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ABSTRACT

This work concerns completion problems for partial operator matrices. A partial
matrix is an m-by-n array in which some entries are specified and the remaining are
unspecified. We allow the entries to be operators acting between corresponding vec-
tor spaces (in general, bounded linear operators between Hilbert spaces). Graphs are
associated with partial matrices. Chordal graphs and directed graphs with a perfect
edge elimination scheme play a key role in our considerations. A specific choice for the
unspecified entries is referred to as a completion of the partial matrix. The completion
problems studied here involve properties such as: zero-blocks in certain positions of
the inverse, positive (semi)definitness, contractivity, or minimum negative inertia for
Hermitian operator matrices. Some completion results are generalized to the case of
combinatorially nonsymmetric partial matrices. Several applications including a "max-
imum entropy” result and determinant formulae for matrices with sparse inverses are
given.

In Chapter II we treat completion problems involving zero-blocks in the inverse.
Our main result deals with partial operator matrices R, for which the directed graph is
associated with an oriented tree. We prove that under invertibility conditions on certain
principal minors, R admits a unique invertible completion F' such that (F~1); = 0
whenever R;; is unspecified.

Chapter III treats positive semidefinite and Hermitian completions. In the case of
partial positive operator matrices with a chordal graph, a "maximum entropy” principle
is presented, generalizing the maximum determinant result in the scalar case. We obtain
a linear fractional transform parametrization for the set of all positive semidefinite
completions for a generalized banded partial matrix. We also give an inertia formula
for Hermitian operator matrices with sparse inverses.

In Chapter IV prior results are applied to obtain facts about contractive and linearly
constrained completion problems. The solution to a general n-by-n ”strong-Parrott”
type completion problem is the main result. We prove necessary and sufficient condi-
tions for the existence of a solution as well as a cascade transform parametrization for
the set of all solutions.

Chapter V extends the results in Chapter II and III to prove determinant formu-
lae for matrices with sparse inverses. Several ideas from graph theory are used. An
inheritance principle for chordal graphs is also presented.
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CHAPTER I
INTRODUCTION

This thesis extends, in a variely of ways, the literature on matrix comple-
tion problems. Our purpose is Lo extend several results in the scalar case to operator
matrices, as well as Lo extend some results on positive definite and contractive comple-
tion problems to extremal cases. We also generalize some completion results involving
zero-blocks in certair positions of the inverse to the case of combinatorially nonsym-
metric partial operator matrices. Several applications are given, including a "maximum
entropy result” and determinant formulae for matrices with sparse inverses.

An operator malrix completion problem may be described as follows. Given is a
partial operator matrix, i.e. a matrix A = (A;;)0} ;=1 ¢ O H: — @2 K; in which
some of the entries are specified (bounded lincar) operators acting between vector spaces
(Hilbert spaces, in our case) and the remaining entries are "unspecified”, that is, they
may be chosen to be operators acling between the vector spaces belonging to the partic-
ular position in the matrix in which they are placed. A specific choice is relerred to as a
completion of the partial matrix. The completion problems in this thesis involve prop-
erties such as: zero-blocks in certain positions of the inverse, positive (semi)definiteness,
contractivity and minimum negative inertia.

A partial matrix A is called (combinatorially) symmetric if: all the diagonal entries
Aii are specified and A;; is specified il and only il Aj; is also specified. In [38] undi-
rected graphs were associated with symmetric partial matrices (see Section 1.3 for the

exact definition). In this way il was possible Lo connect the combinatorial aspects of
2
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3

graph theory with the algebraic side of the matrix completion theory. A special role
is played by the chordal graphs, which first came into attention in connection with
perfect Gaussian elimination ([59]). Among the first completion problems considered
were ones involving banded partial matrices. An n ~ by — n partial matrix A is called
banded whenever A;; is specified if and only if |¢ — j| < m, m being a fixed integer,
0 < m < n. Banded partial matrices R with block matrix entries and certain invertibil-
ity conditions of some principal minors of R have been considered in [24]. Under these
conditions, there is a unique invertible completion F' of R, such that the factors of the
UDL factorization of F~! have zero-blocks outside the band of width m. In Section
2.1 we generalize the above mentioned result of [24] in two directions, first allowing the
entries to be linear operators and second, we shall consider the graph of the partial
matrix to be chordal. In [43), the authors considered partial matrices R with a chordal
graph and the invertibility of certain fully specified pricipal minors of R. They prove
the existence of a unique completion F of R such that F~! has zeros in all the positions
corresponding to unspecified entries of R. In Section 2.1 a different proof of this latter
result is presented, which easily generalizes in Section 2.2 for partial matrices with a
nonsymmetric support. Directed graphs are associated with combinatorially ‘nonsym-
metric partial matrices (see Section 1.3). In Section 2.2 we consider partial operator
matrices R with their directed graph belonging to a certain class and the invertibility
condition of some key principal minors of R. Under this circumstances, we prove the
existence of a unique invertible completion F' of R such that (F~'),; is zero whenever
R;; is unspecified. The importance of the "zero in the inverse completions” will be
outlined throughout the paper. The applications include fast factorization algorithms,
maximum entropy results and determinant formulae.

The positive definite completions have been first considered in [24]. It was shown
that, in the band case, the existence of a positive definite completion is ensured by the

obviously necessary condition that the prescribed principal submatrices

(A,'j)ﬁ';'};, k=1,...,n—m
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4

are positive definite. Futhermore, the authors showed that when these condition are
met, there exists a unique positive definite completion which has, as we shall call it,

the "maximum entropy principle”. A consequence of this result in the positive definite
block matrix completion problem is the existence of a unique maximum determinant

positive completion. In [38], the authors investigated the boundaries of generalization of
[24], and concluded that the existence of a unique maximum determinant completion is

ensured as soon as there exists a positive definite completion at all. For this they use the

logconcavity of the determinant. As it turns out, the maximum determinant positive
definite completion is the unique positive definite completion with the property that

its inverse has zeros in all the positions corresponding to the unspecified entries of the

initial partial matrix. In Section 3.1, based on an approach in [67] we extend the method

of [38] to prove several determinant optimization results in a more general setting. The

characterization of the existence of a positive definite completion is in general not only

the requirement that all the fully specified principal submatrices are positive definite.

In [38] the authors showed that this is only the case when the graph associated with

the partial matrix is chordal. In Section 3.1, we show that in the chordal operator case,

the maximum entropy completion has in fact a stronger "maximum diagonal” property,

and also give an explicit construction of this completion. This generalizes the scalar

band case in [24].

Another approach to the positive (semi)definite completion problem might be ref-
fered to as the ”"Schur analysis approach”. A complete Schur analysis of n — by — n
positive definite operator matrices was established in [16]. The method provides in
the band case a parametrization for the set of all solutions. In the scalar matrix case,
existence of linear fractional descriptions for the set of all solutions was established in
the papers [8] (the nonsingular case) and [9] (the singular case). A different way of
deriving a linear fractional parametrization in the positive definite band case was given
in [33]. Here it was recognized that the coefficients for the linear fractional map can be

read oflf from the maximum entropy completion. The authors derived this result in an
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abstract setting, in order to use it in various algebras ([33}- [36]). In Section 3.2 a linear
fractional parametrization for the set of all positive semidefinite solutions is presented,
generalizing in this way the results in [33]. This latter result was obtained in [7].

In the area of Hermitian completions the main concern is related to inertia possibili-
ties. The inertia of a an n—by—n Hermitian matrix is a triple :(A) = (24.(A),7-(A),70(A)),
in which i, (A), i—(A) and i9(A) denote, respectively, the number of positive, negative
and zero eigenvalues of A (counting multiplicities). Because of the interlacing inequli-
ties, the number of negative (resp. positive) eigenvalues of any Hermitian completion
of an Hermitian partial:matrix cannot be less than the number of negative (resp. posi-
tive) eigenvalues for any fully specified principal submatrix. In [26], it was shown that
in the band case, nonsingular completions exist which do not increase the number of
negative eigenvalues - under a nonsingularity assumption on certain specified principal
submatrices. Without the nonsingularity assumption, it is possible to complete with-
out increasing the sum of zero and negative eigenvalues ([26]). The results of [26] were
generalized for the chordal case in [49]. In Section 3.3, a different proof of this latter
result is presented that further allows the entries to be linear operators.

Given an invertible Hermitian matrix with a banded inverse, in [26] a formula for
the inertia of the matrix was established in terms of the inertias of certain of its principal
minors. The result was extended in [44] for Hermitian matrices with a chordal inverse.
In [45], the formula was further generalized for a certain class of Hermitian operator
matrices. In Section 3.3 the result is proved in the most general operator setting.

A contractive completion problem concerning a partial matrix A can be transformed
into a positive semidefinite completion problem of the partial matrix ( /{‘ /Il ) Using
this observation, results on contractive completions can be derived from the results
on positive semidefinite completions. Thus, the research on contractive completions
developed in parallel with that on positive definite completions. In [47], the patterns
for a partial matrix that guarantee the existence of contractive completions provided

all the fully specified submatrices of the partial matrix are contractions have been
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characterized. In Section 4.2 triangular (i.e., when all the lower triangular entries
of the matrix are specified) partial matrices are considered which admit contractive
completions. In this case, based on the results in Chapter III, an explicit cascade
transform description is obtained for the set of all contractive, isometric, co-isometric
and unitary completions. Consequently, we recover the results of [9] stating in the scalar
matrix case the existence of such a description.

In [29], 2 2 — by — 2 linearly constrained contractive problem, named the Strong
Parrott problem has been considered. The introduction of the Strong Parrott problem
was a consequence of questions arising i;l the theory of contractive intertwining dilation
([64] and [28]). In Section 4.3 we consider a more general n — by — n linearly constrained
completion problem. For this latter problem necessary and sufficient conditions are
derived for the existence of a contractive solution. In the case the conditions are met
we build a solution with several distinguishing properties, named central completion.
From the central completion a cascade transform parametrization is constructed for the
set of all solutions. The results in Section 4.2 and 4.3 appear as an application of the
results on positive semidefinite completions in Section 3.2 and follow the paper [7].

Several determinant formulae and inequalities are strictly related to matrix com-
pletion results. In [11], a determinant formula for invertible matrices with a chordal
nonzero-pattern of their inverse was obtained in terms of the determinants of certain
key principle minors. The result led to a formula ([42]) for the maximum over the
determinants of all positive definite completions of a partial positive matrix with a
chordal graph, generalizing in this way the corresponding results of [25] in the band
case. The paper [42] also includes a "Hadamard-Fischer” type inequality for positive
definite matrices. As a consequence of the results in Chapter II, we obtain in Section
5.1 a determinant formula for invertible matrices with a chordal nonzero-pattern of
the inverse. In Section 5.2 the results are generalized for a certain class of invertible
matrices with a nonsymmetric nonzero-pattern of the inverse. As application to our
approach, we mention a determinant formula proved in [12] and a counterexample to a

problem raised also in [12].
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In the process of completion of partial positive matrices with a chordal graph ([38])
the notion of increasing chordal sequences (see Section 1.2 for definition) plays a central
role. Several properties of these increasing chordal sequences are pointed out. First, we
obtain a parametrization of all positivé definite completions of a partial positive matrix
with a chordal graph along a fixed increasing chordal sequence. The parameters are
complex numbers of modulus less than 1. Then, in Section 5.3, a formula for computing
the determinant of each completion in terms of the associated parameters is given. As
an application of our results we obtain a proof of an inheritance principle which was
conjectured in [48], generalizing a result of [25]. The conjecture was independently
solved by different methods in [13]. Finally, we conclude with a stronger version of this

inheritance principle.

1.1 Operator-Theoretic Notions

In this section we introduce some notation concerning Hilbert space operators,
present the basic notions and prove several preliminary results. Separable complex
Hilbert spaces are considered and usually denoted by H, G and £ (perhaps also with
indices). For two Hilbert spaces H; and Ha, B(H1,H,) denotes the set of all bounded
linear operators acting from H; to H,. We shorten B(H, H) to B(H). An operator ma-
triz A = (Ay;)F;2, is a matrix whose A;j entry is in B(H;, H;), My, ..., Hn being Hilbert
spaces. Let A € B(H) and H=H, ®H2 ® ... ® H,, be a direct sum decomposition
of H. Throughout this paper, for an index set a C {1,...,n}, P, denotes the orthog-
onal projection of H onto @je,H;. The above decomposition of H produces a matrix

decomposition A = (A;;)?;=, , in which A;; = P A|H;.

A
LetM—(C D

Then, M admits the following factorization:

) M=<é g>=(0f11'1 ?)(6‘ D—c(’)A‘lB>(é A_IIB)

) be an operator matrix with the property that A is invertible.
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The operator D — CA™'B is called the Schur complement of A in M. The Schur
complement first arose in connection with Gaussian elimination on scalar matrices. It
will play a key role in our considerations. As a first application, when M is a matrix,

the factorization (1.1) implies that
(1.2) detM = detA x det(D — CA™'B)

An Hermitian operator A € B(H) is said to be positive definite (resp. positive
semidefinite) if (Ah,h) > 0 (resp. (Ah,h) > 0) for any 0 # h € H. We will use
the notation A > 0 (resp. A > 0) for positive definite (resp. positive semidefinite)

operators. If A > 0 then A'/2 is its unique square root with A/2 > 0.

For a linear operator A, R(A) denotes its range and R(A) the closure of its range.
The kernel of A will be denoted ker(A).

For a contraction G : £ — K, denote Dg = (Iz — G*G)'/? : L — L the defect

operator of G and Dg = R(Dg) the defect space of G.
The following is a well known result in Operator Theory (see e.g. [28]).

All A12
LEMMA 1.1. Let A =
‘ (A'{z Az

semidefinite if and only if A;; 20, A > 0 and

) be an operator matriz. Then, A is positive

(1.3) A = AMPG AL

in which G : R(Az2) = R(A1) is a contraction.

Consider the 3 — by — 3 operator matrix

A A A
A= | A}, An Ax

Alz Al As

and assume ( Ail Arz ) > 0 and <.A32 Azs ) > 0. Let Gy : R(Az2) — R(An)

12 Az 23 Azz
and G, : R(Asz) — R(Az22) be uniquely determined contractions such that A, =

A2 AY? and Ags = A3L*G,AYY. Then, as proved in [16], A > 0 if and only if there

exists a contraction G : Dg, — DG]. such that

(1.4) Ars = AYY(G1G2 + Doy GDg, ) A,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



9

The above leads to a "Schur-type” parametrization of positive semidefinite operator
matrices ([16]).

THEOREM 1.2. There exists a one-to-one correspondence between the set of all pos-
itive semidefinite operator matrices (Ay;)?;_; with fized positive semidefinite block diago-
nal entries and the set of all upper triangular families of contractions G = {Ti;}1<i<i<n,
wm which T'y; = IR_(AT")—’ t=1,.nand Iy : Dpr,y,; = Dp;,;_, for1<i<j<n.

The family of contractions G is referred to as the choice triangle corresponding to
(Ajj )2;‘:1-

It is known that any positive semidefinite operator matrix A admits the factoriza-

tion:
(1.5) A=VV=WW

in which V is upper triangular and W is lower triangular. We will refer the factorizations
(1.5) as the lower-upper (respectively upper-lower) Cholesky factorizations of A.
In [16], given A > 0 and G = {I';;}1<icj<n its choice triangle, an explicit formula

for the Cholesky factors V and W in (1.5) was given. It will be of interest in Chapter

III:
(1.6) V@, R(Ai) = R(An) © (®r=2Dry,),
(1.7) W : @k, R(Ai) = ®p=1 Dr: @ R(Ann)

having dense range, and their block diagonal entries given by

(1-8) Vi= Drli"'Dri—l.iAt!i/z
and
(1.9) Wi, = DF,’,,"'DF.’_I_.-A}!Z‘

In case the operator matrix A acts on a finite dimensional space, the following

formula holds ([16)):

(1.10) detA= [] detDE,

1<igj<n

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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If Aisan n — by —n (operator) matrix and e, C {1,...,n} are index sets, then
throughout this paper A(a|B) will denote the submatrix of A corresponding to the rows
in the set o and columns in the set 3. We shorten A(ala) to A(e).

A variant of Kotelyanskii’s inequality follows from (1.10). For any index sets o =

{1,...,m},8 = {k,...n} with 1 £k < m < n we have that

det A(a)det A(B)
1.11 detA = detD3:..

(1.11) 15,-1;{_1 P detA(an B)
m+1<j<n

Since detD?;; < 1, with equality if and only if I'y; = 0, from (1.11) we derive
Kotelyanskii’s inequality ([50]):

detA(a)det A(B)
detA(an f)

(1.12) detA <

Equality holds in (1.12) if and only if all the parameters I';; for 1 <i <k —-1,m+1<

7 < n are 0. The inequality (1.12) may be extended to finite families of index sets.

We next present several results concerning Hermitian operators and Hermitian op-
erator matrices that will be used in Chapter III.

The inertia of an n — by — n Hermitian matrix A is a triple

(i+(A)a 7:--'(A)’ ZO(A))

in which ¢;(A) (resp. ¢_(A)) is the number of positive (resp. negative) eigenvalues of
A (counting multiplicities), and ig(A) = n — i4.(A) — i~(A) is the dimension of ker(A).

Given a separable Hilbert space H and an Hermitian operator A € B(H), recall
the spectral decomposition E4 of A ([61], Chapter 12). Then, let H; = E4((—00,0))H
and HY = EA((0,00))H}. It is .known that H; and H} are closed invariant subspaces
for A and we have the direct sum decomposition H = H} & ker(A) & H},. Further, let
At = AHY, A™ = AlHG, i+(A) = dimHM], i_(A) = dimH] and iy = dim[ker(A)).
The last three quantities may be finite or infinite.

In the case the operator C is the compression of A to a closed subspace of H, then
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LEMMA 1.3. Let A € B(H) be Hermitian and X € B(K,H). Theni_(X*AX) <

i-(A).
Proof. 1t is evident that K%.,x = {k € K|Xk € H;} and thus dimK%. .5 <
dimHy. 0O

We order the set of Hermitian operators in B(H) by A < B (resp. A < B) if
B — A >0 (resp. > 0).

REMARK If A, B € B(H) are such that 0 < A < B, then I < A"Y/2BA~1/2 and
so AY/2B~1A1/2 < I, which implies that 0 < B~! < A~L,

It is known (see e.g. [14]) that given an invertible operator matrix‘( A Ay )

Ag1 A
with inverse ( g; gzz ), then

(1.13) t0(A11) = 7o(Bza).

Denote by o(M) the spectrum of a linear operator M. If M is Hermitian and
A € o(M) is an isolated point of o(M) (i.e. the set {A} is the intersection of o(M) and
an open interval), then A is an eigenvalue of M and the range of M — Al is closed ([23)).

We have our first result.

An Ap
A, Az
that i_(A) + t0(A) < oo and 0 is an isolated point of o(A). If0 € 0(An1), then 0 is an

isolated point of 0(A11). Moreover, z'fz:O(A) =0 and A7 = ( Bil Bz ) then
Bi; Bz

PROPOSITION 1.4. Let A = ( ) be an Hermitian operator matriz such

(1.14) i_(A) = i_(An) + io(An) + io(Bas).

Proof. Since A is a finite rank perturbation of a positive definite operator, its

compression A;; will be a also. Thus, A;; will be a Fredholm operator of index 0 (see

[23]), and so 0 is isolated in o(Amn).

By Br2
Bi; B
sider the case Aj; is also invertible, thus i9(A11) = io(B22) = 0. The factorization

A= I 0 An 0 I A12
T\AL, T 0 Agg—-A;zAl'llAm 0 I

Assume in addition that A is invertible and A~! = ( ) First, we con-
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implies that i_(A) = i_(A11) + i_(Az — Al A A12) and Byy = (Ag — AL AT A) L
Thus, i-(A) = i~(A11) + i—(Bz22). This verifies our assertion in the case in which 4;; is
invertible.
Next we drop the assumption that A, is invertible. Then, since i_(B2;) +io(Bz23) <
oo, for sufficiently small A > 0, Byy+ A1 is invertible. Denote By = < g}: BnB-l: A ),
Ay = B;'. For suffiently small ), i_(B)) = i-(A) and i_(Byz + AI) = i_(Bs2). The
above Schur complement remark also implies that (A)11 is invertible. Let introduce
one more notation. Let (T)xso be a family of Hermitian operators on the Hilbert space
H and T € B(H). Then T\ \\ T (resp. T» / T) means that for any A € H the
sequence (Th\h, h) converges decreasingly (resp. increasingly) to (Th,h) when A\ 0.
Since By \, B~ and A} = B;' when X \ 0, we have that (A))11 / (A11)~. As
consequence, i—((Ax)11) = 20(A11) +i-(A11) < oo. Since (A))1: is invertible, we have

that:

i_(A) = i_(A2) = i-((A)11) + 5 (Baz + M)

= i_(Au) + 20(A11) + i-(B22),

which completes the proof. O

1.2 Graph-Theoretic Notions

For terminology and results concerning graph theory we essentially follow the book
[37]. An undirected graph is a pair G = (V, E) in which V, the vertez set, is a finite
set (usually V = {1,...,n}), and the edge set E is a symmetric binary relation on V.
The adjacency set of a vertex v is denoted by Adj(v), i.e. w € Adj(v) if (v,w) € E.
Given a subset A C V, define the subgraph induced by A by G4 = (A, E,), in which
E4 =. {(z,y) € E|z € Aand y € A}. The complete graph is the graph with the property
that every pair of distinct vertices is adjacent. A subset A C V is a clique if the induced

graph on A is complete.
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A special type of undirected graphs are the bipartite graphs. An undirected graph
is called bipartite if V = X +Y (the union of two disjoint sets X and V') and any edge
(7,7) € L has one endpoint in X and the other one in Y.

