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ABSTRACT

Researchers have long been interested in electron transport through mesojunctions 
containing time-dependent potential energies, a process often called “quantum 
pumping.” A useful model of such a system is a ballistic atom pump, which consists of 
two reservoirs of neutral ultracold atoms connected by a channel containing oscillating 
repulsive potential-energy barriers. Under certain conditions, such pumps can create net 
transport of atoms from one reservoir to the other, and energy can be pumped out of or 
into each reservoir even when there is no net particle transport. These pumps are studied 
from classical and quantum-mechanical perspectives, and semiclassical theory is used to 
explain some scattering properties which are not easily explained by quantum  theory. 
This system is also a nice model of chaotic transport. Escape-time plots showing the 
time for classical trajectories to  escape the barrier region display a type of fractal 
self-similarity. A topological theory using a discrete map of the system in the phase plane 
is developed, and this theory predicts and explains the features seen in escape-time plots.
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C H A P T E R  1 

Introduction

Scattering dynamics involving periodic time-varying potentials is of fundamental im

portance to  quantum  transport physics and related applications in mesoscopic condensed 

m atter physics. The quantum-mechanical treatm ent of an oscillating barrier was first 

studied by Biittiker and Landauer in order to understand electron tunneling times [1], 

and their work built on previous work on photon-assisted tunneling in superconducting 

diode junctions [2]. Since then several workers have developed theoretical tools for trea t

ing time-varying barrier or well potentials, for studying photon-assisted tunneling [3, 4, 5], 

quantum  pumping [6], and electron scattering by intense laser-driven potentials [7]. These 

systems can display rich quantum  and classical dynamics tha t include chaotic scattering 

and chaos-assisted tunneling [8, 9, 10, 11, 12], dynamical localization [13], and quantum 

interference [14].

In electronic solid-state systems, the transport of electrons through mesojunctions 

having time-dependent potential barriers, a phenomenon often called “quantum  pumping,” 

has been theorized for decades [15, 16, 17, 18, 19, 6, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 

30, 31]. It has been shown th a t such a system can pump electrons from one reservoir to
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another with no bias (such as a potential difference). Despite its technological promise 

of generating highly controlled and reversible currents at the single electron level [20], 

however, quantum  pumping in normal mesoscopic conductors remains elusive [32, 33] 

(though it has been recently observed in a hybrid superconducting system [34]). Scattering 

by an am plitude-modulated potential barrier is of fundamental interest on its own, and it 

is also a building block for the more complex time-dependent potentials used in quantum 

pumping [15, 16, 35].

More recently, Das and Aubin have proposed simulating such electron pumps using 

a system of neutral cold atoms with optical potentials as the driving forces [36, 37, 38]. 

Neutral atom transport is becoming increasingly im portant in its own right due to  the 

ongoing development of atomtronics, which seeks to  replicate properties of electronics using 

neutral atoms, and in the field of quantum  computing [39]. Experim ental systems based 

on ultracold atoms offer the possibility of conducting precision tests of quantum  pumping 

theories, while avoiding the capacitive coupling and rectification effects th a t have plagued 

attem pted solid state  implementations. Furthermore, the use of ultracold atomic gases 

allows control over the momenta of the pumped particles and the coherence of the gas, 

perm its precision imaging of the transport [40] and velocity measurements, as well as the 

choice between Bose-Einstein and Fermi-Dirac statistics. Analogues of batteries, diodes, 

transistors, and recently hysteresis [41, 42, 43] have been explored in ultracold neutral 

atom systems.

This dissertation examines ballistic atom pumps from a theoretical perspective. A 

ballistic atom pump consists of two or more reservoirs of neutral-charge ultracold atoms 

connected by a  channel (see Fig. 1.1). W ithin the channel is a time-dependent potential 

energy, which for our purposes consists of two repulsive potential energy barriers, one or 

both of which oscillates. If both barriers oscillate, they oscillate at the same frequency, 

but with a relative phase difference. Particles move through the pump independently,



and only interact with the potential energy. The primary questions of interest are (i) 

can such pumps preferentially pump atoms from one reservoir to  the other?, (ii) can such 

pumps create a net transfer of energy from one reservoir to the other?, (iii) do particles, 

on average, gain or lose energy while passing through the pump region? We examine the 

system from classical, semiclassical, and quantum-mechanical perspectives. Most previous 

work on similar systems has used quantum  theory exclusively, but we find th a t much more 

can be learned using the classical dynamics, and we use semiclassical theory to  understand 

the similarities and differences between classical and quantum  treatm ents of the scattering 

processes.

pump

FIG. 1.1: A ballistic atom pump.

Previous studies of these pumps have generally been within the quantum  regime, 

and largely focus on charge or spin transport associated w ith fermionic carriers. Here we 

also study the classical analogues of such pumps, and focus on the differential transfer of 

particles, energy, and heat. This broadens the study of quantum  pumps into a new and 

largely unexplored regime.

These classical analogues of quantum  pumps are also interesting because they provide 

models of chaotic transport, which occurs in a great variety of systems on scales from 

nuclei to  galaxies [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54]. W hen multiple barriers are 

present in the channel, classical trajectories are chaotic, and escape-time plots, which



show the relative time for trajectories to escape the barrier region as a function of initial 

condition, display a type of fractal structure. We generalize an existing topological theory 

and implement it on this system in order to understand this fractal structure.

The structure of the dissertation is as follows. In Chapter 2, we study classical, semi

classical, and quantum  dynamics of one-dimensional scattering by an amplitude-modulated 

Gaussian barrier. Our main theoretical results are based on calculations of the scattered 

momentum distribution for atomic wavepackets of well-defined incident velocity, such as 

propagating Bose-Einstein condensates. We s ta rt with this basic study of scattering from 

a single barrier due to  the complexity of scattering from multiple barriers. In Chapter 3, 

we study different types of ballistic atom  pumps, which have two potential energy barriers. 

We study cases in which one barrier oscillates, and cases in which both barriers oscillate 

with a relative phase difference in their oscillations. The main focus of C hapter 3 is net 

particle transport in the system. In Chapter 4, we again examine a two-barrier system, 

but our focus is on energy and heat transfer within the system.

We then turn  our attention to the chaotic-transport aspect of ballistic atom pumps, 

which is considered from a topological perspective, using a theory called Homotopic Lobe 

Dynamics (HLD). Earlier work using this m ethod of topological analysis has primarily 

investigated models of chaotic transport involving escape of excited electrons from atoms 

in strong electric and magnetic fields, escape of light or sound from a vase-shaped enclosure, 

and escape of points from a region of the phase plane in an abstract two-dimensional map 

[55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67]. In all of these cases, a classical description 

of the system leads to a homoclinic tangle, the interior of which we call a “complex.” 

In these studies, trajectories typically begin on some line in the tangle, and the theory 

reveals details about the escape of orbits from this complex (sometimes referred to as a 

“half-scattering” problem). Chapter 5 introduces the m athem atical concepts used in this 

type of analysis, and they are discussed using a system th a t is less complicated than a



ballistic atom pump. In Chapter 6, we use these topological tools and examine transport 

in a ballistic atom pump. The material from the preceding chapter is generalized and 

modified to account for the differences in the system. Details on modifications are given, 

and once the theory is developed, we implement it on a ballistic atom pump.

Finally, Appendix A introduces semiclassical theory in configuration and momentum 

space, and Appendix B fully describes the semiclassical description we use.
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C H A P T E R  2 

Scattering  from  a Single  

A m p litu d e-M od u lated  

P oten tia l-E n ergy  Barrier

Due to the complexity of scattering processes involving multiple barriers, we first 

study scattering from a single oscillating, Gaussian-shaped barrier. We use the results 

learned here as a framework for studying ballistic atom  pumps, which have more compli

cated potential energies and scattering properties. Scattering by an amplitude-modulated 

potential barrier is of fundamental interest on its own, and it is also a building block for 

the more complex time-dependent potentials used in quantum  pumping [15, 16, 35]. In 

this chapter, we study such systems using classical, semiclassical, and quantum  theories.

When I joined this research group, classical and quantum  calculations were already 

being performed by others in the group. My role in the work presented in this chapter 

consisted primarily of semiclassical analysis, and an alternative type of classical analysis. 

However some calculations by others are included in this chapter in order to to place my
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work within the proper context. All work by others is noted.

Motivated by possible experimental implementations with ultracold atoms, our main 

theoretical results are based on calculations of the scattered momentum distribution for 

atomic wavepackets of well-defined incident velocity, such as propagating Bose-Einstein 

condensates (BEC). By employing a semiclassical formalism, we start with the classical 

dynamics and selectively tu rn  on “quantum ” processes such as interference and diffraction. 

The main results of this chapter can be summarized as follows, (i) Q uantum  theory 

predicts th a t the final momentum distribution will be a set of sharp peaks, or sidebands, 

at energies En equal to the initial energy plus ntko, where u j  is the frequency of oscillation 

of the barrier. Quantum calculations display this result, bu t they give no insight regarding 

the energy-range of sidebands or their heights, (ii) Classical physics predicts a continuous 

distribution of final momenta, w ith an upper bound and a lower bound. We find tha t the 

quantum  sidebands are small outside these bounds. For each cycle of the barrier there is 

an even number of classical paths arriving at each final momentum between the bounds, 

(iii) Semiclassical theory describes interference of waves travelling along these classical 

paths. This interference changes the classical continuous distribution of momenta to  the 

set of sidebands seen in quantum  theory, and it predicts the heights of the peak for each 

sideband. Specifically, the peaks are produced by inter-cycle interference, while the heights 

are predicted by intra-cycle interference.

The chapter is structured as follows: We present our model in Sec. 2.1, and in Sec. 2.2 

display results of quantum  and classical calculations for this model. Sec. 2.3 explains 

the algorithm used for the semiclassical calculation, and Sec. 2.4 compares and discusses 

the semiclassical and full quantum  methods. Sec. 2.6 summarizes our main results. Ap

pendices A and B give additional details on the semiclassical method used here and in 

subsequent chapters.
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2.1 M odel

Our model is motivated by recent proposals [37, 36] to simulate mesoscopic transport 

processes by studying ultracold atomic wavepackets propagating in quasi-one-dimensional 

waveguides th a t scatter from well-defined, localized potentials. A laser beam, blue-detuned 

from an atomic resonance, and tightly focused at the center of the wave guide, can create 

a potential barrier with a Gaussian profile, its width determined by the laser spot size and 

its amplitude by the intensity of the laser.

We choose a ID Gaussian barrier, centered at the origin, whose am plitude is modu

lated sinusoidally a t frequency u,  with potential energy U(x,t )  given by

Uq is the average energy am plitude of the barrier, A  is the relative modulation amplitude, 

a  is the standard deviation width of the barrier, and <j> is the phase of the modulation. 

The Hamiltonian describing particle motion and scattering from this potential is

We use wavepackets with initial momentum po > 0, centered at a point x  far to the 

left of the barrier, and whose initial position-space wavefunction is given by

U (x , t) =  U0( 1 +  A  sin (cot + 0))e x2^ 2(j2s> (2 .1)

H =  £ -  +  U(x , t ) . (2.2 )

« r(x ,t =  0) =  F  (x) eipoX, (2.3)

where F(x)  is the initial envelope of the wavepacket and is typically a Gaussian of width
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F ( x ) =  F g {x ) = (2.4)

Alternatively, the initial envelope may have a Thomas-Fermi distribution of radius /3, such 

th a t

The Thomas-Fermi and Gaussian envelopes are typical of BEC wavefunctions in strongly 

interacting and non-interacting limits, respectively. Unless otherwise noted, we use wavepack-

large such th a t (3 2ir\p0\/m,uj, ensuring th a t many barrier oscillations occur while the

packet interacts with the barrier.

In the rest of the chapter, unless otherwise mentioned, we use U0 =  m  =  h = 1, 

A  =  0.5, a =  10, and /3 =  300. The values of the incident momentum are in the range 

p0 —  1 — 2 , the oscillation frequency u j  ~  0 — 0 .2 , and in most cases the phase, 4>, is set 

equal to 0. In the case of a Gaussian packet, we select x  =  —1500 to  ensure separation of 

the initial packet from the barrier.

We also typically use a theoretical unit convention based on h =  1 and m  — 1, which 

is equivalent to  selecting an arbitrary  time unit tu and a related length unit lu = y jh tu/ m , 

with h = 1.054 x 10~34 J-s. The corresponding energy unit is E u — h / tu, while the mass 

unit is th a t of the particle, m u =  m, and the momentum unit is pu =  \ f h m / t u.

, \x  — x\ < 0  

, \x — x\ >  (3
(2.5)

ets th a t are much wider than the barrier width (f3 S> <r), with packet width 6 sufficiently
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2.2 Q uantum  and C lassical D escrip tions

Here we consider both  quantum-mechanical and classical descriptions of the scattering 

process. This dual framework allows us to distinguish the classical and quantum  nature 

of a variety of scattering features.

2.2 .1  Q uantum  D escr ip tio n

t=44t=0

0.2

0.5  tfl

t= 132 t=l 76

0.2

0.1 0.5

100 200 
x  (units o f  lu)

-200 -100 100 200 -200 -100 
x (units o f  lu)

FIG. 2.1: Snapshots from a typical quantum-mechanical calculation , showing a Thomas- 
Fermi (Eq. (2.5)) wavepacket (left axis; solid red line) scattering off a Gaussian barrier 
(right axis; dotted green line). The amplitude of the barrier varies in time according to  Eq. 
(2.2) with U0 = 1, A  =  0.9. The barrier width (a =  10) here is typical in our simulations, 
but the packet width (/? =  40) is much less (to show more details) than used elsewhere 
{j3 =  300) in the chapter. These calculations were done by A.J. Pyle and Kunal Das.

All quantum  calculations were carried out by A.J. Pyle using methods developed 

together with Kunal Das. The quantum-mechanical approach is based on propagating the
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wavepacket with the Schrodinger equation:

— d2̂  + u {x, t) v = ihdtv
2 m  x v '

(2 .6)

via a split-step operator m ethod [68] th a t incorporates the time-variation of the scattering 

potential U (x , t). The numerical calculation is done using a Fast-Fourier Transform (FFT) 

in a parallelized routine in FORTRAN. W ith periodic boundary conditions implicit in the 

FFT, the spatial range R  (typically ~  8000 in dimensionless units) is chosen sufficiently 

large to allow the entire wavepacket to  interact w ith the barrier a t R /2  without significant 

wraparound. The spatial grid density and the time step for propagation are both taken 

to be of the order of 0.1 in dimensionless units. The resulting momentum grid density 

27t/ R  ~  10~3 is more than sufficient to  resolve the narrowest momentum space features 

th a t we encounter.

Figure 2.1 shows a quantum  calculation of a Thomas-Fermi wavepacket in position 

space at four separate times as it scatters from an amplitude-modulated Gaussian barrier. 

The packet width in (x , £)-space for this simulation is much more narrow than in those 

of our typical calculations, in order to  show more details of the scattering process. In 

the figure, the initial wavepacket can be seen to  partially transm it and partially reflect. 

The transm itted and reflected portions appear to  have structure, but lack an obvious 

pattern  aside from spatial oscillations. Studying the scattering process in momentum 

space, however, offers more insight into the relevant physics.

The wavefunction in momentum space is constructed at a chosen large time, t =  tf ,  

after the packet has moved away from the potential barrier. It is computed via the Fourier 

transform of \&(x , t f ) :

(2.7)



13

We also compute the corresponding quantum  final-momentum probability density,

j $ ( p / )  =  l*(!>/,«/)l2- (2-8)

Here, pf  is used to indicate momentum at the chosen final time. Also, we note th a t for 

sufficiently large times, such th a t the packet has moved far from the barrier, the final 

momentum distribution is constant in time, while the momentum-space wavefunction is 

not.

A time-periodic potential produces energy and momentum sidebands to the incident 

carrier momentum state, which can be described by Floquet theory, the temporal analog 

of Bloch’s theorem. In our model, a wavepacket is incident on the barrier with fixed group 

momentum p0 and associated kinetic energy E 0 =  p^/{2m).  Since we use spatially-broad 

packets, the incident packet has a very narrow momentum spread. The interaction of the 

incident wavepacket with the am plitude-modulated barrier produces a series of discrete 

momentum states separated in energy by hu>. According to  Floquet theory, the allowed 

final-momentum states must obey the equation

Pf{n) =  ± y /2 m  (Eq + n tk j ) (2.9)

where n  is any integer satisfying n > —E0/huj, and w ith (+ ) and (—) corresponding to 

transmission and reflection, respectively.

Fig. 2.2 shows the momentum-space distribution of reflected and transm itted portions 

of an initial wavepacket, after scattering from an am plitude-modulated barrier. The re

sults of the full quantum  calculation show discrete momentum states consistent with Eq. 

(2.9). Fig. 2.2 also plots the classical final momentum-space distribution resulting from 

an initial Gaussian distribution of particles with the same initial momentum spread as
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FIG. 2.2: Q uantum  and classical momentum probability densities for scattering from a 
single barrier. Quantum  (sharply peaked curves, blue) and classical (green) momentum 
distribution for fixed u  = 0.1, Uq — 1, A  = 0.5, a  =  10, /3 = 300, but different incident 
packet velocities, po. The classical distributions were obtained via the histogram method, 
and statistics account for the fluctuations seen in the curves, (a) The reflected and (b) 
transm itted parts for p0 =  1.4142; (c) reflected part for p  =  1.0, when transmission is 
negligible; (d) transm itted part po = 1.8, when reflection is negligible. These calculations 
were done by Megan Ivory and Kunal Das.

the initial quantum  wavepacket (see next subsection for details). This classical calculation 

was performed by Megan Ivory. The classically-allowed bounds for the final momentum 

roughly constrain the Floquet peaks on both the reflected and transm itted portions, though 

we find th a t the peaks often extend slightly past the classically-allowed bounds and into 

classically-forbidden regions. However, the amplitude of the peaks do not appear to  have 

any obvious pattern , and only loosely follow the strength of the classical final-momentum 

distribution.
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p0=V2; reflected 
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p0= 1.8; transmitted
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The semiclassical approach presented in Sec. 2.3 and Appendix B will provide an 

alternative explanation for the positions of the Floquet peaks in term s of inter-cycle inter

ference, and will provide an explanation for the relative amplitudes of the peaks in terms 

of intra-cycle interference.

2.2 .2  C lassical D escrip tion

The classical description of the scattering dynamics is based on propagating trajec

tories based on the Hamiltonian of Eq. (2.2). In the case of a static barrier, incident 

particles th a t have an energy greater than  Uq are transm itted past the barrier, and those 

with an energy less than  Uq reflect from the barrier. The final energy of any particle is 

equal to  its incident energy. In the case of an am plitude-modulated barrier, however, the 

barrier oscillations modulate the energy of incident particles as they pass over the barrier. 

For a monoenergetic distribution of particles incident on the barrier tha t have energy less 

than  the maximum height of the barrier, the final outcome of each particle is heavily de

pendent upon the phase at which it encounters the barrier. Two particles th a t encounter 

the barrier a t slightly different phases can scatter differently; e.g., one may reflect, while 

the other is transm itted past the barrier.

Our quantum  and semiclassical calculations suppress the role of the phase of the 

barrier oscillation, 4>, by studying Heisenberg-limited wavepackets with a large position 

spread and a well-defined momentum, so th a t many barrier oscillations occur while the 

wavepacket is interacting with it. We mimic such wavepackets in our classical approach by 

using initial distributions of particles w ith initial conditions whose position and momentum 

distributions, P°  (x ) and Pq (p ), m atch those of the quantum  distributions:
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P ° ( x )  = \<H(x,t = 0)\2 (2.10a)

F*(p) = \ y ( p , t  = 0)\2 . (2.10b)

Generally, our initial momentum distributions are sufficiently narrow th a t classical 

particles can begin with a fixed initial momentum, distributed along a line segment tha t 

substantially covers the width of the initial wave packet, with statistical weights Ff;(x).

The classical distribution P c iP f ) of final momenta p/  can be obtained by numerically 

integrating trajectories and grouping them in bins of final momentum to  plot a histogram, 

as shown in Fig. 2.2 and Fig. 2.3(b). This method produces a classical final momentum

distribution th a t is somewhat “noisy;” the fluctuations in these curves can be diminished

by using a larger number of particles in the simulation. Alternatively, we can compute 

trajectories numerically to  obtain the final momentum as a function of initial position xq 

and final time £/, p j  — p(xQ,t f) ,  as shown in Fig. 2.3(a). We note th a t due to the periodicity 

of the barrier amplitude and our use of wavepackets th a t are wide in position space, p f  is 

a continuous periodic function of x Q, with period 2ir\po\/ujm. Any such periodic function 

has a maximum and minimum, which define the classically-allowed range of pj,  as shown 

in Fig. 2.3. Furthermore, this periodicity means tha t many initial positions a^(p /,£ /) 

contribute to the final momentum distribution PciPf)-  Each Xq(p / , t f )  contributes to 

PciP f)  a term  proportional to  \dx i /dp f  \ = \dp(x0, t/)/«9x0|_1 ll0=aj (p/ ,t /p so

P c  (P f ) =  J 2 P c ( x <> * / ) )  \dxJo / d P f \  ( 2-11 )
j

Figure 2.3 shows the final classical momentum distribution PciP f)  computed by both 

the histogram method (noisy red curve; calculated by Megan Ivory) and according to  Eq.
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(2.11) (dashed black curve).The final quantum  momentum distribution is also shown. The 

black curve, computed using Eq. (2.11), eliminates the statistical fluctuations th a t arise 

via the histogram method (red curve). The maximum and minimum of pj  define the 

classically-allowed region, with d p j /dX q going to  zero at these locations, and its reciprocal 

in Eq. (2.11) tending to infinity [69].

When we compare the quantum  calculation to this classical calculation (Figs. 2.2 

and 2.3(b)) we see th a t the boundaries of the classically-allowed region accurately define 

the region of momentum space in which Floquet peaks are large. Small peaks also appear 

outside but close to  the classically-allowed region. As we show in the semiclassical trea t

ment (Sec. 2.3), these are the result of momentum-space tunneling (or diffraction) into the 

classically-forbidden region.

We also find th a t the barrier oscillation frequency a;, an easily variable experimental 

param eter, can be used to control the degree of concordance of the classical and quantum 

calculations, with good agreement in the limits of very high and low frequencies. For a 

static barrier, momentum conservation in classical and quantum  theories ensures agree

ment. As the frequency is increased, but is still small, classical and quantum  calculations 

tend to agree well. Since Floquet peaks are separated by in energy by integer units of hui, 

small oj values yield quantum  distributions with peaks th a t are not well-defined (one may 

think of them as “blurring” together because the widths of the peaks are larger than, or 

comparable to, the peak separations). As the frequency is increased, keeping the initial 

packet unchanged, the agreement gets poorer (Figs. 2.4(b) and 2.3(b)). The classical mo

mentum distribution broadens, and the quantum  distribution acquires a “comb” structure 

since Floquet peaks begin to resolve as their separations become greater than their widths 

(which depend inversely on the width of the initial packet in position space). This is the 

range of particular interest in all of our studies. At very high frequencies, the incident par

ticles cannot respond fast enough to  the modulation of the barrier, and so they effectively



18

E D C B A
-1500

-1550

-1600

o
*  -1700

-1750

-1800

-1850

-1900
22

3x 10

22

Pf= P(xo>T) (P„)

FIG. 2.3: Final momentum vs. initial position and final momentum probabilities. Final 
momentum vs. initial position for A =  0.5, u  =  0.1, po =  1.8. Capital letters corre
spond to different momentum regions (separated by solid vertical lines; see App. B). At 
a selected pf,  marked by the dashed line, paths arrive after beginning at many different 
xo: those points are labeled by Greek letters. Each lies on a branch of the multivalued 
function x 0(pf , t f ) ,  and each branch is labeled by a Roman letter, (b) Final-momentum 
distributions calculated quantum-mechanically and classically. The classical calculations 
show a histogram (solid line, red) and PciPf )  from Eq. (2.11) (dashed curve, black). 
Fluctuations in the histogram arise for statistical reasons. The red curve was calculated 
by Megan Ivory, and the quantum  distribution was calculated by A.J. Pyle and Kunal 
Das.
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FIG. 2.4: Momentum distributions for fixed velocity of incident packet but for different 
values of u j .  Comparison of quantum  (blue and above axis) and classical (green and 
below axis) momentum distributions for p 0  =  1.0 with u j  = 0,0.00263,0.2,0.8. Quantum  
and classical results are correlated for low and high values of u j ,  with significant differences 
appearing a t interm ediate values. These calculations were done by Megan Ivory, A. J. Pyle, 
and Kunal Das.

interact with the time-average of the potential. The classically-allowed region narrows, 

while in the Floquet picture, the spacing between the Floquet peaks increases (Fig. 2.4(c)) 

as u j  increases. W hen there is only one non-negligible Floquet peak remaining, it coincides 

with the classically-allowed region, resulting again in good agreement between the two 

methods (Fig. 2.4(d)). As u j  is increased further, the two approaches continue to agree 

well for th a t reason.

To summarize, we see th a t classical calculations describe the range of momenta over 

which Floquet peaks are large, and they agree with quantum  calculations at very high and 

very low frequencies. However the heights of the Floquet peaks in the quantum  calculations
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remain mysterious. They will be explained using a semiclassical m ethod described in the 

next section.

2.3 Sem iclassical D escrip tion

It is a general principle of quantum  mechanics [70] th a t when in classical mechanics 

we add probabilities associated with different paths leading to the same final state as in 

Eq. (2.11), in quantum  mechanics we add amplitudes. In the semiclassical approach, each 

amplitude is the square root of the classical density combined with a phase. In the present 

case, Eq. (2.11) is replaced by

Psc iPf )  = \ ^ s c ( P f , t f )  , with (2.12)
~  - 1/ 2 

V s c  (Pf , t f)  = (xo (/>/>i f ) )  (P f , t f )
j

x exp ( i  [Sj (pf , t f ) / h -  fcir/2  )

(2.13)

where we are again using Pf  = p  (x 0, t f ). F ( x 0) is the envelope of the initial wave packet, 

either Fq (x0) in Eq. (2.4) or Ft f {%o) in Eq. (2.5), and x^(p f , t f )  has the same meaning 

as in the paragraph above Eq. (2.11): trajectories th a t arrive a t any one p/  began from a 

large number of discrete Xq ( p / , t f ) .

Re-examining Fig. 2.3(a), and thinking about x 0( p f , t f )  as a smooth but multivalued 

function of pf ,  we divide the points x^(p/, t f )  into intracycle and intercycle groups, where a 

cycle is one period of P f ( x o), which corresponds to  one cycle of the barrier. In Fig. 2.3(a), 

we may say th a t the pair of points (a , fi) belongs to one cycle, the pair (7 , 5) to another 

cycle, etc. Alternatively, we may say th a t the pair (/3,7 ) belongs to one cycle, (<5, e) to 

the next, etc. Summing over all the points Xq (p f , t f )  then means summing over points on 

distinct branches of xo (p / , t f )  within a cycle, and then summing over cycles. Thus the
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FIG. 2.5: Probability distributions of final momenta. The sharp peaks (blue) are obtained 
by summing over all branches of all cycles. Their heights are all multiplied by the same 
constant so th a t they are comparable to  the other two curves. The oscillating curves are 
obtained by combining two branches of a single cycle, but with different definitions of the 
cycle. The solid curve (red) corresponds to a cycle spanning branches (6 , c) in Fig. 2.3(a), 
and the dashed curve (black) is for a cycle spanning branches (c, d). W here those two 
curves intersect, the different cycles add in phase with each other, producing the sharp 
peaks.

index j  may becomes composite index, j  — (b, c), where b is an integer labeling a branch 

within a cycle, and c is an integer labeling the cycle.

J  (p / , t f ) is a  Jacobian, which in the present case is the same derivative defined in 

Eq. (2.11),

(Pf, t f)
d p f ( x 0, t f ) 

d x 0 xa=x3o{Pf'tf)
(2.14)

Since p /  is a  periodic function of x 0, the values of this derivative depend on the 

branches within a cycle, but do not depend on which cycle is examined: J(b,c){Pf,tf) 

depends on the branch b but is independent of the cycle c. In Fig 2.3(a), J a (P / , t / ) =
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3~< (?/> t f )  = 3  (P f , */) =  ..., while (p ,, t , )  =  J & (pj, t f ) =  J c (p/, f ,)  =  ...

Sj  ( p f , t f ) i sa  classical momentum-space action integrated along the path from x JQ(pj , t f )  

to the final point. This integral is

(2.15)
E  (t ) dt

There is a simple relationship between the values of S(b,c) (P f 3 f )  for different cycles

where T  is the period of one oscillation, N  is the number of periods separating the cycles, 

and A E  is the change of energy of the particle

Finally, we introduce the Maslov index p3 associated with each branch of x 0 (p/ , t f ) .  

The rule for determining it is given in Appendix B. Here let it suffice to  say th a t in 

Fig. 2.3(a), fij can be taken to equal one on branches a, c, e , g , ... and equal to  zero on 

branches b,d, / , . . . .

In our calculations, we compute the final momentum as a function of initial posi

tion pj  (x0, t f )  = p(xo , t f ) ,  then for each p / we identify initial points XQb’c> (pf - t f )  for all 

branches b within a single cycle c. For each of them  we find 3b{Pf3f ) ,Pbi  anfi *5(6, c) (P /T /)

at fixed pf.  Let label c increase with decreasing Xq 'c i.e., it increases by 1 with each 

successive cycle of the oscillating barrier. Then

S ( b , c + N )  (P f , t f )  = S ( b , c ) (Pf , t f )  +  N A E T . (2.16)

A E  = (pj -  p i) /2m . (2.17)
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for th a t particular cycle. We then calculate «S(&,C) for other cycles using Eq. (2.16),

and then compute the sum Eq. (2.13) numerically. Steps are also taken to correct the 

semiclassical approximation near divergent points, and the calculation is extended into the 

classically-forbidden regions; this procedure incorporates diffraction, or momentum space 

tunneling, into the semiclassical dynamics. These steps consist of using an alternative 

description of the wave function near divergent points and in classically-forbidden regions, 

and matching coefficients of the two forms to  smoothly go from one form to the other 

(similar to  WKB approximation in configuration space). These details are fully described 

in Appendix B.

Terms in the sum over cycles add with incommensurate phases, and tend to cancel 

unless A E T /h  =  27rK  where K  is any integer. This condition explains the Floquet picture 

introduced earlier: the momentum distribution becomes a “comb” function, with the “teeth” 

occuring at momenta that satisfy the commensurate phase condition,

pj_= r i _+ 2*KK 
2m 2m T

In Fig. 2.5 we show the absolute squares of two single-cycle wavefunctions, one using 

branches (b,c) (solid curve, red) in Fig. 2.3(a), the other using branches (c, d) (dashed 

curve, black). W hen F ( x 0) is constant, these single-cycle probabilities intersect exactly 

at momenta satisfying Eqs. (2.9) and (2.18) (for non-constant F ( x 0), the intersections 

occur at approximately the locations of the Floquet peaks). The relative amplitudes of 

these intersections are determined by both the classical densities and the differences in 

momentum-space action, Eq. (2.15), among the paths contributing to the wavefunction 

at each p/.

Fig. 2.6 shows quantities th a t determine the phase differences and interference for 

three trajectories ending with the same final momentum. Figs. 2.6(a) and 2.6(b) show the
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position and momentum, respectively, versus time. Both plots show th a t particles see a 

decrease in velocity (and momentum) as they approach the potential barrier. Figs. 2.6(c) 

and 2.6(d) illustrate the differences in the momentum-space action, Eq. (2.15). The 

differences in areas under the curves determine the phase differences between pairs of 

trajectories. Interference associated with phase differences related to E(t)  for different 

cycles (Fig. 2.6(d)) produces Floquet peaks. Phase differences between pairs of trajectories 

in the same cycle (Figs. 2.6(c) and 2.6(d)) give the interference th a t determines relative 

heights of Floquet peaks.

Of/i 5 c!
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^  0.9 a.

1020 1040 1060940 960 980 1000940 960 980 1000 1020 1040 1060
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FIG. 2.6: Quantities th a t determine the phase evolution and interference of three trajec
tories ending with the same final momentum. The solid (blue), dashed (red), and dotted 
curves (black) correspond to the trajectories associated with (p /,x 0) =  7 , and 8 in
Fig. 2.3(a), respectively. One may think of the (£ ,7 ) trajectories as being from a single 
cycle, with the 8 trajectory one cycle ahead of the trajectory, (a) Position versus time. 
Each trajectory shows a decrease in velocity as the barrier is initially encountered near 
x  — 0. (b) Momentum versus time, (c) x(t )dp(t) /dt  term  in the momentum-space action 
(Eq. 2.15) versus time, (d) Energy term , Eft) ,  in the momentum-space action (Eq. (2.15)) 
versus time.

When we sum over cycles, the resulting probability is sharply peaked at the locations 

where the single-cycle probabilities intersect (Fig. 2.5), and the heights o f the peaks corre

spond to the relative magnitude o f the single-cycle probability at these locations. Finally,
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we have an explanation for the relative heights of the Floquet peaks.

2.4 C ase S tudies
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FIG. 2.7: Final momentum probabilities for a case of pure classical transmission, (a) Final 
momentum vs initial position for the u j  — 0.1, po = 1.8 case, (b) Comparison of classical 
(plotted upwards, black), semiclassical (plotted upwards, blue) and quantum-mechanical 
(plotted downwards, red) momentum distributions. The horizontal lines in the upper 
portion of the graph correspond to the heights of the  quantum-mechanical peaks. The 
quantum  calculation was performed by A.J. Pyle and Kunal Das.

In this section, we study three separate scattering cases for identical barrier parame

ters, but different incident momenta th a t result in (i) pure transmission, (ii) pure reflection, 

and (iii) partial transmission and partial reflection. We also compare the full quantum  re



26

suits with the predictions of the semiclassical approach and find relatively good agreement. 

While there is a large range of possible scattering behaviors th a t can be studied by adjust

ing the five input param eters of our model, these three cases capture most of the essential 

physics.

Pure Transmission

The initial Gaussian wave packet is centered a t x  =  —1500, w ith j3 =  300, with initial 

momentum p0 =  1-8, and with barrier param eters A  =  0.5 and u  =  0.1. This is the same 

case th a t was shown earlier in Figs. 2.2(d), 2.3, 2.5. This initial momentum corresponds 

to an energy higher than  the maximum am plitude of the barrier. It takes more than 

fifteen barrier oscillations for the packet to  pass over the barrier. There are two branches 

per cycle, as shown in Fig. 2.7(a). The classically-allowed momentum values range from 

pf  «  1.2506 to  2.1411.

A comparison of PgC (p / ) (plotted upwards, blue), Pq (p / ) (plotted downwards, red) 

and Pc(Pf)  (plotted upwards, black), is shown in Fig. 2.7(b). The semiclassical and 

quantum-mechanical results can be seen to agree well. The final probability has fifteen 

peaks within the classical envelope. Both the classical density and interference contribute 

to the relative heights of peaks. At least two non-negligible classically-forbidden peaks can 

be seen for momentum values on either side of the classical envelope. The semiclassical 

calculation has corrected divergent peaks near momentum turning points by using Airy 

forms of local wavefunctions (see Appendix B).

Pure R eflection

We employ the same barrier param eters as in the previous case, but use an incident 

momentum of po =  1.0, which corresponds to an energy equal to the minimum amplitude of 

the barrier. The barrier undergoes more than  twenty-eight oscillations during the time the
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wave packet is interacting with it. There are two branches per cycle, shown in Fig. 2.8(a), 

with the classical envelope ranging from pj  ~  —1.5043 to —0.6825.

