
W&M ScholarWorks W&M ScholarWorks 

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 

1990 

A dynamic failure model for performing propagation and infection A dynamic failure model for performing propagation and infection 

analysis on computer programs analysis on computer programs 

Jeffrey Mark Voas 
College of William & Mary - Arts & Sciences 

Follow this and additional works at: https://scholarworks.wm.edu/etd 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Voas, Jeffrey Mark, "A dynamic failure model for performing propagation and infection analysis on 
computer programs" (1990). Dissertations, Theses, and Masters Projects. William & Mary. Paper 
1539623788. 
https://dx.doi.org/doi:10.21220/s2-dd5w-cp84 

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at 
W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an 
authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu. 

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623788&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623788&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-dd5w-cp84
mailto:scholarworks@wm.edu


INFORMATION t o  u s e r s

The mcst advanced technology has been used to photograph and 
reproduce this manuscript from the microfilm master. UMI films the 
text directly from the original or copy submitted. Thus, some thesis and 
dissertation copies are in typewriter face, while others may be from any 
type of computer printer.

H ie (gaslity of this reproduction is dependent upoa the quality of the 
copy submitted. Broken or indistinct print, colored or poor quality 
illustrations and phonographs, print bleedthrough, substandard margins, 
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete 
manuscript and there are missing pages, these will be noted. Also, if 
unauthorized copyright material had to be removed, a note will indicate 
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by 
sectioning the original, beginning at the upper left-hand corner and 
continuing from left to right in equal sections with small overlaps. Each 
original is also photographed in one exposure and is included in 
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced 
xerographically in this copy. Higher quality 6" x 9" black and white 
photographic prints are available for any photographs or illustrations 
appearing in this copy for an additional charge. Contact UMI directly 
to order.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

University Microfilms in ternational 
A Ben & Howell Inform ation C o m p an y  

300  Nortn ZeeD Roacl Ann Arbor Ml 48106-1346  USA 
313 761-4700 800  521-0600



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



Order Num ber 90S3124

A dynamic failure model for performing propagation and  
infection analysis on computer programs

Voas, Jeffrey Mark, Ph.D.

The College of William and Mary, 1990

Copyright © 1990 by Voas, Jeffrey Mark. All rights reserved.

U M I
300 N. Zeeb Rd.
Ann Arbor, MI 48106

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



A DYNAMIC FAILURE MODEL FOR 
PERFORMING PROPAGATION AND INFECTION 

ANALYSIS ON COMPUTER PROGRAMS

A DISSERTATION 

PRESENTED TO 

THE FACULTY OF THE DEPARTMENT OF COMPUTER SCIENCE 

THE COLLEGE OF WILLIAM AND MARY IN VIRGINIA

IN PARTIAL FULFILLMENT 

OF THE REQUIREMENTS FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY

BY

JEFFREY MARK VOAS
1990

©1990, Jeffrey Mark Voas, All Rights Reserved

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



APPROVAL SHEET

This dissertation is submitted in partial fulfillment of 

the requirements for the degree of

Doctor of Philosophy

'a rt Voas, Author

Approved, March 1990

LarryUi. Morell, DissertatiDissertation Director

Wl/f ^
William L. Bynum •

Sidney^n. Lawrence

Keith W. Miller

fe u s/ A
Paul K. Stockmeyer ^

R eproduced  with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.



Dedication

This thesis is dedicated to my parents Larry Keith Voas and Sarah Jane Strong 
Voas, and to my deceased grandfather Allan Clarence Strong for all of their love 
and encouragement. I thank God for all He has given me.

iii

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



C ontents

1 Introduction 1

1.1 Definition of the Problem .................................................................  1

1.2 Importance of the Problem .................................................................  2

1.3 Survey of Related T echn iques...........................................................  3

1.4 Propagation and Infection Overview.................................................. 5

1.5 Thesis Organization ........................................................................... 6

2 Terminology 10

2.1 Abstraction Level Definitions ...........................................................  10

2.1.1 The Four Abstraction Levels..................................................  13

2.2 Model and Implementation D efin itions...........................................  15

2.3 C onclusions........................................................................................... 21

3 Algorithms for Propagation and Infection 24

3.1 Infection Estimation Im plem entation...............................................  26

3.2 Propagation Estimation Im plem entation ......................................... 27

3.2.1 Failure Propagation..................................................................  27

3.2.2 Viral Propagation.....................................................................  30

3.3 Perturbation Functions......................................................................... 31

3.4 C onclusions...........................................................................................  36

4 Propagation and Infection Methodology 38

iv

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



4.1 Process Simplify .................................................................................. 41

4.1.1 Simple Expression Exam ples..........................................  42

4.1.2 Simple Predicate Examples ..................................................  44

4.2 Process Abstraction A n a ly ze r...........................................................  46

4.3 Process Dataflow A nalyzer.................................................................  46

4.4 Process Natural Data State P ro d u ce r............................................... 46

4.4.1 Trade-offs Between Artificial and Natural Sampled Data
S t a t e s ........................................................................................  47

4.4.2 Creation of Value Distributions at Data S p a c e s .................. 50

4.4.2.1 The Algorithm for Method I ................................ 51

4.4.2.2 The Algorithm for Method I I ................................ 54

4.4.2.3 The Algorithm for Method I I I ........................... 59

4.4.3 Sampling from Value Distributions for Methods I and II . 60

4.4.3.1 Method I Sam pling.............................................. 60

4.4.3.2 Method II S am p lin g ........................................... 61

4.5 Process Propagation A nalyzer...........................................................  62

4.6 Process Infection A nalyzer.................................................................. 66

4.6.1 Expression Infection A n a ly s is ................................................  69

4.6.2 Predicate Infection A nalysis ...................................................  70

4.6.2.1 Analytical Expression Infection A nalysis ............. 70

4.7 Infection Analysis Output and Failure Propagation Analysis Out­
put   73

4.8 Relating Propagation and Infection Estimates to the Thesis Objective 74

4.9 C onclusions.................................................................................. 75

5 Propagation and Infection Applications 79

5.1 Terminology and Definitions.....................................................  79

5.1.1 Latent Failure R a te .................................................................... 80

5.1.1.1 Latent Failure Rate Measurement Assuming Inde­
pendence   81

v

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



5.1.1.2 Latent Failure Rate Measurement Assuming Non- 
Independence ............................................................ 82

5.1.1.3 Latent Failure Rate Measure for an Entire Program 84

5.1.1.4 The Hierarchical Method for Measuring the Latent
Failure R a te ...............................................................  84

5.1.2 Software F a u ltp r in ts ...............................................................  90

5.1.2.1 Execution Estimate ................................................  92

5.1.2.2 Dispersion Histogram .............................................  93

5.1.2.3 Impact of Discovering Faults on the Software Fault-
print ............................................................................ 96

5.2 Auxiliary Application P rocesses.........................................................  96

5.2.1 Process Abstraction Analyzer’ ................................................  97

5.2.2 Process Dispersion Histogram Producer................................  98

5.2.3 Process Execution A n a ly zer...................................................  98

5.2.4 Process Viral Propagation A nalyzer....................................... 98

5.3 Applications............................................................................................  98

5.3.1 Probable Correctness................................................................ 99

5.3.1.1 Applying Dispersion Histograms and Latent Fail­
ure Rates to Probable C o rrec tn ess ......................  101

5.3.2 Software Reliability................................................................... 105

5.3.2.1 Applying Latent Failure Rates in a Software Reli­
ability M o d e l............................................................  105

5.3.3 Ultra-Reliability.........................................................................  106

5.3.4 Software T e s t in g ......................................................................  106

5.3.4.1 Applying Software Faultprints to Software Testing 109

5.3.5 Debugging................................................................................... 110

5.3.6 Testing Complexity...................................................................  114

5.4 C onclusions............................................................................................  115

6 E m pirical R esu lts  120

vi

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



6.1 T  Versus “Common Blunders” ............................................................ 121

6.2  Experiments for Validating the PIA Model and Implementation . 122

6.2 .1  Experiment I .......................................................................... 123

6 .2 .2  Experiment I I ..........................................................................  125

6 .2 .3  Experiment I I I ........................................................................  126

6.3  Similarity of Propagation and Infection Estimates Between Succes­
sive Versions...........................................................................................  135

6 .4  C onclusions...........................................................................................  142

7 Conclusions 146

7.1 Accomplishments..................................................................................  146

7.2  Future W ork ...........................................................................................  147

A Mathematical Preliminaries 151

A.l Graph Terminology ............................................................................ 151

A.2 Regular Expression Terminology ...................................................... 152

A.3 Conditional Probability and Independence Terminology.................  152

A.4 Monte Carlo Simulation Term inology...............................................  153

B Programs for Propagation and Infection Estimates of qcksrt 156

C Program Used in Experiment I 190

D Notation and Symbols 194

Bibliography 197

vii

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Acknowledgements

The author would like to express extreme appreciation to Larry J. Morell, for 
all of the time, support, and ideas that he has provided. Appreciation is also 
given to the four additional committee members for their willingness to serve on 
my committee: William L. Bynum, Sidney H. Lawrence, Keith W. Miller, and 
Paul K. Stockmeyer. The writer would like to express appreciation to Stephen K. 
Park for his excellence in lecturing and explaining mathematical principles both 
in the classroom and outside of it. Appreciation is given to P. Kearns and R. 
Noonan for administrating the Department of Computer Science SUN network 
which was essential in getting this document together. Appreciation for use of 
resources is also given to C. Andersen for use of his SUN 3/60 workstation and 
NEC laser printer. Gratitude is owed to Larry J. Morell and Keith W. Miller 
for their financial support to the author through research assistantships from 
NASA/Langley Grants NAG-1-824 and NAG-1-884.

viii

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



List of Tables

3.1 Propagation estimates for qcksrt using perturb(0.95,1.05,x).............  30

4.1 Method I e x a m p le ..................................................................................  52

4.2 Method I loop exam ple............................................................................ 53

4.3 Semantic Alternatives for the expression (a +  b ) ................................ 69

4.4 Semantic Alternatives for the predicate ((a <  b) and c ) ...................  70

4.5 Template of Minimum Data from P I A ...............................................  73

4.6 Template of Accumulated Data from PIA ..........................................  73

5.1 Second half of a software fa u ltp r in t...................................................... 91

6.1 Faults of “Common Blunders” ...............................................................  121

6.2 Failure propagation estimates for poidev using uniform(12, 13) for
i n p u t s ..................................................................................................... 124

6.3 Failure propagation estimates for poidev using uniform(12, 106) for
i n p u t s ..................................................................................................... 124

6.4 Failure propagation estimates for qcksrt using perturb(0.95, 1.05,x) 125

6.5 Failure propagation estimates for qcksrt using perturb(0.5, 1.5,x) . . 125

6.6 Failure propagation estimates for LIC v e rs io n ...................................  128

6.7 Original code from which the semantic alternatives were derived for
the LIC v e rs io n .....................................................................................  128

ix

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



List o f Figures

2.1 Two representations of code, (a) regular expressions, (b) flowgraph 12

2.2 Level 1 flowgraph.....................................................................................  14

2.3 Additional abstraction examples............................................................  15

2.4 Data space value distributions...............................................................  21

3.1 Infection estimation ............................................................................... 27

3.2 Example showing an infection interval versus potential fault value
d is tr ib u tio n ...........................................................................................  32

4.1 Processes of P I A .....................................................................................  40

4.2 Data space value distributions for repeated lo c a t io n s ......................  49

4.3 Data structure representation for natural data states for Method II 56

4.4 3-D space for a one-degree polynomial replacement for variable . . .  72

5.1 High Infection, Low propagation p ro bab ilities ................................... 83

5.2 High Propagation, High Infection probabilities................................... 83

5.3 Diagram showing latent failure rate determination by hierarchical
method .................................................................................................. 90

5.4 Processes for applications of P I A ......................................................... 97

5.5 n vs. Latent failure rate for various a s ...............................................  101

5.6 Incorrect control flow ............................................................................... 107

6.1 Failure propagation estimates graph 1 ...............................................  136

6.2 Failure propagation estimates graph 2 ...............................................  136

x

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



6.3 Failure propagation estimates graph 3 ...............................................  136

6.4 Infection estimates graph 1   136

6.5 Infection estimates graph 2 ..................................................................  136

6.6 Infection estimates graph 3   136

6.7 Failure propagation estimates graph 4 ................................................ 141

6.8 Failure propagation estimates graph 5 ................................................  141

xi

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Abstract

This thesis introduces a methodology for determining program locations where 
faults can easily hide. It is a program structure-based model that analyzes pro­
gram flow both statically and dynamically; each program location is analyzed 
relative to its preceding locations and succeeding locations. A statistical model 
termed propagation analysis studies the relation between incorrect internal data 
states and their affect on the output. Infection analysis is a statistical model 
which studies the relation between classes of faults and internal data states. To­
gether these two models combine to form one model of analyzing programs termed 
Propagation and Infection Analysis(PIA).

PIA employs aspects of both software testing methods and verification tech­
niques. The results of PIA distinguish it from traditional verification efforts how­
ever. Verification compares a program with its specification. The ultimate goal 
of verification is to show the program is correct with respect to its specification. 
PIA characterizes a program in terms of how its failure behavior will be impacted 
by the presence of faults at various locations. A location which minimally impacts 
the failure behavior is called fault insensitive. The goal of PIA is to identify fault 
insensitive location. Since program correctness, safety, and reliability axe all intri­
cately connected to the presence (or absence) of faults in the code, PIA therefore 
provides information useful in quantifying the effectiveness of other verification 
activities.

The implementation of the propagation and infection analysis model is per­
formed through dynamic executions of the program. Propagation analysis quan­
tifies the impacts on a program after its internal data states have been altered; 
infection analysis quantifies the impacts on internal data states that “common” 
faults have once injected at program locations. The statistics gathered from both 
altered data states and altered locations are then used to make predictions about 
expected program behavior if a fault were there.

Models are also provided for applying the results from propagation and infec­
tion analysis to a variety of applications dealing with software quality assurance. 
These include software complexity, debugging, software testing, software reliabil­
ity, software security, and probable correctness.

xii
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Chapter 1 

Introduction

This thesis presents both a model and an implementation for quantifying the 
impact that a particular location in the program has on the program’s output 
behavior. This enables identification of program locations where faults may more 
easily be hidden. Quantification of the impact of such sections is important in 
areas such as probable correctness, software reliability, and program testing.

1.1 Definition o f the Problem

This thesis explores the problem of determining where a fault can easily hide. It 
does this by quantifying the impact that each location has on a program’s output 
behavior. With this knowledge, the complementary information is also revealed: 
determining where a fault can not easily hide through the same quantifying process. 
This thesis presents a model and an implementation for solving this problem; the 
method does not use the program’s specification or an oracle. The scheme requires 
no prior knowledge of the software specification, design, or implementation.

The method introduced is called “Propagation and Infection Analysis(PIA)”. 
Propagation and infection analysis employs aspects of both software testing meth­
ods and verification techniques [7], The results of propagation and infection anal­
ysis distinguish it from traditional verification efforts however. Verification com­
pares a program with its specification. The ultimate goal of verification is to 
show the program is correct with respect to its specification [21]. Propagation 
and infection analysis characterizes a program in terms of how its failure behavior 
will be impacted by the presence of faults at various locations. A location which 
m i n i m a l l y  impacts the failure behavior is called fault insensitive. The goal of 
propagation and infection analysis is to identify fault insensitive locations. Since

1
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CHAPTER 1. INTRODUCTION 2

program correctness, safety, and reliability are all intricately connected to the 
presence (or absence) of faults in the code, propagation and infection analysis 
therefore provides information useful in quantifying the effectiveness of other ver­
ification activities.

Determining the impact a fault will have on a program’s variables(internal or 
output) is difficult. Examples can be created where:

1. removing a fault increases the failure rate,

2. adding a fault decreases the failure rate, and

3. adding two identical faults to different locations produce radically different 
failure rates [22].

This thesis builds on ideas found in [16, 5]. Morell [16] defines a creation con­
dition as a boolean condition describing program states in which the substitution 
of alternate code alters the computation. He further defines a propagation condi­
tion to be a boolean condition under which two altering states produce different 
output. These ideas are extended into the methodology of propagation analysis 
and infection analysis [22]. Propagation analysis empirically determines the prob­
ability of a propagation condition being satisfied; infection analysis empirically 
determines the probability of a creation condition being satisfied.

1.2 Im portance o f the Problem

Quantification of the impact of each location on the program behavior is important 
in areas such as probable correctness [6], software reliability [17, 2], and program 
testing [7]. With the information collected from propagation and infection analy­
sis, the following can be determined.

1. Where to get the most benefit from limited testing resources (fault insensi­
tive locations require more testing, therefore by identifying these locations, 
propagation and infection analysis saves resources which can be applied 
to the more critical fault insensitive locations; propagation and infection 
analysis results can save testing locations with more input points than are 
necessary to be convinced the location is probably correct),

2. Where not to emphasize testing; (propagation and infection analysis results 
may show extreme fault insensitivity thereby pinpointing locations for which 
no reasonable amount of testing can be performed to show high confidence 
in probable correctness, thus alternative techniques should be applied),
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CHAPTER 1. INTRODUCTION 3

3. The degree to which testing must be performed in order to be convinced 
that a location is probably correct; (propagation and infection analysis re­
sults may be used to determined how many test cases are necessary to be 
convinced a location is probably correct), and

4. Whether or not software should be rewritten (propagation and infection 
analysis results may be used as a guide to whether software is accepted,
i.e., if a piece of software has more than some threshold of fault insensitive 
locations, then the product may be rejected since too much testing will be 
required before probable correctness can be shown).

There axe other applications of these ideas; several are discussed in Chapter 5. 
The results of propagation and infection analysis tell where faults are more or less 
likely to exist, and this points to locations in the code where extra attention is 
warranted.

1.3 Survey o f R elated Techniques

There exist many schemes for fault detection in computer programs; these schemes 
are generally classified as either static or dynamic. Two broad schemes of static 
analysis are proof-of-correctness and program review. Testing, software reliability, 
and propagation and infection analysis are dynamic analysis schemes. Proof-of- 
correctness is static in that a formal proof is constructed to show that the function 
computed by the code is correct with respect to the specification [15, 1]. Program 
review inspects both the code and design to reduce the number of errors [3]. 
Testing is dynamic in that the program is executed on actual inputs. Software 
reliability measures the probability of the failure-free operation of software in some 
time interval [2]. The remainder of this section discusses how propagation and 
infection analyses is both unique yet related to dynamic and static schemes for 
analyzing the function a program computes.

Testing plays a significant role in analyzing software for faults. Statement 
testing attempts to execute every statement at least once; branch testing is another 
dynamic structural testing scheme that requires that each branch be executed at 
least once [15, 8, 19]. Both of these techniques are structural methods of covering 
software. However executing a location and not observing a failure merely provides 
one data point for estimating whether or not the statement contains a  fault. 
Propagation and infection analysis is another structural method which covers 
the software structure. However propagation and infection analysis extends this 
coverage idea to quantify the impact that a fault at a location will have on the
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CHAPTER 1. INTRODUCTION 4

failure rate.

Mutation testing [20] is testing strategy which evaluates the input points, by 
talcing a program P  and producing n versions (mutants) of P, [pi,p2, •••Pn], that 
axe syntactically different from P. If the input points distinguish the mutants 
from P, then it is assumed that if the actual program works with those test cases, 
the program is good. Mutation testing assumes the “competent programmer hy­
pothesis” which states that a competent programmer produces code that is close 
to being correct, where “close” means only a few syntax changes are required to 
correct the program. It also assumes that faults that interact can be caught with 
test data that reveals single faults, i.e., fault coupling is ignored [14]. Mutation 
testing tests input data; good test data kills all mutants. Infection analysis uses 
mutation testing ideas in the following way: Syntactic changes are made to pro­
gram locations; however, in propagation and infection analysis, these syntactic 
changes must cause semantic changes. Propagation analysis generalizes the ap­
plicability of mutation testing by allowing the data state to be perturbed. Note, 
however, that PIA’s goal is significantly different than mutation testing. Whereas 
mutation testing tests the input data, infection analysis tests the location’s ability 
to sustain a change in its semantics yet not change the state of the program.

Error-based testing attempts to define certain classes of errors and the subdo­
main of the input space which should reveal any error of that class if that error 
type exists in the program [18, 23]. Morell [16] proves properties about error- 
based strategies concerning certain errors that can and cannot be eliminated us­
ing error-based testing. Since error-based testing restricts the class of computable 
functions, it is limited as well. Error-based testing defines errors in terms of their 
syntax. Propagation and infection analysis is related to error-based testing in 
that it advances the notion of error-based testing by defining classes of errors in 
terms of their impact on the state of the program. Hence determination can be 
made for each location of what a state error of a particular impact has on the 
program’s output behavior. If the output behavior of the program is not similar 
to the expected impact, then a fault of that particular impact can be dismissed as 
not occurring. Hence propagation analysis can show that an infinite set of errors 
of a particular impact is unlikely to exist in the program.

Fault-seeding is an error-based technique used to estimate both the number of 
faults remaining as well as their type. Faults axe seeded and the “seeded” version 
is then run. Based upon the number of faults discovered, an estimate of the 
number of remaining faults is made [12]. A drawback is that if the seeded faults 
axe not representative of the inherent faults, the estimate is invalid. Stratified 
fault-seeding [13] improves fault-seeding by using the results from propagation 
analysis and infection analysis. It can be used to show that faults of a particular
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CHAPTER 1. INTRODUCTION 5

impact do not exist, instead of a syntactic class of faults.

Testing and propagation and infection analysis are fundamentally different. 
Testing’s goal is to detect faults through the production of failures; propagation 
and infection analysis’s goal is to statistically determine whether or not a location 
will reveal a fault through the production of a failure. Propagation and infection 
analysis may be viewed as a method for producing raw information that is central 
to the analysis of white-box testing strategies.

Software reliability is concerned with program output behavior. It attempts to 
predict from previous behavior either the probability of no failures in a specified 
time interval, or the number of remaining faults [2, 17]. In general, software 
reliability models are black-box schemes which do not consider the code. By 
relating fault presence to failure tendency, propagation and infection analysis may 
serve as the basis for a white-box model of software reliability.

Proof-of-correctness is a static method which can show the absolute correctness 
of a program. There are programs, however, where no such proof is possible. An­
other problem with correctness proofs is proving the correctness of the proof. The­
oretically, Propagation and infection analysis is applicable to any program, thus 
programs for which proofs-of-correctness are not possible may still be analyzed 
with propagation and infection analysis. For programs where proofs-of-correctness 
are not possible, Propagation and infection analysis can provide information on 
both where and to what degree to perform testing. Proofs of correctness require a 
specification; propagation and infection analysis does not require a specification.

In summary, propagation and infection analysis contains information not pre­
viously available, information that can be used by both dynamic and static veri­
fication schemes. The difference between propagation and infection analysis and 
other methods is the information necessary to use the method and the information 
provided by the method. Both these differences are significant in several diverse 
applications.1

1.4 Propagation and Infection Overview

Propagation and Infection Analysis is built upon the three conditions which are 
necessary and sufficient for a program to fail:

1. a fault must be reached,

1See Chapter 5.
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CHAPTER 1. INTRODUCTION 6

2. the fault must cause an incorrect internal data state, and

3. the incorrect internal data state must eventually cause incorrect output.

Thus for a program location to be fault insensitive, one of the three conditions 
above must have a high probability of being false for a randomly selected input.
A rarely executed location could easily hide a fault, since the location rarely is 
presented the opportunity to affect the output behavior. Next, suppose there is a 
location which should have the correct statement x := x mod 10000000. And further 
suppose the value of x prior to this statement is almost always positive and less 
than 100. Then there are many constants which can replace 107 and yet still not 
produce an incorrect internal data state. Hence a fault could easily hide here as 
well. Finally, suppose a program outputs x*y and y is almost always zero. The 
location where x is denned is a location where a perturbed data state (where x 
has a perturbed value) frequently produces correct output. This too is a location 
where a fault can easily hide.

For each location, propagation and infection analysis statistically estimates 
for a probability of each of these three conditions occurring. Thus propagation 
and infection analysis is a white-box scheme for quantifying the impact that each 
location has on the failure behavior of a program.

1.5 Thesis Organization

The organization of the thesis is as follows: defining the area of interest, defining 
a model for the area of interest and its definitions, developing algorithms for 
implementing the model, implementing and experimenting with the algorithms, 
and showing the application of the model. A chapter overview follows:

C h ap te r  2: Term inology. This chapter restates standard definitions from soft­
ware engineering and provides definitions specific to the propagation and in­
fection analysis model. For those familiar with dataflow analysis[10,11, 9,4], 
the first section may be skimmed.

C h a p te r  3: A lgorithm s for P ro p ag a tio n  and  Infection . Chapter 3 presents 
algorithms for implementing the model introduced in Chapter 2.

C h a p te r  4: P ro p ag a tio n  and  In fection  M ethodology. This chapter describes 
the parts of the PIA methodology and how they interact. It also presents 
assumptions about the input program. Chapter 4 introduces alternative
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CHAPTER 1. INTRODUCTION 7

schemes for implementing the PIA model to those in Chapter 3, which axe 
analytical versus computational.

C h ap te r  5: P ro p ag a tio n  and Infection  A pplications. This chapter presents 
several application areas of propagation and infection analysis: software 
reliability, probable correctness, debugging, software testing, and software 
metrics. A brief introduction or references to each area is given, as well as 
introductory models showing how propagation and infection analysis may 
be applied.

C h ap te r 6: E m pirical R esults. Chapter 6 presents the results of several ex­
periments on non-trivial programs showing the value of the model and imple­
mentation. Also, Chapter 6 empirically shows an important characteristic 
of similar versions of a program: the propagation and infection results from 
one version o f a program are often identical for another version. In cases 
where they are not identical they axe often very similar. This means the 
analysis may begin sooner in the software life-cycle, and the analysis results 
do not change drastically as faults axe removed.

C h ap te r  7: Conclusions. This chapter briefly summarizes the accomplishments 
of the thesis and acknowledges the weaknesses and limitations of both the 
model and implementation. Future work to be performed is detailed.

There are four appendices in the thesis. The following briefly summarizes their
contents:

A ppend ix  A: M athem atica l P relim inaries. Appendix A contains introduc­
tory material from several areas of computer science and mathematics, 
including graphs, regular expressions, conditional probability, and Monte 
Carlo simulation.

A ppend ix  B: P rog ram s for P ro p ag a tio n  and  Infection  E stim ates of qck­
srt. This appendix shows the programs used on a quicksort program to 
produce the results of the thesis model. It is included to show exactly how 
estimates are produced.

A ppend ix  C: P ro g ram  U sed in E x p erim en t I. This appendix contains the 
source code of a particular function used in one experiment from Chapter 6.

A ppend ix  D: N o ta tio n  and  Sym bols Appendix D is a summary of the nota­
tion and symbols used throughout the thesis. This appendix will be useful 
as a quick reference guide during reading.
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Chapter 2 

Term inology

For the reader who is unfamiliar with software engineering terminology, this chap­
ter gives a brief introduction to particular terms from software engineering that 
are related to this research. These terms appear throughout the chapters and in 
many method-related definitions. For those interested in reviewing the requisite 
mathematics needed, Appendix A contains brief synopses.

This chapter’s main purpose is to introduce the definitions specific to the prop­
agation and infection analysis model; some are in [5], This chapter also contains 
definitions tailored for particular application areas of propagation and infection 
analysis which are introduced in Chapter 5. Additional definitions appear in latter 
chapters as needed. The first section of Chapter 2 gives definitions that uniquely 
identify code fragments; this is necessary since propagation and infection analysis 
is a structure-based method. Section 2.2 contains definitions for implementing the 
PIA methodology on the code “chunks” defined in Section 2.1.

2.1 A bstraction Level Definitions

A program may be viewed at various levels of abstraction. The level of abstraction 
refers to the method of grouping program pieces into particular units. Forming 
levels of abstraction allows for a convenient way to either discuss specific locations, 
semantically meaningful groups of locations, or syntactically meaningful groups.

The highest abstraction level is the entire program. The lowest level is one 
bit of the object program. Other low level choices include the assembly code 
instructions and machine code instructions. Higher levels come from the source 
program; choices include a statement, a path, a module, a  language sub-construct,

10
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CHAPTER 2. TERMINOLOGY 11

a sub-expression, and a collection of paths.

Without losing generality, it is assumed the code is structured. For a program 
to be structured as defined in [3], all control logic must be handled by (1) simple 
sequencing, (2) if-then-else, and (3) do-while constructs. There are additional require­
ments in the definition of structured programming in [3] that axe not of concern 
here. A program P  is a sequence of source statements that compile. The function 
program P  computes is denoted by [P] and this notation is adapted from Mills et 
a/.[l]. [P](x) denotes the output P  computes on input x. A specification S  alone 
determines correctness for any input/output pair, and <j> is the input domain for
S. The function computed by S  is denoted similarly by [5], and a program P  is 
correct if and only if [5] =  [P]. For [5] =  [P] to be true, V® G <j> ([S](®) =  [P](®)) 
must be true.

A location in a program is defined by a language construct or sub-construct 
in the source program. For instance, if (condition) th en , while (condition) do, and as­
signment statement are each considered as a location. Other high-level language 
constructs such as case (a )  o f and repeat (condition) until may also be semantically 
decomposed into locations according to their functional equivalence using if (condi­

tion) then  and while (condition) do syntax. To discuss program flow, a digraph is used; 
graph terminology is presented in Appendix A. The mapping between the di- 
gva,]>h(flowgraph) and the program depends on the chosen abstraction level; what­
ever is determined to be a location in the program is represented by a unique vertex 
in the digraph. A subflowgraph is a subgraph of a flowgraph. The flowgraph is cre­
ated statically. The flowgraph may be augmented to include information at each 
vertex about what variables are being defined and referenced at that location. 
The term node is used synonymously for vertex.

The node corresponding to the first location in the program is called the start 
node in the flowgraph, and the node corresponding to the last location executed 
prior to termination is called the exit node in the flowgraph. Without loss of 
generality it is assumed that there is only one start node and one exit node in 
the flowgraph of the program. A back arc is an edge from a higher numbered 
predecessor as determined by a breadth-first search of the flowgraph, where the 
root is the start node. Each vertex in the flowgraph can be further classified as 
either a begin node, intermediate node, or finish node. A node may be both a 
begin node and a finish node. A begin node is either the start node, or a node 
whose predecessor has a back axe going into it (the predecessor). A finish node is 
either the exit node or a node with a back-arc leaving it. An intermediate node is 
any node which is neither a begin nor a finish node.

A path through a digraph is the sequence of nodes encountered in the flow­
graph including the start node and the exit node. A path may not be empty. A
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[Z] l r  X  < lo o  cD an
«>

(•)

Fig. 2.1: Tw o representations o f  code, (a )  regular expressions (b ) flowgraph

subpath is any contiguous sequence of endpoints reached on a path. A subpath 
may not be empty. A path is a  subpath of itself. Sets of paths can be represented 
by regular expressions where the alphabet is the set of vertices and each concate­
nation of symbols from the alphabet represents a path. Figure 2.1 illustrates a 
mapping between code, flowgraph, and regular expressions. The notation (1, 3, 
5, 4, 2, 4) represents the subpath through the program where location 1 is exe­
cuted first, then 3, 5, and continually until location 4 is reached a second time. 
A location in the program is termed reachable if and only if there is a subpath to 
the corresponding vertex from the start node.

A route is a subpath starting at a begin node and ending at

1. the first finish node encountered from the begin node, or

2. the next begin node encountered,

where no edge in the subpath is a back-arc. A trip represents a path or set of 
paths whose regular expression contains neither alternation nor reflexive transi­
tive closure, but may have transitive closure for loops allowing for one or more 
iterations.1 Also, any edge encountered between endpoints on the trip may not 
be a back-arc. Not allowing a trip to contain reflexive transitive closure ensures 
that an indefinite loop or definite loop of zero iterations is categorized differently 
from a loop with one or more iterations of the body.

A program’s set of trips is all paths through its flowgraph; it is a collection 
of path equivalence classes that associates paths with similar locations. A subtrip 
represents a subpath or set of subpaths whose regular expression contains no

1The definition for trip is non-specific in the situation of a loop, since the regular expressions
1 (2, 3, 1)+ and (1, 2, 3)+ 1 satisfy the definition for Figure 2.2 (a). Although both are correct, 
they represent the same trip. Therefore two regular expressions can represent the same trip, 
however the T  should only include one regular expression per trip.
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alternation; the regular expression may have no reflexive transitive closure, but 
may have transitive closure for loops with one or more iterations. A trip is a 
subtrip of itself. A trip set represents one or more trips and is represented by a 
regular expression that contains alternation. This is helpful when a loop contains 
a branching statement since the set of trips in this situation combinatorically 
explodes. The notion of a  trip set groups similar trips grouped together. The 
notation for these two sets is as follows: T S  is the set of regular expressions of all 
trip sets of a program, and T  is the set of regular expressions of all trips of the 
program, where a path represented by a regular expression of a member of T  is 
not represented by a member of T S . Likewise, no two elements of T  can represent 
the same path. Thus the elements in T  U T S  represents all paths through the 
program, and the intersection of paths represented in T  and in T S  is empty; each 
regular expression in T  U T S  represents what is termed a path equivalence class. 
The set of all path equivalence classes through a program is denoted as P E C  
(P EC  = T O T S ) .

Graph (b) in Figure 2.2 shows an instance of why the trip set definition is 
necessary. Notice in Figure 2.2 and succeeding flowgraph figures in the thesis 
that a shaded node represents a start node. Consider only several of the regular 
expressions for the many trips that potentially exist when the loop is executed: 
(1, 2, 3, 5, 1), (1, 2, 4, 5, 1), (1, 2, 3, 5, 1, 2, 4, 5, 1), and (1, 2, 4, 5, 1, 2, 3, 5, 1). 
By using the trip set notion, this infinite set of trips my be summarized by the 
regular expression (1 (2, 3, 5 | 2, 4, 5))+l.

2.1.1 T he Four A bstraction  Levels

This section identifies four abstraction levels at which the input program may be 
viewed. Propagation analysis and infection analysis strictly use the first level, 
however later application models will use higher levels.

Propagation analysis and infection analysis use the statement level(Level 1). 
The rule used to determine whether a “chunk” of code is at level 1 is:

R ule  2.1 Any assignment statement or predicate that affects the value o f the pc 
is considered as a location in the level 1 flowgraph.

For instance, for the construct if ( a )  then f t  else 7 , the predicate if ( a )  then  would 
be a level 1 location, and each successive location containing a

1 . if (condition) th en ,

2 . while (condition) do , o r
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(1) w b ll*  * o  b  do

12] I f  a  > b  tbon

13] ■

14] b  j -  b  -  1;

t l ]  w b llo  0  < 4 do 
tmqia
t2 ) l f b o i  ebon

(3] o : •  c  ♦  1
(4] o la o  o  «• o  + 2;
IS] b  b  + 1;
and

Fig. 2.2: Level 1 flowgraph

3. assignment statement

in the two branches(/?,7 ) are considered as level 1 locations. Since the else repre­
sents else if not (a), it is not considered as a location. Figure 2.2 shows if and while 

constructs being mapped into flowgraphs.

All levels defined above the level 1 are defined for application areas of prop­
agation and infection analysis. The second level is the route level(Level 2); it is 
not mentioned beyond this chapter. It is useful, however, for discussing loops and 
may be useful in a modular propagation and infection analysis model; this thesis 
presents a non-modular model. At level 2, there is a subflowgraph for each route. 
For Figure 2.2’s graph (a) there are four routes: (1,2), (2, 3), (1, continuation), 
and (2, 4).

In Figure 2.2 (a), nodes 1 and 2 are begin nodes; 3 and 4 are finish nodes. 
There are no intermediate nodes. The next higher level is the trip level(Level 3). 
In Figure 2.2 (a), the trips include (1, 2, 3)+l  and (1, 2, 4)+l(node 1 is used in 
this example as the exit node instead of creating a dummy node as the exit node). 
The highest level(Level 4) is the trip set level. In Figure 2.2 (a), the trip set is (1, 
2, 3 | 1, 2, 4)+l  and for Figure 2.2 (b), the trip set is (1, 2, 3, 5 | 1, 2, 4, 5)+l. 
For Figure 2.2 (b), the routes are (1, 2), (1, continuation), (2, 3, 5), and (2, 4, 5), 
and the number of trips is potentially infinite. The begin nodes are 1 and 2, 5 is 
a finish node, and 3, and 4 are intermediate nodes.

Levels 1 and 2 are termed subpath levels; 3 and 4 are termed path levels.
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Additional examples showing mappings from various constructs to the various 
abstraction level regular expressions are found in Figure 2.3.

2.2 M odel and Im plem entation Definitions

An error is a mental mistake made by the programmer, and a fault is the manifes­
tation of this mistake in the program. An error can be misreading the specification, 
typing incorrectly, misunderstanding the algorithm, etc. A fault can be omitted 
code, an incorrect predicate, wrong variable substitution, incorrect expression, 
etc. A fault point is the location where the fault resides. A distributed fault en­
compasses more than one location. For this model, a  fault point is considered 
as unique, thus distributed faults are not considered. A failure occurs when the 
output differs from the correct value or there is no output when there should be. 
Fault size of a fault at a particular location is the proportion of inputs based 
on the input distribution that reach the fault and result in failure. Thus for a 
particular location z, if k is the cardinality of the input space and y points fail for 
some fault / ,  then the fault size of /  at z  is

A use of a variable v is any location x  in which v is referenced. A definition of 
a variable v is any location x  in which v is assigned a value. Definition can occur 
via an assignment or input statement. Location X  is data dependent on location 
Y  iff there exists a variable u such that

1. u is defined at Y ,

2. u is used X ,  and

3. there exists a control path from location Y  to location X  along which u is 
not redefined [2].

Control dependence may be defined for the two instructions while and if as follows:

1. if Y then  Al else A2, location X  is control dependent on location Y  if location 
X  is referenced in A l or A2,

2. while Y do B, X  is control dependent on location Y  if location X  is referenced 
in B [2].

2Although this is functionally equivalent to i := 1; while i <  a  do /?, the initialization and 
the control are left together.

3Since this can be implemented using while-do it is allowed in the structured language.
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«  fl) (<) (*) (•) (1) (»)
(1 ) while or do for i:= l to or do^ while a  do repeat® while a  do if a  then stmti
(2 ) 0  0  while 0  do 0  if 0  then 0  stm tj
(3) etc. etc. 7  until a  7  else 7

(4) etc. etc. else v etc.
(5) etc.

(a ) Code fragm ents

(b ) Corresponding flowgraphs

w ( » ____(c) (*) (•) (f) ( l)

1,3 10 1,4 (l,2,3)+4 1,5 1,2,4 1 ,2

(1,2)+1,3 (l,2)+ l,3 ((l,2)+(3,2)+)+l,4 (1(2,3 | 2,4))+l,5 1.3,4
(1,2)+1,4

(c ) Trips and Trip Sets

W W w (*) (') (!) i t )

1 .2 1 , 2 1,4 1 , 2 1 , 2 1,2,4 1 , 2

1,3 13 1 , 2 2,3 20 1,3.4
20 1,5

2,4

(d ) Routes

Fig. 2.3: Additional abstraction  examples
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A program dependence digraph can be created with vertices representing loca­
tions and arcs representing the control and data dependencies [2]. A dependence 
digraph differs from the flowgraph since it is a function of the control and data 
dependencies, i.e., the semantics; the flowgraph is a function of the syntax. By 
back-chaining through the program dependence digraph from the output location, 
all locations upon which the output is either data or control dependent can be 
determined; variables which may affect the output are determined.

