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ABSTRACT

This thesis presents such a new production system architecture, called a
palimpsest parser, that adapts LR parsing technology to the process of con-
trolled production system interpretation. Two unique characteristics of this
architecture facilitate the construction and execution of large production
systems: the rate at which productions fire is independent of production sys-
tem size, and the the modularity inherent in production systems is preserved
and enhanced. In addition, individual productions may be evaluated in
either a forward or backward direction, production systems can be integrated
with other production systems and procedural programs, and production
system modules can be compiled into libraries and used by other production
systems.

Controlled production systems are compiled into palimpsest parsers as
follows. Initially, the palimpsest transformation is applied to all productions
to transform them into context-free grammar rules with associated disam-
biguation predicates and semantics. This grammar and the control grammar
are then concatenated and compiled into modified LR(0) parse tables using
conventional parser generation techniques. The resulting parse tables, disam-
biguation predicates, and semantics, in conjunction with a modified LR(0)
parsing algorithm, constitute a palimpsest parser. When executed, this
palimpsest parser correctly interprets the original controlled production sys-
tem. Moreover, on any given cycle, the palimpsest parser only attempts to in-
stantiate those productions that are allowed to fire by the control language
grammar. Tests conducted with simulated production systems have consis-
tently exhibited firing rates in excess of 1000 productions per second on a con-
ventional minicomputer.

xii




Adaptation of LR Parsing to Production System
Interpretation



1. Introduction

In recent years production systems have proven to be valuable artificial
intelligence tools for representing and applying domain specific knowledge;
yet, many characteristics of current production system architectures make
large production systems impractical. For example, the rate of production
firing is dependent upon production system size; big production systems
execute slower than smaller ones. Also, specifying and imposing procedural
control via conflict resolution destroys the modularity inherent in produc-
tion systems. This thesis presents a new production system architecture, based
upon the theory of LR parsing, that facilitates the construction and execution
of large production systems. '

1.1. Introduction to Production Systems

The production system was introduced in 1943 by Post! as a general com-
putational mechanism equivalent to Universal Turing Machines2. Since then
the production system has been adapted and applied to numerous problems
throughout computer science. Markov algorithms3, the Floyd-Evans produc-
tion language* and modern context-free grammarsd are all adaptations of Post
production systems. More recently, production systems have been adapted to
the task of representing and applying domain specific knowledge in a manner
which models human cognitive processes, so-called rule-based expert sys-
tems. Such production systems bear little resemblance to Post production
systems. This section presents a brief introduction to these modern
production systems and related terminology.

Post, 1943.

Aho and Ullman, 1972, p. 29.
Minsky, 1967, CHAPTER 12.
Floyd, 1961.

Aho and Ullman, 1972,

G WK -



(food type:meat loc:doghouse)
(vehicle type:truck loec:I9)
(animal name:pudwuji species:dog loc:doghouse hungry:true)

(person name: louls age:27 loc:doghouse sex:M)
{(person name:karen age:26 loc:house sex:F)
{concept name: joy type:emotion)

{concept name:blue type:color)

FIGURE 1.1. A Sample Working Memor

1.1.1. Structure

A production system is composed of a finite set of structures called pro-
ductions and a set of data elements called working memory. Each data ele-
ment, called a working memory element, is a string of symbols to which
some meaning is usually ascribed. Most frequently, working memory ele-
ments are understood to represent objectsé where each consists of values as-
signed to the attributes of that object. All working memory elements that
describe objects of the same type or category have the same attributes?. For
example, the working memory elements described in FIGURE 1.1 represent
seven objects: a food item, a truck, a dog, two people, and two concepts. Each
working memory element is denoted by a category followed by one or more
attributes (boldface) with their associated values.

A production is composed of a name, a condition that tests the state of
working memory, the symbol =, and an action that modifies the state of
working memory. For example, the sample production of FIGURE 1.2, called
feed-a-dog, contains the condition:

(food type=meat)
(animal species=dog loc=fl.loc hungry=true)
NOT (animal size>#2.size loc=i#l.loc hungry=true)

6  The term object is used here to represent a person or thing to which action or thought is
directed.

In the literature, the term element class is used in place of category. In this thesis, an
element class is a subset of a category (cf. SECTION 4.2).



[ e ——
feed-a-dog:

(food type=meat)

(animal species=dog loc=f#l.loc hungry=true)
NOT (animal size>#2.size loc=#l.loc hungry=true)

CHG (#2, hungry:false)
RDD (cbject type:bone loc:#l.1loc)
REM (#1)

FIGURE 1.2. A Sample Production u

and the action:

CHG (#2, hungry:false)
ADD (cbject type:bone loc:#l.1oc)
REM (#1)

Every condition contains one or more patterns, such as:
(animal species=dog loc=i#l.loc hungry=true)

that defines a subset of some category; in this case animal. For example, this
pattern defines a set that contains the element:

(animal name:pudwuji species:dog loc:doghouse hungry:true)

Patterns preceded by NOT are said to be negative; all other patterns are posi-
tive. A pattern may make direct references to attributes of a working memory
element that matches a positive pattern within the same condition (e.g.,
#1.loc references the loc attribute of a working memory element matching
the first pattern in the condition)8. A condition is satisfied when

1. working memory contains at least one element of every set de-
fined by the positive patterns in the condition, and

2. working memory contains no elements of any set defined by the
negative patterns in the condition.

The sample working memory of FIGURE 1.1 satisfies the condition of the sam-
ple production in FIGURE 1.2, where the working memory elements

8  For reasons beyond the scope of this introduction, the literature uses operational variables,
not direct references, to reference attribute values of other patterns (cf. SECTION 2.1.4).



(food type:meat loc:doghouse)
{animal name:pudwuji species:dog loc:doghouse hungry:true)

are said to match the positive patterns

(food type=meat)
(animal species=dog loc=#l.loc hungry=true)

respectively.

Every action consists of one or more operations that may be applied to
working memory if the corresponding condition is satisfied. These operations
may also contain direct references to the attributes of positive patterns in that
condition. For example, the operation

ADD (object type:bone loc:#l1l.1loc)
adds a new element to working memory,
REM (#1)

removes the working memory element that matches the first pattern in the
condition, and

CHG (#2, hungry:false)

modifies the hungry attribute of the working memory element that matches
the second pattern in the condition.

The sample production feed-a-dog may be read as follows:

If working memory contains:

* q piece of meat, and

* g hungry dog at the same location as the meat,
And if working memory does not contain:

* g bigger, hungry animal at the same location as the meat,
Then:

* agssert that the dog is no longer hungry,
* add a new bone to working memory, and
e remove the meat from working memory.



([feed-a~-dog:
(food type=meat)
(animal species=dog loc=#l.loc hungry=true)
NOT (animal size>#2.size loc=#l.loc hungry=true)
=
CHG (#2, hungry:false)
ADD (object type:bone loc:#l.loc)
REM (#1) 1,
[ (food  type:meat loc:doghouse),
(animal name:pudwuji species:dog loc:doghouse hungry:true),

1) |
FIGURE 1.3. A Sample Instantiation?

1.1.2. Interpretation

An instantiated production, also called an instantiation, consists of a pro-
duction and a list of working memory elements that match the patterns in
that production's condition. It is assumed that no elements of working
memory match the negative patterns in the condition. For the sample
production of FIGURE 1.2 and working memory of FIGURE 1.1, an instantiation
is shown in FIGURE 1.3.

To fire an instantiation10:

1. All direct references in the action of the production are replaced
with the corresponding elements and attribute values from the
working memory elements of the instantiation.

2. The operations of the production's action are performed
sequentially on working memory.

For the sample instantiation of FIGURE 1.3, step (1) would instantiate the
direct references in the production's action to

2 The - is used in place of the third working memory element because the corresponding
third pattern is negative, and matches no working memory elements.

10 Throughout the literature, the term fire is often applied to productions (i.e., instantiated
productions), in which case a set of matching working memory elements is assumed to exist.



CHG [ (animal name:pudwuji species:dog ...), hungry:false]
ADD (object type:bone loc:doghouse)
REM [ (food type:imeat loc:doghouse) ]

and step (2) would first change the working memory element

(animal name:pudwujli species:dog loc:doghouse hungry:true)
into

(animal name:pudwuli species:dog loc:doghouse hungry:false)
and then add the element

(object type:bone loc:doghouse)
to working memory, and finally remove the element

(focd type:meat loc:deghouse)
from working memory.

The interpretation of a production system is commonly defined by the
following three phases, called the recognize-act cycle:

1. Match Phase: Generate the set of current instan-
tiations, called the conflict set.

2. Conflict Resolution Phase: Choose one instantiation from the
conflict set, or halt if the conflict set

is empty.
3. Act Phase: Fire the chosen instantiation.
These three steps are repeated, in order, until no more instantiations can be
found, or a halt operation is performed.

1.1.3. Procedural Control

In the procedural languages, such as Pascal or Ada, flow of control infor-
mation is unambiguously specified. Such procedural control is not found in
production systems, where each production is supposed to be an independent
module. Ideally, the order in which productions are fired depends entirely
upon the contents of working memory; no production directly calls another
production. This lack of procedural control allows production systems to ex-
hibit two very desirable properties:



1. Production systems can react quickly to small changes in the data
without explicitly describing how to search for those changes.

2. Production systems are highly modularll, a property that
enhances their extensibility, flexibility, and programmability.

Unfortunately, most problem domains are not ideal, and some method of
controlling the order of production invocation is necessary. For example, the
efficient search of a large problem space may require that more promising
productions be applied before less promising productions are applied. Many
control constructs, such as sequencing, subroutining, and iteration, are
considered essential for most artificial intelligence applications!2.

The conflict resolution phase, by choosing an instantiation to fire on each
cycle, determines the order in which productions fire. Most conventional
production system architectures take advantage of this property of conflict
resolution to impose procedural control3:.14, A conflict resolution strategy
(i.e., an algorithm for choosing an instantiation) is specified along with every
production system. The production system can then exploit knowledge about
that strategy by creating and referencing new “bookkeeping” working memory
elements. For example, suppose it is necessary for production B in FIGURE 1.4
to fire immediately after production A. If the conflict resolution strategy
chooses the instantiation containing the newest working memory element,
then productions A and B can be modified as in FIGURE 1.5 to achieve this
ordering.

1.1.4. Production System Programs, Languages and Architectures

There is a clear distinction between programs (e.g., a word processor),
programming languages (e.g., Pascal), and runtime architectures (e.g.,
activation stack and heap). There is a similar distinction between production
systems, production system languages, and production system architectures.

11 Georgeff, 1982, pp. 178-180.
12 Rychener, 1977.

13 ibid.

14 McDermott and Forgy, 1978.



(jk1 name=tl color#blue)
(mno name=t2 size=7 weight<39)

ADD (abc name:t3 height:#l.length color:green)

{abc name=t3 color=green)

(def name=t4 weight>75 shape=square)
=

ADD (ghi name:t5 space:#l.volume density:0.4)

FIGURE 1.4. Unordered Productions

Al
(jk1 name=tl colorzblue)
(mno name=t2 size=7 weight<39)

ADD (abc name:t3 height:#l.length color:green)
ADD (tag next:prod B}

B':
(tag next=prod B)
(abc name=i3 c¢olor=green)
(def name=t4 weight>75 shape=square)

ADD (ghi name:t5 space:#l.volume density:0.4)
REM (#1)

FIGURE 1.5. Seguential Productions

Production systems are programs; they process information, albeit differently
than procedural language programs. A production system language is a syntax
definition with associated semantics in which production system programs
are written. A production system architecture is a general runtime
architecture capable of interpreting production systems. A production system
interpreter is an implementation of a production system architecture that has



9

been tailored for use with a specific production system language and target
machine.

More detailed introductions to production systems may be found in
CHAPTER 2 and elsewherel516,

1.2. Problems and Related Work

Production system architectures have always had two fundamental prob-
lems: execution speed is dependent upon production system size, and impos-
ing procedural control on productions is difficult. The ever increasing sizes of
real production systems have exacerbated these problems, and motivated
much of production system research. This section describes such research, and
suggests that existing architectures and control methodologies are inadequate
when applied to large production systems.

1.2.1. The Execution Speed Problem

Production systems are slow. In general, large production systems execute
more slowly than smaller ones, even if most of their productions are never
usedl?. This is quite unlike a procedural programming language such as
Pascal or Ada, for which the time required to perform a statement is inde-
pendent of the total number of statements in the program.

To understand this dependence of speed upon size one must look closely
at the process of production system interpretation. Let CT be the number of
positive patterns and C; be the number of negative patterns in a production
number i, and consider the simple implementation of the match phase in
FIGURE 1.6. If a production system contains P productions, working memory
contains W elements, and the average number of positive and negative
patterns in all the conditions are C* and C~ respectively, then this

15 Davis and King, 1976.
16 Waterman and Hayes-Roth, 1978.
17 Forgy, 1979.



Foreach production i:
Foreach working memory element w; that may match the 15t positive pattern:

Foreach working memory element w, that may match the ond positive pattern:

Foreach working memory element wp that may match the C':'th positive pattern:

If w, matches the 15t positive pattern and
w, matches the 2nd positive pattern and

wp matches the C':'th positive pattern Then

satisfied := trues
Else
satisfied := false;

index = C';;
While (index < C} + C]) and satisfied Do
index := index + 1;
Foreach working memory element windox that may match the (index - (1"'{)th {
negative pattern:
If windex matches the (index - C:' )th pattern Then

satisfied := false;
Endwhile;
If satisfied Then

2Ad (1, {wyr Wor wq)] to the conflict set.

FIGURE 1.6. Simple Implementation of the Match Phase

4
implementation of the match phase requires at least PPW®  evaluations!8 of
the first, positive if test and P* W+*C™ evaluations of the second, negative if
test on every recognize-act cycle.

For large production systems the computation required by the match
phase easily dominates the computation of the other two phases!9.20. Most
matching algorithms reduce this computation using condition membership
and memory support information to filter out inactive productions and
working memory elements. Condition membership associates with each pat-
tern a running count of the number of working memory elements that par-
tially satisfy it; only productions with partially satisfied positive patterns need
to be examined on each cycle. Memory support indicates for each pattern the

+ +

18 swCi> P'W(Eci /P, Hardy, Littlewood, and Pélya, 1959.
19 Forgy, 1982.

20 Rhyne, 1977.
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subset of working memory that partially matches it; only this subset of work-
ing memory needs to be matched with the pattern. The process of collecting
and maintaining such information while working memory is modified is
called indexing. Various indexing schemes have been implemented?21,22,23
and have demonstrated significant reductions in match phase computation;
but even if complete condition membership and memory support
information is provided, the match algorithm must still iteratively examine
the remaining productions and working memory elements.

The Rete match algorithm?4.25 avoids this extra examination by also
maintaining condition relationship information; that is, information about
which working memory elements satisfy the relationships between patterns
within productions. It translates a production system into a network of rec-
ognizer nodes, each of which tests a particular attribute of a working memory
element. Only those working memory elements that satisfy this test are
passed on to further nodes in the network. For each change to working mem-
ory input to this network, a set of changes to the current conflict set is output.
Because the cost of maintaining condition relationship information is high, it
is assumed that only small changes are made to working memory on each cy-
cle.

It is argued however, that the cost of maintaining condition relationship
information may exceed the cost of recomputing that information, as needed,
on each cycle26. The TREAT algorithm is based upon that assumption??, and
implements full condition membership and memory support filters as in
Rete, but condition relationship is replaced by conflict set support informa-
tion. That is, the conflict set is explicitly retained between recognize-act cycles,
allowing the search for instantiations to be restricted to those that came about
due to the most recent working memory modifications. Empirical tests sug-

21  McDermott, Newell, and Moore, 1978.

22 Rhyne, 1977.

23 Rieger, 1978.

24 Forgy, 1979.

25  Forgy, 1982.

26 McDermott, Newell, and Moore, 1978, p- 160.
27 Miranker, 1987.
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gest that the TREAT algorithm typically outperforms the Rete algorithm?28.
Other, less complex match algorithms have also outperformed the Rete algo-
rithm in specific problem domains?9.

The best and worst case time complexities of the Rete algorithm with re-
spect to the number of productions P are O(log,P) and O(P), respectively; and,
it is expected that most production systems will be O(P)30. In absolute terms,
one of the fastest production system languages to use the Rete algorithm,
OPS8331, might be expected to fire from 25 to 50 productions per second for a
large production system with a large working memory, such as R132.33,
Newer matching algorithms may be slightly faster by a small constant factor;
but even in the best case, execution speed is still dependent upon production
system size. This dependency effectively limits the size of practical production
systems using these matching algorithms. Conventional wisdom suggests
that “substantial further increases [in execution speed] are not likely through
software techniques”34 and most current research in efficient production sys-
tem interpretation investigates the use of parallel hardware support for
production system interpreters35.36:37,

1.2.2. The Procedural Control Problem

Production systems are naturally free from procedural control; no
production can directly call another. Yet, a clear and efficient production
system solution in most problem domains requires some procedural
control38. As the sizes of real production systems have grown, so too has the

28 Miranker, 1987.

29 Nuutila, Kuusela, Tamminen, Veilahti, Arkko, and Bouteldja, 1987.
30 Forgy, 1979, p. 106.

31 Forgy, Gupta, Newell, and Wedig, 1984, p. 117.
32 McDermott, 1980.

33 Forgy, Gupta, Newell, and Wedig, 1984, p. 117.
34 Forgy, Gupta, Newell, and Wedig, 1984, p.116.
35 Forgy, Gupta, Newell, and Wedig, 1984.

36 Forgy, Gupta, Newell, and Wedig, 1986.

37 §iolfo and Shaw, 1982.

38  Rychener, 1979.
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need for a control methodology that allows procedural control to be clearly
specified and efficiently imposed.

Many production system languages do not allow procedural control to be
explicitly specified; the order in which productions are fired is pre-determined
by the production system architecture. Such architectures are typically
backward-chaining3? (e.g., MYCIN4041, EXPERT42, and KAS43) and backtrack
to fire all instantiations in conflict sets. Also, PROLOG#4 can be viewed as a
backward-chaining production system language in which procedural control
is prescribed by the AND/OR tree defined by the productions.

Most forward-chaining production system architectures support a more
flexible procedural control methodology in which bookkeeping working
memory elements are used to exploit knowledge of a conflict resolution
strategy (e.g., OPS54°, YAP546 and CLIPS47). Some systems augment this
methodology by filtering out some productions, prior to the match process,
that cannot match control-related working memory elements (e.g.,
GRAPES48). An even more flexible control methodology involves the use of
meta-level productions or algorithms to dynamically modify the conflict
resolution strategy49.50 (e.g., TEIRESIAS®], and OPS83°2).

39 Backward-chaining, also called goal-driven evaluation attempts to satisfy a goal

production by examining the actions of other productions to find one that, if fired, will
help to instantiate the goal production.

40  Shortliffe, 1976.

41  Buchanan and Shortliffe, 1984.
42 Weiss and Kulikowski, 1981,

43 Duda, Gaschnig, and Hart, 1979.
44 Clocksin and Mellish, 1982.

45  Brownston, Farrell, Kant, and Martin, 1985.
46  Allen, 1982.

47 Giarratano, 1988.

48  gauers and Farrell, 1982.

49 Davis and Buchanan, 1977.

50 Davis, 1980.

31 Davis, 1976.

52 Forgy, 1984. Note, OPS83 uses a meta-level procedural program to perform dynamic
conflict resolution, not meta-level productions.
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An unfortunate side-effect of conflict resolution based contro! method-
ologies is the destruction of the modularity inherent in production systems>3.
Because control knowledge is embedded within productions, adding or re-
moving a production requires knowledge of the contents of all other produc-
tions. This situation can be alleviated somewhat with the use of working
memory elements that specify goals or contexts; only productions applicable
in some current context can be applied®4. Some production system architec-
tures can exploit such production grouping to reduce the computation of the
match phase55, Also, it is argued that such grouping facilitates the design and
maintenance of production systems56:57,

Although most production system languages neither require nor enforce
such grouping, some do provide facilities that allow grouping control
information to be specified outside of productions58. That is, the assignment
of productions to specific groups or rule-sets, and the order in which rule-sets
are to be applied, are both specified separately from the productions. Regard-
less of the grouping method, other control constructs, such as iteration and
subroutining, must still be implemented using methodologies based on
conflict resolution.

Another approach, which is both formal and general, explicitly specifies
all procedural control for a production system with a separate control lan-
guaged0, where the primitive symbols of that language are production names.
The strings of production names in this language explicitly define the allow-
able sequences of production firings. On any cycle, the control language de-
fines the set of productions that are allowed to fire. Further, meta-level pro-
ductions with empty actions are introduced to allow dynamic selection of
control paths (i.e., production sequences) from among those specified by the

53 Georgeff, 1982, pp. 178-180.
o4 Rychener, 1979.

S5 Forgy, 1979, p. 101-102.

56 Jacob and Froscher, 1986.
57 Jacob and Froscher, 1985.
58  Barker and O'Connor, 1989.
59 Rychener, 1979.

60 Georgeff, 1982.
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control language. Control information specified in this way can be used to
impose procedural control by modifying the recognize-act cycle as follows:

0. Find the subset of productions specified by the control language.
Find all instantiations for this subset of productions.

2. Choose an instantiation. If none exists, halt.

3. Fire the chosen instantiation, and return to step (0).

—t

Production systems employing this approach, called controlled production
systems, allow entire plans, or sequences of productions, to be treated as
modules. Also, by separating control information from production informa-
tion the modularity inherent in production systems is retained$!l, and pro-
duction systems may be more easily constructed, verified, and modified62.

Although this approach seems well suited to the task of specifying control
for large production systems, the more efficient and complex matching
algorithms were not designed with controlled production systems in mind.
As the modified recognize-act cycle above suggests, a control language could
be used to pre-index allowable productions for both the simplistic and index-
ing match algorithms. However, any decrease in the computational cost of
the match would be offset by the cost of computing the allowed productions
specified by a control language grammar, and the use of a relatively inefficient
matching algorithm.

This type of pre-indexing also appears to be impractical with the Rete and
TREAT match algorithms., Within Rete and TREAT networks, nodes are of-
ten shared by many patterns from many productions. Isolating and de-acti-
vating the nodes for an arbitrary set of productions seems prohibitively diffi-
cult. While instantiations containing productions that are not specified by the
control language could be removed from the conflict set prior to the conflict
resolution phase, this additional computation does nothing to decrease the
workload of the match phase, and would increase the computational cost of
interpreting production systems.

61 Georgeff, 1982.
62  Kowalski, 1979.
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1.3. Thesis Overview

1.3.1. Architectural Requirements of Large Production Systems

Modularity is generally recognized as the only guideline available for
mastering the complexity of design and implementation of large and complex
programs63. The term modularity here implies both hierarchical structure,
the ability to construct large modules from smaller ones, and independence,
the ability to understand and implement modules independently of one
another. It might seem that production systems, in which each production is
an independent module, are ideally suited to programming in the large.
However, most existing production system architectures rely, to a greater or
lesser extent, upon conflict resolution to provide procedural control, and de-
stroy this production independence. Also, with the exception of controlled
production systems, no existing production system architecture supports hi-
erarchically structured modules.

In addition to supporting modularity, large production systems require
that an architecture fires productions at a rate that is independent of the total
number of productions. Any dependence of speed upon size effectively limits
the size of useful production systems. Unfortunately, the speeds of matching
algorithms appear to be intrinsically dependent upon the number of
productions being matched. One resolution to this apparent conundrum is
provided by controlled production systems, in which separate procedural
control information can be used to group productions into hierarchically
structured modules. In such systems, only a small number of productions are
“allowed” to fire on any given cycle, namely, those productions in the
currently executing moduleé4. Because each module should realize a single
and simple conceptual function of the system, module sizes are automatically
restricted as a by-product of the design process65. By using control information

- -

63  Ghezzi and Jazayeri, 1982, p. 29.

In practice, control is often imposed within the modules as well, and the number of
productions that are allowed to fire on any cycle is further reduced.

65  Ghezzi and Jazayeri, 1982, p. 29.
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to direct and constrain the matching algorithm the rate of production firing is
bounded by a constant related to the maximum module size®6.

For large production systems, modularity is the most important issue in
the design of production system languages and the architectures that support
them. A language enforces modularity so that the complexity of large
production systems can be managed. An architecture supports that modu-
larity to efficiently interpret those production systems.

1.3.2. The Palimpsest Production System Architecture

As described above, controlled production systems maintain production
modularity and allow the specification of hierarchical production modules.
Unfortunately, the faststest production system architectures in use today are.
incompatible with this control methodology. The goal of this work has been
to develop a new production system architecture that uses the control lan-
guage of a controlled production system to direct the search for instantiations.
Such an architecture could support new production system languages that
facilitate the design and construction of large production systems.

This thesis presents a new production system architecture, called a
palimpsest parser8”, that adapts LR parsing technology to the process of
controlled production system interpretation. LR parsers were chosen as the
basic program structure for three reasons. First, LR parsers have four desirable
properties; they are fast, well understood, have a self-introspective capability,
and can be automatically generated from context-free grammarst8. Second,
given an LR parser generated from a control language grammar and a string

66 Note, this is only true if the architecture actually uses the control information to constrain

the search for instantiations. The firing rate of an architecture that searches for all
instantiations and then removes those that are not allowed to fire is still dependent upon
the total number of productions. The hierarchical structure aspect of modularity is an ar-
chitectural issue, and a language issue.

A palimpsest is a written document, typically on vellum or parchment, that has been
written upon several times, often with the remnants of earlier, imperfectly erased writing
still visible. Similarly, a palimpsest parser is a program that has been derived, in stages,
from other program representations (i.e., first a controlled production system and then an
augmented grammar), with remnants of those earlier program representations still visible.
68 Feyock, 1984.

67
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of the names of productions that have already fired, the set of productions
that are allowed to fire next can be easily determined. Third, LR parsers have
been successfully used to implement small, backward chaining,
propositional®? expert systems?0.

Controlled production systems are compiled into palimpsest parsers as
follows. Initially, the palimpsest transformation is applied to all productions
to transform them into context-free grammar rules with associated disam-
biguation predicates and semantics. This grammar and the control grammar
are then concatenated and compiled into modified LR(0) parse tables using
conventional parser generation techniques. The resulting parse tables, disam-
biguation predicates, and semantics, in conjunction with a backiracking LR(0)
parsing algorithm, constitute a palimpsest parser. When executed, this
palimpsest parser correctly interprets the original controlled production
system. Moreover, on any given cycle, the palimpsest parser only attempts to
instantiate those productions that are allowed to fire by the control language
grammar. Tests of simulated production systems’! have consistently
exhibited firing rates in excess of 1000 productions per second on a
conventional minicomputer.

Additional features of the palimpsest parser production system
architecture include’2,73;

* Individual productions and production modules may be evalu-
ated in either a forward, backward, or bi-directional manner.

* Separately compiled production system units, similar to Ada
packages, may be constructed.

* Palimpsest parsers are self-contained and can be integrated with,
procedural language programs.

69  The term propositional is used here to imply that patterns consist of simple tokens without

variables.

70 Collins and Feyock, 1985.

71  Simulated production systems had the following characteristics: 200 productions, 500
working memory elements, an average of 3 patterns and 3 actions per production.

72 Collins and Slothouber, 1988.

73 cf. Section 6.1.2.
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This thesis describes a production system architecture, not a production
system language, but languages and architectures are related. An architecture
essentially defines the semantic capabilities of the languages it supports. In
this sense, all languages for a given architecture will be somewhat similar.
Presentation of the palimpsest production system architecture is more formal
than is usually the case in the literature in order to emphasize the new ideas
underlying this architecture rather than any specific implementation or
production system language. However, to illusirate these ideas example
productions and working memory elements are presented using a simple
production system language. This language is arbitrary, and should not be
confused with the underlying architecture.

1.3.3. Thesis Organization

CHAPTER 2 begins by contrasting modern production systems with Post
production systems. More formal definitions of the structure, interpretation,
and control of production systems are then presented. The chapter concludes
by proving the equivalence of this production system formalism and deter-
ministic Turing machines. This proof and formal description of production
systems is original to this thesis.

