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ABSTRACT

Materials which flow like fluids, but possess anisotropic properties like 

molecular crystals, are called ’liquid crystals’. Studies of liquid crystals contribute to our 

understanding of how molecular orientation influences macroscopic properties. This 

thesis presents experimental and theoretical investigations of molecular order and 

dynamics in nematic liquid crystal systems. First, deuterium nuclear magnetic resonance 

is used to determine the degree of orientational order of both components of a liquid 

crystal mixture simultaneously. The temperature dependence of the four order parameters 

is interpreted using a newly developed mean field theory of nematic binary mixtures 

composed of biaxial molecules. Next, mean field theory is applied to predict the phase 

behavior of arbitrarily shaped nematogens. For single component liquid crystals, the four 

order parameters needed to quantify orientational order of biaxial molecules in a biaxial 

nematic phase are calculated as a function of temperature for both rod-like and plate-like 

liquid crystals. For binary mixtures, temperature-concentration phase diagrams for a 

variety of molecular shapes are calculated. These theoretical predictions suggest that 

binary mixtures of highly asymmetric molecules with opposite shape anisotrophies may 

display stable biaxial nematic phases. Last, deuterium nuclear magnetic spin relaxation 

rates are measured as a function of temperature to investigate the molecular motion of a 

liquid crystal and a liquid crystal binary mixture. These experimental results are 

interpreted using an anisotropic viscosity model of molecular reorientation. The 

temperature dependence of the correlation times for the molecular motions is examined 

and discussed. It is demonstrated that mixing probe molecules into a liquid crystal has 

a profound effect on the molecular motion of the liquid crystal.

ix



A STUDY OF MOLECULAR ORDER AND MOTION 

IN NEMATIC LIQUID CRYSTALS



1. INTRODUCTION

The three common forms of matter are the solid, the liquid and the gas 

phase. In 1888, German chemists [1-3] observed an intermediate phase in some esters 

of cholesterol. These materials flowed like a viscous liquid but possessed anisotropic 

optical properties characteristic of solid crystals. Studying these esters using a 

polarization microscope, Otto Lehmann reported in 1889 of observing a "fliessende 

kristalle" or "liquid crystal" phase [2]. Materials which have these intermediate phases 

or mesophases are called liquid crystals, mesogens or mesomorphs. Most liquid crystal 

molecules are organic compounds having elongated shapes. These long molecules tend 

to align parallel to each other on average, this alignment gives liquid crystals their 

anisotropic, crystal-like properties. Liquid crystal systems can be produced by dissolving 

amphiphilic molecules, such as salts of higher fatty acids, in a carefully controlled amount 

of solvent, usually water. This class of materials are called lyotropic liquid crystals. 

Lyotropics are usually formed by aggregates of molecules; examples include soaps, 

detergents and biological membranes. Systems that show mesomorphic behavior in a 

definite temperature range are called thermotropic.

1.1 Structure

Both lyotropic and thermotropic liquid crystals are classified according to 

their structure. The nematic phase is a turbid, low viscosity state. Nematic liquid 

crystals give thread-like textures when viewed through a polarizing microscope, and 

Nemat is Greek for thread-like. Liquid crystal molecules in the nematic phase have long

2
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range orientational order, but the centers of mass of the molecules are distributed at 

random. Nematic liquid crystals or nematogens come in a variety of shapes. Rod shaped 

liquid crystal molecules form calamitic nematic phases (calamos is Greek for rod). The 

calamitic nematic phase is uniaxial with all rods pointing in a particular direction on 

average. This class of compounds has been the most extensively investigated and is the 

most important for technological applications [4,5], As of 1990, there were approximately 

20,000 rod-like mesogenic compounds known to exist, and typically 1,000 new calamitic 

liquid crystalline compounds are synthesized each year [6]. In 1977, two groups 

independently discovered that disk-like molecules form nematic liquid crystal phases 

[7,8]. Since disks have rotational symmetry, the discotic nematic phase is uniaxial. 

Recently, a number of groups have claimed to obtain a biaxial nematic phase with highly 

asymmetrically shaped molecules [9,10,11]. For these biaxial nematogens, rotations about 

the long axis are sufficiently hindered that there is orientational order in two orthogonal 

directions. Illustrations of these phases are presented in Figure 1.1.

Although this work will concentrate on thermotropic liquid crystals in the 

nematic phase, other liquid phases exist. Many mesogens form more highly ordered 

liquid crystal phases as temperature is lowered (for thermotropics) or as concentration of 

the amphiphilic molecules is increased (for lyotropics). Smectic mesophases (smektikos 

is Greek for soap-like) are characterized by positional order in at least one dimension in 

addition to average orientational alignment. The centers of mass of the molecules align 

in layers giving a one dimensional density fluctuation. There are many different kinds 

of smectic phases, indicated with the subscripts SA, S„, ... , S, [12]. These phases differ
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(b)

(c)

Figure 1.1 The nematic phase is sketched.
(a) The calamitic nematic phase composed of rod-like molecules.
(b) The discotic nematic phase composed of disk-like molecules.
(c) The biaxial nematic phase composed of brick-like molecules.
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in (i) the orientation of the preferred direction of the molecules with respect to the layer 

normal (orthogonal and tilted smectic phases), and (ii) the organization of the centers of 

mass of the molecules within the layers. Some discotic liquid crystal molecules also tend 

to stack in ordered columns which are arranged in a hexagonal or rectangular array. 

These smectic-like phases called columnar discotic phases. The experimental 

determination of the liquid crystal phase is performed using a variety of techniques. X- 

ray diffraction results obtained from powders and single crystal samples can be used to 

determine the structure of the mesophase [12]. Observations of mesogens using a 

polarizing microscope give textures which are indicative of the symmetry of the phase 

[13]. Finally, miscibility studies can help classify the phase of a liquid crystal by taking 

advantage of the fact that complete miscibility is found only for phases of equal or 

closely related structures [14].

1.2 Orientational Order

Anisotropic properties of liquid crystals depend crucially on the degree of 

orientational order of the constituent molecules. All present day applications of liquid 

crystals exploit dielectric, diamagnetic, optical, or viscosity anisotropies which are 

manifestations of the orientational order [4,5]. A measure of the degree of alignment in 

liquid crystals is needed to quantify this order. The average orientation of liquid crystal 

molecules can be described statistically by defining a distribution function f(£2) such that 

f(Q)dQ. is the probability of finding a molecule within a solid angle dQ centered at £2. £2 

represents the three Euler angles (a,p,y) which describe the orientation of the molecule 

in the lab frame, as shown in Figure 1.2. The orientational distribution function can be
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expanded using Wigner rotation matrix elements as the basis [15],

m  = £ ^  <«>• (U )Sn

The coefficients of this expansion, > are thermal averages called order

param eters which are usually determined experimentally rather than f(Q) itself.

Restricting the discussion to nematic liquid crystals, experiments show that 

nematic mesophases exhibit D„h symmetry [16] even if the molecules do not. Phases 

with D„h symmetry have a plane of symmetry perpendicular to the direction of average 

alignment (the director, n, is a unit vector pointing in the direction of average alignment). 

For systems possessing D„h symmetry, with J odd are zero.

The scalar order parameter, Q, describes orientational order in a uniaxial 

phase of cylindrically symmetric molecules. Unfortunately, some authors prefer the 

notation Q [17], while other use S, Szz, P^cosHJ. or D^(Q) to stand for the same 

quantity [15]. In this thesis, the convention of Bergersen et al. [17] will be adopted, and 

this order parameter will be called Q.

Q = sa = <P2( P)> = (d £XQ)) = ^ Icos2p - i y  (1.2)

The uniaxial order parameter, Q, is zero for randomly oriented isotropic fluids, and it can 

range from 1 for perfectly aligned rods to M  for completely aligned plates. Most 

experiments only measure this second rank order parameter, although some estimates of 

the fourth rank order parameter <P4(P)> have also been published [18,19]

<P4(P )> = (d &XCL)) = ^ c o s 4p -  J lc o s 2p - 2 y  (1.3)

In reality, all rod-like nematogens deviate from cylindrical symmetry in
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-Y.

/ \

-Y,

Figure 1.2 The three y-convention Euler angles (£2 = (a,p,y)) which describe the 
orientation of a liquid crystal molecule in the laboratory frame.
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some degree, so although the phase may be uniaxial, the two sides of the brick-like 

molecule will have different probabilities of orienting along the director. A second order 

parameter describing this molecular anisotropy is (S^-S^) or D [15,17],

order parameters are required to describe the orientational order [17,20]. These are the 

uniaxial phase order parameters given above, Q and D, and two biaxial phase order 

parameters given below, P and C.

to understand the behavior of mesogenic systems in terms interactions among the 

component molecules. Ideally, molecular dynamics simulations of large systems of 

particles with realistic intermolecular potentials would be used. Reasonably accurate pair 

potentials exist for simple molecules such as inert gases, methane, nitrogen, water, oxygen 

and benzene [21]. These potentials have been determined experimentally and have been 

used in computer simulation studies of gases and liquids. To date, the molecular 

complexity of nematogens have prevented the determination of reliable pair potentials and

D  = (S „ -S J  = (2sin2Pcos2y^ =  ̂ 2  (d£(Q)+D®(Q)).

For a biaxial nematic phase of non-cylindrically symmetric particles, four

(1.5)

C = * (d ® (ft) + D® (Q) -  D®(ft) -  D®. 2(ft))

.( (l+cos2(P))cos(2a)cos(2y) -  3cos(p)sin(2a)sin(2y) >
( 1.6)

1.3 Molecular Theories

Why do liquid crystals align? Molecular theories of liquid crystals attempt
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their subsequent use in computer simulation experiments. Currently, model potentials 

must be introduced in order to approximate the relevant characteristics of the interactions. 

Using these approaches, a qualitative understanding of liquid crystals from a molecular 

point of view can be developed.

The Onsager molecular field theory [22] ascribes the origin of nematic 

ordering to the anisotropic shape of the molecules, i.e. to short range, hard core, repulsive 

interactions. The stability of the nematic phase is given in terms of the excluded volume 

of hard rods with the shape of spherocylinders or ellipsoids of revolution. An analytic 

expression for the free energy is derived as a fraction of the length to breadth anisotropy, 

the order parameter Q, and the packing fraction. Analytical solutions for the order 

parameters can be obtained using statistical mechanics, and the solution which gives the 

minimum free energy of the system is taken to be equilibrium. For long, thin rods with 

a length to breadth ratio of 100, this approach gives very high predictions for the order 

parameters (Q=0.78) and over estimates the density change (Ap=21%) at the isotropic- 

nematic transition compared to experimentally determined values (Q=0.3 and Ap=.4%)

[23]. Smaller length to breadth ratios give more reasonable results. If this ratio is 3, Q 

= 0.62 and Ap<l%.

Landau-DeGennes theory is an alternate approach in which any attempt to 

calculate the partition function from the intermolecular potential is forsaken. Instead, the 

free energy is written as an expansion in terms of parameters of importance in 

characterizing the transition of interest. For liquid-gas transitions, the relevant order 

parameter is the density, for ferromagnets it is the magnetization, for superconductors n
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is the Cooper pair potential, and for liquid crystals it is the order parameter. Landau’s 

original work was successful in describing second order phase transitions. The nematic- 

isotropic transition is first order because the order parameters and the entropy of transition 

change discontinuously at the transition. DeGennes [16] extended Landau’s theory to 

predict the order parameters near weakly first order transitions. In 1991, the Swedish 

Academy of Sciences presented DeGennes with a Nobel prize in Physics in part for this 

theory which "has shown that phase transitions in such apparently different physical 

systems as magnets, superconductors, polymer solutions and liquid crystals can be 

described in mathematical terms of surprisingly broad generality" [27].

Many other interesting theories of liquid crystal order in nematics have 

been developed. The Lebwohl-Lasher model [28] is a Monte-Carlo type calculation in 

which molecules, placed on a fixed lattice, interact via the potential {j = - e iyP2(cos0). 

where 0 is the angle between the long axes of molecules i and j, here is finite if i and 

j are nearest neighbors and 0 otherwise. This model predicts a first order phase transition 

from the liquid state to the nematic, with Q=0.333±0.009 [29]. The Lebwohl-Lasher 

model is presently being used to investigate order in small droplets (microns) dispersed 

in a polymer matrix where surface boundary conditions have a profound effect on the 

orientation of the molecules [30]. Other Monte Carlo simulations in which hard particles 

are allowed to move rotationally and translationally have been performed, giving results 

similar to Onsager techniques [31]. Finally, hybrid van der Waals-type theories which 

consider both short range and long range interactions for liquid crystals have also been 

proposed [32,33]. The addition of a long term attractive term to hard core term in the
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potential lowers the Q at the transition by 0.10 to 0.15, while the change of density at the 

transition is unaffected [33].

In this thesis, a highly successful molecular theory called mean field theory 

will be used to interpret experimental results and to predict the behavior of binary 

mixtures of biaxial nematogens. Mean field theory, first formulated by Maier and Saupe

[24], attributes nematic ordering to anisotropic, soft, long range attractive interactions. 

The mean field approach assumes that any molecule in the system interacts with a mean 

field generated by all the other molecules. In the original treatment, attractive pair-wise 

London dispersion forces (induced dipole-induced dipole) were assumed which led to a 

mean field pseudopotential U(Q) [24],

—coŝ P - — 
2 2

(1.7)l/(Q) = -CQ

here C is a temperature independent constant, P is the Euler angle between the molecular 

z-axis and the director shown in Figure 1.2, and Q is the orientational order parameter. 

Later it was realized that any pair potential of the form t/(r12,P) = -« (r12) P2(cosp)> 

where u(rn ) is some scalar function of distance, will give this pseudopotential [25]. 

Classical statistical mechanics gives the orientational order parameter Q as function of this 

pseudopotential, and this equation can be solved self-consistently to find a solution for 

the order parameter as a function of temperature. The free energy density, entropy 

density and internal energy density of the system can also be calculated, and the order 

parameter solution which gives the minimum free energy density at a given temperature 

gives the stable equilibrium state of the system. Results of this theory are in qualitative 

agreement with experiment. Using Maier-Saupe mean field theory, the order parameter
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at the transition isotropic-nematic transition Tni has been calculated to be Q = 0.4289, and 

the entropy of transition is AS = 3.47 J/mol°K (experiments which measure the latent heat 

of transition give AS = 2.5 to 3.4 J/mole K) [26].

Mixtures of liquid crystals are often used in applications. The aim is to 

get a nematic phase having specific physical properties related to the orientational order 

parameter (birefringence, dielectric susceptibility, diamagnetic susceptibility) appropriate 

for the application, over a reasonably wide temperature range around the ambient. Binary 

mixtures of liquid crystals have been treated theoretically using extensions of mean field 

lattice models [34,35], Onsager theories [36,37], van der Waals-type theories [32], lattice 

models of hard rods [38], and extended Maier-Saupe models [39-41]. In the first two 

chapters of the thesis, a recently developed extension of Maier-Saupe theory of binary 

mixtures of biaxial molecules [41] will be used to interpret experimentally measured 

orientational order parameters in a nematic liquid crystal binary mixture, and to predict 

phase stability and orientational order in binary mixtures of biaxial nematogens.

1.4 Measurement of Orientational Order

The uniaxial order parameter, Q, can be determined by measuring a number 

of anisotropic physical properties of liquid crystals. The magnetic susceptibility % is 

defined as % = (SI units), where p0 is the permeability of the vacuum, B is the

magnetic induction and M is the magnetization. An external magnetic field induces a 

magnetization M in a sample by changing the orbital motion of the electrons on 

constituent molecules. Most mesogens are diamagnetic, in these materials the induced 

currents tend to lower the magnetic field in the sample, hence x is negative. The
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orientational order parameter Q can be estimated by subtracting the susceptibility 

measured along the director from that measured perpendicular to it [42], The dielectric 

susceptibility, %e = e^'P/E, where e0 is the permittivity of vacuum, and P is the 

polarization induced by the electric field E, have also been used to measure Q. The 

dielectric susceptibility anisotropy can be estimated optically with measurements of 

refractive indices and electrically with capacitance measurements [42].

Optical spectroscopies have also been used to quantify molecular order in 

liquid crystal systems. Raman spectroscopy involves the inelastic scattering of a photon. 

In 1928, Raman observed that a small proportion of radiation passing through a substance 

emerges with an increase or decrease in frequency. This occurs when a molecule in the 

ground state is excited to a virtual electronic state and instantaneously (lifetimes of the 

virtual excited states are about 10'12 s) emits a photon as it returns to some vibrational or 

rotational level in the ground electronic state. The scattered light is analyzed 

spectroscopically. A study of the polarization of the Raman lines can give, with the aid 

of somewhat oversimplified models, both the second and the fourth moment of the 

orientational distribution function (Q and <P4((})>) [43,44]. With fluorescence 

spectroscopy, radiant energy is absorbed and an electron is elevated into an excited singlet 

state. A photon is emitted after a singlet state lifetime of Xp=10'9 s, and the electron falls 

from the lowest vibrational level of the first excited singlet state to the ground state. 

Since most mesomorphic molecules do not fluoresce appreciably, the technique in general 

uses a fluorescent probe molecule. The anisotropy in the polarization of the emitted 

radiation from these probe molecules is used to determine the static order parameters (.)
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and <P4(P)> [45]. With infrared spectroscopy, photons are absorbed resulting in 

vibrational excitation of the molecule. Any molecular vibration which modulates the 

molecular dipole moment can cause absorption and reemission of infrared light. A given 

normal mode of vibration will absorb the radiation at a particular vibrational frequency. 

The order parameter Q can be measured by observing the absorbance of infrared light 

polarized parallel to and perpendicular to the nematic director at an appropriate normal 

mode frequency [43,44].

1.5 Measurement of Molecular Motion

Molecular motion can also be measured with scattering and spectroscopic 

experiments. With fluorescence depolarization, the degree of polarization of the 

fluorescence emission depends on the reorientational dynamics of the liquid crystal 

molecules. If the lifetime of the singlet state, xf, is much less than the molecular 

reorientational relaxation time, xr then the results of the experiment can only be used to 

measure orientational order parameters. In the other extreme where xr «  xf, the 

molecular system approaches dynamical equilibrium before emission takes place, and 

again only static information is accessible. The most interesting case is when xr * x{, 

then the molecular motion strongly influences but does not totally destroy the degree of 

polarization of the fluorescence emission. Time resolved fluorescence spectroscopy can 

be used to measure xr using pulsed light experiments and the ratio x/xf using steady state 

experiments [43-46]. For Raman and infrared spectroscopy, the bandshape of the 

observed frequencies is influenced by both vibrational and reorientational motion. The 

basic problem for measuring molecular motion with these methods is the separation o f
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broadening mechanisms due to rotation from that due to vibrations. Because the 

bandshape is a convolution of two different relaxation processes [47], the Fourier 

transform is simply a product of the two separate correlation functions. Models of the 

motion can be used to interpret these correlation functions and give relaxation rates [43]. 

One scattering experiment which can probe the dynamics of liquid crystals involves 

reflecting a beam of neutrons from an aligned liquid crystal. By measuring the intensity 

of the scattered neutrons as a function of momentum and energy, translational and 

rotational diffusion rates have been estimated using models for the molecular motion 

which assume uncorrelated vibrational, rotational and translational motions [48,49].

1.6 Magnetic Resonance Spectroscopy

Magnetic resonance spectroscopy is a powerful, widely used technique for 

studying both the dynamics and structural properties of nematic liquid crystals. The 

phenomenon of magnetic resonance is due to the interaction of an external magnetic field 

with the intrinsic spin of a nucleus or an electron. Although the fundamental behavior 

of nuclei and electrons in a magnetic field is very much alike, the experimental apparatus 

used to study these interactions and the types of information accessible is quite different 

These differences have lead to a division of the subject of magnetic resonance into two 

broad categories: (1) electron spin resonance (ESR) and (2) nuclear magnetic resonance 

(NMR).

To investigate liquid crystal systems using ESR techniques, groups of 

atoms with unpaired electrons (usually nitroxide radicals) are chemically attached to probe 

molecules, and these probes are diluted into the host mesogen. It is possible to derive a
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theoretical expression for the ESR line position as a function of the orientational order 

parameter Q [50] and even <P4> of the probe molecules in the host matrix [51]. 

Relaxation rates of these paramagnetic states are on the order of the 10'9 sec, thus spectral 

lineshapes are very sensitive to rotational motions of the spin tagged solute. In order to 

interpret the lineshapes, a numerical solution of the stochastic Liouville Equation (a 

density operator form of the time dependent Schrodinger equation with a randomly 

fluctuating Hamiltonian) is solved with explicit models for the reorientational motion [52]. 

Information obtained using this technique is of course restricted to the dynamics of the 

tagged solute, and can not be used to infer the motion of the liquid crystal molecules 

themselves.