A comparison of PgC (p f ) (plotted upwards, blue), Pq (p / ) (plotted downwards, red) 

and Pg(pf )  (plotted upwards, black), is shown in Fig. 2.8(b), again with good agreement 

between the semiclassical and quantum-mechanical results. The final-momentum proba

bility has nine peaks within the classical envelope. We see at least three non-negligible 

peaks for classically-forbidden momentum values less than  the minimum of the classical en

velope, bu t only one non-negligible peak for forbidden momentum values greater than the 

maximum value of the classical envelope. This is because peaks are more closely spaced for 

large absolute momenta than  for small absolute momenta, because they are equally spaced 

in energy. The exponential decay of the wavefunction again makes the peaks negligible 

outside the region shown.

M ixed R eflection and Transmission

We implement the same barrier parameters as in the previous cases, but use an in

cident momentum of po = 1.4142, which corresponds to an energy between the minimum 

and maximum of the barrier amplitude range. In this case, the wavepacket is partially 

reflected and partially transm itted. The periodic relationship between final momentum 

and initial position is more complicated in this case. The left and right columns of Fig. 2.9 

show the reflected and transm itted portions of the trajectory ensemble, respectively. Some 

classically-allowed final momenta have as many as six interfering trajectories within each 

cycle. The classical envelope ranges from pf  ~  —1.6730 to 1.8987.

Comparisons of the reflected and transm itted portions of PgC (p/ ) (plotted upwards, 

blue), Pq (p j ) (plotted downwards, red) and PciPf)  (plotted upwards, black) are shown 

in the left and right columns of Fig. 2.9, respectively. Every extremum in the p f ( x o , t f )  

graph gives a “turning point” or caustic, at which Pc  (Pf) diverges. The classical ampli-
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FIG. 2.8: Final momentum probabilities for a case of pure classical reflection. All curves 
are as described in Fig. 2.7. The quantum  calculation was performed by A.J. Pyle and 
Kunal Das.
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FIG. 2.9: Final momentum probabilities for a case of classical partial reflection and par
tial transmission. Left column: (a) Reflected portion of final momentum vs. initial po
sition for the a? =  0.1, po =  1.4142 case, (b) Semiclassical (plotted upwards, blue), 
quantum-mechanical (plotted downwards, red), and classical (plotted upwards, black) 
final-momentum probabilities for the reflected portion of the wavepacket. Right column:
(a) Transm itted portion of final momentum vs. initial position for the u j  =  0.1, po =  1.4142 
case, (b) Semiclassical (plotted upwards, blue), quantum-mechanical (plotted downwards, 
red), and classical (plotted upwards, black) final-momentum probabilities for the trans
m itted portion of the wavepacket. The quantum calculation was performed by A.J. Pyle 
and Kunal Das.
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tude is markedly higher for larger momentum values in both the reflected and transm itted 

portions of the wave packet; consequently, the semiclassical and quantum-mechanical final- 

momentum distributions have their largest peaks in these regions. Agreement between 

semiclassical and quantum  methods is less precise in this case, particularly where turning 

points are close together. (Turning points th a t are close together are the most signifi

cant cause of disagreement between semiclassical and quantum-mechanical calculations. 

Agreement can sometimes be improved by refinements of the semiclassical theory).

2.5 P roposed  E xperim ent

A proposed experimental implementation uses a BEC of 39K atoms in the \F =  

1, rriF =  +1) hyperfine ground state, which has a vanishing s-wave scattering length at 350 

G [71]. A red-detuned optical dipole trap  can trap  a BEC with a Guassian-shaped density 

profile. A blue-detuned Gaussian-shaped repulsive barrier can be created with a 532 nm 

laser focused to a radius of a  — 10 =  2.5//m with a barrier am plitude of Uq =  1 =  197 

nK. Selecting this length scale, along with the mass of 39K, and using the equations given 

at the end of Section 2.1, a theoeretical incident momentum of p0 =  2 corresponds to a 

velocity of 12.9 m m /s. For this incident velocity, m odulating the barrier at a frequency 

u) — 2ir x 1.4 kHz (which corresponds to u j  — 0.35 in theoretical units) with a modulation 

strength of A  — 1 yields pure transmission of the incident wavepacket, and its predicted 

final momentum probability is shown in Fig. 2.10.

The param eters used in the remainder of the paper are in the general regime discussed 

in the previous paragraph. Our selection of param eters was generally dictated by inter

esting dynamics within these experimentally-accessible param eter regimes. All theoretical 

param eter choices in the remainder of the dissertation can be converted to SI units via the 

paragraph a t the end of Section 2.1.
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FIG. 2.10: Proposed experimental implementation of oscillating barrier scattering. Atoms 
are confined in the optical dipole trap , and the barrier is produced via a laser. The 
momentum distribution pictured is predicted for a  BEC of 39K atoms (see the text).

2.6 R em arks

In summary, we have studied scattering from an amplitude-modulated Gaussian bar

rier, and determined the final momentum-space probability distributions using classical, 

semiclassical, and quantum  formalisms. We find th a t classical and quantum  treatm ents 

of scattering agree reasonably well in the limits of very high and low barrier oscillation 

frequencies, but sharply differ in the interm ediate frequency regime. We also find tha t 

classical mechanics defines the boundaries of a classically-allowed region of final momenta. 

Quantum  calculations show: (i) the probability tha t particles end with momentum out

side the classically-allowed region is small; (ii) the momentum distribution is peaked at 

momenta consistent with Floquet’s theorem (see Eq. (2.9)); (iii) the heights of the Flo

quet peaks vary widely and seemingly erratically. Semiclassical calculations show th a t (a) 

for any final momentum inside the classically-allowed region, many classical paths arrive;
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(b) interference of waves propagating along these paths produces peaks consistent with 

Floquet theory, and determines their heights. Specifically, inter-cycle interference leads to 

discrete final momentum states, while intra-cycle interference determines the peak heights. 

Finally, momentum-space tunneling leads to diffractive population of momenta beyond the 

classically-allowed bounds.

The semiclassical and full quantum  propagation formalisms employed in this chapter 

are well suited for studying scattering from a turnstile pumping potential formed from two 

separated barriers, amplitude-modulated out of phase from each other. While no choice 

of system parameters for the single-barrier system leads to classical chaos, the addition of 

a second barrier introduces classically-chaotic trajectories, w ith quantum  dynamics well 

suited to  the type of semiclassical treatm ent developed in this chapter. Such a treatm ent 

is essential for understanding the quantum  and classical aspects of particle pumping in 

a turnstile pump, since interference and tunneling can be selectively included. Moreover, 

the scattering theories developed in this work can also be extended to examine spatial 

tunneling [73] through narrower barriers, and scattering from a potential well.

In the next chapter, we use the framework developed here on ballistic atom pumps, 

which contain multiple barriers.
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C H A P T E R  3 

P article  Transport in B allistic  A tom  

P um ps

The pumps we consider in this chapter have two reservoirs and a pump which is 

effectively one-dimensional, so the Hamiltonian is

H(p,  x) = p2/2 m  + V(x , t ) .  (3-1)

We choose V(x,  t ) to consist of two repulsive barriers oscillating with the same frequency 

u>, but not necessarily with the same amplitude or phase. We study rectangular barriers 

(easiest theoretically) and Gaussian barriers (easiest experimentally using optical forces). 

The questions we address are: Can such systems pump atoms preferentially from one side 

to the other without an external bias, such as a difference in chemical potentials in the 

reservoirs? In particular, can we make an atom “diode” th a t will allow atoms to pass 

through the pump in only one direction? In order to understand the quantum  features of 

such a pump, it is necessary to develop a clear understanding of classical scattering by a 

pair of oscillating potential barriers.
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We begin with a precise specification of the models we study. Then we consider simple 

asymmetric pumps th a t rectify net particle transport, which we call “particle diodes” 

because they allow transport in only one direction for certain ranges of initial particle 

energy. These diodes have one barrier fixed and one oscillating barrier. Then we consider 

pumps th a t are symmetric in the sense th a t the two barriers are identical, but their 

oscillations are not in phase with each other. We prove a symmetry theorem which shows 

tha t such pumps can give no net particle pumping if the behavior of the particles is classical 

and the initial phase-space distribution is uniform in both reservoirs. However, if the phase- 

space distribution is not uniform, then such pumps can produce net particle transport in 

either direction. We also show th a t if the two potential barriers are separated by a modest 

distance, atoms can get stuck in a “complex” or ‘resonance zone” between them, and the 

system is a nice model of chaotic transport [55, 56, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 

85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107], 

(The details of chaotic transport are analyzed separately in Chapters 5 and 6).

The relationships among classical, semiclassical, and quantum  descriptions for trans

port past a single oscillating Gaussian barrier were discussed in detail in Chapter 2. To 

make this chapter self-contained, we repeat the summary of results here. Consider the 

case th a t atoms enter the pump from one side with fixed momentum pi and kinetic energy 

Ei. In the quantum  description, because the barriers are oscillating with a fixed frequency, 

Floquet theory tells us th a t after passing through the pump, the spectrum  of transm itted 

energies is a set of narrow peaks at energies E n =  Ei +  nhu, where n  is an integer. The 

heights of these peaks can be computed numerically by solving the Schroedinger equation, 

but in general no patterns are visible in those heights.

In the classical description (again assuming th a t particles enter with a fixed initial 

momentum pi but a range of positions x t), then the final momentum pf  is a bounded 

periodic function of the initial position Xi, pf  =  Vf(xi ) .  The upper and lower bounds of
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the range of this function define the classically allowed region. Inside this classically allowed 

region, provided th a t V f { x t) is continuous, there must be an even number of trajectories 

leading to each final momentum. The distribution of final momenta is a smooth function 

except at extrema of Vf(xi ) ,  where the distribution has an integrable singularity. One 

finds th a t the Floquet peaks obtained in the quantum  description are large primarily in 

the classically allowed region, with small spillover past the boundaries (momentum-space 

tunneling). Still the heights of peaks are incomprehensible.

Finally, in semiclassical theory, for each final momentum one sums over the initial 

positions th a t give trajectories leading to  th a t final momentum, and incorporates phases 

for each such orbit (momentum-space action plus Maslov indices). Summing over one 

cycle of Vf(xi )  produces a smooth function, and the relative heights of the Floquet peaks 

are discrete values of it. Summing over many cycles of ’Py(xj) causes the peaks seen in 

the quantum  description to  emerge, with good agreement between the two methods (see 

Figs. 3.6 and 3.15).

We show a few representative calculations of each type in this chapter, but we concen

tra te  on the classical description, with the understanding that semiclassical calculations 

can be carried out when desired, and th a t the semiclassical description agrees well with 

the quantum  description.

3.1 M odel

Our atom pump consists of two repulsive potential barriers with am plitude oscillations 

tha t have the same frequency, but are not in phase with one another:

V( x , t )  -  UL{x,t)  +  UR(x,t). (3.2)



In this chapter we examine both rectangular and Gaussian potentials. The rectangular 

barrier potentials are given by:

height of each barrier, c * r , r  is the amplitude of oscillation of each, ui =  2ix/T  is the common 

frequency and T  is the period, 0 is an additional phase term, and 2gr r̂ is width of each 

barrier. The left and right barriers are centered a t x  =  — x  and x  = x, respectively, and 

always have a center-to-center distance of A x  = 2x. When the barriers touch, i.e., have 

no separation, g r r  =  x. If only the left-hand barrier is oscillating then O r  =  0.

The Gaussian potential barriers are given by

W ithout loss of generality, we can choose units of mass, energy and time such tha t

g r , the barrier oscillation amplitudes a L  and a R }  and the phase difference between the 

barriers, 0. In this chapter, we typically choose g r  =  G r .  In quantum  and semiclassical 

mechanics one additional param eter arises, the value of h,  which we set as h = 1. The

, elsewhere
(3.3a)

U r  (1 +  a R cos(uj t  +  0)) ,bR- < x < b R+

0 elsewhere
(3.3b)

where bL_ =  - x  -  g l , bL+ = - x  + g l , bR_ = x  — g r , bR+ = x  + g r , ULtR is the average

(3.4a)

U r ( x ,  t )  =  U r  (1 +  a.R cos(cot  +  0)) exp (3.4b)

where gr r is the standard deviation of the Gaussian. Fig. 3.1 shows the param eters for 

the barriers.

m  = l ,UR = UR = l,  and u> = 1. The remaining param eters are the barrier widths gr and
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FIG. 3.1: Types of barriers considered in this chapter, (a) Rectangular barriers, which 
are centered at ± x  and have w idth 2a RR. If a i^R = x,  the barriers touch, (b) Gaussian 
barriers centered at ±.x which have standard deviation a R,R-

general way to apply such scaling principles is given in [108].

The units used in this chapter are theoretical, and are the same as those used in 

Chapter 2. Namely, the choice of a theoretical unit convention based on h = 1 and m  = 1 

is equivalent to selecting an arbitrary time unit t u and a related length unit lu =  y / h t u / m , 

with h  =  1.054 x 10~34 J-s. The corresponding energy unit is E u =  h / t u , while the mass 

unit is th a t of the particle, m u =  m. The param eters we use in this chapter are in the 

same regime as those in Chapter 2 and are experimentally-accessible.
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We start with a distribution of particles far to the left of the barriers, far to the right, 

or both. For our classical calculations, the distribution has a  single momentum (i.e. it is 

a delta-function in momentum space centered at p ^ . The distribution in position space is 

uniform over a length L = v T  where v is the initial velocity of the particles (i.e. uniform 

over a length corresponding to the distance the incident particles travel in one cycle of the 

barriers). In semiclassical and quantum  calculations, we begin with a wave packet th a t is 

narrow in momentum space, centered at pt, and correspondingly wide in position space, 

AXi »  L. Thus its magnitude is nearly uniform over the length L  corresponding to a 

cycle. The wave function in position space at the initial time is given by

q>{xi , t i = Q) = F{Xi)eip'Xi. (3.5)

where F ( x t ) is

F(xi)  = (l/27r)1/4e - (*<+Xc)2/4/52. (3.6)

The initial probability density is thus |^(a;*,^ =  0 )|2 =  F 2(Xi), which is a Gaussian 

centered at — x c w ith standard deviation B. Our quantum  calculations are performed in 

the same fashion as in Chapter 2, and are based on propagating the wave packet with 

the time-dependent Schrodinger equation via a split-step operator m ethod [68]. Again, all 

quantum  calculations were performed by A.J. Pyle.

We determine the net particle transport in these systems by the following process: 

1) For each initial momentum, launch particles toward the barriers from the left, and 

compute and record the fraction transm itted and reflected. Also record the final momenta 

of transm itted and reflected particles. 2) Launch particles with the same initial energy 

toward the barriers from the right, and compute the fraction transm itted  and reflected, 

and their final momenta. 3) Sum the results of each of these to obtain the net fraction
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of particles transm itted left to right (which may be negative if more are transm itted from 

right to  left). 4) If appropriate, average over initial momenta.

We define the fractional transport of particles through the pump as

a w i „ , n  R (\Pi\) -  L ( M  , o T \

=  f l t a D  +  K W ) '  ( 3 ? )

where /?(|pj|) is the number of particles per cycle scattered to the right for each \pl \, and 

L(\pi\) is the number of particles per cycle scattered to the left. The sum /?(|p,|) +  L(\pi\) 

represents all particles for a given \pi\. Cp{\pt\) is positive when more particles are scattered 

to  the right for a given |p<|, and negative when more particles are scattered to the left.

When equal numbers of particles scatter to the right and left, e.g. when all particles are

reflected or transm itted, Cp(\pi\) = 0 .

3.2 P article D iod es

3.2 .1  A n  E levator M od el

A double-barrier particle pump can make a kind of diode, in which net particle pump

ing can only be in one direction at certain initial energies. This type of diode consists of 

one static barrier which is high enough to  prevent transmission of particles incident from 

one direction, and one oscillating barrier which can lift particles approaching from the 

other direction over the static barrier. This is analogous to photon-assisted tunneling 

[2, 3, 4, 5]. When the incident energy of particles is greater than  the height of the static 

barrier, net particle transport is only possible in the opposite direction. It is simplest if 

the two barriers are touching each other. Let us simplify the description of the potentials
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to

Un(x, t )  = U  , 0 <  x < b
v (3.8)

Ui(x , t )  — Q(t)  , — b < x  < 0, 

where Q(t)  is a periodic function of t with period T  — 2n, and U is a constant. Suppose

0 , 0 <  t (mod 27t) <  7r
Q(t)  =  < (3.9)

U , 7r <  t (mod 27r) <  2-7T.

Then particles incident from the right with kinetic energy Ki < U cannot pass over 

the right barrier. From the left, (see Fig. 3.2(a)) a stream  of particles having fixed kinetic 

energy < U and density independent of position all file into the elevator when it 

is on the ground floor (Fig. 3.2(b)), and then at t =  ir they are lifted abruptly to  the 

penthouse level on the roof, where the back door of the elevator opens (Fig. 3.2(c)). The 

particles keep their kinetic energy in this process, and politely file out in line onto the 

roof (Fig. 3.2(d)). At t = 2n they are all lined up on top of the right-hand barrier, and 

one-by-one they slide down the edge of th a t barrier and escape to the right with kinetic 

energy K f  = Ki + U (Fig. 3.2(e)). Meanwhile the door of the elevator has slammed again 

and it abruptly returns to ground level.

For this system, if the barrier width is b = \pi\ir/uj and if the first particle arrives 

at the left edge of the left barrier a t t = 0, half of the particles incident on the elevator 

from the left -  the ones th a t arrive for 0 <  f(mod27r) <  7r -  go over the barrier, and the 

other half -  arriving for 7r <  f(mod27r) < 2 tx  - are reflected by the left-hand barrier, so 

the transm itted fraction is half of the incident fraction.

Is this the theoretical maximum for transport? We cannot think of any other function 

Q(t) th a t would improve the performance. However, we can get a larger fraction trans-
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FIG. 3.2: Qualitative schematic of a diode with rectangular barriers. Particles approach 
from the left in (a) and (b). In (c), the left barrier abruptly rises to  E  =  [/, and particles 
on top of it gain enough energy to transm it past the right barrier, as seen in (d) and (e).

m itted if on the elevator for n < t(mod27r) < 2n a pusher shoves the passengers to  the 

right so they exit the elevator more quickly.

Clearly, when the energy of incident particles is less than  the amplitude of the static 

barrier, the only possible direction of fractional particle transport is left-to-right. This is 

because all particles approaching from the right are reflected, while some particles incident 

from the left may hop onto the oscillating barrier and gain enough energy from it to trans

mit over the static barrier. On the other hand, suppose the energy of incident particles is



higher than  the peak of the static barrier, and suppose th a t an equal number of particles

port is the opposite direction, from right-to-left. In this regime, all particles approaching 

from the right transm it over both barriers. However, presuming smooth oscillations of the 

left-hand barrier, particles incident from the left may lose energy while riding th a t barrier 

down, and can then be reflected from the static barrier.

The pumping mechanism of a diode is easily pictured by thinking about rectangular 

barriers, but it also applies to smooth barriers with smooth tim e dependence. To keep the 

analysis simple, let us consider rectangular elevators with some smooth dependence on t. 

Again particles approach from the left with fixed kinetic energy Ki,  and uniform spatial 

density. Let t ^b be the time th a t a particle arrives at the point x = —b. It is reflected 

if Ki < Q(t-b); otherwise it jum ps onto the elevator and moves across it with constant 

kinetic energy

(Here the index 0 does not mean “initial,” but rather “when the particle arrives at x  =  0.” )

At x  = b, its potential energy is converted to  kinetic energy, and it escapes to the right

approaches from the left and from the right. Then the only possible direction of net trans-

K L = K i -  Q ( K b). (3.10)

It reaches x  =  0 at time

1 b +  y / 2 ( K i - Q ( K b))
(3.11)

when its total energy is

E0 = K i  + Q(t0) - Q ( K b). (3.12)

If Eq < U , the particle is reflected by the right-hand barrier. Otherwise it is transm itted, 

with kinetic energy

k r  = e 0 -  u. (3.13)
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with kinetic energy K f  =  Eq.  Summarizing, for 0 <  t_b <  2ir and initial kinetic energy 

K i , we get transmission with final kinetic energy K f  = K t + Q(t0) — Q( t - b) provided tha t 

i.) Ki > Q( t ^b), and ii.) Ki  +  Q{t0) — Q{ t - b) > U, where t0 is given by Eq. (3.11).

Each particle trajectory beginning at Xik and ending near momentum p/  =  (2 m A /)1/2 

contributes a term  to the classical probability density P c {pf) , given by

p C ( Pf )  =  1 *  =  ° ) ! 2

d p /

dxi X i = X i k ( p f )

=  Y ,  I* ( M P t l  u  =  ° ) |2 |A (P /)I_1. (3.14)
k

where Jk(Pf) is the Jacobian for the k th trajectory ending near pf.  Summing over all 

trajectories gives a smooth result which diverges a t extrem a of 'Pf(xi).

The “primitive” semiclassical wave function in momentum space is obtained via the 

same method as in [109], and is similar to the methods in [110, 111, 112, 113, 114, 115, 

116, 117, 118, 119, 120]. For each p j  at the final time t j , we sum semiclassical terms

^ f C (P/> t f )  = F  t f ) )  \Jk (pf , t f ) |~ 1/2

x exp (hSfc ( P f , t f ) / t i j  e x p (—qufc7r/2 ), (3.15)

where p-k is the Maslov index for the k th branch of the function p f ( x f ) t=t/, and

S k (Pf, t f ) = -  f  dt -  I  E( t )dt  (3.16)

is integrated over the classical path from initial to final time (see Appendix B for discussion 

of the Maslov index). The primitive semiclassical approximation in Eq. (3.15) applies only 

in classically-allowed regions, and it diverges at the boundaries of these regions. However, 

the divergences can be repaired and the function can be extended into classically-forbidden
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Fractional Particle Transport

FIG. 3.3: Fractional transport of particles, C p(|pi|), for a diode with rectangular barriers. 
The diode is described by Eq. (3.20) with a  — 0.9, uj — 0.07, 6 =  5, and 0  =  1. The inci
dent energy Ei corresponding to  each \p%\ is shown on the right-hand axis. The fractional 
transport abruptly switches direction at Ei — U.

regions via the method in Appendix B.

For rectangular barriers, particle momentum changes only at the barrier edges (i.e., 

x  = 0 and x  =  ±6), so for particles which transm it past both barriers,

Sk (Pf) =  -  [6Apb -  b A p -b] -  K i t -b

— {  [Kl +  Q{t)\ dt — Eq (tf — to)
J t - h

(3.17)

where

A  t t i K l  —  \ p h n K i

Apb — y/2  m K f — \p lm K n .

(3.18)

(3.19)
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We now examine a diode described by

U A x , t )  =  0.5 [1 +  a  sin (cuf)l , — b < x  < 0
( 3 .2 0 )

UR(x , t) = U , 0 <  x < b,

with a  =  0.9, uj — 0.07, b =  5, U =  1. The left barrier oscillates between a minimum value 

of Ul =  0.05 and a maximum value of Ul =  0.95, while the right barrier is static with a 

height of U =  1.

Fig. 3.3 shows fractional transport Cp{\pi\) for this diode. In this example, when 

incoming particles have Et = Ki < U, Cp{\pt \) = 0 below the energy a t which particles 

incident from the left begin to gain enough energy from the oscillating barrier to  transm it 

past the static barrier. When particles incident from the left begin to transm it, particles 

incident from the right are all reflected, Cp(\pi\) > 0, and there is left-to-right fractional 

transport. As the incident particle energy increases, fractional transport monotonically 

increases until Ei > U, which is the threshold energy for particles approaching from the 

right to transm it past both barriers. At this point, fractional transport abruptly reverses 

direction to  right-to-left (Cp(\pi \) <  0). As Ei increases, Cp{\pl\) —> 0 as particles incident 

from both sides transm it past both barriers.

We now analyze the behavior of particles with an initial energy of Ei =  0.99 (initial 

momentum pi = ± \/2 E i) . Particles incident from the right do not have enough energy 

to transm it past the right barrier, and are reflected with final energy E j  = 0.99 (final 

momentum Pf = y/2Ef) .  The initial wave packet approaching from the left has an envelope 

shape given by Eq. (3.6) centered at — x c =  —1500 with f3 = 300. Particles incident from 

the left all have enough energy to hop onto the left barrier; approximately 43.4% gain 

enough energy while traversing the left barrier to transm it past the right barrier, while 

the others are reflected from the right barrier.
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Fig. 3.4 shows classical and semiclassical results for particles approaching from the 

left. Fig 3.4(a) shows initial position as a function of final momentum, Xi(pf). Only a 

small portion of initial positions are shown. Since the wave packet is wide in position 

space (Ax ,  »  L),  there is a periodic relationship between final momentum and initial 

position. Because the potential is not smooth, Xi(pf) is discontinuous between trans

m itted and reflected portions. Each branch of the function Xi(pj) contributes a term 

'I'£c  (p/) to the primitive semiclassical wave function, given by Eq. (3.15). The complete 

primitive wave function 4/yC(p/) is obtained by summing Eq. (3.15) over all branches of 

Xi(pf). Fig. 3.4(b) shows P f C(p/) =  |\l/yC(p /) |2, the final primitive semiclassical proba

bility density. Fig 3.4(a) shows th a t many trajectories end with any given p /  inside the 

classically-allowed regions. The sharp peaks in P f c {pf) arise from interference among all 

trajectories ending with any given pf.  This calculation has not been extended into the 

classically-forbidden regions, so all peaks lie within the classically-allowed regions for both 

the transm itted and reflected portions.

Since P f c {pf) includes interference from a great number of trajectories, it is useful to 

differentiate between two distinct types of interference: i) interference from within a single 

cycle of Xi(pf) (intracycle interference), and ii) interference among all cycles (intercycle 

interference). To view intracycle interference, we choose an arbitrary  Xi(p/ ) and sum the 

corresponding (p/) terms from within one cycle of the chosen Xi(p/) to  obtain 4/fc;(p/).

Figures 3.4(c) and (d) show the classical probability density P c (pf) (dashed curve). 

Note th a t the scales are different in Figs. 3.4(c) and (d). We see th a t whereas classical 

theory gives a slowly-varying probability density P c (p/),  the primitive semiclassical single

cycle probability density PgC =  |^ f c (p /) |2 (thick solid curve, red) is oscillatory. The 

oscillations arise from interference among trajectories in the cycle th a t end with the same 

final momentum. The discontinuities seen in PgC(p/ ) and P c {p/) in Fig. 3.4(c) at pj  ~  

— 1.2 are due to the behavior of the branches in Xi(pf) in Fig. 3.4(a): for pf  >  —1.2
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FIG. 3.4: Semiclassical analysis of scattering from a rectangular diode, (a) Initial position 
vs. final momentum for particles approaching the diode described by Eq. (3.20) with 
a  = 0.9, cj =  0.07, b — 5, and U = 1 from the left with p  ̂ = \/2 E l =  \/1.98. (b) P j C(pf), 
the absolute square of the primitive semiclassical wave function, for the particles in (a), (c) 
and (d) Expansions of (b). The dashed curve is the classical probability density, P c (pf), 
for reflection or transmission with final momentum near pj.  The smoothly-varying solid 
curve (red) is a single-cycle primitive semiclassical probability, Pa5C(p /) [109]. The sharp 
peaks are the full primitive semiclassical probability summed over all cycles. These occur 
at momenta corresponding to Floquet energies.
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within the classically-allowed final momentum region of the reflected segments, there are 

two interfering branches per cycle, but for pf  <  —1 .2 , there is only one branch per cycle.

Summing 'F fc (pf) over all cycles yields the full primitive wavefunction T ‘Jc (p/), the 

square of which is P j C(pf ), the sharply-peaked function in Figs. 3.4(b), (c), and (d). 

This function has peaks a t energies E n = 4- nhuj, consistent with Floquet theory. In

Figs. 3.4(c) and (d), P c (pf) and PgC{p/) are scaled (multiplied by the same constant). 

When plotted in this fashion, one can see th a t the relative heights of the peaks in P f c (pf) 

closely align with PgC{pf), i.e., the relative heights of the Floquet peaks are governed by 

the single-cycle probability. This occurs for any arbitrary Xi(pf) chosen as the beginning 

of a cycle; while different choices yield different P f c (p/),  they all intersect a t the locations 

of the Floquet peaks.

3.2 .2  Q uantum  S up pression  o f  C lassica l T ransm ission

Another interesting phenomenon arising from a similar elevator system is the quantum 

suppression of classical transmission. It may happen th a t the classical transmission prob

ability is large, but the range of transm itted momenta is small -  so small th a t no Floquet 

peaks lie in the classically-allowed range. Then quantum  interference (we might better 

say semiclassical interference) among trajectories from different cycles prevents transmis

sion th a t is classically allowed. In such a case, a narrow initial wave packet (in Xi) may 

allow transmission both classically and quantum-mechanically, not because it is broad in 

momentum space, but because it interacts with the barrier for only one (or a few) cycles.

These phenomena occur for a diode described by
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UL(x, t)  =  0.92 [1 +  a sm  (u>()] , — b < x  <  0
(3.21)

Ur (x , t) = U , 0 < x < b,

with a  = 1 — (.88/.92) «  0.0435, uj =  0.07, b =  5, and (7 =  1. In this example, the

left barrier oscillates between a minimum of 0.88 and a maximum of 0.96, and particles

approach the barriers from both sides with initial energy Ei = 0.99 (initial momentum 

Pi =  ±\/2~Ei). Particles approaching from the right do not have enough energy to hop 

onto the right barrier, and are reflected with final energy E f  = 0.99 (final momentum 

Pf — y/2Ef) .  Particles approaching from the left all have enough energy to hop onto the 

left barrier, and classically, more than one third (approximately 37.3%) of these particles 

gain enough energy to  transm it past the right barrier (see Fig. 3.5). These transm itted 

particles all end with p f  inside a very small range.

For the semiclassical calculation, we took an envelope given by Eq. (3.6) with — x c =  

— 1500 and =  300. Fig. 3.5(b) shows the primitive semiclassical final momentum proba

bility P f C {p / )  in the classically-allowed regions. In contrast to the classical result, we see 

no visible transmission. Figures 3.5(c) and (d) show the classical transmission probability 

and the single-cycle and final primitive semiclassical probabilities (similar to Fig. 3.4). 

The single-cycle primitive semiclassical calculation gives an even larger to tal transmission 

than  the classical result, but the final semiclassical result is essentially zero.

The explanation is th a t Floquet peaks occur at energies E n = K t -1- nfiuj, and the 

corresponding momenta for n  — ( — 1,0 ,1) are pn ~  1.36, 1.41, and 1.46. None of these 

momenta lie inside the classically-allowed region of transmission. Therefore, when sum

ming interference from all cycles, this interference is destructive across the entire range 

of transm itted momentum, and at this level of approximation, there is no transmission.
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u  = 0.07, 5 =  5, and U =  1. All curves are as described in Fig. 3.4.
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(A uniform semiclassical approximation would extend into classically-forbidden regions, 

but the decay of the wave function in these regions combined with the Floquet “comb” 

would yield small peaks, comparable to those seen outside the classically-allowed regions 

in Fig. 3.15 and in C hapter 2).

In this example, quantum  interference suppresses the classical probability density for 

transm itted particles.

3 .2 .3  G aussian  B arriers

A more realistic type of diode is one which has Gaussian barriers described by 

Eqs. (4.2) and (3.4b) with ajt =  0. We examine one such case with barriers described 

by Ur = Ul = 1, oil = 1, lj = 0.30, a — 2.5/2\/2ln~2 (full width at half maximum of 2.5), 

and x  = 3.75. The right barrier has static height Ur — 1 and the left barrier oscillates be

tween zero and twice the height of the static barrier. Fig. 3.6 shows classical, semiclassical, 

and quantum  calculations for particles incident on this diode from both directions with 

\pi\ =  ±1.25 (Ei «  .78). Particles incident from the right with this inital energy are all 

classically reflected, but approximately 30.3% of particles incident from the left transm it, 

and there is left-to-right fractional transport of particles. Fig. 3.6(a) shows classical Xi(p/) 

for particles incident from the left. Classical trajectories are chaotic, as some particles 

are reflected from the left oscillating barrier, others directly transm it past both barriers, 

and others are temporarily trapped between the barriers before finally reflecting or trans

mitting. Fig. 3.6(a) shows three periods of the function Xi(p/),  and Fig. 3.6(b) shows a 

zoom consisting of 10% of a period (30X magnification of (a)). Extreme dependence on 

initial position is apparent, and there is a large number of trajectories ending with any 

classically-allowed p/.

Fig. 3.6(c) shows quantum-mechanical (plotted downward, red) and primitive semi-
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FIG. 3.6: Dynamics for Gaussian diode, (a) Three cycles of Xi(p/) for the packet approach
ing a Gaussian diode from the left, (b) Zoom of (a), showing the complexity of chaotic 
trajectories, (c) Quantum  (downward, red) and primitive semiclassical (upward, blue) fi
nal momentum probabilities. The semiclassical calculation only includes the contributions 
of slowly-varying branches of Xi(p/). (d) and (e) P c (p/) (dashed curve), P f c {pf) (oscilla
tory curve, red), and P f c {pf) (sharply-peaked curve, blue), (f) Quantum-mechanical final 
momentum probability for incoherent packets approaching the barriers from both sides.
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classical (plotted upward, blue) final momentum probabilities for the packet incident from 

the left. The initial packet is described by Eq. (3.6) with (3 — 300 and — x c =  —1250. 

The primitive semiclassical probability P f c {pf) only includes contributions from slowly- 

varying branches of the function Xj(p/) (i.e., regions of chaotic scattering are omitted). 

This rough approximation agrees reasonably well with the quantum  probability P ^ ( p f )  

except for peaks located at pj  = —1.25 and p /  ~  —0.98. Figs. 3.6(d) and (e) show zooms 

of the primitive semiclassical approximation, along with the single-cycle momentum prob

ability Ps'C(pf) (thick oscillatory curves, red) and classical momentum probability Pf {p / )  

(dashed curve). As before, the single-cycle probability governs the relative heights of the 

Floquet peaks seen in the full primitive semiclassical probability.

Fig. 3.6(f) shows the quantum-mechanical final momentum probability for particles 

approaching the barriers from both sides with \pi\ =  ±1.25. The largest probability is at 

Pf  =  1.25, which is primarily caused by the reflection of particles incident from the right. 

Particles incident from the left th a t are transm itted contribute only a small amount to 

this momentum state  (see Fig. 3.6(c)); these transm itted particles have a much higher 

probability of ending with P f  =  \ / 2 ( E t +  nhui) with n  =  1 ,2 ,3 . The total probability 

in the quantum calculation for pf  >  0 is approximately 65.9%. The classical fractional 

transport CP(\pi\ =  1.25) «  0.303 corresponds to approximately 65.1% of particles ending 

with Pf > 0 , showing good agreement between classical and quantum  theories.

3.3 Sym m etric Pum ps: A  G eneral T heorem

In the remainder of this chapter, we consider pumps th a t are “symmetric” in the sense 

th a t U l, =  U r  — U, &l =  &R =  and crL =  crR =  cr, so the barriers are identical, but 

not in phase with each other. Intuitively one might have guessed the following behavior. 

Suppose th a t we consider the case of the classic turnstile pump for which cj) =  —tt/2 , so
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the barrier on the right oscillates a quarter-cycle behind the one on the left. Then the two 

barriers together im itate a rightward-moving wave, sin(fcx — ujt). We might then expect 

th a t the system would preferentially pump particles from left to  right.

Nothing of the sort happens, however. Classically, if particles begin with a distribution 

th a t is uniform in both momentum and position (i.e. the distribution includes all initial 

energies Et and is independent of Et) then for every particle going from left to  right, 

another goes from right to left -  there is no net pumping a t all.

This symmetry theorem can be violated if the initial distribution of particles is not 

uniform in phase space. For example, if the phase space distribution is constant only up 

to some maximum initial energy, then some net pumping is possible. More im portant, if 

particles begin from both sides with the same fixed energy, then there can be a net flow in 

one direction or the other. The amount and direction of this flow depends on th a t energy, 

so the apparent natural direction of the pump is an illusion.

