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Abstract

Case-Based Reasoning (CBR) systems solve new problems by finding stored instances of prob­
lems similar to the current one, and by adapting previous solutions to fit the current problem, tak­
ing into consideration any differences between the current and previous situations. CBR has been 
proposed as a more robust and plausible model of expert reasoning than the better-known rule- 
based systems. Current CBR systems have been used in planning, engineering design, and mem­
ory organization. There has been minimal work, however, in the area of reasoning about physical 
systems. This type o f reasoning is a difficult task, and every attempt to automate the process must 
overcome the problems o f modeling normal behavior, diagnosing faults, and predicting future 
behavior.

CBR systems are quite difficult to compare and evaluate, because until now there has been no 
common mathematical framework in which the systems can be described. The only avenue avail­
able at present for comparison and evaluation of CBR systems requires an intellectual synthesis of 
the semantics of the implementations. Important constraints on the operation o f a CBR system are 
often hidden in obscure programming tricks in the system’s source code.

This thesis presents a hybrid methodology for reasoning about physical systems in operation. Our 
methodology is based on retrieval and adaptation of previously experienced problems similar to 
the problem at hand. In this methodology the ability o f a CBR to reason about a physical system is 
significantly enhanced by the addition to the case-based reasoner of a model o f the physical sys­
tem. The model describes the physical system's structural, functional, and causal behavior.

Additionally, this thesis presents a mathematical formalization of the case-based reasoning para­
digm and a formal specification of the interaction of the CBR component with the model-based 
component of a case-based system. Tb prove the feasibility and the merit o f such methodology, a 
prototypical system for dealing with the faults of a physical system has being designed and imple­
mented. Testing has shown that this hybrid methodology allows the generation of diagnoses and 
prognoses that arc beyond the capabilities of current reasoning systems.
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Chapter 1

CBR and Physical Systems



1 CBR and Physical Systems

1.1 The Problem

1.1 The Problem

We consider a physical syslcm as a set of components connected together in a manner to achieve a 

certain function. Components are the parts that the system consists of, and may themselves be 

composed of other components. For example, an engine is a component in an airplane and it is 

composed of other components such as a compressor, a combustor, a fan etc. Components which 

are composed of other components are called subsystems.

Reasoning about physical systems is a difficult process, and every attempt to automate this process 

must overcome many challenges. Among these are the tasks of generating explanations of normal 

behavior, fault diagnoses, explanations of the various manifestations of faults, prediction of future 

behavior, etc. The reasoning process becomes even more difficult when physical systems must 

remain in operation. During operation, a physical system is changing dynamically by modifying its 

set of components, the components’ pattern of interconnections, and the system’s behavior. See 

Figure 1.1 on page 11.

Explaining normal behavior is the process of elaborating the function o f each subsystem and how 

tills function contributes to die overall operation of the system. Explaining the operation of an 

automobile, for example, would require knowledge of the function of the carburetor, operation of 

the fuel pump, movement of the wheels, etc., and how all these affect each other and contribute to 

the final operation of moving the automobile. There are several approaches to explaining the nor­

mal behavior of physical systems by means of a model o f the system. These approaches include 

naive physics (Hayes 1979], qualitative physics fdeKlcer 1985; Forbus 1985; Kuipers 1985], bond 

graphs [Rosenberg & Kamopp 1983, Feyock 1991], causality models, and others, each of them 

achieving various degrees of success and various advantages over the others.

- 4 -



1 CBR and Physical Systems I d  The Problem

Fault diagnosis is the process o f explaining why the behavior of a system deviates from the 

expected behavior. Such diagnoses are the answers to the questions “Why has my watch stopped?” 

and "Why were the lights llickering after yesterday’s storm?” Fault examples include a broken 

spring, a dead battery, a leak in a fuel line, etc. The task of diagnosis presents particular challenges 

such as identifying the faulty component, taking into consideration fault propagation, and account­

ing for multiple faults.

A number of systems have been developed to deal with these problems. Such systems fall into two 

categories. Associational or shallow-reasoning systems are systems that do diagnosis based on 

predefined links between sets o f symptoms and pre-existing explanations [Buchanan & Shortliffe 

1984]. These systems arc fast but inflexible, since their lack of deep domain knowledge makes 

them incapable of dealing with problems outside their preset rule bases. First-principle or deep- 

reasoning systems use causal reasoning to produce explanations for the set of symptoms [Davis 

1984]. These systems are more flexible, but are slower, since they must derive each new diagnosis 

from the underlying model.

In maintenance diagnosis, i.e. diagnosis of physical systems not in operation, it is sufficient to 

identify the source of the problem (faulty component) in order to determine which component(s) 

need to be repaired. In domains where the system is in continuous operation, however, it is desir­

able that the system operators be aware of fault consequences in order to facilitate corrective 

actions. A pilot who observes abnormal behavior in the plane’s sensor values needs to know not 

only what the fault is, but also how the fault will propagate and what its subsequent effects will be.

Automating the process of predicting the future behavior of physical systems is a difficult task 

because physical faults manifest themselves in various ways and it is difficult to enumerate all pos­

sible consequences. Current efforts to incorporate prognostication features in diagnostic systems 

that reason from physical system models succeed in predicting the expected course of events but

- 5 -



I CBR and Physical Systems 1-2 Approach

are limited by the level of detail of their models [Feyock & Karamouzis 1991]. For example, a 

model-based reasoning system that has a model o f an airplane’s functional and physical connec­

tions among components may, after establishing that the fan in the left engine is the faulty compo­

nent, predict that the fault will affect the operation of the compressor since there is a functional 

link between the two components. Such a system is incapable, however, o f deducing that flying 

fragments from the faulty fan may penetrate the fuselage and damage the right engine. Humans, on 

the other hand, are good at making such predictions, since their reasoning is based not only on pre­

existing models o f the world, but also on previous directly or vicariously experienced events 

which remind them of die current situation.

1.2 Approach

This thesis presents a novel approach to dealing with physical systems while operating. The meth­

odology presented here involves the use of case-based techniques in conjunction with models that 

describe the physical system. Case-Based Reasoning (CBR) systems solve new problems by find­

ing solved problems similar to the current problem, and by adapting solutions to the current prob­

lem, taking into consideration any differences between the current and previously solved 

situations. Because CBR systems associate features of a problem with a previously-derived solu­

tion to that problem, they arc classified as associalional-reasoning systems.

We show a case-based reasoning methodology for fault diagnosis and prognosis of physical sys­

tems in operation. This methodology employs a hybrid reasoning process based on a library o f pre­

vious cases and a model of the physical system that is used as basis for the reasoning process. This 

arrangement provides the methodology with the flexibility and power of first-principle reasoners,

- 6 -



1 CBR and Physical Systems 12  Approach

coupled with the speed of associations systems. Although domain independent, this work is tested 

in the aircraft domain.

In contrast to other CBR research efforts, each case in this methodology is not only a set of previ­

ously observed symptoms, but also represents sequences of events over a certain time interval. 

Such temporal information is necessary when reasoning about operating physical systems, since 

the set of symptoms observed at a particular time may represent improvement or deterioration 

from a previous observation, or may reveal valuable fault propagation information. In a jet engine, 

for example, the fact that the fan rotational speed was observed to be abnormal prior to an abnor­

mal observation of the compressor rotational speed is indicative that the faulty component is the 

fan and that the fault propagated to the compressor, rather than the reverse.

The model represents the rcasoner’s knowledge of causal relationships between states and observ­

able symptoms, as well as deep domain knowledge such as functional and physical connections 

among the components of the physical system about which the reasoner must reason. This 

research alleviates die knowledge acquisition problem to which current model-based systems are 

subject by letting each case of the CBR reasoning mechanism contribute its causal explanation, 

gained from adapting previous incidents, to the formation and maintenance of the causality model. 

The model can therefore be considered as a general depository o f knowledge accumulated through 

time. In return the model aids the matching and adaptation processes of the CBR reasoning mech­

anism.

- 7 -



1 CBR and Physical Systems 1 3  Methodology

1.3 Methodology

The described research integrates case-based and model-based reasoning techniques for dealing 

with physical system faults. In order to demonstrate the challenges and benefits of such work a 

prototypical system is being designed and implemented in the aircraft domain. The system con­

tains a self-oiganizing memory, as defined by [Shank 1982], for storing previously encountered 

problems. Each case lias been represented in a memory organization packet (MOP) as imple­

mented in [Riesbcck & Schank 1989].

Each case represents an actual aircraft accident case and consists of a set of features that identify 

the particular accident, a set of observable symptoms, and a causal explanation that describes the 

relationship between various states and observable features. The set of identifying features 

includes information such as aircraft type, airline, flight number, date of the accident, etc. The set 

of symptoms includes information about abnormal observations from mechanical sensors or 

“human sensors” such as the value o f the exhaust gas temperature, the value of engine pressure 

ratio, the sound of an explosion, or the smell of smoke in the passenger cabin. These symptoms are 

presented in groups, each group representing a particular time interval. These time intervals are of 

unknown and uneven length; it is their ordering that it is o f importance.

Additionally, the system incorporates a model, called the world knowledge model, that consists of 

deep domain information such as the physical and functional dependencies between the compo­

nents o f the physical system, and causal information describing the transitions between various 

states of the physical system. Along with the causal information between two states, e.g. “ineffi­

cient air flow” and “slowing do ton of the engine,” the model maintains a frequency count of the 

number o f times that the system witnessed that inefficient air flow caused the engine to slow down. 

The physical and functional connections arc represented using LIMAP, a matrix-based knowledge

- 8 -



1 CBR and Physical Systems Methodology

representation tool [Feyock & Karamouzis 1992], and include information of the type "the Fan is 

connected to sensor N1 via a functional link,” “the Fan is physically connected to die compressor.” 

LIM AP provides an excellent tool for queries such as:

• “Is there a connection between the combustor and the turbine?"

“If there is a connection, what kind of connection is it?”

"Give me all the paths by which the turbine can be reached form the compressor.”

The causality knowledge of the world model includes information such as “fan-blade separation 

causes the rotational speed of the fan to fluctuate” and “the rotational speed of the fan causes the 

engine pressure ratio to fluctuate.”

When the system experiences a new set of symptoms it searches its case library for the most simi­

lar case. Based on Hie observation that similar faults manifest themselves in similar ways only dur­

ing the first moments of the fault occurrence [AAIB-AAR-4/90], the system developed takes 

advantage o f the available temporal information in each case, and tries to establish similarity 

based on the observable symptoms during the first moments of the fault occurrence. The input 

cases do not have to match exactly any previous cases in memory.

If the system finds and retrieves a similar case, the causal explanation of the retrieved case is 

adapted to fit the current case, and is stored in the case library for future usage. The system is pro­

vided with a set of adaptation rules which, in addition to adapting the retrieved causal explanation 

to fit the current case, find possible gaps in the causal explanation and fill in the missing causali­

ties. This causal explanation connects the symptoms to a justifying cause, and thus the system’s 

causal reasoning ability produces a causal analysis of the new case, rather than simply a reference 

to a previous solution. The new causal analysis is not only be stored in the case library as part of 

the input case, but is used to augment and modify the causality knowledge of the world model. 

The causal analysis will consist of a sequence of pairs of the type “event A causes event B,” “event 

B causes event C" and so on. Each of these pairs is stored in the causality section of the model. In

- 9 -



1 CBR and Physical Systems 1 3  Methodology

the case that the model already knows about the causal relation between two events from a previ­

ously seen case, the system updates the frequency count between the two events. The world model 

is therefore created based on the previous behavior o f the physical system, and is constantly 

updated based on the current behavior, either by augmenting its previous causa! knowledge or 

“becoming more sure” about causal relations.

Constant consultation o f the model gives the system its prognostication ability. For example, hav­

ing achieved a match of the current situation with a previous case where the faulty component was 

a bad fuel controller, the system hypothesizes that the same fault is occurring. By referencing the 

world model it is able to predict that an engine flameout may occur, although that did not happen 

in the retrieved case, because the model may have recorded at least one previous instance where 

this happened. The operator is provided with a list of possible consequences o f the fault along with 

a frequency count of each one. Figure 1.1 is a diagram o f the various modules involved in the rea­

soning system along with their interactions.

1.4 Results

Empirical testing of the methodology has lead to the following conclusions:

• Combining a memory of past cases with models combines the efficiency of associational 

reasoning with the flexibility o f model-based reasoning.

• The integration of CBR and models enhances the ability of the model-based component 

by the CBR component’s capacity to contribute new links into the causality model. The 

adaptation rules o f  the CBR component not only adapt the retrieved causal explanation to
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1 CBR and Physical Systems 1 3  Methodology

LIBRARY CASE LIBRARY CASE

Id Features Id Features

Symptoms Symptoms

Causal Explanations Causal Explanations

INPUT CASE

Id Features 

Symptoms

•  •

LIBRARY CASE

Id Features 

Symptoms 

Causal Explanations

WORLD KNOWLEDGE MODEL

C a u s a l i t y  K n o w l e d g e  

F u n c t i o n a l  K n o w l e d g e  

P h y s i c a l  C o n n e c t i o n s  K n o w l e d g e

Figure 1.1: Models of the reasoning system and their interactions

fit the current case, but they find possible gaps in the causal explanation and fill in the 

missing causalities. These additional causalities serve in the causal explanation of the cur­

rent case and to expand the available knowledge to the model.

The integration of CBR and models enhances the ability o f the CBR component by using
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1 CBR and Physical Systems 1-S Comparison to Other Work

the model to aid the processes of matching, and adaptation. The model aids matching and 

adaptation in dealing with features which appear different on a superficial level, but are 

accounted for by the same initial cause.

• The use of the causality model provides enhanced fault-propagation forecast capabilities 

to the reasoner. The nature of the causality model (viewed as central depository) enables 

the reasoner to predict beyond the experiences of the retrieved case to the experiences 

accumulated by all previous cases.

1.5 Comparison to Other Work

Combined CBR and model-based reasoning (MBR) has been used primarily in engineering 

design. In the design domain a case consists of a design goal, a set of specifications for that goal, a 

set o f constraints that must be met, and a plan for achieving the goal. CBR systems in this domain 

are faced with the challenge of using previous design plans in order to come up with a new design 

plan.

Recognizing the advantages of combining CBR and MBR, [Sycara & Navichandra 1989; Goel 

1989; Goel & Cliandrasckaran 1989] use device models in order to adapt old design cases. The 

fact that two design problems with different features might represent the same object if the fea­

tures are studied based on their structural, functional, and causal behavior inspired them to use 

models to define the similarity between the two design problems.
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1 CBR and Physical Systems 1 5  Comparison to Other Work

Goel and Chandrasckaran [Gocl and Chandrasekaran 1989] represent devices by a high-level 

model, called afunctional representation, that describes the expected and unexpected behavior of 

the system. In contrast to our work their models are case specific and they don’t use a causality 

model. Sycara and Navinchandra [Sycara and Navinchandra 1989] have proposed the use of 

causal models for adapting design cases in engineering domain. Apart from the differences in the 

task and the domain, their method differs from our work in that they use only causal models that 

contain no domain information on either the function nor the structure of the system. More impor­

tantly, Goel and Chandrasckaran along with Sycara and Navinchandra demonstrated how models 

may be used to aid case-based reasoning when dealing with devices that are not in operation. 

Dealing with devices that are in operation, as is done in our work, provides additional challenges 

since temporal information must be taken in to account. Our work explicitly represents and rea­

sons about time when dealing with physical systems.

Although current CBR systems are goal-oriented and used mainly in planning, design, and mem­

ory organization, there is some work in the diagnostic domain. [Kolodner & Kolodner 1987J 

developed a diagnostic CBR system which reasons in the domain of medicine. Their system is 

more an application of dynamic memory as defined by [Schank 1982] than a diagnostic system. It 

organizes memory using Diagnostic MOP’s and Process MOPs. Diagnostic MOPs are dynamic 

structures, updated from experience, that represent disease categories; Process MOPs are special­

ized structures that offer a predefined way to organize memory.

[Koton 1988] has combined model-based reasoning and CBR in medical diagnosis in a system 

called CASEY, which is based on a self-organizing memory for storing previously seen cases. 

Each case is comprised o f a patient description and solution data. The patient description includes

signs and symptoms, test results, history, and current therapy information. The solution data 

includes a causal explanation of the symptoms, together with therapy recommendations. When the
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system is presented with a new patient description it attempts to retrieve a similar case and adapt 

the solution data of the retrieved case to fit the current patient description. If no acceptable previ­

ous case is found the system gives control to a model-based reasoning system called the Heart 

Failure Program. This program utilizes a network of causalities between various physiological 

states, and produces a causal explanation which describes the relationship between physiological 

states and observable features. Even when the CBR portion of CASEY is successful in producing 

a causal explanation of the observable features the user has the option of running the Heart Failure 

program. Although CASEY’s CBR portion handles learning by storing newly created causal 

explanations in the case library, it has no provision of updating the causality model kept in the 

Heart Failure program. The model is therefore static, since it depends solely on a predefined cau­

sality network. In contrast to CASEY our work includes the provision o f dynamically creating and 

maintaining the model from the set of previous behaviors of the physical system.

CASEY’s algorithm includes the following stages [Koton 1989]:

• The phase of retrieval where CASEY retrieves from its case library a case similar to the 

new patient

• The phase of justification where CASEY evaluates the significance of any differences 

between the new case and the retrieved case using a set of principles for reasoning about 

evidence in causal explanations. These principles are used to: determine whether a feature 

in the retrieved case is ruled out by evidence in the input case; show that feature differ­

ences are insignificant or repairable; disregard differences in features that describe normal 

states, states from which no information is available or states that describe behavior with 

in the same qualitative region. If all differences between the new case and the retrieved
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• case are judged insignificant or if Uie solution can be repaired to account for them, the 

match is said to be justified.

• The phase of adaptation. If none of the differences rule out the retrieved case, causal 

repair strategies arc used to adapt the previous case’s causal explanation to the new case. 

These causal repair strategies add or remove nodes and links to the transferred causal 

explanation. If all matches arc ruled out, or if  no similar previous case is found, CASEY 

uses the Heart Failure program to produce a solution.

* The storage phase where the new case and its solution are stored in the case library for use 

in future problem solving. Indexing is done using every feature that describes the case and 

does not discriminate significant or predictive features. In contrast, our work utilizes an 

indexing scheme which is based on assigning various weights on features that reflect the 

diagnostic importance of each feature.

[Hammond & Hurwitz 1988] report research in the domain o f reasoning about physical systems. 

When given a case describing a fault together with its explanation, their system uses this explana­

tion and a predefined causality structure of the domain to decide which features o f the fault should 

be indexed. Their work docs not include deep domain models that describe the structural and func­

tional connections of the physical system, and targets the extraction of diagnostic features for stor­

ing cases, rather than pcrfonning complete reasoning about physical system faults. The importance 

of their contribution in the area of reasoning about physical systems lies in the development and 

use o f a simple but powerful set o f heuristics concerning causal relatedness in physical systems. 

These heuristics arc used to evaluate the likelihood that two features are causally related in the 

event that the system’s causal model is unaware of a causal chain between them. For example, dirt 

and grass covering a lawn mower may be predictive of a plugged air filter while a bent handlebar 

probably is not - although in neither case does there exist a direct causal chain from the failure to
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the feature. Their diagnostic algorithm is a variation o f the one used for case-based planning 

[Hammond 86] and includes the following steps:

• The phase of selection where given an input case the observable features of the case are 

used to find similar cases in the case library. One of these cases is selected as the one that 

matches the best with the input case.

• The phase of matching where portions of the retrieved causal explanation are matched 

against features of the input case. By examining the status of the physical system further 

matches arc done.

• The phase of modification where any deviations from the retrieved causal explanation are 

repaired using backward chaining and the causal relatedness heurisdes.

• The phase of connection categorizes features into those that are explained by the normal 

use o f the physical system, those that are explained by the causal chain leading to the fail­

ure, and those that remain unexplained. Features in the first category are connected into a 

model that describes the actions that are performed on and with the system, and features in 

the second category are connected in the causal explanation of the failure.

• Extraction is the phase where the features that are causally related to the failure form the 

list o f candidate features for indexing. The unexplained features and the features that are 

explained by the normal use of the system are ignored.

• During the phase o f indexing the input case is stored in the memory, indexed by the fea­

tures that predict its applicability. These index features are comprised by those features
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• that must be present in any instance of the diagnosed problem and those features that 

might be causally related, as determined by the relatedness heuristics.

[Turner 1988] reports research which presents an approach to diagnostic reasoning called schema- 

based reasoning (SBR), which allows a reasoner to access and use the most specific procedural 

information available for the problem at hand. By using schema-like information, the reasoner can 

bring specialized problem-solving procedures to bear on diagnostic problems. His ideas are dem­

onstrated in MEDIC, an SBR diagnostic reasoner whose domain is pulmonology. MEDIC’s mem­

ory is an interconnected set of discrimination nets, or hierarchies, in which the leaf nodes are cases 

and scenes, and the interior nodes are MOPs or schemata. T im er's work is more an application of 

memory organization than a diagnostic system. Because MEDIC does not allow cases of problem 

solving to be added to its memory in a manner implemented in every traditional CBR system, it is 

incapable o f learning.

In contrast with our research, all of the CBR work mentioned in this section is reflected on specific 

applications with no foundations on any theoretical base. Formalizing the case-based reasoning 

paradigm is the major contribution of this work to the future CBR research efforts. Additionally, 

unlike other work, our research demonstrates the challenges of explicitly representing and reason­

ing about time. This is an important attribute in the diagnostic task since observed symptoms at a 

particular time may represent improvement or worsening due to the system's behavior at a previ­

ous time.
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“Those who cannot remember the past 

are condemned to repeat it."

— Santayana

“I have but one lamp by which my feet are guided, 

and that is the lamp of experience.

I know no way of judging of the future but by the past.”

— Patrick Henry



Chapter 2

Case-Based Reasoning



2.1 Case-Based Reasoning Paradigm

The basic cycle of a CBR system is “input a problem, find a relevant old solution, adapt it." When 

a problem is input to a CBR system, an analysis, performed by the system, determines the features 

relevant to finding similar cases. These features are called indices. Relevance is usually deter­

mined not by the obvious features of the input problem, but by abstract relations between features, 

absence of features, and so on. The problem of determining what extra, non-obvious features are 

needed for a particular domain is called the indexing problem.

Usually the indexes retrieve a set o f potentially relevant old cases. The next step is to match the 

previous cases against the input and reject cases that are dilferent from the input and determine 

which of the retrieved cases is the most similar. This similarity of cases is determined by how well 

they match on each feature, and how important each feature is. For example, when the visitor in 

Athens is confronted with die situation of using a bus, a previous experience of using the subway 

in Athens, and an experience of using the bus in London may be retrieved as relevant cases. Fol­

lowing a careful evaluation of the important features in each case the visitor may consider that his 

bus experience in London is more closely related to the current situation. In the current situation, a 

location match is considered of lesser importance than the type o f the desired means of transporta­

tion, therefore the London experience forms the best match.

After a best match is determined it must be adapted to fit the current situation. During the adapta­

tion process it must be determined what is different between the input and the retrinved best
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match, and then the solution associated with the retrieved case must be modified to take into 

account those differences. The modified solution becomes the solution of the input situation. How 

much adaptation needs to be done depends on the nature of the differences. In our example, very 

little adaptation must be done in the process o f recognizing an Athenian bus since its differences 

with a bus in London arc minor, but more adaptation has to be done in the process of getting a 

ticket if the experience of using the subway in Athens was the best match in the situation o f using 

a bus in Athens. The following sections investigate with more detail the various phases of the CBR 

paradigm along with the structures used for organizing the memory.

2.1.1 Memory Organization

In the early 80’s [Schank 1982] developed knowledge structures for organizing memory called 

Memory Organization Packages (MOPs). These structures involve standard AI concepts, such as 

frames, abstraction, inheritance, and so on. MOPs are used to represent knowledge about classes 

o f complicated events and contain a set of norms which represent the basic features of a MOP, 

such as: what events occur, what goals are accomplished, what actors are involved, and so on. For 

example, the following two MOPs describe an event between Tim and David, and the outcome o f 

the event:

fight-event-mop fight-outcome-mop

ACTION stab-mop STATE dead-mop

ACTOR tim-mop ACTOR david-mop

OBJECT david-mop

FREQ scvcral-times-mop

Similar knowledge structures for organizing memory, called scripts, were developed by [Schank 

& Abelson 1977]. Scripts differ from MOPs because they are not organized into interlinked net­
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works as MOPs. Additionally, scripts are static knowledge structures, but MOPs are used to form 

dynamically changing knowledge bases, i.e., systems that learn new knowledge in the process of 

understanding and problem solving. During the same time that scripts were proposed, [Minsky 75] 

proposed frames, which are analogous structures and at that time were used in the domain of 

visual processing.