A variable a is directly influenced by variable 6 if the location where o is defined 
is data dependent on the location where b is defined. A variable a is indirectly 
influenced by variable b if there exists a variable c which is directly influenced by 
variable 6, and variable a is in directly influenced by variable c. Whether a directly 
influences 6 or a indirectly influences 6, it is said that a influences b. A variable is 
active at a particular location if its value at that location may potentially affect 
either program control flow or computation in a way which subsequently affects 
the output. Formally, let G represent the program dependence digraph, and let 
G* denote the reflexive transitive closure of G. And let (a, 6) G G* denote that 
there is a subpath in G from a to b. Thus x  is an active variable at location z  
if and only if (z, O) € G*, where O is a location which produces output, i.e., the 
location represented by the exit node. So the same variable may be active at one 
location yet not active at another. The program counter is always treated as a 
variable and is considered to be active. A variable which is not active is termed 
dead.4

A location’s data state is a mapping of all variables to values which are defined 
for the executing program. For this model, this state occurs between locations, 
since the execution of a location is considered to be an atomic operation. Although 
most source locations are translated into many machine operations which are not 
atomic, for simplicity, atomic source locations are assumed. S/,,(x) represents the 
data state encountered prior to executing location I on the ith iteration from input 
x. Aiti(x) represents the data state produced after executing location I on the ith 
iteration from input x. Let (J"=i =  %i(x ) let UJLX Aj,,(a) =  Ai(x). If
location I is not in a loop and I is reached by all input points, then Vx | 3 |( r )  |=  1.

A value distribution at a location for a particular active variable is the distri­
bution of values that occur from the data states at that location from a particular 
input distribution. A data space at a location is the collection of value distribu­
tions for all active variables succeeding location I. If more than one path or path 
equivalence class goes through a  location, the data space may be thought of parti­

4The notion of determining whether a variable is dead is similar to dead-code detection in 
compiler optimization. A variable definition is dead-code iff there is no succeeding subpath to 
an output location, i.e., not active for any succeeding subpath.
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tioned into a subdata space corresponding to each path or path equivalence class, 
since each path or path equivalence class may have different sets of active variables 
at a location with different value distributions. If there are infinitely many paths, 
then there are infinitely many sub data spaces; hence paths are grouped according 
to path equivalence classes to create finitely many subdata spaces. Figure 4.2 
shows an example where the data space prior to location x  is made from two sub­
data spaces. Figure 2.4s shows an example of the value distributions at the data 
spaces of two locations in the path of some program. A data state that is created 
for performing propagation analysis or infection analysis by selecting values from 
the value distributions is termed a sampled data state. The variables essential in 
a sampled data state that must be assigned values are the active ones.

A virus is an incorrect value in a pairing at some data state where correctness is 
determined by an assertion for that location for that program. The term virus may 
seem inappropriate in this context, however there is a closer relationship between 
the virus termed here and the physical virus than between the popularized term 
virus, such as the Internet worm [4]. The Internet worm was bent on destruction; 
a biological virus does not necessarily do harm; neither does a virus in a data 
state. A data state may contain more than one virus. The number of viruses in 
data state x  of location / is termed the degree of the virus and is notated as Vi{x). 
This is referred to as the error degree of the data state. The means by which a 
data states becomes infected when determining V\ (x) is arbitrary; whether from 
an actual fault or other method. It may also be the case that a fault at a location 
causes several viruses at that location’s data space. If a virus exists, the internal 
data state at that point is termed infected. If V/(x) =  0, the data state is termed 
clean. A  variable is termed infected if it contains a virus. A variable in a data 
state is termed clean if it is not infected.

A semantic alternative is a copy of the code at a location that has been syn­
tactically altered with the additional restriction that it is semantically different,
i.e., [original location] ^  [altered location]. A perturbation function is a mathe­
matical function that produces “altered” values for variables. In general, it uses 
the current value of a variable as input and produces an infected value as output.

The execution rate of a given fault is simply the probability that a random 
input (from the assumed input distribution) will arrive at the location. It is the 
following probability:

Pr[»j(*) #  0] =  Prb  #  °1 (2-1)
where n is the number of arrivals at location I on random input x. So this is 
just the probability that n does not equal zero. This makes the execution rate a

5Figure 2.4 done by Christoph Michael.
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function of the input distribution and the fault point.

Let fi  denote the function that is computed at the fault location I and / /  
denote the function that should be computed at the fault location. If for some 
y  € 2/(#), fi(y) £  f!(y), it is said the fault at location / has infected .£/,,• (s) for the 
i corresponding to y. The infection rate of a fault at location I is the conditional 
probability that a succeeding data state will be infected given that the execution 
reaches location I for a random input x. The infection rate is:

PT[infected(l, x) | 2/(x) ^  0] (2.2)

where

The infection rate is a function of the fault and the set of data states that can be 
present at the fault location.

The process of estimating this probability (equation 2.2) is a function of the 
fault inserted at the location, the value distributions in the preceding data space, 
and the method of selecting a data state for that location. The value produced is 
termed an infection estimate, and it estimates infection rates for a class of faults 
rather than a single fault.

The propagation rate of a fault at location I is the conditional probability that 
the program will fail, given that the fault at I has infected one of its successor 
data states. The propagation rate is:

Prfprogram fails on input x | infected{l, x)] (2.3)

The propagation rate of a fault is a function of the set of infected data states 
created by the fault and the succeeding locations. Propagation rate estimation 
for a location x is a function of the data states used, the method of infecting 
the data states, and the succeeding locations that the infected data state reaches. 
This value produced is termed a  propagation estimate.

Let dsgt =  Uc U,-*4/,«(®) represent the data space succeeding location I over 
many input points x, and let dsj>{ =  (Jx U<®J,«(®) denote the preceding data space 
of location I over many input points x. Then dsgait denotes the data space 
succeeding the exit location of the program and d s p ^  denotes the data space 
preceding the exit location. Denote the set of inputs that axe represented by 
clean data states at data space I as {dsgt is clean}, i.e., the set of input points 
that have passed through successor locations of location I and have managed not 
to have their corresponding data states infected. The set of input points that have
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CHAPTER 2. TERMINOLOGY 20

produced an infected data state in data space dsg( is denoted as {dsg( is infected}. 
Two different schemes are presented in this thesis for estimating the propagation 
rate: failure propagation estimation and viral propagation estimation. The failure 
propagation rate for location /, Fj, is the probability that an infected data state 
at location / causes “differing output” . Formally it is

F; =  Pr[{dsgeijt is infected} | {dsg( is infected}] =

Pr[{dsgeiit is infected} D {dsg( is infected}]
Pr[{dsg4 is infected}] '

The viral propagation rate for location I, V/, is the conditional probability that 
given an infected data state occurs in the preceding data state of location I on 
some iteration i, the infection propagates to the succeeding data state of
location I, Aiti(x). Formally it is

V/ =  Pr[{dsg( is infected} | {day, is infected}] =

Pr[{ds<p( is infected} fl {dsg( is infected}] . .
Pr[{d5y( is infected}]

Two different scenarios that may occur to an infected data state once the data 
state becomes infected axe defined in the thesis: type I  cancellation and type II  
cancellation. Cancellation is said to have occurred at location I on the iih iteration 
of location I if

1. (type I): 3i 3x T>i(Alti(x)) < Vi(3,ti(x)), or

2. (type II): 3z 3® /Di{Aiti(x)) =  2?/(®J,»(®))> where the variable receiving the 
action at location I is clean in S;|t(®) yet influenced at location / by an 
infected variable in data space Sj,,(®).

As an example, suppose every data state in dsgt and dsyl is infected; then the 
viral propagation estimate for location I is 1.0. Now suppose that every data state 
in dsg>t is infected, however not every data state in dsgt is infected; then the viral 
propagation estimate for location / is < 1.0, hence type I cancellation occurred. 
Type I cancellation occurs when the code at a location removes the infection 
caused at another location, i.e., the successor location either partially or totally 
corrects the infection caused by the fault. A special case of type I cancellation 
occurs when

1. location I is the first location of a branch, thus location Vs predecessor 
location is a conditional location, and
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2. on the branch where I occurs, a particular variable or set of variables are no 
longer active(however they axe active on a different branch stemming from 
/’s predecessor location).

As an example, suppose that for a conditional location there are two branches, 
and location I is the first location on the first branch and location I' is the first 
location on the second branch succeeding the conditional location. For this special 
case of type I cancellation,

Vx 3i 31 T>Pred(i,i,x)(ApTed(ili,x),i(x)) >

however
Vs 3i 31'  'DpredQ',i<z)(Aprtd(i',i,z),i(x )) =

where pred(l, i, x ) denotes the predecessor location of location I on input x on the 
ith iteration of /.6 When considering type I cancellation in the thesis, this strange 
phenomenon of type I cancellation is not considered. Type II cancellation is also 
only defined in Chapter 2; it is not further discussed.

2.3 Conclusions

Chapter 2 has provided an overview of the notation and definitions of the thesis. 
Two of the basic probabilities which axe central to the thesis axe presented: the 
infection rate and the propagation rate. Appendix D contains an overview of 
the notation and symbols from this chapter and the remaining thesis for quick 
reference.

6Similarly throughout the thesis, succ(l, i,x) denotes the successor location of location / on 
input x on the itA iteration of /.
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Chapter 3 

A lgorithm s for Propagation and 
Infection

Propagation analysis and infection analysis perform both static and dynamic anal­
ysis on the input program. Once completed, the PIA methodology produces two 
sets of estimates:

1. estimates of probabilities for “if a fault occurs, will a variable or the program 
counter contain an incorrect value?” and

2. estimates of probabilities for “if an incorrect value occurs, will the program 
fail?”

These estimates of probabilities axe related to the three conditions which are 
necessary and sufficient for a program to fail:

1. a fault must be reached during execution,

2. the computation at that point must be adversely affected, and

3. the adverse computation must cause incorrect output [6].

Propagation analysis [6] is the portion of PIA that attempts to quantify the 
answer to the second question above. By determining the impact of incorrect in­
ternal values on program output, propagation analysis estimates where faults may 
hide more easily. Propagation analysis estimates this probability by comparing 
outputs from perturbed computations versus non-perturbed computations of the 
same program being analyzed; propagation analysis therefore requires no oracle. 
With propagation estimates and knowledge of the input distribution, “guesses” of

24
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CHAPTER 3. ALGORITHMS FOR PROPAGATION AND INFECTION  25

where an erroneous internal data state can lie “silent” (without exposing itself) 
for periods of testing time or operational time are thus discovered.

Propagation analysis performs its task by studying the peculiarities of the 
code’s structure while measuring the code’s resistance to erroneous data states,
i.e., how much can the variables’ values diverge and still produce the same output. 
It simulates the impact that a fault from the set of potential faults may have on 
a data state; this is accomplished by changing the values of variables at locations 
in the program. There is no probability associated with whether it is likely that 
a particular variable might have an incorrect value at a particular location during 
propagation analysis; it is considered equally probable that any particular variable 
is incorrect at any location. For instance, if variable z  is defined at 100 preced­
ing locations and variable y is defined once, although it is more likely z will be 
incorrect, no weights are attached in the methodology to enforce this intuition.

Infection analysis [6] is the portion of PIA that quantifies the answer to the 
first question; it is similar to propagation analysis in that it requires no oracle, and 
locates where faults may easily hide by determining which faults have low impacts 
on data states. Infection analysis is performed at each location I ; it measures 
location Vs ability to contain a  semantic alternative from a fault class T \  yet not 
produce a virus. Each element in T \ is viewed as equally probable; there are no 
weights associated with whether a semantic alternative is more or less likely than 
another semantic alternative.

A particular semantic alternative or erroneous data state may affect one pro­
gram entirely different than another. In fact, the impact a semantic alternative or 
erroneous data state has when located at different places within the same program 
may greatly differ. It is the semantics of the succeeding and preceding locations 
reached combined with the input distribution that determine the impact of se­
mantic alternatives and injected viruses on a program’s behavior.

Sections 3.1, 3.2, and 3.3 present the algorithms for finding infection estimates, 
viral propagation estimates, and failure propagation estimates. Throughout this 
thesis, the term estimate is meant as a point estimator, Y, of a some target 
parameter of interest. The point estimate that is used is the sample mean,

where there are n samples and

H i
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[7].

3.1 Infection Estim ation Im plem entation

The infection estimate for a location / is an estimate of the conditional probability 
that a fault (semantic alternative) existing at location / produces a  virus in the 
succeeding data state of I given that the fault (semantic alternative) is reached. 
For every location in the input program, there is an infection rate for a particular 
fault at that location. Our estimate for the infection rate using Chapter 2’s 
notation for a location I with input x  where a e  F t is:

lip = P r[infected’(I,a ,x)  | S/(ar) ^  0] (3.1)

where

and f a is the function computed by semantic alternative a. The true infection rate 
for a  particular known fault is found by equation 2.1 and is a function of the fault 
versus the correct location. The infection estimate is a function of a set of semantic 
alternatives versus the current location. This is the main difference between the 
infection rate and the infection estimate. The algorithm for the infection estimate 
is a function of a class of faults since not every potential fault at a  location can 
be tried.1 The algorithm for implementing equation 3.1(as shown in Figure 3.1) 
is:

1. create a semantic alternative from F \ for location /; call this semantic alter­
native a,

2. set variable coun t to 0,

3. present the original code at I and the semantic alternative a with a data state 
from the preceding data space of 1, and execute both locations in parallel; 
set a time limit for termination of the semantic alternative, and if execution 
is not finished in that time interval, assume an infinite loop occurred,

4. compare the resulting data states of a and /, and increment count when an 
infection occurs; repeat steps 3 and 4 n times,

1The definition of Ti is detailed in Chapter 4.
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5. divide co u n t by n yielding an infection estimate for semantic alternative a, 
denoted as i)i02,

6. perform the previous five steps on each element of T \ =  {ai, <Z2 , ...} creating 
infection estimates, Ii,ai^Ii,a^-- for location I,

7. several applications3 of PIA require the minimum infection estimate of a 
location; to find the minimum, select the lowest infection estimate as the 
overall infection estimate for location I:

min {//,o} =  min {?x[infecte<t(l,a,x) | Sj(a:) ^  0]} (3.2)
oS 1F\ o€ ^Fi

Omitted location faults have infection estimates close to 1.0 since most locations 
either have a computational effect or control flow effect. Faults of omitted loca­
tions should not affect the infection estimate selected by equation 3.2.

Infection analysis can be partially automated by a system that performs syntax 
mutation provided that the system produces semantic alternatives versus pure 
syntactic mutants. It is necessary to provide information about to such a 
system so that the semantic alternatives represent T \ for that location. One 
example of a system that performs syntax mutation is Mothra [1, 5].

3.2 Propagation E stim ation Im plem entation

PIA uses only failure propagation estimates. The algorithm for determining a 
failure propagation estimate is specific to a location; viral propagation estimates, 
however, axe determined specific to a path. Both estimates are found in a similar 
manner: from execution-based data.

3.2.1 Failure P ropagation

The failure propagation estimate for a location is an estimate of the conditional 
probability of a  pseudo-failure occurring given that a virus exists in the data 
state immediately following the location. A pseudo-failure occurs when output is

2The infection estimate is a point estimator which is the sample mean of the number of 
infections, however to determine the confidence intervals in the estimate, the confidence interval 
of the frequency distribution for 95% confidence can be found with p ±  w, where w = 2 • 
\J{p • (1 -  p)/n) and p =  count /n  [4].

3 Detailed in Chapter 5.
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abtrnatfM ati*rn*tv4

Mamg?

Fig. 3.1: Infection estim ation

produced which is different than that which would have occurred had the virus 
not been injected.4 Pseudo-failure is determined by the input program, which 
may or may not be the correct program. For every location in the program, there 
is a failure propagation rate for a specific fault relative to the correct program as 
defined by equation 2.2. Our failure propagation estimate for location I and input 
x is defined by the following conditional probability:

F/,o =  Pr[pseudo-failure on input x \ perturbed(l,a,x)\. (3.3)

where

perturbed(l, a , x ) =
T  iff a € fi(3i,i(x)) and fu n c tio n  pertu rb (a)3 has executed 

on input x 
F otherwise

and where A j is the set of active variables at location I regardless of the succeeding 
subpath. Once again, the propagation rate is a function of the correct program,

4This was referred to as “differing output” in Chapter 2.
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whereas the failure propagation estimate is a function of the current program. 
One method for estimating the failure propagation estimate of a location I is:

1. Take the set A / and select some active variable denoted as a,

2. Set variable count to 0,

3. Sample from the distribution of values for a at / in it is necessary 
to sample for values of all active variables at that location so that there is a 
complete data state from which to start execution; repeat this step n times,

4. Alter the sampled value of a with a perturbation function(defined in Section 
3.3), and execute the succeeding code on both the perturbed and original 
data states,

5. For each observed different outcome between the perturbed data state and 
the original data state, increment count; increment coun t if an infinite loop 
occurs; repeat steps 3-5 n times,

6. Divide count by n yielding a failure propagation estimate, F/i0s,

7. Repeat the previous six steps on each a,- £ A j ,  yielding many failure prop­
agation estimates, F/)01, F/)OJ  Each active variable is chosen to account
for the impacts of omitted location faults,

8. Several applications of PIA require the minimum failure propagation esti­
mate of a location:

mmaeA|{F/,a} /g
mina6A,{Pr [Pseud°-failure °n input x  | perturbed(l, a, a:)]}.

Failure propagation estimation may be automated in a similar manner as infection 
estimation. Currently, this estimation is being performed semi-automatically (in 
a combined manual/automated scheme). A large shell is built that holds multiple 
copies of the program, one copy for each location being analyzed. Perturbation 
function code is inserted at the proper place in each location, and the shell is 
executed. Output from the shell is a set of F;|0 probabilities for each location I.

4Defined in Section 3.3.
5The failure propagation estimate is a point estimator which is the sample mean of the 

number of pseudo-failures, however to determine the confidence intervals in the estimate, the 
confidence interval of the frequency distribution for 95% confidence can be found with p ±  w, 
where w =  2 • >/(p • (1 — p)/n) and p =  count /n  [4].
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location propagation catimatc
1 0.764164000000
2 0.000000000000
3 .4493680000000
4 0.18595600000
5 0.13760400000

Table 3.1: P ropagation  estim ates for qcksrt using pertu rb(0 .95 ,1 .05 ,x) and perturb(0 .5 ,1 .5 ,x)

Empirical evidence exists to support a simplification: shorten the third step 
of the algorithm by perturbing on the first iteration data state only.6 A pro­
gram presented in Chapter 6 had failure propagation estimates determined in two 
manners:

1. as the algorithm specifies with perturbation only occurring in /j(Sf,i(af)), 
and

2. by repeatedly perturbing each data state fi(3 iti(x)), fi(3it2(x)),...

It might be expected that as the perturbation parameters widened, failure 
propagation estimate values would increase. This did occur at two out of three 
locations with the above algorithm of determining failure propagation estimates 
as shown in Tables 6.4 and 6.5. However when the second scheme was applied, 
Table 3.1 shows that regardless of the perturbation function, identical estimates 
occurred. A more intuitive argument for perturbing on the first data state can 
be given by first answering a question: “when can a data state get infected?” 
Infection can occur on any iteration of the location, however there will be a first 
time that infection will occur. The earliest that infection can occur is on the first 
iteration, hence perturbation is performed on the first data state foi this reason. 
On which iteration to perturb is a topic for further investigation.

3.2.2 V iral P ropagation

The viral propagation estimate of location /, on the ith iteration of location /, V;,;, 
is the probability that if a virus exists in for a randomly selected x, then
there is a virus in A/,,(a;) for some i. Whether the error degree of the infected data 
state changes between data states is not considered (provided that the error degree

6Detailed in Chapter 6.
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is greater than or equal to one after executing location I on the ith iteration).7 One 
algorithm for estimating V/,i at location / is:

1. take a subset of data states that cause path j  to be reached; denote the set 
of inputs that created these data states as <f>j,

2. let the subset of the input points represented by infected data states in dsj>t 
be denoted by the set {dsy, is infected}.8

3. execute location I on each data state represented by an input point in 
{ds^is infected},

4. then
1 {dag, is infected} |

1,1 | {dsyt is infected} |

which is the proportion of input points that managed to stay infected in the 
succeeding subdata space of location I on the iih iteration of location I on path j .

3.3 Perturbation Functions

Potential faults for a location are the set of faults that are considered to have a 
higher probability than some threshold of occurring. Since this set of faults will 
in general be unknown, in the ensuing discussion, consider the set of potential 
faults to be a set of “common faults.” For instance, at a location that increments 
a counter, a potential fault might be to omit the location; inserting a compiler at 
the location is a ridiculous fault. An infection interval is a distribution of the range 
of values that the set of potential faults at a location may map a variable’s value 
into. Infection intervals axe represented by the left distributions in each of graphs 
shown in Figure 3.2(in general the exact shape and orientation of this distribution 
will be unknown). The infection interval is a function of the preceding data space 
and the set of potential faults. Although the set of potential faults at a location 
may be infinite, limitations may be placed on this set by determining membership 
within the set according to impacts on values. The term infection interval is not 
related to the term infection rate; infection interval is introduced for convenience 
in the discussion in determining perturbation function parameters. Perturbation

7Typically a location will either increase or decrease the error degree, however for a location 
to change the virus would require it to both clean the current infection in S;,«(z) and create a 
new infection in Ai,i(x).

8Chapter 5 explains how to determine {dsj is infected}.
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Fig. 3.2: Example showing an infection interval versus potential fault value distribution

function ■parameters contain the information of the desired impact on a variable 
in a data state that is required in failure propagation estimation. The curves on 
the right of each graph in Figure 3.2 represent the distribution of values produced 
by particular perturbation parameters.

An infection interval’s length is the difference between the largest and small­
est value in the infection interval. The infection interval’s distance is the linear 
distance along the abscissa-axis between the infection interval of potential faults 
and the distribution of values a perturbation function would map the same pre­
ceding data state into. If these ranges overlap the infection interval distance is 
zero. Figure 3.2(a) is an example where the distance is zero. Figure 3.2(b) is an 
example where the distance is not zero. Figure 3.2(c) shows an example where the 
two distributions are almost the same. A goal in finding perturbation function 
parameters is to cause as much overlapping between the curves in Figure 3.2 as 
possible. This assures impacts similar to those of potential faults.

Recall a perturbation function is the parameterized function that is used to 
infect data states during failure propagation analysis. Input to the function is 
the current value of the active variable being altered. Output is a new value in 
the range specified by the perturbation function parameters. Section 3.3 designs 
an algorithm for a perturbation function that produces altered values that mimic
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the impacts on values that the set of potential faults would produce, i.e., an 
infection interval distance of zero. Although the infection interval distance will 
in general be unknown, there will occasionally be circumstances under which 
a “better than random guess” as the perturbing distribution and perturbation 
function parameters is possible. A function that produces random values based 
upon some perturbing distribution is used during failure propagation analysis to 
avoid the possibility of estimating failure propagation from “programmer” unlikely 
faults. This is a major complaint against fault-seeding techniques.

As an example of a “better than random guess”, a constant function such as 
the following might be used during failure propagation analysis if it were known 
that any fault placed at the location under analysis would produce one particular 
value z in the succeeding data state:

f ( x ) =  { z for all x

Such a perturbation function would be practical if it were known that a program­
mer was misinformed that a variable should be set to co n stan t when it should be 
set to constan t + 1; such will be a rare event at best. This can be generalized to a 
set of constants as well with the function

/ ( x) =  |  z for all x, where z € a set of constants

This might occur in a compiler in the parse tables.

If the perturbation function were to produce the same output value as the input 
value, no failure propagation is possible leaving the failure propagation estimate 
biased. If the perturbation function always produced the original value the failure 
propagation estimate would be zero. In general, the type of function used will 
produce random values based upon the input value, a perturbing distribution, 
and the perturbation function parameters. The perturbing distribution will in 
general be a random distribution, and the perturbation function parameters are 
the parameters to the perturbing distribution.

A twofold concern exists in determining a non-constant perturbation function: 
first is determining the perturbing distribution; second is determining the param­
eters this function. The remainder of this section addresses a scheme for the latter 
of these concerns under the assumption that the perturbing distribution is uni­
form. This scheme can be generalized to a non-uniform two parameter perturbing 
distribution.

Possibilities for non-constant perturbing distributions include all of the con­
tinuous and discrete random distributions. The perturbation function

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



CHAPTER 3. ALGORITHMS FOR PROPAGATION AND INFECTION  34

newvalue(x) :=  equilikely( trunc(oldvalue(x)*0.6), trunc(old- value(x)*1.40)) is an example of 
a discrete distribution that perturbs a value by substituting an equiiikely random 
value on the interval of 40% more and 40% less than the original value. For this 
function, the infection interval length is trunc(oldvalue(x)*1.4) -  trunc(oldvalue(x)*0.6) =  
trunc(oldvalue(x)*0 .8). This function however leaves the possibility of returning new- 
value(x) =  oldvalue(x). The following code avoids this. Note two things about 
this fragment: if the value being perturbed is zero, either a -random .park  or ran- 

dom -park is returned, and if co n s ta n tl and co n stan t2 axe so close to 1.0 that the while 
loop does not normally exit, the loop is forced to halt after five iterations and 
either increase or decrease the input value by random _park. Note that the call to 
random .park  is a call to the random number generator in [2] which generates a real 
value between 0.0 and 1.0.

function pcrturb(x : real;): real;

v ar newvalue: real;

c o n stan tl: real;

constant2: real;

counter : integer;

begin

c o n s ta n tl :=  (*0.0 <  c o n s ta n tl <  1.0*) 

constan t2 :=  (*constan t2 >  1.0*) 

newvalue :=  x; 

if (x = 0.0)  then begin
i f  random -park <  0.5 then  

new value:=random _park 

else
new value:=-random .park

end
e lse

begin

counter : =  0
while (new value =  x) do begin

new value:=  un ifo rm (x*constan tl, x*constan t2); 

counter : =  counter +  1; 

if (new value= x) and (co u n te r= 5 ) then begin  

if  randonupark  <  0.5 then  
new value:=x-random .park 

else
new value:=x+random _park;

end;
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end ;

end ;

perturb  :=  newvalue; 

end ;

The choice of a  perturbation function is an important decision; one should have 
an idea of the length and location along the abscissa-axis of the infection interval 
before determining the perturbation function parameters. If the impacts of the po­
tential faults are expected to make modest changes to the value, and each of these 
changes is likely, then equilikely( trunc(oldvalue(x)*0.9), tru n c (o ld v a lu e (x )* l.l))  or equi- 

likely( trunc(oldvalue(x)*0.95), trunc(oldvalue(x)*1.05)) are reasonable choices since they 
have small infection interval lengths. The motivation in determining perturbation 
function parameters is that there is an assumption that a fault that produces 
a distribution of values that is linearly far from the infection interval along the 
abscissa-axis should be caught during developmental testing. This means that the 
greater the divergence in values from faults, the decrease in the chance of type 
I cancellation. If a fault maps values outside the range of the infection interval, 
the observed propagation rate should be greater than the propagation estimate. 
This notion requires additional research. If the analysis is performed with param­
eters that produce a  smaller range of values, then a more conservative estimate 
of propagation results. Even if the fault causes a smaller range of values than 
anticipated, there is uniform sampling from the points which occur in the smaller 
interval.

A method of determining the perturbation function parameters for a two pa­
rameter perturbing distribution where the parameters define the upper and lower 
bound for the outputted value is:

1. make the assumption the infection interval has endpoint parameters a, 6, 
thus [a, 6] is the interval,

2. decrease this interval to [a + c,b  — c], where c > 0 ,  c < i ) - a ,  and the value 
for c is arbitrary,

3. pick the value a +  c or a value near a + c and check it’s propagation; if it 
propagates, reset a to this value, and try the value b—c or a value near 6—c; 
if it propagates, reset b to this value, and try a value slightly greater than 
a +  c; if it propagates ignore it and try a value slightly less than b — c; repeat 
many times in this step-wise manner until one of the following is true:

(a) all values tried in [a,a +  c] and [6,6 — c] propagated, in which case the 
parameters a, 6 are chosen for the perturbation function,
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(b) the first point s € [a, a +  c] did not propagate, hence the parameters 
are s, (b — (s — a)), or

(c) the first point s € [6, b +  c] did not propagate, hence the parameters 
are (o +  (6 — s)),s.

It is unlikely that the set of potential faults will produce altered values that 
can be correlated with any distribution as implied in Figure 3.2. There could be 
many spikes along the abscissa-axis appearing as random “noise.” The algorithm 
presented above can be adjusted if the potential faults distribution is known. How­
ever in general this is not known, therefore the uniform distribution is assumed. 
Another distribution worth noting for potential use as a perturbing distribution 
is the normal distribution, where the mean of the distribution is set at the origi­
nal value. The normal distribution would be a reasonable perturbing distribution 
if the potential faults at the location are more likely to make small changes as 
opposed to large changes. The results of this thesis axe found in Chapter 6 and 
used the uniform perturbing distribution. Additional studies on producing per­
turbation functions that mimic potential faults is an area for future research.

3.4 Conclusions

Infection rate, propagation rate, and execution rate are defined for a known fault 
at a specific location. The definitions from Chapter 2 axe for known faults and the 
definitions provide a basis for understanding how specific faults axe related to the 
failure rate. When testing begins, the faults are naturally not known, and propaga­
tion rates and infection rates can not be directly measured. So Chapter 3 provides 
both a model and implementation for generalizing the definitions of infection rate 
and propagation rate to produce the infection estimate and propagation estimate. 
This generalization is performed by hypothesizing that a fault exists at a location 
and measuring the impact of the hypothesized fault [3]. Infection estimation per­
forms this with semantic alternatives; viral propagation estimation performs this 
with semantic alternatives as well; and failure propagation estimation performs 
this generalization with perturbation functions. Research is continuing into de­
signing perturbation functions, specifically how vaxious perturbing distributions 
impact failure propagation analysis.

Chapter 3 has defined the model and implementation for the PIA methodology. 
Chapter 4 presents additional algorithms necessary for implementing the model.
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Chapter 4 

Propagation and Infection  
M ethodology

This chapter describes modifications to the algorithms of Chapter 3 for gaining 
efficiency and improved quality in the estimates. Figure 4.11 shows the interaction 
between the main and auxiliary processes of the implementation discussed in this 
chapter.

Propagation and infection analysis may eventually be extended into a gen­
eral purpose scheme for analyzing arbitrary programs, however the application of 
propagation and infection analysis has only been to programs written in Pascal 
and Fortran-77; thus claims about propagation and infection analysis’s applicabil­
ity to arbitrary languages are not made. PIA requirements on the input program 
are:

1. the program is written in a structured language [10] ,2

2. the program is closely correct; a program P  is termed to be closely correct 
if and only if

(a) P  compiles,

(b) testing schemes currently being applied are producing no failures (there­
fore it is assumed testing is to be halted),

xIn Figure 4.1, process 1 process 2 represents information a which is cre­
ated in process 1 and passed to process 2. P is the original input program.

2The Fortran-77 software considered in Chapter 6 is from the LIC experiment[14] and this 
software does not satisfy this criterion.

38
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(c) [P] «  [Pc] where Pc is a correct version of P ; ss in this case may be 
quantified to a proportion of inputs of less than 10“4 on which these 
two functions differ, and

(d) the failure rate of P , Ap, is <  10~4 failures per execution.,3

3. all program variables are of a statically declared size.

The first requirement exists in order to limit the types of paths through a program; 
this simplifies the path equivalence class definitions and the program flowgraph. 
The second requirement is needed because propagation and infection analysis 
is temporally expensive. The intuition behind requiring the closely correct cri­
terion is to ensure that the program structure changes minimally as faults are 
removed; the four requirements are a stringent attempt to assure this. This 
means that propagatu and infection analysis will not need to be reperformed 
which would be temporally expensive. Requirement 2(c) ensures that for most 
inputs x, [P](®) =  [Pc](*). Requirement 2(d) ensures that those inputs y where 
[P](y) ^  [Pc](y) have low probabilities of being picked. The third requirement 
exists to simplify sampling and storage of data states. It is not a theoretical lim­
itation of propagation and infection analysis, it is a practical limitation; it exists 
to simplify the implementation of the process that produces data states. There 
does exists a propagation and infection analysis implementation scheme that can 
handle dynamic variables in the input program which will be explained in this 
chapter.

The use of the term “program” when discussing the application of propagation 
and infection analysis can also be interpreted as “module.” A module has an 
input distribution (from values of global variables and in parameters) and the 
global variables defined in the module combined with the out parameters are 
the module’s output. For some large software systems, there are modules whose 
integrity are far more critical than others. For such modules as well any other 
module, propagation and infection analysis may be individually applied.

The processes that this chapter discusses and are represented in Figure 4.1 
are:

• Process Simplify

• Process Abstraction Analyzer

• Process Dataflow Analyzer

3Ap <  10~4 failures per execution is what was used for the experiments of Chapter 6. This 
value was determined arbitrarily.
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1

propagation
•stlm atoa

dataflow
analysar

in fec tion
analysar

Fig. 4.1: Processes o f  PIA

• Process Natural Data State Producer

• Process Propagation Analyzer

• Process Infection Analyzer

Sections 4.1, 4.2, 4.3, and 4.4 describe auxiliary processes that convert the input 
program and input distributions in a manner such that the main propagation 
and infection processes are more specific and more efficient. Sections 4.5 and 
4.6 explain the propagation estimation process and infection estimation process. 
Section 4.7 describes the final output produced by the main processes. Section 
4.8 explains how the final output described in Section 4.7 relates to the objective 
of the thesis set forth in Chapter 1 .
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4.1 Process Simplify

Process Simplify is an auxiliary process and is the first process of the methodology 
invoked. Process Simplify inputs the original program P  and produces a program 
P' such that [P'\ =  [P]. This process performs two tasks. The first task takes 
arithmetic expressions in assignment statements of P  with k operators(fc >  2) 
termed compound expressions and produces functionally equivalent arithmetic ex­
pressions in P ' with k expressions each with one operator. An arithmetic expres­
sion with one operator and two operands is termed a simple expression and is in 
the form a 0  b, where 0  € {+, —,* ,/}  and a and b are variables or constants. 
This task requires the introduction of additional local variables. The reduction to 
simple expressions follows the precedence of the original expression, so if P  con­
tains a precedence fault, so will P ' .4 The BNF grammar for arithmetic expressions 
whether simple or compound [13] is:

<arithmetic expression> ::= <term > | <arithmetic expression> +  <term >
| < arithmetic expression> - <term >

<term > ::= <factor> | <term > * <factor> | <term > /  <factor>
<factor> ::= <variable> | <constant> | (<arithmetic expression>)

The second task inputs predicates from P  which are boolean combinations of 
arithmetic relational expressions. The logical operators and and or form boolean 
combinations. Each arithmetic relational expression contains a relational operator 
from {<, >, = , < , >}. Predicates in the form if (a) and (b) then and if (a) or (b)
then are termed compound predicates [1]. Process Simplify converts compound 
predicates of this form to if (a) then begin if (b) then .... end and if (a) then ... else 
if (b) then .... respectively. These (a)s and (b)s are termed simple predicates [1] 
when they are in the form x © y, where © € {< ,> ,=> ?£,<>>} and x ,y  are 
arithmetic expressions. Arithmetic expressions in simple predicates are currently 
not simplified in the methodology. Potentially it may be shown that simplifying 
arithmetic expressions within predicates handles a particular situation of which 
the author is currently unaware. An example of what this entails follows:

if ((a+b+c) > d) then

4This problem is partially solved by requiring that variables have associated units; the Inte­
grated Verification and Testing System (IVTS)[2] is an environment requiring units for programs 
in the language Hal/S[5, 9].
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becomes:

dd =  a -(■ b 

e =  dd +  c 

if ((e )  >  d) then

Note that two additional local variables where created during simplification: dd 
and e. The BNF grammar for compound and simple predicates is:

<simple predicate> ::= (<arithmetic expression> <relop>
<arithmetic expression> )
| not (<arithmetic expression> <relop>
<arithmetic expression> )

<compound predicate> ::= (<simple predicate> <andor> <simple predicate>) |
not (<simple predicate> <andor> <simple predicate>)

<andor> ::= and | or
<relop> ::= =  | 7̂  | < | >  | <  | >

Implementation of Process Simplify is not required in PIA. Conversion to 
simple expressions and simple predicates encourages isolation of locations where 
faults of low impact can more easily exist without being found. Remember that 
propagation and infection analysis is structure-oriented; the more the software 
structure is decomposed, the more precise the analysis. Process Simplify is one 
tool designed specifically for achieving this. By implementing Process Simplify, a 
perturbation function has fewer fault impacts to simulate than when applied to 
compound expressions.

4.1.1 Sim ple Expression Exam ples

This section presents two examples of the conversion from a compound expression 
to a simple expression. Observations during experimentation have shown that 
performing simplification increases the preciseness of the quantification of the 
failure propagation estimates strictly through increasing the number of estimates. 
An example demonstrating this is the following compound expression from [19]:

t  :=  0.9 * (sqr(y+1.0)+1.0)*exp(em *glalxm -gam m ln(em -t-1.0)-glg)

(♦*** d a ta  space ****).
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When failure propagation analysis is performed on the variable t of this expression 
in the succeeding data space, it produced a high failure propagation estimate. 
When failure propagation analysis is applied to the local variables being defined 
for the equivalent simple expressions:

aa :=  sq r(y + 1.0);

(=**** interm ediate d a ta  space ****)  

bb :=  aa +  1.0;

(***♦ interm ediate d a ta  space ****) 

cc :=  em +  1.0;

(**♦* interm ediate d a ta  space ****)  

dd :=  gam m ln(cc);

(***♦ in term ediate d a ta  space * ***)  

ee :=  em*glalxm-dd-glg;

(*♦*♦ in term ediate d a ta  space *** •) 

ff :=  bb ♦ exp(ee);

(**** in term ediate d a ta  space * ***)  

t  :=  0.9 * ff;

(**♦* d a ta  space ***♦)

it is discovered tha t one of the simple expressions produces a tiny failure propa­
gation estimate(close to 0.00003). This small estimate was not discovered when 
the compound expression was analyzed for failure propagation.

Creation of more locations by Process Simplification adds additional data 
spaces in addition to new variables. Data spaces in P' but not in P  are termed 
intermediate data spaces. Intermediate data spaces represent the state of the com­
putation after the newly created locations are executed. Intermediate data spaces 
contain the state of the computation at the subexpression abstraction level. This 
example shows tha t the higher the granularity(meaning the lower the abstraction 
level analyzed), the more precise the estimates produced.

One last example of expression simplification is the arithmetic expression x := 
(a*b)*ln(23 /  k) which has 4 operators. The simple expressions are:5

v l  :=  a*b

(♦*♦♦ in term ediate d a ta  space * ***)

5The effects of the unary In operator are ignored; there is no need to assign a unary operator 
and its parameter to a newly created variable; all that is required is that the argument to a 
unary operator is a simple expression or variable.
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v2 :=  ln(23 /  k)

(+*** interm ediate d a ta  space ***♦)

v3 :=  v l  * v2

(***♦ d a ta  space ****)

With intermediate data spaces, failure propagation analysis will simulate fault 
impacts in the succeeding data states of a*b, ln(23 /  k ), and v l  * v2 with three 
functions, instead of only simulating the fault impacts in (a*b)*ln(23 /  k) by one 
perturbation function.

4.1.2 Sim ple P redicate Exam ples

Since infection analysis of conditional locations needs semantic alternatives which 
impact the program counter, conversion to simple predicates helps ensure that 
complete infection analysis occurs particularly when infection analysis is per­
formed manually. As the number of simple predicates in a compound predicate 
increases, the probability of forgetting to analyze a semantic alternative increases 
when done manually and without simplification. By creating more locations which 
require less analysis, this probability is hopefully reduced. If infection analysis is 
automated, simplification of conditional predicates is unnecessary.

When predicate simplification occurs, the algorithm for failure propagation in 
Chapter 3 changes slightly. Failure propagation analysis at predicate locations 
should be performed in the data space of the last simple predicate that replaced 
a compound predicate. Do not perform failure propagation analysis in interme­
diate data spaces created by predicate simplification.6 The reason for predicate 
simplification is improved infection analysis, not failure propagation analysis.

