Idea that flux is distributed to a definite radius r ,  beyond the radius r of 

the q ■ 1 a Jugular surface. The disturbance starts in the neighborhood of r-s , 

and works Its way out from r  ̂ , and toward the origin. By the completion of 

the reconnection process, the Inner flux has reclosed with an equal amount of 

outer flu* of opposite sign, ieyond r0 , the helical flux function remains un­

perturbed. I t  is generally possible, then, for a discontinuity to arise in the 

firs t derivative of the helical flu i function with respect to radlust that Is, 

a sheet current may be observed at r ■ r0 , with sign opposite to that of the 

Inner current column.

Kadomtsev (1975) gives a simple example, to demonstrate these features, lit 

which (J ( t  *  P)  -  *  ^  ( r ^ 1 - r a/  2). He finds that the energy in af­

ter reclosing would be about 93t less than I t  was at t  ■ f .
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This energetically favorable mechanism is one which plausibly explains a 

single sawtooth. I f  the flux function returns to a helically unperturbed state 

at the end of the reclosing, as he conjectures, and the velocity fie ld goes 

away, external heating can once again drive the current to a Monthly steepened 

profile, with a q ■ 1 surface again in the plasma. The single hellcity disrup­

tion can then repeat.

Although this reasonable single hellcity scenario cannot be expected to 

hold exactly In a three-dimensional plasma with a cross-section that is other 

than circular, i t  may provide an approximate description of the events which 

take place in a Quiescent plasma which has a g ■ 1 singular surface embedded is 

the large-scale vector potential. He proceed, now, to a nonlinear, multiple 

hellcity calculation of these conditions, a numerical simulation of the Strauss 

equations In rectangular geometry.



IV. THE EMULATION CODE

We turn to a discussion of the method we use to gain information from the 

Strauss equations.

A. Algorithm for the Bfne-Btrauss Code.

1. Focus on the Two-Dimensional Square.

It  la easier to flra t consider the tHo-dlmenstonal, bounded poloidal 

cross-section of our calculation. Let the streaa function and the vector 

potential be expanded in the sine series in ■ and y He now have two spaces 

we can think about, a physical (x, y) space, and a wavenumber Ik*,  k.,) space. 

The sine series are global and orthogonal.

Hence, if  we are given values of the velocity stream function and the magnetic 

vector potential everywhere on the bounded x,y grid, their real Fourier coeffi­

cients, their counterparts on the bounded wavenumber h>,ky grid, way be obtained.

For instance, if  He assign values to the streaa function which correspond to 

sfn{x)+sln(y) at a ll grid points r  and y^ , the Fourier space would have one 

non-zero point, k̂  * 1, k y *  I .  He would efficiently {Gottlieb t  Orszag, 1977) 

obtain this inforaatlon, numerically, by using aoae version of Cooley and 

Tukey's (1965) fast Fourier transforms (FFTs). Here we use Temperton's FFTs

(19B1), a vectorized version of earlier scalar FFTs.

2. The Full Expansions.

I t  is natural to expand the variables in fu ll, complex Fourier series in the 

periodic "toroidal" direction. The fu ll, three-dimensional expansions, then,

41
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are sine series In ■, sine series In y. and complex exponentials in «. Since 

the equations are nonlinear, care must be taken to normalize the sums "on the 

nay to Fourier space", to avoid Inserting unconsldered factors of N In the 

time step size,

For example, the vector potential Is expanded

N-> * V l  _

^  u ^ r * n p  S 'r tC m x .1)I rn ,n :i p>- r J

*  SIA t r w f t ^  t  1 f  l i  1

* j  : X ,  2t i V m

j> k = <> , | J - i , o ,  ■■ 4 ^  - I
with transformation

N i t-A i
^  j  j _

A ^ p  -  ̂ m )  M  ^  A W  (#V\jO
r  j . l f - i  o '  J

*  S w  (  i v y * ' ' !  C >  p [ -  ' f  ^  j  

-  M ;V
■■» W " 1 j T ‘a  » ■ T  ' 1

Values of the stream function and the vector potential at every grid point, 

then, are a ll that Is needed to generate any of the other HBD variables required, 

at a given time.

3. Time Advancement.

He are not considering static solutions, however, The equations have par­

t ia l  derivatives with respect to time, which also must be treated. For con­

venience, an explic it, weakly unstable method, the second order Runge-Kutta 

scheme, is chosen. For or 4 , and f - the right hand side of egua-



tion (9) or (19), ^  la discretized with second order Bunge-iutta;

-- w"* ^  j  "

I / " "  -- n *  *

where f it  la the tlaeatep end n Is the time Index.

Our time step ia small enough that accuracy la linearly assured for approx­

imately nine hundred Mfven transit times, (Dahlburg, et el <1905)1 even without 

dissipation. I t  ia possible to demonstrate that the method may be etabilled, 

in a model linear problem, by a suitable choice of dlffusivlty. The con­

venience, then, ia not outweighed by any errors generated by this method, and 

me find i t  to be a satisfactory one.

The nonlinear terms In the Strauss equations also present a source of po­

tential numerical d ifficu lties . A standard my to treat these terms ia to re­

move all aliasing errors generated by them, at each time step (orszag (1971)).

This dealiasing process can at worst alow a code down by about a factor of two 

for each dimension. He would consequently prefer to solve the equations in a 

much more efficient form than the deallased Galerfcin form.

A good candidate for in efficient form is that of collocation, where by 

collocation Is meant that the equations themselves are enforced at each grid 

point. The nonlinear terms would then be evaluated In the actual physical 

space of the problem, at each grid point, and no further manipulation would be 

performed on them.

Collocation, combined with a spectral evaluation of the derivatives, was 

termed "pseudospectral" by Drszag (1971). in two papers, COraiag (1972); Pox
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and Orsitg (1973)), he reported that the pseudospectral Method generatea *o- 

lutlona which are nearly Identical to the lore careful spectral, or dealleaed, 

Method, when an amount of viscosity sufficient to remove unresolvable small 

spatial structure is Introduced. These results were obtained for the two-dimen- 

slonal llavier-Stokes equation, in Its  vortlcity fornulatlon. They further re­

ported that aore accurate solutions were generated by the code when the equa­

tions were written In a fo ri which pseudospectrally conserved kinetic energy.

He performed a series of numerical experiments on the two-dimensional nhd 

equations. Our results were In basic agreeient with the findings fro i the 

Navjer-Stokes equation, with a single exception. He observed Intense numeri­

cal instability, unless the equations were written in a fora which pseudo- 

spectrally conserves total energy, Bo, we choose to t i le  advance the equations 

in a form Which would semi-conserve total energy in the absence of any dissipa­

tion. By running a two-dimensional version of the code, we find that Indeed the 

energy Is conserved to within a few percent, for many ALfven transit tlwes. In­

cluding dissipation in the problem yields the necessary result that spectral 

and pseudospectral results agree remarkably well for long times. These 

findings are discussed at greater length in Appendix A of this thesis.

4. Algorithm.

Given vo rtid ty , ^fk^,ky, i ) ,  and vector potential, A lk ^ k ^ z ), everywhere 

on the (k>.k^,i) grid at the n-th time step, we solve for the vortlcity and vec­

tor potential at the (n + f irs t) step, and so on. Because the code is pseudo- 

spectral, time advancement can be performed In the most convenient space.

He wish to run this code on a vector computer, a CRAY-1, and consequently we 

must consider its small core memory. If  we wanted to write the code with a com­

pletely straightforward algorithm, about fourteen three dimensional arrays would
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b« neededi arrays like "U" end ■BI", end no forth, could then be used, where 

the arrey nun would directly correspond with the Information the array con­

tained, Thle algorithm would have the disadvantage of not fitting in the ma- 

chine for any realistic grid alee. Hence, we perform the entire calculation In 

Just a ll  arrays, a constraint which makes an Intricate algorithm necessary.

The key features of the algorithm are the following. All nonlinear product 

terms are formed In the actual physical space of the system. Derivatives are 

taken in the suitable rourier space. The Strauss approximation Is such that 

the only c-derlvatives ever needed are on the stream function, and the current. 

Only these two arrays, then, are ever transformed to the fu ll, complex Fourier 

space in s. This efficient feature of the code comes about because we are 

using a pseudo spectral scheme, rather than a spectral one. In other words, the 

pseudospectral code is even more efficient than the earlier estimate given 

would Indicate. Again, for convenience, the actual time-advancement Is 

performed in a hybrid (k^.k^, x) space. With this fully-vectorited algorithm, 

we find that the 32 • 32 1 16 grid code takes about 1.7 sec/tlaestep on a 

CRAY-1 supercomputer.

8. Choices of the small parameter,

Before we actually begin reporting physical computations, one more Question 

must be resolved; how much dissipation is necessary to keep all nonlinearly 

generated spatial scales within the available computational limits? The ans­

wer to this can only be estimated, a priori. A rule of thumb for finite d if­

ference codes is that there is about a one to one correspondence between num­

ber of grid points In any one dimension, and the value of the Reynolds number. 

This would mean, for example, that a grid of 1IPP *  IM i * l l l l  points would 

be necessary to properly resolve a simulation with a Reynold's number of Ilf# .
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Additional factors of fourt or so, sty alter the estimate by suggesting that 

in general a spectral code needs shoot one fourth the resolution a comparable 

fin ite  difference code would require, for the sue degree of accuracy. This 

Leaves us with only crude estimates; we must turn to empirical tests.

He find that auch small scale spatial structure Is generated In the slmu- 

lotion near the tlse of a kinetic energy peak, By examining plots of our total 

spectral energies at these times, we may determine whether or not the simula­

tion was a numerical success. He find that on a 32 * 32 * 16 grid, with a 

Lundquiet number, , of 111, we Indeed have enough resolution to believe the 

results. This may be easily read off a contour plot of nodal energy. The axis 

is K-perp ■ sqrt( k,*k> ♦ i / k y), while the ordinate Is x-par = This con­

tour plot, then, gives a good Idea of what la happening to the total modal 

energy in the fu ll Fourier space available to the calculation. The lowest val­

ue of modal energy plotted is I  * IS \  I t  is evident that this simulation 

evolved with a sufficient amount of resolution; see Fig. 3a.

I f  the Lundqulst number is raised by only a factor of five, while leaving 

the grid size unchanged, the simulation is not so successful. A plot of total 

nodal spectral energy, scaled Identically to the one above i t ,  shows that the 

resolution has been severely exceeded, as displayed in Fig. 3b. In this case, 

the numerical results are deemed untrustworthy.

He are able to run at Lundguist numbers > 111, however. He find that I t  is

necessary to Increase the grid size, in order to do so. The last plot of spec­

tra l energy, again scaled as above, shows the total modal spectral energy for

our most ambitious run, one with k* mA)f - 6 4 ,  k.f *  64, and kj  *  16, 

and a Lundquist number of 411. Again we observe basically sufficient resolu­

tion to generally accept our simulation's results, as shown In Tig. 3c.

Because the boundary conditions imposed on the velocity field are the free-
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slip conditions, the majority of aine-Strauss simulations are run tilth no vis­

cosity whatever, h consequence of the ftlfven effect ia that at high wave- 

number 3, kinetic and Magnetic energies approach equlpartltion. By virtue of 

this, I f  one fie ld 's  Fourier coefficients are being dissipated In the high wave-

nunber portion of phase space, so also w ill the other fie ld 's  Fourier coef­

ficients be diminished. Therefore, only one d iffusivlty, here the Inverse 

Lundquist number, is necessary to drain off small scale structure in both

fields (cf Kralchnan (13651i Fyfe, Montgomery and Joyce (19775),



V. SIMULATION RESULTS, DECAY.

He now embark on t  discussion of the numerical simulation results generated 

by the sine~Strauss code.

A. Choices of the large per Meter, B: .

A crucial Urge parameter must be set in the ejaculations, This parameter 

is the field strength of the externally imposed magnetic fie ld , B3 . For 

B0 »  1, we eipect, from the work of Shabalin, et al U9&3). that the spectral 

transfer would he reduced to near two-dimensionality. For B5 too saall, the 

Strauss approximation would break down. He find that for a middle range of val­

ues of b3 t we are able to Induce current disruptions, processes which thrive on 

spectral transfer In a ll three Fourier dimensions. Recall from the derivation 

of the Strauss equations in the second chapter that the saall formal expansion 

parameter (interpretable as the ratio of minor radius to major radius) multi- 

plies both B0 and z everywhere; that Is , t. B0 1 ^  i j

He w ill now exhibit results from a trio  of simulations. M l three are 

in itia l value problems, with the saae in it ia l current profile:

For each of the three runs, the velocity fie ld  is in itia lised  with broad-bend, 

low order randoa noise:

The difference between the firs t and the second simulation la that we choose

q  C m ,i j j , 1  'I -  3  0  ^  >  Si/ui y  £ > p  5  ( > -  ■ - z Y  3
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I ,  *  B for CASE 1, and B0 * 4.3 for CASE 2. Both of these ram were perforated 

on grids with It* * fcy *  32, and Ju ■ B, with Lundquist nnber ■ 1M. It  U  

In valuta of Lundquist number, the grid size, and particular values of ^ ( t  -  

I )  that the second and the third runs differ. CASE 3 Has run on a doubled,

64 * 64 • 32 grid, with a Lundquist number of 4ff,

I .  B c * 8, f .11.

CASE 1, the run Kith the large value of B3, la an Inhibited simulation, Af­

ter a brief burst of activity, He find that the nodal transfer quickly becomes

almost exclusively two-dimensional.

1. Geometry,

The simulations themselves are performed In a three-dimensional bos in physi­

cal space, with a box of identical magnitude In Fourier space. We find it  most

useful to focus on a few slices In the cylinder, rnhen displaying our solutions.

In particular, the ones shown here w ill be the (s.p.e^tt) slice, a "poloidal 

cut*, and the (x,z,Ya^/2> slice, a "toroidal cut"; see Fig. 4. I t  Is con­

venient to remember that the In itia l magnetic axis Is a dot In the middle of 

the poloidal cut, at (x a y a^ ) ,  and la a line up the center of the toroi­

dal cut, at (x ■ TV/2).

2. In itia l Conditions.

He use these slices to display contours of the In itia l conditions, in Fig.

5. The cross-sections are the poloidal (x,y,zaTT) slices, while the series of 

parallel lines are the TT/2) slices. The externally imposed magnetic

field points along these contours, Hote that the contours of in itia l vector po­

tential, and of current, are very smooth and unperturbed. A poloidal cut of the 

stream function suggests a velocity field which is random, and of not much
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strength.

The In itia l omnidirectional energy spectra ere displayed In two ways, in 

Pig. 6 To the le ft are "mountsintop plots", where the contour values ire 

chosen i t  equally spaced Intervals. To the right are "potters of I *  plots: con­

tour values chosen here ire separated by powers of two. Also, this colunn of

plots are all contoured with the some values, a feature which enables us to see

equal levels of swell scale spatial structure In the kinetic energy, the wag- 

netlc energy, and in the combined, total energy.

This type of diagnostic is useful for two reasons. One is that by eiamining 

the spectral plots we can lmmedlately detect where west of the wagnetofluid en­

ergy Is centered In the computation's Fourier space. The other, less physical 

reason, is that by frequently observing these plots, we are able to see the wag- 

nltude of swell scale spatial structure generated in the slwulatlon, and conse­

quently determine if  noserical resolution is grossly exceeded.

3. clobal diagnostics.

He also find i t  useful to consider the global quantities, as t  function of 

tine. For instance, we find the kinetic energy to be the lost valuable herald

of Interesting activity; see Fig. 7s. Magnetic energy is less sensitive; the

overall decay of the wean current is the dowlnant feature of this quantity, 

as way be observed in Fig. 7b. A ratio of kinetic to magnetic energy w ill often 

highlight the relative amounts of activity in the two fields, plotted in Fig.

7c. By Monitoring the net, volume averaged current * Fig. 7d, we can see that 

the integrated current in the cylinder does not decay Much at a ll during this 

simulation. The change of magnetic energy with respect to time varies as the 

square of the current; this quantity shows us, in Fig, 7e, that magnetic en­

ergy wears away smoothly, and without any periods of enhanced dissipation.
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He consider this run to be * non-disruptive one. since no disturbance is 

able to rise up out of the In it ia l, very low-level noise in the velocity fie ld , 

and grow to dominate, The current column kinks a snail amount, but only 

that, The major activity in the simulation, long before mc terminated I t ,  was 

the unrelieved Ohmic decay of the magnetic field.

4. Calculating g.

Another diagnostic, one which might possibly explain why this run Is so un­

eventful, is the safety factor *0". fl has a formula in a right circular cylin­

der. In a cylinder of square cross section, however, I t  must be obtained numer­

ically.

The standard definition for the safety factor, Q, in a fusion device is the 

number of times a magnetic field line winds toroldally divided by the number of 

times the field line winds pololdally, in the Limit of an Infinite number of 

windings (cf Bateman 1970). He apply that definition here to a cross-section in 

which neither of the coordinates (x.y) la ignorable. The key feature of our a l­

gorithm is that we use the equation for a magnetic fie ld  line to obtain the ratio 

of toroidal (z) distance traversed to a tingle transit pololdally.

At any instant t> the sfne-Strausa code produced a vector potential A (k . ,k ,, i , t )

for a ll Fourier coefficients k?( k^ *  I .................N; 2 tU H -U /h.

He transform this array to the fu ll ,  complex Fourier space in b* , and k£, and 

read off the real two-dimensional array A(ky,k? to obtain ■ vector poten­

tia l which has been toroldally averaged. He use this array to form z-averaged 

values for B?tky,ky) and B?(fc>(kr), interpolated values for B *(n ,y) and By(x,y) 

may be obtained from these Fourier coefficients. For instance:
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where x and r  are not necesaarily the grid points.

Adding a constant n u ll  increment di to t ,  and generally starting at a grid 

point i  +  ■ tt 1/mp y -  16 tt/32, t  ■ I ) ,  ) t  (j)/2,H -l), we step along a magnetic 

field line by Hina of the equation

After one loop poloidally, we find ourselves back within the computational (x,y) 

elemental grid square from which we began the circuit. He then calculate, for 

one tr ip  around the center of the square.

for moderate distances off the center of the square at 1^ / 2, ^72), this Q-velue 

is nearly equal to that given by the formula for the q-value over a length L of 

of a straight circular cylinder,

where Bg - Bc , r *  (*V2 - a) and B ^- M * .v  bT172). Typically, we plot Q vs, 

a for the region of interest.

Upon calculating *0" profiles for this run, we find that they are smoothly 

Increasing functions of distance from the magnetic asls. in itia lly , the "Q * 1" 

surface Is within the plasma, in Pig. Ba, but by t * 6.82 the surface has left 

the plasma, never to return, as displayed in Fig. Bb.

5. Quiescent results; t ■ 6.82.

Contours, Fig. 9, at t * B.82 show a largely unperturbed state,

Spectra at this time, Fig, I I ,  yield the information that most of the

A t
a * )

Q ■ U  distance stepped) / ( length of the square cylinder).
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energy id located In the k ^ *  I  nodes, the two-dimensional ones. This re­

sult substantiates the two-dimensional work of Sheballn, et al (1983), In 

this geometry.

