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ABSTRACT

Materials which flow like fluids, but possess anisotropic properties like
molecular crystals, are called 'liquid crystals’. Studies of liquid crystals contribute to our
understanding of how molecular orientation influences macroscopic properties. This
thesis presents experimental and theoretical investigations of molecular order and
dynamics in nematic liquid crystal systems. First, deuterium nuclear magnetic resonance
is used to determine the degree of orientational order of both components of a liquid
crystal mixture simultaneously. The temperature dependence of the four order parameters
is interpreted using a newly developed mean field theory of nematic binary mixtures
composed of biaxial molecules. Next, mean field theory is applied to predict the phase
behavior of arbitrarily shaped nematogens. For single component liquid crystals, the four
order parameters needed to quantify orientational order of biaxial molecules in a biaxial
nematic phase are calculated as a function of temperature for both rod-like and plate-like
liquid crystals. For binary mixtures, temperature-concentration phase diagrams for a
variety of molecular shapes are calculated. These theoretical predictions suggest that
binary mixtures of highly asymmetric molecules with opposite shape anisotrophies may
display stable biaxial nematic phases. Last, deuterium nuclear magnetic spin relaxation
rates are measured as a function of temperature to investigate the molecular motion of a
liquid crystal and a liquid crystal binary mixture. These experimental results are
interpreted using an anisotropic viscosity model of molecular reorientation. The
temperature dependence of the cormrelation times for the molecular motions is examined
and discussed. It is demonstrated that mixing probe molecules into a liquid crystal has

a profound effect on the molecular motion of the liquid crystal.
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A STUDY OF MOLECULAR ORDER AND MOTION

IN NEMATIC LIQUID CRYSTALS




1. INTRODUCTION

The three common forms of matter are the solid, the liquid and the gas
phase. In 1888, German chemists [1-3] observed an intermediate phase in some esters
of cholesterol. These materials flowed like a viscous liquid but possessed anisotropic
optical properties characteristic of solid crystals. Studying these esters using a
polarization microscope, Otto Lehmann reported in 1889 of observing a "fliessende
kristalle" or "liquid crystal" phase [2]). Materials which have these intermediate phases
or mesophases are called liquid crystals, mesogens or mesomorphs. Most liquid crystal
molecules are organic compounds having elongated shapes. These long molecules tend
to align parallel to each other on average, this alignment gives liquid crystals their
anisotropic, crystal-like properties. Liquid crystal systems can be produced by dissolving
amphiphilic molecules, such as salts of higher fatty acids, in a carefully controlled amount
of solvent, usually water. This class of materials are called lyotropic liquid crystals.
Lyotropics are usually formed by aggregates of molecules; examples include soaps,
detergents and biological membranes. Systems that show mesomorphic behavior in a
definite temperature range are called thermotropic.

1.1 Structure

Both lyotropic and thermotropic liquid crystals are classified according to
their structure. The nematic phase is a turbid, low viscosity state. Nematic liquid
crystals give thread-like textures when viewed through a polarizing microscope, and

Nemat is Greek for thread-like. Liquid crystal molecules in the nematic phase have long
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range orientational order, but the centers of mass of the molecules are distributed at
random. Nematic liquid crystals or nematogens come in a variety of shapes. Rod shaped
liquid crystal molecules form calamitic nematic phases (calamos is Greek for rod). The
calamitic nematic phase is uniaxial with all rods pointing in a particular direction on
average. This class of compounds has been the most extensively investigated and is the
most important for technological applications [4,5]. As of 1990, there were approximately
20,000 rod-like mesogenic compounds known to exist, and typically 1,000 new calamitic
liquid crystalline compounds are synthesized each year [6]. In 1977, two groups
independently discovered that disk-like molecules form nematic liquid crystal phases
[7.8]. Since disks have rotational symmetry, the discotic nematic phase is uniaxial.
Recently, a number of groups have claimed to obtain a biaxial nematic phase with highly
asymmetrically shaped molecules {9,10,11]. For these biaxial nematogens, rotations about
the long axis are sufficiently hindered that there is orientational order in two orthogonal
directions. Illustrations of these phases are presented in Figure 1.1.

