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ABSTRACT

This w ork concerns com pletion problem s for partia l o pera to r m atrices. A p artia l 
m a tr ix  is an  m -by-n a rray  in  which some entries are specified and th e  rem aining are 
unspecified. W e allow th e  entries to  be  operators acting betw een corresponding vec­
to r  spaces (in  general, bounded linear operators betw een H ilbert spaces). G raphs are 
associated w ith  partia l m atrices. C hordal graphs and d irec ted  graphs w ith  a perfect 
edge elim ination  scheme play a key role in our considerations. A specific choice for th e  
unspecified en tries is referred  to  as a  com pletion of th e  p a rtia l m atrix . T h e  com pletion 
problem s s tu d ied  here involve properties such as: zero-blocks in  certa in  positions of 
th e  inverse, positive (sem i)definitness, contractiv ity , or m in im um  negative ine rtia  for 
H erm itian  operato r m atrices. Some com pletion results are generalized to  th e  case of 
com binatorially  nonsym m etric p a rtia l m atrices. Several applications including a  ’’m ax­
im um  en tropy” result and  de term inan t form ulae for m atrices w ith  sparse inverses are 
given.

In C h ap te r II we tre a t  com pletion problem s involving zero-blocks in  th e  inverse. 
O ur m ain  re su lt deals w ith  partia l operato r m atrices R,  for w hich th e  d irec ted  graph is 
associated w ith  an oriented tree. W e prove th a t under invertib ility  conditions on certain  
p rincipal m inors, R  adm its a unique invertible com pletion F  such th a t  ( F -1)^  =  0 
w henever R ij  is unspecified.

C hap ter III  trea ts  positive semi definite and  H erm itian  com pletions. In  th e  case of 
p a rtia l positive operator m atrices w ith  a  chordal graph, a  ’’m axim um  en tropy” principle 
is presented, generalizing th e  m axim um  determ inan t result in  th e  scalar case. We ob ta in  
a  linear fractional transform  param etriza tion  for th e  set of all positive sem idefinite 
com pletions for a generalized banded  partia l m a trix . We also give an in e rtia  form ula 
for H erm itian  operator m atrices w ith  sparse inverses.

In C h ap te r IV prior results are applied  to  ob ta in  facts abou t contractive and  linearly  
constrained  com pletion problem s. T h e  solution to  a  general n-by-n ’’s tro n g -P arro tt” 
ty p e  com pletion problem  is the  m ain  result. W e prove necessary and sufficient condi­
tions for th e  existence of a  solution as well as a  cascade transfo rm  param etriza tion  for 
th e  set of all solutions.

C hap ter V  extends th e  results in  C hapter II  and  III to  prove de term inan t form u­
lae for m atrices w ith sparse inverses. Several ideas from  graph  theory  are used. A n 
inheritance principle for chordal graphs is also presented.

v

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



COMPLETION OF PARTIAL 
OPERATOR MARICES

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



C H A PT E R  I 
IN T R O D U C T IO N

T his thesis ex tends, in a  variety of ways, the  lite ra tu re  on m a trix  com ple­

tion problem s. Our purpose is to ex tend  several results in th e  scalar case to  operato r 

m atrices, as well as to ex tend  some results on positive defin ite and con tractive com ple­

tion problem s to  ex trem al cases. W e also generalize some com pletion resu lts  involving 

zero-blocks in certain positions of th e  inverse to  the  case of com binatorially  nonsym ­

m etric  partia l operator m atrices. Several applications are given, including a  ’’m axim um  

entropy re su lt” and de term inan t form ulae for m atrices w ith sparse inverses.

An opera to r m atrix  com pletion problem m ay be described as follows. Given is a  

partia l opera to r m atrix , i.e. a m a trix  A  =  : ©•'IjTY,- —> © ”=1>Cj in which

some of the  en tries arc specified (bounded linear) operators acting  betw een vector spaces 

(H ilbert spaces, in our case) and th e  rem aining entries are ’’unspecified” , th a t is, they  

m ay be chosen to be operato rs acting  between th e  vector spaces belonging to  the  p a rtic ­

ular position in the m a trix  in which they are placed. A specific choice is referred to  as a 

com pletion of the  p artia l m atrix. T h e  com pletion problem s in this thesis involve p rop ­

erties such as: zero-blocks in certain  positions of th e  inverse, positive (sem i)definiteness, 

con trac tiv ity  and m inim um  negative inertia.

A partia l m atrix  A  is called (com binatorially) sym m etric if: all the  diagonal en tries 

A n  are specified and A -tj is specified if and only if Aji  is also specified. In [38] u n d i­

rected graphs were associated w ith sym m etric partia l m atrices (see Section 1.3 for the

exact definition). In th is  way it was possible to  connect th e  com binatorial aspects of
2
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3

graph theo ry  w ith  th e  algebraic side of th e  m a trix  com pletion theory. A special role 

is played by th e  chordal graphs, which first cam e in to  a tten tio n  in connection w ith  

perfect G aussian elim ination  ([59]). Among th e  first com pletion problem s considered 

were ones involving banded  p artia l m atrices. A n n  — by — n  p artia l m a trix  A  is called 

banded w henever Aij  is specified if  and only if  |i — j \  < m ,  m  being a  fixed integer, 

0 <  m < n. B anded p artia l m atrices R  w ith  block m a trix  en tries and  certa in  invertibil- 

ity  conditions of some principal m inors of R  have been considered in  [24]. U nder these 

conditions, th e re  is a  unique invertib le com pletion F  of R, such th a t  th e  factors of the 

U D L  fac to rization  of F -1  have zero-blocks outside th e  band  of w id th  m . In Section

2.1 we generalize th e  above m entioned resu lt of [24] in tw o directions, first allowing the 

en tries to  b e  linear operators and  second, we shall consider th e  graph  of th e  partia l 

m a trix  to  be  chordal. In  [43], th e  au thors considered p a rtia l m atrices R  w ith  a  chordal 

graph  and  th e  invertib ility  of certain  fully specified pricipal minors of R. T hey  prove 

th e  existence of a  unique com pletion F  of R  such th a t F -1  has zeros in  all th e  positions 

corresponding to  unspecified en tries of R. In  Section 2.1 a  different proof of th is la tte r  

resu lt is p resented , which easily generalizes in  Section 2.2 for p artia l m atrices w ith  a 

nonsym m etric  support. D irected  graphs are associated w ith  com binatorially  ’nonsym ­

m etric  p a r tia l m atrices (see Section 1.3). In  Section 2.2 we consider partia l operato r 

m atrices R  w ith  the ir d irected  graph  belonging to  a  certa in  class and  th e  invertib ility  

condition of some key principal m inors of R. U nder th is  circum stances, we prove the  

existence of a  unique invertib le com pletion F  of R  such th a t  ( F -1 ),•_,• is zero whenever 

Rij is unspecified. T he  im portance of th e  ’’zero in th e  inverse com pletions” will be 

outlined th roughou t th e  paper. T he  applications include fast factorization  algorithm s, 

m axim um  entropy  resu lts and  determ inan t form ulae.

T he positive definite com pletions have been first considered in [24]. It was shown 

th a t,  in th e  band  case, th e  existence of a  positive definite com pletion is ensured by the 

obviously necessary condition th a t  th e  prescribed principal subm atrices
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are positive definite. Futherm ore, th e  authors showed th a t w hen these condition are 

m e t, there  exists a unique positive definite com pletion which has, as we shall call it, 

th e  ” m axim um  entropy principle” . A consequence of th is resu lt in  the  positive definite 

block m atrix  com pletion problem  is th e  existence of a  unique m axim um  determ inan t 

positive com pletion. In [38], the  au thors investigated  th e  boundaries of generalization of 

[24], and concluded th a t th e  existence of a  unique m axim um  determ inan t com pletion is 

ensured as soon as there exists a positive definite com pletion a t all. For this th ey  use the 

logconcavity of th e  determ inan t. As i t  tu rn s ou t, th e  m axim um  determ inan t positive 

definite com pletion is th e  unique positive definite com pletion w ith  the  p roperty  th a t 

its  inverse has zeros in all th e  positions corresponding to  the  unspecified en tries of the 

in itia l partia l m atrix . In Section 3.1, based on an approach in [67] we extend th e  m ethod 

of [38] to prove several determ inan t optim ization  resu lts  in a m ore general setting . T he 

characterization  of the existence of a  positive definite com pletion is in general not only 

th e  requirem ent th a t all th e  fully specified principal subm atrices are positive definite. 

In [38] the au tho rs  showed th a t this is only the  case when th e  graph associated w ith 

th e  partia l m a trix  is chordal. In Section 3.1, we show th a t in th e  chordal operato r case, 

th e  m axim um  entropy com pletion has in  fact a stronger ”m axim um  diagonal” property, 

and also give an explicit construction of this com pletion. T his generalizes th e  scalar 

band  case in [24].

A nother approach to  th e  positive (sem i)definite com pletion problem  m ight be ref- 

fered to as th e  ” Schur analysis approach” . A com plete Schur analysis of n  — by — n  

positive definite operator m atrices was established in [16]. T h e  m ethod provides in 

th e  band case a  param etrization  for th e  set of all solutions. In th e  scalar m a trix  case, 

existence of linear fractional descriptions for the  se t of all solutions was established in 

th e  papers [8] (the  nonsingular case) and  [9] (the  singular case). A different way of 

deriving a linear fractional param etrization  in th e  positive definite band case was given 

in [33]. Here it was recognized th a t th e  coefficients for the linear fractional m ap  can be 

read off from th e  m axim um  entropy com pletion. T h e  authors derived th is resu lt in an
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ab strac t se tting , in order to  use it in various algebras ([33]- [36]). In Section 3.2 a  linear 

fractional param etrization  for the  set of all positive sem idefinite solutions is presented, 

generalizing in this way th e  results in [33]. This la tte r  result was obtained  in [7].

In the  a rea  of H erm itian com pletions th e  m ain  concern is re la ted  to in e rtia  possibili­

ties. The in e rtia  of a an n —by—n  H erm itian  m atrix  is a  trip le  i (A )  =  (i+ (A ),i_ (A ),z o (/l)) , 

in which z+(A), i - ( A )  and  z’o(A) denote, respectively, the  num ber of positive, negative 

and  zero eigenvalues of A  (counting m ultip licities). Because of th e  interlacing inequli- 

ties, the num ber of negative (resp. positive) eigenvalues of any H erm itian  com pletion 

of an H erm itian  p a rtia l.m atrix  cannot be less th a n  th e  num ber of negative (resp. posi­

tive) eigenvalues for any fully specified principal subm atrix . In  [26], it was shown th a t 

in the  band case, nonsingular com pletions exist which do no t increase th e  num ber of 

negative eigenvalues - under a  nonsingularity  assum ption  on certa in  specified principal 

subm atrices. W ithout th e  nonsingularity  assum ption, it is possible to  com plete w ith­

ou t increasing th e  sum of zero and negative eigenvalues ([26]). T he results of [26] were 

generalized for th e  chordal case in [49]. In Section 3.3, a  different proof of th is la tte r  

resu lt is presented th a t fu rth e r allows th e  entries to  be linear operators.

Given an invertible H erm itian  m a trix  w ith a  banded  inverse, in [26] a  form ula for 

th e  inertia  of th e  m atrix  was established in term s of th e  inertias of certain  of its  principal 

m inors. T he resu lt was ex tended in [44] for H erm itian  m atrices w ith  a  chordal inverse. 

In [45], the  form ula was fu rther generalized for a  certain  class of H erm itian  operator 

m atrices. In Section 3.3 th e  result is proved in th e  m ost general operator setting.

A contractive com pletion problem  concerning a  partia l m a trix  A  can be transform ed 

into a positive sem idefinite com pletion problem  of th e  partia l m a trix  ^  * ^ s n̂S

th is observation, results on contractive com pletions can be derived from  th e  results 

on positive sem idefinite com pletions. T hus, th e  research on contractive com pletions 

developed in parallel w ith  th a t on positive definite com pletions. In [47], th e  p a tte rn s 

for a partia l m atrix  th a t guarantee th e  existence of contractive com pletions provided 

all the fully specified subm atrices of th e  partia l m atrix  are contractions have been
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characterized. In Section 4.2 triangu lar (i.e., when all th e  lower triangu lar en tries 

of the m a trix  are specified) partia l m atrices are  considered which ad m it contractive 

com pletions. In this case, based on the  resu lts in C hap ter III, an explicit cascade 

transform  description is obtained for the  set of all contractive, isom etric, co-isom etric 

and un ita ry  com pletions. Consequently, we recover the  resu lts of [9] s ta tin g  in the scalar 

m atrix  case th e  existence of such a  description.

In [29], a  2 — by — 2 linearly constrained contractive problem , nam ed the S trong 

P a rro tt problem  has been considered. T he in troduction  of th e  Strong P a rro tt problem  

was a consequence of questions arising in the  theory  of contractive in tertw ining d ilation 

([64] and [28]). In Section 4.3 we consider a  m ore general n  — by — n  linearly  constrained 

com pletion problem . For this la tte r  problem  necessary and  sufficient conditions are 

derived for th e  existence of a contractive solution. In th e  case the  conditions are m et 

we build a  solution w ith  several distinguishing properties, nam ed central completion. 

From the  central com pletion a cascade transform  param etrization  is constructed  for th e  

set of all solutions. T he  results in Section 4.2 and  4.3 appear as an application  of th e  

results on positive sem idefinite com pletions in Section 3.2 and  follow th e  paper [7].

Several determ inan t form ulae and  inequalities are s tric tly  related to  m atrix  com ­

pletion resu lts. In [11], a  determ inan t form ula for invertible m atrices w ith  a chordal 

nonzero-pattern  of th e ir inverse was obtained in  term s of th e  determ inan ts of certain  

key principle minors. T he result led to  a form ula ([42]) for the m axim um  over th e  

determ inan ts of all positive definite com pletions of a p a rtia l positive m atrix  w ith  a  

chordal g raph , generalizing in th is way the  corresponding results of [25] in the  band  

case. T he paper [42] also includes a  ’’H adam ard-F ischer” ty p e  inequality  for positive 

definite m atrices. As a  consequence of the  resu lts in C hap ter II, we ob ta in  in Section

5.1 a determ inan t form ula for invertible m atrices w ith a  chordal nonzero-pattern  of 

the  inverse. In Section 5.2 the  resu lts are generalized for a  certain  class of invertible 

m atrices w ith  a nonsym m etric nonzero-pattern  of the inverse. As application  to  our 

approach, we m ention a  determ inan t form ula proved in [12] and a  counterexam ple to  a 

problem  raised also in [12].
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In th e  process of com pletion of partia l positive m atrices w ith a  chordal graph ([38]) 

the  notion of increasing chordal sequences (see Section 1.2 for definition) plays a central 

role. Several properties of these increasing chordal sequences are pointed  out. F irst, we 

obtain a  param etrization  of all positive definite com pletions of a  partia l positive m a trix  

with a chordal graph along a  fixed increasing chordal sequence. T he param eters are 

complex num bers of m odulus less th a n  1. T hen, in Section 5.3, a  form ula for com puting 

the  determ inan t of each com pletion in term s of th e  associated param eters is given. As 

an application of our results we ob ta in  a  proof of an inheritance principle which was 

conjectured in [48], generalizing a  result of [25]. The conjecture was independently  

solved by different m ethods in [13]. Finally, we conclude w ith  a  stronger version of th is 

inheritance principle.

1.1 Operator-Theoretic Notions

In th is  section we introduce som e no ta tion  concerning H ilbert space operators, 

present th e  basic notions and prove several prelim inary results. Separable com plex 

H ilbert spaces are considered and usually denoted by H , Q and C (perhaps also w ith  

indices). For two H ilbert spaces H i  and H 2 , B ( H i , H 2 ) denotes the set of all bounded 

linear operators acting from  H i  to  'H-i- We shorten  B ( H ,H )  to  B (H ).  A n operator m a­

trix A  — (Aij)i j= 1  is a  m atrix  whose A,j en try  is in B ( H j ,H i ) ,  H i ,  being H ilbert 

spaces. Let A  € B (H )  and H  =  H i  © H 2 © ••• © H n be a  direct sum  decom position 

of H.  T hroughout th is paper, for an  index set a  C { l , . . . ,n } ,  Pa denotes the  orthog­

onal projection of H  on to  @j^aH j .  T he above decom position of H  produces a  m atrix  

decom position A  =  ( A ,^ ) " ^  , in which A,-j = P{A\Hj.

Let M  =  ^  ^  ^  ^  be an operato r m a trix  w ith the  p roperty  th a t A  is invertible. 

Then, M  adm its the following factorization:

„  (  A B  \  (  I  0 \  /  A  0 \ / l  A ~ 1B \
(1.1) M  - \ ^ c  C A ~ 1 I  ) \  0 D  -  C A - ' B  )  \  0 I  )
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T he operator D  — C A _1B  is called th e  Schur complement of A  in M .  T he Schur 

com plem ent first arose in connection w ith  Gaussian elim ination on scalar m atrices. I t 

will play a  key role in our considerations. As a first application, when M  is a  m atrix , 

the  factorization ( 1 .1) implies th a t

(1.2) d e tM  =  d e tA  x  det(D  — C A B )

An H erm itian  operator A  €  B (H )  is said to  be  positive definite (resp. positive 

semidefinite) if (Ah, h ) >  0 (resp. (A h , h) > 0) for any 0 h €  'H. W e will use

the  no ta tion  A  >  0 (resp. A  > 0) for positive definite (resp. positive semidefinite) 

operators. If A  >  0 then  A 1! 2 is its unique square root w ith A 1/ 2 >  0.

For a  linear operator A , 'R.(A) denotes its range and  'R (A)  th e  closure of its  range. 

T he kernel of A  will be denoted ker(A ).

For a  contraction G  : C —» 1C, denote D q  =  ( Ic  — G*G ) 1^ 2 : C —> £  th e  defect

operator of G  and T>g = TZ(Dg ) the defect space of G.

T he following is a  well known resu lt in  O perator Theory (see e.g. [28]).

LEMMA 1.1.  Let A  =  ( A ™ A l 2  ) be an operator matrix. Then, A  is positive
V A 12 A 22 J

semidefinite i f  and only i f  A n  >  0 , A 22 >  0 and

(1.3) A n  =  A ^ O A l i 2.

in which G  : 7?.(A22) —> 7£(A n) is a contraction.

Consider th e  3 — by — 3 operator m a trix

(A n  A 12 A13 
A i 2 A 22 A23

^13 ^23 -^33

and assum e (  A \ l A. 12 ] >  0 and ( A. 23 ) >  0. Let G x : f t(A 22) -»  7l ( A u )
_ _ \_ A i2 A 22 /  \  ^23 ^33 /

and G 2 : 'R.(Azf) —» 7?.(A22) be uniquely determ ined contractions such th a t  A i2 =  

A l{2G iA H 2 and A 23 =  A ^ G 2 A ^ .  T hen , as proved in  [16], A  >  0 if and only if there 

exists a  contraction G : T>g2 ~~iy T)q» such th a t

(1.4) A 13 =  A ^ 2( G \G 2  +  D g ’ G D g2)AIz  .
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T he above leads to  a  ’’Schur-type” param etrization  of positive sem idefinite operato r 

m atrices ([16]).

THEOREM 1.2.  There exists a one-to-one correspondence between the set o f  all pos­

itive semidefinite operator matrices  (A 'j)[j= i with fixed positive semidefinite block diago­

nal entries and the set o f  all upper triangular families o f  contractions Q =  {T,j}i<,<j<n, 

in which Tu =  7TĈ ~y, i =  1, ...n  and  r , j  : V r i+itj —» P r,,j_ i /o r  1 <  i <  j  <  n.

T he family of contractions Q is referred to  as th e  choice triangle corresponding to

It is known th a t any positive sem idefinite operator m a trix  A  adm its the  factoriza­

tion:

(1.5) A = V * V  =  W * W

in which V  is upper triangu lar and  W  is lower triangular. W e will refer the  factorizations

(1.5) as th e  lower-upper (respectively upper-lower) Cholesky factorizations of A .

In [16], given A  > 0 and Q =  {T,j}i<,<j<„ its choice triangle, an  explicit form ula

for the  Cholesky factors V  and W  in (1.5) was given. I t  will be of in terest in C hap ter

HI:

(1.6) V  : ©"=172.(j4i,') —> % {A \\)  © (© /^T V i* ),

(1.7) W :  ffi?=1K S )  -> © £ ljl> r ;n © W ^ n )

having dense range, and their block diagonal entries given by

( 1.8) Vii = Dru...Dri_u A f

and

(1.9) Wu = Dr u ...Dr;_l .AH2.

In case the operato r m a trix  A  acts on a  finite dim ensional space, the following 

form ula holds ([16]):

(1.10) d e tA  =  jQ  detD^..
l < i < j < n
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If A  is an n — by — n  (operator) m a trix  and a,/3  C { l , . . . ,n }  are index sets, then  

th roughout th is paper A(a\f3)  will denote the  subm atrix  of A  corresponding to  th e  rows 

in th e  set a  and  columns in  th e  set j3. W e shorten  A (a|o;) to  A (a).

A variant of K otelyanskii’s inequality  follows from  (1.10). For any index sets a  =  

{1 , =  {fc, ...n ) w ith  1 <  i  <  m  <  n we have th a t

i< r < l i  d e tA {a  n  p)

Since d e t D ^ j  <  1, w ith  equality  if and only if r , j  =  0, from  (1.11) we derive 

K otelyanskii’s inequality  ([50]):

( i . i 2 ) i c t A  <
d e tA (a  fl /3)

E quality  holds in (1.12) if and only if all th e  param eters r , j  for 1 <  i <  fc — 1, m  -)-1 <  

j  < n  are 0. T he  inequality (1.12) m ay be ex tended to  finite families of index sets.

We next p resent several results concerning H erm itian  operators and H erm itian  op­

e ra to r m atrices th a t will be used in C hap ter III.

T he inertia  of an n — by — n  H erm itian  m atrix  A is a  trip le

(z+(A ),z _ (A ),i0(A ))

in which z+(^4) (resp. i_ (A )) is th e  num ber of positive (resp. negative) eigenvalues of 

A  (counting m ultiplicities), and io{A) =  n — *+(-<4) — f_(A ) is th e  dim ension of ker(A ).

Given a separable H ilbert space Ti and an H erm itian  operato r A  6  13(11), recall 

th e  spectral decom position E a of A  ([61], C hapter 12). T hen, le t H a  =  E a ( (—oo,0 ) )H  

and H \  =  £ U ((0 ,o o ) )H \ .  I t is known th a t %~A and  H \  are closed invariant subspaces 

for A  and we have the d irec t sum  decom position H  =  H A © ker (A )  © 'H \ .  F u rther, le t 

A + =  A \H a , A~  =  A \H a , i+ (A ) =  d im H \ , *-(A ) =  dimH~A and io =  dim[ker(A)]. 

T he  last th ree  quantities m ay be finite or infinite.

In the  case th e  operato r C  is the  com pression of A to  a  closed subspace of H ,  then  

i± (C )  <  M ^4) ancl *±(C) +  io(C) < i± (A )  +  «o(A).
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L em m a 1 .3 . Let A  G B (7 i)  be Hermitian and X  G B(fC,Tt). Then i - ( X * A X ) <

M A ) .

Proof. It is evident th a t X x ,a x  ~  ^  £ \ X k  G H A} and  thus dimtCx .AX <

d im H ~A. □

We order th e  set of H erm itian  operators in B(fH) by A  < B  (resp. A  < B )  if 

B  — A  > 0 (resp. >  0).

R E M A R K  If A , B  G B{TL) are such th a t  0 <  A  < B ,  then I  < A ~ XI2B A ~ XI2 and 

so A XI2B ~ X A1/ 2 <  I , which im plies th a t 0 <  B ~ x <  A ~ x.

It is known (see e.g. [14]) th a t given an invertible operator m a trix A n  A 12 
A-21 A 22

with inverse ( ‘? 11 "?12 ) ,  then  
\  " 2 1  B \22 J

(1.13) io (A n) =  20( ^ 22)-

D enote by a ( M )  the spectrum  of a  linear operato r M .  If M  is H erm itian  and 

A G cr(M)  is an isolated point of a ( M ) (i.e. th e  set {A} is the  intersection of cr(M) and 

an open interval), then  A is an eigenvalue of M  and th e  range of M  — X I  is closed ([23]). 

We have our first result.

PROPOSITION 1 .4 . Let A  = (  "4*1 "412 J be an Hermitian operator m atrix  such
\  a *12 a 22 J

that i - { A )  +  z’o(A) <  00 and 0 is an isolated point o f  cr{A). I f  0 G cr(A n), then  0 is an 

isolated point o f  a  (A n ). Moreover, i f  i0 (A )  =  0 and A ~ x =  ( "?12 J then
V -°12  B 22 J

(1.14) *-(A ) =  i_ (A n ) +  io (A n) +  io{B 22)•

P roo f  Since A is a finite rank pertu rb a tio n  of a  positive definite operato r, its

compression A n  will be a  also. Thus, A n  will be a  Fredholm  operato r of index 0 (see

[23]), and  so 0 is isolated in ff(A n).

A ssum e in addition  th a t A is invertible and A -1 =  ( ‘? 12 J . F irs t, we con-
\  -“ 12 Ls22 J

sider th e  case A n  is also invertible, thus io (A n ) =  io (B 22 ) =  0. T h e  factorization

A = I  0 \  f  A n  0 ) (  ^  ^ 12
A12 I  )  \  0 A22 — A ^A n1 A12 /  \  0 I
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im plies th a t i~ (A )  — i_ (A n )  +  i - ( A 22 — A ^ A ^ A n )  and B 22 =  {A 22 — A \ 2 A [ l  A \ 2 )~l . 

T hus, i - ( A )  =  ?_(i4n) +  i_(J522). This verifies our assertion in th e  case in w hich A n  is 

invertible.

N ext we drop the assum ption th a t A n  is invertible. Then, since «_(i?22) +  2o(-622) <

00 , for sufficiently small A >  0, B 22 +  A / is invertible. D enote B \  =  ( ^  ^ 12 ),
\  B 12 B 22 +  A1 J

A \  — B J 1. For suffiently sm all A, i~ { B \ )  =  i- (A )  and  i - { B 2 2 +  A I )  =  i - ( B 2 2). T he 

above Schur com plem ent rem ark  also im plies th a t (A a)ii is invertible. Let introduce 

one m ore no ta tion . Let (T\)a>o be a  fam ily of H erm itian  operators on the  H ilbert space 

H  and  T  €  B (H ) .  Then T \  \  T  (resp. T \ /*  T ) means th a t  for any h €  7i the  

sequence (T \ h , h ) converges decreasingly (resp. increasingly) to  (T h , h ) w hen A \  0. 