C. B3 -  4.3, f  .11

This simulation begins with a ll the sue parameters and conditions as the 

one )ust presented, eicept that here B0 * 1,3, Instead of 8.1. Here, after 

only a fen Mfven transit times, an unstable "m=l*, “n*lw node rises dramatic­

ally out of the noise, and cues to dominate the velocity field. Current f i la ­

ments form, and helically wrap themselves around the magnetic anls, The f i la ­

ments contract towards the outer rim of the disturbance.

Hear the time of the firs t peak In kinetic energy, the current profile 

abruptly becomes f la t ,  with much small scale spatial structure visible in the 

shell of the current column.

The kinetic energy decreases, then, and current filaments again form, to 

once more wrap themselves about the axis. The helical sense Is s t i l l  counter­

clockwise, the hellcity of the In itia l unperturbed fie ld . The dissipation has 

brought about a decrease In the amplitudes of higher order Fourier modes, how­

ever. This time, the run soon becomes quiescent, with the disruptive behavior 

a feature of the past.

1. 0-Profile at t  ■ I .

Again we compute an in itia l “Q" profile, to find that "(T dips well below 

unity on axis. This Is perhaps unrealistic for a tokamak. He feel that this 

choice Is Justified for two reasons. The firs t is that, since this is a freely 

decaying run, the in itia l current must be quite peaked for us to observe any 

disruptive behavior before Ohmic dissipation becomes overwhelming.

Heat, note the value of *C” near the m il of the cylinder, In Fig. 11. This 

value is not so unrealistic, nor unreported. He may allow, then, that this "Q"
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profile eulsts within the rtalw of the possible, for *  tokawak ( l i u i .

J. Global Quantities.

The global quantities of this run suggest a mch different history frew 

the dynaaics of the previous run. He observe dramatic growth in the kinetic 

energy, energy which rises orders of Magnitude above its  in itia l value, in 

Fig. 12* .

He find this quantity points to tiaes of disruptive activity in the magne- 

tofluid. In the following sections, we eitiilae contours and spectra during the 

periods of enhanced notion, to esplore this activity.

Again, we note that the integrated current, Fig. 12h, does not vary auch

through the run, although steady Ohiic decay of the aean profile is occuring, 

as aay be seen In Fig. 12g.

3, A Time History of the Run. 

t -  4.44.

He follow the developaent of this eruption. Contours at t >4.44, Fig. 13, 

show that the current has begun to kink about the axis, characteristic lobes 

of the "a*!", “n - l“ pattern have grown out of the noise in the streaa function, 

a poloidal cross section of which is shown. Rote that the vector potential con­

tours are hardly distorted fro* their In it ia l state.

I f  we tale a closer look at the poloidal cut of current density, by weans

of a three-dimensional perspective plot, Fig. 14a, we find that the current pro­

f ile  has developed a fla tte r region, in the side opposite to the current maximum.

He are also able to examine the behavior of the three-dlwenslonal Magnetic 

field lines, by weans of a fie ld  line tracing code. The code, written for this 

problew, eaploys a third order Lagrange interpolating polynomial to obtain 

values of the aagnetlc fie ld  between cosputatlonal grid points. He follow the
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line by veins of eqmtlon (21). storing i,y  values etch tlae the followed field 

line spirals through the i  «tt plane. Results fro* thU code are plotted in 

Pig. 14 b,c. In Fig. 14b we see a closed, crescent-shaped figure emerging, 

while Pig. 14c displays mother shape, that of an oval, centered on a different 

i,y  point. The crescent corresponds to the flattened region In the current per­

spective plot, and the oval surrounds the current aa iiiu i.

The "lountalntop plot* of the kinetic energy spectrua shows that the pertur­

bation Is predoalnantly in the fcj ■ 1 band of wavennabers, and that a variety 

of perpendicular wavenuibers combine to fora the "■■I* lobes, 

t -  «.ti.

At this later tlwe, contours of constant current are seen to trace an even 

greater disturbance, as shown in Pig. 16. Again, the vector potential contours 

are only slightly rearranged, He observe that the street function aiplltude is 

increasing, consistent with the tlae history of the kinetic energy, 

t *  7,fl.

The street function lobes have grown In uplitude, as u y  be observed in 

Fig. 17, as has the velocity field they ltply. In the (x ,y ,t*rr) plane, this 

field points in the direction of the current aaslant.

He see that the current filatent has begun to tighten up, the helical f l la ­

tent pulling toward the periphery of the disturbance.

Again, the contours of constant vector potential are only slightly disturbed.

by spectral plots, Fig. lb, we see that the "a ■ 1. n ■ I" tode is growing 

In strength, with tore and tore Fourier coefficients nonzero.

I t  is quite apparent that the vector potential is very unperturbed, when we 

look at the "blow-up" of the toroidal cross section, in Pig. 19a. At this sate 

tlae, the current cross-section, plotted In Fig. 19b, is quite perturbed. The
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current Is the negative laplacian of the vector potential, and as such, displays 

the activity of the snaller scales lore clearly, He see here that there is 

>uch snail scale spatial activ ity , particularly in the neighborhood of the cur­

rent maximum.

Poloidal cuts augnent the view cited above. Contours of constant vector po­

tential, plotted In Fig. 20a, are very saooth and nearly unperturbed No hint 

of a magnetic island can be found. As above, we see a distorted current,

Fig. 21b, with the maximum drawing its e lf towards the outer edges of the per­

turbed region.

Poincare traces through the x, y, z = rr plane, at this tine, display the in- 

formation that lines of the magnetic fie ld  lie  on surfaces much note closely 

paralleling surfaces of constant current than constant vector potential. Three 

separate traces are plotted in Fig, 21. only the smallest, closed oval, forms 

In a clockwise sense, indicating a safety factor q < 1 in that region, 

t  = e .76.

At this time, a l i t t le  after the kinetic energy peak, the current has be­

come quite broad and widely f la t, in Fig. 22. Only a vestige of the hells re­

mains. This flattening of the current we find to be a nonlinear process, and 

one in which many Fourier coefficients participate Even at this lundquist num­

ber, of 100, we see (well-resolved) small scale turbulence, particularly in 

the neighborhood of the vestlgal current maximum, 

t = 0.02.

I t  is interesting to note that current density perspective plots, at t =

0.82, Pig. 23, depict flattened profiles, with only a small positive blip in 

the vic in ity of where the current maximum had been. To the outside of this 

steepened current is a current "dip", a well-llke region where the current nearly
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Jetft negative, 

t -  11.98,

We can see In Fig, 24 that the mailiua velocity fie ld  la now feinting In & 

direction oppositely to the my I t  had pointed previously. The current f i la ­

ment, es well. Is kinking up everywhere opposite to its  previously perturbed 

state. Kadomtsev's (1975) conjecture of saturation followed by e long period 

of guiescence Is apparently not borne out, in this geowetry. 

t  -  17.52.

The stream function lobes now eshiblt a shell-llke pattern, In Fig. 25, 

with the newest "w -  1" pair at the center. Very l i t t le  1ft happening In the 

current, and even less In the vector potential. The contour plot of the vector 

potential (x ,y .zE'rT} at t -  17.52 shows that the si nul at ion la In a near equili­

brium state. At this sue tine, the current (x,y,ftEir) depicts an only slight­

ly perturbed current. This is the final solution of the run.

i t  is  Interesting to note that as the poloidal magnetic field strength de­

creases and the effective toroidal field strength increases, the n u l l  scale ac­

tion becoaes no re and wore two-dimensional; see Fig. 26. Again, this is what 

we would expect froa the work of Shebalin, et al (1903). These spectra way 

also be viewed as evidence that the Strauss approximation Is valid, for the con­

ditions.

4. Additional Diagnostics.

Something of the run's history can be seen In a time series of plots of 

versus radius. In Fig. 27. "Q* near the asls i t  r 1 ^T/2 increases until after
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the firs t kinetic energy peak. At this tine, the Q » 1 surface can no longer 

he found in the magnetofluid. Then, ”Q* dips slightly, for a short tine. Af­

ter this, it  resumes its resistive rise.

Another way to obtain a global view of the run is to consider the energies 

in various k^'s. In Fig. 2B. Kinetic energy is plotted with a dashed line, 

while magnetic energy is plotted with the solid line. The "1=1” , " n - l ' 1 node 

grows up In k^ * 1, as a ll the spectral plots have suggested. That post of the 

kinetic energy la located in this Havenunber nay also be seen In Fig 26a. The 

Magnetic energy of k , = 1 and the kinetic energy of fcj E 1 are just about 

exactly out of phase with one another.

Enhanced excitation near the tine of the disruption nay also be found in 

the energies with k B = 2 and fcj = 3. While the k? ~ 2 energies peak at slight­

ly different tines, the nodes in the k ^ *  3 band are excited simultaneously, as 

nay be seen in Figs. 26 b,c

Although the energy scales down by n factor of ten in each plot, i t  is clear 

that this phenoieno* is a nonlinear one, in which nany nodes participate, in 

order to discover how nonlinear this disruptive process cm be, at Lundquist 

numbers of only 111, it  is necessary to consider the linearized Strauss equa­

tions. Results fron simulating the linearized Strauss equations, using these 

CASE 2 parameters, are discussed In Appendix I I .  A comparison among linear and 

nonlinear solutions is set forth there.

D. -  4.3, 9 .1125

We move on now to results from a large grid run, CASE 3. The in itia l con­

ditions ire virtually identical to the previous nonlinear run discussed above 

Here, however, we choose a Lundquist number of I I I ,  on the grid of size 64 * 64

* 32 .
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1. Global Quantities.

An immediate difference fro* CASE 2 ia seen in the plot of kinetic energy 

versus tine, In Fig. 29, Instead of only one kinetic energy peak, nore than 

one was attained. The plot of J*j versus tine Is also qualitatively different: 

the j* )  peak points to a t iie  of enhanced dissipation of magnetic energy. This 

enhanced dissipation is even visible on a plot of isgnetic energy versus tine. 

Finally, i t  is interesting to note that the net current does not change much at 

all throughout the run.

2, A Time History of CASE 3. 

t -  I f  32,

Like in the Lundquist number 111 run, the current develops helical f i la ­

ments, which wrap themselves about the magnetic axis, as nay be seen in Fig. 30. 

A negative filament has formed, to the outside of the inner, very positive one 

A three-dimensional plot of the eurrent(x,y,z-iT ), Fig. 31a, clearly shows a 

rippled current profile, whose maximum is no longer at the geometric center of 

the cylinder. The developing negative jet is also visible, a s  in CASE 2, we 

observe the suggesion of a variety of closed regions in the t  = ^ plane

Poincare plots of magnetic field lines, Fig 31b. Here, too, a crescent shaped

figure corresponds to a pronounced current shelf 

t = 13.24

In Fig. 32, we display close-up plots of current (37a), velocity field 

(32b), and poloidal magnetic field lines (32c), From Fig. 32a we see that the 

negative current sheath lies very close to the most positive part of the cur­

rent. A small disturbance is set up in the fluid to the outside of this sheath, 

with a velocity field pointing toward the current je t, In Fig 32b, Poloidal 

magnetic fie ld  lines, in Fig, 32c, are strongest in the neighborhood of this



6*

■heath. 

t -  14.52.

ha In the Lundquist number IN  run* the helical filament of current has 

nearly removed Its e lf fro * the current column, at this tlae, a tlae near the 

f irs t large kinetic energy peah, Pig. 33. Much saall scale spatial structure 

has developed, with a shallow negative current "■cat” encircling a positive cur­

rent sheath. Nithln this region, the current Is relatively flattened.

At this point I t  is necessary to add s warning about the resolution of this 

Lundquist nuaber 16) > 411 simulation. I t  Is clear frow Figs. 33e and f  that 

wodal energy spectra are very well-behaved even at this tlwe. The simulation 

is fu lly  trustworthy, in sU its particulars, through t -  12. Beyond this tlwe, 

nuch small-scale spatial structure is generated, and the current density dis­

plays an Increasing tendency to ’ le t1 wore and wore, both positively and 

negatively.

Since the energies remain fully well-behaved, however, I t  Is highly like ly  

that this run may be trusted throughout, as far as gross suggestive behavior Is 

concerned.

The question of why the simulation slightly exceeded Its allotment of reso­

lution may be raised. Most probably, S ■ 4Pi is soiewhat too large for a grid 

of 64 * 64 * 32. A narrower internal layer than could be resolved attempted 

to evolve. Increasing the grid (to an lipossibly expensive size}, with this 

value of E, would cure the d ifficu lty .

A three-dimensional plot of the current contours of the previous contours 

show the intensity of the negative je t, as well as an abundance of small-scale 

spatial structure. Random nonuniformltles are particularly observable to the 

outside of the current column.
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t -  16.26.

vear the local kinetic energy minimum, the current profile once again 

displays *uch internal structure in Pig, 3S, The column la in the process of 

kinking up In a My opposite to its previous helical deformation, as even the 

toroidal cut of vector potential indicates.

The sharp, forming current c l i f f  is visible in a perspective plot of cur­

rent density. Pig, 36a, as dell as the overall asymmetry in the channel Itse lf, 

hotice the "hole" near i  -7T, y ■ t i  this demonstrates the overall distortion 

of the current column, Pig. 36b show crescent shaped Poincare' plots of mag- 

netic fie ld  line traces in the i  " it plane, 

t  ■ 17.46,

Finally, we consider solutions near the second kinetic energy peak, in Pig, 

37, Again, lost of the current variation Is located in the outer regions of 

the column; within this shell, the current is once again quite fla t.

He can lMglne this oscillatory process, perhaps reminiscent of the Incom­

plete disruptions observed by sauthoff, et al (1979), continuing Co; longer 

periods of time at higher values of the Lundquist number.



VI. LOM ORDER MODEL

In the disruptive results from free decay simulations, reported In the 

f if th  chapter, an "■ * 1, n * 1" large-scale node is seen to grow and eventual­

ly dominate the dynamics, In conjunction with euch saall-scale turbulent struc­

ture. For a clearer understanding of the process, the Isolated Interaction 

among the largest scales In the evolution of the disruptive behavior can be 

studied, by means of a low-order truncation model of the Strauss equations.

In this chapter, we derive such a model. Me then add a forcing tern to the

vector potential equation, and a viscous term to the streaa function equation,

and discuss consequences these new terns night imply. Analogous studies of the 

possible transition to disorder In the Benard convection problen have been per­

formed by Lorenz (1963), and most recently continued by Curry, et al (1904).

A. Implication from code Results.

Itearly a ll contour plots of the velocity stream function generate the sug­

gestion that the dominant k ^ - 1 mode is of the form sin(x)*sin(2y). This sug­

gestion may be substantiated by the esamlnation of numerical values of these 

modes. Although the largest mode Is not always (ky * 1, 2, k j *  1)

or ^ (k * ,  -  2t ky ■ 1. k; * 1), a linear combination of this pair nay general­

ly be found to contribute more to the mean square stream function than any 

other single modal element. The same Is observed to be true of the vector po­

tential. Bence, we approximate the “m * 1, n ■ 1" disturbance as sln(x) *

i ln (2y) * esp[ ± lz 1 and sin(2i )  *  sin(y) * eap[ i i i ] .

The largest mode in the k  ̂-  I  band of mvenunbers is A -  1, k^ * 1,

It j *  I) .  An examination of the k ^ *  I  part of stream function solutions shows
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th it only very low order noise exists In this wavenuaber. He thus take 

A r (k> E 1, iy  * 1, k-L* f ) to be the only node retained In the I  band.

B Truncation Model.

He begin with the Strauss equations (9) and ( I I ) .  Writing each te n  expli­

c itly .

122 )

Por h m , we set 'tJ e Ep ■ I .  

Let

A t U ^ - o 1) 7 A ° - (X St *  x j

with ■'j & ■'i r

-  ( A t o i  X SitV.^

Although ne w ill show that lore general combinations are allowed, let the 

pair of counterclockwise helical perturbations be the following:
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g C v Sf/i Sif S iif ly  ^ l ]

->

r 1 - r i
^  ■& i-j '  ^  L S> (1 0 S î  i? (Ji l  + £  S f n /  L > ( (5 ^  5 k *  £ j

^ 3  ~ *  T v  ■ '  C 2  O v  o?V +- L^t > JivLfT^ £ J

^  f  ̂ t 2 i^ h \j " t i V ' l  3

V f " ■ f l y " ' -  ' £ I  f a *  ^ 2y s ^ y  ]

These yield

6o = Od(kt --1) - ui '  - 5  p j

i  ~  ^ r  ^  -  j  (-|< r - |') 1 ;  • ' A ’ ' ‘  "- c A k ^ b -  f

He find ttiit only the k ^ E 1 dependence survives in equation (21), since

B> ■ C B ^ I t C b / *  6 / 3  I  3 8 - / - £  e / 3

^  - t By3[ ~^ + "I^J  ̂ f By* '  6y' ] [  S 6 / -  3 f->' ]

e / B v ] ,

- i - l l i  -  v 5 f t1 I  l i r  "  7 ^  ’ -/V ' " ;

Further, since -3S—  5 * 3 .  (21) becomes
"U  CP



ts

2>iol
I t  '  s U > ' E / -  6 / 6 . , ' ]  ♦

The nonlinear term In (23) u r  be reMritten,

tV  ^  ' ' C <* ^  )  (  U

A ^  &> /  j  i  ;■ (. Oav ^ s^v. ^ ) j  C&r £

■‘‘p - J ,  i ^jv. £
(

j F

r-. D n  1 /  '  N /  < t '■,
£ \ &  "- " <■ ^ > ( f' ' % '  )

0 « [  ( W . /  >  I , )  I  «. S * \ f r

(23)

0  <* &

By h a m  of trigonometric identitiac t  end G My be re-taprcased:
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dW r
S t  3 t  B>'  - e > " 6 j ' 3  + 5 > B , ^

The nonlinear tens in (23) may be rewritten
■ I

^  L ( *"}( U ri ^ S * iO  J C rt B

f>'^ J ,  t  f  r v ,  *  ' *M ' > J (  n  /  > > ,  r ’ "] ''S’ - ?