Nuclear magnetic resonance (NMR) refers to the resonant absorption of 

electromagnetic radiation by a system of atomic nuclei placed in a magnetic field. The 

frequency of the resonance, v„, is the Larmor precession frequency of the nuclei in a 

magnetic field. For a nucleus possessing both spin angular momentum hi and a 

proportional magnetic moment |i = yhl, the Larmor frequency is proportional to the 

intensity of the magnetic field, v0 = yB0, where y is the gyromagnetic ratio in Hertz per 

Tesla. An exact quantum calculation using the Zeeman Hamiltonian:

Hz = -y h Bq 11, (1.8)

yields an energy separation between adjacent levels of Eq = hv0. There are 21+1 

eigenstates with eigenvalues Em = -hv0m, where m is the z component angular momentum 

quantum number which takes integer values between -I and I. The actual energy levels 

are perturbed because of interactions with other nuclei and electrons. These perturbing
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interactions make NMR spectroscopy a powerful tool for probing molecular structure, 

order and dynamics.

NMR studies of liquid crystals commonly use the hydrogen (‘H), carbon 

(13C) and deuterium (2H) nuclei. For 'H-NMR studies, the Zeeman interaction is 

perturbed by direct, through space, dipole-dipole couplings. The fact that each hydrogen 

nucleus interacts with each of its many neighbors makes interpretation of the spectra 

difficult, although multiple quantum techniques have been developed to simplify the 

analysis of the highly complicated spectra [53]. For 13C-NMR, the dominant perturbations 

on the Zeeman interaction are chemical shielding anisotropies and 13C-*H dipolar 

couplings. Proton decoupling can provide simple, high resolution spectra of liquid 

crystals, but this requires high radio frequency power making temperature control difficult 

[54]. 2H-NMR is uniquely suited for studying molecular static and dynamics. 

Unfortunately the natural abundance of deuterium is low ( 0.015% ) [55], which makes 

the use of isotopically enriched substances necessary. For 2H nuclei, coupling between 

electric field gradients generated by neighboring electrons and the nuclear quadrupole 

moment is the dominant interaction.

A 2H-NMR spectrum consists of a simple doublet for each inequivalent 

deuterated site, and the size of the quadrupolar splittings in Hertz, 2vQ, gives site specific 

orientational information. Once the sites have been assigned, and the geometry of the 

molecule determined, expressions for the splitting in terms of order parameters for the 

liquid crystal can be derived [56]. 2H-NMR has been used to measure the static 

orientational order parameter Q (Szz) and D (Sxx-Syy) [57-61]. Unfortunately, since the
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electric quadrupolar interaction is second rank, the fourth rank order parameter <P4> and 

higher rank order parameters can not be measured with this technique. Often for liquid 

crystal systems, 2H-NMR experiments spectral widths (<200 kHz) are quite narrow on the 

scale of the typical frequencies for reorientational dynamics of liquid crystal molecules 

(>10 MHz). In this limit, nuclear spins experience a time averaged interaction, and the 

lineshape is "motionally narrowed". In this case, the line shape of the spectrum does not 

give detailed motional information, however pulsed 2H-NMR relaxation experiments, 

which measure the relaxation rates of spin states, are capable of giving information about 

the molecular dynamics [59,60]. The relaxation rates can be expressed in terms of 

spectral density functions which characterize the spectrum of molecular fluctuations. 

These spectral densities, which are Fourier transforms of autocorrelation functions, can 

be interpreted using models of the molecular motion [61,62].

1.7 A Study of Molecular Order and Motion in Liquid Crystal Mixtures

This thesis will be presented in three parts. In the first section, 2H-NMR 

spectra were measured as a function of temperature in a binary mixture of the mesogen 

2-fluorenyl-4’*-tetradecyloxy benzoate-dl0 (FLOC) and a solute probe para-xylene-d,0 (p- 

Xy) shown in Fig. 1.3 [58]. The molecular structure of FLOC is typical of many classical 

rod-like liquid crystals. FLOC has flat, rigid fluorene core [62] with a 14 carbon tail 

attached. This long, alkoxy chain is flexible and can exist in many (313) configurations. 

Both molecules were deuterated: the FLOC was selectively deuterated on the rigid 

fluorene moiety while the p-Xy was perdeuterated. In the 2H-NMR experiment, the 

quadrupolar splittings allow the unambiguous determination of the order parameters 0,
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D D

Figure 1.3 The molecular structures of the two components of the binary mixture.
(a) FLOC.
(b) p-Xy.
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and Dj of both species (i=l,2). These are the first results to provide this information on 

the degree and asymmetry of orientational order of both components of a binary mixture 

in the nematic phase [58]. The temperature dependence of the order parameters are 

interpreted using a new mean field theory of binary mixtures of biaxial particles [41]. 

There is good agreement between the theoretical predictions and the four order parameters 

determined from the 2H-NMR over the entire temperature range studied. Furthermore, 

an identical analysis of pure FLOC data give results which are consistent with those 

obtained from the binary mixture of FLOC and p-Xy.

The second section presents the results of a theoretical study of binary 

mixtures of biaxial particles using a newly developed mean field theory [41]. In this 

section, a general pseudopotential consistent with the symmetry of the constituent 

particles is used to calculate the eight order parameters (Qi,Di,Pi,Ci for i=l,2) which 

describe order in binary mixtures of uniaxial and biaxial nematic phases. For a single 

component, the model only requires one parameter, r2, a ratio of anisotropic interaction 

strengths, to predict the temperature dependence of the four order parameters. The 

temperature dependence for all four order parameters is presented and interpreted for both 

rod-like and plate-like liquid crystals. Three anisotropic interaction strengths, r„ r2 and 

r3, are needed to calculate the order parameters of both components of a binary mixture 

as a function of concentration and temperature. Once the order parameters have been 

calculated, the free energy of the system is evaluated to predict the stability of the 

mixture. By systematically varying the anisotropic interaction strengths, temperature- 

concentration phase diagrams for a variety of molecular shapes are presented. These
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theoretical predictions suggest that binary mixtures of molecules with highly asymmetric 

shapes will display stable biaxial nematic phases [63].

The last section of the thesis will present the results of a 2H-NMR 

relaxation experiment performed to investigate the molecular motion of the nematogen 

FLOC [61] and a FLOC : p-Xy binary mixture. Pulse sequences have been designed to 

measure spin relaxation rates of quadrupolar order and Zeeman order in two separate 

experiments [59]. Using Redfield theory [64], a formalism applicable in the fast motion 

regime, this combination yields spectral densities, J,k(co0) and J2k(2co0), for each site k on 

the molecule. The spectral density data are interpreted by fitting the experimental results 

with an anisotropic viscosity model of molecular motion in liquid crystal molecules. This 

model of molecular reorientation requires three independent correlation times 

corresponding to rotations of the liquid crystal molecule about specific axis and a 

collision parameter related to the angular jump size of rotations about the long molecular 

axis [65]. The temperature and frequency dependence of the correlation times are 

examined and discussed. Finally, results of a similar experiment on a mixture of p-Xy 

and FLOC are presented which provide a description of the dynamics of both components 

of a binary mixture simultaneously.
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2. ORIENTATIONAL ORDER IN A LIQUID CRYSTAL BINARY MIXTURE

This section of the thesis will describe how deuterium nuclear magnetic

resonance (2H-NMR) has been used to measure the temperature dependence of the 

orientational order parameters of both components of a liquid crystal binary mixture, and 

how these experimental results are interpreted using a mean field theory of binary 

mixtures of liquid crystals [58,66]. Many methods of measuring liquid crystal order 

parameters rely on the assumption that the ordering and dynamics of dissolved probe 

molecules mimic their liquid crystal hosts [67-69], this work is useful for evaluating the 

validity of these assumptions.

2.1 The Quadrupolar Hamiltonian

2H-NMR takes advantage of the fact that electrons in orbit about a nucleus 

have an effect on the energy required to reorient it. All nuclei with spin I > 1/2 have an 

electric quadrupole moment eQ [70]. If these non-spherical nuclei experience an electric 

field gradient generated by the local electron density, the electrostatic energy varies with 

nuclear orientation. The Hamiltonian, HQ, describing this quadrupolar interaction is

^G iC  ^ p  Qxp- o a,p
(2. 1)

Where V„p is the electric field gradient tensor in Cartesian coordinates

v  _ &V(x) 
“P dxdxR\  a P

(2 .2)

and Qcp is the nuclear quadrupole moment tensor
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G a p  =  /  ( 3 V p  -  r 25« p )  P C * )  d ' x -
(2.3)

Here oc,(i = x,y,z > V(x) is the electrostatic potential, and p(x) is the nuclear charge 

density at x. These expressions appear to be extremely difficult to evaluate because they 

involve distribution functions of nuclear particles. However, since only the spatial 

orientation of the nucleus is of interest and not actual distributions of nucleons, only the 

diagonal matrix elements ( /  \Q ^  | /  ) need to be calculated. For these elements, the 

Wigner-Eckart theorem can be applied to reexpress the quadrupole Hamiltonian in terms 

of the spin operators I^p [71]

notation. Spherical tensor matrix elements are simply linear combinations of Cartesian 

tensor elements [72]. As demonstrated in Appendix I, each of the 9 elements of any 

second rank spherical tensor can be presented in terms of an equivalent Cartesian tensor. 

Reexpressing the Cartesian tensor as a spherical tensor Tljn gives

The spin part of the quadrupolar Hamiltonian becomes AIjn in spherical tensor notation

Here e is the electronic charge and eQ is the electric quadrupole m o m e n t  o f  a deuteron.

For the analysis to follow, it will be convenient to use spherical tensor

(2.5)

(2.6)
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An expression for the electric quadrupolar Hamiltonian, HQ, can be derived in terms of 

the scalar contraction of the two spherical tensors T and A

strong static external magnetic field. The full Hamiltonian can be written as 

H = Hz + HG, where Hz is the Zeeman Hamiltonian and HQ is the quadrupolar term. 

For deuterons in a strong (i.e. 7 Tesla) external magnetic field, the quadrupolar term in 

the Hamiltonian (Eg/h < 250 kHz) is much smaller than the Zeeman Hamiltonian (Ez/h 

= 46 MHz). Thus, the quadrupolar interaction is treated as a perturbation on the 

dominant Zeeman Hamiltonian. Neglecting terms of order (e2qQ/YhB)2, perturbation 

theory gives a first order approximation to energy levels of the system

The superscript L in the term denotes that the derivatives are evaluated in the

laboratory frame in which the z-axis is parallel to B0. The brackets indicate that the field 

gradients are time averaged. Figure 2.1 illustrates the perturbation of the Zeeman energy 

levels by the electric quadrupolar terms in the Hamiltonian, and it shows the transitions 

responsible for a symmetric spectrum with peaks at v„ ± vQ. Each inequivalent deuteron 

presents is a set of symmetric peaks in frequency space separated by 2vQ. The following 

discussion outlines the pulse NMR experimental techniques used to measure these 

quadrupolar splittings.

(2.7)

In a typical 2H-NMR experiment, the quadrupolar nuclei are placed in a

(2.8)
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Figure 2.1 Energy level diagram for a spin I = 1 in a magnetic field B0. The deuterium 
quadrupolar interaction is treated as a perturbation on the Z e e m a n 
interaction. In the isotropic phase the deuterium spectrum consists of a 
single line because <HQ> = 0, while in the nematic phase it consists of a 
doublet separated by 2vQ.
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2.2 Spin Dynamics

An NMR spectrometer creates radio frequency (rf) pulses, couples this 

radiation to a sample, and observes the response. State of the art spectrometers are 

capable of regulating the rf amplitude, phase, duration, and frequency. The pulsed radio 

frequency current passes through a coil, generating an alternating magnetic field, B,(t), 

and this field penetrates a sample inside the coil. The response of the nuclear spins in 

the sample to this changing magnetic field can be understood in terms of a density matrix 

formalism described in the following section.

Consider a system of N noninteracting spins described by the wave 

function \p(t). Assuming i|f(t) can be expanded in a complete set of time independent 

orthonormal wave functions <|)n with time dependent coefficients cn(t),

= E ^ (2-9)
n

The ensemble averaged expectation value of an operator O is

O = jydydx = | O | Z c nm n >
J  *   « ( 2. 10)

= I o  i <(,„).
mji

The matrix formed by the product of ensemble averaged expansion coefficients is defined 

to be the density matrix

( n | p | m ) = cn(t) c*(t). (2-n )

Given the density matrix p, the ensemble averaged expectation value of any given 

operator O can be calculated,
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^  = E  ( n I P  \ m ^ m \ 6 \ n ) - = T r ( p d )  (2.12)
m.n

where Tr is the trace and it is assumed that the states | n> and | m> are members of an 

orthonormal basis set which spans the state space. Since the diagonal elements of p 

represent a probability of the system being in a given state, normalization requires that 

Tr(p) = 1.

Since the density matrix completely determines the state of an ensemble, 

its time evolution will describe the behavior of the system. To determine how the density 

matrix evolves in time, first consider the time-dependent Schrodinger equation:

1  ^  = H y . (2.13)
/ dt

Expanding \|/ using Eqn. (2.9), multiplying by <j>k\  and integrating gives

4 ^  .  £  c„(,) ( k  | H | n). (2-14)
I ot n

Taking the time derivative of each element of the density matrix,

3& I  P  I « )  _  „ * 3 c * x  ^
d r ~  ~ mi r  k~dr  (2.i5)

= —ik | [pH -Hp] | m).

In operator form, this is the Liouville-von Neumann equation

£  -  {  [P.H]. (2-16)

If the Hamiltonian is time independent, it is easy to verify that a form al so lu tion  to this
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equation is

-im . ‘a  (2.17)
p (t) = e T p(0), e T .

Deuterium, a spin I = 1 nucleus, has three spin states (m = -1,0,1). Hence 

the density matrix has 3x3 = 9 elements, but the normalization requirement, Tr(p) = 1, 

reduces the degrees of freedom to 8. Therefore, eight 3x3 operators are required to span 

the spin space. The eight operators are not unique; one set, which is particularly useful

for analyzing pulse sequences, is given below.

(1) /, = / .  + i/_ (2) Iy =7t -  ily (3) Iz

(4) e, = IJ, * IJ, (5) Q, -  7f ,  * // , (6) Q, » I  IVl-lf) (2.18)

(7) Dx = !] -  4  (8) £>, = 7,7, ♦ 7,7,.

Where the angular momentum operators satisfy the relations

I±\l,m) = [/(7+l)-m(m±l)]1/2 \I,m±l)
/J/,m) = m\I,m) (2.19)

I1] I,m) = H\l,m) = 7(7+1 )|/,m>

(Ij.Iy,^) are scaled Cartesian angular momentum operators of rank 1 (J=M in ref. [73]), 

(a.Qy.Qz) and (Dx.Dy) are Cartesian forms of second rank spherical tensor operators.

In theory, the time evolution of each of the eight operator basis set can be 

calculated using Eqn. (2.16) by solving the coupled differential equation. If the 

Hamiltonian is time independent, the problem is simplified considerably. The density 

matrix at time t, p(t) can be calculated given the initial state p(0) and the Hamiltonian
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using Eqn. (2.17) [74]. For deuterium nuclei on resonance, the Hamiltonian in a frame 

rotating at the Larmor frequency is given by

H = -h v l Ixy -  h v Q (2j. (2-20)

where v, = yB,. B, gives the intensity of the magnetic field produced by the high power 

rf pulse applied at frequency v„. For sufficiently strong pulses, v, » vQ, and evolution 

under the quadrupole term in the Hamiltonian can be neglected when the pulses are on. 

State of the art, high power 2H-NMR spectrometers are capable of delivering an rf pulse 

which rotates the magnetization 90° in 1.6 ps, corresponding to v, = 156 kHz.

A simple example of a pulse sequence which can be used to obtain 2H- 

NMR spectra is a single, high power pulse at the Larmor frequency, v0. If the phase of 

the pulse is set to rotate the spins about the x-axis, and the duration of the pulse is long 

enough to rotate the spins 90° (a 90x pulse in NMR jargon), the magnetization is rotated 

from pointing along the z-axis in equilibrium to along the y-axis just after the pulse. This 

magnetization is free to precess, inducing signal in the coil called the free induction decay 

(FID). This FID is digitized and the discrete Fourier transform of this time domain signal 

gives an approximation to the frequency spectrum. However, spectra collected in this 

manner are highly distorted because it is impossibile to collect the weak signal 

immediately after the rf pulse, whose amplitude exceeds the signal by at least a factor of 

106. One way to avoid this 20ps to 40|is receiver "dead time" is to use a quadrupolar 

echo pulse sequence.

2.3 The Quadrupolar Echo Pulse Sequence

The quadrupole echo pulse sequence (90x-x-90y-x-acq) is the standard
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method for obtaining undistorted, full width 2H-NMR spectra. The reason for the 

popularity of this technique is that the free induction decay (FID) refocuses at a time x 

after the last pulse [75], as shown in Figure 2.2, which allows the digitizer to acquire the 

beginning of the FID. The time evolution of the density matrix p can be used to describe 

the spin dynamics during a quadrupolar echo pulse sequence. In equilibrium, the net 

magnetization points along the external magnetic field, p(0) «= Iz. Immediately after the 

first pulse, the spins point along the y-axis (see Appendix II for a comprehensive list of 

the time evolution of the elements of the density matrix under quadrupole or rf pulse 

Hamiltonians)

't 7* , -'t 7* , (2.21)p = e I: e = Iy.

In the time x between the first and second pulses, the density matrix evolves under the 

quadrupolar Hamiltonian

ly cosgj Qx + Qx sincoex.

Just after the second pulse, the density matrix becomes

i—i,
p = e 2 [/j, costo gx + Qx sinojgX] e 

= ly cosgjgX -  Qx sinojgX.
(2.23)

At time t after the second pulse, the density matrix is

p(f) = e Q{i>J [/yCOSGJgX -  g^sinojgX]
= cosgj gX [7 cosgj gf -  0 xsinGJgt] 

+ sinojgX [gjCOSGJQt + /^sinGJQt\ 
= ly cosgj g(t-x) -  Qx sinojg(r-x).

(2.24)
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Figure 2.2 The quadrupole echo pulse sequence. The top line shows the pulsed rf used 
to manipulate the spins. Below, the time evolution of the three non-zero 
elements of the spin density matrix, I,,, ^  and Q x, is sketched. In this 
picture, the pulses are delta functions, t  = 40 ps, and 2v0 = 125 kHz.
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At t = x, the two pulses have refocused the magnetization, this is the ’echo’. If x is 

chosen long enough (typically > 30 psec), the echo is formed outside the coil ring down 

time allowing complete digitization of the FID. A Fourier transform of this time domain 

data gives undistorted spectra in frequency space with a pair of symmetric peaks 

separated by 2v ‘Q (in Hertz) for each non-equivalent deuteron site i. The next section 

will explain how these experimentally measured quadrupolar splittings are used to 

measure orientational order parameters of nematogens.

2.4 JH-NMR Spectra of Molecules in Nematic Liquid Crystal Phases

orientational order parameters Q and D. The frequency splittings observed in the spectra, 

2vq, correspond to transitions between the energy levels illustrated in Fig. 2.1.

This expression requires the value of the quadrupole tensor in a laboratory fixed frame,

( t^  ■ However, the explicit form of the electric field gradient tensor (EFG) is known 

only in the principal axis system (PAS): ( t2p̂  ■ The PAS is the frame in which the 

field gradient tensor is diagonal. For many deuterated sites on organic molecules, the z- 

axis of the PAS is aligned with the C-2H internuclear vector. In the PAS, the spherical 

tensor describing the electric field gradient is diagonal and traceless (Laplace’s equation 

V2V=0) and thus has only three non-zero elements:

Expressions for the frequency splittings need to be obtained in terms of the

(2.25)
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(2.26)

(* £ ,)  = 0 (2.27)

(2.28)

Here is the vibrationally averaged z-component of the electric field gradient in the

for C-D bonds the values of v Q for sp hybridization are 200±5 kHz, for sp2 are 182±5 

kHz, and for sp3 are 169±5 kHz [76].

orientational order parameters, the Euler angles which describe the rotation from the PAS 

frame of the EFG tensor into the laboratory frame must be found. The advantage of 

spherical tensor operators is their behavior under coordinate transformations. Rotation 

of a spherical tensor from one coordinate system (CS1) to a second (CS2) using the y- 

convention Euler angles (a,p,y) is given by

where D lnm{a,p ,y ) is the n,m element of the 1th rank Wigner rotation matrix. Elements 

of the second rank (1=2) rotation matrix are listed in Appendix III.

/ V -V  \PAS, <VZZ>, and r| is the asymmetry parameter, x\ = / ”  yy\  . The vibrationally

22 / € 2C7 O \averaged quadrupole coupling constant is defined to be v Q = ( ) ■ Typically,

In order to derive expressions for the observed spectra in terms of the

CS1 -> (a,p,y) CS2

(2.29)

For rigid molecules, it is convenient to describe rotations from the
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laboratory frame into the EFG principal axis frame in three steps. The first rotation 

(a„p„Y,) transforms the PAS frame of the electric field gradient tensor into the molecular 

axis frame. In rigid molecules, these angles are time independent. The second rotation 

(oc^.Yz) describes the time averaged position of the molecule with respect to the liquid 

crystal director’s frame. The order parameters are functions of these Euler angles,

describes the orientation of the director of the nematic phase in the static external 

magnetic field. The director of nematogens spontaneously aligns along a strong external 

magnetic field, and thus (06 3,^3^ 3) = (0,0,0). Combining the three rotations, a compact 

expression for the field gradients in the lab frame can be derived in terms of the three sets 

of Euler angles:

Rigorously, there is one ensemble average of the entire expression. If all motions are 

decoupled, the ensemble averages over ft,, ft,, and ft3 can be performed independently. 

