
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

1989

Adaptation of LR parsing to production system interpretation Adaptation of LR parsing to production system interpretation

Louis Paul Slothouber
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Artificial Intelligence and Robotics Commons

Recommended Citation Recommended Citation
Slothouber, Louis Paul, "Adaptation of LR parsing to production system interpretation" (1989).
Dissertations, Theses, and Masters Projects. William & Mary. Paper 1539623785.
https://dx.doi.org/doi:10.21220/s2-xf09-8x17

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at
W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an
authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623785&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.wm.edu%2Fetd%2F1539623785&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-xf09-8x17
mailto:scholarworks@wm.edu

INFORMATION TO USERS

The most advanced technology has been used to photo
graph and reproduce this manuscript from the microfilm
master. UMI films the text directly from the original or
copy submitted. Thus, some thesis and dissertation copies
are in typewriter face, while others may be from any type
of computer printer.

The quality of this reproduction is dependent upon the
quality of the copy submitted. Broken or indistinct print,
colored or poor quality illustrations and photographs,
print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a
complete manuscript and there are missing pages, these
will be noted. Also, if unauthorized copyright material
had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are re
produced by sectioning the original, beginning at the
upper left-hand corner and continuing from left to right in
equal sections with small overlaps. Each original is also
photographed in one exposure and is included in reduced
form at the back of the book. These are also available as
one exposure on a standard 35mm slide or as a 17" x 23"
black and white photographic print for an additional
charge.

Photographs included in the original manuscript have
been reproduced xerographically in this copy. Higher
quality 6" x 9" black and white photographic prints are
available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms International
A Bell & Howell Information C om pany ■

300 North Z eeb Road, Ann Arbor, Ml 48106-1346 USA
313/761-4700 800/521-0600

. ·-·-·-- . --~-- --------

Order Number 9012622

A d ap ta tio n of LR parsing to p roduction system in te rp re ta tio n

Slothouber, Louis Paul, P h .D .

The College of William and Mary, 1989

Copyright ©1989 by Slothouber, Louis Paul. All rights reserved.

U M I
300 N. Zeeb Rd.
Ann Arbor, MI 48106

Adaptation of LR Parsing to Production System
Interpretation

A Dissertation
Presented to

The Faculty of the Department of Computer Science
The College of William and Mary in Virginia

In Partial Fulfillment
Of the Requirements for the Degree of

Doctor of Philosophy

b y

Louis P. Slothouber
August 1989

Copyright © 1989 by Louis Paul Slothouber, All Rights Reserved

APPROVAL SHEET

This dissertation is submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Louis P. Slothouber

Approved, August 1989

W. Robert Collins

William L. Bynum

Qo~
PMJ/Kearns

Keith Miller

£7 a)
Robert E. Noonan

Cyfithia N ull
Department of Psychology

11

For my parents,

who led me to the first page,

and m y wife,

w ho saw me through to the last.

TABLE OF CONTENTS
1. Introduction... 1

1.1. Introduction to Production Systems 1

1.1.1. Structure... 2

1.1.2. Interpretation.. 5

1.1.3. Procedural Control... 6

1.1.4. Production System Programs, Languages and Architectures 7

1.2. Problems and Related W ork... 9

1.2.1. The Execution Speed Problem ... 9

1.2.2. The Procedural Control Problem .. 12

1.3. Thesis Overview .. 16

1.3.1. Architectural Requirements of Large Production System s 16

1.3.2. The Palimpsest Production System Architecture.......................17

1.3.3. Thesis Organization..19

2. Production Systems..21
2.1. Introduction to Production Systems..21

2.1.1. Post Production Systems..21

2.1.2. Categories and Attributes.. 23

2.1.3. Additional Predicates... 25

2.1.4. Operational Variables and Direct References............................. 26

2.1.5. Negated Patterns... 28

2.1.6. Additional Operations... 29

2.1.7. Determinism..30

2.2. Production System Definitions and Theorems.....................................31

2.2.1. Structure..31

2.2.I.I. W orking Memory............ 31

iv

2.2.I.2. Production Memory..33

2.2.1.2.1. Conditions... 33

2.2.1.2.2. Actions... 38

2.2.2. Interpretation...41

2.2.2.1. Backtracking Strategy... 41

2.2.2.2. Evaluation Strategy.. 41

2.2.2.3. Selection Strategy.. 42

2.2.3. Procedural Control.. 44

2.2.3.1. Controlled Production Systems...44

2.2.3.2. Examples of Common Control Constructs.........................48

2.2.3.2.1. Direct Sequencing.. 48

2.2.3.2.2. Fall-Back Control and Held Result Usage........... 49

2.2.3.2.3. Selection..49

2.2.3.2.4. Iteration...50

2.2.3.2.5. Modules and Hierarchies..50

2.2.3.2.6. Concurrent Control Constructs.............................51

2.3. Scope of Controlled Production Systems...52

3. LR Parsing..56
3.1. LR(0) Parsing..57

3.2. Enhancements to LR(0) Parsing...61

3.2.1. CLR(0) Parse Tables.. 62

3.2.2. Disambiguation Predicates.. 65

3.2.3. Semantics Function.......................66

3.2.4. CLR(0) Parsers...67

4. The Palimpsest Parser Production System Architecture................70
4.1. Introduction to Palimpsest Parsers... 70

4.1.1. Conflict Resolution of Controlled Production Systems........... 70

4.1.2. The Fire First Conflict Resolution Function..............................71

4.1.3. Control Inform ation...72

4.1.4. Memory Support Information...........................77

4.1.5. Condition Membership Information...79

4.2. Palimpsest Parser Definitions and Theorems.....................................86

4.2.1. Structure..86

4.2.1.1. Working Memory ... 86

4.2.1.2. Production Memory... 88

4.2.2. Interpretation...93

4.2.3. Procedural Control..95

4.3. Scope of Palimpsest Parsers.. 96

5. Analysis of Palimpsest Parser Performance.................................102
5.1. Implementation Issues.. 102

5.1.1. Implementing Working Memory.. 103

5.1.1.1. A Working Memory Data Structure...................................103

5.1.1.2. Adding Elements to Working Memory.............................104

5.1.1.3. Removing Elements from Working M emory................ 107

5.1.2. Implementing Disambiguation Functions...............................108

5.2. Palimpsest Parser Time Costs.. I l l

5.2.1. Overview of Palimpsest Parser Execution..................................I l l

5.2.1.1. Finding an Instantiation... 112

5.2.1.2. Firing an Instantiation...113

5.2.1.3. Applying Control Rules.. 113

5.2.2. Effects of Production Memory Size on Time............................ 114

5.2.2.1. Worst Case Effect of Production Memory Size on T im ell4

5.2.2.2. Best Case Effect of Production Memory Size on Time....ll7

S.2.2.3. Expected Effect of Production Memory Size on Time...118

5.2.3. Effects of Working Memory Size on Time............................... 120

5.2.3.1. W orst Case Effect of Working Memory Size on Time ...120

5.2.3.2. Best Case Effect of Working Memory Size on Tim e...... 121

5.2.3.3. Expected Effect of Working Memory Size on Time....... 121

5.3. Palimpsest Parser Spade Costs... 121

5.3.1. Overview of Palimpsest Parser Composition............................121

5.3.1. Effects of Production Memory Size on Space.............................122

5.3.2. Effects of Working Memory Size on Space............................... 123

5.4. Empirical Tests of Palimpsest Parsers...123

5.4.1. Description of The Testing Methodology.................................. 124

5.4.2. Empirical Results.. 125

6. Palimpsest Parser Enhancements... 129
6.1. Additional Features.. 129

6.1.1. Backward-Chaining Evaluation.. 129

6.1.2. Separate Compilation Units... 132

6.1.3. Conventional Conflict Resolution... 132

6.2. Future Research... 134

6.2.1. M odular Production System Language.......................................134

6.2.2. Performance Optim izations... 134

6.2.3. Explanatory Capability...134

6.2.4. Uncertainty..135

6.2.5. Reasoning About Controlled Production Systems...................135

6.2.6. Concurrency...136

7. Conclusion..137

Bibliography.. 139

Appendix A. Notation................ 144

Appendix B. A Complete Production System Example....................147
B.l. Designing a Production System ... 147

B.2. Applying The Palimpsest Transformation..153

The Palimpsest Grammar for LOADBAY..156

B.3. Execution of the LOADBAY Palimpsest Parser.................................160

ACKNOWLEDGEMENTS

I wish to express my deepest appreciation to my advisor, Bob Collins, for
his patient guidance, and criticism throughout this investigation. I am also
indebted to Randall M eyer for his insightful comments regard ing early
portions of this work, and to the members of my committee for their careful
reading and criticism of this manuscript. Laurie King and Stef Lucas deserve
special recognition for their words of encouragement, and for their much
needed last m inute aid. Most importantly, I w ish to thank my wife, Karen, for
her invaluable support: emotional, financial, and grammatical.

No.

5.1
5.2
5.3

LIST OF TABLES

Page

127
128
130

N am e

Worst Case Results..........................
Best Case Results..............................
Typical Production System Results.

X

LIST OF FIGURES

No. N am e Page
1.1 A Sample W orking M emory...2
1.2 A Sample Production... 3
1.3 A Sample Instantiation.. 5
1.4 Unordered Productions...8
1.5 Sequential Productions...8
1.6 Simple Implementation of the M atch Phase........................10
2.1 Direct References vs. Operational Variables........................ 27
2.2 A Sample Production...30
2.3 Sets Containing Working M emory Elements.....................45
3.1 A Canonical Set of LR(0) Parse Tables...................................59
3.2 Canonical CLR(0) Parse Tables.. 64
3.3 Alternate Form of CLR(O) Parse Tables................................. 65
4.1 A Controlled Production System ...73
4.2 CLR(O) Tables for FIGURE 4.1.. 74
4.3 N ew CLR(O) Parse Tables for FIGURE 4.1...............................82
4.4 CLR(O) Parse Tables for Turing M achines........................... 101
5.1 A Working M emory Data Structure...................................... 103
5.2 A n Ada Implementation of Function d.............................. 108
5.3 Testing Many Element Predicates in Function d109
5.4 Procedures Called by Function d .. 110
5.5 A Diagram of Palimpsest Parser Execution......................... 112
5.6 W orst Case Effect of P on Time...127
5.7, Best Case Effect of P on Time... 128
5.8 Typical Effect of P on Time..130
6.1 A Backward Chaining Controlled Production System....l33
B.l A n Initial LO AD BAY Working M em ory............................ 150
B.2. The LOADBAY Control G ram m ar....................................... 152
B.3. The LOADBAY Productions (part 1)...................................... 153
B.3. The LOADBAY Productions (part 2)...................................... 154
B.4. The LOADBAY Element Class Table.................................... 155
B.5 The LOADBAY Classification Procedure.............................. 156

xi

ABSTRACT

This thesis presents such a new production system architecture, called a
palimpsest parser, that adapts LR parsing technology to the process of con
trolled production system interpretation. Two unique characteristics of this
architecture facilitate the construction and execution of large production
systems: the rate at which productions fire is independent of production sys
tem size, and the the modularity inherent in production systems is preserved
and enhanced. In addition, individual productions may be evaluated in
either a forward or backward direction, production systems can be integrated
with other production systems and procedural program s, and production
system modules can be compiled into libraries and used by other production
systems.

Controlled production systems are compiled into palimpsest parsers as
follows. Initially, the palimpsest transformation is applied to all productions
to transform them into context-free gram m ar rules w ith associated disam
biguation predicates and semantics. This grammar and the control grammar
are then concatenated and compiled into modified LR(0) parse tables using
conventional parser generation techniques. The resulting parse tables, disam
biguation predicates, and semantics, in conjunction w ith a modified LR(0)
parsing algorithm , constitute a palim psest parser. W hen executed, this
palimpsest parser correctly interprets the original controlled production sys
tem. Moreover, on any given cycle, the palimpsest parser only attempts to in
stantiate those productions that are allowed to fire by the control language
grammar. Tests conducted with simulated production systems have consis
tently exhibited firing rates in excess of 1000 productions per second on a con
ventional minicomputer.

Adaptation of LR Parsing to Production System
Interpretation

1. Introduction
In recent years production systems have proven to be valuable artificial

intelligence tools for representing and applying domain specific knowledge;
yet, many characteristics of current production system architectures make
large production systems impractical. For example, the rate of production
firing is dependent upon production system size; big production systems
execute slower than smaller ones. Also, specifying and imposing procedural
control via conflict resolution destroys the m odularity inherent in produc
tion systems. This thesis presents a new production system architecture, based
u p o n the theory of LR parsing, that facilitates the construction and execution
of large production systems.

1.1. Introduction to Production Systems

The production system was introduced in 1943 by Post1 as a general com
putational mechanism equivalent to Universal Turing Machines2. Since then
the production system has been adapted and applied to num erous problems
throughout com puter science. Markov algorithms3, the Floyd-Evans produc
tion language4 and modern context-free grammars5 are all adaptations of Post
production systems. More recently, production systems have been adapted to
the task of representing and applying dom ain specific knowledge in a manner
w hich models hum an cognitive processes, so-called rule-based expert sys
tems. Such production system s bear little resemblance to Post production
system s. This section p resen ts a brief in troduction to these m odern
production systems and related terminology.

1 Post, 1943.
2 Aho and Ullman, 1972, p. 29.
3 Minsky, 1967, CHAPTER 12.
4 Floyd, 1961.
5 Aho and Ullman, 1972.

1

2

(food ty p e : meat l o c : doghouse)
(vehicle t y p e : truck l o c : 195)
(animal name:pudwuji s p e c i e s : dog l o c : doghouse h u n g ry : true)
(person name: louis a g e : 27 lo c : doghouse sex:M)
(person name: karen a g e :26 lo c : house sex :F)
(concept name: joy t y p e : emotion)
(concept name:blue t y p e : color)

FIGURE 1.1. a Sample Working Memory

1.1.1. Structure

A production system is composed of a finite set of structures called pro
ductions and a set of data elements called working memory. Each data ele
m ent, called a working memory element, is a string of symbols to which
some meaning is usually ascribed. Most frequently, working memory ele
ments are understood to represent objects^ where each consists of values as
signed to the attributes of that object. All working memory elements that
describe objects of the same type or category have the same attributes7. For
example, the working memory elements described in FIGURE 1.1 represent
seven objects: a food item, a truck, a dog, two people, and two concepts. Each
working memory element is denoted by a category followed by one or more
attributes (boldface) with their associated values.

A production is composed of a name, a condition that tests the state of
working memory, the symbol =>, and an action that modifies the state of
working memory. For example, the sample production of FIGURE 1.2, called
feed-a-dog, contains the condition:

(food type=meat)
(animal species=dog lo c = # l.lo c hungry=true)

NOT (animal s iz e > # 2 .s iz e lo c = # l.lo c hungry=true)

6 The term object is used here to represent a person or thing to which action or thought is
directed.

7 In the literature, the term element class is used in place of category. In this thesis, an
element class is a subset of a category (cf. SECTION 4.2).

3

f e e d -a - d o g :
(food type=meat)
(animal species= dog lo c = # l.lo c hungry=true)

NOT (animal s iz e > # 2 .s iz e lo c = # l.lo c hungry=true)
=>
CHG (#2, h u n g ry :fa lse)
ADD (object ty p e :b o n e lo c :# l . lo c)
REM (#1)

_______________FIGURE 1.2. A Sample Production_______________

and the action:

CHG (#2, h u n g ry : fa lse)
ADD (object type :bone lo c :# l . lo c)
REM (#1)

Every condition contains one or more patterns, such as:

(animal species= dog lo c = # l.lo c hungry=true)

that defines a subset of some category; in this case animal. For example, this
pattern defines a set that contains the element:

(animal nam e:pudwuji s p e c ie s :d o g loc:doghouse h u n g ry :tru e)

Patterns preceded by N O T are said to be negative; all other patterns are posi
tive. A pattern may make direct references to attributes of a working memory
elem ent that m atches a positive pattern w ith in the sam e condition (e.g.,
l.loc references the loc attribute of a working memory elem ent m atching
the first pattern in the condition)8. A condition is satisfied w hen

1. working m em ory contains at least one element of every set de
fined by the positive patterns in the condition, and

2. working memory contains no elements of any set defined by the
negative patterns in the condition.

The sam ple working memory of FIGURE 1.1 satisfies the condition of the sam
ple production in FIGURE 1.2, w here the working memory elements

For reasons beyond the scope of this introduction, the literature uses operational variables,
not direct references, to reference attribute values of other patterns (cf. SECTION 2.1.4).

4

(food t y p e : meat l o c : doghouse)
(animal name:pudwuji s p e c i e s : dog l o c : doghouse h u n g ry :true)

are said to match the positive patterns

(food type=meat)
(animal species= dog lo c = # l .lo c hungry=true)

respectively.

Every action consists of one or more operations that may be applied to
working m em ory if the corresponding condition is satisfied. These operations
m ay also contain direct references to the attributes of positive patterns in that
condition. For example, the operation

ADD (object ty p e :b o n e l o c : #1.lo c)

adds a new elem ent to working memory,

REM (#1)

removes the w orking memory element that matches the first pattern in the
condition, and

CHG (#2, h u n g ry : false)

modifies the hungry attribute of the w orking memory element that matches
the second pattern in the condition.

The sample production feed-a-dog m ay be read as follows:
If working memory contains:

• a piece of meat, and
• a hungry dog at the same location as the meat,

And if working memory does not contain:
• a bigger, hungry animal at the same location as the meat,

Then:
• assert that the dog is no longer hungry,
• add a new bone to working memory, and
• remove the meat from working memory.

5

([f e e d -a -d o g :
(food type=meat)
(animal species=dog lo c = # l.lo c hungry=true)

NOT (animal s iz e > # 2 .s iz e lo c = # l.lo c hungry rue)
=>

CHG (#2, hun g ry :fa lse)
ADD (object typerbone lo c :# l . lo c)
REM (#1)] ,

[(food t y p e : meat l o c : doghouse),
(animal name:pudwuji sp e c ie s :d o g loc:doghouse h u n g ry :t ru e) ,
"] >

______________ FIGURE 1.3. A Sample Instantiation9_____________________

1.1.2. Interpretation

An instantiated production, also called an instantiation, consists of a pro
duction and a list of working memory elements that match the patterns in
that production's condition. It is assumed that no elements of working
mem ory m atch the negative patterns in the condition. For the sample
production of FIGURE 1.2 and working memory of FIGURE 1.1, an instantiation
is shown in FIGURE 1.3.

To fire an instantiation10:

1. All direct references in the action of the production are replaced
with the corresponding elements and attribute values from the
working memory elements of the instantiation.

2. The operations of the production 's action are perform ed
sequentially on working memory.

For the sample instantiation of FIGURE 1.3, step (1) would instantiate the
direct references in the production's action to

9 The - is used in place of the third working memory element because the corresponding
third pattern is negative, and matches no working memory elements.

10 Throughout the literature, the term fire is often applied to productions (i.e., instantiated
productions), in which case a set of matching working memory elements is assumed to exist.

6

CHG [(animal name: pudwu j i sp e c ie s :d o g . . .) , h u n g ry : false]
ADD (object ty p e :b o n e loc:doghouse)
REM [(food type :m ea t l o c :doghouse)]

and step (2) would first change the working memory element

(animal name:pudwuji s p e c ie s :d o g loc:doghouse h u n g ry :true)
into

(animal name: pudwu j i s p e c ie s : dog lo c : doghouse h u n g ry : fa lse)
and then add the element

(object t y p e : bone l o c : doghouse)
to working memory, and finally remove the element

(food t y p e : meat l o c : doghouse)
from w orking memory.

The interpretation of a production system is commonly defined by the
following three phases, called the recognize-act cycle:

1. Match Phase: Generate the set of current instan
tiations, called the conflict set.

2. Conflict Resolution Phase: Choose one instantiation from the
conflict set, or halt if the conflict set
is empty.

3. Act Phase: Fire the chosen instantiation.

These three steps are repeated, in order, until no more instantiations can be
found, or a halt operation is performed.

1.1.3. Procedural Control

In the procedural languages, such as Pascal or Ada, flow of control infor
mation is unam biguously specified. Such procedural control is not found in
production systems, where each production is supposed to be an independent
module. Ideally, the order in which productions are fired depends entirely
upon the contents of working memory; no production directly calls another
production. This lack of procedural control allows production systems to ex
hibit two very desirable properties:

7

1. Production systems can react quickly to small changes in the data
without explicitly describing how to search for those changes.

2. Production system s are highly m odular11, a property that
enhances their extensibility, flexibility, and programmability.

Unfortunately, most problem domains are not ideal, and some method of
controlling the order of production invocation is necessary. For example, the
efficient search of a large problem space may require that more promising
productions be applied before less promising productions are applied. Many
control constructs, such as sequencing , subroutining, and iteration, are
considered essential for most artificial intelligence applications12.

The conflict resolution phase, by choosing an instantiation to fire on each
cycle, determines the order in which productions fire. Most conventional
production system architectures take advantage of this property of conflict
resolution to impose procedural control13'14. A conflict resolution strategy
(i.e., an algorithm for choosing an instantiation) is specified along with every
production system. The production system can then exploit knowledge about
that strategy by creating and referencing new "bookkeeping" working memory
elements. For example, suppose it is necessary for production B in FIGURE 1.4
to fire immediately after production A, If the conflict resolution strategy
chooses the instantiation containing the newest working memory element,
then productions A and B can be modified as in FIGURE 1.5 to achieve this
ordering.

1.1.4. Production System Programs, Languages and Architectures

There is a clear distinction between programs (e.g., a w ord processor),
program m ing languages (e.g., Pascal), and runtim e architectures (e.g.,
activation stack and heap). There is a similar distinction between production
systems, production system languages, and production system architectures.

11 Georgeff, 1982, pp. 178-180.
!2 Rychener, 1977.
13 ibid.
14 McDermott and Forgy, 1978.

8

A:
(jk l nam e=tl co lor^blue)
(mno name=t2 size=7 weight<39)

ADD (abc nam e:t3 h e ig h t :# 1 .le n g th co lo r:g reen)

B:
(abc name=t3 color=green)
(def name=t4 weight>75 shape=square)

=>
ADD (ghi nam e:t5 sp a c e :#1 .volume d e n s ity :0 .4)

FIGURE 1.4. Unordered Productions

A' :
(jkl nam e=tl co lor^blue)
(mno name=t2 size=7 weight<39)

=>
ADD (abc nam e:t3 h e ig h t :# 1 .le n g th co lo r:g reen)
ADD (tag n e x t :prod_B)

B ' :
(tag next=prod B)
(abc name=t3 color=green)
(def narae=t4 weight>75 shape=square)

=>
ADD (ghi nam e: t5 sp a c e : #1 .volume d e n s i ty : 0.4)
REM (#1)

FIGURE 1.5. Sequential Productions

Production systems are programs; they process information, albeit differently
than procedural language programs. A production system language is a syntax
definition with associated semantics in which production system programs
are w ritten . A production system architecture is a general runtim e
architecture capable of interpreting production systems. A production system
interpreter is an implementation of a production system architecture that has

been tailored for use with a specific production system language and target
machine.

More detailed introductions to production systems may be found in
CHAPTER 2 and elsewhere15'16.

1.2. Problems and Related Work

Production system architectures have always had two fundamental prob
lems: execution speed is dependent upon production system size, and impos
ing procedural control on productions is difficult. The ever increasing sizes of
real production systems have exacerbated these problems, and m otivated
much of production system research. This section describes such research, and
suggests that existing architectures and control methodologies are inadequate
when applied to large production systems.

1.2.1. The Execution Speed Problem

Production systems are slow. In general, large production systems execute
more slowly than smaller ones, even if most of their productions are never
u se d 17. This is quite unlike a procedural program m ing language such as
Pascal or Ada, for which the time required to perform a statement is inde
pendent of the total number of statements in the program.

To understand this dependence of speed upon size one must look closely
at the process of production system interpretation. Let C* be the num ber of
positive patterns and C~ be the number of negative patterns in a production
num ber i, and consider the simple implementation of the match phase in
FIGURE 1.6. If a production system contains P productions, working memory
contains W elements, and the average num ber of positive and negative
patterns in all the conditions are C+ and C“ respectively, then this

Davis and King, 1976.
16 Waterman and Hayes-Roth, 1978.
17 Forgy, 1979.

10

F oreach production i ;
F oreach working memory element Wj that may match the 1s t positive pattern:

Foreach working memory element w2 that may match the 2n<1 p ositive pattern:
• • *

Foreach working memory element Wp that nay match the Cj’th p ositive pattern:
I f Wj matches the Is*- p ositive pattern and

w2 matches the 2n<̂ p ositive pattern and
• • •

Wp matches the C|th positive pattern Then
sa tis f ie d := true/

E lse
sa tis f ie d := fa lse;

index := Cj;

W hile (index < Cj” + Cj) and sa tis fie d Do
index := index + 1;
F oreach working memory element wj_ncjex that may match the (index - Cj)th

negative pattern:
I f wVnribv matches the (index - Cj) th pattern Then

sa tis f ie d := false;
Endwhile;
I f sa tis f ie d Then

Add [i , (wlr w^] to the co n flic t se t.

______________ FIGURE 1.6. Simple Implementation of the Match Phase_________

implementation of the match phase requires at least P*W evaluations18 of
the first, positive i /te s t and P» W*C~ evaluations of the second, negative i f
test on every recognize-act cycle.

For large production systems the com putation required by the match
phase easily dominates the computation of the other two phases19'20. Most
m atching algorithms reduce this computation using condition membership
and memory support inform ation to filter ou t inactive productions and
working memory elements. Condition membership associates with each pat
tern a running count of the num ber of working memory elements that par
tially satisfy it; only productions with partially satisfied positive patterns need
to be examined on each cycle. Memory support indicates for each pattern the

18 2W C i > P * W ^ " i ^ 1>. Hardy, Littlewood, and Polya, 1959.
19 Forgy, 1982.
20 Rhyne, 1977.

11

subset of working memory that partially matches it; only this subset of work
ing memory needs to be matched w ith the pattern. The process of collecting
and m aintaining such information while working memory is modified is
called indexing. Various indexing schemes have been implem ented21'22/23
and have demonstrated significant reductions in match phase computation;
b u t even if com plete condition m em bership and m em ory support
information is provided, the m atch algorithm m ust still iteratively examine
the remaining productions and working memory elements.

The Rete m atch algorithm24'25 avoids this extra examination by also
m aintaining condition relationship information; that is, inform ation about
which working memory elements satisfy the relationships betw een patterns
within productions. It translates a production system into a netw ork of rec
ognizer nodes, each of which tests a particular attribute of a working memory
element. Only those working m em ory elements that satisfy this test are
passed on to further nodes in the network. For each change to working mem
ory input to this network, a set of changes to the current conflict set is output.
Because the cost of maintaining condition relationship information is high, it
is assumed that only small changes are made to working memory on each cy
cle.

It is argued however, that the cost of maintaining condition relationship
information may exceed the cost of recomputing that information, as needed,
on each cycle26. The TREAT algorithm is based upon that assumption27, and
im plem ents full condition m em bership and m em ory support filters as in
Rete, bu t condition relationship is replaced by conflict set support inform a
tion. That is, the conflict set is explicitly retained between recognize-act cycles,
allowing the search for instantiations to be restricted to those that came about
due to the most recent working memory modifications. Empirical tests sug

21 McDermott, Newell, and Moore, 1978.
22 Rhyne, 1977.
23 Rieger, 1978.
24 Forgy, 1979.
25 Forgy, 1982.
26 McDermott, Newell, and Moore, 1978, p. 160.
27 Miranker, 1987.

12

gest that the TREAT algorithm typically outperforms the Rete algorithm28.
Other, less complex match algorithms have also outperformed the Rete algo
rithm in specific problem domains29.

The best and worst case time complexities of the Rete algorithm with re
spect to the num ber of productions P are 0(log2PI and 0 (P), respectively; and,
it is expected that most production systems will be O(P)30. In absolute terms,
one of the fastest production system languages to use the Rete algorithm,
OPS8331, m ight be expected to fire from 25 to 50 productions per second for a
large production system w ith a large working memory, such as R l32'33.
Newer matching algorithms may be slightly faster by a small constant factor;
bu t even in the best case, execution speed is still dependent upon production
system size. This dependency effectively limits the size of practical production
systems using these m atching algorithms. Conventional wisdom suggests
that "substantial further increases [in execution speed] are not likely through
software techniques"34 and most current research in efficient production sys
tem interpretation investigates the use of parallel hardw are support for
production system interpreters35'36'37.

1.2.2. The Procedural Control Problem

Production systems are naturally free from procedural control; no
production can directly call another. Yet, a clear and efficient production
system so lu tion in m ost problem dom ains requires some procedural
control38. As the sizes of real production systems have grown, so too has the

28 Miranker, 1987.
29 Nuutila, Kuusela, Tamminen, Veilahti, Arkko, and Bouteldja, 1987.
30 Forgy, 1979, p. 106.
34 Forgy, Gupta, Newell, and Wedig, 1984, p. 117.
32 McDermott, 1980.
33 Forgy, Gupta, Newell, and Wedig, 1984, p. 117.
34 Forgy, Gupta, Newell, and Wedig, 1984, p.116.
35 Forgy, Gupta, Newell, and Wedig, 1984.
36 Forgy, Gupta, Newell, and Wedig, 1986.
37 Stolfo and Shaw, 1982.
38 Rychener, 1979.

13

need for a control methodology that allows procedural control to be clearly
specified and efficiently imposed.

M any production system languages do not allow procedural control to be
explicitly specified; the order in w hich productions are fired is pre-determined
by the production system architecture. Such architectures are typically
backward-chaining39 (e.g., MYCIN40'41, EXPERT42, and KAS43) and backtrack
to fire all instantiations in conflict sets. Also, PROLOG44 can be viewed as a
backward-chaining production system language in which procedural control
is prescribed by the A ND/OR tree defined by the productions.

M ost forward-chaining production system architectures support a m ore
flexible procedural control m ethodology in w hich bookkeeping w orking
m em ory elements are used to exploit knowledge of a conflict resolution
strategy (e.g., OPS545, YAPS46 and CLIPS47). Some systems augment this
methodology by filtering out som e productions, prior to the m atch process,
that canno t m atch con tro l-related w orking m em ory elem ents (e.g.,
GRAPES48). An even more flexible control methodology involves the use of
m eta-level productions or algorithm s to dynam ically m odify the conflict
resolution strategy49'50 (e.g., TEIRESIAS51, and OPS8352).

39 Backward-chaining, also called goal-driven evaluation attempts to satisfy a goal
production by examining the actions of other productions to find one that, if fired, will
help to instantiate the goal production.

40 Shortliffe, 1976.
4* Buchanan and Shortliffe, 1984.
42 Weiss and Kulikowski, 1981.
43 Duda, Gaschnig, and Hart, 1979.
44 Clocksin and Mellish, 1982.
45 Brownston, Farrell, Kant, and Martin, 1985.
46 Allen, 1982.
47 Giarratano, 1988.
48 Sauers and Farrell, 1982.
49 Davis and Buchanan, 1977.
50 Davis, 1980.
51 Davis, 1976.
52 Forgy, 1984. Note, OPS83 uses a meta-level procedural program to perform dynamic

conflict resolution, not meta-level productions.

14

An unfortunate side-effect of conflict resolution based control m ethod
ologies is the destruction of the modularity inherent in production systems53.
Because control knowledge is embedded within productions, adding or re
moving a production requires knowledge of the contents of all other produc
tions. This situation can be alleviated somewhat w ith the use of working
memory elements that specify goals or contexts; only productions applicable
in some current context can be applied54. Some production system architec
tures can exploit such production grouping to reduce the computation of the
match phase55. Also, it is argued that such grouping facilitates the design and
maintenance of production systems56'57.

Although most production system languages neither require nor enforce
such grouping, some do provide facilities that allow grouping control
information to be specified outside of productions58. That is, the assignment
of productions to specific groups or rule-sets, and the order in which rule-sets
are to be applied, are both specified separately from the productions. Regard
less of the grouping method, other control constructs, such as iteration and
subroutining, m ust still be implem ented using methodologies based on
conflict resolution59.