Although the theory of LR parsing has been formally defined, many of
the features found in modern machine-generated LR parsers have not been
integrated into these definitions. CHAPTER 3 extends the definitions of LR(0)
parsing to include these new features.

CHAPTER 4 begins with an informal explanation of the adaptation of LR
parsing to the process of controlled production system interpreation. Formal
definitions of palimpsest parsers and related concepts are then presented. The
palimpsest transformation is introduced and proven to be applicable to all
controlled production systems. The chapter concludes by proving that for
every deterministic Turing machine there exists an equivalent palimpsest
parser. The material in this chapter is original to this thesis.
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CHAPTER 5 presents the time and space cost calculations for palimpsest
parsers. Results of tests on simulated production systems are then presented
to support these theoretical costs.

CHAPTER 6 describes, some additional features of palimpsest parsers. Ideas
for future research related to palimpsest parsers are presented.

CHAPTER 7 concludes the thesis.

Appendix A defines the notation used throughout the thesis. Some of
this notation is non-standard. The reader is advised to peruse this appendix
before reading the following chapters. Also, notation defined within a def-
inition is often taken for granted thereafter. When in doubt, refer to
Appendix A.

Appendix B presents a complete production system example. First, the
problem to be solved is specified. A top-down design of the solution is then
presented that uses control constraints to divide the problem into manageable
subproblems. The palimpsest transformation is then applied to the resulting
controlled production system to produce a palimpsest parser. Finally, a trace
of the execution of that palimpsest parser is presented.



2. Production Systems

This chapter provides an introduction to production systems and related
concepts. The first section informally describes Post production systems and
various additional features found in most conventional production system
architectures. The second section presents more formal definitions of the
structure, interpretation, and control of production systems. The final section
addresses the scope of controlled production systems. In particular, their
equivalence to Turing machines is demonstrated.

2.1. Introduction to Production Systems

This section describes Post production systems and various additional
features common to most conventional production system architectures. The
purpose of this section is to give the reader some understanding of basic
production system concepts before formal definitions are presented in
SECTION 2.2,

2.1.1. Post Production Systems

A Post production system (PPS) is composed of a set of data elements
called working memory, and a set of productions that modify working mem-
ory. Let X be a finite set of primitive symbols. Elements of £+, the set of non-
empty strings of primitive symbols, are called working memory elements’4.
Working memory is a subset of Z*. There is also a set ¥ of variables, where
Z NY is empty. Productions are formed from strings in (Z U ¥)*. In particu-
lar, a production is of the form

ab ..c produce d

74 Working memory elements are called enunciations by Post.

21
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where a4, b, ..., ¢, and 4 are strings in (£ U ¥)*. The strings a, b, ..., ¢ are called
patterns.

Such productions are interpreted as follows. If each pattern 4, b, ... ,cin a
production can be pattern matched with an element in working memory,
such that variables in the pattern are identified consistently throughout the
production with strings in Z*, then 4, with identical variable replacements, is
added to working memory. The interpretation of a PPS applies this process
non-deterministically for all productions in the PPS until no more new ele-
ments may be added to working memory.

EXAMPLE 2.1
An interpretation of the PPS defined by the three productions

aXb bXb produce cXb
aYb bYc produce aYc
YXY produce XYX

where Z = {g, b, ¢} and ¥ = (X, Y}, and the working memory
{aaa, bbb, ccc, abb, bbc, cac}

adds the elements cbb, abc, and aca to working memory. 0

PPSs have proven to be a valuable problem solving tool in many problem
domains; two examples are: language specification and knowledge represen-
tation. An example of each follows.

EXAMPLE 2.2
Consider a PPS G in which the primitive symbols are divided into a set of
non-terminal symbols N €Z, and a set of terminal symbols % ~ N. If all
productions are of the form

UAV produce UxV
where {U, V} are the variables of G, A € N, x € Z*, and working memory

is initially {S}, where S € N, then G is called a context-free grammar.
Those working memory elements derived by the productions in G that
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contain only terminal symbols comprise the language L(G). In this way, a
PPS can specify a language L(G)75.0

EXAMPLE 2.3
Consider a PPS with primitive symbols {man, mortal, is, tom, john},
variables {X}, and the following production.

X isman produce X is mortal
Given the initial working memory
{john is man, tom is man}

then the interpretation of this PPS derives the elements john is mortal,
and tom is mortal. The single production X is man produce X is mortal
represents the knowledge that “All men are mortal.” In this way, PPSs
may represent knowledge, and apply this knowledge to the facts or
assertions represented by working memory elements. O

Conventionally, the term production system is most commonly associ-
ated with knowledge-based expert systems, or psychological modelling appli-
cations76. Such production systems seldom resemble PPSs77,78,79,80, To facili-
tate the writing of practical production systems, numerous additional features
or “extensions” to the PPS formalism are commonly provided by conven-
tional préquction system architectures. The following six sections describe
these features.

2.1.2. Categories and Attributes

In a PPS, working memory elements are arbitrary strings of symbols. In
current production systems, however, working memory elements are usually
understood to represent objects, where substrings describe attributes of those
objects. For example, a working memory element

75 Brainerd and Landweber, 1974, pp. 159-161.
76 Davis and King, 1977.

77 ibid.

78  Forgy, 1982.

79 Waterman and Hayes-Roth, 1978.

80 Stefik, ef al., 1978.
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exprl + exprZ expr3
may logically represent an arithmetic expression with four atiributes:

an expression name with a value of exprl,
an arithmetic operator with a value of +,

a left operand with a value of expr2, and

a right operand with a value of expr3.

oW

For clarity, current production systems might represent such a working
memory element by

(name:exprl op:+ left:expr?2 right:expr3)

where exprl, +, expr2, and expr3 are the attribute values associated with the
attributes name, op, left, and right.

Working memory elements that describe objects of the same type belong
to the same category and have the same attributes. Because working memory
elements belonging to different categories may also have the same attributes,
a category name is usually placed at the beginning of each working memory
element to avoid confusion8l. For example, although the working memory
elements

(arth expr name:exprl op:+ left:expr2 right:iexpr3)
(bool expr name:exprd op:# left:expr5 right:expro6)

contain the the same set of attributes, they describe different types of objects:
arithmetic expressions, and boolean expressions; hence, the categories
arth_expr and bool_expr at the beginning of each working memory element.

This change to the logical form of working memory elements requires a
corresponding change to the form of the patterns that describe them. For ex-
ample, the patterns

(arth expr name=exprl op=+ left=exprZ right=expr3)
(bool_expr name=exprd op=# left=exprS right=expro}

81 A working memory element may be thought of as a Pascal record, where the category
corresponds to the type of the record, attributes correspond to fields in the record.
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consist of a category followed by predicates (e.g. name=expr1)82. Each predicate
contains the name of at least one attribute and defines the allowed values for
that attribute. For example, the pattern g

(arth expr name=exprl op=+ left=right)

describes working memory elements from the arth_expr category that have a
name attribute value equal to exprl, an op attribute value equal to +, and
equivalent left and right attribute values. Notice that these patterns do not
contain variables. The use of variables is discussed below in SECTION 2.1.4.
Additionally, not all attributes need to be represented in a pattern. For
example, the pattern

(arth expr left=expr2 right=expr3)

describes any working memory element from the arth_expr category with a
left attribute value of expr2 and a right attribute value of expr3. All other at-
tribute values are ignored. When a pattern contains only a category and no
predicates, such as

(arth expr)

then it describes all working memory elements belonging to that category.

2.1.3. Additional Predicates

The patterns in PPS productions implicitly contain predicates that test
strings for equality. For example, consider a PPS working memory element
abc, where a, b, and c represent strings in X*. An arbitrary PPS pattern pXgq
where p and g represent strings in Z* and X is a variable, will describe abc if
and only if X may be instantiated to a string in Z* such that

p=a)AX=b)A(g=c)
That is, each PPS pattern implicitly contains an equality predicate for each

string or variable. Hence, the use of “=" instead of colons in the patterns of
the previous section. Most conventional production system architectures al-

82 A predicate is a function that returns a value of frue or false.
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low patterns to contain other predicates besides “=,” such as “#,” “<,” “>,” “</”
and “2.” For example,

(arth expr name2exprl op=+ left<0 right=0)
(bcol expr namezexpr() op==2 substring(left, right))

may represent valid patterns, where relational operators (e.g., =, #, >, 2, <, and
<) are represented by infix notation, and other predicates are represented in
prefix notation (e.g., substring(left, right) ). Notice that these patterns do not
contain variables. The use of variables is discussed in the next section.

2.1.4. Operational Variables and Direct References

PPS productions may contain operational variables that are to be consis-
tently instantiated to strings in Z*. Such variables are used within a produc-
tion for any of the following purposes.

1. To compare a substring (i.e., an attribute value) of one working
memory element with a substring of another.

2. To compare two different substrings within the same working
memory element.

3. To copy a substring from one working memory element into a
newly created element.

Most conventional production system architectures also use variables to per-
form these tasks. FIGURE 2.1(a) contains a typical production using operational
variables. However, care must be exercised to insure that every variable in a
production is referred to by at least one equality predicate (e.g., name = F) in
that production condition. Even more care must be exercised when a produc-
tion condition contains negative patterns (cf. SECTION 2.1.5).

To avoid potential problems and confusion, example productions in this
thesis use direct references in place of variables. For example, FIGURE 2.1(b)
contains a production, identical to that of FIGURE 2.1(a), that uses direct refer-
ences.

Direct references (e.g., #1.loc, #1.name, and #2.name) refer to the at-
tributes of working memory elements described by the patterns in the pro
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sample:
{food namea=p type=bone loc=L)
(animal name=A3a type=dog loc=IL)
NOT (relation type=owns what=F)
=

ADD (relation type:owns who:A what:F)

(a) using operational variables

sample:

(food type=bone)

(animal type=dog loc=i#l.loc)
NOT (relation type=owns what=#l.name)
=

ADD (relation type:owns who:#2.name what:#l.name)

(b) using direct references

FIGURE 2.1. Direct References vs. OEerational Variables ‘l

duction. The ordinal part (e.g., #1, #2, etc.) identifies a working memory

element and the attribute part (e.g., name, loc, etc.) identifies the appropriate
attribute of that element. The working memory elements

(food name:bone34 type:bone loc:doghouse)
(animal name:pudwuiji type:dog loc:doghouse sex:F)

are described by the first and second patterns, respectively, because the loc at-
tribute of the second working memory element is equal to the loc attribute of
the first (i.e., loc=#1.loc). Similarly, the direct reference #2.name in the action
of the production assigns the value pudwuji from the second working mem-
ory element's name attribute to the who attribute of the newly created ele-
ment.

Direct references are used in the thesis in place of operational variables
because:
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* Pro forma, direct references reject dubious comparisons and ille-
gal cross-references between positive and negative patterns (cf.
SECTION 2.1.5) that are possible when operational variables are
used.

¢ It is easy to convert direct references into operational variables. It
is difficult to formally circumscribe operational variables so that
illegal and/or dubious uses are avoided.

¢ The use of operational variables is a very indirect method of re-
ferring to particular attribute values. This suggests that the use of
direct references may improve the clarity of productions.

2.1.5. Negated Patterns

In a PPS production every pattern represents a test for the existence of a
particular kind of element in working memory. However, in practice it is of-
ten necessary to test for the non-existence of such a working memory ele-
ment. Hence, most conventional production system architectures allow pat-
terns to be negated in some way. In this thesis, patterns are negated by pre-
ceding them with the word NOT. Negated patterns are called negative pat-
terns. All other patterns are called positive patterns. Negative patterns must
not describe any elements of working memory if the production which con-
tains them is to be fired. For example, the production in FIGURE 2.1(b) can be
fired only if working memory does not contain an element described by the
pattern83,

(relation type=owns what=#1l.name)

Since a negative pattern describes working memory elements that must
not exist in working memory, then direct references to negated patterns make
no sense. Thus, direct references may only reference positive patterns. This is
not to say that negative patterns cannot contain direct references, only that no
pattern may reference a negative pattern.

83  Technically, a pattern containing direct references makes no sense outside the context of a
production condition since the patterns being referenced are undefined. However, for many
examples the surrounding context is irrelevant to the point of the example, and the pattern
is assumed to exist within the context of a production condition.
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2.1.6. Additional Operations

The action of a PPS production always contains exactly one operation: add
a new element to working memory. In conventional production system ar-
chitectures, a production action may contain many operations. These opera-
tions are not restricted to adding new elements to working memory. Typi-
cally, the modification and removal of working memory elements, and vari-
ous operations which do not affect working memory, such as reading and
writing to an I/O device, are allowed.

In this thesis attention will be restricted to the following two types of op-
erations:

* ADD: add a new element to working memory. The category and
attribute values to assign to the new element are explicitly de-
fined by the parameters of the operation. For example,

ADD (arth expr name:exprl op:+ left:9 right:#l.left)
denotes a valid ADD operation.

* REM: remove an element from working memory. A single
parameter consisting of an ordinal reference to a positive pattern
identifies the working memory element to be removed. For
example,

REM (1)
denotes a valid REM operation.

A third operation is also found in some examples:

* CHG: change one or more attribute values of a working memory
element that matches a positive pattern. The first parameter is
an ordinal reference that references a positive pattern, identify-
ing the element to be changed. The remaining parameters list
the attributes to be changed along with their new values. For ex-
ample,

CHG (#1, left:#2.left+l, right:#2.right+l)
denotes a valid CHG operation.

Since the CHG operation is implemented by combining an ADD and a
REM operation, it will not be discussed further.
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feed-a-dog:

(food type=meat)

(animal species=dog loc=#l.loc hungry=true)
NOT (animal size>#2.size loc=#l.loc hungry=true)
=
ADD (object typetbone loc:#i.loc)

REM (#1)
CHG (#2, hungry:false)

FIGURE 2.2. A Sample Production

Most conventional production system architectures incorporate the pro-
duction extensions of Secs. 2.1.2, 2.1.3, 2.1.5, and 2.1.6; although the actual syn-
tax used varies. The example production of FIGURE 2.2 incorporates all of the
above production extensions.

2.1.7. Determinism

Post production systems are non-deterministic. That is, all search paths
through the problem space defined by a PPS are potentially examined to gen-
erate the solution84. A search path is defined by the sequence of instantiations
fired. To interpret a PPS on a serial machine a strategy must be specified
(called the selection strategy) that determines which one of many
instantiations is fired on each cycle of the interpretation. No invocations are
irrevocable, and via backtracking all other search paths may also be examined.

However, many conventional production system architectures are not
non-deterministic. That is, a single search path is examined, and a single
solution is generated, and no backtracking is performed. For a PPS, all search
paths generate equivalent solutions; but, for production systems that allow
elements to be removed from working memory this may not be so. Fortu-
nately, for many problem domains a single solution is sufficient85.

84 Where a solution is defined as the final state of working memory.
85 cf. SECTION 2.2.2.1,
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2.2. Production System Definitions and Theorems

Previously, many terms related to production systems, such as pattern,
attribute, and condition have been introduced informally. This section de-
fines production systems and related concepts more formally.

2.2.1. Structure

2.2.1.1. Working Memory

A production system is composed in part of a set of working memory
elements called working memory. In practice each working memory element
is understood to represent an object, and consists of a collection of attribute-
value pairs that describe the features of that object. Working memory
elements that describe objects belonging to the same type or category have the
same set of features.

DEFINITIONS

For a given alphabet ®, U € ®* is a working memory element universe,
and elements of U are called working memory elements. Each U is parti-
tioned into finitely many disjoint subsets c®,...,c™, called categories. Each
category C e {CV, ..., C™) is associated with a finite number m of maps
Az, ..., Ay, called attributes that map C into sets Vg, ..., V,,, of values; that is,
A;: C—o V;forie {1, ..., m}, where m, the A;'s, and Vs all depend on C. A
finite set of WS U is called a working memory, [

In these definitions, the categories, attributes, and values are primitive in
that they depend upon the particular application.

To illustrate the relationship between working memory element
universes, categories, and working memories, the following example is
presented.
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EXAMPLE 2.4
Let® ={a,bcdefgh,ijklm,mnopq1stu,v,w,xyz be an alphabet, and
let U= < ®" be a working memory universe. Further, let U be
composed of categories c@, ..., c® wherec® = {abh,inrswn, C? =
{fgm, 2z, Cc@ = (g1, q, u, v}, c® =4, j o, t 1), and C® = {p, k). The
relationships between ®*, U, and C(D, ver C® are shown in the following
diagram86:

abc ) isop

wijd pax

Xxyn

!
!

rr
(1)

(2)
(3)
4)
(5)

nx

O O 0 O 0O

ghijklmnop dik rpo

A working memory is a finite set W < U. One possible working memory,
W = {af,gh,pry}l is shown in the following diagram:

86  Not all members of the set &+ are displayed.
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Notice that W may contain working memory elements from many
different categories, O

The actual form of a working memory element (i.e., a string in U S ®*) is
irrelevant. Any working memory element may be abstracted and treated as a
set of attribute values as in the informal description of the previous section.
A typical working memory element w is denoted by:

(person name:louis age:28 loc:doghouse sex:male)

where person is the category to which w belongs; name, age, loc, and sex are
the attributes for category person; and louis, 28, doghouse, and male are the
values of these attributes. More formally,

person S U and w € person
name : person — Vi, name(w) = louis

age : person — V,, age(w) =28
Ioc  : person — V3, loc(w) = doghouse
sex : person — V4, sex(w) = male

Note that different attributes (from the same or different categories) may map
into the same set of values.

2.2.1.2. Production Memory

In addition to working memory, a production system is also composed of
a set of productions called production memory. Each production is composed
of a condition and an action, which are in turn composed of patterns and op-
erations, respectively.

2.2.1.2.1. Conditions

DEFINITION

A k-predicate p¥, 1 <i<k, maps categories C X ... x Cx € Uk into
{true, false} such that for every predicate 4 mapping categories C7 x ... x Cj1 X
Cis1 X ... X Cy into {true, false} there exist working memory elements wj g,
where wje Cjforj=1,2,..., k such that p:.‘(wl, e WP # g (W1, ..., Wi,
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W41, -+ , Wy). Function p¥ is of the form p(w,, ..., w) = flAy1(wy), ...,
Alml(wl)’ cer s Ak-_,(wk), cee s Akmk(wk)]’ where A7 ... Al'm,' and Vi .. Vim,'
are the associated attributes and value sets of C;, 1<i<k, and

frVirX e X Vi, X oo X Vig X oo X Vi, — (true, false}. O

That is, a k-predicate takes working memory elements from specific
categories as arguments. For example, in FIGURE 2.2, species=dog denotes the
3-predicate p‘% that maps categories food x animal x animal into {true, false}

such that for all wy € food, wy € animal, and w3 € animal, pg(wI, wa, w3) iff
species(ws) = dog.

A conjunction of k-predicates a¥ A b¥ defined on the same domain is also

a k-predicate defined on that domain. For example, in FIGURE 2.2,

(animal species=dog loc=#1l.loc hungry=true)
denotes a 3-predicate pg defined on categories food x animal x animal such
that for all wy € food, wy € animal, and w3z € animal, p:’é(wl, wo, ws) iff
species(wy) = dog A loc(ws) = loc(wq) A hungry(w,) = true.

In practice, the “k-" is often omitted from the term k-predicate when the
value of k is either irrelevant or obvious.

DEFINITIONS

A k-predicate p¥ is said to be dependent on argument j, 1 <j <k, if for
every 4 mapping categories Cg X ... X Cj.7 X Cjy1 X ... X Cy into {true, false} there
exist elements wy g, wherewy € Cyforh =1,2, ..., k, such that pf(wl, e W)
#q Wy, ... , W1, Wjs1, - , Wp)- Otherwise, pllf is said to be independent of
argument j. O

That is, a k-predicate is dependent on argument j, if the value of the k-
predicate is affected by its jt" argument. If the ji" argument cannot affect the
result, then the predicate is independent of argument j. For example, the
3-predicate in FIGURE 2.2 denoted by

(animal species=dog loc=#1l.loc hungry=true)
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is dependent upon arguments 1 and 2, but is independent of argument 3.
Notice that a k-predicate pi’.‘ is, by definition, always dependent upon its ith

argument.

DEFINITIONS

A one-element k-predicate p¥ is dependent on argument j iff j =i. A
many-element k-predicate g is dependent on at least one argument j =1,
1<j<k0

One-element k-predicates test the attribute values of individual working
memory elements (e.g., species = dog); they contain no direct references.
Many-element k-predicates compare attribute values of multiple working
memory elements (e.g., loc = #1.loc); they must contain direct references.

DEFINITIONS

Let pi.c be a k-predicate that is a conjunction of smaller k-predicates. The
conjunction of all one-element k-predicates in pﬁ.‘ is called the one-element
component of pk and is denoted by pF. Similarly, the conjunction of all
many-element k-predicates in p¥ is called the many-element component of
p¥ and is denoted by p¥". O

For example, if

(animal species=dog loc=#l1l.loc hungry=true)

denotes p¥, the 3-predicate from FIGURE 2.3, then

(animal species=dog hungry=true)

denotes pi.", the one-element component of pf, and

(animal loc=#1.loc)

denotes p§", the many-element component of pk.

Notice that any one-element k-predicate pi.‘ has a trivial many-element
component; that is, p¥ = p%' and p4"is a tautology. Similarly, any many-
element k-predicate p{.‘ has a trivial one-element component; that is, pf.‘ = pk"
and p¥' is a tautology.
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LEMMA 2.1

A k-predicate pk(w; §) = p¥'(wy ) A pF'(wy ).

Proof. By definition, a k-predicate is a conjunction of one or more
k-predicates defined on the same domain; pi(wy i) = p§wi ) A ... Apk (w1 ).

The “A” operator is commutative, and the predicates on the RHS of this

expression can appear in any order. Therefore, one can assume that all m one-
element predicates are grouped to the left (le., p, ..., pt), and that all n —m

many-element predicates are grouped to the right (i.e, p k., ..., pk). This
implies that the one-element component p¥'(wy k) = phwy ) A ... Apk (wy )
and the many-element component p¥"(wq i) = p; K ;1) A ... ApE(wy p).
Substituting into the original equation, pf(wy k) = p¥(wy ) A pF"(wy ). O

DEFINITION

A k-predicate p¥ such that both pf' and p¥" are tautologies is called a
vacuous k-predicate. O

In practice, all vacuous k-predicates are ignored.

LEMMA 2.2

For every non-vacuous one-element k-predicate p% defined on some
Cy X ... X Cp S UK there exists a one-element 1-predicate q such that p(wy ) =
qi(w;) for all wy g e Cyx ... X Cp.

Proof. By the definition of a non-vacuous one-element k-predicate, there
must exist such a 41, the projection of p onto C;. 13

For any k-predicate pf, the one-element 1-predicate corresponding to 7F,
as defined in LEMMA 2.1, is denoted by p§l. For example, let p3 be the
3-predicate in FIGURE 2.2, denoted by

(food type=meat)

such that for all wq € food, wy € animal, and w3 € animal, pg(wI, wo, wy) iff
food(wq) = meat. Then, for all w; & food, p%&(wI) iff food(wq) = meat.
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DEFINITIONS

A k-pattern is a pair (s, pk), where s € (+, -} is called the sign, and p¥is a
k-predicate defined on some categories C; x ... X Cy. A k-pattern with a sign of
+ is called positive k-pattern. Similarly, a k-pattern with a sign of — is called a

negative k-pattern. A k-pattern is said to be satisfied by a working memory W
if there exists w1 ;€ (C; N W) x ... x (Cr n W) such that Pi‘(wl,k) = true. O

In practice, the “k-" is often omitted from the term k-pattern when the
value of k is either irrelevant or obvious. In examples, negative patterns are
denoted by k-predicates preceded by the word NOT, such as

NOT (animal size>#2.size loc=f#l.loc hungry=true)

while positive patterns, such as

(animal species=dog loc=#l.loc hungry=true)
are not preceded by the word NOT.

DEFINITIONS

A set of k-patterns, ¢ = {(s1, p§), {s2, P§), ... , {5k, P} is a condition if, for
some Cy x ... xCpe Uk, and foralli=1, ...,k

1. pkisdefined on Cy x ... x C, and .

2. pk is dependent upon argument j implies that j =i or 5j = +.
Condition c is satisfied by working memory W if V(+, pk) € ¢, Jw; ;e Wk
such that p§(wy i) = true, and V{-, p¥) e ¢, Yw; e Cy, pk(wy 1) = false. O

In other words, a condition is a sequence of k-patterns such that all
k-predicates are defined on the same categories, and all direct references refer
to positive patterns in the condition.

For example, the patterns

(food type=meat)
(animal species=dog loc=#l.loc hungry=true)
NOT (animal size>#2.size loc=#l.loc hungry=true)

denote a condition; but, the patterns
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{food type=meat)
(animal species=dog loc=#3.1loc hungry=true)
NOT (animal size>§6.size loc=f#l.loc hungry=true)

do not denote a condition because negative patterns and non-existent patterns
are referenced (e.g., #3.loc and #6.size respectively).
DEFINITION

A satisfying list for a condition is a list of working memory elements wj
for which the k-predicates in the positive patterns of that condition evaluate
to true. The ith working memory element in a satisfying list is said to match
the ith pattern in the corresponding condition. O

For example,

{ (food type:meat loc:doghouse),
(animal name:pudwuji species:dog loc:doghouse hungry:true),
=)
is a satisfying list87 for the following condition from FIGURE 2.2:
(food type=meat)

(animal species=dog loc=i#l.loc hungry=true)
NOT (animal size>#2.size loc=#l.loc hungry=true)

2.2.1.2.2. Actions

In addition to a condition, every production contains an action that
modifies the contents of working memory. Each action is composed of one or
more operations that sequentially perform small modifications to working
memory, such as adding or removing an element.

DEFINITION

An operation is a function 0: C7 x ... x Cg x 24U — 2U. O

87  The “~” symbol instantiation denotes that no working memory element matches the third
pattern.
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That is, given a satisfying list wy ; and a working memory W, an opera-
tion o uses information in wy ; to modify W, and returns the resulting work-

ing memory. This thesis is concerned with only two types of operations: add
and remove.

DEFINITIONS

An operation o is an add operation if o(wy x, W) = W U {w} for some w in
U. Similarly, an operation o is a remove operation if o(wy y, WU w)) = W for
some w e {wy, ..., wt N W.O

As the name implies, an add operation adds a new element to working
memory. For example, an add operation from FIGURE 2.2
ADD (food type:bone loc:#l.locg)

instantiates #1.loc to doghouse, based upon the satisfying list above, and adds
the working memory element denoted by

(object type:bone loc:doghouse)

to working memory. Similarly, a remove operation removes an existing ele-
ment from working memory. The remove operation from FIGURE 2.2

REM (#1)

would remove from working memory the first element in the satisfying list
(i.e., the element that matches the first pattern in the condition):

(food type:meat loc:doghouse)

DEFINITIONS

An action is a function a : C; x ... x Cg x 2 — 2U of the form a(wy g, W) =

Oy (W1 fr Opg-1(W7 s .. 02w g, 07(w7 g, W)) ... )) where 0g, ... , 0, are operations
that map Cy x ... x Gy x2U 52U 0

That is, an action performs a composition of operations on a satisfying list
of working memory elements and a working memory to produce a new
working memory.
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DEFINITIONS

A production on U is a triple {(n, ¢, a) where n is called the production
name, ¢ is a condition defined on domain C; x ... x C, and a is an action

defined on domain Cy x ... x Cy x 2U. The set of all productions on U is
denoted by P(U). A finite set of productions P < P(U) is called a production
memory on U if V{nq, cg, ag),{nz, c3, a3y e P, ny#ny . 0

In practice, n is often used to refer to a production {n, ¢, a). A production
(name, condition, action) is denoted by name : condition = action. A sample
production may be found in FIGURE 2.2.

DEFINITION

A production system (%, W) consists of a production memory P < P(LI)
for some U and a working memory W< U. 0O

In conventional programming terms a production memory P may be
thought of as a program. Similarly, a working memory W may be thought of
as the data input to 7.