A MOP that refers to an instance rather than a category is called an instance MOP. MOPs are 

joined together with links. [Riesbeck & Schank 1989] classify links into the following categories:

a. A MOP may be joined to a more specific version of itself. The specific version is called a 

specialization and the more general MOP is called an abstraction. The link that joins a 

specification and an abstraction is called an abstraction link. A network of MOPs, going 

from very specific instances at the bottom to very abstract general knowledge at the top, is 

called an abstraction hierarchy. In an abstraction hierarchy the features of each MOP are 

inherited by the MOPs below it. For example, if we represent the process o f “getting a 

Ph.D. in computer science” in a MOP, then this MOP can be linked via an abstraction link 

to a MOP that represents the process of “getting a doctoral degree.”

b. MOPs that represent events have scene links to various sub-events. The network of MOPs 

linked together by scene links is called the packaging hierarchy. In our example, passing 

an oral examination could be a scene in the “getting a doctoral degree" MOP.

c. In some systems a MOP may be linked to those instances from which the MOP was origi­

nally derived, or to prototypical examples of the MOP. These links are called exemplar 

links.
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d. A MOP may be linked to instances of the MOP that involved an expectation failure via 

failure links. In our example, the “getting a doctoral degree" MOP may be linked to a par­

ticular instance MOP that describes the unsuccessful effort of a certain student to get a 

doctoral degree because he performed poorly in the required course-work.

e. Links that join a MOP with its specializations are called index links. Each index link is 

labeled with an allribule-value pair. These pairs of attributes and values are not features 

for the MOP. When a MOP is indexed by such a pair, then the pair automatically becomes 

a feature of the MOP and every other MOP under this MOP inherits this feature. In our 

example, "area of study” is an attribute and "Computer Science” a possible value. The 

index link “area of study = computer science” would link the “getting a doctoral degree” 

MOP with the “getting a Ph.D. in computer science” MOP. The network of MOPs that is 

formed by the index links is called the discrimination net.

Not every Case-Based Reasoner makes use o f all of these kinds of links. For example, a,Case- 

Based Reasoner that needs to classify hardware based on their CPU type may use abstractions 

instead of index links. This can be done by creating a set o f abstraction MOPs under the hardware- 

type MOP, where each abstraction has only one slot, namely the slot for CPU type. Then the rea­

soner can put each particular hardware piece under the appropriate abstraction. The use of abstrac­

tions in this manner would subdivide the memory in the same way that it would be subdivided if 

the reasoner was to use index links such as “CPU type = <some_type>."

Organizing memory in abstraction hierarchies is a key characteristic of CBR systems that leads to 

efficient retrieval of previous cases. Case-based Reasoning systems that use MOPs to hierarchi­

cally organize their memory constantly add new instances, new abstractions, or new indexes. New 

instances are added during normal use of MOP memory for solving problems. These instances 

record experiences in terms of MOPs.
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Additional knowledge may be recorded by creating abstractions. A simple approach for creating 

abstractions is a method called similarity-based generalization, where the formation of abstrac­

tions is done when a number of cases are discovered to share a common set of features. These 

common features are used to create the features of the new abstracted MOPs, and the unshared 

features are used as indexes to the original MOPs. A potential problem with similarity-based gen­

eralization is that it may fonn spurious generalizations until the case library is sufficiently large.

An approach that avoids this problem is Explanation-based Generalization (EBG) [Mitchell 1986; 

DeJong and Mooney, 1986]. In this method abstractions are made only when a plausible reason for 

their existence can be inferred, based on prior causal knowledge. The problem with systems that 

employ EBG is that they can end up doing a lot of w ork to create an abstraction for one-time only 

event [Simpson 1985; Sycara 1987; Hammond 1988] employ a form of EBG called failure-driven 

learning, where in addition to the solutions the reasoner saves general explanations o f why some 

solutions don’t work.

2.1.2 Indexing

Retrieving relevant cases from memory can be a massive search problem. In order to make the 

retrieval process more selective and reduce the effect o f  memory size cases must be indexed by 

appropriate features. Throughout the literature there are several approaches involving the selection 

of an appropriate set of indices. The easiest approach is to use as indices all the features that form 

the description of a case. [Lcbowitz 1987] uses inductive learning to determine relevant features 

which in return become indices. [Mark & Barletta 1988] use explanation-based techniques to iden­

tify predictive features for each case so they can serve as indices.
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Although there are several context-dependent methods for selecting indices, there is a need for 

more study of this process, especially on methods for generating new indices dynamically.

2.1.3 Retrieval

Retrieval of relevant cases is one of the most crucial issues in CBR. Because most of the complex, 

real-world domains involve thousands o f cases, the process of retrieving cases from memory 

becomes a massive search problem. The situation is complicated by the fact that we must perform 

some type of partial matching because an input case is unlikely to match exactly a previously 

stored case. Retrieval techniques depend on the structure o f case memory, the information stored 

in each case, the features used as indices, the notions of similarity and relevance, and the available 

general knowledge about the domain.

To avoid exhaustive search, CBR search methods depend on a memory being organized in abstrac­

tion hierarchies. The search starts at the most general MOP in the abstraction hierarchy and pro­

ceeds downward only when a match is achieved at an abstraction MOP. Instance cases are 

therefore retrieved only when their abstractions match. Tb illustrate how this search works we 

present the following example in the domain of computer hardware. Let us assume that each com­

puter system can be described in terms of three components: llie type of the CPU, the type o f the 

CRT, and the type of the keyboard.

Figure 2.1 on page 26 presents a snapshot o f the reasoner’s memory organization and we assume 

that the reasoner contains domain specific knowledge such as the fact that a 286 CPU is a CPU in 

the Intel family, a CPU in the Intel family is a CISC CPU, a CISC CPU is a single CPU, a CGA 

CRT is a color CRT, a color CRT is a CRT, a standard keyboard is a keyboard etc. We assume that 

an new computer comes and the task of the reasoner is to find the computers that are similar. The
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first component in the new computer is a 286 CPU, the second component a CGA CRT, and the 

third a standard keyboard. Note that the new computer is been represented in a MOP that contains 

three features, one for each component. Then the search proceeds in the following way:

COMPUTERS

SP COMPUTERS PARALLEL COMPUTERS
Compl Single_CPU C om pl Mtilt_CPU

Com pl CPU 

Comp2 CPU 

Comp3 Kbrd

WORKSTATIONS PERSONAL COMPUTERS

C om pl RJSC_CPU 
Com p2 ColorjCPU  

Com p3 Extd_Kbrd

C om pl CISC CPU

MACs DOS COMPUTERS

C om pl Motorola Com pl Intel Family

COMPUTER #33 COMPUTER #34
Compl 486sx Com pl 386D X
Comp2 Super_VGA Comp2 CGA

Figure 2.1: Snapshot of Case-Based Reasoner's memory orgainzation

Step 1: First level (lop level) comparison. Each component that describes the new computer is 

been compared with the corresponding component that describes computers in general. Since a
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286 CPU is a kind of CPU then we say that the value of the feature componentl in the MOP that 

describes the new computer satisfies the constrain imposed by the feature componentl in the MOP 

that describe computers in general. This constrain is the fact that componentl must be a CPU. 

Similarly because a CGA CRT is a CRT, and a standard keyboard is a keyboard then we say that 

the MOP New_Computcr satisfies the MOP Computer and we move to the second step.

Step 2: Second level comparison. Each component that describes the new computer is been com­

pared with the corresponding component that describes single processing computers (SP_Comput- 

ers MOP). A 286 CPU is a single CPU thus the feature componentl in the New_Computer MOP 

satisfies the feature componentl in the SP_Computers MOP. The latter contains no componentl, 

and component2 features thus these feature are inherited from the Computers MOP Both of these 

feature are also satisfied by the corresponding features in the New_Computer MOP thus we move 

to the lower level under the SP_Computers MOP.

Step 3: Third level comparison. A CGA CRT is a Color CRT but a 286 CPU is not a RISC CPU 

thus the New_Computcr MOP does not satisfy the constraints imposed by the Workstations MOP. 

Nest the New_Computcr MOP is been compared with the Personal_Computers MOP. The latter 

inherits the values for componentl, and component2 features from the SP_Computers MOP. A 

286 CPU is a CISC CPU thus the Personal_Computers MOP is satisfied and the search continues 

with its children.

Step 4: Fourth level comparison. The New_Computers MOP can not satisfy the constraints of the 

MACs MOP but it does satisfy the DOS_Computers MOP thus the search continues with the chil­

dren of that MOP.
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Step 5: Retrieval. Since ihc children of the DOS_Computers MOP are instances o f particular 

computers then these are retrieved as the computers that are similar to the new computer.

Earlier retrieval implementations [Kolodner 1983; Lebowitz 1983] use of redundant discrimina­

tion networks in order to guide the search, but later implementations [Kolodner 1988] used memo­

ries with distributed representations where cases were stored in pieces.

Along with the issue o f  reaching relevant cases the reasoner must face the problem o f choosing 

one o f the retrieved cases, the one that matches “best” the input case. The chosen case, called 

most-on-point, should be the one that addresses the reasoner’s current problem in the best way. 

There are several approaches to this problem. The simplest tactic would be to accumulate a 

(weighted) count of the number o f matching features between each retrieved case and the input 

case. While this may work in some domains, it is inappropriate for most domains since the impor­

tance o f  each feature is context dependent. [Kolodner 88] employs a method based on preference 

heuristics. [Rissland & Ashley 88] use the method o f dimensional analysis. In the domain of legal 

reasoning they have developed special knowledge structures called dimensions which identify a 

factual feature that links operative facts to known legal approaches to those facts, specify which 

are the most important for this approach, and specify how a legal positions strength or weakness 

can be compared to other cases. [Stanfill 87] uses dynamically changing weighted evaluation func­

tions. In all of these methods the common aspect is that all of the retrieved relevant cases are taken 

in consideration in choosing what is important for choosing the most-on-point case.

2.1.4 Adaptation

After the retriever finds the best match that it can in memory, the system proceeds to adapt the 

solution stored in the retrieved case to the need o f the current situation. The adaptation process
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looks for salient differences between the retrieved case and the input and then applies rules that 

take those differences into account. Those adaptation rules can be much simpler than those 

required by a purely rule-based system. In a planning domain the adaptation rules note precondi­

tions to steps that need to be met and suggest plans to achieve these preconditions. In a diagnostic 

task, the adaptation rules And gaps in an causal explanation and fill in the missing causalities.

A CBR system can get by with a much weaker set of adaptation rules, if  the case library is broad 

enough. The process by which most people learned to find logarithms in high school demonstrates 

how a bigger case library can allow the use of significantly weaker adaptation rules and still get 

strong results. In the process of finding logarithms, the table of logarithms is analogous to the case 

libraiy. Looking up the closest numbers is case retrieval and interpolating the answers using ratios 

is the adaptation rule. This simple rule yields reasonable answers only if  the table has two numbers 

close to our number.

Types of Adaptation

[Riesbeck & Schank 89] describe two types of adaptation. Structural adaptation is the process of 

applying the adaptation rules directly to the solution stored in the retrieved case. [Hammond 88] 

uses it in the domain of cooking to modify previous recipes in order to come up with a new recipe, 

and [Bain 86] in the domain of legal reasoning in order to modify prior criminal cases.

The second type is derivational adaptation, where the rules that generated the solution in the 

retrieved case are re-run to generate the solution in the input case. Systems that use derivational 

adaptation store not only a solution with each case, but the planning sequence that constructed that 

solution [Simpson 1985]. An advantage of derivational adaptation is that requires fewer ad hoc
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rules [Hammond 1989]. Additionally, it can be used to adapt problem solving knowledge from 

other domains, rather than being restricted to within-domain solutions [Simpson 1985].

Using a particular type o f adaptation does not imply exclusion of the other type. In reality CBR 

systems should have both structural adaptation rules to fix the “non-analyzed” solution, and deri­

vational mechanisms to fix cases that are well understood by the systems. For example, solutions 

generated by the system itself are ideal for derivational adaptation.

Adaptation Techniques

The simplest adaptation technique is to do nothing and simply apply the solution o f the retrieved 

case to the new situation. This is called null adaptation and comes up in tasks where, even though 

the reasoning to a solution may be complex, the solution itself is very simple. For example, when 

evaluating loan applications many factors must be considered, but the final answer is either accept 

or reject. Considering the fact that the real solution stored in each case is the chain o f  reasoning 

leading to a particular answer, the disadvantage of null adaptation is that does not provide to the 

user information such as how a particular answer was derived, what other answers are possible, 

and so on.

Parameterized solutions is another technique where given an input situation and the retrieved 

case, the retrieved and new problem descriptions are compared along the specified parameters. 

The solutions are then used to modify the solution parameters in the appropriate directions [Riss- 

Iand and Ashley 1986; Bain 1986; Sycara 1987; Hammond 1989]. This technique is of value in 

modifying an existing solution, not creating a solution from scratch. It is a simple and powerful 

way to augment a case library, but is not a replacement for a good set o f cases.
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Abstraction and respecialization is a structural adaptation technique where, if  a piece of the 

retrieved solution does not apply to the problem at hand, the system looks for abstractions of that 

piece of the solution that do not have the same difficulty. Then it tries to apply other specializa­

tions of the abstraction to the current situation [Alterman 1986; Kass 1986; Sycara 1987].

[Sussman 1975] proposed the notion of critics as a debugging tool for nearly correct solutions. His 

proposal was implemented in [Simmons 1988]. A critic looks for some combination o f features 

that can cause a problem in a plan. Associated with different problems are strategies for repair. The 

feature combinations that arc worth checking depends on how the plans are derived. In Sussman’s 

work, a plan for achieving several goals simultaneously is derived by putting together plans that 

could achieve each goal independently. The critics then check if any plans interfered with each 

other, or if  any plans are redundant. Critics as used in CBR systems can make only local changes 

to solutions, rather than globally reorganizing everything [Sycara 1987; Hammond 1989].

Reinstantiation is a derivational adaptational technique which operates not on the solution of the 

retrieved case, but on the method that was used to generate that solution [Simpson 1985; Ham­

mond 1989]. Reinstantiation means replacing a step in a solution by taking the plan that generated 

that step and rerunning it in the context of the current situation. Since reinstantiating a plan is plan­

ning, the power of this technique is limited by the planning power of the reasoner.

2.1.5 Testing

As soon as the adapted solution becomes the solution of the input case, most CBR systems pass 

the solution through a tester. Tills phase is important in domains such as planning or legal reason­

ing where there is no unique '‘right” answer. One way to test the new solutions is by proposing 

hypothetical and counterexamples to test the robustness of the solution. Another way is to use the
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new solution as a probe into memory and try to find similar instances in the case library that lead 

to failure. Both methods are case-based, since they have to go into the case library and try to 

retrieve some other case. [Hammond 88] in the domain of planning employs simulation for test­

ing. The idea is to pass the solution through a simulator and check the results of the simulation 

against the results from die CBR system.

2.1.6 Failure Explanation

Reasoning systems may fail at the testing phase when generating plans or do diagnoses, either 

because goals specified in the input are not achieved, or because implicit goals, not specified in the 

input, are violated. When a CBR reasoner fails, it has to explain its failure and repair it. In plan­

ning explanation comes before repair, and the repair is based on the explanation. In diagnosis, the 

repair has to come first.

The task of explanation is to generate a domain specific explanation o f why the proposed solution 

failed. In a planning domain the explanation is a causal chain leading from the steps in the plan to 

the violation of the goal [Hammond 1988]. In a fault diagnosis domain, the explanation is a causal 

chain leading from the failure of some component, other than the one diagnosed as faulty, to the 

observed fault symptoms.

2.1.7 Repair

Given a solution, a failure report, and possibly an explanation, the task o f repair is modification of 

the solution to remove the failure. In domains where explanation precedes repair, the explanation 

o f the failure will usually provide clues to the repairs needed. In other domains, such as fault diag­
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nosis, the only information available to the repair process is the diagnostic failure, i.e., “the com­

ponent selected as cause of failure is functional." In these domains one repair strategy is to add 

whatever new information is available in the failure report and then search the case library for 

another best match. If the additional information causes a different case to be retrieved, then it 

should be adapted. If the same case is retrieved as before, then an alternative repair strategy is to 

try adapting the second-best match.

Whenever solutions fail and are repaired it is important to link the solution that didn’t work with 

the one that finally did. This link will be useful when the same case fails to apply again, in some 

other situation. When this happens, the system can look at any other failures associated with this 

case and try to generalize what is common using either similarity-based or explanation-based gen­

eralization techniques. The goal is to find some characterization of the failing situations in order to 

avoid that class of failures in the future. For example, [Hammond 86] in the cooking domain 

employs a problem anticipation mechanism where the system (recipe planner), by noticing fea­

tures in the input case thal have previously contributed in past planning problems, anticipates 

planning problems in the current case. The fact that cooking beef and broccoli together makes the 

broccoli soggy, i.e., fails to achieve the goal of having a crisp vegetable, is worth remembering. 

Generalizing the failure into "cooking meat with a crisp vegetable makes the vegetable soggy” 

avoids subsequent failure when the system is asked to produce a recipe with chicken and snow- 

peas.

2.2 CBR versus Rule-Based Systems

CBR systems are an alternative to traditional Rule-Based (RB) systems. RB systems consist of a 

rule base of domain-specific knowledge, and a domain-independent rule interpreter that combines
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the rules to construct answers to problems [Buchanan & Shortliffe 1984], RB systems are divided 

into production systems which contain rules o f the form “IF some conditions are met THEN take 

some action”, and deductive systems which contain rules o f the form “IF some predicates are true, 

THEN conclude some other predicates are also true.”

RB systems are flexible and can produce nearly optimal solutions, but are slow and prone to 

errors. Ease o f adding a new rule or modifying an existing one is the major advantage of RB sys­

tems. RB systems are intuitive and better represent some kinds of knowledge that people seem to 

have. Rules capture “what to do knowledge" but not deep domain knowledge such as “why it 

works” o r “what it means” [Chandrasekaran & Mittal 1982], Another problem with RB systems is 

that the knowledge o f the system is scattered among individual pieces. Therefore the more facts 

the system knows the slower it becomes. A third problem is that rules are not good structures for 

representing events.

In contrast to RB systems, CBR systems are restricted to variations on known situations, and pro­

duce approximate solutions. In realistically complex domains are quick and their solutions are 

grounded in actual experience. Most importantly cases support knowledge transfer of expertise 

and explanation better than rules do. Because human expertise is more like a libraiy of past expe­

riences than like a set o f rules, using CBR systems makes the tasks of communicating expertise 

from domain experts to the system and justifying a solution from the system to domain experts 

much easier. Additionally, many real-world domains are so complex that it is impossible or 

impractical to always specify the rules that involved. By means o f cases we can always extract 

solutions, albeit approximate, to problems by retrieving a case that demonstrates some degree of 

similarity with the current problem.
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2.3 Prototypical CBR Systems

Since the early 80’s several reasoning systems have been constructed that can be considered to fol­

low the CBR paradigm. The following sections give a brief overview of exemplar CBR systems 

that demonstrate much of the work in the area, and have influenced the development of future sys­

tems.

2.3.1 IPP

IPP’s (Integrated Partial Parser) [Lebowitz 1980] domain is international terrorism, where it is 

able to read texts about terrorist activities, store its interpretations in memory, and make generali­

zations. IPP’s interesting characteristics include its memory structure, its rules for forming 

abstractions, and its use of memory to guide parsing. IPP is the first attempt at a computer system 

that uses dynamic memory structures (MOPs). Generalizations are made based on the assumption 

that similarities between the story being read and stories previously stored in memory represent 

generalizations that describe the world. These generalizations are used as a basis for organizing 

events and to guide future story understanding.

2.3.2 CYRUS

Along with IPP, CYRUS [Kolodner 1984] is another MOP-based story understanding system that 

focuses on how memory is used to answer questions after understanding. CYRUS’ domain is 

international politics. The system uses two databases, one for former Secretary of State Cyrus 

Vance and one for former Secretary of State Edmund Muskie. Following the basic cycle o f reading
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a story, storing its interpretations, and making generalizations, CYRUS is capable of answering 

questions such as "When did Vance meet Begin last?”, “Has Vance talked to Gromyko recently?”. 

CYRUS’ power is demonstrated in the process of answering questions such as “Did Vance met 

Mrs. Begin?”. Instead of performing the impossible tasks of exhaustive memory search or index­

ing every episode in advance under every possible question it answers the question by answering 

subsequent questions such as “When would Vance meet tire spouse of a diplomat?: At a state din­

ner”, “When would he go to a state dinner with Begin?”, and so on.

2.3.3 MEDIATOR

MEDIATOR [Simpson 1985] is the first CBR system in the domain o f dispute resolution. Given a 

conflict of goals between several parties and a MOP-based case library, it creates a new instance of 

a MOP to obtain some plan for resolving a dispute. Employing derivational adaptation, the system 

modifies previously stored plans in order to satisfy the current dispute. For example, when called 

to resolve the dispute between Egypt and Israel, it retrieved from memory a plan to settle a dispute 

between two children over the use of an orange. The retrieved case comprised o f a plan to give 

each child the part of the orange that she wanted: one wanted the peel while the other wanted the 

fruit. Adapting the retrieved solution MEDIATOR came up with a solution to give Israel military 

control, but to give Egypt political and economic control. In cases where the proposed dispute res­

olution fails to satisfy the involved parties, it employs a failure-driven learning mechanism by 

storing a record of the failure in order to predict and avoid such failures in the future.



2 Case-Based Reasoning

2.3.4 SWALE

2.3 Prototypical CBR Systems

The SWALE [Schank 86; Kass 86] system is a MOP-based explainer with a library of patterns for 

explaining why animals and people die. This library includes patterns such as old age, being run 

over by a car, and so on. When SWALE is given a death case which can not be explained by any of 

the normal explanation patterns, it searches its library for situations where the death pattern was 

abnormal. It then uses abstraction and respecialization to adapt (lie abnormal pattern to the current 

situation. For example, when SWALE was asked to explain the death of a healthy race horse, it 

found in its memory a case o f spouse killing spouse for life insurance, and reasoned that the 

healthy horse was killed by the owner for property insurance.

2.3.5 PLEXUS

Although PLEXUS’ [Altennan 1986] memory organization is not based on MOPs and its case 

library is trivial, its adaptation mechanism is of interest. PLEXUS uses abstraction and respecial­

ization to adapt previous plans for riding San Francisco’s subway into a plan for riding New 

York’s subway system. Initially PLEXUS uses null adaptation to adapt San Francisco’s plan but 

when pieces of the plan fail then the system employs abstraction and respecialization. For exam­

ple, San Francisco’s plan calls for getting a ticket from a machine but in New York there no ticket 

machines. The system abstracts from the concept of “get ticket from machine’’ to “get ticket”, then 

specializes to “get ticket from ticket booth,” as in the plan for going to a theater.
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2.3.6 JUDGE

2 3  Prototypical CBR Systems

JUDGE [Bain 1986] is a CBR system in the domain of “common-sense ethical reasoning” for 

criminal sentencing. The input is a description o f a criminal case, along with the chaige, the events 

that occurred, and the legal status regarding crimes of this nature. The case library contains previ­

ous crimes and the sentences determined for each. During its first stage of operation, JUDGE 

interprets the input case by inferring the seriousness of the crime, the motives of the actors in the 

current case, and determining the extent to which each offender was justified in acting violently, 

with the help o f interpretations assigned to previous cases. It follows a retrieval phase along with 

structural adaptation of previous sentences in order to ensure that diiferences in sentence severity 

between crimes corresponds to differences in heinousness of the crimes. At the end a generaliza­

tion phase forms sentencing rules when it finds it has several similar cases with similar sentences.

2.3.7 MBRtalk

MBRtalk [Stanfill & Waltz 1986] performs a word pronunciation task. By using a case library of 

several thousand words along with their pronunciations, it achieves 88% predictive accuracy in its 

task of mapping letters to phonemes. MBRtalk is a memory based system rather than a traditional 

CBR system. In contrast with CBR systems which employ search methods which depend on a 

memory being organized in abstraction hierarchies, MBRtalk deals with the entire memory. It 

relies on parallel architectures with enough processors to facilitate simultaneous search for a par­

tial match between the input word and every case in the memory. Selection is done by retrieving 

only the words that achieve some degree of partial match after the application o f an evaluation 

function to each word in the case library. A crucial issue in this reasoning scheme is the choice of 

the appropriate evaluation function that reflects the case selection.
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2.3.8 CHEF

2.3 Prototypical CBR Systems

CHEF [Hammond 1988] is a case-based planner that builds new recipes out of its memory of old 

recipes. CHEF’s input is a set of goals for different tastes, textures, ingredients and types of dishes 

and its output is a plan, a single recipe, that satisfies all of the users goals. Much of CHEF’s plan­

ning power lies in its ability to predict and avoid failures it has encountered before. The following 

are the basic stages of a case-based planner such as CHEF. Problem anticipation is the stage in 

which the planner, by noticing features in the input case that have previously contributed in past 

planning problems, anticipates planning problems in the current case. During the stage of plan 

retrieval the most similar case with the input case is retrieved from memory. Plan modification is 

the stage where the plans of the retrieved case are adapted to satisfy the goals of the new case. 