Another approach, which is both formal and general, explicitly specifies
all procedural control for a production system w ith a separate control lan
guagei60, w here the primitive symbols of that language are production names.
The strings o f production names in this language explicitly define the allow
able sequences of production firings. On any cycle, the control language de
fines the set of productions that are allowed to fire. Further, meta-level pro
ductions w ith empty actions are introduced to allow dynamic selection of
control paths (i.e., production sequences) from among those specified by the

53 Georgeff, 1982, pp. 178-180.
54 Rychener, 1979.
55 Forgy, 1979, p. 101-102.
56 Jacob and Froscher, 1986.
57 Jacob and Froscher, 1985.
58 Barker and O'Connor, 1989.
59 Rychener, 1979.
60 Georgeff, 1982.

15

control language. Control information specified in this way can be used to
impose procedural control by modifying the recognize-act cycle as follows:

0. Find the subset of productions specified by the control language.
1. Find all instantiations for this subset of productions.
2. Choose an instantiation. If none exists, halt.
3. Fire the chosen instantiation, and return to step (0).

Production systems employing this approach, called controlled production
systems, allow entire plans, or sequences of productions, to be treated as
modules. Also, by separating control information from production informa
tion the m odularity inherent in production systems is retained61, and pro
duction systems may be more easily constructed, verified, and modified62.

Although this approach seems well suited to the task of specifying control
for large production systems, the more efficient and complex m atching
algorithms were not designed w ith controlled production systems in mind.
As the m odified recognize-act cycle above suggests, a control language could
be used to pre-index allowable productions for both the simplistic and index
ing match algorithms. However, any decrease in the computational cost of
the match would be offset by the cost of computing the allowed productions
specified by a control language grammar, and the use of a relatively inefficient
matching algorithm.

This type of pre-indexing also appears to be impractical with the Rete and
TREAT m atch algorithms. Within Rete and TREAT networks, nodes are of
ten shared by many patterns from many productions. Isolating and de-acti-
vating the nodes for an arbitrary set of productions seems prohibitively diffi
cult. While instantiations containing productions that are not specified by the
control language could be removed from the conflict set prior to the conflict
resolution phase, this additional computation does nothing to decrease the
workload of the match phase, and would increase the computational cost of
interpreting production systems.

61 Georgeff, 1982.
62 Kowalski, 1979.

16

1.3. Thesis Overview

1.3.1. Architectural Requirements of Large Production Systems

M odularity is generally recognized as the only guideline available for
mastering the complexity of design and implementation of large and complex
p ro g ram s63. The term modularity here implies both hierarchical structure,
the ability to construct large modules from smaller ones, and independence,
the ability to understand and implement modules independently of one
another. It might seem that production systems, in which each production is
an independent module, are ideally suited to program m ing in the large.
However, most existing production system architectures rely, to a greater or
lesser extent, upon conflict resolution to provide procedural control, and de
stroy this production independence. Also, with the exception of controlled
production systems, no existing production system architecture supports hi
erarchically structured modules.

In addition to supporting modularity, large production systems require
that an architecture fires productions at a rate that is independent of the total
num ber of productions. Any dependence of speed upon size effectively limits
the size of useful production systems. Unfortunately, the speeds of matching
algorithm s appear to be intrinsically dependent upon the num ber of
productions being matched. One resolution to this apparent conundrum is
provided by controlled production systems, in which separate procedural
control information can be used to group productions into hierarchically
structured modules. In such systems, only a small number of productions are
"allowed" to fire on any given cycle, namely, those productions in the
currently executing m odule64. Because each module should realize a single
and simple conceptual function of the system, module sizes are automatically
restricted as a by-product of the design process65. By using control information

63 Ghezzi and Jazayeri, 1982, p. 29.
64 In practice, control is often imposed within the modules as well, and the number of

productions that are allowed to fire on any cycle is further reduced.
65 Ghezzi and Jazayeri, 1982, p. 29.

17

to direct and constrain the matching algorithm the rate of production firing is
bounded by a constant related to the maxim um module size66.

For large production systems, m odularity is the m ost im portant issue in
the design of production system languages and the architectures that support
them. A language enforces m odularity so that the com plexity of large
production systems can be managed. A n architecture supports that m odu
larity to efficiently interpret those production systems.

1.3.2. The Palimpsest Production System Architecture

As described above, controlled production systems m aintain production
m odularity and allow the specification of hierarchical production modules.
Unfortunately, the faststest production system architectures in use today are
incompatible w ith this control methodology. The goal of this work has been
to develop a new production system architecture that uses the control lan
guage of a controlled production system to direct the search for instantiations.
Such an architecture could support new production system languages that
facilitate the design and construction of large production systems.

This thesis presents a new production system architecture, called a
palimpsest parser67, that adapts LR parsing technology to the process of
controlled production system interpretation. LR parsers were chosen as the
basic program structure for three reasons. First, LR parsers have four desirable
properties; they are fast, well understood, have a self-introspective capability,
and can be automatically generated from context-free gram m ars68. Second,
given an LR parser generated from a control language gram m ar and a string

66 Note, this is only true if the architecture actually uses the control information to constrain
the search for instantiations. The firing rate of an architecture that searches for all
instantiations and then removes those that are not allowed to fire is still dependent upon
the total number of productions. The hierarchical structure aspect of modularity is an ar
chitectural issue, and a language issue.

6 ̂ A palim psest is a written document, typically on vellum or parchment, that has been
written upon several times, often with the remnants of earlier, imperfectly erased writing
still visible. Similarly, a palimpsest parser is a program that has been derived, in stages,
from other program representations (i.e., first a controlled production system and then an
augmented grammar), with remnants of those earlier program representations still visible.

68 Feyock, 1984.

18

of the names of productions that have already fired, the set of productions
that are allowed to fire next can be easily determined. Third, LR parsers have
been successfully used to im plem ent sm all, backw ard chaining,
propositional69 expert systems70.

Controlled production systems are compiled into palim psest parsers as
follows. Initially, the palimpsest transformation is applied to all productions
to transform them into context-free grammar rules with associated disam
biguation predicates and semantics. This grammar and the control grammar
are then concatenated and compiled into modified LR(0) parse tables using
conventional parser generation techniques. The resulting parse tables, disam
biguation predicates, and semantics, in conjunction with a backtracking LR(0)
parsing algorithm , constitute a palim psest parser. W hen executed, this
palim psest parser correctly interprets the original controlled production
system. Moreover, on any given cycle, the palimpsest parser only attempts to
instantiate those productions that are allowed to fire by the control language
gram m ar. Tests of sim ulated production system s71 have consistently
exhibited firing rates in excess of 1000 productions per second on a
conventional minicomputer.

A dditional features of the palim psest parser p roduction system
architecture include72'73:

• Individual productions and production modules m ay be evalu
ated in either a forward, backward, or bi-directional manner.

• Separately compiled production system units, similar to Ada
packages, may be constructed.

• Palimpsest parsers are self-contained and can be integrated with,
procedural language programs.

The term propositional is used here to imply that patterns consist of simple tokens without
variables.

70 Collins and Feyock, 1985.
71 Simulated production systems had the following characteristics: 200 productions, 500

working memory elements, an average of 3 patterns and 3 actions per production.
72 Collins and Slothouber, 1988.
73 cf. Section 6.1.2.

19

This thesis describes a production system architecture, not a production
system language, but languages and architectures are related. An architecture
essentially defines the semantic capabilities of the languages it supports. In
this sense, all languages for a given architecture will be somewhat similar.
Presentation of the palimpsest production system architecture is more formal
than is usually the case in the literature in order to emphasize the new ideas
underlying this architecture rather than any specific im plem entation or
production system language. However, to illustrate these ideas example
productions and working memory elements are presented using a simple
production system language. This language is arbitrary, and should not be
confused w ith the underlying architecture.

1.3.3. Thesis Organization

CHAPTER 2 begins by contrasting modern production systems with Post
production systems. More formal definitions of the structure, interpretation,
and control of production systems are then presented. The chapter concludes
by proving the equivalence of this production system formalism and deter
ministic Turing machines. This proof and formal description of production
systems is original to this thesis.

Although the theory of LR parsing has been formally defined, many of
the features found in m odern machine-generated LR parsers have not been
integrated into these definitions. CHAPTER 3 extends the definitions of LR(0)
parsing to include these new features.

CHAPTER 4 begins w ith an informal explanation of the adaptation of LR
parsing to the process of controlled production system interpreation. Formal
definitions of palimpsest parsers and related concepts are then presented. The
palim psest transformation is introduced and proven to be applicable to all
controlled production systems. The chapter concludes by proving that for
every deterministic Turing machine there exists an equivalent palimpsest
parser. The material in this chapter is original to this thesis.

20

CHAPTER 5 presents the time and space cost calculations for palimpsest
parsers. Results of tests on simulated production systems are then presented
to support these theoretical costs.

CHAPTER 6 describes, some additional features of palimpsest parsers. Ideas
for future research related to palimpsest parsers are presented.

CHAPTER 7 concludes the thesis.

Appendix A defines the notation used throughout the thesis. Some of
this notation is non-standard. The reader is advised to peruse this appendix
before reading the following chapters. Also, notation defined within a def
in ition is often taken for gran ted thereafter. W hen in doubt, refer to
Appendix A.

Appendix B presents a complete production system example. First, the
problem to be solved is specified. A top-down design of the solution is then
presented that uses control constraints to divide the problem into manageable
subproblems. The palim psest transformation is then applied to the resulting
controlled production system to produce a palim psest parser. Finally, a trace
of the execution of that palimpsest parser is presented.

2. Production Systems
This chapter provides an introduction to production systems and related

concepts. The first section informally describes Post production systems and
various additional features found in m ost conventional production system
architectures. The second section presents more formal definitions of the
structure, interpretation, and control of production systems. The final section
addresses the scope of controlled production systems. In particular, their
equivalence to Turing machines is demonstrated.

2.1. Introduction to Production Systems

This section describes Post production systems and various additional
features common to most conventional production system architectures. The
purpose of this section is to give the reader some understanding of basic
production system concepts before formal definitions are presented in
SECTION 2.2.

2.1.1. Post Production Systems

A Post production system (PPS) is composed of a set of data elements
called working memory, and a set of productions that modify working mem
ory. Let £ be a finite set of primitive symbols. Elements of £ +, the set of non
empty strings of primitive symbols, are called working memory elements74.
Working memory is a subset of £ +. There is also a set 'P of variables, where
£ n *P is empty. Productions are formed from strings in (£ u VF)+. In particu
lar, a production is of the form

a b . . .c produce d

74 Working memory elements are called enunciations by Post.

21

22

where a, b, ..., c, and d are strings in (E u T0+. The strings a,b, ...,c are called
patterns.

Such productions are interpreted as follows. If each pattern a ,b , ... ,c in a
production can be pattern matched w ith an element in working memory,
such that variables in the pattern are identified consistently throughout the
production with strings in £*, then d, with identical variable replacements, is
added to working memory. The interpretation of a PPS applies this process
non-deterministically for all productions in the PPS until no more new ele
ments may be added to working memory.

EXAMPLE 2.1
An interpretation of the PPS defined by the three productions

aXb bXb produce cXb
aYb bYc produce aYc
YXY produce XYX

where E = {a, b, c} and 'P = {X, Y}, and the working memory

{aaa, bbb, ccc, abb, bbc, cac}

adds the elements ebb, abc, and aca to working memory. □

PPSs have proven to be a valuable problem solving tool in many problem
domains; two examples are: language specification and knowledge represen
tation. An example of each follows.

Example 2.2
Consider a PPS G in which the primitive symbols are divided into a set of
non-terminal symbols N £ E, and a set of terminal symbols £ ~ N. If all
productions are of the form

U A V produce UxV

where [U, V} are the variables of G, A e N ,x e X*, and working memory
is initially {S}, where S e N, then G is called a context-free grammar.
Those working memory elements derived by the productions in G that

23

contain only terminal symbols comprise the language L(G). In this way, a
PPS can specify a language L(G)75. □

Example 2.3
C onsider a PPS with prim itive symbols {man, mortal, is, tom, john},
variables {X}, and the following production.

X is man produce X is mortal

Given the initial working memory

{john is man, tom is man]

then the interpretation of this PPS derives the elements John is mortal,
and tom is mortal. The single production X is man p roduce X is mortal
represents the knowledge that "All men are mortal." In this way, PPSs
m ay represent knowledge, and apply this knowledge to the facts or
assertions represented by working memory elements. □

Conventionally, the term production system is most commonly associ
ated w ith knowledge-based expert systems, or psychological modelling appli
cations76. Such production systems seldom resemble PPSs77'78'79'80. To facili
tate the writing of practical production systems, numerous additional features
or "extensions" to the PPS formalism are commonly provided by conven
tional production system architectures. The following six sections describe
these features.

2.1.2. Categories and Attributes

In a PPS, working memory elements are arbitrary strings of symbols. In
current production systems, however, working memory elements are usually
understood to represent objects, where substrings describe attributes of those
objects. For example, a working memory element

76 Brainerd and Landweber, 1974, pp. 159-161.
76 Davis and King, 1977.
77 ibid.
78 Forgy, 1982.
79 Waterman and Hayes-Roth, 1978.
80 Stefik, et a l, 1978.

24

e x p r l * expr2 expr3

may logically represent an arithmetic expression with four attributes:

1. an expression name w ith a value of e x p r l ,
2. an arithmetic operator w ith a value of *,
3. a left operand with a value of e x p r 2 , and
4. a right operand with a value of e x p r3 .

For clarity, current production systems m ight represent such a working
memory element by

{name:exprl op:* le f t :e x p r2 r i g h t :expr3)

where exprl, *, exprl, and expr3 are the attribute values associated w ith the
attributes name, op, left, and right.

Working memory elements that describe objects of the same type belong
to the same category and have the same attributes. Because working memory
elements belonging to different categories may also have the same attributes,
a category name is usually placed at the beginning of each working memory
element to avoid confusion81. For example, although the working memory
elem ents

(arth_expr name: exprl op:* le f t :e x p r2 r i g h t :expr3)
(bool_expr name:expr4 op:;* le f t :e x p r5 r ig h t :e x p r 6)

contain the the same set of attributes, they describe different types of objects:
arithm etic expressions, and boolean expressions; hence, the categories
arthjexpr and booljexpr at the beginning of each working memory element.

This change to the logical form of working memory elements requires a
corresponding change to the form of the patterns that describe them. For ex
ample, the patterns

(arth_expr name=exprl op=* le ft= e x p r2 r i g h t =expr3)
(bool_expr name=expr4 op le f t= e x p r5 r ig h t= e x p r6)

81 A working memory element may be thought of as a Pascal record, where the category
corresponds to the type of the record, attributes correspond to fields in the record.

25

consist of a category followed by predicates (e.g. name=exprl)82. Each predicate
contains the nam e of at least one attribute and defines the allowed values for
that attribute. For example, th e pattern

(arth_expr nam e=exprl op=+ l e f t = r i g h t)

describes w orking memory elements from the arfh jexpr category that have a
nam e attribute value equal to exprl, an op attribute value equal to +, and
equivalent le f t and right a ttribu te values. Notice tha t these patterns do not
contain variables. The use o f variables is discussed below in SECTION 2.1.4.
Additionally, no t all a ttribu tes need to be represented in a pattern . For
example, the pattern

(arth_expr le f t= e x p r2 r i g h t =expr3)

describes any working m em ory element from the arth_expr category with a
le ft attribute value of expr2 and a right attribute value of expr3. All other at
tribute values are ignored. W hen a pattern contains only a category and no
predicates, such as

(arth_expr)

then it describes all working memory elements belonging to that category.

2.1.3. Additional Predicates

The patterns in PPS productions implicitly contain predicates that test
strings for equality. For exam ple, consider a PPS w orking m em ory element
abc, where a, b, and c represen t strings in X*. An arbitrary PPS pattern pXq
where p and q represent strings in X* and X is a variable, will describe abc if
and only if X m ay be instantiated to a string in Z* such that

(p = a) a (X = b) a (q = c).

That is, each PPS pattern im plicitly contains an equality predicate for each
string or variable. Hence, th e use of "=" instead of colons in the patterns of
the previous section. Most conventional production system architectures al-

82 a predicate is a function that returns a value of true or false.

26

low patterns to contain other predicates besides "=," such as 'V=," "< /' "</'
and ">." For example,

(arth_expr narae>exprl op=* le f t< 0 right^O)
(bool_expr names^exprO op=> substring (l e f t , r i g h t))

m ay represent valid patterns, where relational operators (e.g., =, >, >, <, and
<) are represented by infix notation, and other predicates are represented in
prefix notation (e.g., substring(left, right)). Notice that these patterns do not
contain variables. The use of variables is discussed in the next section.

2.1.4. Operational Variables and Direct References

PPS productions m ay contain operational variables that are to be consis
tently instantiated to strings in E*. Such variables are used w ithin a produc
tion for any of the following purposes.

1. To compare a substring (i.e., an attribute value) of one working
memory element w ith a substring of another.

2. To compare two different substrings w ith in the sam e working
m em ory element.

3. To copy a substring from one working memory elem ent into a
newly created element.

M ost conventional production system architectures also use variables to per
form these tasks. FIGURE 2.1(a) contains a typical production using operational
variables. However, care m ust be exercised to insure that every variable in a
production is referred to by at least one equality predicate (e.g., name = F) in
that production condition. Even m ore care m ust be exercised w hen a produc
tion condition contains negative patterns (cf. SECTION 2.1.5).

To avoid potential problems and confusion, example productions in this
thesis use direct references in place of variables. For example, FIGURE 2.1(b)
contains a production, identical to that of FIGURE 2.1(a), that uses direct refer
ences.

Direct references (e.g., # l.lo c , # l.n a m e , a n d # 2 .nam e) refer to the at
tributes of working memory elements described by the patterns in the pro

27

sam p le :
(food name=F type=bone loc=L)
(animal name=A type=dog loc-Z.)

NOT (re la tion type=owns what=F)
=>
ADD (rela tion t y p e : owns who: A w h a t: F)

(a) using operational variables

sa m p le :
(food type=bone)
(animal type=dog lo c = # l.lo c)

NOT (re la tion type=owns what=#l .name)
=>
ADD (re la tion ty p e : owns who: #2 .name w hat :#1. name)

(b) using direct references

FIGURE 2.1. Direct References vs. Operational Variables

duction. The ordinal part (e.g., #2, #2, etc.) identifies a working memory
element and the attribute part (e.g., name, loc, etc.) identifies the appropriate
attribute of that element. The working memory elements

(food name:bone34 type:bone loc:doghouse)
(animal name:pudwuji ty p e :d o g loc:doghouse sex:F)

are described by the first and second patterns, respectively, because the loc at
tribute of the second working memory element is equal to the loc attribute of
the first (i.e., loc=#l,loc). Similarly, the direct reference #2.name in the action
of the production assigns the value pudw uji from the second working mem
ory element's name attribute to the w ho attribute of the newly created ele
m ent.

Direct references are used in the thesis in place of operational variables
because:

28

• Pro forma, direct references reject dubious comparisons and ille
gal cross-references between positive and negative patterns (cf.
SECTION 2.1.5) that are possible when operational variables are
used.

• It is easy to convert direct references into operational variables. It
is difficult to formally circumscribe operational variables so that
illegal an d /o r dubious uses are avoided.

• The use of operational variables is a very indirect method of re
ferring to particular attribute values. This suggests that the use of
direct references may improve the clarity of productions.

2.1.5. Negated Patterns

In a PPS production every pattern represents a test for the existence of a
particular kind of element in working memory. However, in practice it is of
ten necessary to test for the non-existence of such a working memory ele
ment. Hence, most conventional production system architectures allow pat
terns to be negated in some way. In this thesis, patterns are negated by pre
ceding them with the word N O T . Negated patterns are called negative pat
terns. All other patterns are called positive patterns. Negative patterns must
not describe any elements of working memory if the production which con
tains them is to be fired. For example, the production in FIGURE 2.1(b) can be
fired only if working memory does not contain an element described by the
pattern83.

{relation type=owns what=#1 .name)

Since a negative pattern describes working memory elements that m ust
not exist in working memory, then direct references to negated patterns make
no sense. Thus, direct references may only reference positive patterns. This is
not to say that negative patterns cannot contain direct references, only that no
pattern may reference a negative pattern.

83 Technically, a pattern containing direct references makes no sense outside the context of a
production condition since the patterns being referenced are undefined. However, for many
examples the surrounding context is irrelevant to the point of the example, and the pattern
is assumed to exist within the context of a production condition.

29

2.1.6. Additional Operations

The action of a PPS production always contains exactly one operation: add
a new element to working memory. In conventional production system ar
chitectures, a production action may contain many operations. These opera
tions are not restricted to adding new elements to working memory. Typi
cally, the modification and removal of working memory elements, and vari
ous operations which do not affect working memory, such as reading and
writing to an I /O device, are allowed.

In this thesis attention will be restricted to the following two types of op
erations:

• ADD: add a new element to working memory. The category and
attribute values to assign to the new element are explicitly de
fined by the parameters of the operation. For example,

ADD (arth_expr name:exprl op:* l e f t : 9 r i g h t : # 1 . l e f t)
denotes a valid ADD operation.

• REM: remove an element from working memory. A single
parameter consisting of an ordinal reference to a positive pattern
identifies the working memory element to be removed. For
example,

REM (#1)
denotes a valid REM operation.

A third operation is also found in some examples:

• CHG: change one or more attribute values of a working memory
element that matches a positive pattern. The first param eter is
an ordinal reference that references a positive pattern, identify
ing the element to be changed. The rem aining param eters list
the attributes to be changed along with their new values. For ex
ample,

CHG (#1, l e f t :# 2 .1 e f t+ l , r i g h t :#2.r i g h t +1)
denotes a valid CHG operation.

Since the CHG operation is implemented by combining an AD D and a
REM operation, it will not be discussed further.

30

f e e d -a -d o g :
(food type=meat)
(animal species=dog lo c = # l.lo c hungry=true)

NOT (animal s iz e > # 2 .s iz e lo c = # l.lo c hungry=true)
=>

ADD (object type:bone lo c :# l . lo c)
REM (#1)
CHG (#2, h u n g ry : false)

_______________ FIGURE 2.2. A Sample Production_____________

Most conventional production system architectures incorporate the pro
duction extensions of Secs. 2.1.2, 2.1.3, 2.1.5, and 2.1.6; although the actual syn
tax used varies. The example production of FIGURE 2.2 incorporates all of the
above production extensions.

2.1.7. Determinism

Post production systems are non-deterministic. That is, all search paths
through the problem space defined by a PPS are potentially examined to gen
erate the solution84. A search path is defined by the sequence of instantiations
fired. To interpret a PPS on a serial machine a strategy m ust be specified
(called the selection strategy) that determ ines w hich one of m any
instantiations is fired on each cycle of the interpretation. No invocations are
irrevocable, and via backtracking all other search paths may also be examined.

However, m any conventional production system architectures are not
non-deterministic. That is, a single search path is examined, and a single
solution is generated, and no backtracking is performed. For a PPS, all search
paths generate equivalent solutions; but, for production systems that allow
elements to be rem oved from working memory this may not be so. Fortu
nately, for many problem domains a single solution is sufficient85.

84 Where a solution is defined as the final state of working memory.
85 cf. SECTION 2.2.2.I.

31

2.2. Production System Definitions and Theorems

Previously/ many term s related to production systems, such as pattern,
attribute, and condition have been introduced informally. This section de
fines production systems and related concepts more formally.

2.2.1. Structure

2.2.1.1. W orking Memory

A production system is composed in part of a set of working memory
elements called working memory. In practice each working memory element
is understood to represent an object, and consists of a collection of attribute-
value pairs that describe the features of that object. W orking m em ory
elements that describe objects belonging to the same type or category have the
same set of features.

DEFINITIONS

For a given alphabet O , II £ $ + is a working memory element universe,
and elements of U are called working memory elements. Each U is parti
tioned into finitely many disjoint subsets . . . , C^n\ called categories. Each
category C e { C ^ ,. . . , C ^ J is associated with a finite number m of maps
A i , ..., A m, called attributes that map C into sets V j , ..., Vm, of values; that is,
A {; C -4 Vj for i e {1,..., m), where m, the A {s, and Vj's all depend on C. A
finite set of W £ U is called a working memory, □

In these definitions, the categories, attributes, and values are primitive in
that they depend upon the particular application.

To illustrate the relationship betw een w orking m em ory elem ent
universes, categories, an d working memories, the following example is
presented.

32

EXAMPLE 2.4
LetO = fa,b,c,d,e,f,g,h,i,jtk,l,m,n,o,p,q,r,s, t,u ,v ,w ,x ,y ,2} be an alphabet, and
let U = <& £ 0 + be a working memory universe. Further, let IT b e
composed of categories C ^ , . . . , where = {a,b,h,i,n,r,s,w,x\, =
{// g, m , z], C<*> = [e, I, q, u, v), C(4) = [c, d, j, 0 , i, y], and C (5) = {p, k). The
relationships between <D+, 17, and C ^ , . . . , are shown in the following
diagram86:

isopabc pqxwjd

hhhhhxxyn

nx

ssdk
def

ghijklmnop rpodlk

A working memory is a finite set W £ 17. One possible working memory,
W = {fl,/,g,/i,p,r,i/} is shown in the following diagram:

86 Not all members of the set <t»+ are displayed.

33

Notice that W m ay contain w orking m em ory elem ents from m any
different categories. □

The actual form of a working memory element (i.e., a string in U £ <D+) is
irrelevant. Any working memory element m ay be abstracted and treated as a
set of attribute values as in the informal description of the previous section.
A typical working memory element w is denoted by:

(person nam e:lou is a g e :28 loc:doghouse sex:m ale)

w here person is the category to which w belongs; name, age, loc, and sex are
the attributes for category person', and louts, 28, doghouse, and male are the
values of these attributes. More formally,

person £ 17 and w e person
nam e : person V i, name(w) = louis
age : person V i, ageiw) - 28
loc : person -» V$, loc(zv) = doghouse
sex : person -» V4 , sex(w) = male

Note that different attributes (from the same or different categories) may map
into the same set of values.

2.2.1.2. Production Memory

In addition to working memory, a production system is also composed of
a set of productions called production memory. Each production is composed
of a condition and an action, which are in turn composed of patterns and op
erations, respectively.

2.2.I.2.I. Conditions

DEFINITION

A k-predicate pk, 1 < i< k, m aps categories Cj x ... x C * ^ Ufcinto
{true, false) such that for every predicate q m apping categories Cj x ... x Q .j x
Cj+j x ... xCjt into {true, false) there exist working memory elements zvi ,̂
w here Wj e Cj for j = 1 , 2 , ... ,k , such that p \(w i,. . . , W0 * q (w j , . . . , w^.j,

34

wi+j , . . . , w0. Function pk is of the form pftw p ..., = f[A jj(w j),...,
' ‘' ’ > Ahjn^w^], where Ajj ... A ^ . end Vjj ... V

are the associated attributes and value sets of C2-, 1 < z < k, and
/ : Vn x .. . x V lm ix ... x V k lx ... {true,false).D

That is, a fc-predicate takes working memory elements from specific
categories as arguments. For example, in FIGURE 2.2, $pecies=dog denotes the
3-predicate p^ that maps categories food x anim al x anim al into {true, false}
such that for all e food, W2 e anim al, and W3 e anim al, p^iw j, W2 , W3) iff

specie$(w2.) = dog.

A conjunction of k-predicates ak a b!f defined on the same domain is also

a k-predicate defined on that domain. For example, in FIGURE 2.2,

(anim al s p e c ie s = d o g l o c = # l . l o c h u n g ry = tru e)

denotes a 3-predicate p | defined on categories food x anim al x anim al such
that for all w j e fo o d , W2 e a n im a l, and W3 e a n im a l, p \(w i, 102, W3) iff

species(w2) = dog a loc(w2) = loc(wj) a hungry(iV2) - true.

In practice, the "fc-" is often om itted from the term k-predicate when the
value of k is either irrelevant or obvious.

DEFINITIONS

A fc-predicate pk is said to be dependent on argument j, 1 <;' < fc, if for
every q mapping categories Cj x ... x Cj.j x Cj+j x ... x Q into {true, false} there
exist elements Wiik, where zv^ e Q, for fc = 1 , 2, . . . , fc, such that pk{wj,. . . , wk)
* q (w j,. . . , Wj_i, Wj+i , . . . , Wjf). Otherwise, pk is said to be independent of

argument j. □

That is, a fc-predicate is dependent on argum ent if the value of the fc-
predicate is affected by its j tft argument. If the j th argum ent cannot affect the
result, then the predicate is independent of argum ent j. For example, the
3-predicate in FIGURE 2.2 denoted by

(anim al s p e c ie s = d o g l o c = # l . l o c h u n g ry = tru e)

35

is dependent upon arguments 1 and 2, but is independent of argum ent 3 .
Notice that a fc-predicate pk is, by definition, always dependent upon its 0

argum ent.

DEFINITIONS

A one-element k-predicate pk is dependent on argument j iff; = i. A
many-element k-predicate qk is dependent on at least one a rg u m e n t# i,

1 <;<fc.n

One-element fc-predicates test the attribute values of individual working
memory elements (e.g., species = dog); they contain no direct references.
Many-element fc-predicates compare attribute values of m ultiple working
memory elements (e.g., loc = #l.toc); they must contain direct references.

DEFINITIONS

Let pk be a fc-predicate that is a conjunction of smaller fc-predicates. The
conjunction of all one-element fc-predicates in pk is called the one-element
component of pk and is denoted by pk'. Similarly, the conjunction of all
many-element fc-predicates in pk is called the many-element component of
pk and is denoted by pk". □

For example, if

(anim al s p e c ie s = d o g l o c = # l . l o c h u n g ry = tru e)

denotes pk, the 3-predicate from FIGURE 2.3, then

(anim al s p e c ie s = d o g h u n g ry = tru e)

denotes pk', the one-element component of pk, and ✓

(anim al l o c = # l . l o c)

denotes pk", the many-element component of pk.

Notice that any one-element fc-predicate pk has a trivial many-element
component; that is, pk = pk' and pk" is a tautology. Similarly, any many-
element fc-predicate pk has a trivial one-element component; that is, pk = pk"
and pk' is a tautology.

36

Lemma 2.1

A fc-predicate pk(zo1 0 = pk'iw i^) a pk"(witfc).

Proo/. By definition, a fc-predicate is a conjunction of one or more
fc-predicates defined on the same domain; pkiw^^) = pjfa(witk) a . . . a p^(w>2,fc).

The "a " operator is commutative, and the predicates on the RHS of this
expression can appear in any order. Therefore, one can assume that all m one-
element predicates are grouped to the left (i.e., pijj,... and that all n - m
many-element predicates are grouped to the right (i.e., p ^ j , •••, p |p . This
implies that the one-element component pk'iwijc) = pkjiwj^) a ••• A P^<W1 ,0

and the many-element component pk"(wit0 = Pj^+i(^i,fc) a ... A p ^ ro j^).
Substituting into the original equation, pkixvj^) = p£'(w>3,fc) a pk"(wj ;fc). □

D e f in it io n

A fc-predicate pk such that both pk' and pk" are tautologies is called a

vacuous k-predicate. □

In practice, all vacuous fc-predicates are ignored.

Lemma 2.2

For every non-vacuous one-element k-predicate pk defined on some

Cj x ... x Cfc E Lffc there exists a one-element 1-predicate q\ such that p \(w ik) =
q\(wi) for all C jx ... x C%.

Proof. By the definition of a non-vacuous one-element fc-predicate, there
must exist such a qj, the projection of pk onto C*. □

For any fc-predicate pk, the one-element 1-predicate corresponding to pk’,
as defined in LEMMA 2.1, is denoted by ph i. For example, let p | be the

3-predicate in FIGURE 2.2, denoted by

(food type=meat)

such that for all zvj s food, w i <= anim al, and e animal, p \(w i, W2, W3) iff
food(wj) = meat. Then, for all W\ e food, p^liw j) iff food(w{) - meat.