DEFINITIONS

An instantiation on (%, W) is a pair {(n, c, a), wq ), where {(n, ¢, a) € P, and
Wik € whis a satisfying list for c. An instantiation is fired by replacing W
with a(wsg 3, W). A set of instantiations on (P, W) is called a conflict set of

(2, W).0

An instantiation describes one way that the patterns in a production con-
dition can be matched with elements of working memory, and contains all
the information necessary for the action of that production to modify work-
ing memory. Instantiations are also called instantiated productions. FIGURE
1.3 denotes a sample instantiation.

Firing an instantiation applies the action of the satisfied production to
working memory. When the term fire references a production, it is intended
that an instantiation of that production is actually being fired.
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2.2.2. Interpretation

Informally, a production system interpreter finds those productions that
have conditions satisfied by working memory, and applies their actions to
working memory. However, the actual interpretation scheme used varies
from one production system architecture to another. The interpretation
scheme, sometimes called the search strategy, consists of the backtracking
strategy, evaluation strategy, and selection strategy used by the interpreter.
Each of these concepts is discussed below.

2.2.2.1. Backtracking Strategy

Post production systems are non-deterministic and may search all paths
of a problem space to find a solution. Backtracking is used to implement non-
deterministic production systems on serial machines. By saving the state of
working memory before following a particular search path (i.e., before firing
an instantiation), one may later backfrack to that state and follow a different
search path (i.e., fire a different instantiation). In this way, all search paths
may be examined. Because the time and space costs of backtracking are non-
trivial, most conventional production system architectures are deterministic
and do not backtrack. This is the case for the palimpsest production system
architecture described herein.

2.2.2.2. Evaluation Strategy

Another piece of the interpretation scheme for a production system ar-
chitecture is the direction of evaluation, or evaluation strategy. There are two
primary evaluation strategies: forward-chaining and backward-chaining. Ad-
ditionally, there are numerous variations on these, such as bi-directional and
means-ends analysis techniques. Each is discussed below.

Forward-chaining or data-driven evaluation searches production systems
for productions with satisfied conditions and applies their actions to working
memory, one at a time, until no new conditions can be satisfied. However,
time may be wasted satisfying the conditions and applying the actions of pro-
ductions that do not contribute to the desired problem solution. A forward-
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chaining evaluation strategy is desirable when the effect of production actions
on other production conditions is poorly defined, or when the number of
problem solutions is large.

Backward-chaining or goal-driven evaluation also searches production
systems for satisfied production conditions, but that search is directed to sat-
isfy the condition of a goal production. If working memory does not satisfy
the condition of the current goal production, and the action of another pro-
duction helps to satisfy the condition of the goal production, then the inter-
preter designates that new production as the goal production. However, time
may be wasted satisfying goals that do not contribute to the eventual problem
solution. A backward-chaining evaluation strategy is desirable when the effect
of production actions on other production conditions is known, and when
the number of problem solutions (i.e., goals) is small.

Bi-directional evaluation attempts to combine the simplicity of forward-
chaining evaluation with the directed search capability of backward-chaining
evaluation. Both forward-chaining and backward-chaining evaluation are
applied simultaneously, in the hopes that the evaluations meet somewhere
in the middle of the problem space.

Means-ends analysis evaluation is a heuristic technique that can be used
to search a problem space more efficiently. When the difference between the
current state of the interpreter and a goal state can be quantified, the decision
to apply the action of a production with a satisfied condition depends upon
that action's ability to reduce that difference.

The production system architecture defined in CHAPTER 4 is essentially
forward-chaining. However, this architecture can use any of the above evalu-
ation strategies, singly or in combination (cf. SECTION 6.1).

2.2.2.3. Selection Strategy

Within the constraints imposed by a given evaluation strategy, a selection
strategy determines the exact search path followed by a production system in-
terpreter for a production system. Because problem solutions may depend
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upon the search path followed, and because identical problem solutions may
be found by following search paths of different lengths, the choice of an ap-
propriate selection strategy is crucial to the correctness and efficiency of a pro-
duction system interpreter.

DEFINITION

A match function M maps ZP(U) x 2U ZC(U), where C(U) is the set of
all instantiations on (P(LI), U), such that M(®, W) is a conflict set of (?, W),
and IM(2, W)| > 0 iff an instantiation on (P, W) exists. [

A match function takes a production system as its argument, finds
instantiations on that production system and returns them in a conflict set.

DEFINITION
A conflict resolution function R maps 2CW) _ c(U) such that R(S) € §
for SCSC(D.O

A conflict resolution function takes a conflict set as its argument and re-
turns one instantiation from that conflict set. For example, given some con-
flict set, a conflict resolution function might return an instantiation contain-
ing the production with the most complex condition.

DEFINITION

A pair (M, R), where M is a match function and R is a conflict resolution
function, defines a selection strategy. O

A selection strategy defines the process by which a deterministic, forward
chaining, production system interpreter, defined by ALGORITHM 2.1, selects a
production to be fired on each cycle.

ALGORITHM 2.1

Deterministic production system interpretation using selection strategy
(M, R).

Input. A production system {Z, W).

Output. A modified working memory.
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Method. The state of the algorithm is represented by W. Perform steps (1)
to (3).

1. Match Phase: Determine conflict set 5 = M(%F, W) and go to step (2).

2. Conflict Resolution Phase:If S is empty then output W and halt.
Otherwise, select an instantiation I = R(S) and go to step (3).

3. Act Phase: Fire instantiation I = ((n, c, a), wy ;) by assigning a(w; , W)
to W, and go to step (1). 0

This algorithm repeatedly finds, selects, and fires instantiations.

DEFINITION

ALGORITHM 2.1 is called the recognize-act cycle. 1

2.2.3. Procedural Control

Procedural control information for production systems specifies the order
in which instantiated productions can be fired. The most common method-
ology for specifying and implementing procedural control is to write a pro-
duction system to take advantage of the conflict resolution function88.89. Un-
fortunately, as described in SECTION 1.2.2, such control strategies destroy the
modularity of production systems. Another approach augments the
production system with separate control information, in the form of a control
language, that restricts the productions that can be fired on any given cycle.
Such “controlled production systems” are addressed in this section.

2.2.3.1. Controlled Production Systems

A definitive description of controlled production systems and their in-
herent advantages over other control strategies is found elsewhere?0. This
section presents a brief introduction to controlled production systems that
conforms to the notation of this thesis.

88 Rychener, 1979.
82  McDermottand Forgy, 1977.
90 Georgeff, 1982.
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DEFINITIONS

Let N(P) be the set of all production names found in a production mem-
ory ©P. Then, K S N(P)* is called a control language of P. A context-free gram-
mar Gg, where K = L(Gg), is called a control grammar of 2.0

A control language is defined on an alphabet containing production
names. Strings in a confrol language specify the “legal” sequences of
production firings for a production system. Herein, all control languages are
specified by context-free control grammars.

DEFINITIONS

Given a control language K € N(P)* and a string s € N(#)* that denotes a
sequence of production firings, production (n, ¢, a) € Pis a legal production if
sno e K for some o € N(P)*. An instantiation is a legal instantiation if it
contains a legal production. [

For example, the following control grammar91

S =p1Sp2
S —>e¢

specifies that all sequential firings of production p; must be followed by ex-
actly the same number of firings of production p, . Initially, only production
py is legal. After firing p;, then both py and p, are legal. After firing the se-
quence of productions denoted by the string p1 p; p1 p2 , only production p; is
legal.

DEFINITION
A controlled production system (P, W), Gk) consists of a production sys-

tem (%, W) and a control grammar Gg of 2.0

A controlled production system uses a control language to impose
procedural conirol allowing the production system interpreter to fire only
those instantiations containing legal productions.

91  Herein, all non-terminal grammar symbols are denoted by upper-case letters, and all
terminal grammar symbols are denoted by lower-case letters.
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EXAMPLE 2.5

Consider a production memory containing two productions that install
nuts onto threaded bolts:
load nut:

Tolt filled=false)
(nut location=unused)

=
CHG (#2, location:#1.location)
turn_nut:

(bolt filled=false)

(nut location=i#l.location)
=

CHG (#1, filled:true)

Production load_nut places an unused nut onto an empty bolt, and
turn_nut screws the nut onto the bolt. It is assumed that there are at least
as many nuts as there are threaded bolts. Clearly, every call to turn_nut
must be preceeded by a call to load_nut. If the goal of this production
memory is to install nuts onto all empty bolts, then this iterative

sequencing of production firings can be specified by the following conirol
grammar

INSTALL_NUTS — load_nut fturn_nut INSTALL_NUTS
INSTALL_NUTS — stop_installing_nuts

where stop_installing_nuts is a production with an empty action

stop_installing nuts:
NOT (bolt f£illed=false)
=

that is satisfied only when nuts have been installed on all bolts. Because
the first symbol of any string in this control language must be either
load_nut or stop_installing_nuts, then the first production fired must be
one of these two productions. Given an initial working memory of

(oolt location:loc27 filled:false)
{nut location:unused)

only load_nut has a satisfied condition, After firing load_nut, the only
legal production, according to the control grammar, is turn_nut. After
firing turn_nut both load_nut or stop_installing_nuts are once again le-
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gal; however, only stop_installing_nuts has a satisfied condition. After
stop_installing_nuts fires, no productions are legal, and interpretation
should halt. O

A larger example of a controlled production system is presented in Ap-
pendix B. ALGORITHM 2.2 defines the interpretation of controlled production
systems.

ALGORITHM 2.2

Deterministic controlled production system interpretation using selection
strategy (M, R).

Input. A controlled production system (2, W), Gg).
Output. A modified working memory.

Method. The state of the algorithm is represented by the pair (s, W),
where s is an initially empty string in N(#)*. Perform steps (1) to (4).

1. Control Phase: Determine the set of legal productions P = ((n, c,a) |
{n,c,a) e P, and sna e L(Gg) for some string o € N(P)*} and go to
step (2).

2. Match Phase: Determine conflict set S = M(P, W) and go to step (3).

3. Conflict Resolution Phase: If S is empty then output W and halt.
Otherwise, select an instantiation I = R(S) and go to step (4).

4. Act Phase: Fire instantiation I = ((n, c, a), wy ,,) by assigning
a(w1 ., W) to W, assign sn to s, and go to step (1). O

Interpretation of controlled production systems is identical to the inter-
pretation of conventional production systems, except that the match phase
only searches for instantiations of “legal” productions. Notice that
ALGORITHM 2.2 reduces to ALGORITHM 2.1 when K = N{(P)*; that is, when the
sequence of production firings is unconstrained, and no procedural control is
specified by the control language.
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DEFINITION

A controlled production system (2, W), Gg) is control free if L(Gyg) =
N(®P)* and the working memory computed by ALGORITHM 2.2 is independent
of selection strategy (M, R).0O0

That is, a controlled production system is control free if the control
language specifies no procedural control, and productions do not take
advantage of the conflict resolution strategy to impose procedural control.
Because K = N(P)* in a control free controlled production system, a
conventional, “uncontrolled” production system can also be said to be control
free if it does not take advantage of the conflict resolution strategy to impose
procedural control.

2.2.3.2. Examples of Common Control Constructs

This section demonstrates how many of the more important control
constructs can be specified in a controlled production system92. Of course, all
of the constructs described may be combined to produce more complex

control constructs. For the purposes of discussion, assume that the production
memory in question contains productions with names pq, po, ... , Py

2.2.3.2.1. Direct Sequencing

Direct sequencing control specifies a sequence of productions to be fired.
For example, one may need to specify that production pg must fire, followed
immediately by p3 and pg. Such a sequence is specified by a placing the string
P9 P3 Ps in the control grammar.

SEQUENCE — Po P3Ps

where pg, p3, and pg are terminal symbols, and SEQUENCE is a non-terminal
symbol.

92 A complete description of these control constructs and their importance in Al programming
is presented in Rychener, 1979.
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2.2.3.2.2. Fall-Back Control and Held Result Usage

Fall-back control resembles a subroutine call and return. Productions as-
sociated with a particular process pass control to a different group of produc-
tions associated with some subprocess. When that subprocess has been com-
pleted, control returns to the original process, which does not directly use the
results generated by the subprocess. Held result usage is just fall-back control
in which the original process does directly use the results generated by the
subprocess, but allows that subprocess to terminate before processing those
results. Fall-back control resembles a procedure call in Pascal or Ada, and held
result usage resembles a function call. For example, in the control grammar

MAINPROCESS — pq p2 SUBPROCESS p3 py
SUBPROCESS — ps5ps

MAINPROCESS specifies that py and p» should be fired, in sequence, and fol-
lowed by the processing of SUBPROCESS. In this case, SUBPROCESS merely
involves firing p; and pg in sequence. After SUBPROCESS is completed (i.e,,
P¢ is fired) control then returns to MAINPROCESS at the point immediately
following SUBPROCESS. Productions p3 and py4 are then fired, in sequence, to
complete MAINPROCESS.

2.2.3.2.3. Selection

Selection allows any one of a number of productions to fire. For example,
the following control grammar

SELECT — py
SELECT — p;
SELECT - p3

specifies that either p4, pa, or p3, should fire. Selection is used to choose a pro-
duction based solely upon the satisfiability of its condition; no procedural
constraints are imposed.
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2.2.3.2.4. Iteration

Iterations of single productions, sequences or even complex control con-
structs can be specified using recursive grammar rules, such as
INSTALL_NUTS in EXAMPLE 2.5, and the following;:

LOOP — py COMPLEX_CONSTRUCT p; LOOP
LOOP — stop_loop

where stop_loop is a production with an empty action that specifies the ter-
mination condition for the loop. Initially, both p; and stop_loop are allowed
to fire. If the condition of p; is satisfied, then the loop defined by the first rule
is entered; otherwise, the condition of stop_loop should be satisfied and the
loop terminates. If py fires, then a sequence of productions defined by
COMPLEX_CONSTRUCT will fire, then p, will fire. At this point, both p; and
stop_loop are again allowed to fire, and the loop either terminates or begins
another iteration.

2.2.3.2.5. Modules and Hierarchies

A complex control construct (i.e., a portion of a control grammar that
could stand alone) and the productions it references can be thought of as a
production module that performs a single, well-defined task. The name of
this module is the goal symbol of its control grammar. Such modules can be
called from within other modules, via fall-back control or held result usage.
Using this scheme, complex production module hierarchies can be con-
structed that resemble the structure of procedural programs such as Pascal and
Ada%, and facilitate top-down design methodologies. The control construct
INSTALL_NUTS from EXAMPLE 2.5 is a production module that can be called
by the following module

CHANGE_FLAT — remove_nuts SWAP_TIRES INSTALL_NUTS
CHANGE_FLAT — call_towtruck FIX_TIRE PAY MECHANIC

93 In fact, a production system language can be defined that enforces module nesting and

scoping identical to that found in the procedural languages.
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where remove_nuts, and call_towtruck are productions and SWAP_TIRES,
INSTALL_NUTS, FIX_TIRE, and PAY_MECHANIC are lower level pro-
duction modules that perform the actions suggested by their names.

Productions define a single action that can be applied whenever a single
condition is satisfied. Production modules, on the other hand, generally rep-
resent larger, dynamic plans of action, where the exact plan followed is de-
termined dynamically, based upon the satisfiability of various conditions. In
the example above there are two plans for changing a flat tire. The first plan is
applied if the condition of remove_nuts is satisfied; and the second plan is
applied if the condition of call_towtruck is satisfied. In general, the condition
of the leftmost production (or module) in any plan acts as a condition for that
entire plan. When the condition of the first production in a plan is insuffi-
cient to determine whether or not that plan can be applied, a new production
should be constructed that can make that determination and inserted at the
beginning of the plan. A disjunction of the conditions for all the plans in a
module acts as the condition for that module.

2.2.3.2.6. Concurrent Control Constructs

The efficient implementation of various other control constructs requires
a production system architecture that can interpret multiple productions or
production modules concurrently. Like most production system architectures,
palimpsest parsers currently allow the interpretation of only one production
or production module at any time. However, concurrent execution of
palimpsest parsers may be implemented in the near future. For this reason,
some concurrent control constructs found in the literature are described
briefly below?4.

* Direct Result Usage: similar to held result usage, except the call-
ing process makes use of the results of the called process as they
are generated.

94 Rychener, 1977.
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* Fork-Join: A problem is solved by decomposing it into subprob-
lems, and assigning the solution of the subproblems to a number
of concurrent processes. When all subproblems have been
solved, the various results are collected and assembled by the
original process.

¢ Parallel Iteration: The productions in the body of a loop iterate
concurrently.

Of course, if absolutely necessary, these three control constructs can be
implemented serially, but the size of that required control grammar grows
exponentially with the number of productions or modules that must be
interpreted concurrently.

2.3. Scope of Controlled Production Systems

It has been shown that Post production systems are computationally
equivalent to deterministic Turing machines. This section demonstrates that
controlled production systems, as defined above, are also computationally
equivalent to deterministic Turing machines.

THEOREM 2.2

For every deterministic Turing machine there exists an equivalent con-
trolled production system.

Proof. By construction. Let M = (S, Z, §, 5, $, Y) be a deterministic Turing
machine, where S is a finite set of states, Z is the tape alphabet, s € S is the
start state, $ € Z is the blank symbol, Y < S is the set of accepting states, and 3
is any partial function from Sx X — § x Z x {left, right, stay}?>. Any such M
may be represented by a working memory W as follows:

For convenience, let tape positions be assigned consecutive integer ad-
dresses, where position 0 is the initial position of the read/write head. The
infinite tape may be represented by a set T of pairs of the form (<address>,
<symbol>), where <address> is a tape address, <symbol> € Z, (<address>,
<symbol>) ¢ T = <symbol> = $, and ({(<address1>, <symbol>)e T A

95 Savitch, 1982, p. 77.
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(<address2>, <symbol>)e T) = <address1> # <address2>. Denote members of
T by working memory elements of the form

(tape addr:<address> symbol :<symbol>)

A configuration of the Turing machine may be represented by a pair ¢ of
the form {<state>, <address>), where <state> € S, <address> is a tape address.
Denote a configuration by a working memory element of the form

(config state:<state> head:<address>)
Initially, this element is {s, 0), denoted by
(config state:s head:0)

Represent d by a set I as follows. For all <statel>, <state2>e S and
<symboll>, <symbol2> e I such that &(<statel>, <symboll>) = (<state2>,
<symbol2>, <dir>), where <dir> € (left, right, stay}, I contains 5-tuples of the
form (<statel>, <symboll>, <state2>, <symbol2>, <dir>). Denote the members
of I by working memory elements of the form

(instr on_state:<statel> to_state:<state2> read:<symboll>
write:<symbol2> move:<dir>)

A deterministic Turing machine interpreter may be implemented by the
following procedure:

loop
if ¢ = (<state>, <address>)
and not (<address>, <symbol>) € T then
T := ({<address>, $)) L T;
else if ¢ = (<state>, <address>)
and (<address>, <symbol>)e T
and (<state>, <symbol>, <state2>, <symbol2>, left) ¢ I then
T := (T ~ {{<address>, <symbol>)}) U {(<address>, <symbol2>}};
¢ := {<state2>, <address> — 1);
else if ¢ = (<state>, <address>)
and (<address>, <symbol>)e T
and (<siate>, <symbol>, <state2>, <symbol2>, right) € I then
T := (T ~ {(<address>, <symbol>)}) U {(<address>, <symbol2>)};
¢ = (<state2>, <address> + 1);
else if c = (<state>, <address>)
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and (<address>, <symbol>)e T
and {<state>, <symbol>, <state2>, <symbol2>, stay) e I then
T := (T ~ {{<address>, <symbol>)}) U {(<address>, <symbol2>));
else
exit;
endloop;

For the working memory representation W of a Turing machine M, the
above procedure can be implemented by the following production memory.

lengthen tape:

{config)
NOT (tape addr:#l.head)
=
ADD (tape addr:#l.head symbol:S$)
do_left:
(config)
(tape addr=§#l.head)
(instr on_state=#l.state read=#2.symbol move=left)
=

CHG (#2, symbol:#3.write)
CHG (#1, state:#3.to_state head:#l.head-1)
do_right:
(config)
(tape addr=#l.head)
(instr on_state=ifl.state read=f2.symbol move=right)
=
CHG (#2, symbol:#3.write)
CHG (#1, state:#3.to_state head:#l.head+l)

do stay:
{config)
(tape addr={l.head)
(instr on_state=fl.state read=§2.symbol move=stay)

=

CHG (#2, symbol:#3.write)

CHG (#1, state:#3.to_state)
where every production condition corresponds exactly to an if condition, and
every production action corresponds exactly to an if action. The procedural
control specified by the loop and if structure can also be specified by the fol-
lowing control grammar:
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LOOP — lengthen_tape LOOP
LOOP — do_left LOOP

LOOP — do_right LOOP
LOOP — do_stay LOOP
LOOP — halt_condition

where the condition of production halt_condition is satisfied when no in-
struction exists for the current state:

halt _condition:

(config)

(tape addr=#l.head)
NOT (instr on_state=#l.state read=2.symbol)
=

This corresponds to the termination condition of the loop statement. The se-
lection strategy used by the interpreter does not affect the interpretation, be-
cause only one production will be satisfied on any cycle. O

COROLLARY 2.1

For every Turing machine computable function there exists a control free
production system that computes it.

Proof. The controlled production system defined in THEOREM 2.1 is
control free, since K = (lengthen_tape, do_left, do_right, do_stay}* and the
selection strategy does not affect the interpretation. O

This result is expected, since PPSs are control free and computationally
equivalent to deterministic Turing machines.




3. LR Parsing

A definitive description of the theory of LR parsing?6 may be found in
Aho and Ullman?7.98, With the following exceptions, the terminology and
notation found therein is used without explanation.

¢ X denotes an alphabet composed of lowercase letters.
* N denotes an alphabet composed of uppercase letters.
¢ strings in (£ U N)* are denoted by lower case Greek letters.

Every context-free grammar (CFG) G defines a language L(G)99.100, A
parser for G is a program that recognizes strings in L(G). One particularly
useful and efficient type of parser is the LR parser. An LR parser for language
L(G) consists of a set of language dependent LR parse tables, and the language
independent LR parsing algorithm. LR(k) parsers have a number of useful
properties: parse tables may be generated automatically from G; members of
L(G) are recognized in linear time; and non-members of L(G) are recognized
upon examining the first k incorrect symbols.

The kin “LR(k) parser” refers to the number of symbols of lookahead re-
quired by the parser to choose between conflicting parse actions. For any value
of k, the set of grammars for which an LR(k) parser exists is a subset of the
grammars for which an LR(k+1) parser exists. However, since the size and
complexity of an LR parser is directly related to the value of k, most real
parser generation systems generate parsers with one symbol lookahead (i.e., k
= 1). For the purposes of this thesis, no lookahead is required and LR(0)

96 The (k) in LR(k) parsing is often omitted when the value of k is irrelevant.
97 Aho and Ullman, 1972, pp. 83-96.

98  Aho and Ullman, 1972, pp. 368-396.

99  Ahoand Ullman, 1972, pp. 83-96.

100 gavitch, 1982, p. 10.
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parsers are sufficientl91. Descriptions, definitions and examples within this
chapter refer specifically to LR(0) parsers.

3.1. LR(0) Parsing

This section presents LR(0) parsing background material for reference
purposes. It is derived directly from the general LR(k) definitions of Aho and
Ullman102 for the special case, k = 0.

DEFINITIONS

Let G be a CFG and vy a viable prefix of G. We define V(y) to be the set of
LR(0) items valid for y with respect to G. We define S = {2 | a4 = V(y) for some
viable prefix y of G} as the collection of sets of valid LR(0) items for G. The
collection of sets of valid LR(0) items for G', the augmented form of G, is
called the canonical collection of sets of valid LR(0) items for G. O

For example, consider the augmented grammar

© § - S
(1) S — AaS
2 S -y
B A — «x

The canonical collection of sets of LR(0) items for this grammar along with
Vie) is:

ag=Vie): {[S° - 8]

[S — eAsS]

[S — el

[A — ex]}
a: {[S" — 5]}
a: {[S — AesSl)}
as: (IS - yel)

101 Thus, all flavors of LR parsers (e.g., LR(k), LALR(k), SLR(k) for which k = 0} are also
sufficient, and are collectively referred to as LR parsers throughout the remainder of this
thesis.

102 Ahp and Ullman, 1972, pp. 368-396.
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x°] }
AaeS]
e AaS]
oy]

*x] }
AaSe] }

Let G=(N, X, P, S) be a CFG and let S be a collection of sets of LR(0) items
for G. If a is a set of LR(0) items such that 2 = V(y), where ye (N L X)*, then
GOTO(a, X) is that a’ such that a4’ = V(yX), where X e (NU Z).00

DEFINITIONS

Let G=(N, Z, P, S) be a CFG and let S be a collection of sets of LR(0) items
for G. T(a), the LR(0) table associated with the set of items g in S, is a pair of
functions {f, g). f is called the parsing action function and g is called the goto

function.

1. fmaps {e} into {accept, shift} L {reduce i | i is the number of a pro-

duction in P}, where

(a) f(e) =shift,if [A - B,*Bolising, and B, #&.
(b) fle) = reduce i, if {A —» Be]isina,and A — P is production

number iin P,i2 1.

(c) fle) =acceptif [S'— S *]isina.

2. g, the goto function, determines the next applicable table. Some g
will be applied immediately after each shift and reduction.
Formally, g maps N U Z into the set of tables or the message error.
g(X) is the table associated with GOTO(g, X). If GOTO(@4, X) =@

then g(X) = error. O

DEFINITION

The canonical set of LR(0) tables for an LR(0) grammar G is the pair (7, T)
where T1is the set of LR(0) tables associated with the canonical collection of
sets of valid LR(0) items for G, and T, is the LR(0) table associated with V(g). O
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€ S A a b y X
nils |l n - - Ty Ty
r; |a - - - - - -
T, |s - - Ts - - -
Ty |R2 - - - - - -
T, [R3 - - - - - -
T |S Te Tp - - Ty T,
Te [RL - - - - - -

FIGURE 3.1. A Canonical Set of LR(Q) Parse Tables103

ALGORITHM 3.1
Construction of the canonical set of LR(0) tables from a CFG.
Input. ACFG G=(N, X, P, S).
Qutput. The canonical set of LR(0) tables for G.
Method. Perform steps (1) through (3).

1. Construct the augmented grammar G'=(N U {5}, 5,Pu {S' > 5}, §").
S’ — § is to be the zeroth production.

2. From G’ construct S, the canonical collection of sets of valid
LR(0) items for G104,

3. Let Thbe the set of LR(0) tables for G, where T={T | T = T(a) for
some 4 € S}. Let Ty = T(ap), where ap = V(e)O

For the augmented grammar above, the canonical set of LR(0) parse tables
in FIGURE 3.1 would be constructed.
ALGORITHM 3.2

The LR(0) parsing algorithm.

Input. A canonical set of LR(0) parse tables {7, T;) for an LR(0) CFG G, and
an input string z € £*¥, which is to be parsed.

103 where, s = shift, A=accept, ~ = error, and Rn = reduce by production number 7.
104 Definition above and Algorithm 5.8, Aho and Ullman, 1972, p. 386.
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Output. If z € L(G) then output true; otherwise, output false.

Method. The state configurations for this algorithm are pairs {c, %),
where:

* o represents the parse stack (whose is on the right). Elements of
o are pairs (o, T), where6e ZUN,and T e T.
*  represents the portion of z yet to be parsed.

The initial configuration is ({g, T ), z). At all times, let T refer to the table
of the topmost pair on o. The parsing action function f of the T is applied by
steps (1) through (3) until acceptance occurs or an error is encountered.

1. If f(e) = shift, then perform steps (a) through (c). Otherwise, go to
step (2).
(a) Let ) = uy. Push (u , g(u)) onto the top of o, where g is the goto

function of T. If g(u) = error, then halt, and output false 105,

(b) Assign v to y; that is, remove the first symbol from y.
(c) Gotostep (1).

2. If f(e) = reduce i, where production i is of the form A — B, then
perform steps (a) through (c). Otherwise, go to step (3).
(@) Remove |B] pairs from the top of o.

(b) Push (A, g(A)) onto the top of o, where g is the goto function
of T.