Combining equations (2.25) and (2.30), the following general expression for quadrupolar 

splittings can be derived:

and d  = The last rotation (0 C3 .P3 .Y3)cos2 a.
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+ 1  r i  [ Q  ^ s in 2P , c o s 2 Y ^

D (  (l+cos2p 1)cos2a1cos2Y,-2cosPls in2aIi

(2.31)

The rigid solute, p-Xy, is a highly symmetric molecule. There are two

distinct deuteron sites on p-Xy: the methyl (Me) and aromatic (Ar). For the methyl 

groups, the expression for the quadrupole splitting is

with p f e = 70.5°, p f  = 60°, %  = 182 kHz, and v "e = 169 kHz. Since the 

asymmetry parameter in the electric field gradient tensor is typically small (r|=0.00 for 

rapidly rotating methyl sites, and r|=0.04 for aromatic sites), it has been neglected. This 

could be a potential problem for aromatic sites whose average orientation with respect to 

the magnetic field is close to the magic angle. If 0 is the angle between the C-D 

intemuclear vector and the magnetic field, the ’magic angle’ (54.7°) is the angle at which 

(3/2cos20-l/2) = 0. The contribution of these asymmetry terms to the theoretical 

prediction for the splittings will be investigated later.

2 v £  = 1  Q2 v f  [3cos2( p f ) - l ] (2.32)

while the aromatic deuterons give

2vAa = |  v% [ 0 2(3cos2p f - l )  + D2sin2p f  ] (2.33)
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Almost all liquid crystal molecules have flexible tails connected to rigid 

aromatic cores. In order to derive expressions for the splittings from deuterated sites on 

the rigid core of the liquid crystal FLOC, four independent rotations are used. The Euler 

angles (oti.Pi.Yi), which describe the relative orientation of the EFG PAS and core axis 

systems, are time independent. These Euler angles were measured using X-ray techniques 

[77], they are listed in Table 2.1 and shown in Fig. 2.3. The second rotation (o^.pj/fe) 

from the core frame into the molecular frame is deceptively simple. Implicit in the 

definition of this molecule fixed frame is a statistical average over all conformations of 

the flexible alkyl chain. The third rotation (o^.pj/ft) describes the time averaged position 

of the molecule with respect to the liquid crystal director’s frame. The orientational order 

parameters are functions of Finally, because the uniaxial nematic phase orients with 

the large static magnetic field, the director is always coincident with the external magnetic 

field and thus (a4,p4,Y4) = (0,0,0). Combining the four rotations, a compact expression 

for the field gradients in the lab frame can be derived:

2

(^2,o) X ) (^po(a 4’P4’Y4)) ( P w & y f i y Y j )  (2 34)

(d > (cc2,P 2,y 2) )  ( d > „ P 1,y 1) )  ( t £ ) .

This summation is performed giving following theoretical expression for the quadrupolar 

splittings. To keep this expression tractable, all terms involving the asymmetry parameter 

are ignored.
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lD  d ,
mol

core

“mol

Figure 2.3 The fluorene moiety of the liquid crystal FLOC is pictured to illustrate the 
Eulerian angles described in the text. The principle axis of the EFG tensor 
is aligned along the C-D intemuclear vector. X-ray analysis gives 
the orientation of these principle axis with respect to the dashed axis (Ref. 
62). The angle f}2> which is fit using the quadrupole splittings (Ref. 58), 
gives average orientation of the molecular frame (solid axis). The site 
assignments are labeled for (a) FLOC and (b) p-Xy.
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Figure 2.3(c) Site assignments or the 2H-NMR spectra of the FLOC : p-Xy mixture lor 
an experiment performed at 93.82 °C.



39

Site No. a . P. Yi

1 and 4 180° 71° 90°

3 0° 47.5° 270°

5 and 8 0° 71° 270°

6 180° 47.5° 90°

7 0° 10.5° 270°

9 and 9’ 180° 90° ±144.735°

Table 2.1 X-ray studies of fluorene [62] give the location of the PAS of the EFG 
tensor in the core axis frame in terms of y-convention Euler angles.
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( [ i c o s 'P , - ^

[ (3cos2P2- l )  (3cos2P ,- l )
-  3cos(a2+y1)sin2P2sin2p1 + 3cos(2oc2+2Y,)sin2P2sin2p , ]

’ 3
+ _sin2P3cos(2a3+2Y2)

[ cos(2oc2+2y ,) (l+cos2p 2) sin2p , ,

+ 2cos(a2+Y1)cosP2sinP2sin2P1 + sin2P2 (3cos2P ,- l )  ] J

(2.35)

FLOC is perdeuterated on the rigid fluorene moiety. From Table 2.1, it 

is observed that all seven of the aromatic sites (sites #l,#3-#8) are coplanar. For these 

sites, the influence of a finite asymmetry parameter (r|=0.04) is expected to be small, 

unless the angle between the C-D bond z-axis and laboratory z-axis is close to the magic 

angle. Effects of this T|=0 approximation on the experimentally determined order 

parameters will be discussed in more detail later. Briefly, for both molecules p-Xy and 

FLOC, it appears that discrepancies between the theoretical fits and the experimental data 

are of the same order of magnitude as these neglected asymmetry terms. With zero 

asymmetry parameter, the expression for the f*  aromatic site in the plane of the fluorene 

core is given below
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2v“ ■ {H
{ Q [ (3cos2P2-1)(3cos2P '-1 )

-  3sina2sin2P2sin2(i{ -  3cos2a2sin2P2sin2p, ]
+ D  [ cos2a2sin2P/(l+cos2P2)

-  sina2sin2P2sin2p{ + sin2P2(3cos2P ]- l)  ] }

where Vg is taken to have an intrinsic value of 182 kHz for the aromatic deuterons on 

the fluorene core. For the j  = 9 site,

2 v e = j  Vg { Q [ 1 -  3cos2p2 + 3sin2p 2cos(2a2+2Yi) ] (2 3?)

+ D [ sin2P2 -  (l+cos2P2)cos(2a2+2y1) ] }.

The quadrupolar coupling constant for this hybridized aliphatic deuteron, v g »is taken 

to be 169 kHz, and the asymmetry parameter for the j  = 9 site is assumed to be zero.

The assumption that the asymmetry parameter in the quadrupolar tensor r| 

has no effect will be explored in more detail by estimating the order of magnitude of the 

error introduced. For FLOC, the expression for the splittings are functions of the order 

parameters and two sets of Eulerian angles. Formally, the three successive rotations can 

be done in one equivalent rotation,

m O . 'F )  = SRt-Yg-P^-oc,), 91(-Y2, - p 2, - a 2), ^ ( -Y ^ -P ^ -p ,)  (2.38)

These rotations can be expressed in terms of Cartesian rotation matrices in the y- 

convention. Exploiting the inversion symmetry of the phase [78], the expression for the 

splittings becomes
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f |c o s 2( 0 ) - I + * f  3sin2(0)cos(2'F) 'j

- I 2 2 , 2 2 ̂ ) _

This equation is useful for exploring the effect of neglecting r\ when determining the 

order parameters from 2H-NMR results.

2.5 Sample Preparation and Experimental Setup

The deuterated liquid crystal FLOC14-d10 was obtained from the organic 

synthesis group at the Liquid Crystal Institute at Kent State University. A detailed 

description of the chemical synthesis has been published [79]. Para-xylene-d10 was 

supplied by Merck, Sharp and Dohme. A homogeneous mixture was obtained by 

micropipetting the p-Xy into the isotropic phase of FLOC and homogenizing with a 

vortex mixer. Because of the high temperature (~160°C) and the length of time before 

the 5 mm NMR tube was sealed, the concentration of p-Xy is expected to be lower than 

the gravimetrically determined value (20 mole %). Assuming complete deuteration, the 

integrated intensity of the 2H-NMR spectrum gives the concentration to be approximately 

11 mole % [66].

The 2H-NMR experiments were performed using a home built pulse 

spectrometer constructed at William and Mary by Dr. Hoatson. It has the following 

components: (1) a radio frequency (rf) transmitter which creates high power rf pulses, (2) 

a probe to couple this radiation to the sample, (3) a receiver to amplify the response of 

the nuclear spins to the radiation, (4) a pair of analog to digital converters (ADC) to 

digitize the complex signal, and (5) a pulse programmer to interface the spectrometer with 

a computer (see the schematic in Figure 2.4). The transmitter has three parts: (1) a highly
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Figure 2.4 Block diagram of a pulsed NMR spectrometer.
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stable rf frequency synthesizer which is gated by (2) an rf switch which feeds (3) a power 

rf amplifier. The phase and duration of the pulse is set using the rf switch. The power 

amplifier, which is capable of delivering short (1-10 |isec), high power (>lkW) pulses, 

amplifies the gated signal from the rf switch. The pulsed signal is sent to the probe 

which houses a coil in a resonant circuit. This resonant L-C circuit is tuned with variable 

capacitors such that the probe impedance is strictly resistive (<}>=0) matched to the line 

( IZI  =50i2), insuring a minimum reflection of rf power. The quality factor Q of the L-C 

circuit is optimized such that the field induced in the coil (B, -  237 Gauss) is large and 

the ringdown time (receiver dead time -  30[ts) is small. The response from nuclear spins 

in the sample to the induced magnetic field is received using the same coil. The receiver 

is comprised of a train of linear analog amplifiers which magnify the FID signal (as small 

as (iVolts) and a set of low pass filters used to eliminate high frequency background 

noise. After several amplifications, the ADCs digitize and store the signal. The digitized 

signal is sent to a computer (a Macintosh II CX) which runs software designed to read 

the digitized signal from the ADC and perform data processing. The computer is also 

connected to a pulse programmer which controls the three parts of the transmitter. Via 

this interface, the experimenter can set the duration, frequency, amplitude and phase of 

the pulsed rf used in excitation sequences.

2.6 2H-NMR Experimental Results

2H-NMR spectra for the binary mixture of FLOC:p-Xy were obtained by 

Dr. G. L. Hoatson using a 32.8 MHz spectrometer at the Liquid Crystal Institute [58,661. 

All 2H-NMR spectra were recorded using the quadrupole echo pulse sequence with the
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following relevant experimental parameters: 90° pulse length = 4.5 ps, echo delay x = 

lOOps, dwell time = 5ps, data size was 2K complex points giving a spectral width of 

±100 kHz, and 2500 scans with a Is recycle time were used to signal average. The 

experimentally measured quadrupolar splittings are listed in Table 2.2 as a function of 

temperature.

The first step in analyzing 2H-NMR spectra is to assign the spectral lines 

to specific deuteron sites and to determine the relative signs of the quadrupole coupling 

constants. For pure FLOC, this assignment was made by Wu, Ziemnicka and Doane and 

is shown in figure 2.3(c) [80]. Values for the order parameters for FLOC in the mixture, 

Qj and D„ and the Euler angle |32, which describes the orientation of FLOC’s fluorene 

core, were obtained using a nonlinear least squares fitting routine. The routine minimized 

the function,

X2 = [ 2ve P ~ (Pi ; QVDVP2) ] (2.41)

° 2j

Where 2 vJg*p are experimentally measured spectral widths for the 7 th site listed in Table 

2-2, 2 v’q are the spectral widths calculated using Eqn. (2.36), and oj is the estimated 

uncertainty in the measurement of the spectral width. Data from the five independent 

experimental sites on the fluorene core were used. The resulting order parameters are 

presented in Table 2.3 and plotted as a function of temperature in Figure 2.5. With oj <

1.5 kHz, the convergence was unreliable, probably due to neglect of the asymmetry 

parameter in the theoretical expressions. Measured values of the quadrupolar splittings, 

2vQj,exp, are considerably more precise, of the order ± 0.4 kHz. The correlations between
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T (°C ) 2Vq 2v3e 2v4e 2v5e 2v6g 2v7g 2vG 2 V q 2 v f

93.82 -34.08 7.47 -40.97 -88.77 84.13 191.84 -88.77 7.47 17.33

96.60 -33.59 7.54 -40.23 -87.60 83.35 188.87 -87.60 7.52 17.38

99.53 -32.81 7.57 -39.55 -86.13 82.52 187.06 -86.13 7.57 17.19

102.46 -31.98 7.62 -38.63 -84.77 81.54 183.98 -84.77 7.62 17.09

105.30 -31.01 7.44 -37.65 -83.01 80.37 181.30 -83.00 7.44 16.89

108.13 -29.93 7.67 -36.43 -81.10 78.61 177.00 -81.10 7.67 16.60

111.05 -28.17 7.62 -34.67 -76.56 76.56 173.09 -76.56 7.62 15.92

114.02 -28.86 7.52 -32.81 -73.88 73.88 164.46 -73.88 7.18 15.87

117.00 -20.75 7.72 -26.03 -61.57 63.10 143.26 -61.57 6.69 13.53

118.22 -19.82 7.67 -24.61 -59.10 60.84 137.74 -59.10 6.49 12.89

118.63 -19.87 7.59 -24.37 -58.06 59.96 135.25 -58.06 6.40 12.79

119.05 -19.04 7.57 -23.58 -56.99 58.84 133.40 -56.99 6.35 12.60

119.57 -18.75 7.52 -22.80 -56.20 57.81 132.37 -56.20 6.20 12.31

120.00 -18.46 7.47 -22.31 -54.83 56.98 129.78 -54.83 6.15 11.95

120.44 -17.92 7.37 -21.93 -53.27 55.67 127.69 -53.27 6.00 11.94

120.97 -17.14 7.23 -20.50 -51.45 54.25 124.51 -51.47 5.90 11.04

121.52 -16.41 7.08 -19.43 -49.71 52.78 121.97 -49.71 5.67 11.33

121.97 -16.98 6.98 -18.26 -47.5 51.86 119.19 -47.75 5.66 10.25

122.50 -15.67 6.79 -16.99 -45.51 50.34 115.87 -45.51 5.47 9.86

122.99 -14.68 6.59 -16.44 -42.99 48.49 113.28 -42.99 5.23 8.74

123.47 -13.08 6.49 -15.77 -40.58 47.56 110.30 -40.58 5.13 7.39

123.97 -12.79 6.40 -14.99 -41.16 45.31 105.02 -41.16 5.33 7.66

Table 2.2 The experimental data of quadrupole splittings, 2v;e (kHz), for the binary 
mixture FLOC : p-Xy.
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Table 2.3

T(°C ) t Q.* D,b P / Q2d D2e

93.82 0.1802 0.81 -0.057 6.901° 0.205 0.141

96.60 0.4399 0.80 -0.058 6.930° 0.206 0.142

99.53 0.2355 0.79 -0.060 6.924° 0.203 0.142

102.46 0.3981 0.78 -0.061 6.946° 0.202 0.142

105.30 0.1543 0.77 -0.062 6.960° 0.200 0.140

108.13 0.3701 0.75 -0.063 6.964° 0.197 0.140

111.05 0.1768 0.73 -0.071 6.909° 0.189 0.137

114.02 0.1394 0.69 -0.068 7.011° 0.188 0.133

117.00 0.8430 0.60 -0.074 6.889° 0.160 0.119

118.22 0.9017 0.58 -0.073 6.897° 0.152 0.114

118.63 0.5614 0.57 -0.072 6.901° 0.152 0.113

119.05 1.029 0.56 -0.073 6.895° 0.149 0.112

119.57 2.136 0.55 -0.074 6.874° 0.145 0.109

120.00 -1.655 0.54 -0.074 6.875° 0.142 0.107

120.44 1.961 0.53 -0.074 6.821° 0.141 0.105

120.97 2.937 0.52 -0.076 6.837° 0.131 0.101

121.52 4.303 0.51 -0.077 6.834° 0.134 0.100

121.97 4.832 0.49 -0.080 6.857° 0.121 0.096

122.50 6.179 0.48 -0.083 6.874° 0.117 0.092

122.99 8.653 0.47 -0.084 6.775° 0.104 0.086

123.47 9.1134 0.45 -0.087 6.756° 0.088 0.079

123.97 5.9930 0.43 -0.076 6.834° 0.091 0.082

5Q, = ±0.010 
b 8D, = ±0.014

8p2 = ±0.005°
d 8Qj = ±0.018

8D2 = ±0.021

Results of nonlinear least squares fits of the parameters for FLOC (Q„ D, 
and P2) and p-Xy (Q2 and D2).
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Figure 2.5 Molecular orientational order parameters of both components, Q, and 
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Dj, as a function of reduced temperature TR.
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parameters are reasonably small, with off diagonal elements of the inverse of the 

covariant matrix less than 0.3. The x2 were acceptable (< 1) for the lower temperature 

data, but increased with increasing temperature. This is to be expected since with 

decreased splittings the contributions from a finite asymmetry parameter would become 

more significant.

Rather than making the assumption that the principal axes systems of the 

core and molecule are coplanar [80] this description includes the possibility of a twist in 

the relative orientation. In order to determine the twist angle, oq, the quadrupole splitting 

from the site j  = 9 is required since this is the only position with deuterons out of the 

plane of the core (y, = -90°). By reanalyzing the published j  = 9 splittings pure FLOC 

[80], the angle cq was determined using eqn. (2.37). In the nematic range for pure FLOC 

(124.3°C to 136.3°C), the twist angle oq was found to be -88.8°±0.4°. For the 46K range, 

including the both the nematic and the smectic-A phase, Oj was found to be a 

monotonically decreasing function with temperature with a mean value of -87.6°, and a 

total range of 2.8°. Thus deviations from planarity appear to be insignificant and the 

inclusion of the twist angle was found to have a negligible effect on the derived order 

parameters. Such insensitivity makes the additional parameterization difficult to justify. 

The FLOC used in the mixture was incompletely deuterated at the j -  9 sites and the low 

intensities and poor accuracy of the measurements made derivation of otj unreliable. 

Thus, analysis of the binary mixture assumed a fixed value otj = -90°. This is expected 

on the basis of chemical intuition.

The role of the asymmetry in the electric field gradient tensor, r\, has been
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explored in detail. So far, the nine Euler angles in Eqn. (2.38) were determined by fitting 

the experimental data assuming the r| terms were zero. Given these Euler angles, matrix 

multiplication of the Cartesian rotation matrices in Eqn. (2.38) allows the equivalent 

rotation, 9t(<I>,0,'I/), to be determined. The first term in Eqn. (2.39) is equivalent to Eqns. 

(2.36) and (2.37), and it gives the theoretical splittings assuming rj = 0. The second term 

provides a realistic estimate of the contribution to the splittings if the asymmetry 

parameter were finite, r\=0.04. The theoretical splittings ( 2Vq ) and an estimate of the 

neglected asymmetry parameter on the size of the splittings ( 2v\  ) are given in Table 

2.4. It is interesting to note that the contribution from the asymmetry terms, most 

pronounced for smaller splittings, is sufficient to account for the discrepancies between 

experiment and theory. What is more important to determine is whether, in addition to 

better convergence, the inclusion of a finite asymmetry parameter in the calculation gives 

significantly different values for the order parameters. One estimate the magnitude of 

these effects can be made by attempting to compensate for the asymmetry parameter 

contributions. A typical value of the for the asymmetry was assumed, r\ = 0.04, and for 

the j  = 3 and 4 positions, the experimental splittings were replaced by the corrected 

values, ( 2 <  ± 2v g )• The fitting procedure was repeated for all temperatures and the 

results show that, for either case, the new order parameters are within the reported errors 

(Table 2.3 and Figure 2.5). This confirms that neglect of r\ in no way compromises the 

orientational order parameters derived from the 2H-NMR experimental results. In order 

to do a completely rigorous analysis of the values of the quadrupole coupling constants, 

v Je . and asymmetry parameters, r)j, for each molecular site,;, should be determined and
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T(°C ) 2 v 7q ‘ 2v7<P 2v*Qht 2 v r 2vAQ,asy

93.82 192.09 0.58 -88.45 4.35 1.20

96.60 189.23 0.58 -87.14 4.30 1.21

99.53 187.37 0.58 -85.84 4.26 1.20

102.46 184.39 0.58 -84.34 4.19 1.19

105.30 181.55 0.58 -82.74 4.13 1.18

108.13 177.35 0.57 -80.58 4.04 1.17

111.05 172.88 0.59 -76.96 3.95 1.13

114.02 164.71 0.57 -73.70 3.77 1.11

117.00 .142.75 0.52 -61.43 3.28 0.97

118.22 137.20 0.51 -58.80 3.16 0.92

118.63 134.91 0.51 -57.80 3.10 0.92

119.05 132.90 0.51 -56.69 3.06 0.90

119.57 131.60 0.50 -55.86 3.03 0.88

120.00 129.10 0.50 -54.58 2.96 0.86

120.44 126.83 0.50 -53.29 2.92 0.86

120.97 123.52 0.50 -51.42 2.85 0.80

121.52 120.70 0.50 -49.80 2.79 0.82

121.97 117.85 0.50 -47.99 2.74 0.75

122.50 114.30 0.50 -45.94 2.66 0.73

122.99 111.30 0.50 -44.04 2.59 0.65

123.47 108.28 0.50 -42.09 2.57 0.57

123.97 103.53 0.46 -41.35 2.41 0.59

Table 2.4(b) Theoretical Splittings assuming the fit parameters are correct ( 2VgAe ) and 
the asymmetry term contribution ( 2vi£ y ) assuming r\ = 0.049 (in kHz).
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T (°C) 2v3q*' 2v3<f> 2vT 2v4£f > 2v6Qhe 2v6£*y

93.82 7.02 3.06 -40.91 3.75 83.96 2.08

96.60 6.85 3.02 -40.09 3.70 82.99 2.05

99.53 7.07 2.99 -39.38 3.66 82.25 2.04

102.46 6.99 2.95 -38.48 3.61 81.19 2.01

105.30 7.05 2.91 -37.56 3.56 80.15 1.99

108.13 7.04 2.85 -36.47 3.48 78.42 1.95

111.05 8.04 2.79 -34.57 3.41 76.64 1.93

114.02 7.18 2.67 -32.64 3.26 73.61 1.84

117.00 8.08 2.33 -26.88 2.86 63.97 1.64

118.22 7.64 2.24 -25.58 2.75 61.68 1.59

118.63 7.78 2.21 -25.14 2.71 60.63 1.56

119.05 7.84 . 2.17 -24.59 2.67 59.79 1.54

119.57 7.98 2.16 -24.22 2.65 59.19 1.54

120.00 7.97 2.21 -23.57 2.60 58.16 1.51

120.44 8.14 2.08 -23.12 2.56 56.96 1.49

120.97 8.22 2.03 -22.05 2.50 55.75 1.46

121.52 8.33 1.99 -21.18 2.45 54.63 1.44

121.97 8.52 1.96 -20.06 2.40 51.86 1.42

122.50 8.63 1.91 -18.89 2.34 50.34 1.39

122.99 9.01 1.86 -18.19 2.29 48.49 1.39

123.47 9.29 1.82 -17.14 2.23 47.56 1.35

123.97 8.05 1.73 -17.04 2.12 45.31 1.27

Table 2.4(a) Theoretical Splittings assuming the fit parameters are correct ( 2viQe ) and the 
asymmetry term contribution ( 2v^fV ) assuming t | = 0.049 (in kHz).
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explicitly included. These values have recently been measured from a single crystal of 

perdeuterated fluorene with 2H-NMR [81]. Fortunately, this daunting calculation does not 

appear to be necessary.