37

DEFINITIONS

A k-pattern is a pair (s, pk), where s e {+, -} is called the sign, and pk is a

fc-predicate defined on some categories Cj x ... x Q . A fc-pattem w ith a sign of
+ is called positive k-pattern. Similarly, a fc-pattern w ith a sign of - is called a
negative k-pattern. A fc-pattern is said to be satisfied by a working memory W
if there exists w i^ e (C j n W) x . . . x (Cjt n W) such that pkiwj^) = true. □

In practice, the "fc-" is often om itted from the term k-pattern when the
value of fc is either irrelevant or obvious. In examples, negative patterns are
denoted by fc-predicates preceded by the word NOT, such as

NOT (animal s iz e > # 2 .s iz e lo c = # l.lo c hungry rue)

while positive patterns, such as

(animal species= dog lo c = # l.lo c hungry = t rue)

are not preceded by the word NOT.

D e f i n i t i o n s

A set of fc-patterns, c = {(sj, p!f), {S2, p |> ,. . . , (s*, pjf)} is a condition if, for
some Cj x ... x Q- e Uk, and for all i = 1 , . . . , fc;

1 . pk is defined on Cj x .,. x Q., and
2 . pk is dependent upon argum ent j implies that j = i or sj = +.

Condition c is satisfied by working memory W if V(+, pk) e c, B w ir% e Wfc
such that pkiwi'k) = true, and V{-, pk) e c, Via,- e C,-, pk(xv2 = false. □

In other words, a condition is a sequence of fc-patterns such that all
fc-predicates are defined on the same categories, and all direct references refer
to positive patterns in the condition.

For example, the patterns

(food type^neat)
(animal species= dog lo c = # l.lo c hungry=true)

NOT (animal s iz e > # 2 .s iz e lo c = # l.lo c hungry=true)

denote a condition; but, the patterns

38

(food type=meat)
(animal species= dog loc=#3.1oc hungry=true)

NOT (animal s iz e > # 6 .s iz e lo c = # l.lo c hungry=true)

do not denote a condition because negative patterns and non-existent patterns
are referenced (e.g., #3.Ioc and # 6 .size respectively).

DEFINITION

A satisfying list for a condition is a list of working memory elements zvj^
for which the fc-predicates in the positive patterns of that condition evaluate
to true. The ith working memory element in a satisfying list is said to match
the ith pattern in the corresponding condition. □

For example,

< (food ty p e :m ea t l o c :doghouse),
(animal name:pudwuji sp e c ie s :d o g loc:doghouse h u n g ry : t r u e) ,
~ >

is a satisfying list87 for the following condition from FIGURE 2.2:

(food type=meat)
(animal species= dog lo c = # l.lo c hungry=true)

NOT (animal s iz e > # 2 .s iz e lo c = # l.lo c hungry=true)

2.2.1.2 .2 . Actions

In addition to a condition, every production contains an action that
modifies the contents of working memory. Each action is composed of one or
m ore operations that sequentially perform small m odifications to working
memory, such as adding or removing an element.

DEFINITION

An operation is a function o : Cj x ... x Cjt x 2 ^ -» 2 ^ . □

87 The symbol instantiation denotes that no working memory element matches the third
pattern.

39

That is, given a satisfying list and a working m em ory W, an opera
tion o uses information in ̂ to modify W, and returns the resulting work
ing memory. This thesis is concerned with only two types of operations: add
and remove.

DEFINITIONS

An operation o is an add operation if W) = W u {w} for some w in
U. Similarly, an operation o is a remove operation if oiwj j., W u {a?}) = W for
some w e [w j, . . . , zvj.} n W. □

As the nam e implies, an add operation adds a new element to working
memory. For example, an add operation from FIGURE 2.2

ADD (food ty p e :b o n e lo c :# l . lo c)

instantiates ftl.loc to doghouse, based upon the satisfying list above, and adds
the working memory element denoted by

(object ty p e :b o n e loc:doghouse)

to working memory. Similarly, a remove operation removes an existing ele
m ent from working memory. The remove operation from FIGURE 2.2

REM (#1)

w ould rem ove from w orking memory the first element in the satisfying list
(i.e., the element that matches the first pattern in the condition):

(food t y p e : meat l o c : doghouse)

D e f in it io n s

An action is a function a : Cj x ... x Q x 2 ^ —» 2 ^ of the form aiwj ^, W) =
O m - l & l f c °2^w l,k> ° l^w l,k> W)))) where o j , . . . , om are operations

that map Cj x ... x Q .x 2 ^ -» 2^. □

That is, an action performs a composition of operations on a satisfying list
of w orking memory elem ents and a working memory to produce a new
w orking memory.

40

DEFINITIONS

A production on U is a triple (n, c, a) where n is called the production
name, c is a condition defined on domain Cj x ... x C^, and a is an action
defined on domain Cj x ... x C*. x 2^ . The set of all productions on U is
denoted by P(fi). A finite set of productions P(LZ) is called a production
memory on U if V<«2, cj, af), <«2, C2, «2>e * «2 •a

In practice, n is often used to refer to a production (n, c, a). A production
(name, condition, action) is denoted by name : condition => action, A sam ple
production may be found in FIGURE 2.2.

DEFINITION

A production system (CP, W) consists of a production memory P(U)
for some U and a working memory W £ U, □

In conventional program m ing terms a production m em ory T m ay be
thought of as a program. Similarly, a working memory W may be thought of
as the data input to CP.

DEFINITIONS

An instantiation on (CP, W) is a pair «n , c, a), where (n, c, a) e CP, and
W1 ,k e Wfcis a satisfying list for c. An instantiation is fired by replacing W
with aizoj^, W). A set of instantiations on (CP, W) is called a conflict set of
(CP, W). □

An instantiation describes one way that the patterns in a production con
dition can be m atched with elements of working memory, and contains all
the information necessary for the action of that production to modify w ork
ing memory. Instantiations are also called instantiated productions. FIGURE
1.3 denotes a sample instantiation.

Firing an instantiation applies the action of the satisfied production to
working memory. W hen the term fire references a production, it is intended
that an instantiation of that production is actually being fired.

41

2.2.2. Interpretation

Informally, a production system interpreter finds those productions that
have conditions satisfied by working memory, and applies their actions to
working memory. However, the actual interpretation scheme used varies
from one production system architecture to another. The interpretation
scheme, sometimes called the search strategy, consists of the backtracking
strategy, evaluation strategy, and selection strategy used by the interpreter.
Each of these concepts is discussed below.

2.2.2.1. Backtracking Strategy

Post production systems are non-deterministic and may search all paths
of a problem space to find a solution. Backtracking is used to implement non-
deterministic production systems on serial machines. By saving the state of
working memory before following a particular search path (i.e., before firing
an instantiation), one may later backtrack to that state and follow a different
search path (i.e., fire a different instantiation). In this way, all search paths
may be examined. Because the time and space costs of backtracking are non
trivial, m ost conventional production system architectures are deterministic
and do not backtrack. This is the case for the palimpsest production system
architecture described herein.

2.2.2.2. Evaluation Strategy

Another piece of the interpretation scheme for a production system ar
chitecture is the direction of evaluation, or evaluation strategy. There are two ✓
prim ary evaluation strategies: forward-chaining and backward-chaining. A d
ditionally, there are numerous variations on these, such as bi-directional and
means-ends analysis techniques. Each is discussed below.

Forward-chaining or data-driven evaluation searches production systems
for productions with satisfied conditions and applies their actions to working
memory, one at a time, until no new conditions can be satisfied. However,
time may be wasted satisfying the conditions and applying the actions of pro
ductions that do not contribute to the desired problem solution. A forward-

42

chaining evaluation strategy is desirable when the effect of production actions
on other production conditions is poorly defined, or when the num ber of
problem solutions is large.

Backward-chaining or goal-driven evaluation also searches production
systems for satisfied production conditions, but that search is directed to sat
isfy the condition of a goal production. If working memory does not satisfy
the condition of the current goal production, and the action of another pro
duction helps to satisfy the condition of the goal production, then the inter
preter designates that new production as the goal production. However, time
may be wasted satisfying goals that do not contribute to the eventual problem
solution. A backward-chaining evaluation strategy is desirable when the effect
of production actions on other production conditions is known, and when
the number of problem solutions (i.e., goals) is small.

Bi-directional evaluation attempts to combine the simplicity of forward-
chaining evaluation with the directed search capability of backward-chaining
evaluation. Both forward-chaining and backward-chaining evaluation are
applied simultaneously, in the hopes that the evaluations m eet somewhere
in the middle of the problem space.

Means-ends analysis evaluation is a heuristic technique that can be used
to search a problem space more efficiently. When the difference between the
current state of the interpreter and a goal state can be quantified, the decision
to apply the action of a production with a satisfied condition depends upon
that action's ability to reduce that difference.

The production system architecture defined in CHAPTER 4 is essentially
forward-chaining. However, this architecture can use any of the above evalu
ation strategies, singly or in combination (cf. SECTION 6.1).

2.2.2.3. Selection Strategy

Within the constraints imposed by a given evaluation strategy, a selection
strategy determines the exact search path followed by a production system in
terpreter for a production system. Because problem solutions may depend

43

upon the search path fo llow ed and because identical problem solutions may
be found by following search paths of different lengths, the choice of an ap
propriate selection strategy is crucial to the correctness and efficiency of a pro
duction system interpreter.

DEFINITION

A match function M maps 2 * ^ ^ w ftere C (tl) is the set of
all instantiations on (F (ll), U), such that M {T, W) is a conflict set of (IP, W),
and |M(IP, W)| > 0 iff an instantiation on (T, W) exists. □

A m atch function takes a production system as its argum ent, finds
instantiations on that production system and returns them in a conflict set.

D e f in it io n

A conflict resolution function R m aps 2 ^ ^ -» C(If) such that R(S) e S
for S C C (U). □

A conflict resolution function takes a conflict set as its argum ent and re
turns one instantiation from that conflict set. For example, given some con
flict set, a conflict resolution function might return an instantiation contain
ing the production w ith the most complex condition.

D e f in it io n

A pair (M, R), where M is a match function and R is a conflict resolution
function, defines a selection strategy. □

A selection strategy defines the process by which a deterministic, forward
chaining, production system interpreter, defined by ALGORITHM 2.1, selects a
production to be fired on each cycle.

ALGORITHM 2.1

Deterministic production system interpretation using selection strategy
<M, R).

Input. A production system (IP, W).

Output. A modified working memory.

44

Method. The state of the algorithm is represented by W. Perform steps (1)
to (3).

1. Match Phase: Determine conflict set S = M(tP, W) and go to step (2).

2. Conflict Resolution Phase: If S is em pty then output W and halt.
Otherwise, select an instantiation I = R(S) and go to step (3).

3. Act Phase: Fire instantiation I - ((«, c, a), Wj^) by assigning aizvj ^, W)
to W, and go to step (1). □

This algorithm repeatedly finds, selects, and fires instantiations.

D e f in it io n

ALGORITHM 2.1 is called the recognize-act cycle. □

2.2.3. Procedural Control

Procedural control information for production systems specifies the order
in which instantiated productions can be fired. The m ost common m ethod
ology for specifying and implementing procedural control is to write a pro
duction system to take advantage of the conflict resolution function88'89. Un
fortunately, as described in SECTION 1.2.2, such control strategies destroy the
m odularity of production systems. A nother approach augm ents the
production system with separate control information, in the form of a control
language, that restricts the productions that can be fired on any given cycle.
Such "controlled production systems" are addressed in this section.

2.2.3.I. Controlled Production Systems

A definitive description of controlled production systems and their in
herent advantages over other control strategies is found elsewhere90. This
section presents a brief introduction to controlled production systems that
conforms to the notation of this thesis.

88 Rychener, 1979.
89 McDermott and Forgy, 1977.
90 Georgeff, 1982.

45

DEFINITIONS

Let N(fP) be the set of all production names found in a production mem
ory IP. Then, K £ N((P)* is called a control language of (P. A context-free gram
m ar G*> where K = LCGr), is called a control grammar of IP. □

A control language is defined on an alphabet containing production
names. Strings in a control language specify the "legal" sequences of
production firings for a production system. Herein, all control languages are
specified by context-free control grammars.

D e f in it io n s

Given a control language K £ N(G?)* and a string s e N(IP)* that denotes a
sequence of production firings, production (n, c, a) e IP is a legal production if
sna e K for some a e N((P)*. An instantiation is a legal instantiation if it
contains a legal production. □

For example, the following control grammar91

S - * P iS p 2
S —> £

specifies that all sequential firings of production p i m ust be followed by ex
actly the same number of firings of production p2 . Initially, only production
p i is legal. After firing p i , then both p i and p 2 are legal. After firing the se
quence of productions denoted by the string p 2 p i p i p2 , only production p2 is
legal.

DEFINITION

A controlled production system «fP, W), G^) consists of a production sys
tem {% W) and a control grammar G^ of IP. □

A controlled production system uses a control language to impose
procedural control allowing the production system interpreter to fire only
those instantiations containing legal productions.

91 Herein, all non-terminal grammar symbols are denoted by upper-case letters, and all
terminal grammar symbols are denoted by lower-case letters.

46

Example 2.5
Consider a production m em ory containing two productions that install
nuts onto threaded bolts:

lo a d _ n u t :
(bolt f i l le d = fa ls e)
(nut location=unused)

=>
CHG (#2, l o c a t io n :#1. lo c a t io n)
tu rn _ _ n u t:

(bolt f i l l e d = f a ls e)
(nut lo c a t io n = # l . lo c a t io n)

CHG (#1, f i l l e d : true)

Production lo a d jn u t places an unused n u t onto an em pty bolt, and
tu rn jn u t screws the nu t onto the bolt. It is assumed that there are at least
as m any nuts as there are threaded bolts. Clearly, every call to tu rn_nu t
m ust be preceeded by a call to load_nut. If the goal of this production
m em ory is to install nu ts onto all em pty bolts, then this iterative
sequencing of production firings can be specified by the following control
gram m ar

INSTALL_NUTS -> load_nut tu r n n u t INSTALL_NUTS
INSTALL_NUTS stop_installing_nuts

where s to p jn s ta ilin g jn u ts is a production w ith an em pty action

s to p _ _ in s ta l l in g _ n u ts :
NOT (bolt f i l le d = fa ls e)
=>

that is satisfied only when nuts have been installed on all bolts. Because
the first symbol of any string in this control language m ust be either
lo a d jn u t o r stop J n s ta ll in g jn u ts , then the first production fired m ust be
one of these two productions. Given an initial working memory of

(bolt l o c a t i o n : loc27 f i l l e d : false)
(nut l o c a t i o n : unused)

only lo a d jn u t has a satisfied condition. After firing lo a d jn u t, the only
legal production, according to the control grammar, is tu rn jn u t. After
firing tu r n j iu t both lo a d jn u t or stop j n s t a iling jn u ts are once again le-

47

gal; however, only stop_installing_nuts has a satisfied condition. After
stop_insta lling_nuts fires, no productions are legal, and interpretation
should halt. □

A larger example of a controlled production system is presented in Ap
pendix B. ALGORITHM 2.2 defines the interpretation of controlled production
systems.

Algorithm 2.2

Deterministic controlled production system interpretation using selection
strategy <M, R).

Input. A controlled production system W), Gg).

O u t p u t . A modified working memory.

Method. The state of the algorithm is represented by the pair (s, W),
where s is an initially empty string in N(fP)*. Perform steps (X) to (4).

1. Control Phase: Determine the set of legal productions P = {(«, c, a) I
(n, c, a) e (P, and s«a e L(G^) for some string a e Nf^*} and go to
step (2).

2. Match Phase: Determine conflict set S = M(P, W) and go to step (3).

3. Conflict Resolution Phase: If S is empty then output W and halt.
Otherwise, select an instantiation I = R(S) and go to step (4).

4. Act Phase: Fire instantiation I = ({n, c, a), Wittn) by assigning
a(w2tTn, W) to W, assign sn to s, and go to step (1). □

Interpretation of controlled production systems is identical to the inter
pretation of conventional production systems, except that the match phase
only searches for instantiations of "legal" productions. N otice that
ALGORITHM 2.2 reduces to ALGORITHM 2.1 when K = that is, when the
sequence of production firings is unconstrained, and no procedural control is
specified by the control language.

48

DEFINITION

A controlled production system ((fP, W), G%) is control free if L(GK) =
N(!P)* and the working memory computed by ALGORITHM 2.2 is independent
of selection strategy (M, R). □

That is, a controlled production system is control free if the control
language specifies no procedural control, and productions do no t take
advantage of the conflict resolution strategy to impose procedural control.
Because K =N(!P)* in a control free controlled production system , a
conventional, "uncontrolled" production system can also be said to be control
free if it does not take advantage of the conflict resolution strategy to impose
procedural control.

2.2.3.2. Examples of Common Control Constructs

This section dem onstrates how many of the more im portan t control
constructs can be specified in a controlled production system92. Of course, all
of the constructs described m ay be combined to produce more complex
control constructs. For the purposes of discussion, assume that the production
memory in question contains productions with names p 2/ p2 , . . . , pn.

2.2.3.2.I. Direct Sequencing

Direct sequencing control specifies a sequence of productions to be fired.
For example, one may need to specify that production ps m ust fire, followed
immediately by p 3 and p$. Such a sequence is specified by a placing the string
P9 P3 P6 control grammar.

SEQUENCE -> P9 P3 P6

where pg , p 3, and p g are terminal symbols, and SEQUENCE is a non-terminal
symbol.

92 A complete description of these control constructs and their importance in AI programming
is presented in Rychener, 1979.

49

2.2.3.2.2. Fall-Back Control and Held Result Usage

Fall-back control resembles a subroutine call and return. Productions as
sociated with a particular process pass control to a different group of produc
tions associated with some subprocess. When that subprocess has been com
pleted, control returns to the original process, which does not directly use the
results generated by the subprocess. Held result usage is just fall-back control
in which the original process does directly use the results generated by the
subprocess, b u t allows that subprocess to terminate before processing those
results. Fall-back control resembles a procedure call in Pascal or Ada, and held
result usage resembles a function call. For example, in the control grammar

MAINPROCESS -> p a p2 SUBPROCESS p3 p4
SUBPROCESS -> p5 p6

M AINPROCESS specifies that p i and p2 should be fired, in sequence, and fol
lowed by the processing of SUBPROCESS. In this case, SUBPROCESS merely
involves firing p5 and pg in sequence. After SUBPROCESS is completed (i.e.,
pg is fired) control then returns to M AINPROCESS at the point immediately
following SUBPROCESS. Productions p3 and p4 are then fired, in sequence, to
complete MAINPROCESS.

2.2.32.3. Selection

Selection allows any one of a number of productions to fire. For example,
the following control grammar

SELECT -4 pj
SELECT —> p2
SELECT —> p3

specifies that either p j, p2 , or p3l should fire. Selection is used to choose a pro
duction based solely upon the satisfiability of its condition; no procedural
constraints are imposed.

50

2.2.3.2.4. Iteration

Iterations of single productions, sequences or even complex control con
structs can be specified using recursive gram m ar ru les, such as
INSTALL_NUTS in EXAMPLE 2.5, and the following:

LOOP -» p t COMPLEXJZONSTRUCT p2 LOOP
LOOP -» stop_loop

where stop_loop is a production w ith an empty action that specifies the ter
mination condition for the loop. Initially, both p i and stop_loop are allowed
to fire. If the condition of p i is satisfied, then the loop defined by the first rule
is entered; otherwise, the condition of stopJLoop should be satisfied and the
loop terminates. If p i fires, then a sequence of productions defined by
COMPLEX_CONSTRUCT will fire, then p2 will fire. At this point, both p j and
stopJLoop are again allowed to fire, and the loop either terminates or begins
another iteration.

2.2.3.2.5. Modules and Hierarchies

A complex control construct (i.e., a portion of a control grammar that
could stand alone) and the productions it references can be thought of as a
production module that performs a single, well-defined task. The name of
this m odule is the goal symbol of its control grammar. Such modules can be
called from within other modules, via fall-back control or held result usage.
Using this scheme, complex production m odule hierarchies can be con
structed that resemble the structure of procedural programs such as Pascal and
A da93, and facilitate top-down design methodologies. The control construct
INSTALL_NUTS from EXAMPLE 2.5 is a production module that can be called
by the following module

CHANGE_FLAT -> remove_nuts SWAP_TIRES IN ST ALL_NUTS
CHANGE_FLAT calljow truck FIX_TIRE PAY_MECHANIC

93 In fact, a production system language can be defined that enforces module nesting and
scoping identical to that found in the procedural languages.

51

where rem ove_nuts, and call_tow truck are productions and SW AP_TIRES,
IN ST A L L _N U T S , F IX_TIRE, and PAY_MECHANIC are lower level pro
duction modules that perform the actions suggested by their names.

Productions define a single action that can be applied whenever a single
condition is satisfied. Production modules, on the other hand, generally rep
resent larger, dynamic plans of action, where the exact plan followed is de
termined dynamically, based upon the satisfiability of various conditions. In
the example above there are two plans for changing a flat tire. The first plan is
applied if the condition of rem ove_nuts is satisfied; and the second plan is
applied if the condition of calljtow truck is satisfied. In general, the condition
of the leftmost production (or module) in any plan acts as a condition for that
entire plan. W hen the condition of the first production in a plan is insuffi
cient to determine whether or not that plan can be applied, a new production
should be constructed that can make that determination and inserted at the
beginning of the plan. A disjunction of the conditions for all the plans in a
module acts as the condition for that module.

2.2.3.2.6. Concurrent Control Constructs

The efficient implementation of various other control constructs requires
a production system architecture that can interpret multiple productions or
production modules concurrently. Like most production system architectures,
palimpsest parsers currently allow the interpretation of only one production
or production m odule at any time. However, concurrent execution of
palim psest parsers may be implemented in the near future. For this reason,
some concurrent control constructs found in the literature are described
briefly below94.

• Direct Result Usage: similar to held result usage, except the call
ing process makes use of the results of the called process as they
are generated.

94 Rychener, 1977.

52

• Fork-Join: A problem is solved by decomposing it into subprob
lems, and assigning the solution of the subproblems to a number
of concurrent processes. W hen all subproblem s have been
solved, the various results are collected and assembled by the
original process.

• Parallel Iteration: The productions in the body of a loop iterate
concurrently.

Of course, if absolutely necessary, these three control constructs can be
implemented serially, bu t the size of that required control gram m ar grows
exponentially with the num ber of productions or modules that m ust be
interpreted concurrently.

2.3. Scope of Controlled Production Systems

It has been shown that Post production systems are computationally
equivalent to deterministic Turing machines. This section demonstrates that
controlled production systems, as defined above, are also computationally
equivalent to deterministic Turing machines.

Theorem 2.2

For every deterministic Turing machine there exists an equivalent con
trolled production system.

Proof. By construction. Let M = (S, 2 ,5 , s, $, Y) be a deterministic Turing
machine, where S is a finite set of states, 2 is the tape alphabet, s e S is the
start state, $ e 2 is the blank symbol, Y £ S is the set of accepting states, and 8
is any partial function from S x 2 - » S x 2 x {left, right, stay}95. Any such M
may be represented by a working memory W as follows:

For convenience, let tape positions be assigned consecutive integer ad
dresses, where position 0 is the initial position of the read/w rite head. The
infinite tape may be represented by a set T of pairs of the form {<address>,
<symbol>), where <address> is a tape address, <symbol> e 2 , (<address>,
<symbol>) e T => <symbol> = $, and ((<addressl>, <symbol>) e T a

95 Savitch, 1982, p. 77.

53

(<address2>, <symbol>) e T) => <addressl> ^ <address2>. Denote members of
T by working memory elements of the form

(tape addr:<address> symbol :<symbol>)

A configuration of the Turing machine may be represented by a pair c of
the form (<state>, <address>), where <state> e S, <address> is a tape address.
Denote a configuration by a working memory element of the form

(config s t a t e :<state> head:<address>)

Initially, this element is (s, 0), denoted by
(config s t a t e :s h e a d :0)

Represent 8 by a set I as follows. For all <statel>, <state2> e S a n d
<symboll>, <symbol2 > e X such that §(<statel>, <symboll>) = (<state2 >,
<symbol2>, <dir>), where <dir> e [left, right, stay}, I contains 5-tuples of the
form {<statel>, <symboll>, <state2>, <symbol2>, <dir>). Denote the members
of I by working memory elements of the form

(in s tr o n _ s ta te :< s ta te l> to _ s ta te :< s ta te 2> read:<symboll>
w r i t e : <syrribol2> move: <dir>)

A deterministic Turing machine interpreter may be implemented by the
following procedure:

loop
if c = (<state>, <address>)

and not {<address>, <symbol>) e T then
T := [{<address>, $))u T ;

else if c = (<state>, <address>)
and (<address>, <symbol>) e T
an d (<state>, <symbol>, <state2>, <symbol2>, left) e I th e n ✓

T := (T ~ {(<addres$>, <symbol>)}) u {{<address>, <symbol2>)};
c := {<state2 >, <address> - 1);

else if c = {<state>, <address>)
and (<address>, <symbol>) e T
an d (<state>, <symbol>, <state2 >, <symbol2 >, right) e 1 th en

T :=(T ~ {<<address>, <symbol>)}) u {<<address>, <symbol2 >)}-,
c := (<state2 >, <address> + 1);

else if c = {<state>, <address>)

54

and (<address>, <symbol>) e T
and (<state>, <symbol>, <state2>, <symbol2>, stay) e I then

T := (T ~ {(<address>, <symbol>)}) u {(<address>, <symbol2>)};
else

exit;
endloop;

For the working memory representation W of a Turing machine M, the
above procedure can be implemented by the following production memory.

le n g th e n _ ta p e :
{config)

NOT (tape a d d r : #1. head)
=>
ADD (tape a d d r :#1.head symbol :$)
d o _ l e f t :

(config)
(tape a d d r=#1. head)
(in s tr o n _ s ta te = # l .s ta te read=#2.sym bol move=left)

CHG (#2, sym bol:#3.w r ite)
CHG (#1, s t a t e :# 3 . t o _ s ta t e head :#1 .head-1)
d o _ r ig h t :

(config)
(tape ad d r= # l. h e a d)
(in s tr o n _ s ta te = # l .s ta te read=#2.sym bol move=right)

CHG (#2, sym bol:#3.w r i te)
CHG (#1, s t a t e :# 3 . t o s t a t e h ead :# l.h ead + l)

d o _ s ta y :
(config)
(tape addr= # l.head)
(instr o n _ s ta te = # l .s ta te read=#2.sym bol move=stay)

=>
CHG (#2, sym bol:#3.w r i te)
CHG (#1, s ta te :# 3 .to _ _ s ta te)

where every production condition corresponds exactly to an i f condition, and
every production action corresponds exactly to an i f action. The procedural
control specified by the loop and i f structure can also be specified by the fol
lowing control grammar:

55

LOOP lengthen_tape LOOP
LOOP -> d o je f t LOOP
LOOP -> do_right LOOP
LOOP -» do_stay LOOP
LOOP -» halt_condition

w here the condition of production halt_condition is satisfied when no in
struction exists for the current state:

h a l t_ c o n d i t io n :
(config)
(tape addr=#l .head)

NOT (in s tr o n _ s ta te = # l . s t a t e read=#2.sym bol)

This corresponds to the termination condition of the loop statement. The se
lection strategy used by the interpreter does not affect the interpretation, be
cause only one production will be satisfied on any cycle. □

Corollary 2.1

For every Turing machine computable function there exists a control free
production system that computes it.

Proof. The controlled production system defined in THEOREM 2.1 is
control free, since K = [lengthen_tape, d o je ft , dojright, do_stay}* and the
selection strategy does not affect the interpretation. □

This result is expected, since PPSs are control free and computationally
equivalent to deterministic Turing machines.

3. LR Parsing
A definitive description of the theory of LR parsing96 may be found in

Aho and Ullman97'98. W ith the following exceptions, the terminology and
notation found therein is used without explanation.

• E denotes an alphabet composed of lowercase letters.
• N denotes an alphabet composed of uppercase letters.
• strings in (E u N)* are denoted by lower case Greek letters.

Every context-free grammar (CFG) G defines a language L(G)99'100. A
parser for G is a program that recognizes strings in L(G). One particularly
useful and efficient type of parser is the LR parser. An LR parser for language
L(G) consists of a set of language dependent LR parse tables, and the language
independent LR parsing algorithm. LR(k) parsers have a number of useful
properties: parse tables may be generated automatically from G; members of
L(G) are recognized in linear time; and non-members of L(G) are recognized
upon examining the first fc incorrect symbols.

The fc in "LR(k) parser" refers to the number of symbols of lookahead re
quired by the parser to choose between conflicting parse actions. For any value
of fc, the set of grammars for which an LR(k) parser exists is a subset of the
grammars for which an LR(k+l) parser exists. However, since the size and
complexity of an LR parser is directly related to the value of fc, m ost real
parser generation systems generate parsers with one symbol lookahead (i.e., fc
= 1). For the purposes of this thesis, no lookahead is required and LR(0)

96 The (k) in LR(k) parsing is often omitted when the value of k is irrelevant.
97 Aho and Ullman, 1972, pp. 83-96.
98 Aho and Ullman, 1972, pp. 368-396.
99 Aho and Ullman, 1972, pp. 83-96.
100 Savitch, 1982, p. 10.

56

57

parsers are sufficient101. Descriptions, definitions and examples within this
chapter refer specifically to LR(0) parsers.

3.1. LR(0) Parsing

This section presents LR(0) parsing background m aterial for reference
purposes. It is derived directly from the general LR(k) definitions of Aho and
Ullman102 for the special case, k = 0.

D e f in it io n s

Let G be a CFG and y a viable prefix of G. We define V(y) to be the set of
LR(0) items valid for y with respect to G. We define S = [a I a = V(y) for some
viable prefix y of G} as the collection of sets of valid LR(0) items for G. The
collection of sets of valid LR(0) items for G', the augmented form of G, is
called the canonical collection of sets of valid LR(0) items for G. □

For example, consider the augmented grammar

(0) S ' -» S
(1) S -» AaS
(2) S y
(3) A x

The canonical collection of sets of LR(0) items for this grammar along with
V(e) is:

a 0 = V(e) : { [S' •S]
[S -> •AaS]
[S —y •y]
[A •x] }

a t : { [S' S*] }
a 2 : U S A*aS]]

«3 = {ts y] J

101 Thus, all flavors of LR parsers (e.g., LR(k), LALR(k)r SLR(k) for which k > 0) are also
sufficient, and are collectively referred to as LR parsers throughout the remainder of this
thesis.

102 Aho and Ullman, 1972, pp. 368-396.

58

{ [A -> *•] }
t IS —> Aa*S]

[S -> •AaS]
[S •y]
[A —> •x] }

(IS -» AiS*] }

Definition

Let G = (N, X, P, S) be a CFG and let S be a collection of sets of LR(0) items
for G. If a is a set of LR(0) items such that a = V(y), where ye (N u 2)*, then
GOTOia, X) is that a ' such that a ' = V(yX), where X e (N u 2). □

DEFINITIONS

Let G = (N, 2, P, S) be a CFG and let S be a collection of sets of LR(0) items
for G. T(a), the LR(0) table associated with the set of items a in S , is a pair of
functions if, g). f is called the parsing action function and g is called the goto
function .

1. f maps te) into [accept, shift} u [reduce i I i is the number of a pro
duction in P}, where

(a) f(e) = shift, if [A Pi*P2] is in a, and p2 * £•
(b) fie) = reduce i, if [A —» p«] is in a, and A p is production

num ber i in P, i > 1.
(c) fie) = accept if [S' -4 S •] is in a.