E /  -- -  ( a  V ^ )  (<* i E  )

" f (  W - /  :e , /  ^

(3 A &  [  <. ^ k r  1 2^v r  ■ } \  _ > t  * ' j L v . y )  j  _ > v  t

A  & &

(23)

By K ins of trigonometric Identities F and G may be re-e*preased
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F - ' *f C  ( Si'a + Si*\ >0 Siiw "} COi i

*\ C 5 ™  *zy  5 1 ^  i

fj, V  -  ^  ^  C "  (  S ifl Sja 2y ■* Sm  ¥  %) *  2 \ j ' )  C o i  t

2 C Sun 2 *  Stv 3^ — - / *  S i ^ z l

t \  "*15  Vvi ? *  (  S w  y  +■ S ^ 1, y  j J  > , s

^  Z  C  V -  S i w  X  ^  5 > : n  Z y  3  L i ^ W

^ tA £  “ ^  C  *+ ^ Sw ^7 Sk* ^y + Svnrt 2/  i-kWy') Sk/i 1

'  I  ( =Sx 2 J -  2 y ) tes t  1

Thus,

*  A  (  F  ^ 3  - '  -t ^  C $ v *  3 x  S k v -2 y

Neglecting tens with k, , > 1,  we hive

S i A 2 k Jrtn 3 y  ': kv. t  J

J lh L  -  p e n  ‘TA* 1
t - t  L 0 *  ^  $

(33-)

r

No n , c o n s i d e r  ( 2 2 ) j

' i t + ^  W & y ' -  v 9 y  4 Iki' By3 -  y ' G / ' t

^ V * A J « ^ I7 iJ A

This separatee Into an equation for the k  ̂ ■ 1 component of hi
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and an equation for the k? ■ I component of A:

- I / ' Bm1 -  v ’ E , ’ - -  (JS)

As above, m  compute terms of (24):

ve^* = -

(  ^  i/tr. r  i  J  9  r  v  K  3 ? f  4  i  3  (V \ ?

^  . , , C >- s

r  ^  H

v ' ~

- ~ £ ( (1*1'V Stnflf , ,5l/V\ ?■■> -:^ .,0 "3 (-'i?
-t 5 f  j ,  \  .. *■ - ' ^ , j-; /> j  '" .- p  3  ^ -v.

llainq trigonometric id e n t i t i e s , me find that

i-\ '  ; [. t  2

1 ^ [ (  S|/IA ' i v   ̂ ‘m  nV ") >  I ^  *  y  3  s  l/v, £

^  " “ ~i\ C 5 ^  2v V  ̂^  ■ r *■ S yv1 . 3  l J ■> ?

4 ;  L \ b'.A* : v -  ■:.. *-■' ) ■ -v, ~' i  -1

It
'



68

5 ( ^ 3 /  2 y 3

Again, neglecting terms with k  ̂ , k^ > 2,

a ’ 6 / -  V B A

Since . fcjl , (24) becoaee

^  = r ^ f

-  r 
T B t

Terms of (25) may be rewritten;

, ■,; ■ _ ,- ,- c =i -■. f S I  \

A b 3 " '■ f  ' 4  lk & * *  >

(2 D

-* O ^  C z l  ( ^ i - V i V  ' , i  2  y  S l 'Vvy 'j  v J-< S Z

->Sv j ( y  S m 2y3 SwiHY 1

or

V 6 y  r  ^  p/ £  ‘  H  ̂ ^  2 ' X  (S.'W » 1^ S ^ V ,  j  C : i - 2 y ' )  I  ' b ^

4 i, i-fft- V SiA* 2x 3 L T- ss . s - y  ■-JS j ' )

u ’ e a ’ - t ' E y ' '  n f .  f -

p(  f. r
\  V ^  ^  3y  -

+ 2 U  Ŝ v, + s n * O L -■'■ _ -■■•'■ '1?3

-  X̂ b^VlV ^ --V y  ^

where we neglect terms with k>( k ^ >  2. kf > 1, 

Equation (25) becomes
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(25*)

Or, (23’ }, (24') and (25') are;

(26)

<27)

(20)

1. More General Perturbations.

In order for (2G) -  (28) to be useful, the perturbations nonllnearly gen­

erated by the large grid code n e t  be compatible with the form assumed by the

equations. Although the form A ' * ^ f ,  pg la assumed In the derivation, 

more general perturbations are also allowed.

numerical values for the dominant modes with k * , < 3, It -  < 2, in CASE

2,  are listed in table 3. Other cases eshlbit esactly similar behavior. From 

that table i t  la apparent that k > t  < 3, <2  perturbations are basically

of the fora

A ' - -  « ( - (29)

(31)

where, as before, |  r i r  Skv-,y ( O U  + > ^1
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2.  Demonstration of Applicability.

Using {29) and (31), we recompute ter is  that for* equations {23'), (2 D  

end (2 5 ') . Starting with (2 3 '), where

6 / « r - * ¥ * ♦ £ ^ 3

V ■ ^ ^ - 3

W - p [ - s / i
“  ^  J

V 1 ■
■ - ■ p t - ■ 1 -

the nonlineer te n s  bee owe

Bf By" - - A I  ■ ^  ■* £ ^  J A ■%

- •* a  Ca  & f  ^  "%y" ]  “ ->. L '< * ^  1

-  C "  i f  -*  >  H i  ]

“ *  e / e ^ 1 - 1-■ ( * . C i ¥ ■  ■ - <i  < - *  - )

Th“ “ ’ 8 , ' 6 / -  6 / 6 /  •= - <x-U  C p ' £ .  j  -  n - I  J

-  T - a - v . i ' j  -  3 -  ( X ^ e f

where as before we neglect terms with k^ , k^ > 2.
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Also, ^  -t E Thus, the fori of (23 '),

or equivalently ( 2ti), Is unchanged.

The lore general perturbations also generate eqation (24'), as way be seen 

by considering

1 + i ^ j j  V  + t  \  B f . / X  \ - C  F - £  h ]

and

v% ° -- f a [ < ^

That is,

u H v rB* 0 - % j ,  L - c f * f ^  £ h 4 £ I  ]

"  I, - ,., -1 F -  L f. r \  *' I

_ir f *  - < r  c i J
where again we neglect te ru  with k^ , k . > 2 ,  Further, since -

f o £

, the fora of ( 2 D .  or equivalently (27) Is s t i l l  valid. 

Finally, we consider (25*). The nonlinear tera, V'G1̂ - v16,', aust be re­

evaluated. Using the notation of above,

i / B - , ' -  / e „ '  =

-  K P  C -  h  I ' l

where we neglect te ru  with k^ , k^ > 2, k^> 1. As long as we lapose the
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c o n s t r a i n t  t h a t  [ = J ,  »  r e s t r i c t i o n  t h a t  we a r e  f r e e  t o  demand,  t h e

f o rm  o f  ( 2 5 ' ) ,  o r  ( 2 0 ) ,  i s  a l s o  u n a l t e r e d .  Thus t h e  f o r m  o f  p e r t u r b a t i o n s  g e n ­

e r a t e d  f ro m  n o n l i n e a r  s i m u l a t i o n  a r e  n o t  i n c o m p a t i b l e  w i t h  t h e  f o rm used i n  t h e  

d e r i v a t i o n  o f  t h e  l o w - o r d e r  t r u n c a t i o n  m o d e l ,  e q u a t i o n s  ( 2 6 ) ,  ( 2 7 )  and ( 2 6 )

F o r  t h e  p a r t i c u l a r  CASE 2 ,  &  and  6 a r e  g r e a t e r  t h a n  z e r o .  I f  t h e y  w e re

o f  o p p o s i n g  s i g n  t h e  same r e s u l t s  w o u l d  be o b t a i n e d ,  as  may be seen  by s e t t i n g

+ £ t o  - i  e v e r y w h e r e  i n  t h e  a b o v e  d e m o n s t r a t i o n

C R e s u l t s  f r o m  t h e  M o d e l ,  l 0 = 0

Tn t h e  i n v i s c i d  decay  p r o b l e m ,  o n l y  one c r i t i c a l  p o i n t  e x i s t s ,  w he re  by 

c r i t i c a l  p o i n t  i s  meant  s o l u t i o n  t o  t h e  t i m e - i n d e p e n d e n t  e q u a t i o n s  ( 2 6 )  -  ( 2 8 ) .  

The c r i t i c a l  p o i n t  i s  ( p ,  o r . O t )  = ( f ,  i .  * ) ,  a s  may be seen  f ro m  t h e  f o l l o w i n g :

n o t  a l l o w e d .

1 L i n e a r .

I n  o r d e r  t o  o b t a i n  i n f o r m a t i o n  a b o u t  t h e  b e h a v i o r  o f  s o l u t i o n s  t o  t h e  l o w -  

o r d e r  m o d e l ,  we f i r s t  examine  a  l i n e a r i z e d  v e r s i o n  o f  them S i n c e  i s  t h e

a m p l i t u d e  o f  t h e  e q u i l i b r i u m ,  h ( s i n ( x t # s i n ( y ) } ,  i t  i s  r e a s o n a b l e  t o  t r e a t  as  

a p a r a m e t e r  E q u a t i o n  ( 2 6 )  and  ( 2 7 )  become a p a i r  o f  l i n e a r ,  c o u p l e d  o r d i n a r y  

d i f f e r e n t i a l  e q u a t i o n s ,  and t h e i r  s o l u t i o n  i s :

E q u a t i o n  ( 2 6 )  => 0  -  B e *  -  I r L  f t

o r

F o r  s i m u l a t e d  ( p o s i t i v e )  (K and  B0  , ft wou ld  h a v e  t o  be i m a g i n a r y ,  wh ich  i s
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for * \  ’V] - \  H  Xi>

where 3  -  Bu-  ^  t  md C ; ^  C \ ~  & j

To understand what this solution does a* a function of the parameter <A. 

firs t note that, generally, the only c ritic a l point of (26) and (27) la ( £ *  f ,  

I ) .  The behavior of (29) can be deteralned locally In the neighborhood of 

( f , t\ ■ |)  by considering the eigenvalues \ + ,

Fron Bender and Orszag (1979), we know that;

IF At ARE
1............................- ..................... .........
1 TRAJECTORIES 1 (p ■ I ,  ^  -  1) IS

both real, 
both < l.

1 a ll go to ( fs ■ § r oi 1 1) i t  1 
I function of t i ie . I • stable node.

both real, 
A* > 1, 

*■

( go to ( (i -  #, ft * 1) in the 
I direction of v . ,  and leave in 
1 the dlrection~of v t .

j a saddle point.

coaplex conju­
gates, with 
real part c f .

I spiral to (£  -  1, ■ S) as a 
i function of t i « .
(
1..................................................... —

1 a stable spiral,

(there v * is the vector which corresponds to At , while v . is the vector that 

corresponds to .

For j (>  I t  /  9, an unrealistically Urge value, \ t  suggest that i f  - * ,

d  * #) is a stable spiral. By setting to zero, Is seen to be a positive

function of ^ f or the spiral is counterclockwise, as way be observed in niiaer-

ical solution of (26) and (27), where we have used the second-order Runge-flutta 

scheie on the t lie  derivative.

Wien ^  M *  Be / 9, with ( 6/ ^ y ^ - ^ V . 7 ,  <P" * .  *> be­

comes a stable node.

For A - I *  8 j i  9* £ “ constant, with ) -> 2 B , r / ( l 5 - ) .



n
In the region 4 Bj /  3 i  A  < 2* Bu /  J, (  ̂ *  * . ex. *  I )  Is a saddle point. 

Trajectories enter the region of #, <x *  ■ ) in the quadrants,

with « Halting slope of

et _  2 t  \  a.- e , ] ____  _____

& * y v * * v * 4 ^ k

and leave the neighborhood of (p  r l , f t»  I )  in the { +  ̂ ) quadrants, with

a Halting slope of

t  ^ 0- - J

^ &-V1 + r,|/ i  5 4 J 'a )

This behavior nay be seen by numerical solution of (26) and {27), depicted In 

Fig. 41.

When -a ■ 4 B„ /  3, % * arbitrary constant, while w(t -> ■* ) -> #.

For / t  4 Bn /  3, the other root of *r-v/+ I  j> f. ;  ̂ o turns the

critica l point -  I ,  c\ -  S) into a stable node.

I f  J .  {  4 B„ /  3, (j3 * I ,  ft *  • ) is once again a stable spiral; fro* <\* ■.

< 1 , the solution may be seen to spiral In a clockwise sense, as nay be ob-
d t

served In another numerical solution of (26) and (27), shown In Fig, 42.

2. Nonlinear.

When equation (26) is solved simultaneously with (26) and (27), the beha­

vior of ^ and 6 in the neighborhood of ( ^ *  * , ^  -  I )  s t i l l  lust vary as a 

function of A . For instance, as \k decays froa an in it ia l value greater than 

4 t n  /  3. but less than 21 B3 /  9, the solutions A and £ firs t behave in

the neighborhood of (^ ■ I ,  c\ “ ■) as I f  that point was a saddle point, then as

if  I t  was a stable spiral. I f  d  and £ are not very snail, they neasurablv 

modulate the decay of These behaviors nay be seen for a few in itia l

conditions and parameters, in Fig, 43.



D. Comparison with Code Results.

In order to compare the behavior of the nonlinear fu ll-grid  simulation 

results with results from the low-order model, we obtain * p *  and %  " from 

the fu ll-g rld  stored solutions, as Indicated in Table 3. The " £ ", * and

u from CASE 2 are plotted in Fig. 44. Solutions of (26) - (28), from 

conditions and parameters of CASE 2 are plotted In Fig. 45. Although the 

agreement Is only qualitative, I t  is noteworthy that even In a model baaed only 

on the very large scales, quaslcyclic behavior of the solutions Is observed, be­

havior In which both magnetic fie ld  and velocity fie ld  perturbations partic i­

pate. However, subsequent bursts of the qmsi-cyclic activity are unlike the 

f irs t;  p and oi both grow together only in the firs t event of the series.

He must turn to driven simulations in order to observe repeated, slmulta-

Eh The Addition of a Forcing Term, the Eitemal Electric Field E; .

i f  me add a forcing term to the Stranss equations, by setting E;j to a posi­

tive constant, the mean field cannot decay to zero. I t  is physically meaningful 

for l 0 to be non-zero; an electric field is Imposed at the walls of most fusion 

devices, to maintain the current. Hhen added to the fctreuss model, the driving 

mechanism can be responsible for repeated periods of joint growth of ; and , 

for suitable choices of parameters E6 , and ^  In this section, me will 

explore the behavior of the driven, invlscfd, low-order model.

1. The Equations.

The dominant sinusoidal mode in any positive constant would be of the form 

sin(K}*sln(y), -  I .  The driving term la added to equation (2B), then. He 

choose 2 and (26) becomes

neous growth of ^  and a

(36)
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(26) and (27) ire unaltered.

*> critical point exists for (26), (27) and (31) at ( p *  l ,  erf* I ,  (a -  I ) ,  

Thla point, by Inspection, U  replaced with ( 0 ■ I ,  jX -  l ,  ft -  £„). A multi­

tude of additional tine-Independent solutions exist; the line f m constant, 

with (j. • (a *  4 B0 /  3, and * *  I  contains the ( ^ * 1, ^ 1) c ritica l point as 

a special case.

Two additional critical points, ( * -  ^  , tx - , (A * 21 Bj /  9), and

( £ ■ , <* w , (/ . ■ 2# Bj /  9), also My be Identified, where

These points exist In the presence of substantial forcing, when 21 B̂  /  9 .

3. solutions.

samples of the dynamical systems behavior which My be generated by this 

driven, dissipative ays tea are shown In Pigs. 46 -  52. Table 4 Is a chart of 

the parameters and in itia l conditions used to generate the solutions shown In 

these figures, along with brief descriptions of the observed behavior.

3. The Addition of Viscosity.

I f  we add a dissipation term to the equation for the amplitude of the 

stream function perturbation, we have

where 'J * (kinematic viscosity) /  (VA Lfr), as defined in the second chapter. 

One critical point of the system (31), (27) and (31) Is s t i l l  { p * f , <*\ ■ I ,  

(A ■ 6 j). Interestingly, the line constant, ^ * I ,  and , >  I  B, /  3

no longer solves the time-independent system. In its place are two critical

I  = C B „ - '  f t ] *  -  s v p
(31)
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points { i  &. {/, ■ !M  ); two wire, (  ̂*  p^.), >X“ aM.), J. -  W- ) My

also be found, where

and

1

The latter pair of solutions, functions of reduce to the two non-trivial

c ritica l points of the driven lnvlscld model described in section ( 1) above.

This altered system, (31), (77) and (31), is explored In Figs. 53 - 55; 

Table 4 again accompanies the figures. Figure 55 Is of particular interest; 

exhibited there is a solution with features very similar to those found in the 

Lorenz (1963) model, for certain classes of conditions. Bote that the low order 

model presented here differs significantly from the Lorens model in that qua­

dratic nonlinear terms made up of the other two amplitudes appear in each of 

the three amplitude equations (31), (27) and (31), while in the Lorenz mode) 

such terms only appear in two of the three equations of that model.

sustainment of nonlinear behavior is observed in both the driven, Inviscld 

model, (24), (27) and (31), and the driven, viscous model, (31), (27) and (31) 

This sustainment ought to be a feature of the time-dependent solutions of the 

driven Strauss equations, as well; results from fu ll grid simulation of these 

equations is the subject of the nest chapter.



V I I .  EMULATION RESULTS. WUYEN

Of the simulations appropriate to internal disruption, which were discussed 

In the firs t chapter, most were performed In the presence of sone form of en­

ter nal forcing and variable res is tiv ity . These terms were employed to inhibit 

the resistive decay of the current profile. Two combinations were dominant, 

both of which imposed a resistiv ity  profile which varied as the Inverse of the 

in it ia l current density, of the simulations considered, only Bytes and Wesson 

(1976) then allowed the res ltlv ity  profile to evolve. In addition to the use 

of variable res is tiv ity , some simulations mere performed In the presence of an 

electric field which maintained a constant current (e.g. Hiahamp and Welter 

(19B3)]. Others (e.g. Waddell, et al (1976)) imposed an equilibrium toroidal 

electric fie ld , , at the well, which in it ia lly  set ^  j * e,v  or prohibited 

the resltive decay of the in it ia l current density, Although convenience is a 

primary reason for keeping the variable resistiv ity fined In time, Waddell, et 

al (1976) noted that since the Important modes grow up on time scales which are 

faster than resistive decay times, results should not qualitatively depend on 

the specific res is tiv ity  profile chosen.

In the simulations described In this chapter, the resistive decay of the 

In it ia l current profile  is countered. A resistiv ity  profile which varies in 

spice as the inverse of the in it ia l  current profile, approaching values of 0(1) 

at the walls, is chosen. Since the vector potential is poloidally expanded In 

sine functions, the value of this quantity is automatically sero in the very re­

sistive region at the wall. Hence, In order to prevent the resistive decay of 

the in itia l current profile, E0 !■ chosen to be a small positive constant which 

balances v jlft *  i )  at a ll the internal grid points. The simulation results

79
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reported in this chapter are fundamentally different from those discussed In 

the f if th  chapter, in that both a non-zero value of the enternal electric field  

E- l*  chosen for a ll runs, and a variable resistiv ity Is employed. Since the 

resistiv ity Is now a function of *  and y, the term In equation ( I I )  may not 

be generated in sine-Fourier space, but rather in physical space, Mith the 

other nonlinear terms of equations (9) and ( I I ) .