A path [vy,...,v,] is a sequence of vertices such that (v;,v;41) € Efor j =1,...,k—1.
A cycle of length & > 2 is a path [vy, ..., vk, v1} in which vy, ...v; are distinct. A graph G
is called chordal if every cycle of length greater than 3 possesses a chord, i.e. an edge

joining two nonconsecutive vertices of the cycle.

The graphs in Fig.] and Fig.1I are chordal,

Figure I Figure II

~while that in Fig. 11 is uot, siuce [2,3,4,5)] is a chordless cycle of length 4.

Figure 111
tion scheme (or perfect scheme) if each set:
(1.15) Si = {v; € Adj(vi)lj > i}

is a clique. Il a vertex v of G is said to be simplicial when Adj(v) is a clique, then o
is a perfect scheme if cach v; is simplicial in the induced graph Gy,....u,). For example,

(1,3,2,4,5] and [4,5,2,1,3] are perfect schemes for the graph in Fig.I.
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First, a result known as Dirac’s Lemma ([21], or Lemma 4.2 in [37]).

LEMMA 1.5. Every chordal graph has a simplicial vertez, and if G is not a clique,
then it has two nonadjacent simplicial vertices.

The following result ([30], or Theorem 4.1 in [37]) is an algorithmic characterization
of chordal graphs.

THEOREM 1.6. An undirected graph is chordal if and only if it has a perfect scheme.
Moreover, any simplicial vertex can start a perfect scheme.

It is easy to see that [1,4,2,3,5,6] and [6,1,5,2,3,4] are perfect schemés for the
graph in Fig.II, thus the graph is chordal. The graph in Fig.III has no perfect schemes,
but also is not chordal.

A subset S C V is called a u — v vertex separator for the nonadjacent vertices u
and v if the removal of S from the graph separates w and v into distinct connected
components. If no proper subset of S contains a u — v separator, then S is a minimal
u-v separator. Chordality can be characterized in terms of minimal vertex separators
(Theorem 4.1 in [37)).

THEOREM 1.7. An undirected graph is chordal if and only if every minimal vertex
separator is a clique. _

For example, the minimal 1 — 6 separators of the graph in Fig.Il are {2,4}, {2,3}
and {3,5} which are cliques, since the graph is chordal.

The intersection graph of a family F of nonempty sets is obtained by representing
each set in F by a vertex and connecting two vertices by an edge if their corresponding
sets intersect. A connected graph with no cyclesis called a tree. The following represents
an important characterization of chordality (Theorem 4.8 in [37]):

THEOREM 1.8. An undirected graph G = (V, E) is chordal if and only if there
exists a tree T = (K, E) whose vertex set is the set of the mazimal cliques of G such
that each of the induced subgraphs Tk, (v € V) is connected (and hence a subtree),
where K, consists of those mazimal cliques that contain v.

Let describe more precisely the tree given by the previous theorem. Each vertex of

T is a maximal clique of G. Moreover, the tree has the following intersection property:
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whenever a vertex v € V' is contained in two distinct node sets K and K’ of T', then v
is contained in any node set lying on the unique path connecting K and K’ in T'. The
tree given by Theorem 1.8 is called a clique tree (or briefly tree) of the chordal graph

G. In general 7" is not uniquely determined by G. The maximal cliques of the graph

in Pigdl are: N, = {1,2,4}, Ky = {2,3,4}, K3 = {2,3,5} and K, = {8,5,6} while

Figure IV

11" = (E(T),V(T')) is a tree of the chordal graph G = (V, E), then ([13]) the set S
of all minimal vertex separators of G coincides with the set {WNW'|{W, W'} € £(T)}.
For example, {{2,4}, {2,3},{3,5}} represents the set of minimal vertex separators of
the chordal graph in Fig. II.

Let M = (mi;)};=, be a matrix. The graph G = (V, E) is said to be a graph of the
nonzero-pattern of Af if m;; = mj; = 0 whenever (z,7) ¢ E. Chordal graphs play an
important role in matrix theory in connection with the graph-theoretic description of
Gaussian elimination on sparse matrices. Let G = (V, E) be chordal and o = [vy,...,v,)
a perfect scheme for G. If G is a graph of the nonzero-pattern of a matrix M, then
M can be reduced by perfect Gaussian elimination ([37]). This means that choosing
the entries on the positions (v, ), ...,(vn,vn) to act as pivots, M will be reduced to a
diagonal matrix without ever changing (even temporarily) a zero entry to a nonzero.

We mention a result of {38]. Given any chordal graph G = (V, E) there exists a
chordal sequence of G, i.e. a sequence of chordal graphs G = Gy, Gy, ..., G = K, such
that cach Gj, j = 1,...,1 is obtained by adding exactly one new edge (u;,v;) to G;-;.
Moreover, given an arbitrary chordal sequence G = Gy, Gy, ..., Gy, = K, of G, each G

has exactly one maximal clique V; that is not a clique in G;_,.

A divected graph is a pair H = (V,F) in which V, the vertex set, is a finite set

(usually V' = {1,2,...,n}) and F is an arbitrary binary relation on V. The basic
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diflerence between graphs and directed graphs is that in the case of a directed graph
the cdge set is nol symmetric, so we might have an edge from ¢ to j without having an
edge from j to i.

Let H = (V,F) be a directed graph and y € V. Then Adj~'(y) will denote
the set {z € V]y € Adj(z)}. An edge (z,y) € F is called bisimplicial if whenever
z € Adj(z) and z' € Adj~'(y) it follows that (z,z) € F. Consider a sequence of edges
¢ = [(@1,Y1)y <o (Tu, yn)] of H such that V = {z1,...,2} = {y1,---,¥n}. Then ¢ is called
a perfect edge elimination scheme for H if:

1) (21,3) is bisimplicial.

2) After removing all edges of the form (4, 2) and (2, y;) from H, (z4,y2) becomes
bisimplicial in the new graph.

3) Atstep k, k =1,...,n — 1 we remove all remaining edges of the form (24, 2) and
(z',yx) and in this way (2k41, Ykt1) becomes bisimplicial.

For example, ¢ = [(3,4),(1,1),(2,2), (4, 3)] is a perfect edge elimination scheme for

VAN

0‘04

Figure V

the directed grapn in Pig. V.

Consider a tyee T' = (V(T'),&(T")) such that cach node of T is a finite set V;,
¢ =1,...,m and assume that T has the intersection property. Consider on each edge of
T an orientation. There are 2! distinct orientations on T". Let now T' = (V(T), £(T)),
V(1) = {W,..., V.} be a tree with the intersection property and D an orientation on
E(T). Then, the directed graph II = (V, F) is said to be allowed by the pair (T, D) il

V=UL Ve

and whenever (¢,5) € F then either:
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i). {¢,7} C Vi lor some k =1,...,m
i1). There is an oriented path (Vi,, Vi,,...,V4,) in D such that i € ¥, and j € V.

For example, the directed graph in Fig. VI

is allowed by the oriented tree in Fig. VII.

Figure VII

Let M = (my;)};, be a matrix. Thg (directed graph H = (V,F)’is said to"be
a directed graph for lhe nonzero-pattern of M Jf m,;,- = 0 whenever (¢,7) ¢ F. Let
H = (V,F) be a directed graph and ¢ = [(21,%1), ...., (Tn,yn)] a perfect edge elimination
scheme for f1. I Il is a directed graph of the nonzero-pattern of a matrix M, then
M can be reduced by nonsymmetric perfect Gaussian elimination. This means that
choosing the entries on the positions (x1,%1),..., (Zn, ¥n) to act as pivots, M will be
reduced to a matrix having only one nonzero entry on each row and column without

ever changing (even temporarily) a zero entry to a nonzero.
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1.3 Partial Matrices
A partial matriz is an n — by — m array in which some entries are specified, while

the remaining entries are "unspecified”, i.e. independent free variables. For example,

1 2 ?
?7 8 143
1—7 7 /2

is a partial matrix in which the (1,3), (2,1) and (3,2) entries are unspecified. The
unspecified entries are denoted by ? or X, Y, Z, etc (perhaps also with indices).

Throughout this paper, we will consider the specified and unspecified entries of a
partial matrix to be complex numbers, matrices or (bounded linear) operators acting
between corresponding Hilbert spaces. The operator partial matrices will be the key
objects of our investigation.

A completion of a partial matrix is simply a specification of each of the unspecified
entries, resulting in a conventional matrix (or operator matrix). Of course, we will be
interested in completions with certain properties such as: zero-blocks in the inverse on
certain positions, positive definitness, contractivity and minimum number of negative A
eigenvalues.

A partial matrix R is called (combinatorially) symmetric if the following conditions
are satisfied:

i) All the diagonal entries of R are specified.

1) Ry; is specified if and only if R;; is specified also.

With an n—by—n symmetric partial matrix R an undirected graph G = (V, E) is as-
sociated with vertexset V = {1,...,n} and edgeset E = {(7,)|: # j and R;; is speci fied}.

With an n — by — n nonsymmetric partial matrix R a directed graph H = (V,F) is
associated with vertex set V = {1,...,n} and edge set F = {(¢,7)|R;; is speci fied}.

In Chapter IV we deal with m — by — n partial matrices R with m # n. It is most
convenient to associate with such a partial matrix a bipartite graph G = (X, Y, E), in

which X = {uq,...,un}, Y = {v1,...,0,} and E = {(u;,v;)|Ri; is specified}.
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CHAPTER II
INVERTIBLE COMPLETIONS

The aim of this chapter is to find sufficient (and sometimes also necessary)
conditions on a partial operator matrix in order that it admits a unique invertible
completion with a certain property. This property is either a speéial type of UDL fac-
torization of the inverse, or the property that the inverse has zero-blocks in the positions
corresponding to the unspecified entries of the initial partial matrix. The first results of
this type were obtained in [24] for banded partial matrices . Necessary and sufficient
conditions were established for the existence and uniqueness of an invertible completion
I of R such that £~! has a "band triangular” factorization and thus (F~1);; = 0 for
i = j| > m. '

We start with a simple operator generalization of a scalar matrix factorization result
of {46]. Then, Theorem 2.2 will be a generalization of the results of [24] in two directions.
Iirst, we shall allow the R;; to be (bounded linear) operators acting b'etween Hilbert
spaces and sccond, we shall consider the graph of the partial matrix to be chordal.

In [43], the following was proven. Let R be a partial matriz withi a chordal support
G = (V, E) such that all of the principal submatrices of R corresponding to the maximal
cliques and minimal vertex separators of G are invertible. Then there exists a unique
invertible completion I of R such that (F~);; = 0 for any (¢,j) ¢ E. We present a
different proof of this result that further allows the entries to be linear dperators acting
between Hilbert spaces. The prool is based on induction on the number of maximal

cliques of G.
19
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In-all the above mentioned results the involved partial matrices R were symmetric.
In Section 2.2 we deal with partial matrices with nonsymmetric support. It is most
natural to consider directed graphs with a perfect edge elimination scheme in place
of chordal graphs. First, a factorization result is proved for operator matrices whose
sparsity pattern have a directed graph with the latter property.

Let H = (V,F) be a directed graph and R a partial matrix with directed graph
H. Assume that all the fully specified principal submatrices of R are invertible. The
directed graph H is called completable whenever any such partial matrix R admits a
unique invertible completion F' with (F~1);; = 0 for any (i,7) € F. As will be seen
in Section 2.1, for undirected graphs this notion coincides with chordality. We show
by means of an example that the property of having a perfect edge elimination scheme
is not sufficient for a directed graph to be completable. Generalizing the methods of
Section 2.1, we prove that any directed graph allowed by an oriented tree is completable.
Several examples of completable and noncompletable directed graphs are presented, but

a graph theoretical description of the set of all completable directed graphs is still open. .

2.1 The Combinatorially Symmetric Case
Before starting some additional notation is necessary. Let {2 denote the algebra of
matrices F' = (Fi;)?;, in which Fj; is a (bounded linear) operator acting between the

Hilbert spaces H; and H;. Also let

Qe={FeQ:F;=0 for (i,7) ¢ E}

Q.={FeQ:F;=0fori<j}

N ={FeQ:F;=0fori>j}

Q0=Q+OQ_
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Q., Q_ respectively Qy represent the set of all upper triangular, lower triangular re-
spectively diagonal matrices in the class Q.

When R is a partial matrix, R € g will denote that R;; is a linear operator acting
between H; and H; and G is the graph of R (see Section 1.3). We have to make a
clear distiction between the notation F' € g when F' is a matrix with all of its entries
specified and R € Qg when R is a partial matrix. In the first case we refer to the
nonzero-pattern of F', while the second notation refers to the structure of the pattern
of the specified entries of R.

It is a classical result ([32]) that an operator matrix H € ( admits the factorization:
(2.1) H=M_JM,

with My € Q4, (My)i = I and J € g is invertible if and only if each H({1,...,j}) is
invertible for 7 = 1,...,n.

If a matrix is in the class {lg up to a permutation, each of its factors is in the same
class. This is the content of the next proposition, which is an easy generalization of the
scalar version in [59).

PROPOSITION 2.1. Let G be a chordal graph and 1,2, ...,n) a perfect scheme for
G and H € Q with all H({1,...,j}) invertible. Then H € Q¢ if and only if admits the

factorization:
(2.2) H=XVX,

with Xy € Q4 NQg, (X1)j; =1 and V € Qg is invertible.
Proof. Let H € Q admit the factorization (2.2) and let 7,5 € V with (¢,5) € E.
Thus

(2.3) Hij =Y (X-V)a( X )iy
k=1

If (X-V); and (X} ); are nonzero wehave: > k, j > k and (¢, k), (7, k) € E. Since
the vertex k is simplicial in the graph Gy, .n} we obtain (4,5) € E, a contradiction.

Thus for every k = 1,...,n we have (X_V)i = 0 or (X4)k; = 0 and thus H € Qg.
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Conversely, let H € Qg. Express H in the form (see (1.1)):

(2.4) H=<g g)=<c£—l ?)(3 D—c(')A-lB>(é A—IIB)

with

A= H11,B = [HIZ)--'aHlﬂ]

C = [Hgl, ...,Hnl}t,D = H({2,...,TL})
Consider ¢,j > 2 with (z,7) € E. Consequently:
(D - CA_IB),'J' = HilHﬁlHlj.

Since the vertex 1 is simplicial and (Z,5) ¢ E we get that (1,7) € Eor (1,j) ¢ E
and so D — CA™'B € Q¢g_p3.

Take ( Cfll'l ) to be the first column of X_ and ( I A~'B ) the first row of X,.
The factorization (2.4) of D — CA~1B gives us the second column of X_ and second
row of X,. Continuing in this way we eliminate all the vertices of G and obtain finally
the factorization (2.2) of H. [

DEFINITION The factorization (2.2) of a matrix H €  is called triangular
G-factorization.

Note that the above definition requires [1,...,7] to be a perfect scheme for G.

For a given chordal graph G we establish next necessary and sufficient conditions
on a partial operator matrix R € Q¢ to admit a unique invertible completion F' such
that F'~! admits a triangular G-factorization.

THEOREM 2.2. Let R € Q¢ be a partial operator matriz and [1,...,n] a perfect

scheme for G. Denote forj=1,...,n -

(2.5) S;={k € Adi(j)lk > j} = {j1,---sJs}

with j < j1 < ... < js < n and let m be the least index for which the graph Gim4,...n)
is complete. For j =1,...,m express the operator R({j} U S;) in the form:

(26) R us) = (o)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



23

with
(2.7) M; = R;j, Nj = [Rjjy, ..y Bjj,]
(2.8) P; = [Rjj, ..., R;,;]', Qi = R(S;).

Then there exists a unique invertible completion F of R such that F~1 admits a

triangular G-factorization:
(2.9) Fl=X_VX,

if and only if the following conditions are satisfied:

M; N;
i). The operators 7 7
) P < P Qj
ii). The operators Q; are injective and have dense range for j =1,...,n.

iii).HjeeogR((A]f? g{>)andﬁ,~@ogn((1‘}f{ g{))forj=1,...,m.
2 2 . 7 J

iv).R(Pj) g R(QJ) f07‘j = 1,...,m.

> are injective and have dense range for j = 1,...,n.

v). The operators R({k,...,n}) are invertible for k =m+1,...,n.
If the conditions i)-v) are satisfied we may constuct F as follows. Consider the

unique solutions of the equations:

Zj; I
Zjlj 0
(2.10) RSy | | =
Zj,j 0
and
Wi \° I\
‘/ijl .
(2.11) : R({j}US;) =
Wi, 0
Then put:
(2.12) Vij = Zj; = Wjj for j =1,..,n,
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Xiyj Zj\;
. _ . -1
(2.13) : = : V;-j
Xjej Zj,j
and
(2'14) [ijl""')ija] = V_'i;l[ufjjum’u/jja]

forj =1,...,n~1, in which the X;; are the block entries of X_ (resp. X)) if i > j(resp.
i < j). Then we obtain F from (2.9).

Proof. Suppose R € (g satisfies'the conditions of the theorem. Consider the
equations with the unknowns Z € Q_NQg and W € Q. N Qg :

(2.15) (RZ);;=1forj=1,..,n

and

(2.16) (RZ)i; =0 fori>jand(i,j) € E,
respective,

(2.17) (WR);; =1 forj=1,..,n

and

(2.18) (WR);; =0 fori< jand(i,j) € E.

Consider ¢ > j and (Z,j) € E. Since
(2.19) (R2)i; = _ RaZy;

k=j
and the vertex j is simplicial in the graph Gy;,.. .}, (k,7) € E. Thus the equations
(2.15) and (2.16) depend only on the specified entries of R and are equivalent to the
equations (2.10). Expressing R({j}US;) in the form (2.6), the last mentioned equation

is equivalent to:

o (H(3)-()
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in which Z() = VRN Z;,5l'.

In the same way one can show that the equations (2.17) and (2.18) are equivalent

(221 (ws wo) (5 )= (1 0)

in which W) = [W;,, ..., W;;,].

The conditions i) and iii) imply that the equations (2.20) and (2.21) have unique
bounded linear solutions (see [22], Theorem 1).

Multiplying (2.21) from the right with ( g{j) > one obtains that Wj; = Z;;. We
next prove T; = W;; is invertible. Consider first f € H; with T;f = 0. From (2.20) we

(% &) (abs)=(1)

Since kerQ; = {0}, ZU) = 0 and thus f = 0 which means that T is injective. Take

obtain:

an arbitrary f € Hj. The condition v) implies that there exists g in the domain of Q;
with P;f + Q;9 = 0. Then (2.21) implies

(T, W(j))<Mjfg'Nj9)=f

and Tj is also onto.

Note that for j = m + 1,...,n, (2.18) implies that
(2.22) T; = (R{5} U S;)n

Let T = diag(Ty,...,T») and define the operator matrix:
(2.23) F=WTZ!

We prove by induction that:

(2.24) F({k}U Sk) = R({k} U 5)
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Express F({k} U Sk) in the form
M} N}
F({k}u S) = koo k ),
({ } k) ( PI: Qk

in which Qk = F(Sk) = R(Sk).
We obtain from the relations FZ = W~1T and WF = TZ™! the systems:

(% %)(3)-(2)

and

(2.20) (7 we ) (F BE)=(10),

At this point M}, N} and P} are considered unknowns. The relations (2.25) and (2.26)

imply:

M} =T+ T wWQ z BT

N} = -T7'wWQ,
and
P} = —QZWT,

Thus (2.25) and (2.26) uniquely deterrhine M}, N} and P}. The relations (2.20) and
(2.21) imply that M} = My, N} = Ni and P} = P; and so F is a completion of R.