2. g, the goto function, determines the next applicable table. Some g
will be applied im m ediately after each shift and reduction.
Formally, g m aps N u 2 into the set of tables or the message error. /
g(X) is the table associated w ith GOTO(a, X). If GOTO (a, X) = 0
then g(X) = error. □

DEFINITION

The canonical set of LRiO) tables for an LR(0) grammar G is the pair {% T 0)
w here T is the set of LR(0) tables associated w ith the canonical collection of
sets of valid LR(0) items for G, and T 0 is the LR(0) table associated with V(e). □

59

e S A a b y X
To s Ti *2 -

Ti A - - - - -

t2 S - - TS ~ - -

R2 - - - - -

t 4 R3 - - - - -

% S *6 t 2 *3
T6 R1 - - - - -

FIGURE 3.1. A Canonical Set of LR(0) Parse Tables103

Algorithm 3.1

Construction of the canonical set of LR(0) tables from a CFG.

Input. A CFG G = <N, S, P, S).

Output. The canonical set of LR(0) tables for G.

Method. Perform steps (1) through (3).

1. Construct the augmented grammar G ' = (N u lS '} ,S ,P u (S '- ^ S), S').
S' S is to be the zeroth production.

2 . From G ' construct S , the canonical collection of sets of valid
LR(0) items for G104.

3. Let fTbe the set of LR(0) tables for G, where (T= {T I T - T(a) for
some a e S}. Let Tq = Tfag), where ag = !/(£).□

For the augmented grammar above, the canonical set of LR(0) parse tables
in FIGURE 3.1 would be constructed.

Algorithm 3.2

The LR(0) parsing algorithm.

Input. A canonical set of LR(0) parse tables {% T0) for an LR(0) CFG G, and
an input string z e I*, which is to be parsed.

103 where, S s shift, A s accept, - = error, and Rn = reduce by production number n.
104 Definition above and Algorithm 5.8, Aho and Ullman, 1972, p. 386.

60

Output. If z e L(G) then output true; otherwise, output false.

Method. The state configurations for this algorithm are pairs {a, %),
where:

• a represents the parse stack (whose is on the right). Elements of
a are pairs (a, T), where a e l u N , and T e ‘T.

• x represents the portion of z yet to be parsed.

The initial configuration is «e, T 0), z). At all times, let T refer to the table
of the topmost pair on a . The parsing action function / of the T is applied by
steps (1) through (3) until acceptance occurs or an error is encountered.

1. If/(e) = shift, then perform steps (a) through (c). Otherwise, go to
step (2).
(a) Let % = uy. Push (u , g(u)) onto the top of a , where g is the goto

function of T. If g(u) = error, then halt, and output false105.
(b) Assign y to %; that is, remove the first symbol from %.
(c) Go to step (1).

2. If /(e) = reduce i, where production i is of the form A —» p, then
perform steps (a) through (c). Otherwise, go to step (3).
(a) Remove |(3] pairs from the top of a.
(b) Push (A , g(A)) onto the top of a , where g is the goto function

of T.
(c) Go to step (1).

3. If/(e) = accept, then halt and output true. □

D e f in it io n s

A parsing function fF- Vj x ... x V n x E* {true, false} where V p ..., V n,
are language dependent value sets. Given a CFG G, a parser for G is a function

: £* -» [true, false), where ^ (z) = z) and VjrTi e Vj x ... x V n. □

That is, a parser for G is an instance of a language independent parsing
function for which a number of language dependent arguments have been
specified, usually a set of parse tables and other ancillary functionsl06 used to

And, in practice, transfer to the error recovery routine.
106 cf. SEC. 3.2.

61

perform the parse. A parser for G determines w hether a given string z e £* is
in L(G).

Definition

An LR(0) parser for a CFG G is a predicate jF: £* —> [true, false], where
!Kz) = J LR(0) ((% T Q), z), J LR(0) is the LR(0) parsing predicate defined by
ALGORITHM 3.2, and {% T 0) is the canonical set of LR(0) parse tables for G. □

Example 3.1
Consider again the context-free grammar G

(0) S ' S
(1) S A aS
(2) S -> y
(3) A -> x

represented by the canonical set of LR(0) parse tables in FIGURE 3.1. Given
the input xay, a trace of the configurations generated by an LR(0) parser
for G follows:

«e, T0), xay)
((e,T0)(x,T4),ay)
«.z,T0)(A ,T2),ay)
((.e,ToXA,T2)<.a,Ts),y)
« 6/ Tq){A, T2)(ar Ty)(y, T2), e)
«e, T0)(,A, T2)(a, Ts)(.S, Ts), e)
«e,r0><S,Ti),e)
accept and output true. □

3.2. Enhancements to LR(0) Parsing

Currently, numerous LR parser generators 0̂7'108 exist as pa rt of automatic
compiler generation systems. The parsers generated by these systems usually
incorporate a number of features that are useful in compilers b u t are not part

107 Collins and Noonan, 1985.
108 a t & T Information Systems, pp. 350-351.

62

of the LR(k) parser definition. Since these extensions are essential to later
parts of this thesis, a description of each feature is provided below.

3.2.1. CLR(O) Parse Tables

A CFG G = (N, 2, P, S) is said to be LR(0) if the sets of LR(0) items gener
ated for G are consistent. In a consistent LR(0) item set, there is exactly one
value (e.g., shift, reduce, accept) defined for each parsing action function. In
practice, however, many useful grammars are not LR(0). LR(0) parse tables for
such grammars would contain multi-valued parsing action functions, where
the actions returned are collectively called a "collision." For this reason, some
parser generators109/110 will produce such multi-valued functions, and allow
the run-time environment to choose which action to apply. Herein, such ta
bles will be called CLR(O) parse tables, where the "C" stands for "colliding."
The following definitions and construction algorithms for CLR(O) tables are
adaptations of the corresponding LR(0) definitions and algorithms above.

DEFINITIONS

Let G = (N, 2, P, S) be a CFG, let S be a collection of sets of LR(0) items for
G, and let T(a) = if, g) be the LR(0) table associated with the set of items a in S.
Tc(a), the CLR(0) table associated with the set of items a in S, is a pair of func
tions (fc, g). f c is called the colliding parsing action function and g is the goto
function.

1. f c maps {e} -» 2^ , where f t = [shift, accept} u [reduce i I i is the
number of a production, 1 <i <|P|}, where
(a) shift e f c(e), if [A - » f31*p2] is *n and P2 * &
(b) reduce i e f c(e), if [A -» p*] is in a, an d A p is production

num ber i in P, i > 1.
(c) accept e f c(e), if [S' -» S •] is in a.

2. g is the goto function for normal LR(0) tables. □

Notice that / cfe) = f(e) when a is consistent.

109 Collins and Noonan, 1985.
110 AT & T Information Systems, pp. 350-351.

63

Definition

The canonical set of CLR(O) tables for a CFG G is the pair (flc, Tg), where %
is the set of CLR(O) tables associated with the canonical collection of sets of
LR(0) items for G, and Tg is the CLR(O) table associated with V(e). □

For example, consider the augmented grammar

(0) S ' -> S
(1) S —> a
(2) S ab
(3) S aB
(4) B b

The canonical collection of sets of valid LR(0) items for this grammar along
w ith V(e) is:

a0 = V(e): [S' —» •S]
[S -> •fl]
[S -> •flb]
[A •flB]

0 1 ■ [S' -> S*]

a 2 : [S —>
[S —) a*b]
[S —> fl*B]
[B -> •&]

03 : [S —> «&•]
[B -> H

CI4 : [S aB•]

resulting in the canonical set of CLR(O) tables found in FIGURE 3.2.

64

e S B a b
T0 {S} Ti - t 2 -

Ti {A} - - - -

TZ {S, Rl} - t 4 - T3

t 3 {R2, R4} - „ -

t 4 (R3) - - - -

FIGURE 3.2. Canonical CLR(O) Parse Tables111

ALGORITHM 3.3

Construction of the canonical set of CLR(0) tables from a CFG.

Input. A CFG G = (N, Z, P, S>.

Output. {%, Tq), the canonical set of CLR(O) tables for G.

Method. Perform steps (1) through (3).

1. Construct the augmented grammar G' = (N u {S'}, S, P u {S' -> S}, S').
S' -» S is to be the zero11* production.

2 . From G ' construct S, the canonical collection of sets of valid
LR(0) items for G112.

3. Let % be the set of CLR(O) tables for G;eTc ={T I T = Tc(a) for some
a e S}. Let Tq = Tc(a0), where a 0 = V(e). □

Notice that members of the range of / c(e) are sets of parsing actions. To
provide convenient access to individual members of this set the following
equivalent form of CLR(O) parse tables is defined.

DEFINITION

Given {%, Tq), the canonical set of CLR(O) tables for a CFG G, the alternate
representation of (*TC, Tq) is identical to Tq) with the following exceptions:

m where, s s shift, a s accept, - = error, and Rn = reduce by production number n.
^12 Definition above and Algorithm 5.8, Aho and Ullman, 1972, p. 386.

65

2. Parse actions are ordered such that shift actions (of the form shift
u) occur before reduce actions (of the form reduce i). The
ordering among shift actions and the ordering among reduce
actions is unspecified.

3. f c(i), where i > 0, denotes the ith parse action in the ordered set
/ c(e). If |/c(e)| < i, then c(i) denotes error. □

The alternate form of the canonical CLR(0) parse tables in FIGURE 3.2 is
shown in FIGURE 3.3. Henceforth, all CLR(O) tables will be represented in this
alternate form.

1 2 S B a b
To Sa - Ti - t 2 -

Tl A - - - - -

t 2 Sb Rl - t 4 - t 3

t 3 R2 R4 - - - -

t 4 R3 - - - - -

FIGURE 3.3. CLR(O) Parse Tables (Alternate F o r m) 1 1 3

3.2.2. Disambiguation Functions

For m any practical grammars it is useful to allow the parsing algorithm to
choose one of m any possible parsing actions at run-tim e based upon
information collected during the parse. For example, array references and
function calls are occasionally indistinguishable by an LR(1) parser for the
Ada grammar. A comparison of the identifier information stored in the se
mantics stack and the symbol table is required to decide which reduction to
make. In m any LR parsing systems, these decisions are made by disambigua
tion functions.

113 where, s = shift, A = accept, - = error, and Rn = reduce by production number n.

66

DEFINITION

A disambiguation function d for a CFG G = (N, X, P, S> is a function
d: A x Vj x V2 x ... x -» {frwe, false) x V m+2 x V2 x ... x Vn where Vj, -.<,Vn
are some sets of values, dip, v y v2, ..., v m) = (true, vm+j, ..., vn) for appropriate
values v y v2, ..., if the parser should apply parsing action p, and
dip, v y v2, vm) = (false, vm+y . .., vn), otherwise. □

This definition describes a class of application dependent functions. In
general, a disambiguation function d takes a parse action and a list of zero or
more application dependent values (i.e., v 2, v2, vm) as argum ents.
Function d returns either true or false, depending upon whether or not the
input parse action should be performed, along with a list of zero or more
application dependent values (i.e., vm+y ..., vn). The value sets Vj, V2,
and the definition of a specific d are application dependent. Specific
disam biguation functions114 m ay have restrictions imposed on input and
output values.

3.2.3. Semantics Function

It is often useful for an LR parser to be able to perform some side-effect
operation, such as modifying a symbol table or generating object code, when
ever a parsing action is performed. For this reason, some parser generator
systems allow the inclusion of a semantics function as defined below.

DEFINITION

A semantics function V jx ... x V m -» V m+i x ... x V n w here
V b • • •/ Vm> Vm+b ■■•'Vn ^ some sets of values. □

This definition describes a class of application dependent functions. In
general, a semantics function r takes a parse action and a list of zero or more
application dependent values (i.e., Vy v2, ..., vm) as arguments. Function r
returns a list of zero or more application dependent values (i.e., vm+y ..., vn).
The value sets V y V 2, ..., Vn and the definition of a specific r are application

114 cf. SECTION 4.2.I.2.

67

dependent. Specific semantics functions115 may have restrictions imposed on
input and ou tpu t values.

3.2.4. CLR(O) Parsers

A CLR(O) parser is an LR(0) parser that incorporates the additional fea
tures described above. Similarly, the CLR(O) parsing algorithm is a modifica
tion of the standard LR(0) parsing algorithm that makes use of these addi
tional features.

Algorithm 3.4

The CLR(O) parsing algorithm.

Input. A canonical set of CLR(0) parse tables (%, Tq) for G = (N, E, P, S), a
disambiguation function d, a semantics function r, and an input string z e E*
which is to be parsed.

Output. If z e L(G), then output true. Otherwise, output false.

Method. This algorithm is application independent and assumes that an
appropriate semantics function r : S ix V a x ... x V& -» x ... x Vc and
disam biguation function d: R x V& x ... x Ve {true, false) x Ve+j x ... x V/, is
available for each application, where V a , . . . , V c, V j , . . . , V/, are application
dependent value sets. The state configurations for this algorithm will be pairs
(a, %>, where:

• a represents the parse stack (whose top is on the right).
Elements of a are triples of the form (a , T, j), where a e l u N,
T e % and j > 0.

• x represents the portion of z yet to be parsed.

The initial configuration is «e, T q, 1), z). At all times, let T and j refer,
respectively, to the table and index of the topm ost triple on a . A pply the
parsing action function f c of T in steps (1) through (7) as appropriate until
acceptance occurs or an error is encountered.

115 cf. SECTION 4.2.I.2.

68

1. If fc(j) = error, then go to step (7). Otherwise go to step (2).
2. If d(fc(j), v$, ..., ve) = (false, , ve+j, ..., v^), w herevj, ..., are values

appropriate to the specific application, then go to step (6) below.
Otherwise go to step (3).

3. If f c(j) = shift u, then apply steps (a) through (d) below. Otherwise go
to step (4).
(a) Let % = If u = v then push (u ,g (u), 1) onto the top of a ,

where g is the goto function of T. Otherwise go to step (7).
(b) Assign y to %; that is, remove v from the front of %.
(c) Assign r(shift u, va, ..., uj,) to v^+j, ..., vc , where va, . . . ,v c are

values appropriate to the specific application.
(d) Go to step (1).

4. If fc(j) = reduce i for some production i of the form A -» (J, then apply
steps (a) through (d) below. Otherwise go to step (5).
(a) Assign r(reduce i, va, ..., v^) to Vf,+1, ..., vc, where va, .. . ,v c are

values appropriate to the specific application.
(b) Remove IP| triples from the top of a.
(c) Push (A, g(A), 1) onto the top of a , where g is the goto function

of T.
(d) Go to step (1).

5. If f c(j) = accept, then apply steps (a) and (b) below.
(a) Assign r(accept, va, ..., v^) to •■•/ va where va, . . . ,v c are

values appropriate to the specific application.
(c) Halt, and output true.

6. l(fc(j+l) terror, then replace (a, T ,j) , the topmost triple on a , with
(a, T, j+1) and go to step (1) above. Otherwise, go to step (7).

7. Halt, and output/fl/se.116. □

D e f in it io n

A CLR(O) parser is a predicate iF: Z* - » {true, false], where J(z) =
^CLRIO)^/ Tc0)' 4 r> z)f ^CLR(O)is the CLR(O) parsing function defined by
ALGORITHM 3.4, {%, Tcq) is a canonical set of CLR(O) parse tables for some CFG
G, d is a disambiguation function for G, and r is a semantics function for G. □

And, in practice, transfer to the error recovery routine.

69

EXAMPLE 3.2
Consider again the following context-free grammar:

(0) S ' S
(1) S -> a
(2) S -> ab
(3) S -> aB
(4) B -» b

represented by the canonical set of CLR(O) parse tables in FIGURE 3.3. We
define a specific disambiguation function d : A x (ZuN)* -» [true, false),
such that

and a specific semantics function r : A - > 0 , such that r(p) = zvriteip), for
all p <= A. A trace of the configurations defined by ALGORITHM 3.4 for the
resulting CLR(O) parser on input z =ab is:

accept and output true.

tried (which would result in ((e, T q , 1)(S, Tlf 1), e) for the 4th configura
tion) and rejected because d{reduce 2, ab) = false. Also, since dfshift u, (3) =
true for all u and (3, the R1 action in T2 will never be performed. □

if p = reduce i a |(3| > i
otherwise;

«e, T q, 1>, ab)
«e, T Q, V){a, T2, 1), b)
«e, T q, 1)(a, T2, l)(b, T3 , 1), e)
{(e,T0rl)(a ,T 2 , l) (B ,T 4, l) ,z)
«£/ T 0, 1XS, Tlf 1), e)

r writes shift a
r writes shift b
r writes reduce 4
r writes reduce 3
r writes accept

Note, that between the 3r<̂ and 4th configurations, parsing action R2 was

4. The Palimpsest Parser Production
System Architecture

This chapter defines a new production system architecture called a
palimpsest parser. The organization of this chapter will resemble that of
CHAPTER 2. The first section informally describes palimpsest parsers and con
trasts them with conventional production system architectures. The second
section addresses the structure, interpretation, and procedural control of
palimpsest parsers more formally. The final section discusses the scope of this
architecture. In particular, an algorithm, called the palimpsest transformation
is presented, that transforms an arbitrary controlled production system into a
palimpsest parser. It is shown that all deterministic Turing machines can be
represented and interpreted by palimpsest parsers.

4.1. Introduction to Palimpsest Parsers

This section provides an inform al, step-by-step description of the
structure and operation of palimpsest parsers. The purpose of this section is to
give the reader some understanding of basic palimpsest parser concepts before
formal definitions are presented in SECTION 4.2.

4.1.1. Conflict Resolution of Controlled Production Systems

The prim ary purpose of conflict resolution functions in conventional
production system architectures is to impose the procedural control that has
been built into production systems117. However, conflict resolution functions
are not used to impose procedural control on controlled production systems;
all procedural control is explicitly specified by a control language separate

117 cf. FIGURE 1.5.

70

71

from the productions. The control language is used to impose procedural
control, as in ALGORITHM 2.2, by restricting the match process, allowing only
legal productions to be instantiated.

Conventional production system architectures also use conflict resolution
functions to enforce refraction; that is, to insure that no instantiation is ever
fired twice. While refraction is necessary to guard against unintentional
infinite loops in uncontrolled architectures, such a rigid restriction is
unnecessary for controlled production systems. First, the only loops that can
occur in a controlled production system are those that are explicitly specified
by the control grammar. Second, it may be desirable for the same instantiation
to fire more than once; for example, on every cycle of a loop. Third, explicit
implementation of refraction within the production system is trivial in those
rare instances where it is necessary118.

The above observations suggest that conflict resolution plays no useful
role in the interpretation of controlled production systems, so any arbitrary
conflict resolution function can be used. This suggestion is supported by
COROLLARY 2.1; any Turing machine can be transformed into a production
system and interpreted using any arbitrary selection strategy. For this reason, a
simple conflict resolution function that allows significant performance-
related optimizations is incorporated into the palimpsest parser production
system architecture119. This conflict resolution function is called fire first.

4.1.2. The Fire First Conflict Resolution Function

As the name suggests, the fire first conflict resolution function chooses
the instantiation that was entered into the conflict set first (i.e., least recently)
by the match function. This conflict resolution function was chosen for use in
palim psest parsers because it significantly simplifies the interpretation
algorithm for controlled production systems (i.e., ALGORITHM 2.2) as follows:

118 cf. SECTION 6.8.
119 For those who reject this argument, trivial modifications to the palimpsest parsers

presented in this chapter allow any conventional conflict resolution function to be
employed (cf. SECTION 6.8).

72

1. The m atch function may halt after finding one instantiation.
There is no point in searching for other instantiations that
cannot not be chosen by the conflict resolution function.

2. The conflict resolution phase can be ignored. There is no conflict
to resolve if the match function returns a single instantiation.

The interpreter searches for instantiations and fires them as they are
found. In effect, all conflict resolution criteria are determined by the order in
which the match function searches for instantiations. For palimpsest parsers,
this search order is implementation dependent.

4.1.3. Control Information

Most forward chaining production system architectures use and maintain
information about a production system in order to improve performance. For
example, m em ory support and condition m em bership inform ation are
m aintained and used by most indexing architectures; palimpsest parsers are
no exception. M ore im portantly, palim psest parsers also use control
information, specified by a control gram m ar, to constrain the search for
instantiations. To illustrate this directed search capability, consider a simple
parsing based interpreter constructed as follows:

STEP 1: Create a copy of the control grammar, and change all terminal
symbols of this grammar (i.e., production names) into identical non-terminal
symbols. For the control grammar of FIGURE 4.1, the resulting grammar is:

(1) S LOADITEM S
(2) S OPENNEWBAY S
(3) S -» STOP

STEP 2: For every non-terminal production name in this grammar, add a
new gram m ar rule of the form P R O D U C T IO N _ N A M E e . For the
controlled production system of FIGURE 4.1, the added rules are:

(4) LOADITEM -» e
(5) OPENNEWBAY ->e
(6) STOP ->e

73

Production Memory

l o a d i t e m :
(item in_bay= none)
(bay s p a c e > # l . s i z e o p e n = tru e)

=>
CHG (#1, i n _ b a y :# 2 .name)
CHG (#2, s p a c e : # 2 . s p a c e - # l . s i z e)

o p e n n e w b a y :
(item in_bay= none)

NOT (bay s p a c e > # l . s i z e o p e n = tru e)
(bay s p a c e > # l . s i z e o p e n = fa ls e)

=>
CHG (#3, o p e n : t r u e)

s t o p :
NOT (ite m in _ b ay = n o n e)

W orking Memory120

a = (item nam e: item l ty p e : water s i z e : 67 in _ b a y : none)
b = (item name: itemS ty p e : scope s i z e : 71 in_bay:bay2)
C s (item name:item7 ty p e : book s i z e : 53 in jb a y : bay3)
d a (item nam e: item9 type:paper s i z e : 34 in _ b a y : none)
e a (item name:itemlO type:pen s i z e : 19 in_bay:none)
/ - (bay name :bayl sp a c e :200 o p en : false)
8 s (bay name :bay2 s p a c e :105 open: true)

Control Grammar

S -» lo a d ite m s
S —» opennewbay S

S s to p

FIGURE 4.1. A Controlled Production System

✓

120 The letters a, ... , g are provided to facilitate references to the corresponding working
memory elements.

74

1 2 3 4 S L 0 X
To R4 R5 R6 - Ti t 2 T3 T4

Tl A - - -

?2 R4 R5 R6 - t 5 t 2 t 3 t 4

t 3 R4 R5 R6 - t 6 t 2 t 3 t 4

t 4 R3 - - -

t 5 Rl - - -

t 6 R2 - - -

FIGURE 4.2. CLR(O) Tables for FIGURE 4.1121

STEP 3: Generate CLR(O) tables for the resulting grammar. For the
example grammar above, the tables in FIGURE 4.2 would be generated.

STEP 4: Gernerate a disambiguation function if that finds an instantiation
for a given production. That is, given parsing action reduce i, where grammar
rule num ber i is of the form PRO DUCTION_NAM E —> e, and a working
memory W, d will return (true, Wjjf) if W contains a satisfying list v j j^ for
production production_name, and (false, {)), otherwise, d returns (true, ()) for
all other reduce and accept parse actions. The satisfying list ̂ is used
subsequently by a semantics function. For example, given the controlled
production system in FIGURE 4.1, d(reduce 4, W) = (true, (a, g)) since the
condition of production loaditem is satisfied by the satisfying list (a, g) from
W122. Similarly, d(reduce 5, W) = (false, {)).

STEP 5: Generate a semantics function r that applies the action of a given
production. That is, given a parsing action reduce i, where grammar rule
num ber f is of the form PRODUCTION_NAM E e, r applies the action of
production production_nam e to a given working memory W using a
satisfying list supplied by d, and returns the resulting working memory.
For all other parsing actions r returns the original working memory. For
example, given the controlled production system of FIGURE 4.1, r(reduce 4, (a,

121 Where Ri = reduce i, A s accept, - = error, L h LOADITEM, O = OPENNEWBAY, and X a
STOP.

122 This assumes that (a, g) is the first satisfying list encountered by d

75

g), W) applies the action of load item by modifying the in jb a y and space
attribute values of a and g, respectively.

STEP 6 : Construct a CLR(O) parser from the CLR(O) parse tables,
disambiguation function, and the semantics function defined above.

The resulting CLR(O) parser, when supplied with the working memory
from FIGURE 4.1 and an em pty input string, will correctly interpret the
original controlled production system as defined by ALGORITHM 2.2. The
semantics function r specifies that every application of a parse action reduce i,
w here grammar rule num ber i is of the form PRO D U C TIO N _N A M E -> e,
fires an instantiation of production production_name. Such an instantiation
will only be fired if it is first found by the disambiguation function d.
Similarly, d will only search for this instantiation if reduce i is the action
specified by the parse tables for the current parser configuration. The parsing
actions allowed in any configuration are determined by the grammar of STEP
2, which is derived directly from the original control grammar. In this way,
the procedural control information specified by the control grammar is used
to constrain the search for satisfied productions.

EXAMPLE 4.1
Consider the controlled production system of FIGURE 4.1 for which the
CLR(O) parse tables are given in Figure 4.2, and the disambiguation
function, and semantics function are generated by the above process.
Initially, the configuration of the CLR(O) parser would be ((e, Tq, 1), e) and
the initial working memory would be {u,b,c,d,e,f,g}. Production loaditem ,
which corresponds to the current parse action reduce 4, has a satisfying
list (a, g), so dreduce 4, {a, b, c,d, e,/,g}) = (true,Ip,g% Applying dr educe 4, fag), {a,b,c,
d,e,f,g)) applies the action of loaditem resulting in a new working memory
1{i',b,c,d,e,f,g% where

a ' = (item nam e:iteml ty p e :w a te r s i z e : 67 in jbay:bay2)
g' = (bay name:bay2 sp ace : 38 open :true)

and a new configuration (fcT^lXLOADITEM,!^!),^. Again, parsing action
reduce 4 is specified by the configuration and dreduce 4, {?', b, c, d, e,f, g'}) =

76

(true, (d, g% Applying Reduce 4, ((I, g% {a', b, c, d, e, f, g1) results in the new
working memory {3’,b,c,d',e,f,g% where

d ' = (item name:item9 ty p e tp ap e r s i z e : 34 in_bay:bay2)
g" s (bay name:bay2 s p a c e :4 open :true)

and a new configuration (fe Tq, 1XLOADITEM, 7% 1)(LOADITEM, 1), e).
Again, parsing action reduce 4 is specified by the configuration, but no in
stantiation of loaditem exists; dreduce4, { 3 b,c,d ',e,f,g,f}) = (fake, 0). Configura
tion (($. Tq, 1XLOADITEM, 1XLOADITEM, T% 2), e) is entered specifying
parse action reduce 5 (i.e., production opennewbay). Since dreduce 5,&,b,c,
d',e,f,g"}) = (true,(e,f)), then r(reduce 5,(e,f), 63', b, c, d', e, f,g"}) will be applied,
resulting in a new working m em ory {a',b,c,d',e,f,g''} and configuration
((erT0 ,lXLOADITEM,T2,lXEOADITEM,T2,2XOPENNEWBAY,T3,l) ,d ,w here

/ ' = (bay nam e:bayl s p a c e : 200 open : true)

In th is configuration parse action reduce 4 is again specified, and the
disambiguation function dreduce 4, (a ',b,c, d ’, e ,f, g"}) = (true, (e, Applying
rireduce4,{e,-,f'),(fi',b,c,d’,e,f,g"\) results in the new working memory (fl‘,b,c,
d', e ',/", g"} and configuration ((^Tq, 1 XLOADITEM, T2,1XLOADITEM, T& 2)
(O P E N N E W B A Y ,TzlX LO A D ITE M ^lle), where

e ’ s (item name:itemlO ty p e :p en s iz e :1 9 in_bay :bay l)
f" s (bay nam e:bayl s p a c e : 181 open :true)

After unsuccessfully trying reduce 4 and reduce 5 the parser will be in
((e,To, 1 XLOADITEM, T^ 1XLOADITEM, Tz 2XOPENNE W BAY, T& 1>
(LOADITEM,T^Xe). Since dreduce6,(fl',b,c,d,,e ,,f",g"\) = (true,(-)), application
of r(reduce6, <-),{a',b,c,d’, e ',/" ,g")) puts the parser in a new configuration
(feTo, 1XLOADITEM, T% 1XLOADITEM, T2 , 2XOPENNEWBAY, T3 , 1)
(J-.OAD1TEM, T ^ 3XSTOP, T4, 1),e) and leaves working memory unchanged.
The parser will then repeatedly reduce by the three control rules until the
parser reaches the configuration (feT^lXS, T3,1),e) and halts. This sample
interpretation of the controlled production system of FIGURE 4.1 is exactly
that defined by ALGORITHM 2.2. □

77

4.1.4. Memory Support Information

As described in CHAPTER 2, every k-predicate is composed, in part, of a
one-element component that examines a single working memory element.
Any evaluation of such a one-element component, such as that denoted by

(item type=widget size>66 in_bay=none)

on a specific working memory element, such as

(item name:wl3 type:w idget s i z e : 73 in__bay;none)

will always return the same result, in this case true. By rem embering this
result across interpretation cycles, the match process (i.e., d in the parsers
described in the previous section) can restrict its attention to that subset of
w orking m em ory that matches the one-elem ent components of the fc-
predicates in a condition. Such information, that relates fc-predicates to the
working m em ory elements that partially match them, is called memory
support information.

Remember from CHAPTER 2 that a working memory element universe is
a set containing all working memory elements that could ever be used by a
particular production system. Also, every working memory element universe
is divided into distinct categories. For the production memory in FIGURE 4.1
the distinct one-element components of k-predicates are denoted by:

(item in_bay= none)
(bay o p e n = tru e)
(bay o p e n = fa lse)

Each of these fc-predicates is a characteristic predicate of some subset of the
appropriate category, either item or bay. Such a category subset will be called
an element class. The names A N YITE M , OPENBAY, and CLOSED BAY will
denote the three element classes specified above, respectively. The following
diagram illustrates the relationship between this particular working memory
universe (Lf), the categories item and bay, and the element classes ANYITEM,
OPENBAY, and CLOSEDBAY.

78

dosedbay
v .anyitem

item

openbay i

Remember also that a working memory is a finite subset of a working
memory element universe. This is illustrated by the next diagram:

79

Although a working memory (W) can contain working memory elements
from any category (and thus from any element class), not all working
memory elements are necessarily in working memory. The working memory
elements that belong to an element class (e.g., E) and are also in working
memory (e.g., W) are found in the intersection of that element class and that
working memory (i.e., E n W).

Memory support information for a production system is available if
working memory is represented as a union of sets, where each such set is the
intersection of working memory with a relevant element class. The relevant
element classes are defined by the distinct one-element predicate components
in production memory. All working memory elements that satisfy a pattern
predicate 's one-elem ent com ponent are im m ediately available in the
appropriate set intersection. For example, the working memory in FIGURE 4.1
can be maintained as:

W = {a, d, e} u {#} u {/}

where:

• (a, d, e) is the set of elements in ANYITEM n W.
• {g} is the set of elements in OPENBAY n W.
• {/} is the set of elements in CLOSEDBAY n W.
• {b, c} is the set (not shown) of elements in W that do not belong

to any relevant elem ent class; {b, c} G W ~ (A N Y IT E M u
OPENBAY u CLOSEDBAY).

In effect, such set intersections resemble the alpha memories of the Rete
and TREAT match algorithms.

4.1.5. Condition Membership Information

Inform ation about the satisfiability of one element components of k-
predicates by working memory is called condition membership inform ation.
If such one-element components cannot be satisfied, then neither can the
^-predicates, positive ^-patterns, and conditions that contain them. A match
algorithm can use such inform ation to restrict its attention to those

80

conditions containing fc-predicates w ith satisfied one-element components.
Fortuitously, m aintenance of memory support inform ation in terms of
elem ent classes, as in the previous section, also provides condition
membership information. The working memory elements that satisfy any
one-element component of a Jc-predicate are immediately available in the
intersection of working memory and the element class corresponding to that
one-element component.