Three sets of conditions, CAGE 4, CAGE 5, and CASE 6 are considered. Both 

CASE 4 and CAGE 5 are simulated on a 32 * 32 * 16 grid, with resistivity pro­

files  i j  (a,y) -  [ 211 • e*p{ -1,2 (a - H /2 )1 -1.2 (y - t t /2 )1 } CAGE 4

and CAGE 5 d iffe r only in the in it ia l amplitudes of the current density pro­

file s , and the values of the enternal fields, and Er, , While CASE 4 has

, ( t  = 0 ) -  I® eypC-I .JCv- ’W - l  ^ - T V j ^  ,  E ^ 3  £„= ' 7 ’ SJ,
V

CAGE 5 is run with
r

‘  ^ & y f  t -  f l f r -17/ ; } 1 -r l y

Although the disruptive events occur at slightly different computational times 

In the two cases, the features of the events are very similar. CAGE 6, run on 

a 64 • 64 *  32 grid, Is in itialized with

In a ll  three cases, the vorticlty Fourier coefficients are in itialized with 

random noise of 0(11’ ") in a broad band of wave numbers, It x , k ^ t  L*. B), 

fc£ M l .  4],

In order to address the effects generated by the altered current profile, 

and the variable resistivity, we performed an unforced, inviacid simulation 

with CASE 4 parameters and conditions. This run, discussed in the third appen­

dix, displays features similar to the constant resistivity decay runs of the 

f if th  chapter, in that magnetic and velocity fie ld  perturbations firs t grow to-
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gather, then apparently attempt to oscillate In sign as the solutions rapidly 

damp to zero In the very resistive flu id . This pussi-cyclic behavior is not 

observed in the Invlscld, driven simulations.

Disruptive behavior la observed after only a few Alfven transit tiies  In 

the Invlscld driven runs of CASE 4, CASE 5, and CASE 6, followed by a nearly 

steady situation with sustained, f in ite  flow, which can be maintained for tens 

of Alfvln transit times. This state is reminiscent of that suggested by the 

low order model for the driven, Inviacid cast; solutions with constant equ ili­

brium amplitude .A , constant, arbitrary stream function amplitude p  , and a 

zero value for the vector potential perturbation amplitude c* , do exist.

CASES 4 and 5 are repeated with non-zero values of flu id viscosity. I t  is 

assumed that neglect of the no-slip boundary condition does not invalidate the 

results, since the relevant modes grow up far In the interior of the computa­

tional cylinder. Further, note that although a viscosity, or "smoothing* term 

is frequently added to the velocity field equation solved in many simulations, 

(e.g. Syfces and Wesson (1976); Strauss (1976); Ayefeir, Barnes, caramana, Mir in, 

Hebei, Schnack and Sgro (19BO), the condition generally Imposed on the velo­

city fie ld  is that appropriate for free-sllp, rigid side walls (Bykes and 

Wesson (1976); Strauss (1976); Schnacfc, Baxter and Caramana (19B3); Aydemir and 

Barnes (1984)). Upon the inclusion of a viscous term, a disturbance which is 

repetitive is here observed, with a period that is far longer than the periodi­

city of the free-decay bursts. In these driven, disruptive bursts, the velo­

city field does not change sign; rather, a single-signed perturbation repeat­

edly grown and decays. Once again the qualitative behavior of the low-order 

model may be correlated with that of the large-grid simulation; no sustained, 

steady-state velocity fie ld  is observed in the viscous, large-grid simulations, 

while the addition of a viscous term to the low-order model removes a possible
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solution with iAm constant, ^ *  constant > I ,  and £<■ I .

He turn to specific results from these simulations, CASES 4, 5 and 6, which

support the above description.

A. * D-  S ,l. -vj(ii.y) -  I 2*1 • « p  { - 1.2(« -  TT/2) - l  ,2(y -  tt/2 )1  f 1 .

Bere Me consider simulations for nhlch the In itia l poloidal magnetic energy 

only varies by a few percent from that quantity in CASES 1, 2 and 3. The ex- 

ternal Magnetic field 6  ̂ Is chosen so that the safety factor Q(i *TV2, y aTV2,

t « I )  A 1.6 « 2 B0 /  j (x -IT /2 , y -TT/2, t  -  I ) ,  An external electric fie ld ,

constant In space and t l ie .  is Imposed. This driving te n . t a . exactly 

balances the ^ (x ,y ) 4 1(x,y,t * I )  te n  Hith an aAplltude of I.IS . Contour

plots of the in it ia l conditions are displayed In Fig. 56.

1. V " M ,

He firs t consider the invlscld CASE 4 simulation, out of the broad-band, 

low order vortlclty perturbation, "■ ■ 1, n ■ 1" helical structures emerge to 

dominate the spectra of both perturbed fields. The growth of these structures 

may be traced in time histories of global quantities, shown in Fig. 67; of

primary Interest is a plot of kinetic energy, E. , versus time.

As the kinetic energy grows, a helical current filament wraps its e lf around 

the line (a ■ T:/ 2, y mTr/ 2, z), while bean-shaped counter-rotating stream func­

tion lobes generate a velocity field which points across the poloidal cut to­

ward the region of maximum current density, as may be seen in Fig, 5B. t  ■ 16.56 

with behavior similar to that observed in the undrlven simulations described In 

the f if th  chapter, the current filament intensified in regions toward the edge 

of the disturbance, while the velocity field grows stronger; see Fig. 59, t  -  

21.64. By t * 26.41, the current column approaches a flattened state. This 

state is virtually achieved by t * 36.24, as may be seen in Fig. 61. Through­
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out this time, ilthough the kinetic energy peak* again, near t ■ 12, the "m * 1* 

n *  1” stream function pattern la observed to remain unaltered In sign, only 

varying In amplitude.

The velocity fie ld  perturbation continues to enlnt for tens of Mfve'n tran- 

■ it times, almost In a steady state, as My be seen at a sample time of 42, in 

Fig. 62. An unusual horseshoe-shaped current filament, holloa to the center of 

the poloidal cut, has developed, which co-eslsts with the long-lived velocity 

fie ld . By comparing Figs. 62b with 62d, i t  Is clear that the velocity field 

points across the center of the poloidal cut, away from the region of leaser 

current density and toward the "base" of the horseshoe-shaped current filament. 

Apparently, this filamentary structure is not paralleled in surfaces upon which 

magnetic fie ld  lines lie ;  no "horseshoe-shaped Islands" can be detected In 

Poincare traces of magnetic fie ld  lines in the z * tv plane, at t « 42; see 

Fig. 63.

After tens of Alfven transit times, when sufficient resolution must serious­

ly become suspect, the velocity fie ld  has decayed to a local minimum, at t ■ 

l t l .B I .  After this time, another burst of kinetic activity la observed, with 

features very similar to the f irs t . At t  * 119.44, near the time of the second 

kinetic energy MXlmum, a helical filament once again has formed, in the same 

physical location where the t  *  16 filament had been; see Fig. 64. this f i la ­

ment behaves like the one near t  * 16 did; i t  nearly disappears Into the edge 

of the disturbance as the current profile broadly flattens. Through this time, 

the velocity fie ld  perturbation has grown in amplitude, with unchanged sign.

Following this burst of ac tiv ity , t  horseshoe-shaped current filament once 

again develops, while the velocity fie ld  settles into a nearly constant-ampli­

tude steady state flow pattern, as may be seen In Fig. 65.

As Indicated above, this second burst of disruptive activity occurs under
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conditions of uncertain resolution. Plots of model kinetic energy spectra dur­

ing this tiie , Fig, 66, ere encouraging; the perturbation at low wavenumbers 

wholly dowinotes. Mounts of excitation, of 0(11"5, l i ^ )  do exist in the 

highest wavenuabers through this time, however, and must generate considerable 

aliasing error.

An identical run perfoned on a 16 * 16 *  16 grid was able to track the 

sue solution through t -6 5 . The coarser grid run's solutions then diverged 

from the 32 * 32 *  16 grid run’s solutions, as lay be seen in Fig. 67. I t  is 

conjectured that aliasing error sustained the coarser grid run's perturbation, 

prohibiting a second disruptive event frow taking place. Although this auxili­

ary run established the numerical validity of the f irs t  event, the validity of 

the second event is soiewhat questionable.

2. V  •  n

Multiple events of disruptive activity aay be accurately generated, however. 

Inclusion of a viscous damping terw, which can cause the sustained velocity 

field perturbation to be diminished, leads to a tiwe history depicted In Fig.

68. There i t  may be observed that, about 25 Alfven transit times after the 

firs t burst of kinetic energy and net current, another similar burst occurs.

Because a second disruptive event was observed in the invlscld CASE I  sim­

ulation (under conditions of some numerical error), i t  is not possible to say 

that the multiplicity of events only occurs through the action of viscous 

damping of a sustained velocity field perturbation. I t  is clear, however, 

that development of the fluid flow depends strongly on whether a viscous term 

is added to the equation of motion. Inclusion of viscosity tends to damp the 

flow, and leads to pronounced subsequent bounces.

Me proceed to a study of a similar set of simulations, CASE 5, to establish 

that this behavior occurs over a range of parameters.
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0. r « 2 . 4 .  ^ (x ,y ) -  t J fl * exp { - 1.2(1 -TT /2> -l,2 (y  -  Tr/2)) .

As In the CASE 4 simulations, Q(k mTV 2, y ■ V[/ 2 ,  t  ■ I )  ■ 0.6 in the CASE

5 simulations, described in this section, The values of j ( i  * ' tV2, y m rr / 2 ,  

t ■ ■ 0,1 ] and 80 t ■ 2.4 ] are set to achieve this. To balance *

jfn .y .t *  • ) ,  Ec ■ B /  2H ,  for a ll time, at a ll interior grid points.

1. U *  I  I

This simulation is quite similar to the CASE 4 invlscld, driven run, as may 

be seen in time histories of some global quantities. Fig. 60. Following the 

typical burst of disruptive activity, the current density develops a horseshoe­

shaped filament, while the velocity field again points toward the base of the 

horseshoe. These features are depicted in Fig. 71, A current cross-sectional 

slice at I  ■ IT /  2, y, z -IT clearly exhibits the hollow center of the current 

density, the amplitude of which drops from approximately 25t of the off-center 

maximum, to a value I fx = TV/2, y - tt/ 2, z * rr\ * 4.3. Contours at a later 

time, 35.04, show that the horseshoe filament is f il l in g  in, while the stream 

function perturbation remains nearly steady, and unchanging in sign; aee Fig.

71. Mo additional bursts of activity were observed to occut in this simulation, 

through a computational time of 52.

2. V -  I . I I ,

upon the Inclusion of a viscous damping term in the equation of motion, how­

ever, a multitude of disruptive bursts of activity were generated. Globa Is from 

the viscous, forced CASE 5 simulation, Fig. 72, point to bursts of activity 

taking place regularly, after an in itia l disruption at t  ■ 32.1. A second 

burst occurs at t  -  56,28, while a third happens at t  -  81,16.

Each event is characterized by the formation, then disappearance, of an 

"i » 1, n 1 I"  helical current filament, and the diminishing, then growth, of a
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single-signed helical stress function pattern. Prior to the firs t flattening 

of the current density- both a well-formed filament and a large-amplltude velo­

city field perturbation nay be seen, at t  = 29,28, In Pig. 73. Following the 

firs t kinetic energy peak, the current column has become broadly f la t ,  with 

much small-scale spatial structure present toward the colunn edges Though 

diminished in amplitude, the same stream-function perturbation exists at 

t ■= 39.36 as had been visible at t *  29-26; see Fig, 7*.

A few Alfven transit times before the second kinetic energy peak, a he li­

cal filanent clearly has formed once again, in the same region as the t ■ 29.28

filament had been. The stream function perturbation, unchanged In sign, has 

grown in amplitude; these features are apparent at t - 54.72, Fig. 75

The disruptive process described in this section Is a repetitive one, with 

each subsequent burst of activity qualitatively much like the firs t . The en­

veloping amplitude of the perturbed fie ld  weakens as the simulation proceeds, 

however. I t  Is likely that highly regular and uniform "sawtooth11 bursts of 

disruptive activity may require plasma processes not included in the Strauss 

approximation.

c, B0 -2 ,4 .  ^ (k ,v )  -  [ JS( *  exp { - ( *  - - (y - ^ / 2) U “ l .

In the simulations, CASEE 4 and 5, only a small central region of the nag-

netofloid is exposed to a resistivity of O (f.f l)  or less. In order to estab­

lish that the small central region of variable resistiv ity in CASES 4 and 6 is 

not a stabilizing factor which enforces the long period of nearly steady-state 

solutions with flow, in the Inviscid CAEE5 4 and 5* we perform an additional 

driven, inviscid simulation, on a 64 *  64 * 32 grid, with = 1 }  3Stf. and
lL i/+

^(center) = M 1.11447. As in CASES 4 and 5, we take the safety

factor Q(k = it / 2 ,  y = 1172, t *  ») = 9 . 6  = 2 B„ /  j(x * n /  2, y * * /  2, t -  I ) ;  

we choose B * 2.4, and ) ( t  = I )  = B exp [ -£x -  ^  /2) - ty - 17/2))
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The driving ttr»  i P balances 'V jli.y l *  H x .y .t ■ I )  at a ll Internal points, 

with a value of 0 /  351

Selected globeIs for this sliulation, CASE 6 , are shown in Fig. 76. These 

globals Indicate that, following an in itia l burst of disruptive activity at 

about t ■ 31, a quasi steady-state with flow, similar to the states attained 

by the driven, invlscld CASES 4 and 5, is achieved. Contours at t ■ 39.24,

Fig. 77, display the dominant velocity fie ld pattern. At this tl>e, the cur­

rent density Is peaked along the center line of the stream function perturba­

tion. Only one magnetic axis way be inferred fro* Poincare traces of magnetic 

fie ld lines In the z - tt plane; saiples of traces at t  ■ 39.24 are shown in 

Fig. 76.

The stream function perturbation apparent near t ■ 39 continues to dominate 

the k ^ *  1 spectrun. The largest stress function nodes in the 1 band, 

averaged over ■ period of time froa t  *■ 57.46 to t  * 6P.M are found to be

V' 1 t  2y Si^- j  c os E + Sî v\ E 3

+ 2 ,1 *  It? 1 CSph y «,pvi l y  ^  '  j

similarly, the largest vector potential modes in the k f  ■ I  band, likewise 

averaged over a period of computational time froa t *■ 57.46 to t  * 69.V6 are;

A  ( l<̂  T 1̂ ) : .?■ * io   ̂ C ' l y  - j  c t>S? +■ b p n  x I ' ^  t  3
^ 2 y t o S H _ ^ W- * -  s* J  ̂: v  ̂3

Employing the notation used In the sixth chapter, these perturbations say be 

re-written;

C - t f  -

A 1 ■ p ' C ' A f - x t . g ]
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for •  - 1.57143 and > _ | . 5( 164. The %  ratios

average to V t  -  - 1.5(7. Further. -p t  -  -  6,156, or 1.1644, while

* 1.132, or ^(k)" 1,1649; the experimental values for p  differ by only 

•bout 6.B|. ElBllerly, -tfA  * 1 . 1162. which yields 1 . 1126, end *. t  *

f i l l ,  which also gives *Vf)« a  i . l l l t .  These perturbations are thus of a 

type for which the low order model is applicable.

Proa the simulation described in this section, it  is clear that the combina­

tion of sit increased grid size and a consequent n a ile r v-f does not alter the 

basic driven, inviacid scenario observed In CASES 4 and 5,



VI1L DISCUSS I OH

(inch effort ha* been devoted to the experimental end numerical study of 

disruptive activity in current-carrying magnetofluids. Results from relevant 

experiments, and from earlier computations, are solarised in the f irs t  chap­

ter. in this chapter, after a brief comparison of the results reported in this 

work with results from prior numerical studies, the applicability of our re­

sults to experimental observation is addressed. Possible future directions 

will then be suggested.

A, Sramary.

Almost every previous work considered employed some form of eater nil 

driving. Surprisingly, not only our driven results, reported in the seventh 

chapter, but also our free decay results, reported in the fifth  chapter, agree 

somewhat with the driven, single hellclty calculations of Waddell, et al (1976) 

and the driven three-dimensional results of Sykes and Wesson (1976), In a ll 

three simulations, “m * 1. n ■ 1* disturbances are observed to grow. Waddell, 

et al (1976), only follow one flattening of the current, while the simulation 

of Sykes and Wesson (1976) generates repetitive eupulsions of the q *  1 sur­

face from the plasma. In our simulations, we also observe quasi-cyclic repeti­

tion of the activity; in the free-decay, constant resistivity simulations, the 

activity repeats on nearly Alfvenlc timescales, while in the driven, variable 

resistivity simulations, the period of the disturbance Is in general much 

longer-

Although Waddell, et al (1979) also perform simulations with the Strauss 

equations, their choice of a fla t, in it ia l q'-proflle, as opposed to the 

strongly-varying ones employed here, makes their computations apparently incom­

es
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mensurable with ours, The electrlc-fle ld  dependent results of listamp end 

Welter's (1963) simulations ire  not exactly comparable with ours, since our 

reported simulations employ no "constant current" driving mechanism. FinallyT 

I t  Is d iff ic u lt to correlate results from these simulations with simulations in 

which different aspect ratio expansions are emphasized.

One major difference which separates this work from previous simulations is 

the values here chosen for the lundqulst number. We employ no "radial 

smoothing", nor do we use any "mode selection" for numerical stability or 

reasonable temporal evolution of spatial profiles. The Etrauss equations are 

simulated by means of an undistorted, three dimensional grid in Fourier space, 

In which a ll  modes dynamically accessible are available to the time-dependent 

solutions, and many are active, except mhere clearly indicated, our results 

are well-converged numerical solutions to the pô ed problem, with unrestricted 

In it ia l conditions.

In summary, we find that Qualitative features of disrupting, bounded, cur­

rent-carrying magnetofluids can be studied by efficient ((.7  sec./timestep on 

the CHAY1 at 32 * 32 *  I t  resolution) pseudospectral computation, in the pre­

sence of resistive, free-sllp boundary conditions. Appropriate in itia l condi­

tions are thought to be current and magnetic field profiles which have current 

maxima in the center of the channel (but which are not analytic equilibria) 

plus small amounts of random noise broadly distributed in Fourier space. Frol 

such conditions, which relax quichly toward nearly quiescent equilibria, a 

single disruptive event can develop and complete Its  evolution In relatively 

few Alfven transit times and In far less than large-scale resistive decay times. 

These events are characterised by helical concentrations of "m * 1, n = 1" cur­

rent and vortlcity. Even in the unforced problem, the disruptive process is
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observed to be cyclic, on m  Alfven tlmescale, with repented bounces of the 

kinetic energy as a function of tine. Results from the linearized Strauss 

equations, reported in the second appendix, agree with the nonlinear ones for 

a few Alfven transit times, then diverge significantly from the disruptive, 

nonlinear results. A low order truncation model of the Strauss equations, de­

scribed in the sixth chapter, is found to contain b o b s  of the quasi-cyclic and 

steady features the large-scale siaulatlons exhibit, but much of the inter­

esting dynamical systems behavior of this model is apparently unparalleled in 

the large-gild results. The inclusion of an external electric field and vari­

able resistivity in the invlscid, large-grld simulations give rise to an in i­

t ia l disruptive event which Is much like the ones observed in the undriven 

siaulatlons, followed by a nearly steady-state situation with flow, which sur­

vives for tens of Alfven transit times. The addition of a viscous damping term 

to the equation of motion leaves the in itia l event basically unaltered. Vis­

cosity tends to damp the generated flow, and, following the in itia l burst of 

disruptive activity, pronounced subsequent bounces in global quantities as a 

function of time occur in driven, viscous simulations.