Since B J  \  B ~  and A ^  =  B j 1 when A \  0, we have th a t (A x)n  (A n ) - . As 

consequence, z_ ((A a)h ) =  io (A n) +  i - ( A u )  < 00 . Since (A a)h  is invertible, we have 

th a t:

i_ (A ) =  * _ ( A a )  =  * -((A a)u )  +  i - { B 2 2 +  X I)

=  i_ (A n ) +  io (A n) +  i - ( B 22), 

which com pletes the  proof. □

1.2 Graph-Theoretic Notions

For term inology and resu lts concerning graph theory  we essentially follow th e  book 

[37]. An undirected graph is a  pair G  =  (V ,E )  in which V, th e  vertex set, is a  finite 

set (usually V  =  { l , . . . ,n } ) ,  and the edge set E  is a  sym m etric b inary  rela tion  on V.  

T he adjacency set of a vertex  v  is denoted by A d j{ v ), i.e. w  G A dj(v )  if ( v ,w )  G E.  

G iven a  subset A  C V ,  define the  subgraph induced by A  by G a  — (A , E a ), in which 

E a =  { (x ,y )  G E \x  G A  and  y  G A }.  T h e  complete graph is the  graph w ith th e  property  

th a t every pair of distinct vertices is ad jacent. A subset A  C V  is a  clique if th e  induced 

graph on A  is com plete.
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A special type of undirected  graphs are th e  b ip a rtite  graphs. An undirected  graph 

is called bipartite if V  =  X  +  V  ( th e  union of two disjoint sets X  and  Y )  and any edge 

(?', j )  €  E  has one endpoin t in X  and the o th e r one in Y .

A is a  sequence of vertices such th a t (uj,U j+i) e  E  (or j  =  l , . . . , f c —1.

A cycle of length k  >  2 is a  p a th  [ z q , u t ,  tq] in which v i ,  ...w* are d istinct. A graph  G 

is called chordal if every cycle of length g rea ter than  3 possesses a  chord, i.e. an  edge 

joining two nonconsecutive vertices of the  cycle.

T he graphs in Fig.I and F ig .II are chordal.

Figure I Figure II

while th a t in Fig. Ill is no t, since [2 ,3 ,4 ,5 ]  is a  chordless cycle of length 4.

Figure III

lion scheme (or perfect scheme) if each set:

(1.15) = {vj e  A d j(v i) \ j  > i}

is a clique. If a  vertex v of G  is said to  be simplicial when A d j{v ) is a  clique, th en  a  

is a  perfect scheme if each V{ is simplicial in th e  induced graph For exam ple,

[1 ,3 ,2 ,4 ,5 ] and [4 ,5 ,2 ,1 ,3 ] are perfect schemes for the  graph in Fig.I.
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F irs t, a  resu lt known as D irac’s Lem m a ([21], or Lem m a 4.2 in  [37]).

LEMMA 1 .5 .  Every chordal graph has a simplicial vertex, and i f  G is not a clique, 

then it has two nonadjacent simplicial vertices.

T he following result ([30], or Theorem  4.1 in [37]) is an algorithm ic characterization 

of chordal graphs.

THEOREM 1 .6 .  A n undirected graph is chordal i f  and only i f  it has a perfect scheme. 

Moreover, any simplicial vertex can start a perfect scheme.

I t is easy to  see th a t [1 ,4 ,2 ,3 ,5 ,6] and  [6 ,1 ,5 ,2 ,3 ,4 ]  are perfect schemes for the 

graph  in Fig.II, thus the  graph  is chordal. T he graph in  F ig.III has no perfect schemes, 

b u t also is not chordal.

A subset S  C V  is called a  u — v vertex separator for the  nonadjacent vertices u 

and v  if the  rem oval of S  from  the  g raph  separates u  and v in to  d istinct connected 

com ponents. If no proper subset of S  contains a  u — v  separator, then  S' is a  minimal 

u-v separator. C hordality can  be characterized in te rm s of m inim al vertex separators 

(Theorem  4.1 in [37]).

THEOREM 1.7 .  A n  undirected graph is chordal i f  and only i f  every m in im al vertex 

separator is a clique.

For exam ple, the m inim al 1 — 6 separators of th e  graph in F ig .II are {2 ,4} , {2,3} 

and {3,5} which are cliques, since the g raph  is chordal.

T he intersection graph of a  family T  of nonem pty sets is ob ta ined  by representing 

each set in T  by a  vertex and  connecting two vertices by an edge if the ir corresponding 

sets intersect. A connected graph  w ith no cycles is called a  tree. T h e  following represents 

an im portan t characterization  of chordality  (Theorem  4.8 in [37]):

THEOREM 1.8 .  An undirected graph G  =  ( V ,E )  is chordal i f  and only i f  there 

exists a tree T  =  (K , E ) whose vertex se t is the set o f  the m axim al cliques o f  G  such 

that each o f  the induced subgraphs T k v (v  £  V ) is connected (and hence a subtree), 

where I (v consists o f  those m aximal cliques that contain v.

Let describe more precisely the  tree  given by th e  previous theorem . Each vertex  of 

T  is a  m axim al clique of G. Moreover, th e  tree has th e  following intersection property:
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w henever a  vertex v  €  V  is contained in two d istinct node sets K  and K '  of T ,  then v 

is contained in any node set lying on the  unique pa th  connecting K  and K '  in T .  T he 

tree given by T heorem  l.S  is called a  clique tree (or briefly tree) of the chordal graph

G. In general T  is no t uniquely determ ined by G. T he  m axim al cliques of th e  graph 

in Fig.II are: K j — {1 ,2 /1}, A'2 =  {2 ,3 ,4} , K 3 =  {2 ,3 ,5}  and I \ 4 =  {3 ,5 ,6}  while

Figure IV

If T  =  (£{T ) ,  V (7’)) is a  tree of the chordal graph G — (V, E ), then ([13]) th e  set S  

of all m inim al vertex separators of G  coincides w ith th e  set {IF  fl IF '({IF , IF7} €  £ (T )} .  

For exam ple, {{2,4}, {2,3}, {3,5}} represents the  set of m inim al vertex separators of 

the  chordal graph in Fig. II.

Let M  =  (m ;j)" j= i be a  m atrix . T he graph G  =  ( V ,E )  is said to  be a  graph  of the  

nonzero-pattern  of M  if m ,j =  m ji  =  0 w henever (i, j )  E .  C hordal graphs play an 

im portan t role in m atrix  theory in connection w ith th e  graph-theoretic  descrip tion of 

Gaussian elim ination on sparse m atrices. Let G  =  ( V ,E )  be chordal and a  =  [i>i, ...,u n] 

a  perfect schem e for G. If G  is a  graph of th e  nonzero-pattern  of a  m atrix  M ,  then  

M  can be reduced by perfect G aussian elim ination ([37]). This m eans th a t choosing 

th e  en tries on the  positions { v i ,v i ) ,  . . . , (vn, v n) to  ac t as pivots, M  will be reduced to  a 

diagonal m atrix  w ithout ever changing (even tem porarily) a  zero en try  to  a  nonzero.

We m ention a  resu lt of [38]. Given any chordal graph  G  =  (V, E )  there  exists a 

chordal sequence of G , i.e. a sequence of chordal graphs G  =  G0, G i , ..., G t = K n such 

th a t each G j, j  =  l , . . . , i  is ob ta ined  by adding exactly one new edge (u j , vj) to  G j- i .  

Moreover, given an a rb itra ry  chordal sequence G =  G0 , G j , . . . ,G'n =  K n of G, each Gj 

has exactly  one m axim al clique Vj th a t is no t a  clique in G j- j.

A directed graph is a  pair I I  =  (F, J-) in which V, the  vertex set, is a  finite set 

(usually V  = {1,2, . .. ,n } )  and T  is an a rb itra ry  b inary  relation on V .  T h e  basic
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difference between graphs and  directed graphs is th a t  in the case of a  d irected  graph 

the edge set is not sym m etric, so we m ight have an edge from i to  j  w ithout having an 

edge from j  to i.

Let I I  = ( V , T )  he a  d irected  graph  and y  G V .  T hen A d j~ l (y ) will denote 

the set {&• G V\y  G A d j(x )} .  An edge (x , y ) G T  is called bisimplicial if whenever 

z  G A d j(x )  and z '  G A dj~ l (y)  it  follows th a t  (z ' , z ) G tF’. Consider a  sequence of edges 

<i> =  [(^’i >2/ i )>•••? 2/«)] of I I  such th a t V  =  =  {y i , . . . , y n}. T hen (j> is called

a perfect edge elimination scheme  for I I  if:

1) (m i,?/!) is bisim plicial.

2) After removing all edges of the form (3:1, 2 ) and ( z ' ,y i )  from  I I ,  (x2>J/2) becomes 

bisim plicial in the  new graph.

3) A t step  k, k =  1, . . . ,n  — 1 we rem ove all rem aining edges of th e  form (a:/.., 2 ) and 

(2' , ^ . )  and in this way (•■rjfc+i,2/*+i) becom es bisim plicial.

For exam ple, <j> =  [(3,4), (1 ,1 ), (2 ,2 ), (4 ,3)] is a perfect edge elim ination schem e for 

the d irected  graph in Fig. V.

Figure V

Consider a  tree  T  — (V (T ), £ ( '/')) such th a t each node of T  is a finite set V{, 

i =  1, . . . ,  in  and assum e th a t T  has the intersection property . C onsider on each edge of 

T  an orien tation . T here  are 2m_1 d istinct o rien tations on  T .  Let now T  — (V ( T ), £ (T )) ,  

l/ (7') =  K»} be a  tree  w ith the intersection p roperty  and D  an o rien tation  on

£ (T ) .  T hen , the directed graph I I  =  (V, J7) is said to  be allowed by the  pair (T , D ) if

V  =  u z u v *

and w henever (i, j )  G T  then  either:
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i). {*)j} Q Vk ior som e k  =

ii). T here  is an oriented path  ( V ^ , I42, ..., V ^ )  in D  such th a t i G and  j  €  Vkp. 

For exam ple, the d irected  graph in Fig. VI

Figure VI

is allowed by the orien ted  tree in Fig. VII.

Figure VII

Let M  =  be a  m atrix . T he d irected  graph H  =  ( V ,T )  is said to  be

a  directed graph fo r  the nonzero-pattern  of M  if m ,j =  0 whenever (i, j )  $  T . Let 

I I  =  (V, T )  be a  directed graph and <f> =  [(a-j, y \ ) , ...., ( s n, yn)] a  perfect edge elim ination 

schem e for I I .  If II  is a  directed g raph  of the nonzero-pattern  of a  m a trix  M , then  

l\l can be reduced by nonsym m etric perfect G aussian elim ination. This m eans th a t 

choosing th e  entries on th e  positions (®i, y \ ) , ..., (x n, yn) to  act as pivots, M  will be 

reduced to a  m atrix  having only one nonzero en try  on each row and colum n w ithout 

ever changing (even tem porarily) a zero en try  to  a  nonzero.
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1.3 Partial Matrices

A partial matrix  is an n — by — m  a rray  in which some entries are specified, while 

the  rem aining entries are ”unspecified” , i.e. independent free variables. For exam ple,

( 1 2 7 \? 3 1 +  i
\  1 -  * ? \ /2  /

is a  partia l m atrix  in which th e  (1 ,3), (2 ,1 ) and (3 ,2 ) entries are  unspecified. The 

unspecified entries are denoted by ? or X ,  Y , Z ,  etc (perhaps also w ith  indices).

T hroughout th is paper, we will consider the  specified and unspecified en tries of a 

partia l m atrix  to  be complex num bers, m atrices or (bounded linear) operators acting 

between corresponding H ilbert spaces. T h e  operator partial matrices  will be  th e  key 

objects of our investigation.

A completion of a  partia l m a trix  is sim ply a  specification of each of the unspecified 

entries, resulting in a  conventional m atrix  (or operator m atrix). O f course, we will be 

in terested  in com pletions w ith certain  properties such as: zero-blocks in the inverse on 

certain  positions, positive definitness, con tractiv ity  and  m inim um  num ber of negative 

eigenvalues.

A partia l m atrix  R  is called (com binatorially) sym m etric if th e  following conditions 

are satisfied:

i) All the  diagonal entries of R  are specified.

ii) Rij  is specified if and only if Rji is specified also.

W ith  an n —by—n  sym m etric partia l m a trix  R  an undirected  g raph  G =  (V, E )  is as­

sociated w ith vertex  set V  =  {1, ...,n }  and edge set E  =  { ( i , j ) |i  ^  j  and  Rij is  spec if ied} .

W ith  an n — by — n  nonsym m etric p a rtia l m atrix  R  a  directed graph H  =  (V, E )  is 

associated w ith vertex set V  =  { l , . . . ,n }  and  edge set T  =  {(i,j") is spec if ied} .

In C hap ter IV we deal w ith  m  — by — n  partia l m atrices R  w ith  n. I t  is most 

convenient to associate w ith such a  partia l m atrix  a  b ip a rtite  graph  G =  (X , Y , E ), in 

which X  =  { u i , . . . ,u m}, Y  =  {w i,...,un} and  E  =  {(Ui,Vj)\R{j is  spec if ied} .
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C H A PT E R  II 
INVERTIBLE COM PLETIONS

T he aim  of th is chap ter is to  find sufficient (and  som etim es also necessary) 

conditions on a partia l operator m atrix  in order th a t it adm its a  unique invertible 

com pletion with a certa in  property. This p roperty  is e ither a special ty p e  of U D L  fac­

torization of the  inverse, or the p roperty  th a t  th e  inverse has zero-blocks in the  positions 

corresponding to  the unspecified en tries of th e  in itia l p a rtia l m atrix . T h e  first resu lts of 

this type were obta ined  in [24] for banded p a rtia l m atrices R.  Necessary and sufficient 

conditions were established for th e  existence and  uniqueness of an invertible com pletion 

F  of R  such th a t F ~ l has a  ’’band  triangu lar” factorization and thus (-/?~1),j =  0 for 

|* -  j  | >  m .

We s ta r t  with a  sim ple operato r generalization of a scalar m atrix  factorization resu lt 

of [46]. T h en , Theorem  2.2 will b e  a  generalization of the  resu lts of [24] in  two directions. 

F irst, we shall allow th e  R(j to  be  (bounded linear) operators acting between H ilbert 

spaces and  second, we shall consider the graph  of the  p a rtia l m atrix  to  be chordal.

In [43], the following was proven. Let R  be a partial matrix with* a chordal support 

G = (K, E )  such that all o f  the principal submatrices o f  R  corresponding to the maxim al  

cliques and minimal vertex separators o f G are invertible. Then there exists a unique 

invertible completion F  o f R  such that (F~l )ij =  0 fo r  any  (i , j ) ^  E .  We present a 

different proof of th is resu lt th a t fu rther allows th e  entries to  be linear operators acting  

between H ilbert spaces. T he proof is based on induction on the  num ber of m axim al 

cliques of G.
19
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In all th e  above m entioned resu lts th e  involved p artia l m atrices R  were sym m etric. 

In Section 2.2 we deal w ith p a rtia l m atrices w ith nonsym m etric support. I t is m ost 

na tu ra l to  consider d irected  graphs w ith a  perfect edge elim ination scheme in  place 

of chordal graphs. F irs t, a  factorization resu lt is proved for operato r m atrices whose 

sparsity  p a tte rn  have a  directed graph w ith th e  la tte r  property.

Let H  =  (V ,F )  be a d irected  graph and  R  a p a rtia l m atrix  w ith  directed graph

H . A ssum e th a t all th e  fully specified principal subm atrices of R  are invertible. The 

directed graph  H  is called com pletable w henever any such partia l m a trix  R  adm its  a 

unique invertible com pletion F  w ith  (F _1),j =  0 for any ( i , j )  g  F .  As will be seen 

in Section 2 .1, for undirected  graphs th is notion coincides w ith chordality. We show 

by m eans of an exam ple th a t th e  property  of having a  perfect edge elim ination scheme 

is not sufficient for a  d irected  graph to  be com pletable. G eneralizing the  m ethods of 

Section 2.1, we prove th a t any d irected  graph  allowed by an oriented tree  is com pletable. 

Several exam ples of com pletable and  noncom pletable d irected  graphs are presented, bu t 

a  graph theoretical description of th e  set of all com pletable directed graphs is still open.

2.1 The Combinatorially Symmetric Case

Before s ta rting  some additional no ta tion  is necessary. Let f I denote the  algebra of 

m atrices F  =  in which Fij is a  (bounded linear) operato r acting betw een the

H ilbert spaces 7{j and 'Hi. Also le t

=  { F  €  H : F{j =  0 f o r  (i , j ) g  E }

f!_ =  { F  G f ! : F ^  =  0 f o r  i < j }

f i+ =  { F  6  f i : Fij =  0 f o r  i > j }

Sl0 =  fl.f. l~) fi_
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f l+ , Si- respectively Ho represent th e  set of all upper triangu lar, lower triangu lar re­

spectively diagonal m atrices in the  class SI.

W hen R  is a partia l m atrix , R  G Sic  will deno te th a t R ij is a  linear opera to r acting 

between 'Hj and  "H,- and  G is th e  g raph  of R  (see Section 1.3). We have to  make a  

clear distiction between th e  no ta tion  F  G Sic w hen F  is a m a tr ix  w ith all of its entries 

specified and  R  G f Ig w hen R  is a  p artia l m atrix . In the  first case we refer to  th e  

nonzero-pattern  of F , w hile the  second no ta tion  refers to  th e  stru c tu re  of th e  p a tte rn  

of the  specified entries of R .

I t is a classical result ([32]) th a t an  operator m a trix  H  G SI adm its th e  factorization:

(2.1) H  =  M_ JM +

w ith  M±  G fl-t, (M ±)a  =  I  and J  e  Sio is invertib le if and only if each H ( { 1 , ..., j } )  is 

invertible for j  =  1, . .. ,n .

If a m a trix  is in th e  class SIq up to  a  perm utation , each of its  factors is in the sam e

class. This is th e  content of the  next proposition, which is an easy generalization of th e

scalar version in [59].

PROPOSITION 2 .1 . Let G be a chordal graph and  [ 1 ,2 , . . . ,n] a perfect scheme fo r  

G  and LI G SI with all H ( { l , . . . , j } )  invertible. Then H  G SIq i f  and only i f  admits the 

factorization:

(2.2) H  =  X - V X +

with X ±  G Sl± H SIq, (X ± ) j j  =  I  and V  €  Sl0 is invertible.

Proof. Let H  G SI ad m it the factorization (2.2) and let i , j  G V  w ith (« ,i)  ^  E . 

Thus
n

(2.3) H a =  ^ ( X - V M X + h i -
k—1

If ( X - V ) i k  and (X +)kj are nonzero we have i > k,  j  > k  and  (i, k ), (j , k ) G E.  Since 

th e  vertex k  is simplicial in the g raph  we obtain  ( i , j )  G E,  a  contradiction.

T hus for every k  =  1, ...,? i we have (X - V ) i k  =  0 or (X+)kj  =  0 and thus LI G Sla.
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Conversely, let H  €  Dq . Express H  in th e  form  (see (1.1)):

«  c » - cv » ) c '•■;*)
with

A  =  H n , B = [ H 1 2 , . . . ,H ln]

C  = [H2 1 , . . . ,H nl] \ D  = H ( {2 , . . . , n } )

Consider i , j  >  2 w ith  ( i , j )  £  E .  Consequently:

(D -  C A ~ xB) i j  =  H a H r f H t j .

Since th e  vertex 1 is simplicial and (i , j ) g  E  we get th a t ( l , i )  £  E  or ( l , j )  $  E  

and so D  — C A ' 1 B  £  flG-{i}>

Take ^  ^  ^ rs*' co ûm n ° f  X -  and ( I  A ~ l B  ) th e  first row of X +.

The factorization (2.4) of D  — C A ~ XB  gives us th e  second colum n of X _ and second 

row of X +. C ontinuing in this way we elim inate all th e  vertices of G  and  obtain  finally 

the  factorization (2.2) of H.  □

D E F IN IT IO N  T he factorization (2.2) of a  m atrix  H  €  f) is called triangular 

G -factorization.

N ote th a t  the  above definition requires [1, ...,n ] to  be  a  perfect schem e for G.

For a  given chordal graph G  we establish next necessary and sufficient conditions 

on a p artia l operator m atrix  R  £  Qa to  adm it a  unique invertible com pletion F  such 

th a t F -1 adm its a triangu lar G -factorization.

T H E O R E M  2 .2 . Let R  €  D q be a partial operator m atrix and [ l , . . . ,n ]  a perfect 

scheme fo r  G. Denote fo r  j  =  l , . . . , n  •

(2.5) S j  =  {k  £  Adj ( j ) \ k  >  j }  =  { j u . . . , j a}

with j  < j \  < ... <  j s < n  and let m  be the least index fo r  which the graph G{m+ 

is complete. For j  =  l , . . . ,m  express the operator R ( { j )  U Sj )  in the fo rm :

(2. 6)  i S ( { j } U S j ) = ( ^ i  ^ )
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with

(2.7) M j — R j j , N j  — ) •••) Rjja\

(2 .8 ) P j  — [ Pj i j i  • • • )  P j , j ]  i Q j  — P { S j ) .

Then there exists a unique invertible completion F  o f R  such that F ~ l admits a 

triangular G-factorization:

(2.9) F - 1 =  X . V X 4

i f  and only i f  the following conditions are satisfied:
(  M - N ■ \

i).T he operators I n 3 ) are injective and have dense range fo r  j  =  1 , . . . ,n .
„ P j  Q j  ,

ii). The operators Q j are injective and have dense range fo r  j  =  1

iii).’Hj ® O C K { ^  Q ^ a n d H j ®  O C f t ( ( ^ '  ^  )  fo r  j  =  1 , . . ,m .

iv).T l(P j) C R ( Q j )  fo r  j  =  1

v).The operators R ( { k ,  ...,n } ) are invertible fo r  k = m  +  1, . . . ,n .

/ /  the conditions i)-v) are satisfied we m ay constuct F  as follows. Consider the 

unique solutions o f the equations:

(  Z jj \  
Zjij

(2 .10 )

( I \  
0

\  z Ui /  \  o /

and

(2 . 11)

Then put: 

(2 .12)

w iS \
w,in

R { { j } u S j )  =

\  W iit )

f  i V

o

v o y

Vjj = Z jj = W jj fo r  j  =  1, ...,n ,
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(2.13)

and

(2.14)

X h j  \

V X j , i  }

Zji j

JU3

Vfi
-1

fo r  j  =  1 ,..., n  — 1, in which the X i j  are the block entries o f  X -  (resp. X +) i f  i > j  (resp.

i < j ) .  Then we obtain F  from  (2.9).

Proof. Suppose R  G CIg sa tisfies ' the  conditions of th e  theorem . Consider th e

equations w ith the unknowns Z  G H Qg an d  W  €  0,+ D Q,q :

(2.15) 

and

(2.16) 

respective,

(2.17) 

and

(2.18)

( R Z ) j j  =  I  fo r  j  =  1, .. . , n

(RZ) i j  =  0 f o r  i > j  and  (i , j ) G E ,

{ W R ) j j  = I  f o r  j  =  1 , . . . ,n

( WR) i j  =  0 f o r  i < j  and  (i , j ) G E .

Consider i > j  and (i, j )  G E.  Since

n
(2.19) ( R Z ) ij =  Y / RikZki

k=j

and the  vertex  j  is sim plicial in th e  graph G{j1...,n}> ( k , j )  €  E.  T hus th e  equations 

(2.15) and  (2.16) depend only on th e  specified entries of R  and are equivalent to  th e  

equations (2.10). Expressing R ( { j }  U Sj)  in th e  form  (2.6), th e  last m entioned equation  

is equivalent to:

(2 .20 )
M i  N j \ /  Z a
Pi Q i ) \ Z W =  ( 0
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in which Z =  [Zh j , Z ^ ] * .

In th e  sam e way one can show th a t th e  equations (2.17) and (2.18) are equivalent

to:

(2.21) ( W is I V « ) ( ^  q . )  =  ( I  0 )

in which W &  =

T he conditions i) and iii) im ply th a t th e  equations (2.20) and (2.21) have unique 

bounded linear solutions (see [22], Theorem  1).

M ultiplying (2.21) from  th e  right w ith  ^  ^  one obtains th a t  Wjj  = Zj j .  We

next prove Tj  =  Wjj  is invertible. Consider first /  €  H j  w ith  T j f  =  0. From (2.20) we 

obtain:

( i f  % ) ( z < ° / )  =  (  o )

Since kerQj  =  {0}, Z ^  =  0 and  thus /  =  0 which m eans th a t Tj  is injective. Take 

an a rb itra ry  f  €  Hj .  The condition v) im plies th a t th e re  exists g in th e  dom ain of Qj  

w ith  P j f  +  Qjg  =  0. T hen (2.21) implies

( Tj W ®  ) ^  +  N j 9  ^  =  /

and Tj  is also onto.

N ote th a t for j  — m  +  1, . . . ,n ,  (2.18) im plies th a t

(2 .22 ) Tj = W U )  U Sj ) - ' )u

Let T  = d iag(T i, . .. ,T n) and  define .the operato r m atrix :

(2.23) F  =  W ~ XT Z ~ X

We prove by induction th a t:

(2.24) F ( { k } u S k) = R ( { k } U S k)
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E xpress .E({A:} U S k ) in th e  form

F ( { k }  U S „ ) = ( M l  N \
P I  Q * ) '

in which Q k = F { S k) =  R ( S k).

We obtain  from  th e  relations F Z  = W ~ XT  and W F  =  T Z -1  th e  system s:

M l  N l \ f  T k \  ( I

(2 '25 ) V PI Q k J \  )  V 0
and

(2.26) ( Tk W W  ) ( ^ M j  ^  )  =  ( /  0 ) .

A t th is po in t and  P i  are considered unknow ns. T h e  relations (2.25) and (2.26)

imply:

M l  =  T j;1 +  T k ' W ^ Q k Z ^ T k 1

N l  =  - T ^ W ^ Q t

and

P l  =  - Q i Z ^ T ^ .