() Go to step (1).
3. If f{e) = accept, then halt and output true. O

DEFINITIONS

A parsing function F: Vq x ... x V, x Z* > {true, false} where Vy, ..., V,,
are language dependent value sets. Given a CFG G, a parser for G is a function
FG : Z* — {true, false}, where F(2z) = F(vg ,,z) and v1 € Vyx ... x V.0

That is, a parser for G is an instance of a language independent parsing
function for which a number of language dependent arguments have been
specified, usually a set of parse tables and other ancillary functions10 used to

105 And, in practice, transfer to the error recovery routine.
106 ¢f. SEC. 3.2.
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perform the parse. A parser for G determines whether a given string z € Z* is
in L(G).

DEFINITION

An LR(0) parser for a CFG G is a predicate F: Z* — {true, false}, where
Fz) = Frroy €2, Tod, 2), Freoy is the LR(0) parsing predicate defined by
ALGORITHM 3.2, and {7, T ) is the canonical set of LR(0) parse tables for G.O0

EXAMPLE 3.1
Consider again the context-free grammar G

0 s - §
(1) § —» AaS
2 § - vy
B A - «x

represented by the canonical set of LR(0) parse tables in FIGURE 3.1. Given
the input xay, a trace of the configurations generated by an LR(0) parser
for G follows:

(e, TO), xay )

(e, ToXx, Ty), ay)

(&, ToXA, T), ay)

(&, ToXA, T2Xa, Ts), )

(e, ToXA, TaXa, T5Xy, T3), &)
((8, TO)(Ar TZ)(ar T5)(S, T6)r g)

(e, ToXS, T1), €)
accept and output true. 0

3.2. Enhancements to LR(0) Parsing

Currently, numerous LR parser generators107,108 exist as part of automatic
compiler generation systems. The parsers generated by these systems usually
incorporate a number of features that are useful in compilers but are not part

107 Collins and Noonan, 1985.
108 AT & T Information Systems, pp. 350-351.
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of the LR(k) parser definition. Since these extensions are essential to later
parts of this thesis, a description of each feature is provided below.

3.2.1. CLR(0) Parse Tables

ACFG G ={N, %, P, 5) is said to be LR(0) if the sets of LR(0) items gener-
ated for G are consistent. In a consistent LR(0) item set, there is exactly one
value (e.g., shift, reduce, accept) defined for each parsing action function. In
practice, however, many useful grammars are not LR(0). LR(0) parse tables for
such grammars would contain multi-valued parsing action functions, where
the actions returned are collectively called a “collision.” For this reason, some
parser generators109,110 will produce such multi-valued functions, and allow
the run-time environment to choose which action to apply. Herein, such ta-
bles will be called CLR(0) parse tables, where the “C” stands for “colliding.”
The following definitions and construction algorithms for CLR(0) tables are
adaptations of the corresponding LR(0) definitions and algorithms above.

DEFINITIONS

Let G ={N, Z, P, 5) be a CFG, let S be a collection of sets of LR(0) items for
G, and let T(a) = {f, g) be the LR(0) table associated with the set of items a in §.
T (a), the CLR(0) table associated with the set of items 4 in S, is a pair of func-

tions {f,, g)- f. is called the colliding parsing action function and g is the goto
function.

1. f, maps {e} = 27, where 4 = {shift, accept} U {reduce i | i is the
number of a production, 1 <7 <|P[}, where
(a) shift € f(e),if [A - By*B.lisinag, and B, #&.
(b) reduce i € f.(e),if [A - Be]l ising,and A— B is production
number iin P, iz 1.
(c) accept e f(e),if [S' = S *]isina.

2. gis the goto function for normal LR(0) tables. O

Notice that f.(e) = f(e) when 4 is consistent.

102 Coilins and Noonan, 1985.
110 AT & T Information Systems, pp. 350-351.
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The canonical set of CLR(0) tables for a CFG G is the pair (T, Tp), where 7,

is the set of CLR(0) tables associated with the canonical collection of sets of
LR(0) items for G, and Ty is the CLR(0) table associated with V(e).O

For example, consider the augmented grammar

(0)
0y
)
(3)
@

SI
S

S
S
B

-
-
-
-
-

S
a
ab
aB
b

The canonical collection of sets of valid LR(0) items for this grammar along

with V(e) is:

ag = V(e):

ar:

ajz:

ag:

[s’
[S
[S
(A
[s’
[s
[s
(s
(B
[S
[B
[S

A A A A A A A R

®
n
it

o]
eqb]
*1B]
Se]
ae]
aeb}
aeB]
op]
abe]
be]
aBe]

resulting in the canonical set of CLR(0) tables found in FIGURE 3.2.



64

£ S B a b
T, [ (S} T, - T, -
, [{a} - - - -
T4, R |[- 1, - T
rs [tr2, RAYy | [ - -~ -
T, [(R3) - - - -
FIGURE 3.2. Canonical CLR(0) Parse Tables!11

ALGORITHM 3.3

Construction of the canonical set of CLR(0) tables from a CFG.
Input. ACFGG=(N, %Z,P, S).
Output. (I, Tp), the canonical set of CLR(0) tables for G.

Method. Perform steps (1) through (3).

1.

Construct the augmented grammar G'={NuU {§'},5,PU (S’ > 5}, 5").
S’ — S is to be the zeroth production.

From G’ construct S, the canonical collection of sets of valid
LR(0) items for G112,

Let 7. be the set of CLR(0) tables for G; I, = {T | T = T,.(a) for some

ae S). Let Ty = T.(ay), where ay = V(e). O

Notice that members of the range of f,() are sets of parsing actions. To

provide convenient access to individual members of this set the following
equivalent form of CLR(0) parse tables is defined.

DEFINITION

Given (7., Ty), the canonical set of CLR(0) tables for a CFG G, the alternate
representation of (I, T) is identical to {7, Tp) with the following exceptions:

111 where, s = shift, A= accept, - =error, and Rn = reduce by production number n.
112 pefinition above and Algorithm 5.8, Aho and Ullman, 1972, p. 386.
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2. Parse actions are ordered such that shift actions (of the form shift
u) occur before reduce actions (of the form reduce i). The
ordering among shift actions and the ordering among reduce

actions is unspecified.
3. fAi), where i > 0, denotes the ith parse action in the ordered set

f€). If |f(e)| < i, then (i) denotes error. O

The alternate form of the canonical CLR(0) parse tables in FIGURE 3.2 is
shown in FIGURE 3.3. Henceforth, all CLR(0) tables will be represented in this
alternate form.

1 2 S B a b
T, [sa T, - T, -
T, |[a - - - - -
r, [s6 ®m |[- T, - 714
g [R2 mRa |- - - -
7, [R3 - - - - -
FIGURE 3.3. CLR(0) Parse Tables (Alternate Form)113

3.2.2. Disambiguation Functions

For many practical grammars it is useful to allow the parsing algorithm to
choose one of many possible parsing actions at run-time based upon
information collected during the parse. For example, array references and
function calls are occasionally indistinguishable by an LR(1) parser for the
Ada grammar. A comparison of the identifier information stored in the se-
mantics stack and the symbol table is required to decide which reduction to
make. In many LR parsing systems, these decisions are made by disambigua-
tion functions.

113 where, s =shift, A= accept, - = error, and Rn = reduce by production number n.
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DEFINITION

A disambiguation function d for a CFG G ={N, X, P, S) is a function
d: AxVix Vyx ... x Vyy — (true, false} X Vg x Vax ... x V,, where Vy, ..., V,
are some sets of values. d{(p, vy, vy, ..., Oy) = (true, vy .1, ..., V) for appropriate
values vy, vy, ..., Uy, if the parser should apply parsing action p, and
dip, v1, V3, ..., V) = {false, Vy i1, ..., V), otherwise. O

This definition describes a class of application dependent functions. In
general, a disambiguation function 4 takes a parse action and a list of zero or
more application dependent values (i.e., v1, v3, ..., V) as arguments.
Function d returns either frue or false, depending upon whether or not the
input parse action should be performed, along with a list of zero or more
application dependent values (i.e., v,,,,1, ..., ¥). The value sets V3, V5, ..., V,,
and the definition of a specific 4 are application dependent. Specific
disambiguation functions1?4 may have restrictions imposed on input and
output values.

3.2.3. Semantics Function

It is often useful for an LR parser to be able to perform some side-effect
operation, such as modifying a symbol table or generating object code, when-
ever a parsing action is performed. For this reason, some parser generator
systems allow the inclusion of a semantics function as defined below.

DEFINITION

A semantics function r: AXVix ... xVy = V1% .0 xV, where
Vir voor Voo Va1, -+ V are some sets of values. O

This definition describes a class of application dependent functions. In
general, a semantics function r takes a parse action and a list of zero or more
application dependent values (i.e., vy, v, ..., V) as arguments. Function
returns a list of zero or more application dependent values (i.e., V4.7, -+, Op)-
The value sets V3, V3, ..., V,; and the definition of a specific 7 are application

114 ¢t SECTION 4.2.1.2.
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dependent. Specific semantics functions!15 may have restrictions imposed on
input and output values.

3.2.4. CLR(0) Parsers

A CLR(0) parser is an LR(0) parser that incorporates the additional fea-
tures described above. Similarly, the CLR(0) parsing algorithm is a modifica-
tion of the standard LR(0) parsing algorithm that makes use of these addi-
tional features.

ALGORITHM 3.4
The CLR(0) parsing algorithm.

Input. A canonical set of CLR(0) parse tables {7, Ty} for G={N, Z, P, S), a
disambiguation function 4, a semantics function 7, and an input string ze =*
which is to be parsed.

Output. If z € L(G), then output true. Otherwise, output false.

Method. This algorithm is application independent and assumes that an
appropriate semantics function r: AX VX ... X V= Vy 1 x... x V,and
disambiguation function d: Ax Vyx ... x V,— ltrue, false} x V1% ... x V} is
available for each application, where V,, ...,V V4, ..., V}, are application
dependent value sets. The state configurations for this algorithm will be pairs
{0, 1), where:

* o represents the parse stack (whose top is on the right).
Elements of a are triples of the form {o, T, j), where 6 € Z U N,
Te Z,andj>0.

* y represents the portion of z yet to be parsed.

The initial configuration is ({g, Ty, 1), z). At all times, let T and j refer,

respectively, to the table and index of the topmost triple on . Apply the
parsing action function f, of T in steps (1) through (7) as appropriate until
acceptance occurs or an error is encountered.

115 ¢f. SECTION 4.2.1.2.
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If f(j) = error, then go to step (7). Otherwise go to step (2).
¥ dif.(j), v, ..., v,) = {false, , Vgy1, ..., vp), Wherevy, ..., vy are values
appropriate to the specific application, then go to step (6) below.
Otherwise go to step (3).
If f.(j) = shift u, then apply steps (a) through (d) below. Otherwise go
to step (4).
(@) Let x =vy. If u = v then push (u, g(u), 1) onto the top of a,
where g is the goto function of T. Otherwise go to step (7).
(b) Assign vytoy; that is, remove v from the front of ¥,
() Assign r(shift u, v, ..., vp) to vp.1, ..., U, , Where v, ..., U, are
values appropriate {o the specific application.
(d) Gotostep (1).
If f.(j) = reduce i for some production i of the form A — B, then apply
steps (a) through (d) below. Otherwise go to step (5).
(@) Assign r(reduce i, v,, ..., vp) tovp.q, ..., v, where v,, ..., v, are
values appropriate to the specific application.
(b} Remove |B] triples from the top of o.
() Push (A, g(A), 1) onto the top of o, where g is the goto function
of T.
(d> Gotostep(1).
If f.(j) = accept, then apply steps (a) and (b) below.
(a) Assign r(accept, v,, ..., vp) to vyyq, ..., U, Where vy, ..., v, are
values appropriate to the specific application.
() Halt, and output true.
Iff(j+1) # error, then replace (o, T, j), the topmost triple on o, with
{o, T, j+1) and go to step (1) above. Otherwise, go to step (7).
Halt, and output false.116, O

DEFINITION

A CLR(0) parser is a predicate F: Z* — {true, false}, where F(z) =
Ferro % Teo)s 4, 1, 2), FoLr(o) is the CLR(0) parsing function defined by
ALGORITHM 3.4, (7., T,p) is a canonical set of CLR(0) parse tables for some CFG
G, dis a disambiguation function for G, and r is a semantics function for G.O

116 And, in practice, transfer to the error recovery routine,
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EXAMPLE 3.2

Consider again the following context-free grammar:

© S - S§
1) S - a
2 § - ab
3 S - aB
4 B - b

represented by the canonical set of CLR(0) parse tables in FIGURE 3.3. We
define a specific disambiguation function &: 4 x (SUN)* — {true, false},
such that
_[false ifp=reduceinlBlzi
4p, B) true otherwise;
and a specific semantics function 7 : 4 — @, such that r(p) = write(p), for

allpe A A trace of the configurations defined by ALGORITHM 34 for the
resulting CLR(0) parser on input z = ab is:

(e, Ty, 1), ab) r writes shift a
(e, T, @, T, 1), b) r writes shift b
(e, Ty, 1Xa, T, 1Xb, T3, 1), €) r writes reduce 4
(e, Ty, 1Ya, T5, 1B, Ty, 1), €) r writes reduce 3
(e, Ty, IXS, T3, 1), 8) r writes accept

accept and output true.

Note, that between the 3'd and 4th configurations, parsing action R2 was
tried (which would result in ((g, T, 1XS, T3, 1), €) for the 4th configura-
tion} and rejected because dreduce 2, ab) = false. Also, since d{(shift u, ) =
true for all u and B, the R1 action in T, will never be performed. O



4. The Palimpsest Parser Production
System Architecture

This chapter defines a new production system architecture called a
palimpsest parser. The organization of this chapter will resemble that of
CHAPTER 2. The first section informally describes palimpsest parsers and con-
trasts them with conventional production system architectures. The second
section addresses the structure, interpretation, and procedural control of
palimpsest parsers more formally. The final section discusses the scope of this
architecture. In particular, an algorithm, called the palimpsest transformation
is presented, that transforms an arbitrary controlled production system into a
palimpsest parser. It is shown that all deterministic Turing machines can be
represented and interpreted by palimpsest parsers.

4.1. Introduction to Palimpsest Parsers

This section provides an informal, step-by-step description of the
structure and operation of palimpsest parsers. The purpose of this section is to
give the reader some understanding of basic palimpsest parser concepts before
formal definitions are presented in SECTION 4.2.

4.1.1. Conflict Resolution of Controlled Production Systems

The primary purpose of conflict resolution functions in conventional
production system architectures is to impose the procedural control that has
been built into production systems!17, However, conflict resolution functions
are not used to impose procedural control on controlled production systems;
all procedural control is explicitly specified by a control language separate

117 ¢f, FIGURE 1.5.
70
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from the productions. The control language is used to impose procedural
control, as in ALGORITHM 2.2, by restricting the match process, allowing only
legal productions to be instantiated.

Conventional production system architectures also use conflict resolution
functions to enforce refraction; that is, to insure that no instantiation is ever
fired twice. While refraction is necessary to guard against unintentional
infinite loops in uncontrolled architectures, such a rigid restriction is
unnecessary for controlled production systems. First, the only loops that can
occur in a controlled production system are those that are explicitly specified
by the control grammar. Second, it may be desirable for the same instantiation
to fire more than once; for example, on every cycle of a loop. Third, explicit
implementation of refraction within the production system is trivial in those
rare instances where it is necessary!18,

The above observations suggest that conflict resolution plays no useful
role in the interpretation of controlled production systems, so any arbitrary
conflict resolution function can be used. This suggestion is supported by
COROLLARY 2.1; any Turing machine can be transformed into a production
system and interpreted using any arbitrary selection strategy. For this reason, a
simple conflict resolution function that allows significant performance-
related optimizations is incorporated into the palimpsest parser production
system architecturel1?. This conflict resolution function is called fire first.

4.1.2. The Fire First Conflict Resolution Function

As the name suggests, the fire first conflict resolution function chooses
the instantiation that was entered into the conflict set first (i.e., least recently)
by the match function. This conflict resolution function was chosen for use in
palimpsest parsers because it significantly simplifies the interpretation
algorithm for controlled production systems (i.e.,, ALGORITHM 2.2) as follows:

118 ¢f, SECTION 6.8.

119 For those who reject this argument, trivial modifications to the palimpsest parsers
presented in this chapter allow any conventional conflict resolution function to be
employed (cf. SECTION 6.8).
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1. The match function may halt after finding one instantiation.
There is no point in searching for other instantiations that
cannot not be chosen by the conflict resolution function.

2. The conflict resolution phase can be ignored. There is no conflict
to resolve if the match function returns a single instantiation.

The interpreter searches for instantiations and fires them as they are
found. In effect, all conflict resolution criteria are determined by the order in
which the match function searches for instantiations. For palimpsest parsers,
this search order is implementation dependent.

4.1.3. Control Information

Most forward chaining production system architectures use and maintain
information about a production system in order to improve performance. For
example, memory support and condition membership information are
maintained and used by most indexing architectures; palimpsest parsers are
no exception. More importantly, palimpsest parsers also use control
information, specified by a control grammar, to constrain the search for
instantiations. To illustrate this directed search capability, consider a simple
parsing based interpreter constructed as follows:

STEP I: Create a copy of the control grammar, and change all terminal
symbols of this grammar (i.e., production names) into identical non-terminal
symbols. For the control grammar of FIGURE 4.1, the resulting grammar is:

(1) S - LOADITEM S
(2) S — OPENNEWBAY S
(3) S - STOP

STEP 2: For every non-terminal production name in this grammar, add a
new grammar rule of the form PRODUCTION_NAME — e&. For the
controlled production system of FIGURE 4.1, the added rules are:

(4) LOADITEM —E
(5) OPENNEWBAY —e¢
(6) STOP —E
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Production m ||
loaditemn:

(item in_bay=none)
(bay spacez2{fl.size open=true)

=

CHG (#1, in_bay:#2.name)
CHG (#2, space:#2.space-#l.size)

opennewbay:
(item in_ bay=none)
NOT (bay space2#l.size open=true) ||

(bay space2#l.size open=false)
=
CHG (#3, open:true)

stop:

NOT (item in_bay=none)

=

Working Memory120

a4 = (item name:iteml type:water size:67 in_bay:none)
" b = (item name:item5 type:scope size:71 in_bay:bay?) I

¢ = (item name:item7 type:bock size:53 in bay:bay3)

d = (item name:item9 type:paper size:34 in_bay:none)

e = (item name:iteml( type:pen gize:19 in_bay:none)

f = (pay name:bayl space:200 open:false)

g = (bay name:bay2 space:105 open:true)

Control Grammar

S — loaditem S
S — opennewbay S
S — stop

FIGURE 4.1. A Controlled Production SXstem

120 The letters a, ..., g are provided to facilitate references to the corresponding working
memory elements.
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FIGURE 4.2. CLR(0) Tables for FIGURE 4.1121

STEP 3: Generate CLR(0) tables for the resulting grammar. For the
example grammar above, the tables in FIGURE 4.2 would be generated.

STEP 4: Gernerate a disambiguation function 4 that finds an instantiation
for a given production. That is, given parsing action reduce i, where grammar
rule number i is of the form PRODUCTION_NAME - ¢, and a working
memory W, 4 will return (true, wq x) if W contains a satisfying list wq j for
production production_name, and (false, {)), otherwise. d returns (true, ()) for
all other reduce and accept parse actions. The satisfying list wy} is used
subsequently by a semantics function. For example, given the controlled
production system in FIGURE 4.1, d(reduce 4, W) = (true, (a, g)) since the
condition of production loaditem is satisfied by the satisfying list {2, g} from
W122, Similarly, d(reduce 5, W) = (false, {}).

STEP 5: Generate a semantics function r that applies the action of a given
production. That is, given a parsing action reduce i, where grammar rule
number i is of the form PRODUCTION_NAME - g, r applies the action of
production production_name to a given working memory W using a
satisfying list wy ; supplied by 4, and returns the resulting working memory.
For all other parsing actions r returns the original working memory. For
example, given the controlled production system of FIGURE 4.1, r(reduce 4, (g,

121 Where Ri = reduce i, A = accept, - = error, L = LOADITEM, O = OPENNEWBAY, and X =
STOP.

122 This assumes that {, g} is the first satisfying list encountered by d.
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g, W) applies the action of loaditem by modifying the in_bay and space
attribute values of 2 and g, respectively.

STEP 6: Construct a CLR(0) parser from the CLR(0) parse tables,
disambiguation function, and the semantics function defined above.

The resulting CLR(0) parser, when supplied with the working memory
from FIGURE 4.1 and an empty input string, will correctly interpret the
original controlled production system as defined by ALGORITHM 2.2. The
semantics function 7 specifies that every application of a parse action reduce i,
where grammar rule number i is of the form PRODUCTION_NAME — ¢,
fires an instantiation of production production_name. Such an instantiation
will only be fired if it is first found by the disambiguation function 4.
Similarly, & will only search for this instantiation if reduce i is the action
specified by the parse tables for the current parser configuration. The parsing
actions allowed in any configuration are determined by the grammar of STEP
2, which is derived directly from the original control grammar. In this way,
the procedural control information specified by the control grammar is used
to constrain the search for satisfied productions.

EXAMPLE 4.1

Consider the controlled production system of FIGURE 4.1 for which the
CLR(0) parse tables are given in Figure 4.2, and the disambiguation
function, and semantics function are generated by the above process.
Initially, the configuration of the CLR(0) parser would be ({ Ty 1), € and
the iniial working memory would be {a,b,¢d,e,f, g). Production loaditem ,
which corresponds to the current parse action reduce 4, has a satisfying
list {a, g), so dreduce4,{a,b,c.d,e.f,9) = (true,@a,8). Applying rreduce4,@,g), @, b,c,
d,e,f,g) applies the action of loaditem resulting in a new working memory
b’ b,cd,ef,g, where

r

a

8
and a new configuration ({ T IXLOADITEM, T,,1),6). Again, parsing action
reduce 4 is specified by the configuration and dreduce 4, ', b, ¢ d, e, f, g =

1}

(item name:iteml type:water size:67 in_ bay:bay?2)

’

(bay name:bay?2 space:38 open:irue)
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(true, d, 7). Applying rreduce 4, {d, 8" @', b, ¢, d, e, f, gD results in the new
working memory {',b,¢,d’,e,f,g"}, where

d’ (item name:item® type:paper size:34 in_bay:bay?2)

g" (bay name:bay2 space:4 open:true)
and a new configuration ({g Tg IXLOADITEM, Ty, IXLOADITEM, T;, 1), ©).
Again, parsing action reduce 4 is specified by the configuration, but no in-

stantiation of loaditem exists; dreduce4,(a’,b,c,d'e,f.g'D = (false, (). Configura-
tion (g Tg IXLOADITEM, Ty, IXLOADITEM, T, 2), €) is entered specifying
parse action reduce 5 (i.e., production opennewbay). Since dreduce 5,1a’,b, ¢,
d'se,f,g") = (rue, &, f), then rreduce 5, ¢, f), @', b,c, d' e, f, g'N) will be applied,
resulting in a new working memory @', b, ¢, d’, ¢, f, "l and configuration
({6 To, IXLOADITEM, T5, IXLOADITEM, T, 2XOPENNEWBAY, T3 1),6), where

I

l

f' = (bay name:bayl space:200 open:true)

In this configuration parse action reduce 4 is again specified, and the
disambiguation function dreduce4, @'bcd’ e, f,g"N=Crue, &~ ) Applying
rreduce 4,,—,f% 1’ b,c.d’e,f,8')) results in the new working memory @&’,b,c,
d',e’, f", g and configuration ({g Ty IXLOADITEM, Ty, IXLOADITEM, Ty, 2)
(OPENNEWBAY, T3 IXLOADITEM, Ty 1),€), where

e’ = (item name:iteml) type:pen size:19 in bay:bayl)

f' = (bay name:bayl space:181 open:true)

After unsuccessfully trying reduce 4 and reduce 5 the parser will be in
(&Tp IKLOADITEM, T, IXLOADITEM, T, 2XOPENNEWBAY, T3 D)
(LOADITEM, T5,3),€). Since direduce 6,@a’b,c,d’,e’,f", g"N) =(true, ), application
of r(reduce 6,&-), @', b, ¢, d’, e', ', ")) puts the parser in a new configuration
(6 To, IXLOADITEM, T, IXLOADITEM, T; 2{OPENNEWBAY, T3 1)
(LOADITEM, T5, 3STOP, T4, 1),€) and leaves working memory unchanged.
The parser will then repeatedly reduce by the three control rules until the
parser reaches the configuration ({g T IXS, T7, 1),€) and halts. This sample
interpretation of the controlled production system of FIGURE 4.1 is exactly
that defined by ALGORITHM 2.2. 11



4.1.4. Memory Support Information

As described in CHAPTER 2, every k-predicate is composed, in part, of a
one-element component that examines a single working memory element.
Any evaluation of such a one-element component, such as that denoted by

(item type=widget size=266 in_ bay=none)

on a specific working memory element, such as
(item name:wl3 type:widget size:73 in_bay:none)

will always return the same result, in this case true. By remembering this
result across interpretation cycles, the match process (i.e., & in the parsers
described in the previous section) can restrict its attention to that subset of
working memory that matches the one-element components of the k-
predicates in a condition. Such information, that relates k-predicates to the
working memory elements that partially match them, is called memory
support information.

Remember from CHAPTER 2 that a working memory element universe is

a set containing all working memory elements that could ever be used by a
particular production system. Also, every working memory element universe
is divided into distinct categories. For the production memory in FIGURE 4.1
the distinct one-element components of k-predicates are denoted by:

(item in_bay=none)

(bay open=true)

(bay open=false)

Each of these k-predicates is a characteristic predicate of some subset of the
appropriate category, either ifem or bay. Such a category subset will be called
an element class. The names ANYITEM, OPENBAY, and CLOSEDBAY will
denote the three element classes specified above, respectively. The following
diagram illustrates the relationship between this particular working memory
universe (U), the categories item and bay, and the element classes ANYITEM,
OPENBAY, and CLOSEDBAY.
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Although a working memory (W) can contain working memory elements
from any category (and thus from any element class), not all working
memory elements are necessarily in working memory. The working memory
elements that belong to an element class (e.g., E) and are also in working
memory (e.g., W) are found in the intersection of that element class and that
working memory (i.e., EN W).

Memory support information for a production system is available if
working memory is represented as a union of sets, where each such set is the
intersection of working memory with a relevant element class. The relevant
element classes are defined by the distinct one-element predicate components
in production memory. All working memory elements that satisfy a pattern
predicate's one-element component are immediately available in the
appropriate set intersection. For example, the working memory in FIGURE 4.1
can be maintained as:

W={adduigluif
where:

¢ {a,d, e} is the set of elements in ANYITEM n W.

* {g} is the set of elements in OPENBAY N W.

* {f) is the set of elements in CLOSEDBAY N W.

e {b, c} is the set (not shown) of elements in W that do not belong
to any relevant element class; {b,¢c} S W ~ (ANYITEM v
OPENBAY u CLOSEDBAY).

In effect, such set intersections resemble the alpha memories of the Rete
and TREAT match algorithms.

4.1.5. Condition Membership Information

Information about the satisfiability of one element components of k-
predicates by working memory is called condition membership information.
If such one-element components cannot be satisfied, then neither can the
k-predicates, positive k-patterns, and conditions that contain them. A match
algorithm can use such information to restrict its attention to those
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conditions containing k-predicates with satisfied one-element components.
Fortuitously, maintenance of memory support information in terms of
element classes, as in the previous section, also provides condition
membership information. The working memory elements that satisfy any
one-element component of a k-predicate are immediately available in the
intersection of working memory and the element class corresponding to that
one-element component.

For example, consider the controlled production system of FIGURE 4.1.
Production loaditem contains two positive patterns with one-element
components denoted by

(item in_bay=none)
(pay open=true)

and associated with the element classes ANYITEM and OPENBAY,
respectively. For the condition of production loaditem to be satisfied it is
necessary, although not sufficient, for both of the sets ANYITEM n W and
OPENBAY n W to be non-empty. Initially, both of these sets are non-empty
(i.e., {a, d, e} and (g}, respectively) and the match algorithm should, according
to condition membership, try to satisfy this condition by finding one member
from each of the sets that satisfies the many-element components of the two
k-predicates.