Plan repair is the stage where in case of a plan failure the planner finds different strategies for 

repair by building a causal explanation of the failure. During the stage of credit assignment the 

planner uses a causal explanation of why a failure occurred in order to identify the features of the 

input case that led to the failure, and mark them as predictive features. At the final stage of plan 

storage plans are placed in the case memory, indexed by the goals that they satisfy and the prob­

lems that they avoid.
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Chapter 3

Formal Specifications



3.1 Rationale

In order to obtain a precise picture o f  the memory organization and various phases of the reasoning 

paradigm presented in this thesis we have developed a formal specification of the memory organi­

zation and various phases of this reasoning paradigm.

3.2 Models

The methodology presented in this thesis requires the availability and use of the following models: 

a functional dependency model, a physical dependency model, a causality model, and a manifesta­

tion model.

Let K , U, E, Y  be finite sets of abstract symbols where E c  U and Y  c  U. We give the following 

interpretation to these sets.

• K  as the set of components that comprise a physical system.

• U  as a set of phenomena, events, occurrences, or symptoms that can occur during the 

operation of a physical system.

• £  as a set of various events

• Y  as a the set of symptoms
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Components of a physical system may operate in two states: normal, and abnormal. Intuitively, a 

component k  is said to be in an abnormal state if the operational behavior of the component devi­

ates from the expected one. [We do not describe how component states are classified as normal or 

abnormal. We merely require that they be labelled one or the other.]

Definition 3.1: A dependency model (d-model) D is a relation on K, that is, K).

Given a d-model D on K  and components k\, k2 g K, we say k2 depends on or is dependent on k\ if 

(Jfcj, k2) g D. [Note the reversal of indices.]

We view a d-model as a directed graph with nodes connected by arrows. Each node is a member of 

K  and each edge represents a dependency (physical or functional) between the members of K. Intu­

itively a component k2 is physically dependent on component fcj if damage to k\ can propagate 

through space to k2. A component k2 is functionally dependent on component k\ if the operation of 

k2 depends on the operation of k\. [We do not describe how dependencies are classified as physical 

or functional. We merely require that they be labelled one or the other.]

Given a dependency, if the damage propagates instantaneously then the dependency is called an 

immediate dependence. If the damage requires an arbitrarily long time period to propagate, then 

the dependency is called a non-immediate dependence. [Again, we do not describe how dependen­

cies are classified as immediate or non-immediate. We merely require that they be labelled one or 

the other.]

Definition 3.2: A functional dependency model F  is a d-model containing only functional depen­

dencies.
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F  can be partitioned into two subsets F; and Fn i.e. F  = F (- u  Fn and F,- D F n = 0 .  F; and Fn repre­

sent functional dependencies that are immediate and non-immediate respectively.

Definition 3.3: A physical dependency model P is a d-model containing only physical dependen­

cies.

P can be partitioned into two subsets P; and P„ i.e. P  = Pj u  Pn and P-t D P n = 0 .  Pi and Pn repre­

sent physical dependencies that are immediate and non-immediate respectively.

Figure 3.1 shows the classification of dependency models:

dependencies

functionalphysical

non-immediatenon-immediate immediateimmediate

Figure 3.1: Gassification of dependencies

Definition 3.4: A causal model Z  is a relation on E, that is, Z g ( £ x £ ) ,

Given a causal model Z and events et , e2 e E, we say that e\ causes e2 if (ej, ef) eZ,

Definition 3 5 : A manifestation model 0  is a relation from K  to U, that is, ( KxU) .

Given a manifestation model <h, a component k <=K, and a phenomenon, event, occurrence, or 

symptom u <= U, we say that the component k has been observed to manifest itself as u if (k, u) e  O.
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This thesis presents a hybrid methodology for reasoning about physical systems in operation. This 

methodology is based on retrieval and adaptation o f previously experienced problems similar to 

the problem at hand. In this methodology the ability of the reasoner to reason about a physical sys­

tem is significantly enhanced by the addition and utilization of the four models defined in this sec­

tion. Section 3.3 presents a formalization of the Case-Based Reasoning paradigm and Section 3.4 

shows how the models are utilized in Case-Based Diagnosis.

3.3 Case-Based Diagnosis

The structures used by the majority o f CBR researchers are Memory Oiganization Packets (MOPs) 

as defined in [Schank 1982]. MOPs are frame-like structures that consist of attribute/value tuples 

called slots. The value o f a particular slot may be another MOP, etc. With MOPs the memory is 

partitioned in a hierarchical way so that MOPs are abstractions or specializations of other MOPs.

Definition 3.6: A case memory CM is a system (M, R, A, £2, ?, a ,  jLroot) satisfying:

• M  is a finite set of memory organi2ation packets (MOPs),

where K , U , E , Y ^ M

• R is a finite set o f  slot roles, satisfying M  n i !  = 0 ,

• A is a transitive, reflexive, antisymmetric relation on M, that is, A c  (M x  M). Further­

more, A must satisfy the abstraction constraint for certain of the MOPs in M. [See 

Definition 3.12.J

• £2, the null element, is an element where Q & M

• ?, the unsolved clement, is an element where ? <tM

• c  is a function o: M  -»  2<ff x M ' >, where M ' = M  u  {£2 , ?}, that satisfies the con-
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straint: V p e  Af, if (p, p j), (p, \1q) e  o(p), then p! = p2.

• p ^ , € M  satisfies: V p  e  Af, (p, p riW, ) e  A.

Note A is a partial order on M, and the partially ordered set (Af, A ) has \iroot as its maximal ele­

ment. A is called the abstraction relation, and the interpretation of (v, p) e  A is that p  is more 

abstract than v.

Definition 3.7: Given a case memory CM = (Af, R, A, £2, ?, a , pr00t) we define the function 

a: M  —» 2m

by a(v) = {p [ (v, p) e  A, and if (v, k), (n, p) s  A then v = k  or iz = p}

Given the MOP p  e  Af, we call members of a(p) the abstraction MOPs of p. The elements of a(p) 

are the minimal MOPs among all MOPs that are more abstract than p.

Definition 3.8: Given a case memory CM = (Af, /?, A, £2, ?, o , proof) we define the function 

a: Af -> 2W 

by p e  s(v) » v e  fl(p)

Given the MOP p  e  Af, wc call the members of s(p) the specialization MOPs of p.

If we view a  as a multi-valued function a: Af -»  Af where a(\i) is the set o f values a assigns to p, 

then s can be viewed as the (multi-valued) inverse o f a.

Definition 3.9: Given a case memory CM = (Af, R, A, £2, ?, o , pr0£>/), a slot is an element o f R x  M ’ 

= /? x (Af u  {£2,.?}).
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Given a slot A. = (p, |X), p is called the role of X, and p. is called the filler of X. If X e  a(v), then we

denote p. as v.p. The constraint on o  makes the notation v.p well-defined. If p  = ? then p is.called

a goal. Given v e M .w c  denote the set o f roles associated with v 

{p e  R 13 p  e  Af' so that (p, p) e  o(v)J

as v.R.

Definition 3.10: p  e  Af is a slotless MOP if o(p) = 0 .

Definition 3.11: A MOP p(- is an input case if 

a(p,-) contains at least one goal,

• a(p,) = 0 ,  and

• s(P;) = 0 .

All other MOPs arc called library cases.

For notational convenience, we partition Af into two disjoint sets Af,- and Ma. Mi is the set 

{p e  Af I .r(p) = 0}

of instance MOPs and Ma = M — M,- is the set of abstraction MOPs. Instance MOPs have no fur­

ther specialization MOPs. Abstraction MOPs are the abstractions of other MOPs.

We are now in a position to define the abstraction constraint on A (or, equivalently, on a). There 

are limitations concerning which MOPs may be members of the abstraction set o(p) of an abstrac­

tion MOP p. Abstraction constraints may be specified in various ways. A particularly simple one 

would be to require that every member of n(p) contain the same set p./? = {p e  R I (p,/) e a(p)] of 

slot roles as p, and that the fillers o f corresponding roles be identical. That would be a strict con-
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straint since it requires an exact match. We use a more relaxed abstraction constraint by requiring 

that the fillers of some members of o(p) be abstractions of the corresponding fillers in p.

We found that the abstraction constraint used in CBR system implementations reported by [Schank 

1982; Riesbeck & Schank 1989] works for our purposes.

Definition 3.12: The abstraction constraint specifies that a MOP p can be an abstraction of a MOP 

p ', i.e. (p', p) e  A, if and only if

1. p  is not an instance MOP, and

2. p  is not a slotless MOP, and

3. V p g  p.R, if p g  p t h e n  p'.p must satisfy p.p.

A f il le r / ' g  M '  is said to satisfy the conditions specified by another f i l le r /g  M ', when one or 

more of the following conditions is true;

• / i s  £1

• / i s  an abstraction o f / ' ,  that is, ( f ' , f )  e  A.

• / i s  an instance MOP and/ '  is £2

• / i s  not s lo tless,/' is not £2,f.R  £ / '. /? ,  and V p e  / .  R, an d /'.p  satisfies/.p.

We define the following operations on a CM:

Insertion of an instance MOP p,- g  Mi into a case memory is the process of determining the set 

fl(Pi). (IFor abstraction MOPs p  g  Ma, a(p) is already specified by the user and the abstraction 

constraint.) The set a(p,-) is determined in the following way:

a(P;) = { p  e Mfl | (p,-, p) g  A in accordance with the abstraction constraint and 

- i  3 p ' 3: p ' g  s(p) and p (- satisfies p ' }
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In other words the MOP p t- becomes a specialization of the most specialized MOPs in the CM 

whose abstraction constraint it satisfies.

Given the set a(p,) o f an input case p.,-, matching is a mapping jt: M  —»2M where the range of rc(p,) 

is a set S  is defined as follows:

5 = { p  e  M | p e  .^(p,*)), P * P ;}

S is called the set o f siblings of p,-, and consists of the MOPs having a parent in common with p,\

The input case is mapped into the member of S  that best matches the input case based on some 

metric. Recall that a metric is a distance measure A satisfying the following four properties:

A(a, p) 5: 0

• A(a, P) = A(P, a)

A(a, a) = 0

• A(a, p) + A(p, y) ^  A(a, y)

Finding a generally suitable definition o f A is one o f the major current research problems in CBR. 

The simplest measure o f dissimilarity between two cases is the number of slots for which they 

have different fillers. It is defined as follows:

P„

A(pr  P2) = £  5 (P j.p , p2.p)
P =  Pi

where ( pj, p* .... p„ } G Pi R and

8(p j.p , p 2.p ) =
if p r  p = p2.p  then 0 

otherwise 1
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3.4 Use of Models in Case Based Diagnosis

Diagnosis is the process of replacing the filler ? of unsolved slots by an appropriate member of M, 

in particular replacing the ? fillers o f the slots fault and causal explanation (abbreviated ce). This 

replacement is taking place during the adaptation phase. The filler of fault in some library case p.,

i.e. p.fault, is a MOP, whereas p.ce is a MOP designating a set of tuples X c ( £ x £ )  such that for 

every (elt e-j) e  X e\ causes e2 .

The utilization of models in case-based diagnosis takes place in the adaptation phase. It is done as 

follows:

Let be an input case

«(P») = M- 

d=  A (p ,,p )

■d £  0, is some threshold value

p.ce is the causal explanation of p

p,-.ce is the causal explanation of p,% Initially p;.ce = ?

Step 1:

p,-.ce := p.ce

p.faull„ i f r f> f t  
p..fault := d

1 p.fault i f d c f l

where p.faulta is non-detcrminislically chosen member of a(p. fault)
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Step 2:

Case 1: { p,- and p  have identical symptoms }

If, every (p, f,) e a  (p) where p e  f, the set of symptoms

pf.p = p.p

then; { i.e. adopt p.ce unchanged }

Case 2: { p; has symptoms that do not appear in p  }

If there is at least one (p, f;) e  c  (p,-) 

where p e  Y,

Pj.p 'normal’ 

and p.p = ‘normal’ 

then P/.ce := p.ce

Subcase 1:

if (e, p) e  Z, then pf.ce := u  p,-.ce (e, p)

Subcase 2:

if Cki. k2) e  F,

(k2, p) g <t>,

(kj, e) g  <I>,

and p/.e ^  ‘normal’

then p,-.ce := p,-.ce u  (e, p)
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Case 3: { has symptoms that do not appear in p (- }

If there is at least one (p, 1) e  a  (p.) 

where p g  Y, 

pj-.p = ‘normal’, 

p.p *  ‘normal’,

and (<t>, p) e  <I>, { <I> is the manifestation m odel) 

then,

Subcase 1:

if  (k; , k2) e  F„,

(k7,<t>)e<h, 
and (k2, p) e  O,

then for every (4», p) g  p,-.ce := p,-.ce - (<j>, p)

Subcase 2:

if (k/t k2) g  Fj,

( k l t  <|>) g  <h, 

and (k2, p) g

then p is rejected as the most similar case for p,-.

In practice we retrieve the next closest (in terms of A) case from the set S.
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A Prototype



4.1 Introduction

The described research in this thesis integrates case-based and model-based reasoning techniques 

for dealing with physical system faults. In order to demonstrate the challenges and benefits of such 

work a prototypical system called Epaion has been designed and implemented in the aircraft 

domain.

Epaion contains a self-organizing memory structured as a frame-based abstraction hierarchy, as 

defined by [Schank 1982], for storing previously encountered problems. Currently each case has 

been represented in a memory organization packet (MOP) as implemented in [Riesbeck and 

Schank 1989].

Each case represents an actual aircraft accident report and consists of a set of features that identify 

the particular accident, a set o f observable symptoms, and a causal explanation that describes the 

relationship between various system states and observable features. The set o f identifying features 

includes information such as aircraft type, airline, flight number, date of the accident, etc. The set 

o f symptoms includes infonnation about abnormal observations from mechanical sensors such as 

the value o f the exhaust gas temperature, the value of engine pressure ratio, or from "human sen­

sors,” such as the sound of an explosion or the smell of smoke in the passenger cabin.

In contrast to other CBR rescarcli efforts, each case in our methodology consists not only o f a set 

o f previously observed symptoms, but also represents sequences of events over certain time inter­
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vals. The time intervals are of unknown and uneven length; it is their ordering that it is o f impor­

tance. Such temporal information is necessary when reasoning about operating physical systems, 

since the set of symptoms observed at a particular time may represent improvement or deteriora­

tion from a previous reading, or may reveal valuable fault propagation information. In a je t engine, 

for example, the fact that die fan rotational speed was observed to be abnormal prior to an abnor­

mal observation o f the compressor rotational speed is indicative that the faulty component is the 

fan and that the fault propagated to the compressor, rather than the reverse.

In addition, the system incorporates a model, called the world knowledge model, that represents 

the reasoner’s knowledge of causal relationships between states and observable symptoms, as well 

as deep domain knowledge such as functional connections among the components of the physical 

system about which the reasoncr must reason.

4.2 The domain

Epaion is being designed and implemented in the aircraft domain. Several aspects of the aircraft 

domain make automation of in-flight diagnosis challenging. In contrast with non-operative diag­

nosis (i.e., diagnosis of systems that can be shut down), symptoms in aircraft subsystems may 

change with time because of failure propagation. Information about the operational status of many 

aircraft components may be unavailable or incomplete due to limited instrumentation, and safety 

and comfort considerations place further constraints on in-flight testing.

Automation of in-flight fault diagnosis and prognosis can be used as an aid to the flight crew for 

early detection o f a problem or failure. This provides the crew with more time to respond more 

effectively and reduce potential damage due to the failure.
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The aircraft model used in this research is the same one used by [Abbott 1990] in her work on fault 

diagnosis. It is a simplified model of the propulsion system of a two-engine civil transport. This 

system consists of two turbofan engines and a fuel subsystem. A total of nine components are 

included. Four of them arc sensors.

A turbofan engine was chosen since it is commonly used on civil transport aircraft. [Abbott 1990] 

describes the function of the engine as follows: The air enters the fan, a low-pressure compressor. 

The fan compresses the air, which flows to the high-pressure compressor. There the air is com­

pressed further. It passes to the combustion section, which sprays fuel to mix with the highly com­

pressed air, and ignites tlicm. Ignition increases the velocity and temperature of the air, turning the 

turbines as the air flows to the exhaust section. The turbine section is divided into two stages. 

These two stages are connected to the fan and compressor with concentric shafts. The first turbine 

stage drives the compressor and the second stage drives the fan.

The engine has five sensors whose reading provide the following parameter values: N l, N2, Fuel 

flow (FF), exhaust gas temperature (EGT), and engine pressure ratio (EPR). The N l and N2 sen­

sors measure the rotational speeds o f the fan and high-pressure compressor, respectively. The fan 

and compressor generally rotate at different speeds because they are connected to different turbine 

stages. Fuel flow measures the rate at which the fuel is entering the engine. EGT is the exhaust gas 

temperature. EPR is a ratio of the air pressure at the engine inlet Figure 4.1 shows the schematic 

o f a turbo-fan je t engine.
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Figure 4.1: Schematic of a turbofan jet engine

4.3 Knowledge Sources

Epaion draws its power from several knowledge sources, including a library o f aircraft accident/ 

incidents; a functional dependency model with deep domain information about the functional 

dependencies between the components of the aircraft; and a model representing causal informa­

tion concerning transitions between various states of the aircraft.

4.3.1 Case Library

Epaion maintains a library of actual aircraft accident/incident scenarios called cases. Each case 

consists of a set of features that identify the particular scenario, a list o f the relevant context vari­

ables and their particular status, a set of observable symptoms, the fault, and a causal explanation 

that connects the observable symptoms to a justifying cause. The set of identifying features 

includes information such as aircraft type, airline, flight number, date o f the accident, and similar 

data. The list o f context variables includes information such as the phase of flight, the weather, etc. 

The set of symptoms includes information about abnormal observations from mechanical sensors
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such as the value of the exhaust gas temperature, the value of engine pressure ratio, or from 

“human sensors,” such as the sound of an explosion, or the smell of smoke in the passenger cabin. 

Cases containing all o f tills information are called library cases, whereas cases where the fault and 

the causal explanation arc not available are called input cases.

In contrast to most other CBR research efforts, each case in our methodology consists not only of 

a set o f previously observed symptoms, but also represents sequences o f events over certain time 

intervals. The time intervals may have unknown and unequal lengths; it is the event ordering that it 

is of importance. Such temporal information is necessary when reasoning about operating physical 

systems, since the set o f symptoms observed at a particular time may represent improvement or 

deterioration from a previous reading, or may reveal valuable fault propagation information. In a 

jet engine, for example, the fact that the fan rotational speed was observed to be abnormal prior to 

an abnormal observation of the compressor rotational speed is indicative that the faulty component 

is the fan and that the fault propagated to the compressor, rather than the reverse.

The following is an example of an actual case:

Identification Features:

Id: NTSB-AAR-76-19 

Date: November 12,1975 

Airline: Overseas National Airways 

Flight: Flight 32 

Aircraft: DC-10-30
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Context Variables

Phase of Flight: Take off

4 3  Knowledge Sources

Symptoms

Fuel Flow: Initially normal, then fluctuating, then low 

N l: Started fluctuating, then became high, then low 

N2: Initially normal, then fluctuating, then low 

EGT: Initially normal, then became high 

EPR: Initially normal, then became high, then low

Fault

Bird ingestion

Causal Explanation

Bird ingestion caused fan blade damage,

which in return caused fan rotor imbalance,

which in return caused abnormal rotational speed of the fan.

Also the fan rotor imbalance caused abnormal rotational speed of the compressor.

The abnormal rotational speed of the compressor caused abnormal fuel flow, 

it also cause abnormal exhaust gas temperature.

The abnormal fuel flow caused abnormal exhaust pressure ratio.

4.3.2 Causality Model

Epaion’s causality model contains information such as ‘’fan-bladc separation causes the rotational 

speed o f the fan to fluctuate” and ‘’the rotational speed of the fan causes the engine pressure ratio
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to fluctuate.” Along with the causal information between two states, e.g. ‘’inefficient air flow” and 

‘ 'slowing down o f the engine” , the model maintains a frequency count of the number of times that 

the system witnessed that inefficient air flow caused the engine to slow down.

Our research alleviates the knowledge acquisition problem to which current model-based systems 

are subject by letting each case of the CBR reasoning mechanism contribute its causal explana­

tion, gained from adapting previous incidents, to the formation and maintenance of the causality 

model. This model can therefore be considered as a general depository of knowledge accumulated 

through time. In return the model aids the matching and adaptation processes of the CBR reason­

ing mechanism and enables Epaion to make prognoses that are beyond the knowledge of each 

individual library case.

4.3.3 Functional Dependency Model

The functional dependency submodel is a digraph model of an aircraft system, with nodes repre­

senting primitive components, and arrows connecting (linking) nodes representing functional 

dependencies. Component B is said to be functionally dependent on component A if the proper 

functioning of B depends on the proper functioning of A. For example, the control surfaces of an 

aircraft are functionally dependent on the hydraulic system, since they will cease operating if the 

latter fails. The functional dependency submodel contains two kind o f arrows, representing imme­

diate and non-immediate links between components. Two components Cj and C2  are connected 

via an immediate link (I-link) when abnormal function of C | at time t( results in abnormal func­

tion of C2  at time t2  and tj= I2 . If t2  ^  tj then Cj is connected to C2  via an non-immediate link (N- 

link). For example, the engine driven pump (EDP) bypass valve is connected via an N-link to the 

EDP filter, but the EDP filter is connected to EDP bypass valve via an I-link.
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In order to efficiently represent the Functional and Physical Dependency Models a modeling tool 

named L1MAP was developed. This tool is oriented toward efficient information representation/ 

manipulation over fixed finite domains, and quantification over paths and predicates. The initial 

motivation for the creation of such a system was the fact that the need for such operations arose 

frequently in the domain of diagnosis/prognosis generation problem domain. Since then it has 

become apparent that the facilities provided are applicable to problems both within and outside of 

AI. The motivation about LIMAP, its implementation, and its capabilities are presented in appen­

dix A.

Using LIMAP the functional dependencies are represented in a symbolic matrix. Figure 4.2 shows 

the functional dependency graph for the engine depicted in figure 4.1. Figure 4.3 depicts the adja-

EPR

EGT

N l

N2

Fan

Combustor

Compressor

Aft-Turbine

Figure 4.2: Functional dependency graph of an engine
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cency matrix representing the je t engine functional dependency predicate Engine(x,y) o f Figure 

4.2 over the domain Comps=(fan, compressor, combustor, fwd-turbine, aft-turbine, Nl-sensor, 

N2-sensor, EGT-sensor, EPR-sensor). A value of 1 in location i j  represents the fact that compo­

nent i is connected to component j.

COMPONENT (0) (1) (2) (3) (4) (5) (6) (7) (8)

Fan (0) 1 1 1 . . .

Compressor (1) 1 1 1

Combustor (2) . 1 ........................................................................................

Fwd-turbine (3) 1 1

Aft-turbine (4) 1 1 1

Nl Sensor (5) . •

N2 Sensor (6) . .

EGT Sensor (7) . 4

EPR Sensor (8) 4 * * • • 4 » »

Figure 4.3: Adjacency matrix for je t engine depicted in figure 4.1

4.3.4 Physical Dependency Model

The physical dependency model is a digraph of an aircraft system, similar to the functional depen­

dencies digraph, in which the links in the graph represent potential paths o f fault propagation due 

to physical proximity. This sort o f propagation occurs when uncontrolled dischaiges of energy 

attendant on component malfunctions propagate to neighboring systems. The severing o f nearby 

hydraulic lines by blade fragments from a disintegrating turbine provides a typical example. As 

with the Functional Dependency Model, this model is also implemented using LIMAP.
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4,3.5 The Abstraction Hierarchy

4 3  Knowledge Sources

The case-based reasoning component of Epaion consists o f a self-organizing memory structured 

as a frame-based abstraction hierarchy, as defined by [Schank 1982]. This memory forms an upper 

bounded semi-lattice that contains domain specific information at dilferent levels o f abstraction. 

The information contained in the lattice includes:

a. The names of all the components in an aircraft engine.

b. The components that are sensors. The exhaust gas temperature, the rotational speed of the 

fan, and the fuel How indicator are some of the mechanical sensors in an aircraft’s engine. 

Vision, sight, and smell are the "human sensors" used in the diagnostic process.

c. The possible values for each sensor. For a mechanical sensor the allowable values are: 

lower than expected; normal; higher than expected. If a sensor initially indicates values 

that are normal, then at the following time interval indicates values that are lower than 

expected, and at the third time interval still indicates values which are lower than 

expected, then the status of the sensor during these three time intervals is normal, lower, 

lower which is a kind of (i.e., a subcategoiy of) overall lower than expected status which 

in turn is a kind of abnormal status.

d. The various faults that may be observed in an engine subsystem. For example it is repre­

sented that seagull ingestion is a kind of bird ingestion fault which is a kind of foreign 

object ingestion fault and so on.

e. Information on how faults manifest themselves. For example, the fan vibration and abnor-
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mality in the rotational speed of the fan are manifestations o f a problem in the fan.

f. The accident/incidents that the system already knows. For example the system knows that 

the incident of a China Airlines Boeing 747 that suffered a mishap over the Pacific Ocean 

on February 19,1985 [NTSB-AAR-86-03] is an instance o f an accident/incident since it is 

a kind of rotor related scenario which is a kind of engine related scenario which is a kind 

of accidcnt/incidcnt scenario.