The critical step in proving this no-pumping result is choosing a reference phase of 

the oscillations, and then using a surface of section at integer number of cycles from this 

reference phase. We choose the reference phase to be when the two oscillating barriers 

have equal height, and the left barrier is going up and the right barrier is going down (see 

Fig. 3.7(a)(inset)). If we take such a point in any cycle to  be t =  0, then for any 4> and 

all t and x  we have

V ( - x , - t )  = V(x , t ) .  (3.22)

Let M  : (x , p ) e-* (x ' ,p ') be the map th a t evolves a point (x , p ) forward one pumping 

period to (x ' ,p '), and let R  =  R ~ l be the operator th a t reflects the position through 

the origin: R ( x , p ) = (—x,p).  A  trajectory on the left of the pump moving right sees 

the closest barrier going up, whereas a trajectory on the right moving left sees its closest
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FIG. 3.7: Geometric proof of why a symmetric pump cannot preferentially pump particles 
if initial classical distributions are uniform, (a) An illustration of Eq. (3.23); The phase 
of the sampling is chosen so th a t both barriers have the same height with the left barrier
moving up and the right moving down (inset), (b) Illustration of the sets S r l  and S l r

and the relation S l r  =  R M ( S r l )- The double arrows reflect the fact R  =  R ~ x.

barrier going down. A mirror image thus converts the upward moving barrier to  downward 

and vice-versa, i.e. it reverses the time-dependence of the barriers, so the particle follows 

the time-reversed trajectory. Consequently, A/- 1(—x ,p)  will be a mirror image of M( x ,  p). 

More formally,

A T 1 =  R M R .  (3.23)

This relation is dem onstrated in Fig. 3.7(a).

Now define S r l  to  be the set of points moving to the right th a t are ultim ately reflected,

i.e.

S r l  =  {(x,p)\p > 0,p'  < 0  where (x ' , p ') = M( x ,p ) } .  (3.24)
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We define S l r  similarly

S l r  = {{x,p)\p <  0 ,p ' >  0  where (x' ,p') =  M(x,p)} . (3.25)

Assuming a uniform initial distribution in phase space, the single-period net flux F  of 

rightward to  leftward moving trajectories is thus

F  = area(Sj?L) -  area ( S Lr )- (3.26)

We now show S l r  =  R M ( S r l ). (See Fig. 3.7b.) Let (x,p)  € S r l  be arbitrary. We 

then have p  > 0 and p' <  0 where (x ' ,p ’) =  M(x,p) .  The point (x",p")  =  R M ( x , p ) is 

then an arbitrary point of R M ( S r l ) 4, note p" =  p' . Now,

where the second equality follows from Eq. (3.23). Since p"  =  p'  < 0 and p  > 0, we find 

( x " ,p " )  €  S l r - Hence, R M ( S r l ) C  S l r • The reverse inclusion follows similarly.

Since S l r  =  R M ( S r l ) and R  and M  both preserve phase-space area, area(S’/;/J =  

area ( S l r )- Hence F  =  0 , i.e. there is no net flux pumped across the barrier. All of our 

numerical simulations of symmetric pumps have confirmed this theorem.

3.4 Sym m etric R ectangular Barriers

3 .4 .1  N o  sp ace b etw een  th e  barriers

We now consider symmetric turnstile pumps in which both barriers oscillate smoothly 

in time, with rectangular potential barriers described by Eqs. (3.3a) and (3.3b). We first

M(x" ,p")  = M R M ( x , p )  — R{x ,p)  =  (—x,p), (3.27)
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examine the simplest pump of this type, which has no space between the barriers. In this 

case, any incident particle can either be reflected by the first barrier, hop onto the first 

barrier and be reflected from the second barrier, or transm it over both barriers. If the 

particle has enough energy to transm it over one or both barriers, it can gain or lose energy 

during the time it spends on top of the barrier(s).

As in Section 3.2.1, since the barriers are rectangular, particles only experience ac

celeration a t the boundaries of barriers, and have constant momentum everywhere else. 

A particle beginning to the left of the barriers is launched with momentum p, >  0 and 

arrives at the leftmost edge of Ul at tim e t_b, at which time the height of the left barrier 

is UL(t-b), and the total energy of the particle is E t =  p*/2. If Et <  the particle

is reflected from the first barrier with final momentum P /  =  —P i . Otherwise, the particle 

is transm itted over the first barrier with momentum

Pb, = y /2(Et -  UL{t_b)). (3.28)

The time at which the particle reaches the opposite edge of the first barrier (and 

therefore the first edge of the second barrier) is

to —  b (3.29)
Pin

The corresponding f7i(t0) and Uji(t0) are given by Eqs. (3.3a) and (3.3b), respectively, and 

E(to) =  Ul {Iq) -bPbj/2 . If E (t,0) < Uft(t0), the particle is reflected from the second barrier 

with p =  —p(,j and spends another time interval 2 <r/pb, going back over the first barrier, 

after which it falls off onto the left-hand side of the pump with final momentum



If E( t0) > UR(t0), the particle is transm itted  over the second barrier with momentum

Pb2 — y/2{E{to) ~  UR(t0)). (3.31)

The time a t which the particle falls off the second barrier is

tb —  H to
Pb2

(3.32)

at which time the height of the right-hand barrier is U r (U) ,  and the final momentum is

A similar algorithm is followed for particles beginning on the right of the pump with 

negative initial momentum. There is never more than  one reflection of a particle. We 

calculate all particle trajectories using Eqs. (3.28)-(3.33) to  obtain each particle’s final 

momentum pj.

We examine the net particle fractional transport for mirrored sets of particle packets 

approaching the barriers from opposite directions with ± p t. Classical computations shown 

in the remaining sections are done as follows. For a selected set of barrier parameters, 

we first choose a range of initial particle energies A Ei. Each Ei in this range has two 

corresponding momenta, ± p t . For each |p<|, we construct two incoming packets of particles: 

one starts to  the left of the barriers with pt — + |pf|, and the other starts to the right of 

the barriers, with Pi =  —\pi\. The width in x* of each packet is Ax< =  \pi\T =  \pi\2Tr/u>

(3.33)
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(recall m  =  1 ). We start all trajectories at ti = 0. The edge of each packet which is closest 

to the barriers is placed a distance d = |p,|27r/aj away from the outer edge of the first 

barrier, which ensures th a t the first particle of each packet reaches the outer edge of the 

first barrier a t t = 2-n/u.

For these initial conditions, we define the time of arrival at the barrier as 6 =  t — 2n/uj; 

with this definition, the particle in each packet which starts closest to the barriers arrives 

at the outer edge of the first barrier at 6 — 0. Our choice of packet width ensures tha t 

the last particle in each packet to arrive at the outer edge of the first barrier arrives at 

6 =  27r/ui, which represents one full cycle of the barriers. Referring to  Eq. (3.3a), a particle 

th a t arrives at the left-hand edge of the left barrier at 9 = 0 or 9 =  2 n / u  encounters the 

barrier at its maximum, and one th a t arrives at 9 = Trjui encounters tha t barrier at its 

minimum.

The numerical results for barriers with U =  1, cu =  1 ,0  =  37r / 2 , f  =  cr =  1.25 and 

a  = 1 are shown in Fig. 3.8. Figure 3.8(a) represents particles approaching the barriers 

from the left, and 3.8(b) represents particles approaching from the right. In both plots, 

individual particles are represented by their initial momenta jpt j and the time 6 at which 

they arrive at the outer edge of the first barrier. The colors in both plots correspond to the 

final momentum pf  =  p /( |p , |, 9) of each particle. Blue represents particles which scatter 

to the left (pf{\pi\,9) < 0) of the barriers, and red corresponds to  particles which scatter 

to the right of the barriers {pf{\Pi\,9) > 0 ) .  The intensity of the color corresponds to the 

magnitude of the particle’s final momentum, as seen in the colorbar.

The lowermost blue region in Fig. 3.8(a) represents particles approaching from the 

left th a t are initially reflected from the left barrier, and the lowermost yellow region in 

Fig. 3.8(b) represents particles approaching from the right th a t are directly reflected by 

the right barrier. In both cases, if there were no other barrier, then the region above this 

lowermost boundary would be entirely of the opposite color, as all particles not initially
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FIG. 3.8: Dynamics for touching, rectangular barriers, (a) and (b) p f ( \ p i \ , 9 )  for particles 
incident on rectangular barriers described by U = 1, to = 1, 4> = 3n/2,  x  = a  = 1.2b 
and a  =  1 . (a) represents particles approaching from the left, and (b) represents particles 
approaching from the right, (c) Sum of pf(\pi\,0)  for particles approaching the barriers 
from both directions with p* =  ± |p ,|. Red indicates both particles scatter to the right, 
and blue indicates both particles scatter to the left, (d) Fractional transport, Cp( \pi \ ) .
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reflected would be transm itted. It follows th a t all of the striping effects just above this 

boundary are due to  the presence of the second barrier. Just above this boundary, a 

particle has just enough energy to hop onto the first barrier it encounters. Consequently, 

its momentum pbx on the first barrier is small, it moves across the barrier slowly, and the 

barrier may oscillate many times while the particle is on it. In the limit th a t pbx —> 0, an 

infinite number of oscillations occurs while the particle is on the barrier. Hence, there is 

an infinite number of stripes converging from above upon the boundary.

Fig. 3.8(c) sums P / ( \ P i \ , 9 )  for both particles which arrive at the barriers at the same 

time 9  and |p,|, but which arrive from opposite directions. Red represents cases in which 

both particles scatter to the right of the barriers (p / { \ p i \ , 9 )  > 0 for both particles). Blue 

represents cases in which both particles scatter to the left of the barriers {pf ( \p i \ , 9)  < 0  

for both particles). If the particles scatter to  opposite sides of the barrier, e.g. if both are 

reflected or transm itted, no color is plotted. The intensity of the color corresponds to  the 

magnitude of the sum of p /( |p ,|, 9) for both particles.

Fig. 3.8(d) shows fractional particle transport Cp{ \ pi \ )  (see Eq. (4.3)). This function 

is considered over the entire range of 9 for each |p,|, i.e, Cp{ \ p i \ )  accounts for all particles 

at a given \pi\. When Cp( \ p i \ )  is averaged over all |p,|, the symmetry theorem tells us 

th a t there is no net particle transport. However, there is transport (in either direction) 

within finite ranges of \pi \. Fractional particle transport at a given |p, | can be understood 

by comparing Figs. 3.8(c) and (d). Cp( \ p i \ )  < 0 in the range 2.2 <  \px\ <  2.5, indicating 

net particle flow to  the left of the barriers. Examining Fig. 3.8(c), we see th a t only one 

colored lobe extends into this |pj| range. Its color (blue) indicates (|pt |, 9) values for which 

both particles have p j ( \ p i \ , 9 )  < 0, meaning th a t both  particles scatter to the left of the 

barriers. Since no red lobes extend into this |p,| range, there are no (|p,|, 9)  values for 

which both particles scatter to  the right. Therefore, for any (|p ,|,# ) in this range, both 

particles can either scatter to the left of the barriers, or scatter to opposite sides, causing
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net particle transport to the left.
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FIG. 3.9: Dynamics for wider touching, rectangular barriers. Same as Fig. 3.8, but with 
barriers four times as wide as those in Fig. 3.8 (er and x  have been increased from 1.25 
to  5). Increasing barrier width causes thinner ribbons of transmission and reflection for 
particles incident on the barriers from both sides.

Figure 3.9 illustrates the effects of increasing the barrier widths. In this calculation, 

all param eters are the same as those in Fig. 3.8 (U = 1, a  =  1, ui =  1, and <fi = 

except for a  and x,  which have been increased from 1.25 to  5. One can see tha t the ribbons 

of transmission and reflection span a more narrow A |p,| range a t a given 6, and th a t the 

widths (A |pj|) of the ribbons at a given 6 do not decay as rapidly as in the previous case
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as pi —» 0. Comparing Figs. 3.9(c) and (d) to Figs. 3.8(c) and (d), we see tha t in this case 

the net particle transport fluctuates more rapidly with |pj|. However, the magnitude of 

CP(\pi|) within these smaller A|p, | regions can be just as large (or larger) as in the case 

of narrow barriers.

The change in transmission and reflection ribbons for wide barriers can be understood 

by examining the condition for particles to transm it. Let us examine particles which 

approach from the left with p, >  0  and arrive a t the left barrier 6 =  tt/ uj. when the height 

of tha t barrier is zero. All particles arriving at 6 =  n / u  hop onto the left barrier and 

traverse it with momentum p =  p{. The condition for them  to  transm it over the right 

barrier is

/  (Pi, to) =  p2J 2 +  UL(to) -  UR(to) > 0. (3.34)

When f  (pi) > 0, particles transm it over the right barrier, and when /  (pf) < 0, particles 

reflect from the right barrier. The zeroes of /  (p,) thus mark the boundaries between 

transmission and reflection ribbons.

We illustrate this for the barrier param eters from the preceding two examples (U = 

a — oo = 1, (f) = 37t / 2 ). For these barrier parameters, Eq. (3.34) reduces to

/  (Pi) = y  "  2  c°s +  “ )  sin . (3.35)

Eq. (3.35) shows th a t /  (pi) oscillates about p f / 2, and the ratio 2cr/pi governs its oscillation 

frequency. As p, —> 0, /  (pt) passes through zero an infinite number of times, resulting 

in an infinite number of transmission and reflection ribbons for any a. Higher a  values 

(wider barriers) cause /  (pt) to  oscillate more rapidly as p, —> 0. The maximum amplitude 

of oscillation is 2 sin(37r / 4 ) =  \/2; thus, for p f/2  >  \/2 , i.e. pi > 23//4 «  1.68, all particles
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will transm it, no m atter the width of the barriers.

Eq. (3.35) is plotted for the selected barrier param eters in the left column of Fig. 3.10 

while varying cr, the barrier width. The oscillatory curve is /  (p ,), and the two quadratic 

curves are pj / 2 ±  \/2 , which bound / (p i ) .  The threshold pt =  23/ 4 is the intersection 

between the left-most quadratic curve and the vertical line. The right column contains a 

zoom of P f ( \ P i \ , 0 )  about 9 = it/uj for particles incident from the left for the respective a. 

The top row represents x  = a = 1.25 (see Fig. 3.8), the middle row is x  =  a =  5 (see 

Fig. 3.9), and the bottom  row has x = a — 20. The infinite number of bands, and the 

reduction in their widths as the barriers get wider, are evident in these pictures.

3.4 .2  S ep arated  barriers

Inserting space between the barriers leaves many of the features of the preceding 

section intact, but introduces a critical difference in particle trajectories. Previously, a 

particle could reflect from a barrier no more than once. However, particles may now 

become trapped between the barriers for a long time, reflecting back and forth between 

them before finally arriving at the edge of a barrier with enough energy to transm it over 

it. These particle trajectories are thus very sensitive to initial conditions and the system 

is a model of chaotic scattering.

Numerical calculation of final momentum is performed in similar fashion as before. If 

a particle beginning on the left of the pump with positive m omentum has enough energy to 

hop onto the left-hand barrier, we calculate its momentum pbl and the time t0 a t which it 

reaches the end of this barrier using Eqs. (3.28) and (3.29), respectively. However, instead 

of either reflecting from the right barrier or transm itting over it, the particle instead falls 

off the first barrier into the region between barriers with momentum
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FIG. 3.10: Effect of barrier width on classical particle scattering from rectangular barriers 
th a t touch. Increasing barrier width decreases the widths of transmission and reflection 
ribbons. The zeroes of the functions in the left column m ark the boundaries of transmission 
and reflection at the chosen 9 .  The right column shows zooms of P f ( \ P i \ , 0 )  for the curves 
to the left. The top row has x  =  o  =  1.25, the middle row has x  = a  = 5, and the bottom  
row has x  =  a = 2 0  with all other barrier param eters equal.
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(3.36)

with N 1. The particle reaches the second barrier at time

41

27tAq 0
0 (units o f t ) 0 (units o f t )

4

3

2

1

0
0 0.1- 0.1

0 (units o ft  ) CpdPj)

FIG. 3.11: Dynamics for separated, rectangular barriers. Same as Fig. 3.9, but with space 
between the barriers. The barriers are now centered at ± x  =  ±15, and have a distance of 
d =  2 0  between their inner edges.
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tft =  N  H to, (3.37)
Pn

where

d = 2 x - 2 a  (3.38)

is the distance between the inner edges of the barriers.

If the height of the second barrier is greater than  the particle’s energy, i.e., Ur ^ n ) > 

p%/2,  the particle reflects from the second barrier, and we increment N  by 1 . The index 

N  thus counts the number of trips between the barriers for each trajectory. Each time 

a particle arrives at the edge of a barrier, we compare its kinetic energy p%/ 2  with the 

height of tha t barrier (for odd N  we compare to Ur ^ n ), and for even N  we compare to 

f^i(^iv)) until it has enough energy to hop onto a barrier. Once on top of a barrier, the 

particle’s momentum is given by

Pb2 =  -  URtL(tN)^ ,  (3.39)

where pb2 is positive for odd N,  and negative for even N.  The particle then falls off the 

second barrier at time

2cr
U =  h t x ,

Pb2
(3.40)

with final momentum
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where p / >  0 if P(,2 >  0, and p / <  0 if pb2 < 0. The calculation is similar for particles 

approaching the barriers from the right.

Figure 3.11 shows results for a pump with potentials given by Eqs. (3.3a) and (3.3b) 

with x  =  15, a  =  5, U = 1, a  — 1, u  =  1, and <j> =  37r / 2 . This pump is the same as the 

one from Fig. 3.9, except the inner edges of the barriers are now separated by a distance 

d =  20. Similar to the effect of making the barriers wider, inserting space between the 

barriers affects the ribbons of transmission and reflection for particles approaching the 

barriers from both sides. The width (A|pj|) of the ribbons decays more quickly as |p,| —> 0 

for a given 6. Consequently, the width A|pi| for regions of large net particle transport is 

smaller. The m agnitude of Cp(\pi\) has decreased in this example (although increasing the 

space between the barriers can also cause it to  increase). Predicting the effect of increasing 

barrier separation on the magnitude of fractional particle transport is not possible without 

detailed calculations.

Fig. 3.12 shows Xi(pf) for two particle packets which approach the barriers from 

opposite sides with the same initial energy (pi =  ±3.8). The initial packets are described 

by Eq. (3.6) with — x c = q^450 and (3 = 100. Their initial energy is large enough such that 

all particles transm it over both barriers. Particles approaching from the left are scattered 

to  a larger range of pf  than  those approaching from the right. This results in more peaks for 

Pf > 0 in the semiclassical probability density P f c {pj) shown in Fig. 3.12(b). Figs. 3.12(c) 

and (d) show expansions of Fig. 3.12(b) (note the different scales). This calculation has 

not been extended into the classically-forbidden regions. In Fig. 3.12(c), the classical 

probability density P c (pf)  (dashed curve) and single-cycle semiclassical probability density



69

^  100 
V + -o

0

'c
> - 1 0 0

- 5  - 4  - 3  - 2  -1  0 1 2 3 4 5
pf (units of pM)

60

40CM

20

pf(units of p )

60

40 20CN <N

20

y C K i
-3 .5  

pf (units of pM)
4.5- 4

FIG. 3.12: Semiclassical analysis of scattering from separated rectangular barriers. Clas
sical and primitive semiclassical final momentum probabilities for the separated barriers 
in Fig. 3.11. All curves are as described in Fig. 3.4
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(oscillatory curve) PgC(pf) diverge at each of the four turning points of x f p j ) .  Interference 

among the four branches of Xi(p/ ) within one cycle causes P f °  (pf )  to be larger than P c (pf )  

at the location of the largest peak, p f  ~  —3.53. P g C ( p f ) and P c (pf )  are scaled (multiplied 

by the same constant) in order to be plotted with P f c {pf )  (sharply-peaked curve), and 

the relative heights in the Floquet peaks can be seen to align closely with the discrete 

values of PgC(pf) a t momenta corresponding the Floquet energies.

Analysis of transmission and reflection ribbons is more difficult in the present case 

because of the possibility of multiple reflections between the  barriers. However, we can 

gain insight by analyzing criteria for particles which directly transm it past both barriers 

with no reflection. For particles approaching from the left with Pi > 0 and arriving at the 

left-hand barrier at 6 — n/uj  (i.e. when the height of the left barrier is zero), the condition 

for direct transmission past both barriers is

fd (Pi, to) = pV 2 +  UL(to) -  UR(tN) > 0  (3.42)

with N  = 1, where the subscript d is the distance between the inner edges of the barriers 

(see Eq. (3.38)). Eq. (3.42) reduces to

r \ P 2i ^ - ( %  ~ a  3 t t \  ( x  — a  7T 2 < t\fd (Pi) =  — -  2sm I -------- -I- —  ) cos ( ---------+  -  +  — ) (3.43)
2 V Pn  4 )  \  Pn  4 pi J

for our selected barrier parameters.

The left and right columns of Fig. 3.13 show zooms of Figs. 3.9(a) (x = a = 5) and 

3.11(a) (x = 15 and a  = 5), respectively, about 9 =  tt/ uj. The color scheme has been 

changed to enhance visibility; black ribbons represent reflection and the lighter (yellow) 

ribbons represent transmission. The middle column of Fig. 3.13 shows fd (Pi) for these two
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it/ft) - 2 - 1 0  1 2 tc/oj

0 (units o f tM) fo(p.) f2o(p ) 0  (units o f tM)
(units o f Ê )

FIG. 3.13: Effect th a t separating the rectangular barriers has on classical particle scatter
ing. Left column: Zooms of Fig. 3.9(a) about 6 = tt/ u  with color schemed changed. Black 
represents reflection; yellow represents transmission. Right column: Zooms of Fig. 3.11(a) 
about 9 =  7t/ uj. The zeroes of the thick (blue) oscillatory curve in the middle column mark 
the boundaries of transmission and reflection seen in the left column. W hen the thin (red) 
oscillatory curve is positive, particles in the right column transm it, but this function does 
not reveal all transmission ribbons in the right column.

pumps. The thick (blue) curve is /o (Pi) (d =  0), and is the same curve seen in Fig. 3.10. 

Its zeroes m ark the boundaries of transmission and reflection in the left column. The thin 

curve (red) is /2 0  (Pi) (d = 20), and corresponds to the right column.

W hen /2 0  (pi )  > 0, particles arriving at the pump in the right column transm it, and 

the ribbon in the right column is the light color (yellow). When / 20 (Pi) <  0, the particle 

reflects from the right-hand barrier, and its ultim ate fate is unspecified. It is evident tha t 

/2 0  (Pi)  oscillates more rapidly than  / 0 (Pi ). Consequently, regions which reflect when the 

barriers touch are split into multiple transmission and reflection ribbons as the barriers 

are moved apart. This is illustrated in the present case in regions where /o (Pi) < 0 and
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f 20 {Pi) > 0. For each region in which fo(Pi) is negative, there is a reflection ribbon 

in the left column. However, in each such region, / 20 (pi) oscillates through zero many 

times, and each positive segment of / 2o (p%) represents a transmission ribbon in the right 

column. Increasing the barrier separation distance thus creates many transmission and 

reflection ribbons in regions where there is only pure reflection when the barriers touch. 

The minimum pi above which all particles arriving at 8 =  tt/oj transm it has also been 

greatly increased by moving the barriers apart. W ith no barrier separation, this pi ~  0.95, 

but increasing x  to  15 increases this minimum to  pt «  1.76. In each case, there are an 

infinite number of ribbons as pi > 0.

This level of analysis predicts only the outcome of each particle’s first arrival a t the 

right-hand barrier. W hat happens after th a t is “left as an exercise for the reader.”

The effects of increasing barrier width and separation can be summarized as follows. 

Increasing the w idth causes more transmission and reflection ribbons below arbitrary  |pj|, 

up to a maximum \pi\ above which all particles will transm it for a given 8. The width of 

the ribbons (in terms of A |pj|) decays more slowly as |pj| —> 0 for wider barriers. Ribbons 

produced by particles incident upon barriers with no separation are split into multiple 

ribbons by moving the barriers apart. Increasing barrier separation can also allow particles 

of much higher \pi\ to reflect for a given 8. Increasing either of these param eters causes 

the widths (A |pj|) of regions in which there is significant fractional particle transport to 

decrease, although its m agnitude is not systematically changed. Predictions on fractional 

transport are highly sensitive to the choice of initial conditions and parameters, and do 

not display any obvious pattern. Therefore, general predictions beyond what we have 

mentioned cannot be made without detailed calculations specific to a configuration and 

choice of parameters.
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While rectangular barriers provide a simplified model th a t addresses the essential 

pumping physics, Gaussian barriers are more likely to be used in experimental implemen

tations using laser-based optical dipole barriers for ultracold atoms. In this section, we 

examine a turnstile pump (such as those in Section 3.4) with Gaussian potentials described 

by Eqs. (4.2) and (3.4b) with Ul =  Ur  =  1, a  = 1, lj — 1, 0  =  37r/2, a = 2 .5 /(2 \/2  ln2), 

and x  =  3.75. Both barriers oscillate a t the same frequency, but not in phase with one an

other. As in the previous section, particle trajectories for this type of pump are classically 

chaotic.

Fig. 3.14(a) and (b) show pf(\pi\,9) for particles incident upon the barriers from the 

left and right, respectively. Unlike the previous cases with rectangular barriers, there 

is a minimum |p,| below which there is no particle transmission. As particles approach 

Gaussian-shaped repulsive barriers, they lose momentum, resulting in a minimum initial 

energy required to transm it past the first barrier encountered. In this case, all particles 

with \Pi\ ~  0-90 reflect from the first barrier. Different types of structure can be seen 

in P f { \ p i \ , 0 )  than for rectangular barriers, but qualitative features remain. The regions 

in which striping can be seen indicate particle trajectories which are tem porarily trapped 

between the barriers before finally transm itting  or reflecting. The lobe with significant 

striping seen in Fig. 3.14(a) is much wider than  the narrow one seen in Fig. 3.14(b) in 

the range 1.75 <  |p,| <  2.25, indicating th a t particles approaching from the left in this 

energy range are much more likely to become temporarily trapped between the barriers 

than  those approaching from the right with equal energy. However, above this range, all 

particles approaching from the left transm it, while some approaching from the right are 

trapped between the barriers until \pi\  >  2.5. A complete description of particle transport 

through the barrier region is difficult. We present a topological analysis in Ref.[121] and
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Chapters 5 and 6.

Fig. 3.14(c) shows (|p i|,0) for which both particles scatter to the left (blue) or right 

(red). W hereas the previous cases with rectangular barriers have structure as |pi| —»■ 0, no 

structure is present in this region for Gaussian barriers because of the nonzero minimum 

\pi\ required to  transm it past the first barrier. Fig. 3.14(d) shows C p ( |pt |)• The vertical 

region in this curve below \pi\ <  0.90 corresponds to  the region in which all particles 

directly reflect. Above this range, fractional particle transport occurs in both directions 

until \pi\ is large enough for all particles to transm it past both barriers.

3.Q.
O
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27t/co 0
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2 n / ( n - 0.1 0

Cpdpj)
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FIG. 3.14: Dynamics for symmetric Gaussian barriers. Same as Fig. 3.11, but for Gaussian 
barriers.
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Figure 3.15 shows classical, semiclassical, and quantum-mechanical comparisons for 

two packets of particles approaching the barriers from opposite directions with p, =  ±2.65. 

The initial packets are decribed by Eq. (3.6) with — x c = ±450 and (3 — 100.

Figure 3.15(a) shows classical initial position as a function of final momentum for 

particles approaching the barriers from both sides. All particles have enough energy to 

transm it over both barriers. Particles incident upon the barriers from the right scatter to 

a larger range of A p/ than  those approaching from the left.

Figure 3.15(b) shows P f c {pf ) ,  the uniform semiclassical final momentum probability 

density (plotted upward), and P ® ( p f ) ,  the quantum  mechanical final momentum proba

bility (plotted downward). The uniform semiclassical calculation has been repaired near 

turning points of pf(xi) ,  where the primitive form is divergent, and has been extended into 

classically-forbidden regions. P®(pf)  has been mirrored about the amplitude axis for ease 

in comparing the two calculations. The horizontal lines (red) in the upper half-plane are 

the heights of the peaks in P f ( p / ) ,  and are plotted to allow one to  compare the calculations 

more easily. Very good agreement between the two methods is evident.

Figures 3.15(c) and (d) show the classical probability density P c{ p / ) (dashed curve), 

and the primitive semiclassical single-cycle probability density P f c (p/) (thick oscillatory 

curve, red). The two sharply-peaked functions are the primitive semiclassical probabil

ity density PpC(p/ ), given by summing Eq. (3.15) for all branches (lighter peaked curve, 

green), and the uniform semiclassical probability density P f C ( pf )  (darker peaked curve, 

blue). The functions P c (pf )  and P f c (p/) are scaled (multiplied by the same constant). 

The function PpC(pf) (green) takes on discrete values of the curve P f  c (p/)  (red) a t mo

m enta satisfying E n =  ±  nhui, showing tha t the single-cycle probability governs the

relative heights of the Floquet peaks (the single-cycle probability shown is the primitive 

form).

The classical dynamics underlying the quantum  treatm ent are therefore necessary to
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FIG. 3.15: Quantum  and semiclassical analysis of scattering from symmetric Gaussian 
barriers, (a) p/{xi)  for particles approaching a pump with two oscillating Gaussian barriers 
from both sides, (b) Final uniform semiclassical momentum probability P f c {pf) (plotted 
upward, blue), and quantum  mechanical final momentum probability Pf ( p f )  (plotted 
downward, red), for the particles in (a), (c) and (d) P c (p/ ) (dashed curve ), n s c (pf) 
(oscillatory curve, red), Pp°(pf )  (green) and P f c {pf) (blue) for the particles in (a). See 
the text for a discussion of these functions.
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fully understand the quantum  mechanical result. While quantum  theory tells us th a t the 

density will be peaked a t momenta satisfying E n = Et + n h u , it does not tell us the range 

of n  for which the peaks will be of appreciable height. The final momentum region in 

which particles are classically scattered governs the range of n  for which the quantum 

result yields large peaks. Quantum  theory also does not indicate why some momentum 

states are more highly populated than others, but semiclassical tools give an intuitive 

explanation for that.

The double barrier turnstile pump might be viewed (with some caution) as a momentum- 

space interferometer. In this picture, each oscillating barrier acts as a multichannel beam

splitter which takes an incoming planewave and transforms it into a superposition of 

outgoing planewaves w ith different momenta (with energies E n — E t + nhuj). In a pure 

transmission case (such as Fig. 3.15), the first barrier produces multiple planewave states, 

and then the second barrier mixes these and produces additional planewave states. In this 

way a turnstile pump may be viewed as a discrete m ultipath momentum space interferom

eter. However, this description cannot be accurate if the barriers are not well-separated. 

The barriers must be sufficiently far apart th a t the configuration-space wave function in 

the region between them  is approximately a superposition of plane waves, but not so far 

apart th a t packets associated w ith different Floquet states have separated.

3.6 R em arks

In summary, we have defined and described ballistic atom  pumps, showing tha t for 

finite ranges of initial particle energies, such systems can create net particle transport in 

either direction. The direction of particle pumping is highly sensitive to barrier parameters 

and to the initial energy of the particles. It is not possible to  predict the direction or 

magnitude of particle pumping without detailed calculations.
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If tunneling can be neglected, diode pumps-which only allow net transport in one 

direction for particles below a certain initial energy -can be constructed. At sufficiently 

high incident particle energies, these diodes only allow net particle transport in the opposite 

direction.

We have studied these pumps classically, semiclassically, and quantum  mechanically. 

While classical theory gives a slowly-varying final momentum probability for scattered 

particles, quantum  theory yields final momentum probabilities sharply-peaked at momenta 

satisfying E n =  Ei + nhui. The range of n  for which there are appreciable peaks is governed 

by the underlying classically-allowed momentum range of scattered particles. Semiclassical 

theory gives an intuitive explanation for the relative heights of the peaks, and agrees well 

with the quantum  description.
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C H A P T E R  4 

E nergy and H eat Transfer in  B allistic  

A tom  P um ps

In this chapter we examine the effect th a t classical particle scattering from a ballistic 

atom pump has on net energy flow and heat transfer to the reservoirs. We consider pumps 

of the same type as studied in the last chapter, with a Hamiltonian given by

H (p ,x , t )  = p2 / 2 m  + V (x , t ) .  (4.1)

We choose V(x.  t) to consist of two repulsive barriers, one or both of which oscillates. 

When both barriers oscillate they have the same frequency cj, bu t not the same phase. We 

examine the classical scattering of equal numbers of particles which approach such pumps 

from each reservoir with equal and fixed incident energy.

It has been shown th a t flows may be zero or negligible in pumps with idealized limits 

such as delta-function barriers or uniform phase-space density (see C hapter 3, Section 3.3) 

[18, 122]. Here we show tha t under more realistic conditions, such pumps can generate 

significant net transfer of both m atter and energy. Understanding heat flow is also essential
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for any transport mechanism, and is of fundamental importance for thermoelectric devices 

[123]. Studies th a t have been done in the context of mesoscopic pumps [124, 125] used a 

strictly quantum  picture involving exchange of quasi-particles, and heat flow was shown 

to be outwards from the pump towards the reservoirs. The classical model discussed here 

is more appropriate for higher tem peratures, and we show th a t the pump can heat or cool 

one or both  reservoirs.

4.1 Sum m ary o f R esu lts

In this chapter (and Ref. [126]) we show th a t for monoenergetic incident particles: 

(A) Such pumps can transfer energy from one reservoir to  the other, and energy can be 

transferred from pump to  particles or vice versa. (B) A net change of energy in each 

reservoir can occur even if there is no net particle transport. The direction of energy 

change is distinct from the direction of particle transport. (C) Such pumps can heat or 

cool one or both reservoirs, and the heating or cooling is distinct from the existence or 

direction of net particle transport and distinct from energy flow. (D) At some incident 

energies, such pumps can generate net particle transport while at the same time particles 

give energy to  the pump.

4.2 System

We will establish properties (A)-(D) by examining one specific pump: a particle diode 

consisting of two Gaussian-shaped potential barriers, only one of which oscillates. We 

choose this pump as our example because the dynamics of the system become much more 

complicated when both barriers oscillate [122], A diode is useful for studying heat and 

energy flow because the direction of net particle transport is predictable within certain
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incident energy regimes, though the threshold energies are not predictable without calcu

lation. We therefore discuss heat and energy transfer in this example system within the 

context of the direction of net particle transport.

In the chosen diode, the distance between the barriers is substantially larger than 

their widths, so their overlap is negligible. The right-hand barrier has a fixed height, while 

the left-hand barrier oscillates between zero and the height of the right-hand barrier. The 

pump is described by

V ( x , t )  = UL (l + a L cos(oot))exp +  Ur exp ^  ^ 2 ^ )  ’ (4‘2)

where Ul ,r is the average height of each barrier, is the am plitude of oscillation of the 

left barrier, u  =  2 r̂ /T  is the frequency and T  is the period, and a  is the standard deviation 

of each Gaussian. The left and right barriers are centered at x  = —x  and x  =  x  =  4.5, 

respectively. In our calculations, we set Ul =  1, Ur — 2Ul =  2, ax =  1, u  =  1, <7 =  1.5, 

and m  = 1. These are scaled units, as in previous chapters. These param eters are also 

within the experimentally-accessible regime discussed in Chapter 2.