Only minor modifications to steps 2, 4, 5, and 6 of the parser generation
process described in SECTION 4.1.3 are needed to generate a parser that uses
condition membership information:

OLD STEP1: Create a copy of the control grammar, and change all
terminal symbols of this grammar (i.e., production names) into identical non-
terminal symbols. For the conirol grammar of FIGURE 4.1, the resulting
grammar is:

(1) S - LOADITEM S
(2) S — OPENNEWBAY S
(3) S —»STOP

NEW STEP 2: For every non-terminal production name in the grammar,
add a new grammar rule of the form PRODUCTION_NAME — x1 X3 ... X,
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where each x; is a terminal symbol associated with the it pattern in the
condition of production production_name, as follows:

o If the ith pattern is positive, then x; is the element class name
corresponding to the one-element component of that pattern's
k-predicate. Element class name grammar symbols are in lower
case to avoid confusion with the actual element class.

* Otherwise, if the ith pattern is negative, then x; is the string
“not_" concatenated with the element class name corresponding
to the one-element component of that pattern's k-predicate.
Element class name grammar symbols are in lower case to avoid
confusion with the actual element class.

For the controlled production system of FIGURE 4.1, the rules added are:

@) LOADITEM — anyitem openbay
(5) OPENNEWBAY - anyitem not_openbay closedbay
6) STOP —» not_anyitem

OLD STEP 3: Generate CLR(0) tables for the resulting grammar. For the
example grammar above, the tables in FIGURE 4.3 would be generated.

NEW STEP 4: Generate a disambiguation function 4 as follows123:

* For parsing actions of the form reduce i, where grammar rule
number i is of the form PRODUCTION_NAME - x;x5 ... %,
and a working memory W, £ will return (true, wyy) if wy  is a
satisfying list for production production_name, and (false, ()),
otherwise. The satisfying list wy ; will be supplied as input to the
semantics function 7 of NEW STEP (5) below.

* For parsing actions of the form shift x, where x corresponds to a
positive pattern (i.e., x = not_o. for some string a), 4 will return
(true, }) if the element class set X m W is non-empty, and (false,
(}), otherwise.

* d returns (true, ()) for all other reduce, shift, and accept parsing
actions.

123 1t is assumed that working memory is maintained as in SECTION 4,14, and that o takes
advantage of the resulting memory support information.



82

1 2 3 5 L B X a o c a 2
Tg [Sa Sa - ||T; Ty Ts Tg Tp - - T3 -
T, 1A - -1 - - - - - - - -
T, (S0 Se - ||- - =~ - - T, - - T,
T3 IR - -||- - - - - = = = -
Ty |Sa 8a - T Ty T5 Tg Tp - - T3 - |
Ts [Sa Sa - | |Typ Ty T5 Tg T2 - - T3 -
T¢ B~ ~-|- - - - = = = - -
T |IR& - -|][- - - - - - - - -
|| g IS¢ = - }- - - = = = T334 - =
Tg |IRL - -||1- - - - - = = - -
Tpo 2 - -|f- - - - - - = - -
Tp®- -|f- - - - =-- = - -

FIGURE 4.3. New CLR(0) Parse Tables for FIGURE 4.1124

For example, given the controlled production system in FIGURE 4.1,
d(reduce 4, W) = (true, {a, g)) since the condition of production leaditem is
satisfied by the satisfying list {4, g) from W. Similarly, d{reduce 5, W) = (false,
(). Also, d(shift anyitem, W) initially returns (true, () since the set ANYITEM
N W = {a, d, e} is non-empty.

NEW STEP 5: Generate a semantics function r that applies the action of a

given production125, That is, given a parsing action reduce i, where grammar
rule number i is of the form PRODUCTION_NAME - xg x; ... x4, r applies

the action of production production_name to a given working memory W
using a satisfying list wy ; supplied by 4 of NEW STEP (4) above, and returns

the resulting working memory. For all other parsing actions r returns the

124 Where Su = shift u, Ri = reduce i, A = accept, - = error, L= LOADITEM, X= STOP,B =
OPENNEWBAY, a = anyitem, o = openbay, ¢ = closedbay, 2 = not_anyitem, and 2=
not_openbay.

125 1t is assumed that the application of add operations by function 7 maintains the working
memory structure as in SECTION 4.1.4.
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original working memory. For example, given the controlled production
system of FIGURE 4.1, r(reduce 4, (2, g), W) applies the action of loaditem by
modifying the in_bay and space attribute values of 2 and g, respectively.

NEW STEP 6: Construct a modified CLR(0) parser from the CLR(0) tables,
disambiguation function, and semantics function defined above. This parser
differs from a normal CLR(0) parser in two important ways. First, the input to
the parser is a working memory, not a string, so parse actions of the form shift-
u cannot be applied in the normal CLR(0) parsing sense. The parser should
put the appropriate triple onto the parse stack, but should ignore the
remaining input, since there is none. Although it might a good idea to use
some symbol instead of shift for these parse actions, the present use of parse
tables created by existing parser generators dictates the name of this parse
action.

Second, the parsing algorithm must backtirack over failed shift actions
whenever the parser becomes blocked. This allows all actions for a given
configuration to be tried, and thus allows all legal productions to be examined
before the parser halts.

The resulting parser, called a palimpsest parser, uses control information
to fire productions in the same sequence as the parsers of SECTION 4.1.3. The
only differences are:

* Memory support information, as described in SECTION 4.1.4, is
used to speed up the match processing in 4, and

¢ Condition membership information is used to short circuit the
costly match processing of unsatisfiable conditions.

The limited backtracking of the palimpsest parsing algorithm is necessary
because a normal CLR(0) parser halts and signals an error when the
disambiguation function disallows all legal parsing actions in the current
configuration. For example, in table Tj, after shifting openbay, the
disambiguation function may discover that the many-element components of
the patterns in loaditem cannot be satisfied by W, and the only parsing action
in Ts, a reduction by “LOADITEM — anyitem openbay,” cannot be applied. In
this situation, the palimpsest parsing algorithm can “unshift” terminal
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symbols and ftry other parsing actions in previous configurations. Notice that
backtracking over reduce actions is proscribed, as that would involve the
costly “unfiring” of production actions.

EXAMPLE 4.2
The following is a trace of the palimpsest parser defined above for the
controlled production system in FIGURE 4.1. This working memory will be
represented as a union of sets, where the elements of each set denote
working memory elements as described above. Since the input string of a
palimpsest parser is always &, it is ignored and replaced in configurations
by the current working memory W; initially (4, d, e} U (g} U {f} U (b, c}126.
((E: TU! 1): W)
(e, To, 1anyitem, T, 1), W)
(e, Tp, 1Xanyitem, Ty, 1Xopenbay, T7, 1), W)

A reduction by rule (4) (i.e., loaditem), is applied, changing

4 = (item name:iteml type:water size:67 in bay:none)
g = (bay name:tbay2 space:l05 open:true)

into
a’' = (item name:iteml type:water size:67 in_bay:bay2)
g' = (bay name:bay?2 space:38 open :true)

and W becomes {d, e} U {g'tu {f} L {a', b, c}.

(e, Tp, IXLOADITEM, Ty, 1), W)
(g, To, IXLOADITEM, T4, 1){anyitem, T3, 1), W)
(e, Tg, IXLOADITEM, Ty, 1){anyitem, T3, T{openbay, T7, 1), W)
A reduction by rule (4) (i.e., loaditem), is applied again, changing

d = (item name:itemS type:paper size:34 in_ bay:none)
g' = (pay name:bay2 space:38 open :true)

into

d' = (item name:item9 type:paper size:34 in_bay:bay2)
g" = (bay name:bay2 space:4 open:true)

and W becomes {e} U {g"lu{fu{d',a,b,c}
(e, Tg, IXLOADITEM, T4, 1{LOADITEM, Ty, 1), W)

126 Throughout this example, the last sets in the representations of W (e.g., (b, ¢}} are dis-
played, although the working memory elements in this set will never be used.




(e, Tp, 1{LOADITEM, T4, 1XLOADITEM, Ty, 1Xanyitem, Ty, 1), W)
(g, Ty, IXLOADITEM, T4, 1XLOADITEM, Ty, 1)anyitem, T, 1)
(openbay, T, 1), W)
d disallows the only action reduce 4 in T7 , so backtrack.
(e, Tp, IXLOADITEM, T4, IXLOADITEM, Ty, 1)anyitem, Ty, 2), W)
(e, T, INLOADITEM, T4, IXLOADITEM, Ty, 1)anyitem, T, 2)
(not_anyitem, Tg, 1), W)
(e, Ty, IXLOADITEM, T4, 1{LOADITEM, Ty, 1){anyitem, T, 2)
(not_anyitem, Tg, 1)(closedbay, T11, 1), W)
A reduction by rule (5) (i.e,, opennewbay), is applied, changing

f = (bay name:bayl space:200 open:false)
into
f ' = (bay name:bayl space:200 open:true)

and Wbecomes {eju {f,g"lv@u{d,a,b,cl

((e, Tp, 1XLOADITEM, T4, IXLOADITEM, T4, 1{OPENNEWBAY, Ts, 1),
W)

(e, Tp, 1XLOADITEM, Ty, 1{LOADITEM, T4, 1{OPENNEWBAY, Ts, 1)
{anyitem, T, 1), W)
(e, Tp, 1{LOADITEM, T4, 1{LOADITEM, T4, 1{OPENNEWBAY, T5, 1)
{anyitem, Ty, 1)(openbay, T7, 1), W)
A reduction by rule (4) (i.e., loaditem), is applied again, changing

e = (item name:iteml0 type:pen size:19 in bay:none)
f’ = (bay name:bayl space:200 open:true)
into

e' = (item name:iteml(0 type:pen size:19 in bay:bayl)
f" = (vay name:bayl space:181 open:true)

and W becomes @ U {f", g"tvBule,d', a, b, c)

(e, Ty, IXLOADITEM, T4, 1IXLOADITEM, T4, 1{OPENNEWBAY, Ts, 1)
(LOADITEM, Ty, 1), W)

d disallows the first action in T4l, so increment j

85
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(e, Tg, IXLOADITEM, Ty, 1XLOADITEM, Ty, 1XOPENNEWBAY, T, 1)
{(LOADITEM, Ty, 2), W)

(e, To, IXLOADITEM, Ty, 1XLOADITEM, T4, 1{OPENNEWBAY, T5, 1)
(LOADITEM, Ty, 2){(not_anyitem, T3, 1), W)

A reduction by rule (6) does not change working memory
((e, Tg, IXLOADITEM, T4, IXLOADITEM, T4, 1XOPENNEWBAY, Ts, 1)
(LOADITEM, Ty, 2X(STOP, Tg, 1), W)
A reduction by control rule (3) does not change working memory
(e, To, IXLOADITEM, T4, 1{LOADITEM, T4, 1XOPENNEWBAY, T5, 1)
(LOADITEM, Ty, 2XS, Tq, 1), W)
Reductions by control rules (1) and (2) do not change working memory
(e, Tg, IXLOADITEM, T4, IXLOADITEM, T4, 1{OPENNEWBAY, T5, 1)
(S, T10, 1), W)
(e, Tp, IXLOADITEM, T4, 1(LOADITEM, Ty, 1XS, Ty, 1), W)
(e, Tg, IXLOADITEM, Ty, 1XS, Ty, 1), W)
((81 TOI 1)(51 TII 1)1 VV)
Accept and output W= {f", g", ¢, d',a,b,c}.0

4.2. Palimpsest Parser Definitions and Theorems

4.2.1. Structure

In the previous section, palimpsest parsers and related concepts were
described informally. This section presents the analagous definitions and
theorems.

4.2.1.1. Working Memory

First, the definitions related to working memory are repeated for review.
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DEFINITIONS

For a given alphabet ®, U S ®*is a working memory element universe,
and elements of U are called working memory elements. Each U is parti-
tioned into finitely many disjoint subsets Cm, cee s C(“), called categories. Each
category C € {C, ..., ™} is associated with a finite number m of maps
A1, ..., Ay, called attributes that map C into sets Vy, ..., V,,,, of values; that is,
A;:C— Viforie {1, ..., m}, where m, the A/'s, and Vs all depend on C. A
finite set of W S U is called a working memory. O

To facilitate the collection and maintenance of memory support and
condition membership information the concept of an element class in
introduced.

DEFINITIONS

An element class is a subset of a category. For any element class E € C the
one-element 1-predicate p'i’ : C — {true, false} that is the characteristic function

of E is called the element class specification of e. O

That is, for every one-element 1-predicate p% defined on C there exists an
element class E = {w e ClI pll(w)]. Also, for every k-predicate pi.‘, the
corresponding pfl specifies an element class. If pf is a tautology, as in a vac-

uous or many-element k-predicate, the element class defined is equivalent to

the entire category C. Henceforth, the superscripts and subscripts on a one-
element 1-predicate, like p%, will be omitted when p is known to be an

element class specification.

DEFINITIONS

An element class table entry is a pair (id, p), where id denotes an arbitrary
symbol, and p is an element class specification. A set of element class table
entries E = {(idy, p1), (ida, p2), ..., (idy, py)} is called an element class table if all
entries have unique id’s. If for production memory P and element class table
E, Yin,c,a)e B, Y{s; pi.‘) e ¢, Hid, pfl) e E, then Z is said to be derived from
f.0
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For example, the following element class table is derived from the
production memory in FIGURE 4.1:

{ (ANYITEM, (w e item, in_bay(w) = none)),
(OPENBAY, (we bay, open(w) = true)),
(CLOSEDBAY, (we bay, open(w) = false)) }

4.2.1.2. Production Memory

DEFINITION

A production memory grammar for a production memory 2 and
element class table E derived from Pis a CFG Gp= (Ng, Z¢, Pp, Sp), where:

1. Np=N(D).
2. Zp={id | {id,p)e EY v {not_id | {id, p) € E}.
3. A =|P4, and for every production {n, c, a) in P there is a corres-
ponding rule of the form n — x7 x5 ... x; in Ppsuch that
@ (+ p¥) e cimplies that x; =id and (id, pfl) e .
® (- pi.‘) e ¢ implies that x; = not_id and (id, pz‘i) e E
4. Spis any element of Np O

That is, a production memory grammar is a CFG with exactly one rule for
every production in a production memory that has been constructed as in
NEW STEP 2 of SECTION 4.1.5. The production memory grammar for the
production memory in FIGURE 4.1 is

LOADITEM — anyitem openbay
OPENNEWBAY — anyitem not_openbay closedbay
STOP — not_anyitem

For the following definition, remember from SECTION 2.2.3.1 that a
control language grammar Gk for a production memory P is defined on the
alphabet N(P).

DEFINITIONS

Let Gg = (N, Zg, Pk, Sk) be a control grammar and Gp= (Np, Zp, P, SgJ)
be a production memory grammar for P. A palimpsest grammar for P and K
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is a CFG G = (NKUNTIEIBPK UPp Sk = (N, Zox, Poy Spr). Gy is called the
control component of Gpy, and Gep is called the production memory
component of Gpg .00

That is, a palimpsest grammar for 2 is a combination of a production
memory grammar for 2 and a control grammar for P that has been
constructed as in OLD STEP 1 and NEW STEP 2 of SECTION 4.1.5. The
palimpsest grammar for the controlled production system of FIGURE 4.1 is

S — LOADITEM S

S — OPENNEWBAY S

5 - STOP

LOADITEM - anyitem openbay
OPENNEWBAY - anyitem not_openbay closedbay
STOP — not_anyitem

Notice that every rule in the production memory component of a
palimpsest grammar represents a production in the original production
memory; similarly, every terminal symbol represents a pattern. In order to
make such correspondences explicit in later definitions, the following
functions are defined.

DEFINITIONS

Let Gk be a palimpsest grammar. The function PROD pg maps
{1,...,1Pgd} = Pu {error) such that:

o If the ith rule in Gp is in the production memory component,
then PROD pi(i) = {n, c, a), the production in 2P corresponding to

that rule.
¢ Otherwise, PROD gpKi) = error.

Let ‘E be an element class table derived from P. The function SIGN(id)
maps Zpg— {+, ~} such that:

* SIGN(x) = —, if x = not_id and there exists an {id, p) € E.
e SIGN(x) = +, otherwise.

Similarly, the function ECgpg maps Zpg — 2U such that
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e If x is of the form not_id, then ECpg(x) returns the element class
denoted by (id, p) € E, thatis {w | w e C and p(w) = true}, where
p: C — {true, false}.

e Otherwise, ECpg(x) returns the element class denoted by (x, p) e
£ 0

DEFINITION

The palimpsest disambiguation function for a palimpsest grammar Gpg
and production memory P is a disambiguation function 4 that maps 4 x 2U
— {true, false} x U*, where 4 is the set of parsing actions in the canonical set
of CLR(0) parse tables for Gpg, such that, for all W < U:

o d(shift x, W) = (false, ()), if SIGN(x) = + and ECpxlx) " W = .

o dlreduce i, W) = (false, (}), if PROD px{i) = (n, c, a), and ¢ cannot be
satisfied by W.

» dreduce i, W) = (true, wy ), if PROD (i) = (n, c, a), and V{+, pk)
€ ¢, 3wy e WK such that pk(wq ) = true, and V{-, pk) e ¢, Vw;
€ C,', {F(ka) =false.

o dlp, W) = (true, (}), otherwise, for all other parse actions pe 4.0

As described in SECTION 4.1, the purpose of 4 is to find production
instantiations. When applied to shift actions, 4 uses condition membership
information to short circuit unsatisfiable productions. Similarly, when
applied to reduce actions, 4 tests the many-element components of k-
predicates to find a satisfying list from among those subsets of working
memory defined by memory support information. For example, given the
CLR(0) table in FIGURE 4.1, the palimpsest disambiguation function for the
controlled production system of FIGURE 4.1 would be

d(shift anyitem, W) = [(ANYITEM n W= @), {}]
d(shift openbay, W) = [(OPENBAY n W= @), )]
dishift closedbay, W) = [(CLOSEDBAY n W= @), {)]

d(shift not_anyitem, W) = (true, {))

d(shift not_openbay, W) = (true, )

d(reduce 4, W) = (true, wy,7) if 3wy, wy € (ANYITEM N W) x
(OPENBAY n W), space(w,) 2 size(w1).
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d(reduce 4, W) = (false, {)), otherwise.

d(reduce 5, W) (true, (wy, w3)), if Iwq, wz e (ANYITEM N
W) x (CLOSEDBAY n W), Vw, e (OPENBAY
N W), space(w3s) 2 size(wq) A space(w;) <

I

size(w1).
dreduce 5, W) = (false, ()), otherwise.
d(reduce 6, W) = (true, {)).
d(reduce 1, W) = (true, {)).
d(reduce 2, W) = (true, {)).
d(reduce 3, W) = (true, {)).
dlaccept, W) = (true, )).

Notice that d(shift anyitem, W) = [[ANYITEM N W = &), ()] represents a
use of condition membership information; & will not allow the shift because
W contains no elements that will satisfy the corresponding pattern. Similarly,
d{reduce 4, W) = (true, wy,,) if Iwq, wy € (ANYITEM n W) x ... represents a
use of memory support information; many-element predicate components
only need to be evaluated on working memory elements that already satisfy
the one-element predicate components.

DEFINITION

The palimpsest semantics function for a palimpsest grammar Gg.and a

production memory Pis a semantics function r : 4 x U* x 2U 52U, where 4
is the set of parsing actions in the canonical set of CLR(0) tables for Gy, such

that, for all WE LI

* r(reduce i, wyy, W) =a(wyt, W), if PROD pili) = (n, c, a).
* r(d, wyr W) =W, for all other parse actions pe 4.0

In other words, if rule number i is part of the production memory
component of Gpg, then a palimpsest reduce function applies the action of
the corresponding production to working memory; otherwise, a palimpsest
reduce function does nothing. For example, given the CLR(0) table in FIGURE
4.1, the palimpsest semantics function for the controlled production system of
FIGURE 4.1 would be



92

r(reduce 4, (wy, wr), W) = (W~ {wg, waD) v {w,, wp}, where
w, € item, name(w,) = name(wy),
type(w,) = type(wyq), size(w,) = size(wy),
bay(w,) = name(w,), and wy € bay,
name(wy) = name(w,), space(wy) =
(space(w,)-size(wy)), open(wy) =
open(ws).

r(reduce 5, (wy, ws), W) = (W~ {w3)) v {w,}, where w, e bay,
name(w,) = name(ws), space(w,) =
space(ws), open({w,) = true.

r(reduce 6, (), W) =

r(reduce 1, (), W) =

r(reduce 2,{), W) =

r(reduce 3, (), W) =

r(shift anyitem, (), W)

r(shift openbay, (), W) =

r(shift closedbay, (), W) =

r(shift not_anyitem, ), W) =

r(shift not_closedbay, (), W) =

raccept, (), W) =

TTIZEZTETEEE

It is assumed that, when adding elements to working memory (e.g., W ~
{wy, wa)) U (w,, wy)), r maintains working memory as a union of element
class sets as described in SECTION 4.1.4.

The following definition ties all previous definitions in this section to-
gether to define the production system architecture of this thesis: the
palimpsest parser.

DEFINITION

A palimpsest parser for 2 and K is a function ¥: 2U 5 2U of the form
FW) = Fp(T,, Tp), 4, r, W), where:

e 9p is the palimpsest parsing algorithm (ALGORITHM 4.1, below),
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e (T, Tp)is the canonical set of CLR(0) parse tables, generated from
a palimpsest grammar G pg for a production memory P and a

control language K of 2.
* dis a palimpsest disambiguation function for Gpgand 2.
* ris a palimpsest semantics function for Gpgand 2.0

Examples of palimpsest parsers can be found in SECTION 4.1.5 and
Appendix B.

4.2.2. Interpretation

As described in SECTION 4.1.5, the palimpsest parsing algorithm is a
modified CLR(0) parsing algorithm that backtracks over shift actions when an
error is encountered. The input string to a palimpsest parser is always empty,
and is ignored. In its place, the input to the palimpsest parsing algorithm is a
working memory.

ALGORITHM 4.1
The palimpsest parsing algorithm.

Input. A canonical set of CLR(0) parse tables (T, Ty), a palimpsest

disambiguation function 4, a palimpsest semantics function 7, and an input
working memory W.

Output. A modified working memory.
Method. The state configurations will be pairs (o, x), where:

* o represents the parse stack (whose top is on the right).
Elements of o are triples of the form (o, T, j}, where 6 e T UN,
Te Tandj>0.

* X represents current contents of working memory.

The initial configuration is ({g, Ty, 1), ). At all times, let o, T, and j refer,

respectively, to the symbol, table, and index of the topmost triple on o.. Apply
the parsing action function f, of T in steps (1) through (8) as appropriate until
acceptance occurs or an error is encountered.
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1. If f(j} = error, then go to step (7). Otherwise go to step (2).
. IE dif,(), v) = (false, }), then go to step (6). Otherwise go to step (3).
3. If f(j) = shift u, then apply (a) through (c) below, as appropriate.
Otherwise, go to step (4).
(a) Push (u, g(u), 1) onto the top of o, where g is the goto function
of T. Otherwise go to step (7).
(b) Assign r(shift u, (), %) to x.
(c) Gotostep (1).
4. If f.(j) = reduce i for some production i of the form A — B, then apply
steps (a) through (d) below. Otherwise go to step(5).
(a) Assign r(reduce i, wy, X) to %, where wy ; is the list of working
memory elements in d{reduce i, x) = (true, wq x) from step (2).
(b) Remove |P] triples from the top of a.
() Push (4, g(A), 1) onto the top of o, where g is the goto function
of T.
(d) Gotostep (1).
5. If f(j) = accept, then apply steps (a) and (b) below.
(@) Assign rlaccept, (), %) to ¥.
(b) Halt, and output .
6. Iff,(j+1) = error, then replace (o, T, j) the topmost triple on o with
(o, T, j+1) and go to step (1) above. Otherwise, go to step (7).
7. If oe Zgpygor o =g, then go to step (8). Otherwise,
(a) Remove the topmost triple from o.
(b) Increment j.
(c) Goto step (1).
8. Halt, and output .0

Notice that steps (3b) and (5a) apply the semantics function for shift and
accept parsing actions; but, according to the definition, the semantics function
does nothing for these parsing actions. These two steps are included in the
algorithm because the production system programmer may want to augment
a palimpsest parser with additional semantics between production firings and
upon termination. EXAMPLE 4.2 in SECTION 4.1.5 provides a trace of the

palimpsest parsing algorithm for the controlled production system in FIGURE
41.
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4.2.3. Procedural Control

As described in SECTION 4.1.3, only legal instantiations are fired by a
palimpsest parser. Unfortunately, a palimpsest parser is not guaranteed to
find a legal production when one exists unless the control grammar is LR(0).
For example, consider the following LR(1) control grammar:

(1) MODULE_47 - PATH_A py
() MODULE 47  —p, PATH B p,
(3) PATH_A ~ P2 Ps

(4) PATH_B - Py

After firing productions p, and p; a palimpsest parser will be in a
configuration in which reductions by both rule (3) and rule (4) are applicable.
The palimpsest parser will reduce by rule (3), and then attempt to instantiate
p1. If p; cannot be instantiated the parser will erroneously halt. Productions
p1 and p3 are both legal, yet no attempt will be made to instantiate p3. The
problem lies in the fact that ALGORITHM 4.1 cannot backtrack over reductions
(i.e., non-terminals). The reduction by rule (3) pops two triples from the parse
stack, each containing a symbol, a table, and an index. The information that p;
is a legal production is lost.

There are a number of possible solutions to this problem. First, prior to
the generation of a palimpsest parser, it may be possible to transform a control
into an equivalent LR(0) grammar. For example, the following LR(0) control
grammar generates the same language as the the LR(1) control grammar
above

(1) OO0Prs — P2 P4 P1
(2) OOPs —P2 P4 P3

At present all such transformations are performed manually. To date, all
transformation attempts have been successfull??. Second, a production
system language based upon the palimpsest parser architecture can be
restricted to allow only LR(0) control grammars. Third, non-LR(0) control

127 Approximately 10 such transformations have been performed. Plans for future research
include the automatiing as much of the tranformation process as may be possible, at least
for the more common cases.
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grammars can be flagged at palimpsest parser generation time, forcing the
production system programmer to fix the control grammar. Fourth,
ALGORITHM 4.1 can be easily modified to perform full backiracking; however,
such modification would detrimentally affect the time and space costs of the
algorithm. Full backtracking is probably not justified considering the rarity of
non-LR(0) control grammars in practice.

The very nature of a modular production system language makes non-
LR(0) control grammars unlikely. By definition, each module is designed to
accomplish a specific task or goal by applying one of several different
sequences of lower level productions or production modules. It seems
unlikely, that a single module would specify many different ways of firing a
sequence of productions, when one of the primary goals of the modular
approach is to avoid such duplication.

4.3. Scope of Palimpsest Parsers

This section presents the two primary theorems of the thesis: that every
production system can be transformed into a palimpsest parser (THEOREM 4.1),
and that for every deterministic Turing machine there exists an equivalent
palimpsest parser (THEOREM 4.2).

LEMMA 4.1

For every production memory P there exists an element class table E
derived from P.

Proof. By construction (ALGORITHM 4.2 below). O

ALGORITHM 4.2
Derivation of an element class table from a production memory.
Input. A production memory P.
Output. An element class table £ derived from 2.

Method. Initialize E to @. For all productions (#, c, a) in P perform steps
(1) and (2) below.
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1. If (s, pl.‘) e c such that V{id, p) ¢ E, pfl # p, then assign p{&l’ top
and go to step (2).

2. Generate a unique string id* such that V{id, p) € E, id = id’, assign
(id’,p)w Eto .0

LEMMA 4.2

For every production memory P and element class table E derived from
P, there exists a production memory grammar Gop for P.

Proof. By construction, (ALGORITHM 4.3 below). O

ALGORITHM 4.3
Construction of a production memory grammar.

Input. A production memory 2 and an element class table £ derived
from 2.

Output. A production memory grammar Gp={Np, Zp, Py, Sp).

Method. Initially, Gp={Ngp, Zg, Pp, Sp) = (N(P), &, D, Sp), where Spis any
non-terminal member of Np. For every production (n, c, a) in P perform steps
(1), (2) and (3) below.