Thus (2.25) and (2.26) uniquely determ ine M l , N l  and P l .  The relations (2.20) and  

(2.21) im ply th a t M l  =  M k , N l  =  Nk  and P l =  Pk and so F  is a  com pletion of R . 

Since

F ' 1 = Z T ~ l W  = ( Z T - 1) r ( T - 1W ),

denoting X _ =  Z T ~ X, V  = T ,  X + = T _1 W ,  th e  factorization (2.9) follows.

We n ex t prove th e  uniqueness of the  com pletion F.  W e prove th a t in  th e  hypothesis 

of the  theorem , if R  adm its the  com pletion F  w ith  (2.9) th e n  th e  form ulas (2.12)-(2.14)  

are satisfied.
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From  th e  j  — th  colum n of th e  identity:

F X - V  = (X+) - l

we obtain:

(2.27)

I  I  \
X

R  ( U )  u

Jl 3

( I \  
0

V j j  =

V  /  \ o /
which im plies Vjj =  and also th e  form ula (2.13). T he equality  Vjj =  Wj j  and th e  

form ula (2.14) are obtained  from th e  j  — th  row of th e  equality:

X +V F  = ( X - ) - \

Finally  we have to  prove th e  necessity of th e  conditions. If R  €  Og has a  unique 

invertible com pletion F  w ith (2.9) then  F  =  X ^ V ~ l X Z x and the  condition v) is 

obviously satisfied. From  the  proof of the  form ulas (2.12)-(2.14) we deduce th a t th e  

equations (2.20) and (2.21) m ust have unique bounded linear solutions w ith  Zjj  =  Wjj  =  

Tj  invertible. This im m ediately implies th a t th e  conditions i) and iii) are  satisfied. 

Suppose th a t for some g in th e  dom ain of Qj  we have Qjg  =  0. Then:

Tj Nj g  =  ( Ts £ ; ) ( ° )

T hus i) implies th a t  g =  0 and Qj  is injective. T he fact th a t Qj  is injective and

thus Qj  has dense range can be proved in a  sim ilar way.

From (2.20) we ob ta in  th a t:

P jT j +  Q j Z ®  =  0

and so Pj  =  —Q j Z ^ T ~ l which im plies iv) and finishes th e  proof. □

COROLLARY 2 .3 .  I f  the spaces are fin ite  dimensional, the conditions

i)-v) are reduced to the invertibility o f  the following block m atrices:
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a). R ( { j )  U S j )  f or  j  =  1 , . . . ,n  and

b). R( S j )  fo r  j  =  1, n  — 1 .

I f  the conditions a) and b) are satisfied, we have the more precise form ulas in  place 

o f (2 . 1 2 ) - ( 2 . 1 4 ):

(2.28) Vjj =  ( R { j ]  U

(2.29)

and

(2.30)

{ x hj \

\  /

/  Rj i j  \

=  - m r 1

V /

Proof. If R ( { j }  U Sj)  is invertible, (2.28) is a consequence of th e  relation (2.27). 

Also (2.27) implies tha t:

(  R j u  \

\  /

/  X j d  \  /  0 \

+  i?(Sj)

\  / V o /

T he  invertibility of -R(.S'j) im plies (2.29). T he form ula (2.30) is ob ta ined  in a  sim ilar 

way. □

R E M A R K  T he nex t exam ple shows th a t  in the infinite dim ensional case even for 

band partia l m atrices the  invertibility  conditions of Corollary 2.3 are  not necessary. 

Consider the partia l m atrix:

A  0 ?
R - \ 0 B I  

? I  I
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acting on w ith H  an  infinite dim ensional H ilbert space, A  invertible, ||Z?|| <  1,

k e r ( B )  =  {0} and 'R.(B) =  H . Since the  equations:

( o  b ) ( z w ) = ( o )

and

( r .  » ' ( » ) (  o °B )  = ( I  ° )

have unique solutions T\ =  A -1 , Z W =  H ^ 1) =  0 we ob ta in  th a t th e  unique invertible

com pletion F  of R  w ith ( i? - 1) i3 =  ( F -1)31 =  0 is:

( A  0 0 \
F =  I 0 B  I  \  

V o  /  I )

with

/  /  0 0 \  /  A " 1 0 0 \  /  /  0 0 \
F ~ l =  I 0 I  0 0 ( B - I ) - 1 0 0 / - /

\  0 —/  /  /  V 0 0 /  /  V 0 0 I  J

R E M A R K  The condition v) of Theorem  2.2 is also necessary. Consider an infinite di­

m ensional H ilbert space %  and  the  operator:

acting on H @ ' H  and  assum e A ) =  H  b u t A  is not invertible. I t  is easy to  show th a t 

^  is injective and has dense range. T he equation:

( - ) ( ? ) = «
adm its the  solution T  =  — A ( I  — A2)-1 which is not invertible.

T h e  following is a  simple and  known fact, bu t it will be very useful in th e  rest of 

this chapter.

L e m m a  2 . 4 .  Consider the operator m atrix  F  =  (A,-j)?j=1 and assume that

A n  A 12 A / A 22 A 23 \  invertible. Then, ( F -1 ) i3 =  0, (respective
A 2 1  A 22 J  \  A 3 2  A 33 J

(Z1-1)31 =  0) i f  and only i f  A 13 = A 12A f21A 23 , (respective A3X =  1).

A  I  
I  A
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Proof. By straightforw ard com putation . It m ay also be ob ta ined  as a  consequence 

of Theorem  2.2. □

We next present a new proof of a  result in [43], in the  case of opera to r m atrices. 

T h e  proof has the  advantage th a t easily generalizes in Section 2.2 for nonsym m etric 

p a tte rn s  allowed by oriented trees.

THEOREM 2 .5 .  Let G  =  { V , E)  be a chordal graph and R  G £Ig a partial operator 

m atrix  such that all o f the principal subm atrices o f R  corresponding to the m axim al 

cliques and m in im al vertex separators o f  G are invertible. Then there exists a unique 

invertible completion F  o f R  with (F~1)ij =  0 whenever (i , j ) (f E .

Proof. We prove the theorem  by induction on m , the num ber of m axim al cliques 

of G. For m  =  1 it is obvious. For m  =  2 the resu lt follows from  Lem m a 2.4. Assume 

th a t the resu lt is true  for graphs w ith m  — 1 m axim al cliques and  let prove it for m .

Let G = ( V , E )  be a  chordal graph  w ith m  m axim al cliques and le t R  €  Og 

be a partial m atrix  with the  properties in the  s ta tem en t of th e  theorem . Let T  =  

( V ( T ) , £ ( T ) )  be a tree of G  which m ust have m  node sets (see Section 1.2 ). Select an 

arb itra ry  node set IF of T  and let W  be the  unique neighbouring node se t of W  in T.  

F u rther, let /? =  W  H W , cv =  IF  — /3, 7  =  W  — jd and S = V  — (VF U W' ) .  Consider 

th e  induced partia l m atrix  U 7  U <S) w ith Gpu^uS as associated graph. Rem oving th e  

node set IF  and  the edge {IF, IF '} from  T ,  we ob ta in  the tree  T '  =  (V (T /) ,£ ( T /)) w ith 

th e  intersection property  which is a  tree  of Gpu-,us- T he  partia l m atrix  / 2(/?U 7 U£) will 

inherit the invertibility conditions in th e  stam en t of the  theorem  from R . T hus, by th e  

assum ption m ade for m  — 1, R(/3 U 7  U 8 ) has a  unique invertib le com pletion F ' such 

th a t G'pu^us is a  graph of F' ~ x. C onsider now th e  graph G'  having the tree:

P u y u  5

Figure VIII

and the partied m atrix  R ' defined by R '(a  U /?) =  R (a  U (3) and  R'((3 U 7  U i )  =  F '. 

T hen  R ' is correctly defined and has G ■ as its g raph . Since R '( fi)  = F'(fd) =  R{jd), R!
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can be decom posed as:

/  A n  A 12 A'l3
(2.31) B! =  I A 21 A 22 A 23

\ X 31 A 32 a 33

in which A n  =  R(a) ,  A 22 =  R(P)  and  ( ^ 22 ^ 23 J =  F' .  By Lem m a 2.4, there  exists
\  -A32 A33 J

an invertible com pletion F  of R'  (and  also of R )  w ith its inverse of th e  form:

a n  a X2 0
(2 . 32)  j a 2x 0 :2 2  <̂ 23

0 0:32 CV33

T he relations F F ~ l =  F ~ XF  — I  im ply th a t  ^  ^ 23 ^  is the  second column, respec­

tively ( <232 033 ) is th e  second row of ( ”̂ 22 ^ 23 J and  thus Gpuyus is a  graph  of
\  -™32 -^33 /

F ~ \

It rem ains to  prove the  uniqueness p a rt of th e  theorem . Assume th a t  F  is an o ther 

com pletion w ith (F)i j  =  0 w henever ( i , j )  E .  Let us decom pose F  =  (Bi j )?J=;1 w ith  

respect to  th e  partitio n  a  U /? U (7  U 6) of th e  index set. T hen, in th is  decom position 

(^ ’_1)i3 =  { F~ 1)si =  0. Thus, by th e  sam e argum ent as used for F,  G^u-yus is a  graph  of 

F ( /3U7 U6 ) -1 . By th e  uniqueness resu lt f o r m —1, we have th a t  F ( /3U7 U6 ) =  F(/3\J/yV5). 

It tu rns o u t th a t bo th  F  and F  a re  invertible com pletions of the p a rtia l m atrix  R ' in 

(2.31) w ith  the  p roperty  th a t w ith  respect to  th e  partitio n  a  U 0  U (7  U S) of th e  index 

set their inverses have 0 on the (1,3) and (3,1) positions. T hen  Lem m a 2.4 implies th a t 

F  = F . T h is  com pletes th e  proof. □

We n ex t discuss th e  problem  in Theorem  2.5 in the  case in which th e  graph of the  

partia l m a trix  fails to  be chordal. In C hapter III we show th a t given any nonchordal 

graph G  =  (V, E ), th e re  exists a  p a rtia l m a trix  R  w ith  graph  G  and th e  p roperty  th a t  all 

of the principal m inors of R  form ed w ith specified entries are  invertible, bu t there  exist 

a t least tw o invertible com pletions F  of R  w ith  (F ~ l )ij =  0 whenever ( i , j )  $  E.  Since 

the  sam e exam ples will play a  key role in C h ap te r III, we postpone th e ir  presentation .

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Consider th e  partia l m atrix :

/  1 -1 x 1 \

\ 0 t —1 1 /

w ith graph

Q  ©

©  ©
Figure IX

the sim plest uon-chordal graph. All th e  principal minors of R  formed w ith  specified

entries are invertible. To find a com pletion F  of R  w ith [ F~l )ij =  0 whenever Rij  is 

unspecified we have to solve the  equation  system :

An elem entary  com putation  shows th a t this system  has no solutions, which m eans 

th a t there are no invertible com pletions F  w ith th e  desired zero-pattern  of the  inverse.

In conclusion, when th e  graph of the  partia l m atrix  is no t chordal, there  is no 

characterization  of w hat m ay happen. We m ay have no com pletion, a unique com pletion 

or m ultiple com pletions.
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T he nex t exam ple will show th a t even if the conditions of T heorem  2.5 are satisfied 

the unique com pletion given by the  theorem  may not be U D L  factorable. Consider the 

partia l m atrix:

R  =

(  0 1 ? ? \  
1 1 1 ?
? 0 1 1 

V ? ? i  o /
having the graph:

Figure X

T he com pletion of R  given by Theorem  2.5 is:

F  =

( 0 1 1 1 \  
1 1 1 1  
0 0 1 1  

V 0 0 1 0 /

w ith

F ~ l =

/  - 1  1 0 0 \  
1 0 - 1 0  
0 0 0 1 

V 0 0 1 -1 )
Since the (1,1) and (4,4) entries of F  are 0, ne ither in [1 ,2 ,3 ,4 ] nor in th e  [4,3,2,1] 

orderings, the only perfect schemes of G,  F  adm its U D L  factorization. T h is shows 

th a t Theorem  2.5 does not im ply T heorem  2.2, the e x tra  conditions in Theorem  2.2 are 

necessary.

2 .2  T h e  C o m b in a to r ia l ly  N o n s y m m e tr ic  C a se

In Section 2.1 all the partia l m atrices involved R  were com binatorially sym m etric. 

In th is  section we consider n — by — n  nonsym m etric p artia l operato r m atrices R.  W hen 

R  is a  partial m atrix , R  6  £2// will denote th a t II  =  {V,IF) is th e  directed graph  of R.
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We keep the  notations ft, ft+ and fto from  Section 2.1. W hen F  is a  m atrix  w ith  all of 

its entries specified, F  €  f tj/ will denote th a t Fij =  0 whenever (i , j ) ^  F ,  i.e. i f  is a  

d irected  graph of the nonzero-pattern  of F.

It is na tu ra l to  try  to generalize th e  results of Section 2.1 for partia l m atrices w ith a  

"diagonal perfect edge elim ination schem e” , i.e. w hen there exists an ordering [iq, ...,w„] 

of th e  set V  such th a t <j> =  [(v i,u i), •••, ('Unj^n)] is a  perfect edge elim ination scheme for 

H.

T he following is a com binatorially nonsym m etric correspondence of P roposition  2.1. 

PROPOSITION 2.6 . Let H  =  (V,F) be a directed graph and <f =  [(1 ,1 ),..., (n ,n )] 

a perfect edge elim ination scheme fo r  H . Let M  €  ft be such that all M ({1, . . . , i} )  are 

invertible fo r  j  =  l , . . . ,n .  Then M  €  f t#  i f  and only i f  M  adm its the factorization:

M  =  X-VX+

with X± £ Q± n  n H, (X±)jj  =  I  and V  €  fio Is invertible.

Proof. Sim ilar to  the  proof of P roposition  2.1 tak ing  into account th a t (j> is a  perfect

edge elim ination scheme for H . □

We expect a  similar resu lt to  T heorem  2.5 for com binatorially  nonsym m etric partia l

m atrices, bu t th is  fails. Consider the  following p artia l m atrix:

/ I  1 2 x  \
y 1 z  2

1 1 1 - 1  

V 1 - 1  1 2 /

in which x , y  and  2 denote unspecified entries. All th e  principal minors of R  form ed w ith

specified entries are invertible. The d irected  graph of R  has th e  perfect edge elim ination 

scheme <j> =  [ (1 ,1), (2 ,2 ), (3 ,3 ), (4,4)]. We try  to find x , y  and  2 corresponding to an 

invertible com pletion F  w ith  ( F~ l ) u  =  (J71- 1)2i =  ( F -1 )23 =  0. This la tte r  equalities 

im ply

I  y z 2 \  /  1 2 x \  /  1 2 x  \
| 1 1 - 1  | =  | \ y z  2 | =  | 1 2 2 | =  0 .

\  1 1 2 /  V 1 1 2 /  V 1 1 - 1 /
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T^lien y — z = 1 and the th ird  de term inan t in the  above equality  equals 3 regardless of 

.r, a contradiction. T he conclusion is th a t  the  existence of a  perfect edge elim ination 

schem e lor a d irected  graph does not im ply  th a t th e  directed g raph  is com pletable.

We next prove th a t th e  directed graphs allowed by oriented trees (w ith  th e  in ter­

section property) are com pletable. T he proof generalizes the proof of T heorem  2.5. We 

use th e  notation and results of Section 1.2 .

T heo rem  2 .7 .  Let T  =  ( V ( T ) t € ( T ) ) ,  V ( T )  =  { V i , . . . ,Kn} be a tree with the

intersection properly and D  an orientation on the edge set £ { T ) .  Let H  =  (V", T )  be the

directed graph allowed by the pair (T ,D ). I f  R  €  f Iji is a partial operator m atrix  and  

tin following in a trices:

(i )  f o r  h =  1 , . . . , / »

(ii) ll(Vi n  Vj) fo r  {V;, Vj) € £ ( T )  

arc invertible, then there exists a unique invertible completion F  o f  R  with ( F ~ 7),j — 0

whenever (i , j ) ^  J - .

Proof. We prove the  theorem  by induction on ?n, the  num ber of node sets of T .  

For ni =  1 th e  resu lt is obvious, while for m  =  2 th e  oriented tree  (T , D ) is of the  form:

wT)
Figure XI

Let R  let be a  partia l m atrix  having its  directed g raph  allowed by the  above tree and 

let: j3 =  V\ fl K>, ex = V\ — (3 and 7  =  V2 — fl. T hen , R  can be decom posed as:

(  A n A 12 X 13
(2.33) j A 21 A 22 ^23

V ^31 A 32 ■̂ 33

w ith respect to  the  partition  a  U (3 U 7  of the index set V  and  thus, ( ^ 11 ^ 12 j =
\  A n  A 22 J

(  ^ 22 ^ 23 1  =  -^(^2) anfl M 2 =  R{V\ fl V2 ) =  R(/3). T hen, the  invertibility 
\  / I 3 2  A 3  /

conditions of th e  theorem  im ply via Lem m a 2.4 th a t there  exists an  invertible com pletion 

F  of R  w ith th e  desired nonzero-pattern  of the  inverse.
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Suppose th a t the resu lt is true  for to  — 1. We need to consider an ex tra  assum ption 

and  prove it also by induction. Let Vj €  V (T) be a  node set of T  and define

ujj =  {k \th ere  is  an o rien ted  path  in  ( T , D )  jo in in g  14 w ith  Vj}

p j = {k \th ere  is  an o r ien ted  path  in  (T ,D ) jo in in g  Vj w ith  14}

F urther deno te Uvj =  U r e s p e c t i v e  Vvj =  U/e/iild- O ur assum ption is: if F  is the  

invertible com pletion of R  w ith th e  desired nonzero-pattern  of its  inverse, th en  F(U vj) 

and  F ( Vy , ) are also invertib le for any node set Vj €  V(T) .

Let T  =  (V ( T ) , £ ( T ) ) ,  V ( T)  =  { V j ,. . . ,V m} be a  tree w ith th e  in tersection property  

and D  an orien tation  on £(T) .  Let R  be a  p a rtia l operator m a trix  having its  directed 

graph allowed by (T , D ) and assum e th a t R  satisfies the  conditions of th e  theorem . 

Select an ex trem al node set W  €  {14 > • ••,!4 J  and  le t W '  be its unique neighbour in T . 

A ssum e th a t  the  edge { W , W ' }  €  £ { T )  is oriented from  W '  to  W .  Let fi =  W  fl W' ,  

a  =  W  — /?, 7  =  W  — fl, 8  =  V w  ~  ( W  U W ' )  and e =  V  — (a  U /? U 7  U 5). Let 

T '  =  (V (T '), £[T' ) )  be th e  tree ob ta ined  by rem oving the  node set W  and  the  edge 

{ W , W }  from  T  and D ' be the  o rien ta tion  induced by D  on T '. T he p artia l m atrix  

R (V  — a)  has its  directed graph H ' allowed by th e  oriented tree  (T ', jD'). Since R (V  — a)  

inherits from  R  the invertib ility  properties i) and ii) in the  s ta tem en t of th e  theorem , by 

th e  assum ption m ade for to  — 1, R ( V  — a )  has an  invertible com pletion F ' such th a t H ' 

is a d irected  graph for F '~ l . Consider now the  p a rtia l m a trix  R ' obtained by replacing 

in f?, R (V  — a )  with F '. W ith  respect to  the  p a rtitio n  a  U /? U (7  U 6 ) U e of th e  index 

set, R! can be decom posed as:

(2 .34) R ! =

in  w h ic h  F '  =  ( A i j ) V =2- S in c e  t h e  u n io n  o f  t h e  n o d e  s e t s  W "  o f  T '  w it h  t h e  p r o p e r ty  

t h a t  th e r e  e x i s t s  an  o r ie n t e d  p a th  in  ( T 7, D ')  j o in in g  W "  w it h  W '  is  (3 U 7  U  8 ,  b y  o u r

f A l l A\2 x 13 X14 \
A21 A22 A23 A24
A31 A32 -A33 A34
X41 A42 A43 A44 J
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second assuption F'(/3 U 7  U 6) =  (  ^ 22 ^ 23 J is invertible. Let succesively define
\  A 32 A 33 J

(2.35) ( A 13 ^14 ) =  Ai2-A22 ( -^23 -^24 )

and

(2.36) A '4 1  =  (  -̂ 42 ^ 4 3  )  ^
A22 A 23 

A 32 A33

-1
A 21
A31

Thus, by Lem m a 2.4, th e  relations (2.35) and (2.36) will define an invertib le com pletion 

F  of R! in (2.34) (and of R  also), w ith  its inverse of the  form:

/  O n <*12 0 0 \

(2.37) F ~ l = C*21 <*22 £*23 £*24

£*31 £*32 £*33 £*34

y  0  £*42 £*43 £*44 J

( £*23 £*24
£*33 £*34 I are the  last two columns 
£*43 £*44

and ( a ,i2 043 <144 ) is the  last row of th e  inverse of F ' =  (A{ j )F=2 and  thus H '  is

a  directed graph of (a ,j))1|j_ 2. This together w ith  (2.37) im plies th a t H  is a  d irected

graph for F ~ l .

To finish the  existence part of th e  proof we m ust also prove our second assum ption,

nam ely th a t w ith the  previous no ta tion  th e  m atrices F(Uv3) and F(Vvj )  are invertible

for j  =  1 , . . . ,m .  Taking in to  account the  rela tion  betw een th e  oriented trees (T , D )

and ( r ,  D ') and the  fact th a t by our assum ption the  resu lt holds for T ', it  rem ains to

prove th a t F ( V w )  is invertible, when W  is th e  selected ex trem al node set of T.  Since
/  A n  A12 X13 \

Vw = a U  / 3 U j U 6  and F ( a  U /? U 7  U 6 ) is th e  com pletion of j A 21 A 22 A 23 J w ith
\  -^31 A 32 A33 J

A'13 =  A 12A 22 A 2 3 , Lem m a 2.4 im plies th a t F ( V w )  is invertible.

F inally  we prove th e  uniqueness of F.  Assum e th a t F  is an o ther com pletion of

R  w ith  (F’_1),j =  0 w henever ( i , j )  £  T . Let F  =  (5 ,j)4 J=1 be th e  decom position

of F  with respect to th e  partition  a  U /? U (7  U 5) U e of th e  index set. Then, in th is

decom position, [F~l ) 13, (F,_1)i4 and  ( F -1 )4x are 0. Thus, by the  sam e argum ent as
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used for F , H ' is a  directed graph for F (V  — a ) -1 . By th e  uniqueness resu lt for m  — 1, 

we have th a t F (V  — a ) = F ( V  — a). I t tu rn s  out th a t b o th  F  and F  are invertible 

com pletions of R ' in (2.34), w ith  th e  property  th a t in th e  partition  a  U U (7  U U e 

of the index set the ir inverses have 0 on th e  (1,3), (1,4) and  (4,1) positions. T hen  by 

Lem m a 2.4 we have th a t F  =  F . This finishes th e  proof. □

E X A M P L E  Consider the following p a rtia l operator m atrix:

R  =

(  R \ i  R \2  R l 3 R l 4 -Xl5 \
R 2 1  R 2 2  R 2 3  R 2 4  X 2 5

X 3 1  R 3 2  R 3 3  R 3 4  R 3 5

X41 X 4 2  R 4 3  R 4 4  X 4 5

\  X 5 1  R s 2 R 5 3  R 5 4  R 5 5  J

T he d irected  graph of R  is the one presented in  Fig. VI and  allowed by th e  oriented tree  

in Fig. V II. Assume th a t  all th e  subm atrices /2({1,2}), i?({2 ,3}), R ( { 3 , 4}), i?({3 ,5}), 

R 22 and R 33 are invertible. Following Theorem  2.7, define succesively:

X
X

X v  =  ( R 43 R 45 ) ^ ({ 3 ,5 } ) - a ^  ^  ^

X 15 =  ( R \2  R \ 3  R \ 4 ) ^ ({ 2 ,3 ,4 } )  1 ( X 25 R 35 X 45 )

( X 3 1  X41 x 51 y  =  ( R32 R42 r 52

We obtain  in th is way an invertible com pletion F  of R  w ith th e  property  th a t 

( F _1),j =  0 whenever Rij is unspecified.

C O R O L L A R Y  2 .8 . Let 1 <  /3(1)... <  /3(k) = n  and consider a partial operator 

m atrix R  with R ij specified i f  and only i f  j  <  @(i)- I f  all the submatrices R ( i , ..., /?(*)) 

are invertible f o r i  — 1 1, then R  adm its a unique invertible completion F  with

( F _1)ij =  0 whenever j  > — 1 .
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T he partia l m atrices in Corollary 2.8 have all the ir unspecified entries situated  

above the  m ain diagonal. T hey  have a  ’’triangu lar” form . T riangular partia l m atrices 

will be studied from  an o ther po in t of view in C hap ter IV.

R e m a r k  Let us consider 1 <  p, q < n  — 1, s = m in {p , q} and a  partia l m a trix  R , in 

which R jj is specified if and only if i < j  < i +  p  or j  <  i < j  +  p. If all th e  subm atrices 

R ( {k ,  ...k  +  s}), for k =  1, . . . ,n  — s and R ( { k  +  1 ,..., k  +  s}) for k  =  1, . . . ,n  — s — 1 are 

invertible, then  there  exists a  unique invertible com pletion F  of R  such th a t =  0

whenever j  > i +  p  or i > j  +  p.

T he above resu lt was proved in [10] for scalar m atrices, bu t it is still tru e  for partia l 

operato r m atrices. T he d irected  graph of these partia l m atrices is no t allowed by an 

oriented tree.