Analysis of the p-Xy splittings is comparatively straight forward because 

of the rigid molecular geometry. As discussed earlier, there are two distinct deuteron 

sites, methyl and aromatic. The splittings from the deuterated p-Xy sites, 2Vg" and 

2vg . were measured and Eqns. (2.32) and (2.33) were be solved simultaneously to 

determine the orientational order parameters of p-Xy in the mixture, Q2 and D2. The 

results, neglecting the asymmetry in the EFG tensor, are presented in Table 2.3 and 

Figure 2.5. The primary source of error is taken to be the accuracy of measuring the 

splittings (±0.4 kHz). Simple error propagation was used to estimate the errors in the 

order parameters.

2.7 A Mean Field Theory of Binary Mixtures

The temperature dependence of the experimentally measured order 

parameters (Q,, Q2, D,, and D2) are interpreted using a mean field theory of binary 

mixtures of biaxial nematic liquid crystals [41]. The parameters of the theory are 

coupling constants, rs, which gives a measure of how strongly a molecule couples to a 

given mean field, A. In the case of cylindrically symmetric molecules, this theory 

reduces to an existing mean field theory of binary mixtures [82,83]. This uniaxial theory 

predicts that the two orientational order parameters, Q, and Q2, are related by 

concentration and temperature independent curves. 2H-NMR experimental results, from 

a variety of mixtures over a wide range of temperatures and concentrations [84,85] have
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confirmed these predictions. For biaxial molecules, unique relationships between all four 

order parameters Q,, D,, Q2 and D2, are determined by the three anisotropic interaction 

strengths, the r,’s, i = 1,3. The r,’s will be determined by Fitting the temperature 

dependence of the four experimentally determined order parameters.

Mean field theory gives the anisotropic part of the single particle 

pseudopotential of each component of the mixture, e, and £?. Using a geometric mean 

assumption, the general form of the single particle pseudopotential reduces to

e, = [ A (gt(e)-lQ,) -  r2A  G ^ e .y ) - *2),) ] (3.42)
»  z>

for molecule 1 in the mixture, and

e2 = [ r,A (q2(Q)-l.Q2) -  r3A (^(0 ,V) - L > 2) ] (2.43)
z* z*

for particle 2. The Euler angles (<|>,0,i|f) describe the orientation of a molecule in the 

laboratory frame. The q parameters are functions of anisotropic coupling constants:

wrvuii

On ’ r3 = >

A detailed derivation of this mean field will be presented in the next chapter. Coupling 

constant Uy gives a measure of the strength of the coupling of the instantaneous 

orientation of the distinguished (major) axis of particles of species of i with the order 

parameter Qj. Similarly, Wy gives a measure of the strength of the interactions coupling 

the instantaneous orientation of the minor axis of species / to Dj. All particles couple to 

the same concentration dependent mean field, A, which is of the form,



56

where ft is the number density of species i.

A nonlinear routine was written to fit the three parameters, rit successively 

and self consistently using these expressions for the pseudopotentials. The orientational 

order parameters can be determined by evaluation the following integrals numerically,

f(3X2- l )  expf^AX2) /04 r 2A (l-X 2)) dX 
vL 4 40 ,  = -------------------------------------------------

2 J  exp^A X 2) 70(£ r2A (l-X 2)) dX
X -0 4  4

(2.46)

1
J(3X2-1) exp(|r,A X 2) i A r ^ l - X 2)) dX

X»0 ^ ^
1

2 f  exp(^r,AX2) l A r 3A (l-X 2)) dX 
V .  4  4

(2.47)

j ( l - X 2) exp(|A X 2) l A r 2A (\-X 2)) dX 
x « o  ^  ^

5

1  J  exp(|A X 2) /0( l r 2A (l-X 2)) dX
3  X -0  4

(2.48)

and
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i
U l-X 2) e x p d ^ A X 2) l A r 3M l - X 2)) dX 

D2 = _______ t _________ t _____________ (2.49)

1  f  e x p d ^ A X 2) I0d r 3A(l-X2)) dX
X -0  4  ^

Io(arg) is the modified Bessel function of the first kind and Ij(arg) is the modified Bessel 

function of the first kind of order one. A is the concentration and orientational order 

parameter dependent nematic mean field given by Eqn. (2.46).

2.8 Interpretation of Fits To Mean Field Theory

In order to fit the temperature dependent order parameters and find the 

three rt parameters, Q, is defined to be the independent variable and the dependent 

variables are the three other orientational order parameters (Q2 ,D„D2). At a given 

temperature, Q, was used to calculate A by inverting equation (2.46). Given A, the 

dependent variables Q2, D, and D2 were determined for a given r„ r2 and r2 by evaluating 

the integrals in Eqns. (2.47-2.49). A nonlinear least squares fitting routine was applied 

in successive stages. First, is fit as a function of Q, to provide a value of r, keeping 

r2 and r3 fixed. Then r2 is estimated from the D, vs Q, curve with r, and r3 held constant. 

Finally, r3 is determined by fitting the function D2 with r, and r3 held constant. This 

procedure was iterated until all parameters converged to within one part in 106. The 

universal curves relating the order parameters are superimposed with the theoretical fits 

in Figure 2.6. The final values (90% confidence limits) were determined to be r, = 

0.251±0.004, r2 = -0.16±0.01 and r3 = 0.084±0.002. It is clear from the figures that the 

second and third points deviate significantly from the least squares fits. This is thought
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to be due to the fact that they correspond to data taken in the isotropic-nematic 

coexistence region where the splittings are small and the fractional errors are large. Using 

an identical procedure to reanalyze the data from pure FLOC [80] gives the value r2 = - 

0.13 ±0.01.

In order for this theoretical description to be useful, it must provide a 

physical interpretation of the temperature dependence of the order parameters in terms of 

anisotropic interaction potentials (r,’s). The temperature dependence of Q, and Q2 indicate 

that the degree of orientation of the long axis of the small rigid non-mesogenic solute is 

much smaller than that of the liquid crystal (Q, > Q,). This behavior makes intuitive 

sense because the probe is not expected to interact as strongly with the mean field, and 

hence to orient to the same extent as the liquid crystal molecules. The parameter r,, the 

ratio of the anisotropic interaction, strength coupling the long axes of each molecule to the 

uniaxial order parameters, is much smaller than one. One of the most appealing results 

of mean field theory of nematic binary mixtures of uniaxial molecules is that the Q; vs 

Q, universal curve is completely determined by properties of the pure materials [82,83]

ri =
Tni.2 Pi (2.50)
Tm.i P2

where Tni3 is the Nematic-Isotropic transition temperature of species i and p, is its number 

density. For biaxial molecules the corresponding theoretical parameter r, exists but can 

no longer be rigorously defined by equation (2.50). However, for binary mixtures where 

the two components transition temperatures are defined the ratio of transition temperatures 

and number densities give an excellent initial guess at the parameter. Since pure FLOC
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Figure 2.6 Interrelations of the orientational order parameters with the best non linear
least squares fit to the ratios of interaction potentials, r, = 0.251 ± 0.004.
(a) Qz vs. Q,.
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Figure 2.6 Interrelations of the orientational order parameters with the best non linear
least squares fit to the ratios of interaction potentials, r2 = -0.16 ±  0.01.
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Figure 2.6 Interrelations of the orientational order parameters with the best non linear
least squares fit to the ratios of interaction potentials, r3 = 0.084 ± 0.002.
(c) D2 v s . Q,



62

has a T„n  = 409.70 K, equation (2.50) can be applied assuming p-Xy and FLOC have 

the same molar volumes. This gives a virtual transition for p-Xy as 7^/2 = 25K, well 

below the crystallization temperature, as required for a non-mesogenic compound [58].

The experimental results also indicate that the molecular biaxiality of the 

p-Xy solute is larger than that of the liquid crystal FLOC (D2 > D,). Initially, this seems 

contradictory to the premise that the biaxiality of molecules has a profound effect on the 

physical properties of liquid crystal phases. It is unclear why the ordering of p-Xy is 

more asymmetric than that of FLOC, but it seems reasonable that the symmetry and 

packing considerations will require a small, flat molecule to orient anisotropically. 

Obviously, the dimensions of the rigid core of FLOC are larger and this suggests that the 

orientation should be more asymmetric. The results indicate that this notion is 

inappropriately simplistic.

It is important to appreciate that in FLOC the fluorene core has a 14 carbon 

tail attached to it, and this has a profound effect on the location of the principal axes of 

the molecular order tensor. The alkoxy chain is flexible and can exist in many 

conformations (312), each having a dramatically different geometry and hence orientational 

order. It is conceivable that in most conformers the rigid segment is more biaxial than 

the solute p-Xy. However, the observed molecular biaxiality is a statistical mechanical 

average over all possible conformations [86] and thus it is appears that the core is 

incapable of dominating the ordering of the minor axis.

The theoretical parameter governing the coupling of the instantaneous 

orientation of the short axis with the biaxial order parameters, D„ is given by r2 =
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(Wn/Un)l/2. Since these interaction potentials are single particle properties they can, in 

principal, be derived from the behavior of pure materials. r2 is equivalent to the 

parameter 8 in a generalized mean field theory of pure nematogens proposed by 

Bergersen, Palffy-Muhoray and Dunmur [87]. It is encouraging that an identical analysis 

on pure FLOC [58,66] gave a value of r2 = -0.13 ± 0.01, which although not quite within 

experimental error is at least consistent with that obtained from the mixture.

The third parameter, r3, determines the ratio of anisotropic interaction 

potentials coupling the short and long axes of unlike species. This parameter is unique 

to this treatment of binary mixtures of biaxial particles. It should be stressed that there 

is a lack of reciprocity in these coupling constants [41], and hence it is incorrect to 

assume a single interaction strength, even in the infinite dilution limit [88]. In the 

treatment of Emsley et al. the parameter r2 (corresponding to X) is a molecular property 

and thus explicitly temperature independent [88]. If the binary mixture consisted of two 

similar liquid crystal molecules then r2 would be expected to be approximately constant 

regardless of the species considered (ie. r2 = [Wu/Un]1/2 = [W22/U22]1/2) and under these 

circumstances the theoretical parameters would satisfy the relationship r3 = ± rjr2. The 

results for the mixture of the nonmesogenic probe p-X y  and the liquid crystal FLOC show 

clearly that this relationship does not hold. It would be interesting to investigate this in 

more detail by performing experiments on mixtures containing two nematogens.

In conclusion, NMR is the only technique capable of confirming 

predictions and interrelations between the order parameters Qlt D„ Qj and D2, and thus 

has the potential to make significant contribution to the understanding of liquid crystal
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mixtures. These 2H-NMR results are the first experimental observation of all four 

component order parameters in a binary mixture of biaxial molecules in the nematic phase 

[58,66]. The temperature dependence of the order parameters has been obtained from 

these experiments and this provides information on the order, asymmetry and flexibility 

of the liquid crystal molecules. These results were interpreted using a new mean field 

theory of binary mixtures of biaxial nematic liquid crystals. If the geometric mean 

assumption is made all particles couple to an identical mean field. This theory is the first 

to allow for calculation of the free energy explicitly, to include concentration dependence 

and to allow for biaxial nematic phases. The results show, that mixtures and pure 

materials are fundamentally different and it is incorrect to assume that probe molecules 

are capable of monitoring a system in an unbiased manner.
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3. PHASE DIAGRAMS OF NEMATIC BINARY MIXTURES

Molecules which form nematic liquid crystal phases come in a wide variety 

of shapes and sizes. It would be valuable to be able to predict how mixtures of these 

very different molecules might behave. A mean field theory has been proposed to 

describe binary mixtures of nematic liquid crystals with arbitrary shapes [41]. Using this 

formalism, a complete theoretical description of phase stability and orientational order in 

binary mixtures of biaxial molecules has been obtained. For a single component, one 

anisotropic coupling parameter is required to predict the temperature dependence of the 

four orientational order parameters (Q,D,P,C). Given the order parameters, the stability 

of the isotropic (I), uniaxial (U), and biaxial (B) nematic phase is ascertained by 

calculating the free energy density. For binary mixtures, three anisotropic interaction 

strengths, r„ r2, and r3, are needed to calculate the four order parameters of each 

component as a function of concentration and temperature. The free energies and 

chemical potentials of each phase are calculated to access stability of the mixture, and the 

results are often presented in phase diagrams [63]. One question, which has been a topic 

of debate for researchers studying nematic liquid crystal mixtures, is whether binary 

mixtures can form stable biaxial nematic liquid crystal phases [89]. The results of this 

computational study suggest that binary mixtures of molecules with suitably asymmetric 

shapes might display a stable biaxial nematic phases [63].

3.1 Symmetry of the Nematic Phase

Liquid crystal molecules are often modeled as rigid, asymmetric molecules
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possessing symmetry. Particles with symmetry have three mutually orthogonal 

planes of mirror symmetry, examples include ellipsoids of revolution, elliptic cylinders, 

and regular parallelopipeds or "bricks" [90]. The distribution function, p(£2), can be given 

as an expansion in terms of the standard Wigner rotation matrix elements:

Where £2 = (oc,p,y) are the y-convention Euler angles describing the rotations needed to 

transform from the laboratory to the molecular coordinate system, and the sum runs over 

J, m and n in their appropriate ranges (J from 0 to «>, and m,n from -J to J). The 

assumption that both the phase and the particles possess f̂ 2h symmetry leads to the 

following restrictions on the expansion coefficients, a ^  [91]:

(i) only terms with J, m, and n even contribute

(ii) the expansion coefficients satisfy the identities.

fl™ = „• (3-2)mn m -n  mn *~-m -u

If the following functions are introduced

p(Q) = £  a "  D” \Q ). (3.1)

(2^(Q) = ( lL f+ 6~+s«

[D «(0) + + d Z (G )  + -nm ,
the expression for the distribution function, Eqn. (3.1), can be rewritten 

(3.3)

P (Q) = £  & (3.4)

where J, m, and n are even, non-negative integers.

There are four second rank (J = 2) expansion terms:



Ensemble averages of these functions (<q>=Q, <d>=D, <p>=P, <c>=C) give the four 

second rank order parameters which completely characterize orientational order of biaxial 

particles of symmetry. These are, apart from some arbitrary normalization constants, 

the four order parameters introduced by Straley [20] to describe orientational order in 

biaxial nematic liquid crystals. All four order parameters are zero in the isotropic phase. 

The uniaxial nematic phase has azimuthal symmetry about the director (laboratory z-axis); 

therefore, the distribution is not a function of the angle a , and the orientational order 

parameters P and C vanish. In the uniaxial phase, D is finite if the particles are lack 

cylindrically symmetry. In the biaxial phase, either P and/or C are finite.

3.2 Cartesian O rder Tensors

An alternative representation of orientational order in nematic systems uses 

Cartesian tensors. Expressions for these tensors can be derived by considering the 

polarizability of a biaxial particle. Assuming that a liquid crystal molecule possessing D2h 

symmetry has principle polarizabilities ku, k22 and k3J, the polarizability tensor k ^  in the 

lab frame is



*«P = + J  ( V * )  (3«3a«3P- 5 aP)

+ (WlaWip “ n2an2$)
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(3.6)

where the isotropic value is

* = (*n + * 2 2  + *33) (3'7)

The orientation of the particle enters this expression for the polarizability through the

quantities

1

and

CTap ~ j  (3«3an3p -  5ap)

^ap ^ lanip -  n2an2f)'

(3.8)

(3.9)

where n,a is the projection of the unit vectors (nia = «,*!„)• Orientational order tensors 

S„p and T ^  can be defined as thermal average values of these tensorial quantities. If 

it is assumed that and T„p can be diagonalized simultaneously, as is expected for 

reasons of symmetry [92], then in the principal axis frame of the liquid crystal phase,

0

0

-j(Q + P )  0

(Xap) " ôtp

0

Q.

0

0 -1 (D + Q  0
2

0 0 D

(3.10)

(3.11)
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3.3 The Orienting Potential

Four order parameter tensors are needed to describe orientational order of

both components (1 and 2) of a binary mixture SIaP, TlaP, and T2ap. The first 

step in deriving a mean field theory of binary mixtures is to choose a form for the 

orienting potential. To lowest order, a single particle pseudopotential of species 1 is 

formed by taking the scalar products of orientational dependent terms, cr^ and t ^ ,  and 

the order parameters, S„p and T^. For species 1, the orienting potential £,(£2,) is:

where £2, is the generalized orientational coordinate of particle one, pj is the number 

density of species i, yj, are isotropic coupling constants, and Uy, U y', V y, V y', riy, W y, and 

W y' are anisotropic coupling constants. Here summation over repeated Greek indices is 

implied. The pseudopotential of a particle of species 2 is obtained by interchanging the 

indices 1 and 2.

where 1% is Boltzmann’s constant, T is temperature in Kelvin, and d£2 = d(cosP) da  dy. 

Since at equilibrium the free energy density /  is a minimum, its derivative with respect

-  ^ P 2Y12

The configurational free energy density of the system is given by [93]

(3.13)
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to the order parameters must vanish. This minimum free energy requirement yields 

relationships between the coupling constants, (e.g. Un ' = -V5 U,„ n u = Vu) which 

simplify the expressions for the pseudopotentials to

6,(0,) = - - I p lYll -  ^ p 2y 12

+ P2^12^2ap + P l ^ l l ^ l a p  + p 2 ^ 2 1 ^ 2 a P ^ <Jla p _ -« -^ lap )3 up 2 (3>14)

" ■ J ^ P j ^ n ^ K x P  +  P 2 ^ 1 2 ^ 2 a p  +  P  I ^ l l ^ l a P  +  p 2 W ,127 ’2ap ) ( ' t , a p

“ ^ ■ P 2 ^ 2 1 ^ 2 a P ^ la P  +  3  P 2 V'l2 5 2 « p 7 ’laP  

and a similar expression can be derived for e^Qj).

The parameters of the pseudopotential which measure the strength of the

attractive intermolecular potential between species i and j. The coupling constant Uy

gives a measure of the strength of the interaction coupling the average orientation of the

distinguished (major) axis of particle i with the instantaneous orientation of the major axis

of j. Similarly Wy gives a measure of the strength of interaction coupling the average

orientation of the minor axis of particle i with instantaneous orientation of the minor axis

of j. Using the minimum free energy criterion, it can be shown that 7y = Yy„ Wy = Wy

and Uy = Ujj. Finally, Vy gives a measure of the interaction strength coupling the average

orientation of the minor axis of species i with the instantaneous orientation of the major

axis of species j. In this case, no reciprocal relation can be found by minimizing the free

energy, and in general Vy * Vy.