Since
Fl=2T'W = (ZT"I)T(T‘IW),

denoting X_ = ZT7!,V =T, X, = T"'W, the factorization (2.9) follows.
We next prove the uniqueness of the completion F'. We prove that in the hypothesis
of the theorem, if R admits the completion F' with (2.9) then the formulas (2.12)-(2.14)

are satisfied.
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From the j — th column of the identity:

FX V= (X.;.)“1
we obtain:
I I
lej 0
(2.21) RUGYUS) | | V=
" XGaj 0

which implies V}; = Z;; and also the formula (2.13). The equality V;; = Wj; and the

formula (2.14) are obtained from the j — th row of the equality:
X+VF = (.X_)—l.

Finally we have to prove the necessity of the conditions. If R € Qg has a unique
invertible completion F' with (2.9) then F = X;'V~1XZ! and the condition v) is
obviously satisfied. From the proof of the formulas (2.12)-(2.14) we deduce that the
equations (2.20) and (2.21) must have unique bounded linear solutions with Z;; = W;; =
T; invertible. This immediately implies that the conditions i) and iii) are satisfied.

Suppose that for some g in the domain of ¢); we have Q;g = 0. Then:

me= (o wo) (g ;) (5)

Thus i) implies that g = 0 and Q); is injective. The fact that Q7 is injective and

thus @; has dense range can be proved in a similar way.

From (2.20) we obtain that:
P,T; + QjZ(j) =0

and so P; = —QjZ(j)Tj"l which implies iv) and finishes the proof. O
COROLLARY 2.3. If the spaces Hi,...,H, are finite dimensional, the conditions

i)-v) are reduced to the invertibility of the following block matrices:
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a). R({j}US;) forj=1,..,n and
b). R(S;) forj=1,...,n—1.
If the conditions a) and b) are satisfied, we have the more precise formulas in place

of (2.12)-(2.14):

(2.28) Vii=(R{7} U S;)
Xju' le.?'
(2.29) | .| =—R(S)™
Xas R;,;
and
(2.30) [Kisns eor Xiga] = =[Risyy ooy Ris, )JR(S5) ™

Proof. If R({j} U S;) is invertible, (2.28) is a consequence of the relation (2.27).
Also (2.27) implies that:

Rj; Xii 0
+ R(S;) . =
R;,; Xiaj 0

The invertibility of R(S;) implies (2.29). The formula (2.30) is obtained in a similar
way. O

REMARK The next example shows that in the infinite dimensional case even for
band partial matrices the invertibility conditions of Corollary 2.3 are not necessary.

Consider the partial matrix:
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acting on HOHDH with H an infinite dimensional Hilbert space, A invertible, ||B]| < 1,

ker(B) = {0} and R(B) = H. Since the equations:

(5 5)(2h)=()

(1 o) (5 p)=(10)

have unique solutions T = A~!, Z() = W) = 0 we obtain that the unique invertible

completion F of R with (F~1);3 = (F1)3 =0 is:

A 00
F=(OBI)
0 I 1
I 0 0 A™? 0 0 10 0
F-lz(o : 0)(0 5 0)(0 : _I)
0 -1 I 0 0 I 00 I

REMARK The condition v) of Theorem 2.2 is also necessary. Consider an infinite di-

and

with

mensional Hilbert space H and the operator:

AT
I A
acting on H @ H and assume R(A) = H but A is not invertible. It is easy to show that

< Al ) is injective and has dense range. The equation:

I A
(7 4)(2)-(s)
I A Z 0

admits the solution T' = —A(J] — A%)~! which is not invertible.

The following is a simple and known fact, but it will be very useful in the rest of
this chapter.

LEMMA 2.4. Consider the operator matriz F = (Ai;)},-, and assume that
( An Ap ), Aqo and ( Az An ) are invertible. Then, (F~1)13 = 0, (respective

Ay Ag Aazz Az
(F~1)31 = 0) if and only if A1z = A12A3; Azs, (respective Az = AzpAs; Agr).
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Proof. By straightforward computation. It may also be obtained as a consequence
of Theorem 2.2, [

We next present a new proof of a result in [43], in the case of operator matrices.
The proof has the advantage that easily generalizes in Section 2.2 for nonsymmetric
patterns allowed by oriented trees.

TneoREM 2.5, Let G = (V, E) be a chordal graph and R € Q¢ a partial operator
malrviz such thatl all of the principal submalrices of R corresponding to the mazimal
cliques and minimal verlex separators of G are invertible. Then there exists a unique
inverlible completion I of R with (F~1);; = 0 whenever (1,7) € E.

Proof. We prove the theorem by induction on m, the number of maximal cliques
of (/. Tor m =1 it is obvious. For m = 2 the result follows from Lemma 2.4. Assume
that the result is true lor graphs with m — 1 maximal cliques and let prove it for m.

Let G = (V,F) be a chordal graph with m maximal cliques and let R € Qg
be a partial matrix with the properties in the statement of the theorem. Let T' =
(V(T),€(T)) be a tree of G which must have m node sets (see Section 1.2). Select an
arbitrary node set W of T and let W' be the unique neighbouring node set of W in T'.
Further,let B=WnNW, a=W—-8,y=W - and § =V — (W UW'). Consider
the induced partial matrix R(fU~yU6) with Ggu,us as associated graph. Removing the
node sct W and the edge {W, W'} from T, we obtain the tree T = (V(T"), E(T")) with
the intersection property which is a tree of Gguqus. The partial matrix R(BU~yU8) will
inherit the invertibility conditions in the stament of the theorem from R. Thus, by the
assumption made for m — 1, (B U~y U §) has a unique invertible completion [ such

that Gguus is a graph of F'~!. Consider now the graph G’ having the tree:

Figure VIII
and the partial matrix /2 defined by R'(a U B) = R(aUB) and R'(BUyU ) = F.
Then R’ is correctly defined and has G' as its graph. Since R'(8) = I'(B) = R(B), R
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can be decomposed as:

An A Xis
(2-31) R = A21 A22 A23
Xa1 Aaz Ass

Az Ass
an invertible completion F' of R’ (and also of R) with its inverse of the form:

in which A1y = R(a), A2, = R(B) and ( Az Az ) = F'. By Lemma 2.4, there exists

o o2 0
(232) Q91 G2 (g3
0 o3 as3

The relations FF~! = F~1F = I imply that ( 323 ) is the second column, respec-
33

A22 A23

-1
Azs Asz ) and thus Gpuus is a graph of

tively ( a3y Q33 ) is the second row of <
-1,

It remains to prove the uniqueness part of the theorem. Assume that F is an other
completion with (F);; = 0 whenever (¢,7) ¢ E. Let us decompose F = (Bij)3;=; with
respect to the partition a U B U (v U §) of the index set. Then, in this decomposition
(F~1)13 = (F~1)3 = 0. Thus, by the same argument as used for F', Gguus is a graph of
F(BUyUS)~L. By the uniqueness result for m—1, we have that F(BUyU6) = F(BU~yUS6).
It turns out that both F and F' are invertible completions of the partial matrix R’ in
(2.31) with the property that with respect to the partition a U S U (y U §) of the index
set their inverses have 0 on the (1,3) and (3,1) positions. Then Lemma 2.4 implies that
I = F*. This completes the proof. 0

We next discuss the problem in Theorem 2.5 in the case in which the graph of the
partial matrix fails to be chordal. In Chapter III we show that given any nonchordal
graph G = (V, E), there exists a partial matrix R with graph G and the property that all
of the principal minors of R formed with specified entries are invertible, but there exist
at least two invertible completions F' of R with (F~!);; = 0 whenever (,j) € E. Since

the same examples will play a key role in Chapter III, we postpone their presentation.
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Consider the partial matrix:

O N =

with graph

Figure IX

the simplest non-chordal graph. All the principal minors of R formed with specified

cntries are invertible. To find a completion F of R with (F~1);; = 0 whenever R;; is

unspecified we have to solve the equation system:

1
0 |=y2t—2—-t=0
t

_— e 2

w
=~
—
1l
n
Come

|
n

|
T
I

[ —Y

1]

-1 z 1
| 1 0 y l|l=ayl—2-y—-1=0
t -1 1

An elementary computation shows that this system has no solutions, which means
that there are no invertible completions F' with the desired zero-pattern of the inverse.
In conclusion, when the graph of the partial matrix is not chordal, there is no

characterization of what may happen. We may have no completion, a unique completion

or multiple completions.
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The next example will show that even if the conditions of Theorem 2.5 are satisfied
the unique completion given by the theorem may not be UDL factorable. Consider the

partial matrix:

01 7 ?
1117
It= 2011
2710

having the graph:

OmOmOn0

Figure X

The completion of 2 given by Theorem 2.5 is:

0111
1111
F= 0 011
0010
with
-1 1 0 O
1 0 -1 0
=1 _
== 0 0 O 1
0 0 1 -1

Since the (1,1) and (4,4) entries of I are 0, neither in [1,2,3,4] nor in the (4,3,2,1]
orderings, the only perfect schemes of G, I' admits UDL factorization. This shows
that Theorem 2.5 does not imply Theorem 2.2, the extra conditions in Theorem 2.2 are

noecessary.

2.2 The Combinatorially Nonsymmetric Case
In Section 2.1 all the partial matrices involved R were combinatorially symmetric.
In this section we consider n — by —n nonsymmetric partial operator matrices £. When

IR is a partial matrix, R € Qy will denote that [/ = (V,F) is the directed graph of 2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



34

We keep the notations 2, 2 and  from Section 2.1. When F'is a matrix with all of
its entries specified, F' € Qp will denote that F;; = 0 whenever (t,7j) € F,ie. Hisa
directed graph of the nonzero-pattern of F.

It is natural to try to generalize the results of Section 2.1 for partial matrices with a
"diagonal perfect edge elimination scheme”, i.e. when there exists an ordering [vy, ..., vy)
of the set V such that ¢ = [(v1,v1), .., (Un,¥s)] is a perfect edge elimination scheme for
H.

The following is a combinatorially nonsymmetric correspondence of Proposition 2.1.

PROPOSITION 2.6. Let H = (V,F) be a directed graph and ¢ = [(1,1),...,(n,n)]
a perfect edge elimination scheme for H. Let M € S be such that all M({1,...,5}) are
invertible for j = 1,...,n. Then M € Qg if and only if M admits the factorization:

M=X_VX,

with Xy € Qs N Qy, (X1);; =1 and V € Qy is invertible.

Proof. Similar to the proof of Proposition 2.1 taking into account that ¢ is a perfect
edge elimination scheme for H. O

We expect a similar result to Theorem 2.5 for combinatorially nonsymmetric partial

matrices, but this fails. Consider the following partial matrix:

1 1 2 =z
y 1 =z 2
1 1 1 -1
1 -1 1 2

in which z, y and z denote unspecified entries. All the principal minors of R formed with
specified entries are invertible. The directed graph of R has the perfect edge elimination
scheme ¢ = [(1,1),(2,2),(3,3),(4,4)]. We try to find z, y and z corresponding to an
invertible completion F' with (F~1)4 = (F')21 = (F~1)23 = 0. This latter equalities

imply

[SV]

—
— N

1 2 =z 1 2 =z
~1ll=lly z 2 })|=I|{1 2 2 | =
11 2 11
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Then y = z = 1 and the third determinant in the above equality equals 3 regardless of
x, a contradiction. The conclusion is that the existence of a perfect edge elimination
scheme lor a directed graph does not imply that the directed graph is completable.

We next prove that the directed graphs allowed by oriented trees (with the inter-
section property) are completable. The proof generalizes the proof of Theorem 2.5. We
use the notation and resulits of Section 1.2.

Tueorem 2.7. Let T = (V(T),E(T)), V(T) = {WV1,...,;Vin} be a tree with the
iulersection property and D an orientation on the edge set E(T'). Let H = (V, F) be the
divceted graph allowed by the pair (T, D). If R € Qy is a partial operator matric and
the following walrices:

(i) R(Vi), Jork=1,.,m

(it) R(V;nV;) Jor {V;,V;} € E(T)

are iverlible, then there exists « unique invertible completion F' of R with (F~');; =0
whenever (1,7) & F.

Proof. We prove the theorem by induction on m, the number of node sets of T'.

For m =1 the result is obvious, while for m = 2 the oriented tree (T, D) is of the form:

Figure XI
Let R let be a partial matrix having its directed graph allowed by the above tree and
let: f=ViNV,, «a =V — f and v =V, — B. Then, R can be decomposed as:

An A Xig
(233) A21 A22 /123
Asy Az Az

with respect to the partition a U S U of the index set V and thus, ( Au Au ) =
An A
Az A

R(WV), ( Ao A ) = R(V2) and Az, = R(Vi N V2) = R(B). Then, the invertibility
32 Aass
conditions of the theorem imply via Lemma 2.4 that there exists an invertible completion

I of R with the desired nonzero-pattern of the inverse.
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Suppose that the result is true for m — 1. We need to consider an extra assumption

and prove it also by induction. Let V; € V(T') be a node set of T' and define

w; = {k|there is an oriented path in (T, D) joining Vi with V;}

p; = {k|there is an oriented path in (T, D) joining V; with Vi}

Further denote Uy, = Ujeu,; Vi respective Vy; = Uie,;Vi. Our assumption is: if F' is the
invertible completion of R with the desired nonzero-pattern of its inverse, then F(Uy;)
and F(Vy,) are also invertible for any node set V; € V(T).

Let T = (V(T),&(T)), V(T) = {W, ..., V} be a tree with the intersection property
and D an orientation on £(T'). Let R be a partial operator matrix having its directed
graph allowed by (7', D) and assume that R satisfies the conditions of the theorem.
Select an extremal node set W € {4, ...,V } and let W’ be its unique neighbour in 7.
Assume that the edge {W, W'} € E(T) is oriented from W' to W. Let § = W N W/,
a=W-=-0,7v=W-08,=Vw—-(WUW)ande=V - (aUBUyUSE). Let
T = (V(T"),E(T")) be the tree obtained by removing the node set W and the edge
{W, W’} from T and D’ be the orientation induced by D on T”. The partial matrix
R(V — @) has its directed graph H' allowed by the oriented tree (1", D'). Since R(V —«)
inherits from R the invertibility properties i) and ii) in the statement of the theorem, by
the assumption made for m — 1, R(V — @) has an invertible completion F’ such that H’
is a directed graph for F'~!. Consider now the partial matrix R’ obtained by replacing
in R, R(V — a) with F'. With respect to the partition a U f U (yU 6) U € of the index

set, R' can be decomposed as:

An Ap Xz Xu
Ay Az Axz Any
As Az Aaz Asg
Xa A Az Ay

(2.34) R =

in which F’ = (Ay;){ ;=2. Since the union of the node sets W" of T” with the property
that there exists an oriented path in (77, D’') joining W” with W' is BU~v U §, by our
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second assuption F'(BU~y U 6) = ( Az An ) is invertible. Let succesively define

Azy Asz
(2.35) ( X1z X4 ) = AAz; (( Az Az )
and
, Az Ag >—1 ( A )
. Xn=(Ap A .
(2.36) n= (A2 Asn ) ( Asy Az Ay

Thus, by Lemma 2.4, the relations (2.35) and (2.36) will define an invertible completion
F of R in (2.34) (and of R also), with its inverse of the form:

11 012 0 0

(2 37) F 1= Qg1 Q22 Q23 Q24

Q31 Q32 Q33 Q34
0 a4 asz i

. Q3 Qg4

The relations FF~! = F~'F = I imply that | az; a34 | are the last two columns
Q43 Qg4

and ( ay2 043 0uq ) is the last row of the inverse of F' = (A;;)},—, and thus H' is

a directed graph of (a;){;-,. This together with (2.37) implies that H is a directed
graph for F~1.

To finish the existence part of the proof we must also prove our second assumption,
namely that with the previous notation the matrices F(Uy,) and F(Vy;) are invertible
for j = 1,...,m. Taking into account the relation between the oriented trees (7', D)
and (T',D') and the fact that by our assumption the result holds for 7", it remains to

prove that F'(Vw) is invertible, when W is the selected extremal node set of T'. Since
An Az Xia

Vw =aUBUyUéb and F(aULBU~vU¥6) is the completion of | Ag; Az Az | with
Az Az Asx

Xia = A12A3; Agz, Lemma 2.4 implies that F(Vw) is invertible.

Finally we prove the uniqueness of F. Assume that F is an other completion of
R with (F~1);; = 0 whenever (¢,5) ¢ . Let F = (Bij)};=1 be the decomposition
of F with respect to the partition a U 8 U (y U ) U € of the index set. Then, in this

decomposition, (F~1)y3, (F~1);4 and (F~1)4 are 0. Thus, by the same argument as
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used for F, H' is a directed graph for #(V — a)~!. By the uniqueness result for m — 1,
we have that F(V — a) = F(V — a). It turns out that both F' and F are invertible
completions of R’ in (2.34), with the property that in the partition a U BU (yU §) Ue
of the index set their inverses have 0 on the (1,3), (1,4) and (4,1) positions. Then by
Lemma 2.4 we have that /' = F. This finishes the proof. [

EXAMPLE Consider the following partial operator matrix:

Ryi Rz Riz Ry Xis
Ry Ry Ras Ry Xos
R=1 Xa1 Rsz Rsz Ras Ras
X Xg2 Ryz Ry Xys
Xs1 Rs2 Rsz Rsqy Rss

The directed graph of R is the one presented in Fig. VI and allowed by the oriented tree
in Fig. VII. Assume that all the submatrices R({1,2}), R({2,3}), R({3,4}), R({3,5}),

R, and Raj are invertible. Following Theorem 2.7, define succesively:
Xos \ _ [ Ras -1
( Xas ) B ( Ry ) By Ras

Xa= (R Ra) R332

Xis=( Rz Ris Ria )R({2,3,4})7' ( X2s Ras Xus )t

( X31 X41 XSI )t = ( R32 R42 R52 )tR;21R21

We obtain in this way an invertible completion F' of R with the property that
(F~1);; = 0 whenever R;; is unspecified.

COROLLARY 2.8. Let 1 < B(1)... < B(k) = n and consider a partial operator
matriz R with Ry; specified if and only if j < B(2). If all the submatrices R(3, ..., B(2))
are invertible fori = 1,...,k — 1, then R admils a unique invertible completion F' with

(F1);; = 0 whenever j > f(i),2 = 1,...,k— L.
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The partial matrices in Corollary 2.8 have all their unspecified entries situated
above the main diagonal. They have a "triangular” form. Triangular partial matrices
will be studied from an other point of view in Chapter IV.

REMARK Let us consider 1 < p,q < n—1, s = min{p, q} and a partial matrix R, in
which R;; is specified if and only if i < j < ¢+por j < i< j+p. If all the submatrices
R({k,..k+s}),for k=1,..,n—sand R({k+1,..,k+s})fork=1,..,n—s—1 are
invertible, then there exists a unique invertible completion F of R such that (F~1);; =0
whenever j >i+pori>j+p.

The above result was proved in [10] for scalar matrices, but it is still true for partial
operator matrices. The directed graph of these partial matrices is not allowed by an
oriented tree.

Consider the following partial operator matrix:

Riy Ri; Riz Ry Ris Ree
Ry Ry Raz Ry Rys Ry
X3s1 Ra; Ras Ras Ras Xae
Xa1 R4y Razs Ry Ras Xge
Xs1 Rsp Xsa Rsq Rss Rse
Xe1 Rez Xes Res Res Res

and assume that all the principal submatrices of R formed with specified entries are
invertible. It will be proved in Section 5.2 that the directed graph of R is not allowed by
any oriented tree. It is easy to see that the pattern of R is not permutation equivalent
to any of the patterns discussed before. The directed graph of R is still'completable,

since succesively defining:

Xu= (R R ) RU2S)™ (1)

(X Ry Rss ; ( Bas >
= 2,4
( Xe3 ) ( Rs2 Req )R({ 4}) Ry
Xass = ( Rsz Ras Rss )R({2,4,5})7" ( Rss Xus Rss )t

(Xsi Xao Xsi Xeo )=( R Riz Rs; Re )Ry Ra
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we obtain an invertible completion F of R with (F~!);; = 0 whenever (3, j) corresponds
to an unspecified entry of R.