Consider th e  following partia l operato r m atrix :

( jRn R\2 Rl3 R 14 R i s  Rl6  ̂
i?2i R 22 R 23 R 24 R 25 R 26

_  -V3I R 32 R 33 R 34 R 35 ^36
X 41 R 42 R 43 R 44 R 45 X 46

X 51 R 52 X 53 R 54 R 55 R 5 6
\  X q i  R g 2  X e 3  R e 4  R & 5  R e e  }

and assum e th a t all the principal subm atrices of R  form ed w ith  specified entries are

invertible. It will be proved in  Section 5.2 th a t the  d irected graph of R  is no t allowed by

any oriented tree. I t is easy to  see th a t th e  p a tte rn  of R  is no t perm utation  equivalent

to any of the  pa tte rn s  discussed before. T he d irected  graph of R  is still com pletable,

since succesively defining:

X 4 6 = { R 42  R 4 s ) R ( { 2 ,5 } ) -1 ^ “ )

(£ ) - (£  £ l H 4»"(£)
X 3 6  =  (  R 3 2  R - 3 4  R 3 5  ) - ^ ( { 2? 4 , 5} )  1 (  i ? 2 6  ^46 R 5 6  )  

(  ^ 3 1  X 4 1  X 5 1  X q i  )  =  (  R 3 2  R 4 2  R 5 2  R &2 )  R 2 2  R 2 I
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we ob ta in  an  invertible com pletion F  of R  w ith  ( F ' 1)^  =  0 whenever ( i , j )  corresponds 

to  an unspecified en try  of R.

In conclusion, th e  description of the  set of all com pletable d irected  graphs still 

rem ains open.
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C H A PT E R  III 
PO SITIVE SEM ID EFIN ITE A N D  

H E R M IT IA N  COM PLETIONS

Probably th e  area of positive definite m atrices is th e  m ost fruitful from  the 

point of view of m a trix  com pletion. We begin th is chap ter w ith the  celebrated com ple­

tion resu lt of [38] s ta tin g  th a t any partia l positive m a trix  w ith  a  chordal graph adm its 

a  positive definite com pletion. Several proofs are ind icated , one of th em  based on the  

results of C hapter II. In the  sam e paper [38] it was proved th a t for an  a rb itra ry  partia l 

positive m atrix  R  which adm its positive definite com pletions, there  exist a  unique de­

term inan t maxim izing positive definite com pletion Fo of R.  M oreover, F q is the  unique 

positive definite com pletion of R  w ith the  p roperty  th a t  its inverse has 0 in all the 

positions corresponding to  the  unspecified en tries of R.  T heir proof is based on the  

logconcavity of the determ inan t. Theorern 3.3 represents an operato r correspondence 

for chordal graphs of th e  above m entioned m axim um  determ inan t principle. In  Section
i

3.1, also based on th e  logcancavity of the determ inan t several optim ization  resu lts are 

obtained. ■

In th e  chordal case, the unspecified en tries of the m axim um  determ inan t positive 

definite com pletion can be ob ta ined  as ra tional functions of the  given data . In [53] the  

problem  was raised w hether or no t the  above p roperty  characterizes only the  chordal 

graphs. In  the last p a r t of Section 3.1 we give an affirm ative answ er to  th e  above 

problem .

In Section 3.2 we study positive sem idelinite com pletions of ’’generalized banded’’ 

operator m atrices. T he  results follow the paper [7]. We first develop some distin-

4 ’
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guishing properties which uniquely characterize a so-called central com pletion, notion 

th a t appeared in different settings and nam es in [24], [25], [1] and [33]. N ext, a  linear 

fractional transform  param etrization  is presented for th e  set of all solutions. T h e  co­

efficients of the  transform ations are obta ined  from th e  Cholesky factorizations of the 

central com pletion. This is a  generalization of the  resu lts in [33].

In [49] it was proved th a t for any partia l H erm itian m atrix  R  w ith  chordal support 

there  exist an H erm itian com pletion F  of R  such th a t

io{F) +  i - ( F )  =  m a x { i 0( R ( K ) )  +  i - ( R ( K ) ) \ K  is  a clique o f  G}.

In Section 3.3 we prove th a t under certa in  circum stances the  sam e result holds for

operato r partia l m atrices also. T he problem  of th e  num ber of negative eigenvalues of

H erm itian  extensions of partia l m atrices has been stud ied  in [27], [18], [31] and  [17].
%

Let F  be an H erm itian m a trix  w ith a  chordal nonzero-pattern  of its  inverse. In  [44] 

a form ula for th e  inertia  of F  was proved in  term s of th e  inertias of certain  key principal 

m inors of F . This result was fu rther generalized in [45] for a  certa in  class of operator 

m atrices. In Section 3.3 we prove this la tte r  result in th e  m ost general operator setting.

3 .1  M a x im u m  E n t r o p y  P o s i t iv e  D e f in i te  C o m p le tio n s

A partia l operato r m a trix  R  is called partial positive  if all the  principal subm atrices 

of R  form ed w ith specified en tries are positive definite. T he following is a  well-known 

resu lt of [38]. T he original proof is for scalar m atrices, b u t as shown next, it works for 

operato r m atrices also. In [57], it was ex tended to  m atrices over certa in  C * ~ algebras.

T h e o r e m  3 .1 . Let G be a chordal graph. Then any partial positive operator m atrix  

R  €  Lla adm its a positive definite completion.

Proof. Consider G = Go, G\ , ..., Gt =  K n an a rb itra ry  chordal sequence (see Section 

1.2) of G. Let (Uj,Vj) be th e  unique edge added to  Gj-i  in order to  obtain  Gj and Vj 

th e  unique m axim al clique of Gj which is not a  clique of Gj-1. Consider th e  partia l
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subm atrix  i?o(Vi) of R 0 = R  corresponding to  the  index set V\. A fter a  reordering, if 

necessary, the partia l m atrix  i 2o(Vi) has th e  following structu re :

/  A  B  X Ul tVl
M V i )  = \ B* C  D

\  K *  D * E

in which the  m atrices g*  g  ^  anc  ̂ D* )  &Ve Pos^*ve definite. T hen, by

(1.4), Rq(Vi) adm its a positive definite com pletion. Select any value for X UliVl which 

provides a  positive definite com pletion of i?o(Vi). Bo will be transform ed in th is way 

into a  partia l positive m atrix  R \  having G\ as associated graph. R epeating  the  process 

for Ri  and G\, we ob ta in  a  p artia l positive m atrix  R 2 and so on, un til we ob ta in  a 

positive definite com pletion M  of R . □

T h e  proof of T heorem  3.1 is also valid for positive sem idefinite com pletions of partia l 

positive sem idefinite m atrices.

In th e  scalar case, the  proof of the  above theorem  together w ith Theorem  1.2 im ply 

the following param etrization  resu lt ([5]).

THEOREM 3 .2 .  Let R  be a partial positive m atrix and let G be its associated 

graph which is supposed to be chordal. Fix a chordal sequence G =  Go, G i , ..., Gt =  K n 

o f G. Then, any positive definite completion o f R  is uniquely determ ined by a set 

{g{uj ,Vj ) \ j  =  1 , . . . , t }  o f complex numbers with  |</(«j,U})| <  1, (uj ,Vj)  being the unique 

edge added to Gj-1 in order to obtain Gj.

As th e  param eters {g(uj,  Vj)\ j  =  1,..,<} depend only on the  fixed chordal sequence 

of G,  we call them  the  parameters o f M  along the underlying chordal sequence. T hese 

param eters will play a key role in C hap ter V in com puting the  determ inan t of an 

a rb itra ry  positive definite com pletion.

T heorem  3.1 can also be ob ta ined  as a  corollary of T heorem  2.2. Indeed, consider 

a chordal graph G and w ithout loss of generality  assum e th a t o  =  [1 , ...,n ] is a  perfect 

scheme for G. For any partia l positive m a trix  R  €  0,q th e  conditions of Corollary 2.3 

are satisfied. Thus there  exists a  unique com pletion F  of R  such th a t JF1-1 =  X - V X +
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w ith V  and X ±  given by (2.28-2.30). I t easily follows from  th e  form ulae th a t V  is 

positive definite and X _ =  A £ . T his implies th a t F  is a  positive definite com pletion of 

R . For th e  sam e result, a proof based on th e  Arveson Extension Theorem  was presented 

in [56].

It is known from [38] th a t for any nonchordal graph G, there  exists a  partia l positive 

m atrix  R  €  CIg w ithout having a  positive definite com pletion.

T he following resu lt is referred as the  m axim um  entropy principle. T he  notion was 

first in troduced in a particu lar case in [15]. In  the scalar band case it was proved in 

[24], while in [35] appers in the  operato r band  case as an  exam ple of a  more general 

m axim um  entropy principle.

T h e o r e m  3 . 3 .  Let G be chordal, R  €  Cta be a partial positive operator m atrix and  

assume that [ l , . . . ,n ]  is a perfect scheme fo r  G . Let F  be the unique completion o f  R  

with F ~ l £ Qq and write F ~ 1 =  X + V X +  as in (2.9). Then fo r  any positive definite 

completion H  o f R  and factoriza tion  H ~ l =  M + JM +  with M+ € (M+)j j  = I  and  

J  £  flo we have that:

(3.1) I/ " 1 >  J - 1

Proof. Consider F  and M  as in the  s ta tem en t of th e  theorem . Then:

(3.2) ( X +( H  -  F ) X l ) i j  =  0.

In order to  prove (3.2), note th a t

(A:+(H  -  n x ; ) *  =  £  (x +m h  -  F ) t i ( x i ) kj
i,k=l

If (Ar+)j,- and (A ^)jtj are nonzero, j  < i , ( i , j )  €  E ,  k > j ,  (j ,  k)  £  E  th en  

since th e  vertex j  is simplicial in th e  graph G{j,...,n} we have th a t (i, k)  €  E  and thus 

( H — F)ik  =  0. In the  la tte r equality  we used th a t bo th  F  and H  are com pletions of 

R.  This implies (3.2).
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Following (3.2), since

X + ( H  -  F)X*+ = X + M ^ J - ' M l - ' X ^ 1 -  V - 1

we have th a t

(V-l )a = {X+Mi'J-'Ml-'XDu >  ( J - ' f e

for j  =  1 , . ..,n . T he  last inequality  holds since (X+M+1)jj = I  for j  — 1 Thus

(3.1) is true  and  th e  equality  holds if and  only if X+M+1 =  I ,  consequently when 

H - F .  □

In th e  scalar case, as consequence o f Theorem  3.3, F  is th e  unique m axim um  

determ inan t positive definite com pletion of R.  This resu lt was proved in [38] for an 

a rb itra ry  graph and  partia l m a trix  which adm its  a  positive definite com pletion. T heir 

resu lt will be a particu la r case of a  m ore general resu lt ([67]) which will be considered 

next.

In  w hat follows let M  denote the  set o f all n  —b y — n  self-adjoint com plex m atrices, 

V = {A €  M \ A >  ft) and 7^°) =  { A  €  M \ A  > 0}. L et W  C M  b e  a  linear subspace 

such th a t  W  D V  =  {0}. In  th e  rest of th is  section we consider th e  scalar p roduct 

{ C , D)  = t r{CD*)  on M .

W e next present the approach of [67] to  certain  determ inan t optim ization  results. 

THEOREM 3 .4 . Let A, B  €  M  be such that (A +  W ) H 7^°) ^  0. Then there is 

a unique F  €  {A +  W ) fl such that F ~ l — B  _L W . Moreover, F  m axim izes the 

func tion

f { X )  =  lo g d e tX  -  t r ( B X )

over X  6  {A +  W ) fl V.

Proof. Since W f l T 5 =  {0}, (A +  W ) fl V  is a  bounded se t (we are in a  finite 

dim ensional space). The set (A +  W ) D V  is convex. I t  is known th a t  logdet is stric tly
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concave on V  (see e.g. [39]). Since t r ( B X )  is linear in X ,  f ( X )  is s tric tly  concave and 

thus has a  unique m axim um  on (A  +  W ) fl V  denoted by  F.  Since near the  boundary  

/  tends to  —oo, F  is an inner po in t of (A +  W ) fl

F ix  an a rb itra ry  W  G W . Consider th e  function f w { x )  =  logdet(F  +  x W )  — 

t r ( B ( F  +  x W ) )  defined in a neighbourhood of 0 in C. T hen  /^ (O )  =  0 (since f has its 

m axim um  in F) .

I t  is easy to  see th a t:

+' " w i -

=  t r ( F ~ xW )  -  t r ( B W )  =  t r ( ( F ~ x -  B ) W )  =  0

Since W  =  W*  is an a rb itra ry  elem ent of W  we have th a t  F ~ l — B  _L W  which finishes 

the  proof. D

Let A  G B  €  M  and  an a rb itra ry  graph G  =  ( V , E )  be given. We assum e 

th a t for any k  €  V , (k,  k)  G E.  Let

W  =  { W  €  M\Wkj  =  0 w henever { k , j )  G E }

T hen W  fl V  =  {0} and A  G (A  +  W ) fl By Theorem  3.4 there exists F  G

{A +  W ) fl V such th a t F ~ x — B l .  W . For any ( k , j )  E , consider th e  m atrix

G W  having all its en tries 0 except those on th e  positions ( k , j )  and (j,  k)  which

equal 1 , respectively the  m atrix  W jk'^  having i on the  position (k, j ) ,  —i on th e  position 

(j, k ) and 0 in rest. T he conditions t r ( ( F ~ x — B ) W j k’̂ )  =  t r ( ( F ~ x — B ) W \ k’̂ )  =  0 

im ply th a t {F~l )uj =  Bkj  for any E.

T hus T heorem  3.4 has th e  following consequence.

C o r o l l a r y  3 . 5 .  Let A  G B  G M . and the graph G  =  (V ,E ) be given. Then  

there is a unique F  G V ^  such that Fij =  A{j fo r  any  (i , j ) G E  and F,j =  B, j  f or  

any ( h j )  $  E . Moreover, F  m axim izes the function  f ( X )  =  lo g d e tX  — t r ( B X )  over 

(A  +  W ) n  V .
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The above result was first proved in [20] (see also [63]). The case B  =  0 was 

independently  proved in [38], which cam e in connection w ith  th e  following com pletion 

result.

COROLLARY 3 .6 .  Let G be an arbitrary graph and R  a partial positive m atrix  

with graph G  which adm its positive definite completions. Then there exists a unique 

m axim um  determ inant positive definite completion F  o f R . Moreover, F  is the unique 

positive definite completion o f R  with F ~ l G LIq. F  is a real m atrix whenever the partial 

m atrix R  is real.

In th e  chordal case, Theorem  3.3 is m ore general, b u t un fortunately  it can’t  be 

applied for nonchordal graphs.

In general under th e  hypothesis of T heorem  3.4 there is no precise form ula for th e  

optim al solution F . W e nex t present an approxim ation of F .

Let {(u-,ifc)|^ =  0 ,1 , . . . ,s  — 1} be an a rb itra ry  ordering of the  missing edges of G. 

For any M  G (A  + M ) C \ V ^  define th e  positive definite m atrices X kM\  k  =  0 ,1 , . . . ,s  by 

X qM* =  M  and  letting  X [ ^  be ob ta ined  by m odifying th e  (i k , j k ) and ( j k , h )  entries of 

X kM  ̂ such th a t  =  B ik,jk for k =  0 ,1 , . . . ,s  — 1. (T his is possible by Corollary

3.5). Define then  the function

g : (A  +  W ) n  V {0) —> (A +  W ) D V (0\ g { M )  =  X ? .

T hen F  is the unique fixed po in t for g since for any o th e r M  €  ( A  +  W ) fl we 

have f ( M )  < f ( g ( M ) ) .

Define th e  following sequence: Yq = A , Ym+1 =  g(Ym) for m  >  0. Consider H  to  

be a lim it point of th e  sequence { y ^ } “ _0. Since H  is a  fixed point for g , it  follows 

th a t H  =  F .  Consequently, Ym —> F . (This proof is based on the  so-called coordinate 

descent, see e.g. the book [52] for m ore details on this m ethod).

In th e  operatorial case, when B  =  0 and G  =  (V, E )  is chordal, F  can  be precisely 

com puted by the  form ulae (2.28-2.30).

Again le t {(u-,jfc)|^ — 0 ,1 , . . . , a — 1} be an  ordering of the  m issing edges of an 

a rb itra ry  graph G  =  (V , E ). For any M  G order the  (M iktjk)akZ}0, ik < jk  en tries of
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M  in a  vector v ( M )  G C s. Consider a m a trix  Q €  C rXs. U nder these circum stances, 

T heorem  3.4 has th e  following consequence, originally proved in [54].

COROLLARY 3 .7 .  Let A  G and c G C r be such that Qv(A)  =  c. Then, among  

the m atrices M  G satisfying M{j =  A{j fo r  (i , j ) G E  and Q v ( M )  =  c there is 

a unique one which m axim azes the determ inant. I t is also the unique one with the 

property that v ( M )  G 7Z(Q*).

Proof. The resu lt is a consequence of T heorem  3.4 for B  =  0 and

W  =  { W  G M \ W { j  =  0 w henever  (i , j ) G E  a n d  v ( M ) G kerQ} .

□

An im portan t exam ple is th e  Toeplitz case. One ob ta ins here th e  following resu lt, 

also proved in [54].

COROLLARY 3 .8 .  Let A  be a partial Toeplitz m atrix with a prescribed m ain diagonal 

which adm its a positive definite Toeplitz completion. Then there exists a unique m ax­

im um  determ inant positive definite Toeplitz completion F . Moreover, F  is the unique 

positive definite Toeplitz completion o f R  such that the sum  o f the entries o f F ~ 1 on 

each o f the diagonals corresponding to unspecified diagonals o f R  equals 0.

Proof. In the case of Theorem  3.4 consider B  = 0 and  W  to be th e  span of Toeplitz 

m atrices of the  form

/  0 0 . .. 1 0 . • 0 N\ /  o 0 . i 0 . . 0 \
0 0 . .. 0 1 . . 0 0 0 . . 0 i . 0

1 0 . .. 0 0 . . 1 a nd  = —i 0 . . 0 0 . i
0 1 ... 0 0 . . 0 0 —i . . 0 0 . . 0

\  0 0 . .. 1 0 . • 0 V o 0 . . —i 0 . . 0 }

supported  on th e  j - th  diagonal which is supposed to  be unspecified in A. T hen , 

(M , W ^ )  =  0 , k  =  1 ,2  if and only if th e  sum  of the elem ents on th e  j - th  diagonal of 

M  is zero. □

Given any partia l positive m atrix  R  w ith  chordal associated graph then  by Corollary 

3.6 and  Corollary 2.3, the unspecified entries of F , (the m axim um  determ inan t positive
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definite com pletion of R ) can be obta ined  as a ra tiona l function of the  given entries of R . 

In th e  thesis [53], it is s ta ted  (bu t not proved) th a t th e  above property  characterizes th e  

chordal graphs. Namely, given any nonchordal graph  G  =  (V, E ) ,  there exists a  partia l 

positive rational m atrix  w ith  associated graph G, such th a t th e  m axim um  determ inan t 

positive definite com pletion F  of R  fails to  be a  rational m atrix . I t is easy to  see th a t 

it is sufficient to  prove th e  result in th e  case in which the  graph  G  is a  sim ple cycle of 

length  n  >  4.

Consider first the partia l m atrix

/ I  1/2 ? 1/2
1/2 1 1/2 ?
? 1/2 1 1/2

\  1/2 ? 1/2 1

having associated the sim ple cycle of length 4. Its  m axim um  determ inan t positive 

definite com pletion is

/  1 1/2  ( \/3  — 1)/2 1 /2  \
1 /2 1 1 /2 (\/3 -  l ) /2

( V 3 - l ) / 2 1 /2  1 1 /2

\  1 /2 (x/3 -  l ) / 2  1/2 1 /

Consider th e  following partia l positive m atrix:

/  1 1 /2  ? ? ... 1 /2  \
1 /2  1 1 /2  ? ... ?

R  = ? 1 /2  1 1 /2  ... ?

^ 1 /2  ? ? ? ... 1 )

associated w ith th e  sim ple cycle of length  n. T hen R  adm its positive definite comple­

tions (for instance the com pletion w ith  all | ) .  Let F  be th e  m axim um  determ inan t 

positive definite com pletion of R. T hen  by K otelyanskii’s inequality  (see Section 1.1), 

we have th a t d e tF  <  (del  ^  ^  ^  ^ ) " _1 =  ( I ) " -1-

Taking into account Corollary 3.6 and the  sym m etry  of R,  F ~ l has th e  following 

pa ttern :

/  p q 0 ... q \  
q p qF ~ l =

\  q o o

o 

p I
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in which obviously p +  q =  1. By (1.12) we have th a t:

d e tF  <
d e tF ( { l ,2 } )d e tF ( { 2 , ..., n})

22

consequently,

(3.3)
4 de tF ({2 ,  ...,n } )
3 <  dd~F =  P'

The condition R \ 2 =  \  implies th a t  =  | ,  in which

and

(  q
0 0 . 0 q \

q l - q q 0  0
P (q) =  (—1 )n+l det 0 q 1 - q 0 0

\  0 0 0 q 1 - ■9 /

(  1 - q q 0 q \
q 1 - q q . 0

Q(q) =  det 0 q 1 - q . 0

\ q 0 0 • 1 - q )

Since P (0 ) =  0, Q (0) =  1, P  and Q  have integer coefficients, th e  equation Q(q) — 

2P(q)  =  0 m ight have rational solutions only  of the form  q =  — w ith k  a  nonzero 

integer. Thus p  =  and then  (3.3) im plies th a t th e  only possibilities m ight be  p  =  |  

or p = 2. An elem entary  com putation  shows th a t for any  n  >  4, th e  above choices of p 

do not provide a com pletion of R .  Thus p  and  q are irrational.

By Corollary 3.6 the equation  Q(q) — 2P(q)  =  1 has a t least one real solution. 

Since th e  equation has real coefficients and  an irrational solution, it has a t least two 

irra tional solutions. Both solutions will provide a  com pletion of R  w ith  the  p roperty  

th a t th e  simple cycle of legth n  is a graph of the ir inverse. This resu lt solves a  question 

raised in Section 2.1. Thus, for any nonchordal graph G  there  exists a  partia l m atrix  

R  € O g such th a t all the fully specified principal m atrices of R  a re  invertible and  still 

there are a t least two invertible com pletions P i and P 2 of R  such th a t  P f 1,P 2_1 €  Og-
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3.2 Generalized Banded Partial Matrices

In  this section we prove for generalized banded p artia l operato r m atrices th e  exis­

tence of a  positive sem idefinite com pletion w ith  some distinguishing properties. Based 

on th is com pletion, linear fractional param etriza tion  is ob tained  for the  set of all solu­

tions.

Consider first the following 3 — by — 3 problem :

•^11 -d-12 ?

(3.4) I A 21 A 22 •'4-23 I 0,
? A 32 A 33

in which

(3'5) ( t

N ote th a t th e  positivity  of th e  2 —by — 2 operato r m atrices in (3.5) implies v ia  (1.3)

Al2 )  >  0 (  A?2 A ™ ^  >  0 
^ 2 2  J  ~  ’ V  ^ 3 2  ^ 3 3  J  ~

th a t

A n  =  A 23 =  A y ? G 2A ) g

in which Gi : K ( A 22) —* ^ ( A u )  and G 2 : 1 1 ^ 3 3 ) —> ^ ( ^ 22) are contractions.

W ith  th e  choice G  =  0 in (1.4) we ob ta in  th e  particu la r positive sem idefinite 

com pletion

(3.6) A ,3 =  A tf  GtGiAl?.

We shall call th is th e  central completion of (3.4), referring to  th e  fact th a t in th e  operator 

ball in which A 13 lies (nam ely th e  one described by (1.4)) we choose th e  center.

Let F  be a  positive sem idefinite operato r m atrix  and  let

(3.7) F  = V * V  =  W *W .

A

be th e  low er-upper and upper-low er Cholesky factorizations of F  respectively. If V
A A A A A

and W  are upper (lower) triangulars w ith  F  = V * V  =  W * W ,  th en  there exists block

diagonal unitaries U : ^ { V )  —> 71{V) and  U : 7£(W ) —> 'R.(W’) w ith  U V  =  V  and
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U W  =  W .  T his implies th a t  if F  is a positive sem idefinite n — by — n  operator m atrix , 

then  the operators

(3.8) 

and

(3.9)

A u (F )  := d ia g (V S V u )U

A l (F )  :=  d i a g i W ^ U

do no t depend upon the particu la r choice of V  and W  in  (3.7).

R eturn ing  to  our problem  (3.4), if F  is an a rb itra ry  com pletion corresponding to  

th e  param eter G  in (1.4) th e n  F  adm its th e  factorization  (3.7) w ith

(  A \ i 2 G iA & 2 (G ,G 2 +  D a -G D a , ) A y 2 \
(3.10)

and

(3.11)

V  =

V

0 D gA ?  (D Gi G2 - G I G D g2)A13
0 0 D GD G2A l 12 J

w  =

f  D g *D g * A \ i * 0 0 ^
(.D g -G \  -  G2G*D g .I)A\{2 D g> A l i 2 0 
(.G*2G; + D g2G*Dg i )A \{2 G*2A \ i 2 A l i 2

\
F urther, using relations like G\{Vg>) Q T̂ Gi , one easily obtains th a t  TZ{Vij) C lZ{Vu) 

and F,{Wij) C 1Z(Wa), for all i and j .  T h e  triangu larity  of V  and W  now yields

(3.12) K ( V )  = % {A]l2) @ V Gl ® V g ,K { W )  =  V G. © V G* © K ( A l i 2).

O ne im m ediately sees from these equalities th a t when G  =  0 the  closures of th e  ranges 

of th e  Cholesky factors of th e  com pletion are as large as possible.

Relation (3.7) implies th e  existence of a  un itary  U  : 77.(FF) —> 7£(V) w ith U W  =  V.  

A straightforw ard com putation  gives us th e  explicit expression of U, nam ely

( D g\D g* G i D g' — D g \G G 2 G \G 2 +  D g*GD g2 ^

(3.13) U =
- G \ D g > D Gi D g i -G \G G * 2 D g , G 2 - G \ G D g2

-G * - D g G 2 D q D q .
\
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Note th a t  th e  (3,1) en try  in U is zero if and only if G  =  0. As it will tu rn  ou t, this will

be a characterization for the  central com pletion, thus providing a generalization of th e

banded inverse characterization in th e  invertible case, discovered in [24]. We will s ta te  

the resu lt precise in th e  n  — by — n  case.

Let us now consider the  n — by — n  generalized banded positive sem idefinite com ­

pletion problem . Recall th a t S  C n x  n ( n  =  { l , . . . ,n } )  is called a  generalized banded 

pattern if

(1) (z, z) € S , i =  1 ,..., n\

(2) if (i , j ) G S  th en  {j, i) G S ; and

(3) ( i , j )  G S  and i < p ,q  < j  im ply (p,q) G S .

Let us m ention th a t  the  associated graph of banded p a tte rn  is a so-called ” proper 

interval” graph, a  particu la r case of chordal graphs.