4.4 Reasoning Cycle

Epaion's reasoning cycle consists of the following three phases: input a new problem; retrieve the 

most similar case; adapt the retrieved case to fit the current scenario.

4.4.6 Case Matching and Retrieval Process

When the system experiences a new set o f symptoms, i.e., when faced with an input (new) case, it 

searches its case library for the most similar case. This is done by placing the input case in self­

organizing MOP memory under the most appropriate parents, determined as described in Chapter

2. The siblings may therefore be assumed to be closely related. The nearest sibling is retrieved as 

the case that is most on-point with respect to the input case.

A weighted count of corresponding symptoms between the input case and its siblings in the case 

library is used as a metric of similarity between the input case and each sibling. Based on the 

observation that in most cases similar faults manifest themselves in similar ways only during the
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first moments o f the fault occurrence [1], the system takes advantage of the available temporal 

information in each case, and gives higher degree of similarity to symptoms that manifest itself in 

similar ways during the first moments of the fault occurrence. For example, if in the input case the 

rotational speed o f the fan was initially abnormally high, then normal, and at the end was abnor­

mally low, then a library case where the rotational speed of the fan was initially abnormally high 

and continued to be high through out the entire scenario will get a higher degree o f similarity com­

paring to another library case where rotational speed of the fan was initially abnormally low and 

continued to be low through out the entire scenario.

In addition to the set of symptoms, Epaion takes into consideration the context variables of each 

case. For example, if the input case represents a scenario where an aircraft was flying at a high alti­

tude then this is taken into consideration to give smaller degrees of similarity to library cases 

where the cause of the fault was bird ingestion. This is in accordance with the fact that birds do not 

fly at high altitude.

4.4.7 The Case Adaptation Process

When the system finds and retrieves a similar case, Epaion assumes that the current fault is the 

same as the fault in the retrieved case and adapts the causal explanation of the retrieved case to fit 

the current case. Then both the fault and the causal explanation are stored in the case library for 

future usage. The system is provided with a set of adaptation rules which, in addition to adapting 

the retrieved causal explanation to fit the current case, find possible gaps in the causal explanation 

and fill in the missing causalities by using the model. This causal explanation connects the symp­

toms to a justifying cause, and thus the system’s causal reasoning ability produces a causal analy­

sis o f the new case, rather than simply a reference to a previous solution. The new causal analysis 

is not only stored in the case library as part of the input case, but is used to augment and modify
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the causality knowledge of the world model. The causal analysis consists of a sequence of pairs of 

the type "event A causes event B '\  "event B causes event C” and so on. Each of these pairs is 

stored in the database of the causal submodel. In the case that the model already knows about the 

causal relation between two events from a previously encountered case, the system updates the 

frequency count between the two events. The world model is therefore created based on the previ­

ous behavior of the physical system, and is constantly updated based on the current behavior, 

either by augmenting its previous causal knowledge or "becoming more sure” about causal rela­

tions.

Epaion’s adaptation algorithm is summarized in the following two steps:

The first step involves the transfer of the fault from the library case in the input case and consists 

o f two possibilities.

Case 1: If the match between the input case and the library case exceeds a threshold value then the 

fault is transferred intact, thus if in the library case the fault was a malfunctioning fuel controller 

then it is assumed to be the same in the input case.

Case 2: If the match is below the threshold value then an abstraction of the library case fault is 

transferred to the input case. For example, if in the library case the fault was bird ingestion, then it 

is assumed that in the input case the fault is foreign object ingestion.

The second step involves the adaptation of the causal explanation of the library case so it can 

explain every, or as many as possible, of the symptoms of the input scenario by connecting them to 

a justifying cause. This consists of the following possibilities:
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Case 1: If the library case and the input case have identical symptoms then the causal explanation 

of the library case is transferred intact to the input case.

Case 2: If the input case contains symptoms that do not appear in the library case then the causal 

explanation of the library case is transferred in the input case and the following additional process­

ing takes place. Let <J>2 be an unexplained input case symptom.

Subcase 1: If the causal submodel contains the relation <J>j causes $2 . and <J>j is a symptom or 

manifestation in the input case, then the link <)>] causes $ 2  is added in the causal explanation of 

the input case.

Subcase 2: The causal portion of the model does not contain the relation causes <J)2i but the 

functional dependency submodel knows that component C2 is functionally dependent on com­

ponent C l, and 4>i is a manifestation of abnormal behavior of component C l, and similarly 

is a manifestation of C2. This knowledge is depicted by the graph

to *2
i i  j i

D
 ►

Ci C2

Figure 4.4: A causal scenario

where <j) denotes a phenomenon that is a symptom or manifestation (p) o f abnormal behavior of a 

component. Additionally, if 4>i is a symptom in the input case and time((j>i) < time((t>2), i.e., Symp­
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tom fj appeared before 4*2 then the link <j>i causes <J>2 is added in the causal explanation of the input 

case.

Case 3: If the library case has symptoms that do not appear in the input case then the causal expla­

nation of the library case is transferred in the input case and the following additional processing 

takes place. Let (J>2 be sucli a symptom in the library case. Then the causal explanation of the 

library case will contain the relation <J>i causes 4>2 -

Figure 4.5: Relation <j)j causes <|>2

Subcase 1: Suppose that this configuration occurs in the functional portion of the model.

4>1

Figure 4.6: A causal scenario

Then this library case is rejected as explanation of the input case since if  C l were in fact abnormal 

in the input case, then the immediate link between C l and C2 indicates that this malfunction must
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propagate immediately to C2, and therefore a manifestation of C2’s abnormality would be present. 

But the input case shows no such manifestation, so C l is normal.

Subcase 2: Suppose that this configuration occurs in the functional portion of the model.

* 1  * 2
a  A

D
 ►

ci C2

Figure 4.7: A causal scenario

where 4>2's the unmatched library case symptom and D is a non immediate link between compo­

nent C l and C2. Then the library symptom $ 2  is ignored, since it is possible that <t>2 will occur later 

in the library case. Therefore every relation of the form X causes is discarded from the trans­

ferred causal explanation.

At this point Epaion has used knowledge of how faults manifest themselves, knowledge of causal 

links between fault manifestations, and knowledge about links between components to explain as 

many of the symptoms that are present in the input case. Any additional symptoms will remain 

unexplained.
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Chapter 5

Evaluation



5.1 Introduction

The diagnostic methodology presented in this thesis was evaluated by means of an analytical anal­

ysis of the methodology and by an empirical analysis of the prototype developed to support the 

merit of the methodology. In the analytical evaluation we describe the characteristics from which 

the methodology draws its power, and discuss the consequences of incompleteness or elimination 

of the four knowledge sources that are involved in this methodology. The empirical analysis eval­

uates the prototype that was build in order to support the merit of the methodology. This evalua­

tion was done by running Epaion on actual accident cases and comparing the results with the 

conclusions of the official investigations on these accidents.

Before the evaluations we present two examples in order to demonstrate how Epaion works. The 

first example involves two realistic scenarios. EPAION was given the symptoms observed on Jan­

uary 8,1989 by the flight crew of British Midland Airways and retrieved as the most on-point case 

scenario the Overseas National Airways flight 32 crash that occurred on November 12, 1975. For 

the second example Epaion was given a complex hypothetical scenario. This example demon­

strates Epaion using all o f its knowledge sources, the library case, the functional dependency sub­

model, the causality submodel, and its abstraction hierarchy in order to connect all o f the observed 

symptoms in the hypothetical scenario to a justifying cause.
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5.2 Examples

The ideas presented in this thesis are demonstrated by the following examples.

5.2.1 First Scenario

EPAION is given the symptoms observed on January 8,1989 by the flight crew o f British Midland 

Airways. The senario is summaried as follows:

The plane, a Boeing 737-400, was climbing out east of East Midlands Airport and the crew 

operated at a high workload. On this flight, the crew experienced severe vibration and smoke 

in the cockpit. The vibration monitor on the left engine .was at the high value, while the rota­

tional speed of the fan (N l) was fluctuating. Subsequently, the exhaust gas temperature 

(EGT), N l, and rotational speed of the compressor (N2) reached high levels. The fuel flow 

was low. The vibration continued to be severe and the fuel flow low, but N l and N2 dimin­

ished to low levels.

Epaion's first task is to use the features of the current situation for finding the most similar sce­

nario from its case library. In this example the retrieved scenario is the Overseas National Airways 

flight 32 crash that occurred on November 12,1975. The scenario is summarized as follows:

The plane, a DC-10-30, was taking off from John F. Kennedy International Airport, in New 

York. The crew observed that the rotational speed of the fan (N l) was fluctuating, along with 

the rotational speed of the compressor (N2) and exhaust pressure ratio (EPR). Later on Nl and 

N2 were increasing to high while the exhaust gas temperature (EGT) and the EPR were
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increasing to high also. The Fuel-Flow began fluctuating. Finally N l, N2, and Fuel-Flow 

started decreasing and reached low levels. The EGT continued to increase.

The Overseas National Airways crash was retrieved as the most-on-point case for the British Mid­

land Airways scenario because of high degree of similarity in the behavior of the fuel flow, the 

rotational speed of the fan, the rotational speed of compressor and the exhaust gas temperature. 

The behavior of the exhaust pressure ratio (EPR) was not taken into consideration since the 

engines on the Midland aircraft were General Electric CFM56s, which have no EPR sensor. Other 

cases in the library that demonstrated similarities in features such as the type of the airplane, the 

type o f the engines, the airline, the phase of the flight, the altitude, etc., were not retrieved since 

similarity in these features is considered less significant.

Following the retrieval, EPAION assumes that the cause o f the symptoms in the current situation 

is the same as the one in the retrieved case. In the Overseas National crash the cause was fan blade 

damage and the system tries to explain as many as possible o f the Midland symptoms based on 

that cause. This is done by adapting the causal explanation of the Overseas National case to fit the 

current situation.

In the Overseas National case a large number of sea gulls were ingested into the engine causing 

the engine to disintegrate. The disintegration resulted in abnormalities in the rotational speed of 

the fan (N l) and the rotational speed of the compressor (N2). Abnormality in N2 caused the abnor­

mal behavior of fuel flow and the high levels of EGT. In turn the fuel flow abnormality caused die 

EPR abnormality. This chain of events explains the behavior of N l, N2, EGT and fuel flow in the 

Midland scenario but does not explain the fan vibration experienced by the Midland flight crew.
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In order to explain the fan vibration EPAION utilizes its models. The causal model informs the 

system that based on previous cases the system has learned that the leading (most often observed) 

cause of fan vibration is fan blade damage. Based on that knowledge the system explains Mid­

lands fan vibration as a result of the fan blade damage. Since all of the Midland symptoms have 

been explained, EPAION creates the causal explanation for Midland by connecting each symptom 

to its cause. This causal explanation is associated with the Midland accident scenario and is stored 

in the case library.

5.2.2 Second Scenario

We assume that EPAION is given the following data:

The plane is climbing out, with the crew operating at moderate workload. The engine com­

manded status is at climb power. The weather is icing. The crew observes a small thrust short­

fall and vibration in the compressor and fan rotors. The compressor rotor speed (N2) shows a 

5% shortfall. The exhaust gas temperature (EGT) and fuel flow are slightly lower than 

expected.

Oi Epaion’s first task is to use the features of the current situation for finding the most similar sce­

nario from its case library. In this example, the selection process results in retrieval of the follow­

ing case:

The plane was climbing out, with the crew operating at a moderate workload. The engine 

commanded status was at climb power. The meteorological conditions were icing. Fan blade 

damage, caused by ice ingestion, produced an abrupt change of vibration in the fan rotor and 

abnormality in the rotational speed of the fan (Nl).
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Following the retrieval, EPAION assumes that the cause of the symptoms in the current situation 

is the same as the one in the retrieved case. In this example the cause is ice ingestion and the sys­

tem tries to explain all or most of the current symptoms based on that cause. This is done by adapt­

ing the causal explanation of the retrieved case to fit the current situation.

In the retrieved case ice ingestion caused imbalance o f the fan rotor, which in turn caused the fan 

to vibrate and rotate at abnormal speed. This chain of events explains the fan vibration in the cur­

rent situation, but docs not explain the abnormalities in the speed o f the compressor rotor, the 

EGT, the fuel flow and the compressor vibration.

In order to give explanations for these symptoms EPAION utilizes its models. The causal model 

informs the system that based on previous cases the system has learned that the leading cause of 

abnormal speed o f the compressor rotor is abnormal vibration of the fan and the leading cause for 

abnormal EGT and fuel (low is abnormality in the speed of the compressor rotor. In addition, the 

causal submodel informs the system that the leading cause of abnormal thrust output is vibration 

of the compressor. Based on that knowledge the system explains the current abnormality in the 

compressor rotor speed as a result of the abnormal fan vibration and the low levels of EGT and 

fuel flow as a result of the compressor rotor speed shortfall. The thrust shortfall is explained as a 

product o f the compressor vibration.

At this point all of the current symptoms are explained except for the compressor vibration. The 

system from its knowledge contained in the abstraction hierarchy knows that vibration of the com­

pressor is a manifestation of abnormal behavior of the engine’s compressor. The functional model 

knows that the compressor is functionally dependent on the fan and therefore tries to find if any of
i

the manifestations of abnormal fan operation are being experienced by the crew. Fan vibration is 

one of the current symptoms and is a manifestation o f abnormal fan operation, therefore the sys­

tem explains the compressor vibration as a product o f the fan vibration. The set of symptoms of
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the retrieved scenario contains an abnormality in the rotational speed of the fan. This is not experi­

enced during the current situation, therefore no further explanations are needed.

As soon as all symptoms are explained, EPAION creates the causal explanation of the current case 

by connecting each symptom to its cause. This causal explanation is associated with the current 

situation, and is also stored in the case library for future reference. Figure 1 displays the chain of 

causal events in tire retrieved and die current case.

CURRENT SITUATION RETRIEVED CASE

FOREIGN OB JECT INGESTION ICE INGESTION

FAN ROTOR IMBALANCE FAN ROTOR IMBALANCE

Abnormal 
Fuel Flow Fan Blade Damage Fan Blade Damage

Fan Vibration Abnormal
N lFan Vibration

Abnormal
EGT

Compressor Vibration

Abnormal Thrust

^  Links due to the transfer from the retrieved case
I,,,,. Links due to the causal model

Links due to the dependency models

Figure 5.1: Causal explanations of retrieved and current case
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5.3 Analytical Evaluation of the Methodology

The analytical analysis of the diagnostic methodology presented in this thesis involves a descrip­

tion of the characteristics from which the methodology draws its power, and a discussion of the 

consequences of incompleteness or elimination of the necessary knowledge that this methodology 

requires. This analysis is domain independent and applies to any rcasoner that will attempt to rea­

son about physical systems within the framework of the diagnostic methodology presented in this 

thesis.

Epaion’s diagnostic methodology draws its power from the following four knowledge sources: the 

library case, the functional dependency submodel, the causality submodel, and the abstraction 

hierarchy. In tills section we describe the important characteristics o f each knowledge source, 

together with the consequences of not possessing these characteristics.

5.3.1 The Case Libraiy

The methodology presented in this thesis requires that the reasoner maintain a library of previ­

ously solved problems. Each problem is a description of a physical system malfunction and the 

manifestation of the malfunction. For example, Epaion’s case library consists of actual aircraft 

accident/incident scenarios. Information provided in the individual accident/incident reports from 

the National Transportation Board (NTSB), the British Air Accidents Investigation Branch 

(AAIB), and data collected from test accidents staged at Boeing Inc. [Shontz et. at. 1992] was used 

to derive the appropriate information constituting each case.
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Case Description

Each malfunction is described as a set features. Each feature has an associated set o f possible val­

ues. The features are clustered into the following five categories: Identification Features, Context 

Variables, Symptoms, Fault, Causal Explanation. The choice of the features is done by taking in to 

consideration:

a. If a particular feature is unique in the sense that the value of that feature identifies one and 

only one case, then this feature should be included as an identification feature.

b. If a particular feature does not have a unique value but the value of the feature may help 

the human operators of the physical system to be reminded o f an actual case that they hap­

pen to have directly or indirectly witnessed, then this feature may be included as an identi­

fication feature. For example, Epaion includes as identification features the features 

airline and date. These features do not have unique values for each case but collectively 

may remind pilots about a particular accident or incident.

c. If the physical system includes a mechanical sensor that monitors the behavior of a partic­

ular component, then each case must include a feature that describes the behavior of the 

sensor.

d. If there are is an event that may be witnessed by the human operators o f the physical sys­

tem, then each case must include a feature that describes the presence or absence of this 

event.
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Whenever one of the above conditions holds, the corresponding feature must be be included in a 

particular case. Exceptions are the fault and causal explanation features that every case must 

include. Each case must include a feature that reveals the fault in the particular case. In addition a 

feature should be included that describes the chain of events that connects each observable symp­

tom to a justifying cause. When the fault and causal explanation features are missing the reason- 

er’s task is to find a value for those two features.

5.3.2 The Functional Dependencies Submodel

The functional dependencies submodel possesses two kinds of constituents: components, and 

interconnections between components.

Interconnections

Functional dependency links represent all the potential paths of normal interaction between com­

ponents in the physical system. When a fault occurs, the effect o f the fault is expected to propagate 

along one of the paths in the functional dependencies model. Whether or not a normal interaction 

occurs along a particular path may depend on specific parameters that are unavailable in the 

model. By representing all potential of normal interaction we can represent even those fault cases 

where the interaction is not anticipated under the current scenario but happens unexpectally 

[Abbott 1990].

Definition and Choice o f Components

A component is a physical part or set of parts o f the particular physical system that the reasoner is 

called to reason about. A component may consist o f other components which in turn may have
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subcomponents, etc. A physical system may have a varying number of components, depending on 

the level of detail at which we view the system. Choosing the appropriate level of detail means 

choosing which components we need to include in the model of the physical system so we can 

have appropriate diagnoses of abnormal behavior. The choice of components is done by taking in 

to consideration [Abbott 90]:

a. Whether a particular component must be identified as faulty when it breaks. If it is impor­

tant to identify when a component fails, say because the manifestation of the failure may 

be apparent to the operators of the physical system, then this component should be 

included in the model.

b. Whether a component can be disambiguated with the available sensors.

c. Whether a particular component is needed in the propagation path to determine the propa­

gation of abnormal behavior. If a particular component is a branching point in the propa­

gation path that enables identification o f the propagation to other components then it must 

be included in the model.

If none of the above factors holds, then a component either should not be included in the func­

tional dependencies submodel, or aggregating it to the next higher level o f detail should be consid­

ered. For example, in Epaion's functional dependencies submodel individual fan blades are not 

included in the model of an aircraft’s engine because it makes no difference if blade 8 or blade 9 

fails. An additional reason the submodel does not include fan blades is that there is no sensor 

information to identify individual fan blades. On the other had, by aggregating the fan blades to 

the next higher level of detail the engine’s fan is included in the submodel.
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When a component fails, the reasoning system will be aware of the manifestation of this failure. If 

one of the above factors holds but the component is not modeled in the functional dependencies 

submodel then the reasoning system will not have the ability to link this manifestation to a justify­

ing cause since it will have no knowledge of functional dependency between the component that is 

not modeled and other components in the submodel.

5.3.3 The Physical Dependencies Submodel

Similarly to the functional dependencies submodel, the physical dependencies submodel possesses 

two characteristics: components, and the interconnections between components.

Interconnections

Physical dependency links represent potential paths of fault propagation that are due to physical 

proximity. This knowledge is contained in a graph representation similar to the representation of 

functional dependencies. The edges of the graph represent the physical proximity links and the 

nodes represent components.

Definition and Choice of Components

Components in this submodel are defined as in the functional dependency submodel and the crite­

ria for choosing which components we need to include in the physical submodel are the same with 

the criteria presented above.
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5.3.4 The Causal Dependencies Submodel

The characteristics of the causal dependencies submodel are: the events, and the relationship 

between the events.

Causal Relationship

A link between two events e t and e2, indicates that one did cause the other (say ej caused e2). The 

causality relationship between ej and e2 implies a temporal constituent: If ej occurred at time tt 

and e2  at time t2 then tt < t2.

Definition and Choice of Events

An event is a qualitative state transition to an abnormal state in the behavior of a physical system. 

Events may be witnessed cither by observing the behavior o f mechanical sensors or by stimulating 

"human sensors" such as sight, smell, and hearing. The choice of the events is done by taking in to 

consideration:

a. If the physical system has a mechanical sensor that monitors the function of a component 

or a process, then an event signaling the abnormal behavior of the function or the process 

must be included in lire set of events.

b. If there is occurrence that may be witnessed by the human operators of the physical sys­

tem, then an event signaling the occurrence must be included in the set of events. Such 

occurrences include the smell of smoke, visibility o f fire, hearing an explosion, etc.
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If one of the above factors holds but an event is not included in the list of events, then the reasoner 

loses its power of justifying the observable symptoms in a new situation precisely and in detail. 

Additionally, when the new situation is stored in the case library it becomes a "weak” most-on- 

point case for a potentially similar future input case.

5.3.5 The Abstraction Hierarchy

The information contained in the abstraction hierarchy must include:

a. The names of all the components in the physical system

b. The components dial are sensors.

c. The possible values for each sensor.

d. The types o f faults that may effect the physical system.

e. Information on how faults manifest.

f. The cases that the reasoner experienced.

All this information should be represented at different levels of abstraction. The levels of abstrac­

tion chosen must be dctennined by examining the domain itself, and what information the human 

operators o f the physical system might use to make decisions.
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The choice o f components and sensors is made based on the criteria followed for the choice of 

components in the dependency models. Experimental observation has proved that the most effec­

tive allowable values for each sensor are qualitative descriptions of the sensor readings. The range 

o f these values is the following enumerated set: normal, lower than expected, higher than 

expected, fluctuating. The types of faults that may effect the physical system along with informa­

tion on how faults manifest is domain dependent and may be elicited from domain experts.

An incomplete abstraction hierarchy may affect the reasoner’s capability to explain the presence 

o f the symptoms experienced in the current situation. The empirical evaluation of Epaion, as it is 

presented in the following section, serves as an example of the effects of incomplete knowledge in 

the reasoner’s abstraction hierarchy.

5.4 Empirical Evaluation of the Prototype

This section describes an empirical evaluation o f the diagnostic concepts implemented in Epaion. 

The evaluation uses actual aircraft accidents and incident cases, which were simulated to assess 

the effectiveness Epaion in diagnosing failures.

5.4.1 Approach

Epaion was developed using a software engineering strategy known as incremental code revision 

o r rapid prototyping. Rapid prototyping requires the incremental development of tire software 

design to be guided by preliminary evaluations o f the software. Our evaluation approach consisted
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of comparing Epaion’s output to the "correct answer” in order to determine how well the program 

has performed.

Information provided in the individual accident/incident reports from the National TYansportation 

Board (NTSB), the British Air Accidents Investigation Branch (AAIB), and data collected from 

test accidents staged at Boeing Inc. [Shontz et. al. 1992] was used to derive the appropriate infor­

mation constituting each case, a process called accident reconstruction. We reconstructed a total of 

eighteen cases, of which twelve were used as library cases, and six as input cases.

Accident reconstruction is not a straightforward process and has its limitations. In the reconstruc­

tion process the symptoms from all accidents had to be identified from the sources that described 

the accidents. Unfortunately numerical sensor data from the engine parameters was not available, 

so the symptoms were used as reported in [Shontz et. al„ 1992], or derived based on the descrip­

tions in the NTSB or AAIB analysis of each accident. NTSB and AAIB reports did not always 

explicitly describe the symptoms in each case; even in those cases where symptoms were men­

tioned explicitly they were usually only those described by the flight crew. The sequence of symp­

toms could therefore not always be determined completely.

In addition a chain o f causalities had to be constructed for each of the accidents used as library 

cases. This chain explains each observed symptom by connecting the symptom to a justifying 

cause. Determining the causal explanation of the symptoms for each case was a difficult task 

because o f a paucity of definitive experts who could provide this information. While pilots, main­

tenance personnel, and aircraft system designers are all knowledgeable about some aspects of air­

craft diagnosis, each has deficiencies in one area or another. The causal explanations used in each 

library case were constructed after interviewing personnel with expertise in the above fields, and 

consulting NTSB and AAIB reports.
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The evaluation process required that each input case be presented to Epaion separately, and that 

the system produce a diagnosis along with a causal explanation. The diagnosis produced by 

Epaion was then compared with the correct diagnosis for the particular scenario. In addition, the 

reasoner was evaluated based on the number o f symptoms for which the reasoner was able to find 

a justification. A "correct diagnosis” is the diagnosis determined by NTSB, AAIB, or by [Shontz 

et. al. 1992]. Epaion is said to have produced a complete explanation if the system was able to 

explain each observed symptom by connecting the symptom to a justifying cause.