In conclusion, the description of the set of all completable directed graphs still

remains open.
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CHAPTER III
POSITIVE SEMIDEFINITE AND
HERMITIAN COMPLETIONS

Probably the area of positive definite matrices is the most fruitful from the
point of view of matrix completion. We begin this chapter with the celebrated comple-
tion result of [38] stating that any partial positive matrix with a chordal graph admits
a positive definite completion. Several proofs are indicated, one of them based on the
results of Chapter II. In the same paper [38] it was proved that for an arbitrary partial
positive matrix /2 which admits positive definite completions, there exist a unique de-
terminant maximizing positive definite completion I of R. Moreover, Fy is the unique
positive definite completion of R with the property that its inverse has 0 in all the
positions corresponding to the unspecified entries of RB. Their proof is based on the
logconcavity of the determinant. Theorem 3.3 represents an operator correspondence
for chordal graphs of the above mentioned maximum determinant principle. In Section
3.1, also based on the logcancavity of the determinant several optimiza:;ion results are
obtained. ;

In the chordal case, the unspecified entries of the maximum determinant positive
definite completion can be obtained as rational functions of the given data. In [53] the
problem was raised whether or not the above property characterizes only the chordal
graphs. In the last part of Section 3.1 we give an affirmative answer to the above
problem.

In Scction 3.2 we study positive semidefinite completions of ”generalized banded”
operator malrices, The results follow the paper [7]. We first develop some distin-

Zf‘
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guishing properties which uniquely characterize a so-called central completion, notion
that appeared in different settings and names in [24], [25], [1] and [33]. Next, a linear
fractional transform parametrization is presented for the set of all solutions. The co-
efficients of the transformations are obtained from the Cholesky factorizations of the
central completion. This is a generalization of the results in [33].

In [49] it was proved that for any partial Hermitian matrix R with chordal support

there exist an Hermitian completion F of R such that
io(F) + i-(F) = maz{io(R(K)) + i-(R(K))|K is a clique of G}.

In Section 3.3 we prove that under certain circumstances the same result holds for
operator partial matrices also. The problem of the number of negative eigenvalues of
Hermitian extensions of partial matrices has been studied in [27], [18],° [31] and [17].
Let F' be an Hermitian matrix with a chordal nonzero-pattern of its inverse. In [44]
a formula for the inertia of F' was proved in terms of the inertias of certain key principal
minors of F. This result was further generalized in [45] for a certain class of operator -

matrices. In Section 3.3 we prove this latter result in the most general operator setting,.

3.1 Maximum Entropy Positive Dc'aﬁnite Completions

A partial operator matrix R is called partial positive if all the principal submatrices
of R formed with specified entries are positive definite. The following is a well-known
result of [38]. The original proof is for scalar matrices, but as shown next, it works for
operator matrices also. In [57], it was extended to matrices over certain C*—algebras.

THEOREM 3.1. Let G be a chordal graph. Then any partial positive operator matriz
R € Q¢ admits a positive definite completion.

Proof. Consider G = Gy, G4, ...,Gt = K, an arbitrary chordal sequence (see Section
1.2) of G. Let (uj,v;) be the unique edge added to G;-; in order to obtain G; and V;

the unique maximal clique of G; which is not a clique of Gj_1. Consider the partial
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submatrix Ro(V1) of Ry = R corresponding to the index set Vj. After a reordering, if

necessary, the partial matrix Ro(V;) has the following structure:

A B Xy
RW)=| B~ ¢ D
Xz, D* E

B* C D~
(1.4), Ro(V1) admits a positive definite completion. Select any value for X,, ,, which

in which the matrices ( A B) and ( ¢ g) are positive definite. Then, by

provides a positive definite completion of Ro(V1). Rp will be transformed in this way
into a partial positive matrix R; having G, as associated graph. Repeating the process
for R, and G, we obtain a partial positive matrix R, and so on, until we obtain a
positive definite completion M of R. O

The proof of Theorem 3.1 is also valid for positive semidefinite completions of partial
positive semidefinite matrices.

In the scalar case, the proof of the above theorem together with Theorem 1.2 imply
the following parametrization result ([5]).

THEOREM 3.2. Let R be a partial positive matriz and let G be its associated
graph which is supposed to be chordal. Fiz a chordal sequence G = Gy, G1,...,Gy = K,
of G. Then, any positive definite completion of R is uniquely determined by a set
{g(uj,v;)l7 = 1,...,1} of complex numbers with |g(uj,v;)| < 1, (uj,v;) being the unique
edge added to G;—y in order to obtain G;.

As the parameters {g(u;,v;)|7 = 1,..,t} depend only on the fixed chordal sequence
of G, we call them the parameters of M along the underlying chordal sequence. These
parameters will play a key role in Chapter V in computing the determinant of an
arbitrary positive definite completion.

Theorem 3.1 can also be obtained as a corollary of Theorem 2.2. Indeed, consider
a chordal graph G' and without loss of generality assume that o = [1,...,n] is a perfect
scheme for G. For any partial positive matrix R € Qg the conditions of Corollary 2.3

are satisfied. Thus there exists a unique completion F' of R such that F~' = X_V X,
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with V' and X; given by (2.28-2.30). It easily follows from the formulae that V is
positive definite and X_ = X7}. This implies that F' is a positive definite completion of
R. For the same result, a proof based on the Arveson Extension Theorem was presented
in [56).

It is known from [38] that for any nonchordal graph G, there exists a partial positive
matrix R € Q0 without having a positive definite completion.

The following result is referred as the maximum entropy principle. The notion was
first introduced in a particular case in [15]. In the scalar band case it was proved in
[24], while in [35] appers in the operator band case as an example of a more general
maximum entropy principle.

THEOREM 3.3. Let G be chordal, R € Qg be a partial positive operator matriz and
assume that [1,...,n] is a perfect scheme for G. Let F be the unique completion of R
with F~' € Qg and write F~' = X3V X, as in (2.9). Then for any positive definite
completion H of R and factorization H=' = M} JM, with My € Qy, (My);; =1 and
J € Qo we have that:

(3.1) v1>J71

Proof. Consider F' and M as in the statement of the theorem. Then:
(32) (X4 (H = F)X3);; = 0.
In order to prove (3.2), note that

(X4 (H = F)X3)j5 = D (Xa)5(H = Flan(X3)ws
t,k=1
If (X4); and (X}); are nonzero, j < ¢, (4,j) € E, k > j, (j,k) € E then
since the vertex j is simplicial in the graph Gyj,....} we have that (¢,k) € E and thus
(H — F)ix = 0. In the latter equality we used that both F' and H are completions of

R. This implies (3.2).
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Following (3.2), since
X.+(H - F)X_’,‘_ = X+M;'1J"1M;'1X_':_"l -y
we have that
(Vi = (Xe MP I METIXE )5 2 (I35

for j = 1,...,n. The last inequality holds since (X4 M;');; = I for j = 1,...,n. Thus
(3.1) is true and the equality holds if and only if X, M}' = I, consequently when
H=F. D

In the scalar case, as consequence of Theorem 3.3, F' is the unique maximum
determinant positive definite completion of R. This result was proved in [38] for an
arbitrary graph and partial matrix which admits a positive definite completion. Their
result will be a particular case of a more general result ([67]) which will be considered
next. |

In what follows let M denote the set of all n — by — n self-adjoint complex matrices,
P={Ae M|A>0}and P? = {A e M|A>0}. Let WC M be a linear subspace
such that W NP = {0}. In the rest of this section we consider the scalar product
(C,D) =tr(CD*) on M.

We next present the approach of [67] to certain determinant optimization results.

THEOREM 3.4. Let A, B € M lbe such that (A+ W) PO £ . Then there is
a unique F € (A+W)NPO such that F~' — B L W. Moreover, F mazimizes the

function
f(X) = logdetX — tr(BX)

over X € (A+W)NP.
Proof. Since WNP = {0}, (A+ W) NP is a bounded set (we are in a finite
dimensional space). The set (A + W) NP is convex. It is known that logdet is strictly
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concave on P (see e.g. [39]). Since tr(BX) is linear in X, f(X) is strictly concave and
thus has a unique maximum on (A + W) N P denoted by F'. Since near the boundary
f tends to —oco, F' is an inner point of (4 + W) N PO,

Fix an arbitrary W € W. Consider the function fw(z) = logdet(F + zW) —
tr(B(F + zW)) defined in a neighbourhood of 0 in C. Then fj(0) = 0 (since f has its
maximum in F').

It is easy to see that:

(det(I + zF W)Y
det(I + zF-1W) lz=0

fw(0) = — (tr(B(F + 2W))) |z=0

= tr(F7'W) = tr(BW) = tr((F"' = B)W) =0

Since W = W* is an arbitrary element of W we have that F~! — B 1 W which finishes
the proof. O

Let A € P©, B € M and an arbitrary graph G = (V, E) be given. We assume
that for any k € V, (k, k) € E. Let

W = {W € M|W,; = 0 whenever (k,j) € E}

Then WNP = {0} and A € (A+ W) N PO. By Theorem 3.4 there exists F €
(A 4+ W)NPO such that F~* — B L W. For any (k,j) ¢ E, consider the matrix
w ,‘{""' Yew having all its entries 0 except those on the positions (%, j) and (j, k) which
equal 1, respectively the matrix W,(k'j) having ¢ on the position (k, 7), —¢ on the position
(j,k) and 0 in rest. The conditions tr((F~! — B)W)y = tr((F-1 — BYyWF)) = 0
imply that (F~1)x; = By; for any (k,j) ¢ E.

Thus Theorem 3.4 has the following consequence.

COROLLARY 3.5. Let A € P©®, Be M and the graph G = (V, E) be given. Then
there is a unique F' € P© such that F;; = A;; for any (i,j) € E and F; = B;; for
any (i,7) € E. Moreover, F' mazimizes the function f(X) = logdetX — tr(BX) over
(A+W)NP.
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The above result was first proved in [20] (see also [63]). The case B = 0 was
independently proved in {38], which came in connection with the following completion
result.

COROLLARY 3.6. Let G be an arbitrary graph and R a partial positive matriz
with graph G which admits positive definite completions. Then there exists a unique
mazimum determinant positive definite completion F of R. Moreover, F is the unique
positive definite completion of R with F~! € Qg. F is a real matriz whenever the partial
matriz R is real.

In the chordal case, Theorem 3.3 is more general, but unfortunately it can’t be
applied for nonchordal graphs.

In general under the hypothesis of Theorem 3.4 there is no precise formula for the
optimal solution F'. We next present an approximation of F'

Let {(¢, )|k =0,1,...,s — 1} be an arbitrary ordering of the missing edges of G.
For any M € (A+M)NPO define the positive definite matrices X ,(cM), k=0,1,..,s by
XM = M and letting X{}) be obtained by modifying the (i, ji) and (jx, k) entries of
X,EM) such that (X{.Tl) ;:J'k = B;, ;. for k=0,1,...,s—1. (This is possible by Corollary
3.5). Define then the function

g: (A+W)nPO - (A+W)n PO, g(M) = X1,

Then F is the unique fixed point for g since for any other M € (A + W) N P© we
have £(M) < f(g(M)).

Define the following sequence: Yy = A, Y41 = g(Ym) for m > 0. Consider H to
be a limit point of the sequence {Y;,}%°_,. Since H is a fixed point for g, it follows
that H = F. Consequently, Y;, — F. (This proof is based on the so-called coordinate
descent, see e.g. the book [52] for more details on this method).

In the operatorial case, when B = 0 and G = (V, E) is chordal, F can be precisely
computed by the formulae (2.28-2.30). |

Again let {(¢x,jx)|k = 0,1,...,8 — 1} be an ordering of the missing edges of an
arbitrary graph G = (V, E). For any M € P©), order the (M;, ;,)izh, ¢k < jk entries of
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M in a vector v(M) € C*°. Consider a matrix @) € C™*. Under these circumstances,
Theorem 3.4 has the following consequence, originally proved in [54].

COROLLARY 3.7. Let A € P and c € CT be such that Qu(A) = c. Then, among
the matrices M € PO satisfying My; = A;; for (1,5) € E and Qu(M) = c there is
a unique one which mazimazes the determinant. It is also the unique one with the
property that v(M) € R(Q).

Proof. The result is a consequence of Theorem 3.4 for B = 0 and

W = {W € M|W;; = 0 whenever (i,7) € E and v(M) € kerQ}.

An important example is the Toeplitz case. One obtains here the following result,
also proved in [54].

COROLLARY 3.8. Let A be a partial Toeplitz matriz with a prescribed main diagonal
which admits a positive definite Toeplitz completion. Then there exists a unique maz-
imum determinant positive definite Toeplitz completion F. Moreover, F' is the unique
positive definite Toeplitz completion of R such that the sum of the entries of F~! on
each of the diagonals corresponding to unspecified diagonals of R equals 0.

Proof. In the case of Theorem 3.4 consider B = 0 and W to be the span of Toeplitz

matrices of the form

00 ..10 ..0 0 0 o 5 0 .. 0
(00...01...0\ (00 i )
W= 10 . 00 o1 |aedW®=| =i 0 .. 0 0 .. 4
001 .. 0 0 .. 0 0 —i .. 0 0
\0 0 .. 10 ..0) \0 0 .. %50 .. 0)/

supported on the j - th diagonal which is supposed to be unspecified in A. Then,
(M, W?) =0, k =1,2if and only if the sum of the elements on the j - th diagonal of

M is zero. O

Given any partial positive matrix R with chordal associated graph then by Corollary

3.6 and Corollary 2.3, the unspecified entries of F, (the maximum determinant positive
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definite completion of R) can be obtained as a rational function of the given entries of R.
In the thesis [53], it is stated (but not proved) that the above property characterizes the
chordal graphs. Namely, given any nonchordal graph G = (V, F), there exists a partial
positive rational matrix with associated graph G, such that the maximum determinant
positive definite completion F' of R fails to be a rational matrix. It is easy to see that
it is sufficient to prove the result in the case in which the graph G is a simple cycle of
length n > 4.

Consider first the partial matrix

1 1/2 7 1/2
1/2 1 1/2 ?
7 01/2 1 1/2
1/2 7 1/2 1

having associated the simple cycle of length 4. Its maximum determinant positive

definite completion is

1 1/2 (V3-1)/2 1/2
1/2 1 1/2 (V3 -1)/2
(v3-1)/2 1/2 1 1/2
1/2 (V3-1)/2 1/2 1

Consider the following partial positive matrix:

1 1/2 77 .12
1/2 1 1/2 7 .. 7?

R= 7 1/2 1 1/2 .. 7
|57 S S S |
associated with the simple cycle of length n. Then R admits positive definite comple-
tions (for instance the completion with all 7). Let F' be the maximum determinant
positive definite completion of R. Then by Kotelyanskii’s inequality (see Section 1.1),
1 1/2 n—-1 _ (3\n—-1
we have that detF < (det ( 12 1 )) = ($)"
Taking into account Corollary 3.6 and the symmetry of R, F~! has the following

pattern:
p ¢ 0 q
| 9 P ¢ 0
g 0 0 P
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in which obviously p + ¢ = 1. By (1.12) we have that:

< detF({1,2})detF({2,...,n})

detF’
Fy

consequently,

detF({2,...,n}) _
detF -

4
(3.3) 3 <
The condition R;; = § implies that g% = %, in which
qg 0 0 .. 0 ¢

qg 1—q ¢
Plg)=(-1)"*'det| 0 ¢ 1-¢q .. 0 0

[
o

0 0 0 .. qg 1—gq
and
l-q ¢ 0 q
g l1l—q¢ ¢ 0

Q(q) = det 0 qg l—g¢ 0
¢ 0 0 . l-g

Since P(0) = 0, Q(0) = 1, P and @ have integer coefficients, the equation Q(q) —
2P(q) = 0 might have rational solutions only of the form ¢ = —-—,1;, with k£ a nonzero
integer. Thus p = kk—ﬂ and then (3.3) implies that the only possibilities might be p = %
or p = 2. An elementary computation shows that for any n > 4, the above choices of p
do not provide a completion of R. Thus p and ¢ are irrational.

By Corollary 3.6 the equation Q(g) — 2P(¢q) = 1 has at least one real solution.
Since the equation has real coefficients and an irrational solution, it has at least two
irrational solutions. Both solutions will provide a completion of R with the property
that the simple cycle of legth n is a graph of their inverse. This result solves a question
raised in Section 2.1. Thus, for any nonchordal graph G there exists a partial matrix
R € Q¢ such that all the fully specified principal matrices of R are invertible and still

there are at least two invertible completions Fy and F, of R such that F{, F;! € Q.
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3.2 Generalized Banded Partial Matrices

In this section we prove for generalized banded partial operator matrices the exis-
tence of a positive semidefinite completion with some distinguishing properties. Based
on-this completion, linear fractional parametrization is obtained for the set of all solu-
tions.

Consider first the following 3 — by — 3 problem:

A A 7
(3.4) Asy Az Az | 20,
?  Asp Az
in which
Au A12 ) ( A22 A23 )
3.5 ( >0 > 0.
(3:5) A2z A ) T "\ Az Az )T

Note that the positivity of the 2 — by —2 operator matrices in (3.5) implies via (1.3)

that

Ars = AVPGLAYE, Agy = A G ALY

in which G : R(A2) — R(An) and G, : R(As3) — R(Az:) are contractions.
With the choice G = 0 in (1.4) we obtain the particular positive semidefinite

completion
(3.6) A = AVPGL G, AL

We shall call this the central completion of (3.4), referring to the fact that in the operator
ball in which A3 lies (namely the one described by (1.4)) we choose the center.

Let F be a positive semidefinite operator matrix and let
(3.7) F=V*"V =W*"W.

be the lower-upper and upper-lower Cholesky factorizations of F' respectively. If V
and W are upper (lower) triangulars with F = V*V = W*W, then there exists block
diagonal unitaries U : R(V) — R(V) and U : R(W) — R(W) with UV = V and
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UW = W. This implies that if F' is a positive semidefinite n — by — n operator matrix,

then the operators

(3.8) Au(F) i= diag(ViVi)iy
and
(3.9) AL(F) = diag(WiWa)Ly

do not depend upon the particular choice of V and W in (3.7).
Returning to our problem (3.4), if F' is an arbitrary completion corresponding to

the parameter G in (1.4) then F' admits the factorization (3.7) with

AP G4} (GiGae+ Dg;GDg,) A3l

(3.10) V=| 0 DgAL? (DgGs— G*GDGQ)AQQ
0 0 DgDg, AY?
and
Dg+Dg; ALY 0 0

(Dg3G; — GoG*Dags) A DayAE 0

3.11 W =
(310) (G3G; + De,G*Da;) A2 G3Al? ALl

Further, using relations like Gi(Dg;) € Dg,, one easily obtains that R(V;;) € R(Vi)

and R(W;;) C R(Wy), for all ¢ and j. The triangularity of V and W now yields

(3.12) R(V) = R(A®) ® Do, ® Do, R(W) = Do- & Dy & R(AL).

One immediately sees from these equalities that when G = 0 the closures of the ranges

of the Cholesky factors of the completion are as large as possible.

Relation (3.7) implies the existence of a unitary U : R(W) — R(V) with UW =V,

A straightforward computation gives us the explicit expression of U, namely

DG; Dge GlDG; - DG; GG; G1G, + DG; G'.Dc,'2
—GiDg+ Dg,Dgy — G1GG; Dg, G, — G;GDg,

@1 U= _g iy, DgDa;
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Note that the (3,1) entry in U is zero if and only if G = 0. As it will turn out, this will
be a characterization for the central completion, thus providing a generalization of the
banded inverse characterization in the invertible case, discovered in [24]. We will state
the result precise in the n — by — n case.

Let us now consider the n — by — n generalized banded positive semidefinite com-
pletion problem. Recall that S C n x n (n = {1,...,n}) is called a generalized banded
pattern if

(1) (5,2) € S,i=1,...,n

(2) if (¢,7) € S then (j,7) € S; and

(3) (4,5) € Sand i < p,¢ < j imply (p,q) € S.

Let us mention that the associated graph of banded pattern is a so-called ”proper
interval” graph, a particular case of chordal graphs.

The problem is the following. Given are A;; : H; — H; for (Z,7) in a prescribed
generalized banded pattern S. We want to find all positive semidefinite completions of
{Ai;,(3,7) € S}. It is known (see Theorem 3.1) that a positive semidefinite completion
of {Ai;, (2,7) € S} exists if and only if

(3.14) (Aij)ijes 20

for all J C n with J x J € S. When {A;j,(:,5) € S} verifies condition (3.14) we shall
call this band positive semidefinite.