T he problem  is th e  following. Given are A,-j : H j  —> H i  for (z, j )  in a  prescribed 

generalized banded p a tte rn  S.  We w ant to  find all positive sem idefinite com pletions of 

{A ij , ( i , j )  €  S}. It is known (see Theorem  3.1) th a t a  positive sem idefinite com pletion 

of {Aij,  (i , j ) G S )  exists if and only if

(3.14) ( ^ j )ilj6j  > 0

for all J  C n  w ith J  x  J  C S.  W hen { A i j , ( i , j )  G £} verifies condition (3.14) we shall 

call this band positive semidefinite.

In [1] a  param etrization  was given for the  set of all positive sem idefinite com pletions 

of {A,j, (i , j ) G S }  as follows. T his param etriza tion  is based on th e  resu lt in  [16] quoted 

above and  the  fact th a t m aking a  com pletion of { A i j , { i , j )  G 5} precisely corresponds 

to choosing the param eters { r , j , l  <  i < j  < n , { i , j )  $  S'}. Thus th e re  exists an 

one-to-one correspondence between the  set of all positive sem idefinite com pletions of 

{ A i j , ( i , j )  G 5} and th e  com pletions of { I \ - j , l  <  i <  j  <  n , ( i , j ) G 5 }  to  a  (A,-,)"=1 

choice triangle. This param etriza tion  is recursive in na tu re , because of th e  way th e  

choice triangles are constructed.
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T he com pletion corresponding to  th e  choice T,j =  0 w henever 1 <  i < j  < n  w ith 

( h j )  €  S  is called the central completion of {A,j, ( h j )  £  S'}. I t shall be denoted  by Fc, 

in which the  subscript ”c” stands for central.

An a lternative  way to  ob ta in  th e  cen tral com pletion is described below. For a  given 

n  — by — n  positive generalized band {A ,j, ( i , j )  G .S'} one can proceed as follows: choose 

a  position (io,jo) & S , io <  jo, such th a t  S'U{(io, jo ), (jo,&o)} is also generalized banded. 

Choose Ai0j 0 such th a t (A 'j) f j=l0 is th e  central com pletion of {A,;, ( i , j )  G S' and  i0 < 

h j  <  jo}- T his is a 3 — by — 3 problem  and  A,-0j 0 can be found v ia  a  form ula as in (1.4). 

Proceed in th e  same way w ith the  p a rtia l m atrix  thereby  ob ta ined  until all positions 

are filled. I t tu rn s  out (see [1]) th a t th e  resulting positive sem idefinite com pletion is 

th e  central com pletion Fc. Note th a t for (io, jo ) ^  S ,  io < j 0, th e  en try  A,-0j 0 only 

depends upon { A { j , ( i , j )  €  S' and i0 <  i , j  <  jo}- This implies th a t  the  subm atrix  of 

Fc located in th e  rows and columns {fc, fc +  1 ,.. .,/}  is precisely th e  central com pletion 

of {i4,j, (i, j )  €  S' fl {fc, fc +  1 ,..., /} x {fc, k  +  1, •••, I}}- This principle is referred to as 

th e  ’’inheritance principle” (or perm anence principle in  the  positive definite case ([26]).

O ur first resu lt gives four equivalent conditions which characterize the  cen tral com­

pletion. This is a  positive sem idefinite operato r analogue of T heorem  6.2 in [24].

THEOREM 3 .9 . Let S  be generalized banded pattern and F  a positive semidefinite  

completion o f  { A ,j,(z ,j)  €  5 } . Let F  =  V *V  = W * W  be the lower-upper and upper- 

lower Cholesky factorizations o f  F. Then the following are equivalent:

(i) F  is the central completion o f  { A i j , ( i , j )  G S'}.

(ii) A u (F )  > A u (F )  fo r  all positive semidefinite completions F  o f  {A,j, ( i , j )  €  S'};

(Hi) A  l (F )  >  A i ( F )  fo r  all positive semidefinite completions F  o f  {A,;, ( i , j )  G S'};

(iv) The unitary U : 7Z(W) —» 'R-fV) with U W  = V  verifies U,j =  0 fo r  i >

j» (* \j)  £  s -

Note th a t th e  uniqueness of th e  central com pletion implies th a t  A u (F )  =  A u(F )  

(or A l (F )  =  A l (F ))  yields F  =  F.  T he  m axim ality  of A u (F ) ( A i j ( F ) )  can be  viewed 

as a  m axim um  entropy principle (see e.g., [15]).
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Proof. T he equivalence of (i) and (ii) can be read  off im m ediately from  (1.8), and 

sim ilarly the equivalence of (i) and (iii) can be read off im m ediately from (1.9).

We prove th e  equivalence of (i) and  (iv) by induction  on th e  num ber of missing 

en tries in the  p a tte rn  S .  For th e  3 — by — 3 problem  (3.4), discussed a t the  beginning 

of th is section, form ula (3.13) proves im m ediately th e  equivalence.

Let S  C n x n be a  generalized banded  p a tte rn  and {A ij ,  ( i , j )  G S } positive 

sem idefinite. Let Fc denote th e  central com pletion of { A { j , ( i , j )  G 5 } , and le t Vc and 

W c be upper and  lower triangu lar o pera to r m atrices such th a t

(3 .15) f c = v ;v e = w ;w c.

Consider the  u n ita ry  operato r m atrix  U  : 1Z{WC) —+ 7Z(VC) so th a t  U W C — Vc. Let S
/ a \ n —1

deno te  the p a tte rn  S  =  S  fl (n  — 1 x n  — 1), and F  =  [F ij j  obtained  from  Fc by
\ /  i,j=l

com pressing its  last two rows and colum ns. So, F,j =  (F’c)tj for i ,  j  <  n — 1 and

F , n - 1  — -^n—1,« =  { { F c ) i , n - 1  (F c) i n ) , i  <  Tl — 1,

and

P  _  (  (^c)n—l,n—1 (7?’c)n-l,n A
iFc)nn ) '

C onsider the d a ta  { F i j , ( i , j )  €  5} . From  the way th e  central com pletion is defined
A A A

one sees th a t F ( =  Fc) is th e  central com pletion of \ F i j , ( i , j )  6  5} . Now, in the
A A A A A

sam e way, consider the opera to r m atrices U  =  (C/,j)"J=:1, V  =  (Vfj)£j=i and  W  =  

(I'F,j )”J=1 ob ta ined  by the com pression of the  last tw o rows and columns of U ,  Vc and
A A

W c , respectively. We ob ta in  by the induction  hypothesis th a t f/,j =  0 for (i , j ) S  with 

i > j .  Thus it rem ains to show th a t U nj  =  0 for j  w ith  (n , j ) ^  S  and (n — 1 , j )  G S .  

For th is purpose let 7  =  m in-^’, ( n , j )  G *S"} and consider the decom position

L n  E12 E13
U  =  U  =  \ E21 E22 S23

E31 E32 E33
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w ith S n  =  (Uij)£ i ,  s 22 =  (£ /y ) " .^  and  £ 3 3  =  Unn. Consider also th e  corresponding 

decom position of Fc =  (faj)^  J= r  Again we have th a t  F c is also th e  central com pletion 

of

</>n $  12  ? 

(f>21 <j>2 2 <j>23

? • (j>32 <f>33

T hen , from th e  3 — by — 3 case we ob ta in  th a t £13 =  0 and, consequently, Unj =  0 for 

j  <  7  “  1» proving (iii).

Im plication (iii) —> (i) can be proved by the  sam e type of induction process. One 

needs to  use th e  observation th a t if £1 and £ 2 are tw o generalized banded pa tte rn s  and  

F  is th e  cen tral com pletion of bo th  {A ,j, (z, j )  €  £ 1} and (*» j )  €  £ 2}, then  F  is 

th e  central com pletion of {A{j, (i, j )  € £ 1 0  £ 2}. W e om it th e  details. □

THEOREM 3 .10 . Let S  c  n x  n be a generalized banded pattern and  {A ,j, ( i , j )  €  £}  

be positive semidefinite. Let Fc denote the central completion o f  {A,j, (i, j )  €  £ } , and  

Vc and W c be upper and lower triangular operator matrices such that

(3.16) Fc = VC*VC = W f W c

Further, let U  : 7Z(W C) —> 7^(VC) be the unitary operator m atrix  so that

(3.17) U W C = VC.

Then each positive semidefinite completion o f  { A i j , ( i , j )  €  £} is o f  the fo rm

(3.18) T {G )  =  VC*(I  +  U G ) * ~ \ I  -  G*G){I  +  U G )~l Vc

=  W Z (I  +  G U ) ~ \ I  -  G G *)(I  +  G U ) - 1 W e,

in which G  =  (G ,j)"-=1 : 7Z(VC) —> F ( W C) is a contraction with G{j =  0 whenever i > j  

or  (i , j ) €  £ . Moreover, the correspondence between the set o f  all positive semidefinite  

completions and all such contractions G  is one-to-one.
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(3.19) K ( V )  = K ( A n ) ffl ( f f l L j A - J

and

(3.20) n ( W )  =  ®nkZ lD r -n ® R ( A nn).

Proof. W rite Fc = C  + C *, in w hich C  is up p er triangu lar w ith Cu — 1 /2 F;,-, 

i =  1 , and define for a  contraction G  =  (G tj)" j=1 : R { W C) —> R {V C) w ith  G,j =  0 

w henever i > j  or ( i , j )  G S ,

(3.21) jC{G) = C - W : { I  + G U )~ 1GVc.

Since Uij = 0 for ( i , j )  £  S  w ith i > j ,  one easily sees th a t G U  is s tric tly  upper 

trian g u la r and so ( I  -\-GU)~x exists and is upper triangu lar. Since W*  and Vc a re  both 

also upper triangu lar one readily  obtains th a t

(3.22) (>C(G)),.i  =  a i , ( z , i ) € S ' .

F u rther, using (3.21) and th e  un ita rity  of U  it is straightforw ard to  check th a t  C(G) + 

C(G)* = T {G ).  This together w ith  (3.22) yields th a t T ( G )  is a  com pletion of ( i , j )  G 

5} and  since ||G || <  1 the  operato r m a trix  T (G )  is positive semidefinite.

A ssum e th a t  for two contractions G \  and Gi  (of th e  required form) we have th a t 

T ( G i ) =  T (G 2). Then also C (G i)  =  £ ( G 2) and since W*  and V f  a re  injective on R ( W C) 

and R { V C), respectively, equation  (3.21) im plies th a t ( I  + G iU )~ 1Gi =  ( I  + G iU )~ l G2 . 

T hus G i( I  +  U G 2 ) = {I  +  G iU )G 2 which yields G\ =  G 2.

Conversely, le t F  be an a rb itra ry  positive sem idefinite com pletion of { A i j , ( i , j )  € 

S ) .  Consider f I =  (f iij)”J=1 such th a t  fl,j =  0 w henever i < j  or ( i , j )  G S , and 

Fc — F  =  fl +  Cl*. Then th e re  exists an  operator Q  =  (Q ij)?. : R ( W C) —> R ( V C) w ith 

Qij =  0 whenever i > j  or ( i , j )  (£ S  and  f l  =  W *Q VC. T he proof of the  existence of Q
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is based on range inclusions. See [7] for details. Since UQ  is stric tly  upper triangular, 

we can define

G  = Q ( I - U Q ) ~ \

which will give th a t Cl =  W * (I  +  G U )~ l GVc. Since F  — Fc — Cl — Cl*, and  taking in to  

account (3.21) we ob ta in  th a t F  =  T (G ) .  Since F  = T (G )  is positive sem idefinite, th e  

relation (3.18) implies th a t  G  is a  contraction. This finishes our proof. □

3.3 Inertia Formulas for Hermitian Matrices

This section deals w ith H erm itian  operato r m atrices. We obtain  th e  operator ver­

sion of two known results. T he first one is re la ted  to  ine rtia  posibilities of H erm itian 

m atrix  com pletion and th e  second one represents an ine rtia  form ula for H erm itian m a­

trices w ith sparse inverses.

Lem m a 3 .1 1 . Let M  €  B(Tt), N  €  B(fC) be invertible Hermitian operators with 

the property that i - { M )  < i - ( N )  <  oo. Then there exists Y  €  B{K,,7i) such that 

M  > Y N Y * .

Proof. Using the no ta tion  of Section 1.1, define Y\TC}if to  be 0. It rem ains to  define 

Y  on Tiff. Since 7i j j  and  fCfj are finite dim ensional, the re  exists e, 6 > 0 such th a t

N ~  <  —e l  and M ~  >  —81. Let U  be an isom etry on TtJj such th a t K,ff C TZ(U) and

let s > \ J 8 / e. Then

( sU )N -(s U )*  < M ~

and we can define =  sU. T he operator Y  defined in th is way provides a  solution

to  our problem . □
( A n  A h  X 13 \

A \ 2 A n  A 23 I be a partial matrix and assume that

^13 -^23 -^33 J
i? ({ l, 2}), i?({2,3}) and R 22 are invertible and z_ (i? ({ l,2 } )),z_ (/? ({ 2 ,3 } )) <  0 0 . Then
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(3.23) i - ( F )  =  m a s{ i_ (i2 ({ l,2 } )) ,i_ (i2 ({ 2 ,3 } ))}
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Proof. W ithou t loss of generality, assum e th a t i _ ( i 2 ( { l , 2 } ) )  >  * _ ( i ? ( { 2 , 3 } ) ) .  Let 

F  be a  com pletion of R  corresponding to  a  certain  choice X 13. T hen  F  is invertible 

and  satisfies ( 3 . 2 3 )  if and only if the  Schur com plem ent of i ? ( { l , 2 } )  in F  is positive 

definite. A straightforw ard com putation  shows th a t th is  Schur com plem ent equals

(3 .24^33 — A 2 3 A 2 2 A 2 3  — (A13 — A 1 2 A 2 2  A 2 3 ) * ( A n  —  A 1 2 A 2 2  A i 2 ) ( X i 3 —  A ^ A ^ f  A 2 3 )

Since A 3 3 —A 23A 22 A 23 is th e  Schur com plem ent of A 22 in i 2 ( { 2 , 3 } ) ,  respective A n  — 

A I 2 A 2 2 A 12 is th e  Schur com plem ent of A 22 in i ? ( { l , 2 } ) ,  the rela tion  i _ ( j R ( { l , 2 } ) )  > 

f _ ( i ? ( { 2 , 3 } ) )  implies th a t

i - { A u  —  A I 2 A 2 2 A 1 2 )  >  * - ( ^ 3 3  —  A 2 3 A 2 2 A 2 3 )

T he existence of an A 13 which m akes (3.24) positive definite is guaranteed  by

Lem m a 3.11. Such an JY13 produces a  com pletion F  w ith  (3.23). 0
/  ^11 A \ 2  -^13 \

PROPOSITION 3 . 1 3 .  Consider the partial operator matrix R  =  j A \ 2 A 22 A 23 J,

V ^13 ^23 ^33  /
such that i 0( i ? ( { l , 2 } ) )  +  z _ ( i ? ( { l , 2 } ) )  <  oo, io (R ({2 ,3 } ) )  +  i - ( R ( { 2 , 3 } ) )  <  0 0  and 0 

is an isolated point in the spectrum o f  i ? ( { l , 2 } )  and  Z2({ 2 ,3 } ) .  Then there exists a 

self-adjoint completion F  o f  R ,  such that

(3.25) i - { F )  +  i 0 (F)  <

m a x { * _ ( / ? ( { l , 2 } ) ) + i o ( i 2 ( { l , 2 } ) ) , i _ ( i E ( { 2 >3 } ) )  +  * o ( i 2 ( { 2 , 3 } ) ) }

and i f  0 € <r{F) then 0 is isolated in &(F).

Proof. T he relation i _ ( i ? ( { l , 2 } ) )  +  i o ( i 2 ( { l ,  2 } ) )  <  0 0  im plies th a t i - ( A 22 ) + 

*0( ^ 22) <  00 and  since 0 is an isolated po in t in th e  spectrum  of A 22 , by Proposition
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1.4, 0 will be an isolated po in t in the  spectrum  of A 22 also. Thus, for sufficiently small 

A >  0 jR({1,2}) — XI  and i? ({ 2 ,3}) — X I  a re  invertible. Then

i_(_R ({l,2}) -  XI) =  1 ,2})) +  i„ (f l({ l ,2 } ))

i_ (ii({ 2 ,3 } ) -  XI)  =  i.( /S ({ 2 ,3 } ))  +  i0(B ({2 ,3}))

Thus, the  partia l m a trix  R  — XI satisfies the conditions of Lem m a 3.12 and  this 

im plies the existence of an invertible com pletion F\ of R  — XI such th a t

i - { F x) =  m a x { i . ( R ( {  1 ,2}) -  A /),*_(J2({2,3}) -  X I)} .

T hen  F = Fx -f- XI is a  com pletion of R  and

io(F) + i _ ( F ) < i . ( F x +  XI).

T he interlacing inequalities imply now (3.25). S ince i - { F \ )  <  00 , 0 is iso lated  in 

<t(F ) .  □

T he next resu lt generalizes a  result in  [49].

THEOREM 3 .1 4 . Let G  be a chordal graph and R  €  f be an Hermitian partial 

matrix. I f  K \ , ..., K r are the maximal cliques o f  G,

m a x { i - ( R ( K j ) )  +  i0(R (I< j) ) , j  =  1 , r} <  00

and i f  0 € a(R(Kj)) then 0 is an isolated point in a(R(Kj)), fo r  j  =  1, . . . , r ,  there exists 

an Hermitian completion F  o f  R such that

i - ( F )  +  io(F)  <  m a x { i_ ( R ( K j ) )  + i0(i2(/tri )), j  =  1, . .. ,r}

Proof. T he proof is sim ilar to  the proof of Theorem  3.1. Consider a  chordal sequence 

G  =  G o ,. . . ,G t =  K n of G  and  apply then  repeatedly  P roposition 3.13. □

In the rest of this section we prove in e rtia  form ulae for H erm itian  operator m atrices. 

THEOREM 3 .1 5 . Let A  =  (Aij)^j=1 be an invertible Hermitian operator matrix. 

A ssum e that A~l =  B  =  and B 13 =  0. Then, i / i_ (A ({ l ,2 } ) ) , i_ (A ({ 2 ,3})) <

00 , we have:
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i). * _ ( 5n )  a n d * _ (5 3 3 )  are finite.

ii). *0(A ({1,2})) and  *0(A ({2 ,3})) are finite and 0 is isolated in <t(A({1,2})) and  

a (A ({ 2 ,3 } ) ) .

Hi). i - { A )  is finite and

(3.26) i . ( A )  =  i . ( A ( {  1 ,2})) +  z_(A ({2 ,3})) -  i . ( A 22)

Proof. As a  consequence of A -1 =  B  and B \ 3 — 0 we have th a t

(3.27)
A 22 A 23 \  f  B 22 A _  /  0
■^23 -^33 /  \  -^33 /  \  I

Thus,

Now z'_(533) <  *_(A ({2,3})) is a  consequence of Lem m a 1.3. In a  sim ilar way one 

can prove i - ( B u ) <  *_(A ({1,2})) and  i) follows.

Assume th a t  *'0(A ({1,2})) =  *0(533 ) =  0 0 . For h G k e r B 33, (3.27) im plies tha t:

< 3 -2 8 > i t  t ) { Bt ) - { ! ) ■

Thus th e  space Tio =  B 23(k e r B 33) is infinite dim ensional. Since A 22B 23h =  0, 

it  follows th a t rank[PkerA22 'klo] — °°) and then  P roposition  3.1 of [17] implies th a t 

*_(A ({2,3})) =  0 0 , a contradiction. T hus *0(533) =  *o(A ({l,2})) < 0 0 . By a  sim ilar 

proof *o(5n ) =  *o(A({2,3})) <  0 0 .

We obtain  th a t 0 is isolated in a (A ({ l,2 } ) )  by a  sim ilar m ethod used in the  last 

p a r t of the  proof of P roposition  1.4. Since *o(533) +  z _ (5 33) <  0 0 , for suffiently sm all 

A >  0, B 33 +  X I  is invertible and * _ (5 33 +  XI)  =  * _ (5 33). D enote

B n  5 i2  0
B \  =  I 5 J 2 B 22 B 23

0 5 2*3 B 33 +  XI
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and A \  =  B f 1. By the  Schur com plem ent argum ent A a ({1,2}) is invertible. T he  

equality  i - ( B x )  =  i ~ ( B ) =  i~ (A )  holds for suffiently sm all A >  0.

We have th a t B f  \  B ~  for A \  0, and since A J  =  ( B j ) -1 , A f  /*  A ~  (weakly) for 

A \  0. T hus (Aa({ 1 ,2 } ))“ (A ({1,2}))~  for A \  0. T hen , Aa({1 ,2}) is invertible

and z '_ (A ({l,2})) +  z0(A ({ l,2 } )) <  oo im plies th a t z_(A a({1,2})) =  z0(A ({ l,2 } )) +  

z’_ (A ({ l,2 } )) . A pplying P roposition 1.4 for A \ , we get:

M A )  =  z_(A a({1 ,2})) +  i . ( B 33 +  A /),

and finally

(3.29) L (A )  =  z„(A ({l,2})) +  z_ (A ({ l,2 } )) +  i - ( B 33) <  oo.

which im plies th a t A  satisfies th e  conditions of Proposition 1.4. Consequently (1.4) 

implies

(3.30) z_(A) =  i_ (A ({2 ,3} )) +  *0(A ({2 ,3})) +  i - { B n )

(3.31) i - ( A )  =  * -(-^22) +  *'o( A 22) +  *-(-^({1? 3}))

Since B i 3  =  0, we have th a t z0(B ({ l,3 } ))  =  z'o(Bn) +  io{B33) and z _ (B ({ l,3 } ))  =  

i - ( B n ) +  i - ( B 33). A dding (3.29) to  (3.30) and  sub tracting  (3.31), we ob ta in  th a t

(3.32) i_ (A ) =  «_(A ({1,2})) +  z’_(A ({2 ,3})) -  i_ (A 22),

which com pletes th e  proof. □

THEOREM 3 .1 6 . Let G  =  (V , E ) be a chordal graph, K  the set o f  all maxim al  

cliques, respectively S  the set o f  all m inimal vertex separators o f  G. Let A  — (A ,j)”J=1 

be an invertible Hermitian operator matrix such that A -1 =  B  =  (B ,j)"J=1 €  Q a. 

Assum e that z‘_ ( A ( / \ )) <  00 fo r  any K  G /C. Then, we have:
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i). i0(A ( I \ ) )  <  oo fo r  any K  €  K..

u). I f A ( h ' )  is not invertible, then 0 is isolated in cr(A(K )).

iii). i . { A ) <  oo and  i_ ( / l)  =  Y , k &  * - ( / l (A') )  ~  E s g 5 * -(A (5 ))- 

Proof. To make the  proof easier, we first prove i) in a  particu la r case.

Consider A  to  be a  7 — by — 7 H erm itian operator m a trix  w ith inverse B .  Assume 

th a t th e  chordal graph with the  clique tree  given in Fig. XII

Figure XII

is a graph  for B  and

(3.33) i_ ( / l ( /v )) <  oo, f o r  any  m a x im a l  clique K  o f  G.

Let assum e th a t i0(/l(A 'o)) =  oo for a  certain  m axim al clique I (Q, for instance {4 ,5 ,6} . 

We shall prove th a t th is assum ption contrad icts (3.33). Since by (1.13), io (A ({4 ,5 ,6})) =  

* o (£ ({ l,2 ,3 ,7 } ))  =  i0(J3 ({ l,2 ,3})) +  to(/?77), we m ust have e ither io{B77) =  00 or 

* ,,(£ ({1 ,2 ,3})) =  0 0 .

A. Assume th a t ^(VAt) =  00 . Taking in to  account th a t G  is a  graph of B ,  the 

following relation holds:

(3..-M)
B 57 \  /  0

/t({ 5 ,6 ,7 } ) ( £07  =  0
B77 J V  /

T hen, as in the proof of Theorem  3.15, (relation (3.28)), (3.34) implies th a t f - (A (5 ,6 ,7 )) 

00 , a contradiction.

B. A ssum e th a t v'0( ^ ({ 1,2 ,3 } ))  =  00 . T he  stru c tu re  of B  implies tha t:

(3.35) /1 ({ 4 ,5 ,1 ,2 ,3 } )

0 0 B.yj, \ ( 0 0
° \

£51 £52 £53 0 0 0
£11 B \ 2 B \3 = I 0 0
B21 B22 B23 0 I 0
£31 B32 £33 ) \ o 0 J )
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Take ( h i , h 2J i 3) £  k e r B ( { l ,  2 ,3}). T hen (3.35) implies th a t:

In th e  case in which dim[Pji3k e r B ( { l ,  2 ,3})] =  oo, as in  th e  proof of Theorem  3.15, we 

deduce th a t i_ (A ({ 3 ,4 ,5 } )) =  oo, a  contadiction. So, we only have to  consider th e  case 

d im P [H 3k e r B ( { \ , 2 , 3})] <  oo. Under th is  assum ption, since i0( 5 ( { l ,  2 ,3})) =  oo, 

there exists an infinite set of linearly independent vectors of th e  form  (^ i, /fc2, 0) in 

k e r B ( {  1 ,2 ,3}). For any such vector, (3.35) implies th a t:

T hen dim[P-H2k e r B ( { l , 2 , 3})] =  oo implies th a t i_ (A ({ 2 ,3 ,5})) =  oo, a  contradiction. 

T hus, we also have to  assum e th a t dim [Pn2k e r B ({  1 ,2 ,3} )], in which case there  exists 

an infinite fam ily of linearly independent vectors ( h i ,0 ,0 ) €  fcerjB ({l,2 ,3}). For any 

such vector, by (3.35) we obtain :

which implies th a t z_(A ({ l, 2 ,5})) =  oo, a  contradiction. Finally, we conclude th a t  our 

in itia l assum ption z‘o(A ({4,5 ,6 } )) =  oo is false.

conditions of th e  theorem  and let T  = ( V ( T ) ,£ ( T ) )  be a  tree  of G. A ssum e th a t there

L et A  be an n  — by — n  H erm itian operato r m atrix . Assume th a t  A  verifies the

is a  m axim al clique Ko of G  such th a t io(A (A ’o)) =  oo. We shall prove th a t under this 

la tte r  assum ption there exists a  m axim al clique K '  of T  such th a t i - ( A ( K ' ) )  =  oo, a 

contradiction.