A quantitative comparison of these results with the experimental observa­

tions of disruptive activity is unrewarding. One reason for this is that our 

simulations represent idealised situations, without features which may affect 

observed time scales and signal size, such as compressibility, toroidlcity, a 

vacuum region surrounding the plasma, uneven walls, limiters, with which the 

plasma interacts chemically, and gas puffing. Another reason la that while 

values of Lundqulst number were chosen to Insure numerically accurate solutions 

to the Strauss model as a function of time, they are Ear less than those repre­

sented in Table 1, for current generation fusion devices; the enhanced values 

of diffusion used here may lead to a less pronounced separation of large-scale



r e s i s t i v e  decay and  A l f v e n  t r a n s i t  t i m e s c a l e s  t h a n  M i s t s  e x p e r i m e n t a l l y  

Q u a l i t a t i v e  c o m p a r i s o n .  h o w e v e r ,  i s  i n s t r u c t i v e

The  f r e e - d e c a y ,  q u a s i - c y c l i c  o s c i l l a t i o n s  o c c u r  i n  t h e  a b s e n c e  o f  f o r c i n g ,  

and w i t h  a Ba rk ed  g e n e r a t i o n  o f  s m a l l - s c a l e  t u r b u l e n t  s t r u c t u r e  a t  t h e  p e r i ­

p h e r y  o f  t h e  c u r r e n t  co lumn S e v e r a l  w o r k e r s ,  n o t a b l y  D u B o i s ,  e t  a l  ( 1 9 8 3 ) ,  

and U c t h e n b e r g  ( 1 9 3 4 1 .  h a v e  s u g g e s t e d  t h a t  t u r b u l e n c e  i n  t h e  n e i g h b o r h o o d  o f  

t h e  r e c o n n e c t i o n  r e g i o n  I s  r e s p o n s i b l e  f o r  i n c o m p l e t e  r e c o n n e c t i o n  o f  t h e  m = 1 

e v o l u t i o n .  Our s i m u l a t i o n  r e s u l t s  a g r e e  w i t h  t h e  h y p o t h e s i s  t h a t  t u r b u l e n c e  i s  

g e n e r a t e d  In  t h e  n e i g h b o r h o o d  o f  t h e  s e p a r a t r i x .  A l s o ,  t h e  q u a s i - c y c l i c  n a t u r e  

o f  t h e  d i s r u p t i v e  a c t i v i t y  i n  t h e  d e c a y  s i m u l a t i o n s  i n d i c a t e  t h a t  h e l i c a l  

"n  *  l t n = 1"  s t r u c t u r e s  e x i s t  t h r o u g h o u t  t h e  e v e n t ,  i . e .  K a d o m t s e v ' s  ( 1 9 7 5 )  

s u g g e s t i o n  o f  a s y m m e t r i c  s t a t e  e v o l v i n g  a f t e r  a s i n g l e  d i s r u p t i v e  b o u n c e ,  i s  

n o t  r e a l i z e d  in  o u r  s i m u l a t i o n s ,  I t  i s  p o s s i b l e ,  t h e n ,  t h a t  t h e  q u a s i - c y c l i c  

a c t i v i t y  o bs erved  i n  t h e  f r e e  d e c a y  s i m u l a t i o n s  i s  s i m i l a r  i n  n a t u r e  t o  t h e  

p o s t - d i s r u p t i v e  " n  1 1 ,  n *  1"  a c t i v i t y  r e p o r t e d  by S a u t h o f f ,  e t  a l  ( 1 9 7 9 ) ,  

f ro m  e x p e r i m e n t a l  P I T  d a t a .

F u r t h e r ,  t h e  i n c l u s i o n  o f  s t r o n g  d r i v i n g  i n  t h e  s i m u l a t i o n s  can g e n e r a t e  

r e p e a t e d  bounces on  t i m e s c a l e s  w h i c h  a r e  n o t  i n c o m p a t i b l e  w i t h  t h e  t i m e s c a l e s  

o f  r e p e t i t i v e  s a w t e e t h  ( v o n  C o e l e r ,  e t  a l  ( 1 9 7 4 ) ) ;  in  b o t h  s i t u a t i o n s ,  t h e  

t i m e s c a l e s  a r e  l o n g e r  t h a n  A l f v e n i c  t i m e s c a l e s  b u t  s h o r t e r  t h a n  t h e  l a r g e - s c a l e  

r e s i s t i v e  t i m e s  Our d r i v i n g  m e c h a n i s m  i s  imposed a t  e v e r y  g r i d  p o i n t ,  r a t h e r  

t h a n  o n l y  b e i n g  a l l o w e d  t o  r e s i s t i v e l y  d i f f u s e  i n w a r d .  We t h u s  n e g l e c t  many 

e f f e c t s  t h e  t u r b u l e n c e  m i g h t  h a v e  on t h e  d r i v i n g  mechanism.  The a d d i t i o n  o f  a 

v i s c o u s  damping t e r m  a l s o  r e d u c e s  t h e  l e v e l  o f  g e n e r a t e d  s m a l l - s c a l e  s p a t i a l  

s t r u c t u r e  H e r e ,  a l t h o u g h  a s m a l l  p o s t - b o u n c e  i s  g e n e r a l l y  o b s e r v e d  i n  t h e  

i n v i s c i d ,  d r i v e n  s i m u l a t i o n s ,  o n l y  i s o l a t e d  e v e n t s  a r e  s e e n  i n  t h e  v i s c o u s .
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driven runs, our driven simulations thus could simulate disruptive activ ity  In 

a less turbulent magnetofluid, one In which repeated, quasi-cyclic attempts at 

reconnection ere not dominant,

B. Directions for Further Work,

In order to observe dynamic cascade behavior of simulated equations, tur­

bulence researchers hive added s m I I ,  external forcing terns to the solved 

equations (for example, Fyfe, et «1 (1977), Bossain, et el (1903)}, to over- 

cone the strongly denping effects of necessarily large diffusion coefficients. 

Attempts to include such forcing terns In the slne-Etrauss code have set tilth 

failure. Wo duping exists In the z-dlrectlon, in the Strauss equations. In­

stead, the action of the strong eiternal field fi e  ̂ is depended upon to re­

strict nonlinear development In that direction. He have found that banded 

snail scale forcing terns generate much nonlinear development in a ll three a l­

lowed directions, and resolution Is quickly lost in the z-direction. Bence, to 

observe important dynamical behavior of the MBD equations in strauss-llke geo­

metry, with current generation computers, i t  H ill be necessary to solve the 

full 3-d MHD equations, with Strauss-like conditions and natural dissipation in 

a ll three directions. Small-scale random forcing terms may then be added, with 

simulation resolution not exceeded.

A parallel study uaing a low order model like the one proposed In the sixth 

chapter, would be appropriate for sufficiently Strauss-llke three-dimensional 

conditions. A small-scale, random driving term added to the equation for the 

stream function perturbation could simulate the poloidal small-scale structure 

with * 1 dependence that la generated In the neighborhood of the recon­

nection region, and would lead to a means of exploring Hhat effects very small 

scales could have on the Largest modes available to the system.



n

The clearest extension of the large-grld simulations reported in this work 

to fu ll three-dimensionalIty mould he to perform simulations with a code which 

employs a set of expansion functions that reduce to the ones used here. Such a 

set has been proposed by Turner (1964). Upon the generation of this code, the 

question of how an Inverse cascade of the magnetic helicity may effect disrup­

tive behavior (Montgomery (1962)) could be accurately explored.



APPEND]! A 

TWO-DIMENSIONAL NUMERICAL EXPERIMENTS:

EPICTOAL VERSUS PSEUDOGPECTAAL BIHULATIOK

A, Introduction to the Simulation Problem.

Hhen turning to a digital computer as an aid In the understanding of a 

physical process, i t  Is necessary to select a numerical method of solution 

of the modelling equations as carefully as the equations themselves mere 

chosen. Spurious results may otherwise be obtained, or even no results 

at a l l .

Several factors are generally considered when creating a numerical 

algorithm, among them efficiency, accuracy and stability. Although accuracy 

Is the most crucial of the three, stability, or the lack thereof, is possibly 

the f ir s t  one approached when trying out a new method. I f  the correctly pro­

gramed numerical method Is totally and evploslvelv unstable, no reliable 

physical Insights can ever be obtained from a simulation which employs this 

algorithm.

The consequences of simulating the two-dimensional MUD equations, both 

spectrally and pseudospectrally, is the subject of this appendla. A further 

categorisation, that of representing the nonlinear terms in two numer­

ica lly  different ways, la introduced. Sy means of simulation, i t  w ill be 

found that when the equations are pseudospectrally solved in a form which does 

not conserve energy, the simulation is a spectacularly numerically unstable 

one. However, when the equations are again solved In their fully aliased, 

or pseudospectral representation. In a way which numerically conserves the total 

energy of the system, the solutions are quite well-behaved. I t  Is further de-

94
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monstrated that when ■ suitable Mount of dissipation ia introduced into the 

the eystM, the conservation-form psendospectral method again yields stable 

results. These results are found to agree well with those generated by a 

code which Is fully spectral, a code in which a ll aliasing errors have been 

r Moved.

B. The System of Equations Used to Demonstrate the Problem.

As an illustration of the influence the algorithm chosen has on a sim­

ulation, consider the numerical solution of the two dimensional had equations 

for vortlclty and vector potential, computationally time advanced In the 

following form (A-l).

(a)

(A-n

(b) -  V  (,vA> +- ~ v \ V z t {

Theee equations are a special case of the Strauss equations, discussed In 

Chapter I I .  They may be obtained from the Strauss equations by setting the 

external magnetic fie ld , to zero, and allowing no z-varlatlon In L )  or 

A . For convenience, the definitions of the now two-dimensional variables
i , 2  a

used are repeated here. Let the vorticity 60 be given by - y : v

for vj , the solenoldal velocity fie ld , and V' ' ' i t *  ̂ ) , the scalar

stream function. Also, let A-- the vector potential, from which
t"

the solenoldal, self-consistent magnetic field, 5  : A , and the current

density, ^  Wfc-. V5Ae; ► « ¥  be obtained. The same set of dimen- 

si onless units as were used in the body of the work are used here.

The geometry of these simulations w ill be any horizontal plane of the 

full three-dimensional domain described In chapter 2. As there, walls bound 

the fluid in x and In y. Por the runs described in this a p p e n d i x ,  the strictly
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two-dimensional magnetofluid is confined to i  square in the *,y plane with 

sides of length 7T , The boundary conditions imposed are those appropriate 

for rigid, free-sllp, perfectly conducting nails, namely, the vector potential 

and stream function vanish at the m ils , as does the current density. Three 

quadratic constants of the motion exist for the two-dimensional HDD equations 

(A -l); total energy, E ■  ̂ (V +  6 lS); mean square vector potential,

(X ‘ A 1 i and cross helic ity , f  i in  ̂ )10,'t "

gomery, 1976). In the following, focus w ill be on the total energy as a use­

ful diagnostic.

C. Particulars of the Method Employed.

The spatial and temporal dimensions are essentially different in nature.

A boundary value problem Is posed in space, while in time, the conditions are 

those of an in itia l value problem. The derivatives In these dimensions are 

thus treated differently. F irst, consider the time derivatives.

The time-stepping chosen is Identical to that used in the main simula­

tion code, described in Chapter iv. Let where u would be either

or A, and and f(u) then would represent the right hand sides of (A-l) (a) or 

(b). The second order Runge-Kutta, or fleun. method employed Is

where n is the time index, and A t 1* the tlmestep. This method is numerically 

unstable when applied to a linear advectlon equation, as can be seen by per­

forming von Neumann analysis on the model linear equation
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with set to sere (Bossaln, 1903). The week instability cen be removed by 

e suitable choice of ~m  (Dahlburg, Montgomery and Mettheeus. 1965). This is

s tlse stepping method which hes previously been successfully employed even for 

absolute equilibrium studies of equations (A -l) , Calerkin simulations in which 

both dlffuslvities are set to zero (Fyfe. Joyce and Montgomery, 1977).

Basis functions are used for the spatial dimensions of the simulation, 

real Fourier sine series In both the i  and y directions. The velocity stream 

function and the magnetic vector potential are expanded in these hslf-ranqe 

Fourier series in both h and y. This corresponds to imposing the desired free 

s lip , rigid wall boundary conditions on the velocity fie ld , and perfectly con­

ducting boundary conditions on the magnetic fie ld . Spatial derivatives are 

taken spectrally, in the slne-Fourler space. Specifically, a physical-space 

quantity Is transformed to the sine-four1er space. Its  coefficients are then 

multiplied by the appropriate power of wave number, and the result is returned 

to physical space by means of a half-range cosine series for a f irs t  deriva­

tive, and a half-range sine series when two derivatives are taken.

For Instance, In one dimension, let

may be represented on (1,2'Tn by means of a fu ll complex Fourier series:

I +«S K V ,(k*J1 J J'- f,
IJ-I —

U I

» / l  ■ I

= Z  c >p C t k x j )  
1 '  J

( ,J : TT j :  pA/ j  )

' j

The sine series representation for ' I  is recovered if  the real part of '1F is 

zero, ‘ T . * n<* the reality condition is imposed, so that ?■('!*.)*
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A derivative of the fo il coapleir series is taken in the following way:

& 1 1 
~^y J - X  * k + 1 S ^ ( U v J ' ) ]

J k* ‘ w/2

Por the ' f  previously defined, Dj 0  . i t  i *  «en that the reality  

condition iaplies that only the cosine series survives

"  -  -  <L k C w   ̂ O
> j  Ir: P V i J

■r-M1
or, using the equivalence between ^  and ^  set forth above,

"o ‘H O  N ~ 1

k - j

B iiiia r ly , one can obtain

■ r.  S
-  j  -. -  i  T K  S>l*' ( t i l ' .  > 

I k : ,  J

Product te ru  u y  also be considered -
W - I *s! ' l *s,

? ( ) 0  - £ + k S ^ f k y l  I  Sf rvx^v: )  
J J i , . ,  K J 0 - ,  J

ivi
N -

iaplies | j , .  ^  O  -  ‘ 1  k 0 k
■J î—l

Let ^ . |

V'Cvjl̂  Z  'k  elkvj f tV jV -  r  t *  e ;%
’ J f

where again only the iaaglmry parts of the Fourier coefficients are nonzero. 

A fu lly aliased sua is obtained for ^  ^  ^liVj  ̂ *̂+i U  j. t )it i
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- -  I  u  f k X t  V e 1^  
M

te + iZ)

'  " 2 ffU+X)^ ! + i k t i j j f j ]1)

' - 2 osi Cfift ixj3
M

implies in aliased Bin 'Z Co£> r^y-
^  J

That Is, for the reality condition to be Met. only the cosine part of the 

full complex series survives. The derivative of this product Mill bring 

down in "Ik" fro* the exponential argument* again t  sine series Is obtained, 

by the reality condition,

A parallel argument demonstrates that

- £  Vk C+c (  kx , )  2  t r  5 ^  C l v  A
k j?

- S Cj)^ S w  ( w x. ^

where the complex Fourier series coefficient for V would be real, only, 

with V^O- +'V (̂-k).

For later reference, Me note here that dealiaslng the product terms is 

a simple matter: pad the complex Fourier coefficients with zeroes from -fl/2-1 

to -M and H/2 to H-l when transforming an array to physical space to make a 

product (Drang, 1971}, From the conversion previously shown, I t  is dear that 

padding the sine coefficients with zeroes froi N to 2N Implies that the equi­

valent exponential coefficients are suitably padded with zeroes, and that a
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detllased sum w ill result.

D. Illustrative Numerical Experiment Runs Perfoned.

1. Without Dissipation; D iff ic u ltie s  -  I ,

The method chosen, the proposed aeries of numerical expedients is now 

embarked upon, beginning with what should be a sliple numerical exercise.

For this firs t simulation, RUN Al, the fully aliased sum  are used, and the 

the equations are advanced with the spatial parts written In the form {A -ll, 

With * ’ 1/25#, and the arbitrary In itia l conditions, the sine'

Fourier coefficients

* 3 , ,  - - - 0 4 ,  O.SJ

f

T ^ ^ ^ 2  '  A ,

a ll other slne-Fourler coefficients zero. The code Is set Into motion. Within 

only about 4# Usesteps, a catastrophic Instab ility , of the numerical variety, 

has forced the simulation to halt, by generating number* too large for a com­

puter to deal with. This explosion is demonstrated In a plot of total energy 

versus time, iti Figure A l, It  Is apparent from this plot alone that no use 

can be made of any results which come from the equations numerically solved 

In this fashion.

Cures for this blow-up of energy do exist, one cure Is to dealias the 

nonlinear product terms which appear In equations (A -l). Deal Using Is e f­

fected, as described above, by padding the Fourier coefficients with zeroes

from K  i< v.j ■ M to 2R when transferring the arrays to physical space to
> 1 i

make the product terms, and then time advancing the returned products in the

| l  k *  \ M l sine-Fourier space. A deal Used run, RUR AS, which starts
n y 1 *
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Kith the sue In it ia l  conditions and parameters as Mere used in the fully 

aliased RUH 1, yield startllngly different results. Figure A2a shows a plot of 

the very well-behaved total energy versus tine, while Figures *2b and A2c show 

plots of the fcinetic energy ( ^  versus tile , end the magnetic*Vlr|
energy ( Eb- -  ^J** B5, ) versus tine, respectively. Figures A2b and A2c es- 

tablish that variation does esist in gnantltlei other than the total energy.

The solutions change such as a function of time, as Figures A2d through A2g 

show. Figure A2d Is a Fourier spice contour plot of k J ^ t*!), and A2e Is a 

Fourier space contour plot of Figures A2f and Alg are Fourier space
Kj

contour plots of kJj <t*fl,76). and A ^ l* -^ )  respectively! these Fourier 

coefficients have evolved fros those depicted In Figures A2d and A2e.

Results esactly Identical to RUN A2 sty be obtained by solving the equa­

tions (A -l) in the forw

(A-2)

(b) B 1 + *Vj A

with the product teras detllased as they were In RDM A2. That the tlae evo­

lution of the Fourier coefficients of this run, RUN A3, Is Identical is aost 

easily visualized by comparing Figure A3a, of W |tB&.76), with Figure A2f, and 

Figure A3b, of A 5( t B8.76), with Figure A2g, to observe that the evolving 

Fourier coefficients are indistinguishable.