3.4 The Geometric Mean Assumption

For the most general case of the binary mixture, there are 13 independent

coupling constants (Yu, Y22. Yi2. Un, U22, U12, Vn , V22, VI2, V,„ W,„ W22, WI2). In order
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to reduce the number of parameters in this description, the geometric mean assumption 

is made. That is, the coupling constant for interactions between particles of different 

species is assumed to be the geometric mean of the corresponding interactions between 

like particles. Specifically,

(3.15)

Making use of these relations, the pseudopotential for particle 1, e,(Q,), simplifies to the 

following expression:

\Jj n r  - \ j l /n Aap (oIap -

^.ap “ -J^lap)-

Replacing the subscript 1 by 2 gives e^Qj)- The isotropic mean field is

(3.16)

r  = P i/lr iT  + P2\fĥ  * (3.17)

and the anisotropic mean field is

^ctp = J  ( P l f e p  + P2^22^2ap + P V ^ ll ^lap + P2\Z^2_ ^2ap)- (3.18) 

In the geometric mean approximation, therefore, all particles feel the same 

istropic (T) and anisotropic (A^) mean fields. How strongly a given species couples to 

these fields is characterized by the isotropic (%) and anisotropic (UH and WH) interaction 

strengths. The parameters of the theory are ratios of these coupling constants:

Y 22
r .  —

^ 2 2 r — r  — ^22 ( 3 . 19)

N Y „
1

N f A ,  ’
' 2

\ u u  '
3

> v u

Now the pseudopotentials e, and ej can be expressed in terms of the scalar order
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parameters (Qj.Dj.Pj.Q), the Euler angles £2, = (o^ft/yi) with i=l,2, and the four coupling 

parameters rj with j = 0 to 3.

e,(0 .) -  -  -j A

-  1  A' 
2

- i n
2

<7,(6.) + 'VW-'I',) - jQ t ~ ir^D, 

P ,(M i>  + ^ ,(^ ,,0 ,,^ ,)  -  I p ,  -  - lr2C,

and

e2(Q2) = -  4  A r,g2(02) + r3rf2(02,v2) -  l r ,0 2 -  I ^ 2

-  I  A'
2
1 r-  — r. r.
2 0

2’®2̂  + r3C2^ 2’®2’̂ 2^

Where the anisotropic mean fields are:

r  =  Y u  ( P i  +  r o P 2)*

and

A = — C/ji (p,<2, + r,p2Q2 + r2p,D, + r $ p 2),

A Un (Pi^i + r iP2̂ 2 + r2Pi^i + r3p2̂ '

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

3.5 The Statistical Mechanics of Binary Mixtures

Statistical mechanics was used to calculate the order parameters of both 

species. The single particle partition function for the i* species (Z,) and the orientational 

order parameters (!;,= Qi,Di,Pi,Ci) may be calculated, for species i, by evaluating the 

integrals
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(3.25)

< * , > «

/ e.(d),0,\ir)
exp( ----------- ) sin(0) d<j> dd d\\f

knTB (3.26)

Z,

Since the pseudopotentials are simply functions of the orientational order parameters of 

both species, this set of equations can be iterated until they converge to give self 

consistent solutions for all eight orientational order parameters.

analytically. The remaining two dimensional forms of the ten integrals are given in 

Appendix IV in terms of spherical Bessel functions. For uniaxial phases, the integrands 

are independent of the angle a , and in this case the integration over the angle y can be 

performed analytically (see Eqns. 2.46-2.49) [58,94]. In the biaxial phase, all order 

parameters are nonzero, in this case Romberg’s method was employed [95] to evaluate 

the ten 2-dimensional integrals required for each iteration in the order parameter 

calculation. The spherical Bessel functions were calculated using a polynomial expansion

[96] which gave absolute errors of less than one part in 107. The convergence criterion 

for integration in the p dimension required fractional accuracy of one part in 106; the 

second dimension, y, required fractional errors of less that one part in 105. The order 

parameters themselves are reiterated until they are consistent to within one part in 104. 

The integrations were checked for a test case by comparing the results to Mathematica’s

[97] numerical evaluation of the actual three dimensional integrals, and the solution was

The a  dimension of the integrals in Eqns. (3.25.and 3.26) was performed
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found to be correct to within the errors cited. When molecular biaxiality is ignored (D 

= C = 0), this theory reduces to a mean field theory of binary mixtures of uniaxial 

particles. The numerical calculations were checked by reproducing phase diagrams which 

were constructed using this uniaxial theory [98]. Further verification of the results of the 

calculation included comparing the temperature dependence of the order parameters Q and 

D, calculated for prolate molecules in a uniaxial phase (Nu+), with previously published 

results [99], and reproducing Maier and Saupe’s results for a single component, uniaxial 

system [24] when r,=r2=r3=0.

density of the homogeneous mixture can be calculated using Eqn. (3.13). Other 

thermodynamic quantities can be evaluated, and those of particular interest include the 

thermal average energy densities <e,>, <£,> and the entropy density o,

Once the order parameters have converged, the configurational free energy

(e,) = (a) p, + <p> p2 , (3.27)

<e2) = (aO p, + (pO p2 , (3.28)

(3.29)

where

(3.30)
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(3.31)

and

For a pure component, if the entropy density jumps discontinuously at the transition, i.e. 

there is a finite entropy of transition, then the phase change is first order [100]. For 

second order transitions, the entropy changes continuously through the transition. Thus, 

the order of the transition can be determined by calculating o  just above and below the 

transition temperature.

Pi, (i = 1,2) can be calculated. These chemical potentials are crucial for constructing 

temperature-concentration phase diagrams, since coexistence regions occur where the 

following chemical potentials of different species are equal. For a binary mixture,

For homogeneous mixtures, the chemical potentials for each component,

'  ~k‘T  ln[? ; Z'1 * *»7’p ’(v« 'v' ) (3.33)

and

= 7 s£  = - V  ln [J-Z 2] + kBTPl(vr v2) 
cmv2 p 2

-  p , [ p,v2( a  ) + (p2v2-p,v,)( p ) -  p 2v,( p ' ) ] .
(3.34)

Where Vj is the molecular volume of the i"1 species.
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3.6 Temperature Dependence of Orientational Order in a Single Component System

Only one parameter, r2, the ratio of the biaxial coupling strength to the 

uniaxial coupling strength, is needed to predict the temperature dependence of 

orientational order for a single component system. The temperature dependence of the 

nematic order parameters can be calculated. In the uniaxial phase, order parameters are 

calculated with P and C held fixed at 0. In this case, the algorithm converges to one of 

three states depending on the initial guesses for the order parameters. These three 

uniaxial solutions correspond to: (1) a solution describing the isotropic phase (I) with 

Q=P=C=D=0, (2) a solution with Q < 0 corresponding to a discotic nematic phase (1%.), 

and (3) a solution with Q > 0 indicating a calamitic nematic phase (Nu+). In the biaxial 

phase (Nb), all four order parameters are non-zero, and it is found that the self-consistent 

equations converge to the same orientational distribution independent of initial order 

parameter guess; however, the principal axis from which the Euler angles were defined 

depends on the initial conditions for the order parameters. For all phases, the scaled free 

energy density is calculated for a single component using Eqn. (3.14) with p2 = 0. The 

solution for the order parameters which have the minimum orientational free energy gives 

the equilibrium phase of the system.

The temperature dependence of the four order parameters of a single 

component nematic for five different values of the biaxial coupling parameter, r2, are 

presented in Figure 3.1. At each given temperature, Eqns. (3.25 and 3.26) were iterated 

to calculate the four order parameters. Depending on initial conditions and phase 

assumption, at most four solutions for the order parameters were found: a biaxial solution
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Figure 3.1(a) Orientational order parameters (Q,D,P,C) as a function of temperature
for the biaxial coupling parameter r2 = 0.20. Temperatures are
normalized with respect to the Maier-Saupe transition temperature.



or
de

r 
pa

ra
m

et
er

s

78

3.0

2.0

1.0

0.00.0 1 r~V l'  ,------ i---------------- i
0.0 0.5 l .o  1.5

tem perature

Figure 3.1(b) Orientational order parameters (Q,D,P,C) as a function of temperature
for the biaxial coupling parameter r2 = 0.30. Temperatures are
normalized with respect to the Maier-Saupe transition temperature.
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Figure 3.1(c) Orientational order parameters (Q,D,P,C) as a function of temperature
for the biaxial coupling parameter r2 = 0.35. Temperatures are
normalized with respect to the Maier-Saupe transition temperature.
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Figure 3.1(d) Orientational order parameters (Q,D,P,C) as a function of temperature
for the biaxial coupling parameter r2 = 0.50. Temperatures are
normalized with respect to the Maier-Saupe transition temperature.
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Figure 3.1(e) Orientational order parameters (Q,D,P,C) as a function of temperature
for the biaxial coupling parameter r2 = 0.70. Temperatures are
normalized with respect to the Maier-Saupe transition temperature.
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(Nb), a uniaxial solution of prolate objects (Nu+), a uniaxial solution of oblate objects 

(Nu.), and the isotropic phase solution (I). The equilibrium solution for the system was 

taken to be that of minimum free energy (Eqn. (3.13)). Small values of r2 (r2<0.33) 

describe rod-like or prolate molecules, while for r2=0 the rods are cylindrically symmetric 

and the Maier-Saupe results are reproduced [24]. Large values of r2 (r2>0.33) describe 

plate-like or oblate molecules, and larger values (r2 > 1.0) describe nearly cylindrically 

symmetric plates. A biaxial nematic phase is found near the isotropic-nematic transition 

temperature (TNI) for intermediate values of r2 (r2=0.33). This is in agreement with 

previous work [21,102-108] which predicted that low molecular weight thermotropic 

biaxial nematic liquid crystals should display characteristics of both rod-like and disk-like 

molecular shapes [109,110].

As the temperature is lowered, mean field theory predicts that a nematic 

liquid crystal becomes more ordered and follows the sequence I-NU+-NB (rods) or I-Ny.-Ng 

(disks). To illustrate this ordering as a function of temperature, an ensemble of 1000 

molecules whose orientational distribution gives the order parameters are presented for 

r2 = 0.3 (Figure 3.2) and r2 = 0.35 (Figure 3.3). For prolate molecules, the order 

parameters converge to Q=l, D=0, P=0 and C=3 as the system cools to T = 0; this gives 

an orientational distribution in the (a.p.y) space concentrating on the line (3=0 and a=-y. 

This distribution is one of complete alignment with the molecular z-axis parallel to the 

laboratory z-axis. As C becomes finite, the phase becomes biaxial, and the molecular x- 

axis aligns parallel to the lab x-axis. For oblate molecules, as the temperature lowers, the 

order parameters converge to Q=-0.5, D=-1.5, P=-1.5 and C=1.5. Figure 3.3(c)



Figure 3.2(a) An ensemble of 1000 molecules whose orientational distribution gives
the order parameters for rod-like liquid crystals with biaxial coupling
parameter r2=0.30 for T = 0.700
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Figure 3.2(b) An ensemble of 1000 molecules whose orientational distribution gives
the order parameters for rod-like liquid crystals with biaxial coupling
parameter r2=0.30 for T = 0.316.
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Figure 3.2(c) An ensemble of 1000 molecules whose orientational distribution gives
the order parameters for rod-like liquid crystals with biaxial coupling
parameter r2=0.30 for T = 0.100.
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Figure 3.3(a) An ensemble of 1000 molecules whose orientational distribution gives
the order parameters for disk-like liquid crystals with biaxial coupling
parameter r2=0.35 for T = 0.900.
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Figure 3.3(b) An ensemble of 1000 molecules whose orientational distribution gives
the order parameters for disk-like liquid crystals with biaxial coupling
parameter r2=0.35 for T = 0.400.
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Figure 3.3(c) An ensemble of 1000 molecules whose orientational distribution gives
the order parameters for disk-like liquid crystals with biaxial coupling
parameter r2=0.35 for T = 0.100.
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demonstrates that this distribution is also one of complete alignment except the molecular 

z-axis aligns along the laboratory y-axis. The entropy of transition was calculated using 

Eqn. (3.29) and the results indicate that the phase transition from the isotropic phase 

(Q=D=P=C=0) to the uniaxial nematic phases (P=C=0) is first order. The entropy of 

transition between the isotropic phase and the uniaxial nematic phase decreased as the 

molecular biaxiality parameter approached r2=0.33 from either above (I-IV) or below (I- 

Nu+). The phase transition from the uniaxial nematic phase to the biaxial nematic phase 

(Nu+-Nb and Nu.-NB) was found to be second order.

3.7 Temperature-Concentration Phase Diagrams of Binary Mixtures

After the behavior of pure components had been studied, binary mixtures 

of biaxial liquid crystals were investigated. For binary mixtures, phase separation occurs 

when the combined free energy of two phases is lower when the two components are 

apart than the free energy of the homogeneous mixture. Temperature-composition phase 

diagrams give the physical conditions where miscibility gaps occur [98,100,111]. It is of 

interest to calculate phase diagrams of different mixtures of molecules with a variety of 

uniaxial and biaxial coupling strengths. For a given temperature, once the free energy of 

a homogeneous mixture is known as a function of composition (Eqn. (3.13)), the 

minimum free energy phase of the system can be determined. If any line connecting two 

points on the homogeneous free energy curves lie below it, the composition range 

between the two points is unstable and phase separation will occur. The most stable 

configuration can be found by constructing a double tangent to the homogeneous mixture 

free energy curves [98,100]. An equivalent method to constructing this double tangent
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involves the calculation of the chemical potential of both components (Eqns. (3.33) and 

(3.34)) [98,100]. When the chemical potentials of both components, p.,, are equal, the 

phases are in thermal and diffusive equilibrium and they can coexist. Therefore, the 

concentrations where the chemical potentials are equal gives the location of the miscibility 

gaps. Plotting the chemical potentials p, against Pj and locating the point where the 

curve crosses itself gives a second, more numerically efficient, method of determining 

coexistence regions. In producing the temperature-concentration phase diagrams, the 

volumetric fraction (Y) will be given in lieu of the number density (see Appendix IV). 

In all phase diagrams presented, the volume per molecule and the isotropic interaction 

strengths are set equal for both components to emphasize the effect of the anisotropic 

interaction strength.

For mixtures, three parameters are needed; r„ which reduces in the uniaxial 

case to a ratio of transition temperatures (rt = (^T n̂ /v, Tnii)1/2) [112], r2 which measures 

molecular biaxiality for component 1, and r3, the biaxiality parameter for the second 

species (r2 for species 2 is r^r, = (W22/U22)1/2). First, a mixture of rod-like liquid crystals 

was chosen with r2 approximately that expected for uniaxial nematogens, (r,=0.632, 

r2=0.163, r3=0.158). For the rod-like uniaxial nematogen FLOCu-d,,, the temperature 

dependence of Q and D were experimentally measured and fit to this theory to give r2 = 

-0.16±0.01 [58]. Comparison of results, shown in Figure 3.4, to an earlier study of binary 

mixtures of uniaxial, prolate liquid crystals (r,=0.632, r2=r3=0) [98] shows that the effect 

of increasing molecular biaxiality is a decrease in the area of the Nu+-I coexistence region 

and the appearance of an inhomogeneous mixture of two biaxial phases (at different
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Figure 3.4 Teraperature-concentration phase diagram for a biaxial binary mixture 
of rod-like liquid crystals with ^=0.6325, r2=0.1633, r3=0.1581. The 
two solid lines on the top of the diagram are prolate nematic (Nu+) - 
isotropic (I) coexistence curves. The dotted lines are the coexistence 
curves if the molecules were cylindrically symmetric (r,=0.6325, r2=0.0, 
r3 = 0.0). Below T = 0.17, biaxial solutions give the minimum free 
energy. The bottom line is a biaxial nematic (NB) - biaxial nematic 
(Nb) coexistence region. For all phase diagrams, Y is the volumetric 
fraction of species i = 1 and T is the temperature normalized such that 
T = 1.00 is Tni in Maier-Saupe theory.
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concentrations) in the biaxial phase at lower temperatures. A mixture of disk-like liquid 

crystals (r,=0.5, r2=0.7, r3=1.2), presents qualitatively similar results, as shown in Figure 

3.5. Figures 3.6 and 3.7 give the results of mixing rod-like with plate-like liquid crystal 

molecules, here r,=l, r2=0.16, r3=0.7. This temperature-concentration phase diagram 

demonstrates that mixtures of prolate and oblate liquid crystals are unstable to spinodal 

decomposition into two coexisting uniaxial phases, Nu+ and 1%., even when the molecules 

are slightly perturbed from cylindrical symmetry. A mixture of a rod-like liquid crystal 

molecules with an asymmetrically shaped disk (r,=0.632, r2=0.1633, r3=0.25) has a small 

stable biaxial phase as demonstrated in Figure 3.8. The last temperature-concentration 

phase diagram (Figure 3.9) shows that for mixtures of liquid crystals with asymmetric 

shapes between that of rods and disks (^=1.0, r2=0.30, r3=0.35), the homogeneous mixture 

in the biaxial phase is stable. The parameter r2=0.30 describes a flattened rod shaped 

molecule while r3=0.35 corresponds to a lopsided disk shaped one. The mixture of these 

two liquid crystals does not phase separate, a result which can be understood by 

comparing the free energy curves in Figure 3.10. For the mixture of nearly cylindrically 

symmetric rods and plates in Figure 3.10(a), a concave free energy envelope shows that 

a heterogeneous mixture minimizes the free energy. For the mixture shown in Figure 

3.10(b), the free energy curve is convex which indicates that this mixture will not phase 

separate but remain a homogeneous mixture. The implications of this result are discussed 

below.

3.8 Conclusions

Predictions of the temperature dependence of all four order parameters
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Figure 3.5 Temperature-concentration phase diagram for a biaxial binary mixture 
of disk-like liquid crystals with r,=0.5, r2=0.7, r3=1.2. The two solid 
lines on the top of the diagram are oblate uniaxial nematic (Nu.) - 
isotropic (I) coexistence curves. Below T=0.6, the system is biaxial. 
The bottom line is a biaxial nematic (N0) - biaxial nematic (NB) 
coexistence region.
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Figure 3.6 Temperature-concentration phase diagram for a biaxial binary mixture 
of disk-like liquid crystals with rod-like liquid crystals, here r,=1.0, 
r2=0.166, r3=0.70. The two solid lines on the top of the diagram are 
oblate nematic (Nu.) - isotropic (I) coexistence curves. The bottom 
lines show that the biaxial nematic (NB) phase is unstable, and the 
mixture phase separates into two coexisting uniaxial nematic phases 
(Nu+ and Nu.).
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Figure 3.7 Temperature-concentration phase diagram for a biaxial binary mixture 
of disk-like liquid crystals with rod-like liquid crystals with r,=0.5, 
r2=0.166, r3=0.50. The bottom lines again show that the biaxial nematic 
(Nb) phase is unstable, and the mixture phase separates into two 
coexisting uniaxial nematic phases (Nu+ and N0.). Here the two pure 
components have roughly equal isotropic-nematic transition 
temperatures close to the Maier-Saupe value T = 1.0.
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Figure 3.8 Temperature-concentration phase diagram for a binary mixture of rod
like nematogens with highly asymmetric disk-like molecules, here 
r,=0.6325, r2=0.166, r3=0.25. A small region where the biaxial phase 
is stable exists. The dotted lines are not coexistence curves, but simply 
phase boundaries. The bottom line is a biaxial nematic (NB) - uniaxial 
nematic (Nu+) coexistence region.
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Figure 3.9 Temperature-concentration phase diagram for a biaxial binary mixture
of flattened rod-like liquid crystals with lopsided disk-like liquid
crystals, r,=1.0, r2=0.3, r3=0.35. The dotted lines are not coexistence
curves, but simply phase boundaries. For this mixture the biaxial phase 
is stable and is found close to the nematic - isotropic transition 
temperature CIn,) for Y=0.33.



fre
e 

en
er

gy

98

U +

•5.0

7.0
0.0 0.2 0.4 0.6 0.8 1.0

Y

Figure 3.10(a) The free energy density at a fixed temperature is plotted at a function 
of concentration for the four possible phases of the mixture: isotropic 
(I), prolate uniaxial (Nu+), oblate uniaxial (Nu.) and biaxial (NB). For 
the system illustrated in Figure 3.7 at T = 0.50, the free energy density 
of all four phases is shown in Figure 3.10(a). To obtain the minimum 
free energy, the mixture phase separates into two uniaxial components.
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Figure 3.10(b) The free energy density at a fixed temperature is plotted at a function 
of concentration for the four possible phases of the mixture: isotropic 
(I), prolate uniaxial (Nu+), oblate uniaxial (1%.) and biaxial (NB). For 
the system illustrated in Figure 3.9 at T = 0.85, the free energy density 
of all four phases is shown in Figure 3.10(b). The minimum free energy 
corresponds to a homogeneous biaxial phase.
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describing a biaxial nematic phase in a single component liquid crystal have been 

presented for the first time [63]. The general result that asymmetric liquid crystals exhibit 

a second order phase transition between uniaxial and biaxial nematic phases is consistent 

with previous predictions [21,101-108]. These theoretical results motivated searches for 

low molecular weight biaxial nematogens [109,110,113-115]. The success of these 

searches is a topic of debate [116]. Experimental investigations of single component 

biaxial nematogens in the uniaxial calamitic phase have been performed in which the 

temperature dependence of the order parameters was successfully fit using this model 

[58]. It would be interesting to perform analogous experiments on the newly reported 

biaxial nematic liquid crystal systems to determine if they are truly biaxial nematic 

phases.