1. Initialize the LHS of femp to n, the RHS to g, and go to step (2).
2. For all (s;, PZ'() e ¢, perform steps (a) and (b) as appropriate, then go
to step (3).
(a) If s; = +, then assign id to the ith symbol on the RHS of temp,
where (id, pfl) € E, and assign {id} U Zpto Zp
(b) If 5; = —, then assign not_id to the it* symbol on the RHS of
temp, where (id, pfl) e E, and assign {not_id} U Zpto Zp
3. Assign {temp} U Ppto Pp O

THEOREM 4.1

For every Controlled Production System ((P, W), Gg) there exists a
palimpsest parser Fp((T;, Tp), &, v, W).

Proof. By Construction, (ALGORITHM 4.4, below)
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ALGORITHM 4.4

Construction of a palimpsest parser from a controlled production system.

Input. A controlled production system (P, W), Gg).
Output. A palimpsest parser Fp({Z,, Tg), 4, r, W).
Method. Perform Steps (1) through (3).

1. Construct %, an element class table derived from P, as in
ALGORITHM 4.2.

2. Construct Gy, the production memory grammar for 2 and E, as in
ALGORITHM 4.3.

3. Let Gpg be the palimpsest grammar with a production memory
component of Gp and a control component of Gg.

4. Construct (alternate form of) the canonical set of CLR(0) parse
tables {Z,, Tp) for Gpy, as in ALGORITHM 3.3.

5. Let dbe the palimpsest disambiguation function defined for Gpg
and 2.

6. Letr be the palimpsest semantics function defined for Gpgand 2.

7. Let Jp be the palimpsest parsing algorithm (ALGORITHM 4.1).

8. Output the resulting palimpsest parser Fp({Z,, Tp), 4,7, W). O

DEFINITION

ALGORITHM 4.4 is called the palimpsest transformation. Henceforth, the
notation PT(?P, Gg) denotes a palimpsest parser generated from a controlied
production system ({F, W), Gg) by the palimpsest transformation. 0

The palimpsest transformation transforms any controlled production
system into a palimpsest parser. But, the resulting palimpsest parser may not
interpret the controlled production system correctly if the control grammar is
not LR(0); it may halt prematurely. Because the solution to this problem is
not yet formally defined, it cannot yet be proven that the palimpsest parser
generated by the palimpsest transformation is always equivalent to the
original controlled production system. However, an equally powerful but less
satisfying result can be proven: that for every deterministic Turing machine
there exists an equivalent palimpsest parser (THEOREM 4.2).
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LEMMA 4.3

A palimpsest parser PT(®P , Gg) applies the action a(wqy, W) of produc-
tion (n, ¢, a) only if c is satisfied by W and wy y € W is a satisfying list for c.

Proof. A palimpsest parser only applies an action a(wy g, W) if step (4b) of
the palimpsest parsing algorithm applies the equivalent r(reduce i, wy s, W),
where PROD px(i) = (n, c, a). Step (4b) will only be applied if d{reduce i, W) has
just previously evaluated to {true, wy x) in step (2). By definition, this can
occur only if ¢ is satisfied by W and wy ; € Wk is a satisfying list of ¢. 0

THEOREM 4.2

For every deterministic Turing machine there exists an equivalent
palimpsest parser.

Proof. By THEOREM 2.1, for every deterministic Turing machine there
must exist an equivalent controlled production system (£, W), Gg). Notice,
both P and Gk are the same for all Turing machines, only W, which contains
both the tape and the instructions, changes. Therefore, it suffices to show that
PT(®P, Gg) correctly interprets (P, W), Gg). That is, a legal instantiation is fired
iff a legal instantiation exists. LEMMA 4.3 shows that only instantiated produc-
tions can be fired. Also, (P, W), Gg) is control free, so all productions are

always legal. All that remains to be shown is that an instantiation can be
found if one exists.

Applying the palimpsest transformation to ((%, W), Gg) produces an
element class table:

£ ={ (CONFIG, w e config),
(TAPE, w € tape),
(LEFT_INSTR, w € instr A move(w) = left),
(RIGHT_INSTR, w € instr A move(w) = right),
(STAY_INSR, w € instr A move(w) = left),
(INSTR, w e instr)}

and a palimpsest grammar Ggpg, below, with CLR(0) parse tables in FIGURE 4.4.

(1) LOOP — LENGTHEN TAPE LOOP
(2) LOOP — DO_LEFT LOOP
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(3) LOOP — DO_RIGHT LOOP

4) LoOor -> DO_STAY LOOP

(5) LOOP — HALT_CONDITION
(6) LENGTHEN_TAPE - config not_tape

(7) DO_LEFT — config tape left_instr
(8) DO_RIGHT — config tape right_instr
(99 DO_STAY — config tape stay_instr

(10) HALT_CONDITION — config tape not_instr

By inspection of FIGURE 4.4, after firing any production other than
halt_condition, the parser will be in a configuration with the topmost table
on the parse stack (i.e., Tygp) equal to one of Ty, Ty, T3, Ty, or Ts. From all of
these states, reductions by rules (6) through (10), corresponding to the
productions do_left, do_right, do_stay, and lengthen_tape, are reachable by
applying parse actions in the table as follows: W

Rule (6):  shift config, shift not_tape, reduce 6.

Rule(7): shift config, shift not_tape, backirack and shift tape, shift
left_instr, reduce 7.

Rule(8): shift config, shift not_tape, backtrack and shift tape, shift
left_instr, backtrack and shift right_instr, reduce 8.

Rule(9): shift config, shift not_tape, backtrack and shift tape, shift
left_instr, backtrack and shift right_instr, backtrack and
shift stay_instr, reduce 9.

Rule(10):  shift config, shift not_tape, backtrack and shift tape, shift
left_instr, backtrack and shift right_instr, backirack and
shift stay_instr, backtrack and shift not_instr, reduce 10.

After applying any of rules (6) through (9), the parser returns to one of the
initial configurations with Ttop equal to one of Tg, Ty, T3, Ty, or Ts. After
applying rule (10) (i.e., halt_condition), no other productions have satisfied
conditions, and the palimpsest parser begins reducing the parser stack and
eventually applies the accept action. If an instantiation exists, then it will be
found unless another instantiation also exists and is fired in its place. Either
way, an instantiation is fired iff an instantiation exists. O
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79 |sc - - -||ry 75 T3 T4 T5 T4 T, - - -~ - - -
T, 1A - - -] - - - -~ - - - - - - - -
7, |sc - - -||rg 70 753 74 T5 T T, - -~ - - - -
T3 [sc - - -||rg T35 73 74 T5 T4 T, - - - - - -
Ty [sc - - = ||Tp T2 T3 Ty T5 T T9 -~ ~ - - - -
s |Ss¢ - - - ||7yy T2 73 Ty Ts TP T - - - - - -
¢ [R5 - - - |- - - - - - - - - - - - -
I, {Sn 8¢t ~» - || - - - - - - Ty- - - T, -
T [0 - - -|[- - - - - - - - - - - - -
Ty [R2 - - ~|]- - - - - - - - - - - - -
Tp [R3 - = = |[F - - - = - - - - - - - -
Ty [R& - - - |]- - - - - - - - - - - - -
T2 [RE - = - |- - - - - - ~ - - - - - -
T3 |SL ScSssSm |- - - - = = = = T, T Tye = Ty
Ty [R7T - - -1]- - - - - = = - - —"— - -
Tys [IRB - - -|[- - - - - - - - - - - - -
T[R9 - - = |[- - - - - - - - - - - - -
Ty, RRO- - - |[- - - - - - - - - - - - -
FIGURE 4.4. CLR(0) Parse Tables for Turing Machines128

128 \here, L = LOOP, LT = LENGTHEN_TAPE, DL = DO_LEFT, DR = DO_RIGHT, DS =
DO_STAY, HC = HALT_CONDITION, ¢ = config, t = tape, | = left_instr, r = right_instr, s
= stay_instr, n = not_tape, m = not_instr




5. Analysis of Palimpsest Parser
Performance

In this chapter, the time and space efficiency of palimpsest parsers is ex-
amined. As is common in the literature!29.130, production system perfor-
mance is based upon two measurements: the time required to fire a single
instantiation, and run-time storage requirements. The focus is on two quan-
tifiable production system characteristics that appear to have the greatest effect
upon performance: the size of production memory, and the size of working
memory. Various implementation issues are discussed in order to provide a
basis for later performance claims. An overview of the processing required to
fire an instantiation is presented, followed by the best, worst, and expected
case time costs and the expected space costs with respect to production
memory and working memory sizes. Empirical results for simulated
controlled production systems are presented that support these time and
space cost calculations. The chapter concludes with a discussion of potential
optimizations.

5.1. Implementation Issues

Heretofore, palimpsest parsers have been described abstractly to empha-
size concepts and ideas rather than any specific implementation. However,
one possible implementation of the more abstract palimpsest parser data
structures and processes is presented to justify performance claims made later
in this chapter .

129 Forgy, 1979.
130 McDermott, Newell, and Moore, 1978.

102




103

5.1.1. Implementing Working Memory

As defined in CHAPTER 4, working memory in a palimpsest parser is
represented as a union of sets, each of which contains the subset of an
element class found in that working memory. One additional set contain
those working memory elements that do not belong to any element class, and
so do not contribute to the interpretation. Because a working memory
element may belong to many element classes, implementation of such a
working memory representation is not necessarily obvious. This section
presents one possible implementation.

5.1.1.1. A Working Memory Data Structure

One possible working memory data structure for palimpsest parsers is
shown in FIGURE 5.1. The element classes defined by a production memory
index an array of linked lists. Each such list contains exactly one member
record for every working memory element in working memory that is a
member of that element class. Every member record contains three pointers:

1. A pointer to a member record in another element class list that
points to the same working memory element. The lists defined
by these pointers are circular,

2. A pointer to the actual working memory element, and

3. A pointer to the next member record in the list.

Element _
Classes Member Records Working Memory

TRE;

mll

X
]

WM Element
FIGURE 5.1. A Working Memory Data Structure
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5.1.1.2. Adding Elements to Working Memory

Adding a new element to the working memory data structure of FIGURE
5.1 is a three step process:

1. Create the working memory element. The actual location of a
working memory element (i.e., on the heap, in an array, etc.) is
irrelevant, as long as a pointer (or index) to it is known.

2. Classify the working memory element. That is, determine to
which element classes it belongs.

3. For every element class to which the element belongs, add a new
member record to the beginning of the list indexed by that ele-
ment class. Also, all member records added during this step
must be linked into a circular list.

Ideally, steps (2) and (3) are interleaved. Whenever it is determined that
the working memory element belongs to an element class, a member record
is added to the list indexed by that element class.

Step (2) can be implemented in a brute force manner by evaluating all
element class specifications on a given working memory element. However,
such a simple implementation typically performs many redundant and
useless tests. For most production systems, the time required to classify work-
ing memory elements can be significantly reduced, as follows:

¢ Use nesting to avoid redundant evaluation of predicates.

* Use selection statements that support mutual exclusion {(e.g., if-
then-else statements).

* Use multi-branch selection statements (e.g., case statements in
Pascal and Ada) to test equality predicates.

¢ Re-arrange the order of predicate testing to support the above.

Each of the above optimizations is discussed below.

Often, one element class specification will differ from another by only one
of many predicates. Redundant evaluation of the shared predicates can be
avoided by nesting predicate tests. For example, the four predicate tests in the
following Ada fragment
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if in_bay(w) = none and size(w) = 66 then
add w to the list for element class X;

end if;

if in_bay(w) = none and size(w) > 33 then
add w to the list for element class Y;

end if;

could be reduced to the equivalent three predicate tests in

if in_bay(w) = none then
if size(w) = 66 then
add w to the list for element class X;
end if;
if size(w) > 33 then
add w to the list for element class Y;
end if;
end if;

Nesting predicate tests in this way significantly reduces the number of predi-
cate tests performed, especially when shared predicates are tested before dis-
tinguishing predicates.

Many predicate tests are mutually exclusive, for example age>40, age<20,
and age=30. Should any of these predicates evaluate true for a working mem-
ory element, the others must evaluate to false; further testing of such
predicates is wasteful. This mutual exclusion may be exploited by the use of
selection statements such as the Ada if-then-else statement. For example, the
following sequence of if statements

if age(w) >= 40 then

add w to the list for element class A;
end if;
if age(w) <= 20 then

add w to the list for element class B;
end if;
if age(w) = 30 then

add w to the list for element class Z;
end if;

may be replaced by an equivalent series of if-then-else statements as follows:




106

if age(w) >= 40 then

add w to the list for element class A;
else if age(w) <= 20 then

add w to the list for element class B;

else if age(w) = 30 then
add w to the list for element class Z;
end if;
Such “short circuiting” of predicate testing significantly reduces the number
of predicate tests performed, especially on those tests that occur early in the
sequence. Moreover, ordering the predicate tests according to their likelihood
of evaluating to true also improves performance.

Many predicates are mutually exclusive because they all test to see if the
same attribute value is equal to some constant. For example, the predicates
type=dog, type=cat, and type=mouse are mutually exclusive because the type
attribute can have exactly one value. When these constant values can be
enumerated the predicates are amenable to a particularly efficient testing con-
struct: the multi-branch selection statement (e.g., case statements in Pascal
and Ada), that can test any number of such mutually exclusive predicates in
constant time. For example, the following case statement tests the type predi-
cates above.

case type(w) of
when dog = add w to the list for element class A;
when cat = add w to the list for element class B;

when mouse = add w to the list for element class Z;
end case;

The use of multi-branch selection statements significantly reduces the cost of
predicate testing, especially when the more expensive predicate tests are
nested within multi-branch selections. Because a category must occur in every
pattern, it should always be tested by the outermost multi-branch selection.

The effectiveness of the above methods depends upon the order in which
predicates within a pattern are tested. This suggests that a judicious re-order-
ing of these tests to allow the application of the above methods would signifi-
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cantly increase that effectiveness. Predicate tests within a pattern should be
ordered, from first to last, as follows:

1. Predicates amenable to multi-branch selection should be evalu-
ated first; specifically, predicates that test for the equality of at-
tribute values and enumerable constants.

2. Predicates in one pattern that have mutually exclusive counter-
parts in other patterns should be evaluated before predicates that
do not. These mutually exclusive predicates should be ordered
the same in all such patterns to facilitate the use of selection
statements.

3. Remaining predicates should then be ordered by frequency;
predicates that occur in many patterns should be evaluated be-
fore predicates that are unique to a pattern. This facilitates nest-
ing to reduce redundant evaluation.

At present, the ordering of predicates is the responsibility of the production
system programimmer.

5.1.1.3. Removing Elements from Working Memory

Removing a working memory element from the working memory data
structure in FIGURE 5.1 requires two steps:

1. Remove from all element class lists all member records that
point to the working memory element.

2. Remove the actual working memory element from working
memory.

Although a working memory element may belong to many element
classes, there is only one of every element. Removal of a working memory
element requires that all member records that reference it must also be re-
moved. Because all member records that point to the same working memory
element are linked in a circular list, steps (1) and (2) are straightforward. For
example, when the working memory element is deleted, all member records
on the circular list can be marked for later removal when the element class
lists are traversed.
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5.1.2. Implementing Disambiguation Functions

A palimpsest disambiguation function 4 can be implemented as a func-
tion with case statements indexed by parsing actions as in FIGURE 5.2.

The code associated with a shift action, say shift x, assigns true to £ if the
element class list indexed by x is non-empty, and assigns false to 4 otherwise.
When a reduce action, such as reduce i, is passed to & the result depends upon
the nature of the grammar rule denoted by i. If i denotes a rule in the control
component of the palimpsest grammar, then d is automatically assigned true.
If i denotes a rule in the production component of the palimpsest grammar,
such as

LOADITEM —» anyitem not_openbay closedbay

then 4 must evaluate an expression, such as

Hwi, w3) € (anyitem N W) x (closedbay N W) 3 [space(ws)2size(wy)
A Ywy € openbay N W, ~(space(wy)2size(w))].

to determine whether or not the many-element component of the production
is satisfied by working memory.

i function d (action:in shift or reduce; which:in ec or rule) returns boolean is

— This is the outer skeleton of the disambicuation function d.
begin
return true;
case action is
when shift =
if element class list(which).first = null then
return false:
when reduce =
if is production memory rule(which) then
— The evaluation of many-element predicates is perfomned
— here by the code found in FIGEE 5.3.
end if;
end case;
end; {function d}

FIGURE 5.2. An Ada Implementation of Function d
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test sign := positive;
satisfied := true;
init list(sstack, stk top, k, positive, no more);

loop
case which is

— The following code tests the many element predicates of
— the production corresponding to rule nurber i in the
— palimpsest grammar. Similar case alternatives exist for
— all productions,
when i =
if test sign = positive then
satisfied := closedbay.space >= anyitem.size;
else
satisfied := not ((not openbay = nil)
and (not_openbay.space >=
anyitem.merber.size)) ;
end if;

end case;
if (test sign = positive) then
if not satisfied then
next positive list(sstack, stk top, k, no more);
else
test_sign := negative;
init list(sstack, stk top, k, positive, no more);
end if;
else
if not satisfied then
next_negative list(sstack, stk _top, k, no more);
else
test_sign := positive;
next, positive list (sstack, stk top, k, no more};
end if;
end if;
exit when no more;

end loop;
return satisfied;

FIGURE 5.3. Testing Many-Element Predicates in Function #131

131 The element class names used as records (e.g., anyitem, not_openbay, and closedbay)
within the context of a grammar rule are automatically converted into references to records
on the semantics stack sstack prior to compilation of the palimpsest parser. For example,
the occurrences of closedbay for production i will become sstack(fop).member; similarly,
occurrences of ntot_openbay will become sstack(top-1).member; and occurrences of openbay
will become sstack(top-2).member.
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procedure next positive list (sstack : in out semantics stack type:
rhs size : in pattern count range;
top : in sstack range;
all empty: in out boolean) is
ix : stack range;

begin
all empty := false;
iz 1= top — rhs size + 1;

while ((sstack(ix).member.next = null) or (sstack{ix).sign = negatiwe))
and (ix <= top) loop
begin
sstack (ix) .menber := elt class list (sstack(ix).elt class).first;
ix = ix + 1;
end loop;
if ix > top then
all empty := true;
else
sstack (ix) .member := sstack (ix) .member.next;
end if;
end next positive list;

procedure next negative list (sstack : in out semantics stack type;
rhs size : in pattem count range;
top : in sstack range;

all empty: in out bcolean) is
ix : stack range;
begin
all empty := true;
for ix in (top - rhs size + 1) .. top loop
if (sstack(ix) .member.next < null) and (sstack(ix).sign = negative) then
sstack (ix) .member := sstack (ix) .meber.next;
all empty := false;

end if;
end loop;
end next negative list;
procedure init list (sstack : in out semantics stack type;
rhs size : in pattern count range;
top : in sstack range;
sign : in positive or negative;

all empty: in out boolean) is
ix : stack range;
begin
all empty := true;
for ix in (top - rhs size + 1) .. top loop
1f sstack({ix).sign = sign then
sstack(ix) .member := elt class list(sstack(ix).elt class) .first;
end if;
if sstack({ix).member /= null then
all empty := false;
end if;
end loop;
end init list;

FIGURE 5.4. Procedures Called by Function 4
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One way to implement such an expression is shown in FIGURE 5.3. It is
assumed that the top k records on a semantics stack sstack are associated with
the k patterns on the RHS of the production. Each of these records contains:
an element class name or index elf_class specified by the pattern, a boolean
sign denoting whether the pattern is negated, and an access variable (i.e., a
pointer) next (initially null) to the next member record in the appropriate
element class list. A procedure called next_positive_list modifies the topmost
k next pointers on sstack such that successive calls will cycle through all
possible lists of positive working memory elements in the element class lists
specified by the topmost k elt_class and sign values on sstack. A similar
procedure called next_negative_list cycles through all possible lists of
negative working memory elements.

Again, a multi-branch selection or case statement is used to select the proper
code for 4. However, much of the code for each case is independent of the ex-
pression being evaluated, and has been moved outside of the case statement.
Remember from CHAPTER 4 that & returns a list in addition to a boolean
value. In the implementation above, the k elements of this list are found, one
each, in the topmost k records on sstack by following the next access link to a
member record, and then the working memory element.

5.2. Palimpsest Parser Time Costs

5.2.1. Overview of Palimpsest Parser Execution

Production system interpretation by palimpsest parser, as depicted in
FIGURE 5.5, involves the repeated application of three distinct processes:

1. Find an instantiation
2. Fire an instantiation
3. Apply control rules

each of which, in turn, may be composed of various other sub-processes. The
total time cost for palimpsest parsers with respect to a production system
characteristic is the sum of the time costs for these three processes.
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Find an Instantiation Fire an instantiation

. Find Satisfied Find Satisfied Apply Appl w
Fl:mg ﬁ.gf:s One-Element -)I_l\;ny-Element Operation|—>-e e e —3»| Op:frzt!i,o
———I"‘J uctio I Components| | Gomponents | # #n J

( Apply Control Rules)(—

FIGURE 5.5. A Diagram of Palimpsest Parser Execution

5.2.1.1. Finding an Instantiation

The process of finding an instantiation by a palimpsest parser may be
logically divided into three phases:

1. Find legal productions
2. Determine whether the one-element components are satisfied
3. Determine whether the many-element components are satisfied

These three phases are repeated until an instantiation is found or all legal
productions have been examined. The time cost of finding an instantiation is
then the sum of the time costs for these three phases.

A palimpsest parser is constrained by its control grammar to search for
instantiations of legal productions only. Illegal productions are never exam-
ined. This constraint is automatic and requires no additional processing.

The one element component of a pattern is satisfied if the name of the el-
ement class it specifies has been shifted onto the parse stack by the palimpsest
parser. Such a shift action can occur only if the intersection of working mem-
ory and the element class is non-empty. If symbols corresponding to all pat-
terns in a condition are on the top of the stack, then the one-element compo-
nent of that condition must be satisfied. If however, one such intersection is
empty, then a palimpsest parser will backtrack to a previous state and try a
different parsing action. For a palimpsest parser the time cost of evaluating
one-element predicates is independent of production memory and working
memory sizes; and the time costs of shift and backtrack operations are con-



113

stant; so the time cost of this phase is proportional to the numbers of shift and
backtrack operations applied.

A condition is satisfied if working memory contains a list of elements
that satisfies all of the positive patterns in the condition, but does not satisfy
any of the negative patterns in the condition. As described in SECTION 5.1.2, a
palimpsest disambiguation function performs this phase by evaluating the
many-element components of k-predicates on members of specific element
classes. The time cost of evaluating many-element predicates is independent
of production memory and working memory sizes; so the time cost of this
phase is proportional to the number of many-element predicate evaluations
performed.

5.2.1.2. Firing an Instantiation

. Production actions in palimpsest parsers are composed of sequences of
ADD and REM operations. A working memory element is added to working
memory by evaluating all element class specifications on that element and
adding it to the appropriate element class lists. Similarly, a working memory
element is removed from working memory by evaluating all element class
specifications on that element and removing it from the appropriate element
class lists. The time cost of firing’an instantiation by a palimpsest parser is
then the product of the number of operations in the action and the time costs
of those operations.

5.2.1.3. Applying Control Rules

As described above in SECTION 5.2.T.1, the use of a control grammar to
constrain the search for satisfied productions is automatic and incurs no
additional time cost. However, after an instantiation has fired, the application
of zero or more control rules may be necessary to place the palimpsest parser
into a new state in which productions may be fired. The time costs of such
control rule applications are independent of the size of production memory.
The time cost of applying control rules after firing an instantiation is then
proportional to the number of rules applied.

R — e rerma e e—— o m—— o R R Re 1) et s A 6. b 8 e
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5.2.2. Effects of Production Memory Size on Time

Of all quantifiable production system characteristics, the effect of produc-
tion memory size (P) on execution times most markedly differentiates
palimpsest parsers and other production system architectures. Although the
best and worst case time costs with respect to P are equivalent for palimpsest
parsers and other production system architectures, the expected time com-
plexity of palimpsest parsers with respect to P is O(1) while other architectures
are at least O(P).

5.2.2.1. Worst Case Effect of Production Memory Size on Time
The maximum number of shift operations that can be applied in the pro-
P

cess of finding an instantiation is bounded by ZCi, where C; is the number
i=1

of patterns in the condition of production i. Since something must be shifted
before it can be backtracked over, the maximum number of backtrack

P
operations is also bounded by ZCi .

i=1
The maximum number of positive, many-element predicates evaluated

P
-+
in the process of finding an instantiation is bounded by chi , where C'i" is
=1

the number of positive patterns in production i. That is, one test is made for
every production and every possible list of working memory elements of size
C'i". The maximum number of negative, many-element predicates evaluated
P
+ - - .
is Z(Wci sWeC;), where C; =C; ~ C';' is the number of negative patterns
ial

in production 132, That is, for every list of working memory elements found
to satisfy positive patterns, it must be verified that that list satisfies none of

132 Notice that the summation expression for negative many-element predicate evaluations

+ - + -
contains (Wci -w-c-) instead of (Wci -Wci). Because negative patterns are never
i 124 p

referenced by other patterns, working memory elements can be tested by one negative
pattern independently of the tests of other negative patterns; combinations are irrelevant
(cf. FIGURE 5.3).
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the C; negative patterns. A condition containing C; patterns requires the

P
most computation when all of its patterns are positive, that is ZWCi, where
i=1

+
Ci=Ci.

The maximum number of one-element predicates that can be evaluated
by a classification procedure for every element added to or removed from

P
working memory is bounded by ) C;. That is, all pattern predicates in

i=1
production memory specify different but not mutually exclusive element
classes, and none of the optimizations of SECTION 5.1.1.2 are applicable.

The maximum number of control rules that may be applied cannot be
specified a priori. However, for controlled production systems, in which
every confrol rule represents a plan for achieving some task, the average
control rule RHS should require many (at least two) productions to fire. A

generous upper bound on the number of control rules applied after firing a
production is then log,P.

The worst case time cost of finding and firing a single instantiation by a
palimpsest parser is then the sum of the above maxima multiplied by the
appropriate constants; specifically

P P P P
kpZCi + kz-ZCi + kQ-ZWCi + k4-k5-(ZCi + kg) + logoPeky
i=1 i=1

{=1 i=1
where:

k; is the time cost of performing a shift operation.

ko is the time cost of performing a backtrack operation.

ks is the time cost of evaluating a many-element predicate.

ks is the number of operations in the applied action.

ks is the time cost of evaluating an element-class specification.

ke is the time cost of adding or removing a working memory ele-
ment.

ky is the time cost of applying control rules.
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If Cirax is the maximum number of patterns in any condition in production
memory, then the above expression is bounded by

ki1 .P.Cmax + k2.P.Cmax + ksoPchmax + k4'k5’(P'Cmax + k6) 4 ]0g2P0k7

which can be simplified to

Pe [ (ki +ko+kyoks)® Craxc+ k3o WCmax] + kyoksekg + log,Peky.

The resulting worst case time complexity with respect to P is O(P).

The kind of production system necessary for a palimpsest parser to exhibit
this worst case behavior is unrealistic, especially for large production systems.
Many of the required production system characteristics are even mutually
exclusive. For example, in order for the P to appear in most terms, all
productions in production memory must be examined before any
instantiation is found. This requires that:

* The production system be control free.

¢ All conditions have satisfied one-element components.

* For all productions except the last one tested, the many-element
component of the condition is unsatisfiable by working memory.

* For the last production tested, the many-element component of
the condition is satisfied only by the last list of working memory
elements tested.

* Every pattern specifies a different element class, but no predi-
cates in element class specifications can be mutually exclusive or
amenable to other optimizations.

However, a very basic assumption is that no realistic, large production
system will be control free. Also, in order for WCax many-element predicate
evaluations to be performed for every production, every element in working
memory must always belong to every element class; but, this contradicts the
above requirement that every pattern specifies a different element class.