When the appended zeroes are reaoved, however, and the same parameters and 

in it ia l conditions are used, for RUN Al, the eiploslve aliasing instability 

(P hillips , 1959) Is found to be absent, instead, the solutions are very well- 

behaved, as is demonstrated by plots of total energy versus tiae, (Fig, Ala), 

kinetic energy versus tlwe, (Fig. Alb), and magnetic energy versus tlae (Fig.
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M e). The instab ility  observed In RUN M ms thus moved by writing the 

time-advanced equations in •  fora (lang, 15B2) which seal-conserves total en­

ergy pseudospectrally. That is , Ignoring any discretization errors, fora (A-2) 

enforces innerical conservation of energy. The solutions are thus bounded 

as a function of tlae , and the slaulatlon aay be run for tens of units of time.

2 . Dissipative; D iffuslvitles “ 1/SI.

it  is of aore physical Interest to study a dissipative systei. The simu­

lations described above are now repeated, with fin ite  aaounts of viscosity and 

resistivity.

Repeating RDM Al in RUN A5. where now lj- vj -  1.12, but a ll  else Is the 

saae as above, i t  Is seen that a reasonable amount of diffusion is insufficient 

to stabilize the aliasing Instab ility . Plots of total energy versus tlae,

(Fig. A5a), kinetic energy versus tlae, (Fig. ASb), and magnetic energy versus 

tlae, (Fig. ASc), demonstrate the solutions' lack of circumspection; the 

coefficients can only be tlae-advanced for a uselessly short interval.

As before, dealiasing effects the cure. RUN AG Is the saae as RUN h i ,  

except that ~U * 1,12. here the solution behaves well as a function of 

tlae, as may be seen in Figures A6a, A6b. and A6c, which are plots of total en­

ergy versus time, magnetic energy versus time, and kinetic energy versus time, 

respectively. Figures Atd and Me are physical space contour plots of the in ­

i t ia l  conditions for Wand A  used throughout, while Figure AGf is a physical 

space contour plot of G j^t*(.76), and Figure Mg is a physical space contour 

plot of

Repeating RUN A3 with lJ - ^ ■ 1.12, In RUN A?, establishes the fact that 

the equations may be dissipatively solved in either fora (A -l) or in fora (A-2). 

Identical results are obtained so long as the product terms are solved for on
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the grid upended for deal Using. This my be easily observed by comparing

the solutions -.{*,y ,t “&.76> in Figure A7a with (0 of Figure A6f ,  end 
f p

A  7 (x,y,t*B.7«) In Figure A7b with A fco f  Figure Adg.

Expensive deal lining my be avoided altogether, and the simulation s t i l l

retain Integrity, as HUN A8 demonstrates. RUN All is the repeated RUN A4, with 

lJ- -  1.12, Plots of total energy versus tlae, (Fig, A8e), kinetic 

energy versus tine, (Pig. ABb), and mgnetlc energy versus tlae, (Fig. A6c), 

compare well with the globeU plotted in Figures A6a, A6b, and A6c. The solu­

tions :.^(t-B .?6) . (Fig. Afld), and Ag(t-fl.7d), (Fig. AGe), are also phys­

ically similar, as can be observed by coiparing Figures A6f and ASg with 

Figures ABd and ABe. The Blight differences are less than a cell size in

diaension; such plotting discrepancies my be eipected.

This agreeaent allows the conclusion that the more econoalcal pseudo- 

spectral method Is a valid, and valuable technique for simulating the 

MBD equations. When the equations are numerically time-advanced in the 

fora which conserves energy pseudospectrally, fo ri (A-2), the nonlinear, or 

aliasing instab ility  is removed. Ignoring time discretization errors, the 

solutions then remain bounded. Adding a sufficient amount of dissipation 

to the problem generates the additional result that the solutions produced 

by the conservation form pseudospectral scheme are seen to agree quite well 

with truly spectral solutions. Similar agreement was found In simulations of 

the two-dimensional Havier-Stofces equation (Orszag, 1972, Fox £ Orszag, 1973).
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SIMULATION OP THE LINEARIZED STRAUBS 

EQUATIONS WITH CASE 2 PARAMETERS

I f  we linearize equations (9) and ( I N )  about « zeroth order state A 

6 / “'and J r6'1 (with f in ite  values of v ^  and unallowed) the results
pKJ

for the perturbation fie lds is

i . )  W " ^ ( y ° v , ) +  *  e ^ !

ib - n

(b) ~  ,  -  v ;  J- A fa> -  v / e'. ^  A 1”  ,  ^  7 / A

' “ i ■ ■ ' : - >l i / l ' l  h’ ■.  ,  .  ' l

The zeroth order state A < , j ' , with f  t v L and :0 , u p

either be allowed to participate in the dynamics according to

/ C u ’ . I ^
i . )  ^ ■ - 5 . - c 6 i , Y , l - » ;  u 1” )

( I  ■ 21
/ L  i  ^  I, j  [  ^  j . f  J  ^  ^

" i t  *■ ' J '1 -’ V V *  ’
or way be approximated by setting * i} to zero. In the la tter case we shall 

refer to the zeroth order state i J\  A ' ♦ £ / '  * ? < and v  ̂ as being

‘'frozen*, and In the fomer case, we shall say the zeroth order state is 

"thawed*.

Only the frozen problem, because of the time-dependent zeroth-order coeffi­

cients In equations (B -  l)a ,b  for the thawed case, leads to a sharply defined 

linear eigenvalue problem with a well-defined temporal growth rate. For very 

high values of S (low p ,  the decay predicted by equation (B - 2)b w ill be 

sufficiently slow that the distinction between the frozen and thawed linearized

I U
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problems should bo unimportant, But for the situation simulated, me find that 

our values of E ire  low enough that AIC\  B , 4 ^ ,  and k} ^alter

significantly during the tines of interest. Thus there are two more-or-leae 

relevant linearized problems.

Since we wish to in itia liz e  the linear simulations with conditions from the 

nonlinear run CASE 2, ue must f irs t determine the extent to which the magneto- 

fluid has relaxed to something that can reasonably be called an "equilibrium" 

state by, say, t *  1.74. This offers the most natural candidates for ALl ' ,  B /" \  

and j fD*and we form them from the total contributions from the • components 

only of magnetic quantities at t  *  1.74. teroth order parts of 4^ , v jL<Vl and 

LO are in itia lized  in this way, also, by, for instance, setting the almost
* (el

negligible W (t " 1.74, Ie^  -  I )  equal to u) ■ The extent to which these con­

ditions represent an equilibrium is tested in the following manner.

He return to the primitive HUD variables, solve the Poisson equation for 

the pressure p, obtain the velocities, and compute the individual terms in the 

equation of motion. The question becomes the extent to which the remaining 

terms compare in magnitude from point to point with the magnitudes of those in 

the approximate equilibrium relation V lP - 1 * ~  I .  The departure from* a—
equilibrium is systematically estimated by volume averaging the absolute values 

of each term in the zeroth order equation of motion. We find that VAp and 

) X B ityp ica lly  have magnitudes of 0( 1) separately, and the other terms in the
r-J

-  q
equation of motion typically have magnitudes of 0(11 ] at t  *  1.74, a time

near the f irs t minimum of the kinetic energy. Thus we conclude that to a satis­

factory approximation, the plasma has relaxed to an equilibrium state by this 

time.

The zeroth order in itia l conditions now determined, we choose the f irs t or-
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der quantities to parallel further the dynamics of the nonlinear ran as closely 

ae possible. He In i t ia l i«  the perturbation fields j  t v ± ' >') , b ) f t \  A<Q\  Bj.(^
(to)

and j from k̂ . * 1 components of their nonlinear counterparts at t * 1.71. 

Constant parameters agree with those of the nonlinear run CASE 2, also- B a ■

4.3, 'Tfl = *.11, and k« •  k j  >32. Both frozen and thawed runs share
[ T r r - i f

these conditions, in addition, for the thawed run, ^ o" l . I I ,  while for the 

frozen runf ^  -  I . I ,

Upon t ia t -advancing these conditions, we find that the linear perturbation 

energies follow the nonlinear k ^ *  1 component of the energies for only a few 

Alfven transit times, as may be seen in Fig. hi. Fig. Bla shows the k ^ = l  

component of the kinetic energy for the frozen, thawed and nonlinear runs, 

while Fig. Bib displays the k ^ *  1 component of the magnetic energy for all 

three cases. In both a and b, the frozen run’s perturbation energies are 

represented by short dashed lines, the thawed linear run’s perturbation ener­

gies are drawn with unbroken llnea, and the nonlinear 1 components of the 

energies are traced with long dashed lines. The linear frozen run diverges 

from the nonlinear one f irs t . Each perturbation energy of the frozen run grows 

exponentially, settling into a constant growth rate of 1.7. where we approxi­

mate a instantaneous growth rate Y  from the relation energy[t + t  t )  -  en­

ergy! t) * e*p[2tf A t ] ,  for each perturbed field. The thawed linear run fol­

lows Its nonlinear counterpart for a somewhat longer time. As the disruptive 

activity strengthens, the results of the linear, thawed and nonlinear runs con­

clusively part company.

Figures B2 and B3 show contours from the three runs at the same time, t(non­

linear! 4 8.021 each of Figs. B2 and B3 contains contour plots from all three 

runs, Theae contours clearly show the extent to which the linear runs’ solu­

tions are no longer comparable to those of the nonlinear case. For both linear
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runs, plotted are the zeroth order quantities to which their fu ll perturbations 

have been added,

El ices in the z - tv planes of vector potential A are shown for the nonlinear 

run in Pig, B2a; for the linear frozen run in B!c; and for the linear thawed run 

In h2e, Though the linear frozen vector potential is somewhat wore askew than 

the vector potential contours of the other two cases, a ll three are slwilar. 

Since the vector potential depends most strongly on the larger scales present 

in the simulation, reflected In the similarity Is the agreement of a ll three 

runs at the largest spatial scales. More differences may be seen by comparing 

modal magnetic energy spectra, plotted to the same scale, in Fig. B2 b, d and e,

Figures B3 a and b are current contours in the z *T  and y - it  /  2 planes 

from the nonlinear run: Pigs, B3 c and d are Identical current slices at the 

same time from the linear frozen run: and Figs. E3 e and f are the same current 

cross-sections from the linear thawed run. Multiplying this additional factor 

of kx to the compared quantities affords us an even better gllwpse at the d if­

ferences among the three simulations. As might be expected, the linear frozen 

run’s current Is totally unlike that of the other two runs, with Urge regions 

of negative current growing near the center of the channel. Though the current 

of the linear thawed run is free of such large negative bubbles, i t ,  too Is 

quite kinked, and peaked off amis. The nonlinear run’s current, at this same 

time, has flattened and broadened into a wide channel in which many Fourier 

modes are present, Me thus draw the conclusion that i t  is only the presence 

of many nonlinearly active Fourier coefficients of higher wave numbers which 

generate the full scenario of the disruptive activity.
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RESULTS FROM AN UNDP I YEN SIMULATION 

WITH CASE 4 PARAMETERS

The conditions end parameters of the simulations described In this ap­

pendix are thoae of CASE 4; the safety factor Gin * T17  2, y ,TT7 2( t " l ) *

1.6 * 2 B0 /  2. i t /  2, t  » I ) ,  and a 32 * 32 * 16 grid la used. The

current profile varies as the Inverse of the resistiv ity profile, so that

<x,y) *  ifx .y .t  ■ #) * constant for a ll Interior points. Both the exter­

nal electric fie ld  and the viscous duping are ignored here; hence, the domi­

nant features ought to agree with those observed In CASES 1, 2 and 3,

For purposes of numerical accuracy, i t  is crucial that the average value of

the resistivity in regions of magnetofluid activity not be luch Less than (1 *

kj, ) , as was discussed in the fourth chapter, on the other hand, nuaerical 

stab ility  of the 2 ^  order Runge-ltutta tlie-stepping as applied to the diffusion 

tera of equation ( I I )  demands that v[ approach 0( 1) as a maximum value, for a 

time-step of about 1/511 of an Alfven transit time. This dual requirement on 

the value of ^  constrains the profiles considered for I  f , and conse­

quently for 1; current density profiles with fa ir ly  gentle slopes must be 

chosen, in order to allow to vary as 1 /  J(t -  I )  over most of the computa­

tional bon. This requirement implies that the high wavenumber magnetic modes 

are Less excited, in it ia lly , than they mere in CASES I ,  2 and 3.

Glnce the time derivative of the vortlclty varies as a more gently

sloped current profile can lead to a slower temporal variation of . The Ini­

t ia l  value of the poloidal magnetic energy is nearly the same here as it  Is for 

the f if th  chapter's cases 1, 2 and 3, with identical velocity field inltiallza-

1IB



119

*  3 * *tIon. and —i  £  Bowever, the disruptive activity in thi

run takes place at a computational time of about IB as opposed to the disruption 

tlae for CASE 2 of about 6.5. Recall that the simulation of CASE 2 was stopped 

at a computational time of 17.52, because a near-equilibrium situation mas a t­

tained, The energy in this simulation, by t ^  21, la also much reduced.

Bence, I t  is d ifficu lt to compare post-disruptive activity between CASE 2 and 

this run. Although not much quasi-cyclic behavior is observed In this run after 

the in itia l burst of activity, indications that the general features of this 

simulation agree with those observed in CASES 2 and 2 may be found,

This run differs considerably from the forced CASE 4 run, discussed In the 

seventh chapter, as may be seen In Pig. Cl. Pig. CLa is a comparison plot of 

the total magnetic energy in the two inviacid CASE 4 runs. While the total 

magnetic energy in the unforced run decays by more than 6#t, the total magnetic 

energy in the lnvlscld driven CASE 4 only decays by about l i t  during the same 

period. The f irs t  burst of disruptive activity also takes place at different 

times, as may be inferred from a time history of kinetic energy, in Pig, Clb.

Bowever, as the contour plots in Pig. C2 show, the In itia l burst of activ­

ity is much like Its counterparts in a ll the cases discussed. This burst is 

characterized by the appearance of a helical current filament Hhich wraps i t ­

self about the line (x ■ Ttf 2, y “ IT/ 2, z). This magnetic activity is accom­

panied by the formation of a counter-rotating pair of bean-shaped stream func­

tion lobes which generate a velocity field that points across the center of the 

poloidal cut, toward the region of maximum current density. Bear the time of 

the kinetic energy maximum, the current filament has virtually disappeared, 

with the current cross section becoming broad and Elat, as may be seen in the 

contours at t  * 29.64,  Pig. C3,

Following this burst, the velocity field apparently attempts to reverse
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itse lf. ts n y  be a ten at t ■ 23.52. In Fig. C4.

Contours i t  t * 41.fB, Fig. C5. display current cuts which Indicate excita­

tion of oppositely signed Hgnetlc perturbations; the regions of h i I i u i  cur­

rent are everywhere opposite to where they Mere at t * 21.64. An eatreiely low 

aaplitude stream function pattern Indicates that regions with reversed flow 

likewise euist.

In conclusion, then, the general features of disruptive activity observed 

in this simulation are compatible with those of CABE& 1, 2 and 3.
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Table 2. Parameters and Tilfrescales for Representative Tokamaks
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Table 4. Chart of Sample Low-order Model Runs
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.Toroidal field

Wall

Poloidal
field

Plasma

Major
radius

■ minor 
radius

Fields end co-ordinate* used to define i  lorokla] pinch.

j  ^

Figure 1. -  Cewetry; (a) fields and co-ordinates used to define a toroidal 
pinchi fro* Robinson (19&21. and (b> s iitilttlon  geometry.
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ta t Gcntral a rra f^ c n l

Pr (mar y w it id m j

Vrrticol P*td codf

fb j M ffid ional CfOJS-tmtjon

Figure 2. - Standard disposition of coils and vacuum vessel for a toroidal 
pinch: (a) general arrangement, and l b )  meridional cross-3ec- 
Uotm from Robinson (19621
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Figure 3- - Contour plot of total iodel energy for: (a) CASE 2,
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Z

-  Pololdal and toroidal *cuts" in the computational box. The P^loidal 
cut Is taken at 2 “ IT . and the toroidal cut Is a slice at y - /
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Figure 5 - Contour plots at t ■ * of in i t ia l  conditions for the decay' runs, 
S (ai; contours of A = constant, poloidal cut,

J.

*

-  L
f

5 (b): contours of 1 ’  constant, poloidal cut.
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5 (c); contours of M'1 constant, pololdal cut
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6 (e): contours separated by powers of two of constant aagnetlc energy
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6 ( f ) :  contours separated by powers of two of constant tota l energy
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F i g u r e  7. -  G l o b a l a  a s  a f u n c t i o n  o f  t i m e  f o r  CASE 1;
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7 ( b ) :  t o t a l  n a g n e t f c  e n e r g y  I  E 6  ] as  a f u n c t i o n  o f  t i » e .
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7(c): h j  /  t  t s  a function of t l « ,v



t o t a l  I n t e g r a t e d  toroidal c u r r e n t  as a f u n c t i o n  o f  t i n ? ,  and
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1 . j :■ 1

):  h a l f  t h e  mean s q u a r e  c u r r e n t  d e r s t j y  as a f u n c t i o n  of  t i m e .
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Figure 8 - Q-profilta for CASE 1: fa) t * I

and 8 Cb] t * 6 82-
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I , ‘j J .3 . I ■.
*

F i g u r e  9.  -  C o n t o u r  p l o t s  a t  t *  f l . 0 2  f ro m  CASE i r
9 fal: contoura of A -  constant, pelo1 daJ cut.

, 1 h -¥ •< .  ■ * - r * !> | i j , o m  . g ,

—  1 .

In. r<? k

3 <b)r contours of 1 > constant, poloidal cut,



L * T ltF -D̂

Jfc

9 (c); contours of 'V-  constant, poloidal cut
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d .

a,

 Lj" . 31C . 4 !■ . bl . ■:
a

9 (d): contour! of A p constant, toroidal cut.

: i a . i11 f j  , / ■ jj ■ j k n j* e ■ d _

r  > 1 1

E L t

-
1

b

b < Li t

4

, t U ( Id

u t L t I

A

'

t
F F

r
If

H

1

L 0 E F

J i —
tl , J t ? . ih  i . J

9 (s)r contours of ] * constant, toroidal cut.



Figure H. - Contours of energy in Fourier space at t “ B.82, CASE 1:
10 (a): equally spaced contours of constant kinetic energy

A

I f 1* ■ I1 U ’  J .  ' - rh  “ i O

n ----------------------------------------—

I I  (t>): equally spaced contours of constant fagnetic energy.
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■ 1.0̂  Q i 11.. I i l

_ r~
□ ■ 1 , T i l  -gg

AA
11 f c ) :  e q u a l l y  s p a c e d  c o n t o u r s  o f  c o n s t a n t  t o t a l  e n e r g y

0 -tlLt* j . i JI :>n V* F *  J . - I  j L - 0-1

U -«■ . -

. r. j

■. , JA__
U .C l .J *J

A
V'.-* /I

{

i

J

I I  (d): contours separated by powers of two of constant Jdnetic energy
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I I  tab contours separated by peters of tuo of constant Magnetic energy.