An example of conditional predicate simplification follows for both the if-then- 

else statement and the while-do statement. The compound predicate:

if ( ( ( a + b  =  c) and (d + e  < =  f )  and (g = h ))  or (a = d ))  then  
(***♦ data  space ***♦) 

xxx;

is simplified to:

6 Perturbing at an intermediate data space created by predicate simplification is equivalent 
to forcing a predicate to have side-effects which do not impact the program counter; this is 
unrealistic and does not occur; thus it is not performed.
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if  (a + b  =  c ) th e n  b eg in

(* * * *  in term ediate d a ta  space **♦*)

if  (d + e  < =  f )  th e n  b eg in  

(*♦** interm ediate d a ta  space ***♦) 

if  (g = h )  th e n  

(**** data  space ****) 

xxx;
end ;

e n d

e lse

if  ( a = d )  th e n  
(***♦ data  space ♦***) 

xxx;

Notice that within the predicate a + b  =  c there is no simplification applied to 
the expression a + b .  Predicate simplification only applies to the logical operators, 
however to increase the granularity of the analysis this may be advisable.

As an example of the while-do statement, consider the following:

w hile  ( ( ( a + b  =  c) a n d  (d + e  < =  f )  a n d  (g = h )) )  do  

(* * * • data  space ♦***) 

xxx;

This is simplified to :7

100: if  (a + b  =  c ) th e n  b eg in  

(**** in term ediate d a ta  space ** **)

if (d + e  < =  f) th e n  b eg in  

[****  in term ediate d a ta  space ***♦) 

if  (g = h )  th e n  

(**** data  space *♦**)

xxx;
goto  100;

7With the use of a goto; the usage of a goto is allowed because its inclusion does not alter 
the overall flowgraph structure. Note that the goto location created does not receive failure 
propagation analysis or infection analysis since it clearly is going to the correct location. If 
the goto transfers control to the wrong location on a particular iteration, that is because the 
predicate is wrong.
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end;

There is an implicit assumption in the implementation of Process Simplify that 
[original software] =  [simplified software], i.e., the simplification process outputs 
functionally equivalent software. It should be clear that all the transformations 
described in this section are semantic-preserving.

4.2 Process A bstraction Analyzer

Process Abstraction Analyzer is a necessary auxiliary process that inputs P ' and 
outputs a  program P" with each level 1 location identified by a descriptor con­
taining a unique location number. This process is trivial and can be performed 
manually or automatically.

4.3 Process Dataflow Analyzer

Process Dataflow Analyzer is a necessary auxiliary process that inputs P" and 
outputs the set of active variables at each location regardless of the succeeding 
subpath. Hence, Process Dataflow Analyzer produces the active variables at each 
data space.8 For each data space in P", Process Dataflow Analyzer internally 
produces the program dependence directed graph. The active variables are then 
determined from the reflexive transitive closure of the program dependence di­
rected graph. This procedure is static. References to dataflow analysis include 
[7, 8 , 6 , 3].

4.4 Process N atural D ata State Producer

Process Natural Data State Producer is a necessary auxiliary process for PIA. 
Infection and propagation estimates are functions of sampled data states; Pro­
cess Natural Data State Producer is responsible for providing these sampled data 
states. Process Natural Data State Producer inputs P" and the input distribution 
of P, and outputs the value distributions for each data space and intermediate 
data space of P". Process Natural Data State Producer exists to ensure that

8This process can determine the active variables at sub data spaces if augmented with the 
information about the path equivalence classes.
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the sampled data states used during failure propagation and infection analysis 
resemble those that the program produces during execution.

The process of forming sampled data states should ensure that there exists an 
input point for the program that could have created that data state. For instance, 
if the predicate (xj >  100 <=> x2 > 500) is true at every data space in the program 
regardless of input, then the sampled data state (xx =  2 0 0 , =  2 0 ) should not
be created. A sampled data state that is not producible from an input point is 
termed an artificial data state; sampled data states meeting the requirement are 
termed natural data states.

4.4.1 Trade-offs B etw een  A rtificial and N atural Sam pled  
D ata  S tates

How important is it that sampled data states axe not artificial? Can failure prop­
agation or infection estimation be influenced by a particular sampled data state? 
Intuitively, an artificial data state could bias the failure propagation estimate since 
a program could exhibit more or fewer pseudo-failures from internal data states 
on which it was never intended to execute. An artificial data state could also bias 
an infection estimate for a particular semantic alternative. Artificial data states 
may adversely affect control flow during failure propagation analysis. This leads 
to Hypothesis 4.1:

H ypo thesis  4.1 Using natural data states as sampled data states rather than 
artificial data states may decrease the chance o f biasing the estimating pro­
cess.

The argument for Hypothesis 4.1 follows:

Comment on Hypothesis 4.1 This comment on how artificial data states 
may bias analysis results is in two sections: one for how artificial data states 
may affect failure propagation analysis and one for how they may affect 
infection analysis. (I.) For a section of code /  whose type I cancellation 
is being analyzed, if for every data state x regardless of whether artificial 
or natural, [f]{x) |  and /  is a one-to-one mapping from its input domain 
to its output domain, then it does not matter during failure propagation 
analysis whether the data states are natural or artificial. However consider 
the one-dimensional input space for the subprogram /  where

r t v  \ -  J  1 if  x >  0
[ ' I 0  otherwise
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and where all the natural data states prior to /  correspond an input value 
greater than zero, and thus the one-dimensional artificial data states corre­
spond to those values less than or equal to zero. If artificial data states are 
used in determining the failure propagation estimates of / ,  then the esti­
mates will be a function of [/](r) =  0  instead of [/](®) =  1 . This certainly 
could bias the failure propagation estimate if different locations are involved 
in computing [/](®) =  0 versus computing [/](x) =  1 . (II.) For infection 
analysis, suppose that at location I,

m/ 'y _  /  1 * >  0
'  |  q otherwise

and for a particular semantic alternative a,

la](x) = [  1 if ® >  1 0 6

[ 0  otherwise.

Now suppose that for the one-dimensional data state space prior to location 
/, the natural data states include those values less than zero and greater than 
106. If the artificial data states are used which are in the range [0...106], then 
infection estimates will be greater than zero when they should be zero.

Hypothesis 4.1 is a topic for future research. Natural data states are preferable 
since they are created from either known executions or some “higher” knowledge 
of either the program or the input distribution; propagation and infection analysis 
attempts to make an “expected” statement about “what might occur tomorrow” 
from “what has occurred today”. Using as much information known “today” 
about “what is expected to occur tomorrow” can only make the “what might 
occur tomorrow” statement better. Natural data states have the advantage in 
doing this. So the concern that exists in producing natural data states is ensuring 
that the values chosen in the sampled data state of a location are producible from 
an input point that reaches that location.

The algorithms presented in Section 4.4 for producing natural data states 
address this concern. A simple example demonstrating the need for natural data 
states is: if ( a >  0) then  b : =  b /  a . If no regard is made to the values a would normally 
have before the assignment statement, and values for a are randomly chosen, 
potentially a will be assigned a sampled value of zero. Run-time termination 
during Process Propagation Analyzer or Process Infection Analyzer will then occur 
forcing the process to be aborted. This may cause previous analysis prior to 
termination to be lost. A second example advocating Hypothesis 4.1 is more 
direct: suppose that a function is used which generates artificial data states at
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Fig. 4.2: D ata space value distributions for repeated locations

some location. And suppose that these artificial data stupes frequently cause 
an infrequently executed branch to become a frequently executed branch during 
failure propagation analysis. Further suppose that this branch which is frequently 
traversed contains locations which cause frequent type I cancellation. Then failure 
propagation of the location under consideration will be underestimated.

A “mini” experiment was performed using a quadratic program which explores 
this question further.9 The program used for the experiment is Quadratic. 10 The 
results are as follows: when natural data states were used, failure propagation esti­
mates of 1.0 occurred 90% of the time, and failure propagation estimates between
0.6 and 0.7 occurred for the remaining 10% percent; however when artificial data 
states were used, failure propagation estimates were always 1.0. So in this “mini” 
experiment, artificial data states overestimated the failure propagation estimates 
made with natural data states.

9The experiment was performed on only one program due to the intuition that artificial data 
states bias estimates; this idea is purely intuitive, and by no means validated.

10Found in Chapter 6.
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4.4 .2  Creation o f V alue D istributions at D ata  Spaces

This section describes the temporal and spatial requirements of three schemes of 
producing natural data states. Recall that a value distribution is a structure for 
storing data states at a data space. Figure 4.2 portrays the flow between two suc­
cessive locations within a loop where Vi 3y succ(x — l , i ,y )  = x .  Figure 4.2 shows 
two path equivalence classes coming into these two locations, and the correspond­
ing subdata spaces created by each path between two locations. The occurrence 
data state boxes in Figure 4.2 on the left for the first through jth iteration represent 
the sequence [Ar-i,i(°)> A c ^ i^ a ) , ..., Ar-ijCa)] for some input a. The occurrence 
boxes in Figure 4.2 on the right for the first through nth occurrence represent the 
sequence [Ar-i,i(6)> ^ * -1.2(6), .4x-i,n(&)] of data states for some input b. Of
the three methods for producing natural data states to be presented in Section 
4.2, only one method produces value distributions. The second method produces 
symbolic expressions which can be used to generate natural data states and the 
third method creates natural data states from executing predecessor locations on 
an input point [4]. The implementation of the method chosen for creating natu­
ral data states depends upon the abstraction level the analyzing process requires. 
For example, the value distribution for a variable z  at location k is effectively the 
result of overlaying the value distributions at each sub data space of location k 
that represents a path equivalence class on which variable z  is active at location 
k. Value distribution creation for data spaces requires less computation than for 
subdata spaces since it is not necessary to determine the proper subdata space 
that a data state belongs included in. The main difference between implementing 
value distribution creation at data spaces versus subdata spaces is that until de­
termination is made as to which path equivalence class the data states correspond, 
all data states executed must be stored temporarily. Once the determination is 
complete, the appropriate subdata space value distribution is updated.

In Sections 4.4.2.1-4.4.2.3, three different schemes for creating natural data 
states are presented; these are referred to as Method I, Method II, and Method 
III; these are three implementations for Process Natural Data State Producer. 
Method I produces natural data states for a location by storing a symbolic ex­
pression for each active variable of each data space in terms of all computations 
of that variable prior to that location. This requires a set of expressions for each 
preceding subpath to the location. The set of expressions combined with the corre­
sponding elements of the input domain, <f>, for that subpath suffice in satisfying the 
natural data state criterion; these expressions are effectively symbolic execution 
expressions. Method II executes the program a large number of times and builds 
value distributions containing the data states created during execution. Method 
III requires no storage and effectively never builds value distributions. It simu­
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lates both the creation of value distributions and sampling from them by being a 
“subprocess” that is inserted into the main PIA processes which require sampled 
data states. In effect, Method III generates natural data states as it needs them 
by executing all preceding locations to the location where natural data states axe 
needed. The disadvantage of Method III is that a main process must re-execute 
enormous quantities of code. 11

The following discussion of these three schemes is presented for producing 
natural data states at the higher abstraction level which is the subdata space. 
This scheme is presented since this implementation is more complicated than an 
implementation at the data space abstraction level. Conversion to an equivalent 
algorithm for determining natural data states of a  data space involves ignoring all 
references in the ensuing discussions to waiting until path determination is made.

4.4.2.1 The Algorithm for Method I

The algorithm for Method I is presented through example using the following code 
segment:

re a d (a )  [1]
(**♦* d a ta  space 1 ***♦) 

re a d (z )  [2]
( ♦ ♦ I t *  j j g j g  S p 3 C e  2  * * * ♦ )

if a >  0 th e n  [3]

(**** d a ta  space 3 ***♦) 

a : =  a - z [4]

(***♦ data  space 4  ***•) 

e lse  

a : =  a +  z [5]

(**** data  space 5 ***♦) 

a : =  sq r (a )  /  z 

(**♦* d a ta  space 6 ****)

Assume at dsg# variables a and z axe active. The algorithm for Method I consists 
of storing two types of information: an expression for each active variables at each 
subdata space, and either expressions for what the initial input values axe that 
cause a  particular path equivalence class to be executed at each subdata space,

u The use of a multi-processor machine can help with this problem. Any speed up will be a 
function of the number of processors.
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data space 
or subdata space

active variable in 
in expression form

input condition

1 a =  input
2 a  =  input 

z = input
3 a  =  input 

z =  input
4 a  =  a  - z 

z =  input
S a  =  a +  z 

z =  input
6 a  =  (a + z)“/ z  

z =  input
a < 0

a  =  (a — z)‘ / z  
z =  input

a > 0

Table 4.1: M ethod I example

or the actual input points of a particular path equivalence class at each subdata 
space. Initially, <f> is divided into equivalence classes according to P E C ; symbolic 
expressions are then constructed containing information about the computation 
that occurred to an active variable on a preceding subpath. For this example, 
at dsg8, two expressions occur for a at dsg6: (a +  z) 2 /  z and (a — z) 2 /  z. At 
dsg9 there exists two subsets of <f>: one containing values when a > 0 ; the other 
containing values when a <  0. With the partitioning of <j> and the arithmetic 
symbolic expressions, values for a and z can be generated at dsg6 that satisfy the 
natural criterion. For this example, Table 4.1 shows the information stored by 
Method I .12

Partitioning <f> according to the path equivalence classes may be partially de­
termined by executing P" many times. Putting every element of (j> in its proper 
partition would require executing P"  on every element in <f> which may be in­
tractable. Determination of the path equivalence class for a particular input point 
is performed as follows: execute P" with proper instrumentation to tell when a 
location is reached; then pattern match the output string against the known reg­
ular expressions of PE C  to determine the exact path equivalence class. Then add 
the input point to the correct partition of <f>.

Method I can be automated to generate the symbolic expressions provided it 
has three parameters: <l>, the path equivalence classes, and P". By backtracking 
through previous expressions and substituting these expressions into references

13 “a =  input” in Table 4.1 and Table 4.2 denotes that variable a has not been changed since 
being inputed.
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data space 
or subdata space

active variable in 
in expression form

input condition

1 a  =  input, pc =  2 Vo
2 a =  input, pc =  4 o > 5*"*

a  =  input, a  =  input +  1 , a  =  input +  2  ....
/  3 o <  5 

p c = { 4 a > 5

a  <5

3 a =  input +  1 , a  =  input +  2 ,... pc =  2 a < 5

Table 4.2: M ethod I loop example

in the current expression, previous computations affecting a  variable are stored. 
Loops in the input program make Method I more difficult, since at each location 
within a loop a separate expression is needed for each potential previous execution. 
In order to make this feasible, there must be a method for collapsing the potentially 
infinite number of expressions a loop creates. In the case of loops, it will be 
necessary to have an identification for the expression representing the expression 
for the first time at the subdata space. Table 4.2 shows the information necessary 
for the following indefinite loop.

read(a) [1]
(*♦** data  space 1 ***♦) 

while ( a < 5 )  do [2]
(**♦* data  space 2 ***♦) 

a : =  a +  1 [3]
(*♦** data  space 3 ****)

 [4]

A mean-value analysis of the spatial requirements for Method I is now given; 
the temporal requirements are ignored to generate the expressions and to generate 
the partitions of (j>. The assumption is made that the space required to identify 
expressions for the first time through a location is negligible. Let t = | T  | +  | T S  |, 
Ht =  the mean number of locations per path equivalence class, fij =  the mean 
number of times through a loop, /xr =  the mean number of locations which may

13This is for the subdata space corresponding to the path equivalence class for never executing 
the loop body.

14This is for the subdata space corresponding to the path equivalence class for executing the
loop body at least once.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



CHAPTER 4. PROPAGATION AND INFECTION METHODOLOGY 54

be repeated on a path equivalence class, and fia — the mean number of active 
variables per location.

Then fit — fiT is the mean number of locations on a path equivalence class 
which are never repeated. For these non-repeated locations, (fit — fiT)fia repre­
sents the number of expressions needed for one location for one path equivalence 
class; then for all path equivalence classes just multiply this expressions by f giving: 
t(n t—fir)fia expressions needed for all path equivalence classes for all non-repeated 
locations. Similarly, for locations that are repeated, the mean-value of the number 
of required expressions is tfiTfiafij ,16 So the mean number of expressions required 
in storage for creating natural data states is 0(t(fit — Hr)Pa +  tprpaMj)* If the 
mean amount of space required to store one expression is s, then the space order 
of Method I is 0(st(fit — fir)fia + stfirfiafij) . 17 As a rough estimate, if the following 
assignments axe made: t  = 500, fit =  100, fij =  10, fiT =  10, /ia =  50, and s =  
1 kilo-byte, this example requires 4.864 giga-bytes. If the amount of computa­
tional time required to solve one expression is symbolically represented by A, then 
the mean amount of time required to get a natural data state is Q(/iqA) . 18 In 
summation, Method I is a high-overhead scheme which is not advised.

4.4.2.2 The Algorithm for Method II

Method II is a dynamic scheme that requires executing P" many times. It is 
performed by augmenting P" with both a procedure to announce that a location 
has been reached and a procedure to store data states observed during an execu­
tion. Method II is the only one of the three methods that actually builds value 
distributions.

Before execution of the Method II implementation of Process Natural Data 
State Producer can begin, P" is instrumented with “write” statements to print 
out a message as each location has been reached. This produces a long mes- 
sage(string) that is matched against the list of regular expressions representing 
the path equivalence classes of P". In addition to the “write” statements, P" is 
augmented with an algorithm to temporarily store the data states from the exe­
cution until pattern matching is complete; then the data state is entered into the 
value distribution of the correct sub data space.

The algorithm for the Method II implementation is described through the

16Note that fij accounts for cases such as nesting of loops within loops since it represents the 
average number of times a repeated location is repeated.

17The space needed to store the equivalence classes of $ is considered negligible.
18A includes the time to obtain element of <f> and the time to solve the expression.
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following example. Let u be the number of statically declared variables in P". 
Let z  be the maximum number of active variables at any location in P"  , and let 
y be the maximum number of active variables for any path equivalence class of 
P".19 So then z  <  y < u. The output from Process Dataflow Analyzer and Process 
Abstraction Analyzer20 contains enough information to determine the variables in 
the subdata spaces. Now suppose P" has three path equivalence classes, i, j ,  and 
k, and that each path equivalence class has location x  represented in its regular 
expression. Let A,- =  {a,,i, a,-,2, a,,3 ,  . . . } represent the set of active variables at 
data space x on path equivalence class i, let A j  =  {ct^i, aJi2, a ,i3, . . . }  represent 
the set of active variables at data space x on path equivalence class j ,  and let A* 
=  ak,2 i ak,3 j •••} represent the jet of active variables at data space x on
path equivalence class k. And let A;, A j ,  and A* represent all subdata spaces at 
data space x. Then A,- U A j  U A* is the set of all active variables at data space x.

Execution of P"  reaches a given location and yields a natural data state for that 
location for a particular path equivalence class. At this point, the identification of 
the path equivalence class to which the data states belongs has not occurred, so the 
data state may not be included into the value distribution for any subdata space. 
What is known is that there are u variables for the program. So for each data 
space along the trip there is an u-tuple of values, where any uninitialized or dead 
variable may be considered zero, or assigned a value representing a dead status. 
For each naturally occurring data state occurring during execution, Method II 
stores one u-tuple of values of a node in a dynamically allocated linked list. This 
produces a  list of natural data states for each execution. The size of a list node 
must be large enough to hold u values and an identification number of the data 
space it represents. Since all variables in P" are static, the node size can be 
determined from dataflow analysis; the node size may be an array of length u. As 
a data space is reached in P", a new record is added to the list to hold the values 
of that data state.

A question arises when a loop is encountered as to how to store the data states 
from the many iterations; many natural data states may be produced at a single 
location. Should all iteration occurrences of natural data states be recoreded into 
the same subdata space from a particular execution? As a motivational answer, 
suppose there exists a program where 2 0 % of the executions execute a particular 
location 1 0 6 times, and on 80% of the executions the location is executed once. 
If all occurrences of natural data states at a location are entered into one value

19A variable is active for a path equivalence class if and only if it is active at some location 
on that path equivalence class. Then the active variables for a path equivalence class is just the 
union of each set of variables of each location in the path equivalence class.

20 Assuming production of the path equivalence classes of P".
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distribution, the value distribution will be biased. Since the failure propagation 
algorithm perturbs on /j(Sj,i(s)), then the storage must contain enough informa­
tion such that the data states encountered on the first execution of a location are 
differentiable from the succeeding data states of the location. The answer is to 
have a separate value distribution for the data states of the first iteration, and 
one value distribution for all succeeding data states of the location, similar to the 
Method I scheme of having a separate symbolic expression for each iteration of 
the loop. The failure propagation algorithm only perturbs the first natural data 
state at a location, so sampling only occurs from the value distribution represent­
ing the first occurrence natural data states. Infection analysis samples uniformly 
across all data states regardless of the iteration; however, sampling within a value 
distribution may not be uniform; it is according to the distribution.

At the end of an execution of P", Method II produces a data object similar to 
Figure 4.3 (a). Pattern matching can be done on the output string produced by the 
“write” statements. In Figure 4.3 (a), each node can be thought of as representing 
a sequence of data states similar to [Ai,i(&), A3UCc(Li,i,b),i(b), •~,A,ucc(i,n,b),n(b), ..., 
AexitJocation,i (&)] f°r some input 6 . Once comparison is made as to which path 
equivalence class was executed, the values included in the u-tuple belonging to 
dead variables are discarded(shown in Figure 4.3 (b) by the darkened spaces). 
Each record which was a u-tuple is now converted to a z-tuple. Then the values 
in the list can be added to the value distributions in the corresponding subdata 
spaces. The linked list is then deleted.

The method of storing data states in the value distribution is arbitrary; deci­
sion of the type of structure to use must be made. Two schemes are presented: 
encoding a data state to a single value for placement into a histogram21, and stor­
age of a node in the execution derived linked list in a value distribution linked 
list.22 It is necessary that the 2 -tuple of values stored in a record in the linked list 
remains stored together in the value distributions.

The execution derived linked list may be stored in a different linked list, i.e., 
take the nodes from the linked list and place them in another linked list. So 
the value distributions at a subdata space will be contained in a linked list; in 
fact, two linked lists for each subdata space. One for the first occurrence data

21One expensive and infeasible method that accomplishes this is Godel encoding [18]. It is 
solely mentioned fot explanatory purposes. The values in the z-tuple are encoded into a single 
value that is placed in a histogram. A histogram is the structure used for storing the value 
distributions. The histogram contains the frequency counts of particular natural data states. 
For encoding, there must be consistent ordering of the variables within a subdata space. The 
infeasibility of Godel encoding stems from it producing a value that exceeds most integer limits.

22Neither scheme is advised. This is an area for future research.
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Fig. 4.3: D ata struc tu re  representation for natural da ta  s ta te s  for M ethod II

states, and one for the remaining occurrence data states. Each node in the value 
distribution linked list should hold both the values and a frequency count of the 
number of times that particular data state combination occurred. Although it 
seems improbable that any particular data state occurs noticeably more frequently, 
especially as the number of active variables increases, [14] gives an interesting 
example showing that from 2 15 possible data states, only 2 0  occurred out of a 
sample space size of 1 0 6.

To implement this scheme, create a pointer for each type of occurrence at a 
subdata space, and initialize these to nil. Each time a data state not previously 
calculated during execution is discovered at a data space, create a new node in 
the list corresponding to its values with a frequency count of one. If the data 
state being added already exists, find the node for that data state in the list and 
increment its frequency count. Nodes with higher frequency counts can be moved 
to the head so that when sampling occurs later, values with highest probability 
can be found easily. This scheme saves in the overhead of an encoding/decoding 
scheme, however as the size of the list grows, the cost of searching during insertion 
grows. Also, the spatial requirements of storing all of the lists is prohibitive. For
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spatial reasons, this scheme is considered infeasible.

Again a mean-value analysis is given of the spatial requirements for Method 
II assuming encoding. Again, let t = | T  | +  | T S  |, (it =  the mean number 
of locations per path equivalence class, fiT — the mean number of locations in a 
loop on a path equivalence class, and fia = the mean number of active variables 
per location. Then the mean number of value distributions is the same as the 
number of expressions for Method I: Q(t(fit — fir)fia +  2tfirfia)-23 If values are 
assumed to be stored in a histogram, the mean number of bins per distribution 
is fib, where each bin requires 32-bits for the frequency counts, the space order 
required is 0 (4 fibt(fit — /*r)/*o +  8^;,t/iru0) bytes. To get a feeling for this, assign 
values as follows: t =  500, y.% — 100, fij = 10, ftT = 10, fia = 50, and fib = 100, 
This example requires 0.218 giga-bytes, a savings over Method I. The temporal 
requirements to get a  natural data state from Method II ignoring the time involved 
in executing P"  many times and storing the natural data states is a function of 
the search and retrieve time in a value distribution. If constant search and retrieve 
time, a, is assumed, then the mean time to get one complete natural data state 
is 0(oyio). The mean-value analysis of Method II using the linked list still has 
0(t(n t — fir)fia+2tnTHa) value distributions, which means 0 (/(/it —fir)Ha+2tnrfia) 
linked lists. The overhead in maintaining a list is high and not recommended.

Recapping, the algorithm needed for producing value distributions of natural 
data states at the subdata space abstraction level of Method II are:

1. Declare an empty linked list to exist with the size of each node large enough 
to hold all statically declared variables

2. Select an input point,

3. As each location is reached, create a new node in the list and store all values 
known in it,

4. At the end of an execution pattern match on the output string and determine 
the path equivalence class taken,

5. Delete all values in the linked list that do not correspond to the active 
variables of that path equivalence class,

6. Place the remaining values from each node into the value distribution scheme 
chosen,

23The 2 represents the two different type of iterations: first occurrences, and the remaining 
occurrences.
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7. Delete the linked list and repeat the process.

In summation, Method II is also a high overhead scheme. However when a realistic 
algorithm of storing n-tuples of values is found, Method II will be practical. This 
is an area for further study.

4.4.2.3 The Algorithm for Method III

Method III is a scheme which is temporally expensive yet has minimal spatial 
requirements. This algorithm is in general preferred, and if the program contains 
dynamic variables, it is the only one of the three algorithms that can be easily 
implemented to handle them. The algorithm is simple enough to be included into 
the steps of the main processes. Sections 4.5 and 4.6 show how to incorporate 
Method III into Process Propagation Analyzer and Process Infection Analyzer. 
The algorithm not only produces natural data states; it also automatically samples 
the data state it most recently created. So in effect Method III handles production 
and sampling of natural data states simultaneously. The algorithm follows:

1. set c o u n tl to zero,

2. take P"  and insert the necessary code to perform the algorithms of Process 
Propagation Analyzer or Process Infection Analyzer at the location,

3. select an input point and execute the augmented P",

4. if this input point causes the location under analysis to be reached, increment 
c o u n tl ,

5. execute P"  until c o u n tl =  n,

6. when c o u n tl  =  n, divide count by c o u n tl yielding an infection estimate for this 
alternative,24

7. the previous six steps have produced an infection or propagation estimate; 
now repeat this process according to the algorithms of Chapter 3 for each 
semantic alternative or active variable.

24The infection estimate is a point estimator which is the sample mean of the number of 
infections, however to determine the confidence intervals in the estimate, the confidence interval 
of the frequency distribution for 95% confidence can be found with p ±  w, where w = 2 •

and p = count /n  [11].
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Unfortunately, this scheme requires the repeated execution of locations to produce 
natural data states. It may also cause performing executions that may not reach 
the desired location if <j) is not previously partitioned. Choi et al. [12] present a 
scheme for using a hypercube for scheduling mutants during mutation analysis. A 
similar scheme may also be applied to the Method III implementation of Process 
Natural Data State Producer in order to save re-executing locations.

The temporal mean-value analysis of the seven step sequential algorithm above 
is as follows: let pe — the mean amount of time to execute a location, pi =  the 
mean number of executions of the program before an execution where the location 
being analyzed is reached, Pk = the mean number of locations per execution, and 
Up =  the mean number of locations executed before this location. Then the mean 
amount of time to get one natural data state using Method II is Q(pempk + PpPe) 
=  0((ie(mnk +  (ip)). The spatial requirement for Method III is negligible.

4.4.3 Sam pling from Value D istributions for M ethods I 
and II

The method of sampling data states depends upon whether the value distributions 
or symbolic expressions axe for data spaces or sub data spaces, and whether the 
process for failure propagation or infection analysis is requesting the states. Sec­
tion 4.4.3 only applies to the value distributions and symbolic expressions created 
by Methods I and II.

4.4.3.1 Method I Sampling

In the implementation of Method I, the symbolic expressions are at the subdata 
space abstraction level. The following algorithm for getting from symbolic expres­
sions to natural data states is presented through example.

Suppose that the frequency with which path equivalence class p is executed, 
Ep, is known for each path equivalence class going through some location x, and 
suppose sampling of data states is at location x for either failure propagation 
analysis or infection analysis. And suppose that n sampled data states are needed 
for analysis at data space x and that data space x has k subdata spaces (so there 
are k path equivalence elements that have location x in their regular expressions). 
For failure propagation analysis at location x, generate

n • Ep where 1 <  p < k
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natural data states from the first occurrence symbolic expressions and first oc­
currence input conditions for this path equivalence class in each subdata space 
p of data space x. Denote pXiP to be the mean number of expressions per active 
variable through location x regardless of iteration occurrence for an element of 
path equivalence class p. For infection analysis, generate

Ep 1
n •  ------

1 Px,p

natural data states uniformly from the first occurrence expressions and the input 
conditions for this path equivalence class in subdata space p at location x. A 
proportion of data states representing the first iteration is chosen separately from 
the other iteration occurrence data states to reflect the proportion of each that 
will be seen in the dynamic environment of the program. This is automatically 
handled by Method III. After these are generated, then generate

E p f t  1 'in • ~ r  • 0 - -------- )
1

natural data states by uniformly selecting expressions from the non-first occur­
rence expressions with the input conditions for this path equivalence class in 
subdata space p at location x.25

4.4.3.2 Method II Sampling

If the value distributions are for data spaces, then sample according to the distri­
bution of the value distribution and according to the process’s algorithm.26 If the 
value distributions are for subdata spaces, the ensuing discussion explains how to 
sample across subdata space value distributions.

As an example, suppose that the frequency with which path equivalence class 
p is executed, Ep, is known for each path equivalence class going through some 
location x, and suppose sampling of data states is at location x for either failure 
propagation analysis or infection analysis. And suppose that n sampled data 
states are needed for analysis at data space x  and that data space x  has k subdata 
spaces. For failure propagation analysis at location x, sample

n • Ep where 1 <  p < k

25If this location is not in a loop, there are only first occurrence expressions.
26Recall that infection analysis uses different data states for repeated locations than does 

failure propagation analysis.
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natural data states from the first occurrence value distribution in each subdata 
space p of data space x. Denote px<p to be the mean number of times through 
location x for an element of path equivalence class p. For infection analysis, sample

Ep 1
1 (*x,p

natural data states uniformly from the first occurrence value distribution in sub­
data space p at location x. Then sample

1 Px.p

natural data states uniformly from the non-first occurrence value distribution in 
sub data space p at location x.

A  problem occurs during sampling in Method II if a location was never reached 
during value distribution creation; the value distributions for the corresponding 
data space are empty. If a large number of program executions occurred during 
value distribution creation, either

1. the location is infeasible,

2. the location is feasible but rarely executed.

Unfortunately, case (1) can not be distinguished from case (2). So the best that 
can occur will be to either

1. re-execute P" until this location starts executing; modify the value distri­
bution creation routine to only store value distributions for this location, 
or

2. create artificial data states.

If (1) is attempted, and after a set time limit the location is still not reached, then 
artificial data states will need to be created.

4.5 Process Propagation Analyzer

Process Propagation Analyzer is a main process that performs the failure prop­
agation algorithm. Input to this process is P" and the natural data states from
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Process Natural Data State Producer. Output from Process Propagation Ana­
lyzer is a program which when executed produces a failure propagation estimate 
for each active variable at each location in P". The following pseudo-code shows 
a shell of the program outputted by Process Propagation Analyzer. This pseudo­
code shell uses Method III value distribution creation and sampling.

procedure execute.unperturbed_code(input) 

lo ca tio n .l 

location_2

location.n

procedure  execu te .p ertu rb ed .co d eJo c_ l.ac tiv e .v ariab le .l(in p u t)

p rocedure  execu te .p e rtu rb ed .co d eJo c .l.ac tiv e .v a riab le jc (in p u t)

{assum ing x  active variables ^ location  l}  

procedure  execute.perturbed_codeJoc_2.active_variablc_l(input)

p rocedure  execute .perturbed_codeJoc_2.active.variable.z(input)

{assum ing z active variables ^ location  2} 

procedure  ex ecu te .p ertu rb ed _ co d eJo c ji.ac tiv e .v ariab le .l( in p u t) 

p rocedure  execute_perturbed_codeJoc_n_active.variable_2(input) 

procedu re  execute_perturbed_codeJoc_n_active.variable_k(input)

{assum ing k active variables ^ location  n} 

begin 

lo ca tio n .l 

location_2

location .n

arrivedOlocation[n,k] :=  true 

if no t(a lready .pertu rbed [n ,k ]) then  

begin
pertu rb (da ta  sta teQ n active variable k) 

already_perturbed[n,k] :=  true  

end;
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end;

begin main 

{se t coun t .and problem  arrays to  zero } 

for x :=  1 to  N { N is num ber o f  program  locations } 

ge t input

call execute.unperturbed_code(input) 

for i :=  ’ to  m { m is num ber o f  perturbations to  occur 

for one active variable 

for one d a ta  s ta te  } 

for each active variable k €  A, 

arrived<9locationp,k] :=  false 

already_perturbed[i,k] :=  false

call execute_perturbed_codeJocj_active_variable_k(input) 

if arrived(9location[i,k] then 

countp.k] + +

if arrived<9location[i,k] and (ou tpu t(execu te .unpertu rbed .code) < >  

(output(execute_perturbed_code_locj_active_variable.k)) then 

problem[i,k] + +

for i :=  1 to  m

for each active variable k £  A; 

w riteln('prop. est. for location i active var. k = ' ,  problemp.k] 

/  count[i,k])

{assum ing count[i,k] < >  0}

end main

It is now shown that the pseudo-code shell is equivalent to:

F/iQ =  Pr[pseudo-failure on input x \ perturbed(l,a,x)\

where

perturbed(l,a,x) =
T  iff a G fi(3 it\(x)) and function  pertu rb (a)3 has executed 

on input x 
F otherwise
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Satisfaction of “perturbed(l, a,x) =  T  iff a € //(®/,i(*)) and function  pertu rb (a) 

has executed on input x” occurs with the following code segment:

location.l

arrived®location[l,a] :=  true 

if no t(already .pertu rbed[l,a]) then  

begin
pertu rb (data  s t a t e d  active variable a) 

already.perturbed[l,a] :=  true  

end;

where (already.perturbed[l,a]) is set to false before call execute_perturbed_codeJoc_i_active. 

variable.k(input) is called to assure perturbation only on the first data state. 
The total number of pseudo-failures is found by:

if arrivedfllocationp.a] and (ou tpu t(execu te .unpertu rbed .code) < >  

(output(execute.perturbed_codeJoc_l_active.variable.a)) then  

problem[l,a] + +

The total number of perturbations occurring on the first occurrence data 
state for location I and active variable a is found by:

if arrived<9locationp,a] then 

count[l,a] + +

So the point estimator which is the failure propagation estimate is:

Prfpseudo-failure on input x  I perturbed(l,a,x)] =  ——
count[l,aJ h

The O-notation for this implementation of the algorithm for a program of 
m  locations in straight-line is as follows [15]: Suppose that n  data states axe 
to be used at each location, and that there are y  active variables on average at 
each location. Then this implementation has order 0(nym 2 +  ny), hence it is 
quadratic in the number of locations executed, excluding the locations to perform 
the perturbations.27

27n/i is the number of locations executed from the non-perturbed copy.
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4.6 Process Infection Analyzer

Process Infection Analyzer is a main process which performs the algorithm for 
finding infection estimates. Input to this process is P"  and the natural data 
states from Process Natural Data State Producer. Output from this process is a 
program which when executed produces an infection estimate for each location in 
P" and each semantic alternative. The following pseudo-code shows a shell of the 
program that this process outputs. This shell uses Method III value distribution 
creation and sampling.

It should be noted that the technology involved in Process Infection Analyzer 
is in most part the same as mutation testing28[16, 17]. The difference is in the 
data collected. In mutation testing, the input points are evaluated. In infection 
analysis, the location with the semantic alternative is evaluated.

p ro c e d u re  execu teJocations(inpu t) 

b e g in  

tim es(9location[l] + +  

if  ((d a ta  s ta te  after location.!.) < >

(d a ta  s ta te  after sem antic_alternative_l(location_l)) th e n  

c o u n te r .l[ l]  + +

if  ((d a ta  s ta te  after lo ca tio n .l)  < >

(d a ta  s ta te  afte r sem an tic .a lternativeJc(location_l)) th e n  

coun te r.l[k ] + +  

lo ca tio n .l

location .2

times®location[n] + +

if  ((d a ta  s ta te  after lo c a t io n s )  < >

(d a ta  s ta te  after sem an tic_alternative .l(location .n )) th e n

28Mutation testing is a way of determining test data adequacy by seeing if the test data 
catches faults injected into the code.
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counter_n[l] + +

if ((d a ta  s ta te  after locational) < >

(d a ta  s ta te  after sem antic_alternativeJ<(location-n)) th e n  

counter_n[k] + +  

location.n 

end

begin  main

for k :=  1 to  num ber_of.sem antic_alternativesQ locationJ 

counterJ[k] :=  0 

for i :=  1 to  n {n is num ber o f locations } 

times®location[i] :=  0 

for z :=  1 to  N {N is num ber o f  inputs for confidence interval } 

get inpu t

call execu te .locations(input) 

for i :=  1 to  n 

for k :=  1 to  num ber of sem antic_alternatives(9locationJ 

w riteln('inf. est. fo r \k ,  counter_i[k]/tim es(9locationJ)

{assum ing tim esS loca tionJ < >  0}

end  main

It is now shown that the pseudo-code shell is equivalent to:

Ii,a = Pr[infected’(I, a, x) | 3/(x) 0]

where

To verify that %i(x) ^  0 , 

tim esQ locationp] + +

is used so then the point estimator is a function of the number of arrivals at 
location I. Satisfaction of infected’(I, a, x) = T  iff 3y € ®i(®) fi(y) #  f a(y) 
occurs with
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if ((d a ta  s ta te  after loca tio n J) < >

(d a ta  s ta te  after sem antic_alternative_a(locationJ)) th en  

counter_l[a] + + .

So then the point estimator for the infection estimate for location I and 
semantic alternative a is:

PT[infected\l,a,x) | S t(x) ^  0] =
tim esQ locJ _

The O-notation for this implementation of the algorithm for a program of m  
locations in straight-line is as follows: Suppose that n data states are to be used 
at each location, and that there are \i semantic alternatives on average at each 
location. Then this implementation has order 0(n/xm), hence it is linear in the 
number of locations executed.

Using an idea from Choi et al. [12], the above sequential algorithm could 
parallelized as follows: assign one processor to execute the location as it currently 
stands. So it is essentially performing two roles: as the keeper of the correct 
result for each location, and as the natural data state producer. For each location 
under analysis, assign each semantic alternative to a different processor. Thus 
each processor with a semantic alternative gets two messages from the processor 
with the correct location: the first contains the input natural data state to use, 
and the second is the output data state from the original location. The semantic 
alternative processors can then determine if an infection occurs and keep a record 
of the number of infections. The program under analysis can be stepped through 
in such a manner to greatly decrease the time to perform infection analysis. Any 
speed up achieved, however, will decrease the order of the implementation to no 
less than 0((npm )/p),  where p  is the number of processors. An analytical scheme 
for expression infection estimation is presented at the end of Section 4.6.