For example, consider the controlled production system of FIGURE 4.1.
Production lo a d ite m contains two positive patterns w ith one-elem ent
components denoted by

(ite m in_bay= none)
(bay open= t r u e)

and associated w ith the elem ent classes A N Y IT E M and O P E N B A Y ,
respectively. For the condition of production load item to be satisfied it is
necessary, although not sufficient, for both of the sets A N YITE M n W and
OPENBAY n W to be non-empty. Initially, both of these sets are non-empty
(i.e., {a, d, e} and {g}, respectively) and the match algorithm should, according
to condition membership, try to satisfy this condition by finding one member
from each of the sets that satisfies the many-element components of the two
fc-predicates.

Only minor modifications to steps 2, 4, 5, and 6 of the parser generation
process described in SECTION 4.1.3 are needed to generate a parser that uses
condition membership information:

OLD STEP 1: Create a copy of the control gram m ar, and change all
terminal symbols of this grammar (i.e., production names) into identical non
term inal symbols. For the control gram m ar of FIGURE 4.1, the resulting
gram m ar is:

(1) S LOADITEM S
(2) S OPENNEWBAY S
(3) S -> STOP

NEW STEP 2: For every non-terminal production name in the grammar,
add a new grammar rule of the form PRO DUCTION_NAM E -> x-i x2 ... x^,

81

where each X{ is a terminal symbol associated w ith the ith p a ttern in the
condition of production production jia m e , as follows:

• If the ith pa ttern is positive/ then # t- is the element class name
corresponding to the one-element com ponent of that pattern 's
fc-predicate. Element class name gram m ar symbols are in lower
case to avoid confusion w ith the actual element class.

• Otherwise, if the it}t pa ttern is negative, then x\ is the string
“n o t j ' concatenated w ith the element class nam e corresponding
to the one-element com ponent of that pattern 's fc-predicate.
Element class name gram m ar symbols are in lower case to avoid
confusion w ith the actual element class.

For the controlled production system of FIGURE 4.1, the rules added are:

(4) LOADITEM —» anyitem openbay
(5) OPENNEWBAY —» anyitem not_openbay closedbay
(6) STOP not_anyitem

OLD STEP 3: Generate CLR(O) tables for the resulting grammar. For the
example grammar above, the tables in FIGURE 4.3 w ould be generated.

NEW STEP 4: Generate a disambiguation function d as follows123:

• For parsing actions of the form reduce i, w here gram m ar rule
num ber i is of the form PRO D U CTIO N_NAM E —> x1 x 2 ... Xf.,
an d a w orking memory W, (C will return {true, zojjf) if is a
satisfying list for production production j ia m e , and {false, 0)/
otherwise. The satisfying list ^ w ill be supplied as input to the
semantics function r of NEW STEP (5) below.

• For parsing actions of the form shift x, where x corresponds to a
positive pattern (i.e., x & not_a for some string a), d w ill return
{true, {}) if the element class set X rv W is non-empty, and {false,
()), otherwise.

• d returns {true, ()) for all other reduce, shift, and accept parsing
actions.

123 It is assumed that working memory is maintained as in SECTION 4.1.4, and that Stakes
advantage of the resulting memory support information.

82

1 2 3 s L B X a o c a o

T0 Sa Sa - Ti T4 T5 T6 T2 - - t 3 -

T i A - -

t 2 So Ss - - - - - - T7 - - T8

t 3 R6 - -

t 4 Sa Sa - t 9 T 4 T5 T 6 T2 - T3 -

t 5 Sa Sa - TlO t 4 t 5 t 6 t 2 - - t 3 -

t 6 R3

t 7 R4 - -

t 8 Sc - - - - - - - T n - -

Tg Rl - -

TlO R2 - -

T n R5 - - - - - - - - - - -

__________ FIGURE 4.3. New CLR(0) Parse Tables for FIGURE 4.1124________

For exam ple, given the controlled production system in FIGURE 4.1,
d(reduce 4, W) = (true, (a, g)) since the condition of production load item is
satisfied by the satisfying list (a, g) from W. Similarly, d(r educe 5, W) = (false,
()). Also, d(shift anyitem, W) initially returns (true, ()) since the set AN YITEM
n W = {«, d, e] is non-empty.

NEW STEP 5: Generate a semantics function r that applies the action of a
given production125. That is, given a parsing action reduce i, where grammar ✓
rule number i is of the form PRODUCTION_NAME -> x1 x2 ... x^, r applies
the action of production productionjnam e to a given working memory W
using a satisfying list zoj j. supplied by d of NEW STEP (4) above, and returns
the resulting working memory. For all other parsing actions r returns the

124 Where Su = shift u, Ri s reduce i, A = accept, - = error, L s LOADITEM , X = STOP, B =
O P E N N E WB A Y , a = anyitem , o = openbay, c s closedbay, ̂= not_anyitem , and Q =
notjopenbay.

125 It is assumed that the application of add operations by function r maintains the working
memory structure as in SECTION 4.1.4.

83

original working memory. For example,, given the controlled production
system of FIGURE 4.1, r{reduce 4, (a, g), W) applies the action of loaditem by
modifying the in jbay and space attribute values of a and g, respectively.

NEW STEP 6 : Construct a modified CLR(O) parser from the CLR(O) tables,
disambiguation function, and semantics function defined above. This parser
differs from a normal CLR(O) parser in two important ways. First, the input to
the parser is a working memory, not a string, so parse actions of the form shift
u cannot be applied in the normal CLR(O) parsing sense. The parser should
pu t the appropriate triple onto the parse stack, bu t should ignore the
remaining input, since there is none. Although it might a good idea to use
some symbol instead of shift for these parse actions, the present use of parse
tables created by existing parser generators dictates the name of this parse
action.

Second, the parsing algorithm m ust backtrack over failed shift actions
whenever the parser becomes blocked. This allows all actions for a given
configuration to be tried, and thus allows all legal productions to be examined
before the parser halts.

The resulting parser, called a palimpsest parser, uses control information
to fire productions in the same sequence as the parsers of SECTION 4.1.3. The
only differences are:

• Memory support information, as described in SECTION 4.1.4, is
used to speed up the match processing in d, and

• Condition membership information is used to short circuit the
costly match processing of unsatisfiable conditions.

The limited backtracking of the palim psest parsing algorithm is necessary
because a norm al CLR(O) parser halts and signals an error w hen the
disambiguation function disallows all legal parsing actions in the current
configuration. For exam ple, in table Tg, after shifting openbay, the
disambiguation function m ay discover that the many-element components of
the patterns in loaditem cannot be satisfied by W, and the only parsing action
in Tg, a reduction by "LOADITEM -> anyitem openbay," cannot be applied. In
this situation, the palim psest parsing algorithm can "unshift" terminal

84

symbols and try other parsing actions in previous configurations. Notice that
backtracking over reduce actions is proscribed, as that w ould involve the
costly "unfiring" of production actions.

Example 4.2
The following is a trace of the palimpsest parser defined above for the
controlled production system in FIGURE 4.1. This working memory will be
represented as a union of sets, where the elements of each set denote
working memory elements as described above. Since the input string of a
palimpsest parser is always e, it is ignored and replaced in configurations
by the current working memory W; initially [a, d, e} u {g} u \f] u [b, c}”126.

«e,T 0, 1 >,W)
«e, T0r l)(anyitem, T2 , 1>, W)
«e, Tq, l)(anyitem, T2, l)(openbay, 7>, 1>, W)

A reduction by rule (4) (i.e., loaditem), is applied, changing
a s (item name:item l type:w ater s i z e : 67 in_bay:none)
g = (bay name:bay2 sp a c e : 105 open :true)

in to
a ' = (item nam e:item l ty p e :w ate r s i z e : 67 in__bay:bay2)
g ' s (bay name:bay2 s p a c e :38 open :true)

and W becomes {d, ej u {#'} u {/] u [a1, b, c}.

«e, T0, l)(LOADITEM , T4 , 1), W)
«e, Tq, 1XLOADITEM, T4, iXanyitem, T2, 1), W)
((e, Tq, 1 XLOADITEM, T4, IXanyitem, T2, T){openbay, Tj, 1), W)

A reduction by rule (4) (i.e., loaditem), is applied again, changing
d s (item name:item9 type :paper s i z e : 34 in_bay:none) /
g 1 = (bay name:bay2 sp a c e : 38 open :true)

in to
d 1 s (item name:item9 ty p e :p ap er s i z e : 34 in_bay:bay2)
g" s (bay name:bay2 s p a c e :4 open :true)

and W becomes [e] u {g"} u {/} u {d', a', b, c}.

« e, T0, 1 XLOADITEM, T4, 1 XLOADITEM, T4 , 1), W)

12 ̂ Throughout this example, the last sets in the representations of W (e.g., [b, c)) are dis
played, although the working memory elements in this set will never be used.

85

«e, T0, 1)(LOADITEM, T4, 1 XLOADITEM, T4, l){anyitem, T2, 1), W)
((e, Tq, 1 XLOADITEM, T4, 1){LOADITEM, T4, 1){anyitem, T2, 1)

(iopenbay, Ty, 1), W)

d disallows the only action reduce 4 in T7 , so backtrack.

«e, Tq, l)(LOADITEM, T4, 1 XLOADITEM, T4, 1){anyitem, T2, 2), W)
«e, Tq, 1)(LOADITEM, T4, 1)(LOADITEM, T4, l)(anyitem, T2, 2)

(not_anyitem, T8 , 1), W)
«e, T0, 1 XLOADITEM, T4, 1 XLOADITEM, T4, l)(anyitem, T2, 2)

(not_anyitem, Tg, 1){closedbay, T n , 1), W)

A reduction by rule (5) (i.e., opennewbay), is applied, changing
f = (bay name :bayl sp a c e : 200 open : false)

in to
/ ' s (bay name:bayl s p a c e :200 o p en :true)

and Wbecomes {e} u {f,g") u 0 u [d1, a', b ,c}

«e, Tq, 1)(L0AD1TEM, T4, 1)(LOADITEM, T4, 1)(OPENNEWBAY, T5, 1),
W)

«e, T0, 1)(LOADITEM, T4, 1 XLOADITEM, T4, l)(OPENNEWBAY, T5, 1)
{anyitem, T2 , 1>, W)

«e, Tq, 1 XLOADITEM, T4,1)(L0AD1TEM, T4, 1)(OPENNEWBAY, Ts, 1>
{anyitem, T2, l)(openbay, T7, 1), IV)

A reduction by rule (4) (i.e., loaditem), is applied again, changing
e = (item name:itemlO ty p e :p en s i z e : 19 in_bay:none)
/ ' s (bay name:bayl s p a c e :200 o p en :true)

in to
e ' s (item nam e:item l0 ty p e :p en s iz e :1 9 in_bay:bay l)
f" = (bay name:bayl sp a c e : 181 open :true)

and W becomes 0 u {/", j ") u 0 u [e\d', a', b, c}

((e, Tq, l>(LOADITEM, T4, l)(LOADirEM, T4, l)(OPENNEWBAY, T5, 1)
{LOADITEM, T4, 1), W)

d disallows the first action in T4l, so increment j

86

« 6, Tq, 1 XLOADITEM, T4, 1){L0AD1TEM, T4 ,1)(0PENNEW BAY, T5, 1>
{LOADITEM, T4, 2), W)

«e, T0, 1 XLOADITEM, T4,1)(L0AD1TEM, T4 ,1){0PENNEW BAY, T5, 1)
{LOADITEM, T4, 2){not_anyitem, T$, 1), W)

A reduction by rule (6) does not change working memory

«e, Tq, 1){LOADITEM, T4,1){L0ADITEM, T4, 1){OPENNEWBAY, T5, 1>
{LOADITEM, T4 ,2){STOP, T6, 1), W)

A reduction by control rule (3) does not change working memory

«e, T0, 1){LOADITEM, T4, 1){LOADITEM, T4, 1){OPENNEWBAY, T5, 1>
{LOADITEM, T4, 2){S, T9 ,1), W)

Reductions by control rules (1) and (2) do no t change working memory

«e, T0, 1){L0AD1TEM, T4, l){LOADITEM, T4, 1){OPENNEWBAY, T5, 1)
{S, TW, I), W)

«£, T q, 1){LOADITEM, T4, 1){LOADlTEM, T4, 1){S, T9,1), W)
((£, T0,1){L0ADITEM , T4, 1){S, Tg, 1), W)
{{e,T0, l) { S ,T lf 1), W)

Accept and ou tpu t W = {/", g", e', d', a', b, c}. □

4.2. Palimpsest Parser Definitions and Theorems

4.2.1. Structure

In the previous section, palim psest parsers and related concepts w ere
described informally. This section presents the analagous definitions and
theorem s.

4.2.1.1. Working M em ory

First, the definitions related to working m em ory are repeated for review.

87

DEFINITIONS

For a given alphabet 0 , 17 £ 0 + is a working memory element universe,
and elements of L7 are called working memory elements. Each 17 is parti
tioned into finitely m any disjoint subsets C ^ \ . . . , C^n\ called categories. Each
category C e { C ^ ,... , C ^} is associated with a finite number m of maps
A j , ..., A m, called attributes that map C into sets V j , Vm, of values; that is,
A i : C —» Vj for i e {1, m), where m, the A fs , and V,-'s all depend on C. A
finite set of W £ 17 is called a working memory. □

To facilitate the collection and maintenance of m em ory support and
condition m em bership inform ation the concept of an element class in
introduced.

DEFINITIONS

An element class is a subset of a category. For any element class E C C the
one-element 1-predicate pj : C -» {true, false} that is the characteristic function

of E is called the element class specification of e. □

That is, for every one-element 1-predicate p\ defined on C there exists an
elem ent class E = {w e Cl p-j(w)}. Also, for every fc-predicate pH, the
corresponding pHi specifies an element class. If pHl is a tautology, as in a vac

uous or many-element ^-predicate, the element class defined is equivalent to
the entire category C. Henceforth, the superscripts and subscripts on a one-
element 1-predicate, like p \, will be om itted when p is known to be an

element class specification.

D e f in it io n s

An element class table entry is a pair (id, p), where id denotes an arbitrary
symbol, and p is an element class specification. A set of element class table
entries IE = {(idj, pi), (idi, P2), •••, (idm, pm)} is called an element class table if all
entries have unique id's. If for production memory tP and element class table
£ , V(n, c, a) e T, V(s,-, pf) e c, 3(id, p’f i) e £ , then £ is said to be derived from

tP.D

88

For exam ple, the following elem ent class table is derived from the
production memory in FIGURE 4.1:

{ (AN YITEM , (w e item, in_bay(w) = none)),
(OPENBAY, (w e bay, open(w) = true)),
(CLOSEDBAY, (w e bay, open(w) = false)) }

4.2.1.2. Production Memory

DEFINITION

A production memory grammar for a production memory (P and
element dass table T, derived from P is a CFG Gtp= (N<p, E<p, P& S<p>, where:

1. N (P=N(tP),
2 . S<p= {id I {id, p) e £} u {n o tjd 1 (id, p) <= £}.
3. |fPJ = \P^{, and for every production (n, c, a) in T there is a corres

ponding rule of the form n —» xj *2 • • • in P<p such that
(a) (+, p!f) e c implies that X{ = id and (id, p ^l) 6 £.
(b) p*) e c implies that x,- = n o t jd and (id, p*l) e £ .

4. S(p is any element of N<p. □

That is, a production memory grammar is a CFG with exactly one rule for
every production in a production memory that has been constructed as in
N EW STEP 2 of SECTION 4.1.5. The production m em ory gram m ar for the
production memory in FIGURE 4.1 is

LOADITEM -» anyitem openbay
OPENNEWBAY —> anyitem not_openbay dosedbay
STOP -» not_anyitem

For the following definition, rem em ber from SECTION 2.2.3.1 that a
control language gram m ar for a production memory (P is defined on the
alphabet N((P).

DEFINITIONS

Let Gk = (N& Pk, Sr) be a control grammar and G<p = <N«p, Z<p, P& Srp)
be a production memory grammar for (P. A palimpsest grammar for £P and K

89

is a CFG Grpj'— cjNfpSipP^ KjPrpSg) = {Nj>k> Ljp^, Ptpfc $$?$■■ Gg is called the
control component of G<p£, and G/pis called the production memory
component of . □

That is, a palim psest gram m ar for T is a combination of a production
m em ory gram m ar for & and a control gram m ar for T that has been
constructed as in OLD STEP 1 and N EW STEP 2 of SECTION 4.1.5. The
palim psest grammar for the controlled production system of FIGURE 4.1 is

N otice that every rule in the p roduction m em ory com ponent of a
palim psest gram m ar represents a production in the original production
memory; similarly, every terminal symbol represents a pattern. In order to
m ake such correspondences explicit in later definitions, the following
functions are defined.

D e f in it io n s

Let Gtpxbe a palimpsest grammar. The function PRODip^maps
{1,..., |P®J) -4 !Pu {error} such that:

• If the i th rule in Grpg is in the production memory component,
then PROD 2 $) = (n , c, a), the production in T corresponding to
that rule.

• Otherwise, PRODcp^i) = error.

Let £ be an element class table derived from £. The function SIGN (id)

m aps Sjpk -» {+, -} such that:

• SIGN(x) = - , if x = not_id and there exists an (i d , p) e £.
• SIGN(x) = +, otherwise.

Similarly, the function EC maps 2U such that

S
S
S

-> LOADITEM S
OPENNEWBAY S

- » STOP
LOADITEM anyitem openbay
OPENNEWBAY —> anyitem not_openbay dosedbay
STOP -» not_anyitem

90

• If x is of the form not_id, then EC/p^Cr) returns the element class
denoted by (id, p) e £ , that is [w I roe C and p(zv) = true), where
p : C -> {true,/aise}.

• Otherwise, EC<pg(x) returns the element class denoted by (x, p) e

DEFINITION

The palimpsest disambiguation function for a palimpsest grammar G<p ̂
and production memory T is a disambiguation function d that maps SA x 2 ^

{true, false} x li*, where is the set of parsing actions in the canonical set
of CLR(O) parse tables for G f^ such that, for all W £ 17:

• d(shift x, W) = (false, <)), if SIGN(x) = + and E C ^ x) n W = 0 .
• (((reduce i, W) = (false, {)), if PRODrpgfi) = (n, c, a), and c cannot be

satisfied by W.
• d(reduce i, W) = (true, Wj^), if P R O D ^ i) = (n, c, a), and V(+, p£)

e c, <= Wfc such that pfXw ĵfc) = and V{-, pfc) e c, Via,-

e Q , p*(zoitk) = false.
• d(p, W) = (true, ()), otherwise, for all other parse actions p e Sl.U

As described in SECTION 4.1, the purpose of is to find production
instantiations. W hen applied to shift actions, <£ uses condition membership
inform ation to short circuit unsatisfiable productions. Similarly, w hen
applied to reduce actions, £ tests the many-element components of k-
predicates to find a satisfying list from among those subsets of working
memory defined by memory support information. For example, given the
CLR(O) table in FIGURE 4.1, the palimpsest disambiguation function for the
controlled production system of FIGURE 4.1 would be

(((shift a n y item , W) = [(ANYITEM n W * 0) , <)]
(((shift openbay, W) = [(OPENBAY n W ^ 0) , 01
d(shift closedbay, W) = [(CLOSEDBAYn W * 0), <>]
(((shift no t_anyitem , W) = (true, ())
d(shift not_openbay , W) = (true, ())
d(reduce 4, W) = (true, w 2,2) if u>2 e (ANYITEM n W) x

(OPENBAY n W), space(w2) S size(wj).

91

d(reduce 4, W)
d(reduce 5, W)

= (false, <>)/ otherwise.
= (true, (wi, zu3)), if 3kj3, 103 e (ANYITEM n

W) x (CLOSEDBAY n W), Vw2 e (OPENBAY
n W), space(w^) S size(wf) a space(w2) <
size(w{).

= (false, 0)/ otherwise.
= (true, <».
= (true, <».
= (true, <».
= (true,Q).
= (true, <».

d(reduce 5, W)
d(reduce 6 , W)
d(reduce 1, W)
d(reduce 2, W)
d(reduce 3, W)
d(accept, W)

Notice that d(shift anyitem, W) = [(ANYITEM n WV 0) , ())] represents a
use of condition m embership information; d will not allow the shift because
W contains no elements that will satisfy the corresponding pattern. Similarly,
d(redttce 4, W) = (true, w ^) i f 3w^, ty2 e (ANYITEM n W) x . . . represents a
use of m em ory support information; many-element predicate components
only need to be evaluated on working memory elements that already satisfy
the one-element predicate components.

DEFINITION

The palimpsest semantics function for a palim psest gram m ar G ^ and a
production memory 2>is a semantics function r :J 4 x U * x 2 ^ —» 2 ^ , where SI
is the set of parsing actions in the canonical set of CLR(O) tables for G<p# such
that, for all W G II:

• r(reduce i, zoi^, W) = a(wiijc, W), if PRODtpj^i) = (n, c, a).
• r(d, zoj'fo W) = W, for all other parse actions p e S4, □

In o ther w ords, if ru le num ber i is p a rt of the production m em ory
component of Grp ,̂ then a palim psest reduce function applies the action of
the corresponding production to working memory; otherwise, a palim psest
reduce function does nothing. For example, given the CLR(O) table in FIGURE
4.1, the palim psest semantics function for the controlled production system of
Figure 4.1 would be

92

rixeduce 4, (w j, w fi, W)

r(reduce 5, (w j, w>3>, W)

r(reduce 6 , (), W)
rireduce 1, (), W)
r(reduce 2, (), W)
r(reduce 3, (), W)
r(shift anyitem , {), W)
r(shift openbay, (), W)
rishift closedbay, (), W)
r(shift no t_anyitem , {), W)
r(shift not_closedbay, {), W)
r(accept, (), W)

(W ~ {zvj, w z)) u [wa, Wf,}, where
w a e item, name(wa) - nam e(w i),
type(wa) = type(w1), size(wa) = size{w{),
bay(wa) = m m e(w 2), and e bay,
name(iOf}) = nameiwz), space(w&) =
(space(w2)-size(w j)), open(wj,) =
open{wz)•
(W ~ {W3)) u {wa}, where w a e bay,
name(wa) = name(w3), space{wa) =
space(w3), open(wa) = true.
W.
W.
W.
W.
W.
W.
W.
W.
W.
W.

It is assumed that, when adding elements to working memory (e.g., W ~
{zvlf zv2)) u (wa, zuy)), r maintains working m em ory as a union of element
class sets as described in SECTION 4.1.4.

The following definition ties all previous definitions in this section to
gether to define the production system architecture of this thesis: the
palimpsest parser.

DEFINITION

A palimpsest parser for (P and K is a function 7 : 2 ^ 2 ^ of the form
7 m = 7v((%, Tq), <£, r, W), where:

• 7p is the palimpsest parsing algorithm (ALGORITHM 4.1, below),

93

• (%r Tq) is the canonical set of CLR(O) parse tables, generated from
a palimpsest grammar G ^ f o r a production memory S’and a

control language K of tP.
• d is a palimpsest disambiguation function for G ^ and fP.
• r is a palimpsest semantics function for G ^ and IP. □

Examples of palim psest parsers can be found in SECTION 4.1.5 and
Appendix B.

4.2.2. Interpretation

As described in SECTION 4.1.5, the palim psest parsing algorithm is a
modified CLR(0) parsing algorithm that backtracks over shift actions w hen an
error is encountered. The input string to a palimpsest parser is always empty,
and is ignored. In its place, the input to the palimpsest parsing algorithm is a
w orking memory.

ALGORITHM 4.1

The palimpsest parsing algorithm.

Input. A canonical set of CLR(0) parse tables (%, Tq), a palimpsest
disambiguation function d, a palimpsest semantics function r, and an input
working memory W.

Output. A modified working memory.

Method. The state configurations will be pairs (a, %), where:

• a represents the parse stack (whose top is on the right).
Elements of a are triples of the form (a, T,j), where o s l u N ,
T e % and j > 0.

• % represents current contents of working memory.

The initial configuration is «e, Tq, 1), z). A t all times, let o , T, and j refer,
respectively, to the symbol, table, and index of the topmost triple on a. Apply
the parsing action function fc of T in steps (1) through (8) as appropriate until
acceptance occurs or an error is encountered.

94

1. If f c(j) = error, then go to step (7). Otherwise go to step (2).
2. If dffc(j), jO = (false, ()), then go to step (6). Otherwise go to step (3).
3. If f c(j) = shift u, then apply (a) through (c) below , as appropriate.

Otherwise, go to step (4).
(a) Push (u, g(u), 1) onto the top of a , where g is the goto function

of T. Otherwise go to step (7).
(b) Assign r(shift u, <>, %) to %.
(c) Go to step (1).

4. If f c(j) = reduce i for some production i of the form A p, then apply
steps (a) through (d) below. Otherwise go to step(5).
(a) Assign rfreduce i, w j k, %) to %, where is the list of working

memory elements in d(reduce i, %) = (true, Wj ^) from step (2).
(b) Remove IP1 triples from the top of a.
(c) Push (A, g(A), 1) onto the top of a , where g is the goto function

of T.
(d) Go to step (1).

5. If f c(j) = accept, then apply steps (a) and (b) below.
(a) Assign r(accept, (), %) to %.
(b) Halt, and output %.

6. If/C(/+1) s* error, then replace (a , T, j) the topm ost triple on a w ith
(a, T, /+1) and go to step (1) above. Otherwise, go to step (7).

7. If a € or o = e, then go to step (8). Otherwise,

(a) Remove the topmost triple from a .
(b) Increment j.
(c) Go to step (1).

8 . Halt, and output %. □

Notice that steps (3b) and (5a) apply the semantics function for shift and
accept parsing actions; but, according to the definition, the semantics function
does nothing for these parsing actions. These two steps are included in the
algorithm because the production system program m er m ay w ant to augm ent
a palim psest parser with additional semantics between production firings and
upon term ination. EXAMPLE 4.2 in SECTION 4.1.5 provides a trace of the
palim psest parsing algorithm for the controlled production system in FIGURE
4.1.

95

4.2.3. Procedural Control

As described in SECTION 4.1.3, only legal instantiations are fired by a
palimpsest parser. Unfortunately, a palim psest parser is not guaranteed to
find a legal production when one exists unless the control grammar is LR(0).
For example, consider the following LR(1) control grammar:

A fter firing productions p 2 and P 4 a palim psest parser will be in a
configuration in which reductions by both rule (3) and rule (4) are applicable.
The palimpsest parser will reduce by rule (3), and then attem pt to instantiate
p i. If p i cannot be instantiated the parser will erroneously halt. Productions
p i and p 3 are both legal, yet no attempt will be made to instantiate p 3. The
problem lies in the fact that ALGORITHM 4.1 cannot backtrack over reductions
(i.e., non-terminals). The reduction by rule (3) pops two triples from the parse
stack, each containing a symbol, a table, and an index. The information that p3

is a legal production is lost.

There are a number of possible solutions to this problem. First, prior to
the generation of a palimpsest parser, it may be possible to transform a control
into an equivalent LR(0) grammar. For example, the following LR(0) control
grammar generates the same language as the the LR(1) control grammar
above

A t present all such transformations are perform ed manually. To date, all
transform ation attem pts have been successful127. Second, a production
system language based upon the palim psest parser architecture can be
restricted to allow only LR(0) control grammars. Third, non-LR(O) control

(1) MODULE_47 -> PATH_A p 1

(2) MODULE_47 -» p2 PATH_B p3
(3) PATH_A —> P2 P4
(4) PATH_B p4

(1) OOPS
(2) OOPS

~>P2 P4 Pi
-*P 2 P4 P3

✓

127 Approximately 10 such transformations have been performed. Plans for future research
include the automatiing as much of the tranformation process as may be possible, at least
for the more common cases.

96

grammars can be flagged at palim psest parser generation time, forcing the
p roduction system program m er to fix the control gram m ar. Fourth,
ALGORITHM 4.1 can be easily modified to perform full backtracking; however,
such modification would detrimentally affect the time and space costs of the
algorithm. Full backtracking is probably not justified considering the rarity of
non-LR(O) control grammars in practice.

The very nature of a modular production system language makes non-
LR(0) control grammars unlikely. By definition, each module is designed to
accomplish a specific task or goal by applying one of several different
sequences of lower level productions or production m odules. It seems
unlikely, that a single module would specify many different ways of firing a
sequence of productions, when one of the prim ary goals of the m odular
approach is to avoid such duplication.

4.3. Scope of Palimpsest Parsers

This section presents the two prim ary theorems of the thesis: that every
production system can be transformed into a palimpsest parser (THEOREM 4.1),
and that for every deterministic Turing machine there exists an equivalent
palimpsest parser (THEOREM 4.2).

Lemma 4.1

For every production memory IP there exists an element class table £
derived from IP.

Proof. By construction (ALGORITHM 4.2 below). □ '

A lg o r i t h m 4.2

Derivation of an element class table from a production memory.

Input. A production memory IP.

Output. An element dass table IE derived from IP.

Method. Initialize £ to 0 . For all productions (n, c, a) in IP perform steps
(1) and (2) below.

97

1. If 3(sjV. p f̂) e c such that V(id, p) e £ , p ^ i ^ p, then assign p ^ i to p

and go to step (2).
2 . Generate a unique string id’ such that V(id, p) e £ , id * id', assign

<id ',p) u £ to £ . □

LEMMA 4.2

For every production memory £P and element class table £ derived from
IP, there exists a production memory grammar Gpfor £.

Proof. By construction, (ALGORITHM 4.3 below). □

Algorithm 4.3

Construction of a production memory grammar.

Input. A production memory fP and an element class table £ derived
from (P.

Output. A production memory grammar G$> = (Np, T,p, Pp, Sp).

Method. Initially, Grp = (N<p, 2<p, P/p, S/p) = (N((P), 0 , 0 , S/p), where S<p is any
non-terminal member of N<p. For every production (n, c, a) in (P perform steps
(1), (2) and (3) below.

1. Initialize the LHS of temp to n, the RHS to e, and go to step (2).
2. For all (sj, p£) e c, perform steps (a) and (b) as appropriate, then go

to step (3).
(a) If s/ = +, then assign id to the ith symbol on the RHS of temp,

where (id, p*l) e £ , and assign {id} u £<p to h p
(b) If si = - , then assign not_irf to the itil symbol on the RHS of

temp, w here (id, p ^ i) e £ , and assign {not_id} u £<p to
3. Assign {temp} u P y to Pp. □

THEOREM 4.1

For every Controlled Production System (((P, W), Gr) there exists a
palimpsest parser ??({% , Tq), d, r, W).

Proof. By Construction, (ALGORITHM 4.4, below)

98

Algorithm 4.4

Construction of a palimpsest parser from a controlled production system.

Input. A controlled production system ((fP, W), GK).

Output. A palimpsest parser fFx>{{rTc, Tq), d, r, W).

Method. Perform Steps (1) through (3).

1. Construct % an element class table derived from T, as in
ALGORITHM 4.2.

2 . Construct Grp, the production memory grammar for T and £ , as in
ALGORITHM 4.3.

3. Let Grpg be the palim psest grammar w ith a production memory
component of Grp and a control component of G^.

4. Construct (alternate form of) the canonical set of CLR(O) parse
tables {%, T0) for GrpK, as in ALGORITHM 3.3.

5. Let d b e the palimpsest disambiguation function defined for Grp ̂
and fP.

6. Let r be the palimpsest semantics function defined for G ^ a n d T.
7. Let be the palimpsest parsing algorithm (ALGORITHM 4.1).
8 . Output the resulting palimpsest parser ??{{%, Tq), d, r, W). □

DEFINITION

ALGORITHM 4.4 is called the palimpsest transformation. Henceforth, the
notation PT(&, G^) denotes a palimpsest parser generated from a controlled
production system {{T, W), G 0 by the palimpsest transformation. □

The palim psest transform ation transform s any controlled production
system into a palim psest parser. But, the resulting palimpsest parser may not
in terpret the controlled production system correctly if the control grammar is
not LR(0); it may halt prem aturely. Because the solution to this problem is
not yet formally defined, it cannot yet be proven that the palim psest parser
generated by the palim psest transform ation is always equivalent to the
original controlled production system. However, an equally powerful bu t less
satisfying result can be proven: that for every deterministic Turing machine
there exists an equivalent palimpsest parser (THEOREM 4.2).