In [1] a parametrization was given for the set of all positive semidefinite completions
of {A;;,(1,7) € S} as follows. This parametrization is based on the result in [16] quoted
above and the fact that making a completion of {A;;, (z’, j) € S} precisely corresponds
to choosing the parameters {I';;,1 < ¢ < j < n,(,7) € S}. Thus there exists an
one-to-one correspondence between the set of all positive semidefinite completions of
{Ai;,(3,7) € S} and the completions of {I';,1 < i < j < n,(4,7) € S} to a (Aix)x,
choice triangle. This parametrization is recursive in nature, because of the way the

choice triangles are constructed.
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The completion corresponding to the choice I';; = 0 whenever 1 < ¢ < j < n with
(7,7) € S is called the central completion of {A;;,(¢,7) € S}. It shall be denoted by F.,

"c” stands for central.

in which the subscript

An alternative way to obtain the central completion is described below. For a given
n — by — n positive generalized band {A;;, (,7) € S} one can proceed as follows: choose
a position (o, jo) € S, 70 < jo, such that SU{(3o, jo), (Jo,%0)} is also generalized banded.

Choose Aj,j, such that (A;;)%_; is the central completion of {4;;, (4,7) € S and 4, <
i,J < jo}. This is a 3 — by — 3 problem and A;, ;, can be found via a formula as in (1.4).
Proceed in the same way with the partial matrix thereby obtained until all positions
are filled. It turns out (see [1]) that the resulting positive semidefinite completion is
the central completion F.. Note that for (i0,jo) € 5, %0 < jo, the entry A, j only
depends upon {A;;,(¢,7) € S and 4o < 7,5 < jo}. This implies that the submatrix of
F, located in the rows and columns {k, %k + 1,...,[} is precisely the central completion
of {Aij,(¢,7) € SN{k,k+1,..,1} x {k,k+1,...,1}}. This principle is referred to as
the "inheritance principle” (or permanence principle in the positive definite case ([26]).
Our first result gives four equivalent conditions which characterize the central com-
pletion. This is a positive semidefinite operator analogue of Theorem 6.2 in [24].
THEOREM 3.9. Let S be generalized banded pattern and F a positive semidefinite
completion of {Aij,(i,7) € S}. Let F = V*V = W*W be the lower-upper and upper-
lower Cholesky factorizations of F. Then the following are equivalent:
(i) F is the central completion of {Aij, (i,7) € S}.
(ii) Au(F) > Au(F) for all positive semidefinite completions F of {Ayj, (,7) € S};
(it)) AL(F) > AL(F) for all positive semidefinite completions I of {Aij, (i,7) € S};
(iv) The unitary U : R(W) — R(V) with UW = V wverifies U;; = 0 for i >
g (,5) € S.
Note that the uniqueness of the central completion implies that Ay(F) = Ay(F)
(or Ap(F) = AL(F)) yields F = F. The maximality of Ay(F)(AL(F)) can be viewed

as a mazimum entropy principle (see e.g., [15]).
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Proof. The equivalence of (i) and (ii) can be read off immediately from (1.8), and
similarly the equivalence of (i) and (iii) can be read off immediately from (1.9).

We prove the equivalence of (i) and (iv) by induction on the number of missing
entries in the pattern S. For the 3 — by — 3 problem (3.4), discussed at the beginning
of this section, formula (3.13) proves immediately the equivalence.

Let § C n x n be a generalized banded pattern and {A;;,(¢,7) € S} positive
semidefinite. Let F, denote the central completion of {A;;,(3,7) € S}, and let V, and

W, be upper and lower triangular operator matrices such that

(3.15) F.=V'V.= W'W..

Consider the unitary operator matrix U : R(W,) — R(V.) so that UW, = V,. Let §

denote the pattern § = SN (n—1xn—1), and F' = (ﬁ', -)n obtained from F; by

i,j=1

A

compressing its last two rows and columns. So, F; = (F¢);; for 2,7 <n—1 and
Fi,n—l = F«,:_l‘,' = ((Fc)i,n—l (Fc)in) ,i <n-— 1,

and

Fron = (it )

Consider the data {£},(:,7) € $}. From the way the centfal completion is defined
one sees that F'(= F.) is the central completion of {F};,(:,5) € §}. Now, in the
same way, consider the operator matrices U = ((7;5)}fj=1, V= (f/}j)?,jﬂ and W =
( I/i/,-j)}‘,jﬂ obtained by the compression of the last two rows and columns of U, V, and
1W,, respectively. We obtain by the induction hypothesis that (7,-,- = 0 for (,7) & S with
¢ > j. Thus it remains to show that U,; = 0 for j with (n,j) ¢ S and (n - 1,5) € S.

For this purpose let v = min{j, (n,j) € S} and consider the decomposition

) i Y i
U=U= Yo Y Yo
Ya1 Xa Xas
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with ¥y, = (U,‘j)z:j_:ll, Yo = (Uij):-t:j—:l,y and Y33 = Up,,. Consider also the corresponding

decomposition of F, = (¢;j)2 =1+ Again we have that F, is also the central completion

of
$n ¢1z ?
P21 P22 Poa
7. ¢ ¢a

Then, from the 3 — by — 3 case we obtain that ¥13 = 0 and, consequently, Uy,; = 0 for
J <7 -1, proving (iii).

Implication (iii) — (i) can be proved by the same type of induction process. One
needs to use the observation that if §; and S; are two generalized banded patterns and
F is the central completion of both {A;;,(¢,5) € S1} and {A;j, (%,7) € Sz}, then F is
the central completion of {A;;,(¢,7) € Sy N S2}. We omit the details. O

THEOREM 3.10. Let S C nx n be a generalized banded pattern and {A;;, (¢,7) € S}
be positive semidefinite. Let F. denote the central completion of {A;;,(2,7) € S}, and

V. and W, be upper and lower triangular operator matrices such that

(3.16) F,=V'V,= W'W..

Further, let U : R(W,) — R(V.) be the unitary operator matriz so that
(3.17) UW, =V..
Then each positive semidefinite completion of {Aij, (i,7) € S} is of the form

(3.18) T(G) = V(I + UG I - G*G)I +UG)™V,

= W>(I + GU)™(I - GG*)(I + GU)"'W,,

in which G = (Gyj); o, : R(Ve) = R(W,) is a contraction with Gi; = 0 whenever i > j
or (i,7) € S. Moreover, the correspondence between the set of all positive semidefinite

completions and all such contractions G is one-to-one.
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The decompositions of R(V) and R(W) are given by

(3.19) R(V) = R(A11) ® (Bk=2Dry,)
and
(3.20) R(W) = GB’,:;%DP;" ® R(Ann).

Proof. Write F, = C + C*, in which C is upper triangular with C;; = 1/2F};,

i,5=1

¢ = 1,...,n, and define for a contraction G = (Gy;)}._, : R(W,) — R(V.) with G;; =0
whenever ¢ > j or (i,j) € S, '

(3.21) L(G)=C —-W:(I +GU)'GY..

Since U;; = 0 for (i,5) € S with ¢ > j, one easily sees that GU is strictly upper
triangular and so (I + GU)™! exists and is upper triangular. Since W} and V, are both

also upper triangular one readily obtains that
(3.22) (L(G));; = Cijr (i,5) € S.

Further, using (3.21) and the unitarity of U it is straightforward to check that £(G) +
L(G)* = T(G). This together with (3.22) yields that 7(G) is a completion of { A;;, (2,7) €
S} and since ||G|| £ 1 the operator matrix 7(G) is positive semidefinite.

Assume that for two contractions G and G, (of the required form) we have that

T(G,) = T(G2). Then also £L(G:) = L(G:) and since W} and V* are injective on R(W.)
and R(V;), respectively, equation (3.21) implies that (I + G1U)™*G1 = (I + GoU)™'Go.
Thus G1(I + UG:) = (I + G1U)G; which yields Gi = Ga.

Conversely, let F be an arbitrary positive semidefinite completion of {A;;, (z,7) €

S}. Consider @ = (9i;);;-, such that §;; = 0 whenever i < j or (i,j) € 5, and

F.— F = Q+ Q*. Then there exists an operator Q = (Qy);; + R(We) — R(V;) with
Q:; = 0 whenever ¢ > j or (¢,7) € S and 2 = W QV.. The proof of the existence of ()
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is based on range inclusions. See [7] for details. Since UQ is strictly upper triangular,

we can define
G=QUI-UQ)™,

which will give that @ = W*(I + GU)"'GYV.. Since F = F, — Q — Q*, and taking into
account (3.21) we obtain that F' = 7(G). Since F' = T(QG) is positive semidefinite, the

relation (3.18) implies that G is a contraction. This finishes our proof. O

3.3 Inertia Formulas for Hermitian Matrices

This section deals with Hermitian operator matrices. We obtain the operator ver-
sion of two known results. The first one is related to inertia posibilities of Hermitian
matrix completion and the second one represents an inertia formula for Hermitian ma-
trices with sparse inverses.

LEMMA 3.11. Let M € B(H), N € B(K) be invertible Hermitian operators with
the property that i_(M) < i_(N) < oo. Then there exists Y € B(K,H) such that
M >YNY™.

Proof. Using the notation of Section 1.1, define Y|H}; to be 0. It remains to define
Y on Hy. Since Hy and K}, are finite dimensional, there exists ¢, § > 0 such that

N~ < —el and M~ > —4I. Let U be an isometry on Hy such that K3, C R(U) and
let s > y/é/e. Then

(SUN~(sU)* < M~

and we can define Y|Hy = sU. The operator Y defined in this way provides a solution

to our problem. 0
An A Xis
LEMMA 3.12. Let R= | A, A A be a partial matriz and assume that
Xfa A;3 Ass
R({1,2}), R({2,3}) and R, are invertible and i_(R({1,2})),i-(R({2,3})) < oo. Then
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there exists an invertible completion F' of R such that

(3.23) i_(F) = maa{i_(R({1,2))),i-(R({2,3)))}

Proof. Without loss of generality, assume that i_(R({1,2})) > i_(R({2,3})). Let
F be a completion of R corresponding to a certain choice X33. Then F is invertible
and satisfies (3.23) if and only if the Schur complement of R({1,2}) in F is positive

definite. A straightforward computation shows that this Schur complement equals
(3.243 — A3y Az, Ass — (K13 — AeAy Az)"(Ann — ArAy AD) (Xis ~ A12Az; Az)

Since Aaz— A3z A5, Ags is the Schur complement of Az, in R({2,3}), respective A;;—
A%, Az App is the Schur complement of Ajz in R({1,2}), the relation i_(R({1,2})) >
i—(R({2,3})) implies that

i-(An — AfpAz; Ar2) 2 i-(Ags — A3A7, Az)

The existence of an Xj3 which makes (3.24) positive definite is guaranteed by

Lemma 3.11. Such an Xi3 produces a completion F' with (3.23). O
An A Xis
PROPOSITION 3.13. Consider the partial operator matrixr R= | A}, Az A |,
X3 Aj Ass
such that ig(R({1,2})) + i-(R({1,2})) < o0, io(R({2,3})) + i-(R({2,3})) < co and 0

is an isolated point in the spectrum of R({1,2}) and R({2,3}). Then there exists a

self-adjoint completion F of R, such that

(3.25) i (F)+io(F) <

maz{i-(R({1,2})) +70(R({1,2})),i-(R({2,3})) + 10o(R({2,3}))}

and if 0 € o(F) then 0 is isolated in o(F').
Proof. The relation i_(R({1,2})) + 70(R({1,2})) < oo implies that ¢_(Ajzz) +

i0(As2) < co and since 0 is an isolated point in the spectrum of Az, by Proposition
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1.4, 0 will be an isolated point in the spectrum of A, also. Thus, for sufficiently small

A >0 R({1,2}) — A and R({2,3}) — AI are invertible. Then

i-(R({1,2}) — AI) = i-(R({1,2})) + do(R({1,2}))

i-(R({2,3}) — AI) = i-(R({2,3})) + éo(R({2,3}))

Thus, the partial matrix R — AJ satisfies the conditions of Lemma 3.12 and this

implies the existence of an invertible completion F of R — Al such that
i-(Fy) = maz{i_(R({1,2}) — A),i_(R({2,3}) — AI)}.
Then F = Fy + Al is a completion of R and
to(F) 4+ i-(F) <i_(Fy+ Al).

The interlacing inequalities imply now (3.25). Since i_(F)) < oo, 0 is isolated in
o(F). 0O

The next result generalizes a result in [49].

THEOREM 3.14. Let G be a chordal graph and R € Qg be an Hermitian partial

matriz. If Ky, ..., K, are the maximal cliques of G,
maz{i_(R(K;)) + io(R(X})),j = 1,..,7} < o0

and if 0 € o(R(K;)) then 0 is an isolated point in o(R(I;)), for j = 1,...,7, there exists

an Hermitian completion F of R such that
i-(F) + to(F) < maz{i_(R(K;)) + 1o(R(K;)),j = 1,...,r}

Proof. The proof is similar to the proof of Theorem 3.1. Consider a chordal sequence
G = Go,...,Gy = K, of G and apply then repeatedly Proposition 3.13. O

In the rest of this section we prove inertia formulae for Hermitian operator matrices.

THEOREM 3.15. Let A = (Ay;)? ;-1 be an invertible Hermitian operator matriz.
Assume that A™' = B = (Bj;)} ;= and By = 0. Then, ifi_(A({1,2})),7-(A({2,3})) <

0o, we have:
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i). i_(B11) and i—(Bas) are finite.
i), 10(A({1,2})) and io(A({2,3})) are finite and 0 is isolated in o(A({1,2})) and

o(A({2,3})).
iti). i-(A) is finite and

(3.26) 1-(A) = i-(A({1,2})) +¢-(A({2,3})) — i—(Az)

Proof. As a consequence of A~! = B and B3 = 0 we have that

Ay Aa ( By > ( 0 )
3.27 =
( ) ( A;a A33 ) .B33 I

(s 5 (32 42 ) (55 ) =
Now i_(Bs3) < i-(A({2,3})) is a consequence of Lemma 1.3. In a similar way one
can prove i_(B11) < i-(A({1,2})) and i) follows.
Assume that io(A({1,2})) = ¢o(Bas) = 0o. For h € kerBas, (3.27) implies that:

029 (G =) ()= (2):

Thus the space Hy = m is infinite dimensional. Since Az;B23h = 0,
it follows that rank[Piera,;Ho] = oo, and then Proposition 3.1 of [17] implies that
i-(A({2,3})) = oo, a contradiction. Thus ig(Bsz) = i0(A({1,2})) < 0o. By a similar
proof ig(Bi1) = i0(A({2,3})) < 0.

We obtain that 0 is isolated in o(A({1,2})) by a similar method used in the last
part of the proof of Proposition 1.4. Since 79(Bs3) + i-(Bs3) < oo, for suffiently small
A > 0, Bas + Al is invertible and i_(Bsz + AI) = i_(Bs3). Denote

By, Br 0
By = ( B:, By  Bu )

0 Bj; Bss+ Al
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and Ay = B;'. By the Schur complement argument A)({1,2}) is invertible. The
equality i_(B)) = i-(B) = i-(A) holds for suffiently small A > 0.

We have that By N\, B~ for A \ 0, and since A5 = (By )™, Ay /' A~ (weakly) for
AN\ 0. Thus (4x({1,2}))" /" (A({1,2}))” for X \, 0. Then, A)({1,2}) is invertible
and i_(A({1,2})) + 40(A({1,2})) < oo implies that i_(Ax({1,2})) = io(A({1,2})) +
i-(A({1,2})). Applying Proposition 1.4 for Aj, we get:

i_(A) = i-(Ax({1,2})) + i-(Bss + ),

and finally

(3.29) - i-(A) = io(A({1,2})) + i-(A({1,2})) + ¢-(Bss) < oo.

which implies that A satisfies the conditions of Proposition 1.4. Consequently (1.4)

implies
(3.30) i-(4) = i-(A({2,3})) + i0(A({2,3})) + ¢-(Bu)
(3.31) i-(A) = i_(Agz) + io(Az2) +i-(B({1,3}))

Since Biz = 0, we have that io(B({1,3})) = <o(Bn1) + %0(Bs3) and :-(B({1,3})) =
i-(B11) + 1-(Bs3). Adding (3.29) to (3.30) and subtracting (3.31), we obtain that

(3.32) i-(A) =1_(A({1,2})) +i-(A({2,3})) — i (A=),
which completes the proof. O

THEOREM 3.16. Let G = (V,E) be a chordal graph, K the set of all mazimal
cliques, respectively S the set of all minimal vertex separators of G. Let A = (Aij)} iy

be an invertible Hermitian operator matriz such that A™' = B = (Bi;)};., € Qe.

Assume that i_(A(K)) < oo for any K € K. Then, we have:
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i). 10(A(K)) < oo for any K € K.
ii). If A(K) is not invertible, then 0 is isolaled in o( A(K)).
i), i-(A) < oo and i-(A) = Y pex i-(A(K)) = Yo ges 1-(A(S)).
Proof. To make the proof easier, we first prove i) in a particular case.
Consider A to be a 7 — by — 7 Hermitian operator matrix with inverse B. Assume

that the chordal graph with the clique tree given in Iig. XII

R\
34,5 45,6 5,6,7

Figure XII

is a graph for B and
(3.33) i—(A(KX)) < o0, for any mazimal clique K of G.

Let assume that ¢y(A(Ky)) = oo for a certain maximal clique Ky, for instance {4, 5,6}.
We shall prove that this assumption contradicts (3.33). Since by (1.13), 70(A({4,5,6})) =
i0(B({1,2,3,7})) = io(B({1,2,3})) +'z'o(B77), we must have either io(By7) = oo or
io(B({1,2,3})) = oo.

A. Assume that iy(B377) = oo. Taking into account that G is a graph of B, the

following relation holds:

B57 0
(3.34) A5,6,T | Ber | =1 0
By I

Then, as in the proof of Theorem 3.15, (relation (3.28)), (3.34) implies that :_(A(5, 6, 7)) =
00, a contradiction.

B. Assume that iy(3({1,2,3})) = co. The structure of B implies that:

0 0 DBy 0 00

Bs; Bs2 Bss 0 00

(3.35) A{4,5,1,2,3})| By Bie Bua |=| T 00
By DBy B 0710

B3y DBiy Ba 0 0 J
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Take (h1, ho, h3) € kerB({1,2,3}). Then (3.35) implies that:

Byzha 0
(3.36) A({4, 9, 3}) Bs1hy + Bsahy + Bsaha = 0
0 hs

In the case in which dim[Py,ker B({1,2,3})] = oo, as in the proof of Theorem 3.15, we
deduce that i_(A({3,4,5})) = oo, a contadiction. So, we only have to consider the case
dim P[Hsker B({1,2,3})] < oco. Under this assumption, since io(B({1,2,3})) = oo,
there exists an infinite set of linearly independent vectors of the form (hy,h;,0) in

ker B({1,2,3}). For any such vector, (3.35) implies that:

0 0
A({512a3}) ( B51h1 + B52h2 ) = ( h2 )
0 0

Then dim[Py,kerB({1,2,3})] = oo implies that i_(A({2,3,5})) = oo, a contradiction.
Thus, we also have to assume that dim[Py,kerB({1,2,3})], in which case there exists
an infinite family of linearly independent vectors (h1,0,0) € kerB({1,2,3}). For any

such vector, by (3.35) we obtain:

0 0
A({5,1,2}) (,lehl ) = ( hy ) :
0 0

which implies that 7. (A({1,2,5})) = oo, a contradiction. Finally, we conclude that our

initial assumption 7o(A({4,5,6})) = oo is false.

Let A be an n — by — n Hermitian operator matrix. Assume that A verifies the
conditions of the theorem and let T' = (V(T'),E(T)) be a tree of G. Assume that there
is a maximal clique Kp of G such that ig(A(Kp)) = co. We shall prove that under this
latter assumption there exists a maximal clique K’ of T such that :~(A(K")) = oo, a
contradiction.

If the node set corresponding to Ky is extremal in T, then there exists a simplicial

vertex vp € Ko of G. The structure of B and the simpliciality of vy imply that:

(TR ) (R ) (3).

Vo,Vo
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which in a similar way as (3.28) implies that ¢_(B,,,.,) < oo and i_(A(Kp)) < oo, a
contradiction. Thus Ky cannot be an extremal node set of T.

Denote by T; = (V(T3),E(T3)), ¢ = 1,...,r the distinct subtrees of T' obtained by
deleting K, and the edges joining Iy in £(T'). Since K is not extremal, we have r > 1.
Let W; = Uyeym)V. Then io(A(Ko)) = D 7o, to(B(Wi — Ko)) = oo, thus there exists
an 7 = 1,...,7 such that io(B(W; — Kp)) = co. Without loss of generality we assume
that 7 = 1 and V(Th) = {W,,..,V;}, this latter set being ordered as follows. V; is the
unique node set of 77 which neighbours Ky in T. The rest of them are numbered in
such a way that for any V}, j > 2 the unique path in T} joining V; to V; contains only

node sets of index less than j. Taking into account the structure of B, we obtain that:

(3.37) A(Wy) ( B(Wg?uf/fol_u?(o_) ) ) = ( . )

Let h = (hj)jew,~k, € kerB(W; — Kp). Then, using W N Ko = V; N Ky, (3.37) implies

that:
B(Vi N Ko|Wh — Ko)h \ _ 0
A1) ( 0 T\ Py_x,h )

If dim[Py, -k, ker B(W1— Kj)] = 00, by the same argument used in the proof of Theorem
3.15 (Proposition 3.1 of [17]), we obtain that i_(A(V4)) = oo, a contradiction. So we
have to assume that dim[Py,_k, kerB(V.l — Ky)] < oo. Since dim[ker B(W1 — )] = o0,

we have that:
dim[ker B(W) — Ko) N (W1 — (V1 U Ky))] = 0.