Process Infection Analyzer requires a sub-process to produce the semantic 
alternatives for each location; Section 4.6.1 explains what semantic alternatives 
should be produced. There are two types of infection analysis performed: one for 
boolean predicates and one for arithmetic expressions. Different rules axe invoked 
for producing semantic alternatives depending on the location type.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



CHAPTER 4. PROPAGATION AND INFECTION METHODOLOGY 69

semantic alt. semantic alternative description
1 . a — b
2 . a* b
3. a / 6

4. i>l +  i  over all active variables for 61  a t location of a+b
S. a +  oi over all active variables for ai at location of a+b
6 . const +  6
7. a +  const
8 . (constk .a* +  constk-i • a* - 1  + . .  +  consto) +  6  where — oo < const),, const ),_ i,. . . ,consto < oo
9. a +  (const), • 6 " +  constk-i • 6*“ * +  .. +  consto) where -  oo < const),,consto i ,..., consto < oo

Table 4.3: Sem antic A lternatives for th e  expression ( a  +  b)

4.6.1 Expression Infection  A nalysis

Expression infection analysis finds an infection estimate for an assignment state­
ment in P"  in simple expression form. For expressions, class T  is limited to the 
following fault types, all of which are single changes to a location:

1. a wrong variable substitution,

2. a variable substituted for a constant,

3. a constant substituted for a variable,

4. expression omission,

5. a variable that should have been replaced by a polynomial of degree k,

6. and a wrong operator.

The breadth of the type of faults defined in T  determines the power of Process 
Infection Analyzer.

These six fault types are the ones that this thesis considers; other applications 
or external knowledge of the developmental environment may require changes in 
T . As an example of T  applied to the arithmetic expression a +  6, the set of 
semantic alternatives derived from T  are in Table 4.3.29 Similar tables can be 
derived for simple expressions with other operators.

29The range on the values to be substituted as constants for fault 6 and fault 7 is limited to 
the discrete values for variable “a” which have the highest probabilities of occurring in the value 
distribution preceding the location.
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4.6.2 P redicate Infection  A nalysis

Predicate infection analysis is performed on each predicate. The fault classes in 
T  for predicate infection analysis are:

1. substituting a wrong variable,

2. exchanging and and or, and

3. substituting a wrong equality/inequality operator.

For loops, exchanging equality/inequality operators can quickly cause infinite 
loops, so care must be taken to minimize the potential. Therefore a time limit 
is placed in step 3 of the infection algorithm. Even though a particular semantic 
alternative may be in the class F , if it is predetermined that termination does 
not occur when the semantic alternative is substituted, then the semantic alter­
native should be skipped. The intent of infection analysis is to mimic “common” 
faults. Any fault causing an infinite loop should not be considered “common” 
by the closely correct criterion, unless it is at a rarely executed location. Notice 
again that the class of faults defined for predicate infection analysis represent sin­
gle changes to a location, not multiple changes. This definition of T ,  again, is 
subject to change under various conditions. Such conditions are expected due to 
strange software phenomenon however these conditions are currently not known.

As an example of predicate infection analysis, for the predicate ((a  <  b) and 

(c ) ) ,  where a and b have numeric values and c has a boolean value, the semantic 
alternatives are given in Table 4.4. Most of the semantic alternatives result in high 
infection estimates. The semantic alternatives which may produce lower estimates 
are 1, 6, 7, and 8. The viruses that are produced from predicate faults are in the 
program counter. Such faults cause a wrong path to be taken. The notion of taking 
a wrong path yet producing the correct result is termed coincidental correctness
[1]. A missing path can be partially detected by failure propagation analysis.30

4.6.2.1 Analytical Expression Infection Analysis

This section explains an alternative scheme for determining the expression infec­
tion estimates for the nine semantic a; cernatives of Table 4.3. For the first semantic

'30Partial detection can be expanded to near total detection if propagation analysis is performed 
on every declared variable at each location. The reason total detection is not possible is because 
the effect of the missing path my be to some variable which has not yet been declared.
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fault fault description
1. (a <  b) and c
2. (o > b) and c
3. (a >  b) and c
4. (a =  6 ) and c
S. (a ^  6 ) and c
6 . ( 6 i <  6 ) and c I over all declared active boolean variables 61

7. ((a < b, ) and c) over all declared active boolean variables 61

8. (a <  b) or c

Table 4.4: Sem antic A lternatives for th e  predicate ((a  <  b) and c)

alternative of Table 4 .3 , the infection estimate is 1 — Pr[a +  b = a — 6], The prob­
ability Pr[a +  6 =  a — 6] can be solved for all (a ,b ) pairs using a scheme such as the 
Mathematica [19] Solve directive. Solve produces the (a ,b )  pairs where a + b = a — b. 
After these pairs are found, determine the frequency of each pairs occurrence in the 
data space value distributions preceding the location; this then is Pr[a+6 = a — b]. 
Only when 6 =  0 does Pr[a +  6 =  a — 6], hence Pr[a 4- 6 =  a — b] =  Pr[6 =  0]. If in 
the preceding data space to the expression there exists a high preponderance of 
zeros in 6’s value distribution, then Pr[o +  6 =  a — 6] is high causing a low infection 
estimate. Similar tactics also yield infection estimates for semantic alternatives 2 
and 3 of Table 4.3 .

For semantic alternatives 4 and 5, the infection estimate is high unless 6i 
and a have identical values in the preceding data state, i.e., data states (a,b) 
such as (1,1), (2,2), (3,3), etc. Infection estimates for semantic alternatives 4 
and 5 are found by 1 — Pr[6i =  a in the preceding data state]. To estimate 
Pr[6i =  a in the preceding data state], sample the natural data states and find 
the frequency of (x, x) value pairs in the value distribution. One minus this fre­
quency is the infection estimate.

The infection estimate for semantic alternative 6 is 1 — Pr[a =  constant]. 
Pr[a =  constant] is found by finding the point or points (if there axe several) with 
the highest relative frequency in the value distribution for o. Subtract this highest 
relative frequency for this bin from 1.0 yielding the minimum probability that 
this semantic alternative causes infection; this is the minimum infection estimate. 
Similar tactics also yield an infection estimate for semantic alternative 7.

Finding infection estimates for semantic alternatives 8 and 9 is more difficult. 
When a polynomial of degree k replaces a variable, an explosion in the actual num­
ber of semantic alternatives each semantic alternative expression represents occurs 
due to values the constants can be assigned(—oo <  consto, const\ , ..., constu < oo).
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If the degree of the substituted polynomial is limited to 1, then only semantic 
alternatives of the form (consti • a + consto) need be considered for semantic al­
ternative 8, and (consti • b +  consto) for semantic alternative 9. The expression 
(consti • b +  consto = b) is true iff

, consto b —

(1 — consti)

The truth of this equation is a  function of b, consti> and consto. In general, 
replacing a variable by a polynomial should produce an infection estimate of ap­
proximately 1.0, however the analysis should still occur if polynomial substitutions 
are considered as potential faults.31 If consideration is limited at the three dimen­
sional value space for the two constants consto, consti over —oo to oo, and at the 
highest frequency values of b which are shown in Figure 4.4, it becomes likely 
that the number of times that the predicate is true is execedingly small; hence 
infection always occurs.32 Infection for semantic alternatives 8 and 9, where the 
degree of the replacing polynomial is 1, is then

„  .number of times predicate is true.
1 -  P r  : -------------------size of 3-D space

which is shown in Figure 4.4;

.number of times predicate is true, 
size of 3-D space

is the proportion of dark points in the darkened box relative to the total space 
of points in the box. If we consider the case of a polynomial of degree x  with x 
solutions, then the probability of no infection occurring is just

^ ( 2  • maxint)*^

which is infinitesimally small. Note that the total number of values for b is not
infinite in Figure 4.4; consideration only occurs for values of b that are more likely,
hence the tick marks in Figure 4.4 represent the more likely values of b. These
values can be found in the value distribution at ds<p , .a+b

31 Particularly low order polynomials.
32Actually, [-maxint..maxint] is the range for consti and consto.
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n x x i n t

n a x l n t• r a a x in t

- m x x i n t

Fig. 4.4: 3-D space for a one-degree polynomial replacem ent for variable

location infection estimate propagation estimate
1 . nun, min*fFi,oi
2 . min, h .m i nun*{Fa.oi
3. mini nunijfFs.at
4. min,* nunk{F4,al
: : :
i i I

Table 4.5: Tem plate o f Minimum D ata from  PIA

4.7 Infection Analysis Output and Failure Prop­
agation Analysis Output

Propagation and infection analysis produces a large number of infection and failure 
propagation estimates for each location. The output from Process Propagation 
Analyzer and Process Infection Analyzer is similar to that shown in Table 4.5.

For certain applications, more information is needed than that shown in Ta­
ble 4.5. Almost all of the estimates are lost when only the minimum estimate is 
provided. Saving each estimate for each semantic alternative and each active vari­
able requires a large amount of space. The template in Table 4.6 shows complete 
propagation and infection analysis results.
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location infection etiimatci propagation estimates
at aj 03 04 05 -* 01 03 03 04 as

1. * l , o j *4.08 —♦ ,o, £ l , o , f l . O ,
2. /a,°i *3,03 *3,04 *2,0, “ *■ 3,oi f3,aa f3,o, P s .0 4 -+
3. *3.a, *3,04 A ,o « -+ F3.01 3̂,0. 3,a. _ F3.Q4 F3,a, —►
: : —+ : :
i I 1 i i i —¥ i I 1 i i

Table 4.6: Tem plate o f  A ccum ulated D ata  from  PIA

4.8 R elating Propagation and Infection Esti­
m ates to  the Thesis O bjective

Propagation and infection estimates relate directly to the thesis goal: “determin­
ing where a fault can easily hide.” A location which has small propagation and 
infection estimates is a location which may easily hide a fault. It also is the case 
that a location which is rarely executed, may easily hide a fault. So formally, for 
a location I,33

3k FiiBk «  0.0 V 3fc //,„* «  0.0 V £ ;w  0.0 = >

location I can easily hide a fault (4.1)

Similarly,
->3k F itait fa 0 .0 A - i3 k Iitak fa 0.0 A ->(Ei fa 0 .0 ) =$■

location I can not easily hide a fault (4.2)

Many locations may satisfy equation 4.1. To determine those locations which 
can more easily hide a  fault than others relative to A even if they both satisfy 
equation 4.1, define a parameter (i as the ability of a location to hide a fault. The 
larger £j, the greater this ability. Thus:

0  = /(& ,F|,ai,...) +  w 2 • 53*(*> 4ai....) +  u>3 • e(Q (4.3)
k k

where

/(* ,* * ,....)  =  { I  (4-4)

0.0 denotes on the order of 10-4 which was determined arbitrarily; E\ denotes the execu­
tion rate of location /.
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and

 <4-5>

and
/ n  f  1 E i  w  0.0

~  {  0 otherwise  ̂ ^

and Wi,W2 , are weights associated with the importance of the three estimates. 
It is currently unclear which of these three sets of information is more important, 
hence w i,w 2, and u?3 axe left as parameters. It is also not clear whether a linear 
combination of / ,  i, and e is appropriate, versus an exponential combination or 
some other function. Clearly, the size of |Aj | and must play a role in u>x and 
w2.

4.9 Conclusions

This chapter details the main and auxiliary processes of PIA as well as alterna­
tive schemes for performing them. As more precise or computationally cheaper 
algorithms are found, the requirements on the state of the input program given 
in the introductory paragraphs of this chapter may be relaxed. It appears, al­
though, that the closely correct criterion will always in some form exist however 
its definition may be relaxed. If in the future it becomes temporally trivial to 
perform propagation and infection analysis, then the closely correct criterion may 
be discarded. This currently appears unlikely.

A brief summary of the requirements of the processes presented in this chapter 
follows:

P rocess S im plify is invoked for creating more refined estimates of failure prop­
agation at the subexpression level. It exists for better quality in the failure 
propagation estimate. If implemented, it can be performed manually and 
this process is neither spatially nor temporally expensive.

P rocess A b strac tio n  A nalyzer isolates the locations that the methodology 
will be applied to. This process is trivial; it can be performed manually 
and is trivial.

P rocess D ataflow  A nalyzer produces the set of active variables at each loca­
tion that the failure propagation algorithm will be applied to. This process 
can be performed manually for small programs to determine which variables
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are active; this process is trivial for straight-line programs; dataflow algo­
rithms can be applied for automating the process. This process is neither 
spatially nor temporally expensive.

P rocess N a tu ra l D a ta  S ta te  P ro d u ce r produces the natural data states that 
the failure propagation implementation and infection implementation need. 
This process can be incorporated into Process Propagation Analyzer and 
Process Infection Analyzer as shown in the pseudo-code shells; this makes 
this process temporally expensive; otherwise if a  storage method is chosen 
it is spatially prohibitive.34

Process P ro p ag a tio n  A nalyzer produces the failure propagation estimates. 
When performed computationally, it is temporally expensive, however not 
overwhelmingly so; Process Propagation Analyzer builds the pseudo-code 
shell. It is quadratic in the number of locations executed assuming Method 
III value distribution creation. The main temporal requirements are in ex­
ecuting the shell, not creating it. This process has minimal spatial needs. 
Automating the creation of the pseudo-code shell is recommended, however 
this can be performed manually.

P rocess Infection  A nalyzer produces the infection estimates. This process 
will almost certainly be the hardest process to implement, since it requires 
many semantic alternatives for each location. This process is not spatially 
intensive, however it is temporally expensive in terms of creating the pseudo­
code shell. It is linear in the number of locations executed assuming Method 
III value distribution creation. Creation of this shell will have the highest 
temporal costs, however dynamic temporal costs will not be as overwhelm­
ing. Automating the creation of this pseudo-code shell is recommended. No 
tool currently exists to perform the automation.

34Using a multi-processor machine with Method III natural data state production appears to 
be a practical approach to the space and timing problems of propagation and infection analysis. 
Any gains in performance, however, will be directly tied to the number of processors, hence the 
decrease in costs is linearly proportional to the number of processors.
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C hapter 5 

Propagation and Infection  
A pplications

Chapter 5 introduces application area models for propagation and infection anal­
ysis. The quantification of where a fault can easily hide may be used in probable 
correctness, software reliability, software testing, program debugging, and testing 
complexity. Research disciplines concerned with software quality can most likely 
either directly or indirectly benefit from propagation and infection analysis.

Section 5.1 introduces additional definitions and algorithms for the application 
area models of Chapter 5. Section 5.2 describes additional processes and mentions 
processes already introduced in Chapter 4 which need enhancements for these 
application models. The remaining sections of Chapter 5 axe strictly devoted to 
the models.

5.1 Term inology and Definitions

Section 5.1 introduces three new entities: the latent failure rate, execution esti­
mate, and dispersion histogram. The latent failure rate estimates the minimum 
failure probability of some entity at a particular abstraction level, the execution 
estimate is the probability of reaching an entity at some abstraction level(typically 
at path levels), and the dispersion histogram reveals which input points are be­
lieved to be more likely to reveal faults.

79
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5.1.1 Latent Failure R ate

Section 5.1.1 introduces a method of estimating what the minimum failure rate 
will be for a program fragment depending upon the abstraction level. This section 
introduces a structure-based method of estimating the minimum failure rate. A 
black-box model for estimating the minimum failure rate of a program is to use the 
observed number of failures per number of executions. Another black-box scheme 
for estimating the minimum failure probability is Bayesian estimation [24]. The 
maximum failure rate of a fault in a program is 1.0. For several applications it 
is more useful to determine what the minimum impact on the failure rate will be 
for “any” fault. It, however, is not possible to make such a grandiose statement; 
limitations must to  be placed on the interpretation of “any”.

In order to measure this minimum failure probability, the conditions necessary 
for a program to fail are again reviewed. A fault must be reached, an infection 
must occur, and the infection must propagate. When these three occur, failure 
results, and the product of the frequency with which these three occur is the 
failure rate. The definitions from Chapter 2 for execution rate, propagation rate, 
and infection rate, combined with the assumption that location x  has the only 
fault in program P  can be related to the observed failure rate by:

Ap =  execution rate • infection rate • propagation rate (5.1) 
=  P r [ * ,( y ) * 0 ] .

Pt[infected(x, y) | "Bx{y) £  0] •
Pr[program fails on input y \ infected(x,y)\ (5.2)

Equation 5.2 is specific to one particular fault. If there axe other faults in program 
P , this equation may be incorrect. So an attempt to produce a formula for the 
minimum failure probability should probably contain as parameters the infection 
estimates, propagation estimates, and execution rates.

The latent failure rate is the term used for the quantification of this minimum 
impact; the latent failure rate of a location I is defined as the probability that if a 
fault exists at location I, and location I is reached, failure occurs. In the formulae 
presented in Section 5.1.1 for measuring the latent failure rate, the execution rate 
is omitted. This separates the potential of a failure occurring from the potential 
of a particular abstraction level member from being executed. This ensures that 
low execution rates will not overshadow the cancellation occurring when infection 
does not occur and propagation does not occur.

As previously mentioned, restrictions axe placed upon the interpretation of 
“any”. The restriction placed on “any” will be the alternative class A. Define the
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alternative class, A, to be the class of impacts on the computation of the program 
which is defined by

1. F,

2. the perturbation function parameters, and

3. the perturbing distribution.

Hence formulae for measuring the minimum failure probability at a location I 
which represents the minimum probability of both infection and propagation oc­
curring at a location is a function of A and is conditioned on reaching I.

The dependence of the latent failure rate on the propagation estimate should be 
clear. However the inclusion of the infection estimate in the latent failure rate may 
not be clear. It may seem defendable to assume that the infection estimate will be 
large. There are, however, faults that affect very few input points. As an example, 
replace b :=  b mod 1000000 with b mod 1000001, where the distribution of values of b 

is in the range [0.. 1000000]. For values of b less than 1000000 no infection occurs. 
Another example is the replacement of a := (a * 100) with if a ^ l  then a := (a*100 ) 

else a := (a* 1 0 ). In this example, only one value for a causes an infection. Hence 
the infection estimate plays an important role in representing faults which rarely 
infect. Ignoring the infection estimate may produce a drastically over-estimated 
latent failure rate.

Section 5.1.1 provides formulae for estimating the latent failure rate. A la­
tent failure rate can be found for each level of abstraction. The distinguishing 
characteristic among the various methods of measuring a latent failure rate is 
how conservative an estimate the scheme produces, where scheme “A” is said 
to be more conservative than scheme “B” if for ail latent failure rates scheme 
“A” produces, the estimates are lower than for scheme “B” for the same input 
parameters.

5.1.1.1 Latent Failure Rate Measurement Assuming Independence

The first attempt at quantifying the minimum failure probability is a direct result 
of equation 5.2. Equations 5.3 - 5.5 assume independence between input points 
which propagate and infect, i.e., it is independent whether points which propagate 
also infect. So the latent failure rate for a location I assuming independence is:

Ifri =  rmn[/w ] • rm n[F,,J (5.3)

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



CHAPTER 5. PROPAGATION AND INFECTION APPLICATIONS 82

Equation 5.3 can be generalized to a path equivalence class / with:

Ifri =  min[nun[/il0J  • imn[F,-,J] (5.4)t,J K *

where locations i and j  are on path equivalence class /. Notice that equation 5.4 
has no requirement that location j  is a successor location of location i. Since it 
is typical to think of infection occurring before propagation, equation 5.4 is a bit 
peculiar. Hence equation 5.5 takes this into account producing a less conservative 
measurement:

Ifri = min[min[/jl0|t] • min[F,ia,]] where i precedes j  (5.5)
i,j k 2

5.1.1.2 Latent Failure Rate Measurement Assuming Non-Independence

Section 5.1.1.2 describes a more conservative approach than presented by equa­
tions 5.3 - 5.5. It does not assume that those points which infect will propagate. It 
considers a class of input points referred to as non-propagators. A non-propagator 
is an input point which will cause an infection but will not propagate. Equa­
tions 5.6 - 5.8 subtract the proportion of non-propagators from the infection es­
timate, leaving an estimate of the proportion of the input points that will infect 
and propagate. This non-independence approach is more conservative than the 
independence approach; applications will later be mentioned which rely on having 
the most conservative estimate of the minimum failure probability. This is crucial 
for these applications.

The latent failure rate for a location I assuming non-independence is measured
by:

Ifri = -  (1 -  rnm [F,,J) (5.6)

Equation 5.6 effectively removes the proportion of input points which for at least 
one perturbed active variable did not propagate. Equation 5.6 can be generalized 
to a path equivalence class. The “most conservative” measure of the latent failure 
rate for a path equivalence class I is given by:

I f n  =  imn[mjn[/i|0 J  -  (1 -  nun[F,•,„,])] (5.7)
t , j  k *

where i and j  are locations represented in path equivalence class I. If the same 
requirement from equation 5.5 is made for equation 5.7, the latent failure rate 
measure becomes:

Ifri =  min[min[Ij,oJ — (1 -  min[F,l0x])] where i precedes j  (5.8)
i , i  k 2
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c o
50% Infection  5% propagation

Fig. 5.1: High Infection, Low Propagation  probabilities

€ 9
50%  i n f e c t i o n  7 0 %  p r o p a g a t i o n

Fig. 5.2: High P ropagation , High Infection probabilities

Equation 5.7 uses the lowest failure propagation estimate for any location i in 
path equivalence class x  and the lowest infection estimate for any location j  in I. 
Equation 5.8 does also provided that location i precedes location j .

Both equations 5.6, 5.7, and 5.8 inherit the potential for producing negative 
latent failure rates. This is due to the subtraction of the percentage of “nonpropa­
gators” . Although a latent failure rate estimate which is less than or equal to zero 
is useless as a probability, it contains useful information. A non-positive latent 
failure rate says that the abstraction level location I may potentially (worst case) 
always produce the correct output even when there is a fault in a location on it.

Experimental results have shown that min*[/j,ofc] and minz[F,ia,] values are in 
the majority of cases usually between 0.1 and l.O.1 Figure 5.1 and Figure 5.2 
illustrate the difference which occurs between a positive and non-positive latent 
failure rate in equations 5.6 - 5.8. In Figure 5.1, the infection probability is
0.5, whereas the propagation probability is 0.05; this example produces a latent 
failure rate of -0.45. Notice in Figure 5.1 that the proportion of “infectors”(black); 
hence a negative latent failure rate, can easily be placed into the proportion of 
nonpropagators(white). So in the worst case, those points which propagate are 
those which do not infect. Figure 5.2 is the reverse scenario where there axe 
points that both infect and propagate. Here the latent failure rate is 0.2.

1 Detailed in the tables in Chapter 6.
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5.1.1.3 Latent Failure Rate Measure for an Entire Program

The latent failure rate may be determined for the highest abstraction level, an 
entire program at the source level. The latent failure rate measure for an entire 
program P  is:

l f r P =  m j l / r j ]  (5.9)

This is the minimum latent failure rate estimate over all path equivalence classes; 
equation 5.9 depends on measurement scheme of the latent failure rate chosen at 
the path levels.

5.1.1.4 The Hierarchical Method for Measuring the Latent Failure 
Rate

Equations 5.4 - 5.5 and 5.7 - 5,8 give a rough and conservative estimate of the 
latent failure rate for a path equivalence class. All equations presented thus fax 
are a function of A. Potentially a path equivalence class will have a location on it 
that yields a tiny (< 0.01) infection estimate. If this occurs, the latent failure rate 
produced by equations 5.7 - 5.9 will almost certainly be negative. So for paths 
of many unique locations, a less conservative scheme for determining the latent 
failure rate may be needed.

The hierarchical method presented in this section for finding a path’s latent 
failure rate introduces, in general, a less conservative model than the prior schemes 
of measurement. The hierarchical model is a function of T  and the hierarchical 
model does not produce negative latent failure rates. Equations 5.5 and 5.8 at­
tempted to tighten up (make less conservative) the latent failure rate estimates by 
imposing a restriction that the infection used came from a location that precedes 
the location where the failure propagation estimate occurred. The hierarchical 
method takes this idea one step further by imposing the restriction that the infec­
tions used at a particular location come from actual faults at predecessor locations. 
The hierarchical method implementation of measuring the latent failure rate is not 
a function of A. This is the main motivation for this measurement scheme. This 
model is strictly a function of semantic alternatives, both in their ability to infect 
and in the ability of the infections to propagate. This model alleviates concern 
that the measurement of the latent failure rate is a function of perturbation func­
tions that simulate the effects of potential faults, since in general this set of faults 
is unknown.

The hierarchical method finds the latent failure rate for a path or subpath, not 
for a path equivalence class. The hierarchical method can, however, be adapted
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to a path equivalence class by making assumptions about the number of loop 
iterations.2 In the hierarchical method, latent failure rates axe a function of vi­
ral propagation estimates, whereas equations 5.4 - 5.5 and 5.7 - 5.8 use failure 
propagation estimates. And recall that viral propagation estimates are a function 
of the semantic alternatives of T ,  not perturbation functions. Hence the main 
motivation mentioned in the previous paragraph is satisfied.

The hierarchical method suffers from the inability to properly handle path 
equivalence classes because it requires knowledge of every location executed and 
the order in which each location is executed; recall path equivalence classes axe 
generalizations of potentially infinite sets of paths. Since the latent failure rate 
produced by the hierarchical method is specific to a path or subpath, it is neces­
sary to have a unique viral propagation estimate and infection estimate for each 
location on the path or subpath as a function of the input space partition of the 
path.

Consider a program P  with 2 locations in sequence; /i;/2- The latent failure 
rate according to equation 5.7 is:

l f r P =  min[I{l -  (1 -  F(l), ij, -  (1 -  Fj3), 4  -  (1 -  Fj,), I lt -  (1 -  F/a)]

where 4  =  min2[//Ii0l] and F/* =  ming[F;IiaJ .  For a simple program like P, 
equations 5.4 - 5.5 and 5.7 - 5.8 may produce an accurate enough estimate of 
the true minimal failure probability relative to A or it may be negative. But for 
complex paths, equations 5.4 - 5.5 and 5.7 - 5.8 may produce too conservative of 
a latent failure rate.

This condition is evident in equations 5.7 and 5.4 which do not place con­
straints on the relationship between locations i and j .  Equation 5.5 and equa­
tion 5.8, which do place these constraints, produce a latent failure rate for a path 
equivalence class with an infection estimate from one location and potentially a 
failure propagation estimate from another. Although peculiar, this is more con­
servative. A scheme to avoid this in the latent failure for an entire program is:

l f r P =  nun[min[//>0J  -  (1 -  min[F,,„,])] (5.10)

Equation 5.10 is still peculiar since it forces an infection to occur at a location 
with no regard for whether that infection has any potential of occurring at that 
location whatsoever. In effect, these equations force the latent failure rate to be

2In the case of a trip set, there is the additional problem of a condition in a loop; an 
assumption will have to be made concerning which branch is taken on which iteration in order 
to generalize the hierarchical model to a trip set.
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produced from estimates which force data states to be infected in a manner such 
that no fault could have ever caused that infection due to the use of a perturbation 
function.

The hierarchical method avoids this problem through viral propagation esti­
mates. The hierarchical method requires that the infected data state that the 
viral propagation process uses be an infected data state that was created by the 
infection analysis process. There is the requirement that the original data states, 
dsjtj , used by the infection process are for the path that the hierarchical method 
is being applied to.

The hierarchical method algorithm is defined for a block of successive locations, 
where successive is interpreted dynamically rather than statically. Let the input 
to program P  be denoted by the data space d s ^ ,  and assume this data space 
is clean, so Vs 'Dpred(i,i,x)(.x) =  0> hence Vi,i =  0.0. Note that dsj>t might not 
represent the complete input set if location 1 is repeated. Denote the set of inputs 
that axe represented by clean data states at data space I on a particular iteration 
of location I as {dsg, is clean}, i.e., the set of input points that have passed 
through the predecessor locations of location / and have managed not to have their 
corresponding data states infected by the semantic alternatives that produced the 
minimum proportion of infections. The set of input points that have produced 
an infected data state in data space dsgl on a particular iteration of location I is 
denoted as {dsg( is infected}. The set of inputs contained in {dsgx is infected} 
represents the set of inputs that became infected by the semantic alternative that 
created the minimum infection estimate of location 1 on a particular iteration of 
location 1. The probability that {dsgx is infected} ^  0  is found by summing

Pr[{dsgj is infected} | {dsjpj is clean}] «  m in{ii>0}

and
Pr[{dsgx is infected} | {dsj^ is infected}] =

Pr[{dsgt is infected} Cl {ds^ is infected}]
Pr[{dsyx is infected}]

In this case, the second element summed is 0.0 on the first iteration of location 1 
since Vi,i =  0.0. Note that

Pr[{dsgj is clean}] =  1 — Pr^dsg^ is infected}] (5.11)

The sets {dsyx is clean} and {ds<px is infected} are mutually exclusive for a par­
ticular iteration of location x, and their union is the sample space of input data 
states to the path. Returning to the example of successive locations /*; I? which
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are not repeated,

{dsg^ is infected} =  is clean} U is infected}) n  {dsg^ is infected}

= ({ds«p(i is clean} fl {dsg^ is infected}) U ({dsjp^ is infected} fl {dsg^ is infected})

where {dsy^ is clean}n{dsslj is infected} and is infected} fl-fdsg^ is infected} 
are mutually exclusive. So

Pr[{dsg(i is infected}] =

Similarly,
Pr[{ds§,s is infected} | {dsg^ is clean}] «  mm {//2,a}

Pr[{dsg(j is infected} | {dsg^ is infected}] =

Pr[{dsg(j is infected} fl {dsg^ is infected}]
Pr[{dsg(i is infected}]

and

lf rh-,h =  Pr [{dsS,2 is infected}]
«  Pr[{dsgtj is clean}] • mm{/;2ia} +Pr[{dsglj is infected}] *V/2ix.

The equation for //r ; i;/2 can be generalized to a path of x  dynamically executed 
locations in sequence. For any sequence of level 1 locations, the latent failure rate 
from location 1 through the predecessor locations (determined dynamically) of 
location x  on the ith iteration of location x is defined recursively in terms of its 
predecessors by the following equations:

Pr^dsg^ is infected} | {dsj>x is clean}] «  min-fl^o} (5.12)
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Pr[{tfsgi is clean} | {dsj>x is infected}] «  1 — Vx,,- (5.13)

Pr[{dsgx is infected} | {dsj>x is infected}] =  

Pr[{dsgi is infected} fl {da<px is infected}]
(5.14)Pr[{dsjps is infected}]

Pr[{d<sgx is infected} | {dsj>x is infected}] w VXil- (5.15)

l f r x =  Pr[{dsgx is infected}]
«  Pr[{<fsj>x is clean}] • min{/X)0} +

Pr[{ds3>x is infected}] • VXl; (5.16)

for the ith iteration of location x.

Pr[{dsg is infected}] «  m in{/il0} since Pr[{ds<p is infected}] =  0 (5.17)

Notice that equation 5.16 is the latent failure rate for a section of successive 
locations that ends on the ith iteration of location x\ x is the last location on 
either a path or subpath, not a path equivalence class x. So in equation 5.16, 
when x is the exit node of a program, 5.16 represents the latent failure rate of a 
path. Equation 5.16 takes into account type I cancellation between locations with 
the term V .*

Observation 5.1; Equation 5.16 produces the most conservative latent failure 
rate estimate relative to T  i f  and only if  the viral propagation estimates are 
constant. The following example shows a situation where chosing the min­
imum infection estimate produces a larger latent failure rate at a successor 
location than chosing the maximal infection estimate would. Suppose that 
{dspt is infected} =  a, {dsy, is clean} =  6, and let | a | =  c for the ith 
execution of location I on input x. Now let | {dsyiuê t . x) is infected} | =  d, 
where succ(l,i,x) is the successor location of location I on the ith iteration 
of location I on some input x, suppose that d > c, and suppose the semantic 
alternative causing the maximum infection estimate is used when deter­
mining how many elements of b were moved into {<k;pjuce(l. x) is infected}. 
And let | {dsyjucc(1. x) is infected} | =  e if the minimal infection esti-
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mate from a semantic alternative of Fi had been chosen when determining 
{dsyjucc(). x) is infected} instead of the maximal one. Thus e < d. Suppose 
also that the set created by the intersection of the set e represents with the 
set d represents is the empty set. Now suppose at location succ(l, i, x) type I 
cancellation occurs strictly to those infected data states created by the input 
points in the intersection of the set b represents with the set d represents, 
however no type I cancellation occurs at location succ(l,i,x) to the data 
states created by the input points in set of the intersection between the set 
e represents with the set b represents. If the effects of Iaucc(i,i,x) are ignored 
in determining / / r sticc(/,i,r) using the hierarchical method, then

<
max

is infected}
^ ju c c d .i .x )

{dam is infected}u{dam is clean}" tucc(l,i,s) **jucc(J,»,x)

{dam is infected}
{dam is infected}u{dam is clean}

where [-]mai represents some quantity • using the maximal infection esti­
mate at location Z, and where represents some quantity • using the 
minimal infection estimate at location Z. Unless the viral propagation rate 
is constant, a situation may occur where choosing the minimal infection 
estimate as shown in equation 5.27 may result in a greater latent fail­
ure rate than choosing a  larger infection estimate for equation 5.27. To 
guarantee getting the lowest latent failure rate relative to !F, it is neces­
sary to perform the combinatorially explosive action of unioning the set 
{ds<pt is infected} for each semantic alternative at location Z with the set 
{dsyjucc(( . x) is infected} for each semantic alternative at location succ(l, z, x). 
As an example, suppose that at location Z three semantic alternatives were 
tried, producing the three infected sets: {a,b},{c, d},{a,b, c} and suppose 
that the set of inputs still representing clean data states after executing 
location Z has the elements { f ,g ,h , k} .  And suppose that after location 
succ(l,i,x), where two semantic alternatives were tried, two new infected 
sets occur: {</} and {h,k}  from { f ,g ,h , k} .  To determine which semantic 
alternative to use as the semantic alternative at locations Z and succ(l,i,x) 
for some t and x, the sets {a, b,g}, {c, d,g},  {a, b,c,g}, {a, 6, h, fc}, {c, d, h, k}, 
and {a, 5, c, h, fc} would need to be used during viral propagation analysis 
at location succ(3ucc(l,i,x),i,x). This determines determine which seman­
tic alternatives at locations Z and succ(l,i,x) to claim as being the most 
conservative(in effect the semantic alternative that leaves the least elements 
in •fds'p , , , is infected}. This situation becomes intractable after
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only a few locations.

The distinguishing characteristic between failure propagation and viral prop­
agation is that viral propagation estimates are not a function of a perturbation 
function as are failure propagation estimates. Formally,

{dsg, is infected} =  {x | x £  is clean} A Vo, a! £ T \ 
Pv[infected!(l,a,x) | S i(z) ^  0] <  Pr[m/eate<?(l,a,,:r) | ®i(®) ^  0]} (5.18)

Equation 5.18 gives the definition for the first set of data states that starts driv­
ing equation 5.16 since {day, is infected} — 0  on the first iteration. With equa­
tion 5.18 and the fact that {dsgs is infected} =  {dag, is clean}, the hierarchical 
model is complete. Equation 5.18 can be generalized yielding:

{dag, is infected} =  {x | x £ {dsy( is clean} A Va, a' £ T\
P r[infected!(I, a, x) | Sj(x) ^  0] <  P r[infected(I, a!,x) \ $i(x) ^  0]} U

{® | x £ {dsy, is infected} A is infected} (5.19)

for / > 1. Figure 5.3 gives an example of how the hierarchical method works. 
Initially, there is a state with ten clean data states and no infected data states. 
After executing location 1, which has a minimum infection estimate of 0.3, three 
of the data states have been lost into the right-most container for holding infected 
data states. After execution of location 2, another data state(really only half of a 
data state) is lost. After executing location 3, the low propagation rate effectively 
makes three of the infected data states become clean, hence they are moved back 
into the container for clean data states. This process continues through each 
succeeding location. The proportion of infected data states after execution of the 
exit node is the latent failure rate.

5.1.2 Software Faultprints

A software faultprint is a program characterization that parallels the notion of a 
human “fingerprint.” It is believed (however not proven) that other than the code 
itself, a particular software faultprint of a program uniquely identifies the code it 
was created for, i.e., there is a  one-to-one mapping from a program to a software 
faultprint relative to a particular input distribution. A software faultprint is a two 
part structure: the first half of a software faultprint is the information in Table 
4.8; the second half of a software faultprint contains a dispersion histogram and 
an execution estimate for each path equivalence class as shown in Table 5.1.

The dispersion histogram reveals which input points are more likely to reveal
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Fig. 5.3: D iagram showing la ten t failure ra te  determ ination by hierarchical m ethod

faults. This is determined from previous empirical data, specifically the informa­
tion produced during Process Propagation Analyzer. Process Propagation An­
alyzer, depending on the implementation of value distribution creation scheme, 
unfortunately discards the input point that created a particular data state. This 
input point is needed for creating the dispersion histogram. The dispersion his­
togram is the structure that records those input points which created data states 
that when perturbed caused pseudo-failure. The algorithm for building the his­
togram can be inserted directly into the algorithm of Process Propagation An­
alyzer. The abscissa-axis of the histogram represents bins of partitions of input 
points, and the ordinate-axis is the relative frequency of a point from that bin re­
vealing a fault. An alternate scheme for representing the dispersion histogram is 
for the ordinate-axis to represent the number of pseudo-failures that points chosen 
from a bin have previously revealed.

The execution estimate for a path equivalence class x  is the proportion of inputs 
that cause a class x to be executed. It is a function of the input distribution used.
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path equivalence elate 
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Table 5.1: Second half o f a software fau ltp rin t

5.1.2.1 Execution Estimate

The execution estimate, Ex, for path equivalence class x  of program P ' is the prob­
ability of executing path equivalence class x with random inputs from a specific 
distribution. The distribution chosen is the distribution used to create the natural 
data states used for propagation and infection analysis. Let T  =  {ii, ...,tn} and 
T S  =  {tsi,  ...,tsk}. If | T  | =  n and T S  =  0 ,

X X  =  1.0. (5.20)
i ' = i

An algorithm for estimating Ex is:

1. set array c o u n te u r ra y  to zeroes, where the size of counter_array =  | T | +  | T S  |, 
with each counter_array element representing an element in | T  | +  | T S  |,

2. instrument P' with “write” statements that signal that a particular location 
was reached; this is similar to the algorithm for finding Method II value 
distributions,

3. execute P' many times on input points,

4. feed the output to a pattern matcher with the regular expressions of the 
path equivalence classes; call the regular expression that matches the string 
a ,

5. increment the corresponding counter_array[a].

6. divide each element of counter_array[a] by the number of times step 3 is performed.3

3The execution estimate is a point estimator which is the sample mean of the number of 
times the path equivalence class is executed, however to determine the confidence interval of the
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The input distribution used is the same distribution as that for value distri­
bution creation. If the run-time distribution is unknown, sampling is done from 
the uniform distribution. If | T S  | =  k and | T  | =  n,

n fc

£ X + £ ^ .  = 1-° (5-21)
«=i i = i

by definition of T S  and T.

Execution estim ates  betw een versions

It is desirable that execution estimates change minimally between versions. 
This is difficult to assure when the locations which uniquely define paths change. 
The necessity of execution estimates changing minimally in the software faultprint 
is not as crucial as for failure propagation or infection estimates in terms of com­
putational costs. This is because n program executions of P" axe made during 
determination of the execution estimates, whereas potentially n partial executions 
of P" are made for only one semantic alternative or one perturbed active vari­
able (assuming Method III natural data state creation). Similarity of execution 
estimates between successive versions becomes a haxd condition to assure when:

1. there is a control flow fault, or

2. there is missing code.

Many of the faults found late in the software development phase axe “missing 
path” faults. This fault class may add additional path equivalence classes to the 
software faultprint; the new classes should have minimal execution estimates by 
the closely correct assumption. In fact, certain omitted location faults may not 
affect faultprint structure; it may occur that the set of path equivalence classes has 
elements already representing the altered paths that result as missing locations 
axe added.