The effects of the pump can be understood qualitatively as follows. For incident 

energies less than  the height of the static barrier, all particles from the right reflect from 

the static barrier, but particles incident from the left may gain enough energy from the 

oscillating barrier to scatter past both barriers. Consequently, the only possible direction 

of net particle transport is from left-to-right. For incident energies greater than the height 

of the static barrier, com putations show that, in this case, all particles incident from the 

right transm it past both  barriers, but particles incident from the left may lose energy 

to  the oscillating barrier, reflect from the static barrier, and ultim ately scatter to  the left 

reservoir. Thus the only possible direction of net particle transport reverses to  right-to-left.
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4.3 M ethod

Our computational algorithm can be summarized as follows: 1) For each initial energy, 

launch particles toward the barriers from the left and right. Particles begin with a range of 

positions A x  = \pi\2 Tv/uj where p, is the initial momentum, which ensures th a t all barrier 

phases are encountered. 2) Record the reservoir to which each particle is scattered, and 

sum the results to obtain the net fractional transport (defined below) of particles scattered 

to the right (which may be negative if more particles are scattered to the left). 3) Compute 

the total energy gain of the two reservoirs after scattering, which may be negative if the 

system loses energy to  the pump. 4) Compute the net gain (or loss) in the total energy of 

each reservoir. Energy being an extensive quantity, a reservoir gains to ta l energy by gain in 

the number of particles as well as by gain of energy of individual particles passing though 

the pump. 5) Compute the change of energy of each particle scattered into each reservoir, 

and compute the average of these changes for all particles scattered into each reservoir. 

The average change of energy per scattered particle may be regarded as corresponding to 

a change of tem perature of the reservoir. Tem perature being an intensive property, the 

direction of tem perature change need not be the same as the  direction of energy change 

in each reservoir. Formulas for computation of these quantities are given below.

The fractional transport of particles through the pump is defined as

C p (W )  =  fl(ip,i)+ i ( i p , i r  <4'3)

where R(\pi \ )  is the number of particles scattered to the right for each \pl \, and L(\pi \ )  

is the number of particles scattered to the left. The sum i?(|pi|) +  L(\Pi\) represents all 

particles incident on the pump for a given \pi\. C p ( \ p t \) is positive when more particles are 

scattered to  the right (net particle transport to the right reservoir), negative when more
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particles are scattered to the left (net particle transport to  the left reservoir) and zero 

when equal numbers of particles scatter to  the right and left reservoirs.

For each initial particle energy, the to tal energy change of the system and each reser

voir are defined as

A £ Q(b<|) =  E ] { \ P i \) -  £ f ( b , |) ,  (4.4)

where a  = { T , L , R } .  W hen a  = T ,  E j ( \ p i \ )  and E f  (\pi\) represent the total final and 

initial energies, respectively, of all particles incident upon one cycle of the pump. When 

A E t  > 0 , the pump has added energy to  the reservoirs; when A E T < 0 , the reservoirs 

have lost energy to the pump. W hen a  =  L  or R,  EJ{ \pi \ )  represents the to tal final energy 

of all particles which scatter to  the left or right reservoirs, and Ef ( \ p i \ )  represents the 

corresponding to ta l initial energy of all particles beginning in the left or right reservoir.

The last quantities examined in this chapter are the changes in average energy per 

particle scattered into each reservoir. These quantities are defined as

A E ® (M ) =  =  ^ A T O f e l ) ,  (4.5)

where (3 =  { L , R }  and corresponds to the left and right reservoirs, respectively. N 0 is the

number of particles incident on the pump from the /? reservoir in one cycle, and h'V3 is

the number of particles scattered to the f3 reservoir. A to tal of 2 N l3 particles approach 

the pump for each incident energy (N& from each reservoir); consequently M 8 >  N'3 

corresponds to an increase in particle number for the /3 reservoir. This change of average 

energy per particle can be regarded as a change of tem perature of those scattered particles. 

Then a positive (negative) A T L R produces an increase (decrease) in the tem perature of 

the corresponding reservoir after thermalization.
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4.4 R esu lts

In Fig. 4.1 we show the results of calculations for net particle transport, energy changes 

in the to tal system, and tem perature and energy changes in each reservoir for the selected 

pump. We discuss all properties in relation to the net particle transport, which is the thick 

curve in Fig. 4.1(a). While the direction of net particle direction is predictable for certain 

incident energy ranges (see C hapter 3), the boundaries of these regions are not predictable. 

There are four distinct regions of particle transport direction, and we discuss them in order 

of increasing complexity. This complexity arises for two reasons. (1) Depending on the 

initial energy and the frequency of the barrier, a particle can ride repeatedly up and down 

the oscillating barrier. (2) A particle can undergo multiple reflections between the two 

barriers; this is the source of chaos in the system.

4 .4 .1  R eg io n  I: N o  p artic le  tran sport; left reservoir h eated

(0 <  |pi| <  1.176) At these low energies, no particle gets past the static barrier, 

so there is no net particle transport, and Cp(\pi\) =  0 [thickest curve in Fig. 4.1(a)]. 

Particles incident from the right reflect from the static barrier into the right reservoir 

w ithout a change in energy. Therefore the number of particles, their average energy, and 

the total energy in the right reservoir do not change, i.e. A T R(\pi\) =  0 [medium curve 

(purple) in Fig. 4.1(a)] and A E R(\pi\) = 0 [medium (purple) curve in Fig. 4.1(b)].

All particles incident from the left are scattered into the left reservoir, but the oscillat

ing barrier changes their energy. They may gain or lose energy to  the pump, depending on 

their time of arrival. On average, they gain energy. Accordingly, the tem perature (average 

energy per particle) and to tal energy both rise in the left reservoir, i.e., A T L(\pi\) > 0 

and A E L(\pi\) > 0 [thin (green) curves in Fig. 4.1(a) and 4.1(b)]. Considering both reser

voirs together, there has been net addition of energy from the pump to the reservoirs
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FIG. 4.1: Energy and heat transfer in an example ballistic atom pump, (a) Net particle 
transport, Cp(\pi\) [thickest curve], and the change in average energy per particle in the 
left reservoir, (k B / 2 ) A T L(\pi\) [thin (green) curve] and right reservoir, ( k p / 2 ) A T R(\p1\) 
[medium (purple) curve]. When Cp{\pi\) is positive (negative) there is net particle trans
port from left-to-right (right-to-left). W hen ( k p / 2 ) A T L'R(\pi\) is positive (negative), the 
pump increases (decreases) the average energy of particles scattered into the respective 
reservoir, and the tem perature in tha t reservoir increases (decreases), (b) Total energy 
change in both reservoirs, A E T(\pi\) [thickest curve], in the left reservoir, A E L(\pt\) [thin 
(green) curve], and in the right reservoir, A £ 'i?(|pj|) [medium (purple) curve]. When 
A i?T(|pi|) is positive, the  pumps adds net energy to the reservoirs; when negative, the 
reservoirs lose net energy to the pump. When A E L'R(\pi\) is positive (negative), the pump 
increases (decreases) the total energy in the respective reservoir, (c) Summary of (a) and 
(b). Red indicates an increase, and blue represents a decrease. No color is plotted if the 
quantity does not change.

( A E T(\pi\) > 0) [thickest curve in Fig. 4.1(b)], and this energy is entirely added to  the left 

reservoir.

These results are summarized in Fig 4.1(c), in which the blue represents a loss, red 

represents an increase, and white represents no change.

4 .4 .2  R eg ion  IV: N o  p artic le  tran sport; b o th  reservoirs coo led

(b»l ~  2.63) At high incident momentum, all particles incident from both sides trans

mit past both barriers, and there is no net particle transport {Cp{\pi\) =  0). Particles 

incident from both  sides lose energy (on average) to the pump, which causes a decrease
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in the to tal energy of each reservoir ( A E L'R(\pi\) < 0) and total energy of the system 

(AJE^dpil) <  0). The average energy changes of particles scattered into each reservoir 

are equal ( A T L(\pi\) =  A T R(\pi\) <  0) and each reservoir is cooled. Fig. 4.1(c) sum

marizes these results. Calculations show th a t the loss of energy to the pump decreases 

exponentially w ith |pj|, a result th a t calls for a general proof.

4 .4 .3  R eg io n  II: N e t  le ft-to -r igh t p article  tran sp ort

(1.176 <  |p,| <  2) This region is defined by the fact th a t all particles from the right 

are reflected by the static barrier, but some particles incident from the left gain enough 

energy from the pump to scatter into the right reservoir. Accordingly, the right-hand 

reservoir gains particles (Cp(|pd) >  0 ) and average evergy per particle ( A T R(\pl \) > 0 ), 

and the reservoir is heated. The to ta l energy of the reservoir increases ( A E R(\pi\) > 0).

Some particles which begin on the left scatter to  the left, and the pump can change 

their energy. Over most of region II (1.176 <  \pt \ < 1.95), the left-to-left scatterers gain 

energy from the pump (on average) ( A T L(\pi\) > 0), and tem perature of the left reservoir 

increases. However a t the high end of this region (1.95 < \pi\ <  2), the left-to-left scatterers 

lose energy (on average) to  the pump ( A T L(\pi\) <  0), and the left reservoir is cooled.

The total energy change of this reservoir depends on the average energy change of 

left-scattered particles, and on the loss of particles to the right-hand reservoir. Over most 

of region II (1.243 <  \pi\ < 2), there is a net loss of energy in the left-hand reservoir 

( A E L(\pi\) < 0). However at the lower end of this region (1.176 <  |pj| <  1.243), the 

gain of energy of left-to-left scatterers exceeds the loss of energy associated with particle 

transport to  the right, and the to tal energy in the left-hand reservoir rises ( A E L(\pi\) > 0)

Combining the energy changes of both reservoirs, the pump has added energy to  the 

reservoirs for the entirety of region II ( A E T (\pi\) > 0). These results are summarized in
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Fig 4.1(c).

4 .4 .4  R eg ion  III: N e t r ig h t-to -le ft p artic le  tran sp ort

(2 <  \Pi\ ^  2.63) This region is the most complex. For \pi\ > 2, for this pump, 

all particles incident from the right have enough energy to transm it past both barriers. 

Particles incident from the left initially have enough energy to get over the static barrier, 

but they may lose energy to the oscillating barrier, be reflected from the static barrier, and 

scatter into the left reservoir. Therefore the only possible direction of net particle transport 

is from right-to-left. Fig. 4.1(a) shows right-to-left particle transport (Cp{\pi\) <  0) in the 

range 2 <  \pt \ <  2.63.

Particles which scatter to the right reservoir begin in the left reservoir. In the majority 

of this region (2 < |p,| <  2.616) they (on average) gain energy from the pump ( A T R (\pi\)  > 

0), and the tem perature in the right reservoir rises. Combining the gain of energy per 

particle with the loss of particles, the result is a loss of total energy in the right reservoir 

(A £ 'fl(|pj|) <  0). In the remainder of region III, (2.616 <  \pi\ <  2.63), the left-to-right 

scatterers lose energy to the pump (on average) ( A T R (\pi \)  <  0), the right reservoir is 

cooled, and its total energy decreases ( A E R (\pi \ )  <  0) because of loss of particles and loss 

of average particle energy.

Particles which scatter to  the left reservoir can begin in either reservoir. These par

ticles on average lose energy to the pum p ( A T L (\pi \ )  <  0), so the left reservoir is cooled. 

However its to tal energy rises ( A E L (\pi \ )  >  0) because scattering increases particle num

ber in the reservoir. Examining both reservoirs together, over most of the lower portion 

of region III (2 <  |pj| <  2.267), the pump adds energy to the reservoirs, while over the 

remainder of the region (2.267 <  \pl \ <  2.63), it removes energy from the reservoirs. 

Fig. 4.1(c) summarizes these results.



4 .4 .5  A verag in g  over en erg ies

Thermodynamics (and physical intuition) tell us th a t if a pump is connected to a 

single reservoir (or two reservoirs w ith the same tem perature, pressure, and chemical po

tential) then the net energy transfer can only go from the pump to  the reservoirs if all 

incident energies are considered. Accordingly if we average the energy input A.£r (|pj|) 

over a Maxwellian distribution at any tem perature, th a t result must be nonnegative 

( f  A E T ( \ p i \ ) e ~ p*/2mkBTd p  > 0). Scrutiny of A E T (\pi \)  in Fig. 4.1(b) shows th a t this 

is satisfied in the example pump. This result is consistent w ith previous quantum  studies 

showing th a t energy must go from pump to reservoirs (i.e., one cannot use such a pump to 

cool reservoirs). However if only finite bands of incident particle energies are considered, 

particles can (on average) give energy to the pump. Also the observation th a t a t low 

incident particle energies (Region I), the net energy flow is from pump to particles must 

hold for any pump with multiple repulsive barriers, when at least one of them  oscillates. 

This is another point th a t calls for a dynamical proof.

4.5 R em arks

We have by example established the following properties for our arbitrarily-selected 

pump:

•  Such pumps can transfer energy from one reservoir to the other, and energy can be 

transferred from pump to particles or vice versa.

•  A net change of energy in each reservoir can occur even if there is no net particle 

transport. The direction of energy change is distinct from the direction of particle 

transport.
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•  Such pumps can heat or cool one or both reservoirs, and the heating or cooling is distinct 

from the existence or direction of net particle transport and distinct from energy flow.

•  At some incident energies, such pumps can generate net particle transport while at the 

same time particles give energy to the pump.

We can extend the conclusions drawn from this pump to all ballistic atom pumps 

th a t have multiple repulsive barriers, when a t least one of them  oscillates, because they all 

share the two mechanisms responsible for these conclusions: i.) such pumps can scatter 

monoenergetic particles incident from both reservoirs nonuniformly (i.e., such a pump can 

scatter a different number of particles into each reservoir), and ii.) such pumps modulate 

the energies of particles (i.e., energy is not conserved). We note tha t any change of 

barrier param eters for a diode can quantitively affect properties such as the magnitude 

and direction of net particle transport and energy and heat flow, but no choice of diode 

param eters eliminates mechanisms i.) and ii.) above. Furtherm ore allowing a secong 

barrier to  oscillate also does not inhibit these mechanisms; therefore, conclusions (A)-(D) 

apply to  all ballistic atom  pumps th a t have multiple repulsive barriers, when one or more 

of them oscillate.
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C H A P T E R  5 

H om otop ic Lobe D ynam ics (H LD )

Here we switch our attention to  classical particle transport through the barrier re

gion in ballistic atom  pumps. As previously stated, the presence of two or more barriers 

th a t are separated leads to classically-chaotic trajectories. We have seen th a t even very 

slight differences in initial position can lead to dram atically different scattering properties; 

for example, slightly perturbing the initial position of a particle th a t reflects can cause 

transmission, or vice versa.

Fig. 5.1 shows what we call “continuous escape times” as a function of initial posi

tion. The plots show initial positions whose classical trajectories spend time temporarily 

trapped between two oscillating Gaussian barriers. The blue and red curves show the 

amount of time necessary for trajectories which began at each initial position to  escape 

the barrier region, i.e. the time to  finally scatter over one of the two barriers after be

coming tem porarily trapped between them. Each “icicle” corresponds to a pulse of atoms 

escaping the barrier region; red icicles represent trajectories th a t finally scatter over the 

left barrier, and blue icicles correspond to trajectories th a t ultim ately scatter over the 

right barrier.
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FIG. 5.1: Continuous escape times for particles tem porarily trapped between two oscillat
ing, Gaussian-shaped barriers. Blue icicles correspond to initial positions th a t ultimately 
scatter over the right barrier, and red icicles correspond to  initial positions th a t ultimately 
scatter over the left barrier.

Fig. 5.1(b) shows a  zoom of Fig. 5.1(a) between the left-most edge and the dashed 

line. Comparing the two plots, we see th a t a very similar structure occurs, but they begin 

at different times, and occur on a different length scale. If we continued by zooming into 

the left portion of Fig. 5.1(b), we would once again find a similar structure th a t occurs on 

a different length scale, and th a t begins at a different time. While this behavior suggests 

th a t escape-time plots will exhibit regular fractal structure, this repeated magnification 

process shows th a t not all escape segments fit into this regular, self-similar structure. 

These escape segments tend to disrupt the self-similar nature of these plots (see Fig. 5.8). 

For this reason, we say th a t escape-time plots show a type of fractal structure.

We seek to  understand the patterns seen in these escape-time plots, as well as why they 

do not display full fractal structure. We gain insight into these properties by analyzing 

the system from a topological perspective. The next two chapters are devoted to  this 

analysis. In this chapter a brief, informal introduction to the topological concepts th a t
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we use is given. This chapter gives an overview of an existing theory tha t reveals details 

about escape-time plots; the next chapter generalizes and implements this theory on the 

double-barrier ballistic atom pump. This type of analysis is general and makes use of 

structures seen in a surface of section (defined below) for the given system of interest. 

This theory allows one to  make predictions about the escape of trajectories from defined 

regions of the phase plane. In this chapter, we define a surface of section, discuss the 

geometry of the phase plane for an example system, and discuss each step necessary to 

construct a type of symbolic dynamics th a t gives information about orbits in the phase 

plane. Finally, we discuss an im portant theorem which describes some of the structure 

seen in plots illustrating the amount of time it takes for trajectories to escape a defined 

region of the phase plane.

The general procedure (discussed below) for this type of analysis is to compute stable 

and unstable manifolds of an unstable fixed point in the phase plane, record im portant 

information from the structure they create, assign labels to certain segments of the unstable 

manifold, characterize a line of initial conditions in terms of these labels, and perform a 

symbolic dynamics on these labels. It will be shown that the symbolic dynamics allows 

one to predict how certain segments of the line of initial conditions escape from a defined 

region of the phase plane, and tha t these escape segments are forced to display a type of 

self-similar behavior.

5.1 P h ase Space

We begin the analysis by examining phase space for a potential energy consisting of 

two static Gaussian barriers of the same amplitude and width, as shown in Fig. 5.2. The 

barriers are centered at x  =  ±5. Because the barriers are static, they do not modulate the 

energy of particle trajectories. At high energies (corresponding to  larger magnitudes of p in



93

0.5

CL

-0.5

-1.5

-6 -4 -2
q

FIG. 5.2: Phase space for two static Gaussian potentials.

the figure), particles transm it over each barrier. When passing over a barrier, each trajec

tories’ energy remains constant, but its momentum decreases due to  energy conservation. 

At low energies between the barriers, bound orbits exist; these orbits represent particles 

th a t do not have enough energy to transm it over either barrier, and remain trapped be

tween them. A stable fixed point exists at (q ,p ) — (0,0). This stable fixed point represents 

an orbit th a t remains stationary, and a slight perturbation will cause it to  stay close to the 

fixed point. At low energies on both sides of the barriers, particles approach the barriers 

and reflect. There are two unstable fixed points a t (q,p) =  (± 5 ,0 ). These unstable fixed 

points correspond to  orbits th a t sit on top of each barrier. A slight perturbation of these 

orbits causes them to fall away from the top of the barrier. These isolines are shown in 

red in the figure, and they separate the regions of bound and unbound trajectories. If an 

orbit is perturbed from one of the unstable fixed points and falls into the region between



94

the barriers, it asymptotically approaches the other unstable fixed point; it cannot leave 

the region between the barriers, and has just enough energy to  make it to the top of the 

other barrier.

We next examine phase space for a single static barrier which has a steep repulsive 

“wall” to one side, and a well in between. An example potential of this type is V(x)  =  

x  — x 3 +  2e~(I ~1)2/2, and it is plotted in Fig. 5.3(a). This potential has a stable fixed 

point which corresponds to  a stationary particle in the bottom  of the well in the potential. 

There is another fixed point at (q ,p ) ss (0.72,0). This fixed point is unstable, and it 

corresponds to a particle sitting on top of the barrier. A slight perturbation of this orbit 

results in different behavior than  in the previous case of two static barriers. Previously, 

we saw th a t a trajectory falling between the two barriers would asymptotically approach 

the other unstable fixed point (top of the other barrier), b u t in this case, the trajectory 

asymptotically approaches the same unstable fixed point. This orbit is the closed “loop” 

of the red curve in Fig. 5.3(b), and a trajectory traverses it in clockwise fashion. As in the 

previous example, this orbit separates the regions of bound an unbound motion.
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FIG. 5.3: The potential V(x)  — x  — x 3 +  2e~ ^ x ~ 1^ ^ 2 and its corresponding phase space.
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If we now add time-dependence to this potential, e.g.

95

F (x , t) = x  — x 3 + 2 (1 +  Acos(u;t)) e x̂ ^ 2̂ 2, (5.1)

the phase space of the system changes. In order to study the phase-space of this time- 

dependent system, we introduce a surface of section. A surface of section is a tool for 

studying trajectories in reduced dimension. Typically, the method of constructing them 

is to  choose a surface in the phase space, and “strobe” (record) trajectories each time 

they pass through this surface in the same direction. For the potential in Eq. 5.1, we may 

strobe trajectories one time per oscillation cycle of the barrier, and we strobe at the same 

barrier phase each cycle. In the double-barrier ballistic atom pump (discussed in the next 

chapter), we again strobe trajectories once each period of the barrier frequency, and at the 

same time within each period.

By using a surface of section to  study the system, we have reduced the continuous 

system to  a discrete m ap in the phase plane. For example, a trajectory at (x0 ,Po) at 

the first strobe time is mapped forward to (aq,pi) at the next strobe time, which is then 

mapped to (.'r2, P2 ); et c- The maps we discuss in this thesis are two-dimensional, and 

conserve area and orientation in the phase plane.

A surface of section for the potential V ( x , t )  = x  — x 3 -I- 2 (1 -I- A c o s ( u ; i ) )  e - ^ - 1)2/ 2 

results in a complicated structure in the phase plane th a t is geometrically and topologically 

similar to the one pictured in Fig. 5.4. The reader is encouraged to compare Figs. 5.3(b) 

and Fig. 5.4. Each has one stable and one unstable fixed point (the unstable fixed point 

in Fig. 5.4 is labeled zx). The closed “loop” of the red curve in Fig. 5.3(b) should be 

compared to the thick curve in Fig. 5.4 (labeled O). In both plots, the curves leave the 

unstable fixed point leftward and downward, tu rn  in clockwise fashion, and asymptotically 

approach the same unstable fixed point. However in Fig. 5.4, the curve can be seen to
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oscillate rapidly as it approaches the unstable fixed point, in contrast to the red curve in 

Fig. 5.3(b). Fig. 5.4 also has a curve (labeled I )  th a t approaches the unstable fixed point 

from the upper left, and if it is traced backwards, it can be seen to  approach the unstable 

fixed point from the lower left while rapidly oscillating. These features are hallmarks of a 

“homoclinic tangle,” which we tu rn  our attention in the next section.
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FIG. 5.4: An example homoclinic tangle. This figure originally appeared in [55].

5.2 H om oclin ic Tangles

The remainder of this chapter develops the topological concepts using a map th a t is 

discrete, two-dimensional, and area- and orientation-conserving, but which has a simpler 

geometry than the double-barrier system. A surface of section of the system we use to 

develop the techniques is shown in Fig. 5.4. The map discussed in the remainder of this 

chapter corresponds to the  classical description of chaotic ionization of a hydrogen atom
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in electric and magnetic fields. W hen a hydrogen atom is ionized by a short pulse of light, 

electrons have an approximately fixed energy, but uncontrolled direction. The topological 

concepts introduced in this chapter allow one to make predictions about the time required 

for an electron to reach a detector as a function of its initial direction. The escape-time 

plots for this map are similar in structure to  those seen for the double-barrier ballistic 

atom pump (Fig. 5.1). The steps we follow are to: i.) identify a region of the phase space 

representing the atom, and ii.) develop a theory th a t predicts how long different points 

inside this region take to escape. The mathem atical concepts are the primary focus of 

this chapter, however, because escape from a tangle in phase space governs transport in 

many systems. The reader may choose to  relate the following discussion to  the potential 

V (x , t )  = x  — x 3 +  2 ( 1  4 - A  cos(ojt)) e~(x_1)2/2, as the geometry of its phase space is similar 

to the one discussed here.

Consider a hyperbolic (unstable) fixed point, z x, in the phase plane. This unstable 

fixed point has a stable manifold, S.  A stable manifold is defined by its asymptotic 

behavior; it is an invariant curve containing all orbits th a t map to the unstable fixed 

point as t  —» +oo. More formally, Vx G S,  lim M +n(x) =  zx , where M  is the map and
71—►OO

zx is the unstable fixed point. The unstable fixed point also has an unstable manifold 

U, which is an invariant curve containing all orbits th a t map to the fixed point z x as 

t —oo, i.e., for all Vx G U, lim M ~ n(x ) =  zx . (If the reader is still thinking of
n—yoo

the potential V ( x , t )  =  x  — x 3 -I- 2 (1 -I- A cos(cut)) e~(x~1)2/2, a stable manifold physically 

represents particle trajectories th a t asymptotically approach the unstable fixed point on 

top of the barrier as t —> +oo, and unstable manifolds represent particle trajectories that 

asymptotically approach the top of the barrier as t —> —oo). The curves O  and I  are 

unstable and stable manifolds, respectively, of the hyperbolic fixed point zx in Fig. 5.4.

An unstable manifold cannot intersect itself (or any other unstable manifold), and 

a stable manifold cannot intersect itself (or any other stable manifold), but stable and
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unstable manifolds can intersect each other. Due to  their asymptotic behavior, if a stable 

and an unstable manifold do intersect once, they must intersect each other an infinite 

number of times because each intersection point maps to another intersection point. These 

intersections are called a homoclinic orbit if the manifolds map asymptotically to  the same 

hyperbolic fixed point.

We will limit the discussion in this section to stable and unstable manifolds which map 

asymptotically to  the same fixed point z x . Furthermore our discussion is limited to a case 

in which one branch of the stable manifold, and one branch of the unstable manifold, go 

to infinity w ithout intersecting any other manifold. When the remaining branches of these 

manifolds intersect, a homoclinic orbit is present, and the manifolds collectively create a 

very complex structure in the phase plane called a homoclinic tangle. Figure 5.5 shows a 

homoclinic tangle with increasing lengths of the stable and unstable manifolds shown, and 

the figure should be read in clockwise fashion. The purpose of this figure is to introduce 

the reader to a typical homoclinic tangle, and how they govern trajectories in the phase 

plane. A homoclinic tangle in two dimensions, like the one shown in Fig. 5.5, can be 

computationally constructed by placing initial conditions on the appropriate eigenvectors 

passing through the hyperbolic fixed point. The stable manifold is generated by mapping 

the appropriate points backward under the map, and the unstable manifold is computed 

by mapping the appropriate points forward.

Fig. 5.5(a) shows early iterates of the two manifolds; the upper (red) curve is the 

stable manifold, and the lower (blue) blue curve is the unstable manifold. (By “early 

iterates” we mean “early backward iterates” for the stable manifold, and “early forward 

iterates” for the unstable manifold). They intersect transversely at a point labeled P0. 

Together, these segments of the manifolds enclose a region which we call the “complex” or 

“resonance zone.” More formally, the segments §  =  S^Po,^] and U =  U[zx , P0], where S  

and U are the stable and unstable manifolds, bound the complex. The physical meaning
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FIG. 5.5: Development of a homoclinic tangle. Plots courtesy of Kevin A. Mitchell.
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Symbol Meaning
S' Stable manifold -* z x from the right as t —>• oo
U Unstable manifold —» zx from the right as t —> —oo
§ S  from P0 to  zr ; part of complex boundary
U U from zx to  P0; part of complex boundary
So S’[Po,Pi); fundamental segment of S
Uo t/[P_i,Po); fundamental segment of U
S n S[Pn, Pn+1); n th iterate of S 0

Cn and En (—oo <  n <  oo) Capture and escape lobes
Pn and Qn (—oo < n < oo) Homoclinic intersections

TABLE 5.1: Notation used to describe manifold segments.

of the complex is problem-specific; for this map, the complex represents an atom, while in 

the double-barrier system, the complex represents the region between the potential-energy 

barriers. If the reader is still thinking of the time-dependent potential given by Eq. 5.1, 

the complex represents the region between the oscillating barrier and the steep “wall” of 

the potential. The complex is shaded and labeled in Fig. 5.5. Generally, we are interested 

in the amount of time (iterates of the map) it takes trajectories to escape the complex 

after entering it, and we will see th a t properties of the manifolds can be used to make 

predictions about sequences of escaping orbits. If we iterate the manifolds once more, as 

shown in Fig. 5.5(b), we see th a t additional homoclinic intersections occur. These new 

intersections are labeled P_i, Q - i ,  Q0, and P x. Points Q -i and Q 0, and also P_i, P0, P1; 

are points along two homoclinic orbits. The point Q - \  maps forward to  the point Qo, and 

M ( P - i )  =  Po, M ( P q) = P i, etc. We define the segment of the stable manifold S[Po, P i) 

as the fundamental segment of  the stable manifold, So, and the segment of the unstable 

manifold U[P-\,Po) as the fundamental segment of  the unstable manifold, Uo. Table 5.1 

lists the notation used in this chapter.

The segments of stable and unstable manifolds between two successive points of the 

homoclinic orbit along §  and U bound areas which we call “lobes.” For example, the stable 

and unstable manifold segments connecting points Q_i and Pq bound a lobe we call C0,
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which is shaded in green. By comparing Figs. 5.5(a) and (b), one can see tha t Co lies 

outside of the shaded complex. However, its forward iterate, the green lobe labeled C\, 

lies inside the complex. This is a very im portant feature of a homoclinic tangle: any orbit 

inside the lobe C0 a t a given iterate n  will be inside the lobe C\ at iterate n +  1 , i.e., a 

trajectory enters the complex by being m apped from lobe to Co to C \ . In the present case, 

this is the only way for any orbit to  enter the complex. We again stress tha t this map is 

area-preserving, so the lobes C0 and Cj have equal areas. We use Cn to label these lobes 

because they represent the “capture” of orbits into the complex.

Another im portant series of lobes are labeled E n. In Fig. 5.5(b), the stable and 

unstable manifold segments connecting points P_x and Q -i bound a lobe denoted P _ x. 

By comparing Figs. 5.5(a) and (b), one can see th a t the lobe F _ i is inside the complex. 

However its forward iterate, the lobe labeled E0, is outside of the complex. This mapping 

represents how trajectories are mapped from inside to outside of the complex ( “escape” ); 

any trajectory in P _ x at iterate n  will be inside the complex, but will be mapped out of 

the complex (and into E q) at iterate n  + 1. In the present case, this mapping from P _ x to 

E 0 is the only way an orbit can escape the complex.

Fig. 5.5(c) shows two more forward iterates of the unstable manifold. The lobe Eq 

maps to  Ei,  which maps to E2, which maps to P3. Generally, M ( E n) = En+l. The 

im portant feature of this plot is th a t once an orbit is inside E q, all of its forward iterates 

remain outside of the complex. For tha t reason, we say th a t any orbit has escaped the 

complex perm anently once it is in E 0. (Some types of tangles do perm it “recapture,” but 

neither this example nor the one discussed in the next chapter th a t governs transport in 

the double-barrier ballistic atom pump permit any type of recapture method).

Fig. 5.5(d) shows two more backward iterates of the stable manifold. E n lobes are 

shaded in purple, and Cn lobes are shaded in green. The im portant feature of this plot 

is th a t E_ 3 maps forward to £L 2 which maps forward to E - \ .  Since the mapping from
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E _i to Eq maps orbits from inside the complex to outside of it, any trajectory in lobe E_n 

will escape the complex n  iterates later. Fig. 5.5(e) shows another backward iterate of the 

stable manifold, and the lobe E _ 4 can be seen (not labeled). Of note here is the effect of the 

map on the lobes: since the homoclinic orbit points approaching the hyperbolic fixed point 

z x are squeezed closer together with each iterate of the map, and since the map is area- 

preserving, the map stretches the lobes in order to preserve area. Fig. 5.5(f) shows another 

iterate of the stable manifold, and the lobe ELs (not labeled). There are two intersections 

between the stable manifold segment bounding lobe £ ,„ 5 and the arbitrarily-drawn line of 

initial conditions, L0, i . e . ,  a segment of L q  is inside the lobe E _ 5.  Since any trajectory in 

E _ 5 will escape the complex five iterates later, the segment of L q  in E _ 5 will escape the 

complex five iterates later. We can now see th a t if we can identify intersections between 

arbitrary lines of initial conditions L q  and E_„ lobes, we can identify when segments of L 0 

will escape. While this may seem like a laborious m ethod of identifying escape segments, 

we will see that, from a topological perspective, the existence of escape segments at some 

iterate of the map forces later escape segments to occur, and th a t these forced escape 

segments have a predicitable pattern.

Figure 5.6 (adapted from [55]) shows escape segments typical of an arbitrary line of 

initial conditions th a t is inside the complex of a homoclinic tangle. The horizontal axis, 

from left-to-right, represents increasing iterates of the map, and the vertical axis represents 

position along the line of initial conditions. Each escape segment corresponds to a portion 

of L0  th a t escapes from the complex on the nth iterate.

5.3 H om otop ic Lobe D ynam ics

Homotopic Lobe Dynamics is a topological theory based on properties of the homo

clinic tangle th a t allows one to understand and predict some of the structure of escape
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FIG. 5.6: Escape segments of an arbitrary L q inside a  typical homoclinic tangle. This 
figure is adapted from a plot th a t originally appeared in [55].

segments like those seen in Fig. 5.6. Here we give an overview of the theory.

5.3 .1  F un d am enta l S egm en ts

To begin the theory, we use the fundamental segment of the stable manifold S0, and 

select an arbitrary number of times, J ,  to iterate the fundamental unstable segment, Uo, 

forward. The choice of J  is up to the researcher, but higher J  values can lead to an 

increase in the amount of initial topological information used, which can in turn  yield 

more predicted escape segments at higher iterates.
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5.3.2  N eigh b ors

We define two homoclinic intersections, x  and x', to be “neighbors” if both of the open 

stable and unstable manifold segments connecting them, S (x ,x ' )  and U(x,x ') ,  contain no 

other homoclinic intersections. This simple definition implies th a t the open segments 

S (x ,x ' )  and U(x, x r) bound a region th a t no stable manifold or unstable manifold enters 

(if a manifold of either type entered this region, x  and x'  would not satisfy the definition 

of neighbors because the manifold segments connecting them would contain homoclinic 

intersections). This type of manifold-excluding region is a key component of HLD, as we 

will later characterize manifold segments relative to  how they wind around these manifold- 

excluding regions.

In reality, it is often impossible to  ascertain whether or not two homoclinic intersec

tions, x  and x ' , meet the definition of being neighbors to  arbitrarily high iterates of the

map. Therefore, we use the concept of “J-neighbors” .

Starting w ith the segment U =  U[zx , P0] of the unstable manifold, we then iterate the 

fundamental segment U0 forward a selected number of times, J . We will use information 

gleaned from this curve to predict aspects of future iterates. Two homoclinic intersections 

x  and x'  are said to be J-neighbors if they satisfy two conditions:

•  Up to  iterate J , both open segments U{x,x')  and S ( x , x !) connecting them  contain no 

homoclinic intersections, and

•  Both have transition number N  < J ,  where the transition number is the number of

iterates N  such th a t M N+m(z ) lies on So, when M m(z) lies on Uo-

It should be noted th a t two homoclinic intersections may meet the definition of being 

J-neighbors for J  < j ,  but are no longer J-neighbors for j  >  J . For example, a pair of ho

moclinic intersections may be 1-neighbors, 2-neighbors, 3-neighbors, but not 4-neighbors,
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5-neighbors, etc. In Fig. 5.7(a), the points P0 and Q\ are 1-neighbors, 2-neighbors, and 3- 

neighbors, but are not 4-neighbors because when J  =  4, the points a 4 and /34 intersect the 

segment S(P 0 , Q i) connecting P0 and Q\.  However, the points o 4 and /34 are themselves 

4-neighbors.

5.3 .3  H oles

As mentioned previously, all pair of neighbors are connected by open segments of the 

manifolds U(x ,x ')  and S(x ,x ' )  tha t bound a domain into which no manifold can enter. 

Similarly, each pair of J-neighbors are associated with a domain into which it appears no 

manifold can enter. A critical concept of HLD is to punch “holes” in the plane inside of 

these manifold-excluding domains. The map M  then acts as a map of these holes, just as 

it does on directed curves in the phase plane.