If th e  node set corresponding to  K q  is ex trem al in T ,  then there  exists a  sim plicial 

vertex  v 3 €  K q  of G. T he s tru c tu re  of B  and  th e  sim pliciality of u0 im ply th a t:

Vo,Vo)( B (K o  -  M l  Vo)
B Vn .r/n
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which in a  sim ilar way as (3.28) im plies th a t z_(J3„0i„0) <  oo and z_(i4(/^o)) <  oo, a  

contradiction. Thus K 0 cannot be an  extrem al node set of T .

D enote by T{ =  (V (T ,) ,5 (r ,) ) ,  i =  l , . . . , r  th e  d istinct subtrees of T  obtained  by 

deleting K q  and the  edges joining K q  in S (T ) .  Since K 0 is no t extrem al, we have r >  1. 

Let Wi =  Uvgvfj.jV". T hen  z0(A(A'0)) =  io (B (W i — K 0)) =  oo, thus there exists 

an i =  l , . . . , r  such th a t  i0(B (W i — K q ) )  =  oo. W ithout loss of generality  we assum e 

th a t i =  1 and V(Ti) =  { 14, . . , 14},  this la tte r  set being ordered as follows. 14 is th e  

unique node set of T \  which neighbours K q  in  T . T he rest of them  are num bered in 

such a  way th a t for any V j ,  j  >  2 th e  unique p a th  in T \  jo in ing Vj  to  14 contains only 

node sets of index less th an  j .  Taking into account the s tru c tu re  of B ,  we obtain  th a t:

- ( ! )
Let h =  ( /i j) j€uWM> €  k e r B (W \ — K q). T hen, using W  fl K q =  V\ ft K q, (3.37) implies 

tha t:

If dim[Pv1-K Qk e r B (W i — Ko)\ = oo, by the  sam e argum ent used in the  proof of T heorem  

3.15 (P roposition  3.1 of [17]), we ob ta in  th a t z_(/4(yi)) =  oo, a  contradiction. So we 

have to assum e th a t dim \P vi -K QkerB {V \ — A'o)] <  oo. Since d im [kerB {W \ —1(0)] =  oo, 

we have th a t:

d im [ k e rB (W l -  K q) n  {W 1 -  (Vx U A 0))] =  oo.

For any vector h in th is  la tte r  space, (3.37) im plies

/  B { W * n K 0\ W x - { V i U K 0))h \  = f  0 \

2 \  0 /  \  PV2~I<0h J

thus i_ (A (V z))  =  oo, unless dim[Pv2-K 0k e r B (W i  — K q)] <  oo. Assum ing th e  la tte r , we 

continue our test on th e  node sets 14, k > 3. Since d im [kerB {W \ — Ao)] =  oo, we find 

1 < I < s such th a t i - (A (V i) )  =  oo, a  contradiction.
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In conclusion, our assum ption i 0(A (K o))  =  oo is false and i) holds.

We prove ii) and iii) by induction  on n  =  |V |. For n  =  3, ii) and  iii) are consequences 

of Theorem  3.15. Assume th a t the  results hold for any chordal g raph  G  =  ( V ,E )  w ith 

\V\ <  n  — I. Consider now th e  problem  for an a rb itra ry  chordal g raph  G =  (V, E )  w ith 

\V\ =  n.

Select an a rb itra ry  sim plical vertex vq of G. W ith o u t loss of generality, le t v0 =  n. 

T hen , as in T heorem  3.15, we ob ta in  th a t  io{Bnn) <  oo and i - ( B nn) <  oo. For A >  0 

sufficiently sm all, B nn +  AI  is invertible and  i - ( B nn +  A I )  = i - ( B nn). Let B \  be  the  

m a trix  obtained by replacing B nn w ith  B nn + XI  in B  and  let A \  =  B f 1. Let K  be an 

a rb itra ry  clique of G  such th a t  n  £  K .  T hen , as in th e  proof of T heorem  3.15, we have 

th a t ( A \ ( K ) ) ~  (A (K ) )~ ,  thus, i - ( A x( K ) )  < i - ( A ( K ) )  + i0( A { K ) )  < oo. W hen K '

is th e  unique m axim al clique which contains n , the  la tte r  inequality  can be proved for 

K '  in a  sim ilar way by selecting an o ther sim plicial vertex  of G. W e conlude th a t

(3.38) i - ( A \ ( K )) <  oo, f o r  a n y  m a x im a l  clique K  o f  G.

Since n  is a  simplicial vertex  of G  and  B nn +  X I  is invertib le, G{i,...,n-i} is a 

graph for (A ^ ({ l , . . . ,n  — I} ) ) -1 . A ssum ing th a t iii) holds for n  — 1, (3.38) implies 

th a t z_(j4a({1, ...,ra})) <  oo. T hen, by Proposition  1.13 we have th a t

*_(A) =  i - ( A A) =  *_(Aa({1, -  1})) +  i-{B nn  +  A/)

=  2L(Aa({1, •••,« — 1})) +  i - ( B nn) +  io(Bnn) < oo,

so th e  first p a rt of iii) follows. T hen, ii) is a  consequence of P roposition  1.4.

T he  form ula in  iii) has been proved for the  class of H erm itian  m atrices having the 

p roperty  th a t all of the ir p rincipal subm atrices have closed range. If the  conditions of 

T heorem  3.16 are satisfied, we already know th a t z_(A ) <  oo and  then  Proposition  1.4 

implies th a t th e  range of any principal subm atrix  of A  is closed. Finally, we conclude

th a t th e  form ula in iii) holds under th e  weaker conditions of Theorem  3.16. This

com pletes our proof. □
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COROLLARY 3.17 . Let G  =  (V, E ) be a chordal graph and R  G Qg a partial positive 

semidefinite matrix. I f  R  has an Hermitian invertible completion F  with F ~ l G 1)g then 

F  is positive definite. (A nd  R  is partial positive).

Proof. For any clique K  of G  we have th a t i - ( F ( K ) )  =  0, thus iii) of Theorem  3.16 

im plies i - ( F )  =  0. Since F  is invertible it follows th a t  F  > 0. □
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C H A PT E R  IV  
C O N TR AC TIV E A N D  LINEARLY  

C O N STR A IN ED  CO N TR AC TIV E COM PLETIONS

T he first contractive com pletion problem  to be solved was of the  following 

partia l m atrix:

(4.1) ( A  B  
C X

in which A , B  and C  are given linear operators acting betw een corresponding H ilbert 

spaces such th a t [A , B] and ^  ^  are contractions. T he case A  = A*> B  =  C* and

X  — X*  was considered in [51] in connection w ith  H erm itian extensions of unbounded 

operators. As proved in [55], the  conditions ||[/1, J3]|| <  1 and  || ( ? ) »  <  1 are 

sufficient for the  existence of a contractive solution to  problem  (4.1). Independently, in

[2], [19] and [62] the set of all solutions has been described. T he com pletion problem

(4.1) for analy tic  operator valued functions was solved in [4].

Consider next the contractive com pletion problem  of th e  following partia l m atrix:

? ?

(4.2)

I  B n  
B n  B 22

? \  
?

/y  B n 1 B n2 B n3 .... B un 

in which Bij : fCj —> Hi, 1 <  j  < i < n, are given linear operators acting between 

H ilbert spaces with the  property  th a t

(4.3)

68
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We call a  partia l m a trix  (4.2) w ith  the  p roperty  (4.3) a  contractive triangle. This 

problem  cam e up in connection w ith  the  Arveson distance form ula in  nest algebras ([3] 

and [58]) respective engineering control problem s ([8] and  [9]).

A contractive com pletion problem  concerning a partia l m atrix  A  can be transform ed
/  I  A  \

into a  positive sem idefinite com pletion problem  of the  p artia l m atrix  ( ^»  j  J - Using 

this observation, we derive the  results on contractive com pletions from  our resu lts in 

C hapter III on positive sem idefinite com pletion.

D E F IN IT IO N  A ■partial contraction  is a  partia l operato r m atrix  w ith  the  p roperty  

th a t all of its  fully specified subm atrices are contractive.

It is obvious th a t any partia l m atrix  which adm its a  contractive com pletion is a 

partial contraction.

D E F IN IT IO N  A p atte rn  S  is called (contractively) completable if any p a rtia l 

contraction w ith p a tte rn  S  can be  com pleted to  a  contraction.

T he first result in th is chap ter is the  description of th e  s tru c tu re  of all (contractively) 

com pletable patterns S .  This resu lt was first proved in [47]. We present here a slightly 

modified proof of th e ir result.

T he results in Section 4.2 and  4.3 are based on Section 3.2 and  are taken from  

[7]. A so-called ’’central com pletion” of the  problem  (4.2) is described. Thus, based on 

Theorem  3.10, a cascade transform  description for the  set of all contractive, isom etric, 

co-isom etric and u n ita ry  solutions of the problem  (4.2) is constructed . C onsequently we 

recover in  a  different way the results of [9] and [33] sta ting  in th e  scalar case, respectively 

stric t contractive case th e  existence of such a  description. A param etrization  for th e  set 

of all solutions of (4.2) in term s of th e  so-called ’’choice triangles” was obtained in  [1].

In [29], the following linearly constrained contractive com pletion problem , nam ed 

the Strong-Parrott problem  was solved:

( t ! : : ) ( £ ) - ( 5 )
in which th e  specified entries are linear operators acting betw een corresponding H ilbert 

spaces such th a t S ^ S i  +  S 2 S 2 =  T*Ti -f T2*T2*. The S trong -P arro tt problem  was a
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consequence of questions arising in connection w ith  th e  C om m utant Lifting Theorem  

(see, e.g. the recent book [29]).

Consider th e  following linearly constrained contractive com pletion problem :

/  Bn B n  ... Bi„ \  /  Si \  (  Ti \

(4.5)
B 22 B 2n

\ B n \ S n ) \ T n J

in which : fCj —> Hi, 1 <  i < j  < n, are linear operators acting  between H ilbert

spaces and 

(4.6) S  =

( Si \
S 2

\ S n  )

(  Tx \  
T2

\ Tn )

are also given.

Reducing th e  problem  (4.5) to  a  positive sem idefinite com pletion problem , necessary 

and sufficient conditions are obtained  for th e  existence of a  contractive solution to  (4.5) 

generalizing in th is way th e  results of [29]. In the  case these conditions are m et, we 

build  a  so-called ’’central com pletion” , a  solution w ith  several distinguishing properties. 

F rom  the  central com pletion a  cascade transform  param etrization  is constructed  for the  

set of all contractive, isom etric, co-isom etric and u n ita ry  solutions.

4.1 The Structure of Contractively Completable Patterns

In C hapter II respective C hapter III we already proved th a t the  properties of in­

vertib le respective positive sem idefinite com pletability  of an undirected  graph  coincide 

w ith  the chordality  of the  graph. T he aim  of this section is to  determ ine th e  s truc tu re  

of all contractively com pletable pa tte rs  in th e  sense of th e  definition in the  in troduction  

of th is chapter.

T he following is an exam ple of a  non-com pletable pattern :

( I ; : ) -
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since the  p a rtia l contraction:

?  l / y / 2  l / y / 2  A

l / y / 2  ?  l / y / 2  J

does not adm it a  contractive com pletion. Indeed, ( ? l / y / 2  l / y / 2  ) is a  contraction 

if and  only if ? equals 0 and  ^  \ j \ / 2  l / \ / ^  ^  *s a  cont ract i ° n if and only if ? equals 

- l / y / 2 .  It is clear th a t th e  transposed of the  above p a tte rn  is also non-com pletable.

W ith  an n  — by — m  p a tte rn  S  a  b ip a rtite  g raph  G  =  (X , Y, E )  is associated (see 

Section 1.3), w ith  X  =  { u i , . . . ,u n}, Y  =  {w i,...,un} and (Ui,Vj) G E  if ( i , j )  corre­

sponds to  a  specified en try  of S. Let Gk =  (X k ,Y k ,E k ) , k  =  l , . . . , s  be th e  connected 

com ponents of G.

If all th e  p a tte rn s  Sk associated w ith  th e  b ip a rtite  graphs Gfc, k  =  1, . . , s  are com ­

p le tab le  then  S  is also com pletable. Indeed, consider in this case a  p artia l contraction 

Mo w ith  p a tte rn  S .  C om plete all th e  p a rtia l subm atrices associated  w ith th e  connected 

com ponents of G  to  contractions. Finally , pu t all th e  entries ( i, j )  in w hich u; and v j  

a re in different connected com ponents of G  to  be 0. We obtain  in  this way a  contractive 

com pletion of Mo.

We next describe th e  s tru c tu re  of all com pletable p a tte rn s  S .  T he proof is a m odi­

fied version of th e  original one in [47]. By the  above rem ark, w ithou t loss of generality 

th e  b ip a rtite  g raph  G  =  (X , Y, E )  associated w ith  S  is assum ed to  be connected. W e
A •

also associate w ith  S  th e  graph G  =  (V ,F )  (no t b ip a rtite ), w ith  V  =  X  +  Y  and  

F  =  £ U ( A ' x I ) U ( y x  Y ) .

THEOREM 4 .1 . Let S  be an n — by — m  pattern with G  its bipartite graph and G  

the graph obtained from  G  as above. Then the following statements are equivalent:

i). S  is completable.

ii). S  is permutation equivalent to the following ’’generalized triangular” pattern:

(  B u  
B 21

B iji
B>

(4.8)
2J2

?

?
\

B,nl Bnm )
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in which 1 < j \  < j i  <  ... <  j n =  m -
/  * ? \  /  ? * \in). S  has no subpattern o f  the form :  ( 9 ^ J or I ^ J .

iv). The graph G is chordal.

Proof. The im plication ii) =£• iii) is im m ediate. A ssum e th a t G  is not chordal.

Taking in to  account the  s tru c tu re  of G, th e  only possible chordless cycle of length

greater th a n  3 in G  m ight be of th e  form  [u, v, u \  v'\ to  which th e re  corresponds a

su b p a tte rn  of the form  iii). T hus we have ii) =£• iv).

Consider the partia l positive m atrix  ^  ^ . I t  is easy to  see th a t th e  undi-
A A

rected g raph  of this la tte r  partia l m atrix  coincides w ith G. Since G  is chordal, T heorem

3.1 im plies the  existence of a positive definite com pletion ^  ^  of ^  ^

So, M  is a  contractive com pletion of Mo. T hus, iv) =>• i).

Let assum e th a t th e  p a tte rn  S  is com pletable and G  =  (X , Y , E )  is the  b ip a rtite  

graph of S .  Let u, u' £  X ,  u ^  u'. Since S  is com pletable, S  cannot have any su b p a tte rn  

of the form  (4.7) or th e  transposed of (4.7). T h is  implies th a t  the  sets A d j ( u ) and Adj{u ')  

are e ither disjoint or one of them  is included in the  o ther. Since G  is assum ed to  be 

connected, we deduce th a t there exists an ordering r  of th e  set X  =  {1 ,..., n} such th a t

(4 .9)  0 Adj(uT(i)) C  Adj(ur 2̂ )) C  ... C  i4c/y"(uT(nj)  =  { u i ,  . . . ,Ujn}.

P erm u te  the rows of S  by th e  ordering of r .  T hen (4.9) implies th e  existence of a 

column perm utation  which tu rn s S  into a  p a tte rn  of type  (4.8). T hus i) =S> ii) and  this 

com pletes the  proof. □

D roping the assum ption th a t th e  graph G  is connected, we ob ta in  th a t in general 

a p a tte rn  is com pletable if and only if it is perm utation  equivalent to  a direct sum  of 

pa tte rn s of the  form (4.8).
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4.2 Contractive Completions of a Contractive Triangle

Based on th e  existence of a  central com pletion, we construct in  th is section a  cascade 

transform  param etrization  for th e  set of all contractive com pletions of a  contractive 

triangle. In a  different decom position, a  p artia l contraction  of type  (4.8) is a  particu lar 

case. We m ention th a t we allow th e  spaces H j  and /C,- to  be th e  triv ial space (0). So, 

for instance,

(4.10)
\

is a  particu la r case. T he problem  (4.10) can be obtainer) by tak ing  Tii — (0) and 

/C4 =  (0). Therefore all possible triangu lar p a tte rn s  are covered, which by T heorem  4.1 

are essentially the  class of p a tte rn s  for which the  existence of a  contractive com pletion 

is ensured as soon as the  given subm atrices are contractions.

Consider first th e  following 2 — by — 2 problem :

(4'u )  " ( £  L ) » s  ■1

in which

H (  )  !l < 1,II( J32i b 2 2 ) \ \ < i .

N ote th a t the  contractiv ity  of th e  la tte r  operato r m atrices implies th a t

B \ \  =  G i D b 2i > B 22 =  D b *, G 2

with G\ and  G 2 uniquely determ ined contractions. It was proved in [2], [19] and  [62] th a t 

there exists a  one-to-one correspondence between th e  set of all contractive com pletions 

of (4.11) and the  set of all contractions G  : T>q2 —> "Dg\ given by

(4.12) B x 2 =  ~ G xB*2XG2 +  D g - G D G2.

W ith th e  choice G  =  0 we ob ta in  the  p articu la r com pletion B \2 =  —G 1B 21G 2 . We shall 

call this th e  central completion of (4.11).
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Let {Bij, 1 < j  < i  < n} be a  n  — by — n contractive triangle, i.e., le t B ^  : fCj —> Hi, 

1 <  j  <  i <  be operators acting between H ilbert spaces w ith  the  p roperty  th a t

In order to  m ake a contractive com pletion one can proceed as follows: choose a position 

(i0, j 0) w ith  i0 =  jo — 1, and choose Bi0j 0- such th a t  (£#)"_,. Jj =1 is the  cen tra l com pletion 

of {Bij, i > io , j  < jo} as in the 2 —b y — 2 case. Proceed in th e  same way w ith  the  p artia l 

m atrix  thereby  obtained  (some com pressing of columns an d  rows is needed) until all 

positions are filled. We shall refer to  Fc as th e  central completion of { B { j , ( i , j )  €  T } .

T h e o r e m  4 . 2 .  Let {Bij,  1 < j  < i  < n }  be a contractive triangle. Let Fc denote  

the central completion o f  {Bij,  1 <  j  <  i <  n} and let $ c .and be upper and lower 

triangular operator matrices such that

(4.13) = 1 -  FC*FC, y*cV c =  I  -  FcF t

Further, let u)\ : V pc —> 7l.($c) and u>2 : Vp* —> ‘7^(®c) be unitary operator matrices so

that

(4.14) $ c =  (J iD p c ^ e  =  ^2 Dp*,

and put

(4.15) TC =  2*.

Then each contractive completion o f  {Bij,  1 <  j  <  i <  n} is o f  the fo rm

(4.16) S{G )  =  Fc -  V*eG {I  +  T c G y 'Q c

in which G  — ( G » j ) * j = 1  '• 7?.($c) —> f c ^ c )  is a contraction with Gij =  0 whenever

(i , j ) G T .  Moreover, the correspondence between the set o f  all positive semidefinite

completions and all such contractions G is one-to-one.

Furthermore, S{G ) is isometric (co-isometric, unitary) i f  and only i f  G is.
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T he decom positions of 7£($c) and 7£(\f,c) are sim ply given by

m )  =  ©f=17 i( ($ c)it) ,7 i ( $ c) =  ©r=1^ ( ( ^ c)ti).

Proof. We apply T heorem  3.10 using th e  correspondence

(4.17) ^  B  ^  >  0 if and  only if ||J3|| <  1.

Consider the (?r+ n) x (n + n )  positive sem idefinite band  which one obtains by em bedding 

the  contractive triangle {B ij ,  1 <  j  < i <  n} in a  large m a trix  v ia (4.17). I t is easy to  

check th a t when applying T heorem  3.10 on th is (n  +  n) x (n +  n)  positive sem idefinite 

band one obtains

K- ( !  ! ) ■ " - ( * :  I.)
(use F*Dp> = D f .F c). I t follows now from  Theorem  3.9 th a t  (rc),j =  0 for i > j .  

F urther, it is easy to com pute th a t

(4 1 8 ) r ( ( °  G ) )  =  f  1
 ̂ ; V V °  o ) )  \ S ( G ) *  Q(G) J  \ S ( G y  I  J ’

and thus we have

(4.19) /  =  Q (G)  =  S ( G Y S ( G )  +  $ c( /  +  tcG ) - x( I  -  G *G )(I  +  TcG ) ' x<f>c,

and

(4.20) I  = Q{G)  =  <S(G)«S(G)* +  tfc( /  +  G tc)~x( I  -  GG*){I  +  G rc) - ^ c.

We ob ta in  the  first part of the  theorem  from  (4.18) and T heorem  3.10. From  relation 

(4.19) one im m ediately sees th a t G  is an  isom etry if and only if S (G )  is. Similarly, one 

obtains from (4.20) th a t G  is a  co-isom etry if and only if S (G )  is. This proves the  last 

sta tem en t in th e  theorem . □

T he existence of an isom etric (co-isom etric, un ita ry ) com pletion is reduced to  th e  

existence of a stric tly  upper triangu lar isom etry (co-isometry, un itary ) acting  betw een
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th e  closures of th e  ranges of $ c and *l/c. Taking in to  account th e  specific structu res of 

4>c and  \PC one recovers th e  characterizations of existence of such com pletions given in 

[9] and  [1].

REMARK W e can apply  Theorem  3.9 to  characterize th e  central com pletion. We 

first m ention th a t  for an a rb itra ry  com pletion F  of {B ij ,  1 <  j  < i <  n} one can define 

4>, and r  analogously as in  (2.4), (4.14), and (4.15). T he equivalence of i), ii) and iii) 

in T heorem  3.9 implies th a t  th e  central com pletion is characterized by th e  m axim ality  

of dia</($t*-<I>,•,•)"_! or d i a g ^ f ^ u ) ^ .  From  the equivalence of i) and iv) in  Theorem  

3.9 one also easily obtains th a t the  up p er triangu larity  of r  characterizes th e  central 

com pletion.

4.3 Linearly Constrained Contractive Completions

We re tu rn  to  the problem  (4.5). T he  next lem m a will reduce this linearly  con­

stra in ed  con tractive com pletion problem  to  a  positive sem idefinite com pletion problem . 

T he  lem m a is a  slight varia tion  of an observation in  [65].

L E M M A  4 .3 . Let B  : H  —> fC, S : Q —► H  and T : Q —» JC be linear operators acting

between Hilbert spaces. Then  ||R || <  1 and B S  = T i f  and only i f

I S B*
(4.21) | 5* S*S T* ) > 0 .

B T I

Proof. T he  operator m a trix  (4.21) is positive sem idefinite if and only if

»■» ( 7  7 ) - ( J ) < *
and th is la tte r  inequality is satisfied if and  only if ||J3|| <  1 and  BS = T. □

T H E O R E M  4 .4 . Let B tJ- : Hj -> JCi, 1 < i  < j  < n ,  Si : T i  -> Hi, i =  l , . . . , n  and

Tj : H  —» ICj be given linear operators acting between Hilbert spaces and S and T be as
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in (4-5). Then there exist contractive completions B o f  {Bij,1 <  i < j  <  n} satisfying  

the linear constraint BS =  T  i f  and only i f

/  s * s  -  s w * s w  r<*> -  s m *b w * \
/ _  £(*)£(«> ) -

fo r  i =  1, , . ,n ,  in which

(  B u  . . • B i n \ f  Si \ /  T\ \

(4.24) B {i) =

\  B u  . . • B in j
, S (,-) =

{  S n )

, T (i) =

\ T i  J

f o r i  = 1, n.

Proof. By Lem m a 4.3 there  exists a  contractive com pletion B  of { B ^ ,  1 <  i <  

j  <  n} satisfying th e  linear constrain  B S  — T  if and only if there  exists a  positive 

sem idefinite com pletion of the  p a rtia l m atrix

[ I  0 ... 0 S x B*n  ? ... ? \
o i  ... o s 2 b*u  b ; 2 ... ?

(4.25)
0

s z
0 
Q#

B u  B\2 
? B 2l

I  S n -Bjn B 2n
s*  s * s  r ;  r 2*

Bln Ti I  0
B 2n T 2 0 I

K
t ;
0
0

V ? ? ... B nn Tn 0 0 ... /  /

As it is known, the  existence of a  positive sem idefinite com pletion of (4.25) is equiva­

lent to th e  positive sem idefiniteness of the principal subm atrices of (4.25) form ed w ith 

specified entries. This la tte r  condition is equivalent to  (4.23). □

Let us exam ine th e  2 — by — 2 case a  little  further, i.e.,

( t  2 ; ) ( S ) - ( S )
T he necessary and sufficient conditions (4.23) for this case reduce to

(4.27) +  B \ 2S 2 =  T\, || ( B \ \  B \ 2 ) || <  1
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and

(a 9 o\ (  I  ~  B^2B i 2 ~  B22B22 S2 — Bf2Ti — B22T2 ^ >  n
{ > v s ;  -  t * b  12 -  t ; b 22 STSi +  s ; s 2 -  -  t ; t 2 )  -

A ssum e th a t (4.27) and (4.28) are satisfied. Sim ilar to Section 4.2, le t G\ : Tii —> ^ b ' 2 

and G2 : 2>b12 —> /C2 be contractions such th a t

(4.29) B u  =  D b i7G \ , B 22 =  G2Db 12•

Any solution of the constrained problem  (4.26) is in particu la r a solution of the uncon­

strained  problem  (the lower triangu lar analogue (4.11)), and  therefore we m ust have 

th a t  (use th e  analogue of (4.12))

(4.30) B 21 =  —G 2B 12G 1 +  D g jT D g j,

in which T : Vq^ —> Vg> is some contraction. T he  equation B 21S 1 + B 22S 2 = T2 implies

th a t T is uniquely defined on ^ { D g^S x) by

(4.31) D g^T D g^S i := T 2 — B 2 2S 2 -{■ G 2B i 2G iS i .

We define To : T>g1 —> T>g’ to  be th e  contraction defined on 'R{D g1S \)  as above, and  0 

on the  orthogonal com plem ent, i.e.,

(4.32) To \ V a i e K { D GlS 1) = 0

We let B $  denote the  corresponding choice for jB2i, th a t is,

(4.33) Bg> = - g 2b ;2g , +  A ,; r„Bo,.