5.4.2 Results

In this section the resulting diagnosis for each input case is presented and discussed.

Case 1:

We presented to Epaion the incident of a British Midland Boeing 737-400 (G-OBMG) that took 

place on June 11, 1989 [AAIB-AAR-4/90]. In this incident the aircraft was climbing when the 

crew reported an onset of "thumping” and severe vibration. Reference to engine instruments 

revealed high indicated vibration with low and fluctuating rotational speed of the fan on the N2 

engine. The crew also reported that there was considerable smoke in the aft cabin, and that flames 

and sparks had been seen to come from the right engine. The aircraft landed without further inci­

dent, Examination of the engine after landing showed that the fan had been massively damaged.

Epaion correctly classified the incident as a case involving a rotor damage. Epaion already had in 

its library two other scenarios in this catcgoiy: an incident involving a Dan Air Boeing 737-400 

that took place on June 9,1989 [AAIB-AAR-4/90], and the accident of a British Midland Boeing 

737-400 that took place on January 8,1989 [AAIB-AAR-4/90]. Both library cases achieved a high
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degree of similarity with the current scenario, but the latter case achieved the highest degree of 

similarity, and therefore was retrieved as the most-on-point case for G-OBMG. The fault o f the 

retrieved case was assumed to be the fault in the current case, thus Epaion correctly diagnosed that 

the problem in the current scenario was fan blade damage. The causal explanation of the retrieved 

case was transferred to the current case, and since in both cases the fault manifested itself in a very 

similar way (similar symptoms though time), the transferred causal explanation was able to suc­

cessfully explain every symptom experienced in the G-OBMG.

Case 2:

Epaion was presented with the incident of an American Airlines Boeing 727 (Flight 566) that 

experienced a engine failure in its number one engine just after rotation on take-off from Greater 

Cincinnati Airport, Cincinnati, Ohio [NTSB-78-F-A067]. The captain performed emergency shut­

down procedures on the engine and returned to the airport. The NTSB determined that the engine 

failure was caused by several turbine blade separations.

Epaion correctly classified the incident as a scenario involving a rotor failure. Among four other 

cases under this category it retrieved as the most on-point case the above-mentioned incident of 

June 9, 1989, involving a Dan Air Boeing 747-400. The fault o f the retrieved case was assumed to 

be the fault in the current case, thus Epaion incorrectly diagnosed that the problem with the current 

scenario was fan blade damage instead of turbine blade damage. The transfer o f the causal links 

from the retrieved causal explanation was sufficient to explain all the symptoms in the American 

Airlines case except the abnormal exhaust pressure ratio. After consulting the causal model the 

system produced explanations for all the symptoms.
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Case 3:

The incident o f a China Airlines Boeing 747 (Flight 006) that suffered a mishap over the Pacific 

Ocean on February 19,1985 [NTSB-AAR-86-03] was presented to Epaion. The aircraft was cruis­

ing on autopilot when the crew misdiagnosed a flame-out in the number one engine. In reality 

another engine had a bad fuel controller and suffered a condition known as bleed-air hogging. The 

bad fuel controller caused a flame-out and due to a series of misdiagnoses and inappropriate cor­

rective actions by the crew the aircraft was put into a vertical dive. Finally the captain regained 

control of the aircraft and made a safe landing in San Francisco.

Epaion correctly classified the incident as a scenario involving a fuel subsystem failure. The 

library contained two other scenarios in this category. A Boeing test case involving a bad fuel 

metering unit was retrieved as the most on- point case. Because the degree of similarity between 

the China Airlines scenario and the retrieved case was not very high, Epaion correctly assumed 

that the current fault was an abstraction of the fault in the retrieved case, and determined that the 

fault was in the fuel subsystem. The transfer o f the causal links from the retrieved causal explana­

tion was sufficient to explain all the symptoms in the current scenario except the abnormal behav­

ior o f the Exhaust Pressure Ratio (EPR). By consulting its world model Epaion found that the 

abnormal EPR was due to the abnormality in the fuel flow, thus successfully explaining every 

observed symptom.

Case 4;

In June 1982 the Galunggung Volcano on the island of Java erupted. A Boeing 747 encountered 

the volcanic debris and experienced flame-outs on three engines while the aircraft was at 33,000
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feet. One engine was successfully restarted and an uneventful two-engine landing was accom­

plished [Lloyd 1990],

By relying on observations from “human sensors”, when Epaion was presented with this scenario 

it successfully classified Hie incident as a volcanic ingestion scenario. The systems case library 

contained two scenarios under this category. An incident of volcanic ingestion experienced by a 

Boeing 747-400 near Anchorage, Alaska on December 14,1989 [Lloyd 1990] was retrieved as the 

most on-point case. In both the input and the retrieved case the set of symptoms over time was 

almost identical, and therefore Epaion correctly determined the fault and produced a causal expla­

nation that covered all of the symptoms experienced in the Galunggung incident.

Case 5:

The accident of a Southern Airways DC-9 (Flight 242) that crashed in New Hope, Geoigia on 

April 4, 1977 [NTSB-AAR-78-3] was presented to Epaion. The aircraft had flown through heavy 

thunderstorms and had lost both engines. The NTSB determined that massive water ingestion into 

the engines accompanied by thrust lever movement induced severe stalling in, and major damage 

to, the engine compressor.

Epaion’s case library had no previous case of massive water ingestion. The system classified the 

accident in the category of “miscellaneous scenarios”, and retrieved as the most on-point case the 

accident of an Overseas National Airways DC-10-30 that took place on November 12, 1975 

[NTSB-AAR-76-19]. The fault in the retrieved case was bird ingestion. Because the retrieved case 

did not achieve a high degree o f similarity with the Southern Airways case the system correctly 

assumed that the current fault was an abstraction o f  the fault in the retrieved case. Epaion deter­

mined that the current fault was foreign object ingestion. The transfer of the causal links from the

- 8 8 -



5  Evaluation 5.4 Empirical Evaluation o f  the Prototype

retrieved causal explanation was sufficient to explain completely all the symptoms in the Southern 

Airways case.

Case 6:

The symptoms observed during Boeing’s test flight F5 [Shontz 1992] were presented to Epaion. 

This was a case of heavy damage due to ice ingestion. Epaion correctly classified the case as an 

icing scenario. Under this category the case library had two other scenarios, A scenario of moder­

ate ice ingestion was retrieved as the most on-point case, and based on that scenario the system 

correctly assumed that the fault in the input case was ice-ingestion.

The transfer o f the causal explanation from the retrieved case to the input case was sufficient to 

explain all the symptoms in the input case except for the abnormal behavior of the rotational speed 

of the fan and the presence o f broad-band vibration. Both of these symptoms were absent from the 

retrieved case, since the retrieved case was an instance of moderate ice ingestion, whereas the 

input case was an instance of heavy ice-ingestion. By utilizing the causal dependencies portion of 

its model, Epaion was able to explain that the abnormal behavior of the rotational speed of the fan 

was attributed to the abnormality of the fuel flow. Lack o f relevant knowledge in the systems’ 

causal submodel and abstraction hierarchy made Epaion unable to explain the presence of the 

broad-band vibration.

Table 1 presents a summary o f the results. The first two columns identify each scenario that was 

presented to Epaion as an input case. The following two columns identify the appropriate classifi­

cation of the accident/incident along with the actual fault as determined by either the NTSB, the 

British Air Investigations Branch, or Boeing’s test data. The fifth and sixth columns present the 

classification o f each accident/incident done by Epaion along with the fault assumed by Epaion.
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The last column tabulates the result of Epaion’s adaptation phase. Epaion’s explanatory perfor­

mance was characterized as complete in the cases where the system was able to causally justify 

every symptom experienced in the input case.

Case
Identification

Correct
Classification

Correct
Fault

Epaion’s
Classification

Epaion’s
Fault

Epaion’s
Explanation

1 G-OBMG Rotor
Scenario

Fan Blade Rotor
Scenario

Fan Blade Complete

2 American 
Airlines 566

Rotor
Scenario

Turbine
Blade

Rotor Sce­
nario

Fan Blade Complete

3 China Air 006 Fuel
Scenario

Fuel
Controller

Fuel
Scenario

Fuel Sub­
system

Complete

4 Galunggung Volcanic
Scenario

Volcanic
Ingestion

Volcanic
Scenario

Volcanic
Ingestion

Complete

5 Southern 
Airways 242

Water
Scenario

Water
Ingestion

Miscellaneous
Scenario

Foreign
Object
Ingerstion

Complete

6 Boeing Test 
Flight F5

Icing
Scenario

Ice
Ingestion

Icing
Scenario

Ice
Ingestion

Incomplete

5.4.3 D iscussion

Automation of inflight dia- and prognosis as an aid to the flight crew has great potential for 

improving the general safety of civil transport operations. The Epaion case-based reasoning sys­

tem we have developed for the puipose of performing fault diagnosis and prognosis of aircraft in 

operation uses a hybrid reasoning process based on a library o f previous cases and several models 

o f the aircraft as basis for the reasoning process. This arrangement provides the methodology with 

the flexibility and power of first-principle reasoners, coupled with the speed of asscciational sys­

tems.
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We have evaluated the system’s performance empirically on six actual accidents/incidents. The 

results achieved are very promising for the future success of the system. Based on the results we 

make the following observations.

* Classification

Five of the six cases in this evaluation were correctly classified. Case No. 5, involving water 

ingestion, was classified under the category of miscellaneous scenarios due to the lack of previ­

ously encountered water ingestion scenarios. This actually can not be considered misclassification 

since it is expected that scenario types that were not encountered by the system will classified as 

miscellaneous scenarios. This suggests that an expanded case library will enhance the systems 

classification capability and therefore offer better matches for each additional input case.

* Diagnosis

Epaion was able to correctly diagnose five of the six scenarios. The American Airlines Flight 566 

scenario (case 2) was properly classified as a rotor scenario but misdiagnosed as fan problem 

rather than turbine problem. This is a result of the fact that problems in the fan and problems in the 

turbine manifest themselves similarly, and therefore both kinds of faults are classified under the 

category of rotor scenarios. When case 2 was used as input case the system retrieved as the most 

on-point case the Dan Air incident, which is a fan blade scenario. With almost negligible differ­

ence in the degree of match between the input case and the relevant library cases, the second best 

match was the accident of a United Airlines Flight 611 that took place on July 19, 1970 [NTSB- 

AAR-72-9]. This is a turbine fault scenario and would have achieved a higher degree of similarity 

with the input case if  the time order of the symptoms in both cases had been represented more pre­

cisely. All symptoms used in reconstructing the case of the United Airlines Flight 611 were based
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on expert opinion, but none was explicitly stated in the NTSB report. With the exception of the 

behavior of the EGT, the same holds for the symptoms used to reconstruct the American Airlines 

Flight 566 scenario. This suggests that presenting the system with cases which are reconstructed 

based on an accurate set of symptoms is vital for correct matching and therefore correct diagnoses.

* Symptom explanation

In five of the cases presented as input Epaion was able to explain all of the symptoms experienced. 

Failure to explain the presence of broad-band vibration in the last case (case 6) is attributed to lim­

ited information in the abstraction hierarchy. If the fact that broad-band vibration is a manifesta­

tion of fan abnormality had been included in the abstraction hierarchy, the system’s functional 

dependencies model would have explained the broad-band vibration symptom as a result of fan 

blade damage. The same result would have been achieved if the system had previously experi­

enced other cases with broad-band vibration, thus enabling the causal submodel to explain the 

vibration. It is evident that the more knowledge that the system contains in its abstraction hierar­

chy, the better its explanation capability will be. Current efforts are accordingly focused on 

expanding this knowledge to have a substantial size.
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Discussion



6.1 Contributions

[Michie 1971] presents the following criteria that constitute necessary conditions for a program to 

be characterized as intelligent.

• The program should utilize a model of its task environment.

• The program should use its model to form plans of action to be executed in the task 

environment.

• These plans should include directed sampling of the task environment so as to guide 

execution along conditional branches o f the plan.

• The program should re-formulate a plan when execution leads to states o f the environ­

ment which were not predicted in the model.

The program should utilize the record of failures and successes o f past plans to revise 

and extent the model inductively.

The dominant characteristic of these criteria is the presence and use of a model in the program’s 

task environment. The CBR paradigm demonstrates promising results in areas such as planning, 

design and memory organization, but its success is limited due to the lack of deep domain knowl­

edge. In the few cases where CBR is used in conjunction with deep domain knowledge the tech­

niques employed are specific to the particular application and domain.

This thesis investigates the use o f models in conjunction with a CBR methodology for physical 

system faults, and provide useful insights into the challenges and benefits of such a hybrid reason­
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ing methodology. Tb demonstrate the methodology a prototypical system has being designed and 

developed in the domain of aircraft faults. Actual aircraft accident cases were used and analytical 

and empirical results have been presented. In summary the following has been achieved :

• A mathematical formalization of the case-based reasoning paradigm has been developed. 

This formalization provides a precise definition and description o f the CBR paradigm, in 

contrast to present specifications, which consist o f either lengthy and imprecise verbal 

descriptions, or of impenetrable LISP code. In addition, the existence of a formal model 

opens the possibility o f a theoretical treatment of the subject Tb gain precision and 

expressiveness we developed a formal specification of the memory organization and vari­

ous phases o f the CBR reasoning paradigm.

• For similar reasons the model-based reasoning paradigm was formalized. The initial for­

malization focuses on causal models.

• A formal mathematical definition of the functions required for interfacing the CBR com­

ponent with the model-based component of this reasoning methodology was nrovited. 

Such interface functions are required during the phases of matching, and adaptation.

• The methodology was tested by designing and implementing a prototypical system for 

dealing with physical system faults. The system entails the use o f case-based methodology 

in conjunction with device models that describe the physical system’s structural, func­

tional, and causal behavior.
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6.2 Limitations

The research presented in this thesis has a number limitations. Our methodology suffers from the 

fact that the set of abnormalities that the physical system may experience along with the various 

ways that each abnormality manifests itself must be enumerated. If the input case demonstrates an 

abnormality that is not predefined in the abstraction hierarchy, or if the abnormality takes a value 

that is not predefined, then the system is unable to reason. For example, in order for the system to 

proceed with its the normal reasoning cycle when the input includes the information that the rota­

tional speed of the fan is high in the abstraction hierarchy it must be defined rotational speed o f the 

fan  is one of the things that can be abnormal and that high is one of the ways that an abnormality 

manifests itself. Currently the only way to compensate for this deficiency is to carefully and 

clearly define all the relevant characteristics of a particular domain before this methodology is 

applied to this domain.

An objection to our methodology might be raised in that the behavior of the physical system that 

the reasoner is called to reason upon is required to be represented in terms o f time episodes 

divided into four subphascs. This restriction stems from the fact that the monitoring of most phys­

ical systems is incomplete and available library cases do not contain continuous information of the 

behavior of the physical system. In the aircraft domain, dividing the abnormal behavior of the 

engine into four episodes has produced satisfactory results. Further research must investigate the 

issues associated with reasoning with cases of uneven duration divided into various episodes, each 

of which has uneven duration as well.

Another handicap o f our methodology is its current inability to recognize and deal with multiple 

faults. Multiple independent faults in a physical system, although uncommon, are always a possi­
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bility. In the section on future work we describe a possible extension of our methodology that 

would recognize and deal with situations where multiple faults occur.

As with other systems which reason based on previous cases, Epaion reasons even in the event 

that the case library contains only one case. This becomes a problem if  the only case in the library 

case is unrelated to the input case. A simple solution to this is to require that no case may be 

retrieved from the case library unless it exhibits a a level of similarity which is higher than a given 

threshold value. An even better approach to the problem is to never allow the system to reason 

unless it has been trained with several cases.

6.3 Future Work

The work presented in this thesis may be improved and extended in various ways.

6.3.1 Representing MOPs in U M A P

Currently each case in Epaion is represented in a memory organization packet (MOP) as imple­

mented in [Riesbcck & Schank 1989]. This implementation uses a set of tables that maintain links 

between MOPs such as specialization links, abstraction links, slots etc.

MOPs may be represented using the abstract data structures of LIMAP [Feyock and Karamouzis 

1992], This can be done by defining a sparse N x N  symbolic matrix, where N is the number of 

MOPs. An entry in location i j  denotes that MOP i is the specialization of MOP j and vice verse 

(j is the abstraction of i). Finding the set of all abstraction MOPs for i is as easy as scanning
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through row i, and scanning through column j gives all the specialization MOPs of j. All other 

basic operations on MOPs may be based on this matrix. This representation would result in effi­

cient operations on MOPs and efficient memoiy utilization. Additionally it would provide to the 

developers o f the system with a better way to visualize the links between the MOPs and compre­

hend the reasoner’s memory structure.

6.3.2 Prognostication

Automating the process o f predicting the future behavior o f physical systems is a difficult task 

because physical faults manifest themselves in various ways and it is difficult to enumerate all 

possible consequences. Current efforts to incorporate prognostication features in diagnostic sys­

tems that reason from physical system models succeed in predicting the expected course events, 

but are limited by the level o f detail of their models [Feyock & Karamouzis 1991]. For example, a 

model-based reasoning system that has a model of an aiiplane’s functional and physical connec­

tions among components may, after establishing that the fan in the left engine is the faulty compo­

nent, predict that the fault will affect the operation of the compressor since there is a functional 

link between the two components. Such a system is incapable, however, o f deducing that flying 

fragments from the faulty fan may penetrate the fuselage and damage the right engine. Humans, 

on the other hand, are good at making such predictions, since their reasoning is based not only on 

pre-existing models of the world, but also on previous directly or vicariously experienced events 

which remind them of the current situation.

The nature o f reasoning that takes place in CBR systems resembles the human ability of being 

reminded; CBR systems therefore offer a prognostication capability similar to the one that humans 

demonstrate. This capability, however, is limited to the knowledge contained in the retrieved case.
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The methodology presented in this thesis offers a prognostication ability that is beyond the capa­

bilities o f  conventional CBR systems. This ability stems from the existence and utilization of the 

models. For example, having achieved a match of the current situation with a previous case where 

the faulty component was a malfunctioning fuel controller, the system will hypothesize that the 

same fault is occurring. By referencing the world model it is able to predict that an engine flame- 

out may occur, although that did not happen in the retrieved case, because the model may have 

recorded at least one previous instance where this happened. The operator is provided with a list o f 

possible consequences o f the fault along with a frequency count of each one.

6.3.3 Multiple Independent Faults

This thesis offers a reasoning methodology for dealing with abnormal behavior of physical sys­

tems in operation, but always assumes that the observed symptoms derive from a single fault. Our 

work can be extended to recognize multiple independent faults in the following way: When the 

retrieved case fails to explain some o f the observed symptoms the system may stand by for addi­

tional symptoms, or search the case library again for an additional match that will explain the 

remaining symptoms. If a new case is found, its causal explanation will be used as if these symp­

toms were the result o f another fault. Using the model the system will try to establish a relation 

between the two faults by searching for a causal, structural, or functional link between them. If  no 

link is found it may be assumed that the system is experiencing multiple faults. In this situation the 

rcasoner may retrieve an additional case from the library, one that would explain the additional 

symptoms.
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6.3.4 Simulation and the Physical M odel

6 3  Future Work

We have indicated that our methodology uses a physical dependency digraph as one of its models. 

This is a makeshift measure, however, due to the fact that physical fault propagation, being the 

result of catastrophic component failures, is highly unpredictable. One expedient for dealing with 

this unpredicatability is to refer to previous cases, as Epaion does; another is to utilize spatial sim­

ulation models (SSMs) to determine the effect of uncontrolled energy releases. [Feyock & Li, 

1990, 1992] describe the use of SSMs to predict both fluidic and energy leaks. These models, 

which are easily interfaced with host systems, require only the identity of the faulty component, 

which can be supplied by Epaion. The SSM then looks in the component database to determine the 

location and type o f the component. If the component is of a type that can cause a fluid or energy 

leak, the system uses this information to set the initial conditions for the simulation. The simula­

tion is then run, and the physical propagation paths predicted by the SSM are extracted from the 

run data.

In addition to addressing Hie chaotic nature of physical propagation, the use of simulation models 

in conjunction with more traditional reasoning systems is prompted by a belief that deriving 

answers to real-world questions by setting up the initial conditions of simulation models, running 

the simulations, and extracting information from the results of the run, constitutes a powerful but 

underutilized mode o f operation for AI systems.
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6.4 Conclusion

We have described a case-based reasoning methodology for fault diagnosis and prognosis o f phys­

ical systems in operation. A hybrid reasoning process based on a library of previous cases and a 

model of the physical system is used as basis for the reasoning process. This arrangement provides 

the methodology with the flexibility and power of first-principle reasoners, coupled with the speed 

of associational systems. Although domain independent, this work is being tested in the domain of 

aircraft systems fault dia- and prognosis with very promising initial results.

A major concern of this project has been to create a system capable of achieving a practically use­

ful level o f performance on a case base of significant size, thereby avoiding the "toy problem" trap 

besetting many AI systems. The extensive use o f a classification hierarchy allows the system to 

achieve 0(log n) search times, while the information abstraction attendant on accident reconstruc­

tion produces space-efficient representations. The system is currently hosted on a desktop personal 

computer, and is estimated to be capable of storing the full set of propulsion-related aircraft acci­

dent for the last 20 years. These considerations, together with the encouraging level of success 

achieved by Epaion, support the expectation that this system will prove to be an effective contrib­

utor to aircraft safety.
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Appendix A

LIMAP: A modeling tool



A.l Introduction

A representation is a set of syntactic and semantic conventions that make it possible to describe 

things. Experience has shown that designing a good representation is often the key to turning hard 

problems into simple ones. According to [Winston 1984] good representations:

Make important things explicit

• Expose natural constraints, facilitating some class of computations

• Are complete and concise

Facilitate computation. We can store and retrieve information rapidly.

• Suppress detail.

• Are computable by an existing procedure.

All representations must provide some way to denote objects and to describe the relations that 

hold among them. Consequently, many representations are built around some form of semantic 

net, since semantic nets denote objects and describe relations among them.

Most AI search/representation techniques are oriented toward a potentially infinite domain of 

objects and arbitrary relations among them. Experience has shown that in reality much of what 

needs to be represented in AI can be expressed using a finite domain and unary or binary predi­

cates. Unary predicates can describe object attributes and binary predicates describe relations 

among two objects.
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Well-known vector- and matrix-based representations are appropriate for finite domains and 

unary/binary predicates, since they satisfy the above-mentioned properties of a "good” representa­

tion, and allow the extraction of path information by generalized transitive closurc/path matrix 

computations. In this scheme vectors are used for unary relations and matrices for binary relations. 

Unfortunately as the number of objects increases the size of matrices rapidly surpasses the amount 

of available memory in most machines.

Overcoming memory limitations raises the need for abstract data types to represent sparse matri­

ces. These are well suited for most applications, since semantic nets usually represent a limited 

number of connections among objects, even when working in laige domains.

A.2 Matrices and Semantic Nets

A directed graph (digraph) is a 2-tuple <N, E>, where N  is a finite set o f nodes, and E a finite set of 

edges. An edge is a member <a, b> of N x  N. A labeled digraph is a 3-tuple <N, E, L>, where N is 

as before, L is a finite set of labels, and E is a finite set o f labeled edges, with labels in L. A labeled 

edge (with label in L) <a, 1, b> is a member of N x L x N.

It is easy to see that digraphs arc a graphic representation of binary predicates over finite domains. 

If P(x, y) is a predicate over domain D x  D, then digraph G = <N, E> represents P if P(a, b) iff 

<a, b> e  E.

Whereas an unlabcled digraph can represent a single predicate, labeled digraphs whose label set is 

a set of predicate names can represent multiple binary predicates over the same domain D x D 

simply by letting edge <a, p, b> denote the fact that predicate p(a, b) is true; the absence o f such an
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edge denotes that p(a, b) is false. Extending the notation, we allow edges to be labeled with sets o f 

predicate names; an edge <a, {pt , ..., pn), b> is an abbreviation for the set of edges 

<a, pi, b > ,..., <a, pn, b>. Labeled digraphs thus correspond to the familiar semantic net construct 

of AI.

Given the problem of representing a unary predicate P(x) over a finite domain D o f fixed size n, an 

obvious and familiar solution is to use boolean vectors, a.k.a. bit strips: for any di in D, P(dj) is 

true (false) iff the i'th component of the vector representing P is a 1 (0). Boolean operations such 

as AND, OR, and NOT on predicates over D are then representable by the corresponding opera­

tions over bit strips, which are efficient on most computers. Similarly, binary predicates Q(x, y) 

over D x D can be efficiently represented by N x N matrices whose ij element is 1 if Q(dj, dj) is 

true, else 0.