99

LEMMA 4.3

A palimpsest parser PT(fP, GK) applies the action afivi^, W) of produc
tion (n, c, a) only if c is satisfied by W and e W is a satisfying list for c.

Proof. A palimpsest parser only applies an action flCwj W) if step (4b) of
the palimpsest parsing algorithm applies the equivalent rireduce i, iv jfr W),
where PROD/pgfi) = (n, c, a). Step (4b) will only be applied if dfreduce i, W) has
just previously evaluated to {true, w2jt> in step (2). By definition, this can
occur only if c is satisfied by W and e is a satisfying list of c. □

THEOREM 4.2

For every deterministic Turing machine there exists an equivalent
palimpsest parser.

Proof. By THEOREM 2.1, for every deterministic Turing machine there
m ust exist an equivalent controlled production system {{IP, W), Gy). Notice,
both IP and Gr are the same for all Turing machines, only W, which contains
both the tape and the instructions, changes. Therefore, it suffices to show that
PT(% G%) correctly interprets ((2?, W), Gr). That is, a legal instantiation is fired
iff a legal instantiation exists. LEMMA 4.3 shows that only instantiated produc
tions can be fired. Also, {{IP, W), G^) is control free, so all productions are
always legal. All that remains to be shown is that an instantiation can be
found if one exists.

Applying the palimpsest transformation to «fP, W), GK) produces an
element class table:

and a palimpsest grammar G ^ , below, with CLR(O) parse tables in FIGURE 4.4.

£ = { {CONFIG, w e config),
{TAPE, w e tape),
{LEFT_INSTR, w e instr a move(zv) = left),
{RIGHT_INSTR, w e instr a move(zv) = right),
{STAY_INSR, w e instr a move(w) = left),
{INSTR, w e instr) }

(1) LOOP
(2) LOOP

LENGTHENTAPE LOOP
DO LEFT LOOP

100

(3) LOOP -> DO_RIGHT LOOP
(4) LOOP -» DO_STAY LOOP
(5) LOOP HALT_CONDITION
(6) LENGTHEN_TAPE —> config not_tape
(7) DOJLEFT —» config tape left_instr
(8) DOJRIGHT -» config tape right Jn s tr
(9) DO_STAY config tape stay jn str
(10) HALT_CONDITION —» config tape not_instr

By inspection of FIGURE 4.4, after firing any production other than
halt_condition, the parser will be in a configuration w ith the topmost table
on the parse stack (i.e., Tfop) equal to one of Tq, T2, T3 , T 4 , or T5. From all of
these states, reductions by rules (6) through (1 0), corresponding to the
productions do_left, do_right, d o js ta y , and lengthen_tape, are reachable by
applying parse actions in the table as follows:

Rule (6):
Rule(7):

Rule(8):

Rule(9):

Rule(10):

shift config, shift not_tape, reduce 6.
shift config, shift no t_ tape, backtrack and shift tape, shift
left_instr, reduce 7.
shift config, shift no tJtape, backtrack and shift tape, shift
left J n s tr , backtrack and shift right J n s tr , reduce 8.
shift config, shift not_ tape, backtrack and shift tape, shift
left J n s t r , backtrack and shift r ig h tJ n s tr , backtrack and
shift s ta y J n s tr , reduce 9.
shift config, shift no t_ tape, backtrack and shift tape, shift
left_instr, backtrack and shift r ig h tJ n s tr , backtrack and
shift stay_instr, backtrack and shift not_instr, reduce 10.

After applying any of rules (6) through (9), the parser returns to one of the
initial configurations w ith Tf0p equal to one of To, T2 , T3, T4 , or T5. After
applying ru le (10) (i.e., halt_condition), no other productions have satisfied
conditions, and the palim psest parser begins reducing the parser stack and
eventually applies the accept action. If an instantiation exists, then it will be
found unless another instantiation also exists and is fired in its place. Either
way, an instantiation is fired iff an instantiation exists. □

101

1 2 3 4 L LT DL DR DS HC c t 1 r s n m

T 0 Sc - - - T l T2 t 3 T4 T5 T e T 7 - “

T l A - - - A - - - _ - - - - - - - -

t 2 Sc - - - t 8 t 2 T3 T4 T5 t 6 t 7 - - -

T3 Sc _ _ - t 9 t 2 t 3 t 4 TS t 6 T 7 -

t 4 Sc - - - Tio T2 t 3 t 4 T5 T e T 7 - - -

t 5 Sc - - - T u T2 t 3 T4 TS t 6 T l

R5 - - -

t 7 Sn St - - - - - - - 1 Ld 1 1 1 1

t 8 R1 - - -

T9 R2 - - -

T 10 R3 - - —

T i l R4 - - -

T12 R 6

T l 3 SI Sr Ss Sm T u T15 T16 T17

T14 R7 - - -

t 15 R8 - - -

t i 6 R9 - - -

T i l RIO - - -

FIGURE 4.4. CLR(O) Parse Tables for Turing Machines128

1 2 8 where, L = LOOP, LT = LENGTHEN_TAPE, DL ■ DO_LEFT, DR - DO_RIGHT, DS =
DO_STAY, HC s HALT_CONDITION, c = config, t s tape, 1 = left Jnstr, r = rightjnstr, s
3 stayjnstr, n 3 notjape, m = not Jnstr

5. Analysis of Palimpsest Parser
Performance

In this chapter, the time and space efficiency of palimpsest parsers is ex
amined. As is common in the literature129'130, production system perfor
mance is based upon two measurements: the time required to fire a single
instantiation, and run-time storage requirements. The focus is on two quan
tifiable production system characteristics that appear to have the greatest effect
upon performance: the size of production memory, and the size of working
memory. Various implementation issues are discussed in order to provide a
basis for later performance claims. An overview of the processing required to
fire an instantiation is presented, followed by the best, worst, and expected
case tim e costs and the expected space costs w ith respect to production
m em ory and w orking m em ory sizes. Empirical results for sim ulated
controlled production systems are presented that support these time and
space cost calculations. The chapter concludes with a discussion of potential
optimizations.

5.1. Implementation Issues

Heretofore, palimpsest parsers have been described abstractly to empha
size concepts and ideas rather than any specific implementation. However,
one possible implementation of the more abstract palim psest parser data
structures and processes is presented to justify performance claims made later
in this chapter.

129 Forgy, 1979.
130 McDermott, Newell, and Moore, 1978.

102

103

5.1.1. Implementing Working Memory

As defined in CHAPTER 4, working m em ory in a palim psest parser is
represented as a union of sets, each of w hich contains the subset of an
elem ent class found in that w orking memory. One additional set contain
those working mem ory elements that do not belong to any element class, and
so do not contribute to the interpretation. Because a w orking m em ory
elem ent may belong to m any elem ent classes, im plem entation of such a
w orking m em ory representation is not necessarily obvious. This section
presents one possible implementation.

5.1.1.1. A Working Memory Data Structure

One possible working m em ory data structure for palim psest parsers is
show n in FIGURE 5.1. The element classes defined by a production mem ory
index an array of linked lists. Each such list contains exactly one m em ber
record for every working m em ory element in working m em ory that is a
m ember of that element class. Every member record contains three pointers:

1. A pointer to a member record in another element class list that
points to the same w orking memory element. The lists defined
by these pointers are circular,

2. A pointer to the actual working memory element, and
3. A pointer to the next m em ber record in the list.

Elem ent
C la sse s M em ber R ecords

• —
• —- I I I ' t
• —— ► + . \

i ?

Working Memory

WM Elem ent

FIGURE 5.1. A W orking Memory Data Structure

104

5.I.I.2. Adding Elements to Working Memory

Adding a new element to the working memory data structure of FIGURE
5.1 is a three step process;

1. Create the working memory element. The actual location of a
working memory element (i.e., on the heap, in an array, etc.) is
irrelevant, as long as a pointer (or index) to it is known.

2. Classify the working memory element. That is, determine to
which element classes it belongs.

3. For every element class to which the element belongs, add a new
member record to the beginning of the list indexed by that ele
ment class. Also, all member records added during this step
must be linked into a circular list.

Ideally, steps (2) and (3) are interleaved. Whenever it is determined that
the working memory element belongs to an element class, a member record
is added to the list indexed by that element class.

Step (2) can be implemented in a brute force m anner by evaluating all
element class specifications on a given working memory element. However,
such a simple im plem entation typically perform s m any redundant and
useless tests. For most production systems, the time required to classify work
ing memory elements can be significantly reduced, as follows:

• Use nesting to avoid redundant evaluation of predicates.
• Use selection statements that support mutual exclusion (e.g., if-

then-else statements).
• Use multi-branch selection statements (e.g., case statements in

Pascal and Ada) to test equality predicates.
• Re-arrange the order of predicate testing to support the above.

Each of the above optimizations is discussed below.

Often, one element class specification will differ from another by only one
of many predicates. Redundant evaluation of the shared predicates can be
avoided by nesting predicate tests. For example, the four predicate tests in the
following Ada fragment

105

if in_bay(zv) = none a n d size(zv) > 66 then
add w to the list for element class X ;

end if;
if in_hay{w) = none an d size(w) > 33 then

add w to the list for element class Y;
end if;

could be reduced to the equivalent three predicate tests in

if in_bay{w) - none th e n
if sizeizv) > 66 th en

add w to the list for element class X;
end if;
if size(w) > 33 th en

add w to the list for element class Y;
end if;

end if;

N esting predicate tests in this w ay significantly reduces the number of predi
cate tests performed, especially w hen shared predicates are tested before dis
tinguishing predicates.

M any predicate tests are m utually exclusive, for example age>40, age<20,
and age=30. Should any of these predicates evaluate true for a working mem
ory elem ent, the others m ust evaluate to false; fu rther testing of such
predicates is wasteful. This m utual exclusion may be exploited by the use of
selection statements such as the A da if-then-else statement. For example, the
following sequence of i f statements

if age(w) >= 40 then
add w to the list for element class A;

end if;
if age(w) <= 20 then

add w to the list for element class B;
end if;

• • •

if age(zv) = 30 then
add w to the list for element class Z;

end if;

m ay be replaced by an equivalent series of if-then-else statements as follows;

106

if age(zo) >= 40 then
add iv to the list for element class A ;

else if age{zv) <= 20 then
add w to the list for element class B;

ft ft ft
else if age(w) = 30 then

add w to the list for element class Z ;
end if;

Such "short circuiting" of predicate testing significantly reduces the number
of predicate tests performed, especially on those tests that occur early in the
sequence. Moreover, ordering the predicate tests according to their likelihood
of evaluating to true also improves performance.

Many predicates are m utually exclusive because they all test to see if the
same attribute value is equal to some constant. For example, the predicates
type=dog, type=cat, and type=mouse are mutually exclusive because the type
attribute can have exactly one value. W hen these constant values can be
enumerated the predicates are amenable to a particularly efficient testing con
struct: the multi-branch selection statement (e.g., case statements in Pascal
and Ada), that can test any number of such mutually exclusive predicates in
constant time. For example, the following case statement tests the type predi
cates above.

case type{w) of
w hen dog => add w to the list for element class A ;
w hen cat =*• add w to the list for element class B;

ft ft ft

w hen mouse => add w to the list for element class Z;
end case;

The use of multi-branch selection statements significantly reduces the cost of
predicate testing, especially when the more expensive predicate tests are
nested within multi-branch selections. Because a category m ust occur in every
pattern, it should always be tested by the outermost multi-branch selection.

The effectiveness of the above methods depends upon the order in which
predicates within a pattern are tested. This suggests that a judicious re-order
ing of these tests to allow the application of the above methods would signifi

107

cantly increase that effectiveness. Predicate tests within a pattern should be
ordered, from first to last, as follows:

1. Predicates amenable to multi-branch selection should be evalu
ated first; specifically, predicates that test for the equality of at
tribute values and enumerable constants.

2. Predicates in one pattern that have mutually exclusive counter
parts in other patterns should be evaluated before predicates that
do not. These m utually exclusive predicates should be ordered
the sam e in all such patterns to facilitate the use of selection
statements.

3. Remaining predicates should then be ordered by frequency;
predicates that occur in many patterns should be evaluated be
fore predicates that are unique to a pattern. This facilitates nest
ing to reduce redundant evaluation.

At present, the ordering of predicates is the responsibility of the production
system programmer.

5.I.I.3. Removing Elements from Working Memory

Removing a working memory element from the working memory data
structure in FIGURE 5.1 requires two steps:

1. Remove from all elem ent class lists all member records that
point to the working memory element.

2. Remove the actual working memory element from working
m em ory.

Although a working m em ory element may belong to many element
classes, there is only one of every element. Removal of a working memory
element requires that all member records that reference it m ust also be re
moved. Because all member records that point to the same working memory
element are linked in a circular list, steps (1) and (2) are straightforward. For
example, when the working memory element is deleted, all member records
on the circular list can be m arked for later removal when the element class
lists are traversed.

108

5.1.2. Implementing Disambiguation Functions

A palim psest disambiguation function d can be implemented as a func
tion with case statements indexed by parsing actions as in FIGURE 5.2.

The code associated w ith a shift action, say shift x, assigns true to d if the
element class list indexed by x is non-empty, and assigns false to d otherwise.
When a reduce action, such as reduce i, is passed to d the result depends upon
the nature of the grammar rule denoted by i. If i denotes a rule in the control
component of the palimpsest grammar, then d is automatically assigned true.
If i denotes a rule in the production component of the palimpsest grammar,
such as

LOADITEM —» anyitem not_openbay closedbay

then d must evaluate an expression, such as

3(wj, wg) e (anyitem n W) x (closedbay n W) 3 [space(w^)>size(wj)
a Vw2 e openbay n W, ~>(space(w2)^size(wi))].

to determine whether or not the many-element component of the production
is satisfied by working memory.

fu n c tio n d (action:in shift_or_reduce; which:in ec_or_rule) re tu rn s boolean i s
— This i s the outer skeleton of the disarrtoiguation function d.

b e g in
return true;
ca se action i s

when s h if t =>
i f elennent_class_list (which). f ir s t = n u l l th en

return fa lse ;
when reduce =>

i f is_production_memory_rule (which) then
— The evaluation of many-element predicates i s performed
— here by the code found in FIQ£E 5.3.

end i f ;
end c a se ;

end; (function d)

__________FIGURE 5.2. An A da Implementation of Function d___________

109

— The following i s inserted within the case statement of FIGfE 5 .2 . —

test_sign := positive;
sa t is f ie d := true;
in itJL ist(sstack , stk_top, k, p o sitiv e , no_more);

lo o p
c a s e which i s

— The following code t e s t s the many element predicates of
— the production corresponding to rule number i in the
— palirrpsest grammar. Similar case a lternatives e x ist for
— a l l productions,
when i =>

i f test_sign = positive th en
sa tis f ie d := closedbay.space >= anyitem.size;

e l s e
sa t is f ie d := n o t ((not_openbay = n i l)

and (not_openbay. space >=
anyiton.menber.size));

end i f ;

end c a se ;
i f (test_sign = positive) th e n

i f n o t s a tis f ie d th en
next_positive_list{sstack , stkjtop, k, no_more);

e l s e
test_sign := negative;
in it_ lis t(s s ta c k , stk_top, k, p ositive , nojnore);

end i f ;
e l s e

i f n o t s a t is f ie d th en
next_negative_list(sstack, stkjtop, k, nojnore);

e l s e
test_sign := positive;
next_positive_list (sstack, stkjtop, k, nojnore);

end i f ;
end i f ;
e x i t when nojnore;

end lo o p ;
r e tu r n sa tisfied ;

 FIGURE 5.3. Testing Many-Element Predicates in Function i 131

131 The element class names used as records (e.g., a n yitem , n o t_open bay , and c lo sed b a y)
within the context of a grammar rule are automatically converted into references to records
on the semantics stack sstack prior to compilation of the palimpsest parser. For example,
the occurrences of closedbay for production i will become sstack(top).m em ber) similarly,
occurrences of n otjopenbay will become sstack(top-l).m em ber; and occurrences of openbay
will become sstack(top-2).member.

110

p roced u re n ext_positive_list (sstack : in o u t semantics_stack_type;
rhs_size : in patte m_count_range ;
top : in sstack_range;
all_enpty: in ou t boolean) i s

ix : stack_range;
b e g in

all_empty := fa lse;
ix top - rhs_size + 1;
w h ile ((sstack(ix) .member.next = n u l l) or (sstack(ix) .sign = negative))

and (ix <= top) lo o p
b e g in

sstack(ix).member := e lt_ c la s s_ lis t (s s ta c k (ix) ,e lt_ c la s s) .f ir s t ;
i x := ix + 1;

end lo o p ;
i f ix > top th e n

all_errpty := true;
e l s e

3stack (ix) .member := sstack (ix) .member,next;
end i f ;

end next_positive_list;

p roced u re next_negative_list (sstack : in o u t semantics_stack_type;
rhs_size : in pattern_count_range;
top : in sstack_range;
all_empty: in o u t boolean) i s

ix : stack_range;
b e g in

all_errpty := true;
f o r ix in (top - rhs__size + 1) . . top lo o p

i f (sstack(ix) .member.next <> n u l l) and (sstack(ix) .sign = negative) th en
sstack (ix) .merber := sstack (ix) .member.next;
all_empty := fa lse ;

end i f ;
end lo o p ;

end next_negative_list;

p roced u re in it _ l is t (sstack : in o u t semantics_stack_type;
rhsjsize : in pattem_count_range;
top : in sstack_range;
sign : in positive_or_negative;
all_otpty: in o u t boolean) i s

ix : stack_range;
b e g in

all_enpty := true;
f o r ix in (top - rhs_size + 1) . . top lo o p

i f sstack (ix) .sign = sign th e n
sstack(ix).member := e lt_ c la s s_ lis t (s s ta c k (ix) .e lt_ c la s s) .f ir s t ;

end i f ;
i f sstack (ix) .member /= n u l l th en

a l l etp ty := fa lse;
end i f ;

end lo o p ;
end in it_ l is t ;

______________ FIGURE 5.4. Procedures Called by Function d _____________

I l l

One way to implement such an expression is shown in FIGURE 5.3. It is
assumed that the top k records on a semantics stack sstack are associated with
the k patterns on the RHS of the production. Each of these records contains:
an element class name or index elt_class specified by the pattern, a boolean
sign denoting whether the pattern is negated, and an access variable (i.e., a
pointer) next (initially n u ll) to the next member record in the appropriate
element class list. A procedure called next_positive_list modifies the topmost
k n e x t pointers on ss ta c k such that successive calls will cycle through all
possible lists of positive working memory elements in the element class lists
specified by the topm ost k elt_class and sign values on sstack . A similar
procedure called n e x t_ n e g a tiv e _ lis t cycles through all possible lists of
negative working m em ory elements.

Again, a multi-branch selection or case statement is used to select the proper
code for £ However, m uch of the code for each case is independent of the ex
pression being evaluated, and has been moved outside of the case statement.
Remember from CHAPTER 4 that £ returns a list in addition to a boolean
value. In the implementation above, the k elements of this list are found, one
each, in the topmost k records on sstack by following the next access link to a
member record, and then the working memory element.

5.2. Palimpsest Parser Time Costs

5.2.1. Overview of Palimpsest Parser Execution

Production system interpretation by palim psest parser, as depicted in
FIGURE 5.5, involves the repeated application of three distinct processes:

1. Find an instantiation
2. Fire an instantiation
3. Apply control rules

each of which, in turn, may be composed of various other sub-processes. The
total time cost for palim psest parsers with respect to a production system
characteristic is the sum of the time costs for these three processes.

112

Find Legal
Productions

Apply
Operation

Apply
Operation

Find Satisfied
O ne-E lem ent
C om ponents

Find Satisfied
M any-Element
C om ponents

----------------------- ^ Apply Control R u le s ^ <---------------------

F IG U R E 5.5. A Diagram of Palimpsest Parser Execution

Find an Instantiation Fire an instantiation

5.2.I.I. Finding an Instantiation

The process of finding an instantiation by a palim psest parser may be
logically divided into three phases:

1. Find legal productions
2. Determine whether the one-element components are satisfied
3. Determine whether the many-element components are satisfied

These three phases are repeated until an instantiation is found or all legal
productions have been examined. The time cost of finding an instantiation is
then the sum of the time costs for these three phases.

A palimpsest parser is constrained by its control grammar to search for
instantiations of legal productions only. Illegal productions are never exam
ined. This constraint is automatic and requires no additional processing.

The one element component of a pattern is satisfied if the name of the el
em ent class it specifies has been shifted onto the parse stack by the palimpsest
parser. Such a shift action can occur only if the intersection of working mem
ory and the element class is non-empty. If symbols corresponding to all pat
terns in a condition are on the top of the stack, then the one-element compo
nent of that condition m ust be satisfied. If however, one such intersection is
empty, then a palimpsest parser will backtrack to a previous state and try a
different parsing action. For a palimpsest parser the time cost of evaluating
one-element predicates is independent of production memory and working
memory sizes; and the time costs of shift and backtrack operations are con

113

stant; so the time cost of this phase is proportional to the num bers of shift and
backtrack operations applied.

A condition is satisfied if w orking m em ory contains a list of elements
that satisfies all of the positive patterns in the condition, bu t does not satisfy
any of the negative patterns in the condition. As described in SECTION 5.1.2, a
palim psest disam biguation function perform s this phase by evaluating the
m any-elem ent com ponents of ^-predicates on members of specific elem ent
classes. The tim e cost of evaluating m any-elem ent predicates is independent
of production m em ory and w orking m em ory sizes; so the time cost of this
phase is proportional to the num ber of m any-elem ent predicate evaluations
perform ed.

5.2.1.2. Firing an Instantiation

Production actions in palim psest parsers are com posed of sequences of
AD D and R E M operations. A working m em ory element is added to working
m em ory by evaluating all elem ent class specifications on that element and
add ing it to the appropriate element class lists. Similarly, a working memory
elem ent is rem oved from w orking m em ory by evaluating all element class
specifications on that element and rem oving it from the appropriate element

>

class lists. The tim e cost of firing an instantiation by a palim psest parser is
then the product of the num ber of operations in the action and the time costs
of those operations.

5.2.1.3. Applying Control Rules

As described above in SECTION 5.2.171, the use of a control gram m ar to
constrain the search for satisfied productions is autom atic and incurs no
additional time cost. However, after an instantiation has fired, the application
of zero or m ore control rules may be necessary to place the palim psest parser
in to a new state in which productions m ay be fired. The time costs of such
control rule applications are independent of the size of production memory.
The time cost of applying control rules after firing an instantiation is then
proportional to the num ber of rules applied.

114

5.2.2. Effects of Production Memory Size on Time

Of all quantifiable production system characteristics, the effect of produc
tion m em ory size (P) on execution times m ost m arkedly differentiates
palim psest parsers and other production system architectures. Although the
best and worst case time costs w ith respect to P are equivalent for palimpsest
parsers and other production system architectures, the expected time com
plexity of palimpsest parsers w ith respect to P is 0(1) while other architectures
are at least 0(P).

5.2.2.1. Worst Case Effect of Production M emory Size on Time

The maximum number of shift operations that can be applied in the pro-
p

cess of finding an instantiation is bounded by , where Cj is the num ber
i=i

of patterns in the condition of production i. Since something m ust be shifted
before it can be backtracked over, the m axim um num ber of backtrack"

p
operations is also bounded by .

i=i

The maximum num ber of positive, m any-elem ent predicates evaluated
p

in the process of finding an instantiation is bounded by X w c i", where C j" is
i=l

the num ber of positive patterns in production i. That is, one test is m ade for
every production and every possible list of working memory elements of size
C j\ The maximum number of negative, m any-elem ent predicates evaluated

p
is •W » C p / where C~ = C4 - c | is the num ber of negative patterns

in production i132. That is, for every list of working memory elements found
to satisfy positive patterns, it m ust be verified that that list satisfies none of

132 Notice that the summation expression for negative many-element predicate evaluations

contains (w*“ i *W «C p instead of (w *“ i •W <“i) . Because negative patterns are never
referenced by other patterns, working memory elements can be tested by one negative
pattern independently of the tests of other negative patterns; combinations are irrelevant
(cf. FIGURE 5.3).

115

the Cj negative patterns. A condition containing Cj patterns requires the
p

most computation when all of its patterns are positive, that is ^ W ^ i , where
i= i

c = c t
v * i ' “ l *

The maximum num ber of one-element predicates that can be evaluated
by a classification procedure for every element added to or removed from

p
working memory is bounded by ^ C j . That is, all pattern predicates in

i=i
production memory specify different b u t not m utually exclusive element
classes, and none of the optimizations of SECTION 5.1.1.2 are applicable.

The maximum num ber of control rules that may be applied cannot be
specified a priori. However, for controlled production systems, in which
every control rule represents a plan for achieving some task, the average
control rule RHS should require many (at least two) productions to fire. A
generous upper bound on the number of control rules applied after firing a
production is then log2P.

The worst case time cost of finding and firing a single instantiation by a
palim psest parser is then the sum of the above maxima m ultiplied by the
appropriate constants; specifically

p p p p

k i * ^ Q + k 2#^ Q +lc3# X w C i + k 4»k5*(j ’ q + kg) + log2P*k7
i= i i= i i= i 1^ 1

where:

kj is the time cost of performing a shift' operation.
k2 is the time cost of performing a backtrack operation.
k3 is the time cost of evaluating a many-element predicate.
k4 is the num ber of operations in the applied action,
ks is the time cost of evaluating an element-class specification,
kg is the time cost of adding or removing a working memory ele

m ent.
k7 is the time cost of applying control rules.

116

If Cmax is the maximum number of patterns in any condition in production
memory, then the above expression is bounded by

k l*p # c max + k2#p*Cmax + k3«P«Wc max + k4»k5*(P*Cmax + kg) + log2P*k7

which can be simplified to

P*[(ki+k2+k4*ks)*Cmax+ k3«W^"max] + k^ks^kg + log2P«k7.

The resulting worst case time complexity with respect to P is 0(P).

The kind of production system necessary for a palimpsest parser to exhibit
this worst case behavior is unrealistic, especially for large production systems.
Many of the required production system characteristics are even mutually
exclusive. For example, in order for the P to appear in m ost terms, all
p roductions in p roduction m em ory m ust be exam ined before any
instantiation is found. This requires that:

• The production system be control free.
• All conditions have satisfied one-element components.
• For all productions except the last one tested, the many-element

component of the condition is unsatisfiable by working memory.
• For the last production tested, the many-element component of

the condition is satisfied only by the last list of working memory
elements tested.

• Every pattern specifies a different element class, but no predi
cates in element class specifications can be m utually exclusive or
amenable to other optimizations.

However, a very basic assumption is that no realistic, large production
system will be control free. Also, in order for W^max many-element predicate
evaluations to be performed for every production, every element in working
memory m ust always belong to every element class; but, this contradicts the
above requirement that every pattern specifies a different element class.

In order for the time costs of ADD and REM operations to be proportional
to P*C, then again, every pattern m ust specify a different element class, but no
predicates in element class specifications can be m utually exclusive or

117

amenable to other optimizations. However, this contradicts a basic assump
tion, that the rate of growth of new element class specifications is sublinear
w ith respect to production memory size133.

In order for log2P control rules to be applied after every instantiation fir
ing, the production system m ust specify a maximum am ount of control.
However, this contradicts the above assumption that the production system is
control free.

5.2.2.2. Best Case Effect of Production Memory Size on Time

The m inim um number of shift operations performed by a palimpsest
parser in the process of finding an instantiation is Cj, the num ber of patterns
in the first condition examined. In the best case no backtracking is required, so
the minimum num ber of backtrack operations performed by a palimpsest
parser is zero.

The m inim um number of many-element predicate evaluations made by
a palimpsest parser in the process of finding an instantiation is one134. That
is, for the first production examined, the disambiguation function d. returns
true for the first list of working memory elements to be tested.

The m inim um number of one-element predicates evaluated by a classifi
cation procedure for every element added to or removed from working
memory is bounded by a constant. That is, if the pattern predicates in produc
tion memory specify element classes such that the optimizations of SECTION
5.1.1.2 are applicable, the cost of classifying a working memory element is in
dependent of the size of production memory.

The m inimum number of control rules that can be applied after firing an
instantiation is zero.

133 cf. SECTION 5.2.2.3.
134 This assumes that the condition has only positive patterns (otherwise the number of

evaluations would be 2), and that the condition has a non-vacuous many-element
component (otherwise, the number of evaluations would be 0).

118

The best case time cost of finding and firing a single instantiation by a
palimpsest parser is then the sum of the above minimums multiplied by the
appropriate constants; specifically

k i* l + k2*0 + k3»l + ki*k5»(l + kg) + k7«0

where the minimum size of any production condition is one, and k i through
k 7 are the constants defined in SECTION 5.2.2.I. This expression may be
simplified to:

ki + k3 + k4*k5«(l + kfi)

The resulting best case time complexity with respect to P is 0(1).

Again, it is very unlikely that any real palimpsest parser will exhibit this
minimal time cost. However, the best case requirements are m uch less strin
gent than those for the worst case; specifically:

• The first production examined is instantiated by the first list of
working memory elements evaluated.

• The time required to classify a working memory element is in
dependent of the size of production memory.

No assumptions about the size of the production system, the amount of pro
cedural control or the form of productions other than the one fired are re
quired.

5.2.2.3. Expected Effect of Production Memory Size on Time

Before the expected effect of production memory size on time costs can be
predicted, it is first necessary to make some assumptions about what consti
tutes a typical production system. The following paragraphs outline and jus
tify such assumptions and assess their effect on the overall time costs. The ex
pected effect of production memory size on time is then discussed.

The average num ber of legal productions over all states in a palimpsest
parser is constant w ith respect to the num ber of productions. That is, the
am ount of control information grows in proportion to the size of production
memory. New productions are added to a production system to either refine

119

its existing capabilities or to provide new ones. Productions that are added to
provide new capabilities require new control information to specify their
scope within the existing system. Productions that are added to refine existing
capabilities eventually generate the need for additional control to be imposed
because hum ans naturally divide large, complex problems into manageable
subproblems. The size of these subproblems tends to be independent of the
size of the overall problem and is primarily related to the complexity that an
individual can deal w ith at any one tim e135. Each subproblem is then
represented by a set of legal productions. Because only legal productions are
examined by a palimpsest parser, the time required to find an instantiation is
proportional to the num ber of legal productions, and is independent of the
size of production memory.

The num ber of unique, one-element predicates evaluated by a classifi
cation procedure grows sublinearly w ith respect to the size of production
memory. That is, the likelihood of a new production specifying a new one-el
ement predicate decreases as the number of predicates in use increases136.
Consider adding new productions to a large, existing production system. Most
likely, the production is being added to correct a deficiency, or to add a new
capability. In both cases, the production m ust examine and m odify pre
existing w orking memory elements in order to m esh with the existing
system; and the larger the original production system, the more likely that the
one element components of the new patterns have occurred in other produc
tions. In addition, the likelihood that the optimizations of SECTION 5.1.1.2
apply to any new one-element predicate increases as the number of predicates
in use increases. For large production systems, the num ber of one-element
predicates evaluated in order to add or remove a working memory element ✓
should tend to remain constant.

Iterations defined by the control component of a palimpsest grammar
must reference productions; that is, instantiations m ust be fired on each cycle
of the iteration. The purpose of the control grammar is to control the order of
instantiation firing, not to perform extraneous processing. The only

135 Forgy, Gupta, Newell, and Wedig, 1984, p. 118.
136 Forgy, 1979, p. 105.

120

justifiable purpose for iteration in a control gram m ar is to repeatedly fire
some sequence of instantiations. The num ber of control rules applied after
firing an instantiation should then be bounded by some constant.