5.1.2.2 D ispersion H istogram

The dispersion histogram, is the least important element in the software fault­
print; it exists solely for efficiency in application models. It differs from the other

execution estimate, the confidence interval of the frequency distribution for 95% confidence can 
be found with p ± w, where u> =  2 • y/(p ■ (1 — p)/n) and p is the number of times that location 
was executed divided by the number of executions, n. For n = 10,000, accuracy is approximately 
±  0.01 [17].
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elements of the faultprint; it is not a statistic; not a measurable entity; it is a 
summary of empirical data. The intuition behind the dispersion histogram cen­
ters around the hypothesis:

H ypothesis  5.1 There exists some input point “a” that more likely exposes a 
fault than input point “b”.

Suppose it is decided to test a path equivalence class i by uniformly picking n 
points in fa. If it were known that a particular subset of fa, faa, created data 
states that substantially disclosed more pseudo-failures during failure propagation 
analysis than did the remaining elements of fa, then emphasizing sampling in faa 
during testing could be a better sampling strategy. In fact, using elements from 
faa may enable using fewer tests to achieve the same conclusions than if sampling 
is over all of fa.

The development of a dispersion histogram involves building a histogram for 
each path equivalence class. For a path equivalence class i, fa is divided into 
bins along the abscissa-axis. It is assumed for simplicity in the discussion that 
each path equivalence class has one input value; n-dimension input variables are 
ignored. The dispersion histogram contains the same problem as Method II value 
distribution creation; storing n-dimensional values. The ordinate-axis of a disper­
sion histogram is either the probability density of a point from that bin revealing 
a fault or the number of pseudo-failures experienced from points in this bin. The 
first type is termed a density dispersion histogram, and the second type is termed 
a failure dispersion histogram. The density dispersion histogram’s ordinate-axis is 
bounded between 0.0 and 1.0; the ordinate-axis is bounded by 0 and oo(actua)ly 
maxint) for the failure dispersion histogram. The abscissa-axis is bounded by the 
largest and smallest value in fa. The density dispersion histogram may be derived 
from the failure dispersion histogram by dividing each bin’s value by the product 
of the total number of perturbations per location and the number of locations on 
the path equivalence class. Note that the creation of the histogram for each path 
equivalence class does not require an oracle, and during tallying of the frequency 
count for a bin, it is assumed that each bin received equal sampling with respect 
to the width of the bin in Process Propagation Analyzer. The width of a bin is the 
cardinality of the set of input points which it represents, and the width of each 
bin is assumed to be the same size. Without equal sampling during histogram 
creation, the histogram is biased.

For simplicity, the issue is finessed of how to partition the input space of a path 
equivalence class by advocating placing adjacent elements along the abscissa-axis 
into bins. An example showing when this is a bad strategy follows: suppose there 
is a fault such that the program produces the correct output when the input is
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even, and fails when the input is odd. The “adjacent” binning strategy will not 
take the even-odd discontinuity into account, and it will produce a histogram with 
bins of similar frequency counts. It is not the intent of this thesis to explore the 
continuity decision. It however is a question that should be addressed if at all 
possible to maximize the information available from failure propagation analysis.4

Let hi denote the failure dispersion histogram for the \th path equivalence class. 
And let 6 represent the number of bins and let z represent the width of a bin.5 
The greater the number of bins, the greater the amount of information given; the 
fewer the number of bins, the lesser the amount of information contained in the 
histogram. Too few bins is effectively the same as not having the histogram.

Building the dispersion histogram need not be an isolated task. If it is known 
for each data state used during failure propagation analysis whether a pseudo­
failure occurred and which input created that data state, then the frequency count 
for the bin in hi corresponding to that input point can be incremented. The current 
scheme by which failure propagation estimates are determined is to sample from 
the value distributions available for a location and execute until termination. The 
problem is that the particular input point that yielded that sampled data state is 
not known; it was not stored in either the value distribution creation algorithms 
of Method I or II. An algorithm which determines failure propagation estimates 
and builds the failure dispersion histogram simultaneously is:

1. Use value distribution creation Method III, therefore the input value corre­
sponding to a particular data state can be easily stored,

2. Sample a point from <t>, determine the corresponding path equivalence class 
that it corresponds to, i ,

3. For each location on the path equivalence class, perform failure propagation 
analysis on this element of fa for each active variable,

4. Each time a pseudo-failure occurs for this element of fa  at a perturbed 
location on path equivalence class i during failure propagation analysis, in­
crement the counter representing the bin this input is from; for example, if 
there are 100 locations and 5 active variables per location, then potentially 
a pseudo-failure may occur 500 times for just one particular input point, 
so the frequency count of the bin representing the input point would be 
increased by 500,

4 Hints for building both discrete and continuous histograms are found in [17].
5 Assume that there is a bin for each element of fc, thus no outliers, i.e., each point corresponds 

to a specific bin.
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5. Perform the previous 3 steps for n elements of </>,-, until there is a histogram 
for each path equivalence class i] the larger n, the more information in ft,-.

It is not shown in this thesis that the results do not change between successive 
versions of a program for the dispersion histograms. 6

5.1.2.3 Impact of Discovering Faults on the Software Faultprint

Measurement of a particular fault’s impact on a program is difficult. Different 
fault classes will impact the faultprint structure and faultprint contents differently. 
The impact is a function of where in the program the fault occurs. The faultprint 
structure refers to the path equivalence classes and locations; faultprint contents 
refers to the internal information the software faultprint contains. This informa­
tion includes the path equivalence class regular expressions, execution estimates, 
failure propagation estimates, infection estimates, and the dispersion histogram. 
Omitted location faults may potentially change the structure of the faultprint 
once discovered, however under the closely correct assumption such faults should 
be of small fault size since current testing is not finding them. Different types of 
faults will affect the faultprint differently; thus a distinction between computa­
tional faults and control flow faults is made. Computational faults which have 
no effect on control flow do not affect the faultprint structure however execution 
estimates may change. A location I contains a computational fault if the output 
location z  is data dependent on location I. Control flow faults may change the 
structure of the software faultprint and thus the execution estimates. A location I 
contains a control flow fault if the output location z  is control dependent on loca­
tion 1. Programs with control flow faults or computational faults of small size can 
be analyzed with propagation and infection analysis without substantial changes 
to the faultprint between successive versions. There are faults which are classified 
as both computational fault and control fault. Such faults when removed will 
have an unpredictable affect on the software faultprint, which will depend on the 
program, the fault, the input distribution, and the location within the program.

5.2 A uxiliary Application Processes

This section describes four additional auxiliary processes. Process Dispersion 
Histogram Producer produces dispersion histograms for path equivalence classes.

6Chapter 6 shows failure propagation estimate similarities between versions, this observation 
will hold for dispersion histograms as well.
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Fig. 5.4: Processes for applications of PIA

Process Execution Analyzer produces execution estimates for path equivalence 
classes. Process Abstraction Analyzer’ identifies the regular expressions accord­
ing to the definitions of the path equivalence classes. Process Viral Propagation 
Analyzer produces viral propagation estimates for specific paths. Figure 5.4 shows 
the interaction of these processes with the processes for PIA .7

5.2.1 Process A bstraction  A nalyzer’

This process performs the exact task as Process Abstraction Analyzer, however it 
performs the additional task of producing the path equivalence classes. Input to 
Process Abstraction Analyzer’ is P' and the definitions for the path equivalence

7The dotted line between processes means the processes may be combined into one, done 
separately, or concurrently.
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classes.

5.2.2 P rocess D ispersion H istogram  Producer

Process Dispersion Histogram Producer performs the algorithm given in Section 
5.1.2.2; Process Dispersion Histogram Producer takes P" as input, the regular 
expressions of the path equivalence classes from Process Abstraction Analyzer’, 
and either the value distributions from Process Natural Data State Producer or <t>. 
If the value distributions are supplied, there must be a way to backtrack to find 
the input point that created a particular data state. Output from this process is 
a dispersion histogram for each element in PEC .

5.2.3 P rocess E xecution  A nalyzer

Process Execution Analyzer performs the algorithm in Section 5.1.2.1; Process 
Execution Analyzer has as input P", the regular expressions of the path equiva­
lence classes, and <j>. This process produces an estimate of the frequency that a 
particular path equivalence class is executed for each path equivalence class.

5.2.4 P rocess V iral Propagation  A nalyzer

This process performs the algorithm for determining viral propagation estimates. 
Viral propagation estimates are a function of a path, so input to Process Viral 
Propagation Analyzer is P"  and the set of input points specific to the path. 
Output from this process is a viral propagation estimate, VXi,-, for the \th iteration 
of each location x  for some path.

5.3 Applications

In Section 5.3, six applications of propagation and infection analysis are enumer­
ated and explained: Section 5.3.1 describes the model for probable correctness; 
Section 5.3.2 describes software reliability; Section 5.3.3 describes ultra-reliability; 
Section 5.3.4 discusses a software testing strategy; Section 5.3.5 explains debug­
ging; and Section 5.3.6 describes a testing complexity metric.
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5.3.1 Probable C orrectness

It is important to relate the specification to reliability, since a specification alone 
can determine correctness for any input/output pair. The type of correctness 
defined in Chapter 2  is functional correctness. Correctness may also be deduced 
using valid rules of inference applied to axioms. This is termed axiomatic correct­
ness, where the semantics of each language construct are used in constructing the 
proof. Hoare [5] terms the initial predicate of the construct or program a precon­
dition, the final predicate a postcondition, and uses the notation P  {Q} R  to say 
that if P  is originally true, that after execution of construct Q, R  is also true. For 
instance, given the statement a := a - 1  with the initial assertion {a>  b,b = 5}, the 
assertion a >  5 and b =  5 is made afterwards. Typically assertions are made after 
particular variables are assigned values at reachable locations in the program. The 
assertions usually do not specify values for the variables, but assert relationships 
among variables.

This method has several deficiencies as noted by Hoare [5]. First, if the pro­
gramming language allows side-effects, the proof system must show their absence 
in each execution. Secondly, termination must be shown in any proof scheme, and 
in order to prove this, knowledge of implementation-dependent features may be 
required. Hence it is more common to discuss partial correctness, which says that 
“if the program halts, it is correct” . Another problem is determining whether the 
proof is correct or not, which may be difficult.

Since in general proofs of correctness are unavailable, Hamlet [4, 2 2 ] proposes 
the notion of “probable correctness.” Probable correctness [4, 22] attempts to pre­
dict from a successful test of the program whether there are no faults in the 
program. This is different than software reliability, which attempts to predict the 
probability or frequency with which the program will fail, or the mean time until 
the next failure, or even the number of remaining faults[10, 1, 15, 20], Probable 
correctness is in some some sense the degenerate case of software reliability, be­
cause it is the probability of non failures, a mean time until the next failure of oo, 
and zero remaining faults. ■

Valiant [23] produces a model that can be used in probable correctness. Given 
a space with X  types of objects, sample n objects independently, and suppose that 
not all of the object types appear. If there exists a probability p, it can be used 
to determine a value n that guarantees that the probability of these so far unseen 
objects occupying less than p of the total space is at least 1 — p. [23]. Valiant [23] 
produces a model that can be used for determining probable correctness. Given a 
space with X  types of objects, sample n objects independently, and suppose that 
not all of the object types appear. If there exists a probability p, it can be used
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to determine a value n that guarantees that the probability of these so far unseen 
objects occupying less than p  of the total space is at least 1 — p. [23]. Valiant’s 
argument [23, 22] can be summarized as follows. Assume a urn has two types of 
balls: black and white. The number of balls in the urn may or may not be infinite, 
however sampling from the urn is with replacement, so effectively the number of 
balls is infinite. Let p represent the unknown proportion of black balls in the 
urn, and let the discrete random variable X  represent the number of black balls 
that will be drawn with replacement in a  sample size of n. Then the associated 
binomial probability density function of X  is:

P r [ X - x ] - ( ”  W - p ) " -

where the possible values of X  are x — 0 ,1,2, ...,n. If drawing a white ball is 
viewed as a program success and drawing a black ball as a program success, the 
probability of no failures occurring in n executions is:

Pr[X =  0 ] =  (1  — p)n 

and so the probability of at least one failure occurring in n executions is:

Pr[X >  0] =  1 — (1 — p)n (5.22)

Drawing from the urn can be viewed as a hypothesis test as follows: let the 
null hypothesis Ho be that the proportion of black balls in the urn is =  0 , and 
let the alternative hypothesis H a be that the proportion of black balls in the urn 
is >  0 . The test is to draw n balls; if no black balls are drawn, the conclusion is 
that H0 is true; if one or more black balls is drawn, the conclusion is that H0 is 
false.

conclude H o  i> true 

conclude H o  is false

The type I error is the conditional probability:

a — Pr[type I error] =  Pr[reject Ho | Ho is true] =  0. 

The type II error (the “serious” error) is the conditional probability: 

/? =  Pr[type II error] =  Pr [accept H0 \ Ho is false].

= (i - p Y

Ho U true Ho is false

o.k. type II error
type I error o.k.
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Then 1 — /? =  1 — (1 — p)n is the probability of no type II error, i.e., 1 — /? is the 
confidence that there are no black balls in the urn. Figure 5.58 is a graph of the 
various confidences provided for two parameters: n and p.

5.3.1.1 Applying Dispersion Histograms and Latent Failure Rates to 
Probable Correctness

From equation 5.22 and [25],

1 -  [1 -  lfri]Ni =  on (5.23)

is defined as the probability of at least one failure while executing path equivalence 
class i in N{ executions of path equivalence class i. Then

( 5 ' 2 4 )

is the number of points that execute path equivalence class i which must be chosen 
for a oti confidence that path equivalence class * is correct.

It is assumed in equation 5.23 that the points are chosen uniformly from fa,

8Confidences in order from point (0,0): 0.01, 0.0001, 0.000001, 0.00000001, 0.000000001.
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and that the distribution of N{ is the distribution used for finding / / r ,-.9 From 
the dispersion histogram, knowledge exists as to which points in fa that axe more 
likely to reveal a fault. So if these points exist and emphasis is placed on sampling 
from them, this should allow for a decreased sample size than N{ with equivalent 
confidence in the assertion that path equivalence class i is correct.

Let p represent the probability of some event occurring on the first trial. The 
probability of the event occurring on the first or second attempt is p +  p(l — p). 
The probability of it occurring on the first, second, or third attempts is p +  p(l — 
p) +  p(l — p) 2 and so on. Now reinterpret p to represent the probability of an 
event occurring from one of the lower frequency count bins in the histogram, and 
let w represent the probability of the event occurring from the highest frequency 
count bin. A value of z  is desired such that

(jP^+pQ- -  p) +p(! - p ) 2  ) =  w-
1

Let m  represent the bin in failure dispersion histogram hi denoted by h,[m] 
with the greatest frequency count10, and let /  be the subset of fa that bin m  
represents; /  is the set of input points believed to most likely reveal a fault. Let 
n =  Ey=i My], tat ak denote the number of points that if chosen from a bin k, 
where k ^  m, will equal the probability of finding a fault with one point from 
m11, let cjt represent the number of points that would have been chosen from bin 
k but are now substituted by points from bin m, and let {pi,P2 , •••} be a set of 
temporary variables used for holding probabilities needed for determining a*. So 
for any bin k, the probability of the first randomly chosen point from that bin 
revealing a fault is:

hj[k] . .
Pi =  ———. (5.25)

n
The probability that the ']th randomly chosen point from the kth bin will reveal a 
fault is now defined. This is the probability of the event occurring (pi) multiplied
by the probability of it not occurring on the previous j  — 1 iterations. This

9Another implicit assumption is N{ 6, otherwise the following algorithm can not be applied.

10If there are x bins that have the same maximum count, consider them as one bin with /  
equal to the union of the subsets of fa that those x bins represent; and let the width of the new 
bin equal zx) however for simplicity assume there is one maximum bin.

n ak should be smallest value that satisfies the inequality 5.28.
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probability is:

p. = M £ ( 1  _  for j >  2 (5.26)
n n

Then the probability that the event will occur on either the first or the second or 
the third time, etc., is the sum of these pjS. Equation 5.27 gives the number of 
draws, a*, from the k th bin that are probabilistically equivalent to one draw of re­
vealing a fault from bin m. a* should be the smelliest value such that equation 5.27 
is true.

^ < X > i  (5.27)
U j=l

If ak is small, then potentially no savings in the number of points needed from bin 
k can be achieved. However if a* is large, then the savings from bin k is denoted 
by cjfc. Safety is provided by at least sampling one point from bin k regardless of 
ak, so one point is subtracted from the gross savings (assuming there is a savings).

C‘ “ l  L ( l - ± )  • < ? ) ] - !  0‘len rise  (5'28)

The total savings is just the sum of the cks over all bins except bin m.

7 = [  £  Cfc] (5.29)

So the new sample size, N{, is:

( 5 '3 0 )

Ni represents the new estimate of the number of points needed for confidence 
ati when sampling is done across /i,-. 7  represents the savings in the number of 
samples necessary for a,-. When choosing where in h{ to sample the N{ points, the 
following scheme is used:

1 . Sample one point from every bin whose frequency count is < h,[m]; denote 
the number of bins meeting this requirement by fi,

2. Sample N i  — f i  points from bin m.

Sampling from those bins with relative frequencies are less than is a pre­
cautionary measure to assure that at least one point is executed from each bin 
regardless of the bin’s relative frequency. This is intuitive. It is possible that for
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an arbitrary fault, the information suggested in the histogram does not hold; if 
true and only bin m  is sampled from, then false conclusions could result. Equa­
tion 5.28 takes into account that p points are chosen from bins with lesser relative 
frequencies than ftsjpl. Notice that when [(1 — • (^ ) J  =  0, no elements from
bin k are ignored. But when [(1 — ■ (^ ) J  >  0> L(1 — ‘ (^ ) J  points can
mathematically be ignored, however a point from each of the p bins is tried, hence 
|_(1 _  i ) . (& )j js decreased by one.

The algorithm for implementing equation 5.29 is: 

i := 1

p  :=  hi[k]/n 
while p <  hi[m]/n do

p := p+ hi[k]/n( 1 -  hitfcl/n) ’- 1

7,  := ( ( 1  -  (1/i)) ■ (N{/b)) -  1

As an example, let hi be a 4 bin density dispersion histogram with relative 
frequencies ft,-[l] =  0.05, ft,[2] =  0.05, ft,[3] =  0 .6 , ft,[4] =  0.3, z  =  1 0 0 0 , and N  
=  400. Sample 100 points from bin 3. From bins 1 , 2, and 4 sample one point 
each. Then from bin 3 pick 46 more points, for a total sampling of 149 points. 
A savings of 251 points to achieve an equivalent confidence that the program is 
correct is substantial since the points used in determining the correctness require 
an oracle. Input points requiring an oracle are expensive and a reduction in the 
number is welcome.

A minor problem occurs if IV,- < ft.12 Since iV,- <  Ni is desired, if Ni <  6 , then 
Ni < 6. One solution is to consolidate bins and decrease b until Ni > b, however 
this decreases the information contained in the bins and this is a bad alternative. 
The best sampling strategy appears to be:

• Sample one point from each of the Ni bins that have the largest density

Intuitively, it is safer to ignore the 7  savings in points and attempt to sample over 
as many bins as possible.

12This is probably an unrealistic case.
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5.3.2 Software R eliability

An overview of software reliability terminology and models is found in [10, 1 , 15,
2 0 ]. Most of these are black-box models. This section introduces a white-box 
method of applying propagation and infection analysis to software reliability.

5.3.2.1 A pplying L a ten t Failure R ates in a  Software R eliab ility  M odel

The software reliability equations presented in this section are conservative. They 
are designed to underestimate the true reliability with high assurance that the 
estimate is conservative. Equation 5.31 sums the execution probabilities of all 
path equivalence classes whose latent failure rates are substantially larger than the 
observed failure rate. So this equation and the remaining equations for software 
reliability require an oracle. With this, the reliability estimate for program P  
using the software faultprint is:

R P = £  Ex (5.31)
{*|(rg{P£:C})A (£*-//rI >A P )}

Equation 5.31 is a direct result of Hypothesis 5.2:

H ypothesis  5.2: I f  there exists an Et • l f r t <C Xp or Et • l f r t «  Ap, then
the path equivalence class t may contain the fault causing Xp; however, if  
the Et • l frt  ^  Xp, then path equivalence class t is almost certainly not 
responsible for Xp.

Equation 5.31 is conservative because it excludes path equivalence classes with low 
latent failure rates even though these path equivalence classes may be correct. An 
alternative to this is to take the information produced in the probable correctness 
model. Let a x represent the confidence that path equivalence class x  is correct,
i.e., path equivalence class x  has been tested a particular number of times and no 
failures were observed. Then

R p =  £  Ex (5.32)
{x e P E C }

with a confidence in the reliability estimate of at least mina.{a;r}. Equation 5.32 
has the possibility of producing an assertion of 1 0 0 % reliability with a tiny confi­
dence in this assertion. An alternative to equation 5.32 that ignores path equiv­
alence classes which have not shown substantial confidence in the probable cor-
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rectness model is:
Rp =  £  Ex (5.33)

{ ieP E C }A a,w i.o

Equation 5.33 limits the path equivalence classes that are included in the sum­
mation by requiring that the confidence in the assertion that path equivalence 
class x  is correct be high(by forcing a s «  1.0). Equation 5.33 produces the re­
verse problem of equation 5.32; a high confidence in a potentially low reliability 
estimate.

None of these software reliability equations produced are considered as “good.” 
They axe included as introductory schemes for applying propagation and infection 
analysis’s results to an important field.

5.3.3 U ltra-R eliab ility

A program P  is said to be ultra-reliable if it satisfies:13

XP «  10_iC.

Equations 5.31 - 5.33 do not produce as accurate a value as (1 —10“*) for large 
x, however propagation and infection analysis should not be overlooked as a tool 
in ultra-reliability. A scheme for applying propagation and infection analysis to 
ultra-reliability validation is to take the information in Table 4.8 and isolate those 
locations with tiny infection and failure propagation estimates, particularly those 
which are less than 10~6. These estimates indicate locations which can hide faults 
that conventional testing may not isolate. Execution estimates at the location 
abstraction level also may be used during ultra-reliability validation in a similar 
manner. With this information, these locations can be formally proven or tested 
in isolation.

5.3.4 Software Testing

Dynamic testing plays a significant role in many software reliability models, be­
cause without testing, a program’s failure rate could not be determined. Branch, 
statement, path analysis, error-based, boundary-value, domain, and mutation

13The units are quantified as 10“* as the probability of failure per 10 hours, thus if the 
program executes 106 times per hour, then to be certified as ultra-reliable, P  must be shown to 
have a failure probability of 10- *-5 .
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testing axe examples of software testing strategies; all have limitations. State­
ment testing is achieved when every statement is executed at least once; branch 
testing requires that each branch be executed at least once. Mutation testing [2 1 ] 
is a strategy which evaluates the test cases, by taking a program P  and produc­
ing n versions(mutants) of P, [pi,P2>—Pn]> that are syntactically different from 
P. If the test cases differentiate the mutants from P , then it is assumed that 
if the actual program works with those test cases, the program is good. Muta­
tion testing assumes the “competent programmer hypothesis” which states that a 
competent programmer produces code that is close to being correct; where close 
means with a few syntax changes it should be correct. It also assumes that faults 
that interact can be caught with test data that reveals single faults, i.e., fault 
coupling is ignored. Error-based testing attempts to define certain classes of er­
rors and the subdomain of the input space which should reveal any error of that 
class if that error type exists in the program [16]. Morell [14] proves properties 
about error-based strategies concerning certain errors that can and cannot be 
eliminated using error-based testing. Since error-based testing restricts the class 
of computable functions, it is limited as well. Fault-seeding is an error-based tech­
nique used to estimate both the number of faults remaining as well as their type. 
Faults are seeded and the “seeded” version is then run. Based upon the number 
of faults discovered, an estimate of the number of remaining faults is made [1 1 ]. 
The drawback is that if the seeded faults are not representative of the inherent 
faults, the estimate is invalid. Domain testing is another error-based testing strat­
egy which partitions the input domain according to the program’s paths. Each 
partition is termed a path domain, and faults which cause an input to be in the 
wrong path domain is a domain error. Domain testing attempts to discover faults 
by using test data that limits the range of undetected faults [2 ].

Special-value testing selects test data based upon special properties of the 
function being computed. For instance, for trigonometric functions, inputs such as 
0  and 2 tt would be selected. Path analysis [8 ] attempts to select points which cause 
certain paths to be executed; however it is an unsolvable problem to determine 
for an arbitrary location in a program if there exists an input point which reaches 
that location. To see this, consider the exit point of the program as the location, 
and it is desired to know if the exit location can be reached by any input point. 
If the feasibility problem can be solved , then so can the Halting problem. But 
the Halting problem is not solvable, hence neither is the feasibility problem. Path 
analysis is also intractable whenever a program has an indefinite loop due to 
infinitely many paths.

Statement testing is a widely used measure of test coverage [6 ], however a very 
important class of errors cannot be detected, namely incorrect flow of control [9]

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



CHAPTER 5. PROPAGATION AND INFECTION APPLICATIONS 108

JtM

Fig. 5.6: Incorrect control flow

as shown in Figure 5.6. Statement testing is subsumed by branch testing; it may 
leave branches untested. Branch testing would catch this error that statement 
testing missed. Mutation testing is impractical because of the infinite number 
of alternatives possible, and only a handful can be used in trying to evaluate the 
coverage of the test cases. Criticism has arisen as to whether the mutant programs 
actually correspond to reasonable faults. But what is a reasonable fault? Must it 
be a fault that a human would interject, not a machine, or would it be better to 
define a mutated fault as equivalent to a “real” fault if the probability of catching 
the mutated fault is the same as the probability of catching the real fault. In [25], 
the notion of stratified fault seeding is presented, where faults may be seeded with 
varying degrees on the reliability impact, thus the argument as to whether these 
faults axe realistic is unnecessary.

So which testing strategy is best? It seems clear that testing with only one 
strategy probably does not produce results as good as using a combination of 
strategies that take into account peculiarities of the code and the specification [7]. 
Testing theories consider ideal testing scenarios versus what is physically possible. 
Howden [8 ] defines a reliable testing strategy as one which reveals a fault whenever 
one exists, which in general is impossible, due to the large number(often infinite) 
of inputs required to show correctness(100% reliability). As pointed out by Huang
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[9], for a program with two 32-bit integers, there are 2s4 possible combinations, 
and if each combination requires a millisecond, it takes 50 billion years to test 
all combinations. Goodenough and Gerhart [3] define an ideal test as one which 
succeeds only when the program is correct. They define a data selection criterion C 
as reliable if it is necessary to test only one element of a particular input partition, 
and valid if the criterion does not forbid the picking of a test case that produces 
failure. For them, a reliable test set is one in which every element in a partition 
either fails or succeeds.

A comprehensive synopsis on software testing techniques is provided in [13]. 
Further discussion of existent testing techniques is curtailed. Section 5.3.4.1  shows 
a scheme for applying propagation and infection analysis to software testing.

5.3.4.1 Applying Software Faultprints to Software Testing

The execution estimates, infection estimates, and failure propagation estimates 
from the software faultprint can guide software testing. Although nothing absolute 
can be said about the degree of testing required from propagation and infection 
analysis’s output (other than that stated in equation 5.23,14) it is clear that that 
for two distinct path equivalence classes x,y,  if

Ex • l f r x <  Ey • I frv, (5.34)

then path equivalence class x should receive either more testing than path equiv­
alence class y or possibly testing from hx[m). If l f rx < l f r y or l f r x «  l f r v then 
testing is a function of of Ex and Ey.15

If testing is at the location abstraction level, then for two distinct locations i 
and j ,  if

E{ • Ifri  «  Ej  • Ifrj,

where E{ is the proportion of times location i is reached per n program execu­
tions, then location i should either receive more testing than location j  or possibly 
verification. Once again, for similar values of Ifr{ and Ifrj,  determine execution 
estimates at the location abstraction level to determine if either location is ex­
ecuted more frequently. This is a reasonable scheme to determine if a location

14See Section 5.3.6.
lsThe execution probability has been separated out from the latent failure rate in the appli­

cation models as often as possible because input distributions are volatile and may change and 
it is desired that the results are not held “hostage” by such occurrences. In this case, more 
testing is warranted of path equivalence class x if Ex > Ev since their latent failure rates Me 
approximately the same and Ex is more frequently traversed.
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should receive special consideration. If Cr is large, then location x  may require a 
more formal approach than testing; possibly a correctness proof.

5.3.5 D ebugging

Debugging has one goal: to find and correct faults. In general, there are three 
methods to debugging: backtracking, brute force, and cause elimination [18]. 
Brute force is commonly used; it takes the attitude of letting the computer do 
the work by either injecting “write” statements or invoking run-time traces [18]. 
Cause elimination is performed by organizing data that is related to the error 
occurrence. Then a cause hypothesis is devised, and the data is used to either 
prove or disprove the hypothesis [18]. Backtracking starts at the location where 
the trouble began, and the code is analyzed backwards through the sequence of 
executed locations. For large programs this may be unbearable.

Automatic debugging tools are available. These include debugging compil­
ers, automatic test case generators, and dynamic debugging tracers [18]. All of 
these methods either require a specification or someone who can watch a trace or 
memory dump to see what is happening.

Debugging is a two step process: locating the fault first, and then correcting it. 
Debugging using propagation and infection analysis aids more in the first of these 
two steps than in the second. A person familiar with the system will still have 
to perform the second step; propagation and infection analysis has no knowledge 
about the specification, however propagation and infection analysis gives an indi­
cation of what fault class might be causing the failure rate and at what location. 
Propagation and infection analysis’s usefulness is in quickly narrowing the number 
of locations that will have to be checked manually. To perform debugging using 
propagation and infection analysis, no knowledge of the code or specification is 
required. For debugging to succeed, it is assumed that the faults are single faults, 
not distributed faults. To perform debugging, four parameters are necessary:

1 . the failure rate of the program P , Ap,

2 . the input distribution, <f>, causing Ap,

3. the complete results from propagation and infection analysis shown in Table 
4.8.

4. the execution estimate of each location z, Ez, relative to the input distribu­
tion.
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The first of two algorithms to perform debugging using propagation and infec­
tion analysis is:

1 . to determine if a location z is a suspect, where a suspect is defined as a 
location that is thought to be contributing to the current failure rate, take 
each F2,0j., Iz<ak pair, get the product, then multiply this product by E z , and 
compare this new product to Xp.  If

3k  3j  E z • IZAk • Fz,aj >  XP , (5.35)

then an incorrect active variable aj and semantic alternative a* at location
z is not further considered as potentially causing Xp; So in effect, a ma­
trix of values occurs when the cross product of the infection estimates and 
the failure propagation estimates is performed. Ignore the pairs satisfying 
inequality 5.3; they are not suspects,

2. If any F2)0j , Iz<ak pair such that 3k 3 j  E z • IZAk • F2,0i «  Xp  is considered
suspicious, thus location z  is a suspect. If every F2)ay, Iz<ak pair at location
z is not suspicious, then location z  is not a suspect.

3. those F2)0j, Iz,ak pairs where 3fc 3 j  E z • J2t0fc • F2i0j. C  Xp can not be ignored; 
by the single fault assumption, there may be several J2t0jk • F2|0j. summing up 
to «  Xp.  The set of combinations where

3ki  3 j i  Ei • Ii,aki • F/,0ji + . . .  +  3kn 3 j n E p • JPi0kn • FPl0jn «  XP (5.36) 

is true therefore forces locations / , . . .  ,p to be considered as suspects.

4. the set of locations having at least one FZ|0j., Iz>ah pair considered as suspi­
cious is the set of suspects; this is the set from which either static or dynamic 
analysis of the code can begin.

These rules ignore the case where 3k  3j  E z • I ZAk ■ F2>ai >  Xp yet not 3k 3 j  E z • 
h , a* • F2,ay Xp.  It is difficult to decide what constitutes »  versus > .  If enough 
executions were used for both Xp and the estimates, then any difference between 
Ez • IZiak ■ F2i0j. and Xp greater than 0.05 should qualify as » ;  any difference less 
than 0.05 and greater than 0.02 may be considered >; any difference less than
0 .0 2  may be considered as « . 16

The equations given in this debugging algorithm assume independence be­
tween the infection estimate and the failure propagation estimate. The identical

16The values 0.05 and 0.02 Me arbitrary.
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situation arose in the discussion of determining the latent failure rate. In general, 
this assumption appears to be valid.17 However it can be shown that there are 
cases for which this assumption does not hold. This assumption can allow for 
the mis-classification of locations; it may cause locations to be ignored during 
debugging due to the product of the infection, propagation, and execution esti­
mates being larger than A p. In the worst case, input points which readily infect 
at a location through any semantic alternatives do not readily propagate for many 
active variable perturbations; for this phenomenon, subtraction of the proportion 
of “nonpropagating” points occurs when the latent failure rates are determined 
in equations 5.6 - 5.8 and equation 5.10; this leaves the potential of producing a 
negative result. Since

V F2,a . V Iz<ak (F2(o, • Iz,ak) ^  (-^,0 * -  (1 -  F*,<y)) 0.0 <  F2)0j, Iz,ak <  1«0,

the second debugging algorithm accounts for the non-independence that is ignored 
by the first algorithm. In general, the second debugging algorithm creates many 
more suspects than the first algorithm, however this algorithm is less likely to ig­
nore locations where a large amount of type I cancellation occurs in their successor 
locations.7

The independence phenomenon creates difficulty in applying propagation and 
infection analysis as a debugging tool. By using the first algorithm, potential 
mis-classification of locations as not being suspects may occur. However acknowl­
edgement that the independence assumption is rarely invalid but not completely 
invalid increases the number of locations classified as suspects, potentially to the 
point of saying every location is a suspect, which defeats the algorithm’s purpose.

Regardless, the second debugging algorithm becomes:

1. to determine if a location z is a suspect, take each F2>ey, / 2,0k pair, get 
the latent failure rate, then multiply this product by Ez, and compare this 
product to A p. If

3k 3j Ez • (Iz,ak -  (1 -  F 2l0i)) »  Ap, (5.37)

then an incorrect active variable aj and semantic alternative a* at location z 
is not further considered as potentially causing Ap; ignore the pairs satisfying

17Ftom the tables in Chapter 6.
7This modification will potentially increase the number of suspect locations when the propa­

gation estimates are small; if the propagation estimates are large, then this modification should 
have a minor effect. If the independence assumption between the infection estimates and prop­
agation estimates is deemed valid, then the first algorithm should be applied.
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inequality 6 ; they are not suspects,

2. If any F*,ai, Iz>ak pair such that 3k 3j  Ez • (IZAk -  (1 -  F2|0y)) «  Ap is 
considered suspicious, thus location z  is a suspect. If every FZi0j , I2)0fc pair 
at location z is not suspicious, then location z is not a suspect.

3. those F2i0j., IZiak pairs where 3k 3j  Ez • (J,i0Jl -  (1  — F*i0j.)) <  Ap can not be 
ignored; by the single fault assumption, there may be several (Iz,ah — (1  — 
Fz,0j)) summing up to «  Ap. The set of combinations where

3&i Ei • (I,,aki — (1 — )) +  ••• +  3fcn 3j n Ep • ( /P|0fcn — (1 — Fj,i0yn)) w Ap
(5.38)

is true therefore forces locations / , . . .  ,p  to be considered as suspects.

4. the set of locations having at least one F2i0j- , /*,„* pair considered as suspi­
cious is the set of suspects; this is the set from which either static or dynamic 
analysis of the code can begin.

Enormous efficiency may be gained in both algorithms by keeping statistics on 
the most recently executed path or set of paths. This information immediately 
reduces the number of locations whose estimates are used in the previous rules.

The limitations to the proposed debugging algorithms are:

1 . distributed faults,

2 . if the fault is caused by a fault class not represented by the set of semantic 
alternatives,

3. if the perturbation function does not adequately represent the impacts of 
the potential faults, and

4. the size of Ap; although locations have been successfully debugged producing 
a  failure rate on the order of 1 0 -6, it may be that the best that is achievable 
with propagation and infection analysis is on the order of 1 0 -7; the lower 
bound limitations on Ap using propagation and infection analysis are yet 
undetermined.

Limitations (2) and (3) can be minimized in strength by increasing the scope of 
T  and the potential faults represented by the perturbation function presented to 
A at a location. To minimize (1 ), a re-definition of what constitutes of location 
is required; this is a complex problem which is currently under investigation. The 
fourth limitation is speculative.
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5.3.6 Testing C om plexity

Halstead has developed one of the best known studies of software complexity [18]. 
Halstead uses a set of measures attained after the code is generated. These include 
the number of distinct operators, number of distinct operands, total number of 
operator occurrences, and total number of operand occurrences [18]. With these 
measures, Halstead develops equations for overall program length, program vol­
ume, and a measure of software complexity. The McCabe complexity measure 
is another well-known complexity measure developed from the control flowgraph 
of the program. McCabe defines a complexity measure based upon the cyclical 
complexity of a graph [18].

In general, the more complex software, the harder it will be to test. Propaga­
tion and infection analysis can be used for a testing complexity metric, T, which 
describes the complexity involved in testing a program by producing the number 
of executions required to achieve a certain confidence in the assertion that the 
program is correct. T  is a function of A and PE C . T is:

( 8 ' 3 9 )

As an example using equation 5.39, consider a program P  with four path 
equivalence classes i, j ,  k, and /, where 1/r,- =  0.01, Ifrj  =  0.02, //r*  =  0.009, 
l fr\  =  0.5, and a  =  0.999. Then T ~  1.8xl03. Now consider a program K  with 
one path equivalence class, and a latent failure rate of 0.00001. Then T «  6.9x10s. 
Although P  has more equivalence classes, it requires fewer test points since it 
exhibits a lesser tendency to hide faults. Program K,  however, easily hides faults, 
therefore is harder for testers, and thus has a  higher T.

The metric in equation 5.39 refutes the notion that more locations mean higher 
testing complexity. This metric instead considers complexity to be relative to 
the minimum latent failure rate over the set of path equivalence classes. For 
non-positive latent failure rates, the corresponding path equivalence classes are 
ignored, and equation 5.39 must ignore path equivalence classes with these latent 
failure rates. This causes an “incomplete” complexity metric; investigation is 
continuing into other complexity metric models for path equivalence classes having 
non-positive latent failure rates that can be incorporated in equation 5.39. Once 
clear solution is to assume independence between the infection estimate and the 
propagation estimate, assuring a zero or greater latent failure rate. Experiments 
using propagation and infection analysis for debugging[12] have shown that in 
general the independence assumption between propagation and infection estimates
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holds. In fact, it may be extremely rare for the non-independence phenomenon 
to occur.

5.4 Conclusions

A new program characterization termed a software faultprint is introduced in 
Chapter 5. The algorithms for auxiliary processes for building the software fault- 
print are detailed. Chapter 5 has introduced application areas where software 
faultprints may be useful. This chapter has shown potential schemes for using the 
faultprint contents towards these applications. A summary of additional study 
needed on these areas follows:

P ro b ab le  C orrectness This model attempts to predict from a sequence of suc­
cessful executions whether the next execution will be successful. This model’s 
value is directly related to the measurement scheme of the minimum failure 
probability. For the minimum probability, the latent failure rate is used 
which is dependent on A. Potentially, strict black-box testing is a better 
method for this estimate,

Softw are R eliab ility  is the probability of failure-free operation of a computer 
program for a specified time in a specified environment. This thesis soft­
ware reliability model, as well as all software reliability models, suffers from 
dependence on the input distribution. Time is ignored in this model, and 
reliability is per execution rather than per unit time. If the input distribu­
tion changes drastically, then the propagation and infection estimates are 
less meaningful, and may cause this model to be useless unless propagation 
and infection analysis is re-performed.