In the first work on this subject [56], the entire manifold-excluding domains were 

defined as holes. In later papers [67, 106, 127], the hole was represented by a point. Here 

we take the la tte r approach; each hole is represented by a point th a t is both (i) inside 

the domain bounded by U(x,x ')  and S(x ,x ' ) ,  and (ii) arbitrarily close to  either x  or x ' . 

For each hole punched next to a point x  along So, holes are also punched a t M n(x) for 

—oo < n  <  oo, leading to a sequence of holes H n =  M n(H0) in the phase plane. This 

sequence of holes approaches the hyperbolic fixed point z x in the forward direction along 

S, and approaches zx in the backward direction along U. In between, there is only a finite 

number of holes within the complex th a t are a finite distance away from S and U. We 

characterize segments of the unstable manifold using homotopy theory, according to how 

they wind around these holes.

Fig. 5.7 shows a sequence of holes for a selected qualitative rendering of a homoclinic 

tangle using J  =  4. The hyperbolic fixed point is labeled z x . The blue curve is the
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FIG. 5.7: Holes punctured in the phase plane for use in HLD in the context of a homoclinic 
tangle. See the text for additional details. This plot originally appeared in [107].

unstable manifold, and the red curve is the stable manifold. The fundamental segments 

Uo and So are the thick segments of these manifolds. The complex is shaded light blue in 

(a). Homoclinic intersections along § and U are represented by black dots. In Fig. 5.7(a), 

the homoclinic intersections a 4 and /34 are 4-neighbors. The open segments U(a 4 ,fi4) and 

S ( a 4 ,/34) connecting them  bound a domain into which it appears th a t no manifold can 

enter; this domain is shaded in purple, and is labeled H 4. Its backward iterates M n(H4) 

for n  = - 1 , - 2 , —3 ,—4, i.e., H3, H 2, Hi,  and H 0 are also labeled and shaded in purple. 

Fig. 5.7(b) shows the same information with most of the stable manifold omitted, and also 

shows M ( H 4) = H5, which is shaded in purple.

5 .3 .4  B rid ges

Here we consider directed curves in the punctured plane th a t begin and end on S =  

S[Po, zx], but do not otherwise intersect S. We say th a t two such directed curves are 

homotopic if they can be continuously distorted into each other without (i) their endpoints 

leaving §  and (ii) passing through a hole. We define a homotopy-class as a set of all paths
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homotopic to one another. The set of all homotopy-classes defines a group called the 

fundamental group. The product [A] =  [S][C] of path classes [£?] and [C ] is constructed 

by following [5] from its beginning point to end point, following § to the beginning of [C], 

and then following [C\. The inverse of a homotopy class, [C]-1 , is defined by reversing the 

direction of [C\. The identity homotopy class consists of all paths th a t can be shrunk to 

a point.

W ith these definitions, any segment of the unstable manifold beginning and ending 

on §, but not otherwise intersecting §, has a well-defined homotopy class. We call such 

segments bridges. The reader may think of each bridge within the context of a homoclinic 

tangle as one of the two boundaries of a lobe. It should be noted th a t segments of S  can 

intersect bridges (see Fig. 5.7(a)); the restriction on intersections between bridges and S  

only applies to the segment S. After iterating (70 forward J  times, identifying J-neighbors, 

and puncturing and mapping holes in the phase plane, the next step is to characterize 

how each bridge of the unstable manifold winds around these holes. Each bridge inherits 

the direction of U . We say a bridge “surrounds” a hole if the hole lies within the area 

bounded by the bridge and the segment of S connecting the bridge’s endpoints. If a bridge 

surrounds a hole, its forward iterate must surround the forward iterate of tha t hole, and 

the bridge’s endpoints must map closer to the hyperbolic fixed point along S.

Each bridge class of the unstable manifold is given a symbol, e.g., ci. Fig. 5.7 shows 

the symbols given to specific bridges (in script italics). Since the bridge class c\ surrounds 

hole Hi and A /( //1) =  H 2) the forward mapping of cx surrounds H 2, and its endpoints 

lie closer to  z x  along S than  the  endpoints of ci. In the figure, the M (ci) =  c2 and 

M (c2) =  C 3 . Since C 3  surrounds the hole I I 3 , the forward mapping of C3  must surround the 

forward mapping of / / 3.

Something new happens in the forward mapping of C 3 . Since a portion of the bridge 

class C3 is inside the lobe F L i, a segment of the forward mapping of c3 lies inside lobe E0.
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which is outside of the complex. Therefore M(c3) must intersect S in two places in addition 

to its endpoints. When this occurs, the forward mapping of c3 forms three distinct bridges. 

In the diagram, these bridges are labeled Fa, Z a, and F , and we say th a t M{c3) = FaZaF  

(we follow the direction of the curve by reading left-to-right). Fig. 5.7(b) shows the forward 

mapping of FaZ aF,  which is M ( F aZaF ) = Fj,ZbGf,Z'aGaZ cFc. This curve’s endpoints lie 

closer to  the hyperbolic fixed point zx along S than  its previous iterate, but must enter the 

lobe Ei  without intersecting any portion of the unstable manifold. As can be seen in the 

plot, the only way for it to  do th a t is to  go “around” its previous iterate (FaZaF ) by first 

remaining below it inside the complex, entering the lobe F 0, re-entering the complex, and 

entering lobe E\.  It m ust traverse a similar path  (in opposite direction) in order for its 

final endpoint to  lie to closer to z x . This stretching and folding of the unstable manifold 

is an im portant aspect of any homoclinic tangle, and is characteristic of chaotic systems.

Let us now simplify the  notation from the preceding paragraph. Fig. 5.7 shows th a t the 

bridges F  and F c can be continuously distorted into one another w ithout their endpoints 

leaving § or passing through a hole, and they are homotopic to  one another. We use 

the symbol /  =  F  for this homotopy class. The bridges Fa and Ft, can be distorted into 

F  or Fc if their orientation is reversed, so they are represented as / -1 . (Note th a t the 

direction of /  goes from left-to-right in the plot). We also see th a t G& is homotopic to  c ,, 

and we use the symbol Ci for this homotopy class. Ga is thus represented cj"1 because it 

has the opposite direction than cj. Finally, the bridges Z a and Z c are homotopic to  one 

another, and the bridge Zb is their homotopic inverse. Let us denote this homotopy class 

a s u 0 =  Zb, so Z a and Zc are thus represented by l . The advantage of using homotopy 

classes instead of individual bridges should be obvious: one has to keep track of fewer 

symbols, and all segments homotopic to  one another evolve in a topologically-equivalent 

m anner under the map.
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5 .3 .5  S ym b olic  D yn am ics

Since all bridge classes are represented by a symbol, the development of the homo

clinic tangle can be represented by a dynamics on the symbols. The resulting symbolic 

dynamics reveals the structure of the homoclinic tangle that is forced to occur by the 

initial topological information used, i.e., the number of holes punched in the plane. The 

dynamics discussed in the previous chapter can be represented in compact form via

•  M (c i) =  c2,

•  M ( c2 ) =  c3,

•  M  (c3) =

•  M ( f )  = c^ U q1/ ,

•  M ( u n) un~i-i-

The most im portant of this symbolic dynamics is th a t the symbol u0 (and its inverse % 1) 

represents a segment of the unstable manifold th a t escapes at the given iterate. If we take 

a section of the unstable manifold and use it as a line of initial conditions, we can use this 

symbolic dynamics to  determine how many escape segments are forced to occur at each 

iterate of the map. To see how, let us use the segment U\ =  M (U 0) as a line of initial 

conditions. The curve L 0 = U\ is L 0 = M(C/[F_i, F0)) =  U[P0, Pi). By examining Fig. 5.7, 

we see th a t L0 = Ui can be expressed in terms of bridge classes as L 0 = Ui =  u0 Ci. We 

can iterate this curve symbolically an arbitrary number of times by iterating each symbol 

according to the dynamics above; the first few iterates are

•  L q =  U q C i

•  L i =  u i c 2
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• L 2 = u2 c3

•  L 3 = u3/ _1Wo V

• L 4 = u4/ _ 1w0c i« r 1c]'1Wo V

and so on. The uq in L q means th a t a portion of the initial condition line is already outside 

the complex. The forward iterate of this portion outside of the complex appears as uj in 

L\.  Generally, the symbols u*. and u f l in L n represent segments th a t escape at the n  — k 

iterate. The appearance of Uq 1 in L3 means th a t a new escape segment is forced to occur 

at the third iterate. L4 has a uq symbol th a t appears between the u4 and symbols 

(i.e., between the segments th a t escaped at the zero and third iterates). In this fashion, 

we see th a t the symbolic dynamics predicts the relative order of escape segments along L q 

as well as the number forced to  occur a t each iterate. We also see th a t L 4 has a u0 l after 

u f 1, so there are two new escape segments at the fourth iterate.

For arbitrary  lines of initial conditions tha t begin and end on S, and which do not pass 

through a hole, a minimal set of topologically-forced escape segments can be predicted via 

the symbolic dynamics above. The steps for doing so are: (i) compute the forward mapping 

of Uq J  times, (ii) identify all pairs of J-neighbors, (iii) punch holes in the phase plane 

where appropriate, and map the holes accordingly, (iv) identify all bridge classes of the 

unstable manifold and assign each class a symbol, (v) determine the symbolic dynamics of 

the map on the bridge classes (vi) decompose the line of initial conditions L 0 and express 

it as a product of bridge classes, and (vii) symbolically iterate L q an arbitrary number of 

times.
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5 .3 .6  E p istrop h es

We state  here without proof part of an im portant theorem which arises due to the 

stretching of manifolds by the map in the phase plane. For a detailed proof of this theorem, 

see [55] . This theorem assumes tha t the map M  has all of the following properties:

•  The map M  is an analytic area- and orientation-preserving diffeomorphism of an open 

subset of the phase plane,

•  The map M  has an unstable fixed point z x ,

•  One branch of each of the stable and unstable manifolds goes to  infiinity without inter

secting any other stable or unstable manifold, and one branch of the stable and unstable 

manifolds intersect each other transversely,

•  In the initial development of the tangle, the stable and unstable manifolds intersect 

only once between P0 and Pi,

•  All trajectories, once inside the lobe Eq, are mapped forward away from the complex 

(i.e., are not “recaptured” ).

The map M  discussed in this section meets all of these criteria, and the following theorem 

is therefore applicable. When these criteria are met, the following theorem is true.

Epistrophe Theorem

Let zs be any transverse intersection between S  and a differentiable curve of initial 

conditions L 0. For each A: >  0 choose the escape segment e* fl L0 n  P _ fc closest to zs, as 

measured along L0. Then there is some k0 such th a t for all k > k0, an escape segment e*, 

exists and these segments e*, converge monotonically upon z 8, (i.e., the distance between 

zs and efc decreases monotonically).
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This theorem tells us th a t an infinite sequence of escape segments converges to  each 

endpoint of every escape segment; we call these sequences epistrophes. Furthermore [55] 

also proves th a t these infinite sequences decrease geometrically in the asymptotic limit, and 

th a t different epistrophes differ from one another by an overall scale factor. Epistrophes are 

a direct consequence of the manner in which this type of map M  stretches the manifolds; 

it tells us how the F_fc lobes are stretched. Since intersections between E-k  lobes and L q 

escape the complex k  iterates later, this information thus yields the structure of escape 

segments.

Epistrophes have several im portant properties: (i) beginning a t a certain iterate, 

each epistrophe has one escape segment at all later iterates, (ii) each epistrophe converges 

to a point on L0, (iii) within any epistrophe, the lengths of escape segments at higher 

iterates decrease geometrically, and the ratio of successive lengths converges to the largest 

eigenvalue of the unstable fixed point z x (the Liapunov factor).

Figure 5.8 shows the same escape-time plot seen in Fig. 5.6, and several prominent 

epistrophes are denoted by red arrows. The “tail” of each epistrophe (moving toward the 

right part of the plot) can be seen to  converge upon the endpoint of an escape segment tha t 

escaped at an earlier iterate. Thus, the Epistrophe Theorem implies a type of self-similarity 

in escape-time plots.

On the other hand, the beginning of each epistrophe is not described by the Epistro

phe Theorem. HLD predicts a minimal set of escape segments forced by the amount of 

initial topological information, and the Epistrophe Theorem thus tells us how epistrophes 

converge upon the ends of these predicted escape segments. In computations, however, es

cape segments which are not forced to  occur by the initial topological information used in 

HLD always appear. We call these unpredicted escape segments “strophes.” Several stro

phes are labeled with green asterisks in Fig. 5.8. While the Epistrophe Theorem predicts 

a type of self-similar structure in escape time plots, the emergence of strophes tends to
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FIG. 5.8: Escape segments of an arbitrary L0 inside a typical homoclinic tangle, with 
epistrophes and strophes labeled. Epistrophes are denoted by arrows, and strophes are 
denoted by asterisks. This figure is adapted from a plot th a t originally appeared in [55].

disrupt this self-similarity. Furthermore, at high iterates of the map, computations show 

th a t strophes dominate escape-time plots. In this sense, HLD gives information about 

“intermediate-time” behavior of chaotic trajectories, rather than their long-time behavior.

In the next chapter, we turn  our attention to using these m athem atical techniques on 

the phase plane of the double-barrier ballistic atom pump.
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C H A P T E R  6 

HLD for a Full Scattering  P rob lem  

w ith  a H eteroclin ic Tangle

The previous chapter gave an overview of a previously-developed topological method 

(homotopic lobe dynamics) for describing the structure of escape-time graphs. From com

putations of early iterates of the map, we extract essential topological information, express 

th a t information as a set of symbols, and construct an algebraic map on those symbols 

th a t describes the topological structure of forward iterates of the line of initial conditions. 

T hat symbolic dynamics predicts a  minimal topologically-required set of escape segments 

th a t must occur in all future iterates.

The purpose of this chapter is to  move this topological theory forward with a different 

type of example. A significant difference in previous studies and this work is th a t most 

previous work involved homoclinic tangles, while the present work involves a heteroclinic 

tangle. (A different heteroclinic tangle, and nested tangles, were also studied in [106, 128]). 

As a result, the algebra is more complex. The most im portant difference is th a t we are 

here considering a full scattering problem, in which particles come in from infinite distance
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and eventually recede to infinite distance. (Our earlier studies of escape could be regarded 

as “half-scattering” problems.) The full scattering problem brings in several new elements 

to the theory tha t were not present in the previous papers.

Generalizing and extending homotopic lobe dynamics (HLD) for use with full scat

tering systems has many purposes. In a ballistic atom  pump, the prim ary goal is to 

calculate the net flow of particles th a t approach the barriers from both sides, and HLD 

allows one to use stable manifolds to  place lower bounds on the number of particles which 

are transm itted  or reflected by the barriers for all incoming energies (this is much faster 

than computing all trajectories). In this chapter, HLD is primarily used to  explain the 

fractal structure seen in escape-time graphs. In other contexts, HLD can also be used to 

find a minimal set of closed or periodic orbits [63, 128] in order to carry out semiclassical 

sums, to calculate topological entropy [67, 6 6 , 106] (a measure of the complexity of the 

dynamics), and to partition mixed phase spaces [127].

The system we study here is the double-barrier ballistic atom pump, which has the 

Hamiltonian

H (x ,p )  = ^  + V (x , t ) ,  (6.1)

where

V ( x , t )  = U0 (l  + a  cos (uot)) e_^ +x  ̂ ^2<t2

<6'2)
+ UQ{1 + a  cos (cut + <f>))e ^  d / 2<r2

This potential energy V (x , t) has two repulsive Gaussian barriers centered at they 

have the same average height U0, they oscillate with the same am plitude a  and frequency 

u,  but they are 4> =  w/2  out of phase with each other. The choice of phase difference (f) is 

arbitrary.

The structure of this chapter is as follows. In Section 6.1 we select particular pa



116

rameters for our pump, and we define and compute the escape time graph, and display 

its fractal structure. In Section 6.2 we sketch the topological theory, with emphasis on 

the new elements th a t have to be examined. Then in Section 6.3 we show the results, 

and compare them with the computations. The rest of the chapter fills in the details of 

homotopic lobe dynamics for this full scattering problem.

6.1 C om putation  o f E scape T im es

We consider sets of particles approaching the barriers from far away. In the regions far 

from the barriers, V (x , t) ~  0 , so particles effectively travel through them  as free particles. 

As particles approach the oscillating barriers, some of them  may not have enough energy 

to transm it past the first barrier, and are directly reflected. Some particles may have 

enough energy to transm it past both  barriers, which we call direct transmission. Other 

particles may transm it past the first barrier, but not have enough energy to transm it past 

the second barrier. In this case, particles may spend a considerable amount of time in 

between the barriers, reflecting back and forth from one barrier to the other, before finally 

reaching the left or right barriers with an appropriate energy and phase to get over the 

barrier and be transm itted to  the right or reflected to  the left.

We choose system param eters U0 = 1, a  = 0.5, u  = 2ir/3, x  = 3, a — 1 , and =  t t / 2 . 

The separation from the center of one repulsive barrier to  the other is 2x =  6 er, so the 

effect of overlap between the two is negligible. We examine initial conditions such tha t 

all particles begin to the left of the barriers with the same initial momentum, p0 ~  1.50, 

but with variable initial position, —20.9 <  :r0 <  —16.4. It is sufficient to analyze a line 

segment of length A x0 =  p027r/muj, which is the distance each particle travels during the 

first cycle of the oscillating barriers. The methods we use naturally extend to any other 

set of barrier parameters, initial positions, and initial momenta.
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We numerically integrate the classical equations of motion for the particles to obtain 

x(t)  and p(t). We monitor x(t), and define a particle’s escape time as the amount of time 

required for the particle to escape the barrier region. Specifically, we say th a t a particle 

has escaped to the left if it passes through a line located at x(t) =  —x  — 7  with negative 

momentum, and th a t a particle has escaped to the right if it passes through x(t)  =  x  + 7  

with positive momentum, where 7  =  2  x 1 0 ~7.

Figs. 6.1(a) and (b) show continuous escape times (smooth curves) as a function of ini

tial position for particles temporarily trapped between the barriers. In this example, only 

a portion of the initial-condition line becomes tem porarily trapped in this region; another 

portion directly reflects from the left barrier, and another portion directly transm its past 

both barriers. Dotted curves (red) represent particles th a t escaped to  the left, and solid 

curves (blue) represent particles th a t escaped to the right. Also shown are discrete escape 

times (horizontal lines), which will be discussed later in the chapter. The continuous and 

discrete escape times are plotted relative to a specific time, which is discussed later in the 

chapter.

Fractal behavior is evident in these plots. Fig. 6.1(b) is a zoom of a  small region of 

Fig. 6.1(a). We see the same structure of icicles, but with escape times shifted upward by a 

time equal to one period of the potential. We see th a t the  same pattern  of escape segments 

occurs on different scales, and th a t it begins a t different times in different regions. This 

type of structure is repeatedly observed when examining even smaller sections of initial 

position. We also see an additional type of self-similar structure, called an “epistrophe.” 

An epistrophe is an infinite sequence of escape segments th a t converges on the edge of an 

escape segment [55, 56]. Every edge of every escape segment has an epistrophe converging 

upon it.
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FIG. 6.1: Escape-time plot for trajectories escaping the heteroclinic tangle in the double
barrier system. Continuous (smooth curves) and discrete (horizontal lines) escape times as 
a function of initial position for particles temporarily trapped between the barriers. The 
dotted curves (red) represent particles tha t escaped to  the left, and solid curves (blue) 
represent particles th a t escaped to  the right, (b) is a zoom of the section of (a) between 
the left edge and the dashed black line, as denoted by the arrows.
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6.2 Topological A nalysis — Sketch o f th e  T heory

The purpose of the topological analysis is to provide an interpretation of the structures 

seen in the escape-time plots. The methods are similar to those used in earlier work and 

the example discussed in the previous chapter. In this section we give only a brief sketch 

of the theory, pointing out the im portant differences from the systems studied previously 

and the previous example, and we show the result in Section 6.3. In later sections we fill 

in all the details.

First, a surface of section (SOS) must be defined. We strobe the continuous motion 

once per cycle of the pump, and record (x , p ). The SOS has two unstable fixed points, 

corresponding to  particles riding up and down on top of the barriers. The stable and 

unstable manifolds of these fixed points create a heteroclinic tangle. In much of the 

earlier work and the previous example, there was only one fixed point, giving a homoclinic 

tangle. Figure 6.2 shows a homoclinic tangle (left) and a heteroclinic tangle (right). The 

homoclinic tangle has only one hyperbolic fixed point, while the heteroclinic tangle has 

two. While the homoclinic tangle consists of one stable and one unstable manifold, the 

heteroclinic tangle consists of two stable manifolds and two unstable manifolds. Both 

structures have an inner stable region consisting of many stable orbits of arbitrary period. 

In addition, both structures enclose many unstable periodic orbits of arbitrary period. 

The present chapter is the first application of homotopic lobe dynamics to a heteroclinic 

tangle for a full scattering system, in which particles come in from an infinite distance. 

These types of initial conditions, along with the additional fixed point, make this problem 

somewhat more complex than previous ones.

In previous work, we were studying escape from a complex, sometimes called a half

scattering process. Here we have a full scattering process, in which particles come in from 

infinite distances. We have to specify an appropriate line of initial conditions, /0, which
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FIG. 6.2: A homoclinic tangle (left) and a heteroclinic tangle (right). The homoclinic tan
gle originally appeared in [55]. A heteroclinic tangle governs transport in the double-barrier 
ballistic atom pump (this tangle was computed for a selected set of barrier parameters).

models distributions of particles approaching the barriers from infinite distances. This is a 

line segment of fixed momentum p0 having length equal to  A x0 =  poT/m ,  where T  = 2ir/u; 

is the cycle time of the potential. We need to choose the endpoints of this line segment in 

an appropriate manner. The most convenient choice depends upon the value of the initial 

momentum, p0-

We have to map th a t line segment forward a sufficient number of times such tha t 

particles have first arrived in the pump. We need to define precisely the meaning of tha t 

statem ent. The resulting curve on the SOS is called L0.

We also need to  compute the structure of the heteroclinic tangle, which is made up 

of two stable manifolds and two unstable manifolds of the two unstable fixed points. We 

need to  define certain “fundamental segments” of these manifolds, and we need to map the 

fundamental segments of the unstable manifolds forward some selected number of times, 

J.

The next step is to  define certain holes in the plane, which correspond to regions into 

which stable and unstable manifolds do not enter. The definition of holes given in earlier
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work is not the optimal choice for the present work, and we give a modified definition of 

the holes.

Then we define bridges, which are usually segments of unstable manifolds. Here we 

find tha t to  give a topological description of Lo, we need to create additional bridges; these 

are curve segments in the SOS th a t are not segments of any unstable manifold.

Next, the homotopy class of each bridge is defined and named. The homotopy class 

of a bridge is the family of all curve segments th a t is made by smoothly distorting the 

bridge, with the restrictions th a t the endpoints do not change, and the distortion does not 

cause the bridge to pass through a hole. Homotopy classes are defined by how the bridges 

wind around the holes.

The names or symbols of the homotopy classes are used to create a symbolic dynamics. 

Evolution of each trajectory  induces a  mapping of each point in the plane, which therefore 

induces a mapping of curve segments, which induces a mapping of the homotopy classes 

of those curve segments, and this is expressed as a mapping or algebra of the symbols.

This whole process is carried out in Section 6.4. Here we present the result. For our 

chosen set of system param eters and lo, we find ten homotopy classes. Their symbols and
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the mapping of those symbols are given by

M « ) = u n+l

M {ubn) =  u n+l

M{c\) = 4

M(cb) =  4

M (4 ) =  f tb( 4 r H f tb)

M ( 4 ) =  . m r ' ( / “ )

M ( f tb) =  f tbub0 cb

M ( f bt) = f btu &

M ( S l l ) = S ll

M ( S l t ) = S lt c [uo

The next step (also given in Section 6.4) is to  ascertain the topological structure of 

L q relative to the holes in the plane, and express it as a product of those symbols. In our 

case we find

Lo = ■ (6.4)

Now the symbolic dynamics is complete. We construct an algebraic representation for 

each iterate of L 0, denoted Ln, by mapping each symbol in Eq. (6.4) using the symbolic
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representation given by Eq. (6.3). The first few iterates are:

(6.7)

To =  S l l S l t ( c \ ) 1( S l t )  1 (6.5)

U  = S LhS LTc \ n l { c \ y \ v ^ y \ c \ y \ S LTr '  ( 6 .6)

12 = sLLsLTc\uteu\ftbut(fthy \ u \ y l 

x (4)'1(uS)-1(4)-1(5Lr)-1
13 = sLLsLTc\utQ(!iu\ftb(u ty l{ftby x 

x t4 /t6uS44(c?)“1(uS)_1(/tV

x («t2) - 1/ X ( / tb) - 1( ^ 1) - 1 

x ( 4 ) - 1(uS)"1 ( 4 ) " 1( 5 l t ) - 1

(6 .8)

The formula for L n tells us the topologically-forced structure of the escape-time plot. 

At the n th iterate, every instance of Uq or Uq (and their inverses) describes a segment of 

L n th a t escapes the complex at the n th iterate toward the left or right, respectively, and 

which will not return to  the barrier region. (Symbols representing new transm itted escape 

segments are highlighted in blue in Eqs. (6 .6 )-(6 .8 ), and symbols representing new reflected 

escape segments are highlighted in red). These escape segments are forced to occur as a 

consequence of the topological structure of Lq in relation to the holes punctured in the 

plane.

6.3 C om parison o f T opologically-P red icted  and Com 

p u ted  E scape Segm ents

We now compare topologically-predicted escape segments with those seen computa

tionally, and take note of those th a t are not predicted by the topology. Fig. 6.3 shows
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the number of iterates to escape for a directly-computed L0. To construct this graph, we 

numerically iterate a high density of points making up L0, and calculate the number of 

iterates at which each point escapes the complex. Dotted (red) horizontal segments repre

sent reflection (i.e., escape to the left of the barriers), and solid (blue) horizontal segments 

represent transmission (i.e., escape to  the right of the barriers). In Fig. 6.3(a), the dotted 

(red) segment toward the left of the graph at the first iterate is a segment of L 0 th a t is 

reflected from the left barrier and does not enter the complex. The solid (blue) segment 

in the middle at this iterate is a segment th a t is directly transm itted past both barriers 

with no reflection from the right-hand barrier, so it also does not enter the complex. Their 

escape a t the “first” iterate (rather than  at the zeroth iterate) is a convention chosen to 

agree with our algebraic method.

Subsequent escape segments of Lo have a very complicated structure. Fig. 6.3(b) 

shows the section of the initial-condition line lying between the two segments th a t escape 

at the first iterate in Fig. 6.3(a). In Fig. 6.3(b), the dotted (red) escape segment barely 

visible a t the left-most edge is the long reflected segment tha t escapes at the first iterate in 

Fig. 6.3(a); the solid (blue) segment at the right-most edge is the long transm itted segment 

th a t escapes at the first iterate in Fig. 6.3(a). The section of L0 shown in Fig. 6.3(b) is 

one of two sections th a t enters the complex. We see th a t new escape segments occur at 

every iterate, and th a t there are many reflected and transm itted segments in this region.

Figs. 6.3(b), 6.3(c), and 6.3(d) show self-similar structure at different levels of reso

lution. Fig. 6.3(c) shows a small segment of L 0 seen in Fig. 6.3(b), and Fig. 6.3(d) shows 

a small segment of L0 seen in Fig. 6.3(c). Figs. 6.3(c) and (d) show th a t similar struc

tures seen in Fig. 6.3(b) repeatedly occur in smaller sections of L0, and begin at different 

iterates. Epistrophes are also present for every edge of every escape segment. The self

similar grouping of escape segments, and their associated epistrophes, are predicted by the 

algebra.
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FIG. 6.3: Computed escape segments as a function of position along the initial-condition 
line. Solid (blue) segments represent transm ittion, and dotted  (red) segments represent 
reflection, (b) Enlarged region of (a). This segment of L0 enters the complex, and some 
segments are eventually reflected, while others are eventually transm itted, (c) Enlarged 
region of (b). (d) Enlarged region of (c), from far-left edge of (c) to  the dashed vertical 
black line.
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FIG. 6.4: Escape segments seen at the third iterate for directly-comnputed trajectories. 
Reflected segments are shown by thin red, and transm itted segments are shown in blue. 
There are a total of six new escape segments at this iterate, and both the number and the 
relative order of transm itted/reflected segments is predicted by the algebraic method.

Let us compare predicted escape segments with numerically-computed trajectories. 

We will look at the specific case of the third iterate. Our algebraic representation for L?> 

is given by Eq. (6 .8 ). Recall th a t each instance of Uq (or its inverse) represents a reflected 

segment (R), and each instance of u l0 (or its inverse) represents a transm itted segment 

(T). Going from left to  right in Eq. 6 .8 , and counting instances of ubQ and u (0 (or their 

inverses), we see tha t the symbolic representation predicts a to tal of six escape segments 

at this iterate, and th a t their sequence should be TRRRRT. Figure 6.4 shows the escape 

segments at the third iterate for directly-computed trajectories. Reflected segments are 

shown by thin curves (red), and transm itted segments are shown by thick curves (blue). 

In Fig. 6.4, we see a to tal of six escape segments at the th ird  iterate, and we see the same 

sequence of transm itted/reflected segments th a t were predicted by the algebraic method.

This agreement holds for all iterates in the following sense: a topologically-predicted 

segment must  appear in the computation. Sometimes these predicted segments are tiny, 

and they may be difficult to find in the computation, but they are always present. On the
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Iterate Predicted Computed
1 2 2

2 3 3
3 6 6

4 1 0 1 0

5 16 16
6 28 28
7 52 56

TABLE 6.1: Escape segments predicted by the level of initial topological information used 
in the example, and the number of escape segments seen in directly-computed trajectories.

other hand, computation might show additional escape segments th a t are not predicted 

topologically for the chosen value of J. In particular, at high iterates, escape segments 

th a t are not forced by the initial topological structure start to emerge. Table 6.1 shows the 

number of escape segments predicted by using J  = 3, and the number of escape segments 

seen in direct com putation of trajectories. For the first six iterates, all computed escape 

segments are predicted by the algebraic method. At the seventh iterate, however, there 

are four escape segments seen in com putation of trajectories th a t are not predicted by the 

algebraic method. This discrepancy is caused by our choice of using only a small amount of 

initial topological information (three iterates of the fundamental segments of the unstable 

manifolds). Agreement between the two methods can be extended to higher iterates by 

using more initial topological information as the basis for the symbolic representation 

[65, 6 6 ],

6.4 H om otop ic Lobe D ynam ics for a Full Scattering  

P roblem  w ith  a H eteroclin ic  Tangle

In Sec. 6.2, we sketched the topological theory, mentioning the elements th a t are 

different from past work. In this section, we give all necessary details for carrying out the
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topological analysis on this type of system.

6.4 .1  H eteroclin ic  T angle

We perform our topological analysis on a surface of section for this system. This 

surface of section is obtained by strobing trajectories a t the same phase during each cycle 

of the potential. We choose our strobe time as t =  37r / 4 ui in each cycle. The surface 

of section is a continuous map of the ( i ,  p) plane. There are two unstable fixed points, 

z£ =  (—x, 0 ) and z R =  (x, 0 ), on the surface of section, each of which corresponds to a 

particle riding up and down on the top of a barrier. The stable and unstable manifolds 

of these fixed points are the most im portant elements of the theory; as in the previous 

chapter, they define a “complex” or “resonance zone” into which approaching particles 

can be temporarily captured, and from which they later escape. In addition, depending 

on the param eters of the system, there could be stable periodic orbits of any period which 

always remain inside the complex.

The reader is encouraged to  consult Table 6.2 while studying the remainder of this 

section; this table provides a handy reference of notation used in the remainder of the 

chapter. Figure 6.5 shows segments of the eight stable and unstable manifolds for this 

system for a selected set of parameters. Together, these manifolds form a heteroclinic 

tangle. Different choices of param eters change the details of these manifolds, but leave 

essential topological properties unchanged. This type of tangle is sometimes referred to  as a 

ternary horseshoe [129]. The stable manifold S L comes from the upper-left quadrant of the 

surface of section and approaches the left-hand fixed point z R, and the unstable manifold 

UL goes from tha t point into the lower-left quadrant. Likewise, the stable manifold S R 

comes from the lower-right quadrant and approaches the fixed point z R, and the unstable 

manifold UR goes from th a t point into the upper-right quadrant.
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FIG. 6.5: Surface of section showing portions of the four stable (dotted red curves) and four 
unstable (solid blue curves) manifolds for two unstable points of the system, z£ and z^, 
for a chosen set of parameters. z£ is the unstable point a t the top of the left barrier, and 
z^ is the unstable point at the top of the right barrier. Unstable manifolds asymptotically 
approach an unstable point a s t —> —oo, and stable manifolds asymptotically approach an 
unstable point as t —> +oo. The shaded area (greenish blue) is called the “complex” or 
“resonance zone,” and is discussed in the text.
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Another unstable manifold leaves zB going toward the upper right. We call this 

manifold UT, and a segment of it, called Ur , corresponds to the left half of the top 

boundary of the complex. Similarly, a stable manifold S B approaches zB from the lower 

right, and a segment of it, called §B, makes the left half of the lower boundary of the 

complex. Likewise, UB (and its segment UB) and S T (and its segment ST) connect with 

the right-hand fixed point zB, and also define the right halves of the lower and upper 

boundaries of the complex.

UT and S T are reflections of each other about the line x =  0, and they intersect at 

a heteroclinic point Pq having (x = 0 ,p > 0 ), which we call the top prim ary intersection 

point. The segments UT and §T go from their respective fixed points to P j  . Similarly, UB 

and S B are reflections of each other through x  = 0 , and they intersect at a heteroclinic 

point which we call the bottom  prim ary intersection point, P0B, having (x =  0 ,p <  0). UB 

and §B are segments of these manifolds going from their respective fixed points to  P B.

The segments UT, §T, UB, and §B define the outer boundaries of the shaded region 

(blue) tha t we call the complex in Fig. 6.5. No stable manifold can intersect itself or any 

other stable manifold, and no unstable manifold can intersect itself or any other unstable 

manifold.

In Fig. 6.5, when the top prim ary intersection point, Pq is mapped forward one time, 

it maps to the point on § r  called P [ . The segment S t [Pq , P b ) is called the fundamental 

segment, Sq,  of S T . Note tha t it is not the entire segment §r , which extends from Pq to 

zB. When Pq is m apped backward one time, it maps to  the point P ^  on UT, and 

the fundamental segment of UT , Uq , is the segment t / r [P_i, Pq). Similarly, the bottom  

primary intersection point P B maps forward to  P B on § B, and backward to P BX on UB. 

The fundamental segment, S B, of S B is the segment 5 B[P0B, P B), and the fundamental 

segment of UB, UB, is the segment UB[PBl , P0B).

The forward mapping of Uq can be expressed as M  ( Uq =  f/7 [PZj, Pq )) = U j  =
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Symbol Meaning
S L Stable manifold from x = — oo to z R
S R Stable manifold from x  = +oo to z R
S B Stable manifold —> z R from the right as t —> oo
S T Stable manifold —> z R from the left as t —>■ oo
UL Unstable manifold from z R to  x  =  —oo
UR Unstable manifold from z R to x  =  +oo
UB Unstable manifold —» z R from the left as t —>■ —oo
UT Unstable manifold z R from the right as t —> —oo
sB S B from P B to z£; part of complex boundary
§r S T from P R to  z R\ part of complex boundary
uB UB from z R to  P B\ part of complex boundary
UT UT from z R to  P q  ; part of complex boundary
P? S B [PB, P B); fundamental segment of S B
SoT S t [ P q , P f ) ;  fundamental segment of S T
U0B UB[PB1, P B)\ fundamental segment of UB
u l UT[PTi, P q )', fundamental segment of UT
s * ~SB[PB, P B+1) ; n th iterate of S B
S T 5 T[ P j ,P j +1); n th iterate of P j
UB UB [PB_ 1 , P B); n th iterate of U B
U l U [P„I_i, P„ ) ;  n th iterate of U q

TABLE 6.2: Notation used to describe manifold segments.