We shall refer to

Q .x f  B n  B 1 2  \

( } V B™  B 22 )

as the  central completion of problem  (4.26).
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In the  n  — by — n  problem  (4.5) (assum ing conditions (4.23) are m et) we construct 

step  by step  th e  central com pletion of (4.5) as follows. S ta r t by m aking th e  central 

com pletion of the  2 — by — 2 problem

(4.35)
B u  B i  2 

? B 22

Bln
B2n

f  S i  \
S2 

\ S n J

Ti
T2

and obtain in th is way B $ .  C ontinue by induction and ob ta in  a t step p, 1 < p < n  — 1, 

, Bp°p_i by taking the  central com pletion of the 2  — by — 2  problemB (0)13pi »

/  B u

(4.36)
n(°)
° v - i ,p B p J i lP- i  B p- i tP • • • B p- i t„

? B Pp ■ • • B pn J

B 1 p B m  \

\
\

S’1 \
: ( Tl \

Sp-i
Sp ■a 

J 1

•
\  T P J

Sn J

T he final resu lt B q of th is  process is th e  central completion of th e  problem  (4.5). T he  

central com pletion is independent of procedure (see [1]).

L e m m a  4 . 5 .  Let Bo be a contractive completion o f  ( f .5 ) .  Then Bq is the central 

completion o f  (4 .5) i f  and only i f

I  I S B *0

(4.37) S * s * s T*
V  Bq T I

is the central completion o f  the positive semidefinite completion problem (4 -8 ).

Proof. By the  inheritance principle and th e  way the cen tra l com pletion is defined 

it suffices to  prove the lem m a in the 2 — b y — 2 case. Take an  arb itrary  contractive com ­

pletion B  of (4.26), corresponding to  th e  p aram eter V in (4.30), say. T h e  lower-upper 

Cholesky factorization of th e  corresponding positive sem idefinite com pletion problem  is 

given by

/  I s B*
(4.38) v v =  s * s * s X**

V B T I
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in which

/  I  S  B*
(4.39) V =  I 0 0 0

\  0 0 $*

and <E> is lower triangular such th a t I  — B B *  =  $ $ * . It is straightforw ard to  check th a t

(4 40) #  =  (  D b ^ D g - 0 \
[ } V - G 2B 12D q X -  D g -T G I D g -D v. J •

Since for T =  r 0 the operato r D is m axim al am ong all T satisfying (4.31), the  lem m a 

follows from th e  equivalence of i) and  ii) in Theorem  3.9. □

T H E O R E M  4 .6 . Let Bo be the central completion o f  the linearly constrained con­

tractive completion problem (4-5) (for which the conditions (4-23) are satisfied). Let

p : H i  © H 2 -> f t( (5 * 5  -  T * T )1!2) be such that

(4.41) (5*5  -  T * T ) l/2p =  S*D 2Bo,

and  $  and $  lower triangulars such that

(4.42) W  = I - p * p - B Z B 0

and

(4.43) $ $ *  =  / -  B qB * .

Consider the contraction : T>b0 —> 7^ (^ ) and the unitary u>2 : 7£($*) —> T>b • with the 

properties

(4.44) $  =  û D bo 

and

(4.45) $  =  D B5lo2 

Finally, define

(4.46) r  =  - ujxB qUJ2.
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Then there exists an one-to-one correspondence between the se t o f  all contractive so­

lutions o f the problem (4-5) and the set o f  all strictly lower triangular contractions 

G : TZ(^) —► given by

(4.47) V (G ) = B o - $ ( I  + G t ) - 1G'$

Moreover, V (G )  is a co-isometry i f  and only i f  G  is a co-isometry and V (G )  is an 

isom etry i f  and only i f S * S  — T * T  and G  is an isometry.

T he decom positions of 7£($*) and 7£('Ef) are sim ply given by

n ¥ ] =

Proof. We shall ob ta in  our resu lts by applying Theorem  3.10 for th e  positive 

sem idefinite com pletion problem  (4.25). S traightforw ard com putation  yield th a t

( J  S  B*0 \
(4.48) Ve -  0 0 0

\  o o /
and

/  $  0 0 \
(4.49) W c =  p  (S * S  -  T*jT)1/2 0

\ B o  . T  I )

We rem ark here th a t the rela tion

(4.50) S * S  -  T * T  =  S*D 2BoS  > S * D 4BoS

gives th e  existence of the contraction p w ith  (4.41).

Now we have to  determ ine the u n ita ry  U =  ( t / , j ) f j=1 so th a t U W C = Vc. N ote th a t 

th e  existence of u>i and u>2 is assured by th e  relations (4.43) and  (4.43). A n im m ediate 

com putation  shows th a t

/  p* B* \
U =  I 0 0 0

\  - u '2B qlo\  )
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is un ita ry  w ith

S ubstitu ting  these d a ta  in the  first equality  of (3.18) gives

/  0 0 G* \  ( I  S  V(G)* \
(4.51) T (  I 0 0 0 I ) =  ( S* S * S  T* ) ,

\  0 0 0 )  \  V ( G ) T  Q(G) )

w ith V {G )  given by (4.47) and

(4.52) I  =  Q (G) = V (G )V (G )*  +  $ ( /  +  G t )~1{I  -  G G *)(I  +  G r ) - 1**

T he first part of the  theorem  now follows from (4.51) and Lem m a 4.3. Further,

(4.52) im plies th a t V{G )  is a  co-isom etry if and only if G  is.

If th e  contractive solution V ( G ) to  th e  constrained problem  (4.5) is isom etric, then 

clearly we m ust have th a t S*S  =  T * T  and thus p — 0. In  th is case,

/  ® 0 0 \
W c = \  0 0 0 .

\ B o  T  I  J

Using th e  second inequality in (3.18) in th is special case, we ob ta in  th a t

/  0 0 G * \  (  Q (G ) S  V(G)* \
(4.53) T {  0 0 0 ) =  5* S * S  T*

\  0 0 0 /  V  V{G ) T  I  J
in which

(4.54) I  = Q (G)  =  V ( G Y V ( G )  +  $ * ( /  +  G t ) ~ \ I  -  GTG){I  +  G r )* -1^ .

Relation (4.54) im plies th a t w hen S*S  =  T * T , th e  spaces T>v (g) and  T>a have th e  sam e 

dim ensions and thus V (G )  is isom etric if and  only if G  is. This finishes th e  proof. □ 

In th e  2 — by — 2 case ano ther param etrization  was derived in  [6].

REMARK 4.7. By Theorem  4.6 we can reduce the  existence of a  co-isom etric com­

pletion of the  problem  (4.5) to  th e  existence of a  stric tly  lower triangu lar co-isom etry
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acting between 7£(\P) and 7£(4>*). Also, w hen S * S  =  T * T , th e  existence of a  isom etric 

com pletion of th e  problem  (4.5) reduces to  the  existence of a s tric tly  lower triangu lar 

isom etry acting between TZ(^) and 7£(3>*).

REMARK 4.8. T here exists a  unique solution to  (4.5) if and  only if 0 is th e  only 

s tric tly  lower triangular contraction acting  7£(\1/) —> 7£(<I>*). T h is can be transla ted  in 

the following. If i0 denotes th e  m inim al index for which ^  0, then th e re  exists a  

unique solution if and only if $kk =  0 for k  =  z0 +  1, ... ,n .

REMARK 4.9. The upper triangu larity  of r  characterizes th e  central com pletion. 

For th is  one can simply use Theorem  3.9 and Lem m a 4.5. Also the m axim ality  of 

•,•$,*•)£_! or d i a g ^ ^ u ) ^  characterizes the  central com pletion.

For a  fu rther analysis in th e  2 — by — 2 case we refer to  [6],
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C H A PT E R  V  
D E T E R M IN A N T  FORM ULAE

T he results of this chap ter are applications and extensions of the  results in  the 

previous chapters. T he aim  of th is chapter is to  prove determ inan t form ulae for m atrices 

with sparse inverses. We also ob ta in  a form ula in term s of some ’’free” param eters for 

the determ inan t of an a rb itra ry  positive definite com pletion of a  p artia l positive m atrix  

with a  chordal associated graph. Since we deal w ith determ inan t formulae, all the 

involved m atrices are assumed to  be scalar.

In Section 5.1, a determ inan t formula in term s of th e  determ inan ts of some key prin­

cipal m inors is ob ta ined  for m atrices w ith th e  property  th a t  their inverse has a  chordal 

associated graph. We prove th a t after a cancellation process our form ula leads to  a  de­

te rm inan t form ula proved earlier in [11]. Also, an algorithm ic m ethod of constructing 

m inim al vertex separators for chordal graphs is presented.

In Section 5.2 th e  results of Section 5.1 are generalized for m atrices w ith  non- 

sym m etric nonzero-pattern  of the ir inverse. Thus, based on the  connection between 

G aussian elim ination and graph  theory po in ted  out in  [37], a  determ inan t form ula is 

obtained  for m atrices with the  property  th a t  their inverse has a  d irected  graph w ith  a 

perfect edge elim ination scheme. As consequence, we ob ta in  a  form ula proved in  [12]. 

N ext, a  counterexam ple to  a  conjecture of [12] is presented which was found by the 

m ethod developed in this section.

In  Section 5.3 we follow [5] to  fu rther study  positive definite com pletions of partia l

positive m atrices w ith  chordal associated graphs. A form ula for th e  determ inan t of an

arb itra ry  com pletion in term s of the param eters along a  chordal sequence in troduced
84
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in Section 1.3 is derived. As application we ob ta in  a  proof of a  conjecture s ta ted  in  [48] 

concerning an inheritance principle for chordal graphs, generalizing a  result for band  

m atrices in [25]. T he conjecture was independently  proved by different m ethods in  [13]. 

Finally, ano ther variant of the  inheritance principle is presented by th e  m eans of a  graph 

theoretical resu lt of [60].

5.1 Determinant Formulae for Matrices with Chordal Inverses

U H = ( c  d )  is a  block m atrix  w ith  A  invertible, then  as a  consequence of 

(1.2) we have tha t:

(5.1) de t{D - C A - ' B )  =  d£ tf  

We present our first determ inan t form ula.

T H E O R E M  5 .1 . Let G  =  (V, J5) be a chordal graph and a  =  [ui,...,t>n] a perfect 

scheme fo r  G. Denote

(5.2) Sj =  {ufc G A d j(v j) \k  > j }

fo r  j  =  l , . . . , n .  I f  R  is an invertible m atrix with i?-1 €  Dg and each o f  the submatrices 

R{Sj)> j  =  l , - - - ,n  is invertible, then (with the convention detR(§) = \ )

(5.3) d e t R = f [  u 5 ‘ >
J t= l

detR (Sk)

Proof W e can apply the  results of Corollary 2.3 for th e  perfect schem e a  also, since 

if we reorder the  rows and colums of R  by th e  ordering of a ,  [1, ...,n ] becom es a  perfect 

scheme. T hus, in the hypothesis of th e  theorem , since R  is invertible, i t  follows th a t  all 

th e  subm atrices 12({vfc} U Sk) are invertible and

n
(5.4) d e tR  =  detV.

j=i
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in  w hich V ~ x is th e  Schur com plem ent of R (S j)  in  R ({ v j}  U S j) .  T hus (5.4) im plies

(5.3) v ia  (5.1). □

In  th e  p ap er [11] it is proved th a t if G  is chordal, T  =  ( V (T ), E (T ) )  is a  tree  of G , 

R  is invertib le w ith  R ~ x G £Ig , then

(5.5) d e tR  =  n v e v m 1 ^ ^ )n v ,
n{vi,v2}g£;(r) de tR (V i  n  V2)

provided  th a t th e  term s of th e  denom inator are nonzero.

W e next p resen t how form ula (5.5) can be o b ta ined  from  (5.3).

PROPOSITION 5 .2 .  For any perfect scheme a  =  [v i , . . . ,u n] a n d tr e e T  — (V (T ) ,  E ( T ) )  

o f  G  the form ula  (5.5) can be obtained fro m  (5.3) by cancellation.

Proof. T h e  proposition is proven by induction  on n , th e  num ber of vertices of G. 

For n  =  1 it is obvious. Suppose now th a t  T '  =  (V (T ') ,  E ( T ') )  is a  tree  of th e  graph 

G{V2t...iVn). A ssum e th a t

. . i  d e tM ({ v k } U Sk) _  IIiv ev (ro  d e tM ( W )
{ ’ } W  d e t M ( S k) ~  U{w,w}eE(T) d e t M ( W D W ' )

T h ere  are two possibilities:

A. T he clique S i  is n o t m axim al in  G{v2l...|V„}. T hen  a  tree  T  =  ( V ( T ) ,  E ( T ) )  can 

be  ob ta ined  by  adding to  V ( T ' )  a  new vertex corresponding to  {ui} U S i  and  a  new 

edge joining th is  vertex w ith  th e  vertex  in V (T ')  corresponding to  a  m axim al clique of 

G{v2 ,...,vn} con tain ing  Si.

T hus

I W v c r )  d e tM ( W )  _  d e tM ({ v i}  U <Si) ITivevtT') d e t M ( W )  
ri{w,iv'}e£:(r) d e t M ( W  D W ')  d e tM (S i )  II{w,w'}e£:(T') d e t M ( W  fl W ')

an d  th e  equality  is proved for G  w ithou t any new cancellation.

B. T he clique S i is m axim al in G{V2 „„}. A tree  T  =  (V ( T ) , E ( T )) of G can be

ob ta in ed  from  T '  by renam ing the  vertex  corresponding to  S i by {ui} U S i-

T hus, in th e  product

d e t M ( { v i} U S i)  i~r d e tM ({v k }  U Sk) 
d e tM (S i )  l } 2 d e tM (S k )
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th e  term  d c tM (S \ )  will he cancelled. T he right m em ber of (5.6) afte r m ultip lication  

w ith and cancellation of d e t M ( S 1) becom es * T he

denom inator of this la tte r  expression coincides w ith  th e  denom inator of (5.5) since V\ 

is contained in a  unique m axim al clique of V.  T h is  com pletes th e  proof. 0

We next illu stra te  th e  result of th e  above proposition w ith  a sim ple exam ple. Con­

sider G  to be the  graph in Fig. XIII

Figure XIII

with m axim al cliques C\ =  {1 ,2 ,3} , 62  =  {3,4}, C3 =  {3,5} and tree  C \ — C2 — C3. 

C onsider the  perfect schem e a  =  [1 ,2 ,3 ,4 ,5 ] for G. T hen for any m a trix  R  €  f la  we 

have (by assum ing th a t th e  denom inators are nonzero):

A  de tR ({vk}  U Sk) _  
i i  d e tR (S k)

d e l R { { \ , 2,3}) d e tR ({ 2 ,3}) d e t R { { \ A } )  d e tR ({ 3 ,5}) _
d e tR {{2 ,3 } )  detR{{  3}) d e ^ ({ 3 } )  d e ^ ( { 5 } )  U J ] , _

_ d e tR iC ^ d e tR jC ^ d e tR jC a )
~  delR{C i  n  C 2)de tR {C 2 fl C3) '

In [13], Theorem  3.5 it is proved th a t for any tree  T  of G, th e  set of cliques appearing 

in th e  denom inator of (5.5) is the  se t of m inim al vertex separators of th e  graph G. 

From Proposition 5.2, it follows th a t for any perfect schem e a  =  [u i,...,v „] of G, in 

the  denom inator of (5.5) appear the  cliques of th e  form 5,- which are no t m axim al in

G{Vl+i T h e  following result can be viewed as a consequence of P roposition  5.2

and Theorem  3.5 of [13] b u t it can also be proved directly. I t  represents an  algorithm ic 

m ethod of constructing  th e  m inim al vertex  separators of a  chordal graph.
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P R O P O S I T I O N  5 .3 . Let G  =  ( V , E )  be a chordal graph and a  — [wx,...,un] a perfect 

scheme fo r  G. A subset S  C V  is a m in im al vertex separator o fG  i f  and only i f  S  equals 

some S i(i  < n) that is not a maximal clique in C7{Vi+1

P roo f  The proposition is proven by induction on th e  card inality  of V. For n  <  3 it 

is im m ediate. A ssum e th a t it holds for G' =  G{V2

Since v\ is sim plicial any m inim al Vk — vm separato r is th e  sam e in G' and  G  for 

any k , m  >  2. If S i  is not m axim al in G' then the re  exists a  vertex  vm, m  > 2, w ith 

S\ C A d j(v m), so S i  is a m inim al vi — vm separator. Conversely, if S i  is a m inim al vertex 

separato r in G, by E x .12 page 102 from [37], Si  is no t m axim al in  G'. A fter removing 

any Vi — Vk separator S  from G, S  ^  S i ,  th e  connected com ponent of Vi m ust contain a  

vertex ur , r  >  2. Since Vi is sim plicial, S  m ust also be a  m inim al v r — Vk separato r and 

by the  assum ption m ade for G ',  S  is of th e  desired form . So th e  s ta tem en t is com pletely 

proved. □

5.2 Determinant Formulae and Nonsymmetric Gaussian Elimination

As in C hapter II, Section 5.2 will be a  generalization of Section 5.1 for nonsym m etric 

nonzero-patterns. T he d irected  graph m odel for th e  nonsym m etric G aussian perfect 

elim ination is the  basic tool.

Let H  = (V,iF)  be a  d irected  graph and  (j) =  [(® i,j/i),...,(a ;n,r/n)] a  perfect edge 

elim ination scheme for H .  Consider an invertib le m a trix  R  such th a t  R ~ l €  t in -  Recall 

th a t under these conditions R _1 can be reduced by perfect G aussian elim ination. This 

means th a t choosing the en tries on the  positions (a?i, y i ) ,..., (x n, yn) to ac t as pivots, 

R ~ l will be reduced to  a m a trix  having only one nonzero entry on each row and  column 

w ithout ever changing during th is process a  zero en try  to  a  nonzero.

Let denote:

X k  = {l/j €  A d j (x h)\j  > fc}
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(5.7) Yk =  {x j  €  A d j 1(yk)\j > k}

8 9

Zk = {y i ,  . . . , 2 / f c - x }  u  {yj $  A d j ( x k) \j  > k}

Uk =  U { x j  A d j~ 1(yk)\j  > k}

for fc =  1, T hus X  =  {a:*} U Yk U Uk and  Y  =  {?/*} U X k  U Zk  for k — 1, . . . ,n .

T hen  we have:

LEMMA 5.4 . In the above conditions, after reducing the m atrix  i?-1 by Gaussian 

elimination by succesively choosing the entries on the positions  (®i, y i ) , ..., ( x n, yn) to 

act as pivots, we obtain a matrix D  =  (d ,j)i< ,j< „  with the only nonzero entries dXkVk, 

k =  1, . . . ,n  given by the formulae

d e tR - \ { x k } U o L k \{ y k } U Z k )
{ d*ky k - K  L) de tR ~ 1( a k \Zk)

=  l '_ T P * + i* d e t R r l ( { x k}  U Uk\{yk} u  Pk)
1 L) detR-'(U k\f3k)

provided that the terms o f  the denominators are nonzero, in which c*k =  {a?i , . . . ,  rcjk_i} U 

a'ky Pk =  {2/i,-,2/fc-i} U fi'k with a'k C { zfc+i,.. . ,a :n}, P'k C {yk+i, . . . ,y n} arbitrary sets  

with the property cardak  =  cardZk and cardfik = cardUk, Sk and tk (respective s'k 

and t'k)  are the indices o f  the rows and columns o f  the entry (Xk, yk) in the matrix  

R - ' ^ X k )  U afc|{2/fc} U Z k) (respective R ^ ^ X k }  U Uk\{yk}  U /?*)).

P roo f  Since Z k =  {j/i, . . . ,y k - i }  U {yj £  A d j(xk ) \ j  > k} ,  a fte r perform ing partia l 

G aussian elim ination on the m a trix  R ~ x({xk}  U afc|{y*} U Zk), (in  which we keep the 

sam e indices as in .ft-1 ) by choosing the  en tries on th e  positions (® i,y i) , ..., (X k - i , y k - \ ) 

to  act as pivots, we obtain  a  m a trix  having on the rows Xi, .. . ,Xk-\  and  on th e  columns 

y i , ..., y k - 1 exactly one nonzero en try  and since no zero en try  is changed into a  nonzero, 

all th e  entries on th e  positions (Xk,ys) w ith  y s €  {yj fi A d j{xk)\j  >  fc} are zero.

Perform ing th e  sam e operations on th e  m atrix  R ~ 1{ak\Zk) we obtain  th e  same 

m atrix  as before b u t w ithout its  Xk row an d  yk colum n. D ividing th e  determ inants of
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these two m atrices we obtain  th e  first equality  in (5.8). T he  second one can be obtained 

in a sim ilar way. □

THEOREM 5 .5 .  The elements dXkyk are given by the formulae

d e tR { X k \'ik)
(5.9)

(_1 y'k+i'k+xk+vk

d e tR ({y k} U -Xjfc|{a:fc} U 7*) 

detR(6k \Yk)
d e tR ({ y k} U U Yk)

in which 7 k C {z/.+1, ..., a:n} and 6k C {y k+i, . . . ,yn} are arbitrary sets with card^k =  

cardX k and card6k — cardYk .

Proof. By th e  Jacobi iden tity  (see e.g. [39] p.21) for any a , f3 C { l , . . . ,n }  w ith 

carda — card/3,

xtt d e tR (C a \Cp)
d e tR - \a \ ( 3 )  =  ( - 1 )1

detR

in which C a and Cp are th e  com plem entary  sets of a  and /3 in  { l , . . . ,n }  and  u 

£ ieo i +  Yljep 3- T hus the form ulae (5.9) follow directly  from  (5.8). □ 

COROLLARY 5 .6 . The determinant o f  R  is given by the form ula

sgnO
(5.10) d e tR  =

n , = l  dXkyk

in which dXkVk are given by (5.9) and 0 is the permutation in which yk corresponds to

x k .

We illu stra te  th e  above resu lts w ith an  exam ple. Let

R  =

(  3 /5  - 4 / 5  - 4 / 5  2 /5  \
1/5 2 /5  2 /5  - 1 / 5
2 /5  - 1 / 5  - 4 / 5  - 2 / 5

V - 1 / 5  - 2 / 5  - 7 / 5  6 /5

with

R - 1 =

(  1 2 0 0 \
0 2 - 1 0

- 1 0  2 1
\  - 1  1 2 2 )
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Since only th e  com plete graph is an  undirected  graph  of i?_1, applying th e  results of 

Section 5.1, we are only able to  get th e  form ula d e tR  =  de tR .  The directed  graph 

H  =  (V, T )  in  Fig. V is a  d irected g raph  of R ~ l and  (j> =  [(3 ,4), (1 ,1), (2 ,2 ), (4,3)] is a  

perfect edge elim ination scheme for H .

Consider th e  corresponding reduction  of i?_1;

/  1 2 0 0 \
0 2 - 1 0

- 1 0  2 1
\ - 1  1 2 2 )

/  1 2 0 0 \  
0 2 - 1 0  
0 0 0 1 

V 1 1 - 2  0 )

I  1 0 0 0 \
0 2 - 1 0  
0 0 0 1 

V 1 - 1  —2 0 /

/  1 0 
0 2 
0 0 

V I  0

0 0 
0 0 
0 1 

-5/2 0

In this case A i =  {1,3}. Since x \  =  3 for 71 we have the  possibilities {1 ,2}, {1,4} and 

{2,4}, thus

d e tR ({  1 ,3} |{1 ,2}) _ d e ^ ( { l ,3 } |{ ! ,4 } )  d e ^ ( { l ,3 } |{ 2 ,4 } )
34 d e * i? ({ l,3 ,4 } |{ l,2 ,3 } )  d e ^ ( { l ,3 ,4 } )  d e ^ ( { l ,3 ,4 } |{ 2 ,3 ,4 } )

Since Y\ =  {4} and y\ =  4 for 61 we have th e  possibilities {1}, {2} and {3} and  so

C?34 = r\A r-24 r3 4
detR ({  1 ,4} |{3 ,4}) d e tR ({  2 ,4} |{3 ,4})

Since X 2 =  {2}, I 3 =  {4}, for d u  we have the  form ulae

detR{{  3 ,4})
=  1 .

d n  =
V24 T22 ^34

d e tR {{ \ ,  2} j{1,4}) detR{{  1 ,2}) d e ^ ( { l ,3 } |{ l ,4 }

Since =  {3}, Y$ =  {4}, we have

=  1 .

d2 2 =
^34

and  finally

d e i i2({2 ,3 } |{ 2 ,4})

^43 =  —  =  —r  •

=  2,

^34 2

In this way detR  can be obtained by com puting only 2 — by — 2 determ inants.

We apply th e  previous results to  ob ta in  th e  m ain  result of [12]. C onsider the  d i­

rected  graph H  =  (V, F )  allowed by th e  oriented tree  (T, D)  in which T  =  ( V (T ), E (T ) )  

and  V (T )  =  {14, W hen R  €  f Ih  it is said th a t  R  has a nonzero-pattern allowed
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by the pa ir  (T , D ). Consider also the chordal graph G  = (V ,E ) ,  th e  in tersection graph 

of r .

We construct by the  aid of T  a  perfect schem e a  =  [t>i,...,un] for G  as follows. 

Choose first an extrem al node set €  V ( T ). T hen  there  exists a  sim plicial vertex  

i>i £ Vs. If Vs — {uj} is a m axim al clique of G{V2t...)Vny th en  a  tree  T '  for G{V2r..)Vny can 

be ob ta ined  by replacing Vs by Vs — {ui} in  T .  If Vs — {ui} is no t m axim al in 

then T '  can be obta ined  by deleting Va and  th e  unique edge joining Vs in  T .  Let D '  

be th e  o rien tation  induced by D  on T '.  C ontinue now by choosing 0 2  from  an  ex trem al 

node set of T ',  and  so on, u n til we ob ta in  th e  perfect scheme cr =  [ i > i , u n] of G.

L e m m a  5 . 7 .  I f  a  =  [ u i , . . . , u n] is constructed as above, then<j>=  [ ( u i , u i ) , . . . , ( u „ , v n)] 

is a perfect edge elimination scheme f o r  H .

Proof. We first prove th a t  (i>i,i>i) is a  bisim plicial edge. Consider ( t > i , u ) , ( u , u i )  6  

T .  Since v £  Vs and Vs is an  extrem al*node set of T , we have th a t u €  Vs or v  €  Va. 