U ltra -re liab ility  is the measurement of extremely high software reliability. This 
application is only mentioned because of propagation and infection analysis’s 
ability to find locations that can have tiny impacts on the failure rate. These 
locations are a software tester’s nightmare if ultra-reliable software is desired.

Softw are T esting  This application is intuitive; empirical evidence is needed to 
determine the relationship between interfailure times for specific faults and 
the latent failure rates of the locations containing those fault.

D ebugging is the application of determining where a particular fault is when 
failure is observed. This model is demonstrated in Chapter 6. The question 
persists as to whether infection and failure propagation estimates can be 
considered as independent.
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T esting C om plexity  M etric  is an application for determining how hard a par­
ticular program will be to test. This model suggests that the complexity of 
code is a function of how easily it is to hide faults, instead of some empirical 
characteristic such as the number of lines or modules. It is intuitive, how­
ever, that there may be a relationship between length of the program and 
T.

Admittedly, the emphasis of the thesis has been in producing the software 
faultprint, not in applications of it. Hence the models presented are elementary 
and have not been substantiated through practice; they are included as potential 
foundations for additional work.

There are potentially other application areas not mentioned. An example is 
computer security. If a program has the ability to access information such as its 
value distributions during execution, then it could “self-test” the data states it 
was generating. If it detected a data state or series of data states not previously 
encountered, it could produce warnings about its output. This could be useful in 
the case of current operating system viruses. [19] gives evidence that for certain 
types of programs, the number of different data states produce in the operating 
environment is actually small. If true, the information could be used in this 
manner. To achieve such, research is needed into Method II value distribution 
creation; a realistic scheme for storing internal data states could make this a 
viable model for fighting “computer viruses”.
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Chapter 6 

Empirical R esults

Chapter 6 shows that the particular implementation of the propagation and in­
fection analysis model defined in Chapters 2 and 3 produces the results for which 
the model was designed. The experimental results of Chapter 6 have been pro­
duced from “real-world” software with both artificially implanted faults and actual 
faults. The results are produced without an oracle, however there must exist a 
failure rate.

Chapter 6 is organized as follows: Section 6.1 informally shows that the class 
of faults, T ,  described in Chapter 4 has enough breadth to include a small por­
tion of the well-published set of faults in the “Common Blunders” chapter of [10]. 
Section 6.1 shows that the decision of the class of faults in T  was not entirely 
arbitrary; there are common faults which it will catch. Section 6.2 shows that 
propagation and infection analysis has enough resolution in its point estimators 
to accurately quantify the impacts that a location has on the failure rate in or­
der to use propagation and infection analysis as a debugging tool. Section 6.2 
details several “blind” experiments of propagation and infection analysis being 
successfully applied to debugging.1 Section 6.3 shows the similarity between the 
failure propagation estimates and infection estimates of successive versions of a 
program. This provides clues as to when propagation and infection analysis may 
begin during software development without the penalty of needing to reperform 
propagation and infection analysis.

debugging was chosen for substantiating the thesis since debugging is the easiest means for 
showing that an incorrect program’s behavior with a fault was mirrored by propagation and 
infection estimates.

120
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number page fault description correction
1 77 failure to initialize variable
2 78 (term < e) (abs(term) < e)
3 78 - w : (-1 )1
4 79 failure to initialize variable
5 79 type problem
6 80 label a t wrong location
7 80 num = 0 num(i)= 0
8 81 incorrect use of Fortran data construct
9 82 if c tr >  45 if ctr > 46
10 82 c tr =  0 ctr =  1
11 84 > >
12 85 if b+c<m  goto L20 if b+c<0.005 goto L10
13 else if b+c<m  goto L20
14 87 xlow, xhigh x(low), x(higb)
IS 87 infinite loop
16 90 marks(i) -1/10 +  1 (m arks(i)- l)/10+ l
17 90 sumsq — (sum x*/an))/an  — 1.0 (sumsq — (sum x*/an))/(an  — 1.0)
18 91-93 floating point hardware problem

Table 6.1: Faults o f  "Common Blunders"

6.1 T  Versus “Com m on Blunders”

This section looks at the faults contained in the “Common Blunders” chapter in
[10]; the faults contained axe listed in Table 6.1 according to the page number, 
the fault, and in some instances the correct code. Section 6.1 gives an idea of the 
fault types that infection analysis simulates and the fault types which it does not. 
There are several faults in the “Common Blunders” chapter that axe out of the 
scope of the thesis. For those faults which axe in the “Common Blunders” chapter 
which axe not handled by infection analysis, alternate techniques for detection of 
their presence axe mentioned.

Seven of the eighteen published faults axe not applicable to propagation and 
infection analysis: faults 8 and 17 axe language problems, 13, 7, and 5 are com­
pilation faults, fault 14 is an infinite loop, and fault 6 is a label in the wrong 
location. Faults 1 and 4 can be caught using dataflow analysis [5, 6, 4, 2] since 
this is a reference before definition problem. Faults 2 and 3 axe not defined in 
T \  they require a more complex class of faults for both expression and predicate 
infection analysis. One problem with infection analysis, specifically T ,  is faults 
such as 16 and 17 which axe precedence faults; precedence faults axe not included 
in T .  Process Simplify produces simple expressions with the incorrect precedence. 
Methods for handling precedent faults include requiring that each declared vari­
able have a unit associated with it. An example is the expression a * b * (c +  d).
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If a has units m/a2, b has units a, c has units a, and d has units m,  then this fault 
can not occur since c and d do not have the same units.3

Faults 9 and 10 together form a distributed fault. T  is limited to single 
location faults; distributed faults axe not considered during infection analysis due 
to the combinatorial problem of how to combine single locations into a distributed 
location. If failure propagation analysis perturbed combinations of active variables 
instead of single active variables in a single data state, distributed faults’ impacts 
could be partially simulated. For example, in a four single location sequence, 
there are ten location combinations for creating a distributed fault: (1,2), (2,3), 
(3,4), (1,3), (1,4), (2,4), (1,2,3), (1,2,4), (2,3,4), (1,2,3,4).

Fault 11 is included in T .  More fault classes can be included in the infection 
analysis process by redefining T .  An explosion into the number of semantic al­
ternatives results. One such modification to F  might be to include compound 
faults such as fault 3 (this is two faults: 0 +  (—I*)) into the definition of T .  In­
fection analysis estimates are a function of the semantic alternatives from T ,  so it 
is important to include as many “potential” faults as is computationally feasible. 
If the semantic alternative class is small, the question might arise as to whether 
the class of faults is too restrictive, i.e., is there a class of frequently occurring 
faults with low infection estimates not represented in J7? In this example, several 
compound faults axe found in the code segments from “Common Blunders ” which 
are not represented in T.  !F remains a parameter in infection analysis implemen­
tation and by increasing the breadth of T ,  this infection analysis implementation 
becomes more meaningful.

6.2 Experim ents for Validating the PIA  M odel 
and Im plem entation

This section contains experimental results that indicate that the propagation and 
infection analysis model and implementation are a plausible method for isolating 
locations that contain faults of specific impacts on the program output behavior. 
Each of the three programs used had a failure rate of less than 10-4 (requirement 
2(d) of the definition of closely correct). Better yet, these propagation and infec­
tion analysis estimates closely mimic the observed behavior of the code. Three 
experiments were performed. Most of the experiments of this thesis were executed

sThis problem is partially solved by requiring that variables have associated units; the Inte­
grated Verification and Testing System (IVTS)[1] is an environment requiring units for programs 
in the language is Hal/S[3, 8].
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on a SUN 3/50.3

Two participants were used in Experiments I and II, one participant to set 
up the experiment and one participant to perform it. Throughout Chapter 6, the 
person who set up the experiment is referred to as participant A, the other person 
is referred to as participant B. Note that these were “blind” experiments, meaning 
that participant A who inserted a fault never revealed to participant B where the 
fault was; only the locations for participant B to perform the analysis at. It 
was participant B’s responsibility to apply propagation and infection analysis and 
attempt to determine where the fault occurred from the propagation and infection 
analysis estimates and the supplied failure rate.

6.2.1 E xperim ent I

The first program is found in Appendix C and is taken from [12]. A fault was 
placed into the sqr call in the statement

t : =  0.9*(1.0+sqr(y))*exp(em *glalxm -gam m ln(em +1.0)-glg);

producing

t :=  0 .9*(i.0+sqr(1.0+y))*exp(em *glalxm -gam m ln(enrH -1.0)-glg);

by participant A. The failure rate observed by participant A from this fault is 2.0* 
10-6. Participant B performed failure propagation analysis on this non-simplified 
expression and received a high failure propagation estimate. Hence participant A 
could not locate the fault from the failure propagation analysis on the complex 
expression. The complex expression was then broken up by participant A for 
participant B into the following simple expressions:

aa :=  sq r(y+ 1 .0 ); { l }  

bb :=  aa +  1.0; {2} 

cc :=  em +  1.0; {3}  

dd :=  gam m ln(cc); {4 } 

ee :=  em*glalxm-dd-glg; {5} 

ff :=  bb * exp(ee); {6}

3SUN 3/50 is a trademark of Sun Microsystems.
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location propagation estimate
1 7.664*02
2 3.9831e-01
3 8.5781*01
4 8.525*01
5 1.3581*01
6 3.9687*01

Table 6.2: Failure propagation estim ates for p o i d e v  using u n ifo rm (12 ,13) for inputs

location propagation estimate
1 3.0*05
2 3S917*01
3 8.7326*01
4 8.7613*01
5 6.176*02
6 3.9027*01

Table 6.3: Failure propagation estim ates for p o i d e v  using u n ifo rm (1 2 ,1 0 s ) for inputs

t  :=  0.9 * ff; {7}

Participant B is given the observed failure rate, the entire program with the 
simple expressions, the input distribution producing the 2.0 * 10~6 failure rate, 
and a list of locations where the fault was potentially residing. In the experiment, 
participant B is told the fault is in one of the first six simple locations created from 
the complex expression, and that the input distribution is uniform (13.0,1000000.0).

The failure propagation estimates participant B produced when he limited the 
input distribution to uniform (12.0, 13.0) are found in Table 6.2. These estimates 
were obtained from only perturbing the active variable receiving the action at 
that location; this reduction in the amount of perturbation analysis also applies 
to the estimates found in Table 6.3 which participant B produced from an input 
distribution of uniform (12.0, 1000000.0). From these failure propagation estimates, 
participant A postulates that location 1 contains the fault, which indeed it did. 
Hence participant B was able to accurately and positively identify the subexpres­
sion in the expression causing the observed failure rate. No infection analysis is 
performed and the experiment was halted; this experiment h e ld  shown two abilities 
of failure propagation analysis:
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location propagation catimate
1 0.2818
2 0.0
3 1.0
4 0.227199512178
5 0.273673449675

Table 6.4: Failure propagation estim ates for qchsrt using pertu rb(0 .95 , 1.05,x)

1. simpler expressions do give more precise failure propagation estimates, and

2. these failure propagation estimates do mimic the effects of faults.

To be complete, for a full debugging experiment, infection analysis should be 
performed, and the conclusions about suspects determined according to the algo­
rithms provided in Chapter 5. This experiment was performed in the eaxly stages 
of building the thesis model to validate the notion of failure propagation analysis.

6.2.2 Experim ent II

The second experiment is also taken from [12], specifically procedure qcksrt on 
pages 726-727. Five locations were identified by participant A to participant B 
as potentially containing the fault. The locations axe notated and the program 
used in performing the failure propagation analysis by participant B is included 
in Appendix B. The results participant B found from failure propagation analysis 
after 250,000 input points from the input distribution that produced a 7.5 * 10~5 
failure rate are found in Table 6.4. Again as in Experiment I, only the active 
variable receiving the action at the location is perturbed; the same is true for the 
estimates in Table 6.5. The perturbation function used for the estimates of Table 
6.4 was uniform (0.95x, 1.05x). From these failure propagation estimates, nothing 
specific can be stated except that a pseudo-failure from perturbing at location 
2 never occurred in 250,000 trials.4 Table 6.5 contains the failure propagation 
estimates with a different perturbation function, namely uniform(0.5x, 1.5x).

Table 6.8 gives the semantic alternatives participant B used during infection 
analysis at the five locations with the corresponding infection estimates. Note that

4The explanation why location 2 has no failure propagation is that it is a pseudo-random 
number generator that quicksort uses. Hence an infection only decreases randomness, not cor­
rectness.
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location propagation estimate
1 0.369008
2 0.0
3 1.0
4 0.346619520890
5 0.188418873305

Table 6.5: Failure propagation estim ates for qcksrt using perturb(0.5, 1.5,x)

this program is not in simplified expression form, and not all possible elements of 
T  were used. This reduced the computing needed.5

For participant B, there are three noticeable estimates in Table 6.8: 0.0000101,
0.0001462, 0.000009746 as notated by asterisks. The third estimate (0.000009746) 
occurs twice for two different semantic alternatives. The goal for participant B 
is to find an infection estimate for a location that when multiplied by the cor­
responding failure propagation estimate of the location approximates the failure 
rate that participant A supplied (the execution estimate at a location should also 
be considered if it is less than 1.0, however in this case each of these five locations 
is always executed). For this case, 0.0001462 * 0.3466 =  0.0000506 «  0.000075. 
And indeed location 4 is where the fault was inserted, hence participant B again 
succeeded. Not only is location 4 the location of the fault, but the semantic al­
ternative causing the infection estimate of 0.0001462 is the fault. This semantic 
alternative was found by taking the value distribution for variable I and picking 
the value with the highest probability of occurring, which in this case was the 
constant 1. So substituting variable I for the constant 1 was the fault participant 
A inserted, and the low failure rate occurred because the probability density func­
tion of I preceding the location under analysis was drastically spiked at the value 
of 1.

6.2.3 Experim ent III

The final experiment is performed on a version from the n-version LIC experiment 
discussed in [11]. The version is written in Fortran-77 and was approximately 500 
lines in length. The particular version used had an seemingly zero failure rate after

SA SUN 3/50 is truly incapable of performing complete propagation and infection analysis 
except for trivial input programs. This was the main computing resource available to the author.
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a huge number of executions to determine the failure rate.6 Experiment III differs 
from the previous two experiments because the fault causing the observed failure 
rate was the actual fault in the code, not a fault inserted by either participant A 
or participant B. Hence this is a real program with a real fault, not a real program 
with a “inserted” fault.

After 2-106 executions of the LIC version on a Convex-220, the failure rate was 
determined to be 0.0, since no failures occurred. Hence this program also satisfies 
criteria 2(d) of the closely correct criterion. Eight randomly selected locations 
were noted for failure propagation and infection analysis, including the location 
known to contain the fault.7 The incorrect code of this location follows:

IF ((n o rm l .E Q . 0 .0 ) .O R . (norm 2 .E Q . 0 .0 )) T H E N  

ang!e5 =  0.0 

ELSE

angleB =  A C O S((xone*xthree +  yone*ythree)/(norm l*norm 2))

EN D  IF

The correct code at the location should be:

IF ((n o rm l .E Q . 0 .0) .O R . (norm 2 .E Q . 0 .0 )) T H E N  

angle5 =  0.0 

ELSE

csn =  (xone*xthree +  yone*y three)/(norm l*norm 2)

IF (csn .L T. -1 .0) T H E N  

csn =  -1 .0  

ELSE IF (csn .G T . 1.0) T H E N  

csn =  1.0 

E N D  IF

angle5 =  A C O S(csn)

EN D  IF

Table 6.6 contains the failure propagation estimates for the active variable being 
assigned at the eight locations. For the location actually containing the fault, a

6There existed an oracle for the version being analyzed which was needed to determine the 
version’s failure rate. The fault location was pre-known as well as the fact that this was the 
only fault in the program.

7The fault is a m issing  path, so more than one location is missing. Since the net effect 
of missing code is a changed assigned value, propagation analysis on the active variable being 
defined should catch this missing path.
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location propagation eitimate
1 0.25023
2 0.0
3 0.0
4 1.0
5 0.0416304
6 0.0416304
7 0.0
8 0.0

Table 6.6: Failure propagation estim ates for LIC version

location original code
1 e= 25.
2 l= i+ l
3 tem p+parray(iij)
4 temp+fum(i)
5 ((x2-px)**2 +  (y2-py)**2))
6 ((slope'xl +  x2/slope - y l  +y2)*«lope)/(slope**2 +1))
7 (xl-x2)**2 +(yl-y2)**2)
8 ACOS((xone*xthree +  yone*ythree)/(nonnl*norm2))

Table 6.7: Original code from  which th e  sem antic alternatives were derived for th e  LIC version

perturbation function is applied on the current value of the variable being defined 
which is not properly being defined due to the missing path.8 Again, perturbing 
on each active variable at the location is not performed to limit the computational 
costs and manual costs. The infection estimates for a subset of the recommended 
semantic alternative set9 with the alternatives are found in Table 6.9.

Notice in Table 6.9 that there are no infection estimates on the order of 
<C 2 * 10-6 .10 In this version, Ei is high for each of the eight locations, i.e., 
approximately 1.0. Hence the failure propagation estimates are all that is left in 
trying to determine which locations axe suspects in this example.

8The fault actually is just range checking on the value of (xone*xthree +  
yone*y th ree)/(no rm l*no rm 2) which is virtually never required.

9According to the definition of T\ in Chapter 4.
10Note that for the infection analysis estimates shown in Table 6.9, where 10s input points were 

used, the cost of this analysis was 267.4 cpu seconds on a Convex 220; had this analysis been done 
for all 500 locations, it would have taken approximately 4 hours (assuming complete infection 
analysis using the sequential pseudo-code algorithm on the Convex 220 after the commented 
locations are subtracted).
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From Table 6.6, there are four locations which show no failure propagation 
after a uniform perturbing distribution and perturbation function parameters of 
(-2.0, 2.0) are applied after executing 104 inputs;11 these are locations 2, 3, 7, 
and 8. It is unusually strange to find 4 out of eight locations displaying no 
failure propagation after 104 perturbations at each location. As it turns out, 
the specification for this LIC version is one which contains many computations 
and only a few single bits of output. This specification allows for versions with a 
large amount of type I cancellation.

The location with the fault causing the zero failure rate was location 8, which 
was one of the four locations classified as suspects due to a zero failure propagation 
estimate at location 8. So debugging was “somewhat” successful in identifying the 
location with the fault as being a suspect; propagation analysis was very successful 
in showing that its estimates do reflect the output behavior of each location of a 
program.

Experiment III has shown two remarkable results:

1. It has isolated a location which contained a fault, even though the program 
had never failed after 2 • 106 inputs, and

2. Experiment III showed that failure propagation analysis does have the abil­
ity to detect missing code at a  location by perturbing on each active variable.

From (1), it has been shown how propagation and infection analysis can be applied 
to ultra-reliable software, particularly software which has never failed. The second 
result shows that propagation and infection analysis has a unique ability to detect 
missing paths which no other fault detection scheme has.

“ Several different perturbation functions were applied to the LIC version in an attempt to 
force more pseudo-failures. In this experiment, (-2.0,2.0) perturbation function parameters with 
the uniform perturbing distribution caused frequent run-time termination due to the fact that 
the version contains a lot of sq r t cedis and trigonometric function calls. Such occurrences can 
help dictate the infection interval if the code is statically analyzed for such function calls.
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temantie alternative location infection cetimate
((ir-1 > m 1 7,239073909171880-01
((1-ir < m 1 3.21905609973286o-01
((ir-1 =  m 1 9.54186999109S28O-01

((ir-1) < =  m) 1 2.76092609082814o-01
((ir-1) > =  m) 1 1.0
((ir-1) < An) 1 3.21905609973286O-01
t(ir-l) < fini) 1 5.209759572573466-01

t(ir) < m) 1 3.913374888691016-01
(0) < m) 1 4.66368655387355e-01
((-1) < m> 1 3.219056099732866-01

((ir+1) < m) 1 4.470667853962606-01
I | A s 1 3.91376669634907e-01

ir-1) < m) 1 3.21866429207480e-01
((jstadc-1) <  m) 1 3.219056099732866-01

((iatackljstack]-l) < m) 1 4.993481745325026-01
(M iJ - 0  <  “ ) 1 3.06924309884239e-Cl

((arrjl+lj-l) < m) 1 3.572929652715946-01
((ir-jataclc) <  m) 1 2.775031166518256-01

((ir-fmi) <  m) 1 3.21866429207480e-01
((ir-arr[ij) <  m) 1 3.61125556544969e-01

((ir-arr[i+l]) < m) 1 3.879287622439896-01
((ir-iatackQstack]) < m) 1 2.468744434550316-01

((ir-1) <  jatadc) 1 4.178094390026716-01IV1

1 3.055565449688336-01
((ir-1) < arrli+1]) 1 2.547141585040076-01

((ir-1) <  iatackuatack]) 1 3.561887800534286-01
((1-1) < m) 1 3.21905609973286e-01
((ir-a) <  m) 1 3.76463045414069e-01f A ei_ 1 3.043419412288516-01

(ir-1 l < n ) 1 3.219056099732866-01
((ir-n 1 <  m) 1 3.21905609973286e-01
((n-1) < m) 1 3.165520926090836-01

(fx*fa-fc)/fin 2 1.0
( ra*fvfc)/&n 2 1.0
l (a-fa-fc)/fm 2 1.015*fvfc)/fin 2 1.0

2 1.0
(fm*fa-fc)/fin 2 1.0
(fx/fa-fc)/&n 2 1.0
(fx*fa*fc)/&n 2 1.0
(fx*fa*fc)+fin 2 1.0
(fx*fa*fc)*fin 2 1.0
&n/(fic*£a+fc) 2 1.0
(fjt*fa+fc)*fx 2 1.0
(fx*fa+fc)*fa 2 1.0
(fx*fa+fc)*fc 2 1.0
(i*fa+fc)/fin 2 1.0
(fx*i+fcWfin 2 1.68077455048409e-02
(fx*fa+i)/£m 2 1.0
(fx*fa+fc)/i 2 1.0

Table 6.8: Infection estim ates for qcksrt
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temantie alternative location infection eatimate
l*fa+fc)/fin 2 1.0

i fx*t+fc)/fin 2 1.68077455048409e-02
1 fx*fa+l)/£m 2 1.0
(fx*fa+fc)/l 2 1.0
(j*/a+fc)/fm 2 1.0
(fx*j+fc)/fin 2 1.630774550484096-02
(fx*fa+j)/£m 2 1.0
(fe*fa+fc)/j 2 1.0

(ir*fa+fc)/fin 2 1.0
(fx*ir+fc)/fm 2 1.68077455048409e-02
(fx*fa+ir)/fm 2 1.0
(fx*fa+fc)/ir 2 1.0

(fx*fx+fc)/fin 2 1.68077455048409e-02
(fx*fa+fx)/fm 2 1.0
(fx*fa+fc)/fx 2 1.0
(fa*fa+fc)/fin 2 1.0
(fx*fa+fa)/fm 2 1.0
(fx*fa+fc)/fa 2 1.0
(fc*fa+fc /fm 2 1.0
(fxTc+fc /fin 2 1.68077455048409e-02
(fx*fa+fc)/fc 2 1.0

(fm*fa+fc)/fm 2 1.0
(fx*fm+fc)/fin 2 1.680774550484096-02
(fx*fa+fin)/&n 2 1.0
(iq*fa+fc)/fm 2 1.0
(fx*iq+fc)/£m 2 1.680774550484096-02
(fx*fa+iq)/fm 2 1.0
(fx*fa+fc)/iq 2 1.0

(&ni*fa+fc)/£m 2 1.0
(fx*fmi+fc)/fm 2 1.10650069156293e-05*
(fx*fa+fini)/&n 2 1.0
(fx*fa+fc)/£mi 2 1.0
ta*fa+fc)/fin 2 9.026279391424626-01
(fx*a+fc)/fm 2 1.680774550484096-02
(fx*fa+a)/fen 2 1.0
(fx*fa+fc)/a 2 1.0

(arr[iqj*fa+fc)/fm 2 8.768132780082996-01
(fx*arr[iq|+/c)/in 2 1.680774550484096-02
(fx*fa+!urr[iq])/£m 2 1.0
(fx*fa+fc)/arrfiq] 2 1.0

1 3 7.844672286101916-01
v l 3 1.0

l 3 7.767942530525106-01
J 3 7.349598558815036-01

1-a 3 1.0
5*a +  1 3 1.0
air[iq] 3 4.859106376353896-01

iq 3 7.844894691190536-01
airW 3 4.859106376353896-01

1 3 7.844894691190536-01

Table 6.8: C ont'd
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semantic alternative location infection estimate
airli] 3 4.18010364077130e-01

n 3 9.77047794853546e-01
fx 3 1.0
j-1 4 1.4S203105353958e-04
j+1 4 1.0
j+1 4 1.0
1-j 4 1.0
j*l 4 1.0

j div 1 4 1.0
1 4 1.0
1 4 1.0
J 4 1.0

J-J 1.0
S*j - 3*1 4 1.0

4 1.0
j-arrfi] 4 9.74687369026385e-06*

4 1.0
J-ir 4 1.0

j-istack[jstack] 4 1.0
j-istack[jstack-l] 4 1.0

arr[i]-l 7.51308517792918e-01
i-1 4 1.0
ir-1 4 5.95748413696307e-01

istack[jstack]-l 4 9.746873690263856-06*
istadc|jstaclc-l] -1 4 8.732906420265706-01

I-I 4 1.0
i 5 1.0

1+1 5 1.0
i+ ir 5 1.0
ir-1 5 7.412128389907066-01
i*ir 5 1.0

i div ir 5 8.44691571150410e-01
lr 5 1.0
1 5 7.360539574843936-01
I 5 1.0

1-1 5 8.446915711504106-01
i*i-i-l S 7.360539574843936-01

1+i 5 1.0
i-jstadc 5 1.0
i-arr[il 5 7.61226087480178e-01

l - a 5 7.612260874801786-01
l-n 5 1.0
l-ir 5 1.0

js tack-1 5 7.360539574843936-01
arr[i]-l 5 7.83186462452576e-01

a-1 5 7.831864624525766-01
n-1 5 1.0
ir-1 5 1.0

Table 6.8: C ont'd
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location semantic alternative infection eetimate
1 24 1.0
1 L 1.0
1 Epsilonl 1.0
1 23 1.0
1 Epsilon2 1.0
1 20 1.0
1 1+R 1.0
1 N3 1.0
1 M 1.0
1 0 1.0
2 (i-1) 1.0
2 1 1.0
2 0 1.0
2 2 0.1164889
2 1 1.0
2 i+ n l+ 1 1.0
2 i+nl-1 1.0
2 P-nl-1 1.0
2 y(i) 1.0
2 cmm(13) 1.0
4 (temp-fum(i)) 1.0
4 (fum(i)-temp) 1.0
4 temp 1.0
4 fum(i) 1.0
4 pum(i)+temp 1.0
4 temp-size 1.0
4 fum(i)+size 0.9333333
4 pum(i) 1.0
4 pum(i)-l 1.0
4 pum(i)*temp 1.0

Table 6.9: Infection estim ates for LIC
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location semantic alternative injection estimate
S (aqrt((xl-px)**2 +  (y2-py)**2)) 1.0
5 (sqrt((y2-px)**2 +  (y2-py)**2)) 1.0
5 (s<lrtHx2-pxl**2 +  (x2-py)**2l) 1.0
5 (aqrt((x2-px)**2 +  (y2-px)**2)) 1.0
5 («qrt((x2.px)**2 +  (y2-py))) 1.0
5 (sqrt((xl-pxj,i'*2 +  (y2-py)**2)) 1.0
5 (sqrt x2.px +  (y2-py)**2» 1.0
S (sqrt x2-px +  (x2-py)**2)) 1.0
5 (s<pt((x2-px)**2 +  (y2-py+l)**2)) 1.0
5 (B^t((x2-px)**2 +  (y2-py)**4)) 1.0
S (((slope*yl +  x2/alope - y l +y21*alope)/(slope**2 +1)) 0.9997583
6 (((slope’x l +  x3/slope - y l +y2)*alope)/(slope**2 +1)) 1.0
6 (((slope*xl +  x2/alope +  y l +y2)*alope)/(alope**2 +1)) 1.0
6 (((slope'xl +  x2/alope - y l -y2)*alope)/(slope**2 +1)) 1.0
6 (((aIope*xl +  x2/alope - y l +y2)*alope)/(aIope**2 1.0
6 (((alope*yl +  x2/alope - y l +y2)*alope)/(alope**2 1.0
6 (((alope*xl +  x3/alope - y l +y2)*slope)/(alope**2 )) 1.0
6 (((alope*xl +  x2/alope +  y l +y2)*alope)/(alope**2 )) 1.0
6 (({alope’x l +  x2/alope - y l -y2)*alopej/(alope**2 )) 1.0
6 (((alope*xl +  x2/slope - y l +y2)*alope)/(slope**2 )) 1.0
7 ((xl-x2)**2+(yl-y2)**3) 1.0
7 ((xl)»*2+(yl-y2j**2) 1.0
7 ((xl-x2)**2+(yl+y2)**2) 1.0
7 ((yl-x2)**2+(yl-y2)*;*2) 1.0
7 I(xl-x21**2+(xl-y2)**2l 1.0
7 ((xl-x2j**2+(yl-y2)**3) 1.0
7 f(xl-x2)»*3+(yl-y21**2) 1.0
7 ((xl-x2)**2+(yl-yl)**2) 1.0
7 ((xl-x2)**2-(yl-y2)**2) 1.0
7 ((xl-x2)**2+fyl*y2)**2) 1.0
S fA(50S((xone*xthree * yone*ytbree)/(norml*noim2))) 1.0
8 (A(3dS((xone*xthree +  yone*ythree)/(norm2*nonn2))) 1.0
8 (A(20S((xone*xthree +  yone*ythree)*(norml*noim2))) 1.0
8 (ACOS((xone +  yone*ytkree)/(norml*nonn2))) 1.0
8 (ACOS (xone’xthree - yone*ythree)/(norml*norm2 )) 1.0
8 (ACOS (xone*xthree /  yone*ythree)/(norml*nonn2 ' 1.0
8 (ACOS((xone*xthree +  yone*ythree)/(norm2*norm2l) 1.0
8 (ACOS((xone*xthree +  yone*ythree)*(norml*nonn2)) 1.0
8 (ACOS((xone +  yone*ythree)/(norml*nonn2))) 1.0
8 (ACOS((xone*xthree - yone*ythree)/(norml*norm2))) 1.0

Table 6.9: C ont'd
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6.3 Similarity o f Propagation and Infection Es­
tim ates Betw een Successive Versions

Section 6.3’s results are based upon the infection and failure propagation estimates 
gathered from a program referred to as Quadratic. The results presented are from 
failure propagation analysis and infection analysis. Realizing that viral propa­
gation is a modified scheme of failure propagation through one location suggests 
that these results for failure propagation estimates will hold for viral propagation 
estimates.

The graphs shown throughout this chapter were created from both faults of 
large and small size. Fault size is a measure of the proportion of input points that 
reach the fault and cause failure. It is a function of the sampling scheme of the 
input distribution. For Quadratic, it was difficult to insert faults that affected few 
input points. Hence the graphs are derived from faults of relatively large size.

Consider Quadratic:

p ro c e d u re  Q uadratic(a ,b ,c  : real;

va r ro o tl,  root2  ; real; 

var rootexists : b o o lean );

var

d : real;

b eg in  {location}

d :=  b*b-4*a*c; { l}

if  d <  0 th e n  {2}

rootexists :=  false {3}

e lse

b eg in

rootexists :=  true; {4} 

d ;=  sq rt(d ); {5}

ro o tl  :=  -(b -d )/(2 * a ); {6} 

root2 :=  - (b + d )/(2 * a );{ 7 }  

end ;

end ;

This program is correct for the following specification: If a, b, and c are real 
number constants with a 0  and b2 — 4ac >  0 , and if x  is a variable with domain
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being the set real numbers, then the solution set of ax2 +  bx +  c =  0  is

f — b +  y/b2 — 4ac —b — y/b2 — 4ac
\  2 a ’ 2 a

[7]. Produce a program which assigns the solutions of the quadratic equation 
to variables ro o t l  and roo t2  and set rootexists to tru e  iff b3 — 4ac > 0 regardless of 
whether a ^  0 ; otherwise set rootexists to false.

The infection and failure propagation graphs throughout this chapter12 have 
an abscissa-axis ranging between 0 % and 1 0 0 % representing infection and fail­
ure propagation values with probabilities between 0 and 1.0. The ordinate-axis 
represents the probability density of choosing an infection or failure propagation 
estimate of that probability. The appendix in [9] contains the program shell used 
to determine Px s infection and failure propagation curves. Each curve represents 
a summary of all propagation estimates over all locations in Quadratic. For the 
graphs where only one line appeaxs, it is because all curves are sitting directly 
over one another.

Let [Pi, P2, P3 , ...] represent the sequence of unique versions of program P  over 
time, where Pt is the successor version of P<_j. The first three failure propa­
gation graphs show the distribution of failure propagation estimates for versions 
P*,P»—i,P e—2 (Pc—1 has the remaining fault to be found, Px _ 2 has the remaining 
2 faults). In each graph in this chapter, the darkest curve represents version Px, 
the thin dotted curve represents version Px_2, and the medium thick solid curve 
represents version Px_i as illustrated by the insert in Figure 6 .1 . For the graphs of 
Px_i and Px_2, there were three versions each, so that several fault combinations 
were used for the graphs. The faults were inserted manually. For the three Px- \  
versions, one fault was inserted into three copies of Px, and for the three Px _ 2 

versions, another fault is inserted into 3 copies of Px_i.

There is very little difference in the curves in the first three failure propaga­
tion graphs, Figure 6.1, Figure 6 .2 , and Figure 6.3. All value perturbations are 
performed with uniform (0.6*x, 1.4*x). Failure graph 1 shows the most diversity, with 
the very thin line representing no failure propagation. To explain this, consider 
the faults used: for Px„i the inserted fault was at location 7 and was -(b+a)/2*a; for 
Pr_ 2 there is an additional fault at location 5  which was d :=  100. Since the fault 
at location 7 is the very last statement executed for the trip which encompasses 
it, failure propagation estimates for Px and Px_i are identical. However for Px_2,

12The curves are slightly misleading so a note on them: the lines between any 2 locations does 
not imply a continuous line; the lines interpolate discrete points; each x value is discrete and 
there is no continuity along the z-axis.
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Fig. 6.1: Failure propagation estim ates graph 1
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Fig. 6.2: Failure propagation estim ates graph 2
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probability density
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Fig. 6.3: Failure propagation estim ates graph 3
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Fig. 6.4: Infection estim ates graph 1
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Fig. 6.5: infection estim ates graph 2

probability danaity 
0.34

0 .2 5

0 . 2 - •

0 .0 5

2 0 .  4 0 .  6 0 .  8 0 .  1 0 0 . .
•eatinatos

Fig. 6.6: Infection estim ates graph 3
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its curve represents many non-propagating points because of the fault at location 
5; it succeeds any of the previous faults that are simulated by the perturbation 
function thus eliminating their effect. Any perturbed value of d at previous loca­
tions is nullified by this mutation making those viruses not propagate to failure. 
This leads to the following observation on the failure propagation algorithm.

O bservation  8.1 Let z be the last location executed on a path, x be a location 
where perturbation is being analyzed, and location y be in the subpath from 
location x to location z. There is no propagation from location x  to location 
z i f  a virus inserted by a perturbation function at location x is completely 
canceled(type I) by the action at location y. An example is when the action 
at location y is a definition o f the variable perturbed in the succeeding data 
space o f location x, and the definition at location y i f  not a function o f the 
perturbed value at location x.

Px-i ’s curve in failure propagation graph 2 was made by inserting if d < =  0 then  at 
location 2. Px- 2 ^  curve in failure propagation graph 2 was made by inserting the 
additional fault b -  4*a*c at location 1. All three curves in this plot are identical. 
In failure propagation graph 3, Px~ \s  curve in failure propagation graph 2 was 
made by inserting d := sq r(d ) at location 5. PI_2’s curve in failure propagation graph 
2 was made by inserting the additional fault 4*a*c-b*b at location 1. Px and Px- i  
in this plot have identical curves, with Px_2 practically identical. The versions 
represented in failure propagation graphs 1, 2, and 3 received the same input data.

The three versions represented in failure propagation graph 4 received the same 
input data, however it is a different input set than that used in the previous failure 
propagation graphs. It is important that the curves be similar for various input 
data as well which is noticeable by comparing the curves for Px in Figures 6.8 
and 6.4. It is true that failure propagation estimates are a function in some 
sense of the input used, however it should not be the case that two sets of inputs 
produce drastic differences solely because the input sets are different. If this 
were true then failure propagation estimates would be extremely dependent upon 
what input data is used; this would be catastrophic for propagation and infection 
analysis. The results in failure propagation graph 4 axe identical curves. The 
perturbation function used is uniform(0.3*x, 1 .7*x), and the inserted faults are if d <  

1 then  at location 2 and ro o t l  :=  - (d -b )/(2 * a )  at location 6. Failure propagation graph 
5 also had the same input set as that for failure propagation graph 4 presented 
to its three versions. All three versions have the same curve. The perturbation 
function is also uniform(0.3*x, 1.7*x); the faults axe rootexists :=  true  at location 3 and 
d :=  sq r(d ) at location 5.
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probability denalty
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Fig. 6.7: Failure propagation estim ates graph 4

Failure propagation analysis of Quadratic has also shown that the curve for 
Px appears to be fairly independent of both the perturbation function and input 
points. This observation is postulated after comparison of the Px curves from 
failure propagation graphs 1 and 4. The similarity of the curves is important since 
the infection interval range is unknown and the perturbation function parameters 
used may not have an infection interval distance of zero. Quadratic has also 
shown that a wide variety of combinations of faults of large fault size did not 
change the curves substantially between versions, with the exception being failure 
propagation graph 1, where a latter fault overcome the effects of perturbations 
at predecessor locations. Hence faults of smaller size only narrow the difference 
between such curves.

Infection graphs 1, 2, and 3(Figure 6.4, Figure 6.5, and Figure 6.6) for Quadratic 
contain similar results. All graphs received the same input points. Infection graph 
1 was created by Px- \  having the fault roo t.1 :=  2*a at location 7 and d :=  sqr(d) 

at location 5. Infection graph 2 was created by Px_i having the fault d :=  b at 
location 1 and rootexists :=  tru e  at location 3. Infection graph 3  was created by Px-i  
having the fault if d <  5 at location 2 and root2 :=  - (b + d )  at location 7.
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probability donsity
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Fig. 6.8: Failure propagation estim ates graph 5

6.4 Conclusions

Chapter 6 is not designed to show that propagation and infection analysis is 
the ultimate debugging tool, rather, that this particular implementation of PIA 
adequately corresponds to the propagation and infection analysis model, and ad­
ditionally this model adequately approximates the behavior that real faults cause 
in programs. Debugging was a means of easily demonstrating this. This chapter 
has shown that propagation and infection analysis does indeed locate locations 
that more easily hide faults. In fact, propagation and infection analysis has good 
enough resolution to accurately quantify the impacts that a location has on the 
failure rate in order to use propagation and infection analysis for debugging. And 
remember that all of the analysis is done without an oracle. This means that 
incorrect programs axe being used to debug themselves.

The programs used in Section 6.2, admittedly, are small and the analysis 
performed was incomplete. Complete propagation and infection analysis for an all 
but trivial program is all that could be done by this author without automation 
and faster machines. The results, however, do show that even partial propagation 
and infection analysis shows where faults can easily be hidden. This suggests that
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complete propagation and infection analysis will serve to give even better results 
for isolating such locations.

Since propagation and infection analysis is temporally expensive, it is desir­
able to begin propagation and infection analysis on the earliest version P* of P  
such that versions [Pk+i,Pk+2 > •••] produce results similar to those for P*. To begin 
propagation and infection analysis as soon an possible, the hypothesis as newer 
versions are released, the propagation and infection estimates of a preceding ver­
sion change minimally for those of a successor version provided that the versions 
are syntactically13 and semantically almost identical is introduced. Since faults of 
large size gave encouraging indicators in Section 6.3, faults of smaller size should 
produce results even more similar between versions.