Taking into account the above assum ptions, the expected time cost of
finding and firing an instantiation by a palim psest parser is bounded by the
following constant expression

^ • ^ • Q n a x + k2*k8#Cmax + k3»k8*WCmax + k ^ k s^ k g + kg) + k7

w here

ks is the average num ber of legal productions
kg is the maximum num ber of one-element predicates evaluated by

the classification procedure.

The expected time complexity of palim psest parsers w ith respect to P is
0(1). The expected time complexities of m ost other production system archi
tectures w ith respect to P are at least O(P)137.

5.2.3. Effects of Working Memory Size on Time

This section describes the best, worst, and expected case time costs of find
ing and firing an instantiation w ith respect to the size of working memory.

5.2.3.I. W orst Case Effect of W orking Memory Size on Time

The expression for the w orst case time cost of palim psest parsers pre
sented in SECTION 5.2.2.1 contains only one term that depends upon working
m em ory size; that is, k 3»W*“ max. The w orst case tim e complexity of
palim psest parsers w ith respect to w orking m em ory size W is then
0(W Cmax).

137 Forgy, 1982.

121

5.2.3.2. Best Case Effect of Working Memory Size on Time

The expression for the best case time cost of palimpsest parsers presented
in SECTION 5.2.2.2 contains no terms that depend upon working memory size.
The best case tim e complexity of palimpsest parsers with respect to working
memory size W is then 0(1).

5.2.3.3. Expected Effect of Working Memory Size on Time

The expected time complexity of palimpsest parsers with respect to work
ing memory size W is difficult to determine. A large working memory can, in
the worst case, greatly increase the execution tim e of a palim psest parser.
However, a large working memory also increases the likelihood that positive
patterns, the patterns that contribute the W^max term to the w orst case time
complexity, w ill be satisfied. Empirical tests have shown that execution times
tend to be independent of W 138. The expected time complexity of palimpsest
parsers with respect to the size of working memory W is then 0(1).

5.3. Palimpsest Parser Space Costs

5.3.1. Overview of Palimpsest Parser Composition

The space cost for a palimpsest parser is the sum of the static space costs
(i.e., costs dependent upon P) for the following palimpsest parser compo
nents:

• The compiled palimpsest parsing algorithm
• The compressed CLR(O) parse tables
• The compiled element dass dassification procedure
• The compiled disambiguation function <C
• The compiled semantics function r

138 cf. SECTION 5.4.

1 2 2

and the dynamic space costs of the runtime working memory data structure
(i.e., costs dependent upon W). All of these individual space costs are depen
dent upon the palimpsest parser implementation chosen; that of SECTION 5.1
is assumed.

5.3.1. Effects of Production Memory Size on Space

The palim psest parsing algorithm is independent of the palim psest
grammar that it interprets. Hence, the space cost incurred by the palimpsest
parsing algorithm is a constant.

The space cost of CLR(O) parse tables is difficult to determine, a priori.
First, these tables tend to be very sparse, and are amenable to a number of
space reducing transform ations139. Based on empirical tests of simulated
controlled production systems, it appears that space grows linearly w ith
respect to P.

As discussed in SECTION 5.2.2.3, the number of unique element classes
and thus the size of the compiled element class classification procedure
should grow sub-linearly with respect to P. A generous estimate would be a
size proportional to log2P.

Since exactly one case alternative is added to £ and r for every production,
space cost of these functions is proportional to P. Combining all of the above
costs, the expected static space cost of a palimpsest parser is:

ki + k2«P + k3*log2P + k4#P + ks«P

which reduces to:

P*(k2 + k t + ks) + k3*log2P + ki

where:

ki is the space cost of the palimpsest parsing algorithm.
k2 is the average space cost for each production's contribution to

the CLR(O) parse tables.

139 Dencker, Diirre, and Heuft, 1984.

123

ks is the space cost of the element class classification procedure.
k4 is the space cost of one case alternative in a disambiguation

function £
ks is the space cost of one case alternative in a semantics function r.

The space complexity of palimpsest parsers with respect to P is O(P).

5.3.2. Effects of Working Memory Size on Space

The number of elements in working memory has no effect on the static
space costs above, but only on the space cost of the implementation depen
dent working memory data structure itself. Assuming the data structure of
SECTION 5.1.1.1, the total dynamic space cost is a function of the num ber of
member records and the num ber of the working memory elements. Every
working memory element appears in memory only once, so the space cost
incurred by the working memory elements is proportional to W. Similarly,
with respect to W, the space cost incurred by member records is proportional
to W »k7, where k 7 is the average number of element classes to which each
w orking memory elem ent belongs. The total dynam ic space cost of a
palimpsest parser is:

W (k 6 + k7)

where:

kg is the average space cost of a working memory element.
k7 is the average number of element classes containing each

working memory element. /

The space complexity of palimpsest parsers with respect to W is O(W).

5.4. Empirical Tests of Palimpsest Parsers

This section presents the results of empirical tests to support the theoreti
cal time and space cost calculations above. These results were obtained by
testing automatically generated controlled production systems. Note, the

124

m ethodology used to construct such controlled production systems makes a
num ber of assum ptions about typical controlled p roduction system s
characteristics, and the valid ity of those assum ptions have not been
proven140.

5.4.1. Description of The Testing Methodology

Ideally, a large num ber of real w orld controlled production systems
w ould be analyzed to determine the effects of production memory size and
working m em ory size on time and space costs. Unfortunately, finding non
proprietary production systems, of any kind, for use in such a study is very
difficult. And, even if such an array of production systems were available,
distinguishing the effects of individual production system characteristics on
the total time and space costs w ould also be difficult. As an alternative, the
BUILDER program creates controlled production systems for analysis.

The BUILDER program takes as input a num ber of quantifiable controlled
production system characteristics and produces a syntactically correct, but
semantically meaningless controlled production system141 that displays those
characteristics. Such characteristics include:

• The number of productions (P).
• The num ber of working memory elements (W).
• The mean num ber of patterns per condition (C).142
• The mean num ber of control rules with the same LHS (G). This

estimates m odule size.
• The ratio of the num ber of element classes to the num ber of

patterns.

140 These assumptions include: the distribution of the number of patterns per condition; the
distribution of the number of operations per action; the distribution of working memory
elements among element classes, etc.

141 Actually, instead of creating a controlled production system that must then be transformed
into a palimpsest parser, the BUILDER program creates a palimpsest grammar,
disambiguation function, and reduce semantics function directly.

142 The standard deviation of all mean values is also be specified to define the width of a
normal frequency distribution.

125

• The mean num ber of element classes to which each working
memory element belongs.

• The ratio of positive to negative patterns in conditions.
• The probability that any many-element component in a positive

pattern will evaluate to true.
• The probability that any many-element component in a negative

pattern will evaluate to true.

A number of other characteristics are available; however, for the purposes of
this chapter, attention will be restricted to the effects of the most significant
characteristics: P, G, and C. All other characteristic values are estimated to
approximate typical production systems found in the literature. All design
decisions for the generated controlled production systems are made randomly
within the bounds specified by the input characteristics.

This arrangem ent allows the effects of individual production system
characteristics to be tested independently. Also, any num ber of nearly
identical production systems can be constructed and tested, providing accurate
statistics. Every time or space cost appearing in tables below is a result of at
least nine trials using at least three different, simulated controlled production
systems.

5.4.2. Empirical Results

The first test investigates the worst case scenario of SECTION 5.2.2.I.
Production system sizes range from 10 to 200 productions. Such worst case
production systems m ust be control free, so G = P. All productions are legal all /

tttsccof the time. The results are presented in TABLE 5.1 below, where denotes
JttSBC

average firing rate, and < y (j denotes the standard deviation of that firing

rate. All tests were performed on a PRIME 9950 minicomputer. As expected,
'ittSBC

the average rate of production firing (i.e., J ^) grows linearly w ith respect to

P, as illustrated in FIGURE 5.6. The size of compressed CLR(O) parse tables (e.g.,
size) also grows linearly with respect to P.

126

One unexpected result is the apparent unim portance of the working
mem ory size (W) on the firing rate. This result may be an artifact of the
construction process. The w orst case scenario is so unrealistic that a wide
range of worst behaviors had to be constructed by the BUILDER program; one
such behavior may be in error. More likely, the effects of W do not become
noticeable until the ratio W /P becomes larger. Unfortunately, limitations of
available parser generators precluded testing of the worst case scenario with
large W.

The second test investigates the best case scenario of SECTION 5.2.2.2. The
results of this investigation are summarized in TABLE 5.2. As expected, the
firing rate appears constant w ith respect to P and W, as illustrated in FIGURE
5.7. Notice the difference in scale between the graphs of FIGURES 5.6 and 5.7.

The third test investigates the time and space costs of palimpsest parser
implementations of typical controlled production systems. Two im portant
theoretical results, predicted in SECTIONS 5.2, are supported by the data
presented in TABLE 5.3. First, the firing rate of a controlled production system
is constant with respect to the number of productions P; it is the module size
G that determines the firing rate of a palimpsest parser. Second, this firing
rate is very near the best case, as illustrated in FIGURE 5.8. These results for
sim ulated controlled production systems, display a consistent firing rate of
approximately 1000 productions per second.

/

127

I w = 10 W = 20

p C G Size msec
fire

.msec. msec
fire

.msec.

10 5 10 598 7.71 ±0.21 7.58 ±0.22
25 5 25 1398 19.36 ±0.52 19.28 ±0.55
50 5 50 2718 38.49 ±0.94 39.10 ±1.07
75 5 75 4043 58.87 ±1.59 62.12 ±0.68
100 5 100 5368 79.64 ±1.95 79.88 ±1.11
125 5 125 6715 102.06 ±2.41 101.45 ±1.44
150 5 150 8040 132.24 ±1.04 134.94 ±2.50
175 5 175 9365 149.10 ±3.53 144.73 ±2.07
200 5 200 10690 162.46 ±3.58 168.20 ±2.00

TABLE 5.1. Worst Case Results

180

160

140

120 W = 10, 20

100

#Productions (P) = Module Size (G)

FIGURE 5.6. Worst Case Effect of P on Time

W == 100 w == 200 w == 500

p C G Size msec ,msec. msec .msec.
<*71^

msec .msec.
fire ' fire ' fire fire (f ire^

10 1 1 275 0.44 ±0.02 0.44 ±0.01 0.44 ±0.01
25 1 1 627 0.45 ±0.01 0.45 ±0.01 0.45 ±0.00
50 1 1 1199 0.42 ±0.00 0.43 ±0.01 0.43 ±0.01
75 1 1 1782 0.43 ±0.01 0.43 ±0.02 0.44 ±0.01
100 1 1 2354 0.44 ±0.01 0.44 ±0.01 0.45 ±0.01
125 1 1 2937 0.44 ±0.00 0.44 ±0.01 0.44 ±0.01
150 1 1 3509 0.47 ±0.01 0.47 ±0.01 0.47 ±0.01
175 1 1 4092 0.48 ±0.01 0.48 ±0.01 0.48 ±0.01
200 1 1 4664 0.45 ±0.01 0.45 ±0.01 0.45 ±0.01

TABLE 5.2. Best Case Results

1.35

1.20

1.05

0.90

0.75

0.60 100, 200, 500

0.45

0.30

0.15

0

#Productions (P)

RGURE 5.7. Best Case Effect of P on Time

129

W == 100 W == 200 W = 500 W= 1000

G P C Size msec
fire of1"**! msec

fire o ©
msec
fire

.msec. msec
fire

,msecv
^ fire' ' fire ̂ UW >

3 25 3 879 1.12 ±0.09 1.12 ±0.08 1.12 ±0.09 1.13 ±0.08
3 50 3 1815 1.07 ±0.01 1.06 ±0.02 1.07 ±0.02 1.07 ±0.02
3 75 3 2694 0.95 ±0.04 0.95 ±0.05 0.95 ±0.04 0.94 ±0.04
3 100 3 3573 0.97 ±0.04 0.99 ±0.04 0.99 ±0.02 0.99 ±0.02
3 125 3 4509 1.06 ±0.03 1.05 ±0.03 1.06 ±0.05 1.04 ±0.06
3 150 3 5366 1.00 ±0.01 1.00 ±0.03 0.98 ±0.04 1.01 ±0.02
3 175 3 6278 0.97 ±0.02 0.97 ±0.03 0.94 ±0.01 0.93 ±0.05
3 200 3 7159 1.00 ±0.05 0.97 ±0.04 0.96 ±0.03 0.95 ±0.03
5 25 3 840 1.24 ±0.08 1.25 ±0.08 1.19 ±0.08 1.22 ±0.08
5 50 3 1680 1.09 ±0.05 1.07 ±0.05 1.10 ±0.06 1.11 ±0.01
5 75 3 2520 1.08 ±0.04 1.09 ±0.04 1.07 ±0.03 1.04 ±0.04
5 100 3 3349 0.97 ±0.06 0.98 ±0.06 0.98 ±0.08 0.95 ±0.07
5 125 3 4214 1.07 ±0.05 1.07 ±0.10 1.06 ±0.10 1.02 ±0.08
5 150 3 5051 1.06 ±0.04 1.03 ±0.04 1.04 ±0.04 1.04 ±0.03
5 175 3 5913 0.99 ±0.06 1.00 ±0.03 0.93 ±0.03 0.94 ±0.02
5 200 3 6753 0.99 ±0.04 0.99 ±0.03 0.98 ±0.01 0.96 ±0.01
10 25 3 781 1.38 ±0.19 1.36 ±0.15 1.36 ±0.21 1.37 ±0.23
10 50 3 1571 1.16 ±0.13 1.17 ±0.17 1.12 ±0.16 1.13 ±0.15
10 75 3 2341 1.08 ±0.08 1.10 ±0.10 1.07 ±0.10 1.07 ±0.11
10 100 3 3131 1.11 ±0.04 1.09 ±0.06 1.09 ±0.08 1.06 ±0.12
10 125 3 3945 1.08 ±0.04 1.08 ±0.03 1.07 ±0.05 1.04 ±0.02
10 150 3 4757 1.14 ±0.06 1.14 ±0.06 1.08 ±0.05 1.05 ±0.08
10 175 3 5571 1.07 ±0.03 1.05 ±0.05 1.05 ±0.05 1.04 ±0.08
10 200 3 6339 1.00 ±0.06 1.02 ±0.04 0.98 ±0.06 0.95 ±0.05
25 25 3 623 1.33 ±0.22 1.31 ±0.20 1.28 ±0.19 1.23 ±0.17
25 50 3 1326 1.40 ±0.02 1.40 ±0.03 1.41 ±0.03 1.41 ±0.04
25 75 3 2122 1.28 ±0.03 1.27 ±0.06 1.23 ±0.08 1.19 ±0.05
25 100 3 2844 1.22 ±0.03 1.21 ±0.05 1.19 ±0.06 1.18 ±0.06
25 125 3 3643 1.26 ±0.06 1.25 ±0.06 1.25 ±0.04 1.23 ±0.06
25 150 3 4431 1.15 ±0.10 1.17 ±0.10 1.12 ±0.09 1.09 ±0.11
25 175 3 5230 1.09 ±0.04 1.09 ±0.05 1.04 ±0.03 1.00 ±0.07
25 200 3 5908 1.13 ±0.10 1.09 ±0.07 1.07 ±0.08 1.05 ±0.07

TABLE 5.3. Typical Production System Results

130

1.35 --
Typical Case

G = 3 ,C = 3 , W= 10001.20 - -

1.05 --

0.90 --

0.75 --

0.60 --

0.45 -
Best Case

0.30 --

0.15 --

40 60 80 100 120 14(
#Productions (P)

Rgure 5.8. Typical Effect of P on Time

6. Palimpsest Parser Enhancements
As described above, palimpsest parsers meet the speed and modularity re

quirements of large production systems. Also, w ith little or no additional
effort, three features that are also valuable in the large production system
domain can be accommodated by the palimpsest parser architecture. This
chapter presents brief descriptions of those features, and outlines their
implementation where necessary. A number of directions for future research
are then outlined.

6.1. Additional Features

This section describes three useful features of the palim psest parser
architecture.

6.1.1. Backward-Chaining Evaluation

The palimpsest parser production system architecture employs a forward-
chaining evaluation strategy by looking for instantiations of legal productions
and firing them as they are found. All goal structuring must be built into the
control grammar. However, large production systems may contain produc
tions or modules that deal w ith a very w ide range of problems, some of
which m ay be better suited to a backward-chaining evaluation. Fortunately, a
minor change to the palimpsest transformation provides this capability143.

First, the purpose of a backward chaining evaluation is to provide a goal
directed search for instantiations. That is, suppose that a specific working
memory element is required to satisfy a condition. For example, in the con
trolled production system of FIGURE 4.1, production loaditem needs an ele

143 Collins and Slothouber, 1988.

131

132

m ent from the O P E N B A Y element class, as illustrated in the following
palim psest gram m ar rule:

Also, suppose that another production exists that will create a desired ele
m ent when it's action is applied, such as the production opennewbay, repre
sented by the following palimpsest grammar rule:

This situation m ight be represented by the production memory and control
gram m ar of FIGURE 6.1, w here all original occurrences of production
opennew bay (now redundant) have been rem oved. To evaluate production
opennewbay using backward chaining, first create a copy of the corresponding
gram m ar rule, and change the LHS non-term inal symbol into the non-ter
minal form of the desired element class name. For example:

Next, modify the goal rule by replacing the term inal form of the desired ele
m ent class name by its non-terminal form:

Finally, add a new gram m ar rule w ith a LHS containing the non-term inal
form of the desired element class name, and a RHS containing its terminal
form :

For the examples above, the resulting palimpsest grammar w ould be

LOADITEM anyitem openbay

OPENNEWBAY -» anyitem not_openbay closedbay

OPENBAY —> anyitem not_openbay closedbay

LOADITEM -» anyitem OPENBAY

OPENBAY openbay

(1) S
(2) S

-> LOADITEM S
STOP

-» anyitem OPENBAY
—> not_anyitem

anyitem not_openbay closedbay
- » openbay

(3) LOADITEM
(4) STOP
(5) OPENBAY
(6) OPENBAY

If necessary, the implementation of the palim psest parsing algorithm should
be modified to treat both the non-terminal and terminal forms of the element

133

Production Memory

l o a d i t e m :
(i tem in_bay=none)
(bay s p a c e > # l . s i z e o p e n = tru e)

=>
CHG (#1/ i n _ b a y : # 2 .name)
CHG (#2, s p a c e : # 2 . s p a c e ~ # l . s i z e)

b a c k w a rd o p e n n e w b a y :
(i tem in_bay=none)

NOT (bay sp a c e d # 1 . s i z e o p e n = tru e)
(bay s p a c e > # l . s i z e o p e n = fa l s e)

=>
CHG (#3, o p e n : t r u e)

s t o p :
NOT (i tem in_bay=none)

Control Grammar

S —» lo a d i te m 5
S —> s to p

FIGURE 6.1. A Backward-Chaining Controlled Production System

class name on the parse stack as if it were a terminal symbol; that is, allow
backtracks over that symbol.

Execution of the resulting palimpsest parser will attem pt to instantiate
o p e n n e w b a y (i.e., rule (5)) whenever an element from the O P E N B A Y
element class is required by loaditem. If opennewbay fires, an OPENBAY ele
ment is guaranteed to be created, and processing of load item continues. If
opennewbay cannot be instantiated, the parser tries to apply rule (6), which
guarantees that an OPENBAY element already exists. If neither ru le (5) or
rule(6) can be applied, the parser backtracks, just as if it had tried to shift
openbay.

Backward chaining rules can be used to instantiate other backward chain
ing rules, ad infinitum.

134

6.1.2. Separate Compilation Units

Many procedural languages, such as Ada, allow groups of modules to be
w ritten and compiled separately, facilitating top-dow n design of large
programs. This situation can be emulated by palim psest parsers144. First,
compile every controlled production system representing a compilation unit
into a palim psest grammar, a disambiguation function, and a semantics
function (including classification procedure). Care m ust be taken to insure
that the same names are used for equivalent symbols in all compilation units.
Combination of the separate compilation units is straightforward; palimpsest
grammars are concatenated, the outermost case statements of each classifica
tion procedure are combined within one classification procedure skeleton,
case statement alternatives for the various (Cs and r's are placed within a sin
gle procedure skeleton. A palimpsest parser is then constructed as usual from
the combined palimpsest grammar, disambiguation function, and semantics
function.

6.1.3. Conventional Conflict Resolution

The fire first selection strategy was chosen for palimpsest parsers to opti
mize performance. Should this selection strategy prove inadequate, then con
flict resolution strategies such as recency, specificity, and refraction, and even
full conventional conflict resolution m ay be incorporated into palim psest
parsers.

If the implementation of SECTION 5.1 is used, newly added or changed
working memory elements are placed at the beginning of element class lists.
Any instantiation found for a production will automatically contain the most
recent working memory elements in the satisfying list. This is not exactly the
recency conflict resolution function in the literature; but, if it is used for some
purpose other than providing procedural control, this version of recency
should be sufficient.

144 Collins and Slothouber, 1988.

135

In the alternate form of CLR(O) parsing action functions, all shift actions
appear before reduce actions. This means that given a choice between two
sim ilar, legal productions, a palim psest parser will fire the one w ith the
largest, most specific satisfied condition. This is not exactly the specificity con
flict resolution function in the literature; but, if it is used for some purpose
other than providing procedural control, this version of specificity should be
sufficient.

In those rare instances w here it is necessary, refraction can be im ple
m ented explicitly in any production system w ithout resorting to full conven
tional conflict resolution. A dd an attribute to the affected working mem ory
elements. Such attributes are defined to have one value (or set of values)
w hen the working memory element is allowed to be used in an instantiation.
This attribute value is to be changed by a production's action to signify that
the working m em ory element cannot be used to m atch the same pattern
again.

If, for some unforeseeable reason, the fire first conflict resolution function
is inadequate for some application, conventional conflict resolution can be
perform ed by palim psest parsers. W henever an instantiation is found, the
disambiguation predicate puts it in a conflict set (along w ith the current parse
stack) and return false. Then, instead of firing an instantiation, the palimpsest
parsing algorithm searches for other instantiations. After all instantiations
are found, the palim psest parser eventually blocks. At this point, instead of
halting, conventional conflict resolution and act phases should be executed.
The palim psest parser then applies the proper parsing goto function for the
production fired and begins the next cycle. The time penalty incurred by this
process is quite high, but m ay be ameliorated w ith the use of conflict set
support inform ation145.

145 M iranker, 1987.

136

6.2. Future Research

This section describes various directions for future research related to
palim psest parsers. These are prelim inary ideas, and have not yet been
investigated.

6.2.1. Modular Production System Language

Before palim psest parsers can be used to in terpret large controlled
production systems, some large controlled production systems need to be
written. Therefore, a m odular production system language suitable for the
construction of large production systems, and the transformation from that
language to pure controlled production systems need to be defined and
im plem ented.

6.2.2. Performance Optimizations

A num ber of approaches may lead to optimizations of palimpsest parser
performance. First, careful analysis of the working memory elements created
by production actions m ay allow the classification procedure (a potential
bottleneck in large production systems) to be bypassed in m any situations.
Second, analysis of the relationships between productions and their relative
ordering in the control sequences m ay allow redundant patterns and op
erations to be removed. Third, judicious re-ordering of symbols on the RHS
of productions in a production m em ory gram m ar may allow condition
membership to be used m ore effectively. Finally, a large body of performance
re la ted LR parsing research concerns g ram m ar and parse table
transformations. Much of this work m ay be applicable to palimpsest parsers.

6.2.3. Explanatory Capability

One useful feature provided by m any production systems is the ability of
the system to provide a trace of its reasoning. A parse tree, constructed during

137

the execution of a palimpsest parser, and annotated with satisfying lists and
working mem ory changes, should provide all the necessary information.
Such parse trees m ight be constructed explicitly by the production system
actions, or implicitly by a modified palimpsest parsing algorithm. If the parse
tree were represented as a structure in working m em ory, the trace
information would be available to the production system itself.

6.2.4. Uncertainty

Many production system architectures provide the capability to deal with
uncertain information. For example, certainty factors may be associated with
every working memory element that define the likelihood that the working
memory element is correct. Such a scheme might be emulated by palimpsest
parsers in one of two ways. The production system programmer may wish to
explicitly pu t a certainty factor attribute within all working memory elements,
and have productions examine and modify that information. Another
approach is to implicitly associate certainty factors w ith every working
memory element. The palim psest disambiguation and semantics functions
could then be modified to automatically m aintain uncertainty information
and use that information in the match process.

6.2.5. Reasoning About Controlled Production Systems

One potential problem in the construction of large production systems is
that many productions may be redundant, inconsistent, unreachable or even
unsatisfiable. The palim psest parser architecture may allow many of these
problems may be spotted upon examination of the palimpsest grammar for a
controlled production system. For example, redundant productions will
resu lt in palim psest gram m ar rules w ith the same or sim ilar RHSs.
Inconsistent and incorrect productions often result in palim psest grammar
rules that reference new and unexpected element classes.

138

6.2.6. Concurrency

One often mentioned/ but seldom implemented feature of m any produc
tion system architectures is the ability to interpret different productions, or
groups of productions concurrently. Palimpsest parsers may be able interpret
concurrent productions and production modules. One approach is to use a
separate parse stack for every concurrent module, and modify the palimpsest
parsing algorithm to cycle among the tasks applying one parse action for each
task on each cycle.

/

7. Conclusion
It has been argued that "programming in the large is an essentially dis

tinct and different intellectual activity from that of constructing individual
modules... [and] ... essentially distinct and different languages should be used
for the two activities."146 A host of production system languages exist that are
suitable for creating small applications; yet none provide a truly m odular en
vironment for programming in the large. Furthermore, the speed of conven
tional production system architectures that support these languages are pro
hibitively slow for large production systems. This thesis introduces a new
production system architecture, called the palimpsest parser, that adapts LR
parsing technology to the process of interpreting large controlled production
systems. Controlled production systems provide a formal foundation upon
which to design m odular production system languages for programming in
the large; and palimpsest parsers exploit that m odular structure to interpret
production systems fast, regardless of size.

Controlled production systems are compiled into palim psest parsers as
follows. Initially, the palimpsest transformation is applied to all productions
to transform them into context-free grammar rules w ith associated disam
biguation predicates and semantics. This grammar and the control grammar
are then concatenated and compiled into modified LR(0) parse tables using
conventional parser generation techniques. The resulting parse tables, disam
biguation predicates, and semantics, in conjunction with a backtracking LR(0)
parsing algorithm, constitute a palim psest parser. W hen executed, this
palim psest parser correctly interprets the original controlled production
system. Moreover, on any given cycle, the palimpsest parser only attempts to
instantiate those productions that are allowed to fire by the control language
gram m ar. Tests of sim ulated production system s147 have consistently

146 DeRemer and Kron, 1976, pp. 80-86.
147 Simulated production systems had the following characteristics: 200 productions, 500

working memory elements, an average of 3 patterns and 3 actions per production.

139

140

exhibited firing rates in excess of 1000 productions per second on a
conventional minicomputer.

/

Bibliography
Aho, A. V., and Ullman, J. D. (1972) The Theory of Parsing, Translation,

and Compiling, Vol. 1, Prentice-Hall, Englewood Cliffs, N ew Jersey.

Allen, L., (1982) "YAPS: Yet another production system ," Technical
Report TR-1146, Department of Computer Science, University of Maryland.

AT&T Inform ation Systems (1986) The UNIX System User's Manual,
Prentice-Hall, Englewood Cliffs, N ew Jersey.

Barker, V. E., and O 'C onnor, D. E., (1989) "Expert system s for
configuration at Digital: XCON and beyond," Communications of the ACM,
Vol. 32, #3,298-318.

Brainerd, W. S., and Landweber, L. H. (1974) Theory of Computation, W i
ley & Sons, New York, New York.

Brownston, L., Farrell, R., Kant, E., and M artin N., (1985) Programming
expert systems in OPS5, Addison-W esley, Reading, Mass.

Buchanan, B. G., and Shortliffe, E. H., (1984) Rule Based Expert Systems,
Addison-Wesley, Reading, Mass.

Clocksin, W. F., and Mellish, C. S., Programming in PROLOG, Springer-
Verlag, New York.

Collins, W.R., and Feyock, S., (1985) "The MYSTRO SYSTEM: the use of
parsing technology to build real-tim e expert system s," D epartm ent of
C om puter Science, College of W illiam and M ary, Final Report, Langley
Research Center Grant NAG-1-469.

141

142

Collins, W.R., and N oonan, R.E., (1985) "The MYSTRO SYSTEM: a
comprehensive translator toolkit," Department of Computer Science, College
of William and Mary, Final Report, Langley Research Center Grant NSG-1435.

Collins, W.R., and Slothouber, L.P., (1988) "Expert system control in Ada,"
Proc. of the 4ih Annual Artificial Intelligence in Ada Conference, M acLean,
VA, 17.1-17.11

Davis, R., and King, J. (1976) "An overview of production systems," in
Machine Intelligence, Vol. 8 (Elcock, E. W., and Michie, D., eds.), W iley &
Sons, New York, 300-332.

Davis, R., and Buchanan, B. G. (1977) "Meta level knowledge: Overview
and implications," Proc. 5th Int. Joint Conf. Artificial Intelligence, C am bridge,
Massachusetts, 920-927.

Davis, R. (1980) "M eta-rules: reasoning about control," in M achine
Intelligence, Vol. 8 (Elcock, E. W., and Michie, D., eds.), Wiley & Sons, New
York, 300-332.

Dencker, P., Durre, K., and Heuft, J. (1984) "Optimization of parser tables
for portable compilers," ACM Transactions on Programming Languages and
Systems, Vol. 6, #4, 546-572.

DeRemer, F., and Kron, H. (1976) "Program m ing-in-the-large versus
p rog ram m ing-in -the-sm all," IEEE Transactions on Software Engineering
SE-2.

Duda, R. O., H art, P. E., Konolige, K., and Reboh, R., (1979) "A computer-
based consultant for m ineral exploration," Technical Report, Final Report,
SRI Project 6415, SRI International.

Feyock, S., (1984) "Syntax program m ing," American Association for
Artificial Intelligence National Conference, Austin, Texas.

Floyd, R. W. (1961) "A descriptive language for symbol manipulation,"
Journal of the ACM, Vol. 8, #4, 579-584.

143

Forgy, C. L. (1979) "On the efficient implementation of production sys
tem s/' Ph.D. Thesis, Carnegie-Mellon University, 1979.

Forgy, C. L. (1982) "Rete: a fast algorithm for the m any pattern /m any ob
ject pattern m atch problem," Artificial Intelligence, Vol. 19,17-37.

Forgy, C. L. (1984) 'T he OPS83 report," Technical Report CMU-CS-81-133,
Departm ent of Com puter Science, Carnegie-Mellon University.

Forgy, C. L., Gupta, A., Newell, A., Wedig, R., (1984) "Initial assessment of
architectures for p roduction system s," Proc. American Association for
Artificial Intelligence.

Forgy, C. L., Gupta, A., Newell, A., Wedig, R., (1986) "Parallel algorithms
and architectures for rule-based systems," Proc. 13th Annual Int. Symp. on
Computer Architecture, Tokyo, Japan, 28-37.

Georgeff, M. P., (1982) "Procedural control in production systems," Artifi
cial Intelligence, Vol. 18, 175-201.

Ghedi C., and Jazayeri, M., (1982) Programming Language Concepts, Wiley
& Sons, Inc., New York.

Giarratano, J. C., (1988) "CLIPS User's Guide," Artificial Intelligence
Section, Lyndon B. Johnson Space Center, Houston, Texas.

H ardy, G. H., Littlewood, J. E., and Polya, G. (1959) Inequalities, 2n<*
Edition, Cambridge University Press, Cambridge.

Jacob, J. K., and Froscher, J. N., (1986) "Developing a software engineering
m ethodology for know ledge-based system s," NRL report 9019, N aval
Research Laboratory, Washington, D. C.

Jacon, J. K., and Froscher, J. N., (1985) "Designing expert systems for ease
of change," Proc. IEEE Expert Systems in Government Symposium, McLean
Virginia.