For any vector h in this latter space, (3.37) implies

B(W2 N I\’olwl - (Vl U I(o))h . 0
AlV) ( 0 ~ \ Pr-koh

thus i_(A(V2)) = oo, unless dim[Py,—k,ker B(Wy — Ko)] < oo. Assuming the latter, we
continue our test on the node sets Vi, k > 3. Since dim[ker B(W; — Kp)] = oo, we find

1 <1< s such that i_(A(V})) = oo, a contradiction.
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In conclusion, our assumption io( A(Kp)) = oo is false and i) holds.

We prove ii) and iii) by induction on n = |V|. For n = 3, ii) and iii) are consequences
of Theorem 3.15. Assume that the results hold for any chordal graph G = (V, E) with
|V| £ n—1. Consider now the problem for an arbitrary chordal graph G = (V, E) with
V] = n.

Select an arbitrary simplical vertex vp of G. Without loss of generality, let vg = n.
Then, as in Theorem 3.15, we obtain that ¢o(B,,) < co and i_(Bn,) < 00. For A >0
sufficiently small, By, + Al is invertible and ¢_(Bp, + AI) = i_(Bp,). Let B) be the
matrix obtained by replacing B, with By, + AI in B and let Ay = B;l. Let K be an
arbitrary clique of G such that n & K. Then, as in the proof of Theorem 3.15, we have
that (Ax(K))~ ~ (A(K))™, thus, i_(Ax(K)) < i-(A(K)) + io(A(K)) < co. When K’
is the unique maximal clique which contains n, the latter inequality can be proved for

K' in a similar way by selecting an other simplicial vertex of G. We conlude that
(3.38) i-(AA(K)) < o0, for any mazimal clique K of G.

Since n is a simplicial vertex of G and B, + Al is invertible, Gyy,..n-1) is a
graph for (A)({1,...,n — 1}))"'. Assuming that iii) holds for n — 1, (3.38) implies
that i_(A({1,...,n})) < 0. Then, by Proposition 1.13 we have that

i-(A) = i-(A)) = i-(A\({1, ey = 1)) + i (Bun + AJ)

=1-(A\({1,...,n — 1})) + i=(Bun) + t0o(Bnn) < o0,

so the first part of iii) follows. Then, ii) is a consequence of Proposition 1.4.

The formula in iii) has been proved for the class of Hermitian matrices having the
property that all of their principal submatrices have closed range. If the conditions of
Theorem 3.16 are satisfied, we already know that i_(A) < oo and then Proposition 1.4
implies that the range of any principal submatrix of A is closed. Finally, we conclude
that the formula in iii) holds under the weaker conditions of Theorem 3.16. This

completes our proof. 0
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COROLLARY 3.17. Let G = (V, E) be a chordal graph and R € Q¢ a partial positive
semidefinite matriz. If R has an Hermitian invertible completion F with F~! € Qg then
F' is positive definite. (And R is partial positive).
Proof. For any clique K of G we have that i_(F (X)) = 0, thus iii) of Theorem 3.16
implies ¢—(F') = 0. Since F' is invertible it follows that £ > 0. 0O
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CHAPTER IV
CONTRACTIVE AND LINEARLY
CONSTRAINED CONTRACTIVE COMPLETIONS

The first contractive completion problem to be solved was of the following

partial matrix:

(42)

in which A, B and C are given linear operators acting between corresponding Hilbert
spaces such that [A, 3] and ( g ) are contractions. The case A = A*, B = C* and
X = X* was considered in [51] in connection with Hermitian extensions of unbounded
operators. As proved in [55], the conditions ||[4,B]|| < 1 and || ( /Cl ) || £ 1 are
sufficient for the existence of a contractive solution to problem (4.1). Independently, in
[2], [19] and [62] the set of all solutions has been described. The completion problem
(4.1) for analytic operator valued functions was solved in [4].

Consider next the contractive completion problem of the following partial matrix:

By T 7 .07

(4.2) Bu Ba 1
Bni Ba2 Bpz ... By,
in which B;; : K; —+ H;, 1 £ j <7 £ n, are given linear operators acting between

Hilbert spaces with the property that

(4'3) ||(Bij)?=p',§=1“ <Lp=1,.,n

68
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We call a partial matrix (4.2) with the property (4.3) a contractive triangle. This
problem came up in connection with the Arveson distance formula in nest algebras ([3]
and [58]) respective engineering control problems ([8] and [9]).

A contractive completion problem concerning a partial matrix A can be transformed
into a positive semidefinite completion problem of the partial matrix < ;1,, ‘;1 ) Using
this observation, we derive the results on contractive completions from our results in
Chapter III on positive semidefinite completion.

DEFINITION A partial contraction is a partial operator matrix with the property
that all of its fully specified submatrices are contractive.

It is obvious that any partial matrix which admits a contractive completion is a
partial contraction.

DEFINITION A pattern S is called (contractively) completable if any partial
contraction with pattern S can be completed to a contraction.

The first result in this chapter is the description of the structure of all (contractively)
completable patterns S. This result was first proved in [47]. We present here a slightly
modified proof of their result.

The results in Section 4.2 and 4.3 are based on Section 3.2 and are taken from
[7]). A so-called "central completion” of the problem (4.2) is described. Thus, based on
Theorem 3.10, a cascade transform description for the set of all contractive, isometric,
co-isometric and unitary solutions of the problem (4.2) is constructed. Consequently we
recover in a different way the results of [9] and [33] stating in the scalar case, respectively
strict contractive case the existence of such a description. A parametrization for the set
of all solutions of (4.2) in terms of the so-called ”choice triangles” was obtained in [1].

In [29], the following linearly constrained contractive completion problem, named

the Strong-Parrott problem was solved:

w (7 5)(5)-(2)

in which the specified entries are linear operators acting between corresponding Hilbert

spaces such that S}S; + 5352 = TyTy 4+ T5T5. The Strong-Parrott problem was a
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consequence of questions arising in connection with the Commutant Lifting Theorem
(see, e.g. the recent book [29]).

Consider the following linearly constrained contractive completion problem:

Bin Bz ... B S1 Ty
(4.5) el I I
7 7 .. Bum ) \S T,
in which B;; : K; = H;, 1 < ¢ < j £ n, are linear operators acting between Hilbert
spaces and
51 Ty
(4.6) S = 5:'2 :H — O, K, 1:2 : H — O, H;.
Sn T,

are also given.

Reducing the problem (4.5) to a positive semidefinite completion problem, necessary
and sufficient conditions are obtained for the existence of a contractive solution to (4.5)
generalizing in this way the results of [29]. In the case these conditions are met, we
build a so-called ”central completion”, a solution with several distinguishing properties.
From the central completion a cascade t.ransform parametrization is constructed for the

set of all contractive, isometric, co-isometric and unitary solutions.

4.1 The Structure of Contractively Completable Patterns

In Chapter II respective Chapter III we already proved that the properties of in-
vertible respective positive semidefinite completability of an undirected graph coincide
with the chordality of the graph. The aim of this section is to determine the structure
of all contractively completable patters in the sense of the definition in the introduction
of this chapter.

The following is an example of a non-completable pattern:

(@) (2:70)
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since the partial contraction:

T 1VE 1R
(e 7 37)

does not admit a contractive completion. Indeed, ( 7 1/v2 1/+/2 ) is a contraction
if and only if 7 equals 0 and ( ! /:/-2- i;g ) is a contraction if and only if ? equals
—1/4/2. 1t is clear that the transposed of the above pattern is also non-completable.

With an n — by — m pattern S a bipartite graph G = (X, Y, E) is associated (see
Section 1.3), with X = {uy,..,us}, ¥ = {v1,...,va} and (u;,v;) € E if (,5) corre-
sponds to a specified entry of S. Let Gy = (X, Y, Ex),k = 1,...,s be the connected
components of G.

If all the patterns Sy associated with the bipartite graphs G, k = 1,.., s are com-
pletable then S is also completable. Indeed, consider in this case a partial contraction
My with pattern S. Complete all the partial submatrices associated with the connected
components of G to contractions. Finally, put all the entries (¢, j) in which u; and v;
are in different connected components of G to be 0. We obtain in this way a contractive
completion of Mp.

We next describe the structure of all completable patterns S. The proof is a modi-
fied version of the original one in [47]. By the above remark, without loss of generality
the bipartite graph G = (X, Y, E) associated with S is assumed to be connected. We
also associate with S the graph G = (V,F) (not bipartite), with V = X + Y and
F=FU(XxX)U(Y xY).

THEOREM 4.1. Let S be an n — by — m pattern with G its bipartite graph and G
the graph obtained from G as above. Then the following statements are equivalent:

i). S is completable.

it). S is permutation equivalent to the following ”generalized triangular” pattern:

By . By, 7 e . 1
Bat v e e Bajp o 7
(4.8)
Bui o e e w v Bum
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inwhich1 <1 <2< .. SJp=m.

x 7 ?7 %

ii). S has no subpattern of the form: PR L R

iv). The graph G is chordal.

Proof. The implication ii) => iii) is immediate. Assume that & is not chordal.
Taking into account the structure of G, the only possible chordless cycle of length
greater than 3 in G might be of the form [u,v,u/,v’] to which there corresponds a

subpattern of the form iii). Thus we have ii) = iv).
M,

Mg I

rected graph of this latter partial matrix coincides with G. Since G is chordal, Theorem

T . - . . I M I M,
3.1 implies the existence of a positive definite completion ( M I ) of < M oI )

Consider the partial positive matrix ( ) It is easy to see that the undi-

So, M is a contractive completion of My. Thus, iv) = i).

Let assume that the pattern S is completable and G = (X,Y, E) is the bipartite
graph of S. Let u,u’ € X, u # u'. Since S is completable, S cannot have any subpattern
of the form (4.7) or the transposed of (4.7). This implies that the sets Adj(u) and Adj(u')
are either disjoint or one of them is included in the other. Since G is assumed to be

connected, we deduce that there exists an ordering 7 of the set X = {1,...,n} such that
(4.9) @ 75 Adj(uT(l)) g Adj(u,-(g)) g g Adj(u,-(n)) = {vl,...,vm}.

Permute the rows of S by the ordering of 7. Then (4.9) implies the existence of a
column permutation which turns S into a pattern of type (4.8). Thus i) = ii) and this
completes the proof. 0O

Droping the assumption that the graph G is connected, we obtain that in general
a pattern is completable if and only if it is permutation equivalent to a direct sum of

patterns of the form (4.8).
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4.2 Contractive Completions of a Contractive Trianglé

Based on the existence of a central completion, we construct in this section a cascade
transform parametrization for the set of all contractive completions of a contractive
triangle. In a different decomposition, a partial contraction of type (4.8) is a particular
case. We mention that we allow the spaces H; and K; to be the trivial space (0). So,

for instance,

? ?7 7
(4.10) Bn 7
) Bs; Bsz ?

is a particular case. The problem (4.10) can be obtained by taking H; = (0) and
K4 = (0). Therefore all possible triangular patterns are covered, which by Theorem 4.1
are essentially the class of patterns for which the existence of a contractive completion
is ensured as soon as the given submatrices are contractions.

Consider first the following 2 — by — 2 problem:
Bn ? >
4,11 <1
(a11) (2 5, s
in which
By )
<L|( Ba B <1
(B2 ) NSLICBa Ba )l
Note that the contractivity of the latter operator matrices implies that
Bi1 = G1Dp,,, B2y = Dpy G»

with G; and G, uniquely determined contractions. It was proved in [2], [19] and [62] that
there exists a one-to-one correspondence between the set of all contractive completions

of (4.11) and the set of all contractions G : Dg, — Dg; given by
(412) BIZ = —GlB;1G2 + DG; GDGz.

With the choice G = 0 we obtain the particular completion By = —G, B3, G2. We shall

call this the central completion of (4.11).
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Let {B;;,1 < j £ i < n} be an—by—n contractive triangle, i.e., let B;; : K; — H;,

1 < j €17 < n, be operators acting between Hilbert spaces with the property that

”(sz)n ’ || < 1,13 = 1,...n.

1=p,j=1

In order to make a contractive completion one can proceed as follows: choose a position
(%0, Jo) With ip = jo—1, and choose B ;; such that (B ,,)‘_: 7_, is the central completion
of {B;j,i > i0,j < jo} as in the 2—by —2 case. Proceed in the same way with the partial
matrix thereby obtained (some compressing of columns and rows is needed) until all
positions are filled. We shall refer to F; as the central completion of {B;;,(:,7) € T}.
THEOREM 4.2, Let {B;;,1 < j <t < n} be a contractive triangle. Let F, denote
the central completion of {B;;,1 < j <i < n} and let . and ¥, be upper and lower

triangular operator matrices such that
(4.13) 0. =1-FF, VY. =1-F,F.

Further, let wy : Dp, = R(®.) and wy : Dps — R(T.) be unitary operator matrices so

that

(4.14) 9. = w1 DF,,¥; = wy Dy,
and put

(4.15) 7o = —wi Fyw;

Then each contractive completion of {Bi;,1 < j < ¢ < n} is of the form

(4.16) S(G) = F. - v:G(I + 7.G)'®..

in which G = (Gy;)7 .y * R(®:) — R(¥,) is a contraction with G;; = 0 whenever

i,7=1
(:,j) € T. Moreover, the correspondence between the set of all positive semidefinite
completions and all such contractions G is one-to-one.

Furthermore, S(G) is isometric (co-isometric, unitary) if and only if G is.
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The decompositions of R(®.) and R(¥.) are simply given by

R(Qc) = DL R((Re)ii), R(¥e) = Bimy R((Ye)ui)-
Proof. We apply Theorem 3.10 using the correspondence

(4.17) ( é,, 113 ) > 0 if and only if ||B|| < 1.

Consider the (n+n) X (n+n) positive semidefinite band which one obtains by embedding
the contractive triangle {B;;,1 < j < ¢ < n} in a large matrix via (4.17). It is easy to
check that when applying Theorem 3.10 on this (n + n) X (n + n) positive semidefinite

band one obtains

I F, (T, 0 _ (¥ F,
v (o) me= (i ) w-(% &)

(use FyDps = DpsFe). It follows now from Theorem 3.9 that (7.);; = 0 for ¢ > j.

Further, it is easy to compute that

wm 7((35))=(s0r ae))= (6 °P):
and thus we have

4.19)  I=Q(G)=58(G)"S(G) + 8.(I + .Gy (I - G*G)(I + r.G)"' &,,
and

(4.20) I=0Q(G)=8(G)S(G)* + ¥ (I +Gr.) (I - GG*)(I + Gr.)* L.

We obtain the first part of the theorem from (4.18) and Theorem 3.10. From relation
(4.19) one immediately sees that G is an isometry if and only if S(@) is. Similarly, one
obtains from (4.20) that G is a co-isometry if and only if S(G) is. This proves the last
statement in the theorem. 0

The existence of an isometric (co-isometric, unitary) completion is reduced to the

existence of a strictly upper triangular isometry (co-isometry, unitary) acting between
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the closures of the ranges of ®, and ¥.. Taking into account the specific structures of
®. and ¥, one recovers the characterizations of existence of such completions given in
[9]) and [1].

REMARK We can apply Theorem 3.9 to characterize the central completion. We
first mention that for an arbitrary completion F' of {B;;,1 < j < ¢ < n} one can define
®, ¥ and T analogously as in (2.4), (4.14), and (4.15). The equivalence of i), ii) and iii)
in Theorem 3.9 implies that the central completion is characterized by the maximality
of diag(®;®:;)", or diag(V};¥;;)~,. From the equivalence of i) and iv) in Theorem
3.9 one also easily obtains that the upper triangularity of 7 characterizes the central

completion.

4.3 Linearly Constrained Contractive Completions

We return to the problem (4.5). The next lemma will reduce this linearly con-
strained contractive completion problem to a positive semidefinite completion problem.
The lemma is a slight variation of an observation in [65].

LEMMA 4.3. Let B: H—K,S5:G > Hand T : G — K be linear operators acting
between Hilbert spaces. Then ||B|| <1 and BS =T if and only if

I § B
(4.21) S* §*S T* | >o.
B T 1

Proof. The operator matrix (4.21) is positive semidefinite if and only if

S*Ss T S* .\ 0 T — S*B*
(4.22) (T 1)‘(3)(53)‘(:1"—35 I—BB*)ZO’
and this latter inequality is satisfied if and only if ||Bl| < 1and BS=T. O

THEOREM 4.4. Let B;; : H; - K, 1 <i<j<n, S;: H—->H,i=1,..,n and

T; : H — K; be given linear operators acting between Hilbert spaces and S and T be as
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7
in (4.5). Then there exist contractive completions B of {B;;,1 < i < j < n} satisfying
the linear constraint BS =T if and only if

S — GGl TG _ g6 Bl
(4.23) (SS Stxst T StB )

76 — B()Se) I — B B«

fori=1,.,n, in which

Bh' . e e Bln Si Tl
(4.24) BO=A{ - 880 =1 - | 70
Bii < e e Bin Sn Tz

fori=1,..,n.
Proof. By Lemma 4.3 there exists a contractive completion B of {B;;,1 < ¢ <
J £ n} satisfying the linear constrain BS = T if and only if there exists a positive

semidefinite completion of the partial matrix

(1 0 .. 0 S By 7 .. ?\
o I .. 0 S B; B

0o 0 .. I S B, B, .. B
(4.25) Sy Sy .. S»oSS T Ty . T
By Bz . By T I 0 .. 0
? By w. By T2 0 I .. 0

R R A A
As it is known, the existence of a positive semidefinite completion of (4.25) is equiva-
lent to the positive semidefiniteness of the principal submatrices of (4.25) formed with
specified entries. This latter condition is equivalent to (4.23). O

Let us examine the 2 — by — 2 case a little further, i.e.,

(220 (7 2 )(8)-(3)

The necessary and sufficient conditions (4.23) for this case reduce to

(4.27) BiiSi+ B12Sy =Ty, || ( Bu Biz )| <1
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(4.28) ( I — B},By3 — B}, Bs; Se — By,Th — B3, T ) > 0.

Sy —TyBiy—TyBy SiSi+ S3Ss—TiTy — ToTh

Assume that (4.27) and (4.28) are satisfied. Similar to Section 4.2, let G1 : Hy — Dgs,

and G : Dpg,, — K, be contractions such that
(429) Bn = DB;2G1,B22 = GzDBu.

Any solution of the constrained problem (4.26) is in particular a solution of the uncon-
strained problem (the lower triangular analogue (4.11)), and therefore we must have

that (use the analogue of (4.12))
(4.30) By = —-GnggGl + DG;I‘DGI,

in which I' : Dg, — Dgj is some contraction. The equation B, 5 + B;2S2 = T, implies

that T is uniquely defined on R(Dg, S1) by
(4.31) DG; FDG, Sl = T2 - BzzSz + GngzGlSl.

We define I'g : Dg, — Dg; to be the contraction defined on R(Dg, S1) as above, and 0

on the orthogonal complement, i.e.,

(4.32) T'o | Dg, © R(Dg, 81) = 0

We let Bé?) denote the corresponding choice for By, that is,
(4.33) BY = ~G3B},G1 + Dg3ToDg, -
We shall refer to

B, By )
4.34 .
( ) ( Bg’) By,

as the central completion of problem (4.26).
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In the n — by — n problem (4.5) (assuming conditions (4.23) are met) we construct
step by step the central completion of (4.5) as follows. Start by making the central

completion of the 2 — by — 2 problem
S1

Bii By, -+ By S2 A Th
(.35 (B g e T =(h

Sn

and obtain in this way BZ(,?). Continue by induction and obtain at step p, 1 <p <n-—1,

B},‘l)) e ,B,(,?g_l by taking the central completion of the 2 — by — 2 problem

(5
By o+ Bypa By, .-+ B : T
: . . : S’ -1 :
(4.36) i : : : 4 - :
Bz(’(l)l e Bz(fi)l,p—l Bp1p o Bp-in Sp Tp-1
? ? Bpp Bzm : Tp
\ S» )

The final result By of this process is the central completion of the problem (4.5). The
central completion is independent of procedure (see [1]).