Behavior of biaxial nematogens in binary mixtures has also been predicted 

using mean field theory. Temperature-composition phase diagrams of a number of binary 

mixtures have been calculated in order to explore the behavior of biaxial molecules in 

nematic liquid crystal phases. Previous work on nematic mixtures have suggested that 

it may be possible to achieve phase biaxiality by mixing rod-like nematogens and plate

like nematogens [89]. Mean field calculations of cylindrically symmetric molecules (D2„ 

symmetry) concluded that for binary mixtures of prolate and~oblate liquid crystal 

molecules, the biaxial phase is unstable to spinodal decomposition into separate 

inhomogeneous mixtures of uniaxial phases (Nu+ and N,j.) [98]. In the present study it 

has been shown that the inclusion of slight molecular biaxiality into the theory does not 

affect this conclusion. A mixture of a plate-like liquid crystal and a rod-like liquid
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crystal (with a shape anisotropy comparable to those observed in real uniaxial rod-like 

liquid crystal systems [58]) is predicted to phase separate into two uniaxial phases, rather 

than to produce a stable biaxial nematic. Only mixtures composed of extremely 

asymmetric or lopsided molecules prefer the biaxial nematic phase. And, for binary 

mixtures the interesting result that a blend of highly asymmetric molecules with opposite 

shape anisotropy (asymmetric rods with disks) form a more stable, higher temperature 

biaxial nematic phase than either pure component alone.



4. Molecular Motion of Nematic Liquid Crystals

1 0 2

The anisotropic intermolecular forces which cause liquid crystals to align 

also have a strong influence on their molecular motion. 2H-NMR relaxation experiments 

have been used to investigate the anisotropic molecular motion of nematic liquid crystals. 

Relaxation experiments measure how fast a spin system undergoes the transitions 

necessary to return it to thermal equilibrium. Spontaneous transitions between magnetic 

energy levels are hopelessly slow (e.g. for deuterons in a 7 Tesla magnetic field, the 

transition rate is W = 10'21 s'1). Therefore, transitions between magnetic energy levels 

occur by stimulated absorption and emission. Thermal photons can induce transitions. 

However, this coupling also gives negligible transition rates (W = 10'9 s'1 for deuterons 

in a 7 Tesla magnetic field in a coil with a Q = 100, volume of the sample = 10'6 m \ and 

T = 300 K) [117]. Since coupling with the radiation field is inadequate as a relaxation 

mechanism, interactions of the spin system with its surrounding environment, the ’lattice’, 

must be invoked to explain the observed relaxation rates. For 2H-NMR of liquid crystals, 

reorientational motion of the molecules give rise to rapidly fluctuating terms in the 

quadrupolar Hamiltonian which induce transitions. The rate at which a spin system 

relaxes to thermal equilibrium can be expressed in terms of spectral density functions 

which characterize the spectrum of the fluctuations [118]. Proper selection of relaxation 

experiments allows the determination of these individual spectral densities of motion as 

a function of frequency and temperature [119]. These spectral densities can be interpreted 

using various models of the molecular motion. In this chapter of the thesis, spectral
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density data from both pure FLOC and a FLOC:p-Xy binary mixture will be interpreted 

by fitting experimentally measured spectral densities to a composite diffusion model of 

molecular motion in a nematic liquid crystal [61,65].

4.1 Pulse Sequences

The measurement of deuteron relaxation rates in liquid crystals requires the 

use of sophisticated pulse sequences. Examples of the pulse sequences for a number of 

relaxation experiments are given in Figure 4.1. Assuming the system starts from thermal 

equilibrium, individual magnetizations or higher order coherences are established using 

a series of rf pulses and delays in the preparation part of the pulse sequence. Any of 

the eight quantum operators, (I,, Iy, I2, Q*. Qy, Q*. D„ Dy) [120], can be excited using a 

suitable pulse sequence. Pulse sequences which are used to establish spin order include 

the Jeener-Broekaert sequence which [121,122] creates quadrupolar order (Q*), an 

inversion-recovery experiment [123,124] in which Zeeman order (-1*) is excited, and an 

experiment [125,126] in which double quantum coherences (D* or Dy) are established. 

After the coherence has been prepared, the system is allowed to evolve for a given period 

of time, T, during which the spin system relaxes back to thermal equilibrium. The 

evolution of the operators can only be detected if mixing pulses are applied to create 

single quantum coherence. A measure of the decay of the order or coherence in the time, 

T, gives the relaxation rates, i.e. the decay of Q, gives T1Q, the decay of I* gives T1Z and 

the decay of D, or Dy give Tjjq.

A simple example of a pulse sequence used to measure relaxation rates is 

the inversion-recovery pulse sequence with quadrupolar echo detection (IRQE). As
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shown in Figure 4.1, the preparation part consists of a high power 180° pulse which 

inverts all the spins. After this pulse, the system is allowed to evolve freely for a time 

T. The mixing sequence is a conventional quadrupolar echo pulse sequence (90x-x-90y-x- 

acq).

The time evolution of the density matrix during the IRQE experiment can 

be calculated starting from the thermal equilibrium distribution: p(0) = I,,. An rf voltage 

is applied across the coil at the Larmor frequency, v0, with the intensity oo, = YhH, for 

a time tp, such that co,tp = jr. The resulting density matrix is (see Appendix HI)

p(r) = exp(i7xco,fp) Iz e x p H J /iy p
= Iz cos(Jt) -  Iy sin(Jt) (4.1)

= ~h-
The Zeeman order relaxes back to equilibrium exponentially during the time T,

P(7) = - / 1 -  2 e x p ( - J l )
7  1 iz

(4.2)

The quadrupole echo pulse sequence is used to create the detected signal quantum 

coherence [60]. Here, the first pulse projects the magnetization onto the x-y plane, and 

after a time, x, the second pulse refocuses precession due to the quadrupole Hamiltonian. 

To obtain the most accurate values of the relaxation rate, T1Z, the inversion-recovery 

sequence requires uniform initial inversion. When pulse power is limited (oo, £ coQ), 

composite 90° and 180° pulses are often used to acquire undistorted spectra [123,127].

Most measurements of deuterium quadrupolar order relaxation in liquid 

crystal systems have used the conventional Jeener-Broekaert (JB) pulse sequence [119- 

122], The preparation sequence for a conventional JB experiment is 90„-x-45y. Starting
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Figure 4.1 Three pulse sequences used to investigate molecular motion using 2H-NMR.
The sequences pictured are (a) an inversion recovery experiment with a 
quadrupolar echo (IRQE) which is used to measure the rate of decay of 
Zeeman order T1Z, (b) the Jeener-Broekaert pulse sequence used to measure 
T1Z and rate of decay of quadrupolar order TIQ, and (c) the broad band 
Jeener-Broekaert pulse sequence used to measure T1Q.
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from equilibrium, p(0) = I*. After the 90x pulse has been applied, p(t) = Iy. This 

transverse magnetization is allowed to evolve under the quadrupolar Hamiltonian for some 

time x:

p(x) = exp(/Q/OgX) Iy exp(- tQ /o flx) = Iy cos(cofix) + Qx sin(mQx). (4.3) 

If x is chosen such that 2o\jX = (2n+l)jt, then p = ± Q*. Supposing a y-pulse is applied 

at this time, the density matrix becomes

p = exp(i/ to ,f) Qx exp(-i7 co,f)
1 (4.4)

= Qx cos(2o),/p) + _  (3Qt-Dx) sin^co/p .

Choosing tp such that co/j = nt4 gives p = l/2(3Qi-Dx). Next, the system is allowed to

relax back to equilibrium for a time T after the second pulse,

p(7) = It [ l-e x p (--L )]  + 1  Qt e x p (- -L )  + 1  Dx e x p ( - -L ) ,  (4.5)
l l Z *  IQ ^  DQ

where Tdq is the double quantum relaxation rate. In the mixing part of the JB sequence, 

a pulse is applied along the x-direction; 6 = cottp gives

p = { l-exp (--L )}  {/ cosG + I  sine}• ^  * y

+ — e x p (--H ) {i. Qt Ocos2©-!) -  Qy sin0 cos0 -  -L Dx sin2©} (4.6)
2 Tl Q 2 2

+ i.exp(-_ I_ ) ( - 0  sin0 cos0 -  — Q, sin20 + — Dr (l+cos20)h
2 Tqq y 2 1 2 *

If the flip angle, 0, is chosen to be 45°, a maximum amount of Qy is produced from Q*. 

Notice, however, that this choice of flip angle reduces the amplitude of the Zeeman order, 

It, by a factor of V2. Phase cycling can be used to cancel the double quantum coherence 

[60,119], this leaves the following measurable part of the density matrix:
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p = £ L  [1 -  ex p (--Il)] Iy -  1  e x p ( - i l )  Qy. (4.7)
^  IZ 4  l \ Q

The relaxation rates, T1Z and T1Q, can be measured by measuring the sum (to get Iy) and 

the difference (to get Qy) of intensities of the quadrupolar doublets as a function of 

relaxation time, T. Denoting the intensity of left and right absorption peaks by m,(T) and 

mt(T) respectively, the signal is Tr(pT) = m,(T) + mr(T). An automated procedure which 

uses nonlinear least squares fitting was developed [128] for determining the relaxation 

rates based on the relations

5(7) = m,(7) + mr(T) (4.8)

D(T) = m,(D -  mr(T) (4.9)

= [S(0)-S(oo)] ex p (-JL ) + 5 H  
*iz

(4.10)

D(T) = D(0) ex p (-JL ), 
Tiq

(4.11)

where S(<») and S(0) are the equilibrium and initial sum intensities respectively, and D(0) 

is the initial difference intensity. Obtaining the relaxation rates with this conventional 

Jeener-Broekaert pulse sequence is called the sum and difference (SAD) method 

[119,124].

For the SAD experiment, digitation is started immediately after the last 

pulse. Finite spectrometer recovery time precludes this, and distortions appear in the 

spectrum. Also, the conventional JB experiment only creates quadrupolar order with 

maximum intensity for specific frequencies vQ, such that x = (2n+l)/(4vQ). In general, 

however, there is a distribution of 2vQ values in the 2H-NMR spectrum, and the value of 

x chosen will be a compromise which leads to less than optimal excitation of quadrupolar
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order for some values of 2vQ.

Broadband Jeener-Broekaert experiments have been proposed by Wimperis 

[129-131] to help overcome this problem. One such pulse sequence is 

9 0  ̂  -  2 t -  61.5- - 2 x -  45̂ , -  t  -  45 . [129]. A spin density matrix calculation of 

this multiple pulse sequence demonstrates the creation of broadband quadrupolar 

excitation [129-133]. The quadrupolar order, Q,, is measured as a function of relaxation 

time, T, using a final 45y mixing pulse. Because of the dead time of the receiver, this 

method produces similar spectral artifacts as the traditional JB pulse sequence. To avoid 

this problem, a 90y pulse is inserted after the 45y mixing pulse to refocus the single 

quantum coherence [59]. This refocusing is analogous to the quadrupolar echo. The 

symmetries of the refocusing pulse required for Zeeman and quadrupolar order are 

incompatible; that is, the phase cycle which maximizes quadrupolar order suppresses 

Zeeman order, and vice-versa [59,60]. As a result, two separate experiments need to be 

performed: a broadband Jeener Broekaert (BBJB) and an inversion recovery experiment 

quadrupolar echo detection (IRQE). It has been shown that this approach (BBJB and 

IRQE) yields relaxation rates, T1Z and T1Q, with significantly greater precision and 

accuracy than those determined using a conventional Jeener-Broekaert experiment [60]. 

Examples of stacked plots created using this sequence of experiments are shown in Figure

4.2

4.2 Relaxation Theory

Having measured the decay rate of quadrupolar and Zeeman order (T1Q and 

T1Z), the results of these experiments need to be interpreted. The first step in this process
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Figure 4.2(a) Stacked plots from an inversion-recovery experiment (IRQE) performed on 
pure FLOC.
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Figure 4.2(b) Stacked plots from a broad-band Jeener-Broekaert experiment (BBJB) 
performed on pure FLOC.
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is to derive a theoretical description of relaxation in spin 1=1 systems. In the fast motion 

regime, these relaxation rates are expressed in terms of spectral density functions 

(Jm(Mco0)) which characterize the molecular motion. Two different relaxation experiments 

(BBJB and IRQE) allows the determination of the individual spectral densities. These 

spectral densities represent the maximum amount of information available on molecular 

motion from magnetic resonance experiments [59,60,119].

When a time dependent perturbation is present, the Hamiltonian can be

written as:

H = H„ + (4.12)

where the time independent term Ho is responsible for the 2H-NMR spectrum and includes 

the static Zeeman, quadrupolar, dipolar and scalar couplings. H'(t) describes time

dependent interactions and is defined to have a zero time average, <H'(t)> = 0. Suppose

<)>„ is an eigenvector of Hj with eigenvalue hcon, then a general solution of the time 

dependent Schrddinger equation can be written in the form

i h i . y  = H*P (4.13)
dt

V = £  cn(t) <|>„ = £  ajjt) e ' ^  <)>„. (4.14)
n n

A time dependent density matrix operator p' can be defined:

iP'«. = < a lit) a'm(t) )
=  pr  nm

4 A  K i t-1TJJI

Time dependent perturbation theory [132] gives expressions for the 

expansion coefficients at time t+At, an(t+At), given an(t).
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an(t+At) = £  a^t+At)  (4 .16)
I

To order zero, the coefficients are static in time

a ^ t+ A t)  = an(t), (4.17)

and higher order terms describe the time dependence of the expansion coefficients

= -i £  f at'V) ( n I H'(t')e-i(a--a')' I / ) d t\ (4.18)
' /

Expanding the density matrix to second order (i=2) gives 

Pnm'(f+Af) = ( E  A + A f )  E  am*(t+A/) )
I j

= P j W  + < *ml),(t+At) ) + ( flin(t+Ar) a*(r) ) (4.19)
+ ( a n(r) a®*(r+Ar) ) + ( «®(t+At) a ‘(t) >

+ ( a (nl) a £ )m(t+At) )

This expansion can be used to derive an expression for the time 

dependence of the elements of the density operator. For the second order expansion to 

be valid, the density operator p^'ft) must not change appreciably in the time At, 

otherwise, higher order terms need to be included. In the interaction representation (a 

frame rotating at v0 about the laboratory z-axis), the time dependent terms in the density 

matrix change at frequencies ±vQ. This implies that At < l/vQ in order for the second 

order expansion to remain valid. In addition, the definition of a spectral density requires 

that At»te, where t c is the correlation time for molecular motion. Physically, these two 

conditions are met for any system where the rotational motion of the molecule changes 

on time scales much smaller than l/vQ, i.e. l/vQ>xc. In this motional regime, Redfield 

theory describes the time dependence of the density matrix [133-136],
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(4.20)

The elements of the relaxation superoperator are

Rnmlk ~ ^nlmk^k + ^nlmk^ n- ® /)
(4.21)

y Y

and the spectral densities are defined in terms of Fourier transforms of autocorrelation 

functions:

The autocorrelation function, G ^ ,  of a time dependent perturbing 

Hamiltonian is defined to be

This function is defined with the following two assumptions:

(1) G(o°) = 0, i.e., H'(t) and H'(t+t) are statistically uncorrelated at long times.

(2) G(t) is an even function of x.

The first assumption implies that there exists some correlation time xc such that G(xc) «  

G(0) for all x > xc. The integral expressions for the spectral densities can be evaluated 

with an upper limit of infinity because G (x»xe) = 0. Nonsecular terms with (o)n-com) * 

((0 ,-cOfc) will oscillate at high frequencies, and make a negligibly small contribution to 

R.„n,. Thus with this secular approximation, equation (4.20) is simplified to

The are elements of a four dimensional relaxation super-matrix often 

called the ’Redfield super-operator’ which describes the time evolution of a density matrix

(4.22)
0

Gnmlk(x) = ( n I H'(r) I m X / 1 H"(r+x) I k } (4.23)

(4.24)
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subject to a time dependent Hamiltonian H'(t). Some of the elements have a simple

physical interpretation; R  gives the probability per unit time that a transition from

state m to state n will occur. The rate of depletion of state n is -R   and conservation

of populations requires

^ 'm m  ~ ^  ̂  ^ mmnn (4.25)
m

The spectral density J ^ c o )  is a generalized transition probability requiring 

fluctuations with frequency components at co. These spectral densities are one sided 

Fourier transforms of the correlation function of the perturbing Hamiltonian as shown in 

Eqn. (4.22). Given the time dependent part of the Hamiltonian in terms of spherical 

tensors,

H \t)  = £  ( -1 )"  A2m [T j j f ) ~ W j  (4.26)
m

where the static part of the quadrupole Hamiltonian, 7 ^ ,  is subtracted off to insure that 

(H*) = 0. Placing this Hamiltonian into (4.22) gives

J  = /  I H’(r) | m i l  | H'(f+x) | k ) * dx

(4.27) = £  (-1)*™ ( n | I / X m I A2 .w | k ) • x
M U

mm

J  < (T2LM(t) -  7 £ ) ( 7 £ ,V t)  -  7*7) > «-«“•-"->* dx,
0

where T ^ W  are spatial derivatives of the electric potentials in the laboratory frame. 

These spatial derivatives are only know in the PAS of the EFG tensor T * * ^ . Neglecting 

bond asymmetry, this is a frame with the z-axis points along the C-D bond:

TL«) = D Z ' m ) )  T2bq (4.28)

where Q(t)=(a(t),p(t),Y(t)) are the time dependent Euler angles which rotate the laboratory
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frame into the PAS frame of the EFG tensor. In this expression, the time dependence of 

the quadrupolar Hamiltonian is attributed to changes in the orientation of the C-D bond 

with respect to the laboratory frame. That is, the time dependence of HQ'(t) results from 

molecular motions. For uniaxial liquid crystals, the orientational potential is independent 

of a(t), so M is constrained to be equal to N in equation (4.27)

U “ r “ i) = E  < n I A2,m  I «  X / | a 2_„ \ k  >* x
M

f  \2
12fl

8
where

«■

J

(4.29)

) =

J [ (z>$(0(f)) 1») -  (d™ )2 ] eKa‘-a'*dz.
(4.30)

The spectral density of motion, JM(co), is the value of the Fourier transform of the auto

correlation function of the Wigner rotation matrix elements DMO<2)(£2) at frequency co. 

Physically, the JM(m)’s are a measure of the intensity of fluctuations in the electric field 

gradient at the frequency cu.

Using the Zeeman basis set, |1) = II* = +1), |2) = 1^ = 0), and |3> 

= |I* = -1), the non-zero spin operators A2JVI can be evaluated and are presented in Table 

4.1. These results along with Eqn. (4.29) can be used to find ■L . J co) in terms of the 

spectral densities JM(d)). Of the 405 theoretically possible J,lml,(o))'s. symmetry requires 

that only 14 of them are non-zero [119], these are listed in Table 4.2. Combining these 

results, the Redfield relaxation matrix elements can be calculated explicitly in terms of 

spectral densities and these are presented in Table 4.3.
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<1|A2>0|1> = 1 <2|A20|2> = 2 (3|A20|3> = -2

<1|A2,|2 > =  - v/2 <2|AJ3> = v/ I

<2|A2.,|1> = f t  (3|A2.,|2> = -y/2

<1|A22|3) = 2 (3|A2_2|1) = 2

Table 4.1 The non-zero matrix elements of the spin operators A2 M.

A m  ~ A 333 = A 133 = 'g A ^

A 222 = - j  A ^

Am = A233 = - 3 - A ^

A212 ~  A323 =  A121 =  A232 =  ■ j  A K )

A 223 = A l32 = --2 A ^ o )

A 313 = A l31 = A (2(Do)

e2qaQ3tt2
Table 4.2 The 14 non-zero matrix elements of the spectral densities in units of _
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^1313 =  ^3131 =  -  7 , ( c o 0)  - 2 7 2( 2 co0)
P
/X3333 =  *1111 =  -  A K )  - 2 J 2( 2 g >0)

*2222 =  - 2  7 , ( o > 0)

p
1212

_ D
~  2121

-  P
2323

-  P
3232 -  4  [w *( 0 )

-  3 7 , ( 0 ) , , )  -  2 J 2( 2 g ) 0)]

^1122
-  P

^2211
-  P
~  3322

_  p
~  2233 =  A ( M o)

^1133 =  *3311 =  2  7 2( 2 o j 0)

^1223
-  P

2132
_ p
~  2312

_ p
“  3231 =  -  4 K >

Table 4.3 Redfield relaxation matrix elements for I = 1 in units of 3rc2
2

e\ Q
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4.3 Relaxation Rates and Spectral Densities

Finally, the connection between the relaxation rates (T1Z, T1Q) and the 

spectral densities JM(co) needs to be made. The equation governing the decay of Zeeman 

order is

d (1} (Jj -  (fz(oo)>

dt
(4.31)

1 iz
Recalling the definition of the expectation value in terms of the trace in Eqn. (2.12), and 

given that the equilibrium density matrix is proportional to \  gives,

( Iz > = Tr(PIz) = (pu -p ,3). (4.32)

Substituting (4.32) into (4.31), applying Redfield’s equation of motion (4.24), and taking 

into account that R3333 = Rmi and R,133 = R331, gives

d V  d  (p n - p 33)
dt dt

therefore

=  *1 1 1 1  ( P l l - P u H ) . +  * 1 1 3 3  ( p 3 3 " p 3 3 ( ° ° ) )  

*3 3 1 1  (P 1 1  P 1 1 ^ °°^  ~  * 3 3 3 3  ( P 33 "  P 3 3 ( ° ° ^

* (*1111 ~ *1133) ( (PU-P 33) " (P„(00)-P 33(00)) ]

= (*1,1,-*,133) t V  ~ 1-

1 _ D O
-jr~ - "1133  ” “ nir  
I \z

(4.33)

(4.34)

Using Table 4.3, an expression for the relaxation rate in terms of the spectral density of 

motion can be derived

1

iz

3ft2
2

/  \  

e \ Q [ + 472(2co0) ]. (4.35)
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Similarly, the decay of quadrupolar order 

d (Q j (Q j
dt

(4.36)
1Q

can be expressed in terms of the expectation values of the density matrix elements:

(4.37)<Gz> = Tr( pQz ) = i .  (pn -2p22+p33).