Boolean matrices can in principle represent labeled digraphs: a separate matrix is assigned to each 

label, and represents the subgraph of nodes connected by edges bearing that label. In practice this 

representation can become unwieldy. The number of different labels may be large, resulting in 

proliferation of adjacency matrices. Moreover, queries such as " is  there any path (regardless o f 

labels) from node a to node b?” require that the matrices for all labels be ORed together. An 

answer to the follow-up query "w hat are these paths?” is even more difficult to generate from this 

representation. Such considerations motivate the adoption of symbolic matrices as representation 

for labeled digraphs. Element ij o f a symbolic matrix is P iff the arrow from d; to dj in the semantic 

net has label P, else NIL.
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A.3 Implementation

LIMAP (Lisp-based MAtrix Processor) is a set of Common LISP [Steele 1984] procedures that 

define and manipulate a veclor/matrix-based knowledge representation. The user may represent 

relations among objects using boolean or symbolic matrices/vectors. These matrices/vectors are 

abstract data types that can represent data (boolean values or symbols) stored in arrays. The 

semantic interpretation of this data is left to the user.

As is the case for a traditional database system, LIMAP’s capabilities are invoked via a language 

interface that consists o f two parts. One is the data definition language (DDL) for specifying both 

the data the system is to contain as well as "metadata;" i.e. information about the structure and 

constraints that govern the data contained in the system. The other is the data manipulation lan­

guage (DML), the subset of the language concerned with the specification o f queries and updates 

on the data. We will categorize the LIMAP functions accordingly. As in Common LISP, LIMAP’s 

functions and arguments arc not case sensitive.

A.3.1 DD L Operations

Figure A .l shows LIMAP’s data definition procedures, and their associated syntax.

DEFREL <relname> <specs> <type> <rep>
DELREL <relname>
<relname> ::= <symbolic atom>
<lypc> ::= Bmatnx I Smatrix I Bvector ISvector 
<spccs> ::= (<length> <length>) I (<length>)
<lcngth> ::= <symbolic atom> 1 <integer>
<rep> ::= vector-rep I array-rep I sparse-rep

Figure 6.1: LIMAP's data definition procedures, and their associated syntax
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DEFREL

The function defrel defines a relationship with name relname of type type and having particular 

specifications. The actual data of the relation is stored in a system-generated variable and is repre­

sented according to the rep field. Valid representations are array, vector, and sparse representa­

tions. The representation is transparent to the user since s/he views all relationships according to 

their type attribute. Valid type attributes are boolean matrices/vectors (Bmatrix/Bvector) and sym­

bolic matrices/vectors (Smatrix/Svector). The specs field specifies the dimensions of the matrices/ 

vectors. Matrices are two-dimensional and vectors one-dimensional. When assigning the dimen­

sions of a relation the system expects a list with one or two numbers or symbols. For a matrix def­

inition the first number specifies the number o f rows and the second the number of columns. If  a 

symbol is specified the system expects that the symbol is the name of a set of values and substi­

tutes the size of the set for the symbol. Following the definition a change in the size of the set does 

not affect the dimensionality of the matrix/vector. Change of dimensionality is achieved via the 

RESIZE function, as is explained later. The following example defines a matrix named “exam- 

ple_mtrx" to be o f boolean type, have 4x4 elements represented as a list, a vector named "is_sen- 

sor” to be of type boolean and have size of nine elements, and a matrix named “engine” to be a 

symbolic matrix or size 9x9 and be represented as an array.

(setvar **comps* ‘(fan compressor combustor turbl turb2 N1 N2 EGT EPR))

(defrel ‘example_mtrx ‘(4 4) 'Bmalrix ‘sparse-rcp)

(defrel *is_sensor *(*comps*) ‘Bvector ‘vector-rep)

(defrel ‘engine ‘(9 *comps*) ‘Smatrix ‘array-rep)

Matrices/vectors o f boolean type are matrices/vectors where each of the elements is either a "0” or 

“1”, representing false or true respectively. The elements of matrices/vectors which are declared as 

symbolic can contain arbitrary s-cxpressions such as numbers, symbols, or lists. When a matrix is 

declared as having array-rep representation the matrix is associated with a Common LISP two­
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dimensional array, and every operation on the matrix (such as a retrieval, multiplication etc) is per­

formed on the two-dimensional array. A vector with a vector-rep representation is represented as a 

one-dimensional array. Matrices/vectors having a sparse-rep representation are represented as 

LISP lists. For example, if  cxam plejntrx has only two elements, say a value 1 in row 10, column 

30 and in row 33 column 90, then it is represented by the list ((10 30 I) (33 90 1)).

When a relation is defined using defrel it is placed in a system-maintained definition table which 

maintains information about all the defined relations. Additionally, a system-generated variable is 

bound to the data structure that will actually hold the data. This data structure is a list initialized to 

nil if the representation is sparse-rep. When the representation is array-rep the data structure is an 

array initialized with zeros or nil, depending on the type field. Matrices/vectors of boolean type are 

initialized to all zeros, and symbolic matrices/vectors to all nils. Figure A.2 shows the contents of 

the definition table after the above definitions. The path and flag fields are explained in a later sec­

tion during the description of thepaf/is operation.

NAME SPECS TYPE REP PATH FLAG

example__mtrx (4 4) Bmatrix sparse-rep PO T

is_sensor (*comps*) Bvector vector-rep None None

engine (9 ’•'comps*) Smatrix array-rep PI T

Figure 6.2: Contents of the Definition Table

DELREL

The operation Delrel deletes a relation by extracting it from the definition table and disassociating 

all data variables with the relation.
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DML Operations

A.3 Implementation

Using the data manipulation language (DML) procedures the user may query a relation’s type, 

specifications, representation, or the actual data stored. S/he may store/retrieve values to particular 

locations, multiply two matrices, copy one matrix to another, invert, transpose, resize, clear, or 

take the transitive closure o f a matrix. Figure A.3 tabulates the DML operations.

STORE and RETRIEVE

The function STORE allows the user to store a specific value to a particular location in some 

matrix/vector. The user must specify the matrix/vector name, the value to be stored and the coordi­

nates of the location in row-major order. The function returns the stored value. An error is returned 

when there is a type mismatch between the value to be stored and the type of the matrix/vector. 

RETRIEVE retrieves the contents of a particular location in a matrix/vector. In the event that that 

the specified matrix/vector in not defined, both functions display an appropriate message and 

return nil.

Example: (STORE ‘engine ‘N 0 5) stores the symbol “N” in location (0 5) of the symbolic matrix 

“engine”, and returns “N”.

TYPE and REP

The functions TYPE and REP notify the user about the type and representation scheme o f a partic­

ular matrix. The possible return values o f Type are Bmatrix, Bvector, Smatrix and Svector. REP 

returns either array-rep, vector-rep or sparse-rep depending on the specified matrix/vector.
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Predicate Argl Arg2 Arg3 Arg4 Arg5 Description

DEFTABLE [:ALL] [T] Display definition table

DISPLAY relname Display a relation

TYPE relnamc Relation’s type

DIMS relname Relation’s dimensions

REP relname Relation’s representation

DATA relnamc Relation’s data

DATA-NAME relname Relation’s data variable

STORE relnamc value [row] column Store value

RETRIEVE relname [row] column Retrieve contents

TCLOSE relname Transitive closure

PATHS relname row column [:NAME] [T] All paths

MULT relnamel rclname2 relname3 Multiply

FRANSPOSE relname 1 relname2 Transpose

CLEAR relname Initializes a relation

COMPLEMENT relnamel relname2 Relation’s complement

RESIZE relnamc specs Changes the dimensions

COPYREL relnamel relname2 Copy rcll into reI2

COLUMN column relname veclname Copy a column into a vector

ROW row relname vectname Copy a row into a vector

RELAND relnamel relname2 relname3 Logical AND

RELOR relnamel relname2 relname3 Logical OR

Figure 6.3: LIMAPs DML operations 
Example: (TYPE ‘engine) and (REP ‘engine) return Smatrix and array-rep respectively.
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DIMS, DATA and DATA-NAME

A.3 Implementation

The function DIMS returns a list o f the dimensions of a specified matrix/vector. This list contains 

one number, the number of elements, for a vector and two numbers, the number of rows and the 

number o f columns, when the specified structure is a matrix. Functions DATA and DATA-NAME, 

respectively, return the data structure and the symbolic name o f the data structure that holds the 

actual data of the specified abstracted matrix/vector. All of the above functions terminate grace­

fully with an appropriate message when the specified matrix/vector is not defined.

Example: (DIMS ‘engine) returns (9 9) and (DIMS ‘engin) returns nil and displays the message 

“*** From LIMAP, engin is not defined”.

(DATA-NAME ‘engine) returns “engine", while (DATA ‘engine) returns

nil N nil nil N N nil nil nil

nil nil N N nil nil N nil nil

nil nil nil N nil nil nil nil nil

nil N nil nil N nil nil nil nil

N nil nil nil nil nil nil N N

nil nil nil nil nil nil nil nil nil

nil nil nil nil nil nil nil nil nil

nil nil nil nil nil nil nil nil nil

nil nil nil nil nil nil nil nil nil

MULT

MULT is a function that allows the user to multiply two matrices,, a matrix and a vector or two 

vectors o f the same type. The resulting matrix/vector is placed in a user-specified matrix/vector,
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which constitutes the third argument in the function. If the specified matrices/vectors are not 

defined, have incompatible types, or incompatible dimensions the function terminates gracefully 

by displaying appropriate error messages. MULT operates on the following principle.

For boolean matrices/vectors such as b l an m x  n, and b2 an n x  r (MULT *b1 ‘b2 *b3):

b3[ij] = Y '/ChiN.b]. W J )

h=l

where f(x,y) = 1 if both x,y are 1, else 0 

For symbolic matrices/vectors such as si an m x  n, and s2 an n x r (MULT *sl ‘s2 ‘s3):

s3[ij] = y /(s ltilh ]’s2th,i])
h = l

where f(x,y) = t if both x,y are non-nil, else nil

Examples: The following shows the contents of exam plejntrx before and after the operation 

(MULT ‘example_mtrx ‘example_mtrx ‘example_mtrx).

n

n

Before: After:

1 1 1 1 1 1 1 1  
1 1 1 1  

1 1 1 11
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Assuming that S 1, S2, and S3 are 4 x  4 symbolic matrices, the following shows the contents of S 1, 

S2, and S3 after the operation (MULT ‘SI ‘S2 'S3).

SI: S2:

a nil nil nil b b

a nil nil nil nil nil

a nil nil nil nil nil

a nil nil nil nil nil

S3:

b b t t t t

nil nil t t t t

nil nil t t t t

nil nil t t t t

TRANSPOSE and COMPLEMENT

The functions TRANSPOSE and COMPLEMENT respectively transpose and complement a spec­

ified matrixArector. TRANSPOSE works only on matrices, and COMPLEMENT inverts zeroes to 

ones and vice-versa on boolean matrices/vectors. The resulting complemented matrix/vector

replaces the specified matrix/vector, but the result o f the transposition is placed in a new matrix

specified by the user. Successful termination of the above functions returns true.

Examples: The following shows the contents of examplejntrx  before and after the operation 

(TRANSPOSE 'example_mtrx ‘example_mtrx).

Before: After:

1 . 1 1 1 .

1 . . . . .

The contents of exam plejntrx before and after the operation (COMPLEMENT ‘example_mtrx 

‘example_mtnc) is as follows:
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Before: After:

1 . 1 1 1

1 . 1 1 1
1 . 1 1 1

1 1 1 1

CLEAR and COPYREL

CLEAR initializes the contents of a specified abstracted matrix/vector. Matrices/vectors of a bool­

ean type are initialized to all zeroes and matrices/vectors of symbolic type to all nils. COPYREL 

copies one matrix/vector to another. Both arguments must be of the same type and have the same 

representation. The first argument is the source and the second the destination.

RESIZE

The function RESIZE changes the dimensions o f a specified matrix/vector. The first argument is 

the specified matrix/vector and the second a list containing the new dimensions. After a RESIZE 

operation that increases the size of the matrix/vector the matrix/vector retains its elements and the 

newly created locations are initialized with the default values. The newly created locations are 

appended at the ends of vectors, and the right and bottom margins o f matrices. A RESIZE opera­

tion that decreases dimension sizes drops higher indexed elements. Thus following a RESIZE 

operation where the new dimensions are smaller than the previous if the users tries to access loca­

tions that don’t exist the operation returns nil and prints an out of range error message. Example: If 

the contents of vector is_senxor (defined previously as a boolean vector of size 9) is:

Location: 0 1 2 3 4 5 6 7 8  

Contents: 0 0 0 0 0 1 1 1 1
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then after the operation (RESIZE *is_sensor '(11)) the contents o f the same vector will be: 

Location: 0 1 2 3 4 5 6 7 8 9  10 

Contents: 0 0 0 0 0 1  1 1 1 0 0

RELAND and RELOR

The logical functions RELAND and RELOR perform the logical AND  and OR among two vec­

tors/matrices. These vectors/matrices must be of a boolean type and have the same size. The result 

of either function becomes the contents of the third aigument.

Example: The following shows the result of (RELAND ‘example_mtrx *other_mtrx ‘result_mtrx), 

where the contens o f examplejntrx and otherjntrx is:

example other result
mtrx: mtrx: mtrx:

When examplejntrx and other jn tr x  have the same contents as above, then following the opera­

tion (RELOR ‘example_mtrx 'olher_mtrx ‘rcsultjntrx) the contents o f result jn tr x  is:

1

1

1

1

1

1

1

1

example
mtrx:

other
mtrx:

result
mtrx:

1

1

1

1

1

1

1

11
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DISPLAY, SHOW-ARRAY, and DEFTABLE

LIMAP provides the user with functions that allow him/her to view the contents of matrices/vec­

tors. DISPLAY produces a formatted display of a matrix or a vector. In case the abstracted data 

types are of symbolic type an "S” is displayed at the location that a symbol exists. In order to see 

the actual symbols SHOW-ARRAY should be used. The function DEFTABLE displays the con­

tents of the definition tabic, which contains all the defined matrices/vectors and their associated 

attributes.

Example: The outputs of (DISPLAY ‘enginea) and (SHOW-ARRAY ‘enginea) are as follows: 

(DISPLAY ‘enginea)(SHOW-ARRAY ‘enginea).

(DISPLAY ‘enginea) (SHOW-ARRAY ‘enginea)

0: . S . • s  s  . . . nil 1 nil nil 1 1 nil nil nil

1: . . S s . . s  . . nil nil 1 1 nil nil 1 nil nil

2: * ♦  ♦ s ......................... nil nil nil 1 nil nil nil nil nil

3: . S . s  . . . . nil 1 nil nil 1 nil nil nil nil

4: s . . . s  s 1 nil nil nil nil nil nil 1 1

5: nil nil nil nil nil nil nil nil nil

6: nil nil nil nil nil nil nil nil nil

7: nil nil nil nil nil nil nil nil nil

8: nil nil nil nil nil nil nil nil nil
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A.3.2 Path Operations: TCLOSE and PATHS

A.3 Implementation

The TCLOSE and PATHS operations form the core of LIMAP’s path manipulation capability. The 

function TCLOSE calculates the transitive closure of a specific matrix. The transitive closure of a 

matrix M is a matrix M* that contains an entry in location <a, b> iff the directed graph represented 

by M contains a path (of length 0 or greater) from a to b. In LIMAP M* inherits M ’s type and rep­

resentation attributes. Warshall’s Algorithm is an efficient method for computing M*t given a 

matrix M. Intuitively, the algorithm scans the matrix top to bottom, left to right. If  an entry is 

encountered, say in row i, column j, then row i is replaced by row i OR row j, and the scan contin­

ues from position ij. Figure 4 shows the code that performs the transitive closure for boolean and 

symbolic matrices using Warshall’s Algorithm.

(DEFUN BTclose (rel); Function to compute transitive

(LET ((max (FIRST (dims rel))); closure of a boolean matrix 

(DO ((k 0 (+ k 1))) ((= k max) nil); Scan top to bottom 

(DO ((i 0 (+ i 1))) ((= i max) nil); Scan left to right 

(COND ((= (retrieve rel i k) 1); If there is an entry 

(DO ((j 0 (+ j  1))) ((= j  max) nil)

(store rel (LOGIOR (retrieve rel i j); Swap i and j  

(retrieve rel k j)) i j))

) ; Close DO

) ; Close COND

) ; Close DO

) ; Close DO

) ; Close LET 

) ; Close BTclose
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(DEFUN STclose (rel); Function to compute transitive

(LET ((max (FIRST (dims rel))); closure of a symbolic matrix 

(DO ((k 0 (+ k 1))) ((= k max) nil); Scan top to bottom 

(DO ((i 0 (+ i 1))) ((= i max) nil); Scan left to right

(COND ((NOT (NULL (retrieve rel i k))); If there is an entry 

(DO ((j 0 (+j  1») ((= j  max) nil)

(COND ((NOT (NULL (OR

(retrieve rel i j); If there is a symbol in (i, j)

(retrieve rel k j)))); OR in (k, j)

(store rel t i j))); Then flag that (i,j) are connected 

) ; Close DO

) ; Close COND

) ; Close DO

) ; Close DO

) ; Close LET

) ; Close STclose

Figure 6.4: Code for transitive closure
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Example: Let us assume that we have a network of four nodes labeled as 0, 1, 2, and 3. Assume

Figure 6.5: Example network

that there are direct connections from 0 to 1, 0 to 2, 1 to 2, 2 to 3, and 1 to 3 as indicated in 

Figure A.5. The following displays how the network may be represented in a boolean matrix along 

with the contents o f the same matrix after the transitive closure has been computed.

Exampte mtrx: A fter (TC LO SE
‘exam plejntrx):

1 1 1 
1 1 

1

A value o f 1 in locations ( 0 ,1), (0,2), (1,2), (1,3), and (2, 3) means that there is a direct connec­

tion between the corresponding nodes. Following the operation o f transitive closure a value of 1 in 

location (i, j) means that there is a connection from node i to node j .  This connection may be direct 

or indirect. An example of indirect connection is the connection between node 0 and 3. Such a 

connection is achieved via node 1 or node 2 (Figure A.5).

1 1 
1 1 

1
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Assuming that LIMAP’s matrices (boolean or symbolic) represent directed graphs, the function 

PATHS returns all the paths between two specific nodes in a network. Besides the user-defined 

attributes that characterize each matrix in LIMAP, every matrix is associated with an internal sys­

tem matrix called the path matrix, and a flag  field. When PATHS is invoked for the first time on a 

particular matrix it does the following. First, using an extension of Warshall’s Algorithm, all possi­

ble paths among every node in the matrix are calculated. A path is a list of node numbers. Tne 

resulting lists of paths become the entries of the associated path matrix and the flag is set to nil. At 

the end only the paths among the two specific nodes specified by the user are returned. A subse­

quent request for paths need not recalculate all the paths, but merely retrieve the appropriate entry 

from the path matrix. In case that there is a change in the contents of the user defined matrix (i.e. a 

change in the graph) the flag field is set to “t" and a subsequent user request for paths triggers a 

recalculation of the path matrix.

In order to operate on a symbolic matrix and produce a path matrix whose ij entry contains the set 

of all paths from node i to node j, WarshaH’s algorithm was extended as Figure 6 indicates.

Let M be an NxN square matrix

for k=l to N ; Scan from top down 

for i=l to N ; Scan from left to right 

i f ( i * k  AND M[i,k] *  ni l ) then 

for j= l to N

M [ijJ := UNION ( M[i,j], LINK( M[i,k], M [k.j]))

Figure 6.6: Warshall’s Algorithm

In the algorithm of Figure 6, UNION is the normal union operation on sets and LINK operates on

lists o f paths. If p, q are paths where p = (vj vk) and q = (vk, . .. ,  vr) then LINK (p,q) returns

(V |, . . . ,v k, ... ,v T).
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More precisely: let E(k) denote the set of all paths going through nodes numbered < k only (not 

including the endpoints, which can be arbitrary). Then the original adjacency matrix represents 

E(0). More precisely, the original matrix has the list ((i j)) in element ij if  there is an arrow from i 

to j,  otherwise nil. (This discussion assumes vertices numbered from 1, although Common Lisp 

dimensions are actually indexed from 0; in that case, the original matrix would represent E(-l).) 

Warshall’s Algorithm scans the matrix from top to bottom, left to right. The scan of the k ’th col­

umn computes E(k), as follows. When a non-nil element is encountered in an off-diagonal position 

in column k, say at ik, that clement will be a list of E(k-l)-paths from node i to node k. Consider 

arbitrary element ij of row i; it contains all E(k-l)-paths (if any) from i to j. Now that we also know 

the E(k-l)-paths from i to k, we can reach j  from i either by the E(k-1) paths in ij, or by going from 

node i to node k, and then from node k to node j  by any path (if any) in element kj. Such paths will, 

o f course, be E(k) paths. Thus we add to the paths already at ij the link of all paths from i to k and 

all paths from k to j.

Example: Assume that symbolic jn tr x  is a 4 x  4 symbolic matrix that represents the network of 

Figure 5. If the contents of symbolic jn tr x  is as follows, then (PATHS 'example_mtrx 0 1) returns 

"(0 1)’’, and (PATHS *symbolic_mtrx 0 3) returns “((01 3) (0 2 3) (0 1 2 3))”. The contents o f sym­

bolic jn tr x  and the internally maintained path matrix are:

symbolic_mlrx: corresponding path matrix:

0 1 2 3 0 1 2 3

0: nil 1 1 nil 0: nil ((0 1)) ((0 2)) ((0 1 3) (0 2 3) (0 1 2 3))

1: nil nil 1 1 1: nil « 1  2)) ( d  3))

2: nil nil nil 1 2: nil nil nil ((2 3))

3: nil nil nil nil 3: nil nil nil nil
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Following our exemplar definitions, Figure 7 displays the contents of the definition table including 

the attributes of each path matrix (compare with figure 2). This is achieved by using the optional 

all flag of the DEFTABLE function, i.e by calling (DEFTABLE rail t). In the path field o f the table 

is stored the name of the associated path matrix. The associated path matrices have no value in the 

flag field.

NAME TYPE SPECS REP PATH FLAC

0: example_mtrx (4 4) B matrix sparse-rep P0 T

1: P0 (4 4) Bmatrix sparse-rep None None

2: is_sensor (*comps*) Bvector vector-rep None None

3: engine (9 * comps*) Smatrix array-rep PI T

4: PI (9 *comps*) Smatrix array-rcp None None

Figure 6.7: Contents of the definition table

A.3.3 Control Structures

Queries of the form “is there a relation R such that nodes a and b are in relation R? “is there a path 

from x to y? a path fulfilling constraint C? where can I go from x? how can I get to x?” arise fre­

quently both in AI and elsewhere. Such queries, which involve quantification over relations, corre­

spond to statements in the second-order predicate calcultis. This section describes the control 

structures that make LIMAP an efficient second-order predicate calculus programming system.

The distinction between procedural and non-procedural predicate calculus specifications blurs if 

the underlying domain is finite, since the FORALL and EXISTS quantifiers map in an obvious 

way to loops ranging over the domain elements. It has been our goal to give the LIMAP data 

manipulation language as non-procedural a character as possible. In particular, LIMAP notation is 

an adaptation of the (function-less) predicate calculus, with extensions to allow data retrieval in
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addition to data specification. For example, a “yes” answer to (EXISTS X) (FORALL Y) P(X,Y) 

is insufficient; the actual X-value must be retrieved. We have found that minimal modifications of 

the control macros described in [Chamiaket al., 1987] were suitable for the task of expressing the 

required quantifications. Following is a summary of the general form of the control structure 

implemented by these macros:

(FOR (<variable\> :IN <set\>)

(<variable^> :IN <jetn>)

[:WHEN <when-expression>]

<FOR-keyword> <expressioit\> . . .  <expressionn>)

The expression\ following FOR-keyword are called the body o f the FOR. The construct (<vari- 

able\> :IN <setf>) causes the variable to iterate over the elements of the set, which may be speci­

fied as a list, a vector, or a matrix row or column. When there are several sets the FOR interates 

over the elements of each set in the following way. Initially the first element o f each set is assigned 

to the corresponding variablej and the body of the FOR is evaluated. Then the second element of 

each set is assigned to the corresponding variable\ and the body is evaluated again. This is 

repeated until some set runs out o f elements or the final value of the FOR is determined as gov­

erned by the FOR-keyword.

FOR-keywords

: ALWAYSretum true if all the values of body are true 

:FILTERproduce a list of the non-nil values of body 

:FIRSTproduce the first non-nil value of body 

:SAVEproduce a list of all values of body

While the description of these constructs is procedural in form, the effect when programming in 

this notation is that o f writing FORALLs and EXISTS, with the proviso that any variable values
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that are found to "EXIST” are collected in accordance with the FOR-keyword and returned as 

value. The following section contains an example application of LIMAP.

A.4 Conclusion

We have described a programming system oriented toward efficient information representation/ 

manipulation over fixed finite domains, and quantification over paths and predicates. The initial 

motivation for the creation o f such a system was the fact that the need for such operations arose 

frequently in the domain o f diagnosis/prognosis generation problem domain. Since then it has 

become apparent that the facilities provided are applicable to problems both within and outside of 

AI.