A ssum e th a t u  €  Va. If v  6  Vs it is clear th a t (u ,u )  €  T .  If v  € Vt, t  ^  s since 

(u i,u )  £ T  there  exists a  p a th  in D  from  Va to  Vt and since u  £  Va we have th a t  

(u ,v )  £  T  and (v i,« i)  is bisim plicial. T h e  sam e holds in th e  case when u  £  Vt , t  ^  s. 

Using th e  oriented tree (T ' , D f) we ob ta in  th a t (02, 02) is a  bisim plicial edge in th e  

induced directed graph J/{V2,...,Vn}- We continue th is operation un til all th e  vertices are 

elim inated. □

In th e  particu la r case of th e  d irected  graph  H  and perfect edge elim ination schem e 

(j> constructed  above, we have th a t X k  =  S* or Yk =  Sk, for k  =  1 , . . . ,n , in which Sk  is 

given by (5.2) for G  and cr, X k  and Yk a re  given by (5.7) for H , Xk =  Ok and  yk = Ok.

By choosing 7 k =  Sk respective Sk =  Sk in th e  form ula (5.9) and replacing th is in

(5.10), Theorem  5.5 has the  th e  following corollary:

COROLLARY 5 . 8 .  Let R  be an invertible m atrix  such that i ts  inverse has a nonzero-  

pattern  allowed by the pa ir  ( T , D ) .  Then by the previous notation

/ r 11 \ J . f n  TT d e tM ({ v k} U S k )
(5'U) detR ~  11  delM(Sk)
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provided that the terms o f  the denominator are nonzero.

A fter a  cancellation as in Proposition  5.2, we obtain

COROLLARY 5 . 9 .  In  the above conditions the following form ula holds:

riv6V (r) d e tR (V )
( 5 .1 2 )  d e tR  =

ri{vi,V2}e£;(:r) detR (V \  fl 14)

The above result was first ob ta ined  in [12].

Let. us n ex t consider th e  index sets V i, . . . ,V m C  { l , . . . ,n }  =  V  having th e  property

(5.13) U£U Vk = V

We in troduce some no ta tion  and  definitions.

If V i,..., Vm C V  are index sets satisfying (5.13) and Z  C  V  x F , we say th a t Z  lies 

outside the profile o f 11, . . . ,  Vm if Z  fl [U^L1(Vfc x  14)] =  0.

If Z  C V  x V ,  the  n — by — n  m a trix  M  is said to  have a  nonzero-pattern allowed 

by Z  if m rs =  0 for all (r , s) €  Z .  Let A z  be th e  set of all n  — by — n  m atrices w ith 

nonzero-pattern  allowed by Z.  Given an oriented tree (T , D ) le t Z { T , D ) be the  set 

of all (r, s) 6  V  x  V  satisfying neither i) nor ii) of the definition in Section 1.2. Let 

V i , . . . ,Vm C V  be index sets satisfying (5.13) and  le t 7 i and T-i be d is tinc t trees w ith  

node sets V i,...,I4 i. T hen  I i  and T 2 are said to  be equivalent if the tw o collections 

{Vi D Vj : {Vi, Vj)  € E (T i) }  and {Vi fl Vj : {V -,^}  €  E{T2)} a re  identical.

The following was conjectured in  [12]:

C O N J E C T U R E  Let V i,...,I4 i C  V  be index sets satisfying (5.13) and  T  a  tree  

w ith  node set 14, •••, Vm. Let Z  C V  x  V  lie outside the  profile of V i,..., Vm and  assum e 

th a t
m

(5.14) n  detR{  14) =  d e tR  J J  det(Vi fl Vj)
* = 1  {Vi,Vj}eE{T)

for all nonsingular m atrices R  for which R ~ l €  A z • Then T  satisfies th e  intersection 

p roperty  (1.14). Furtherm ore there is a  tree T '  equivalent to  T  and an orien tation  D  

on T '  such th a t  Z  C Z ( T ' ,D ) .
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It was proved in [12] th a t in th is  case T  satisfies th e  intersection property  (see 

Section 1.2). We next give a  counterexam ple to  th e  conjecture.

For n  =  6, consider Vx — {1,2}, V2 =  {2 ,3 ,4} , V3 =  {2 ,4 ,5} , V4 =  {2,5 ,6} and 

tlje following tree  denoted by T:

Figure XIV

Let Z  =  {(3 ,1 ), (3 ,6), (4 ,1 ), (4 ,6 ), (5 ,3 ), (6 ,1 ), (6 ,3 )} . Let consider an invertible m atrix

R  w ith  R ~ x €  A z -  Then R ~ x has th e  following nonzero-pattern :

/  A" X  X  X  X  X  \
X  X  X  X  X  X
0 X  X  X  X  0
0 X  X  X X  0
0 X  - 0 X X  X

V 0 X  0 X X X )

T he relation

‘i
(5.15) \ 1  de lR (V k) = {detR) d e tR ( V in V j )

*=1 {v„y,}6̂ (T)
is equivalent by the Jacobi identity  to:

detB{{  1 ,3 ,4 ,5 , Q })detB({  1 ,3 ,5 ,6 } ) d e ^ ( { l ,  3 ,4 ,6 } ) =

=  delli{  {3,'1,5 , C>}dcLB{{1,5, ( i ) )d c t l i{{1 ,3 ,6} )dclJ3{{1 ,3 ,4}) 

lor every B  6  A z -  Since b3 1  =  b,n =  b51 =  Z>61 =  0, this re lation is equivalent to

(/t:l/i({3 ,5 ,(i} )dc /y j({3 ,4 ,6} ) =  d e /iy ({5 ,6 } )d e^ ({3 ,6 } )d eZ B ({ 3 ,4 } )

Since b52 =  6U3 =  0, we have to  prove th a t

kadeLB{{  3 ,4 ,6 } ) =  d c lB ( { 3 ,6})deLB({3,4}).

T h e  last relation is true since by b36 =  b,|6 =  0, d e tB ( { 3 ,4 ,6 } ) =  beedetB({^,A})  and
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by b3G = bG3 =  0, delB({3 ,& })  =  b33b66.

Thus (5.15) is verified for any Ft w ith R ~ l €  A z-

T here are the following two equivalent trees to T , denoted T '  and  T":

Figure XV

We prove th a t th e re  is no o rien tation  on any of th e  trees T ,  T '  or T "  such th a t its 

set of m andatory  zeros is included in Z .  Let assum e th a t there is an orien tation  on 

one of these trees such th a t the  corresponding set of m andato ry  zeros is included in Z.  

Since (3 ,5 ) Z  and (6 ,4 ) ^  X, on the sub tree  corresponding to  th e  node se t V2, V3 

and Vi we m ust have th e  following orientation:

G W 5 > - ©
Figure XVI

Since (k,  1) 6 Z  for k > 3, th e  unique edge involving Vj m ust have the  o rien tation  

Vi —» Vt. T hus we m ay have the  following orientations D , D '  and D "  on T , T ' respective

rptt.

— © )
Figure XVII

B ut (1 ,6 ) G Z ( T , D ), (1 ,3 ) £ Z ( T ,D ') ,  and so none of them  is included in Z  and 

the conjecture is not true.
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5.3 Inheritance Principles for Chordal Graphs

In th is  section we obtain  a  form ula for the  determ inan t of each positive definite 

com pletion of a partia l positive m atrix  w ith  a  chordal graph  in te rm s of the  param eters 

along a  fixed chordal sequence and  answer a  conjecture of [48] concerning an inheritance 

principle for chordal graphs. A nother varian t of the inheritance principle is presented.

Let R  be a p artia l positive m a trix  w ith a  chordal g raph  G =  (V, E ) .  I t was proved in 

[38] th a t under th is circum stances, the unique determ inan t m axim azing positive definite 

com pletion F0 verifies the condition Fq 1 €  0,q , i.e. (.Flf1)# =  0 w henever ( i , j )  ^  E .  

Thus, given any tree  T  =  ( V ( T ) ,  E (T ) )  and  perfect schem e of G, as consequence of the 

results in  Section 5.1, we have

C O R O L L A R Y  5 .1 0 . The m axim um  o f  the determinants o f  all positive definite com­

pletions o f  R  denoted D (R ) is given by the formulae

15161 D (R )  -  n v g v c r )  d e tR (V )
[ } { ) n W W P 1 ^ n v 2)

and

(5.17) D (R )  =  f l  ietM<-{vb} U S t )
k=l de tM (Sk)

Form ulae (5.16) and (5.17) depend only on the given data. T h e  form ula (5.16) was 

first proved in [42]. A nother form ula for D ( R )  was given in [13].

Before passing to  the  m ain result of th is  section, we discuss a  particu la r exam ple.

E X A M P L E  Take a chordal graph G  =  (V ,E )  w ith  four vertices, and a  partia l 

positive m atrix  R  having G  as associated graph. Take an a rb itra ry  chordal sequence 

Go, G i, . . . , G i  of G  and a positive definite com pletion F  of R.  Let { g ( u j , V j ) } \ t  =  1, , . i )  

be the  param eters of F  along th e  fixed chordal sequence of G .  T hen

t
d e tF  =  J J [1  -  \g(uj,Vj\)2]D (R).

3= 1
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T his form ula can be d irectly  verified for all possible cases. Let us illu s tra te  w ith 

the graph  G  in Fig. XV11I

Figure XVHI

which is the  only graph with four vertices th a t is no t a  proper interval graph.

For th e  considered graph there  exists exactly  one chordal sequence (up to  a  reorder­

ing of th e  vertices) given by E \  =  E  U { (1 ,2 )} , E 2 =  i? iU  { (2 ,4 )} , E 3 =  E 2 U {(3,4)}. 

Let </(2,3), </(2,4), </(3,4) be th e  param eters of F  along this chordal sequence. Using

(1.11) we get

2 d e tF ( { l , 2 ,3 } ) d e t F { {1 ,2 ,4})

=  [1 -  |9(3, 4) H [1 -  | j ( 2, 4) |2] * ( F ( { l ,2, 3})<tefF( { M } )

=  11 -  | 9 ( 3 , 4 ) | 2][1 -  M 2 , 4 ) | 2] [ l  -  |9 ( 2 , 3 ) | 2] < / e i F ( { l , 2 ) ) * i f ( { l , 3 } M e i F ( { l , 4 } ) ,

which is exactly  th e  required form ula.

Now we can s ta te  the  m ain result of th is  section. T he  point of th e  proof is a  sp litting  

process based on the  F ischer-IIadam ard type form ula (1.11). In w hat follows, in the  

case 72 is a  partia l m atrix , G (R )  will denote the  associated graph  of 72.

THEOREM 5 . 1 1 .  ([5]). Let Mo be a partial positive m atrix  with chordal associate  

graph G  =  G (M 0). Let Go, G i , ..., G t be a fixed chordal sequence o f  G.

Consider  a positive definite completion M  o f  Mo, and let { g ( u j , V j ) \ j  =  1 , . . . ,  <} be 

the param eters o f  M  along the fixed chordal sequence. Then the following form ula  holds:

t

(5.18) d e tM  =  J J [ 1  -  \ g ( u j , V j ) \ 2] D ( M 0).

i=i
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Proof. W e prove (5.18) by induction on the  num ber n  of vertices of G. For n < 4 

th e  form ula can be verified directly (see E xam ple above). A ssum e the sta tem en t of 

Theorem  5.11 is true for any partia l positive m a trix  for which th e  associated graph has 

a t most n — 1 vertices.

Fix a  partia l positive m atrix  Mo such th a t G  =  G{M q) has n  vertices. Moreover, 

fix a chordal sequence G  =  Go, G j , ..., Gt =  K n of G  and a  positive definite com pletion 

M  =  {s,-y11 <  i , j  <  n} of Mo. Let { g (u j ,v j ) \ j  =  1 ,.. .,/}  be  th e  param eters of M  

along the fixed chordal sequence. Define for 0 <  m  < t th e  partia l positive m atrices 

M 0(Gm) = { s i j (M 0(Gm)) \ l  < i , j  < n }  by

(5.19) Sij(Mo(Gm))  =  { » % % } £ « f t w ise

O f course, M 0{Go) =  M o , M 0(Gt) =  M , and M  is a positive definite com pletion 

of any M o(Gm), 0 < m  < t. M oreover, Gm is th e  associated graph of M o(Gm), and 

G m, Gm+ i , ..., Gt is a chordal sequence of G m. T he param eters of M ,  viewed as a  positive 

definite com pletion of M 0, along th is  chordal sequence are obviously {g (u j ,V j) \ j  =  

m  +  1,

Now, we get by (1.11),

i i2\ d e tM (V  — { u t} )d e tM (V  — {vt})
(5.20) d e tM  =  (1 -  |S(« „  » ,)P )-------------------------------------------- ' ■

B ut we can show tha t

d e t M ( V - { u t} ) d e t M { V - { v t}) ( ,
(5-21) — d e t M ( v  -  {« ,,« ;} ) -

Indeed, [ut,u<, ( F — {u t, u t})] is a perfect scheme of G*_i, in which th e  order in  V —{ut5 wt} 

is arb itrary , and  (5.21) is a  consequence of Corollary 5.10. From  (5.20) and  (5.21) it 

results th a t

(5.22) d e tM  =  [1 -  |flf(wt ,Ui)|2]D (M o(G t_ i)) .
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Suppose now th a t we have proved th e  form ula

(5.23) d e tM  = [1 -  |£r(ut ,u<)|2]...[l -  \g(uk+1, v k+1\2]D(Mo(Gk)).

for every m  < k < t — 1, in which 0 <  m  < t. We will show th a t th e  sam e form ula 

holds for m  — 1.

Let [ui, ...,u„] be a perfect scheme of Gm- 1- T here are two possibilities.

A. v i ^  u m, vi ^  vm .

In this case, the vertices u m and v m are not sim ultaneously adjacent to  Vi in Gm_ i, 

because vi is simplicial in G m - \ .  As a  first consequence, V\ rem ains sim plicial also in 

G m - 1 and by Theorem  1.6 we find a  perfect scheme [vi,u>2, of G m .

Now, denote by G m ,  0 <  m  < t,  th e  induced graph (Gm){v2,...,«„}• In  particu lar, 

[ u 2 )  • • • ,  u n ] rem ains a  perfect scheme of G m - 1  and [ t w 2 , ..., w n ] rem ains a  perfect scheme of 

G m . M oreover, some of these graph m ay coincide. Taking into account those consecutive 

graphs only once, we ob ta in  a chordal sequence G  =  G o ,  . . . , G t > =  K n-1  of G ,  in which 

G m - 1 and G m  rem ain consecutive, b u t possibly a t o ther positions in th e  sequence. 

D espite this fact, we keep the  sam e no ta tion  for them .
A

F urther, denote by M  th e  principal subm atrix  of M  subord inate  to  {v2, ..., un}- By
A A A  A A

(5.19), M0 =  Mo(G0) is a  partia l positive m a trix  w ith associated graph G. M  can
A

be viewed as a positive definite com pletion of Mo; le t { g ( u j , V j ) \ j  =  be th e

param eters of M  along th e  chordal sequence G o , G i , . . . , G t > .

By the  previous rem ark , { g ( u j , V j ) \ j  =  are th e  param eters of M , as a

positive definite com pletion of M 0(G m), along th e  chordal sequence G m , Gm- i ,  •••, G t >  of 

G m . By the  induction hypothesis,

t
d e tM  =  J I  [i -  M u ^ f t D i M o i G n - t ) ) .

j=m

and

t

d e tM  =  J I
j= m + 1
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as |<7(«j,u.?)| <  1 f° r i  =  we deduce

D(Ma(Gm)) =  [ i  -  ! # ( « „ , t * » ) | a ] D ( J 2 r 0 ( 6 » - i ) ) -

B ut now, th e  main po in t is the following: as ano ther consequence of th e  fact th a t 

u m and  vm are no t sim ultaneously ad jacen t to vi in  G m- 1> th e  unique m axim al clique 

in G  which is no t a clique in G m- 1 is also the  unique m axim al clique in Gm which is
A

not a  clique in G m- 1. In view of the dependence on param eters in T heorem  1.2, this 

m eans th a t

and we obtain th e  formula

(5.24) D (M 0(G m)) =  [1 -  \g(um,v m)\2]D (M 0{Gm- i ) ) .

By Corollary 5.10, the  equation (5.24) can be w ritten  in th e  form

TT <letM({w,}US,)  , ,  m 2 ,  A  dt:lM({v,}U S.)
(5-25) n  i e t M ( s , )  - 11 - i n  d c tM {S t)  •

S—2  3 —2

As [«i, V21 ...,n n] and [ni,io2, ...,tun] are perfect schemes of Gm- 1 and Gm, respectively, 

we m ultiply bo th  sides of (5.25) by

d e tM ({ v i} U A d j(v i)) 
d e tM (A d j(v  j)) ’

and by Corollary 5.10, we ob ta in

(5.26) D (M 0(G m)) =  [1 -  \g(um,v m)\2}D (M 0(Gm- i ) ) .

Equation (5.23) was supposed to  be  tru e  for k  =  m. Using (5.26), we ob ta in  the 

sam e formula (5.23) for th e  required case k  =  m  — 1.

B. By D irac’s Lem m a 1.5, the only possibility is th a t u m and vm a re  th e  only

sim plicial vertices of Gm_i. We show th a t  in this case Gm = K n, so th a t th is  situation

can occur only for m  = t, a  case already covered in (5.22).
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By Lem m a 3 in [38], G m has one m ore m axim al clique which is not a  clique in 

Gm- 1, containing b o th  u m and v m. As um and  vm are sim plicial vertices, th is clique is 

exactly Vm -  {um,u m, A d j a ^  (u m) D A d j a ^  (um)}.

Excepting the  cliques W x =  {um, A d j a ^  (um)} and  W 2 =  {nm, i4djora_1(t;m)}, the  

other m axim al cliques in Gm- 1 rem ain  m axim al cliques in  G m.

Now, we prove th a t it is no t possible for b o th  Wx and  W 2 to  rem ain  m axim al cliques 

in Gm. Indeed, assum ing the  contrary, we use th e  simple rem ark  th a t in  a  chordal graph  

a  vertex is simplicial if and only if it is contained in to  exactly  one m axim al clique, in 

order to  obtain  th a t G m has no simplicial vertex , thus contradicting  th e  chordality  of 

Gm • Consequently, we can suppose th a t W 2 is not a  m axim al clique in  G m (and so, vm 

is also a  simplicial vertex  in Gm ). As the  only clique in  Gm which can contain W 2 is 

Kn, it follows th a t A d jGm_^(vm) C  A d j a ^ i u m ) .

Now, we prove th a t W x is also not a  m axim al clique in  Gm. Suppose it is, so u m is 

not a sim plicial vertex  of Gm. B y D irac’s Lem m a 1.5, we search for a  second sim plicial 

vertex v  of Gm containing v. As W  ^  Vm because v  is no t ad jacent to  vm, it  follows 

th a t v  is also simplicial in Gm- i , a  contradiction, which shows us th a t  e ither G m =  K n 

or W\ is no t a  m axim al clique in G m.

Supposing the  la te r case holds, we get th a t  Ad?Gm_i(«m ) =  A d j a ^ ^ V m ) .  Finally, 

supposing th a t Gm is different from  K n, we search, again by D irac’s Lem m a 1.5 for a  

simplicial vertex v  of Gm, v  ^  Vm . T hen th e  unique m axim al clique in  G m containing 

v was th e  unique m axim al clique in Gm- \  containing v ,  a  contradiction , which shows 

th a t, in any case, Gm = K n.

From  the  analysis of the two cases A and  B it follows th a t the  form ula (5.23) holds 

for any k £  { 0 ,1 ,..., <}. In particu la r, for k  =  0, this is exactly  th e  required form ula

(5.18). □

T he first inheritance (or perm anence) principle was proved in  [25] for th e  band  

m atrices studied in [24]. In [48] th e  relevance of this principle was po in ted  out, and  the  

following result was conjectured, which is now a  consequence of (5.11).
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THEOREM 5 . 1 2 .  F o ra  chordal graph G , every chordal sequence G — G o ,G i , . . . ,G t  =  

K n o f  G has the following inheritance property. For every partial positive matrix Mq 

with G as associate graph, construct a (unique) sequence o f  partial positive matrices 

as follows: M j  is obtained from  M j - i  by completing the (u j ,V j ) entry in such a way  

that its principal submatrix subordinate to Vj is the m axim um  determinant positive def­

inite completion o f  M0(V}_i). Then the last m atrix  M t in the sequence is the m axim um  

determinant positive definite completion o f  Mo.

Proof. C om pleting th e  (uj,Vj)  en try  in th e  partia l positive m atrix  M0(Vj-1) for 

j  =  1 , . . . , t  is exactly th e  com pletion process considered in Theorem  3.1 for the  fixed 

chordal sequence of G  and applied to  th e  m atrix  Mt. Let {g{u j,V j) \ j  =  1, ...,n }  be th e  

param eters of Mt along th e  fixed chordal sequence of G. By (1.10) we have to  choose 

g(uj, Vj) =  0 a t every step  in order to  ob ta in  th e  principal subm atrix  of Mj subord inate 

to  Vj as the  m axim um  determ inan t positive definite com pletion of M o(V j-i). So Mt 

has the  param eters g(u j,  Vj) =  0, j  =  1 ,..., t along th e  fixed chordal sequence of G. On 

th e  o ther hand , by (5.18) in Theorem  5.11, the  m axim um  determ inan t positive definite 

com pletion M° of M o  has th e  param etrs  g ° ( u j , V j )  =  0, j  =  1, . . . , t ,  along th e  sam e fixed 

chordal sequence of G. In o ther words, Mt =  M°. □

A nother variant of th e  inheritance principle can be ob ta ined  using th e  following 

resu lt ([60], Lem m a 2).

L em m a 5 . 1 3 .  Let G  =  (V ,E )  and G' — (V ,E ')  be two chordal graphs with E  C  E 1 

and \E'\ > \E\ +  2, in which \E\ denotes the cardinality o f  E .  Then there exists a 

chordal graph G ” = (V ., E ”) with E  C  E '  C  EP and E  ^  E '  ±  E ”.

Proof. By induction on n  =  |V |. For n =  4 we can sim ply verify th e  s ta tem en t of 

th e  lemma. Suppose it to  be true  for any graph w ith  a t m ost n  — 1 vertices, and le t 

now G  =  (V, E )  and G' =  (V., E')  be w ith  E  C E ’ and \E'\ > \E\ +  2.

Let [v \ ,v2, . ..^ n ]  be a  perfect scheme of G. T here  are two possibilities:

A- G {V2 Vn} ^  G'{V2 Un}. If G {V2 M  =  (V  -  { u i} ,£ )  and G \Vi Vn} =  (V  -

{ui},JS ') then , by induction  there exists a  chordal graph G ” =  (V — { v \ } , E ”) w ith
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E C En C E'. In th e  case Ĝ V2< Vny has only one more edge than  G{„2 we can

take G” =  G '^  Vny  We now construct G” by adding to  V — {ui} the  vertex  Ui and  to

E” all th e  edges in G having Vi as an  endpoint. Taking a  perfect scheme [io2, o f  

G” , rem ark  th a t [ui, uj2, w n] is a  perfect schem e of G” , and  so G ” is a  chordal graph  

satisfying th e  required properties.

B. G{V2 Un} =  G ^ 2 Unj .  In th is  case, by D irac’s Lem m a 1.5 there  exists one m ore

simplicial vertex in G starting  ano ther perfect scheme of G  satisfying condition A. □

F irst, we obtain an  extension of Lenima 4 in  [38].

PROPOSITION 5 .1 4 . Let two chordal graphs G — (V,E) and G' =  (V,E') with E C 

E\ E ^  E' be given. Then there exists a sequence o f  chordal graphs G =  Go, G\,..., G3 =  

G' such that Gj is obtained by adding exactly one edge to Gj-1, fo r  all j  =  l , . . . , s .

Proof. This a consequence of Lem m a 5.13. □

In analogy with th e  case G' =  A'n, a  sequence of chordal graphs satisfying th e  

requirem ent of Proposition 5.13 is called a  chordal sequence connecting G to G'.

Finally, let R! =  (r-j)"J=1 be a  partia l positive m atrix , and  R  =  ( r i j)”j =1 a  partia l 

subm atrix  of R 1, i.e. R  is a  p artia l m atrix  in its tu rn , b u t having m ore unspecified 

entries th a n  R', and r ,j  =  r\j for th e  specified entries. Let G' =  (V, E') and  G =  (V, E) 

be the associated graphs of R' and  R  respectively, which are  supposed to  be chordal. 

Then E C  E' and E ^  E'.

Take a  chordal sequence G  =  Go, G j , ..., Gs =  G' connecting G  to  G ', and le t 

G' =  G o,G '1?....,G ( =  Kn be a  chordal sequence of G'. T hen  G =  G o ,G i,. . . ,G s =  

G ” — G' =  Gq, ...jGJ =  K n is a chordal sequence of G.

Fix a  positive definite com pletion F  of R '.  Of course, F  can also be viewed as a 

positive definite com pletion of R .  So, let { g ' ( u j , v j ) \ j  =  1, ...,<} be th e  param eters of 

F  along th e  chordal sequence G'0,...,G't of G ', and { g ( u j , V j ) \ j  =  l , . . . , s  +  t }  be th e  

param eters of F  along the chordal sequence Go, G i , ..., G 3, G[,..., G't of G. T he nex t 

result establishes th e  connection between D (R )  and D (R ') .
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P r o p o s i t i o n  5 . 1 5 .  With the above notation, the product

f l  [1 -  lsf( « i , ^ ) |2]
j = i

is the same fo r  any chordal sequence connecting G to G' and any positive definite com­

pletion F  o f  R , and

a

(5.27) D ( B )  =  J i l l
i=i

Proof  In view of th e  dependence on th e  param eters in  P roposition 3.2, th e  num bers 

g ( u j ,  Vj ) ,  j  — 1, . . . ,s ,  do not depend on the  chosen positive definite com pletion F  of R. 

By the sam e rem ark, we have th a t  g ' { u j , V j )  =  g ( u j , V j )  for j  > s .  T hen, by Theorem  

5.11,

t
d e tF  =  D ( F )  =  J J [ 1  -  9 (v j ,V j)  ? ] D W -  

j= l

S+t
D ( F )  =  Y [ [ l - 9 (ui , v i )\2}D(R).

j = 1

Consequently, the  form ula (5.27) holds and  the  p roduct

j =i

does not depend on th e  chosen chordal sequence connecting G  and G ' . □
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