Ut [Pq , P i ) ,  where M  is the symbol for the mapping. Generally, for all n, M n (Uq ) = UR, 

and M n(UB) =  UB. Each f /J  is the segment UT \P'^_l , P R), and each UB is the segment 

UB[PB_X, Pn)-  Similarly, for all n, each S B is the segment S B[PB, Pn+\)i aI1(l each S„ is 

the segment P j+1).

As Uq and Uq are mapped forward, and Sq and Sq are mapped backward, stable 

and unstable manifolds intersect each other an infinite number of times. Intersections 

occur at the collection of points P B = (P ? ^ , •••, Pq,  •••, P ^ ) and a t the collection of points 

P T ^ { P T 0 0 , . . . ,P J , . . . ,P I ) ,  on the top and bottom  boundaries of the complex, respectively. 

Both P T and P B are heteroclinic orbits, and these points are the endpoints for f/J , UB, 

S„,  and S B segments. In addition, for all n > 0, f /J  intersects Sr  exactly once between 

UT[P„_j, Pnr ), at a point we call Q R. These points can be mapped forward and backward,
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and are another heteroclinic orbit, which we call Q T = (QZ0c, • Qq ■■ • ■, Q 1̂ )■ For n  < 0, 

the points QZ lie on UT. Similarly, for all n > 0, UB intersects § B exactly once between 

U B[PB_1, P B), at a point we call Q B. These points can be mapped forward and backward, 

and are another heteroclinic orbit, which we call Q B =  (QB00, ..., Q B , QZo)- For n  < 0, 

the points Q B lie on UB.

0.5 0.5

CL 0 CL 0

-0 .5 0.5

-1 .5 -1 .5
- 4  - 3  -2 0 3 - 2 0 2 3 41 1 2 3 4 -4 1

X  X

FIG. 6 .6 : Segments of stable and unstable manifolds, (a) §T, § B, and the first two back 
iterates of Sq and S B (dotted red curves), along with UT and UB (solid blue curves). Each 
back iterate of the fundamental stable segments forms two lobes w ith either UT or UB. (b) 
UT, UB, and the first two forward iterates of Uq and UB (solid blue curves), along with §T 
and §B (dotted red curves). Each forward iterate of the unstable fundamental segments 
forms two lobes with either §T or § B. The lobes Cq and C B in (a) map from outside the 
complex to  the lobes C j  and C B, respectively, in (b), which are inside the complex. The 
lobes EZ j and E Bl in (a) map forward to  the lobes and E B, respectively, in (b), which 
are outside the complex.

As can be seen in Fig. 6 .6 , segments t / J  and SZ_j lie between P^-i  and P j ,  and 

intersect a t QZ- Similarly, each U B and P B_ j lie between P B_ j and P B, and intersect at 

QZ- These segments form the boundaries of lobes. For example, the segments of U j  and 

Sq between Pq and Q f  bound a lobe labeled C f ,  and the segments of UJ' and between 

Q j  and PjT bound another lobe called E^.  The points Pq and Q j  map forward to points
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P [  and Q f ,  respectively, and the stable and unstable manifold segments connecting them 

bound the lobe C f , which is the forward mapping of lobe C f .  Generally, the two lobes 

bounded by U f 'T and S f f f  map forward to two lobes bounded by U f f f  and S f T , and 

map backward to two lobes bounded by U f f f  and S f ' T .

The lobes are crucial for understanding the transport process. Since this system 

is Hamiltonian, the mapping is area-preserving, meaning th a t all forward and backward 

iterates of a given lobe have the same area. When the endpoints of manifold segments 

bounding a lobe are on §7’ (or § B), their forward iterates get closer together along ST (or 

SB) as n  —> oo. Consequently, the lobe’s forward iterates must stretch in order to preserve 

the same area. Similarly, when the endpoints of manifold segments bounding a lobe are 

on UT (or UB), their backward iterates get closer together along UT (or UB) as n  —> —oo, 

and again the lobes must stretch in order to  preserve the same area.

In Fig. 6 .6 , we can see tha t some lobes are inside the complex, and others are outside 

it. Two lobes, labeled C f  and C f ,  lie outside the complex, but their forward mappings, 

labeled C f  and C f ,  respectively, lie inside the complex. The areas inside C f  and C f  are 

equal (as are the areas inside C f  and Cf ) -  This means th a t any particle in the phase 

plane th a t is inside the lobe C f  at any strobe time will be inside C f  one cycle later, i.e., 

the particle will be “captured” : transported from outside the complex to within it. At the 

next cycle, the particle will be in Cf ,  etc. The same process occurs for the lobes labeled 

C f ,  C f ,  and Cf .

Another pair of im portant lobes are labeled E Tr and E f l . They are inside the complex 

but their forward iterates, labeled E f  and E f , respectively, lie outside the complex. Any 

particle in the phase plane inside either E f x or E f  j at any strobe time will be inside E f  

or E f , respectively, one cycle later, and will have “escaped,” i.e., been transported from 

within the complex to outside of it. More generally, a particle inside a lobe E f n or E f n 

will escape the complex n  cycles later. Particles inside E Tn will eventually escape to the
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right of both barriers, and particles inside E f n will escape to  the left of the barriers.

W hen Figs. 6 .6  (a) and (b) are plotted together, one can see th a t capture and escape 

lobes within the complex intersect each other in very complicated fashion (see Fig. 6 .8  (a)). 

However, they allow us to understand the transport process in the phase plane. We will 

use them  later to  develop a method for understanding the escape-time plots seen earlier.

6 .4 .2  In itia l C on d ition s

In the past, because we were studying escape, lines of initial conditions were typically 

chosen to lie in the complex. However, since we now wish to study a scattering process, 

having particles approaching from x  = ± oc  with a constant momentum p0, we take our 

line of initial conditions lo to be a horizontal line segment in phase space far away from 

the barriers, where the potential is effectively zero. We also define this line segment such 

th a t its length is A x0 =  p o T jm , where T  = 2nx/u is the cycle tim e of the barriers, and 

such th a t it has endpoints on a stable manifold. This allows us to  describe the topological 

structure of the evolution of initial-condition lines in term s of the evolution of bridges, 

which are segments of the unstable manifolds.

Let represent Iq and all its iterates. The curve cannot intersect itself. If it 

intersected itself on a particular iterate, it would intersect itself a t every iterate. However, 

by construction, Iq does not intersect itself. If one iterate in JC intersected another iterate 

in 2zf, then mapping th a t intersection backward many times, there would have to be a 

corresponding intersection on l0. However, at early times, the line of initial conditions 

represents particles of fixed momentum moving toward the barriers. No future iterate 

can intersect tha t line, because any particle reflected from the barriers (back toward the 

initial-condition line) will be traveling in the opposite direction of the initial-condition line, 

and will thus be in a different region of the phase plane.
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While l0 represents particles approaching the barriers from x  =  ± 0 0 , we will base 

our topological analysis on a selected forward-iterate of /0, called L0, th a t has one of the 

following properties. If particles approach from the left,

•  Type I: Its endpoints both lie on §r .

•  Type II: Its endpoints both lie on S L, and it intersects §T.

If particles approach from the right,

•  Type III: Its endpoints both lie on SB.

•  Type IV: Its endpoints both lie on S R, and it intersects § s .

L 0 should be chosen a t the earliest iterate of / 0 satisfying one of these conditions. In order 

for the endpoints of Lo to  lie on a stable manifold, the endpoints of its pre-iterate lo must 

also lie on the same stable manifold. Therefore, we must examine S r , S B, S L, and S R at 

many backward iterates, far from the barriers, when constructing lo

in the rest of this chapter, we consider only particles approaching from the left, though 

the topological analysis is analogous for particles approaching from the right. Fig. 6.7 

shows S L (lowermost solid curve; black), S T (uppermost solid curve; red) and S B (dotted 

curve; purple) at many backward iterates in a region far to the left of both barriers. S R 

cannot enter this region (see Fig. 6.5). The qualitative properties of the scattering depend 

upon the initial momentum; specifically, on whether l0  lies in Region I, II, III or IV. These 

regions are determined according to maxima and minima of S T and S L.

If the initial momentum is large, so th a t l0 is in Region I (above the max of S T in 

this region), will never intersect a stable manifold. Since it begins above S T, it will be 

directly transm itted  past both barriers w ithout entering the complex.

If the initial momentum is such th a t l0 is in Region II (below the max of S T and 

above the max of S L in this region), a portion of will be directly transm itted past both
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FIG. 6.7: An appropriate initial-condition line for the full scattering problem. Backward 
iterates of S 7  (uppermost red curve), S B (dotted purple curve), and S L (lowermost curve; 
blank) in a region far to  the left of the barriers, where the potential is effectively zero, 
for a chosen set of parameters. Initial-condition lines in the Regions labeled I-IV scatter 
from the barriers with qualitatively different behavior, which is discussed in the text. Also 
shown is an example l0 (horizontal green segment), constructed with the rules discussed 
in the text, which has an initial momentum corresponding to Region III.

barriers w ithout entering the complex, and another portion of Jz? will enter the complex. 

The segments th a t lie above S T in this region will be directly transm itted, and those that 

lie below S T will enter the complex. Portions of segments entering the complex can be 

either reflected or transm itted. The endpoints of lo should be placed on the uppermost 

segments of S T in this region, so tha t it will evolve into a Type I L0.

For initial momentum such th a t lo lies in Region III (between the min and max of 

S L in this region), portions of Jz? can be directly transm itted or directly reflected without 

entering the complex, and portions can enter the complex. The endpoints of lo should be 

placed on S L, so th a t it will evolve into a Type II L q. An example lQ (horizontal curve;
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green) is shown for p0 ~  1.50 in Fig. 6.7, with its endpoints on S L.

If the initial momentum is small, so th a t lo lies in Region IV, will never intersect 

a stable manifold, cannot enter the complex, and will be directly reflected.

For initial momenta in Regions II and III, intersections between l0 and any stable 

manifold will map to an unstable point. Our use of initial-condition lines with width 

A x 0 — po2n/mu  ensures tha t both endpoints of lo lie on the same stable manifold. Similar 

analysis for lo lines representing particles approaching from the right would allow us to 

construct L0 of Types III and IV.

6 .4 .3  H om otop ic  L obe D ynam ics: O verview

Stable and unstable manifolds forming a heteroclinic tangle intersect each other an 

infinite number of times. Since stable manifolds cannot intersect themselves or any other 

stable manifold, and unstable manifolds cannot intersect themselves or any other unstable 

manifold, segments of stable and unstable manifolds connecting a pair of intersection points 

can create domains which no stable or unstable manifold can enter. These domains are part 

of the structure of the heteroclinic tangle, and are a main component of the topological 

analysis.

Another im portant aspect is tha t, as initial-condition lines evolve, they follow and 

approach unstable manifolds in the chaotic regions of the phase plane. For this reason, 

we topologically analyze the evolution of unstable manifolds, which we then relate to  the 

evolution of initial-condition lines. Rather than analyze the entirety of each unstable 

manifold a t once, we instead analyze how segments of unstable manifolds evolve. These 

segments are classified according to  how they wind around the domains tha t manifolds 

cannot enter.

We then develop a symbolic algebra describing how the unstable manifold segments
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evolve. The initial topological structure of the unstable manifold segments in relation to 

the manifold-excluding domains forces a minimal topological structure at later times. The 

algebra predicts this structure, and tells us both the minimum number and relative order 

(along L 0) of new escape segments at each forward iterate. One chooses the amount of 

topological information (i.e., the length of the stable and unstable manifolds) to  use for 

the basis of analysis. Using more initial information may allow additional structure to  be 

predicted at later times.

6 .4 .4  F undam ental S egm en ts

To set up the topological theory, we map the fundamental segments C/B and Uq 

forward J  times. As stated  earlier, choosing a higher J  may provide additional topological 

information, which in tu rn  may allow additional escape segments to be predicted at later 

times. The solid blue curves in Fig. 6 .8 (a) show U j  and t / B mapped forward J  =  3 times, 

and Ur  and UB. The dotted curves (red) show S q and Sq mapped backward J  =  3 times, 

along with Sr  and §B, for our selected set of parameters. The back-iterates of Sq and Sq 

shown in Fig. 6 .8 (a) are not needed for the topological method, but are shown to help the 

reader visualize the heteroclinic tangle.

6 .4 .5  J -neighb ors

We must find domains th a t manifolds cannot enter. Each domain of this type is 

bounded by a stable manifold segment and an unstable manifold segment tha t intersect 

a t two points. A pair of intersection points are called neighbors if both the stable and 

unstable manifold segments connecting them  contain no other intersections with any stable 

or unstable manifolds. In practice, it is difficult to determine whether a pair of intersection 

points are neighbors; they may appear to  be neighbors at some iterate J , but at some other
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iterate J' > J ,  previously-unseen intersections may be revealed.

For this reason, we work with J-neighbors, which depend on the number of iterates, 

J , used for the topological analysis. To define them, we must define the transition number 

N  of an intersection z, which is the number of iterates N  such th a t M N+m(z) lies on either 

S q or S q , when M m(z) lies on either Uq or Uq .

Two intersection points are J-neighbors if i.) they both have transition number N  < 

J ,  and ii.) the stable and unstable manifold segments connecting them  contain no other 

intersection points with transition number N  < J.

An efficient method for finding J-neighbors for the chosen J  is to iterate the funda

mental unstable manifold segments Uq and Uq forward J  times and examine heteroclinic 

intersections along S q and S q . Only adjacent pairs of heteroclinic points along S q and S q 

can possibly be J-neighbors. Furthermore, any intersection between A/fc(t/0r ) or M k (Uq ) 

and Sq or Sq has transition number N  = k. The J-neighbors found in this fashion can 

be mapped forward and backward to find all other pairs of J-neighbors for the chosen J.

Since the stable and unstable manifold segments connecting a pair of neighbors have 

no other intersection points, they bound a domain in the phase plane th a t no manifold can 

enter. The topological theory describes the evolution of unstable manifolds in relation to 

these manifold-excluding domains. One may think of J-neighbors as pairs of intersection 

points th a t appear to be neighbors through the chosen iterate J ,  i.e., the stable and 

unstable manifold segments connecting them bound a domain for which it appears th a t no 

manifold can enter. We use these manifold-excluding domains in the topological theory.

6 .4 .6  H oles

To describe the topological structure of curves, we need to punch holes in the plane and 

specify how the curves go around the holes. In the past, we used two different definitions



140

1.5

- 0.1

0.5 - 0.2
a.

a.
- 0.3

- 0.5
- 0.4

- 0.5- 1.5
2 2.1 2.2  2.3 2.4  2.5  2.6  2.7 2.8  2.9-2 4

X

FIG. 6 .8 : Holes and subholes, (a) Unstable manifolds (blue) iterated forward J  =  3 times, 
and stable manifolds (dotted red curves) iterated backwards J  = 3 times. The uppermost 
solid curve (green) is L0. (b) Zoom of a domain-hole from (a). The shaded regions (yellow 
and pink) combined constitute the domain-hole, into which no S  or U can enter. In [107], 
we shrunk such domain-holes to  point-holes such th a t the point was inside the domain, 
but arbitrarily close to  one of the two heteroclinic points on the boundary of the domain 
(large black dots). In this chapter, we use a different choice of point-hole: either of the 
points marked by a *, which is inside the subhole (yellow), and arbitrarily close to one of 
the J-subneighbors (large green dots).

of holes. In the first paper [56], a hole was a domain of the plane into which iterates of 

stable and unstable manifolds could not enter. In a later paper [67], holes were represented 

as carefully-selected points within the previously-used domains. In this chapter we find it 

best to shrink the domain-holes to a different set of point-holes.

Fig. 6 .8 (a) shows L0, UT, HJB, §T, § ° , the first three forward iterates of Uq and Uq , 

and the first three back-iterates of S q and S q . Domain-holes are shaded, and no forward 

or backward iterate of S T, S B, UB, or UT enters these domain-holes for the chosen J. 

Fig. 6 .8 (b) shows a zoom of one domain-hole (shaded region; yellow and pink), and a 

portion of . It can and does enter the domain-hole. The uppermost solid curve (green) 

which enters the domain-hole is L \ , and the two solid curves below it (orange) which
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enter the domain-hole are portions of L 2■ Computations have shown th a t this commonly 

occurs for appropriately-constructed L0. In this system, each time a portion of Jz? enters 

a domain-hole, it will be closer to the unstable manifold bounding the domain-hole than 

the last time it entered, because points and curves are mapped forward toward and along 

unstable manifolds.

Each domain-hole is associated with a pair of J-neighbors. The boundary of the 

domain-hole is made up of a segment of an unstable manifold connecting the J-neighbors, 

and a segment of a stable manifold connecting them. In the past, each domain-hole was 

shrunk to a point and “moved” arbitrarily close to  one of the J-neighbors associated with 

it, while remaining in the domain of the original domain-hole. Point-holes were then 

mapped forward and backward to  represent domain-holes in the plane. Since we described 

the evolution of the manifolds (and lines of initial conditions) in term s of how they wound 

around domain-holes, using a point-hole to represent a  domain-hole was sufficient, because 

a point-hole is within the domain of the domain-hole.

However, for this system, this method results in loss of im portant information; see 

Fig. 6 .8 (b). If we use a point-hole tha t is arbitrarily close to one of the J-neighbors (large 

black dots), we see th a t the segments of Jzf no longer wind around the point-hole in the 

same fashion as the unstable manifold segment which they approach. Since we want to 

describe the evolution of L0 in terms of the way unstable manifold segments evolve in 

relation to point-holes, we must develop a m ethod for selecting a point-hole such tha t 

both and the unstable manifold it approaches wind around the point-hole in the same 

fashion.

In the present case we see th a t Jzf enters the domain-hole. The uppermost solid 

curve (green) which enters the domain-hole in Fig. 6 .8 (b) is L\.  All forward iterates of L\ 

th a t enter this domain-hole lie in the pink region, between L\ and the unstable manifold 

segment bounding the domain-hole, and not in the yellow region. This occurs because



142

Jzf approaches the unstable manifold; L2, which passes through the domain-hole twice, is 

the solid curve (orange) passing through the pink portion of the domain-hole. Therefore 

we may call the yellow region a subhole. In this chapter we define new point-holes by 

shrinking the yellow subdomain to either one of the points marked ★ inside the subdomain, 

but arbitrarily close to  one of the intersections of L\ with S B (large green dots). L\ then 

goes around th a t hole, subsequent iterates of L\  also go around it, and they must also go 

around iterates of th a t hole.

When a subhole is formed, there are two intersections between L n and the stable man

ifold. Let us call these intersections J-subneighbors. The J-subneighbors are connected 

by two curves: a segment of L n, and a segment of the stable manifold.

W ith these ideas, we can use the following framework to  determine placement of point- 

holes. We first compute the L$ we wish to examine. We next determine all iterates of Uq 

and UB up to  some iterate J . We then determine all pairs of J-neighbors th a t lie on 6 'q and 

S B. We map each pair of J-neighbors forward J  — k  times, and backward k  times, where k 

is the transition number of the J-neighbors. We then see if J-subneighbors (intersections 

between L q and stable manifold segments connecting J-neighbors) are present. If no J - 

subneighbors are present, we puncture a point-hole in the plane inside the domain-hole 

along S q and S B and arbitrarily close to one of the J-neighbors. We then map this 

point-hole forward J  — k  times, and backward k  times.

If J-subneighbors exist between any pair of J-neighbors (or their iterates), a subhole 

is formed. If there is only one pair of J-subneighbors between a pair of J-neighbors, we 

puncture a point-hole in the plane within the subhole, and arbitrarily close to either J -  

subneighbor. We then map this point-hole forward and backward the appropriate number 

of times.

Puncturing point-holes in the phase plane th a t are developed in this fashion allows us 

to describe the topological evolution of initial-condition lines to  the same level of accuracy
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as previous methods.

6 .4 .7  B rid ges

Bridges are curves th a t have endpoints on § r  or S B, but do not otherwise intersect 

either of them. In past cases, each of these curves was a segment of an unstable manifold 

th a t was part of the boundary of a lobe. S L and S T may intersect bridges, but only if 

the segment intersecting the bridge is not part of §T or § B. Bridges can begin and end on 

§r , begin and end on § B, or have one endpoint on §T and the other on § B. Bridges are 

directed curves, and have the direction of the local unstable manifold. If a curve is not a 

segment of an unstable manifold, we choose its direction arbitrarily.

Homotopic Lobe Dynamics describes the topological evolution of bridges, i.e. the way 

they wind around the punctured point-holes in the plane. After puncturing all point-holes 

in the plane, we classify each bridge formed from iterating Uq and UB forward J  times 

according to  its topological properties: i.) which stable manifold(s) its endpoints lie on, 

and ii.) which point-hole(s) it surrounds (if any).

Figure 6.9 shows Uq and U B and their first J  =  3 forward iterates (solid curves; 

blue), along w ith §T , SB, and S L (dotted curves; red), and the punctured point-holes for 

a given set of parameters. Two bridges are said to be homotopic to  one another if one can 

be continuously distorted into the other w ithout passing through a point-hole, or having 

its endpoints leave the stable manifold(s). A family of bridges th a t are homotopic to each 

other is a “homotopy class.” In Fig. 6.9, there are three bridges below the label f tb that 

i.) have one endpoint on §T and one on § B, ii.) pass under the point-hole H T\ , and iii.) 

pass above the point-hole HTq- Each of these bridges can be continuously distorted into 

the others, are therefore homotopic to each other, and are elements of the same homotopy 

class.
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FIG. 6.9: U7’ and UB, Uq and Uq and their first J  = 3 forward iterates (solid blue 
curves), and ST, S L, and § B (dotted red curves) for a given set of parameters. The 
markers represent point-holes punched in the appropriate places in the phase plane. Bridge 
classes are constructed according to  how these unstable manifold segments wind around 
the punctured point-holes.
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We give each homotopy class of bridges a symbol, e.g. f tb or c\. If bridges in a 

homotopy class have opposite direction, they are said to be inverses of the other. We say a 

bridge surrounds a point-hole if the point-hole is inside the region bounded by the bridge 

and the stable manifold segment connecting the bridge’s endpoints [67]. If a bridge in 

a homotopy class surrounds a point-hole, its forward iterate must surround the forward 

iterate of th a t point-hole, and its endpoints must move closer to  the unstable fixed point(s) 

they are approaching. For example, the bridge c\ in Fig. 6.9 surrounds the hole / / B2, so 

its forward mapping must surround the hole H ^ .  We then say th a t the bridge class c\ 

maps forward as M(c\) = ci>, which gives us a symbolic representation for the evolution of 

c\ under one mapping. Similarly, the symbolic representation for the mapping of a bridge 

homotopic to c*, but with opposite direction, is M ([cj]_1) =  [4 ]_1-

If we repeat this on c2, which surrounds we can see th a t its forward iterate

must surround H(f . We also know th a t its endpoints will be on §T between the right-most 

endpoint of c\ and zB. However, / / 0B lies outside the complex; consequently, the forward 

mapping of c2 intersects § B two times. Since a bridge can only intersect ST or § B a t its 

endpoints, the forward mapping of 4  must be divided into three bridges: i.) the first 

bridge has its first endpoint on ST and second on § B, ii.) the second bridge has both 

endpoints on § B and surrounds / / B, and iii.) the third bridge has its first endpoint on §B, 

and final endpoint on §T. We say tha t the bridge class 4  maps forward to  a product of 

three bridge classes: M (4 )  =  / t6[wq] —1 [ / tfe] —1 - Furthermore, we have also uncovered the 

critical information generated by the theory: the bridge class [uq] - 1  (and its inverse) lies 

outside the complex, so any bridge homotopic to 4  (regardless of direction) will have a 

portion th a t escapes a t the next iterate. In addition, we can also see th a t this portion will 

escape to  the left of the barriers.

Similarly, bridge c2 surrounds point-hole / /Z j , and its forward mapping must surround 

H q , which lies outside the complex. When m apped forward, the bridge class 4  intersects
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§T two times, and it must be divided into three bridge classes; we say th a t A /(4 ) =  

/ bt['ito]-1 [ /W]~1- The bridge class [wq] - 1  (and its inverse) lies outside the complex, so any 

bridge homotopic to 4  will have a portion escape at the next iterate, and this portion will 

escape to the right of the barriers.

6 .4 .8  A d d itio n a l B rid ges

As mentioned earlier, an im portant difference between this problem and earlier ones 

[67, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 6 6 , 106] is th a t we are now examining a  full 

scattering system, with particles approaching from and receding to  infinite distance. (In 

previous work, we examined only “half-scattering,” i.e. escape from a confined region). A 

consequence is th a t the sets of bridges previously defined using only the unstable manifolds 

are no longer sufficient for describing our initial-condition lines.

To see why, we must study L0 in detail. Fig. 6.10 shows a qualitative L0 of Type II 

(green), §T, §s , S L, and S R (dotted curves; red), and UT, UB, UL, and UR (solid blur 

curves). The starting point of L0 is labeled A, and its endpoint is labeled E. One may 

follow Lq from points A  to B  to  C  to D  to E.

In the past [67], we defined bridges as homotopy classes of unstable manifold segments 

with endpoints on the stable manifolds bounding the complex, §T or §B. However, one can 

see th a t segments AB ,  B C ,  and D E  of L 0 do not have both  endpoints on Sr  or § B. Each 

of these segments has at least one endpoint on S L. Furthermore, no unstable manifold 

can intersect S L (if it did, the intersection would map to  both an unstable fixed point and 

x  =  —oo as t  —¥ —oo). It follows th a t segments A B ,  BC,  and D E  cannot be homotopic to 

any bridges formed by segments of unstable manifolds. Hence, previous methods are not 

capable of fully describing the topological structure of all segments of Lq for the present 

system. Similar problems occur for L0 of Type IV.
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We must develop a more general definition of bridges. From Fig. 6.10 it is plain tha t 

we need an additional bridge or bridges th a t go from S L to ST, which are homotopic to 

segments B C  and DE.  We also need an additional bridge th a t begins and ends on S L, and 

which lies “below” it, so th a t it is homotopic to  segment A B .  The endpoints of segment 

A B  march toward the fixed point z£ as Lq is mapped forward, and the segment stretches 

to the left and down as they do so. Since the desired bridge is the entire homotopy class 

for segment A B ,  the bridge class will always m ap to itself, and it represents a segment of 

L0 th a t is directly reflected, w ithout entering the complex.

CL 0

- 2
8 6 - 4 2 0 2 4 6 8

X

FIG. 6.10: Qualitative graph showing an initial-condition line and manifold segments. L0 

(green) is of Type II, ST, and SB, S L, and S R are plotted in red, while Ur , UB, UL, and 
UR are plotted in blue. Since no unstable manifold can intersect S L, the L 0 segments AB ,  
BC ,  and D E  cannot be homotopic to  any bridge formed by an unstable manifold.
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The same general arguments apply for L0 representing particles approaching the bar

riers from the right. We need to include new bridges with endpoints on S R. The types of 

new bridges th a t may be needed to accomodate Lq can be summarized by the following. 

If particles approach from the left,

•  Type S l l ' Both endpoints on S L, lies “below” it.

•  Type S l t '■ One endpoint on S L; one endpoint on ST.

If particles approach from the right,

•  Type Sun: Both endpoints on S R, lies “above” it.

•  Type SnB: One endpoint on S R; one endpoint on S B.

6 .4 .9  T opologica l P red ic tio n s

We now have all the tools necessary to begin the topological analysis of initial- 

condition lines through the barrier region. We start by computing the stable manifolds, 

and constructing the appropriate L0. We then iterate UB and Uq forward J  times, and 

identify all J-neighbors along Sq and S B . These J-neighbor pairs are then mapped forward 

J  — k  times and backward k times, where k is the transition number of the J-neighbors, 

which yields all J-neighbors for the chosen J . We check for the existence of J-subneighbors 

along the stable manifold segment connecting every pair of J-neighbors. We then punch 

a point-hole in the phase plane in the appropriate place for each pair. We next determine 

all homotopy classes of bridges, including “additional” bridges which are not segments of 

unstable manifolds, give each a symbol, and develop an algebraic representation for how 

each symbol evolves.

Since the forward iterates of L 0 approach and stretch along unstable manifolds, Lq 

evolves topologically in the same manner as the unstable manifolds. We develop a symbolic
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representation for L q by decomposing it into segments, each of which has endpoints on §B, 

§T, S L, or S R, and does not otherwise intersect those stable manifolds (as in Fig. 6.10). 

Each of these segments is homotopic to  a bridge class, which allows us to symbolically 

express L q as a product of symbols. The mapping of curves induces a mapping of symbols. 

Each symbol can be mapped algebraically an arbitrary number of times, allowing us to 

express the n th  forward iterate of L0, Ln, by iterating each symbol in L q n  times. Certain 

symbols in L n represent escape to the left of the barrier region (u^ and its inverse), and 

other symbols represent escape to the right of the barrier region (Uq and its inverse). The 

relative order of escape segments along L q is also predicted by this method.

The symbolic representation thus tells us: i.) the number of reflected escape segments 

th a t are forced to occur a t each iterate, ii.) the number of transm itted escape segments 

th a t are forced to occur a t each iterate, iii.) their relative order along L q . It should be 

noted th a t all three of these depend on the amount of initial topological information used, 

and th a t starting  w ith more initial toplogical information may yield additional predicted 

escape segments.

The initial topological structure of the heteroclinic tangle and L 0 forces certain topo

logical properties to be present at later times. Homotopic lobe dynamics predicts all escape 

segments, and their relative order, th a t are forced to  occur as a result of the initial topo

logical information. Every predicted escape segment must be seen in computations, but 

there may be other escape segments th a t occur, which are not forced by the initial topo

logical structure. In this sense, one may think of homotopic lobe dynamics as a method 

for finding the minimal number, and relative order, of escape segments forced to occur 

at each iterate by the initial topological structure. As previously mentioned, choosing to 

begin the analysis with more initial topological information, i.e. choosing a higher J ,  may 

allow additional escape segments to  be predicted at later times.

In the next section, we implement the method discussed here on a specific case, the
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results of which were given in Sec. 6.3.
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FIG. 6.11: Computed manifold segments and initial-condition line. §T, SB, and S L (dotted 
red curves), UT, UB, and the first J  =  3 forward iterates of Uq and t/(f (blue curves), and 
L q (green), which is a forward iterate of Iq. L q is chosen a t the earliest iterate to have an 
intersection with §T, and is of Type II. The endpoints of L q are on S L, at far left. The 
segment below S L forms a loop.

Recall th a t our system param eters are x  =  3, U q — 1, a  =  0.5, u> = 2tt/3, <t> =  tt/2, 

<t =  1, and m  = 1. We examine an initial-condition line of particles approaching the 

barriers from the left with initial momentum p0 m 1.50 (more precisely p0 ~  1-49959). 

Manifolds are constructed by iterating initial-condition lines th a t begin very close to,
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and lying on eigenvectors passing through, the unstable fixed points. Stable manifolds 

are calculated by iterating the appropriate initial-condition lines backward, and unstable 

manifolds are computed by iterating forward. We must choose a  number of iterates, J ,  to 

iterate the fundamental unstable manifold segments to  use as the basis for our analysis; 

for this example, we have chosen three iterates, i.e., J  =  3.

Examining S B, S T , and S L, we see th a t our initial momentum po ~  1.50 lies in Region 

III in Fig. 6.7. By the rules discussed earlier, we place one endpoint of Iq on S L, and give 

it a width of A x0 =  pa2ir/mu.  This Iq is the solid green horizontal curve. Due to  its 

construction, a t a certain forward iterate, this Iq will evolve into a Type II L q . We choose 

L q to be the earliest iterate  at which l 0 interesects §T. This L q is shown in Fig. 6.11, and 

its qualitative topological structure can be seen in Fig. 6.10.

Figure 6.12 shows all J-neighbors along S q (a) and S B (b). In Fig. 6.12(a), the J- 

neighbors along S q , which we call (a,/3), are marked by large black dots. In Fig. 6.12(b), 

the J-neighbors along S B, which we call (7 , <i), are marked by large yellow dots. Since 

both (a , /3) and (7 , 5) have transition number k = J  =  3, all other pairs of J-neighbors 

can be found by mapping (a , f3) and (7 , (5) backwards k =  3 times. Fig. 6.12(a) also shows 

the pair of J-neighbors (7 ~2 ,5~2), which are the pair (7 ,5) mapped backwards twice. The 

J-neighbors (a ~ 2 ,/3~2) shown in Fig. 6.12(b) are (a, (3) mapped backwards twice.

We need to determine if each pair of J-neighbors (eight total) has any J-subneighbors 

in between them. To do this, we must determine if L q enters the domain-hole associated 

with each pair of J-neighbors. In this example, L q only enters domain-holes associated with 

the J-neighbor pair (7 ,S) and their mappings. Fig. 6.13 shows a zoom of the 

domain-hole, along with L 0 . The J-neighbors ( 7 ~ 2 , S ~ 2 ) are represented by large black 

dots. Since L q intersects the stable manifold segment connecting the J-neighbors, we must 

identify and use J-subneighbors when puncturing point-holes in the plane for the series 

of holes associated w ith (7 ,5) and their mappings. The J-subneighbors are represented
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FIG. 6.12: J-neighbors. (a) Upper-right section of heteroclinic tangle. The black dots 
are J-neighbors along S q , denoted (a , 0 ) .  (b) Lower-left section of heteroclinic tangle. 
The yellow dots are J-neighbors along Sq ,  denoted (7 ,(5). In (a), the yellow dots are the 
J-neighbors ( 7 ~ 2 , 5 ~ 2 ) ,  which are ( 7 , 5 )  from (b) mapped backwards twice. In (b), the 
black dots are the J-neighbors { a ~ 2 , @ ~ 2) ,  which are («, (3) from (a) mapped backwards 
twice.
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by large green dots in Fig. 6.13. The entire shaded region is the domain hole (yellow and 

pink), and the subhole is the yellow portion.
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FIG. 6.13: J-neighbors and J-subneighbors. Zoom of the J-neighbors ( J ®a ) - 2  =
(7 _2 ,<5~2) =  (M ~ 2 (-y), M ~ 2 (6 )). The J-neighbors are marked by the large black dots at 
the intersections between stable (red curves) and unstable (blue curves) manifolds. This 
pair of J-neighbors has a set of J-subneighbors associated w ith it, which are represented 
by the large green dots. The domain-hole for the J-neighbor pair is colored in yellow and 
pink , and the subhole associated with the J-subneighbor pair is the yellow portion.

We must place a point-hole within the subhole associated with the J-neighbor pair 

(7 ~2 ,5~2), and arbitrarily close to to  either of the J-subneighbors. The location of the 

point-hole should be within the yellow region of Fig. 6.13, and arbitrarily close to either 

of the green dots. We then map this point-hole forward and backward the appropriate 

number of times, again puncturing a hole in the plane for each one.
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No J-subneighbors exist between any of the (M n(a ) ,M n(/3)) J-neighbors for this 

L0, so we choose a point-hole inside the domain-hole associated with (a, fj), and place it 

arbitrarily close to either a  or j3. We then map it backward k =  3 times, puncturing a 

hole in the phase plane each time.

One must note th a t we are not necessarily free to place a point-hole arbitrarily close 

to every J-neighbor pair th a t does not have a pair of J-subneighbors along L0 associated 

with it. If Lq creates a pair of J-subneighbors between a pair of J-neighbors ( / ,  g), then Li 

will create a  pair of J-subneighbors between the J-neighbors M(g))  =  (h, i). For

this reason, one should not place a point-hole arbitrarily close to either (h, *); instead, one 

must place the point-hole arbitrarily close to a J-subneighbor associated with (f , g ), and 

then map it forward and backward. This m ethod ensures th a t all point-holes associated 

with this series of holes are placed in the appropriate location.