Our experience to date has shown that LIMAP is applicable to a wide range o f problems. While 

LIMAP, if abused, is as capable of inefficient operation as any other misused programming sys­

tem, we have found that for every problem yet attempted there has existed a LIMAP formulation 

that was concise, comprehensible, and for which LIMAP’s facilities constituted an efficient prob­

lem representation.
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Case Library



B. 1 Fuel Metering Unit

This is a propulsion failure scenario staged at Boeing Inc. and reported in [Shontz et. al. 1992].

The failure is a malfunctioning valve in the fuel metering system.
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Fault scenario FI
; Flight Deck Engine Advisor, Boeing document D6-55880, May 1991 
»
{sctf +easel*
*(

; — Fault
(fault i-m-fucl-metering-unit)
(events m-group

(1 m-causal-event
(ante i-m-fuel-mctcring-unit)
(ensq i-m-fuel-flow))

(2 m-causal-cveni
(ante i-m-fucl-flow)
(ensq i-m-nl))

(3 m-causal-cvcnt 
(ante i-m-nl)
(ensq i-m-n2))

(4 m-causal-cvcnt 
(ante i-m-n2)
(ensq i-m-egl)))

(id “Boeing Test Flight F-l”)
(date“ l")
(airline “flight test data")
(flight “flight test data”)
(aircraft "flight test data")

; -- Context Variables
(phase-of-flight i-m-ground-start)
(weather i-m-clear)

(workload i-m-modcratc)
(enginc-commandcd-status i-m-start)

; — Symptoms
(egt m-group

(1 m-sensor-Tcading (status i-m-normal) (trend i-m-incTenscs))
(2 m-sensor-reading (status i-m-normal) (trend i-m-increases))
(3 m-sensor-reading (status i-m-high) (trend i-m-incTeascs))
(4 m-sensor-reading (status i-m-high) (trend i-m-inCTeases)))

(nl m-group
(1 m-sensor-reading (status i-m-normal) (trend i-m-increases))
(2 m-sensor-reading (status i-m-low) (trend i-m-increases))
(3 m-sensor-reading (status i-m-low) (trend i-m-increases))
(4 m-scnsor-rcading (status i-m-low) (trend i-m-stable)))

(n2 m-group
(1 m-scnsor-rcading (status i-m-low) (trend i-m-increases))
(2 m-sensor-reading (status i-m-low) (trend i-m-incrcoscs))
(3 m-sensor-reading (status i-m-low) (trend i-m-increases))
(4 m-sensor-reading (status i-m-low) (trend i-m-stable))) 

(fucl-flow m-group
(1 m-scnsor-rcading (status i-m-low) (trend i-m-incrcascs))
(2 m-scnsor-rcading (status i-m-low) (trend i-m-incrcascs))
(3 m-sensor-reading (status i-m-low) (trend i-m-increases))
(4 m-sensor-reading (status i-m-low) (trend i-m-stable)))

)
)
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B.2 Fuel Boost Pump

This is a propulsion failure scenario staged at Boeing Inc. and reported in [Shontz et. al. 1992]. An 

engine flameout occurred due to a fuel boost pump failure.

- 1 2 8 -



B Case Library B.2 Fuel Boost Pump

(self *case2*
*(

; — Solution Data
(fault i*m-fuel-boost-pump)
(events m-group 
(1 m-causal-cvcnt

(ante i-m-fuel-boost-pump)
(ensq i-m-fucl-pressure))

(2 m-causal-evcnt
(ante i-m-fuel-pressure)

(ensq i-m-fuel-flow))
(3 m-causal-event

(ante i-m-fucl-flow)
(ensq i-m-nl))

(4 m-causal-cvcnt 
(ante i-m-nl)
(ensq i-m-n2)))

; — Id features
(id "Boeing Test Flight F-2")
(date "2”)
(airline "flight test data")
(flight “flight test data")
(aircraft "flight test data")

; — Context Variables
(phasc-of-flight i-m-cruisc)
(workload i-m-light)

(cngine-commandcd-status i-m-stcady)

; — Symptoms
(nl m-group

(1 m-sensor-reading (status i-m-normal})
(2 m-sensor-reading (status i-m-normal))
(3 m-scnsor-Tcading (status i-m-low) (trend i-m-dccrcascs)) 
(4 m-sensor-reading (status i-m-low) (trend i-m-dccreases))) 

(n2 m-group
(1 m-sensor-reading (status i-m-normal))
(2 m-sensor-reading (status i-m-normal))
(3 m-sensor-reading (status i-m-low) (trend i-m-decrcases)) 
(4 m-sensor-reading (status i-m-low) (trend i-m-decreascs))) 

(fuel-flow m-group
(1 m-scnsor-rcading (status i-m-normal))
(2 m-sensor-reading (status i-m-normal))
(3 m-sensor-reading (status i-m-zcro))
(4 m-scnsor-rcading (status i-m-zero)))

(fuel-prcssure m-group
(1 m-scnsor-rcading (status i-m-low) (trend i-m-decreascs)) 
(2 m-sensor-reading (status i-m-low) (trend i-m-decreascs)) 
(3 m-scnsor-rcading (status i-m-zcro))
(4 m-sensor-rcading (status i-m-zcro)))

)
)

- 1 2 9 -



B Case Library B 3  Ice Ingestion

B.3 Ice Ingestion

This Is a propulsion failure scenario staged at Boeing Inc. and reported in [Shontz et. al. 1992].

The failure was a foreign object damage due to light ice ingestion.
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; Flight Deck Engine Advisor, Boeing document D6-55880, May 1991 
(sett *case3*
’(
; — Solution Data 
(fault i-m-ice-ingestion)
(events m-group 
(1 m-causal-cvcnt 
(ante i-m-ice-ingcstion)
(ensq i-m-fan-blade-damagc))
(2 m-causal-event
(ante i-m-fan-blade-damagc)
(ensq i-m-fon-rotor-imbalnncc))
(3 m-causal-event
(ante i-m-fan-rotor-imbalancc)
(ensq i-m-fan-vib))
(4 m-causal-event 
(ante i-m-fan-vib)
(ensq i-m-compressor-vib))
(5 m-causal-event 
(ante i-m-compTessor-vib)
(ensq i-m-thrust)))

(id "Boeing Test Right F-3")
(date “3’')
(airline “flight test data")
(flight “flight test data")
(aircraft “flight test data")
; — Context Variables 
(phase-of-flight i-m-climb-out)
(weather i-m-icing)
(workload i-m-moderalc)
(cngine-commandcd-status i-m-climb-powcr)

; — Symptoms 
(fan-vib m-group
(1 m-sensor-rcading (status i-m-high) (trend i-m-increases))) 
(compressor-vib m-group
(1 m-sensor-reading (status i-m-high) (trend i-m-increases)))
(thrust m-group
(1 m-sensor-reading (status i-m-low)))

(fan-vib-behavior-mop i-m-Iihhh)
(thrust-behavior-mop i-m-hhhh)
(compressor-vib-behavior-mop i-m-1111)
»
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B.4 Ice Ingestion

This is a propulsion failure scenario staged at Boeing Inc. and reported in [Shontz et. al. 1992], 

The failure was a foreign object damage due to moderate ice ingestion
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; Fault scenario F4
; Right Deck Engine Advisor, Boeing document D6-55880, May 1991 
i
(self *case4*
‘(
(fault i-m-ice-ingestion)
(events m-group

S I m-causal-event 
ante i-m-ice-ingestion)

(ensq i-m-fan-blade-damnge))
(2 m-causal-event
(ante i-m-fan-blade-damage)
(ensq i-m-fan-rotor-imbalance))
(3 m-causal-event
(ante i-m-fan-rotor-imbalance)
(ensq i-m-fan-vib))
(4 m-causal-event 
(ante i-m-fan-vib)
(ensq i-m-comprcssor-vib))
(5 m-causal-event 
(ante i-m-compressor-vib)
(ensq i-m-n2))
(6 m-causal-event 
(ante i-m-n2)
(ensq i-m-luel-flow))
(7 m-causal-event 
(ante i-m-n2)
(ensq i-m-egt))
(8 m-causal-event 
(ante i-m-fuel-flow)
(ensq i-m-thrust)))

; — id features
(id "Boeing Test Right F-4")

; — Context Variables
(phase-of-flighti-m-climb-out)
(weather i-m-icing)
(workload i-m-moderate)
(engme-commanded-status i-m-climb-powcr)

; — Symptoms
(compTessor-vib m-group 
(1 m-sensor-reading (status i-m-high))
(2 m-sensor-reading (status i-m-high)))
(thrust m-group
(1 m-sensor-reading (status i-m-low))
(2 m-sensor-reading (status i-m-low) (trend i-m-increases))) 
(fan-vib m-group
(1 m-sensor-reading (status i-m-high))
(2 m-sensor-reading (status i-m-high)))
(fuel-llow m-group 
(1 m-scnsor-rcading (status i-m-low))
(2 m-sensor-reading (status i-m-low)))
(n2 m-group
(1 m-sensor-reading (status i-m-low))
(2 m-sensor-reading (status i-m-normal)))
(egt m-group
(1 m-scnsor-rcading (status i-m-low))
(2 m-scnsor-reading (status i-m-low)))
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B.5 Ice Ingestion

This is a propulsion failure scenario staged at Boeing Inc. and reported in [Shontz et. al. 1992], 

The failure was a foreign object damage due to heavy ice ingestion.
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; ~  Solution Data 
; (fault i-m-ice-ingestion)
; (events m-group 
; (1 m-causal-event 
; (ante i-m-icc-ingestion)
; (ensq i-m-fan-blade-damagc))
; (2 m-causal-event 
; (ante i-m-fan-blade-damagc)
; (ensq i-m-fan-rotor-imbalance))
; (3 m-causal-event 
; (ante i-m-fan-iotor-imbalance)
; (ensq i-m-broad-band-vib))
; (4 m-causal-event 
; (ante i-m-fan-rotor-imbalance)
; (ensq i-m-nl))
; (5 m-causal-event 
; (ante i-m-fan-rotor-imbalance)
; (ensq i-m-n2))
; (6 m-causal-event 
; (ante i-m-n2)
; (ensq i-m-fuel-flow))
; (7 m-causal-event 
; (ante i-m-fuel-flow)
; (ensq i-m-thnist))
; (8 m-causal-event 
; (ante i-m-n2)
; (ensq i-m-egt)))

(id "Boeing Test Flight F-5”)
(date "5”)
(airline "flight test data")
(flight "flight test data”)
(aircraft "flight test data”)
; — Context Variables 
(phase-of-flight i-m-cruise)

i weather i-m-icing) 
workload i-m-moderate) 

(engine-commanded-status i-m-climb-power)

; — Symptoms 
(nl m-group
(1 m-sensor-reading (status i-m-norma])))
(n2 m-group
(1 m-sensor-reading (status i-m-low)))
(egt m-group
(1 m-sensor-rcading (status i-m-low))) 
(fuel-flow m-group 
(1 m-sensor-reading (status i-m-low)))
(thrust m-group
(1 m-sensor-reading (status i-m-low))) 
(broad-band-vib m-group 
(1 m-sensor-reading (status i-m-high)))

)
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B.6 Volcanic Ash Ingestion

This is a propulsion failure scenario staged at Boeing Inc. and reported in [Shontz et. al. 1992]. An 

engine flameout occurred due to volcanic ash ingestion producing fuel nozzle clogging.
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; Fault scenario F6
; Flight Deck Engine Advisor, Boeing document D6-55880, May 1991 
(setf*casc6',,
‘(
; — Solution Data
(fault i-m-volcanic-ash-ingcstion)
(events m-group
(1 m-causal-cvcnt
(ante i-m-volcanic-ash-ingestion)
(ensq i-m-fan-blade-dnmnge))
(2 m-causal-event
(ante i-m-fan-blade-damagc)
(ensq i-m-fan-rotor-imbalancc))
(3 m-causal-event
(ante i-m-fan-rotor-imbalance)
(ensq i-m-nl))
(4 m-causal-cvent
(ante i-m-fan-rotor-imbalance)
(ensq i-m-n2))
(5 m-causal-event 
(ante i-m-n2)
(ensq i-m-fuel-flow))
(6 m-causal-event 
(ante i-m*n2)
(ensq i-m-egt)))

(id "Boeing Test Flight F-6")
(date "6’’)
(airline "flight test data")
(flight “flight test data")
(aircraft "flight test data")
; — Contest Variables 
(phase-of-flight i-m-dcsccnt)
(weather i-m-cloudy)
(workload i-m-moderate)
(cngine-commanded-status i-m-max-powcr)

; — Symptoms

(ash-cloud i-m-visible)
(fuel-flow m-group
(1 m-sensor-reading (status i-m-high) (trend i-m-increases))
(2 m-sensor-reading (status i-m-high) (trend i-m-increases))
(3 m-scnsor-rcading (status i-m-high) (trend i-m-increases))
(4 m-sensor-reading (status i-m-high) (trend i-m-increases)))
(nl m-group
(l m-sensor-reading (status i-m-normal))
(2 m-sensor-reading (status i-m-low) (trend i-m-decreascs))
(3 m-sensor-reading (status i-m-low) (trend i-m-decreases))
(4 m-sensor-Teading (status i-m-low) (trend i-m-decreases)))
(n2 m-group
(1 m-sensor-reading (status i-m-normal))
(2 m-sensor-reading (status i-m-low) (trend i-m-decreascs))
(3 m-sensor-reading (status i-m-low) (trend i-m-dccreases))
(4 m-sensor-reading (status i-m-low) (trend i-m-dccreases)))
(egt m-group
(1 m-sensor-reading (status i-m-normal))
(2 m-sensor-reading (status i-m-normal))
(3 m-sensor-Teading (status i-m-high) (trend i-m-increases))
(4 m-sensor-reading (status i-m-high) (trend i-m-increases)))

)
)
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B.7 Foreign Object Ingestion

On November 12, 1975, an Overseas National Airways DC-10-30 (Flight 32) crashed while 

attempting to take off from John F. Kennedy International Airport, Jamaica, New York [NTSB- 

AAR-76-19J. During the m takeoff roll a large number o f sea gulls rose from the runway and were 

ingested into the engine. The number 3 engine disintegrated. The takeoff was rejected and the air­

craft crashed off the end o f the runway. The NTSB determined that the probable cause of the acci­

dent was the disintegration and subsequent fire in the number 3 engine when it ingested a latge 

number of sea gulls.
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; Overseas National Airways 
; NTSB-AAR-76-19 
(self *casell*
*<
; -  Solution Data 
(fault i-m-bird-ingestion)
(events m-group 
(1 m-causal-event 
(ante i-m-bird-ingestion)
(ensq i-m-fan-blade-damoge))
(2 m-causal-event
(ante i-m-fan-blade-damagc)
(ensq i-m-fan-rotor-imbalancc))
(3 m-causal-event
(ante i-m-fan-rotor-imbalance)
(ensq i-m-nl))
(4 m-causal-cvent
(ante i-m-fan-rotor-imbalance)
(ensq i-m-n2))
(5 m-causal-event 
(ante i-m-n2)
(ensq i-m-fuel-flow))
(6 m-causal-event 
(ante i-m-n2)
(ensq i-m-egt))
(7 m-causal-event 
(ante i-m-fuel-flow)
(ensq i-m-epr)))
; — id features
(id "Overseas National Airways F-32") 
(date "November 12,1975”)
(airline "Overseas National Airways") 
(flight "Flight 32")
(aircraft "DC-10-30”)
; — Context Variables 
(phase-of-flight i-m-takc-off)
; — Symptoms 
(fuel-flow m-group
(1 m-sensor-reading (status i 
(2 m-sensor-reading (status 
(3 m-sensor-reading (status 
(4 m-sensor-reading (status 
(nl m-group
(1 m-sensor-reading (status 
(2 m-sensor-reading (status 
(3 m-sensor-reading (status 
(4 m-sensor-reading (status 
(n2 m-group
(1 m-sensor-reading (status 
(2 m-scnsor-Tcading (status 
(3 m-sensor-reading (status 
(4 m-sensor-reading (status 
(egt m-group
(1 m-sensor-reading (status 
(2 m-sensoT-rcading (status 
(3 m-sensor-reading (status 
(4 m-sensor-reading (status 
(epr m-group
(1 m-sensor-reading (status 
(2 m-sensor-reading (status 
(3 m-sensor-reading (status 
(4 m-sensor-reading (status

-m-normal))
-m-fluctuates))
-m-fluctuales))
-m-low)))

-m-fluctuates))
-m-high) (trend i-m-fluctuales)) 
m-high) (trend i-m-decreascs)) 
m-low) (trend i-m-stable)))

-m-normal))
-m-high) (trend i-m-fluctuates)) 
-m-high) (trend i-m-decreases)) 
m-low) (trend i-m-stable)))

m-normal))
m-high) (trend i-m-fluctuates)) 
•m-high) (trend i-m-fluctuates)) 
m-high) (trend i-m-stable)))

m-normal))
m-high) (trend i-m-fluctuates)) 
m-high) (trend i-m-decreases)) 
m-low) (trend i-m-stable)))
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B .8 Fan Blade Damage

On January 8,1989, a British Midland Airways Boeing 737-400 (G-OBME) was climbing through 

28,300 feet when the outer panel of one blade in the fan of the No 1 Cleft) engine detached. This 

gave rise to a series of compressor stalls in the No 1 engine, which resulted in airframe shudder­

ing. Believing that the No 2 engine had suffered damage, the crew shut that engine down. The 

shuddering caused by the surging of the No 1 engine ceased as soon as the No 2 engine was throt­

tled back, which persuaded the crew that they had dealt correctly with the emergency. The aircraft 

struck a field.
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B Case Library B,8 Fan Blade Damage

; Midlands Accident G-OBME 
; Air Accident Report 4/90, Department of TVansport 
(self *casel2lt'
'{
; — Solution Data
(fault i-m-fan-blade-damagc)
(events m-group
(1 m-causal-event
(ante i-m-fan-blade-damage)
(ensq i-m-fan-rotor-imbalance))
(2 m-causal-event
(ante i-m-fan-rotor-imbaloncc)
(ensq i-m-fan-vib))
(3 m-causal-event 
(ante i-m-fan-vib)

Scnsq i-m-nl))
4 m-causal-event 

(ante i-m-fan-vib)
(ensq i-m-n2»
(5 m-causal-event 
(ante i-m-n2)
(ensq i-m-fuel-flow))
(6 m-causal-event 
(ante i-m-n2)
(ensq i-m-egt)))
; — id features
(id "Midlands Airways 1989 G-OBME”)
(date "January 1989")
(airline "Midlands Airways”)
(aircraft "Boeing 737-400”)
(engine "General Electric CFM56")
; — Context Variables 
(phase-of-flight i-m-climb-out)
; — Symptoms 
(fan-vib m-group
(1 m-sensor-reading (status i-m-high))
(2 m-sensor-reading (status i-m-high))
(3 m-sensor-reading (status i-m-high))
(4 m-sensor-reading (status i-m-high)))
(fuel-flow m-group
(1 m-sensor-reading (status i-m-normal))
(2 m-sensor-reading (status i-m-Iow))
(3 m-sensor-reading (status i-m-Iow))
(4 m-sensor-reading (status i-m*low)))
(nl m-group
(1 m-sensor-reading (status i-m-fluctuates))
(2 m-sensor-reading (status i-m-high) (trend i-m-fluctuates)) 
(3 m-sensor-reading (status i-m-high) (trend i-m-dccrcases)) 
(4 m-sensor-reading (status i-m-!ow) (trend i-m-stable)))
(n2 m-group
(1 m-scnsor-rcading (status i-m-normal))
(2 m-scnsor-rcading (status i-m-high) (trend i-m-fluctuates)) 
(3 m-sensor-reading (status i-m-high) (trend i-m-decreases)) 
(4 m-sensor-reading (status i-m-Iow) (trend i-m-stable))) 
(egt m-group
(1 m-sensor-reading (status i-m-normal))
(2 m-sensor-reading (status i-m-high))
(3 m-sensor-reading (status i-m-high))
(4 m-sensor-reading (status i-m-high)))

)
)
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B Case Library

B.9 Fan Blade Damage

B.9 Fan Blade Damage

On June 9, 1989, a Dan Air Boeing 737-400 (G-BNNL) suffered a failure in the number 1 engine 

[AAIB-AAR-4/90]. The crew identified the failed engine correctly and completed a full shut­

down drill. Examination of the engine after landing showed that the fan had been massively dam­

aged, with severe damage to the leading edges of all blades. One blade had fractured close to the 

root and another just below the midspan shroud, both entirely by overload rupture. There was a 

third blade fracture, however, just above the mid-span shroud which appeared to be very similar to 

a blade from number 1 engine of ME.
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B Case Library B.9 Fan Blade Damage

; Dan Air G-BNNL
; Air Accident Report 4/90, Deportment of Transport 
(setf *casel3*
'(
; — Solution Data
(fault i-m-fan-bladc-domagc)
(events m-group
(1 m-causal-event
(ante i-m-fan-blade-damagc)
(ensq i-m-fan-rotor-imbalance))
(2 m-causal-event
(ante i-m-fan-rotor-imbalancc)
(ensq i-m-fan-vib))
(3 m-causal-event 
(ante i-m-fan-vib)
(ensq i-m-nl))
(4 m-causal-event 
(ante i-m-fan-vib)
(ensq i-m-n2))

(5 m-causal-event 
(ante i-m-n2)
(ensq i-m-fuel-flow))
(6 m-causal-event 
(ante i-m-n2)
(ensq i-m-egt)))
; — id features
(id "Dan Air 1989 G-BNNL")
(date “June 9.1989")
(airline "Dan Air")
(aircraft "Boeing 737-400")
(engine "General Electric CFM56”)
; — Context Variables 
(phase-of-flight i-m-climb-out)
(engine-commanded-status i-m-climb-power)
; — Symptoms 
(fan-vib m-group
(1 m-sensor-reading (status i-m-high))
(2 m-sensor-reading (status i-m-high))
(3 m-sensor-reading (status i-m-high))
(4 m-sensor-reading (status i-m-high)))
(fuel-flow m-group
(1 m-sensor-reading (status i-m-normal))
(2 m-sensor-reading (status i-m-low))
(3 m-sensor-reading (status i-m-low))
(4 m-sensor-reading (status i-m-low)))
(nl m-group; n
(1 m-sensor-reading (status i-m-fluctuates))
(2 m-sensor-reading (status i-m-Iow) (trend i-m-fluctuatcs)) 
(3 m-sensor-reading (status i-m-low) (trend i-m-dccrcases)) 
(4 m-sensor-reading (status i-m-low) (trend i-m-stable))) 
(n2 m-group; n
(1 m-sensor-reading (status i-m-normal))
(2 m-sensor-reading (status i-m-Iow) (trend i-m-fluctuatcs)) 
(3 m-sensor-reading (status i-m-low) (trend i-m-decrcascsj) 
(4 m-sensoT-reading (status i-m-low) (trend i-m-stable))) 
(egt m-group
(1 m-sensor-reading (status i-m-normal))
(2 m-sensor-reading (status i-m-high))
(3 m-sensor-reading (status i-m-high))
(4 m-sensor-reading (status i-m-high)))

)
)
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B Case Library

B.10 Fan Blade Damage

B.JO Fan Blade Damage

On June 11,1989, a British Midland Airways Boeing 737-400 (G-OBMG) suffered a failure in the 

number 2 engine [AAIB-AAR-4/90], The aircraft landed successfully. Examination of the number 

2 engine revealed that the outer panel of one fan blade had detached outboard of the mid-span 

shroud and become lodged in the space between the fan and fan outlet guide vanes. Some damage 

had occurred to the fan abradable liner and the forward acoustic panels, but apart from this there 

appeared to have been very little damage to the engine. It was also found that there had been loos­

ening of several pipe unions and of the MEC to fuel pump attachment nuts.
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B Case Library B.10 Fan Blade Damage

; Midland Airways O-OBMO 
; Air Accident Report 4/90, Department of Transport 
(setf *casel4*
‘(
; — Solution Data 
; (fault i-m-fan-blade-damagc)
; (events m-group 
; (1 m-causal-event 
; (ante i-m-fan-blade-damage)
; (ensq i-m-fan-rotor-imbalnncc))
; (2 m-causal-event 
; (ante i-m-fan-rotor-imbalance)
; (ensq i-m-fan-vib))
; (3 m-causal-event 
; (ante i-m-fan-vib)
; (ensq i-m-nl))
; (4 m-causal-event 
; (ante i-m-fan-vib)
; (ensq i-m-n2))
; (5 m-causal-cvent 
; (ante i-m-n2)
; (ensq i-m-fuel-flow))
; (6 m-causal-event 
; (ante i-m-n2)
; (ensq i-m-egt)))
; — id features
(id "Midland Airways 1989 G-OBMG")
(date "June 11, 1989")
(airline “Midland Airways")
(aircraft “Boeing 737-400")
(engine “General Electric CFM56")
; — Context Variables 
(phase-of-flight i-m-climb-out)
(engine-commandcd-status i-m-climb-powcr)
; — Symptoms 
(fan-vib m-group
(1 m-sensor-reaaing (status i-m-high))
(2 m-sensor-reading (status i-m-high))
(3 m-sensor-reading (status i-m-high))
(4 m-sensor-reading (status i-m-high)))
(fuel-flow m-group
(1 m-sensor-reading (status i-m-norma]))
(2 m-sensor-reading (status i-m-Iow))
(3 m-sensor-reading (status i-m-low))
(4 m-sensor-reading (status i-m-low)))
(nl m-group
(1 m-sensor-reading (status i-m-fluctuatcs))
(2 m-sensor-reading (status i-m-high) (trend i-m-fluctuates)) 
(3 m-sensor-reading (status i-m-low) (trend i-m-decreases)) 
(4 m-sensor-reading (status i-m-low) (trend i-m-stable)))
(n2 m-group
(1 m-sensor-reading (status i-m-normal))
(2 m-sensor-reading (status i-m-high) (trend i-m-fluctuatcs)) 
(3 m-sensor-reading (status i-m-high) (trend i-m-dccrcases)) 
(4 m-sensor-reading (status i-m-low) (trend i-m-stable))) 
(cgt m-group
(1 m-sensor-reading (status i-m-normol))
(2 m-sensor-reading (status i-m-high))
(3 m-sensor-reading (status i-m-high))
(4 m-scnsor-rcading (status i-m-high)))