LEMMA 4.5. Let By be a contractive completion of ({.5). Then By is the central
completion of (4.5) if and only if

I S B
(4.37) S S*S T*
Bo T 1

is the central completion of the positive semidefinite completion problem (4.8).

Proof. By the inheritance principle and the way the central completion is defined
it suffices to prove the lemma in the 2 — by — 2 case. Take an arbitrary contractive com-
pletion B of (4.26), corresponding to the parameter I' in (4.30), say. The lower-upper

Cholesky factorization of the corresponding positive semidefinite completion problem is

given by
I S B
(4.38) Vv=1{ 5§ S§§5 T* |,
B T I
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in which

I 8 B
(4.39) v=[00 o
00 &

and @ is lower triangular such that I — BB* = ®®*. It is straightforward to check that

Dy, De; 0
4 d = 12 O] )
(4.40) (—GgBng; — De;TG; Do Dr- )

Since for I' = Ty the operator D2, is maximal among all T' satisfying (4.31), the lemma
follows from the equivalence of i) and ii) in Theorem 3.9. O

THEOREM 4.6. Let By be the central completion of the linearly constrained con-
tractive completion problem (4.5) (for which the conditions (4.23) are satisfied). Let
p:Hi ®Hy = R((S*S — T*T)/2) be such that

(4.41) (S*S — T*T)*/*p = §* D},

and ¥ and ® lower triangulars such that

(4.42) U*0 =1 — p*p— By B,
and
(4.43) ®d* =1 — ByB;.

Consider the contraction w : Dg, — R(¥) and the unitary wy : R(®*) — Dp; with the

properties

(4.44) U =w Dp,
and

(4.45) ® = Dpsw,

Finally, define

(446) T = —wlB(';wg.
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Then there exists an one-to-one correspondence between the set of all contractive so-

lutions of the problem (4.5) and the set of all strictly lower triangular contractions

G : R(¥Y) — R(P*) given by

(4.47) V(G) = By — ®(I + G1)"'G¥

Moreover, V(G) is a co-isometry if and only if G is a co-isometry and V(G) is an

wsometry if and only if S*S = T™T and G is an isomeltry.

The decompositions of R(®*) and R(¥) are simply given by

R(®*) = &L R(D5), R(Y) = B R(Vii)-

Proof. We shall obtain our results by applying Theorem 3.10 for the positive

semidefinite completion problem (4.25). Straightforward computation yield that

I S B;
(4.48) V.= 00 o
0 0 o
and
v 0 0
(4.49) We=1| p (S*S-T*T)'? 0
By T I

We remark here that the relation
(4.50) S*S —-T*T = S*ngoS > S*D}’goS

gives the existence of the contraction p with (4.41).
Now we have to determine the unitary U = (U;,-)‘?,j=l so that UW, = V.. Note that
the existence of w; and w;, is assured by the relations (4.43) and (4.43). An immediate

computation shows that

o " B;
U= 0 0 0
—wyBow} —wjBew; @*
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in which ( “1 ) is unitary with

w1
1 W
=D N .
(P) B°<w1)

Substituting these data in the first equality of (3.18) gives
00 G* I S V(@G>
(4.51) 7(1 00 0 |)= S* 85 T ,
00 O VIG) T QG
with V(G) given by (4.47) and

4.52)  I=Q(G)=V(G)V(G) +(+Gr) (I - GG)I + Gr)-1¢*

The first part of the theorem now follows from (4.51) and Lemma 4.3. Further,
(4.52) implies that V(G) is a co-isometry if and only if G is.
If the contractive solution V(G) to the constrained problem (4.5) is isometric, then

clearly we must have that 5*S = T*T and thus p = 0. In this case,

v 00
We=|( 0 0 0 ].
\B T I

Using the second inequality in (3.18) in this special case, we obtain that

00 G QG S V(@G)
(4.53) T((O 0 0 ))=( S* 85 T )
00 0 V@) T I

in which
(4.54) I= Q(G) =V(G)'V(G) + ¥*(I + Gr)™ (I - G*G)(I + Gr)*"'.

Relation (4.54) implies that when 5*S = T*T', the spaces Dy ) and Dg have the same
dimensions and thus V(G) is isometric if and only if G is. This finishes the proof. [
In the 2 — by — 2 case another parametrization was derived in [6].
REMARK 4.7. By Theorem 4.6 we can reduce the existence of a co-isometric com-

pletion of the problem (4.5) to the existence of a strictly lower triangular co-isometry
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acting between R(¥) and R(®*). Also, when §*S = T*T, the existence of a isometric

completion of the problem (4.5) reduces to the existence of a strictly lower triangular

isometry acting between R(¥) and R(®*).

REMARK 4.8. There exists a unique solution to (4.5) if and only if 0 is the only

strictly lower triangular contraction acting R(¥) — R(®*). This can be translated in
the following. If ig denotes the minimal index for which ¥;,;, # 0, then there exists a
unique solution if and only if 4 =0 for k£ =ip+ 1,...,n.

REMARK 4.9. The upper triangularity of 7 characterizes the central completion.
For this one can simply use Theorem 3.9 and Lemma 4.5. Also the maximality of
diag(®;9%), or diag(V5W¥;)%, characterizes the central comﬁletion.

For a further analysis in the 2 — by — 2 case we refer to [6].
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CHAPTER V
DETERMINANT FORMULAE

The results ol this chapter are applications and extensions of the results in the
previous chapters. The aim of this chapter is to prove determinant formulae for matrices
with sparse inverses. We also obtain a formula in terms of some ”free” parameters for
the determinant of an arbitrary positive definite completion of a partial positive matrix
with a chordal associated graph. Since we deal with determinant formulae, all the
involved matrices are assumed to be scalar.

[n Section 5.1, a determinant formula in terms of the determinants of some key prin-
cipal minors is obtained for matrices with the pi‘operty that their inverse has a chordal
associated graph. We prove that after a cancellation process our formula leads to a de-
terminant formula proved earlier in [11]. Also, an algorithmic method of constructing
minimal vertex separators for chordal graphs is presented.

In Section 5.2 the results of Section 5.1 are generalized for matrices with non-
symmetric nonzero-patiern of their inverse. Thus, based on the connection between
Gaussian elimination and graph theory pointed out in [37], a determinant formula is
obtained for matrices with the property that their inverse has a directed graph with a
perfect edge elimination scheme. As consequence, we obtain a formula proved in [12)].
Next, a counterexample to a conjecture of [12] is presented which was found by the
method developed in this section.

In Section 5.3 we follow [5] to further study positive definite completions of partial
positive matrices with chordal associated graphs. A formula for the determinant of an

arbitrary completion in terms of the parameters along a chordal sequence introduced
84

¢
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in Section 1.3 is derived. As application we obtain a proof of a conjecture stated in [48]
concerning an inheritance principle for chordal graphs, generalizing a result for band
matrices in [25]. The conjecture was independently proved by different methods in [13].
Finally, another variant of the inheritance principle is presented by the means of a graph

theoretical result of [60].

5.1 Determinant Formulae for Matrices with Chordal Inverses

If H= ( g g ) is a block matrix with A invertible, then as a consequence of

(1.2) we have that:

detH
detA

(5.1) det(D — CA™'B) =

We present our first determinant formula.
THEOREM 5.1. Let G = (V, E) be a chordal graph and o = [v,...,v,] a perfect

scheme for G. Denote
(5.2) S; = {vx € Adj(v;)|k > 5}

forj =1,...,n. If R is an invertible matriz with R~ € Qg and each of the submatrices

R(S;), 7 =1,...,n is invertible, then (with the convention detR(() = 1)

(5.3) detR = H de“;g;’;g; 5)

Proof. We can apply the results of Corollary 2.3 for the perfect scheme o also, since
if we reorder the rows and colums of R by the ordering of o, [1,...,n] becomes a perfect
scheme. Thus, in the hypothesis of the theorem, since R is invertible, it follows that all
the submatrices R({vi} U Si) are invertible and

_ -1
(5.4) detR =] detV

i=1
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in which V7 is the Schur complement of R(S;) in R({v;} U S;). Thus (5.4) implies
(5.3) via (5.1). D

In the paper [11] it is proved that if G is chordal, T' = (V(T), E(T)) is a tree of G,
R is invertible with R~ € g, then

Mvevr) detR(V)
[Iivi, vayer(r) detR(Vi NV;)

provided that the terms of the denominator are nonzero.

(5.5) detR =

We next present how formula (5.5) can be obtained from (5.3).

PROPOSITION 5.2. For any perfect scheme o = [vy, ..., v, and tree T = (V(T'), E(T))
of G the formula (5.5) can be obtained from (5.3) by cancellation.

Proof. The proposition is proven by induction on n, the number of vertices of G.
For n = 1 it is obvious. Suppose now that T = (V(T"), E(T")) is a tree of the graph

G{v,....vn)- Assume that

(5 6) f[ detM({v"} U Sk) — HWeV(TI) det]ll(W)
. k=2 detM(Sk) H{W.W'}EE(T) detM(W n W,)

There are two possibilities:

A. The clique S, is not maximal in Glu,,...v.}. Then a tree T' = (V(T), E(T)) can
be obtained by adding to V(I") a new vertex corresponding to {v;} U S; and a new
edge joining this vertex with the vertex in V(I") corresponding to a maximal clique of

G{u,,...va} Containing Sj.

Thus
HWGV(T) detM(W) — detM({vl} U 51) HWGV(T‘) detM(W)
H{VV.W’}EE(T) detM(W n I’V’) detM(Sl) H{W'WI}eE(TI) detM(W n W’)

and the equality is proved for G without any new cancellation.
B. The clique S; is maximal in G{,,.v.}. A tree T = (V(T), E(T)) of G can be
obtained from T” by renaming the vertex corresponding to Sy by {v1} U Si.

Thus, in the product

detM({v;} U S;) & 11
detM S]

k=2

detM ({vi} U Si)
det M(Sy)
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the term detM(S,) will be cancelled. The right member of (5.6) after multiplication

. detM(W)
. detM ({1 }US)) Mot HVVGV(T) 1
with =aisy and cancellation of detM(S;) becomes 3 P— T The

denominator of this latter expression coincides with the denominator of (5.5) since v;

is contained in a unique maximal clique of V. This completes the proof. 0O
We next illustrate the result of the above proposition with a simple example. Con-

sider G to be the graph in Fig. X1

Figure XIII
with maximal cliques C; = {1,2,3}, C; = {3,4}, C3 = {3,5} and tree C; — C; — Ci.

Consider the perfect scheme o = [1,2,3,4,5] for G. Then for any matrix R € Qg we

have (by assuming that the denominators are nonzero):

f[ det R({ve} U Sk)
det R(Sk) -

_detR({1,2,3}) detR({2,3}) detR({3,4}) detR({3,5}) det RU{EW =
T TdetR({2,3)) detR({3}) detR({3})) detR({5}) - ({5}) =

_ detR(C))detR(Cy)det R(C5)
"~ detR(Cy N C)det R(Cy N Cs)’

In {13], Theorem 3.5 it is proved that for any tree T of @, the set of cliques appearing
in the denominator of (5.5) is the set of minimal vertex separators of the graph G.
From Proposition 5.2, it follows that for any perfect scheme o = [vy,...,v;] of G, in
the denominator of (5.5) appear the cliques of the form S; which are not maximal in
Gvig1m)- The following result can be viewed as a consequence of Proposition 5.2
and Theorem 3.5 of [13] but it can also be proved directly. It represents an algorithmic

method of constructing the minimal vertex separators of a chordal graph.
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PROPOSITION 5.3. Let G = (V, E) be a chordal graph and o = [vy,...,v,] a perfect
scheme for G. A subset S C V is a minimal vertex separator of G if and only if S equals
some Si(¢ < n) that is not a mazimal clique in Gyyy,,,...00}-

Proof. The proposition is proven by induction on the cardinality of V. For n < 3 it
is immediate. Assume that it holds for G’ = Gyy,,....un}-

Since v; is simplicial any minimal v; — vy, separator is the same in G' and G for
any k,m > 2. If S is not maximal in G’ then there exists a vertex v,,,m > 2, with
S1 C Adj(vn), so Sy is a minimal vy — vy, separator. Conversely, if S; is a minimal vertex
separator in G, by Ex.12 page 102 from [37], S; is not maximal in G'. After removing
any v; — v separator S from G, S # S, the connected component of v; must contain a
vertex v, 2 2. Since v; is simplicial, S must also be a minimal v, — v, separator and
by the assumption made for G’, S is of the desired form. So the statement is completely

proved. O

5.2 Determinant Formulae and Nonsymmetric Gaussian Elimination

As in Chapter 11, Section 5.2 will be a generalization of Section 5.1 for nonsymmetric
nonzero-patterns. The directed graph model for the nonsymmetric Gaussian perfect
elimination is the basic tool.

Let H = (V,F) be a directed graph and ¢ = [(z1,¥1), ..., (Zn,yn)] & perfect edge
elimination scheme for H. Consider an invertible matrix R such that R~! € Qy. Recall
that under these conditions R~! can be reduced by perfect Gaussian elimination. This
means that choosing the entries on the positions (z1,%1),..., (Tn,yn) to act as pivots,
R~! will be reduced to a matrix having only one nonzero entry on each row and column
without ever changing during this process a zero entry to a nonzero.

Let denote:

X = {y; € Adj(zi)lj > k}
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(5.7) Y = {z; € Adi~ (yx)lj > k}

Z = {y1, 0 yr-1} U {y; & Adj(zi)lj > k}

Uk = {21,y 251} U {z; & Ad ™ (wk)]7 > k)

fork=1,..,n Thus X = {z:}UY,UUrand Y = {yx} U X, U Z for k = 1,...,n.
Then we have:
LEMMA 5.4. In the above conditions, after reducing the mairiz R™! by Gaussian
elimination by succesively choosing the entries on the positions (1,41), ...y (Tn,Yn) to
act as pivots, we obtain a matriz D = (dij)1<ij<n with the only nonzero entries dg,y, ,

k=1,...,n given by the formulae

det R~ ({zx} U ou|{yx} U Z)

(5:8) Doy = (=15 det R-1(c| Zy)
= (=1)%*t det R ({zx} U Ui {yx} U Bk)
- det R-1(Ux|Br)

provided that the terms of the denominators are nonzero, in which oy = {z1,...,Tp—1} U
&ty Br = {Y1y s Yk-1} U By with of, C {Tk41y.012n}s B C {Ykt1y .-y Yn} arditrary sets
with the property carday = cardZy and cardf; = cardUy, sp and t; (respective s,
and 1)) are the indices of the rows and columns of the entry (zx,yx) in the matriz
R ({zx} Uar|{yr} U Zk) (respective R~ ({1} U Ui|{yx} U Br)).

Proof. Since Zi = {y1,...,yk-1} U {y; & Adj(zr)|j > k}, after performing partial
Gaussian elimination on the matrix R™1({zx} U ax|{yx} U Z), (in which we keep the
same indices as in R™!) by choosing the entries on the positions (z1,¥1), ..., (Tk—1, Y-1)
to act as pivots, we obtain a matrix having on the rows z,...,zx—; and on the columns
Y1, ..., Yk—1 €xactly one nonzero entry and since no zero entry is changed into a nonzero,
all the entries on the positions (zx,y,) with ys € {y; & Adj(zk)|j > k} are zero.

Performing the same operations on the matrix R™'(ax|Z;) we obtain the same

matrix as before but without its zx row and y; column. Dividing the determinants of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



90

these two matrices we obtain the first equality in (5.8). The second one can be obtained
in a similar way. O

THEOREM 5.5. The elements d,,,, are given by the formulae

det R(Xk|vx)

5.9 dp o = (=1 sittrtTrtyr
(5.9) e = (=1) detR({yr} U Xi|{zx} U)

detR((SkIYk)

(_1)8L+tL+zk+yk
detR({yk} U 5;;'{.’13;;} U Yk)

in which yx C {Zk41, .0y Tn} and 6 C {Yr41,...,Yn} are arbitrary sets with cardy, =
cardX}, and cardd;, = cardYj.
Proof. By the Jacobi identity (see e.g. [39] p.21) for any , 8 C {1,...,n} with

carda = cardf,

- detR(Cy|Cp)

1 —_ u

in which C, and Cp are the complementary sets of a and f# in {1,...,n} and u =
Yica® T 22;epd- Thus the formulae (5.9) follow directly from (5.8). O

COROLLARY 5.6. The determinant of R is given by the formula

sgnl
5.10 detR = e
( ) Hk:l d-"-'kyk

in which dz,,, are given by (5.9) and 0 is the permutation in which y) corresponds to
Tk,
We illustrate the above results with an example. Let

3/5 —4/5 —4/5 2/5
1/5 2/5 2/5 —1/5
2/5 —1/5 —4/5 —2/5
~1/5 -2/5 -7/5 6/5

with
1 2 0 0
-1 _ 0 2 -1 0
R -1 0 2 1
-11 2 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



91

Since only the complete graph is an undirected graph of R™!, applying the results of
Section 5.1, we are only able to get the formula detR = detR. The directed graph
H = (V,F) in Fig. V is a directed graph of R~ and ¢ = [(3,4),(1,1),(2,2),(4,3)] is a
perfect edge elimination scheme for H.

Consider the corresponding reduction of R™1;

1 2 0 0 12 0 0 1 0 0 O 10 0 O
0 2 -1 0 - 02 -10 . 0 2 -10 - 02 0 O
-1 0 2 1 00 0 1 0 0 0 1 00 0 1
-11 2 2 11 -2290 1 -1 -2 0 1 0 -5/2 0

In this case X7 = {1,3}. Since z; = 3 for 7; we have the possibilities {1,2}, {1,4} and
{2,4}, thus

dy = det({1,3)1{1,2)) _ detR({1,3}|{1,4}) _ _detR({1,3}|{2,4}) _,
M7 detR({1,3,4}|{1,2,3)) ~  detR({1,3,4})  detR({1,3,4}|{2,3,4})

Since Y} = {4} and y; = 4 for 6, we have the possibilities {1}, {2} and {3} and so

doy = — T14 - _ T24 - _ T34 =1
7 T detR({1,4}1{3,4)) detR({2,4}[{3,4)) ~ detR({3,4})

Since X, = {2}, Y5 = {4}, for d;; we have the formulae
iy T'24 722 T34 1.

T T detR({1,2}[{1,4}) ~  detR({1,2})  detR({L,3}{1,4}

Since X3 = {3}, Y5 = {4}, we have

T34 9
b)

b2 = R34
and finally

1 _ 5

din =
43 o 2

In this way detR can be obtained by computing only 2 — by — 2 determinants.

We apply the previous results to obtain the main result of [12]. Consider the di-
rected graph H = (V, F) allowed by the oriented tree (T, D) in which T' = (V(T), E(T'))
and V(T) = {W,...,Vm}. When R € Qy it is said that R has a nonzero-pattern allowed
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by the pair (T, D). Consider also the chordal graph G = (V, E), the intersection graph
of T.

We construct by the aid of T' a perfect scheme o = [vy,...,v;] for G as follows.
Choose first an extremal node set V, € V(T). Then there exists a simplicial vertex
vy € Voo If V, — {01} is a maximal clique of Gyy,,...s,) then a tree T for G{,,...v,} can
be obtained by replacing V; by V, — {v,} in T. If V; — {v;} is not maximal in G vz}
then T' can be obtained by deleting V, and the unique edge joining V; in T. Let D’
be the orientation induced by D on T”. Continue now by choosing v, from an extremal
node set of 77, and so on, until we obtain the perfect scheme o = [vy,...,v,] of G.

LEMMA 5.7. Ifo = [vy,...,v] is constructed as above, then ¢ = [(v1,v1), ..., (U5, Vn)]
is a perfect edge elimination scheme for H.

Proof. We first prove that (vy,v;) is a bisimplicial edge. Consider (v, v), (u,v1) €
F. Since v € V; and V; is an extremal node set of T', we have that u € V, or v € V,.
Assume that u € V. If v € V; it is clear that (u,v) € F. If v € V, t # s since
(v1,v) € F there exists a path in D from V, to V; and since u € V, we have that
(u,v) € F and (v1,v1) is bisimplicial. The same holds in the case when u € V;, t # s.
Using the oriented tree (1", D') we obtain that (vg,vz) is a bisimplicial edge in the
induced directed graph Hy,,...v,}- We continue this operation until all the vertices are
eliminated. 0O

In the particular case of the directed graph H and perfect edge elimination scheme
¢ constructed above, we have that X} = Sk or Y = Si, for k = 1,...,n, in which S} is
given by (5.2) for G and o, Xy and Y} are given by (5.7) for H, z; = v; and yx = v;.