Kowalski, R., (1979) "Algorithm = logic + control," Communications of
the ACM, Vol. 22, #7, 424-436.

144

McDermott, J. and Forgy, C. (1977) "Production system conflict resolution
strategies," in Pattern-Directed Inference Systems, (W aterman, D. A., and
Hayes-Roth, F., eds.), Academic Press, London, 177-199.

McDermott, J., Newell, A., and Moore J. (1978) 'T he efficiency of certain
production system implementations," in Pattern-Directed Inference Systems,
(Waterman, D. A., and Hayes-Roth, F., eds.), Academic Press, London, 155-176.

McDermott, J. (1980) "Rl: a rule-based configurer of computer systems,"
Technical Report CMU-CS-80-119, Carnegie-Mellon University.

Minsky, M. (1967) Computation: Finite and Infinite Machines. P ren tice-
Hall, Englewood Cliffs, New Jersey.

Miranker, D. P. (1987) "TREAT: A new and efficient match algorithm for
AI production pystems," Technical Report, Department of Computer Science,
University of Texas at Austin.

Nuutila, E., Kuusela, J., Tamminen, M., Veilahti, J. Arkko, J. Bouteldja,
N. (1987) "XC - a language for embedded rule based systems," SIPGLAN NO
TICES, Vol. 22, #9,23-32.

Olflazer, K., 'Partitioning in parallel processing of production systems,"
Ph. D. Thesis, Carnegie Mellon University.

Post, E. (1943) "Formal reductions of the general combinatorial problem,"
American Journal of Math., Vol. 65, 197-268.

Rhyne, J. R. (1977) "O n finding conflict sets in production systems,"
Technical Report UH-CS-77-5, University of Houston.

Rieger, C. (1978) "Spontaneous com putation and its roles in AI model
ing," in Pattern-Directed Inference Systems, (W aterman, D. A., and Hayes-
Roth, F., eds.), Academic Press, London, 69-97,

Rychener, M. D. (1977) "Control requirements for the design of produc
tion system architectures," SIGPLAN/SIGART Newsletter, 37-44.

145

Savitch, W. J. (1982) Abstract Machines and Grammars, Little, Brown and
Co., Boston, Mass.

Shortliffe, E. H. (1976) Computer based medical consultations: MYCIN,
American Elsevier, New York.

Stefik, M., Aikens, J., Balzer, R., Benoit, J., Bimbaum, L., Hayes-Roth, F.,
and Sacerdoti, E. D. (1982) "The organization of expert systems," Artificial In
telligence, Vol. 18, 135-173.

Stolfo, S. J., and Shaw, D. E. (1982) "DADO: a tree-structured machine
architecture for production systems," Proc. National Conference on Artificial
Intelligence, AAAI-1982.

Waterman, D. A., and Hayes-Roth, F. (1978) "An overview of pattern-di
rected inference systems," in Pattern-Directed Inference Systems, (W aterm an,
D. A., and Hayes-Roth, F., eds.), Academic Press, London, 3-22.

Weiss, S. M., and Kulikowski, C. A., (1981) "Expert consultation systems:
The EXPERT and CASNET projects," in Machine Intelligence, Infotech State
of the Art Report 9, #3, Pergamon Infotech Ltd., Maidenhead Berks, England.

146

Appendix A. Notation
Throughout this thesis, it is assumed that the reader is familiar with the

following notation and definitions:

• s is mathematical shorthand for "identical with."
• V is the universal quantifier, and is read as "for all."
• 3 is the existential quantifier, and is read as "there exists."
• a is mathematical shorthand for "such that."
• iff is mathematical shorthand for "if and only if."
• £ is the subset operator.
• e is the set membership operator.
• n is the set intersection operator.
• u is the set union operator.
• An alphabet is a non-empty, finite set of primitive symbols.
• A word in £ is a finite string of symbols from alphabet Z.
• The length of a word a , denoted |a|, is the number of symbols in a.
• The empty word, denoted e, is a word of length 0.
• Z*k is the set of all words in Z with length less than or equal to k.
• Z+ is the set of all words in Z of length 1 or greater.
• Z* = Z+ u {e}.
• a x,y denotes the list of items (a x, a x+ i , . . . , a y).
• 2 ^ is the powerset of the set <5; that is, {<|> I <(> £ <£}.
• O x f denotes the cartesian product of sets O and 'P.
• X ® X ... fc-times . . . X<1>.

• <I>* S U ^ U th3 U . . .

• O ~ *P denotes the set difference of sets <£ and 'P. '
• a is the logical AND operator.
• v is the logical OR operator.
• ==> separates a production's condition and action.
• => denotes "is a rightmost derivation of."
• □ marks the end of examples, definitions, algorithms, and proofs.

Also, m any definitions reference notational abbreviations that have been
introduced prior to that definition. A list of these abbreviations follows along
w ith the page num ber on which they first appear. Subscripted forms of

147

abbreviations (e.g., zv,- is the subscripted form of w) are not shown.
Occasionally, some of these abbreviations are overloaded, but the meanings
should be dear from context.

Page Abbrev. Meaning
9 P The num ber of productions in a production memory,
9 W The num ber of data elements in a working memory.
9 Q The number of patterns in production number i.

9 c f The number of positive patterns in production i.

9 q The num ber of negative patterns in production t.

21 2 An alphabet of primitve symbols in a PPS.
21 ¥ An alphabet of variables in a PPS.
22 G A context-free grammar (CFG).
22 L(G) The language defined by a CFG (G).
31 0 A production system alphabet.
31 U A working memory element universe; U £
31 c (i} A category in U; U = [C(1), , C(n)).
31 c A category in L7; C e [C(1), . . . , C(n)}.
31 V i A set of values.
31 A An attribute of some category C; A : C -» V,-.

31 W A working memory; W £ U.
31 w A working memory element; tv e W.
33 Uk All lists of working memory elements in U.
33 pH A fc-predicate; p H : Of x ... x Q . {true, false}.

35 P f The one-element component of pH.
35 pH" The many-element component of pH.
35 ™ l,k The list (w j , W2, , Wjt).
36 p H l The q \ such that q \ (w j) = pH'(zvj^)-

37 <+/ pj> A positive fc-pattern.
37 <- Pi) A negative fc-pattern.
37 <sV P{) A fc-pattern of arbitrary sign.
37 c A category; c = {(sl f p^ , . . . , (sk, p $) .

38 2 u The set of all working memories of U.
38 0 An operation; o : Cj x ... x Q. x 2 ^ 2^.
39 a An action; a(wlitr W)= o m(zuiitIom_i(zvii„)).

148

40 n A production name; n e C>+.
40 (n, c, a) A production on U.
40 P (li) The set of all productions on U.
40 A production memory on li; iPS P(li).
40 (% W) A production system on U.
43 c (U) The set of all instantiations on (P(U), U).

43 M A match function; M : 2 ^ ^ x 2 G
43 R A conflict resolution function; R : 2 ^ ^ -> C(li).
43 CM ,R) A selection strategy.
45 N(!P) The set of all production names found in (P.
45 K A control language of T; K £ N(P)*.
45 GK A control grammar for control language K.
45 «£>, W>,Gk) A controlled production system.
57 S A set of LR(0) items.
57 a An LR(0) item set.
57 T A viable prefix.
57 V(y) The item set for a viable prefix y.
58 P The set of grammar rules in a CFG.
58 S The start symbol in a CFG.
58 f A parsing action function.
58 S A parsing goto function.
58 T(a) An LR(0) parse table for U.
61 7 A parsing function.
62 fc A CLR(0) parsing action function.
62 Si The set of all parsing actions in a set of parse tables.
66 d A (palimpsest) disambiguation function.
66 r A (palimpsest) semantics (or reduce semtantics) function.
87 (i d , p) An element class table entry.
87 V An element class specification.
87 T, An element class table.
88 Grp A production memory grammar for !P.
89 GTK A palimpsest grammar.
90 u* The set of all lists of working memory elements in U.

Appendix B. A Complete Production
System Example

This appendix describes the design and transform ation process for a
complete, albeit small, production system. The first section describes the top-
dow n design of the production system from the problem specification. The
next section presents the elem ent class table, palim psest gram m ar, dis
am biguation function and semantics generated from the production system
by the palim psest transformation. Finally, a sample execution trace for the
resulting palim psest parser is presented.

B.l. Designing a Production System

The goal is to design a production system, called LOADBAY, that finds a
near optimal solution, much as a hum an might, to the following problem.

Determine how to load a list of items into a minimum number of
cargo bays, subject to the following constraints:

• No flammable fuel may be loaded into cargo bays.
• A t least one food item must be loaded.
• No two items of the same type may be loaded into the same bay.

It is assumed that enough cargo space exists to load all items.

The inventory of items and the bays into which they are to be loaded will be
represented by a working memory, as in FIGURE B.l.

The constraints suggest that the problem can be decomposed into three
distinct phases: removing all fuel items, adding one food item, and loading
cargo bays. This decomposition m ay be represented by the following control
grammar rule, where non-terminals are surrounded by "<" and

<lbadbay> —> <remove_all_fuel> <add_one_food> <load_bays>

150

(item name: iteml t y p e : water s i z e : 67 bay : none)
(item name:item2 ty p e : fuel s i z e : 98 bay : none)
(item name:item3 ty p e : a i r s i z e : 83 bay:none)
(item name:item4 ty p e : su it s iz e :7 7 bay:none)
(i t an name:item5 ty p e : scope s iz e :7 1 bay : none)
(item name: item6 ty p e : hose s i z e : 95 bay : none)
(i t am name:item7 ty p e :book s iz e :5 3 bay:none)
(item name:item8 type:w rench s i z e : 39 bay:none)
(item name:item9 ty p e :paper s i z e : 34 b ay : none)
(item nameiitemlO typeipen s i z e : 19 b ay : none)
(item nam eiitem ll ty p e : nut s i z e : 10 bay:none)
(item name:iteml2 ty p e : b o lt s i z e : 9 bay:none)
(item name:iteml3 ty p e : fuel s i z e : 71 b ay : none)
(item name:iteml4 type:cam era s i z e : 47 bay:none)
(bay name :bayl s iz e :5 0 s p a c e :50 o pen : false)
(bay name :bay2 s i z e : 150 sp a c e : 150 open :fa lse)
(bay name :bay3 s i z e : 300 s p a c e :300 open :fa lse)
(bay name :bay4 s i z e : 100 sp a c e : 100 open :fa lse)
(bay name :bay5 s i z e : 100 sp a c e : 100 open :fa lse)

FIGURE B.l. An Initial LOADBAY Working Memory

Removing fuel requires a loop, because m ore than one fuel item may be
in working memory. This loop may be represented by the following control
grammar rules, where terminal symbols represent production names:

<remove_all_fuel> —» remove_fuel <remove_all_fuel>
<remove_all_fuel> -» e

The remove J u e l production will be repeatedly applied until it's condition is
no longer satisfied.

Food is to be added only if none already exists in the inventory. Such an
optional production application is represented by the following control
grammar rules:

<add_one_food> —> add_food
<add_one_food> - » e

In order to load bays as full as possible, a human might apply the follow
ing two strategies:

151

Strategy A
• Load larger items before smaller items. Item s w ill be d iv ided

into three classes: large (i.e., size>66), medium (i.e., 33<$ize<66),
and small (i.e., size<33).

• Only open new bays when no more items fit into old ones. It is
assumed that no bays are initially open.

Strategy B
• Move items between bays to free larger blocks of space. C ircular

moves are avoided if item s are only moved into a destination
bay w ith less space than the origin bay.

• Swap items between bays to free larger blocks of space. C ircular
swaps are avoided if the larger of the two items is swapped into
the bay with the lesser space.

Strategy A is designed to provide an approximate initial loading of items into
bays. Strategy B is designed to try to optim ize the loading perform ed by
Strategy A. H ow these two strategies are to be applied? Strategy B m ust be
applied after Strategy A so that cargo bays will have loaded items to move
around. But how often should Strategy B be applied? every time Strategy A is
applied? or once, after all items have been loaded? One approach is to apply
Strategy B only if the amount of wasted space in any bay exceeds some
acceptable value, say, 15 percent. This approach may be represented in the
control gram m ar of FIGURE B.2, in which Strategy A and Strategy B are to be
applied in a loop until all items have been loaded. Strategy B is applied only if
it has not already been applied to the current loading scheme and if a bay
exists w ith m ore than 15 percent wasted space. O therw ise, Strategy A is
applied.

152

<loadbay> -» <remove_all_fuel> <add_one_food>
+ <load_bays>
<rem ove_all_fuel> —> remove_fuel <remove_all_fuel>
<rem ove_all_fuel> ->e
<add_one_food> add_food
<add_one_food> ->e
<load_bays> -» check_load <load_loop>
<load_loop> -» <load_loop> <strategy_a>
<load_loop> -4 <load_loop> <strategy_b>
<load_loop> e
<strategy_a> —» check_al <open> <load_big> <load_med>
+ <load_small>
<strategy_a> check_a2 <open> <load_big> <load_med>
+ <load_small>
<open> —> open_new_bay
<open> -> e
<load_big> —> load_big_item <load_big>
<load_big> ->e
<load_med> -> load_m ed_item <load_med>
<load_med> —> E
<load_small> - » load_sm all_item <load_small>
<load_small> ->e
<strategy_b> —» check_b <strategy_b_loop>
<strategy_b_loop> -> swap_item s <strategy_bJoop>
<strategy_b_loop> -» m ove_item <strategy_b_loop>
<strategy_b_loop> -> e

FIGURE B.2. The LOADBAY Control Grammar148

A num ber of productions (terminal symbols) were referenced in the
control grammar. Each production is supposed to perform a single, indepen
dent, well-defined function. The top-down design process described above has
insured that this is so. Their definition, given their use in the control gram
mar and the original problem specification, is straightforward. FIGURE B.3 lists
these productions. Notice the last four "c h e c k j ' productions are used to
"guard" specific strategies and signal loop termination.

148 a "+" symbol in colum one indicates a continuation of the previous rule.

153

r e m o v e _ f u e l :
(ite m ty p e = fu e l)

REM (#1)

a d d _ f o o d :
NOT (ite m ty p e= fo o d)
=>
ADD (item nam e:gennam e(item) ty p e : f o o d s i z e : 10
in _ b a y :n o n e)

open__new _bay :
(ite m in_bay= none)

NOT (bay s p a c e > # l . s i z e o p e n = tru e)
(bay s p a c e > # l . s i z e o p e n = fa ls e)

=>
CHG (#3, o p e n :t ru e)

l o a d _ l a r g e _ i t e m :
(ite m s iz e > 6 6 in_bay= none)
(bay s p a c e > # l . s i z e o p e n = tru e)

NOT (ite m t y p e = # l . t y p e in _ b a y = # 2 . in _ b a y)
=>
CHG (#1, i n _ b a y :# 2 .name)
CHG (#2, s p a c e : (# 2 .s p a c e - # l . s i z e))

lo a d _ m e d _ i te m :
(ite m s iz e > 3 3 s iz e < 6 6 in Jb a y = n o n e)
(bay s p a c e > # l . s i z e o p e n = tru e)

NOT (ite m t y p e = # l . t y p e in _ b a y = # 2 . in _ b a y)
=>
CHG (#1, in _ b a y :# 2 .name)
CHG (#2, s p a c e : (# 2 . s p a c e - # l . s i z e))

l o a d _ s m a l l _ i t e m :
(ite m s iz e < 3 3 in_bay= none)
(bay s p a c e > # l . s i z e o p e n = tru e)

NOT (ite m ty p e = # l . t y p e in_Jbay=#2. in _ b a y)
=>
CHG (#1, in _ b a y :# 2 .name)
CHG (#2, s p a c e : (# 2 . s p a c e - # l . s i z e))

m ove__item :
(bay o p en = tru e)
(bay s p a c e > # l . sp a c e o p e n = tru e)
(ite m s i z e < # l . s p a c e in _ b ay = # 2 .n am e)

NOT (ite m in _ b a y = # l . in _ b a y ty p e = # 3 . ty p e)
=>
CHG (#3, in _ b a y :# 1 .name)
CHG (#2, s p a c e : (# 2 .s p a c e - # 3 .s i z e))
CHG (#1, s p a c e : (# 1 .s p a c e + # 3 .s iz e))

____________ FIGURE B.3. (part 1) The LOADBAY Productions

154

s w a p _ i t e r n s :
(bay o p e n = tru e)
(bay s p a c e > # l . s p a c e o p e n = tru e)
(ite m s i z e < # 4 . s i z e in _ b a y = # l.n a m e)
(ite m s i z e < (# 1 .s p a c e + # 3 . s i z e) in _ b ay = # 2 .n am e)

NOT (i te m names*#3»name in _ b ay = # 3 . in _ b a y ty p e = # 4 . ty p e)
NOT (ite m names*#4 . name in _ b ay = # 4 . in _ b a y ty p e = # 3 . ty p e)
=>
CHG (#4, i n _ b a y : # 1 .nam e)
CHG (#3, i n _ b a y : # 2 .nam e)
CHG (#2, s p a c e : (# 2 . s p a c e - # 4 . s i z e + # 3 . s i z e))
CHG (# l r s p a c e : (# 1 , s p a c e - # 3 . s i z e + # 4 . s i z e))

c h e c k _ l o a d :

ADD (strategy sw apped:true)

c h e c k ja l :
(strategy sw apped: true)

ch eck _ a2 :
(item in__bay=none)

NOT (bay (space / s iz e) > 0 .1 5 open=true)
=>

ch eck _ b :
(strategy swapped=false)
(bay (space / s iz e) > 0 .1 5 open=true)

=>
CHG (#1, sw apped:true)

_____________ FIGURE B.3. (part 2) The LOADBAY Productions

Productions load_big_item , load_m ed_item , and load_sm all_ item pu t
items into open bays that have enough space to store big, m edium , and small
items, respectively; no two items of the same type are loaded into the same
bay. The productions m ove_item and sw ap_item s try to reduce wasted space
by m oving loaded items betw een bays. The productions add_ food and
remove_fuel add food and remove fuel, respectively. Lastly, the production
open_new _bay opens a closed bay if one exists, and if there are unloaded
item s that do not fit into any already open bay. These productions do not
specify any procedural control; this is done entirely by the control grammar in
FIGURE B.2.

155

B.2. Applying The Palimpsest Transformation

The first step of the palim psest transformation is to determine the ele
m ent classes represented by the patterns in all productions. FIGURE B.4 pre
sents the element classes represented by the LO AD BAY production system
above. In the implementation of SECTION 5.1, an element class table is only
used internally by the palim psest transformation; a classification procedure,
that evaluates the element class specification predicates on working memory
elements, is inserted into a palimpsest parser. The optimizations described in
SECTION 5.1.3. are applied to this procedure to reduce redundan t and
unnecessary predicate testing. A classification procedure for the LO AD BAY
production system is shown in FIGURE B.5. Given a classification procedure,
the palim psest transformation produces a palimpsest gram m ar rule for every
object-level production and control grammar rule. In addition, disambigua
tion, semantics functions are defined, and a portion of each is associated with
every generated palimpsest grammar rule.

Element Class Specification Predicate
LARGEITEM w e, item a size(w) >66 a in_bay(w) = none
OPENBAY w g bay a open{w) = true
ITEM w g item
MEDITEM w e item a 33 < size(w) > 66 a injoay(w) = none
SMALLITEM w e item a size(w) < 33 a in_bay(w) = none
FOOD w g item a type(w) = food
FUEL w g item a type(w) = fuel
ANYITEM w g item a in_bay(zv) - none
CLOSEDBAY w g bay a open(w) = false
SWAPPED w e strategy a swapped(zv) = true
UNSWAPPED w e strategy a swapped(w) = false
WASTEDSPACE w g bay a open(w) = true a (size(w) /space(w)) > 0.15

FIGURE B.4. LOADBAY Element Class Table

156

p ro c e d u re classify (w : working_memory element) i s
prev : memberjptr;

b e g in
prev := n u l l ;
c a se w.category i s

when item =>
add_to_elt_class_list(ITEM, w, prev);
c a se w.type i s

when food =>
add_to_elt_class_list(FOOD, w, prev);

when fuel =>
add_to_elt_class_list(FUEL, w, prev);

when o th e r s =>
i f w.in_bay = none th e n

i f w.size < 33 th e n
add_to_elt_class_list (LARGEITEM, w, prev);

e l s e i f w.size > 66 th e n
add_to_elt_class_list (SMALLITEM, w, prev);

e l s e
add to elt class list (MEDITEM, w, prev) ;

e n d i f ;
end i f ;

end c a se ;
when bay =>

i f w.open th e n
add_to_elt_class list (OPENBAY, w, prev);
i f (w.size / w.space) >0.15 th e n

add_to_elt_class_list (WASTEDSPACE, w, prev);
end i f ;

e l s e
add_to_elt_class list (CLOSEDBAY, w, prev) ;

end i f ;
when strategy =>

i f w. swapped th e n
add_to_elt_class list (SWAPPED, w, prev)

e l s e
add_to_elt_class_list (UNSWAPPED, w, prev);

end i f ;
end c a se ;

end classify;
FIGURE B.5. The LOADBAY Classification Procedure

The resulting palim psest grammar for LO AD BAY is shown starting on
page 154. Note:

• Lines that begin with a are comments.
• Lines that begin with a "<" are palimpsest grammar rules.
• Lines that begin with a are chunks of disambiguation code

associated with the most recent grammar rule.

157

• Non-blank lines that begin with a blank are chunks of semantics
code associated with the most recent grammar rule.

• Lines that begin with a "+" are a continuation of the previous
grammar rule.

/

158

The Palimpsest Grammar for LOADBAY

*** Below is th e CONTROL component of th e palimpsest grammar

<loadbay>
<remove_all_fuel>
<remove_all_fuel>
<add_one_food>
<add_one_food>
<load_bays>
<load_loop>
<load_loop>
<load_loop>
<strategy_a>
+
<strategy_a>
4*

<open>
<open>
<load_large>
<load_large>
<load_med>
<load_med>
<load_small>
<load_sinall>
<strategy_b>
<strategy_b_loop>
<strategy_bJLoop>
<strategy b loop>

= <remove_all_fuel> <add_one_food> <load_bays>
= <remove_fuel> <remove_all_fuel>

= <add_food>

= <check_load> <load_loop>
= <load_loop> <strategy_a>
= <load_loop> <strategy_b>

= <check_al> <open> <load_large> <load_med>
<load_small>

: := <check_a2> <open> <load_large> <load_med>
<load_small>

= <open_new_bay>

= <load_large_item> <load_large>

= <load_med_item> <load_med>

= <load_small_item> <load_small>

= <check_b> <strategy_b_loop>
= <swap_items> <strategy_b_loop>
= <move_item> <strategy_b_loop>

*** Below i s th e PRODUCTION MEMORY component of the pa linpsest grammar,
*** with associated disambiguation code, and semantics.

<remove_fuel> : := fuel
remove (element => fu e l) ;

<add_food> : := not_food
add_and_classify (category => item,

type => food,
in_bay => none,
size => 10,
name => genname (item));

<open_new_bay> ::= anyitem not_openbay closedbay
/ i f te s t_ s ig n = p o sitiv e then
/ s a t is f ie d := closedbay.space >= anyitem .size;
/ e lse
/ s a t is f ie d := not ((not_openbay <> n il)
/ and (not_openbay.space >= anyitem .size));
/ end i f ;

change_and_classify (element => closedbay,
open => tru e) ;

<load_large_item> : := largeitem openbay not_item
/ i f te s t_ s ig n = p o s itiv e then
/ s a t is f ie d := openbay.space >= largeitem .size;
/ e lse
/ s a t is f ie d := not ((not_item <> n il)
/ and (not_it em. type = largeitem . type)
/ and (not_item.in_bay = openbay. name));
/ end i f ;

change_and_classify (element => openbay,
space => openbay.space - la rg e item .s ize);

change_and_classify (element => largeitem ,
in_bay => openbay.name) ;

<load_med_item> : := meditem openbay not_item
/ i f te s t_ s ig n = p o sitiv e then
/ s a t is f ie d := openbay.space >= meditem.size;
/ e lse
/ s a t is f ie d := not ((not_item <> n il)
/ and (not_i.tem.type = meditem. type)
/ and (not_item.in_bay = openbay.name));
/ end i f ;

change_andL_classify (element => openbay,
space => openbay.space - meditem.size) ;

change_and_classify (element => meditem,
in_bay => openbay.name);

<load_small_item> smallitem openbay not_item
/ i f te s t_ s ig n = p o sitiv e then
/ s a t is f ie d := openbay.space >= sm allitem .size;
/ e lse
/ s a t is f ie d := not ((not_item <> n il)
/ and (not_item.type = smallitem.type)
/ and (not_item.in_bay = openbay.name)) ;
/ end i f ;

change_and_classify (element => openbay,
space => openbay.space - sm allitem .size);

change_and_classify(element => smallitem,
in_bay => openbay.name);

<swap_items> : := openbay openbay item item not_item not_item
i f te s t_ s ig n = p o s itiv e then

s a t is f ie d := (openbay-2. space > openbay-1. space)
and (item -1 .size < item -2.size)
and (item-1. injoay = openbay-1.name)
and (item -2 .size < openbay-1. space + item -1.size)
and (item-2. in_bay = openbay-2.name) ;

e lse
s a t is f ie d := not ((not_item -l <> n il)

and (not_item-l.name <> item-2.name)
and (not_item -l .type = item -2, type)
and (not_item -l. in_bay = item -2. in_bay))

and not {(not_item-2 <> n il)
and (not_item-2.name <> item-1 .name)
and (not_item-2 .type = item-1 .type)
and (not_item-2.in_bay = item -1. in_bay));

end i f ;
change_and_classify (element => item-2,

in_bay => openbay-1.name);
change_and_classify(element => item-1,

in_bay => operibay-2.name);
change_and_classify (element => operibay-2,

space => openbay-2.space - item -2 .s ize
+ ite m -1 .s ize);

change_and_classify (element => openbay-1,
space => openbay-1.space - item -1 .s ize

+ item -2.s iz e) ;

<move_item> ::= openbay openbay item not_item
/ i f te s t_ s ig n = p o s itiv e then
/ s a t is f ie d := (openbay-2.space > openbay-1. space)
/ and (item, s iz e < openbay-1. space)
/ and (item.in_bay = openbay-2.name);
/ e lse
/ s a t is f ie d := not ((not_item <> n il)
/ and (not_item. type = item.type)
/ and (not_item.in_bay = openbay-1.name)) ;

change_and_classify (element => item,
in_bay => openbay-1. name);

change_and_classify(element => openbay-2,
space => openbay-2.space - item .size);

change_and_classify(element => openbay-1,
space => openbay-1.space + item .size);

<check_load> : :=
add_and_classify(category => stra tegy ,

swapped => t r u e) ;

<check_al> : := swapped
/

<check a2> ::= anyitem not wastedspace

<check_b> : := wastedspace unswapped
change_and_classify (element => unswapped,

swapped => tru e);

162

B.3. Execution of the LOADBAY Palimpsest Parser

A partial execution trace is shown below for the palimpsest parser derived
from the LOADBAY controlled production system and the working memory
of FIGURE B.l. Every state entered by the parser is represented by lines similar
to the following:

Action: Shift largeitem. Element class LARGEITEM contains at least iteml
Stack: <remove_all_fuel> <add_one_food> <a_ok> openbay largeitem
Effect: N one

where the A ction line describes the action just taken by the parser, the Stack
line describes the (topmost) symbols on the parse stack, and the Effect line
describes the effect this action has on working memory.

Action: Initialize palimpsest parser
Stack:
Effect: Working memory is that of FIGURE B.l.
Action: Shift fuel. Element class FUEL contains at least item l3
Stack: fuel
Effect: N one
Action: Fire production remove_fuel
Stack: <rem ove fuel>
Effect: A fuel item (e.g., iteml3) is removed from working memory
Action: Shift fuel. Element class FUEL contains item l
Stack: <remove_fuel> fuel
Effect: N one
Action: Fire production remove_fuel
Stack: <remove_fuel> <remove_fuel>
Effect: A fuel item (e.g., iteml) is removed from working memory
Action: Reduce by <remove_allfuel> e
Stack: <remove_fuel> <remove_fuel> <remove_all_fuel>
Effect: N one
Action: Reduce by <remove_all_fuel> -» <remove_fuel> ...
Stack: crem ove fuel> <remove all fuel>
Effect: N one
Action: Reduce by <remove_all_fuel> -» <remove_fuel> ...
Stack: crem ove all fuel>
Effect: N one

163

Action: Shift not_food
Stack: <remove_all_fuel> not_food
Effect: N one___
Action: Fire production add_food
Stack: <remove_alLfuel> <add_food>
Effect: A food item is added to working memory (e.gv item l5)___________
Action: Reduce by <add_one_food> -» <add_food>
Stack: <remove_all_fuel> <add_one_food>
Effect: N one___
Action: Reduce by <check_load> -» e
Stack: <remove_all_fuel> <add_one_food> <check_load>
Effect: A dd a working memory element from element class swapped
Action: Reduce by <checkJoad> -> e
Stack: <remove_all_fuel> <add_one_food> <check_load>
Effect: A dd a working memory element from element class swapped
Action: Reduce by <loadJoop> -» e
Stack: <remove_all_fuel> <add_one_food> <check_load> <load_loop>
Effect: N one___
Action: Shift swapped. Element class SWAPPED contains one element
Stack: ... <check_load> swapped
Effect: N one___
Action: Reduce by <check_al> -» swapped
Stack: ... <check_load> <check_al>
Effect: N one___
Action: Shift anyitem. Element class ANYITEM contains at least iteml
Stack: ... <check_load> <check_al> anyitem
Effect: N one___
Action: Shift notjopenbay
Stack: ... <check_load> <check_al> anyitem not_openbay
Effect: N one___
Action: Shift closedbay. Element class CLOSEDBAY contains at least bayl
Stack: ... <check_load> <check_al> anyitem notjopenbay closedbay
Effect: N one__
Action: Fire production open_new_bay
Stack: ... <check_load> <check_al> <open_new_bay>
Effect: The open attribute of bayl becomes true, bayl becomes an openbay
Action: Reduce by <open> -» <open_new_bay>
Stack: ... <check_load> <check_al> <open>
Effect: N one__
Action: Shift largeitem. Element class LARGEITEM contains at least iteml
Stack: ... <check_al> <open> largeitem
Effect: N one

Action: Shift openbay. Element class OPENBAY contains bayl
Stack: ... <check_al> <open> largeitem openbay
Effect: N o n e

164

Action: Shift n o tjte m
Stack: ... <check_al> <open> largeitem openbay not_item
Effect: N o n e __
Action: A ttem pt to fire load_large_item. N o large item fits. Backtrack and
reduce by <load_big> e
Stack: ... <check_al> <open> <load_big>
Effect: N o n e __
Action: Shift meditem. Element class MEDITEM contains at least item7
Stack: ... <check_al> <open> <load_big> meditem
Effect: N o n e __
Action: Shift openbay. Element class OPENBAY contains bayl
Stack: ... <check_al> <open> <load_big> meditem openbay
Effect: N o n e __
Action: Shift n o tjte m
Stack: ... <check_al> <open> <load_big> meditem openbay not_item
Effect: N o n e
Action: Fire production lo a d jm e d jte m .
Stack: ... <check_al> <open> <load_big> <load_med_item>
Effect: in jb a y of itemS is set to bayl and space of bayl is reduced by 39

and so on...

/

165

VITA

Louis Paul Slothouber

Born in Arlington, Virginia, May 8, 1961. Graduated from Osbourn Park
Senior High School in Manassas, Virginia, June 1979. B.S., College of William
and Mary, 1983. M.S., College of William and Mary, 1987. Ph.D., Computer
Science, College of William and Mary, 1989.

Since September, 1988, the author has been employed as an Assistant
Professor in the Department of Computer Science, University of Houston.

Research interests include production systems, problem representation,
knowledge representation, and natural language processing.

	Adaptation of LR parsing to production system interpretation
	Recommended Citation

	00001.tif