I.'

;i

1P1 * L £■ j . H E - O r

T

F  \  K VU/
t FA ))

 *
. J______________1 .L , It 

C F’F K i

■ v

. Jw

I I  f f l :  contours separated by pouers of two of constant to ta l energy
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Flgort l l .  - Q-proflle i t  t *  l . f  for CAE£S 2 and 3.
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■ i

LI . >H■l- . J

Figure 12. - Global a for CASE 2,  £^« ( l i b
12(a): kinetic energy as a function of t i « .



\

12(b)r nagnetie anargv as a function of t i l e .



(J

I
I , 1]

12(e); total Mergy aa a function of tiae.
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/

L i . k  b I . ;i
T i ] o *

ra t io  of k inetic to wgnetic energy is  a function of time,
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. a e  ; , ' j j  i . p - ,
t u f i k

12(e): hi I f  the near square vortJcJty as a function of tiee,



half the wan square vector potential as i function
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.JL 0 .Hr. 
r i ] 0

12(g): ha lf  th« Han gquart currant as • function of t i n ,  and
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12(h): to ta l integrated current density as a function of tine
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Figure 13.
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x

- - - L .

,1

A [.

- Contour plots at t * 4.44 £fon CASE 2:
13 fair contours of A ■ constant, pololda] cut,

L-L-r I (  > ,  > . F1 1 j  i . 1 0 F  ‘ O l

~~l--------------------------  [---------------- J------------- -------------------------

r,
IL ■
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i

■ a  ' x ' \

4 \  \
\

V ''
L

t,
s L \  \  ' v

f 1 I ] I V
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i /s
t  1

/  h )
\

*■ \ * f

' /
_ ^ /V

r _
y

/ *
" 3  "

■-B-.

P.

' k v  “"he
r

13 fb)r contours of J * constant, poloidal cut,
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I \  I i V , \ , i-  \ \ i :  2 , 0  -fc • Q

>

13 ( c ) :  c o n t o u rs  o f  V  *  c o n s t a n t ,  p o l o l i a l  cu t
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1 h i . I

I .fc

I

13 (d): contours of A ■ constant, toroidal cut,

ii .  T )

A
•. jL

t. . . ' t
J i  1 - f ’ l ;  , /  : t  - I ,1  11 ■ UJ

■J , J

13 (o): contours of j * constant, toroidal cut,
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Figure 14- - At t = 4 44r CASE 2.
14 (el: a 3-d perspective plot of 1. poloJdil cut, at t -  4,44,

b ) 11

*

*

Y

14 fb), 14 (c); Poincare plots of wgnetic field line traces In the z *K plane
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fe .O'
11)1/H 

- r _ . . . .
U r  t . f f f  ■ OCl

1 _J
j 7j 1.

j 1

15 (c); squiI I y spiced contours of constant total energy,

•H ,

ti

15 (d): contours separated by poHers of two of constant kinetic energy



15*

h-

*■ F t n f '

15 i t ) ;  contours separated by powers of two of constant ftagnetjc energy

i -----

• t
u

I I I I :

' A A I
" v / !  A

K f-tpp

15 U)- contours separated by powers of two of constant tota l energy
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. ! ■ -

-l t - -

 If

P l f lu ro  16 ,  -  C o n t o u r  p l o t s  s t  t  *  £ . 6 1  f r o n  CASE 2 :
16 (*]: contours of A ■ constant, poloidal cut,

__s.

-I.

N

16 (b ) ; contours of j m constant, poloidal cut.



1M

I . \>i."H H
t

16 [ c ): contours of Y= constant, pololdal c u t .



H i

K X r \‘ Y-'? . 11 tp

t) «

U.l' l K

16 (d) contours of A *  constant, toroidal cut,

7'1

j . ij

, jt.J
16 ( t ) r  contours of j  ■ constant, toroidal cut.
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j

i . 1

Figuro 17. -  contour plots at t * 7.0* froa CASE 2:
17 (n): contours of A * constant, poloidal cut,

17 (b> = contours of j * constant, poloidal cut.
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17  ( c ) :  c o n t o u r s  o f  c o n s t a n t ,  p o l o i d a l  c u t .
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*,( X.PUFrJl 1 .41 I t  + &l>

C

1? (di: contours of A * constant, toroidal cut,

1 V , J 1 *  ■ I’  I ■■ i f  I  t i  1 ,  . 0 !  ■ liJ

J I i  . JC . . "  I >

1? (e); contours of J ■ constant, toroidal cut,



Figure 16. - Contour* o£ energy in Fourier apace at t w 7,6*. CASE 2-.
16 f a ) :  e q u a l l y  s p a c e d  c o n t o u r s  o f  c o n s t a n t  k i n e t i c  e n e r g y .

Hn/
'T

«- « rJ«l -44

H.Cl-

1 J________________!_____  L_

16 tb): equally spaced contours of constant nagnetlr energy.
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166

I . j

k

16 ( c > : e q u a l l y  s p a c e d  contours o f  constant total e n e r g y ,

H a i  y  u  i . i v . - q i

IB (d): contours separated by powers of two of constant k inetic  energy
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J . 4 3 f  ' D I

U -
■

I S  i t ) -  c o n t o u r s  s e p a r a t e d  by powers o f  two o f  c o n s t a n t  n a g n e t i c  e n e r g y

ii

- Jf ) i

18 ( f ) :  contours separated by powers of two of constant total energy



I

Figure 19. - At t > 7.01, CASE 2, enlarged toroidal cuts of: 
19(a) oeetor potential. A. and

m .T

w i

i . ! -i

19(b) current density, }
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i II. . , AI/.-l.PP , „

I .' ^ i • I ■'
r.

F i g u r e  2%. - At t * ? - 8 i ,  CASE 2 ,  e n l a r g e d  pololdal cute ef=  
2 1 ( a )  vector potential, A, and

2i(b) current density, j



t r

Y

o

Figure 21 - Poincare tracea at t * 7.81 of Mgnetic field linea in the z -  i f
plane. CASE 2

o
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i *  <*>
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H ,

- J J

F i g u r p  22. -  C o n t o u r  p l o t s  a t  t  *  0 . 7 4  f ro m  CASE 2:
22  ( a ) :  c o n t o u r s  o f  A *  c o n s t a n t ,  p o l o i d a l  c u t ,

*  L," U  i  P l  Ph: | i t -  f - U F ' O J
S - J H ----------------------------------------------1---------------  r - -------------------  . — ________ ______ ___________________ _

a

22 Cb>: contours of J ■ constant, poloidal cut,
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i . • 1 .
J . I M,------------------

. . H Lj •

I.

'V

L ■

r  J U  K . T rF -1  1 L.- 1  .-b '-l LI J*

22 (c>: contours of constant, pololdal cut.
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-
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p

D I h

P f i: L u

1
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i

F

F [ n C F

11 r.
t  1. \

i- i j  1 — .. J
( . . ' . L -  u ,  ' t  J ,  i ■' '  ■ H l i  i  • 1

22 fdh contours of A * constant, toroidal cut.

i- i
i f .■ )
1 - \ A  - V;

v  I |' ,  \  '

I'ff / /
■I. Hill I l

I I I I I E.-'

I '  e . r> | O  l . l i l l ' d

I
I1 I

IiI i

f j  . u .
_J__

J . ' • !

f  I
Et ■ , \ /  I

f X \  / ' r '

T  I
I .C * I "l I 1

'  J -  J V 1
.J. ....... . / . A  Ji _ L

22 <e): contours of ] = constant, toroidal cut,



Figure 23, - Perspective plots of j ( t  -  8,B2) In the z *-rr * plane, CASE 2.  

Mote: See Pig B(3e) for contour plots of the sane quantity
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_ _ j _ .  _ _ ^  ^

_  i _ ____

- - - L

I|H

I ':

'J
r

Figure I K .  * Contour plots at t - 11.90 from CASE 2j
2K (a): contours of A * constant, polcidal cut,

*  .■. I i < t  . V . h' ]  J C..  y  ' I I I1 M—

|L

J . i-■"IU J- . J 1 ■

IK (tO; contours of ] * constant, pololdal cut,
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P >. > ,1 hP J ) L- I ,*it-«/

. . — L

\ \

. jj'ti

. ."j J . 1, '  ’ .

24 (c}r contours of if- constant, poloidal cut
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1 .

•J

k

24 (djr contours of A * constant, toroidal cut.

■

24 (o); contoura of j  -  constant, toroidal cut.



Piflgr* 25. - contour plots at t » 17.52 fron CASE I ,
25 { a ) :  c o n t o u r s  o f  A *  c o n s t a n t ,  p o i o i d a ]  c u t ,

is r . t s t  d • ■ * . i . iJ ] > c- * .□ If h

p

25 fb h  contours of 1 ■ constant, pololdal cut.
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"T"
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y

35 (c ) : contours of ’f *  constant, poloidal cut



m
J  .  I « E  - 0 0

— 1

H . ■'

r

25 fd3: contours of A * constant, toroidal cut,

I ■ ► , 11 1 ■■■ r  . :  C -  b . D I E  ► (  t

i . I ' i

25 (0 1 : contours of } ■ constant, toroidal cutt
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if
-a
U

Figure 26. - Contours of energy In Fourier apace at t  ~ 17.52, CASE 2.
26 (a): equally spaced contours of constant kinetic energy.

h .Hj—

n -

A
i1 . J'j

*  H  f i t '

(i ■ a .m*F *41

jc: J

26 fb): equally spaced contours of constant magnetic energy.
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- A —

ia '# .L  m  -v-Mt-Gu

I

   L ... . . .___ J ______________ I----------------------  .
j  . I :. i s ,  SO ? ■ o = . 11 ■L ■

* . |i| i , h. r  J J

26 (c): equally spaced contours of constant total energy

i I -j

26 td): contours separated by powers of two of constant kinetic energy



JG3
H* i ?

" T ‘ '

j ■ l.OE -01

t  .CO -

Jt.

< , 'I' I y

26 £e); contours separated by powers of two of constant magnetic energy

t ..'j,I  I - ll.r .1b tvr k
r~

i ■ j -  -  n i ' j * -

L

■ I4

J

h PI Hk

26 f f ) :  contours separated by powers of two of constant to ta l energy
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?. i t
i.

Piflurt 27h .  Q-proflJea *t:
t -  4.14

> 1LI . '4, -4___■ • Ml
*

27(b ) ;  t  *  f . f i l
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*

27(c); t * 7.6*

- ijt- ■ .t,*

27(d); t  -  6 76
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J i. 4 L i

t = 11.90

37(f): t ■ 11.71
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i

,1 ,

1
P.

27(q); t = 13,11

2 7 (h ) ,  t  -  17.52



l&s

5.

4,

3.

1 .

1 2 . 14.1 0 .42

Figure 20. - c a s t 2, energies* ka ) as a function of tiite, with dashed line 
for kinetic energy, end solid line for Jiugnetic energyr 
20(a): k% -  1.
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0

1 . 0 
E - 4

.5

12,10.

2 0 ( b J : k 2 = 2,  and

29(C) :  Jct  -  3
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Figure 29. - Clobals for CASE 3, ( y  MB2S):
29(a): kinetic energy i t  a function of time,
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J .L1 ,01 'I

29(b): nagnetic energy «  a function of tine ,



total energy as a function of tine,
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,Lf

] ,ai 11
? . >o J

29(d): ra tio  of k inetic to magnetic energy as a function of t l i e .
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29(e): ha lf the lean square v o r t ic j ty  >3 a function of t i» e H



195

! 1

29(f): half the nein squire vector potential is  a function of tine.



“ I

Lr - 'J 1

2319): ha lf the iiean square current as a function of tlJie. and



197

, < .  i ■ ■

29<h): total integrated current density as a function of tine
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Figure 30
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F - ) . t u  -nn

f.

- contours at t  -  11.32, CASE 3:
30 (a): Contours of constant A. toroidal cut.



199

f I -1*1 -01

.. [

B "ft
f  / , /

I I■I
H' I I 
It \ I-

X X  ' ■»
b ' ■ L 

■ Ji

'  - f c .

31 ( M : Contours of constant ]. poloidal cut.
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i ■ .i-i i  ■ i , * ' j i  - { j i
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■:. I >■!

L. . 1.5.'

31 ( c ] : Contours of constant J, toroidal cut,



I":. I I K , f  , I' I > t 1 .fOI \ l i

(

f

3* (d); Contours of constant V, poloU il cot.
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k r> i'i
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I. . r  <
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3fl f * ) :  Contours of Bodal kinotic energy, spaced by powers of two,
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Hu- ? r. o:

i ■

i . t i i ■7 i I ;
IJ 0

and 31 ( f ) : Contours of nodal aagnetic energy, spaced by powers of two
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Figure 31 - CASE 3, t -  I f . 32:
31(a); Perspective plots of current In the z -  -rr plane, and
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Figure 32- - CABE 31 t ■ 13.26:
32(a): cloae-up of } h poleldal cut,
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VI . U1.'. I T T

I . 18 I .57

32(b); cloje-up of the ve loc ity  f ie ld , pole idol cut, and
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3 2 f c ) ;  c l o s e - u p  o f  t h e  p o l o i d a l  p a f l j i e t f c  f i e l d ,  p c j o l d a l  cut
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Figure 33. - Contours at t * 14.52, cwr 3 =
33 (*}: Contours of constant A, toroidal cut.
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13 (b): Contours of constant 1. polcidal cut,
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33 (c): Contours of constant j ,  toroidal cut.
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, I'. A I . ... 7 _ ■ ! I .bth CI

33 fd): Contours of constant poloidal cut.
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kinetic energy. ap«ce<J by powers of two.



214

K - f - ' t f i H

i. .a j
I LI

and 33 (f ) ;  Contours of lodal nagnetic energy, spaced by powers of two



Figure 34; - Perspective plot of j (n ,y ,r  -  X\ <t -  14.521, CASE 3
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-  CAPE 3 ,  t  *  1 6 , 2 6 ;
35 fa) j contours of A * constant, poloidil cut.
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35 (M: contours of A * constant, toroidal cut.
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35 M): contours of j  1 constant, toroidal rut,
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JS t f ) ;  contours of constant, poloidal cut, tnd
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35 i f ) :  contours of constant, toroidal cut
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F i g u r e  36 ,  -  CASE 3 ,  t  = 1 6 . 2 6 :
36(a); Perspective plot of current in the z 3 TT plane, and

IT
X

36(h): Poincare' plots of magnetic f ie ld  line traces in the i  “ tr plane.
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Figure 17. - Contours at t * 17.46, CASE I .
37 (a); Contours of constant At toroioa* cut
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37 Cb): Contours of constant ) ,  pololdal cut.
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37 (c) Contours of constant j ,  toroidal cut,
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37 Contours of constant Y*. pololdal cut,
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37 (e). Contours of nodal k inetic  energy, spaced by pouera of two,
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u i  37 ( f ) .  contours of nodr: SMC(d „ f  ^  ( f  ^
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Figure 4#. -  Numerical solution of equations (26) and (27), 
Hltfi (X * 15. B0 -  4.2. and * . 11,

Note; &  > 21 l „  i  3.
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Figure 41. - Numerical solution of equations (26) and (2?). 
with i / . *  7-5, B„ " 4.3, and * »rl l

Hole, A B0 /  3 < (X <■ &  i  3
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Figure 42- - miner leal solution of equations (26) and (27), 
with (X* 3-75, B„ » 1.3, and 1 11.

Note: i  B, /  3
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Figure 13. - Solutions of the nonlinear, undriven low-order iodel, 
egnotions (261f (27), »nd (31);
13(01: B* ■ 1.3. -V  1.1110, I I. «■ * l , 6 r |X 1 IF I f .
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13(d): B4 ■ 4,3, -n -  I . I l i a ,  p -  i . i t «■ = 1.6, A *  3,75, 

■ *- >04 59.63,
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Ftgwr-e 45. - Solution of aquations (261, (27) and (28)
with parameters and conditions as for Ffg 44,
(B& * 4 1. l.ffl, « -  t  (167724, f l * ( M 5 3 ) ,
4 5 ( a l :  w i t h  a m p l i t u d e  o f  s l n ( i r ) * s i n ( ¥ )  a t  4 44 *  2 , 8 ? ,  and



236

itii [j

| 7 W

/./'I
L.

] .  'J 'l

h it"  i A  A

I 5 f b ) ;  w i t h  (X s Jw , t t  -  4 . 4 6 ) /  2 = 7 , 5
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1
t
Ij •
H i

4 ,

U 0-

1t.
■j

. v? er. i >11 t :
tjE I ft

F i g u r e  16  -  S o l u t i o n  o f  1 2 6 ) ,  ( 2 7 )  and  ( 3 1 )  f o r  an I n i t i a l  c r i t i c a l  p o i n t :  
B» *  3 0 U  = 7 , 6 6 6 6 6 6 6 ,  A  = 6 . 6 6 6 6 6 6 6 ,
^  *  0 1 1 0 1 1 0 ,  *  -  1 . 1 3 2 7 9 5 6 ,  fc *  1 . 2 5 8 1 9 9 9 9 ,
V 1 Mlfflfl.

w i t h  t  ■ l , * H and t  = 5 9 , SB.
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I

j  .a — L_
j je <.'jh i .ij-i

ill I (. A

Figure 47 - solution of (26), (27) and (31) for an In it ia l cr it ical point:
B, = 3 444441, # , *  7 6666666' A  -6.6666666,
^ - i . f f l l l l l ,  a  ■ 1 . 1 3 2 7 9 5 6 ,  p -  I  ( # 2 5 6 1 9 6 6 9 ,
V -  I f f  H IM ,  

w i t h  t m, ft » l . l ,  and = 5 9 . 6 0 .
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\

1 .)<■'i,1 j iJ _■ j

t i l  ' /■ h

Figure 48. - Solution of (26), (27) and (31) for an in it ia l critical point: 
Bd * 3.10**11, a e- 7,6666666, <X - 6.6666666,
'I -  I . * 0* 011, * -1 .0 3 2 7 9 5 6 , = I.000I250198&9,
I*  - 0.000010,

with »nd t w  - 59.(6.
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t

b .  f t

-j1i;

(i f U  A

riflure 49, - solution of (26), (27) and (3*) for an In itia l point:
B, - 3,061440, ^  = 7.9999999, &  - 6  6666666.

^  -  O » f l f f > 1 0 ,  *  -  1 1 3 2 7 9 5 6 ,  6  -  I  1 1 1 1 2 5 8 1 9 6 6 9 ,
V  * l.M M W ,

^  = ff “■ t -  59 68



i i3

■t .t

■■i

J.fh
A

Figure 5*. -  Solution of (26), (27) and (31) for an in it ia l point;
Bg ■ 3.101010, &  -  7J999999. <k ■ 5.5555555,

1  ■ 1 . 1 0 1 * 1 * .  o< > 1 * 3 2 ? 9 5 6 ,  6  -  * , < < * * 2 5 0 1 9 8 0 9 ,
V  '  < 10101* ,  r

«itJi t ^  -  1 .0 , and t ^ -  59.06.
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I
y ■!(!