In order for the time costs of ADD and REM operations to be proportional
to PeC, then again, every pattern must specify a different element class, but no
predicates in element class specifications can be mutually exclusive or
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amenable to other optimizations. However, this contradicts a basic assump-
tion, that the rate of growth of new element class specifications is sublinear
with respect to production memory sizel33,

In order for logyP control rules to be applied after every instantiation fir-
ing, the production system must specify a maximum amount of control.
However, this contradicts the above assumption that the production system is
control free.

5.2.2.2. Best Case Effect of Production Memory Size on Time

The minimum number of shift operations performed by a palimpsest
parser in the process of finding an instantiation is C;, the number of patterns
in the first condition examined. In the best case no backtracking is required, so
the minimum number of backtrack operations performed by a palimpsest
parser is zero.

The minimum number of many-element predicate evaluations made by
a palimpsest parser in the process of finding an instantiation is onel34. That
is, for the first production examined, the disambiguation function 4 returns
true for the first list of working memory elements to be tested.

The minimum number of one-element predicates evaluated by a classifi-
cation procedure for every element added to or removed from working
memory is bounded by a constant. That is, if the pattern predicates in produc-
tion memory specify element classes such that the optimizations of SECTION
5.1.1.2 are applicable, the cost of classifying a working memory element is in-
dependent of the size of production memory.

The minimum number of control rules that can be applied after firing an
instantiation is zero.

133 ¢of, SECTION 5.2.2.3.

134 This assumes that the condition has only positive patterns (otherwise the number of
evaluations would be 2), and that the condition has a non-vacuous many-element
component (otherwise, the number of evaluations would be 0).
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The best case time cost of finding and firing a single instantiation by a
palimpsest parser is then the sum of the above minimums multiplied by the
appropriate constants; specifically

kil + ko0 + k3ol + kgokse(l + kg) + kye0

where the minimum size of any production condition is one, and k; through
k7 are the constants defined in SECTION 5.2.2.1. This expression may be
simplified to:

ki + k3 + kgokse(1 + k¢)

The resulting best case time complexity with respect to P is O(1).

Again, it is very unlikely that any real palimpsest parser will exhibit this
minimal time cost. However, the best case requirements are much less strin-
gent than those for the worst case; specifically:

* The first production examined is instantiated by the first list of
working memory elements evaluated.

* The time required to classify a working memory element is in-
dependent of the size of production memory.

No assumptions about the size of the production system, the amount of pro-
cedural control or the form of productions other than the one fired are re-
quired.

5.2.2.3. Expected Effect of Production Memory Size on Time

Before the expected effect of production memory size on time costs can be
predicted, it is first necessary to make some assumptions about what consti-
tutes a typical production system. The following paragraphs outline and jus-
tify such assumptions and assess their effect on the overall time costs. The ex-
pected effect of production memory size on time is then discussed.

The average number of legal productions over all states in a palimpsest
parser is constant with respect to the number of productions. That is, the
amount of control information grows in proportion to the size of production
memory. New productions are added to a production system to either refine
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its existing capabilities or to provide new ones. Productions that are added to
provide new capabilities require new control information to specify their
scope within the existing system. Productions that are added to refine existing
capabilities eventually generate the need for additional control to be imposed
because humans naturally divide large, complex problems into manageable
subproblems. The size of these subproblems tends to be independent of the
size of the overall problem and is primarily related to the complexity that an
individual can deal with at any one timel35. Each subproblem is then
represented by a set of legal productions. Because only legal productions are
examined by a palimpsest parser, the time required to find an instantiation is
proportional to the number of legal productions, and is independent of the
size of production memory.

The number of unique, one-element predicates evaluated by a classifi-
cation procedure grows sublinearly with respect to the size of production
memory. That is, the likelihood of a new production specifying a new one-el-
ement predicate decreases as the number of predicates in use increases!36.
Consider adding new productions to a large, existing production system. Most
likely, the production is being added to correct a deficiency, or to add a new
capability. In both cases, the production must examine and modify pre-
existing working memory elements in order to mesh with the existing
system; and the larger the original production system, the more likely that the
one element components of the new patterns have occurred in other produc-
tions. In addition, the likelihood that the optimizations of SECTION 5.1.1.2
apply to any new one-element predicate increases as the number of predicates
in use increases. For large production systems, the number of one-element
predicates evaluated in order to add or remove a working memory element
should tend to remain constant.

Iterations defined by the control component of a palimpsest grammar
must reference productions; that is, instantiations must be fired on each cycle
of the iteration. The purpose of the control grammar is to control the order of
instantiation firing, not to perform extraneous processing. The only

135 Forgy, Gupta, Newell, and Wedig, 1984, p. 118.
136 Forgy, 1979, p. 105.
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justifiable purpose for iteration in a control grammar is to repeatedly fire
some sequence of instantiations. The number of control rules applied after
firing an instantiation should then be bounded by some constant.

Taking into account the above assumptions, the expected time cost of
finding and firing an instantiation by a palimpsest parser is bounded by the
following constant expression

kiokg®Cax + ka*kg®*Crax + kg kg WCnax + kyokse (kg + ko) + ky
where

kg is the average number of legal productions
ko is the maximum number of one-element predicates evaluated by
the classification procedure.

The expected time complexity of palimpsest parsers with respect to P is
O(1). The expected time complexities of most other production system archi-
tectures with respect to P are at least O(P)137,

5.2.3. Effects of Working Memory Size on Time

This section describes the best, worst, and expected case time costs of find-
ing and firing an instantiation with respect to the size of working memory.

5.2.3.1. Worst Case Effect of Working Memory Size on Time

The expression for the worst case time cost of palimpsest parsers pre-
sented in SECTION 5.2.2.1 contains only one term that depends upon working
memory size; that is, k3*WCrmax. The worst case time complexity of

palimpsest parsers with respect to working memory size W is then
O(WCax).

137 Forgy, 1982.



121

5.2.3.2. Best Case Effect of Working Memory Size on Time

The expression for the best case time cost of palimpsest parsers presented
in SECTION 5.2.2.2 contains no terms that depend upon working memory size.

The best case time complexity of palimpsest parsers with respect to working
memory size W is then O(1).

5.2.3.3. Expected Effect of Working Memory Size on Time

The expected time complexity of palimpsest parsers with respect to work-
ing memory size W is difficult to determine. A large working memory can, in
the worst case, greatly increase the execution time of a palimpsest parser.
However, a large working memory also increases the likelihood that positive
patterns, the patterns that contribute the WS max term to the worst case time
complexity, will be satisfied. Empirical tests have shown that execution times
tend to be independent of W138, The expected time complexity of palimpsest
parsers with respect to the size of working memory W is then O(1).

5.3. Palimpsest Parser Space Costs

5.3.1. Overview of Palimpsest Parser Composition

The space cost for a palimpsest parser is the sum of the static space costs

(i.e., costs dependent upon P) for the following palimpsest parser compo-
nents:

¢ The compiled palimpsest parsing algorithm

e The compressed CLR(0) parse tables

® The compiled element class classification procedure
» The compiled disambiguation function &

¢ The compiled semantics function r

138 ¢f. SECTION 54.
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and the dynamic spacz costs of the runtime working memory data structure
(i.e., costs dependent upon W). All of these individual space costs are depen-

dent upon the palimpsest parser implementation chosen; that of SECTION 5.1
is assumed.

5.3.1. Effects of Production Memory Size on Space

The palimpsest parsing algorithm is independent of the palimpsest
grammar that it interprets. Hence, the space cost incurred by the palimpsest
parsing algorithm is a constant.

The space cost of CLR(0) parse tables is difficult to determine, a priori.
First, these tables tend to be very sparse, and are amenable to a number of
space reducing transformations!3%. Based on empirical tests of simulated

controlled production systems, it appears that space grows linearly with
respect to P.

As discussed in SECTION 5.2.2.3, the number of unique element classes
and thus the size of the compiled element class classification procedure

should grow sub-linearly with respect to P. A generous estimate would be a
size proportional to log,P.

Since exactly one case alternative is added to dand 7 for every production,
space cost of these functions is proportional to P. Combining all of the above
costs, the expected static space cost of a palimpsest parser is:

kg + kooP + kaelogoP + kg P + ks*P
which reduces to:
Pe(k; + kg + ks) + kaelogyP + ki
where:

k; is the space cost of the palimpsest parsing algorithm.
ko is the average space cost for each production's contribution to
the CLR(0) parse tables.

139 Dencker, Diirre, and Heuft, 1984.
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ks is the space cost of the element class classification procedure.

ks is the space cost of one case alternative in a disambiguation
function 4

ks is the space cost of one case alternative in a semantics function r.

The space complexity of palimpsest parsers with respect to P is O(P).

5.3.2. Effects of Working Memory Size on Space

The number of elements in working memory has no effect on the static
space costs above, but only on the space cost of the implementation depen-
dent working memory data structure itself. Assuming the data structure of
SECTION 5.1.1.1, the total dynamic space cost is a function of the number of
member records and the number of the working memory elements. Every
working memory element appears in memory only once, so the space cost
incurred by the working memory elements is proportional to W. Similarly,
with respect to W, the space cost incurred by member records is proportional
to Weky, where ky is the average number of element classes to which each
working memory element belongs. The total dynamic space cost of a
palimpsest parser is:

We(kg + ky)
where:

kg is the average space cost of a working memory element.
k7 is the average number of element classes containing each
working memory element.

The space complexity of palimpsest parsers with respect to W is O(W).

5.4. Empirical Tests of Palimpsest Parsers

This section presents the results of empirical tests to support the theoreti-
cal time and space cost calculations above. These results were obtained by
testing automatically generated controlled production systems. Note, the
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methodology used to construct such controlled production systems makes a
number of assumptions about typical controlled production systems
characteristics, and the validity of those assumptions have not been
provenl40,

5.4.1. Description of The Testing Methodology

Ideally, a large number of real world controlled production systems
would be analyzed to determine the effects of production memory size and
working memory size on time and space costs. Unfortunately, finding non-
proprietary production systems, of any kind, for use in such a study is very
difficult. And, even if such an array of production systems were available,
distinguishing the effects of individual production system characteristics on
the total time and space costs would also be difficult. As an alternative, the
BUILDER program creates controlled production systems for analysis.

The BUILDER program takes as input a number of quantifiable controlled
production system characteristics and produces a syntactically correct, but
semantically meaningless controlled production system141 that displays those
characteristics. Such characteristics include:

¢ The number of productions (P).

* The number of working memory elements (W).

* The mean number of patterns per condition (C).142

¢ The mean number of control rules with the same LHS (G). This
estimates module size.

* The ratio of the number of element classes to the number of
patterns.

140 These assumptions include: the distribution of the number of patterns per condition; the
distribution of the number of operations per action; the distribution of working memory
elements among element classes, etc.

141 Actually, instead of creating a controlled production system that must then be transformed
into a palimpsest parser, the BUILDER program creates a palimpsest grammar,
disambiguation function, and reduce semantics function directly.

142 The standard deviation of all mean values is also be specified to define the width of a
normal frequency distribution.
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* The mean number of element classes to which each working
memory element belongs.

* The ratio of positive to negative patterns in conditions.

* The probability that any many-element component in a positive
pattern will evaluate to true.

* The probability that any many-element component in a negative
pattern will evaluate to true.

A number of other characteristics are available; however, for the purposes of
this chapter, attention will be restricted to the effects of the most significant
characteristics: P, G, and C. All other characteristic values are estimated to
approximate typical production systems found in the literature. All design
decisions for the generated controlled production systems are made randomly
within the bounds specified by the input characteristics.

This arrangement allows the effects of individual production system
characteristics to be tested independently. Also, any number of nearly
identical production systems can be constructed and tested, providing accurate
statistics. Every time or space cost appearing in tables below is a result of at
least nine trials using at least three different, simulated controlled production
systems.

5.4.2. Empirical Results

The first test investigates the worst case scenario of SECTION 5.2.2.1.
Production system sizes range from 10 to 200 productions. Such worst case

production systems must be control free, so G = P. All productions are legal all
msec
fire

of the time. The results are presented in TABLE 5.1 below, where denotes

average firing rate, and 0'(;:: : ) denotes the standard deviation of that firing

rate. All tests were performed on a PRIME 9950 minicomputer. As expected,

the average rate of production firing (i.e, ’;:f:) grows linearly with respect to

P, as illustrated in FIGURE 5.6. The size of compressed CLR(0) parse tables (e.g.,
size) also grows linearly with respect to P.
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One unexpected result is the apparent unimportance of the working
memory size (W) on the firing rate. This result may be an artifact of the
construction process. The worst case scenario is so unrealistic that a wide
range of worst behaviors had to be constructed by the BUILDER program; one
such behavior may be in error. More likely, the effects of W do not become
noticeable until the ratio W/P becomes larger. Unfortunately, limitations of
available parser generators precluded testing of the worst case scenario with
large W.

The second test investigates the best case scenario of SECTION 5.2.2.2. The
results of this investigation are summarized in TABLE 5.2. As expected, the
firing rate appears constant with respect to P’ and W, as illustrated in FIGURE
5.7. Notice the difference in scale between the graphs of FIGURES 5.6 and 5.7.

The third test investigates the time and space costs of palimpsest parser
implementations of typical controlled production systems. Two important
theoretical results, predicted in SECTIONS 5.2, are supported by the data
presented in TABLE 5.3. First, the firing rate of a controlled production system
is constant with respect to the number of productions P; it is the module size
G that determines the firing rate of a palimpsest parser. Second, this firing
rate is very near the best case, as illustrated in FIGURE 5.8. These results for
simulated controlled production systems, display a consistent firing rate of
approximately 1000 productions per second.
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5110|598 |7 . . .
251 5 125 1398 [19.36 | £0.52| 19.28 | +0.55
5 [ 5 |50 | 2718 |38.49 | £0.94] 39.10 | +1.07
75 | 5 |75 | 4043 }58.87 | £1.59| 62.12 | +0.68
100} 5 |100| 5368 |79.64 ) +1.95| 79.88 | +1.11
1251 5 |1251 6715 {102.06] +2.41]101.45| +1.44
150 | 5 |150 | 8040 [132.24] +1.04 | 134.94| +2.50
1751 5 |175| 9365 |149.10| £3.53 | 144.73| +2.07
2001 5 |200(10690]162.46| £3.58 | 168.20| +2.00

TABLE 5.1. Worst Case Results

127

sec
fire

180 _
160 |
140
120 _
100

80 _
60 |

40 |

20

40 60 80 100 120 140 160

#Productions (P) = Module Size (G)

FIGURE 5.6. Worst Case Effect of Pon Time

180

260




128

PI1C|G fire’ | fire ire” | fire fire’
101 1 1 275 1044 | £0.02 | 044 | £0.01 | 0.44 | +0.01
2511 1 627 | 045 | £0.01 § 0.45 | +0.01 | 0.45 | £0.00
501 1 1 111991 0.42 | #0.00 | 0.43 | £0.01 | 0.43 | +0.01
7511 1 |1782 | 0.43 | x0.01 | 0.43 | £0.02 | 0.44 | 20.01
100 1 1 12354 | 0.44 | £0.01 § 0.44 | +0.01 | 0.45 | £0.01
1251 1 1 |2937 | 0.44 | £0.00 | 0.44 | £0.01 | 0.44 | £0.01
1501 1 1 | 3509 | 047 | £0.01 | 047 | 20.01 | 047 }| +0.01
175 1 1 4092|048 | £0.01 | 048 | £0.01 | 0.48 | +0.01
2001 1 1 14664 | 045 | £0.01 | 0.45 | £0.01 | 0.45 | +0.01
TABLE 5.2. Best Case Results

Q

a|e

E'-4=

1.35 +

1.20 +

1.05

0.90 +

0.75 +

0.60 T W = 100, 200, 500

045 + »—=s . . - — = 2 —

0.30 +

0.15 +

0 ————
0 20 40 60 80 100 120 140 160 180 200

#Productions (P)
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W =100 W =200 W =500 W= 1000

. msec | msec, | msec msec | msec, [ msec |  msec,

G|l P | C |5ize fire of fire _"_ fire G(I;liie:) fire of fire’ | fire fire/
325 | 3 | 879 | 1.12 | 0.09 | 1.12 | £0.08 | 1.12 | 20.00 1 1.13 | 2008
3150 | 3 |1815| 1.07 | £0.01 | 1.06 | +0.02 | 1.07 | £0.02 | 1.07 | +0.02
3175 | 3 (2694|095 | £0.04 | 095 | £0.05 | 0.95 | +0.04 | 0.94 | +0.04
311001 3 [357310.97 | £0.04 | 0.99 { +0.04 | 0.99 | £0.02 | 0.99 | +0.02
31125 3 |4509 | 1.06 | £0.03 | 1.05 | +0.03 | 1.06 | +0.05 | 1.04 | +0.06
3(150| 3 |5366 | 1.00 | £0.01 | 1.00 | #£0.03 | 0.98 }| +0.04 | 1.01 | +0.02
311751 3 16278 | 0.97 | £0.02 | 097 | £0.03 | 0.94 | +0.01 | 0.93 | +0.05
312001 3 |7159 ] 1.00 | £0.05 | 097 | +0.04 | 0.96 | +0.03 | 0.95 | +0.03
5125 | 3 | 840 | 1.24 | £0.08 | 1.25 | +£0.08 | 1.19 | £0.08 [ 1.22 | +0.08
5(50 | 3 |1680 | 1.09 | £0.05 | 1.07 | +0.05 | 1.10 | £0.06 | 1.11 | +0.01
5175 | 3 |2520 | 1.08 | £0.04 | 1.09 | £0.04 | 1.07 | £0.03 | 1.04 | +0.04
51100 3 [3349 | 097 | £0.06 | 0.98 | +0.06 | 0.98 | £0.08 | 0.95 | +0.07
51125| 3 4214 | 1.07 | £0.05 | 1.07 | +£0.10 | 1.06 | +0.10 | 1.02 | +0.08
51150 | 3 }5051 | 1.06 | £0.04 | 1.03 | +£0.04 | 1.04 | +0.04 | 1.04 | +0.03
511751 3 [5913 | 0.99 | +0.06 | 1.00 { +£0.03 | 0.93 | +0.03 | 0.94 | +0.02
51200 3 |6753 | 099 | £0.04 | 0.99 | +£0.03 | 0.98 | +0.01 | 0.96 | +0.01
10125 | 3 | 781 | 1.38 | £0.19 | 1.36 | +£0.15 | 1.36 | £0.21 [ 1.37 | £0.23
10150 | 3 |1571 | 1.16 | #£0.13 | 1.17 | £0.17 | 1.12 | £0.16 | 1.13 | +0.15
10175 | 3 2341 | 1.08 | £0.08 | 1.10 | £0.10 | 1.07 | £0.10 | 1.07 | +0.11
101100 3 }3131 | 1.11 | £0.04 | 1.09 | £0.06 | 1.09 | +£0.08 | 1.06 | +0.12
101125| 3 3945 | 1.08 | £0.04 | 1.08 | +£0.03 | 1.07 | £0.05 | 1.04 | +0.02
104150 | 3 4757 | 1.14 | +0.06 | 1.14 | +0.06 | 1.08 | £0.05 | 1.05 | +0.08
1011751 3 |5571 | 1.07 | £0.03 | 1.05 | £0.05 | 1.05 | £0.05 | 1.04 | +0.08
101200 3 16339 | 1.00 | £0.06 | 1.02 | £0.04 | 0.98 | +0.06 | 0.95 | +0.05
25125 | 3 | 623 (133 { £0.22 | 131 | £0.20 | 1.28 | 20.19 | 1.23 [ £0.17
25150 | 3 |1326 | 1.40 | £0.02 [ 140 | £0.03 | 1.41 | +0.03 | 1.41 | +0.04
25|75 |3 |2122 | 1.28 | +0.03 | 1.27 | £0.06 | 1.23 | £0.08 | 1.19 | +0.05
25|1001 3 |2844 | 1.22 | £0.03 | 1.21 | +£0.05 | 1.19 | #0.06 | 1.18 | +0.06
251125 3 3643 | 1.26 | £0.06 | 1.25 | +0.06 | 1.25 | £0.04 | 1.23 | +0.06
25|150| 3 |4431}1.15 | £0.10 | 1.17 | #0.10 | 1.12 | £0.09 | 1.09 | +0.11
2511751 3 |[5230 | 1.09 | £0.04 | 1.09 | +0.05 | 1.04 | £0.03 | 1.00 | +0.07
251200} 3 (5908 | 1.13 | £0.10 | 1.09 | #0.07 | 1.07 | +0.08 | 1.05 | +0.07

TABLE 5.3. Typical Production System Resuits
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6. Palimpsest Parser Enhancements

As described above, palimpsest parsers meet the speed and modularity re-
quirements of large production systems. Also, with little or no additional
effort, three features that are also valuable in the large production system
domain can be accommodated by the palimpsest parser architecture. This
chapter presents brief descriptions of those features, and outlines their
implementation where necessary. A number of directions for future research
are then outlined.

6.1. Additional Features

This section describes three useful features of the palimpsest parser
architecture.

6.1.1. Backward-Chaining Evaluation

The palimpsest parser production system architecture employs a forward-
chaining evaluation strategy by looking for instantiations of legal productions
and firing them as they are found. All goal structuring must be built into the
control grammar, However, large production systems may contain produc-
tions or modules that deal with a very wide range of problems, some of
which may be better suited to a backward-chaining evaluation. Fortunately, a
minor change to the palimpsest transformation provides this capability143.

First, the purpose of a backward chaining evaluation is to provide a goal
directed search for instantiations. That is, suppose that a specific working
memory element is required to satisfy a condition. For example, in the con-
trolled production system of FIGURE 4.1, production loaditem needs an ele-

143 Collins and Slothouber, 1988.
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ment from the OPENBAY element class, as illustrated in the following
palimpsest grammar rule:

LOADITEM - anyitem openbay

Also, suppose that another production exists that will create a desired ele-
ment when it's action is applied, such as the production opennewbay, repre-
sented by the following palimpsest grammar rule:

OPENNEWBAY — anyitem not_openbay closedbay

This situation might be represented by the production memory and control
grammar of FIGURE 6.1, where all original occurrences of production
opennewbay (now redundant) have been removed. To evaluate production
opennewbay using backward chaining, first create a copy of the corresponding
grammar rule, and change the LHS non-terminal symbol into the non-ter-
minal form of the desired element class name. For example:

OPENBAY — anyitem not_openbay closedbay

Next, modify the goal rule by replacing the terminal form of the desired ele-
ment class name by its non-terminal form:

LOADITEM — anyitem OPENBAY
Finally, add a new grammar rule with a LHS containing the non-terminal

form of the desired element class name, and a RHS containing its terminal
form:

OPENBAY — openbay
For the examples above, the resulting palimpsest grammar would be
1n s — LOADITEM §
2 S — STOP
(3) LOADITEM — anyitem OPENBAY
(4) STOP — not_anyitem
(5) OPENBAY — anyitem not_openbay closedbay
(6) OPENBAY — openbay

If necessary, the implementation of the palimpsest parsing algorithm should
be modified to treat both the non-terminal and terminal forms of the element
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Production Memory

loaditem:
(item in_bay=none)
(bay space2#l.size open=true)
=
CHG (#1, in_bay:#2.name)
CHG (#2, space:#2.space~#l.size)

backward opennewbay:
(item in_bay=none)
NOT (bay space2#l.size open=true )
(bay spacez2#l.size open=false)
=
CHG (#3, open:true)

stop:
NOT (item in_bay=none)
=

n ramimar

S — loaditem S
S — stop

FIGURE 6.1. A Backward-Chaining Controlled Production System

class name on the parse stack as if it were a terminal symbol; that is, allow
backtracks over that symbol.

Execution of the resulting palimpsest parser will attempt to instantiate
opennewbay (i.e., rule (5)) whenever an element from the OPENBAY
element class is required by loaditem. If opennewbay fires, an OPENBAY ele-
ment is guaranteed to be created, and processing of loaditem continues. If
opennewbay cannot be instantiated, the parser tries to apply rule (6), which
guarantees that an OPENBAY element already exists. If neither rule (5) or
rule(6) can be applied, the parser backtracks, just as if it had tried to shift
openbay.

Backward chaining rules can be used to instantiate other backward chain-
ing rules, ad infinitum.
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6.1.2. Separate Compilation Units

Many procedural languages, such as Ada, allow groups of modules to be
written and compiled separately, facilitating top-down design of large
programs. This situation can be emulated by palimpsest parsers144. First,
compile every controlled production system representing a compilation unit
into a palimpsest grammar, a disambiguation function, and a semantics
function (including classification procedure). Care must be taken to insure
that the same names are used for equivalent symbols in all compilation units.
Combination of the separate compilation units is straightforward; palimpsest
grammars are concatenated, the outermost case statements of each classifica-
tion procedure are combined within one classification procedure skeleton,
case statement alternatives for the various d's and r's are placed within a sin-
gle procedure skeleton. A palimpsest parser is then constructed as usual from
the combined palimpsest grammar, disambiguation function, and semantics
function.

6.1.3. Conventional Conflict Resolution

The fire first selection strategy was chosen for palimpsest parsers to opti-
mize performance. Should this selection strategy prove inadequate, then con-
flict resolution strategies such as recency, specificity, and refraction, and even
full conventional conflict resolution may be incorporated into palimpsest
parsers.

If the implementation of SECTION 5.1 is used, newly added or changed
working memory elements are placed at the beginning of element class lists.
Any instantiation found for a production will automatically contain the most
recent working memory elements in the satisfying list. This is not exactly the
recency conflict resolution function in the literature; but, if it is used for some

purpose other than providing procedural control, this version of recency
should be sufficient.

144 Collins and Slothouber, 1988.
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In the alternate form of CLR(0) parsing action functions, all shift actions
appear before reduce actions. This means that given a choice between two
similar, legal productions, a palimpsest parser will fire the one with the
largest, most specific satisfied condition. This is not exactly the specificity con-
flict resolution function in the literature; but, if it is used for some purpose

other than providing procedural control, this version of specificity should be
sufficient.

In those rare instances where it is necessary, refraction can be imple-
mented explicitly in any production system without resorting to full conven-
tional conflict resolution. Add an attribute to the affected working memory
elements. Such attributes are defined to have one value (or set of values)
when the working memory element is allowed to be used in an instantiation.
This attribute value is to be changed by a production's action to signify that

the working memory element cannot be used to match the same pattern
again.

If, for some unforeseeable reason, the fire first conflict resolution function
is inadequate for some application, conventional conflict resolution can be
performed by palimpsest parsers. Whenever an instantiation is found, the
disambiguation predicate puts it in a conflict set (along with the current parse
stack) and return false. Then, instead of firing an instantiation, the palimpsest
parsing algorithm searches for other instantiations. After all instantiations
are found, the palimpsest parser eventually blocks. At this point, instead of
halting, conventional conflict resolution and act phases should be executed.
The palimpsest parser then applies the proper parsing goto function for the
production fired and begins the next cycle. The time penalty incurred by this
process is quite high, but may be ameliorated with the use of conflict set
support information14,

145 Miranker, 1987.
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6.2. Future Research

This section describes various directions for future research related to

palimpsest parsers. These are preliminary ideas, and have not yet been
investigated.

6.2.1. Modular Production System Language

Before palimpsest parsers can be used to interpret large controlled
production systems, some large controlled production systems need to be
written. Therefore, a modular production system language suitable for the
construction of large production systems, and the transformation from that

language to pure controlled production systems need to be defined and
implemented.

6.2.2. Performance Optimizations

A number of approaches may lead to optimizations of palimpsest parser
performance. First, careful analysis of the working memory elements created
by production actions may allow the classification procedure (a potential
bottleneck in large production systems) to be bypassed in many situations.
Second, analysis of the relationships between productions and their relative
ordering in the control sequences may allow redundant patterns and op-
erations to be removed. Third, judicious re-ordering of symbols on the RHS
of productions in a production memory grammar may allow condition
membership to be used more effectively. Finally, a large body of performance
related LR parsing research concerns grammar and parse table
transformations. Much of this work may be applicable to palimpsest parsers.

6.2.3. Explanatory Capability

One useful feature provided by many production systems is the ability of
the system to provide a trace of its reasoning. A parse tree, constructed during
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the execution of a palimpsest parser, and annotated with satisfying lists and
working memory changes, should provide all the necessary information.
Such parse trees might be constructed explicitly by the production system
actions, or implicitly by a modified palimpsest parsing algorithm. If the parse
tree were represented as a structure in working memory, the trace
information would be available to the production system itself.