)
)
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B Case Library B J1 Turbine Blade Separation

B. 11 Turbine Blade Separation

On July 19, 1970, a United Airlines’ Boeing 737-222 (Flight 611) crashed shortly after taking off 

from the Philadelphia International Airport [NTSB-AAR-72-9]. During takeoff, the number 1 

engine failed. The captain thought that both engines were spooling down and reasoned that they 

both had failed. Therefore, he decided to reject the takeoff and land the aircraft on the existing run­

way. The aircraft came to a stop past the end of the runway. The NTSB determined that a first stage 

turbine blade had failed in the number 1 engine which caused the engine to cease rotation. The 

number 2 engine was operable throughout the flight.
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B Case Library B.IJ Turbine Blade Separation

; United Airlines 1970
; Air Accident Report 4/90, Department of Transport 
j (self *cascI5*

^; — Solution Data
(fault i-m-turbine-blade-scparntion)
(events m-group
(1 m-causal-event
(ante i-m-turbine-blade-separation)
(ensq i-m-turbine-rotor-imbalance))
(2 m-causal-event
(ante i-m-turbine-rotor-imbalance)
(ensq i-m-nl))
(3 m-causal-event
(ante i-m-turbine-rolor-imbalancc)
(ensq i-m-n2))
(4 m-causal-event 
(ante i-m-n2)
(ensq i-m-fuel-flow))
(5 m-causal-event 
(ante i-m-fuel-flow)
(ensq i-m-epr))
(6 m-causal-event 
(ante i-m-n2)
(ensq i-m-cgt)))
; — id features
(id "United Airlines F-611")
(date "July 19,1970")
(airline "United Airlines”)
(aircraft "Boeing 737-222")
(flight “611”)
; — Context Variables 
(phase-of-flight i-m-climb-oul)
(engine-commanded-status i-m-climb-power)
; — Symptoms 
(epr m-group
(1 m-scnsor-rcading (status i-m-low) (trend i-m-dccrcases)) 
(2 m-sensor-reading (status i-m-low))
(3 m-sensor-reading (status i-m-low))
(4 m-sensor-reading (status i-m-low)))
(fuel-flow m-group
(1 m-scnsor-rcading (status i-m-normal))
(2 m-sensor-TCading (status i-m-low) (trend i-m-decreases))) 
(nl m-group
(1 m-sensor-reading (status i-m-low) (trend i-m-decrcases))) 
(n2 m-group
(1 m-sensor-reading (status i-m-Iow) (trend i-m-decreases)) 
(2 m-sensor-reading (status i-m-zero))
(3 m-sensor-reading (status i-m-zero))
(4 m-sensor-reading (status i-m-zero)))
(egt m-group
(1 m-sensor-Teading (status i-m-normal))
(2 m-sensor-reading (status i-m-high) (trend i-m-increascs)) 
(3 m-sensor-reading (status i-m-high) (trend i-m-stablc))
(4 m-sensor-reading (status i-m-high) (trend i-m-decTeases)))

)
)
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B Case Library B.12 Turbine Blade Separation

B. 12 Turbine Blade Separation

On May 21, 1978 an American Airlines’ Boeing 727 (Flight 566) experienced a engine failure in 

its number one engine just after rotation on take-off from Greater Cincinnati airport, Cincinnati, 

Ohio [SchutteJ. The captain performed emergency shut-down procedures on the engine and 

returned to the airport. The National Transportation Safety Board determined that the engine fail­

ure was caused by several turbine blade separations. Just after rotation the captain noted that EGT 

was increasing and then started decreasing.

- 1 4 8 -



B Case Library B.12 Turbine Blade Separation

; American Airlines 1978 
>
(sctf *casel6*
'(
; — Solution Data

; (fault i-m-turbine-bladc-separation)
; (events m-group
; (1 m-causal-cvcnt
; (ante i-m-turbine-bladc-scparation)
; (ensq i-m-turbine-rotor-imbalancc))
; (2 m-causal-event 
; (ante i-m-turbine-rotor-imbalancc)
; (ensq i-m-nl))
; (3 m-causal-evcnt 
; (ante i-m-turbine-rotor-imbalance)
; (ensq i-m-n2))
; (4 m-causal-evcnt 
; (ante i-m-n2)
; (ensq i-m-fuel-llow))
; (5 m-causal-event 
; (ante i-m-fuel-flow)
; (ensq i-m-epr))
; (6 m-causal-evcnt 
; (ante i-m-n2)
; (ensq i-m-egt)))

; — id features
(id "American Airlines F-566”)
(date "May 21,1978")
(airline “American Airlines")
(aircraft "Boeing 727")
(flight "566")
; — Context Variables 
(phase-of-flight i-m-takc-off)
(engine-commanded-status i-m-take-ofi)
; -- Symptoms 
(epr m-group
(1 m-sensor-rcading (status i-m-normal))
(2 m-sensor-reading (status i-m-high) (trend i-m-increases)) 
(3 m-sensor-reading (status i-m-low) (trend i-m-decreases)) 
(4 m-scnsor-rcading (status i-m-low)))
(fuel-flow m-group
(1 m-sensor-reading (status i-m-normal))
(2 m-sensor-reading (status i-m-normal))
(3 m-sensor-reading (status i-m-low) (trend i-m-decreases)) 
(4 m-sensor-reading (status i-m-low)))
(nl m-group
(1 m-sensor-reading (status i-m-normal))
(2 m-sensor-reading (status i-m-low) (trend i-m-dccreascs)) 
(3 m-sensor-reading (status i-m-Iow) (trend i-m-decreases)) 
(4 m-scnsor-rcading (status i-m-low) (trend i-m-decrcascs))) 
(n2 m-group
(1 m-sensor-reading (status i-m-normal))
(2 m-scnsor-rcading (status i-m-low) (trend i-m-dccrcascs)) 
(3 m-sensor-reading (status i-m-low) (trend i-m-dccreascs)) 
(4 m-scnsor-rcading (status i-m-Iow) (trend i-m-decreases))) 
(cgt m-group
(1 m-sensor-reading (status i-m-high) (trend i-m-incrcoscs)) 
(2 m-scnsor-rcading (status i-m-high) (trend i-m-increases)) 
(3 m-scnsor-rcading (status i-m-high) (trend i-m-dccrcascs)) 
(4 m-scnsor-rcading (status i-m-Iow) (trend i-m-dccrcascs)))

)
)
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B Case Library

B. 13 Engine S eparation

B.13 Engine Separation

On May 25, 1979 an American Airlines DC-10-10 (Flight 191) crashed into an open field north­

west of Chicago-O’Hare International Airport [NTSB-AAR-79-17]. During takeoff rotation, the 

left engine and pylon assembly, and about 3 feet of the leading edge o f the left wing separated 

from the aircraft. The aircraft began to roll to the left until the wings were past the vertical posi­

tion. During the roll, the aircraft’s nose pitched down below the horizon and crashed. The NTSB 

determined that the probable cause of this accident was the asymmetrical stall and the ensuing roll 

o f the the aircraft at a critical point during takeoff. This was caused by the uncommanded retrac­

tion of the left wing outboard leading edge slats and the loss of the stall warning and slat disagree­

ment indication systems resulting from separation of the number 1 engine and pylon assembly. 

The NTSB determined that the accident would have been survivable had the flight crew known 

that the stall warning and the slat disagreement indication systems were inoperative.
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B Case Library B.13 Engine Separation

; American Airlines 1979 
; Engine Separation 
(setf*casel7*
‘<
; — Solution Data
(fault i-m-engine-scparation)
(events m-group
(1 m-causal-event
(ante i-m-engine-scparation)
(ensq i-m-egt))
(2 m-causal-evcnt
(ante i-m-engine-scparation)
(ensq i-m-nl))
(3 m-causal-evcnt
(ante i-m-cngine-separntion)
(ensq i-m-n2))
(4 m-causal-evcnt
(ante i-m-engine-separation)
(ensq i-m-fuel-flow))
(5 m-causal-event
(ante i-m-engine-separation)
(ensq i-m-epr)))

; — id features
(id “American Airlines F-191”)
(date “May 25,1979")
(airline “American Airlines")
(aircraft "DC-10-10")
(flighf'191")
; — Context Variables 
(phase-of-flight i-m-takc-off) 
(engine-commanded-status i-m-toke-ofl) 
; — Symptoms 
(cpr m-group
(1 m-sensor-reading (status i-m-zero))) 
(fuel-flow m-group
(1 m-sensor-reading (status i-m-zcro))) 
(n l m-group
(1 m-sensor-reading (status i-m-zero))) 
(n2 m-group
(1 m-sensor-reading (status i-m-zero))) 
(cgt m-group
(1 m-sensor-reading (status i-m-zcro)))

)
)
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B Case Library

B.14 Bad Fuel Controller

B.14 Bad Fuel Controller

On February 19, 1985 a China Airlines’ Boeing 747 (Flight 006) was cruising on autopilot when 

the crew diagnosed a flame-out in the number four engine [NTSB-AAR-86-03]. The engine, had a 

bad fuel controller and had not flamed out but was suffering from a condition known as “bleed-air 

hogging.” The crew became preoccupied with the failure and did not notice that the controls on the 

autopilot had reached their maximum allowable correction and that the aircraft was engaged in a 

right bank. When the captain tried to correct for the problem, he reasoned that all of the attitude 

indicators had failed (they had not). The ensuing actions put the aircraft into a vertical dive. Dur­

ing the dive the crew made a third mis-diagnosis that all of the engines were flamed-out (in fact, 

only one engine had flamed out and it is this engine that is used in this case). Finally the captain 

regained control of the aircraft and all engines were “restarted." The aircraft suffered severe stress 

damage and made a safe landing in San Francisco. The NTSB determined that the accident was 

caused by a faulty fuel controller and the flight crew’s poor monitoring of systems.
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B Case Library B.14 Bad Fuel Controller

; China Airlines 006 
; NTSB-AAR-86-03 
(self *cascl8*
‘<

; — Fault
; (fault i-m-fuel-controllcr)
; (events m-group 
; (I m-causal-event 
; (ante i-m-fuel-controller)
; (ensq i-m-fuel-flow))
; (2 m-causal-event 
; (ante i-m-fuel-flow)
; (ensq i-m-nl))
; (3 m-eausal-event 
; (ante i-m-nl)
; (ensq i-m-n2))
; (4 m-causal-cvent 
; (ante i-m-n2)
; (ensq i-m-egt))
; (5 m-causal-event 
; (ante i-m-fuel-flow)
; (ensq i-m-epr)))

(id “China Air F-006")
(date "February 19")
(airline "China Air”)
(flight “006")
(aircraft "Boeing 747")

; — Context Variables 
(phase-of-flight i-m-cruisc)
(workload 1-m-high)
(engine-commanded-status i-m-mid-powcr)
; — Symptoms 
(egt m-group
(1 m-sensor-reading (status i-m-normal) (trend i-m-dccreascs)) 
(2 m-sensor-reading (status i-m-low) (trend i-m-stable))
(3 m-scnsor-rcading (status i-m-Iow) (trend i-m-dccrcases))
(4 m-sensor-reading (status i-m-low) (trend i-m-stable)))
(nl m-group
(1 m-scnsor-rcading (status i-m-normal) (trend i-m-dccreascs)) 
(2 m-sensor-reading (status i-m-low) (trend i-m-stable))
(3 m-sensor-reading (status i-m-low) (trend i-m-dccrcases))
(4 m-sensor-reading (status i-m-low) (trend i-m-stable)))
(n2 m-group
(1 m-scnsor-rcading (status i-m-normal) (trend i-m-decreases)) 
(2 m-sensor-reading (status i-m-low) (trend i-m-stable))
(3 m-sensor-reading (status i-m-Iow) (trend i-m-dccrcases))
(4 m-sensor-reading (status i-m-low) (trend i-m-stable)))
(epr m-group
(1 m-scnsor-rcading (status i-m-normal) (trend i-m-decreases)) 
(2 m-sensor-reading (status i-m-low) (trend i-m-dccrcascs))
(3 m-sensor-reading (status i-m-low) (trend i-m-decreases))
(4 m-sensor-reading (status i-m-low) (trend i-m-stable))) 
(fuel-flow m-group
(1 m-sensor-reading (status i-m-low) (trend i-m-decreases))
(2 m-sensor-reading (status i-m-low) (trend i-m-stable))
(3 m-sensor-rcading (status i-m-low) (trend i-m-decreases))
(4 m-scnsor-rcading (status i-m-low) (trend i-m-stable)))
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B Case Library

B. 15 Volcanic Ash Ingestion

B.15 Volcanic Ash Ingestion

On December 15, 1989 a Boeing 747-400 was flying at 25,000 feet near Anchorage, Alaska when 

it experienced flameouts on all four engines [Lloyd 1990]. The flameouts were due to volcanic ash 

ingestion from a cloud produced by an eruption of Mt. Redoubt during the previous day. The flight 

crew restarted engines No 1 and 2 at 13,000 feet and were able to maintain altitude as they 

restarted the remaining engines. The airplane made an uneventful landing at Anchorage.
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B Case Library B.15 Volcanic Ash Ingestion

; Mount Redoubt, 1989 
(sctf *casel9*
'(
; — Solution Data
(Fault i-m-volcanic-ash-ingcstion)
(events m-group
(1 m-causal-event
(ante i-m-volcanic-ash-ingcstion)
(ensq i-m-fan-blade-damage))
(2 m-causal-event

(ante i-m-fan-bladc-damagc) 
(ensq i-m-fan-rotor-imbalance)) 

(3 m-causal-event
(ante i-m-fan-rotor-imbalancc) 
(ensq i-m-nl))

(4 m-causal-cvent
(ante i-m-fan-rotor-imbalancc) 
(ensq i-m-n2))

(5 m-causal-event 
(ante i-m-n2)
(ensq i-m-egt)))

(id “Mount Redoubt”)
(date "December 15,1989”)
(aircraft “Boeing 747-400”)
(engine “General Electric CF6-80-C2”) 
; — Context Variables 
(phnse-of-flight i-m-dcscent)
(weather i-m-cloudy)
; — Symptoms

(glow-in-engines i-m-visible)
(smoke i-m-visible)
(nl m-group
(1 m-sensor-reading (status i-m-low)) 
(2 m-sensor-reading (status i-m-Iow)) 
(3 m-sensor-reading (status i-m-low)) 
(4 m-sensor-reading (status i-m-Iow))) 
(n2 m-group
(1 m-sensor-reading (status i-m-Iow)) 
(2 m-sensor-reading (status i-m-Iow)) 
(3 m-sensor-reading (status i-m-Iow)) 
(4 m-sensor-reading (status i-m-Iow))) 
(egt m-group
(1 m-scnsor-rcading (status i-m-Iow)) 
(2 m-sensor-reading (status i-m-Iow)) 
(3 m-sensor-reading (status i-m-Iow)) 
(4 m-sensor-reading (status i-m-Iow))) 
(epr m-group
(1 m-sensor-reading (status i-m-low)) 
(2 m-sensor-reading (status i-m-Iow))
(3 m-sensor-rcading (status i-m-Iow)) 
(4 m-sensor-reading (status i-m-low)))

)
)
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B Case Library

B. 16 Volcanic Ash Ingestion

B.16 Volcanic Aslt Ingestion

In June 1982, the Galunggung Volcano on the island of Java erupted. A Boeing 747 encountered 

the volcanic debris and experienced fiame-outs on three engines while the aircraft was at 33,000 

feet. One engine was successfully restarted and an uneventful two-engine landing was accom­

plished [Lloyd 1990].
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; Galunggung, 1982 
(sctf *case20*
*<
; — Solution Data
; (fault i-m-volcanic-ash-ingcstion)
; (events m-group
; (1 m-causal-event
; (ante i-m-volcanic-ash-ingcstion)
; (ensq i-m-fan-blade-damage))
; (2 m-causal-event 
; (ante i-m-fan-blade-damagc)
; (ensq i-m-fan-rotor-imbalancc))
; (3 m-causal-event 
; (ante i-m-fan-iolor-imbalance)
; (ensq i-m-nl))
; (4 m-causal-event.
; (ante i-m-fan-ro tor-imbalance)
; (ensq i-m-n2))
; (5 m-causal-event 
; (ante i-m-n2)
; (ensq i-m-egt)))

(id "Galunggung")
(date “June 1982")
(aircraft “Boeing 747”)
(engine “P&W JT9D-7As”)
; — Context Variables 
; — Symptoms

(glow-in-engines i-m-visible)
(nl m-group
(1 m-sensor-reading (status i-m-Iow)) 
(2 m-sensor-reading (status i-m-low)) 
(3 m-sensor-reading (status i-m-low)) 
(4 m-sensor-reading (status i-m-Iow))) 
(n2 m-group
(1 m-scnsor-rcading (status i-m-Iow)) 
(2 m-sensor-reading (status i-m-low)) 
(3 m-sensor-reading (status i-m-Iow)) 
(4 m-sensor-reading (status i-m-!ow)j) 
(egt m-group
(1 m-sensor-reading (status i-m-low)) 
(2 m-sensor-reading (status i-m-low)) 
(3 m-scnsor-rcading (status i-m-Iow)) 
(4 m-scnsor-rcading (status i-m-Iow))) 
(epr m-group
(1 m-sensor-reading (status i-m-low)) 
(2 m-sensor-reading (status i-m-low)) 
(3 m-sensor-reading (status i-m-low)) 
(4 m-sensor-reading (status i-m-low)))

)
)
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B.17 Massive Water Ingestion

On April 4, 1977 a Southern Airways DC-9 (Flight 242) crashed in New Hope, Georgia [NTSB- 

AAR-78-3]. The aircraft had flown through heavy thunderstorms and had lost both engines. The 

crew attempted an emergency landing on a highway and crashed. The NTSB determined that mas­

sive water ingestion into the engines accompanied by thrust level movement induced severe stall­

ing in and major damage to the engine compressors. The NTSB determined that the aircraft might 

have been able to survive the weather had the flight crew not made significant movements in the 

thrust level.
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; Southern Airways F-242 
; NTSB-AAR-78-3 
(setf *case21*
*(
; — Solution Data 
; (fault i-m-water-ingestion)
; (events m-group 
i (1 m-causal-evcnt 
; (ante i-m-water-ingcstion)
; (ensq i-m-fan-blade-damage))
; (2 m-causal-event 
j (ante i-m-fan-blade-damagc)
; (ensq i-m-fan-rotor-imbalance))
; (3 m-causal-event 
; (ante i-m-fan-rotor-imbalance)
; (ensq i-m-nl))
; (4 m-causal-event 
; (ante i-m-fan-rotor-imbalancc)
; (ensq i-m-n2))
; (5 m-causal-evcnt 
; (ante i-m-n2)
; (ensq i-m-egt))
; (6 m-causal-event 
; (ante i-m-n2)
; (ensq i-m-fuel-flow)))
; (7 m-causal-evcnt 
; (ante i-m-77)
; (ensq i-m-epr)))

(id ‘‘Southern Airways F-242")
(date‘‘April 4,1977")
(aircraft “DC-9")
; — Context Variables 
(temp i-m-frcczing)
; -  Symptoms 

(nl m-group
(1 m-scnsor-rcading (status i-m-normal))
(2 m-sensor-reading (status i-m-low) (trend i-m-decreases)) 
(3 m-sensor-Teading (status i-m-Iow) (trend i-m-decreases)) 
(4 m-sensor-reading (status i-m-Iow)))
(n2 m-group
(1 m-sensor-reading (status i-m-normal))
(2 m-sensor-reading (status i-m-low) (trend i-m-decTeascs)) 
(3 m-scnsor-Teading (status i-m-low) (trend i-m-decTcases)) 
(4 m-sensor-reading (status i-m-Iow)))
(egt m-group
(1 m-sensor-reading (status i-m-low) (trend i-m-decrcascs)) 
(2 m-sensor-reading (status i-m-low) (trend i-m-decreases)) 
(3 m-sensor-reading (status i-m-low) (trend i-m-decreases)) 
(4 m-scnsor-rcading (status i-m-low)))
(epr m-group
(1 m-sensor-reading (status i-m-normal))
(2 m-sensor-reading (status i-m-normal))
(3 m-sensor-reading (status i-m-low) (trend i-m-dccrcascs)) 
(4 m-sensor-reading (status i-m-low)))
(fuel-flow m-group
(1 m-scnsor-rcading (status i-m-normal))
(2 m-sensor-Tcading (status i-m-normal))
(3 m-scnsor-rcading (status i-m-normal))
(4 m-sensor-reading (status i-m-low) (trend i-m-decrcascs)))

)
)
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; Hypothetical scenario 
>
(sctf *case51*
*(

; — Fault
(fault i-m-ice-ingestion)
(events m-group 
(1 m-causal-event 
(ante i-m-ice-ingcstion)
(ensq i-m-fan-blade-damagc))
(2 m-causal-evcnt
(ante i-m-fan-blade-damagc)
(ensq i-m-fan-rotor-imbalance))
(3 m-causal-event
(ante i-m-fan-rotor-imbalance)
(ensq i-m-fan-vib))
(4 m-causal-event
(ante i-m-fan-rotor-imbalance)
(ensq i-m-nl))
(5 m-causal-event 
(ante i-m-fan-vib)
(ensq i-m-n2)))

(id "Hypothetical sccnnrio 51")
(date “Hypothetical scenario 51”)
(airline "Hypothetical scenario 51”)
(flight "Hypothetical scenario 51")
(aircraft "Hypothetical scenario 51”)

; — Context Variables 
(phase-of-flight i-m-ground-start)
(weather i-m-clear)
(workload i-m-moderatc)
(cngine-commanded-sfatus i-m-start)
; — Symptoms 
(nl m-group

SI m-sensor-reading (status i-m-normal) (trend i-m-increases)) 
2 m-sensor-reading (status i-m-low) (trend i-m-increases))

(3 m-sensor-reading (status i-m-low) (trend i-m-increases))
(4 m-sensor-reading (status i-m-low) (trend i-m-stable)))
(n2 m-group
(1 m-sensor-reading (status i-m-normal) (trend i-m-incrcascs)) 
(2 m-sensor-reading (status i-m-low) (trend i-m-incrcascs))
(3 m-sensor-reading (status i-m-low) (trend i-m-incrcascs))
(4 m-sensor-reading (status i-m-low) (trend i-m-stable))) 
(fan-vib m-group
(1 m-sensor-reading (status i-m-high) (trend i-m-incrcascs))
(2 m-sensor-reading (status i-m-high) (trend i-m-increases))
(3 m-sensor-reading (status i-m-high) (trend i-m-increascs))
(4 m-sensor-Teading (status i-m-high) (trend i-m-stable)))

)
)
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; Hypothetical scenario 
(sctf *case52+
*(

(id “Hypothetical scenario 52")
(date “Hypothetical scenario 52")
(airline' Hypothetical scenario 52")
(flight “Hypothetical scenario 52")
(aircraft "Hypothetical scenario 52”)

; — Context Variables
(phase-of-flight i-m-ground-start)
(weather i-m-clear)
(workload i-m-moderatc)
(engine-conunanded-status i-m-start)

; — Symptoms

(compressor-vib m-group
(1 m-scnsor-rcading (status i-m-high))
(2 m-scnsor-rcading (status i-m-high)))

(thrust m-group
(1 m-scnsor-rcading (status i-m-low))

(2 m-sensor-reading (status i-m-low) (trend i-m-increascs))) 
(fan-vib m-group

(1 m-scnsor-rcading (status i-m-high))
(2 m-sensor-reading (status i-m-high)))

(fuel-flow m-group
(1 m-sensor-reading (status i-m-low))
(2 m-sensor-reading (status i-m-low)))

(n2 m-group
(1 m-sensor-reading (status i-m-low))
(2 m-sensor-reading (status i-m*normal)))

(egt m-group
(1 m-sensor-reading (status i-m-low))
(2 m-sensor-reading (status i-m-low)))

)
)
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