By choosing i = Sy respective §; = Sy, in the formula (5.9) and replacing this in
(5.10), Theorem 5.5 has the the following corollary:

COROLLARY 5.8. Let R be an invertible matriz such that its inverse has a nonzero-

pattern allowed by the pair (T', D). Then by the previous notation

detM({vr}US
(5.11) detR = H detE\/_fk(?S',' k)
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provided that the terms of the denominator are nonzero.
After a cancellation as in Proposition 5.2, we obtain

COROLLARY 5.9. In the above conditions the following formula holds:

HVeV(T) detR(V)
H{Vl,Vz}EE(T) detR(Vi N'V,)

(5.12) detR =

The above result was first obtained in [12].

Let. us next consider the index sets Vi, ..., Vi, C {1,...,n} = V having the property

We introduce some notation and definitions.

If W1,..., Vim CV are index sets satisfying (5.13) and Z C V x V, we say that Z lies
outside the profile of Vi, ..., Vim if Z N [UR, (Vi x Vi)] = 0.

If ZCV xV,the n — by —n matrix M is said to have a nonzero-pattern allowed
by Z if m,; = 0 for all (r,s) € Z. Let Az be the set of all n — by — n matrices with
nonzero-pattern allowed by Z. Given an oriented tree (T, D) let Z(T, D) be the set
of all (r,s) € V x V satisfying neither i) nor ii) of the definition in Section 1.2. Let
WVi5 ...y Vi © V be index sets satisfying (5.13) and let 7} and T, be distinct trees with
node sets Vq,...,Vi,. Then T} and T, are said to be equivalent if the two collections
{VinVv;: {V,,V;} € E(Th)} and {V; NV, : {V;,V;} € E(T2)} are identical.

The following was conjectured in [12]:

CONJECTURE Let W,...,V, C V be index sets satisfying (5.13) and T a tree
with node set V,...,Vi,. Let Z CV X V lie outside the profile of ¥, ..., V;, and assume
that
(5.14) ﬁ detR(Vi)=detR ]  det(VinVj)

k=1 {Vi.V;}eE(T)
for all nonsingular matrices R for which R™! € Az. Then T satisfies the intersection

property (1.14). Furthermore there is a tree T equivalent to T and an orientation D

on T" such that Z C Z(T", D).
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It was proved in [12] that in this case T satisfies the intersection property (see
Section 1.2). We next give a counterexample to the conjecture.
For n = 6, consider V; = {1,2}, V2 = {2,3,4}, V3 = {2,4,5}, V4 = {2,5,6} and

the following tree denoted by T

Figure XIV

Let Z = {(3,1),(3,6),(4, 1), (4,6),(5,3),(6,1),(6,3)}. Let consider an invertible matrix
R with R™' € Az. Then R™! las the following nonzero-pattern:

X X X X X
X X X X X
X X X X 0
X X X' X 0
X.0 X X X
X 0 X X X

c oo o X

The relation

4
(5.15) I deth(V) = (detR)  J]  detR(VinV;)
k=1 {Vi,V;}eE(T)

is equivalent by the Jacobi identity to:
detB({1,3,4,5,6})detB({1,3,5,6})det B({1,3,4,6}) =
= delB3({3,4,5,6}det13({1,5,6} )det 13({1,3,6})det B({1,3,4})
for every B3 € Agz. Since bg; = by = bs; = b = 0, this relation is equivalent to
detB3({3,5,6))det 13({3,4,6)) = det B({5,6})det B({3,6})det B({3,4})
Since bsy = bgz = 0, we have to prove that
bysdet B({3,4,6}) = detB({3,6)})det B({3,4}).

The last relation is true since by bss = byg = 0, detB({3,4,6}) = bgsdet B({3,4}) and
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])y bgg = b63 = 0, (lCiB({g,()}) = b33b66.
Thus (5.15) is verified for any R with R~ € Az.

T'here are the following two equivalent trees to T', denoted 7" and T":

OO0
(2

Figure XV
We prove that there is no orientation on any of the trees T', T' or T" such that its
set of mandatory zeros is included in Z. Let assume that there is an orientation on

one of these trees such that the corresponding set of mandatory zeros is included in Z.

Since (3,5) ¢ Z and (6,4) € Z, on the subtree corresponding to the node set V5, V3

and V; we must have the following orientation:

Figure XVI
Since (k,1) € Z for k > 3, the unique edge involving Vi must have the orientation

¥, — Vi. Thus we may have the following orientations D, D' and D" on T, T" respective

T":

O-O—~O-DO—~D—E
O-O~O<® @

Figure XVII
But (1,6) € Z(T', D), (1,3) € Z(T,D’), and so none of them is included in Z and

the conjecture is not true.
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5.3 Inheritance Principles for Chordal Graphs

In this section we obtain a formula for the determinant of each positive definite
completion of a partial positive matrix with a chordal graph in terms of the parameters
along a fixed chordal sequence and answer a conjecture of [48] concerning an inheritance
principle for chordal graphs. Another variant of the inheritance principle is presented.

Let R be a partial positive matrix with a chordal graph G = (V, E). It was proved in
[38] that under this circumstances, the unique determinant maximazing positive definite
completion Fy verifies the condition Fy' € Qg, i.e. (Fg')i; = 0 whenever (i,5) ¢ E.
Thus, given any tree T = (V(T'), E(T)) and perfect scheme of G, as consequence of the
results in Section 5.1, we have

COROLLARY 5.10. The mazimum of the determinants of all positive definite com-

pletions of R denoted D(R) is given by the formulae

Hve V(T) detR(V)

. D(R) =
(5.16) (R) Mo voyeo JE0RV; OVE)
and
(5.17) D(R) = ﬁ detM({vi} U S)

P detM(Sk)

Formulae (5.16) and (5.17) depend only on the given data. The formula (5.16) was
first proved in [42]. Another formula for D(R) was given in [13].

Before passing to the main result of this section, we discuss a particular example.

EXAMPLE Take a chordal graph G = (V, E) with four vertices, and a partial
positive matrix R having G as associated graph. Take an arbitrary chordal sequence
Go, G1, ..., Gt of G and a positive definite completion F' of R. Let {g(uj,v;)}|t = 1,...t}
be the parameters of F' along the fixed chordal sequence of G. Then

detF = []l1 - lg(u;,v;|)*] D(R).

j=1
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This formula can be directly verified for all possible cases. Let us illustrate with.

the graph G in Fig. XVIII

2 3 4

Figure XVII

which is the only graph with four vertices that is not a proper interval graph.

For the considered graph there exists exactly one chordal sequence (up to a reorder-
ing of the vertices) given by 12, = EU {(1,2)}, E; = E, U {(2,4)}, Es = E, U {(3,4)}.
Let ¢(2,3), 9(2,4), g(8,4) be the parameters of /" along this chordal sequence. Using
(1.11) we get

detF({1,2,3})detF({1,2,4})
detf({1,2})

detF = (1 — |g(3,4)[?]

= [1 = lg(3,9)P")1 ~ |9(2,4)"}det F({1,2,3})det F({1,4})

= [1 = g(3,)PI1 — lg(2, )I”(1 — l9(2, 3)*|det F ({1, 2})det F ({1, 3})det F({1,4}),

which is exactly the required formula.

Now we can state the main result of this section. The point of the proof is a splitting
process based on the Fischer-Hadamard type formula (1.11). In what follows, in the
case I is a partial matrix, G(R) will denote the associated graph of R.

TneoREM 5.11. ([5]). Let My be a partial positive matriz with chordal associate
graph G = G(My). Let Gy, Gh,...,Gy be a fized chordal sequence of G.

Consider a positive definite completion M of My, and let {g(u;,v;)|j = 1,...,t} be
the parameters of M along the fized chordal sequence. Then the following formula holds:

(5.18) detM =TT — lg(uj,v;)|*) D(Mo).

i=1
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Proof. We prove (5.18) by induction on the number n of vertices of G. For n < 4
the formula can be verified directly (see Example above). Assume the statement of
Theorem 5.11 is true for any partial positive matrix for which the associated graph has
at most n — 1 vertices.

Fix a partial positive matrix My such that G = G(M,) has n vertices. Moreover,
fix a chordal sequence G = Gy, Gy, ..., G; = K, of G and a positive definite completion
M = {s;|1 <14, < n} of My. Let {g(u;,v;)lj = 1,...,¢} be the parameters of M
along the fixed chordal sequence. Define for 0 < m < ¢ the partial positive matrices

Mo(Gr) = {s:;(Mo(Gn))I1 £ 4,5 < n} by

(5.19) 5:i(Mo(Gm)) = {,Sij if (3,5) € En,

unspect fied otherwise

Of course, Mp(Go) = Mo, Mo(G:) = M, and M is a positive definite completion
of any Mo(Gr), 0 < m < t. Moreover, Gy, is the associated graph of My(Gy,), and
Gm,Gme1, .-, Gt 1s a chordal sequence of G,,. The parameters of M, viewed as a positive
definite completion of My, along this chordal sequence are obviously {g(u;,v;)|j =
m+1,..,t}.

Now, we get by (1.11),

detM(V — {us})detM(V — {v;})

(5.20) deth = (1= lg(uv) )=ty o)

But we can show that

(5.21) det I(Ze;ﬁjz“‘/} )_de{it]:{ g})— {od) _ D(Mo(Gi—1)).

Indeed, [u¢, ve, (V—{uy, v, })] is a perfect scheme of G-y, in which the order in V —{u;, v, }
is arbitrary, and (5.21) is a consequence of Corollary 5.10. From (5.20) and (5.21) it

results that

(5.22) detM = [1 — |g(u, v:)|?)D(Mo(Gi=1)).
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Suppose now that we have proved the formula
(5.23) detM = [1 — |g(us, v)*]...[1 = lg(is1, Vi1 ") D(Mo(Gr))-

for every m < k <t —1, in which 0 < m < t. We will show that the same formula
holds for m — 1.

Let [v1,...,v,) be a perfect scheme of G,,—1. There are two possibilities.

A. vy # U, V1 F U

In this case, the vertices u,, and vy, are not simultaneously adjacent to v; in Gp,_1,
because v; is simplicial in G,,—1. As a first consequence, v; remains simplicial also in
Gm-1 and by Theorem 1.6 we find a perfect scheme [v1, w2, ..., wy] of Gy.

Now, denote by G, 0 < m < t, the induced graph (Gm){vz,..vn}- In particular,
[v2, ..., vn) remains a perfect scheme of Gy and [wa, ..., w,] remains a perfect scheme of
G'm. Moreover, some of these graph may coincide. Taking into account those consecutive
graphs only once, we obtain a chordal sequence G = G, vy Gy = K,—1 of G, in which
Gm-1 and G, remain consecutive, but possibly at other positions in the sequence.
Despite this fact, we keep the same notation for them.

Further, denote by M the principal submatrix of M subordinate to {vy,...,v,}. By
(5.19), My = Mo(Gy) is a partial positive matrix with associated graph G. M can
be viewed as a positive definite completion of Mo; let {§(d;,;)|j = 1,...,t'} be the
parameters of M along the chordal sequence Go, G, ..., G,

By the previous remark, {g(u;,v;)|j = m,...,,t'} are the parameters of M, as a
positive definite completion of Mo(ém), along the chordal sequence ém, ém_l, veey ét: of
G By the induction hypothesis,

¢
detM = H [1 = 1§(uj, v) |1 D(Mo(Grm-1)).
j=m
and

detd = [ [1=13(us,0)")D(Mo(Grm)).

j=m+1
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as |§(u;,v;)| < 1 for j =1,...,', we deduce

D(Mo(Grm)) = [1 = |§(tmy vm) 1 D(Mo(Grmr))-

But now, the main point is the following: as another consequence of the fact that
U, and v,, are not simultaneously adjacent to v, in G,,—-;, the unique maximal clique
in G which is not a clique in ém_l is also the unique maximal clique in ém which is
not a clique in Gm-1. In view of the dependence on parameters in Theorem 1.2, this

means_that
§(tm, vm) = g(um; vm),
and we obtain the formula
(5.24) D(#1o(Grm)) = (1~ 19(ttmy vm) *] D(Mo(Gr-1)).

By Corollary 5.10, the equation (5.24) can be written in the form

(5.25) 31—1 det]ldle(t{ﬁz;)z}SSL)J 5) _ 1- |g(um,vm)|2]:§|2: detﬁigj&%ﬁ; S’).
As [v1,v2,...,0,] and [vy, w2, ...,w,] are perfect schemes of G,,—1 and G, respectively,
we multiply both sides of (5.25) by
detM({v1} U Adj(v1))
det M (Adj(v1))

and by Corollary 5.10, we obtain
(5.26) D(Mo(Grm)) = [1 = |9(timy ) F1D(Mo(Grn-1)).

Equation (5.23) was supposed to be true for k£ = m. Using (5.26), we obtain the

same formula (5.23) for the required case k =m — 1.

B. By Dirac’s Lemma 1.5, the only possibility is that u,, and v, are the only
simplicial vertices of G;,—1. We show that in this case Gy, = K, so that this situation

can occur only for m = t, a case already covered in (5.22).
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By Lemma 3 in [38], G;, has one more maximal clique which is not a clique in
Gm-1, containing both u, and v,. As u, and v, are simplicial vertices, this clique is
exactly Vi, = {tm, m, Adja,,_, (um) N Adjg,,_, (vm)}-

Excepting the cliques W) = {um, Adjg,,_, (um)} and W; = {vn, Adjg,,_, (vm)}, the
other maximal cliques in G,,_; remain maximal cliques in G,,.

Now, we prove that it is not possible for both W; and W to remain maximal cliques
in G,. Indeed, assuming the contrary, we use the simple remark that in a chordal graph
a vertex is simplicial if and only if it is contained into exactly one maximal clique, in
order to obtain that G, has no simplicial vertex, thus contradicting the chordality of
Gm. Consequently, we can suppose that W, is not a maximal clique in Gy, (and so, vy,
is also a simplicial vertex in G,,). As the only clique in G,, which can contain W; is
Vi, it follows that Adjg,,_, (vm) C Adjg,,_, (¥m)-

Now, we prove that W is also not a maximal clique in G,,. Suppose it is, so u,, is
not a simplicial vertex of G,,. By Dirac’s Lemma 1.5, we search for a second simplicial
vertex v of G, containing v. As W # V,, because v is not adjacent to v, it follows
that v is also simplicial in G,,—1, a contradiction, which shows us that either G,, = K,
'or W) is not a maximal clique ‘in Gm.

Supposing the later case holds, we get that Adjg,,_,(um) = Adjg,,_, (vm). Finally,
supposing that G,, is different from K, we search, again by Dirac’s Lemma 1.5 for a
simplicial vertex v of Gp,, v € V4. Then the unique maximal clique in Gy, containing
v was the unique maximal clique in va—l containing v, a contradiction, which shows
that, in any case, G,, = K,.

From the analysis of the two cases A and B it follows that the formula (5.23) holds
for any k € {0,1,...,1}. In particular, for ¥ = 0, this is exactly the required formula
(5.18). O

The first inheritance (or permanence) principle was proved in [25] for the band
matrices studied in [24]. In [48] the relevance of this principle was pointed out, and the

following result was conjectured, which is now a consequence of (5.11).
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THEOREM 5.12. For a chordal graph G, every chordal sequence G = Gy, Gy, ...,Gt =
K, of G has the following inheritance property. For every partial positive matriz My
with G as associate graph, construct a (unique) sequence of partial positive matrices
as follows: M; is obtained from M;_y by completing the (u;,v;) entry in such a way
that its principal submatriz subordinate to V; is the mazimum determinant positive def-
inite completion of Mo(Vj-1). Then the last matriz M, in the sequence is the mazimum
determinant positive definite completion of My.

Proof. Completing the (uj,v;) entry in the partial positive matrix Mp(V;-1) for
j = 1,...,1 is exactly the completion process considered in Theorem 3.1 for the fixed
chordal sequence of G and applied to the matrix M;. Let {g(u;,v;)|j = 1,...,n} be the
parameters of M, along the fixed chordal sequence of G. By (1.10) we have to choose
g(uj,v;) = 0 at every step in order to obtain the principal submatrix of M; subordinate
to V; as the maximum determinant positive definite completion of My(Vj—1). So M,
has the parameters g(uj,v;) =0, j = 1,...,t along the fixed chordal sequence of G. On
the other hand, by (5.18) in Theorem 5.11, the maximum determinant positive definite
completion MP° of M has the parametrs ¢°(uj,v;) = 0, j = 1,...,1, along the same fixed
chordal sequence of G. In other words, M; = M°. O

Another variant of the inheritance principle can be obtained using the following
result ([60], Lemma 2).

LEMMA 5.13. Let G = (V,E) and G' = (V, E') be two chordal graphs with E C E'
and |E'| > |E| + 2, in which |E| denotes the cardinality of E. Then there exists a
chordal graph G” = (V,E”) with EC E' CE” and E# E' # E”.

Proof. By induction on n = |V|. For n = 4 we can simply verify the statement of
the lemma. Suppose it to be true for any graph with at most n — 1 vertices, and let
now G = (V,E) and G' = (V, E') be with E C E' and |E'| > |E| + 2.

Let [v1,v2,...,v,] be a perfect scheme of G. There are two possibilities:

A. Gy # G If Glupovay = (V = (w1}, E) and G, .\ = (V -

{v2,00yn}*

{v1}, E') then, by induction there exists a chordal graph G = (V = {w}, £”) with
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E c E” c E'. In the case G'{ug....,u,,} has only one more edge than Gy,,...s,} We can
take G = Glyy,..0n}- We now construct G” by adding to V — {v1} the vertex v; and to

E” all the edges in G having v, as an endpoint. Taking a perfect scheme [ws, ..., w,] of

é”, remark that [vy, wg, ..., wy] is a perfect scheme of G”, and so G” is a chordal graph

satisfying the required properties.

B. G{u,,..ovm) = G”{WMW‘}. In this case, by Dirac’s Lemma 1.5 there exists one more
simplicial vertex in G starting another perfect scheme of G satisfying condition A. 0O

First, we obtain an extension of Lemma 4 in [38].

PROPOSITION 5.14. Let two chordal graphs G = (V,E) and G' = (V, E') with E C
E' E #+ E' be given. Then there exists a sequence of chordal graphs G = Gy, Gy,...,Gs =
G’ such that G; is obtained by adding ezactly one edge to Gj_y, for all j =1,...,8.

Proof. This a consequence of Lemma 5.13. 0O

In analogy with the case G’ = K, a sequence of chordal graphs satisfying the
requirement of Proposition 5.13 is called a chordal sequence connecting G to G'.

Finally, let R’ = (r{;);=; be a partial positive matrix, and R = (r;;)};-, a partial
submatrix of R, i.e. R is a partial matrix in its turn, but having more unspecified
entries than R, and r;; = r; for the specified entries. Let G' = (V, E’) and G = (V, E)
be the associated graphs of R’ and R respectively, which are supposed to be chordal.
Then E C E' and E # E'.

Take a chordal sequence G = Gy, Gy,...,Gs = G' connecting G to G', and let
G = Gy, G, ....,Gy = K, be a chordal sequence of G'. Then G = Gy, Gy,...,Gs =
G =G =Gy,...,G, = K, is a chordal sequence of G.

Fix a positive definite completion F of R'. Of course, F' can also be viewed as a
positive definite completion of R. So, let {¢'(u;j,v;)|j = 1,...,t} be the parameters of
F along the chordal sequence Gy, ...,G} of G’, and {g(u;,v;)|j = 1,...,s + t} be the
parameters of F' along the chordal sequence Go, Gy, ...,Gs, G}, ...,G; of G. The next
result establishes the connection between D(R) and D(R').
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PROPOSITION 5.15. With the above notation, the prbduct

8

T 11— lg(usv5)]

Jj=1
is the same for any chordal sequence connecting G to G' and any positive definite com-

pletion F' of R, and

(5.27) D(R) = []11 - g(u;,vi) FID(R).

Proof. In view of the dependence on the parameters in Proposition 3.2, the numbers
g(uj,v5), 3 =1,..., 8, do not depend on the chosen positive definite completion F' of R.

By the same remark, we have that ¢'(u;,v;) = g(u;,v;) for § > s. Then, by Theorem

5.11,
detF = D(F) = [](1 - g(u;,v) ") D(R).
and
s+t
D(F) = H[l — g(u;,v;)|*| D(R).

Consequently, the formula (5.27) holds and the product
T = g(xj, ).
i=1

does not depend on the chosen chordal sequence connecting G and G’. O
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