6.2.4. Uncertainty

Many production system architectures provide the capability to deal with
uncertain information. For example, certainty factors may be associated with
every working memory element that define the likelihood that the working
memory element is correct. Such a scheme might be emulated by palimpsest
parsers in one of two ways. The production system programmer may wish to
explicitly put a certainty factor attribute within all working memory elements,
and have productions examine and modify that information. Another
approach is to implicitly associate certainty factors with every working
memory element. The palimpsest disambiguation and semantics functions
could then be modified to automatically maintain uncertainty information
and use that information in the match process.

6.2.5. Reasoning About Controlled Production Systems

One potential problem in the construction of large production systems is
that many productions may be redundant, inconsistent, unreachable or even
unsatisfiable. The palimpsest parser architecture may allow many of these
problems may be spotted upon examination of the palimpsest grammar for a
controlled production system. For example, redundant productions will
result in palimpsest grammar rules with the same or similar RHSs.
Inconsistent and incorrect productions often result in palimpsest grammar
rules that reference new and unexpected element classes.
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6.2.6. Concurrency

One often mentioned, but seldom implemented feature of many produc-
tion system architectures is the ability to interpret different productions, or
groups of productions concurrently. Palimpsest parsers may be able interpret
concurrent productions and production modules. One approach is to use a
separate parse stack for every concurrent module, and modify the palimpsest

parsing algorithm to cycle among the tasks applying one parse action for each
task on each cycle.



7. Conclusion

It has been argued that “programming in the large is an essentially dis-
tinct and different intellectual activity from that of constructing individual
modules... [and] ... essentially distinct and different languages should be used
for the two activities.”146 A host of production system languages exist that are
suitable for creating small applications; yet none provide a truly modular en-
vironment for programming in the large. Furthermore, the speed of conven-
tional production system architectures that support these languages are pro-
hibitively slow for large production systems. This thesis introduces a new
production system architecture, called the palimpsest parser, that adapts LR
parsing technology to the process of interpreting large controlled production
systems. Controlled production systems provide a formal foundation upon
which to design modular production system languages for programming in
the large; and palimpsest parsers exploit that modular structure to interpret
production systems fast, regardless of size.

Controlled production systems are compiled into palimpsest parsers as
follows. Initially, the palimpsest transformation is applied to all productions
to transform them into context-free grammar rules with associated disam-
biguation predicates and semantics. This grammar and the control grammar
are then concatenated and compiled into modified LR(0) parse tables using
conventional parser generation techniques. The resulting parse tables, disam-
biguation predicates, and semantics, in conjunction with a backtracking LR(0)
parsing algorithm, constitute a palimpsest parser. When executed, this
palimpsest parser correctly interprets the original controlled production
system. Moreover, on any given cycle, the palimpsest parser only attempts to
instantiate those productions that are allowed to fire by the control language
grammar. Tests of simulated production systemsl47 have consistently

146 peRemer and Kron, 1976, pp. 80-86.

147 simulated production systems had the following characteristics: 200 productions, 500
working memory elements, an average of 3 patterns and 3 actions per production.

139
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exhibited firing rates in excess of 1000 productions per second on a
conventional minicomputer.
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Appendix A. Notation

Throughout this thesis, it is assumed that the reader is familiar with the
following notation and definitions:

e = is mathematical shorthand for “identical with.”

® V is the universal quantifier, and is read as “for all.”

o 3 is the existential quantifier, and is read as “there exists.”

*  3js mathematical shorthand for “such that.”

* iff is mathematical shorthand for “if and only if.”

e  Cis the subset operator.

* e is the set membership operator.

*  is the set intersection operator.

e U is the set union operator.

¢ An glphabet is a non-empty, finite set of primitive symbols.
* A word in Z is a finite string of symbols from alphabet Z.

¢  The length of a word «, denoted |a], is the number of symbols in .
¢  The empty word, denoted &, is a word of length 0.

e  Z*Kig the set of all words in £ with length less than or equal to k.
* X% is the set of all words in X of length 1 or greater.

e Z*=3tu el

*  oOx,y denotes the list of items {(otx, Oix41, .. , @y).

o 2Pisthe powerset of the set ®; that is, {¢ | ¢ S D).

* & x ¥ denotes the cartesian product of sets @ and V.

e Qk=dxPx... ktimes...XD.

e O*=PluPuPiu...

* & ~Y¥ denotes the set difference of sets @ and V.

*  Ais thelogical AND operator.

* v isthelogical OR operator.

* = separates a production's condition and action.

* 2 denotes “is a rightmost derivation of.”

¢ DO marks the end of examples, definitions, algorithms, and proofs.

Also, many definitions reference notational abbreviations that have been
introduced prior to that definition. A list of these abbreviations follows along
with the page number on which they first appear. Subscripted forms of
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abbreviations (e.g., w; is the subscripted form of w) are not shown.

Occasionally, some of these abbreviations are overloaded, but the meanings
should be clear from context.

Page Abbrev.

9

O O O WO

21

2RREE

31
31
31
31
31
31
31

33
33

35
35

35
36

37
37
37
37
38

38
39

Meaning
The number of productions in a production memory.

The number of data elements in a working memory.
The number of patterns in production number i.

The number of positive patterns in production i.
The number of negative patterns in production i.

An alphabet of primitve symbols in a PPS.
An alphabet of variables in a PPS.

A context-free grammar (CFG).

The language defined by a CFG (G).

A production system alphabet.

A working memory element universe; U € @+,
A category in U; U = {c@ ... c,
AcategoryinU;Ce c@ ..., cmy.

A set of values.

An attribute of some category C; A:C —» V.
A working memory; W< U.

A working memory element; w e W.

All lists of working memory elements in U.
A k-predicate; pf‘ :C1 X ... X Cy — [true, false}.
The one-element component of p.

The many-element component of p¥.

The list {wy, wy, ..., wy).

The 41 such that gl(w;) = p¥' (w1 1)

A positive k-pattern.

A negative k-pattern.

A k-pattern of arbitrary sign.

A category; ¢ = (s, P, ..., (sp PP}

The set of all working memories of U.

An operation; 0: Cy X ... X Ci X 20U,

An action; alwy, W)=0,,/01 011, .. 011, W)..))
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40 n A production name; n € @+.

40 {n,c,a) A production on U.

40 PO The set of all productions on U.

40 P A production memory on U; PS P(U).
40 (P W A production system on U.

43 C(W) The set of all instantiations on (P(LI), U).

43 M A match function; M : Z]P(U) x2U ZC(U).

43 R A conflict resolution function; R : ZC(U) — C(U).
43 (M, R) A selection strategy.

45 N(P) The set of all production names found in 7.

45 K A control language of 7, K S N(P)*.
45 Gk A control grammar for control language K.
45 (P, W), Gg) A controlled production system.

57 S A set of LR(0) items.

57 a An LR(0) item set.

57 ¥ A viable prefix.

57  V{y) The item set for a viable prefix .

58 P The set of grammar rules in a CFG.
58 S The start symbol in a CEG.

58 f A parsing action function.

58 g A parsing goto function.

58  T() An LR(0) parse table for 4.

61 F A parsing function.

62 fe A CLR(0) parsing action function.

62 A The set of all parsing actions in a set of parse tables.

66 d A (palimpsest) disambiguation function.

66 r A (palimpsest) semantics (or reduce semtantics) function.
87 (d,p An element class table entry.

87 p An element class specification.

87 E An element class table.

88 Gop A production memory grammar for P.

89  Gpy A palimpsest grammar.

90 u+ The set of all lists of working memory elements in U.
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Appendix B. A Complete Production
System Example

This appendix describes the design and transformation process for a
complete, albeit small, production system. The first section describes the top-
down design of the production system from the problem specification. The
next section presents the element class table, palimpsest grammar, dis-
ambiguation function and semantics generated from the production system
by the palimpsest transformation. Finally, a sample execution trace for the
resulting palimpsest parser is presented.

B.1. Designing a Production System

The goal is to design a production system, called LOADBAY, that finds a
near optimal solution, much as a human might, to the following problem.

Determine how to load a list of items into a minimum number of
cargo bays, subject to the following constraints:

* No flammable fuel may be loaded into cargo bays.
» At least one food item must be loaded.
* No two items of the same type may be loaded into the same bay.

It is assumed that enough cargo space exists to load all items.

The inventory of items and the bays into which they are to be loaded will be
represented by a working memory, as in FIGURE B.1.

The constraints suggest that the problem can be decomposed into three
distinct phases: removing all fuel items, adding one food item, and loading
cargo bays. This decomposition may be represented by the following control
grammar rule, where non-terminals are surrounded by “<” and “>":

<loadbay> — <remove_all fuel> <add_one_food> <load_bays>
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(item name:iteml type:water size:67 bay:none)
(item name:item2 type:fuel size:98 bay:none)
(item name:item3 type:air size:83 Dbay:none)
(item name:item4 type:suit size:77 bay:none)
(item name:item5 type:scope size:71 bay:none)
(item name:itemé type:hose size:9 bay:none)
(item name:item7 type:bock s8ize:53 bay:none)
(item name:item8 type:wrench size:39 bay:none)
(item name:item9 type:paper size:34 bay:none)
(item name:iteml( type:pen size:19 bay:none)
I (item name:itemll type:nut size:10 bay:none)
(item name:iteml2 type:bolt size:9 bay:none)
(item name:iteml3 type:fuel size:71 bay:none)
(item name:itemld type:camera size:47 bay:none)
(pay name:bayl size:50 space:50 open:false)
(bay name:bay2 size:150 space:150 open:false)
(bay name:bay3 size:300 space:300 open:false)
(bay name:bay4d size:100 space:100 open:false)
(bay name:bay5 size:100 space:100 open:false)

FIGURE B.1. An Initial LOADBAY Working Memory

Removing fuel requires a loop, because more than one fuel item may be
in working memory. This loop may be represented by the following control
grammar rules, where terminal symbols represent production names:

<remove_all_fuel> — remove_fuel <remove_all_fuel>
<remove_all_fuel> — ¢

The remove_fuel production will be repeatedly applied until it's condition is
no longer satisfied.

Food is to be added only if none already exists in the inventory. Such an
optional production application is represented by the following control
grammar rules:

<add_one_food> — add_food

<add_one food> — ¢

In order to load bays as full as possible, a human might apply the follow-
ing two strategies:
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Strategy A
* Load larger items before smaller items. Items will be divided

into three classes: large (i.e., size266), medium (i.e., 33ssize<66),
and small (ie., size<33).

¢ Only open new bays when no more items fit into old ones. It is
assumed that no bays are initially open.

Strategy B
e Move items between bays to free larger blocks of space. Circular

moves are avoided if items are only moved into a destination
bay with less space than the origin bay.

* Swap items between bays to free larger blocks of space. Circular
swaps are avoided if the larger of the two items is swapped into
the bay with the lesser space.

Strategy A is designed to provide an approximate initial loading of items into
bays. Strategy B is designed to try to optimize the loading performed by
Strategy A. How these two strategies are to be applied? Strategy B must be
applied after Strategy A so that cargo bays will have loaded items to move
around. But how often should Strategy B be applied? every time Strategy A is
applied? or once, after all items have been loaded? One approach is to apply
Strategy B only if the amount of wasted space in any bay exceeds some
acceptable value, say, 15 percent. This approach may be represented in the
control grammar of FIGURE B.2, in which Strategy A and Strategy B are to be
applied in a loop until all items have been loaded. Strategy B is applied only if
it has not already been applied to the current loading scheme and if a bay
exists with more than 15 percent wasted space. Otherwise, Strategy A is
applied.



<loadbay>
+

<remove_all_fuel>
<remove_all_fuel>
<add_one_food>
<add_one_food>
<load_bays>
<load_loop>
<load_loop>
<load_loop>

<strategy_a>
+

<strategy_a>
+

<open>

<open>
<load_big>
<load_big>
<load_med>
<load_med>
<load_small>
<load_small>
<strategy_b>
<strategy_b_loop>
<strategy_b_loop>
<strategy_b_loop>

— <remove_all fuel> <add_one_food>
<load_bays>

-5 remove_fuel <remove_all_fuel>
—€

— add_food

—&

— check_load <load_loop>

— <load_loop> <strategy_a>

-» <load_loop> <strategy_b>

—E

— check_al <open> <load_big> <load_med>
<load_small>

— check_a2 <open> <load_big> <load_med>
<load_small>

— open_new_bay

—E

— load_big_item <load_big>

=&

— load_med_item <load_med>
— €

— load_small_item <load_small>
=€

— check_b <strategy_b_loop>

— swap_items <strategy_b_loop>
— move_item <strategy_b_loop>
=€

FIGURE B.2. The LOADBAY Control Grammarl48
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|

A number of productions (terminal symbols) were referenced in the

control grammar. Each production is supposed to perform a single, indepen-
dent, well-defined function. The top-down design process described above has
insured that this is so. Their definition, given their use in the control gram-
mar and the original problem specification, is straightforward. FIGURE B.3 lists
these productions. Notice the last four “check_" productions are used to
“guard” specific strategies and signal loop termination.

148 A “4# symbol in colum one indicates a continuation of the previous rule.
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remove_fuel:
(item type=fuel)

=

REM (#1)

add food:

NOT (item type=food)

=

ADD (item name:genname (item) +type:food size:l0
in bay:none)

open_ new bay.
(item in bay—none)
NOT (bay space2#l.size open=true )

(pay spacez2#l.size open=false)
=

CHG (#3, open:true)

load large_item:
{item size266 in_bay=none)
(bay space2#l.size open=true)
NOT (item type=#l.type in_bay=#2.in bay)
=
CHG (#1, in_bay:#2.name)
CHG (#2, space: (#2.space-#l.size) )

load_med_item:
({item size233 size<66 in_bay=none)
(bay spacezf#l.size open=true)
NOT (item type=#l.type in_bay=#2.in bay)
=
CHG (#1, in_bay:#2.name)
CHG (#2, space: (#2.space-#l.size) )

load_small_item:
{item size<33 in_bay=none)
(bay spacez2#l.size open=true)
NOT (item type=#l.type in bay=#2.in bay)
=Y
CHG (#1, in_bay:#2.name)
CHG (#2, space: (#2.space-#1l.s8ize) )

move_item:
(bay open=true)
(bay space>itl.space open=true)
(item size<f#l. space in_bay=#2.name)
NOT (item in_bay=#1l.in_bay “type=#3.type)

CHG (#3, in_bay:#l.name)
CHG (#2, space: (#2.space-#3.size) )
CHG (#1, space: (#l.space+#3.s8ize) )

FIGURE B.3. (part 1) The LOADBAY Productions
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swap_items: ||
(bay open=true)

(bay space>#l.space open=true)

(item size<#4.size in bay=#1l.name)

(item sizes(#l.spacet+#3.size) in_bay=#2.name)
NOT (item name##3.name in_bay=#3.in_bay type=#4.type)
NOT (item name##4.name in bay=#4.in_bay type=#3.type)

CHG (#4, in_bay:#l.name)
CHG (#3, in_bay:#2.name)
CHG (#2, space: (#2.space-#4.size+#3.size) )
CHG (#1, space: (#l.space-#3.size+#4.8ize) )

check load:
=

ADD (strategy swapped:true)

check al:

(strategy swapped:true)
=

check a2:

(item in_bay=none)
NOT (bay (space / size) > 0.15 cpen=true)
]

check b:

(strategy swapped=false)

(bay (space / size) > 0.15 open=true)
=

CHG (#1, swapped:true)

FIGURE B.3. (part 2) The LOADBAY Productions

—— el

Productions load_big_item, load_med_item, and load_small_item put
items into open bays that have enough space to store big, medium, and small
items, respectively; no two items of the same type are loaded into the same
bay. The productions move_item and swap_items try to reduce wasted space
by moving loaded items between bays. The productions add_food and
remove_fuel add food and remove fuel, respectively. Lastly, the production
open_new_bay opens a closed bay if one exists, and if there are unloaded
items that do not fit into any already open bay. These productions do not

specify any procedural control; this is done entirely by the control grammar in
FIGURE B.2.
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B.2. Applying The Palimpsest Transformation

The first step of the palimpsest transformation is to determine the ele-
ment classes represented by the patterns in all productions. FIGURE B.4 pre-
sents the element classes represented by the LOADBAY production system
above. In the implementation of SECTION 5.1, an element class table is only
used internally by the palimpsest transformation; a classification procedure,
that evaluates the element class specification predicates on working memory
elements, is inserted into a palimpsest parser. The optimizations described in
SECTION 5.1.3. are applied to this procedure to reduce redundant and
unnecessary predicate testing. A classification procedure for the LOADBAY
production system is shown in FIGURE B.5. Given a classification procedure,
the palimpsest transformation produces a palimpsest grammar rule for every
object-level production and control grammar rule. In addition, disambigua-
tion, semantics functions are defined, and a portion of each is associated with
every generated palimpsest grammar rule.

Element Class Specification Predicate |

LARGEITEM w € item A size(w) 2 66 A in_bay(w) = none
OPENBAY w € bay A open(w) = true

ITEM w e item

MEDITEM w e item A 33 < size(w) 2 66 A in_bay(w) = none
SMALLITEM w e item A size(w) < 33 A in_bay(w) = none
FOOD w e item A type(w) = food

FUEL w € item A type(w) = fuel

ANYITEM w € item A in_bay(w) = none

CLOSEDBAY w € bay A open(w) = false

SWAPPED w € strategy A swapped(w) = true
UNSWAPPED | w e strategy A swapped(w) = false
WASTEDSPACE | w € bay A open(w) = true A (size(w) /space(w)) > 0.15

FIGURE B.4. LOADBAY Element Class Table
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procedure classify (w : working memory element) is |
prev : merber ptr;

begin
prev := null;
case w.category is
when item =
add to elt class list (ITEM, w, prev);
case w.type is
when food =
add to elt class list (FOOD, w, prev);
when fuel =
add to elt class list (FUEL, w, prev);
when others=
if w.in bay = none then
if w.size < 33 then
add to_elt class list (LARGEITEM, w, prev);
elseif w.size > 66 then
add to elt class list (SMALLITEM, w, pxev);
else
add to elt class list (MEDITEM, w, prev);
endif;
end if;
end case;
when bay =
if w.open then
add to elt class list (OPENBAY, w, prev);
if (w.size / w.space) > 0.15 then
add to elt class list (WASTEDSPACE, w, prev);
end if;
aelse
add to elt class list (CLOSEDBAY, w, prev);
end if;
when strategy =
if w.swapped then
add to elt class list (SWAPPED, w, prev)
else
add to elt class list (UNSWAPPED, w, prev);
end if;
end case;
end classify;

FIGURE B.5. The LOADBAY Classification Procedure

e —d]

The resulting palimpsest grammar for LOADBAY is shown starting on
page 154. Note:
* Lines that begin with a “*” are comments.
* Lines that begin with a “<" are palimpsest grammar rules.
* Lines that begin with a “/” are chunks of disambiguation code
associated with the most recent grammar rule.



Non-blank lines that begin with a blank are chunks of semantics
code associated with the most recent grammar rule.

Lines that begin with a “+” are a continuation of the previous
grammar rule.
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The Palimpsest Grammar for LOADBAY

**% Below is the CONTROL component of the palimpsest grammar

<loadbay>

<remove all fuel>
<remove : all _ fuel>
<add one food>
<add one food>
<load bays>

<load . 1 loop>

<load locp>

<load locp>
<strategy a>

+

<strategy a>

+

<open>

<open>

<load large>
<load large>
<load med>

<load med>

<load small>
<load small>
<strategy b>
<strategy | b ) _loop>
<strategy | b loop>
<strategy | b loop>

T T T R R

e es .
*e
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<remove all fuel> <add one food> <load bays>
<remove ; " fuel> <remove ; all fuel>

<add food>

<check load> <load loop>
<load loop> <strategy a>
<load loop> <strategy b>

<check al> <open> <load large> <load med>
<load small>

<check a2> <cpen> <load large> <load med>
<load small>

<open_new bay>

<load large item> <load large>
<load med item> <load med>
<load small item> <load small>
<check b> <strategy b loop>

<swap : Ttems> <strategy b loop>
<move . item> <strategy b loop>
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**k Balow is the PRODUCTION MEMORY component of the palimpsest grammar,
*** with associated disambiguation code, and semantics.

<remove fuel> ::= fuel

remove (element => fuel) ;

<add food> ::= not food
add and cla551fy (category => item,

type => food,
in bay => none,
size => 10,

name => genname (item)) ;



<open_new bay> ti= anyltem not openbay closedbay

B

if test _sign = positive then

satisfied := closedbay.space >= anyitem.size;
else

satisfied := not ((not openbay <> nil)

and (not_openbay.space >= anyitem.size));
end if;
change and classify (element => closedbay,
open => true);

<load large item> ::= largeitem openbay not item

N RN N NN

if test : . sign = positive then
satisfied := openbay.space >= largeitem.size;
else
satisfied := not ((not_item <> nil)
and (not item.type = largeitem.type)
and (not item.in bay = cpenbay.name)):
end if;
change and classify(element => openbay,
space => openbay.space - largeitem.size):;
change and classify (element => largeitem,
in bay => openbay.name);

<load med item> ::= meditem openbay not item

/
/
/
/
/
/
/

if test . sign = positive then
satisfied := openbay.space >= meditem.size;
else
satisfied := not ((not item <> nil)
and (not item. type = meditem.type)
and (not item.in bay = openbay.name));
end if;
change_and classify (element => cpenbay,
space => ¢penbay.space - meditem.size);
change_and_classify (element => meditem,
in bay => openbay.name);

<load small item> ::= smallitem openbay not_ item

B N

if test . sign = positive then
satisfied ;= openbay.space >= smallitem.size;
else
satisfied := not ((not_item <> nil)
and (not item. type smallitem,type)
and (not item.in bay = openbay.name));
end if;
change and classify(element => openbay,
space => openbay.space - smallitem.size);
change and classify (element => smallitem,
in bay => openbay.name);



<swap_items> ::= openbay openbay item item not item not item

/ 1if test sign = positive then

/ satisfied := (openbay-2.space > openbay-1l.space)

/ and (item-l.size < item-2.size)

/ and (item-1.in bay = openbay-1.name)

/ and (item-2.size < openbay-l.space + item-l.size)
/ and (item-2.in bay = openbay-2.name) ;

/ else

/ satisfied := not ((not item-1 <> nil)

/ and (not item-l.name <> item-2.name)

/ and (not item-l.type = item-2.type)

/ and (not_item-1.in bay = item-2.in bay))
/ and not {(not item-2 <> nil)

/ and (not item-2.name <> item-l.name)

/ and (not item-2.type = item-1.type)

/ and (not item-2.in bay = item-1.in bay));
/ end if;

change and classify (element => item-2,
in bay => cpenbay-l.name);
change and classify(element => item-1,
in bay => cpenbay-2.name);
change and classify (element => openbay-2,
space => cpenbay-2.space — item-2.size
+ item-1.size);
change and classify (element => cpenbay-1,
space => openbay-l.space - item-l.size
+ item-2.size);

<move item> ::= openbay openbay item not_item

/ if test sign = positive then

/ satisfied := (openbay-2.space > openbay-l.space)

/ and (item.size < openbay-1.space)

/ and (item.in bay = openbay-2.name);

/ else

/ satisfied := not ((not item <> nil)

/ and (not item.type = item.type)

/ and (not item.in bay = openbay-1.name));

change and classify(element => item,

in bay => openbay-1.name);
change and classify(element => openbay-2,

space => openbay-2.space - item.size);
change and classify(element => openbay-1,

space => openbay-1l.space + item.size);
o=

<check load> 1=
add and classify(category => strategy,
swapped => true);
<check al> ::= swapped

<check az> ::= anyitem not_wastedépace

160
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<check b> 1 1= wastedspace unswapped
change and classify (element => unswapped,
swapped => true);
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B.3. Execution of the LOADBAY Palimpsest Parser

A partial execution trace is shown below for the palimpsest parser derived
from the LOADBAY controlled production system and the working memory
of FIGURE B.1. Every state entered by the parser is represented by lines similar
to the following:

Action: Shift largeitem. Element class LARGEITEM contains at least item1
Stack: <remove_all_fuel> <add_one_food> <a_ok> openbay largeitem
Effect: None

where the Action line describes the action just taken by the parser, the Stack
line describes the (topmost) symbols on the parse stack, and the Effect line
describes the effect this action has on working memory.

Action: Initialize palimpsest parser

Stack:

Effect: Working memory is that of FIGURE B.1.

Action: Shift fuel. Element class FUEL contains at least item13
Stack: fuel

Effect: None

Action: Fire production remove_fuel

Stack: <remove_fuel>

Effect: A fuel item (e.g., item13) is removed from working memory
Action: Shift fuel. Element class FUEL contains item2

Stack: <remove_fuel> fuel

Effect: None

Action: Fire production remove_fuel

Stack: <remove_fuel> <remove_fuel>

Effect: A fuel item (e.g., item2) is removed from working memory

Action: Reduce by <remove_all_fuel> — €
Stack: <remove_fuel> <remove_fuel> <remove_all_fuel>
Effect: None

Action: Reduce by <remove_all_fuel> — <remove_fuel> ...
Stack: <remove_fuel> <remove_all_fuel>
Effect: None

Action: Reduce by <remove_all_fuel> — <remove_fuel> ...
Stack: <remove_all_fuel>
Effectt None
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Action: Shift not_food

Stack: <remove_all_fuel> not_food

Effect: None

Action: Fire production add_food

Stack: <remove_all_fuel> <add_food>

Effect: A food item is added to working memory (e.g., item15)
Action: Reduce by <add_one_food> — <add_food>

Stack: <remove_all _fuel> <add_one_food>

Effect: None

Action: Reduce by <check_load> — €

Stack: <remove_all_fuel> <add_one food> <check_load>

Effect: Add a working memory element from element class swapped
Action: Reduce by <check_load> — &

Stack: <remove_all_fuel> <add_one_food> <check_load>

Effect: Add a working memory element from element class swapped
Action: Reduce by <load_loop> — ¢

Stack: <remove_all_fuel> <add_one_food> <check_load> <load_loop>
Effect: None

Action: Shift swapped. Element class SWAPPED contains one element
Stack: ... <check_load> swapped

Effect: None

Action: Reduce by <check_al> — swapped

Stack: ... <check_load> <check_al>

Effect: None

Action: Shift anyitem. Element class ANYITEM contains at least iteml
Stack: ... <check_load> <check_al> anyitem

Effect: None

Action: Shift not_openbay

Stack: ... <check_load> <check_al> anyitem not_openbay

Effect: None

Action: Shift closedbay. Element class CLOSEDBAY contains at least bay1
Stack: ... <check_load> <check_al> anyitem not_openbay closedbay
Effect: None

Action: Fire production open_new_bay

Stack: ... <check_load> <check_al> <open_new_bay>

Effect: The open attribute of bayl becomes true. bayl becomes an openbay
Action: Reduce by <open> — <open_new_bay>

Stack: ... <check_load> <check_al> <open>

Effect: None

Action: Shift largeitem. Element class LARGEITEM contains at least item1
Stack: ... <check_al> <open> largeitem

Effect: None
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Action: Shift openbay. Element class OPENBAY contains bayl

Stack: ... <check_al> <open> largeitem openbay

Effect: None

Action: Shift not_item

Stack: ... <check_al> <open> largeitem openbay not_item

Effect. None

Action: Attempt to fire load_large_item. No large item fits. Backtrack and

reduce by <load_big> — ¢

Stack: ... <check_al> <open> <load_big>

Effect: None

Action: Shift meditem. Element class MEDITEM contains at least item7
Stack: ... <check_al> <open> <load_big> meditem

Effectt None

Action: Shift openbay. Element class OPENBAY contains bayl

Stack: ... <check_al> <open> <load_big> meditem openbay

Effect: None

Action: Shift not_item

Stack: ... <check_al> <open> <load_big> meditem openbay not_item
Effect: None

Action: Fire production load_med_item.

Stack: ... <check_al> <open> <load_big> <load_med_item>

Effect: in_bay of item8 is set to bayl and space of bayl is reduced by 39

and so on...
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