, I1 *

F i s u r o  5 1 .  -  S o l u t i o n  o f  ( 2 ( 1  f ( 2 2 )  and ( 3 1 )  f o r  an I n i t i a l  p o i n t :
B„ -  3 ( ( M M ,  9.9999999. (X > 6 6000000,
^  '  I . 104110. ■ 1 1327956, I  « 4-100125819989,
■v * 0.000000, 1

Hlth ■ *■*■ and tw*, ■ W-*B-
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1 \

V ,M  i

i I I
,7 / i ,/ • ' i  I

■, W \ \ 
\  \  \ 1 \ |"P,D!

0, H
j . L':i 
nt I a

i.d! i i . ' i ' i  H . U O  4 . 0 Q  ' ' . d 1- '  J | - ' - , l

F i g u r e  52 .  -  S o l u t i o n  o f  ( 2 6 ) .  { 27)  and ( 3 1 )  f o r  an i n i t i a l  p o i n t :  
Bp -  3 . 0 0 0 1 0 0 ,  I M I H f ,  # . - 4 . 0 0 0 0 0 0 0 ,
^  - I J 1 0 0 I 0 ,  PC - 0  0100010. Pf m l  : 0000001
V  * V.010000, r

with t_. = I  I ,  and t  - 59.86.
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ill IA

Fiflure 53, -  Solution of (31), (27) and (3*) for in In itia l point:
B# » I  Jflffl, 4 H I I H I ,  A  M  .............,

^  -  I  J l l l f l ,  #  *  1 1 1 1 1 * 4 4  t> =  .................. r
V  -  I  I 1I H I ,  r

Hlth -  1,4, and * 59.06.
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i  em * - -
I I I

-J
TII

r
4  . I ' ji .! J

LhI I * *

Figure 54. - Solution of (31). (27) and (31) for an in itia l critical point:
B. = M i U I I .  a * >  5 0001001, 0L = 4 (0276(7,

 ̂ - I.Illllff, <* -  1.2635901, 6 * 1.796467(6,
■V - 0.11(110,

with t „ ; , -  1.0, and 59.66
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J  ■
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J  . I  7

W. 11 *

Figure 55, - Solution of (31), (27) and (3#) for an in itia l point:
B p -  Q a> 6 I H H I I '  d *  5 ( « • « ( ,

^  *  I . ( H m ,  * *  ■ . 0 4 4 7 2 1 3 6 ,  6  -  I r > 4 4 7 2 1 3 6 ,
U  * 1.050000 r

with t m,„ -  t . 9 ,  and t mw- 5 i* .n .

H o t # :  n o n - t r l v i a l  c r i t i c a l  p o i n t s  a r e  ( 3 .  . « *  , (K ) ,  where
(X *  5,  3 4 1 0 I P ,  * . «  ± i .  1 5 2 4 1 4 6 ,  I .  3 3 3 0 5 0 8 .
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L,
1 n J Cl *

Figure 5S - (continued)



i

, r |  ■
' 1 "

“  ri
t • y.

F i g u r e  5 6 ,  -  C o n t o u r s  a t  t  » I J ,  f o r  CAGE 4.
5 $  ( a ) :  c o n t o u r s  o f  A  -  c o n s t a n t ,  p o l o i d a l  c u t ,
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i l , U :  I '  A . S . i 11 i f i . lDfnOC

/ . I L i , I
I

56 (b)r contours of A * constant, toroidal cut,
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l I ,03d 10.

u. i"l

56 ( c ) r  contours of ] ■ constant, p^loidal cut,
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, : '  , i '  I ( i  ,pn;  ’ 3j

i . JbI , j  ■'

i

56 fd)j contours of 1 * constant, toroidal cut,
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•0-  -

j ,■7t ,J . i J
>:

56 (e): contours of ^  1 constant, poloidsl cut, and



contours of constant, toroidal cut.
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j i

Figure 57, - Globals, CASE i ,  with E0 » H / 2 M .  V  *  t  I

57(a): k ine tic  energy as a function of



2S7

, '''■!

V

J , l t !

57(b); lagneUe energy as a function of t i i e .
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57(c): total energy as a function of t in t ,



21 &

i

57(d): half the nrm square vector potential as a function of t ine ,
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57(e): half the mean square current as a function of tiae.
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. I

, I

■i
i

57(f); to ta l Integrated current as a function of tine.
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I

57(g ) : to ta l Integrated vector potential a* a function of tine.
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ij'
0r ii

1 1)1} -

57{h); half the sean square s trew  function as a function of time, and



2$A

] . I B f

57fl)r half the mean square v c r t ic i ty  as a function of tine.



F i g u r e  5 0 ,  -  C o n t o u r s  a t  t ■ 1 6 . 5 6 ,  f o r  CASE 4, £ a *  I . * 5 .  *  tf
56  ( a )  : c o n t o u r s  o f  A *  c o n s t a n t ,  t o r o i d a l  c u t ,



50 ( b ) :  c o n t o u r s  o f  } = c o n s t a n t ,  p o l o l d a l
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I '  * . I '  I . . h  I- I . ij'Ul i - i l
—tt-

X

56 (c>r contours of ] * constant, toroidal cut,



2«ti

K

i1 ij •

r

i

H . N
r

tnd SB (d) contours of ^  -  constant, pololdal cut
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Li

Figure 59

v  - ,  r  I t  I .  t ’ l. ' l u
- r  ---------

.. - L . _ . l L

f

- Contours at t  ■ 2*. <4. for CASE 4, Eh" 1.15. V *  l . r
59 (a) : contours of A * constant, toroidal cut,
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' i .» i ri.j
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\

'■ 4i

i 1 ■L: v. I
/
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■fL

.L'.l__
J . UL' L . ‘i I 

!(
I  .

5$ (b): contours of J = constantt poloidal cut.

(  = J , 011 1 QJ

\

i . M



2?1

i ■■ 1,0<l -01

V

59 ( c ) :  contours o f  i  * constant, toroidal cut,



373

and 59 td ) : contours of +■* constant, polo 1 dal cut
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Figure 6P

i  , l ,'r ?

r-----------
( 5 _ M Lit "I",

■■ J?

' i
i>:

I. '

■v
■ ■£

/
/

IL ■-

\  i t

- Contours et t  -  CJSE 4* ! ^
61 («): contours of A ■ constant, poloidsl cut,
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'K

S I (b): contours of *  * constant, toroidal cut,



J i  J1 ■ v j - p I  j  [■■ t . i t t  - g a

J. ̂

i.

61 (c): contours of J * constant, poloidal cut*
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K i M u  ■ uu

j

*

6* (d>: contours of j ■ constant, toroidal cut,
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* , , . i . |  r .  , K .  I ■■ l  .  V . f ' | l E ■ I DJ

X

f il (e); contours of ^  * constant, poloidal cut, and
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, , u t 31 . I ' '  . I1 - L ; . 1  II 01

I"II

\

i .I.

( I  ( f ) :  contours of t  “  constant. toroidal cut.
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1 . i ff  - li-J

b

1

Li

V

Figure 61. - Contours at t -  J6.24, for CASE 4, to - I . #5, X>- « . l
61 (A)' contours of A * constant, poloIdol cut.
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1
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i 1
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61 (bj: contours of A * constant, toroidal cut.
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Jik , t ,F'h t= i.e.'L-ua

]J , i'.! i JI

K

(1 (c); contours of ] * constant, pololdal cut,



i n

i i
H |r

,_L _L . l l

i■ -c.r i ,.7 _  _ r

. J -H

61 (dl: contours of 1 ■ constant, torofdal cut,
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i r ' . J lj

V

til (M: contours of constant, poloidal cut, and
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I ' M  i > , 1 1 / . ' , / -  t  ■ J M*F 01

ll

y

61 ( f ) : contour* of + * constant, toroidal cot.
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i , H r  i i . in ■ cc
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'
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1. Li

1 . _ L . 1 - . .  - 1

u . . " l  l , j '  i ' . i b  J - J 11
y

f igure 62, - Contours at t  ■ ^2.>P, for CASE 4 t Eo -  I . f 5 ,  V  = I . I
<2 (a) : contours of A -  constant, toroidal cut,



1 .  i ,  ■ , 1 ' J  : 1 =  J . t i L  i j g

> . it

62 ( t ) :  contours of } * constant, poloidal cut,



26?

I ( , I '  . .  '  r ;  > I  : ! . b  It ■■■■■_

J
K

62 (c) ' .  contours of j * Constant, toro idal cut,



2se

ii

I
\

J 'i

«nd 62 (d) : contours of 'V* constant, poloidal cut
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2  0  V *
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0  c .  » ' • :

0  o ° o «  
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" ‘ 0 ° °  
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Figure *3- - Poincare plot* t  = 42.11, for CASE 4, £ q c * ■B5 - and v  '  * *
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i j . j1

'i '.I-

ti j(

L 10

I -  1, I l f ' C i v

IJ, |r l '.it

Figure 64 - Contours at t  -  119 44, for CASE 4, E a = * .*5 , U ■ I f :
64 fa) : contours of k  * constant, toroidal cut.
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64 (b ): contour* of } ■ constant, poloida) cut,
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.!■ K , i ' i  , f > E t . I H  " C - L .

lbI

I \
I I

t /
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Li___
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¥

(e): contours of ] * constant, toroidal cut.



and 64 (d) - contours o f t "  constant, poloidal cut



Figure 65, - Contours at t  ■ 157.92, for CASE 4, ■ f.15,
65 (a),  contours of A * constant, pololdal cut.
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ii;
i ,_l_ 1

c;. -i i /, i1 i1. u, 5-11*

65 (b)- contours of A * constant, to ro ida l cut,
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< J . , , . . !  U 1 J i t . t . r i  i [= Oll'QC

I .

L ,  .  L  ' J
111

65 (c): contours of } * constant, polojdal cut.
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t i, v
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■ji

65 (d): contours of 1 *  constant, toro idal cut.

I 1.01 'UJ

i .H
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65 fo b  contours of 't * constant, pololdal cut, and



299

I 1 .  I \  ' I L i

JL.

I
ri 1

65 ( f ): contours of 't * constant, toroidal cut
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Flqurt 66. - Sptctrft. CASE 4 , with E# * f.PS, 'O ■ 140,
66(4); t * I - I f ,

66(b): t -  111.76.

66(c): t * 119.44*

66(d); t = 117.12.
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1 0 0

t ime

Figure 67. - flatto of kinetic to magnetic energies for CASE 1, Et f  1 . 1 5 ,  
Dashed lin t: 32 • 12 • 16 grid.
Solid line: 16 * 16 * 16 grid.
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t i me

Figure 66, - Global quantities, CASE 4, Ea -  #.15,
Dashed liner V * I I I ,
B o lid  line= v  * *.11,
66(a); ra tio  of k inetic  to magnetic energies as a function of time.
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E 4

60

52

50.40 .0 10

l ime

66(b); total integrated current «  a function of t i i e
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P i

Figure 69, - Cloi)lIs for CASE 5, l 0 - B/261, V * I  I
69 fa); J t l i t t t ic  ererfljf as a function of t i « .
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i ]0

69(b): nsgjietic energy as t  function of t ln r ,  and
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T

'J•4

69(c): to t i l  integrated current as a function of t iie
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1

Figure 71. - Contours at t -  26.76, for CAEE 5, l 9 * 8/2M, U B * . (
71 (a) : contours of A ■ constant, toroidal cut,



31B

(i>): contours of j  ■ constant, polofdal cut,
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J l  'i ,1 I i f  ' 1 ■ J . J 1 l  ’ -3U

Ttr--- II

ih i - l

t

71 (c): contours of i  * constant, po lo ld il cut,
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' " l  I (> ■' .+’ J 1 ( ■ !  . * ! [  lil

v U;
r

71 fd) r contours of y *  constant, pololdal cut,
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I . ' j ,  i  1.1 S J f l

79 [*> r t u c t  o f Vi k = i y  2, y, j  * * ) ,  and
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7* ( f )  : 5l I C t  Of J {B * K /  2, yp Z * (T)
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pjgure 71. - Contours i t  t  * 35,14, for CM>E 5, E« * 5/2*®. ^
71 (a) : contours of A ■ constant* toroidal cut.
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71 (b): contours of 1 3 constant, pololdal cut.
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< i , j j i  j . '  f  - ^ J .  > i  t . o : f  <dc

i

n  i c ) :  contours of ] -  constant, toroidal cut.
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71 ( 6)  : contours of Y E constant, poloidal cut.



31?

i i l l ' '

Figure 1 1 .  - Clobals, CASE 5, with Ee -  0/2*1. V  -  * *1,
72(a): kinetic energy m  a function of tine.
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I JO ‘

72(b): uagrtetic energy as a function of tine,
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J .DJ. Lil1

illl

72(c): to ta l energy as « function of tine.
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T i j i )  1

72(d); h i l f  the lean square s trew  function as a function of t i i e ,
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1 > I '<i

72(e): half the #ean square v o r t lc i ty  as a function of tine,
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i .  K

? 2 ( t ) .  total Integrated current m  a function of t t « ,
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0 .fefc

72(g): to ta l integrated vector potential a& a function of t i r e .



J

f ti.tit.I, J. '
110 1

72( h) :  half the fiean square vector potential as a function of tlae, and



32 5

J L 1 '] . Q.H
I

72(i), ha lf  the wan square current as a function of tine.



Figure 73. - Contours »t t  '  29.28, for CASE 5. I t  -  8/2(1, U *  ■-<!:
73 (a): contours of A ■ constant, pololflal cut.
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73 (b ) : contours of A * constants toroidal cut.
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73 (Cl: contours of 1 *  constant, po lo ld ii cut.



329

73 (d>: contour* of } ■ constant, toroidal cut,
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7$ 1 ti:  contours of f *  constant, poloidal cut



73 ( f 5: contours of V *  constant, torolfla l cut.
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FIqure 74. - Contours i t  t  * 39.36, fur CASE 5, i 9 = 8/2(1f V 1 •
74 {a) ; contours of A * constant, toroidal cut,



m

74 (b): contours of i  * constant, poloidal cut,



I  ■ j.H 'll 'DU

?4 (c l:  contours of 1 ■ constant, toro idal cut, and
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74 Cdl r contours of y *  constant, polofdal cut
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Figure 75. -  Contour® at t = 54.72, for CASE 5, En -  • *1 =
75 (a) i  contours of A * constant, tororoal cut.
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73 f t ) '  contours of A a constant, toroidal cut,



73 (c): contours of 1 *  constant, polMdal cut.
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71 fd.1: contours of 1 “ constant, toroidal cut,



73 (eh contours of 'V* constant, poloidal cut
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73 ff): contours o£ Y p constant* toroid*] cot
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Fi-gur* 74 - Contours at t * 39,36, for CASE 5, E0 = 0/2#*. V s * i l
74 (ft) ; contourft of A * constant, toroidal cut,
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74 (b): contours of 1 * constant, poloidal cut.
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74 (c>: contours of 1 * constant, toroidal cut< and
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74 fdl i contours of constant, polofdal cut.
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Piaur* 75. ■* Contours * t  t 1 54.72. for CASE 5 f E# * 8 /2H - 1 ) -  * -H
75 (a) = contours of A * constant, toroids* cut,



I ' '  r  I . 1 1  J
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/ . i b

(b ): contours of j ■ constant, poloidal /  toroidal cut



75 (c )= contours of 1 * constant„ toroidal cut,



contours of *+= constant, polo 1 dal
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Figure 76. - Clobals. CASE 6 ( E0 - B/351, V  > 118
76(a): kinetic energy as a function of tlse.
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76(b): magnetic energy as a function of tiftfr. and
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76(C): total integrated current as a function of tine
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Figure 78- - Poincare plots, CASE 6, t * 39 24.



Figure A l . - Total energy w aufl tine for RUN M .
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W ( f ) : Fourier space contour plots, t  * 6.76, of tj,
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and M  (g): Fourier spare contour plots, t  ■ 6 76, of A.
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Figure A4
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Flqur* AS. -  RUN AS;
AS {a): et  as f [ t ) .



j . i c  
I iuJ

I I .  i .

A5 (b): E u i s  f ( t ) .
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A6 t f ): physical spact contour plots, t  *  8.76. of u).



372
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A7 (a): physical spa« contour plots. t ■ 0,76, of LO
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AB ( c ) : Efc as f ( t l



AS (d): physical apace contour p lo ts, t  * 0 76, of tO
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Figure Bl. - case
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FROZEN (short dished line i,
TBAWED (solid line).
NONLINEAR (long dashed line}, and
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FROZEN I short dashed line). 
thawed (solid line),
NONLINEAR (long dashed line).
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Flgurt B2, - CASE 2. t  ■ 0.B2:
B2 (a): contours of A -  constant fron FHOfcES run,
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B2 (bb spectra of nodaj magnetic energy from FROZEN run,



30*

■y

J!

. ju

B2 (Or contours of A ■ constant fro it THAWED run,
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B2 {d): spectra of iKidal aagnetic energy from THAWED run,
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B2 O ): contours of A * constant fro® NONL1N6AH run,
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B2 ( f ) : spectra of nodal magnetic energy from SOKLISEAR run
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F i g u r e  B3, -  CASE 2,  c o n t o u r s  o f  c o n s t a n t  c u r r e n t *  t  = B .B2 ;  
B3 ( a ) :  p o l o l d a l  c u t  f ro m  FROZEN r u n .

03 ( b ) - .  toroidal cut from FROZEN run.
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Cl (a); magnetic energy as a function of time, 
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Cl (b); kinetic energy as a function of tip ef 
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Pigur* C2- - Contours at t * 16.56, for CASE ♦, Efl *  V  
C2 (a) : contours of A * constant, toroidal cut,



C2 (b ) : contours of 1 *  constant, pclcfdal cut,
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C2 (ch contours of j * constant, toroidal cut. and



346

C l  (d) i contoura of constant, poloidal cut.
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Figuff C3. - contours at t  = 2l.fi*. for CASE 4. E, *  a . I ,  v *  t . t

C3 (a): contours of A = constant, polojdal cut,
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C3 (b): contour* of A * constant, toroidal out,
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C3 (el: contours of + *  constant, pololdal cut, and



C3 ( f ) :  contours of V *  constant, toroidal cut
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Figure C(. - Contours at t ■ 23 52* for CASE 4, t „  “ v  " 1 1
C4 (a) j contours of A * constant, toroidal cut,



..  1___________________I .  l_
■J . U . ■') I , V  . . Si,

x

C4 (b): contours of J ■ constant, poloJdsl cut.



415

C4 fc]: contours $f } * constant, torcfdai cut, and
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Figure CS. - Contours i t  t  1 O . iD ,  for CASE A ,  E0 = 1.1, U  =
C5 (a) : contours of A ■ constant, pololdal cut,
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C5 [to: contours of A * constant, toroidal cut.
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C5 cantours of } ■ constant, toroidal cut
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