This gives

d < Qz > d
dt

Pll- ^P22 + P33
dt

^1111 “^1122 +̂ 1133̂
P11 2P22 + P33 (4.38)

Thus the relaxation rate is,

-jT- = - ^I1U+^1122_ 1̂133 
l \Q

9712 
2

f  V

e \ Q
(4.39)

37,(0),,).

Given the quadrupole coupling constant (e2q2ZQ/h), the spectral densities 

of motion J,(c%) and J2(2o)o) can be obtained. In the next section, motional models of 

liquid crystals are used to interpret these experimental relaxation times.

4.4 Models of Molecular Reorientation

In order to interpret the spectral density data, a theoretical expression for 

the autocorrelation function of the Wigner rotation matrix elements (Eqn. 4.30) needs to 

be calculated. If the molecular motion is considered to be a stationary Markovian 

process, probability theory can be used to derive an expression for the time dependence
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of the correlation function [137]. A stationary Markovian process is a stochastic process 

having statistical parameters which are invariant to changes in the time origin.

Defining E ^ f t) ,

E JC l(0) = D%(Q(t)) -  (D^(Q(f))). (4.40)

The general form of the autocorrelation function is given below [65,138,139]

( E % m ) )  E % - m + x ) ) ) = (441)

fdCl0 jdQ  P(n0) P (a 0;Q z) E J Q 0) £m,(Q(x)), 
where p(flo) is the equilibrium orientational probability distribution function, and

P(Qo;Q,t) is the conditional probability of finding the molecule at the angle £2 at time x

when the initial orientation is Q, at time x = 0. Implicit in this definition of the

autocorrelation function is the assumption that no correlation exists between components

of the molecular angular momentum L at any time, i.e. each collision randomizes the

angular momentum of the molecule [138]. Specific models of molecular motion can be

used to provide equations governing the time evolution of the conditional probability

function P(Q<,;£2,i).

The two extreme models of reorientational dynamics are strong collision 

and small step rotational diffusion. With the strong collision model, motion of the 

molecule is assumed to occur in unconrelated, large angle jumps. The orientation after 

the collision is assumed to be independent of the orientation before the collision and the 

duration of collisions is assumed to be negligible when compared to the residence time 

in any given orientation [138-141], This model is well suited for small solute molecules 

dissolved in a solvent of larger, rigid molecules. Strong collision models are also used 

to describe rotations of rod-like liquid crystals about the long molecular axis [65]. The
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second limiting case, small step rotational diffusion, describes the situation when 

molecules rotate in small angular steps and a strong correlation between orientations 

before and after each collisions exist [138,139,142-144].

For small step Brownian motion in isotropic medium, the time dependence 

of the conditional probability function is given by solutions of the rotational

diffusion equation. If the diffusion is isotropic, the rotational diffusion equation is given 

below [139]

3/>(Q°:Q,T) = -D  V * P(Q0;£2,x) (4-42)
9t

The diffusion constant, D, can be calculated hydrodynamically using the Stokes-Einstein 

model. With this model, the molecule is viewed as a sphere of radius a  in a continuous, 

stationary, homogenous medium [139], and

k T
D = B (4-43)

8jca3r|

where rj is the viscosity of the medium.

Using this model, analytic expressions for the autocorrelation functions of 

the Wigner rotation matrix elements (E{£(Q(t)) £^(fl(r+x))^ and the spectral densities 

Jm(Mo)„) are easily derived. The solution for the conditional probability is assumed to be 

of the form

P(£i0;Q,x) = £  C % )  D&Q). (4.44)
jjnJt

Assigning the time dependence to the expansion coefficients



9/>(Q0;Q,x) _ 9C^(x) w
 =  y  _______

9x 9x
and applying the Laplacian operator gives [145]
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(4 .4 5 )

V 2 D<S(Q) = -j(j+l) D & a). (4-46)

Multiplying the resulting equation by D n v ^ f t )  and integrating over the Euler angles

gives

a C&x)
9x

= -7*0+1) D C^(x). (4 .4 7 )

The orthonormality properties of the Wigner rotation matrix elements [1 4 6 ] requires that 

f  dSl D jf i* (Q )  = J ? 2 . 8  8  8 . .  (4 .4 8 )j  11,111, tv":'- 7 q ;  n,m
8rt2

(27771) 0m'm’ L;‘/-

These simple uncoupled differential equation can be solved with the initial condition

/>(Qo;fl,0) = 8(Q0-Q )

= £  I t L  D * \ n 0) D®(Q)
jut 8tc2

(4 .4 9 )

giving

/»(£20;n,X) = £  M l i  D % \Q 0) D & Q ) exp(-j(/+l)Dx).
jmk OJC

The that conditional probability for an isotropic distribution is p(fl„) = 1/8JC2,

( 3 2 ( 0 0 )  *(£2(r+x) > « I  «-"* 8*.
5

The spectral densities can be calculated by taking a Fourier transform,

(4.50)

(4.51)

«) -  j
1/ 6 D (4.52)

U (M <aJ6 D ) 2

In the extreme motional nanowing limit McOq < 1/6 D (in a 7 Tesla magnetic field, 1/6 

D «  20,000 ps, a condition typically satisfied by most liquids). The spectral densities are
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predicted to be equal with J,(<o0) = J2(2ct>0) = 1/30 D.

All liquid crystal molecules lack spherical symmetry. In order to model 

the molecular motion of cylindrical molecules, the diffusion equation can be generalized

dP(Q n ,x )  = l [ )  l  (4 .5 3 )
a t

where L is a scaled angular momentum vector L = (id/dx, id/dy, id/dz), and D is the 

second rank Cartesian diffusion tensor. This tensor is assumed to be diagonal in the 

molecular frame [139]. For an axially symmetric rotor Da  = D ,̂ and D„ = Dn  = Dx, 

thus

9P(fl ;Q,T) = ^  l2  + ^  ] (4.54)
Ot

This can be solved to yield the conditional probability [65,139]

P(£20;£2,x) = £  D̂ Qo) *>%(&) exp(-i-), (4.55)
jmk 8 J T  l j k

where

7 = ------------ — ----------  (4.56)
Jk j(j+l)DL + k \D y-D L)

The next step is to calculate the Fourier transform of the autocorrelation

functions

JMk(M<n0) = j  D% *(£2(f+*)> e"** dx (4-57)
0

given that £2 represents the set of Euler angles which rotate the principal axis system of 

the EFG (P) into the laboratory frame (L): £2 = £2p_L. If a molecular axis system (M) is 

defined, the orientation of the PAS of the EFG with respect to the laboratory frame can 

be described with two consecutive rotations:
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D%(QpJ t ) )  = £  "(Ql _,m(0) D ^ ' ( Q ^ p) (4.58)
2

where are the time dependent Euler angles which change as the molecule moves,

and Am_ p are the time independent angles describing the relative orientation of the 

molecular axis and the PAS of the EFG tensor. Performing the Fourier transform of this 

autocorrelation functions gives

W  - E W  - E lD»(£WI! «„ 1 *  x <459)*.-2 *--2 5[l+{M(O0T2ky]
Here, the asymmetry of the bond is assumed to be negligibly small (r\ = 0).

For liquid crystal systems, the molecules are orientationally ordered, and

models of molecular reorientation must be modified to include the orienting potential,

U(Al_,m). Statistical mechanics gives the equilibrium probability distribution as

exp< -  W >  , 
p (£ 2 )-------------------1______  (4.60)

k ,T
The differential equation governing the time dependence of the conditional probability 

becomes [147]

aP(Qfl.T) = ^  + ^£(£2) (461)
kBT  0

The inclusion of an orienting potential in Eqn. 4.61 makes the solution for P(&o;A,t) 

much more complicated. First, the orientational ordering of the molecules makes p(Q,) 

angle dependent. Second, when solving the differential equation with this condition, the 

analog to Eqn. 4.47 is no longer a simple decoupled result; couples to

As a result, an infinite set of coupled differential equations needs to be considered. These
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coupled equations have been solved by constructing progressively larger basis until the 

results converge [65]. Freed and his coworkers have proposed a theory to describe the 

rotational motion of liquid crystals based on small step diffusion in the presence of a 

restoring potential [148-151]. In the "anisotropic viscosity" model, the diffusion tensor 

D is assumed to be diagonal in the laboratory fixed frame. This theory can be applied 

to predict spectral densities given the uniaxial order parameter Q, and two rotational 

correlation times: xa for rotational motion of the molecular axis about the director, and 

tp for rotational tumbling about an axis perpendicular to the director as depicted in 

Figure 4.3.

In 1988 a composite diffusion model of molecular reorientation of nematic 

liquid crystals was proposed [65] which combines Freed’s anisotropic viscosity model 

with a statistically independent rotation of the liquid crystal molecule about the molecule 

fixed z-axis. This "third rate model" requires an additional correlation time describing 

the rate of rotation of the liquid crystal molecule about its axis of symmetry, z ,̂ and a 

continuously variable collision parameter p. The collision parameter, p, is defined in the 

range 0 <, p <, 1, where p = 0 corresponds to the assumption of strong collision (arbitrary 

step size), while p = 1 implies small step diffusion for the y-motion. Using this model, 

the spectral densities JM(Ma\,) can be calculated from the following parameters: the angle 

P between the molecule z-axis and the principal axis of the bond, the uniaxial order 

parameter Q, the collision parameter p, and the three correlation times xa, xp and xr

The "third rate" model of molecular motion in anisotropic fluids gives 

explicit forms for the spectral densities,
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1 26

Figure 4.3 Molecular reorientational motion is described with the following correlation 
times: (1) xa, for rotations of the molecular z-axis about the director,
(2) tp, for rotations about axis perpendicular to the director, and (3) Xy 
for spinning motion about the molecular z-axis.
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J jc o) = J  Gm(t) e-ia“ dt (4.62)

G J 0 =  £  Do*’(P) *(3) Gmky(t) (4-63)
kX.-2

where the asymmetry in the field gradient tensor, r\, is neglected. The individual 

correlation functions are given by

<W(T) = J  dSl0 p(Q0) J  P(Q0;£2,x) £ mt(Q0) £m,(fl)  (4.64)

Assuming that the motion of the long axis is uncorrelated with motions about this axis, 

the integrals above can be separated:

= T*(t ) gm*(x) (4.65)
given

2ic 2k

r *  = /  <*Y0 P(Y0) /  dy P(y0\y,x) e ' i(let' ^  (4.66)

and

2*  1

&»*(*) = J^«0 J  rf(cos30) p(a0,p0)x
0 -1 

2 k  1

J d a  J  <f(cosp) P(a0,p0;a,p,x) ^(a^p^O) ^ t(a,p,0)
(4.67)

o -1
where Ttt (t) are correlation functions for motions about the molecular z-axis and g ^ -  are 

correlation functions for motions of this axis.

The Xy motion is modeled with N equally spaced sites about the molecular 

axis. Equal probability jumps between any two sites gives an exponential correlation
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function [152,153]

t

= S *  e ~  i f  k = 12 (4.68)
= K  i f k  = 0

where ty is the lifetime in any one orientation. For rotational diffusion, the jumps are 

restricted to be between nearest neighbors, and as the number of sites approaches infinity 

[152,154]

r j o  ■ < « w

Therefore, the conditional probability for motions about the molecular z-axis is

r *rW = 5w' i f k  = 0
- r

(4.70) = SkX e*' if k = 1
-4t

= 8 ^  e ~  i f k  = 2.

The conditional probability function for motions of the molecular z-axis

in an ordered medium P(ao,po;a,p,T) is obtained by solving equation (4.67) subject to the

initial condition P((x0,po;a,p,0) = f^Q-Q,). In accord with Freed’s anisotropic viscosity

model, the principal components of the diffusion tensor refer to rotational motion about

the space fixed x, y and z axis. Equation (4.61) is solved for a symmetric rotor (D0 =

1/t0 = D, and Dp = l/xp = Dx = D„ = Dyy) in a Maier-Saupe potential:

U = -C  Q (3/2cos2P -  1/2)- Details of the calculation are given in reference [65], here

the correlation function gm ^t) is shown to be

8m* « )  = 8 *  c J Q ) £  a%(Q) exp
im\

Where c ^ Q )  is the initial amplitude of the correlation function, amk(0(Q) are the relative

\  j

<*v

(4.71)
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weights of each exponential decay, and b ^ fQ )  are coefficients which scale time 

constants for anisotropic diffusion in an isotropic medium, in Eqn. (4.56). The 

coefficients amk">(Q), b^ '^Q ) and c ^ ^ Q )  are expressed as a power series expansion 

SqaQ” with the coefficients q„ [65].

In the following section, this composite diffusion model of molecular 

motion of nematic liquid crystal molecules is used to interpret the temperature and 

frequency dependence of the experimentally measured spectral densities J^cOq) and J2(2co0). 

This "third rate model" of molecular reorientation, which assumes that the rotational 

diffusion tensor is diagonal in the laboratory frame, that the liquid crystal is well 

approximated by a symmetric rotor, and that molecular reorientation about the molecule’s 

long axis is statistically independent. These approximations will be tested by fitting 

experimentally measured relaxation data.

4.5 Experimental Determination of Rotational Dynamics

The liquid crystal studied (FLOC, the nematogen 2-fluorenyl-4'- 

tetradecycloxy benzoate-d,) is unique because of the large number of inequivalent 

deuterated sites on the rigid head group. This provides a wealth of information which can 

be used to provide a particularly rigorous test of the various motional models. In many 

previous studies, [154-159] the number of measured relaxation rates is equal to the 

number of variable parameters in the motional model. This makes rigorous, statistical 

estimations of the validity of the model and simultaneous determination of confidence 

limits for the parameters impossible. As shown in Figure (2.3), the deuterated rigid head 

group has seven inequivalent, deuterated sites. The signal to noise ratio for the 9,91
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deuterons was not sufficient to extract quantitative information from relaxation 

measurements. While the doublets from sites 1 and 4 are resolvable, the relaxation rates 

are the same within experimental error; thus, in the numerical analysis, data from site 4 

was excluded. Even though results from only five of the sites were used, the abundance 

of experimental data provides a more stringent test of motional models than has been 

possible heretofore.

Pure FLOC^-d, was placed in a five millimeter sample tube, degassed 

using several freeze-pump-thaw cycles, and sealed under vacuum. Relevant experimental 

parameters include the following: 90° pulse width of 1.6 (isec, dwell time of 6.25 itsec 

(spectral width ± 80 kHz), IK complex points, 250 ms recycle time, and 2K scans for 

signal averaging. The temperature was controlled to within 0.1°C between 120°C and 

140°C using flowing nitrogen gas. The nitrogen was preheated to 110°C using a 32 watt 

continuously run, noninductively wired Nichrome preheater. The temperature of the 

sample was regulated by a 9000 Omega temperature controller with PID feedback to a 

40 watt heater.

As discussed in section 4.1, the decay of quadrupolar order and the 

recovery of Zeeman order were measured in separate experiments. The inversion 

recovery experiment with a quadrupole echo was used to measure T1Z‘, while T1Q‘ was 

determined using a broadband Jeener-Broekaert sequence with echo detection. This 

allows the two spectral densities J/Ctflb) and Jj^ cOq) to be obtained for each resolvable site 

/ on the nematogen FLOC^-d,. Thus, these relaxation data from the five deuterated sites 

on the rigid fluorene moiety provide ten experimental spectral densities at each
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temperature. The intensity of each peak was determined by having the computer search 

for a maximum intensity between two user-specified endpoints. A baseline for intensity 

measurements was established by averaging five neighboring points picked on either side 

of the endpoints and interpolating linearly to the position of the peak maximum. Peak 

separations (2vQ‘ listed in Table 4.4) were determined simultaneously for later use in 

order parameter determinations. Arrays of sum magnetizations (from the IRQE 

experiment) and difference magnetizations (from the BBJB experiment) for, typically, 

sixteen t-values were constructed and passed to iterative, nonlinear least squares routines 

[128]. S(0) and S(<*>) were adjusted along with T1Z in a three parameter fit to Eqn. (4.10), 

while D(0) and T1Q were independently adjusted in a two parameter fit to Eqn. (4.11). 

All these procedures were incorporated into FELIX data processing software [160], and 

the user need only specify a list of T-values and an appropriate window width for the 

peak determination. The relaxation rates for all resolvable sites are listed in Tables 4.5 

and 4.6.

As previously outlined, the quadrupolar splittings (listed in Table 4.4) were 

used to determine the temperature dependence of the static order parameters, Q and D, 

and these are listed in Table 4.4 and plotted in Fig, 4.4. The order parameters are the 

thermally averaged orientation of the long molecular axis (see Figure 2.3) relative to the 

laboratory fixed axes, and refers to the orientation of the fluorene head group with 

respect to the long molecular axis.

In the fast motion regime, Redfield theory [133-136] applies and the 

relaxation times T1Z and T1Q can be related to the spectral density parameters J^cOq) and
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J2(2co0) using eqs. (4.35) and (4.39). Here (e2qQ/h) is the vibrationally averaged 

quadrupole coupling in Hertz, estimated [6 6 ] to be 182 kHz for all aromatic deuterated 

sites in FLOC14-d9. The temperature dependence of the spectral density functions, J^cOq) 

and J2 '(2co0), for different deuterated sites, i, are presented in Figs. 4.5(a)-4.5(f). Second 

order polynomial fits to the temperature dependence of the spectral densities for each site 

were made; the average deviation of the spectral density data from these polynomial fits 

(8 J , 1 and 5J2') is used to estimate random errors. It is these errors which are used in the 

calculation of x2 in the fit of the experimental data to the model of molecular motion.

The third rate model of molecular reorientation [65] was used to fit spectral 

density data for the five sites using a minimum x2 technique. This technique, which was 

used to find the four motional parameters Xa.tp.ty, and p, from the spectral densities, 

involves calculating x2 defined by

2 * [7i(exp)-7;(rAe)]2 [f2(exp)-J'2(the)]2
X2 = V ------------ .--------- +-------------.----------  (4.72)

^  [87|]2 M 2

V(exp) and J2‘(exp) are the experimentally measured spectral densities at co0  and 2 coQ 

respectively for the i* site, J/fthe) and J2 (the) are the theoretically predicted spectral 

densities for the same site, and 8 V  and 8 J2  are the estimated errors in the experimentally 

measured spectral density data.

Given the experimentally determined uniaxial order parameter (Q), and a 

guess for the motional variables, (Tct,Tp,TY,p), % 2 was calculated on a grid in the four 

dimensional parameter space, and minimum values of x2 were found. The reduced chi 

squared parameter, x 2red> *s defined to be the minimum chi squared divided by the
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Figure 4.5(a) Site 1: Spectral densities measured as a function of inverse temperature for 
each deuterated site. Closed circles are J,(a\,) measured at 46 MHz, 
closed triangles are JlCct*o) measured at 38.4 MHz, closed squares are 
1 2 (2 0 )9) measured at 46 MHz, and closed diamonds are J2(2o)0) 
measured at 38.4 MHz. The open circles and squares, which are 
connected by a dotted line to guide the eye, are fits of the 46 MHz 
data to the third rate model of molecular reorientation.
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Figure 4.5(b) Site 3: Spectral densities measured as a function of inverse temperature for 
each deuterated site. Closed circles are J,(g>q) measured at 46 MHz, 
closed triangles are J,((%) measured at 38.4 MHz, closed squares are 
J2(2c0b) measured at 46 MHz, and closed diamonds are J2(2b)o) 
measured at 38.4 MHz. The open circles and squares, which are 
connected by a dotted line to guide the eye, are fits of the 46 MHz 
data to the third rate model of molecular reorientation.
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each deuterated site. Closed circles are J^cflb) measured at 46 MHz, 
closed triangles are J,(C0b) measured at 38.4 MHz, closed squares are 
J2(2(0b) measured at 46 MHz, and closed diamonds are J2(2(o0) 
measured at 38.4 MHz. The open circles and squares, which are 
connected by a dotted line to guide the eye, are fits of the 46 MHz 
data to the third rate model of molecular reorientation.
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46 MHz, closed triangles are J^oob) measured at 38.4 MHz, closed squares 
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dotted line to guide the eye, are fits of the 46 MHz data to the third rate 
model of molecular reorientation.
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degrees of freedom (six for the FLOC14-d9 system). x 2r e d  can be used to calculate the 

probability of measuring a given set of spectral densities [161]. A reasonably high 

probability gives the experimenter confidence that it is appropriate to use the model to 

interpret the data. Plots of the experimentally measured spectral densities and the J^the) 

and J2‘(the) calculated with the motional parameters which give minimum x2 are presented 

in Fig. 4.5. The probabilities listed in Table 4.7 demonstrate that the model works best 

in the middle of the nematic range. Assuming that the model is correct, boundaries of 

confidence regions in the parameter space can be estimated [162]. For our experiment 

with six degrees of freedom, a contour of Ax2 = 7.04 give a 68.3% confidence level 

[163]. As examples, these boundaries are plotted in the three dimensional t  space, for 

three different temperatures, in Fig. 4.6.