Bridges of the manifolds are shown in Fig. 6.9, and their homotopy classes are sum

marized here. Homotopy classes are determined according to bridge’s relations to the 

punctured holes.

•  f bt: S tarts on §B, ends on §r , passes below / / B3 and above H '£l , immediately surrounds 

no domain-holes.

•  f tb: S tarts on Sr , ends on § B, passes below / / Bj and above / /^ 3. immediately surrounds 

no domain-holes.

•  c\ : S tarts and ends on §T; surrounds 7 /B2.

•  c2: S tarts and ends on §r ; surrounds .

•  Uq: S tarts and ends on §T; surrounds Hq .

•  Uq: S tarts and ends on §T; surrounds Hq .
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•  c\: S tarts and ends on S B; surrounds HZ2-

•  c\: S tarts and ends on § B; surrounds H^i-

Figures 6.10 and 6.11 show th a t some segments of Lo cannot be described by existing

bridges, i.e., by segments of unstable manifolds. We need to  create two new bridges for

our analysis, with homotopy classes:

•  S l l ’- Begins and ends on S L , lies “below” it, and passes under / / g 3.

•  S l t '- Begins on S L; ends on §T.

We have to choose an appropriate endpoint of S lt  on §T so th a t segments of L0 will be 

homotopic to it. We will choose S lt to be arbitrarily close to one of the segments of Lo 

th a t goes from S L to  §r .

Figure 6.14 shows a qualitative, but topologically correct, graph of L 0 (solid green 

curve) along with an example bridge from each homotopy class needed to  carry out the 

topological analysis. The direction of L 0 is consistent with our chosen direction of l0 

(left-to-right). By construction, the endpoints lie on S L. The starting point is labeled A. 

Segment A B  is homotopic to S l l ■ Segment B C  is homotopic to  bridge S l t ,  which has 

a direction going from S L to §T. We choose S l t  to  lie arbitrarily close to segment BC,  

and any L n segment with one endpoint on S L, and the other endpoint between Pq and 

Qo on S T, will be homotopic to S l t  (or its inverse). Segment C D  is homotopic to  (c()-1 . 

Segment D E  is homotopic to the inverse of S l t -

Now the theory is complete, and we return to Section 6.2. The symbols and mappings 

for these homotopy classes are given by Eq. (6.3). Lo is expressed as a product of these 

symbols, given by Eq. (6.4). Each symbol in Lo is algebraically mapped forward n  times, 

which gives the symbolic representation for L n. The first few symbolic representations are 

given by Eqs. (6 .6 )-(6 .8 ). Each instance of Uq (or its inverse) or Uq (or its inverse) in Ln
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FIG. 6.14: Bridge classes. Qualitative rendering of ST, Ss , and S L (dotted red curves), 
Lq (green), and all bridges necessary for the topological analysis for this example. The 
bridges S l l  and S l t  have at least one endpoint on S L , and thus are not unstable manifold 
segments. All other bridges are unstable manifold segments (blue).

represents a  segment th a t escapes to  the left or right, respectively, of both barriers at the 

nth iterate. Comparison and discussion of predicted and computed escape segments for 

this case were given in Sec. 6.3.

Generalizing and extending homotopic lobe dynamics (HLD) for use with full scat

tering systems has many purposes. In a ballistic atom pump, the primary goal is to 

calculate the net flow of particles th a t approach the barriers from both  sides, and HLD 

allows one to  use stable manifolds to  place lower bounds on the number of particles which 

are transm itted or reflected by the barriers for all incoming energies (this is much faster
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than  computing all trajectories). In this chapter, HLD is primarily used to explain the 

fractal structure seen in escape-time graphs. In other contexts, HLD can also be used to 

find a minimal set of closed or periodic orbits [63, 128] in order to  carry out semiclassical 

sums, to  calculate topological entropy [67, 6 6 , 106] (a measure of the complexity of the 

dynamics), and to  partition mixed phase spaces [127].

6.6 R em arks

We have shown how to extend homotopic lobe dynamics so th a t it can be used to 

study a full scattering process with a heteroclinic tangle. We have shown how to select 

endpoints of the initial condition line, where to puncture point-holes in the phase plane, 

and we have shown th a t additional bridge types are necessary for the topological analysis. 

The methods outlined in this chapter are very general, and can thus be used for a large 

number of systems involving chaotic transport. Homotopic lobe dynamics can now be 

applied to  full scattering systems in order to  to calculate topological entropy [67, 6 6 , 106], 

partition mixed phase spaces [127], find a minimal set of closed or periodic orbits [63, 128], 

and sort interfering trajectories into groups for use in semiclassical theory.

This type of analysis allows one to make reliable predictions about some properties of 

a chaotic system at interm ediate times, using topological properties of the system at early 

times. In this chapter, we have shown th a t homotopic lobe dynamics both explains and 

predicts the fractal structure seen in escape-time graphs for a ballistic atom pump, i.e., for 

particles incident on two Gaussian-shaped potential barriers oscillating out-of-phase with 

one another.

Eventually we hope th a t homotopic lobe dynamics can be autom ated, so th a t nu

merical computations of stable and unstable manifolds can extract the symbolic dynamics 

and its predictions without human intervention. T hat advance will require knowledge of
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the application of homotopic lobe dynamics to many specific systems, such as the one 

considered here.
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C H A P T E R  7

C onclusion

We have shown th a t the quantum  description of wavepacket scattering from amplitude- 

modulated Gaussian barriers yields final momentum probabilities th a t are populated at 

momenta satisfying E n = Eq +  nfaui, where u  is the oscillation frequency of the barrier. 

Analyzing the underlying classical dynamics reveals th a t peaks seen in the quantum  de

scription are small outside the bounds of classically-scattered momenta. The semiclassical 

analysis reveals th a t many trajectories end at all momentum values within the classically- 

allowed range. Interference among these many trajectories can be broken down into two 

distinct types: (i) intracycle interference, which contains only trajectories from within one 

cycle of the  periodic final momentum versus initial position graph; this type of interference 

determines the relative heights of the peaks seen in quantum  calculations, and (ii) intercy

cle interference, which contains interference across all cycles. Intercycle interference leads 

to the emergence of the sharp peaks seen in the quantum calculation, and they occur at 

the same momenta in both the semiclassical and quantum descriptions.

When two barriers are present, we have shown th a t such pumps can preferentially 

pump particles from one reservoir to  the other under certain conditions. If one barrier has
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a fixed height and the other oscillates, it is possible to  construct pumps th a t only allow net 

particle transport in one direction for certain initial particle energies, while in a different 

initial particle energy range, net transport is only possible in the opposite direction. It is 

not possible to  predict the m agnitude of net particle transport without detailed calcula

tions, however. Symmetric pumps, which have identical barriers th a t oscillate between the 

same minimum and maximum amplitudes and oscillate at the same frequency but with a 

relative phase difference between oscillations, can also preferentially pump particles under 

certain conditions. Specifically, if a uniform distribution of initial conditions is used, no 

net pumping occurs; this classical result matches results obtained from quantum  studies 

on similar systems. However, if only finite ranges of initial particle energies are consid

ered, such pumps can create net particle transport in either direction. The magnitude and 

direction of this net transport is also not predictable without computations, and both of 

these properties are highly sensitive to  barrier parameters.

We have also shown th a t classical scattering of monoenergetic particles from such 

pumps can create a net imbalance in the to tal energy in each reservoir after scattering. 

This imbalance can be caused by a transfer of energy between the pump and the particles 

(or vice versa), and by a flow of energy between reservoirs. Interestingly, the direction of 

energy change is distinct from the direction of net particle transport, and can occur even 

when there is no net particle transport. Ballistic atom pumps can also heat or cool one 

or both  reservoirs, and the heating or cooling is also independent of energy flow and net 

particle transport. In addition, it is possible for particles of certain initial energies to  give 

energy (on average) to the pump; this occurs for relatively high incident energies, when 

there is no net particle transport.

Finally, we have generalized and modified an existing topological theory, homotopic 

lobe dynamics (HLD), so th a t it can be used to study full-scattering problems. This is the 

first implementation of HLD on a full-scattering problem in which transport is governed
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by a heteroclinic tangle. Modifications were necessary primarily due to the differences 

between previously-studied lines of initial conditions and ones necessary for this problem. 

We have shown th a t additional bridge classes may be necessary for this type of analysis, 

and have shown how to modify previous notions of where holes should be punched in the 

phase plane. The form of HLD implemented on the double-barrier ballistic atom pump 

predicts and explains the underlying mechanism responsible for the fractal-like patterns 

seen in computed escape times. However, as in previous studies, escape segments th a t are 

not predicted eventually emerge. It is possible to predict some of these escape segments 

by using more initial topological information as the basis for HLD, but HLD is not capable 

of predicting all escape segments. For th is reason, we say th a t HLD predicts a minimal 

set of topologically-forced escape segments. All predicted segments are seen in computed 

escape segments, but the unpredicted escape segments dominate escape-time plots a t high 

iterates of the map.

The results presented in this dissertation can be extended by future research. A ballis

tic atom pump of the type discussed here requires only a time-dependent potential energy 

in the channel connecting the reservoirs, and all results presented here concern potential 

energies with one or two repulsive barriers. Multiple oscillating potential energy wells 

can also allow net particle transport in either direction, and their preferential pumping of 

particles should be compared and contrasted with the repulsive barriers examined here. 

In the case of two oscillating rectangular barriers, we showed tha t chaotic trajectories only 

emerge when the barriers are separated. In the case of wells th a t oscillate between 0 and 

— Lo (ko >  0 ), however, chaotic trajectories will be present even when the wells are not sep

arated. The influence of these more-complex particle trajectories on net particle pumping 

should be studied. A potential energy consisting of two oscillating Gaussian-shaped wells 

will also likely prove to be an interesting study, as transport is expected to be governed 

by two homoclinic tangles emerging from the same fixed point.



The effect of introducing more than two barriers (or wells) can also be examined, 

as well as using combinations of barriers and wells. Using a time-dependent oscillation 

frequency, u)(t), may also dram atically affect net particle pumping. One could also examine 

the effect of allowing each barrier or well to oscillate a t different frequencies. Future studies 

should also consider the effect of the trapping potential used to  confine the BEC, which 

was neglected in this dissertation. In addition, considering inter-particle interactions in 

future research would greatly extend the results presented here.
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A P P E N D IX  A  

In troduction  to  Sem iclassical T heory

This appendix gives an overview of one-dimensional semiclassical approximations in 

configuration and momentum space. The derivations here are valid only in the classically- 

allowed regions, but they can be extended into classically-forbidden regions. The equations 

here are given for time-independent Hamiltonians, but the arguments outlined here can be 

applied to time-dependent systems. This appendix is intended to  give a broad overview 

of the simplest aspects of semiclassical theory; for a detailed implementation of these 

approaches on the time-dependent ballistic atom  pump in both classically-allowed and 

classically-forbidden regions, see the next appendix.

Table A .l provides some of the basic equations for both configuration and momentum 

space, and the reader is encouraged to  notice the similarities present in many of them, as 

well as to refer to  the table while reading the appendix.



Configuration Space Momentum Space

Hamiltonian H { p , q ) H { p ,  q )

Quantum  Rule p  —> — i h d / d q q  — > + i h d / d p

Schrodinger

Equation

[ h  ( - > » £ ,  , ) - e ]  * (? ) =  0  

[ i  { - * £ )  + V ( q ) - E ^ < S ( q )  =  0 [ £  +  ~  E \  *(p ) =  0

Transform = f  e %P 9 / h* ( p ) d p = v h h $ e  i p q / h y ( q ) d <i

WKB
Approx.

. , C e x p ( ± i f ^ ( q ' ) d q ' / h )
* W K B ( q )  = ------- --------------------- L

iTi _  C e x p ( i S { q ) / h )
w W K B { q )  -  r a i l , p ,q J h .

I dp J

~ . . D e x p ( - i f  ^ ( p ' ) d p ' / h )

* ™ (”) -  — k ™ 575—

~ . . D e x p ( —i S ( p ) / h )
V w k b {p ) =  |aHV , ) | ^

1 dq |

TABLE A .l: Semiclassical Formulas.

A .l  W K B  A pproxim ation  in C onfiguration Space

Starting with the classical Hamiltonian

P
2 m

+ V(q) -  E (A .l)

we replace with p  with the quantum  operator
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to obtain

2 m  dq2
+  V{q) -  E *(q) = o.

We seek a semiclassical approximation to a quantum  wave function of the form,

V(q) = A (<l) exP ( ■

Inserting this form of ^ ( 9 ) into Eq. A.3, we obtain

0 =
H2 d 2

2 m  dq2

0 =  eiS q̂^ h

+  V(q)  -  E A(q) exp (

va2 _ ihdS(q)a_ _ ih a>s(q) j _  / s s m V  _
2 mdq 2 m  dq dq 2 m  dq2 2 m  \  dq J

If we collect terms in powers of h, we have

O(h0) = eiS{q)/h 

Q (h l ) = eiS(q),h
ihdS(q )  dA(q)

G ( h 2 )

m  dq dq

iS(g)/n &  d 2A (q)
2 m  dq2

A ( q )

A  (? )

ih d 2 S(q) 
2 m  dq2

(A-3) 

(A.4) 

(A.5)

M q)

(A.6 )

(A-7) 

(A.8) 

(A.9)

For our approximation, we will assume h is small, and thus tha t the term  of 0 ( h 2) can be 

neglected. We then set Eqs. A . 8  and A.9 equal to zero and solve for S(q) and A(q). We
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first set Eq. A .8  equal to  zero:

(A .10)

(^fr) = 2m iE ~ v Mi  (A-11)
^  =  (2m [E -  V(q ) } ) 112 (A.12)

S ( q )  =  ±  f  & ( q ' ) d q '  (A.13)
Jqo

where we have used dS(q) /dq  = dS(q)/dq.  The function £?(q) should not be regarded as

the coordinate p ; it is a function describing a curve in phase space. (In the next appendix

it will be shown th a t this curve is a constant-tim e slice of the Lagrangian manifold swept 

out by the trajectories we are using to construct a semiclassical approximation). Setting 

the terms of 0 (h}) equal to zero yields,

d S ( q ) d A M _  (A .14)
dq dq 2  dq2

dA(q)/dq  1 d?S(q)/dq2

A(q)  2 dS(q)/dq
(A.15)

In A(q) =  — ̂  \xidS{q)/dqC (A .16)

A(q) = C\dS(q)/dq \ - 1/2 =  C \ ^ { q ) \ ~ x l2 (A.17)

where C  is a  constant. Substituting these expressions for A(q) and S(q) into T(r/) gives

V(q) = A(q) exp (A.18)

1 J/2  ( ± i  &(q>)dq'\
exp ----^  . . (A. 19)
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This primitive approximation is valid in classic ally-allowed regions, away from turning 

points (regions where E  ~  V(q)). The calculation can be extended into classically- 

forbidden regions, but for now we switch our attention to constructing a similar approxi

m ation in momentum space, which is what we are interested in for ballistic atom pumps.

A .2 W K B  A pproxim ation  in M om entum  Space

We again start with a time-independent Hamiltonian, and substitute in a quantum 

operator,

p2 d
k  +  v ^ ~ E .

#(p) =  0. (A.20)

We define q =  ihd/dp,  so th a t V(ihd/dp)  =  V(q).  As in the previous section, we assume 

a form for the semiclassical wave function, 'E(p) =  A(p) exp( iS(p)/h) .  We wish to again 

evaluate all derivatives in the Hamiltonian, collect the resulting terms in powers of h, and 

set them equal to zero to  obtain solutions for A(p)  and S(q). To achieve this, we assume 

w ithout proof tha t V(q) can be expressed as a convergent power series,

< A ' 2 1 )

Since the derivatives we need to  evaluate are contained in the operator V(q),  we begin by 

expressing V(q)  as a power series, and applying the operator V(q)  to ^(p).

V  (,ih &p)  =  V  ( * ^ )  ^ ^ exp (A.22)

=  J2 - f  (ih§p) exp (A -23)
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We first examine the lowest-order, n  =  1 term: (i hd / dp ) A(p)exp (' i S (p ) /h j

ih
d_

dp
A{p) exp =  exp

( d S ( p )  V

exp I i

=  exp I %

h

;S(P) 
h

d f d S ( p ) \
^ - [ - a r )  j

[Q(p) + q\A{p).

A{P)

(A,24) 

(A.25) 

(A.26)

using the definition Q(p) =  —dS (p ) /dp . For the next-order (n =  2) term, we square the 

operator q, and see th a t q2^>(p) is

= ( ih

d_
dp

d

A(p)  exp ( iS(p) / f i j \

dp

exp I i■ S(p)
h

ih
i dS(p)  
h dp

\Q{p )A(p ) +  qA(p)

+ q ([Q(p)A(p)) +  q2A(p)

exp l i; S (P)

+  ih

h

dQ(p) 7

Q(p) [qA{p) +  Q(p )A{p )]

dp
A(p)  +  Q{p)ih~ ~ +  q2A(p)

exp i

exp I i

h

;S(P)

dp

2  Q(p)q + Q { p )  + q + i h
-dQ(p)

dp A(p)

[Q{p) +  q]2 A(p).h

(A.27) 

(A.28)

(A.29)

(A.30)

(A.31) 

(A.32)
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Repeated application of higher-order powers of the operator qn shows tha t

^  J p )  =  6XP ( +  ^  '
(A.33)

We wish to collect term s in powers of h , and neglect term s of order fi2 and higher. For the 

n = 1 terms (Eq. A.26),

[Q(p) +  q] M p ) = Q(p ) M p ) +  ih-djg ^ (A.34)

the term  Q{p)A(p)  if of order h°, and the term  i hdA(p) /dp  is of order hx. The n  = 2  terms 

(Eq. A.32)

[Q(p) +  q f  A(p) = 2 Q{p)q + Q 2 {p) +  q2 + A{p) (A.35)

can be collected in powers of h as

0 (/i°) =  Q 2 (p)A(P)

0 ( h ' )  = 2Q(p)qA(p)  , i h ^ ^ - A ( p )

0(H2) = q2 A(p).

(A.36) 

(A.37)

(A.38)

The n = 3 case includes terms

[Q(p) + q f  A{p) = Q 3 (p) + 3 Q 2 (p)q +  3 Q i h ^ ^ -  + 0 (h2)
op

A( p ), (A.39)
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and these can be collected in term s of powers of ft as

O(h0) = Q\ p )A{p )

.*dQ(p)
0 { h l ) =  3Q (p)qA(p) , 3Qih  — - A(p)

It can be shown via m athem atical induction th a t the terms of order ft0 and 

[Q(p) +  qT  can be w ritten as:

O(h0) = Q n(p),

O (ft') =  n Q - ' M  , " ( n ~

Substituting Eq. A.33 into Eq. A.23, we can see th a t

v  i ih^p) * (p) = ^  { i h lA{p) exp

=  ^ 2  exp ( * ~ j f +

ft

n(n  — 1 ) ,dQ(p)+  ' „ JQn- 2 (P) i h - g p -  +  0 (ft2) A(p)

We may think of the potential 1/ in Eq A.46 as a power series in Q(p), i.e.

(A.40) 

(A-41)

1 from

(A.42) 

(A.43)

(A.44) 

(A.45)

(A.46)

(A.47)
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then

dV(Q(p))
dQ{p)

<Pv(Q(p))
dQ2(p)

—T n Q n Hp), and' n\
y n

£ _ n ( n -!)< ? »  2 {p). z—/ n\

Therefore we may write Eq. A.46 (neglecting term s of 0 ( h 2)) as

V ^ i h ^ )  *(P) = exP
V(Q(p))  +  d V (Q(p) )~ + d?V(Q(p)) ih dQ(p)

dQ(p) dQ2 (p) 2 dp
A{p).

Returning to Eq. A.20 and substituting, we have

0  =
p2 d

L + ^  v  - E

p2 d
L + v i ' hp ~ E .

${p)

exp | | A(p)
h

=  exp I i-„.S(p) 
ft +  dQ(p)

dV(Q(p))„ i cPV(Q(p)) ihdQ(p)
dQ2 (p) 2 dp

£

Collecting term s in powers of h, we have

O{h0)

o { t i )

P
2 m

+ V(Q(p)) -  E

d<2 (p) dQ2 (p) 2  dp

(A.48) 

(A.49)

(A.50)

(A.51) 

(A.52)

A{p).

(A.53)

(A.54) 

(A.55)
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For our approximation, we set each of these individually equal to zero. Identifying Q(p) =  

J2{p), we have

S ( p )  =  - ^ 1  {A.56)

S(p) =  -  / ” 2>(V' W .  (A.57)
jpo

<S(p) is not to  be regarded as the coordinate q; rather, it is a function describing the curve

in phase space. Note th a t the term  S(p)  in the above equation and the term S(q)  are

functions of different variables. We define the relationship between these two functions to 

be

S(q) = 0>(q)q + S(&>(q)) (A.58)

S ( £ ( p ) )  = p £ ( p )  -f S{p) (A.59)

We also explicitly note th a t the two functions S(q)  and S(p)  are the two functions tha t 

satisfy

^ ( 9 )  =  ^  (A.60)

■S(P) =  (A.61)

To solve A.55, we define F(Q(p)) = —dV(Q(p)) /dQ(p) ,  and we have

0  (A , 2)
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Identifying dQ{p)/dp  =  dQ(p)/dp  and dA(p) /dp  =  dA(p) /dp , we have

j i t  m i  * dF(Q(p)) dQ(p)d A { p ) / a p  _  1 dQ(p) dp

A(p) ~  2 F(Q(p))
dA(p)dp 1 dF(Q(p)) /dp

A(p) ~  ~ 2  F(Q(p))

(A.63) 

(A.64)

In A(p) = - 1  In \F(Q(p)i\  (A.65)

A(p)  =  (A.6 6 )

where D  is a constant. Substituting Eqs. A.57 and A .6 6  into the form of our assumed 

wave function, 'F(p), we obtain

V(p)  =  M p ) exp |  ) (A.67)

D
F(J2(p))

^  /  - i  r  M P')dp' \
exp J;>11 —  • (A.6 8 )

Since F(£2(p))  =  -dV{Q(p) ) /dQ{p)  — -dV(q{p)) /dq{p)  = - d V ( q ) / d q  =  - d H / d q  

dp/dt,  this can be rewritten as

4>(p) =  D
dp/dt

( - i f * n£(p>)dP' \
n )exp — - ^ - r ---- -—  . (A.69)

A .3 C hanging C oordinates to  D escribe th e  W ave Func

tion

In some regions, one description of the wave function may fail, while the other form 

is valid (For example, ty(q) is divergent when E  ~  V(q)).  'l'(p) can be obtained via a
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Fourier transform ation on 'i'(q), and vice versa. The transformations are given by

/
OC

eipq/hV(p)dp,  and (A.70)
-OO

/ OO

e - ,p9/fi'I'(q)dq. (A.71)
•OO

The factors (±2irh)~1/2 are included to  preserve normalization, and the terms ± i - 1 ^2 are 

arbitrary phase conventions, which we use consistently, following Ref. [110]. In practice, 

these integrals can be difficult to solve, and we typically use the method of stationary 

phase to evaluate them.

A .3 .1  S ta tion ary  P h a se  M eth o d

This method of stationary phase is an approximation technique for integrals of the

form

/ OO

F( x) e iv<t>(x)d x , (A.72)
•OO

when the phase of the integrand oscillates rapidly, 4>{x) is real, and F(x)  is slowly-varying 

relative to the phase oscillation. In the limit of v —»■ oc, /  =  0 if <fi{x) =  x,  for any smooth 

function F(x) .  This occurs because as v increases, the oscillations of the phase become 

more rapid, and I  tends to  zero over the range of integration. For finite v, the integrand 

tends to approximately zero everywhere except where d(f){x)/dx =  0 , i.e. where the phase 

is approximately stationary, due to these oscillations. These regions of stationary phase 

therefore make up the dominant non-zero contribution to  the  integral. In the context of

the integrals we solve in this semiclassical analysis, v  =  1/h,  and since h is small, the
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exponential oscillates very rapidly. The wavelength of oscillation is given by

(A. 73)

27rh
(A. 74)

d(f>(x)/dx

From Eq. A.74 it is clear th a t the dominant non-zero contribution to the integral occurs

as d<fr/dx —» 0, i.e. at the point of stationary phase. This type of integrand is shown in 

Fig. A .l; in the figure, F ( x ) — 1 and 4>{x) =  x 2 (see Eq. A.72). The top and bottom  

rows show the function for v =  1 and v =  10, respectively. In each case, the function 

rapidly oscillates everywhere except near where d4>(x)/dx = 2x — 0, i.e., at x  =  0. This is 

especially true in the lower row, where v =  1 0  causes the function to  oscillate much more 

rapidly. W hen integrating over the regions away from x  =  0, the oscillations cause the 

integral to  tend toward zero, and only the regions near x =  0  contribute significantly to 

the integral Eq. A .72.

To solve integrals of the form of Eq. A.72, one expands <f>(x) about the stationary 

phase point, x,

The term  dcf)(x)/dx evaluated a t x  =  x  equals zero, however, so the above equation reduces 

to

<j)(x) «  4>{x) -I- (x _  f ) +  I
X

1 d?(f)(x)
2 dx2 .X

(x — x )2 + 0 ( x 3). (A.75)

< l> ( x ) «  i  (x  -  x ?  +  0 { x 3). (A.76)

If we neglect the terms of 0 ( x 3) and above and insert the last equation into Eq. A.72, we
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x

FIG. A .l: Highly oscillatory functions, for which the stationary phase method is an ap
propriate m ethod for approximating the integral of. These functions are described by (see 
Eq. A.72) F ( x ) =  1 and 4>{x) = x 2. In the top row, v =  1, and the left and right plots 
show the real and imaginary parts of F ( x ) exp(iv4>(x)). The bottom  row shows the same 
information for v = 1 0 ; notice the marked increase in oscillation frequency.
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obtain

fJ  —  C

F { x )exp ( - 4>{x) +
1 Cp<f)(x)

/ w e J  F ( x )exp ^

2  dx2 

/ d?(j>(x)
2  ft dx2

(a: — x ) 2 

(a: — x ) 2 ) dx

d x (A.77) 

(A.78)

Since the term  F(x)  is slowly-varying, F(x)  w F(x)  in the range where rapid oscillations 

do not cause the integrand to tend to zero, and we may write

/C

• C

cP(j)(x)
exp 2h dx*

(x — x)  J dx, (A.79)

which may be evaluated as,

/  ~  ei0 (i)/nF (x ), 2-n h
(A.80)

where 4>"(x) — d2 4>(x) /  dx2 evaluated at x  = x. The above expression can be w ritten as

I  w el^ x^ hF{x) (2ixh)1̂ 2 \4>"{x)\~1/2 exp sgn ((/>"(x))^ , (A.81)

sgn(x) - < (A.82)

where

1 , if x  >  0

— 1 , if x  <  0 .

Eq. A.81 is the approximation we use when necessary to  evaluate integrals in the form of 

Eq. A.72.
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A .4 T im e-D ep en d en t Sem iclassical A pproxim ation

One can construct time-dependent semiclassical approximations by “expanding” the 

phase space of the system, meaning th a t E  and t are regarded as a conjugate coordinate 

and momentum pair. The Hamiltonian must be adjusted so th a t Hamiltonian’s equations 

hold for these quantities. One is free to regard E  as either a coordinate or momentum, 

bu t the Hamiltonian must be altered in different fashion depending on the choice. For 

the ballistic atom pump, we wish to  obtain T (p), where p  =  (px , t), and we regard £ as a 

momentum and E  as its conjugate coordinate. The same steps discussed in this appendix 

are used for constructing T (p) (with the adjusted Hamiltonian), and this process yields 

T (p ) =  T(px, t). This time-dependence yields an additional term  in S(p) , however. The 

full details of this time-dependent approach, which includes repairing the wavefunction 

near turning points and extending it into classically-forbidden regions, is given in the next 

appendix.
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A P P E N D IX  B  

Im plem entation  o f Sem iclassical 

T heory

This section provides additional details regarding the  construction of a time-dependent 

semiclassical momentum-space approximation to a quantum  wavefunction. The m ethod is 

explained using the specific case of a classical distribution of particles incident on a single 

oscillating barrier, but the same m ethod is used when multiple barriers are present. The 

method is quite general and can be implemented on a wide variety of problems.

B .l  Local W avefunction

For this discussion we will examine a monoenergetic distribution of particles approach

ing a single oscillating Gaussian-shaped barrier from the left; an analagous m ethod is used 

for particles incident from the right. The Hamiltonian for this system is given by

H = g -  +  U ( X , t ) , (B.l)



where

U(x, t) — C/0exp (1 +  as i nu i t ) . (B.2)

At an initial time f0 the (x , t)-space wavefunction for x  <C 0  (far to the left of the barrier) 

is given by

*<,(*, to) =  F(x)e i{poX- Eoto)/h, (B.3)

where F(x)  is a function describing the envelope of the initial packet in (x, t )  space. 

While this is a one-dimensional scattering problem, we choose to  include time and energy 

as canonical variables, expanding the phase space for the system. For reasons th a t will 

become clear, one regards t as a canonical momentum, and E  as a canonical coordinate, 

i.e., q — ( x , E)  and p = (p , t ). Thus by constructing 'J'(p) =  ^ ( p , t )  we will obtain 

the desired time-dependent momentum-space wave function. Then defining an effective 

Hamiltonian, Jt?, given by
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the equations of motion are

dx d.34? d H  
dr  dp dp

(B.5a)

dp dJf? d H  
dr  dx  dx

(B.5b)

d E  dJf? dU 
dr dt  dt

(B.5c)

dt d J F  
dr  d E

(B.5d)

dS  dx dt 
e Tt

(B.5e)

dS  dp dt 
dr dr  dr

(B.5f)

where r  is a “timelike” progress variable along the trajectories, and is related to  t in the 

Schrodinger Equation via r  =  t0 + t. We call S  the classical action along the trajectory, 

and S  can be thought of as a “momentum-space action” along the trajectory. The form 

of equations (B.5c) and (B.5d) justify the indentification of £  as a canonical coordinate 

and t as its conjugate momentum.

We want to compute the probability th a t the particles end with a given final momen

tum , using the momentum-space wavefunction T (p , t). Therefore, we want a semiclassical 

approximation in momentum space. However, since we have chosen an initial distribution 

with very small momentum spread, the initial wavefunction in momentum space is nearly 

a delta function, which cannot be described by a semiclassical approximation. Therefore, 

in order to calculate the desired momentum-space wavefunction, we s ta rt our calculation 

in (x, t) space, and later transform to  (p, t) space.

The first step in constructing a semiclassical wavefunction is is to  propagate classical 

trajectories from a line of initial conditions. We choose the line of initial conditions to 

have a constant starting time t0 =  0 , variable starting position x  covering the domain of 

the initial packet, and a fixed initial momentum p0. The resulting trajectories sweep out
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a two-dimensional surface called a Lagrangian manifold in the four-dimensional (x ,p , E, t )  

phase space. A typical Lagrangian manifold for this system is shown in Fig. B .l.

t (units o f t )  300
200

200 -100 x (units o f  lu)

FIG. B .l: A typical Lagrangian manifold for the one-barrier system. The solid line (red 
online) shows a slice at a constant time.

Integration of trajectories with respect to r  gives a relationship between (Xo,r) and 

(z , t ), where 2  is any dynamical variable x , p ,  E, S,  or S.  From our choice of t0 =  0, t is 

simply equal to r ,  and x  is the point at which the trajectory arrives a t time t =  r . We may 

think of each of these quantities as a function of the initial variable xo and the progress 

variable r ,  e.g., x ( x q , r ) , p ( x 0 , r ) ,  etc.
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We define a Jacobian,

■'<*->=** ( ! £ ? > ) - £  <*«>

with Jo = J  (x0, 0) =  1. This Jacobian is a single-valued function of (x0, T)- For r  not too 

large (and x  not too far from x 0) there is an invertible relationship between (x0, r )  and 

(x, t); i.e., we may consider (xo,r)  as a function of (x, t) .  W ith this relationship, we may 

also consider the position-space action S  and Jacobian J  to be functions of (x, t),

S ( x q , t ) = 5 '( x 0(x , t), r(x , t)) = S ( x , t )

J (x 0 , r )  = J ( x 0 (x, £), r(x , t)) = J ( x , t )  (B.7)

We may use these functions in the primitive semiclassical approximation for the (x, t ) 

space wavefunction

Jo
J ( x , t )

1 /2
e i S ( x , t ) / h ^

where (x0 , r )  are considered to  be functions of (x, t). The initial Maslov index has been 

set equal to  zero, and

*o(*o, r  =  0) =  F ( x 0)eipoX°/h, (B.9)

where (x0 ,x ) are again considered as functions of (x. t).

As the trajectories are propagated forward in r ,  they eventually arrive at the barrier 

region, where p  is no longer constant, and we may use (p. t ) locally as independent variables 

to describe the Lagrangian manifold, as shown in Figs. B .l, B.2(a) and B.2(c), and Fig. B.3.
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Xf  (U

FIG. B.2: Different views of a typical Lagrangian manifold for one-barrier system, (a) 
Slice of Lagrangian manifold a t small time, (b) Periodic final momentum as a function 
of initial position, (c) Final momentum, pf  =  p (xo, ry), as a function of final position, 
Xf = x  (xo, Tf). This corresponds to the final-time slice of the Lagrangian manifold.

A “momentum chart” is a  region of the Lagrangian manifold tha t has a diffeomorphie 

projection to momentum space, (p, t). In Fig. B.3, a constant-tim e slice of the Lagrangian 

manifold is shown for an intermediate time. For each value of p, there are many correspond

ing values of x; each lies on what can be regarded as a “branch” of a multivalued function 

£?x{x, t) describing the Lagrangian manifold. Each branch is separated by extrema of the 

function & x(x, t ) ,  i.e., regions where d & x( x , t ) / d x  = 0 .

Since (p, t) are locally valid coordinates for describing the Lagrangian manifold, we
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transform to the momentum-space representation of the wavefunction via

*(p , t )  = ( 2 7 J  V ( x , t ) e - ipx/hdx

=(2irih)~1/2

(B.10)

(B .ll)

J  F ( x 0(x, t ) )
1/2

exp ( i / h[S (x , t )  — px  + poXo(x, t) — E0t0(x,t)])dx.
dx /dxo

We may evaluate tha t part of the wavefunction th a t corresponds to the first momentum-

22

1.6

1.4

1 2

200 250-5 0 0 50 100 150
X d u)

FIG. B.3: Slice of Lagrangian manifold at an interm ediate time. The numbers correspond 
to  intermediate-time slices of different momentum charts, which are separated by local 
extrem a in the function p =  P  {x, t) for fixed time, denoted by large circles. For every 
given momentum (e.g., the dashed line), there are many corresponding values of x.
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chart of the Lagrangian Manifold by using the stationary phase approximation,

J  C (x ;p , t ) j * ( x* M hdx ^ (2 i rh y / 2C{x-,p,t)

x exp ( ^ s g n ($ " (x ;p ,f ) )  ) exp (i$ (x ; p, t ) /h)  !$"(£; p, £)|

By inspection, one can see th a t

$  (x; p, t) = S(x ,  t) - p x  + p0x0(x, t ) -  E0t0(x, t).

We seek the stationary phase point, x , where d $ ( x ; p , t ) / d x  =  0. Recalling tha t

S (x , t )  =  S{x0(x , t ) ,T(x , t ) ) ,

dS{x ,  t) _  d S  dS_dxo
dx  dx  dxQ dx  ’

d&(x; p, t) d x o d S  d S  d x o
dx  ^  dx  d x  d xo dx

Since

d S  j  d S  ™ , *—  =  - p 0 and —  =  & x{x,t),
dx  o

a$(x ;p ,< ) d x0 d x 0

= - p +  ^ X{x,t).