The empirical conclusion of Chapter 6 is that a fault that is removed or inserted 
which does not drastically change the code structure will probably not change 
the propagation results discovered before fault removal or introduction. Thus 
two successive programs which are almost functionally equivalent yet structurally 
diverse will not have similar failure propagation estimates or infection estimates. 
Although Pt probably contains faults, the faults’ sizes are small and complete 
infection and failure propagation analysis need not be repeated for each change 
of Pt . This is important for models to which propagation and infection analysis’s 
results will be applied.14 Without this conclusion, full analysis would be required 
for each successive version. With this conclusion, there is a point in the software 
development cycle at which propagation and infection analysis may begin without 
having to reperform the analysis. Determination of exactly when this threshold 
point occurs is still under consideration, however this threshold point appears to 
occur when writing is completed and most debugging is completed as well.

13Two functionally equivalent programs may have totally different propagation and infection 
analysis results, hence syntactic restrictions are needed.

14For certain applications of propagation and infection analysis, this phenomenon makes the 
model more conservative; for other applications it may create problems.
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Chapter 7 

Conclusions

7.1 Accom plishm ents

This thesis presents a structure-based methodology of quantifying the impact 
that a particular program location has on the program’s output behavior; this 
structure-based methodology is both new and unique. It produces information 
never before available about a program’s locations. And this information is pro­
duced without reliance upon a specification or oracle. Propagation and infection 
analysis is the model and implementation by which this role is quantified. The 
methodology combines aspects of both software testing and software verification 
techniques, however produces information not produced by either technique.

This thesis introduces the methodology for determining where faults can easily 
hide through the production of two statistically-derived estimates: the infection 
estimate and the propagation estimate. A low infection estimate indicates that 
the syntax was easily modified in such a manner that faults occurred and did not 
affect the values of variables in the data states during execution. A high infec­
tion estimate indicates that in general, changes to the syntax produced modified 
variable values in the data' states during execution. A low propagation estimate 
indicates that modified variable values were put into data states which did not 
affect the output. A high propagation estimate indicates that modifications to 
values in the data states did affect the output behavior.

Abilities other than finding locations where faults can be easily hidden have 
been shown in the thesis. Included in these are the ability to partially detect 
missing paths or missing locations, and the ability to determine the minimal 
failure probability of the program relative to a class of faults or fault impacts. 
The thesis has also shown that the propagation and infection estimates can be

146
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used for analyzing software with a zero failure rate (ultra reliable software).

The thesis has shown that the code contains a wealth of information. It is a 
new white-box technique which provides information that no black-box analysis 
scheme can. Future applications of propagation and infection analysis estimates 
may be in certifying software. If it turns out that a particular piece of software 
contains more than some proportion of low failure propagation estimates, then the 
software could be rejected for rewriting, even if the software has never failed. The 
results from Chapter 6 are positive; they indicate that propagation and infection 
analysis or a methodology derived from it may be a tool which advances software 
quality.

7.2 Future Work

As a foundational model, the thesis generates more questions than answers. Areas 
for additional study beyond this thesis are not limited to but include:

P e rtu rb a tio n  Functions The notion of a perturbation function simulating the 
impacts of an infinite number of faults is introduced. The simple step-wise 
algorithm for determining perturbation function parameters for two param­
eter perturbing distributions needs consideration. The notion of perturbing 
solely on the first data state may be shown to be inferior to perturbing 
uniformly over all occurrence data states. Additional work is needed into 
alternative methods for simulating the impacts on values during execution. 
Potentially actual faults should be used for creating viruses versus random 
functions.

A rtificial D a ta  S ta te s  V ersus N a tu ra l D a ta  S ta tes  The terminology intro­
duced to describe the difference between these two types of data states is 
probably not the best, however the concepts they convey are important. If 
Method III value distribution creation is chosen, the question disappears as­
suming the location is eventually reached, because actual data states from 
an actual input point are available. However if sampled data states are 
created in some other fashion, then it is important that this question be re­
solved. It may turn out that Hypothesis 4.1 is not substantially threatened 
by using artificial data states, and if so, the cost involved in getting natural 
data states is not justified.

H ierarch ical M eth o d  for th e  L a ten t Failure R a te  This result currently suf­
fers in usefulness by being a function of a particular path. Additional re­
search is needed into determining how different are the latent failure rates
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of a set of paths from the latent failure rate of the path equivalence class 
after the necessary assumptions are made as to the number of iterations and 
which subpath is taken on which iteration. If evidence occurs that suggests 
that the assumptions can be made about the number of iterations as well 
as the subpaths taken without drastically altering the latent failure rate es­
timates between those of the paths and those of the generalizations of the 
path equivalence classes, then latent failure rates for path equivalence classes 
using the hierarchical method can be used which are not so conservative.

P a th  Equivalence C lass The notion of a path equivalence class is used through­
out the thesis as a means of partitioning the input space according to the 
following intuition: input points that follow the same path and reach the 
same locations will have a similar ability to reveal the same faults. Partition­
ing is useful for discussing the minimum failure probability for an execution. 
It is necessary to consider each location reached on an execution if an esti­
mate of the minimum failure probability is attached to a sequence of reached 
locations. Whether the definitions of Chapter 2 are the best for satisfying 
this intuition is not known; work in this area is needed.

D ispersion H istog ram  The notion of the dispersion histogram is simple and 
straightforward. It stands to be shown that taking the results from Process 
Propagation Analyzer is the correct algorithm to tie the creation of the dis­
persion histogram to. Potentially the dispersion histogram should take into 
account the results from Process Infection Analyzer, because it may be that 
the perturbation functions used in Process Propagation Analyzer cause data 
state infections that normally do not occur. Hence these “artificial” infec­
tions are causing “artificial” pseudo-failures which would bias the dispersion 
histogram. The best scheme for both deriving the results and storing the 
results is still unresolved.

C ancellation  Cancellation is possibly the most menacing problem in software 
testing. Both the viral and failure propagation estimates account for type 
I cancellation, however if there is to be any cost savings in the number of 
program executions required for propagation analysis, a static method for 
determining the situations under which cancellation occurs is important.

W hen  to  B egin P IA  Chapter 6 has made an attempt to define certain proper­
ties that when true signal that propagation and infection analysis may begin 
without the penalty of reperforming propagation and infection analysis as 
the software changes. Potentially the restrictions on the input program of 
Chapter 5 are inaccurate, possibly too restrictive or not restrictive enough.
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If machine speeds enable the performance of propagation and infection anal­
ysis to be considered as temporally trivial, this question vanishes. Currently 
this appears unlikely. More experimentation between successive versions is 
needed to verify or dispel Hypothesis 3.1.

Infection  A nalysis C lass o f Fau lts  The definition of the fault class !F is diffi­
cult. As the size of T  increases, so do the number of semantic alternatives 
and thus the costs of performing infection analysis. Since the set of faults 
that could occur at a location is infinite, decreasing the size of this infinite 
set is essential. However if the definition of T  becomes too restrictive, im­
portant classes of faults which frequently occur will be left out which will 
reduce the usefulness of infection analysis. If a listing of “common” faults 
is found relative to certain software applications, then such a listing could 
help define T  for an input program of that type. The assumption has been 
made within T  that each element is equally likely, however this assumption 
is not realistic. To be more realistic, J7 should be augmented by assigning 
probabilities for each element of J7. A study in the likelihood of fault classes 
is an entirely different problem which would be useful in defining T .

A lgorithm  Efficiency From the pseudo-code shells provided for the Process 
Propagation Analyzer and Process Infection Analyzer, it is clear that ex­
cept for trivially short programs, this methodology requires large amounts 
of execution time which with current technology requires either a parallel 
machine or a super-computer. However there are efficiencies possible from 
analytical schemes for both infection analysis and propagation analysis that 
will require fewer executions through the elimination of entire locations from 
needing dynamic analysis. As mentioned several times, parallelization of the 
computational algorithms appears to hold hope to this problem.

S toring  D a ta  S ta tes  by M eth o d  I I  Finding a realistic scheme for Method II 
value distribution creation could lead to both advances in the speed of the al­
gorithms of PI A and potentially a scheme for detecting “computer viruses.” 
Internal data state storage is an important area for research.

A u to m atio n  The ability to read in a program P  in a specific language, perform 
the preprocessing auxiliary processes which produce P", and then input P" 
into a process to create the pseudo-code shell for the two main processes 
is the overall goal of automating propagation and infection analysis. With 
such a scheme, any program in a particular language could have propagation 
and infection analysis immediately applied to it with virtually no manual 
requirements. The creation of an automated system to perform the PIA pro­
cesses is a software-engineering project which hopefully will be undertaken.
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Many of the unanswered questions and hypotheses can either be resolved 
or strongly implied by additional manually performed experiments on small 
sized input programs or having such a system. The availability of either a 
super-computer for these sequential algorithms or a parallel machine for a 
parallelized version of the algorithms is almost a mandatory requirement to 
currently use this methodology. Automation is meaningless if the pseudo­
code shells take years to execute. Until more information is known about the 
pieces of the propagation and infection analysis methodology, automation 
should remain a goal for the future.
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A ppendix A  

M athem atical Prelim inaries

Appendix A briefly introduces four mathematical areas that are frequently as­
sumed to be known throughout the seven chapters. These areas are: graphs, 
regular expressions, probability, and monte carlo simulation. Only the most basic 
rules from each of these areas is included in this appendix.

A .l Graph Terminology

A graph G is an ordered pair (V ,E ) made from a set of edges E  =  {e,-,, e,-2, e,-3, ...} 
and a set of vertices V  =  {ui,U2 ,U3 , ...}. An edge connects a pair of vertices (a, 6) 
where a, b may be the same vertex. If they are the same vertex that edge is termed 
a self-loop. A graph is finite if | V  | is finite, otherwise it is infinite The vertices 
that a particular edge is incident to axe called the endpoints of the edge.[2]

The degree of a  vertex v, d(v) is the number of times vertex v occurs as an 
endpoint for the edges in E. A vertex whose degree is zero is isolated. The 
notation u —  v means that vertices u and v are connected by edge e and thus u 
and v are adjacent.[2] A path is a sequence of edges(e,1,e,-3,...,e,i )where:

1, e,-fc and e,-fc+1 have a common endpoint for k =  1 ..j — 1;

2. if eIJk is not a self-loop and is not the first or last edge then etJk shares one of 
its endpoints with e;fc_j and the other with eIJk+1. [2]

A directed graph or digraph is a graph whose edges are ordered pairs; the first 
endpoint is the head and the second endpoint is the tail. The edge (u — v)e 
is directed from u to v. A directed path is a sequence of edges such that the
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end-vertex of is the start-vertex of e>Jk. The outdegree, dout(u) of vertex u is 
the number of edges which have u as their start-vertex. The indegree, d;n(u) of a 
vertex u is the number of edges which have u as their end-vertex.

A graph G' is an ordered pair (V ', E ') and is a subgraph of a graph G if V' C V 
and E' C E. An arbitrary choice for V ' and E' may not be a subgraph because 
they may not form a graph. [2]

A.2 Regular Expression Terminology

The fundamental units from which structures are built is termed the alphabet 
which is a finite set of symbols. An example is the Roman alphabet {a,b,...,x}. A 
string over an alphabet is a finite sequence of symbols in the alphabet. A string 
may have no symbols at all; this string is a special string called the empty string. 
Any set of strings over an alphabet S is called a language. A language can be 
specificed by listing all strings within it. [5, 1]

The regular expressions over an alphabet S  are the strings over the alphabet 
S U {), (, V, U, *} such that the following hold:

•  V and each member if S is a regulax expression,

• If a  and /? are regular expressions, then so is (a/3),

• If a  and /? are regular expressions, then so is (a  U /3),

• If a  is a regulax expression, then so is a*, and

• Nothing is a regular expression unless it follows from (1) through (4). [5]

A.3 Conditional Probability and Independence  
Terminology

Let E  be an arbitrary event in a finite equiprobable sample space S  where the 
probability that E  occurs is greater than zero. And let A be an arbitrary even in 
the same sample space. The probability that some event A  occurs given that E  
has occurred termed the conditional probability of A  given E, denoted as Pr[A | E], 
and is defined as _  „  ,
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Then
p r a  I F t  — num^ er ° f elements in A n  E  

number of elements inE  
And if the above equation is cross multiplied, the following formula known as the 
multiplication theorem is obtained[4]:

Pr[(A n  E)] =  Pr[£] • Pr[A | E]

Now assume that in the sample space S', there are k  mutually exclusive subsets, 
S  = B \ U B 2 U ... U Bk. Any subset D  of S  can be written then as D = D  fl S  =
D  D (Bi U B jU  ... u  B k) which is (D  n  B i)  U (D n  B 2) U ... U (D D B k). So the
probability of D  occurring is

Pr[(£  n  Bi)] +  Pr[(D n  B 2)] + ... +  Pr[(I> n  B k)]

=  P r[£:] • Pr[B | B 1) +  Pr[B2] • Pr[£> | B2] +  Pr[B3] • P r[D \ Bz\.

Additional references to conditional probabilities can be found in [7, 4].

A .4 M onte Carlo Simulation Terminology

Using the notation in [6], let x i ,x 2, ,.,xn be a random sample where each xj is a 
Bernoulli random variable. Then the mean of this sample m is

and the standard deviation of the sample s is

s = £
i = i

X? m 2 =  y/m — m 2 = y/m( 1 — m).

From equation 4.11 in [3, 6], the interval defined by the two endpoints

t*s
m  ±

y/n — 1

is a (1 — a) x 100% confidence interval estimate for the unknown true mean p. 
The parameter (1 — a) is the confidence level associated with the interval estimate, 
and t* is the upper 1 — a /2  critical point for the t  distribution with n — 1 degrees
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of freedom. For a fixed sample size n and a,

t* = tJlistribution(n  — 1,1 — a/2 ).

In Monte Carlo simulation, the conventional confidence level is 95% [6]. When 
n —► oo, n w n  — 1 and with a  =  0.05,

t* =  tjdistribution(n  — 1,0.975) =  1.645 »  2.

Hence, the corresponding interval estimate of the sample mean is
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A ppendix B

Program s for Propagation and 
Infection E stim ates o f qcksrt

program shell(input,output); 
var
ircounter: array[l..32] of real; 
icounter; arrayTl..22] of real; 
joounter; arrsy[l..2q  of real; 
fxcounter: array[1..59] of real; 
arrcounter: array[1..13] of real; 
seed : real; 
k ,i : integer;
counterl,counter2,counter3,oounter4,counter5: real; 
inputvalue: integer;
sol,soll,sol2,5013,8014,5015 ; integer; {solution from unperturbed versions} 
herel,here2,here3,here4,here5: real; 
yesl,yes2,yes3,yes4,yes5: boolean; 

function randorrupark: real;
{steve park's random number generator} 
const
a =  16807.0; 
m =  2147483647.0; 
q =  127773.0; 
r =  2836; 

var
lo,hi,test: real; 
begin
hi :=  truncfseed /  q); 
lo :=  seed - q * hi; 
test := a  * lo - r * hi; 
if test > 0 then 

seed := te s t  
else

seed :=  test +  m; 
random-park :=  seed /  m; 

end;
{ discrete distributions------------------------------ }
function equilikelyfa.b: integer) : integer; 
begin

equilikely :=  a +  trune((b-a+l) * randoriLpark);
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end;
{ ...... —  -continuous--------------------------------- }
function unifcmn(aa,bb:real): real; 
begin
uniform ;=  aa+((bb-aa) * random_park); 

end;
{------ ;— perturbation function--------------------------------------- -}
function perturb.uni(x:real): real; 
var
newx; real; 
counter: integer; 
begin 
newx ;=  x; 
if (x=0.0) then 

begin
if randonupark < 0.5 then 

newx:=1.0 
else
newx: =-1.0 

end 
elie 
begin
counter :=  0; 
while (newx =  x) do 

begin
newx :=  unifcrm(0.5*x<1.5*x); 
counter :=  oounter+1; 
if (newec=x) and(counter=5) then 

begin
if randonupark < 0.5 then 
newx:=x-1.0 

elie
newx:=x+1.0

end;
end;

end;
perturb.uni :=  newx; 
end;
function perturb.eqi(x;integer): integer; 
var newx: integer;

counter: integer; 
begin 

newx :=  x; 
ifx= 0  then 

begin
if randorrupark < 0.5 then 

newx:=l 
else
newx;=-l; 

end 
else 
begin 
counter:=0; 
while (newx =  x) do 

begin
newx :=  equilikely(trunc(x*0.999),trunc(1.001*x)); 
counter :=  counter+1; 
if (newx=x) and(counter=5) then 

begin
if randonupark < 0.5 then
nevwc=3(+l
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d ee
newoc=x+l;

end;
end;

end;
perturb.eqi :=  newx; 
end;
function test(val: integer): integer; 
const 

np =  11;
typ«

gl array =  array [l..np] of integer; 
var 

i :integsr; 
errcn t: integer; 
seed : real; 
start, finish: integer;
procedure process(n: integer; var arr: gl array);

11, 21, 22. 30, 99; 
const

m =  6; nstack =  50; fm =  7875; fa =  211.0; fc =  1663.0; 
var
I, jstack, j, ir, iq, i: integer; 
tx, f r r i : real; a: integer; 
istack: array[l..nstack] of integer; 

begin
frri :=  1.0/fm; 
jstack :=  0;

label

(*<. -1*). . . . . . . .

I := 1; 
ir :=  n; 
fx :=  0.0;

while true do begin 
if (ir-l) < m  then begin

end;
i := 0 ;
11: arrp+1] :=  a

end;
if (istack =  0) then goto 99;

jstack :=  jstack-2; 
end
else begin

i :=  I;

fx :=  (lx*fa+fc)/fm;

a :=  arrfiql;
iq ;=  l+ (ir-l+ l)* trunc(fi^fm);
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goto  21; 
end 

end;
if (j < =  i) then  begin

arrp] :=  a;(t<  ♦)
goto 30; 

end;
arrp] ;=  arr[j]; 
i :=  i + 1 ;

22: if (i < =  n) then
if (a > arrp]) then begin

i :=  i + 1 ;
goto 22; 

end;
if (j < =  i) then begin 

afrD] :=  a; 
i := j;
goto  30; 

end;
arr[j] :=  arr[i];

(*<J : = J - - L  *)
goto  21;

30: jstack : = jstack +  2;
if (istack > nstack) then begin 

writeln('Overflcw'); 
end;
if (ir -i) > =  (i-l) then begin 

istackpstack] :=  ir; 
istackjjstack-l] :=  i + 1 ;  
ir :=  i -1;
(*< = = = * )  

end
else begin

istackpstack] :=  i-l; 
istackpstack-1] :=  I;
I :=  i+1; 

end 
end 

end;
99: end; (* procedure process *) 
function anonymous(val: integer): integer; 
var

arr : gl array; 
n : integer; 
i : integer;
count: array[0..7] of integer; 
correct: array[0..11] of integer; 
pos.k : in t^er; 
error: boolean; 

begin (* anonymous *) 
i:=  1;
while val < > 0 do begin

arrp] :=  vai mod 8; 
val :=  val div 8; 
i :=  i + 1 ;

end;
n :=  i -1;
while i < =  np do begin

arrp] :=  0;
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i :=  i + 1 ;  
end;

process(nlarr); 
val :=0T
far i :=  np down to  1 do begin 

val :=  val * 8  +  arrp] 
end;

anonymous :=  val; 
end; (* anonymous *) 
begin

test ;=  anonymous(val); 
end;

function testl(val: integer): integer; 
const 

np =  11; 
type

gl array =  array [l..np] of integer; 
var 

i :integer; 
errcn t: integer; 
seed : real; 
start, finish: integer;
procedure processfn: integer; var arr: gl array); 
label
11, 21, 22, 30, 99; 

const
m =  6; nstack =  50; fm =  7875; fa =  211.0; fc =  1663.0; 

var
I, jstack, j, ir, iq, i: integer;
fx, fm i: real; a: integer;
istack: array[l..nstack] o f integer;

begin
fmi :=  1.0/fm; 
jstack :=  0;
I := 1;
ir :=  n; 
fie := 0.0;

while true do begin 
if (fir-1) < m) < 
if uir-l) < m) < 
if uir-l) < m) < 
if uir-l) < m) < 
if uir-l) < m) < 
if uir-l) < m) < 
if Uir-l) < m) < 
if uir-l) < m) < 
if uir-l) < m) < 
if uir-l) < m) < 
if uir-l) < m) < 
if uir-l) < m) < 
if Uir-l) < m) < 
if Uir-l) < m) < 
if uir-l) < m) < 
if Uir-l) < m) < 
if ftjr-l) < m) < 
if uir-l) < m) <

y> } K < if uir-l) < m) <
if uir-l) < m) <
if uir-l) < m) <

I > m) then ircounterfl 
| < m) then ircounter 2' 
I =  m) then ircounter 
I < =  m) then jrcounter 
| > =  m) then ircounter

:=  ircounter 
:=  ircounter 
:=  ircounter 

’4] :=  ircounter 
Sj ;=  ircounter

+ 1;
+ 1; 
+ 1;

l i i ;
|<  fm) then ircounterfm :=  ircounterfw + 1 ;  
j  < frn) then ircounter]7| :=  ircounter[r] + 1 ;

,![)< m) then  iroounter[8] :=  ircounter[8] + 1 ;
’l) < m) then ircounter[9] :=  ircounter[9l + 1 ;
-I) < m) then  ircounter[l0| :=  ircounter[10] + 1 ;  
ir-H) < m) then ircounterfll] :=  ircounterfl^ + 1 ;  
jr*1)< m) then  iroounterfl2f :=  ircounterfl2r + 1 ;  
ir-1) < m) then iroounter[13j ;=  ircounter[13] + 1 ;
)stack-l) < m) then ircounter[14] :=  ircounter[14] +  1; 
istackjjstackVI) < m) then ircounter[l5] :=  ircounter[l5] + 1 ;
H j W A  mV  then ircounter[l6| :=  ircounter[l61 + 1 ;  
arr[i+ll-l) < m) then ircounter[17] :=  ircounter[17] + 1; 
ir-jstacx) < m) then iroounter[18] :=  ircounterfl8] + 1 ;  
ir-fmi) < m) then ircounter[19J :=  ircounter[19] + 1 ;  
ir-arrm) < m) then ircounter[20l :=  ircounter[20l + 1 ;  
ir-arrp+1]) < m) then ircounter[21] :=  ircounter[21] + 1 ;  
ir-istack[ptack]) < m) then ircounter[22] :=  ircounter[22] + 1 ;
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(ir-l)
fir-1)
(ir-l)
(ir-l)
(ir-l)
(ir-l)
(ir-l)
(ir-l)
(ir-l)
(ir-l)

< > 
< > 
< > 
< > 
< > 
< > 
< > 
< > 
< > 
< >

(ir-l
(ir-l
(ir-l
(ir-l
(1-1

counterl :=  counterl + 1 ;  
if (ir-l) < m then begin 

for j  :=  1+1 t o i r  do begin
a :=  arrp];
for i := + 1  down to  1 do begin 

if (arrp] < =  a) then goto 11; 
arrp+1] :=  arrp]; 

end;
i : = 0 ;
11: arrp+1] :=  a

end;
if (jstack =  0) then goto 99; 

ir :=  istackpstack];
I :=  istackpstack-1]; 
jstack : = jstack-2; 

end
else begin

i := l ;

he :=  (fx*fa+fc)/fm;
(*<~  ~ 2*)

iq :=  |+ (ir- |+ l)*  trunc(<x*fm); 
a :=  arrpq]; 
arrpq] :=  arrp];

21: if  (| > 0) then begin
if (a < arrp]) then begin

j := H ;
goto 21; 

end 
end;
if (j < =  i) then begin

arrp] :=  a;
( * < = = * )  

goto 30; 
end;

arrp] :=  arrp]; 
i :=  i + 1 ;

22: if (i < =  n) then
if (a > arrp]) then begin 

i :=  i + 1 ;  
goto 22; 

end;
if G < =  i) then begin 

a rrp ]:=  a; 
i := j;  
goto 30; 

end;
arrp] :=  arrp];

( * < = ^ = = * )  
goto 21;

jstack) then ircounter[23] :=  ircounter[23] + 1 ;  
arrp]) then iroounter[24] :=  iroounter[24] + 1 ;  
arrp+1]) then ircounter[25] :=  ircounter[25] + 1 ;  
istackpstack]) then iroounter[26] :=  ircounter[26] + 1 ;  
m) then ircounter[27] :=  ircounter[27] + 1 ;  

ir-a) < m) then iroounter[28] :=  ircounter[28] + 1 ;  
ir-l) < a) then ircounter^] :=  ircounter[29] + 1 ;
’ir-l) < n) then ircounter[30] :=  iroounter[30] + 1 ;
’ir-n) < m) then ircounter[31] :=  ircounter[31] + 1 ;  
n-l) < m) then ircounter[32] :=  ircounter[32] + 1 ;
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30: jstack :=  jstack +  2;
if ([stack > nstack) then begin 

writelnf'Overflcw'); 
end;
if (ir -i) > =  (i-l) then begin 

istackHstack] :=  ir; 
istackhstack-l] :=  i + 1 ; 
ir :=  i - l ;
( * < = = = * )

end
else begin

istackpstack] :=  i-l; 
istackystack-1] :=  I;
I :=  i+1; 

end 
end 

end;
99: end; (* procedure process *) 
function anonymous(val: integer): integer; 
var

arr : gl array; 
n : integer; 
i : integer;
count: array[0..7] o f integer; 
correct: array[0..11] o f integer; 
pos,k : integer; 
error: boolean; 

begin (* anonymous *) 
i:=  1;
while val < > 0 do begin

arrp] :=  val mod 8; 
val :=  val div 8;
i :=  i + 1 ;

end; 
n :=  i -1;
while i < =  np do begin

arrp] :=  0; 
i : = i  +  l; 

end;
process(n1arr); 

val :=  0;
for i :=  np dcwn to  1 do begin

val :=  val * 8 +  arrp] 
end;

anonymous :=  val; 
end; (* anonymous *) 
begin

te s tl :=  anonyrrcus(val); 
end;

function test2(val: integer): integer; 
const 

np =  11; 
type

gl array =  array [1-np] of integer; 
var

i -.integer; 
e rrcn t: integer; 
seed : real; 
start, finish: integer;
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procedure process(n: integer; var arr: gl array); 
label
11, 21, 22, 30, 99;

m =  6; nstack =  50; fin =  7875; fa =  211.0; fc =  1663.0; 
var
I, jstack, j, ir, iq, i: integer; 
fk, fm i: real; a: integer; 
istack: array[l..nstack] of integer; 

begin
frn :=  1.0/fm; 
jstack :=  0;

ir :=  n;
Ix :=  0.0;
while true do begin 
if (ir-l) < m  then begin

(*<   *)
for j  :=  1+1 to  ir do begin

a :=  arr[j|;
for i := J-1 down to  1 do begin 

if (arrp] < =  a) then goto 11; 
arrp+l] :=  arrp]; 

end;
i := 0 ;
11: arrp+1] :=  a

end;
if (jstack =  0) then goto 99; 

ir :=  istackpstack];
I ;=  istackpstack-1]; 
jstack : = jstack-2; 

end
ek e  begin

i := l;
J := iri 
if 
if 
if 
if 
if 
if 
if 
if 
if 
if 
if 
if 
if 
if 
if 
if 
if 
if 
if 
if 
if 
if 
if 
if 
if 
if

fx*fa-fc)/fm < > (fx*fa+fc)/fm then fkoounter[l] :=  fxcounter[l]+l; 
'fa*fa-fcj/fm < > (fx*fa+fcj/fm then fxeounten2j :=  fkcounter[2J+l; 
fa-fa-fej/fm < > nx*fa+fc)/fm then  fkcounterfoj :=  fxcounterpj+l; 
5*fa-fc)/fm < > (fx*fa+fc]/fm then fxcounter[4] :=  fxcount«[4J+l; 
fa-fc)/fm < > ( f ir fa+fc)/frn then  fxcounter[5] :=  fxcounter[5]+l; 
’fm*fa-fc)/fm < > (fx*fa-Hc)/fm then  fxcounter[6] ;=  fxcounter]6j+l; 
fk/fa-fc)/fm < > (pc*fa+fc)/fm then fxcounterm :=  fkcounterm+1; 
fx*fa*fc)/fm < > (fx*fa+fc)/fm then fxeounterg |:=  fxcounterl8]+l; 
lx*fa*fc)+fm < > (fx*fa+fc)/fm then fxcounter[9l ;=  fxcounter[9]+l; 
fx*fa*fc)*fm < > (nt*fa+fc)/fm then  fxcounterfi.01 :=fxoounterTC0]+l;

ftx*fa+fc)/fm then  fxcounter[li] :=  fxcounter[ll]+l;m/(fx*fa+fc) < > 
'fic4a+fc)*6c < > 
ix*fa+fc)*fa < > 
1k*fa+fc)*fc < > 
i*fa+fc)/fm < > 
6c*i+fc)/fm < > 
’fk*fa+i)/fm < >

(nc*fa+fc)/fm then fxoounter[12] :=  fxcounterf: 
(fic*fa+fc)/fm then  fxcounterI13j :=  fxoounter 
Mx*fa+fc]/fm then fxcounter(l4] :=  fxoounter 
rfc<*fa+fcyfm then fxcountemST :=  fxoounter 
[fx'fa-Kcj/fm then fxoounterflm ;=  fxoounter 1 
rfx*fa+fc)/fm then fxcounter[17] :=  fxoounter]

fx^a+ fej/i < > (ftc*fa+fc)/frn then  fxoounter[18] :=  fxoounter[18]+l; 
'l*fa+fc)/fm < > (fx*fa+fc)/fm then fxcounterpS] :=  fxcounterFl9] 
fx*l+fc)/fm < > (fx*fa+fc]/fm then fxcounter[201 :=  fxoounter[20'

,  +fc)/1 > ■ « .
fx*fe-H)/fm < > (fx*fa+fc)/fm then  fxcounter[2l] :=  fxoounter 21 
fk*fa+fcj/l < > (hc*fa+fc)/frn then  fxcounter[22]:= fxooun ter[^+ l;
j*fa+fc)/
[fx*j+fc)/fm < > (fx*fa+fc)/frn then fxcounter i 
[fx*fa+j)/frn < > nx*fa-Kc)/fm then  fxoounter]: 
jx*fa+fc)/j < > (fi(*fa+fc)/frn then fxoounter[26] ;=  fxcounter[26]+l;

:=  fxoounter 
:=  fxoounter 
;=  fxoounter
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fir*fa+fc)/fm < > (fx*fa+fc)/fm then fxcounter 
ffx%4-fc)/fm < > (fx*fa+fc)/fm then Ixcounter 

< > (fx*fa+fcyfm then Ixcounter
[fx*fa+fc
[6c*ix+fc'
:fk*fa4fx

:=  fxoounter[27]+l; 
:=  fxcounter[28|+l; 
:=  fxcounter[29l+l;

/ i r o  (ftc*fa+fc)/frn then fxcounter[30] :=  fxcounter[30]+l; 
/ f m o  ffi^fe-trcyfin then fxcounter[31] :=  fxoounter[31]+l;

fx*fa+fc' /fx  < > (hc*fa+fc)/fm then fxcounter[33] :=  fxoounter[33l+l;
l/fm :;/fm  then fxcounter[32] :=  fxcounter[32]+l;

fa*fa-tfc 
'fx*fa+fa 
’fx*fa+fc
’iyfa+fc 
’fx*fc-i-fc 

if (fic*fa+fc 
if (fm*fa+fc)/fm < > 
if (fec*frn-Kc)/fm < > 

fx*fa+fm)/fm < > 
iq*fa+fc)/fm < > 
|fx*iq+fcj/fm < > 
'fx*fa+iq)/fm < >

l/fm < > (fx*fa-ffc)/frn then fxcounter[34j :=  fxoounter[34]+i;
/fm  < > nx*fa4fc)/fm  then fxcounter[35] :=  fxcounter[35j]+l;
/fa < > (ftc*fa+fc)/fm then  fxcounter[3^:=6(countcf{3w-fl; 
/ f m o  (fx*fa+fc]/fm then fxcounter[37] :=  fxeounterf37]+l;
/fin  < > (fx*fa+fcyfm then fxcounter[38] :=  fxcounter[38]+l;
/fc  < > (w*fa+fc)/fm then fxcounter[39] :=  fxcounter[39]+l;

(fx*fa+rc)/fm then fxcounter[40] :=  fxcounter[40]+l; 
(fx*fa+fc)/fm then fxcounter[4l1 :=  fxcounter[4l]+l; 
(fx*fa-Hc)/fm then fxcounter[42j :=  fxcounter[42]+l; 

(nc*fa+fc)/fm then fxcounter[43] :=fxcounter[43]+l; 
(6«*fa+fcyfm then fxcounterM  :=  fxoounter[44]+l; 
nx*fe4fc)/fm  then fxcounter[45] :=  fxcounter[45]+l;

fx*fa+fc]/iq < > (fx*fa4fc)/fm then fxcounter[46] :=  fxcounterf
[fmi*fa-Hc)/fm < > (fx*fa+fc)/fm then fxcounter[47 
[6<*fmi-ffc)/fm < > (fx*fa-ffc)/fm then fxcounter[48 
:fk*fa+ftniyfm < > nx*fa-ffc)/fin then fxcounter[50 
[fx*fa-}-fc)/fmi < > (w fa+fcyftn  then fxcounterf '
[a*fa+fc)/fin < > (6c*fa+fc |/fm  then fxcounter! 
[fx*a+fc)/fm < > (fx*fa4fc)/fm then fxcounter[53 
:6t*fa+a)/fm < > (fx*fa+fc)/fm then fxoounteri

=  fxcounter[47]+l; 
= fxcounter [491+1; 

. :=fxoountert50j+l;
1]":= fxcounter [51]+1;

':=  fxcounter[52]+l; 
:=  fxcountertal+ l; 
:=  fxcounter[54]+l;

[fic*fa-Hcj/a < > (hc*fa+fc)/fm then fxcounter[55] :=  fxcounter|
[arrpq]*fa+fc)/fm < > (fx*fa+fc)/fm then fxcounter [56]
[fk*arrpq]+fc)/fm < > f f ^ a + fc ) /fm  then fxcounter 57
fx*fa+arr[iq])/fm < > £fx*fa+fc)/fm then fxcounter 58 

 ..if ffx*fa-kc)/arrRq] < > (fx*fa+fc 
fx:=(fx*fa+fc)/fm ; 
counter2 :=  counter2 + 1 ;

iq :=  l+fir-l+l)* trunc(fx*firi); 
a :=  arrpq]; 
arrpql :=  arrp];

21: i f ( |>  0) than begin
if (a < arrp]) then  begin

goto 21; 
end 

end;
if 0  < =  i) then begin

arrp] :=  a;

:=  fxoount 
:=  fxcounterp 
:=  fxcounterp

+1;
+ 1;
+1;

tm then fxcounter[59] :=  fxcounter[59]+l;

c *)
goto 30; 

end;
arrp] :=  arrp]; 
i :=  i + 1 ;

22: H (i < =  n) then
if (a > arrpj) then  begin 

i :=  i + 1 ;  
goto  22; 

end;
if (j < =  i) then begin 

arrp] :=  a;
i := j;
goto 30: 

enid;
arrp] :=  arrp];
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goto 21;
30: jstack :=  jstack +  2;

if (jstack > nstack) then begin 
writeln('Overflcw'); 

end;
if (ir -i) > =  (i-l) then begin 

istackpstadq :=  ir; 
istackpstack-l] :=  i + 1 ;  
ir :=  i -1;

( * < = = = _ * )
end
else begin

istackpstack] :=  i-l; 
istackpstack-1] :=  I;
I :=  i+1; 

end 
end 

end;
99: end; (* procedure process *) 
function anonymous(val: integer): integer; 
var

arr : gl array; 
n : integer; 
i : integer;
count: array[0..7] of integer; 
correct: array[0..11] of integer; 
pos,k : integer; 
error: boolean; 

begin (* anonymous *) 
i:=  1;

while val < > 0 do begin
arrp] :=  val m od 8; 
val :=  val div 8;
i :=  i + 1 ;

end;
n :=  i -1; 

while i < =  np do begin
arrp] :=  0; 
i : = i  +  l; 

end;
process(n,arr); 

val :=  0;
for i :=  np down to  1 do begin 

val :=  val * 8 +  arrp] 
end;

anonymous :=  val; 
end; (* anonymous *) 
begin

test2 :=  anonymous(val); 
end;

function test3(val: integer): integer; 
const 

np =  11; 
type

gl array =  array [l..np] of integer; 
var

i :integer; 
errcn t: integer;
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seed : real; 
start, finish: integer;
procedure process(n: integer; var arr: gl array); 
label
11, 21, 22, 30, 99; 

const
m =  6; nstack =  50; fm =  7875; fa =  211.0; fc =  1663.0; 

var
I, jstack, j, ir, iq, i; integer; 
fx, fm i: real; a: integer; 
istack: arrayfl...nstack] of integer; 

begin
fm := 1.0/fm; 
jstack := 0; 
l:=  1; 
ir := n; 
fx :=  0.0;
while true do begin 
if (ir-l) < m then begin

( * < = = = = * )
for j :=  1+1 to ir  do begin

a := arrp];
fori := j-l down to 1 do begin 

if (arrp] < =  a) then goto 11; 
arrp+1] ;=  arrp); 

end;
i:=0;
11: arrp+1] :=  a

end;
if (jstack =  0) then goto 99; 

ir := istackpstack];
I :=  istackpstack-l]; 
jstack := jstack-2; 

end
d ie  begin

i :=  j;

fk :=  (fx*fa+fc)/fm;
(*<  - - - *)

iq ;=  |+ (ir-l+ l)*  trunc(fx*fm);
a := arrpq];
arrpq] :=  arrp];

21: if (j > 0) then begin
iff (a < arrp]) then begin

j :=  j-1;
goto 21; 

end 
end;
iff G < =  i) then begin

if a < > 1 then arrcounter[ll :=  arrcounter[l] + 1 ;  
if a < > a-1 then arrcounter[2] :=  arrcounter[2] + 1 ;  
if a < > i then arrcounterpl :=  arrcounter[3] + 1 ;  
if a < > j then arrcounter[4] ;=  arrcounter[4] + 1 ;  
if a < > 1-a then arrcounter[5] :=  arrcounter[5) +  1; 
if a < > 5*a + 1  then  arrcounter[6] :=  arrcounto{6] + 1 ;  
if a < > arrpq] then  arrcounter[7] :=  arrcounterpj + 1 ;  
if a < > iq then arrcounter[8] :=  arrcounter[8] + 1 ;  
if a < > arrp] then arrcounter[9] :=  arroounterp] + 1 ;  
if a < > I then arrcounter[10] :=  arrcounter[10] + 1 ;  
if a < > arrpl then arrcounterfll] :=  arroounterfll] + 1 ;  
if a < > n then  arrcounter[12j :=  arrcounter[12J + 1 ;
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if a < > fx then arrcounter[13] :=  arroounter[13] + 1 ;  
arrp] :=  a;
counter3 :=  counter3 + 1 ;  
goto 30; 

end;
arrp] :=  arr[j]; 
i :=  i + 1 ;

22: if (i < =  n) then
if (a > arrp]) then begin 

i :=  i + 1 ;  
goto 22; 

citd*
if (j < =  i) then begin 

arr[j] :=  a;
i :=  j; 
goto 30; 

end;
arrp] :=  arrp];

goto 21;
30: jstack := jstack +  2;

if (jstack > nstack) then begin 
writelnf'Overflow'); 

end;
if (ir -i) > =  (i-l) then begin 

istackpstack] :=  ir; 
istack(jstack-l] :=  i + 1 ;  
ir :=  i -1;
(*<- " " - ■  *) 

end
else begin

istackpstack] :=  i-l; 
istackystack-1] :=  I;
I :=  i+1;

end
end

end;
99: end; (* procedure process *) 
function anonymous(val: integer): integer; 
var

arr : g| array; 
n : integer; 
i : integer;
count: array[0..7] of integer; 
correct: array[0..11] of integer; 
pos,k : integer; 
error: boolean; 

begin (* anonymous *) 
i:=  1;

while val < > 0 do begin
arrp] :=  val mod 8; 
val :=  val cfiv 8;
i :=  i + 1 ;

end;
n :=  i -1; 

while i < =  np do begin
arrp] :=  0; 
i : = i  +  l; 

end;
process(n,arr);
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val :=  0;
for i :=  np down to  1 do begin

val :=  val * 8 +  arrp] 
end;

anonymous :=  val; 
end; (* anonymous *) 
begin

test3 :=  anonymous(val); 
end;

function test4(val: integer); integer; 
const 

np =  11; 
type

gl array =  array [l..np] o f  integer; 
var 

i linteger; 
errcn t: integer; 
seed : real; 
start, finish: integer;
procedure process(n: integer; var arr: gl array);

11,21, 22, 30, 99; 
const

m =  6; nstack =  50; fm =  7875; fa =  211.0; fc =  1663.0; 
var
I, jstack, j, ir, iq, i: integer;
fx, fm i: real; a: integer;
istack: array[l..nstack] o f integer;

begin
f m : =  1.0/fm; 
jstack :=  0;

label

v : ~  *). . .