The ability of the third rate model to fit ten independent spectral densities 

with reasonable confidence in terms of four parameters is encouraging. The agreement 

between experiment and model is best for sites 3, 5 and 8 (Figs. 4.5(b) and 4.5(d)). 

These sites have the largest signal to noise ratios and the smallest experimental errors in 

the relaxation rates. Because the angle between the symmetry axis of the molecule and 

the principal axis of the EFG tensor is large for these sites, the motional parameters Xy 

and p are largely determined by spectral densities measured for these sites. The sites 6 

and 7 are more closely aligned with the molecular axis, and thus these sites play a 

dominant role in determining xa and xp. The quadrupolar splittings for sites 6 and 7 are 

the largest and most temperature dependent (approximately 20 kHz per °C for the site 7). 

Because of incomplete deuteration and large quadrupolar splittings, these spectral peaks
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had smaller signal to noise ratios, consequently data for these sites had larger errors. 

Since it is more difficult for the model to fit the data for these sites (Figs. 4.5(e) and 

4.5(f)), errors in Ta and xp are larger.

frequency dependence of the spectral densities is weak, and this was tested by comparison 

to experiments performed at 38.4 MHz [164]. These results (solid diamonds and solid 

triangles in Fig. 4.5) demonstrate that for two temperatures in the nematic range, there 

is no appreciable change in the spectral densities with Larmor frequency. This provides 

confirmation that the correlation times reported here are not seriously in error.

experimental spectral densities by incorporating effects of nematic director fluctuations. 

According to a theory developed by several authors [148,165,166], director fluctuations 

contribute in first order exclusively to Ji(o>o):

The correlation times obtained from the third rate model imply that the

Attempts were made to improve the fit between calculated and

- A Q ' l i  «d“ (4.73)

where

3*fl7Y|l/2

Aj lnK™
and
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t/(coc/co0) =
2 k

In
(coc/co0)-(2co(/co())1/2+l 

(cotr/co0)+-(2co c/co0)1/2+1
(4.74)

Where r\ and K are one constant approximations to the anisotropic viscosity and elastic 

tensors of the medium, o)c is a high frequency (short wavelength) cutoff parameter, and 

Q is the order parameter for the molecular z-axis relative to the nematic director. The 

cutoff function, U(cOo/(Dc), is unity at low frequency and becomes small for co0 »coc [167]. 

In accordance with Freed’s original theory [148], a negative cross term has been included 

in Eqn. (4.73). Since viscosities and elastic constants have not been measured for 

FLOC14-d9, it is not possible to obtain an accurate independent estimate of A. Hence, 

values appropriate for a ’typical’ nematic liquid crystal (EBBA) were used, and A was 

assumed to be 1 to 5 x 10'6 s [167]. The cutoff frequency was taken to be 200 MHz 

(corresponding to a cutoff wavelength of molecular dimensions for the highest frequency 

director modes). These values of A and cot were used with Eqn. (4.73) to calculate 

director fluctuation contributions at each temperature including the cross term. Resulting 

values for the best fit rotational correlation times did not differ appreciably from those 

reported in Table 4.7. It may be concluded that director fluctuations make negligible 

contributions to the spectral densities reported in the nematic phase of the liquid crystal 

FLOC.

This conclusion is in agreement with results of low frequency proton and 

deuteron relaxation measured with field cycling methods on other thermotropic nematics
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[168-170] and lyotropic liquid crystals [171], but differs remarkably from results reported 

previously for small solute probes in nematics [158,159,168,171,172]. The resolution of 

this apparent paradox lies in the fact that the rotational correlation times for the liquid 

crystals themselves are typically much larger than those of the small solute probes. This 

has the effect of increasing the negative cross term, to the point where the total 

contribution from eqn. (4.73) approaches zero. For example, with A = 2 x 10'6 s, wc = 

200 MHz and t p = 500 ps, the autocorrelation part (first term) of Eqn. (4.73) is found 

to be 23.7 ps at 46 MHz and the cross correlation term is -11.0 ps. But, when t3 is 

increased to 1200 ps, the second term increases to -24.0 ps and effectively cancels the 

first. It should be noted that in this regime, the assumptions on which Eqn. (4.73) is 

based are no longer valid, but a more rigorous generalized Langevin equation 

representation of the dynamics of a molecule [173,174] yields similar results to those 

reported here. It would be interesting to extend this theory [173] to asymmetric rotors 

like FLOC^-d, with off-axis deuterons to further explore the interaction between the 

rotational diffusion of liquid crystal molecules and the director fluctuations of liquid 

crystal systems when the time scales are comparable.

The temperature dependence of the correlation times fit using the x2 

analysis is given in Table 4.7 and illustrated in Fig. 4.7. The collision parameter 

decreases with increasing temperature (Fig. 4.8), indicating that near the isotropic-nematic 

phase transition, the motion is in the strong collision limit and proceeds by large 

angular jumps. As the temperature decreases, the nematogen rotates about it’s axis of 

symmetry with increasingly smaller angular jumps. Although this conclusion relies on
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Figure 4.7 An Arrhenius plot of the temperature dependence of the motional 
correlation times showing 68% confidence boundaries for each 
parameter. xa data are squares, t p data are circles, and xT data are 
triangles. The lines are least squares fits of the data to the Arrhenius 
equation, t  = T0exp(-EA/kBT).
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Figure 4.8 The collision parameter plotted as a function of inverse temperature.
p = 0 corresponds to strong collision and p = 1 implies small step
diffusion.
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the assumption that y motion and a,p motions are statistically uncorrelated, it is 

physically plausible. If an Arrhenius temperature dependence is assumed, the values, 

yield activation energy EA(y) = 41 ± 25 kJ/mol over the 9.4 °C nematic temperature range 

investigated. FLOC,4-d9 is a long molecule with a rather small molecular biaxial order 

parameter (D < 0.08) in the nematic phase. Because motion about the molecular axis of 

symmetry is not hindered much by the shape of the rotating molecule, a comparatively 

low activation energy and short correlation time is expected. The p motion is about 5 to 

7 times slower than the y motion and also has a lower activation energy, EA(p) = 12 ± 

47 KJ/mol. This is surprising since a strong nematic aligning potential might be expected 

to give Tp a large temperature dependence. Large xp and small E,(p) is characteristic 

of several liquid crystals [175,176]. A possible explanation for the combination of long 

correlation time and small activation energy may be librational motion of the liquid 

crystal about an axis perpendicular to the director. The temperature dependence for t 0, 

the correlation time for motion about the director, gives activation energy, EA(a) = 210 

± 1 00  kJ/mol. This seems anomalously high. Although error limits are large, a high 

activation energy is expected because this motion inevitably requires the displacement of 

many surrounding molecules.

The liquid crystal FLOCu-d, presents a uniquely rich system for the 

investigation of molecular dynamics in the nematic phase. With many well resolved sites 

on the rigid fluorene moiety, the motion of the liquid crystal can be investigated in detail 

without complications introduced by the rotational degrees of freedom of the alkyl chain. 

A general, global least squares technique was developed to fit the relaxation data gathered



1 5 4

from five deuterated sites to the third rate model of molecular reorientation in ordered 

media. Uncertainties in the parameters of this model are larger than those of previous 

investigations, a result of insisting that the model fit the data from all measured sites. 

Much lower errors could be obtained by looking at only one or two sites. However, since 

the number of deuterated sites is greater than the number of motional parameters, 

confidence in the model can be estimated for the first time by the global fitting procedure 

and the results are encouraging. In the nematic phase, the third rate model adequately 

describes the molecular reorientation of the nematogen FLOCI4-d9 and there is no 

evidence for contributions to the relaxation from director fluctuations.

4.6 Reorientational Dynamics in a Liquid Crystal Mixture

A similar series of experiments were used to investigate the molecular 

motion of a binary mixture of the liquid crystal FLOC and the small, rigid molecule para- 

Xylene (p-Xy). The mixture was sealed in a 5mm tube after several freeze-pump-thaw 

cycles. One result of mixing the small, non-mesogenic probe in with the liquid crystal 

FLOC is a depressed nematic-isotropic transition temperature Tm, and in this case Tw fell 

by 50°C. As the sample was cooled, the phase changed from the isotropic to the nematic 

at TNi+ = 78.3°C and from the nematic to the crystal phase at Tn,' = 74.7°C. Integrating 

the static 2H-NMR spectrum and assuming complete deuteration, it was discovered that 

only 30 mole % of the mixture becomes nematic, the rest stay in the isotropic state until 

the entire system crystallizes. Assuming that the concentration of FLOC in the isotropic 

phase is small, the integrated intensities were used to determine the molar concentration 

of molecules in the nematic phase: 50 mole % are FLOC and 50 mole % are p-Xy.
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Figure 4.9(a) The uniaxial (Q,) and biaxial (D,) order parameters of FLOC as a function
of temperature in the FLOCu : p-Xy binary mixture.
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The uniaxial (Q2 ) and biaxial (D2) order parameters of p-Xy as a 
function of temperature in the FLOC14: p-Xy binary mixture.
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The experimentally observed splittings were used to find the biaxial (D,) 

and uniaxial (Qt) order parameters of both components of the mixture. These are shown 

as a function of temperature for FLOC (Figure 4.9(a)) and p-Xy (Figure 4.9(b)), and they 

are listed in Table 4.8. Values for the order parameters are similar to those found 

previously for an 11 mole % binary mixture of p-Xy:FLOC, except that the temperature 

width of the phase is reduced from 12 °C to 3.5 °C.

The relaxation rates, T1Z and T1Q, for all sites on both molecules were 

determined using the same experimental techniques as described for the pure FLOC 

sample. The relaxation rates for the FLOC splittings were measured using 16 relaxation 

times with 1.6 psec 90° pulse widths, 100 ms recycle times and 4096 scans. The p-Xy 

lines had much longer relaxation rates and required a 3 sec recycle time and 256 scans 

were signal averaged. The relaxation rates are presented inn figure 4.9 and 4.10, and the 

calculated spectral densities are presented as a function of temperature in 4.10 and Figure 

4.10.

The spectral density data were fit to the third rate model with the same 

minimum x 2 technique used in the investigation of pure FLOC, the results of the fit to 

the correlation times are given in Figure 4.11 and Table 4.11. These correlation times are 

in qualitative agreement with the results from pure FLOC. The general trend that t p > 

xa > xT is followed, although Zy is somewhat longer in the mixture. This slowing of 

the ty motion may be caused by collisions of the smaller p-Xy molecules with the core 

of the FLOC which serve to brake this rotational motion. The collision parameter for 

FLOC was found to be p = 0.50 throughout the nematic range, this is in qualitative
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Figure 4.10(a) Site 1: Spectral densities measured as a function of inverse temperature 
for each deuterated site. Circles are J^Wo) measured at 46 MHz, squares 
are J^tOo) measured at 46 MHz, and the lines are fits of the data to the 
third rate model of molecular reorientation.
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Figure 4.10(b) Site 3: Spectral densities measured as a function of inverse temperature 
for each deuterated site. Circles are J,(c%) measured at 46 MHz, squares 
are J2(2q̂ ) measured at 46 MHz, and the lines are fits of the data to the 
third rate model of molecular reorientation.
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Figure 4.10(c) Site 4: Spectral densities measured as a function of inverse temperature 
for each deuterated site. Circles are Ji(co0) measured at 46 MHz, squares 
are J2(2<Bb) measured at 46 MHz, and the lines are fits of the data to the 
third rate model of molecular reorientation.
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Figure 4.10(d) Site 5 and 8: Spectral densities measured as a function of inverse 
temperature for each deuterated site. Circles are J^Wo) measured at 46 
MHz, squares are J2(2q̂ ) measured at 46 MHz, and the lines are fits of the 
data to the third rate model of molecular reorientation.



sp
ec

tr
al

 d
en

sit
y 

(p
s)

165

240.0

220.0 •  J ^ O  for site #7 
■ J2(2co0) for site #7200.0

180.0

160.0

140.0

120.0

100.0

80.0

60.0

40.0

20.0

0.0
74.0 75.0 76.0 77.0 78.0 79.0

T (C)

Figure 4.10(e) Site 7: Spectral densities measured as a function of inverse temperature 
for each deuterated site. Circles are J,(cOo) measured at 46 MHz, squares 
are J2(2cô ) measured at 46 MHz, and the lines are fits of the data to the 
third rate model of molecular reorientation.
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Figure 4.10(f) Aromatic Site on p-Xy: Spectral densities measured as a function of 
inverse temperature for each deuterated site. Circles are Ĵ cOq) measured 
at 46 MHz, squares are 1 2 (2 0 )0) measured at 46 MHz, and the lines are fits 
of the data to the third rate model of molecular reorientation.
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Figure 4.10(g) Methyl Site on p-Xy: Spectral densities measured as a function of 
inverse temperature for each deuterated site. Circles are J^ cOq) measured 
at 46 MHz, squares are J2(2a\,) measured at 46 MHz, and the lines are fits 
of the data to the third rate model of molecular reorientation.
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agreement with the pure FLOC values. The temperature dependencies of the correlation 

times (Figure 4.11) were not used to find activation energies for either molecule in the 

mixture because of the small nematic temperature range and larger experimental 

uncertainties. The para-xylene data was fit to the third rate model assuming that fast 

spinning of the methyl groups motionally averages the quadrupolar coupling constant. 

For this motion, the principal axis of the effective field gradient tensor is along the 

spinning axis and is reduced by a factor of three [177]. The results of fits to the third 

rate model for p-Xy are presented in Table 4.12. The motions of this molecule are at 

least a factor of 10 faster than that of the larger liquid crystal host. The relative values 

of the correlation times of the para-xylene motion follow the general trend of the liquid 

crystal host, with x„ > xp > Ty. The xr motion occurs by a strong collision mechanism 

as is observed for other small solute molecules [65,178-180].

These relaxation rates for molecular motion in the nematic phase were fit 

assuming that no exchange between molecules in the nematic phase and the coexisting 

nematic phase occurs on the time scale of the NMR experiment (100 ms for the FLOCl4 

and 3 s for the p-Xy). This assumption was checked using a selective inversion-recovery 

experiment. In this experiment (shown in Figure 4.12), a low power, 180° pulse is used 

to invert the zero frequency line which originates from molecules in the isotropic phase. 

The system is then allowed to evolve for some time T0. If molecules in the isotropic 

phase diffuse into the nematic phase during this time To, signal from inverted spins on 

the diffusing molecules should change the intensity of the quadrupolar doublets. By 

taking a difference between this experiment and one run without the inverting pulse, any
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Figure 4.11 An Arrhenius plot of the temperature dependence of the motional correlation 
times of FLOC14 molecular motion in the FLOC14: p-Xy binary mixture 
showing 68% confidence boundaries for each parameter. xa data are 
circles, data are squares, and i ,  data are triangles.



Figure 4.12 The selective inversion experiment is shown in Figure 4.12(a). A low power 
rf pulse is applied long enough (tp = 800 ps) to invert the low frquency 
signal (o)ttp = jc) as shown in 4.12 (b). The system is allowed to evolve 
during a time Td, then a quadrupole echo pulse sequence is used to detect 
the magnetization. The difference between the this signal and one acquired 
using a standard quadrupolar echo is used to detect translational diffusion 
between molecules in coexisting nematic and isotropic phases.
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off resonance signal would indicate translational diffusion between coexisting nematic and 

isotropic phases. No signal was detected away from the zero frequency isotropic peak 

in the difference spectrum. This negative result implies that the assumption that 

translational diffusion across the nematic-isotropic boundary is not occurring on the time 

scale of the NMR experiment is correct (TD > 3s).

In this chapter, the molecular motion of a liquid crystal and a liquid crystal 

binary mixture were investigated using 2H-NMR relaxation experiments analyzed with a 

composite diffusion model of molecular reorientation in an ordered medium. The results 

from the pure material showed that in the nematic phase, the third rate model adequately 

described the molecular reorientation of the nematogen FLOC14 with no evidence of 

director fluctuations at 46 MHz. Curiously, no evidence for director fluctuations were 

found in the analysis of the relaxation data for a p-Xy:FLOC binary mixture. Although 

the experimental data for the mixture experiment are less accurate, previous studies of 

small molecules have reported that contributions to the spectral densities from director 

fluctuations are needed to interpret the relaxation data [170,180-183], especially at Larmor 

frequencies below 500 kHz. Both the low accuracy of the experimentally measured 

spectral densities and the high Larmor frequency of the experiment (46 MHz) do not 

allow for contributions to the spectral densities from director fluctuations to be estimated 

from the FLOC:p-Xy relaxation experiments. In fact, estimates using equation 4.73 and 

the results quoted in Table 4.12 show that the director fluctuation contribution to J,(cob) 

for the p-Xy deuterons is within experimental error. The motion of the smaller, rigid p- 

Xy occurs on a much faster time scale than that of the long, flexible liquid crystal. The



1 7 4

Ty motion of FLOC is measurably different in the mixture compared to the pure material. 

The time scale for p-Xy motion differs from that of FLOC by an order of magnitude, this 

suggests that mixtures and pure materials are fundamentally different, and it is incorrect 

to assume that probe molecules are capable of monitoring a system without biasing it.
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/ m Tto

0 0 -(l/SHT^+Tyy+TJ

1 0 -(W 2 H V T J

1 ±1 -(1/2)[T„-T„ ± i ( W ]

2 0 (1/V6)[3TZZ - (T.m+Tyy+Tj,)]

2 ±1 * ( 1 / 2 ) ^ + ^  ± ifTyj+Tjy)]

2 ±2 (l/2)[T„-Tyy±i(T ,y+Tŷ

Spherical Tensors. The spherical tensors Tta are obtained from the nine 
elements of the Cartesian tensor Tc« (a,P = x,y,z). The indices I and m denote the rank 
and component index of the spherical tensor, respectively.
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APPENDIX ID

U0a)db = e-^'O/6'

U(Iy)Ix = I,cos8 - Izsin0 

IKyi* = Ixcos0 + IySin0 

U(QZ)IX = IjCOsQ + Qysin0

U(IX)I* = IjCosQ + ^sin© 

UCI Î* = IjCOs0 + I,sin0

= IyCOs0 + IjSinO

Uiljly  = Iycos0 - IjSin© 

U(QI)Iy = IyCos© - QjSinQ

U(IX)Q, = QxCosG - Dysin0

UdyJQ, = acos20
+ 1/2(30, - D,)sin20

U(IZ)Q, = Q,cos0 + Qysin0

U(Qz)Qx = Q*cos0 + IySin0

UCUQ, = l/2Q(3cos2-l)
- Qysin0cos0 - l/2Dxsin20

UdyJQ, = l/2Q,(3cos2-l)
+ Q,sin0cos0 + l/2Dxsin20

U(Ix)Qy = Qycos20
+ 1/2(2Q,+Dx)sin20

UCIylQy = Qycos0 + Dysin0

U(I,)Qy = Qycos0 - Q,sin0

U(Qz)Qy = Qycos0 - I„sin0

U(I,)DX = -Qysin0cos0 - S^QjSin2©

+ l/2Dx(l+cos28)

U(Iy)Dx = -QjSinOcosO + 3/2Q,sin20 
+ l/2Dx(l+cos20)

U(I,)DX = Dxcos20 + Dysin20

IKIjlDy = Dycos0 + QjSin©

U(Iy)Dy = Dycos0 - Qysin8 

U(I,)Dy = Dycos20 - Dxsin20

Exponential operator commutation relations (0 = cot).
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As explained in the text, integration of the expressions needed to calculate 
the order parameters (Eqns. (11) & (12)) can be performed analytically over the angular 
variable a . This yields the following two dimensional integrals which must be evaluated 
numerically.

1 2k

Z, = _L J J exp(a) 70(£) dx dy (A.1)
x«0 ymO

1 2k

fl| V  T  s T -  J  J  eXP(fl) W  (A'2)4rt x«0 y«0

1 2k
Z, = -JL J f ( I -* 2) exp(a) 7,(£) <7y (A-3)

4 , t  x»0 y«0

1 2k
Z, = -JL J J ( l - * 2) cos(y) exp(a) 70(£) dx dy (A-4)

271 x-0 y«0

'x lKr 7 (E)
Ct Zt = —  I [6cos(y)+6cos(y )x2+2cjcsin(y)] - I—  dx dy (A-5)

4jC x4> yifl s

The integrals for species 2 are obtained by performing the following substitutions:

a ->r. a, ft -> I l  b, c L c, % - » J l  
r2 r2 r2
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The functions a, b, c and a  are given below.

a = — A ( i r - i . )  -  — M (1-jc2) cos(y) (A.6)
2 2 2 4 '

b = -_ A r2(l- .r2) + _  AV2( 1 +j:2)cos(y ) (A.7)

c = -  .2. AVyrsinfY) (A.8)

a  = j b 2 + c2 (A-9)

As a last note, the calculations are presented in the results and discussion 
section as functions of the volumetric fraction of molecule i=l. Given the volume per 
molecule of each component, v, and v2 the number density, p, is related to the volumetric 
fraction, Y, by the following simple relations.

Y = T, = p, v, (A. 10)

(1 -Y) = Y2 = p 2 v2 (A. 11)
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