(B-12)

- 1 / 2

(B.13)

(B.14)

(B.15)

(B.16)

(B.17)

(B.18)

(B.19)

Here p is used as the independent variable in ^ (p , t). Each value of p has a stationary phase 

point, x,  where p =  & x(x, t ) ,  i.e., , where the line p =  constant intersects the Lagrangian
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Manifold, as discussed in the caption of Fig. B.3. At the stationary phase point, x ,

=  (R 2 0 )
ox

^ p  = & x{x,t).  (B.21)

In order to evaluate (B.12), we write out <F(x;p, t), and integrate by parts

/ dx
p(x0{ x , t ) ,T ( x , t ) )— d,T (B.22)

/ dt
E ( x0{ x , t ) ,T ( x , t ) )— dT

=  -  J  x ( x0, T) dpi2 ' T)dT -  J  E ( x 0, r ) d t i2 : T)dT (B.23)

= “/  x d P ~  I  Edt  (B.24)

= S( x0, t )  (B.25)

=  S( px, t )  (B.26)

In (B.23), we have integrated by parts, cancelled the boundary terms, and used our choice 

of =  0 to  eliminate terms. Eq. (B.24) is a terse abbreviation of Eq. (B.23). <S,(xo, t ) is

defined as the integral in (B.23), and the invertible relationship between (p, t) and (x0, t )

allows us to  consider it to  be a function of (p, t). We also use this relationship to  define a 

Jacobian for the momentum space, i.e.,

S ( x0{p, t ) ,T(p, t ) )  =  S ( p , t )  (B.27)

J ( x 0(p, t ) ,T(p , t ) )  =  (B.28)

We may think of S (p x, t) as a momentum-space action along the trajectory from the initial
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surface to  the final point on the Lagrangian Manifold. Now we can write (B.12) as

^ (p , t) = (27rih) 1/2(2'irh)1/2F(xo{x\p, t ) )
d x j d x o

x exp ^ s g n  ($"(£; p ,t) )^  I<&"(x-,p,t)\~1/2

1/2

e- ”r/4F{x0(p,t))

exp ( i S ( px, t ) / h )

dx /dxo
n r

x exp ( —sg n ($ "(ir;p, t))  ) \&'(x-,p,t)\

X = X

tf ( *

exp ( iS(px , t ) / h )

(B.29)

(B.30)

- 1 /2

To finish evaluating the integral, we need to  determine <!>"(£; p, £); from equation (B.19),

d£Px(x, t)
<F"(£;p,£)

dx
(B.31)

x=x(p,t)

Now we can write (B.31) as

y ( p , t )  = e - i*'4F ( x 0(p,t))

e - ^ 4F ( x 0(p,t))

1
dx d.?x(x,t)
dxo dx

exp (
f in
, T sgn

1
1/2

1 /2

(B.32)

dx

exp ( iS(px , t ) / h ) exp ( y s g n
m  (  d ^ 3x(x, t )

dx

(B.33)

where J ’(px,t) = d p / d x Q. As particles approach the barrier, their momentum decreases, 

and we see from computed Lagrangian manifolds (Fig. B.2(a)) tha t

d ^ x j x ,  t) 
dx

<  0 (B .34)
x=x(p,t)
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at the point of transformation, so

sgn
d & x(x, t) 

dx x—x(p,t)
1. (B .35)

Therefore the local momentum-space wavefunction for the first momentum-chart is

Generally, for every momentum chart of the Lagrangian manifold, there is a compa

rable term  contributing to the global momentum-space wavefunction. We write the local, 

primitive form of the momentum-space wavefunction for each momentum chart as

where fij is the Maslov index for the given momentum chart.

B .1 .1  M aslov  In dex

As indicated in Figs. B.2(c) and B.3, momentum charts are separated by momentum 

turning points, which are extrem a of locally-defined functions p — &  (x, t) for fixed t, i.e., 

points where 09°  (x, t ) / d x  =  0. Near these regions, (p, t) are not appropriate independent 

variables for describing the Lagrangian Manifold, and so we transform back to (x, t) as the 

independent variables to  use. Away from these regions, we transform back again to (p, t). 

These transformations introduce phase differences in the localized primitive momentum- 

space wavefunctions between successive branches. The Maslov index keeps track of these 

phase differences.

To see how these coordinate transform ations introduce phase differences in the prim

V(n t.) = *- i1cl2F(T.Jn.tW (B.36)

(B.37)
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itive wavefunctions for successive branches, we isolate the terms responsible for the phase 

differences from each of the two types of transformations, and develop a rule for determin

ing the Maslov Index for each branch relative to  the previous one.

We saw th a t the transform ation from using (x , t) as local coordinates to using (p, t) as 

local coordinates introduced an “extra” e~ ,7r//2 term  in the primitive wavefunction (compare 

Eqs. (B.8 ) and (B.36)). We chose to  set the initial Maslov Index in (x , t) space equal to 

zero, and the extra e~™/2 in (B.36) corresponds to pj = 1 , in term s of equation (B.37).

Consider again the equation describing a transform ation from (x, t) coordinates to 

(p, t) to coordinates, given by equations (B.29) and (B.31). The two terms in (B.31) 

responsible for the “extra” e~ I7r/ 2 in (B.36) are

e~in/4, and

ITT
exp ( — sgn (<f>"(x;p,f))

I TT (  d ^ x { x , t )

exp * T sgn

(B.38)

(B.39)

Furthermore, also consider a transform ation from (p, t) coordinates to (x, t) coordinates, 

where we use the form of (B.37) for ^ (p , t),

^ (x ,f )  =  ( - 2 tn h)~1/2 J  V(p, t )e ipx/hdp 

=  ( - 2 ?Hh)~1/2 J  F{x0(p, t ))
dp/dxo

e -^ A /2 exp Q  ( s (Px, t )  + p z ) ^

et7r/4F (x 0 (x ,t))
dx/dxo

1/2

e~ i7r/i/2 exp ( l- S { x , t )
h

x exp
iw f d%(p, t )

-sgn
dp

P = P x .

(B.40) 

dp (B.41)

(B.42)

Analogous to equations (B.38) and (B.39), one can see th a t the two terms in (B.42) which 

may combine to yield an extra phase during a transform ation from (p, t ) coordinates to
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(x, t) coordinates are

ei7r/4, and (B.43)

exp (B.44)

Successive branches of the function & x(x, t) describing the Lagrangian manifold are 

separated by a region in which d£Px( x , t ) / d x  = 0. Since (p, t) are not appropriate coordi

nates for describing the Lagrangian manifold near these regions, we must transform from 

(p, t) to (x, t) to describe the Lagrangian manifold in these regions, and transform back to 

(p , t) away from this region on the next branch. Therefore when expressing the primitive 

local wavefunction for successive branches in terms of (p, t ) , our equations must include the 

additional phases introduced by the two transform ations described by Eqs. (B.38)-(B.39) 

and Eqs.(B.43)-(B.44).

More explicitly, when constructing the local primitive wavefunction \k(p, t) for the 

i th momentum-chart of the Lagrangian Manifold, there will always be a region in which 

d & x( x , t ) / d x  —> 0  (i.e., where d p / d x o —» 0 ), which separates the i th momentum-chart 

from the j th momentum-chart. Equation (B.37) is not valid in these regions, and we 

transform from the (p, t) space representation of the wavefunction to  the (x, t) space rep

resentation, which is valid. Continuing past the caustic, we transform  back to  the (p, t) 

space representation, and denote this new momentum-chart the j th one. Included in 

these transformations are four terms, given by (B.38), (B.39), (B.43), and (B.44), whose 

product yields a phase difference in the (p, t) representation of the wavefunction on the 

j th momentum-chart relative to the i th momentum-chart. We write the general form for
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Vj (p , t )  =  F ( x l ( p , t ))

1/2
exp

i S j { p , t ) iirjij
ft 2 ~

(B-45)

but it can also be w ritten using the Maslov index for the adjacent i th chart and the terms 

th a t arise from transforming from (p, t) —> (x, t) —> (p, t):

Vj {p , t )  =  F { x i ( p , t ))

ein/4 exp

1 /2

exp
iSj (p , t )  inpr

h
(B.46)

—  ITT
-sgn

(  djt(p, t) 
\  dp P=Px .

e 17r̂ 4 exp ( ^-sgn
d£?x(x, t )

dx

We can combine terms in the above equation and write a more compact version:

i f j (p, t )  =  F(x i (p , t ) )
1 /2

/ i S j ( p , t ) in &exp  r
x exp

/  5g(p , t)in
T s g n V 3p p = p i ,

in  /  d£Px(x, t)
+ T SgI> (  dx X=I/

(B.47)

If d?c(p, t ) /dp  <  0 at the point of transform ation on the i th momentum chart, then 

d£Px{x. t ) / d x  > 0 at the point of transform ation on the j lh momentum chart, and Eq. (B.47) 

reduces to

Vj (p , t )  =  F(x i (p , t ) )
1/2

exp
iSj (p, t ) injli \

-~2 ~ J  exp

=  F ( 4 ( p , t ) )  

= Fi x l i p i t ) )

J A p J )

J j (p , t )

exp

exp

iS j (p , t )  in pi
ft 2~

iSj {p, t )

in
e x p l y

ft T  ^  “  1}

(B.48)

(B.49)

(B.50)
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Comparing Eqs. (B.45) and (B.50), we see th a t pj  =  pi — 1. Similarly, if d?c(p,t)/dp > 0 

at the point of transform ation on the ith momentum chart then d£Px( x , t ) / d x  <  0  at the 

point of transform ation on the j th momentum chart, and fij = pi + 1. Thus we see tha t 

the Maslov Index on the j th momentum chart pj  =  //, ±  1, and is determined by signature 

of the derivatives in Eq. (B.47)at the point of transformations. If we restrict ourselves to 

using a typical right-handed coordinate system, as shown in Fig. B .l, we can summarize 

the Maslov index for successive momentum-charts via the following theorem.

B .1 .2  T h eorem  I

Each time any path on the Lagrangian Manifold passes through a caustic, i.e., where 

d£Px( x , t ) / d x  =  0, the Maslov Index will change by ±1 from its value on the previous 

momentum-chart. We use the path shown in Fig. B.2(c), which is a constant-time slice 

of the Lagrangian manifold swept out by trajectories a t a chosen final time which is large 

enough such th a t all particles have scattered far from the potential barrier. Each time the 

path passes through a caustic, the Maslov Index changes by ±1, and we use the following 

rule to determine the increment.

When the path passes through a caustic which separates the ith region from the j th 

region,

Pj = pi -I- 1 , if the path turned right (clockwise) through the caustic, and (B.51) 

Pj = Pi — 1 , if the path  turned left (counterclockwise) through the caustic. (B.52)

The Maslov index for the first momentum-chart to encounter the barrier is pi  = 1  

and is determined by the initial transform ation to  (p, t) coordinates (Eqs. (B.10)-(B.37)), 

and Maslov indices for all other momentum-charts are calculated relative to it from the 

rule stated above.
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B .1 .3  C orrection s N ear M om en tu m  T urning P o in ts

The primitive semiclassical wavefunction (Eq. (B.37)) diverges a t momentum turning 

points, where Jb(p, t) vanishes. To correct this divergence, we construct an alternative

way of writing the semiclassical wavefunction, which will be valid near momentum turn

ing points in classically-allowed regions. We then match this form of the wavefunction 

to a linear combination of the Airy function and its derivative, in order to extend the 

semiclassical approximation into classically-forbidden regions [130].

We start by adding the primitive forms of the wavefunction, (B.37), for two successive 

momentum charts, and we denote this wavefunction T m+n(p, t). We introduce the following 

notation

M p A)  = J { p , t )
- 1 / 2

(B.53a)

A«S(p, t) = S n(p, t ) -  S m(p, t) 

S(p, t ) =  [<Sn(p, t) +  S m(p, t) 1 / 2

(B.53b)

(B.53c)

A A(p, t) = A n(p, t ) -  A m{p, t )

A(p, t) =  [An(p, t) + A m(p, t)] /2  

A F ( x 0(p,t)) =  Fn(x0(p, t )) -  Fm(x0(p,t))

F (x0(p, t )) =  [Fn(a:o(p, t )) +  Fm(x0(p, t))\ /2 ,

(B.53d)

(B.53g)

(B.53e)

(B.53f)

where the m  and n  subscripts denote the momentum chart with the lower and higher 

Maslov index, respectively (i.e., p n = + 1). W ith these definitions, we may write 'Em+r(
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as

$'m+n{p, t) =  exp
»s(p, t) 

h
e - i7 r A m /2 ^ ^  p ^ e ~ iA S{p ,t) /2 h  _|_ p ^ e i ( A S (p , t ) /2 h - i r /2 )

( A A/ 2 )  —FTnQ-iAS(P'ty 2h + Fnei{AS(p>t)/2ti- K/2)

Finally, we factor and make use of (B.53f) and (B.53g) in (B.54) to obtain

H?m+n(p, t) =  exp ( -  %  ) e J  AF i —iA S ( p , t ) / 2 h  _|_ A S ( p , t ) / 2 h —7 r /2 )

+

+

+

AA F  
2

AAF
2

A A A F

_ e - i A S ( p , t ) / 2 h  _|_ e i ( A S ( p , t ) / 2 h - i r / 2 )  

_ e ~ i A S ( p , t ) / 2 h  e i (A S (p ,t) /2 f i-7 r /2 )  

e - i A S ( p , t ) / 2 h  e i ( A S ( p , t ) / 2 h - t t/2 ) )
Combining terms, (B.55) may be w ritten in the simplified form,

(B .54)

(B.55)

y m+n(p, t) = exp
»S(p, t) ipm7r \

X

+

AF-f-

h  2  J

AAAF~\  r _ jA S ( p , t ) /2h _|_ g i(A S (p ,f ) /2 f t—7r / 2 )

rA A F  AAF
— h —r— _  e ~ i A S ( p , t ) / 2 h  _|_ Qi ( A S ( p , t ) / 2 h - - n / 2 )

(B.56)

We may further simplify (B.56) by combining the exponential terms into trigonometric
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functions. If we focus on the exponential terms in line two of (B.56), we see th a t

e ~ i A S ( p , t ) / 2 h  _|_ e i ( A S ( p , t ) / 2 h - w / 2 )  _  e ~ i t t / 4  

- i t r /4

e - tA S ( p , t ) /2 f te i ir /4  _|_ e i A S ( p , t ) / 2 h Q- i t t / 4

=  e

=  2 e~ i7r/4 cos

e - i ( A S ( p , t ) / 2 h - n / 4 )  _j_ Qi(<A S ( p , t ) /2 h - tx /4 ' )

(  A <S(p, t)
2  h

(B.57)

(B.58)

(B.59)

Similarly, if we focus on the bracketed term involving the exponents in the last line of 

(B.56), we see tha t

iA S ( p , t ) / 2 h  e i ( A S ( p , t ) / 2 h —rr/2 ) _  e ~-i3ir/4 _ g —iA S ( p , t ) / 2 h ^ i3 t r /4  _j_ ^ i A S ( p , t ) / 2 h ^ i t t / 4

_ e-i37r/4

i3it /4

e - i i r e ~ i A S ( p , t ) / 2 h e i3tr /4  _j_ GiA S { p , t ) / 2 h Qiwj4  

e - i (A S (p , t) /2 / i+ 7 r /4 )  _|_ (j ( A S ( p , t ) / 2 h + i r / 4 )

We may now substitute (B.59) and (B.63) into (B.56) to  write

(B.60)

(B.61)

(B.62)

(B.63)

x

+

AF ■

iHp,  t) _  ifimir \  
h ~ 2 )

A A A F i f  A S(p , t )  7r
e~i,r/4cos

rA A F  AAFi
- r — +  — —

2  h

{  A S(p,  t) ' 7T

2 h
e - i 3 w / 4  c o s  |  ■ +  -

(B.64)
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Noting th a t cos(x — 7r / 4 ) =  sin(x +  7t / 4 ), we may write (B.64) as

=  2  exp
iS{p, t)

h 2

A A A F

AA F  AAF

(B.65)

Eq. (B.65) is an alternative way of writing the primitive wavefunction (Eq. (B.37)) 

near momentum turning points, bu t unlike Eq. (B.37), this form of the wavefunction does 

not diverge in these regions.

B .1 .4  R ela tio n  to  A iry  F unction

We wish to extend the semiclassical wavefunction into classically-forbidden regions. 

We achieve this by matching Eq. (B.65) to  a linear combination of the first-order asymp

totic form of the Airy function and its derivative. These first-order term s are given by

where (| a rgz | <  and Q =  (2 /3 )z3/2, as given by Abramowitz 10.4.60 and 10.4.62.

(B.6 6 )

(B.67)

We wish to match the term s of Eq. (B.65) with an equation in the form of

V m+n(p, t ) =  Ci{p, t )Ai (—z{p, t)) +  C2 (p, t)A i'(-z (p , t)). (B.6 8 )
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By inspecting Eqs. (B.65)-(B.67), we immediately see th a t

c =
A S  f a t )

2  h =  (2/3) |z(p ) ]3 /2

2 /3

(B.69)

(B.70)

We must now match term s in Eqs. (B.65) with term s in Eq. (B.6 8 ) in order to determine 

the coefficients C\{p, t ) and C2 (p, t). By inspection, we see tha t

7T- 1 /2 [z(p)\ 1/4 Ci(p, t) sin (C +  0  =  2  exp

x e 87r/ 4 sin

i S f a t )  i p m ir \
» 2  ;

. /  A S  f a t )  7r '

V 2 ft y

| a F  +
A A A F

(B.71)

A F  +
A A A F i (B.72)

x e—in /4

Cl f a t ) =
2 e x p ( % ^  -  [ A F  + A A A F a  — 17t / 4

7T- 1 / 2 [ - s ( p ) ] ’
-1 /4 (B.73)
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Similarly,

—  1 /2  — 7T ' [.z(p)]1/4C2(p, i) cos (C +  J )  = 2  exP
*§(p, t) ipmir A A F  AAW 

— —  H —

x e - ^ c o e  +  ?V 2 /i

-7r-1/2[2(p)]1/4C'2(p ,i) =  2exp fS(p, f ) ijlm'K A A F  AAW
— 77— +  —

x e - iZn /4

C2(p,t)

o  ( «S(p,t) i/im Tr'i [A A F  , A A F
- ^ eXP ^  A “  2 ) l ~ 2 ~  + ~2~_

x - 1 / 2 [z(p) ] 1/ 4

(B.74)

(B.75)

iZn /4

(B.76)

We may now insert these coefficients into Eq. (B.6 8 ) to  obtain

4 / m + n i /P i  t )  —

2 exp [AF + A A A F - i n /4

7T- 1 / 2 \z{p)\

2 ex p ( % ^ - ^ ) A A F  , A A F e - i Z n / 4

7T -1 /2  ^ ( p ) ]  i / 4 -A i'(-z (p ,/) )

(B.77)

We use this form of the wavefunction in the regions where the primitive expression diverges,

^m+n (P> t) constructed via thei.e., near caustics. Figure B.4(d) shows an example

primitive forms for >̂m{p,t) and 4,Il(p, t) (Eq. (B.37); red curve) and the corrected form 

(Eq. (B.77); blue curve). The primitive form can be seen to  diverge near the boundary of 

the classically-allowed region, while the corrected form does not. Away from the boundary 

of the classically-forbidden region, and inside the classically-allowed region, the two forms 

agree. The corrected form in the plot can be seen to  extend into the classically-forbidden 

region; the details of this extrapolation are discussed next.
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FIG. B.4: Primitive and corrected forms of local wavefunctions. (a) An example
^m+n(p,t).  The red curve is the primitive semiclassical form, represented by the sum
mation of equation (B.37) for the two consecutive branches, while the blue curve is the 
form given by equation (B.77). The primitive form can be seen to  diverge, while the 
blue curve matches the primitive semiclassical form within the classically-allowed region, 
passes through the caustic smoothly, and decays in the forbidden region, (b) An exam
ple switching function used to smoothly go from the primitive semi-classical form of the 
wavefunction to (B.77). (c) Zoom of (a), in the region of transition between use of the 
primitive and Airy forms of the wavefunction. The black points show the values actu
ally used for the local wavefunction. The black points lie between the primitive and Airy 
forms of the wavefunction, and are determined via the switching function, (d) Example

of
2

' & m + n ( p ,  t )  . The red curve is the primitive form, the blue curve is the Airy form, and
the black points are the values which are actually used.
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B .1 .5  C lassica lly -F orb idden  R egion s

Equation (B.77) can also be used to describe the wavefunction in classically-forbidden 

regions. In order to use it in the forbidden regions, however, we must first construct a 

m ethod of extrapolating values of A S(p,t ) ,  § (p,t),  A A(p,t) ,  A(p,t ) ,  A F ( x 0(px,t)) ,  and 

F(x0{px ,t))  into the forbidden regions. We start by examining the behavior of AS(p,t);  

recall th a t

A S(p,  t) =  Sn{p, t) -  Sm(p, t )

-  /  Xn{xo,r) 
J n

dp(x0,r )
dr

dr  + / x m(x0, r )  
J  m

dpjxp, T) 
dr

dr

r p  r p
-  / x n(p )dp +  / x m{p')dp 

J px j i>x

(B.78)

(B.79)

(B.80)

As can be seen in Fig. B.5(A), near the caustic, the relationship between p  and x  may 

be approximated as

p -  px =  a  (x -  x )2 , (B.81)

where px and x  are the (x,p)  values a t which d£?x(x, t ) / d x  = 0. Solving for x,  we obtain

x  — ± (P ~  P x )

a

1 /2

4- x. (B.82)

We substitute (B.82) into (B.80) to  obtain

A S ( p , t )  ~  /  f  ±
Px \

{p' -  Px)
a 1/2 - )

(p' -  P x )

a

1/2

-I- x  j dp'
/  m

(B.83)

As can be seen in Fig. B.5(A), x n and x m are the positive and negative roots of (B.82).
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We are examining the action values for trajectories ending on two successive momentum 

charts near a caustic; our use of (B.81) tells us th a t (x n — x ) =  — (x m — x). If we take 

x n to be the negative root of (B.82), x m is the positive root, and we may write the last 

equation as

A 5 ( p , t ) « / ' ( r V " W
J p x

« 2 / ’
jf> X

1/2

x  1 dp‘' ♦ /J Px

ip' -  Px)
a

1/2

-1- x  1 dp1

3y/a [(P -  P x ) f /2

(B.84)

(B.85)

(B.8 6 )

In this manner, we see th a t the following linear relationship has been established

[A5(p,<) 7 oc ( p - p x ). (B.87)

This relationship is shown in Fig. B.5(d).We will use (B.87) for extrapolating AS{p , t )  

into the forbidden regions. We also wish to develop an approximation for the relationship 

between §(p, t) and (p — px) to  use for extrapolation into the forbidden regions. Recall 

th a t

S(p, t) S nip , t) + SmiP, t )

J Xn{x0,T)d* ^ l l d r - j  xm{x0, t )
dpjx0,T ) 

dr
dr

Jrp rp
' x n{p)dp -  / x rn(p)dp

Px "Pi

'ip' -  Px)1 1/2

Px

■p

IJ p x a Jpx
i ^  -  Px)

a

1/2

(B.8 8 ) 

(B.89) 

(B.90)

+ x )  dp (B.91)
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FIG. B.5: Functions used for extrapolating momentum-space actions into classically- 
forbidden regions. (A) Final momentum as a function of initial position near a caustic. 
The caustic is the point where d p / d x f  = 0. In the immediate vicinity of the caustic, the 
curve can be approximated as quadratic. (B) AS(p , t )  as a function of Ap = (p — px). 
(C) S(p,t)  as a function of Ap = (p — px), illustrating equation (B.94). The blue curve 
is computed data, and the red curve is fitted from a polynomial fit. The red curve is 
used for extrapolating S(p ,t)  into the forbidden region. (D) A S(p , t )  as a function of 
A p  — (p — px)i illustrating equation (B.87). The blue curve is computed data, and the 
red curve is fitted from a polynomial fit. The red curve is used for extrapolating AS(p , t )  
into the forbidden region.
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Again taking x n as the negative root and x m as the positive root of (B.82), (B.91) becomes

«  —2  I xdp' .

1 /2

+  x  j dp‘
Jpx

(P’ ~ P x )
a

1 /2

+  x dp' (B.92)

(B.93)

Solving equation (B.93) establishes a linear relationship between §(p, t) and (p — px), which 

will be used for extrapolating S(p, t) into the forbidden regions, i.e.,

S(p,t) oc ( p - p x). (B.94)

This relationship is shown in Fig. B.5(c).

Computations show th a t in the classically-allowed regions near caustics, the following 

linear relationships hold:

[A(p,«)] 4 oc ( p -  px) 

[AA(p, t ) ]4 oc (p -  px) ,

(B.95)

(B.96)

as shown in Fig. B.6 .

In order to  construct values for F(xo{px ,t))  and A F ( x 0(px,t))  in the classically- 

forbidden regions, we extrapolate x0 into the forbidden regions, and use these xq values to 

evaluate the two functions. This is achieved by constructing polynomial fits for «^x(^o) 

in the vicinity of the caustic, and inverting the relationship between & X(x0) and x 0 to 

obtain x 0(p) values for classically-forbidden momenta. Since & x{xo) is a locally-quadratic 

function near the caustic, this technique yields two complex x 0(p) values (one for each 

momentum-chart). These complex x 0(p) values are then used to numerically determine 

F (x0(px ,t))  and A F ( x 0(px ,t))  in classically-forbidden regions.
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FIG. B.6 : Functions used for extrapolting amplitudes into classically-forbidden regions. 
(A) A (p, t) as a function of A p  = (p — px). (B) A A(p, t) as a function of A p  =  (p — px). 
(C) [A(p, t ) ] - 4  as a function of A p  = (p — px), illustrating equation (B.95). (D) [AA(p,t)]4 
as a function of A p  = (p — px), illustrating equation (B.96). In (C) and (D), the blue 
curve is computed data, and the red curve is fitted from a polynomial fit. The red curve 
is used for extrapolating A A(p, t) into the forbidden region.
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We now have everything we need to construct a non-divergent form for local wave- 

functions near caustics and in classically-forbidden regions. We use Eq. (B.77) for the 

wavefunction, and use the relationships given by Eqs. (B.87), (B.94), (B.95), and (B.96) 

to obtain values for A<S(p, t), § (p, t), A(p, t), and A A(p, t) in classically-forbidden regions. 

These values, along with values for F(x0 (Px, t)) and A F(xo(pX: t)) for complex x Q, are then 

used in Eq. (B.77) in classically-forbidden regions.

B .2  G lobal W avefunction

We have seen th a t each momentum-chart of the constant-tim e slice of the Lagrangian 

manifold contributes a term  to  the global wavefunction. The global wavefunctiuon is then 

given by a linear combination of these local wavefunctions,

*(p,t) =  £ 9 l (p,t). (B.97)
b

We will illustrate the steps necessary to  construct the final wavefunction for the sim

plest case, like tha t shown in Fig. 2.3(a), which contains two branches per cycle. Here 

we denote as “branches” the regions separated by momentum turning points in p(xo,T/), 

i.e., regions separated by points where dp(x0,T f ) /d x o =  0. We define a “cycle” as one 

barrier oscillation, i.e., one period of p(x0,Tf). We must determine the regions of validity 

of the two forms of the wavefunction, Eqs. (B.37) and (B.77), for all branches. Due to  the 

periodicity of final momentum and initial position, we can do this for a single cycle only, 

as Eqs. (B.37) and (B.77) are valid in the same regions for the ith branch within every 

cycle.

We choose the cycle spanning branches (a, b, c) in Fig. 2.3(a). We start with branches 

a and b, and construct the primitive form of the wavefunction by adding Eq. (B.37) for
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the two branches. We then construct tya+b(p, t) via Eq. (B.77). These two forms of the 

wavefunction are valid in different but overlapping regions, and we compare the two to 

determine the region of validity for each. This comparison shows th a t the Airy form is 

valid in regions D  and E  in Fig. 2.3(a) (p < 1.66). In region D  (1.36 < p < 1.66), where 

both forms of the wavefunction are valid, we use a switching function th a t varies between 

0  and 1 to weight each form, and use a linear combination of the two (an example of a 

switching function is shown in Fig. B.4(b)). We then use

^ a+6(p, t) = f x (p) [Airy form] +  (1 -  / i  (p)) [Prim, form ], (B.98)

as the local wavefunction for branches a and b in regions C, D, and E,  where

h  (P) = \  (tanh (K  \P ~  P\) +  1] (B -99)

is the switching function; fx —» 0 at the boundary between regions C  and D. “Airy form” 

and “Prim, form” in Eq. (B.98) refer to  ^ a+b(p, t) calculated via Eqs. (B.77) and (B.37), 

respectively.

We repeat this process for branches b and c, and find th a t the Airy form of this wave

function, 'I'i)+C(p, t), is valid in regions A  and B  (p> 1.77). Both forms of the wavefunction 

are valid in region B  (1.77 < p  < 2.01).We use a switching function in region B  to  weight 

each form of the wavefunction, and use a linear combination of the two. We use primitive 

semiclassical wavefunctions for all branches in region C  (1.66 < p  < 1.77).

W ith knowledge of where each branch’s primitive and Airy forms of the local wavefunc

tion may be used, one may construct a final wavefunction, which is a linear combination 

of all local wavefunctions. For cases with more than  two branches per cycle, a more elab

orate version of the same process is used. However, the steps for constructing the global
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wavefunction remain the same: (i) all local wavefunctions must be summed to obtain the 

global wavefunction, (ii.) care must be taken to determine the regions for each branch in 

which one should use the primitive form for the wavefunction (Eq. (B.37)) or corrected 

form (Eq. (B.77)), or a linear combination of the two.

B .3  Sem iclassical Im plications o f  P eriod icity

Since the classical initial distributions we use are wide in configuration space, the 

entire distribution needs many barrier oscillations to  pass through the barrier region. Con

sequently, the summation of ^ ( p ,  t) (Eq.(B.37)) over all j  momentum-charts corresponds 

to summing over many trajectories th a t end at each classically-allowed momentum, and 

these trajectories begin with Xq values from many different oscillation cycles, as seen in 

Fig. B.2(b). Therefore, the semiclassical calculation includes interference from trajectories 

from many different oscillation cycles. It was shown earlier th a t interference of trajec

tories from different oscillation cycles yields peaks in final momentum distributions at 

momenta satisfying E n = E0 + nhui, consistent with Floquet theory. This section serves 

to quantitatively show how this arises from a semiclassical perspective. This discussion 

is limited to classically-forbidden regions, but its validity could be extended to  include 

regions near caustics and in classically-forbidden regions by using the corrected form of 

local wavefunctions, Eq. (B.77).

Here we let L  denote the range of initial Xq values for which the initial distribution 

is defined, and we consider trajectories ending at a given p /. These trajectories can begin 

with any x 0 in L. We also only consider trajectories which have these properties at a 

large enough Tf — t f  such th a t they have been scattered far from the barriers, and the 

potential is effectively zero. We examine an interval of L , denoted by I,  which has length 

|po|T/ra, which corresponds to  one oscillation period within L. We label all trajectories
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which begin in I  and which end at a given p f  using the label b. (For example, an initial 

x-value from inside /  is denoted as Xq). We may then think of groups of initial positions 

x (0b'c> = Xq — c\p0\ T / m  which, when c is an integer, scatter to  the same final momentum 

Pf.  The meaning of these labels is tha t b (branch) labels a trajectory from within one 

oscillation cycle, and c (cycle) denotes different oscillation cycles.

We may now use these labels to  express the equation for the global primitive wave

function in a different manner than before,

OO

®(P>0 = ] C  F ( x °M (P’*))
b c=—oo

1
1 /2

o7(6,c)(P) Fj

X exp . (B.100)

Here, we are explicitly summing over all branches within a cycle, and then summing over 

all cycles. The label c is allowed to extend over all integers, because the initial envelope 

F ( x 0) —> 0 outside of L. Since all trajectories which have the same b index and differ only 

by a different c index, such as Xq’ĉ  and XQb’c \  scatter from the barriers in identical fashion, 

they have the same Jacobian and Maslov index,

{̂b,c){.Pi )̂ = o7(6,0)(Pi 0  =  <Jb{Pi 0)

/i(6,c) =  P(b,0) — Pb- (B.101)

Furthermore, the relationship of these trajectories’ actions can be expressed algebraically. 

If we consider S(b,o) and «S(bil), the (6,0) and (6,1) trajectories follow the same path; 

however, the (6 , 1 ) trajectory spends one more oscillation cycle on the left side of the 

barrier(s), bu t the (6 , 0 ) cycle spends one more oscillation cycle to the right of the barrier(s). 

Therefore by Eq. (B.24),
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*5(6,1) (p,t) -  <5(6,0) ip,t) = A E T ,  (B.102)

where A E  = p2/ 2 — p i / 2 is the difference in the trajectories’ final and initial energies. By- 

noting tha t this quantity is independent of both b and c, we see th a t

<5(6,c) =  <5(6,o) T  c A E T  = Sh +  c A E T .  (B.103)

Eqs. (B.101) and (B.103) provide an efficient m ethod for constructing terms when com

puting the semiclassical wavefunction. R ather than  directly integrating the entire line of 

initial conditions L,  one only needs to integrate trajectories for initial conditions within 

one cycle, e.g. the interval I ,  and construct J(b,c)iPit), P(b,c)i and «S(&,C) for other cycles via 

(B.101) and (B.103). The semiclassical sum can now be rewritten as

= ^ 2 Db(p,t)
1

Jb{p, t)

1/2

exp , (B.104)

where
OO

Db(p, t) =  F  (xl(p,  t ) -  cpoT/m ) elcAET/fi. (B.105)
c = —oo

Generally, this sum is performed numerically. However, in some cases, the sum can be 

expressed in closed form. We examine one such case next. Consider an initial packet 

envelope which is “rectangular” or “square,” meaning th a t F{xo) =  F0 is constant over 

a length L  =  N\p0\T, and F ( x 0) =  0 outside L. L  corresponds to  an initial distribution 

th a t is N  oscillation cycles wide. This type of envelope allows us to write Eq. (B.105) as

D b(p, t ) -  D{p) =  F0 V  e2™£ =  /.;,e2- (’v - 1)/2 Sin(r - ! ) , (B.106)
sin(7re)

c=0

where e =  A E/(Huj). Because D(p) does not depend on b, Eq. (B.104) factors into the
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GaussianGaussian

rectangularrectangular

FIG. B.7: “Comb” functions which are responsible for sharply-peaked final momentum 
probabilities. Plot of \D\2 for an initial rectangular [lower curve, Eq. (B.106)] and Gaus
sian [upper curve] initial packet profiles. For the rectangular case, N  =  3,10, showing 
convergence to delta functions a t integer values of e. The widths (3 of the Gaussian pack
ets are chosen to  match the standard deviations of the corresponding rectangular packets.

product of two quantities: (i) D(p), which involves only a c sum, and (ii) a quantity 

involving only a sum over b:

If we allow the width of the initial distribution to tend to infinity, D(p) approaches a 

“comb” of delta functions according to

lim S1--(J- y  =  jr S ( e - k ) .  (B.108)
N ->oo sm(7re)

v K = — OO

Therefore the final wavefunction is sharply-peaked at momenta satisfying A E  =  khw (i.e., 

Ek — E 0 + kfiuj) which is consistent with Floquet theory. This is shown in the lower curves 

of Fig. B.7 for different values of N.  The sum over branches in Eq. (B.107), as discussed in
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earlier chapters, thus “weights” this comb of delta-like functions, and is responsible for the 

relative heights of the peaks. It is not always possible to  express this sum analytically in 

such compact form, but the same principles apply for other types of initial envelopes. The 

upper curves in Fig. B.7 show calculations of the “comb” function for a Gaussian-shaped 

initial envelope.
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