I A)
ir :=  n; 
fx :=  0.0;
while true do  begin 
if (ir-l) < m  then begin

end;
i :=  0;
11: arrp+1] :=  a

jstack :=  jstack-2; 
end
else begin

end;
if (istack =  0) then  goto  99;

i := I;

fee ;=  (fx*fa+fc)/fm;

a :=  arrpq];
iq :=  l+(ir-l+ l)* trunc(fx*fhri);
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j  :=  j-l;
goto  21; 

end 
end;

if (a < arr[j]) then  begin

if (j < =  i) then  begin 
arrp] :=  a;

< ============= *)

r30;
.

arrp] :=  arrp]; 
i :=  i + 1 ;

22: if (i < =  n) then
if (a > arrp]) then  begin

i :=  i + 1 ;
g o to  22; 

end;
if (j < =  i] then  begin

arrp] :=  a;
i := j;
go to  30; 

end;
arrp] :=  arrp];
iff j-l < > j - l  then jcounter[l] : = jcounter[l] + 1 ;  
if j-l < > J + l  then jcounterfz] :=  jcounten2| + 1 ;  
iff J-l < > j+ l then joounterp] :=jcounter{3] + 1 ;  
if J-l •< > h  then jcounterffl :=  joounterpfl + 1 ;  
iffj-1 < > j*l then joountertS] :=jcounter[5| +  l; 
if j-l < > j  d h/1 then jcounter[6] :=jcounter[6] + 1 ;  
if j-l < > I then jcounterpl :=joounter[7] + 1 ;  
if j-l < > 1 then joountenS] :=  jcounteno] + 1 ;  
if j-l < > j  then jcounterpT :=  jcounterp] + 1 ;  
iff j-l < > j-j then joounterflO] :=  joounterfl.0] +  1; 
if j-l < > 5*j -  3*1 then jcounterfll} : = jcounterfll] + 1 ;  
iff j-l < > j*j-2*l-3 then joounterfl2] :=  jcounter{12J + 1 ;  
if j-l < > j-arrp] then joounter[13] :=  jcounter[14] + 1 ;  
if j-l < > j-i then joounterll^ :=jcounter[l5] + 1 ;
!?> !< >  j-ir then  jcounter[16l :=  joounter[16] + 1 ;
iff j-l < > j-istackTistack] then jcounter[17] :=  jcounter[17l + 1 ;
iff j-l < > j-istackpstack-l] then jcounter[18] :=  jcounter[18] + 1 ;
iff j-l < > arrp}-) then  jcounter[19J :=jcounter[19J + 1 ;
iff j-l < > i-l then jcounter[20] : = jcounter[20] +  1;
if j-l < > ir-l then  jcountw(2l] :=  jcounter[21] + 1 ;
if j-l < > istackpstack}-! then jcounter[22] ; = jcounter[23] + 1 ;
iff j-l < > istackpstack-1] -I then jcounter[24] :=  jcounter[24] +  1;
if j-l < > H  then  jcounter[2S] : = jcounter[25] +  1;

j : = j - l :
counter4 :=  counter4 + 1 ;  
go to  21;

30: jstack :=  jstack +  2;
if (istack > nstack) then begin 

writdn{'0/erflow'); 
end;

lien begin

else begin
istackpstack] :=  i-l;
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istack[jstack-l] :=  I;
I :=  i+1; 

end 
end 

end;
99: end; (* procedure process *) 
function anonymous(val: integer): integer; 
var

arr : gl arrqy; 
n : integer; 
i : integer;
count: array[0..7] o f integer; 
correct: array[0..11] o f integer; 
pos,k : integer; 
error: boolean 

begin (* anonymous *) 
i:=  1;

while val < > 0 do begin
arrp] :=  val mod 8; 
val :=  val div 8;
i :=  i + 1 ;  

end;
n :=  i -1; 

while i < =  np do begin
arrp] :=  0; 
i : = i  +  l; 

end;
process(n,anr); 

val :=  0;
for i :=  np down to 1 do begin

val :=  val * 8 +  arrp] 
end;

anonymous :=  val; 
end; (* anonymous *) 
begin

test4 :=  anonymous(val); 
end;

function test5(val: integer): integer; 
const 

np =  11; 
type

gl array =  array [l..np] o f  integer; 
var 

i :integer; 
e rrcn t: integer; 
seed : real; 
start, finish: integer;
procedure processfn: integer; var arr: gl array); 
label
11, 21, 22, 30, 99; 

const
m =  6; nstack =  50; fm =  7875; fa =  211.0; fc =  1663.0; 

var
I, jstack, j, ir, iq, i: integer;
fx, fm i: real; a: integer;
istack: array[l..nstack] o f integer;

begin
fmi :=  1.0/fm;
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jstack :=  0; 
I := 1; 
ir :=  n;ir :=  n;

while true do begin 
if (ir-l) < m then begin

L;

11: arrp+1] :=  a
end;
if (jstack =  0) then goto 99;

jstack :=jstack-2; 
end
else begin
i := I;
ic  ;=  (fx*fa+fc)/fm;

( »<
iq ;=  l+(ir-l+l)* trunc(fx*fm);

begin
j :=  j-l:
goto 21; 

end 
end;
if (j < =  i) then  begin

goto 30; 
end;

arrp] :=  arrp]; 
i :=  i + 1 ;

22: if (i < =  n) then
if (a > arrp]) then begin

i :=  i + 1 ;
goto 22; 

end;
if (j < =  i) then begin 

arrp] :=  a;
i : = j ;
goto 30; 

end;
arrp] :=  arrp];

_  j := j - «;

goto 21;
30: jstack :=  jstack +  2;

if (jstack > nstack) then  begin 
witdn('Overflow’); 

end*
if (ir -i) > =  (i-l) then begin

end;
i :=  0;

a :=  arrpq];
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istackpstack] :=  ir; 
istackystack-l] :=  i + 1 ;

iff i-l < > i then  icounterfl] :=  icounterfl] + 1 ;  
if i-l < > i+1 then  iocxinterfal :=  icounterftl -j-1; 
if i-l < > i+ir then  icounter{3J :=  icounten3] + 1 ;  
if i- l < > ir-i then  icounter[4] :=  icounterffl + 1 ;  
if i- l < > i*ir then icounteqb] :=  ieounteqb] + 1 ;  
if i- l < > i (fiv ir then icounter[6] :=  icounter[6] + 1 ;  
if i- l < > ir then icountenT] :=  icounter]/] + 1 ;  
if i- l < > 1 then icounterM :=  icounterfej + 1 ;  
if i- l < > i then  icounterpj :=  icounter]?] + 1 ;  
if i- l < > i-i then icounterflO] :=  icounterflO] + 1 ;  
if i- l < > i*i-i-l then icounterTll] ;=  icounterTll] + 1 ;  
if i- l < > i+i then  icounter[12j :=  icounter[12] + 1 ;
■f Li < > i-jstsck then ioounterjM] :=  iooonterp.3l + 1 ;  

i-arrp] then icount«fl4] :=  icount«fi4]*+1; 
i-a then  icounterfll :=  icounterflS + 1 ;  
i-n then  icounterfl6 :=  icounterfl6' + 1 ;  
i-ir then icounter{17j :=  icounter[17j + 1 ;  
jstack-1 then icounter[18] ;=  icounterflS] + 1 ;
arr[i]-l then icounter 
a-1 then  icounter[20 
n-1 then  icounter[2l' 
ir-l then  icounter[22

if i- l < > 
if i- l < > 
if i- l < > 
iff i- l < > 
if i- l < > 
if i- l < > 
iff i- l < > 
if i- l < > 
if i- l < > 

ir :=  i -1; 
counters :=  counter5 + 1 ;  

end
else begin

istackpstack] :=  i-l; 
istackpstack-1] :=  I;
I :=  i+1; 

end 
end 

end;
99: end; (* procedure process *) 
function anonymous(val: integer): integer; 
var

arr : gl array; 
n : integer; 
i : integer;
count: arrayf0..7] of integer; 
correct: array[0..11] of integer; 
pos,k : integer; 
error: boolean; 

begin (* anonymous *) 
i:=  1;

while val < > 0 do begin
arrli] := val mod 8; 
val := val div 8; 
i :=  i + 1 ;  

end;
n :=  i -1; 

while i < =  np do begin
arrp] :=  0; 
i :=  i + 1 ;  

end;
process(n,arr); 

val :=  0;
for i :=  np down to  1 do begin

val :=  val * 8 +  arrp] 
end;

19] :=  icounter 
:=  ioounterf20 
:=  icounten21 
:=  i counter]^

1 9 ]+  1; 
+ 1;
+ 1;
+  1;

R eproduced  with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.



APPENDIX B. PROGRAM FOR QCKSRT INFECTION ESTIMATES

anonymous :=  val; 
end; (* anonymous *) 
begin

test5 :=  anonymous(val); 
end;

seed :=  123456722.0; 
oounterl:=0.0; 
counter2:=0.0; 
oounter3:=0.0; 
counter4:=0.0; 
counter5:=0.0; 
for k :=  1 to  32 do 
ircounter[k] :=  0.0; 

for k :=  1 to  22 do 
icounter[k] ;=  0.0; 

for k :=  1 to  25 do 
jcounter[k] :=  0.0; 

for k :=  1 to  59 do 
fxcounter[k] :=  0.0; 

for k ;=  1 to  13 do 
arrcounter[k] :=  0.0; 

for k :=  1 to  100000 do 
begin

inputvalue :=  equilikdy(0,2400000); 
sol :=  test(inputvalue); 
soli :=  testlfinputvalue); 
sol2 :=  test2linputvaluel; 
sol3 :=  test3(inputvalue); 
sol4 :=  test4finputvalue); 
sol5 :=  test5(inputvalue); 

end;
{output statements here} 
end.
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program shell(input,output); 
var
seed ; real; 
k ,i: integer;
counterl,counter2,counter3,oounter4,oounter5: real; 
inputvalue: integer;
$01,5011,5012,5013,5014,5015: integer; {solution from unperturbed versions} 
herel,here2,here3,here4,here5: real; 
yesl,yes2,yes3,yes4,yes5: boolean; 
perturb: arrajr[1..5] o f boolean; 

function randootpark: real;
{steve park's random number generator} 
const
a =  16807.0; 
m =  2147483647.0; 
q =  127773.0; 
r =  2836; 

var
lo,hi,test: real; 

begin
hi :=  truncfseed /  q); 
lo :=  seed -  q * hi; 
test :=  a * lo - r * hi; 
if test > 0 then 

seed :=  test 
else

seed :=  test +  m; 
randompark :=  seed /  m; 

end;
{ --------------  discrete distributions---------------------------- }
function equilike)y(a,b: integer) : integer; 
begin

equilikely :=  a +  trunc((b-a+l) * randontpark); 
end;

{----------------------- ■ continuous------------------------------}
function uniformfaa.bb.real): real; 
begin
uniform :=  aa+((bb-aa) * randorrupark); 

end;
{------------ perturbation function ■ ■ — ■}
function perturbjini(x:real) : real; 
var
nevw: real; 
counter: integer; 

begin 
newx :=  x; 
if(x=0.0) then 

begpn
if randompark < 0.5 then 

newc=random-park 
else
nevuc=-randompark

end
else
begin
counter :=  0; 

while (nevw =  x) do 
begin
newx :=  uniform(0.5*x,1.50*x); 
counter :=  counter+1; 
if (newx=x) and(oounter=5) then
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begin
if randompark < 0.5 then 
new ^-ran d o m p ark  

d ie
n«MC=x-frandonrtpark

end;
end;

end;
perturb.uni :=  new ; 
end;
function perturb.eqi(x:integer): integer; 
var
n e w : integer; 
counter: integer; 
begin 

n e w  ;=  x; 
if (x=0) then 

begin
if random_park < 0.5 then 

n e w := l 
else
new := -l; 

end 
else 
begin 
counter:=0; 

whiio (n ew  =  x) do 
begin
n e w  :=  equilikely(trunc(x*0.5),trunc(1.50*x)); 
counter :=  counter+1; 
if fnew=ac) and(counter=5) then 

begin
if randompark < 0.5 then 

n ew := x + l 
else

new := x+ l;
end;

end;
end;

perturb-eqi :=  new ; 
end;
function test(val: integer): integer; 
const 

np =  11; 
type

gl array =  array [l..np] of integer; 
var 

i :integer; 
e rrcn t; integer; 
seed : real; 
start, finish; integer;
procedure process(n: integer; var arr: gl array); 
label
11, 21, 22,30, 99; 

const
m =  6; nstack =  50; fm =  7875; fa =  211.0; fc =  1663.0; 

var
I, jstack, j, ir, iq. i: integer;
fit, fm i: real; a: integer;
istack: array[l..nstack] of integer;

begin
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fmi :=  1.0/fm; 
jstack :=  0;
I :=  1;
ir :=  n;
6c := 0.0;
while true do begin 
if (ir-l) < m then begin

( * < —  1*)
f c r j : = l+ l  toir do begin

a :=  arrpj;
for i : = j - l  down to  1 do  begin 

if (arrp] < =  a) then goto  11; 
arrp+1] :=  arrpj; 

end;
i := 0 ;
11: arrp+1] :=  a

ond*
if (jstack =  0) then goto 99; 

ir :=  istackpstack];
I :=  istackpstack-1]; 
jstack := jstack-2; 

end
else begin

{ : = ! ;

fx :=  (fx*fa+fc)/fm;
(*< ■ " *)

iq :=  l+ (ir-l+ l)* trunc(fx*frn);
a :=  arrpq];
arrpq] :=  arrp];

21: if Cl > 0) then begin
i f  (a < arrp]) then begin

j  ••= j- l;
goto 21; 

end 
end;
if (j < =  i) then begin

arrp] :=  a;
(*K   *)

goto  30;
end;

arrp] :=  arrp]; 
i :=  i + 1 ;

22: if (i < =  n) then
if (a > arrp]) then begin

i :=  i + 1 ;
goto 22; 

end;
if Q < =  i) then begin

amp] :=  a;
i := j;  
go to  30; 

end;
arrp] :=  arrp];

( * < = = = = * )  goto 21;
30: jstack : = jstack +  2;

if Qstack > nstack) then begin 
writeln('Overflow,); 

end;
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if (ir -i) > =  (i-l) then begin 
istackGstaci(| :=  ir; 
istackpstack-1] :=  i + 1 ;  
ir :=  i -1;

(*<- - -  *)
end
else begin

istackpstack] :=  i-l; 
istackpstack-1] :=  I;
I :=  i+1;

end
end

end;
99: end; (* procedure process *) 
function anonymous(val; integer): integer; 
var

arr : gl array; 
n : integer; 
i : integer;
coun t: aray[0..7] of integer; 
correct: array[0..11] of integer; 
pos,k : integer; 
e rror: boolean; 

begin (* anonymous *) 
i:= 1;

while val < > 0 do begin
arrp] :=  val mod 8; 
val :=  val div 8;
i :=  i + 1 ;  

end;
n :=  i -1; 

while i < =  np do begin
arrp] :=  0;
i :=  i + 1 ;

end;
process(n,arr); 

val :=  0;
for i :=  np down to  1 do begin

val :=  val * 8 +  arrp] 
end;

anonymous :=  val; 
end; (* anonymous *) 
begin

test :=  anonymous(val); 
end;

function testl(val: integer): integer; 
const 

np =  11; 
type

gl array =  array [l. np] of integer; 
var 

i :integer; 
e rrcn t: integer; 
seed : real; 
start, finish: integer;
procedure process(n: integer; var arr: gl array); 
label
11, 21, 22, 30, 99; 

const
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m =  6; nstack =  50; fm =  7875; fa =  211.0; fc =  1663.0; 
var
I, jstack, j, ir, iq, i: integer;
fx, fm i: real; a: integer;
istack: arrayfl..nstack] o f integer;

begin
fmi :=  1.0/fm; 
jstack :=  0;
I := 1; 
ir :=  n; 
fx :=  0.0;
while true do begin 
if (ir-l) < m then begin 

yesl:=true;
if perturb[l] then 

begin
ir :=  (perturb eqi(ir)); (* < —1+)
perturb[l] ;=  false; 

end;
far j  ;=  1+1 to  ir do  begin

a :=  arr[j];
for i :=  j - l  down to  1 do begin 

if (arrp] < =  a) then  go to  11; 
arrp+1] :=  arrp]; 

end;
i := 0 ;
11: arrp+1] :=  a

end;
if (jstack = 0 )  then go to  99; 

ir :=  istackpstack];
I :=  istackpstack-1]; 
jstack :=  jstack-2; 

end
else begin

i :=  I;

fk ;=  (fx*fa+fc)/fm;
(*<■■  ~ = 2*)

iq ;=  l+ (ir-l+ l)* trunc(<x*fm); 
a :=  arrpq];

arrpq] :=  arrp];
21: if (j > 0) then begin

if  (a < arrp]) then  begin
j  : = j- i;
goto  21; 

end 
end;
if (j < =  i) then begin

goto  30; 
end;

arrp] :=  arrp]; 
i :=  i + 1 ;

22: if (i < =  n) then
if (a > arrp]) then  begin 

i :=  i + 1 ;  
go to  22; 

end;
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if (j < =  i) then begin
arrp] :=  a;
i := j ;
go to  30; 

end;

K (istack > nstack) then begin 
writeln('Overflow'); 

end;
if (ir -i) > =  (i-l) then  begin

end
else begin

istackpstack] :=  i-l; 
istackpstack-1] :=  I;
I :=  i+1; 

end 
end 

end;
99: end; (* procedure process *) 
function anonymous(val: integer): integer; 
var

arr : gl array; 
n : integer; 
i : integer;
oount: array[0..7] of integer; 
correct: array[0..11] o f integer; 
pos,k : integer; 
error: boolean; 

begin (* anonymous *) 
i:=  1;

while val < > 0 do begin
arrp] :=  val mod 8; 
val :=  val dw 8; 
i :=  i + 1 ;

n :=  i -1; 
while i < =  np do begin
arrp] :=  0;
i :=  i + 1 ;

end;
processfn.arr); 

val :=  0;
for i :=  np down to 1 do begin

val :=  val * 8 +  arrp] 
end;

anonymous :=  val; 
end; (* anonymous *) 
begin

te s tl :=  anonymous(val); 
end;
function test2(val: integer): integer; 
const 

np =  11;

(

end;
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type
gl array =  array [l..np] of integer; 

var 
i :integer; 
errcn t: integer; 
seed : real; 
start, finish: integer;
procedure process(n: integer; var arr; g| array); 
label
11, 21, 22, 30, 99; 

const
m =  6; nstack =  50; fm =  7875; fa =  211.0; fc =  1663.0; 

var
I, jstack, j, ir, iq, i: integer;
6c, fm i; real; a: integer;
istack: array[l..nstack] o f integer;

begin
fin  :=  1.0/fm; 
jstack :=  0;
I :=  1; 
ir :=  n; 
fx :=  0.0;
while true do begin 
if (ir-l) < m then begin

(*<  *)
for j  :=  1+1 to ir  do begin

a :=  arr[j];
for i :=  j - l  down to  1 do begin 

if (arrfi] < =  a) then goto 11; 
arrp+1] :=  arrp); 

end;
i : = 0 ;
11: arrp+1] :=  a

end;
if (jstack =  0) then goto 99; 

ir :=  istackpstack];
I :=  istackpstack-1]; 
jstack :=  jstack-2; 

end
else begin

i := I;

fie :=  (fx*fa+fc)/fm;
Sfperturb[2] then begin 

fx :=  perturb.um(fx); (* < —• ——2 *)
perturb[2] :=  false; 
end;

yes2:=true;
iq :=  l+(ir-l+ l)* trunc(6c*fmi); 

a :=  arrpq]; 
arrpq] :=  arrp];

21: if ( |>  0) then begin
if  (a < arrp]) then begin

j  :=  j-l;
goto 21; 

end 
end;
if (j < =  i) then begin

arrp] :=  a;
(*< '  *)

goto 30;
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end;
arrp] :=  arrp]; 
i :=  i + 1 ;

22: if (i < =  n) then
if (a > arrpj) then begin 

i :=  i + 1 ;  
go to  22; 

end;
if (j < =  i) then  begin 

arrp] :=  a;
i := j; 
goto 30; 

end;
arrp] :=  arrp];
J := J  - 1;

( * < — - — *) 
goto  21;

30: jstack :=  jstack +  2;
if js tack  > nstack) then begin 

writeln('Overflaw'); 
end;
if (ir -i) > =  (i-l) then  begin 

istackp5tack| :=  ir; 
istackpstack-1] :=  i + 1 ;  
ir :=  i -1;

( * < = = = * )
end
else begin

istackpstack] :=  i-l; 
istackpstack-1] :=  I;
I :=  i+1; 

end 
end 

end;
99: end; (* procedure process *) 
function anonymous(val: integer): integer; 
var

arr : gl array;
n : integer; 
i : integer;
co u n t: array[0..7] o f integer; 
correct: array(0..11] of integer; 
pos,k : integer; 
e r r a : boolean; 

begin (* anonymous *) 
i:=  1;

while val < > 0 do begin
arrp] :=  val mod 8; 
val :=  val div 8; 
i :=  i + 1 ;  

end;
n :=  i -1; 

while i < =  np do  begin
arrp] :=  0; 
i :=  i + 1 ;  

end;
process(n,arr); 

val :=  0;
for i :=  np down to  1 do begin

val :=  va! * 8 +  arrp] 
end;
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anonymous :=  val; 
end; (* anonymous *) 
begin

test2 :=  anonymous(val); 
end;

function test3(val: integer): integer; 
const 

np =  11; 
type

gl array =  array [l..np] of integer; 
var

i :integer; 
e rrcn t: integer; 
seed : real; 
start, finish: integer;
procedure process(n: integer; var arr: gl array); 
label
11, 21, 22, 30, 99; 

const
m =  6; nstack =  50; fm =  7875; fa =  211.0; fc =  1663.0; 

var
I, jstack, j, ir, iq, i: integer;
fx, fm i: real; a; integer;
istack: array[l..nstack] of integer;

begin
fm  :=  1.0/fm; 
jstack :=  0;
I :=  1; 
ir :=  n; 
fx :=  0.0;
while true do begin 
if (ir-l) < m  then begin

( * < ■ ■ -  -■ = = * )
fori :=  1+1 to ir  do begin

a :=  arrp];
for i := + l down to  1 do begin 

iff farrp] < =  a) then goto 11; 
arrp+1] :=  arrpj; 

end;
i : = 0 ;
11: arrp+1] :=  a

end;
if (jstack =  0) then goto 99; 

ir :=  istackpstack];
I :=  istackpkack-1]; 
jstack :=  jstack-2; 

end
else begin

i := I;

fx’7= (<x*fa+fc)/fm;
(*< ■ ■ = =*)

iq :=  |+ (ir-|+ l)*  trunc(fx*fm);
a :=  arrpcfl;
arrpq] :=  arrp];

21: it (j > 0) then begin
i f (a<  arrp]) then begin

j  :=  j- l;
goto 21; 

end
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end;
if (j < =  i) then begin

arrp] :=  a; 
yes3:=true;
if perturb[3] then bean

arrp] :=  fperturLeqi(arrp])); (* < = = = = =  3*) 
perturb[3j :=  false; 
end; 

goto 30; 
end;

arrp] :=  arrp]; 
i :=  i + 1 ;

22: if (i < =  n) then
if (a > arrpj) then begin

i :=  i + 1 ;
goto 22; 

end;
if (j < =  i) then begin 

arrp] :=  a;
i := j;
goto 30; 

end;
arrp] :=  arrp];
]:=]-!;
goto 21;

30: jstack : = jstack +  2;
if (istack > nstack) then begin 

writeln^'Overflcw'); 
end;
if (ir -i) > =  (i-l) then begin 

istackpstack :=  ir; 
istackpstack-1] :=  i + 1 ;  
ir :=  i -1;

( * < -  *)
end
else begin

istackpstack] :=  i-l; 
istackpstack-1] :=  I;
I :=  i+1; 

end 
end 

end;
99: end; (* procedure process *) 
function anonymous(val: integer): integer; 
var

arr : gl away; 
n : integer; 
i : integer;
coun t: array[0..7] of integer; 
correct: away[0..11] of integer; 
pos,k : integer; 
error: boolean; 

begin (* anonymous *) 
i:=  1;

while val <> 0 do begin
arrp] :=  val mod 8; 
val :=  val div 8; 
i : = i + l ;  

end;
n :=  i -1;
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while i < =  np do begin
arrp] := 0 ; 
i :=  i + 1 ;  

end;
process(n,arr); 

val :=  0;
for i :=  np down to 1 do begin 

val :=  val * 8 +  arrp] 
end;

anonymous :=  val; 
end; (* anonymous *) 
begin

test3 :=  anonymous(val); 
end;
function test4(val: integer); integer; 
const 

np =  11; 
type

g| array =  array [l..np] of integer; 
var 

i linteger; 
errcn t: integer; 
seed : real; 
start, finish: integer;
procedure process(n: integer; var arr: gl array); 
label
11, 21, 22. 30, 99; 

const
m =  6; nstack =  50; fm =  7875; fa =  211.0; fc =  1663.0; 

var
I, jstack, j, ir, iq, i: integer;
fx, fm i; real; a: integer;
istack: array[l..nstack] of integer;
begin
fnm :=  1.0/fm; 
jstack :=  0;
I := 1; 
ir :=  n; 
fx :=  0.0;
while true do begin 
if (ir-l) < m  then begin

C < — ---------------*)
for j :=  1+1 toir do begin

a :=  arr[j];
for i : = j-1 down to 1 do begin 

if fcrrfi] < =  a) then goto 11; 
arrp+l] :=  arrp]; 

end;
i :=  0;
11: arrp+l] :=  a

end;
if (jstack = 0 )  then goto 99; 

ir :=  istackFjstack];
I :=  istackpstack-1]; 
jstack :=  jstack-2; 

end
else begin

i :=  I;

fit ;=  (fx*fa+fc)/fm;
( * K ~    *)
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iq :=  l+(ir-l+ l)* trunc(fx*fnni); 
a :=  arrpefl; 
arrTiq} :=  arrp];

21: i f  (j > 0) then begin
if  (a < arrp]) then  begin

j
goto  21; 

end 
end;
if (j < =  i) then begin 

arrp] :=  a;
(*<    *)

goto  30; 
end;

arrp] :=  arrp];
i :=  i + 1 ;

22: if (i < =  n) then
if (a > arrpj) then  begin 

i :=  i + 1 ;  
goto  22; 

end;
if (j < =  i) then  begin 

arrp] :=  a;
i :=  j; 
goto  30; 

end;
arrp] :=  arrp];
j :=j -|;
yes4:=true; 

if perturb[4] then  begin
j  :=  (perturb.eqi(j)); (♦ < ■ ■ - 4*)
perturb[4] :=  false; 
end; 

goto  21;
30: jstack := jstack +  2;

if (jstack > nstack) then begin 
writeln('Overficw'); 

end;
if (ir -i) > =  (i-l) then begin 

istackpstack] :=  ir; 
istackjjstack-1] :=  i + 1 ;  
ir :=  i -1;
( * < _ = * )

end
else begin

istackpstack] :=  i-l; 
istackpstack-1] :=  I;
I :=  i+1; 

end 
end 

end;
99: end; (* procedure process *) 
function anonymous(val: integer): integer; 
var

arr : 1̂ array; 
n : integer; 
i : integer;
c o u n t: array[0..7] of integer; 
correct: array[0..11] o f integer; 
pos,k : integer; 
erro r: boolean;
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begin (* anonymous *) 
i:=  1;

while val < > 0 do  begin 
arrp] :=  val mod 8; 
val :=  val ifiv 8;
i :=  i + 1 ;  

end;

arrp] :=  0;
i :=  i + 1 ;  

end;
process(nlarr); 

val :=  0;
for i :=  np down to  1 do begin

val :=  val * 8 +  arrp] 
end;

n :=  i -1; 
while i < =  np do begin

anonymous :=  val; 
end; (* anonymous *) 
begin

test4 :=  anonymous(val); 
end;
function test5(val: integer); integer; 
const 

np =  11; 
type

gl array =  array [l..np] o f integer; 
var

i :integer; 
errcnt : integer; 
seed : real; 
start, finish: integer;
procedure process(n: integer; var arr: gl array); 
label
11, 21, 22, 30, 99;

m =  6; nstack =  50; fm =  7875; fa =  211.0; fc =  1663.0; 
var
I, jstack, j, ir, iq, i: integer;
fx, fm i: real; a: integer;
istack: arrayfl...nstack] o f integer;

begin
fmi :=  1.0/fm;

• :=  0;

while true do begin 
if (ir-l) < m then begin

:*< - - - = *)
f o r j : = l + l  to i r  do  begin

a :=  arrp];
for i :=  j-1 down to  1 do begin 

if (arrp] < =  a) then  goto  11; 
arrp+l] :=  arrp]; 

end;
i :=  0;
11: arrp+l] :=  a

end;
if (jstack =  0) then  goto 99; 

ir :=  istackpstack];

const

fx :=  0.0;
ir :=  n;
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I :=  istackpstack-1]; 
jstack : = jstack-2; 

end
else begin

i :=  j;

fk :=  (fx*fa+fc)/fm;
(♦< —^ - =»)

iq :=  l-f{ir-l+l)* trunc(fx*fm);

if (j < =  i) then begin

end;
arrp] :=  arr[j];
i :=  i + 1 ;

22: if (i < =  n) then
if (a > arrpj) then begin 

i :=  i + 1 ;  
goto 22; 

end;
if (j < =  i) then begin 

arrp] :=  a;
i := j ;  
goto 30; 

end;
?rrp] :=• arrp];

_  J  : = J -
goto 21;

30: jstack :=  jstack +  2;
if (jstack > nstack) then begin 

writeln^'Overflow'); 
end;
if (ir-i) > =0-1) then begin 

istack[jstack| :=  ir; 
istackpstack-1] :=  i + 1 ;  
ir :=  i -1;

yes5:=true;
if perturb[S] then  begin

ir :=  (perturb-eqi(ir)); (* < . -----+ — -
perturb[5] :=  false; 
end;

end
else begin

istackpstack] :=  i-l; 
istackpstack-1] :=  I;
I :=  i+1; 

end 
end 

end;
39: end; (* procedure process *) 
function anonymous(val: integer): integer;

a :=  arrpq];

j  :=  j-i;
goto 21;

if (a < arrp]) then begin

end
end;
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var
arr : gl array; 
n : integer; 
i : integer;
coun t: array[0..7] of integer; 
correct: erray[0..11] of integer; 
pos.k : integer; 
error: boolean; 

begin (♦ anonymous *) 
i:=  1;

while val < > 0 do begin
arrp] :=  val mod 8; 
val :=  val div 8;
i :=  i + 1 ;

end;
n :=  i -1; 

while i < =  np do begin
arrp] :=  0; 
i :=  i + 1 ;  

end;
process(nlarr); 

val :=  0;
for i :=  np down to  1 do begin

val :=  val * 8 +  arrp] 
end;

anonymous :=  val; 
end; (* anonymous *) 
begin

test5 :=  anonymous(val);

main ***********

counterl:=0.0; 
counter2:=0.0; 
counter3:=0.0; 
counter4:=0.0; 
counter5:=0.0; 
herel :=  0.0; 
here2 :=  0.0; 
here3 :=  0.0; 
here4 :=  0.0; 
here5 :=  0.0; 
for k :=  1 to  250000 do 

begin
inputvalue :=  equilikdy(0,2400000); 
yesl :=  false; 
yes2 :=  false; 
yes3 :=  false; 
yes4 :=  false; 
yes5 :=  false; 
for i :=  1 to  5 do 

perturbp] :=  true; 
sol :=  test(inputvalue); 
soil :=  testlfinputvalueV 

:=  test2finputvalue);
..3 :=  test3nnputvalue); 

sol4 :=  test4(inputvalue); 
sol5 :=  test5(inputvalue); 
if yesl then herel :=  nerel + 1 ;
if yes2 then here2 :=  here2 + 1 ;
if yes3 then here3 :=  here3 + 1 ;
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if yes4 then here4 :=  here4 + 1 ;  
if yes5 then  here5 :=  here5 + 1 ;  
if  sol < > soil then 

counterl :=  counterl +  1.0; 
if sol < > sd2  then 

counter2 :=  oounter2 +  1-0; 
if sol < > sol3 then 

counter3 :=  counter3 +  1.0; 
if  sol < > sol4 then 

counter4 :=  counter4 +  1.0; 
if  sol < > sol5 then 

counter5 :=  counter5 +  1.0; 
end;

w rite ln f 'lo o u n te r l /  herel:14:'. 
writelm'2 counter2 /  here2:14:: 
writdn('3 counter3 /  here3:14:! 
writelnf' 4 counter4 /  here4:14:: 
writeln('5 oounter5 /  here5:14:: 
end.
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A ppendix C 

Program  U sed in Experim ent I

This code is from [2]. Function poidev is found on page 717, Function gammln 
found on page 704, and the random number generator is from [1].

procedure trial(xm : real); 

const
pi =  3.141592654; 

var
aa1bb1cc,dd,eelfF,g|oldm,glsq,glalxmIg|g1em1t ty : real; 
seed : real;

function random'park: real; 
steve park's random number generator 
const
a =  16807.0; 
m =  2147483647.0; 
q =  127773.0; 
r =  2836; 

var
Io,hi,test: real; 

var
hi :=  truncfseed /  q); 
lo :=  seed - q * hi; 
test :=  a * lo - r * hi; 
if test > 0 then 

seed :=  test 
else

seed :=  test +  m; 
random'park :=  seed /  m; 

end;

function gammln(xx: real): real; 
const 

stp =  2.50662827465; 
half =  0.5; 
one =  1.0;
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APPENDIX C. PROGRAM USED IN EXPERIMENT I

fpf =  5.5; 
var
x,tmp,ser: real; 
j ; integer;
oo f: array[1..6] of real; 
var
coffll :=  76.18009173; 
oof 2 :=-86.50532033; 
oof 3' :=  24.01409822; 
cof 4 :=-1.231739516; 
cofS :=  0.120858003e-2; 
cof[6J:=-0.53682e-5; 
x;=soc-cne; 
tmp :=  x+fpf;
tmp :=  (x-Hwlf)*ln(tmp)-tmp; 
ser :=  one; 
f o r j : = l t o 6  do 

var
x :=  x+ons;
ser :=  ser+eofO]/x;

end;
gammln :=  tmp+ln(stp*ser); 
end;
var (*main*) 
seed ;=  1234557.0; 
gloldm:=-1.0; 
if (xm < 12.0) then 

var
if (xm <> gloldm) then 

var
gloldm :=  xm; 
gig :=  exp(-xm); 
end; 

em :=  -1; 
t  :=  1.0; 
repeat 

em ;=  em + 1 .0 ; 
t  :=  t  * random'park; 

until ( t  <■ gig); 
end 
else 
var

if (xm <> gloldm) then 
var
gloldm ;=  xm;

. glsq :=  sqrt(2.0*xm); 
glalxm :=  ln(xm);
gig :=  xm*glatxm-gammln(xm+1.0) 

aid;

repeat
y :=  pi*random'park; 
y :=  sin(y)/cos(y); 
em :=  g|sq*y+xrrt 
until (em> =0.0); 

em :=  trunc(em); 
aa ;=  sqr(y+1.0); 1 
bb :=  aa + 1 .0 ; 2 
cc :=  em +  1.0; 3 
dd :=  gammln(cc); 4  
ee :=  em*glalxm-dd-g|g; 5
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fF :=  bb * exp(ee); 6 
t  :=  0.9 * ff; 7 

untB(random'park <» t)  
end;

writeln(em); this is output
end;
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A ppendix D  

N otation  and Sym bols

This appendix contains the symbols used throughout the thesis.

P  input program to PIA

P' the simplified input program

P" the simplified input program after having each location identified

Px the Xth  version of program P

[P ] the function program P  computes

pred(l, i, x) the location executed before location / on the ith interation of location 
/ on input x\ this is a function of the input and the particular iteration of I 
for the input

succ(l, i, x) the location executed after location I on the ith iteration of location I 
on input s; this is a function of the input and the particular iteration of I 
for the input

dagt the succeeding data space of location I

dsj>t the preceding data space of location I

T \  the class of faults used for infection analysis at location I

T  the class of faults used for infection analysis regardless of location, i.e., U?=i P« 
for n locations

F*|0|. the failure propagation estimate for location x  and the itk active variable

194

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



APPENDIX D. NOTATION AND SYMBOLS 195

F x =  min,{FXi0j} which is the failure propagation estimate of location x

V/,,- the viral propagation rate between data spaces dsyl and dsgt on the ith iter­
ation of location I

l f rx the latent failure rate of path or path equivalence class x

Ix,ai the infection estimate for location x  and the Ith semantic alternative

Ix = mini{/Si0i} which is the infection estimate of location x

(j> the input domain of the program

fa the input domain for path equivalence class i

E{ the probability of executing some abstraction level i location or group of loca­
tions

T>i(x) the error degree of location I for data state x\ x may be either the succeeding 
or preceding data state

T  the set of all trips through the program

T S  the set of all trip sets through the program

hi the dispersion histogram for path equivalence class i

Ni the number or points uniformly chosen from fa for a given a

Ni the number of points chosen using the modified algorithm1 from fa for a given 
a

7  is N{ — Ni] this is the difference in the number of points required for a given a  
between the modified algorithm and uniform sampling

PE C  the set of all path equivalence classes through a program

A; the set of active variables of data space 1; I is the data space immediately 
succeeding location I

A the alternative class representing both the class of faults used for infection anal­
ysis and the perturbation function parameters used for propagation analysis

the data state encountered prior to executing location I on the ith iteration 
of location I from input x

1 Detailed in Chapter 5.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



APPENDIX D. NOTATION AND SYMBOLS 196

Ai'i(x) the data state produced after executing location I on the ith iteration of 
location I from input x

Bj(®) =  U?=i which is the set of all data states before location I on input x

Ai(x)  =  U”=i Ai,i(x)  which is the set of all data states after location I on input x

T the testing complexity metric

a  the desired confidence in the probable correctness model 

Rp  the reliability estimate for program P

Ap the failure probability of program P; the units are failures per number of 
executions

(i a measure of how easily a location can hide faults relative to A; the greater £i, 
the greater a location’s ability

P r[A  ] the probability of event A occurring

T true

F false

0  the empty set 

a = »  b a implies b 

A logical and 

V logical or

[f](x) t  the function computed by the code represented by /  on input x is defined
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