Although this work will concentrate on thermotropic liquid crystals in the
nematic phase, other liquid phases exist. Many mesogens form more highly ordered
liquid crystal phases as temperature is lowered (for thermotropics) or as concentration of
the amphiphilic molecules is increased (for lyotropics). Smectic mesophases (smektikos
is Greek for soap-like) are characterized by positional order in at least one dimension in
addition to average orientational alignment. The centers of mass of the molecules align
in layers giving a one dimensional density fluctuation. There are many different kinds

of smectic phases, indicated with the subscripts S,, S, ... , S, [12]. These phases difter




(a)

(b)

(c)

Figure 1.1 The nematic phase is sketched.
(a) The calamitic nematic phase composed of rod-like molecules.
(b) The discotic nematic phase composed of disk-like molecules.
(c) The biaxial nematic phase composed of brick-like molecules.
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in (i) the orientation of the preferred direction of the molecules with respect to the layer
normal (orthogonal and tilted smectic phases), and (ii) the organization of the centers of
mass of the molecules within the layers. Some discotic liquid crystal molecules also tend
to stack in ordered columns which are arranged in a hexagonal or rectangular array.
These smectic-like phases called columnar discotic phases. The experimental
determination of the liquid crystal phase is performed using a variety of techniques. X-
ray diffraction results obtained from powders and single crystal samples can be used to
determine the structure of the mesophase [12]. Observations of mesogens using a
polarizing microscope give textures which are indicative of the symmetry of the phase
[13]. Finally, miscibility studies can help classify the phase of a liquid crystal by taking
advantage of the fact that complete miscibility is found only for phases of equal or
closely related structures [14].
1.2 Orientational Order

Anisotropic properties of liquid crystals depend crucially on the degree of
orientational order of the constituent molecules. All present day applications of liquid
crystals exploit dielectric, diamagnetic, optical, or viscosity anisotropies which are
manifestations of the orientational order [4,5]. A measure of the degree of alignment in
liquid crystals is needed to quantify this order. The average orientation of liquid crystal
molecules can be described statistically by defining a distribution function f(€2) such that
f(Q2)dQ is the probability of finding a molecule within a solid angle d<2 centered at Q. Q
represents the three Euler angles (o.,B,y) which describe the orientation of the molecule

in the lab frame, as shown in Figure 1.2. The orientational distribution function can be




expanded using Wigner rotation matrix elements as the basis [15],

Q=3 2;;1 DAQ) DL (). (1.1)

Jmn

The coefficients of this expansion, (D,‘,,',f(Q)>, are thermal averages called order
parameters which are usually determined experimentally rather than f(2) itself.

Restricting the discussion to nematic liquid crystals, experiments show that
nematic mesophases exhibit D,, symmetry [16] even if the molecules do not. Phases
with D_;, symmetry have a plane of symmetry perpendicular to the direction of average
alignment (the director, n, is a unit vector pointing in the direction of average alignment).
For systems possessing D, symmelry, (Df"’),(g)> with J odd aré zero.

The scalar order parameter, Q, describes orientational order in a uniaxial
phase of cylindrically symmetric molecules. Unfortunately, some authors prefer the
notation Q [17], while other use S, S,,, P {cosB). Or Dg(Q) to stand for the same
quantity [15]. In this thesis, the convention of Bergersen et al. [17] will be adopted, and

this order parameter will be called Q.

0 =5, = <PP)»> = (DY) = <%coszﬁ—%>. (12)

The uniaxial order parameter, Q, is zero for randomly oriented isotropic fluids, and it can
range from 1 for perfectly aligned rods to -% for completely aligned plates. Most
experiments only measure this second rank order parameter, although some estimates of
the fourth rank order parameter <P (8)> have also been published [18,19]
35 15 3
<P,B)> = (DY(Q)) = <__cos“ -~ cos? —_.>. (1.3)
(B> = (D) = (Zcostp-cos -2

In reality, all rod-like nematogens deviate from cylindrical symmetry in




Figure 1.2 The three y-convention Euler angles (Q = (o,B,y)) which describe the
orientation of a liquid crystal molecule in the laboratory {rame.
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some degree, so although the phase may be uniaxial, the two sides of the brick-like
molecule will have different probabilities of orienting along the director. A second order

parameter describing this molecular anisotropy is (S,,-S,,) or D [15,17],

D= (5.-5) = (3sinBeoszy) = |2 (D2)+DE@). (1.4
Yy 2 2

For a biaxial nematic phase of non-cylindrically symmetric particles, four
order parameters are required to describe the orientational order [17,20). These are the
uniaxial phase order parameters given above, Q and D, and two biaxial phase order

parameters given below, P and C.

. ’ 1.5
P = (%sm’ﬂcosZoc) = % (Dg)(ﬂ) + Dfiﬁ(9)> (1:5)

€ = (D2 + DY@ - DF@ - DY @)

3{ (1+cos(B)cos2acos(2y) - cos(B)sin2osin2y) y (L)
= ..;_( (1+cos*(B))cos(2a)cos(2y) - 3cos(B)sin(2a)sin(2y) )

1.3 Molecular Theories

Why do liquid crystals align? Molecular theories of liquid crystals attempt
to understand the behavior of mesogenic systems in terms interactions among the
component molecules. Ideally, molecular dynamics simulations of large systems of
particles with realistic intermolecular potentials would be used. Reasonably accurate pair
potentials exist for simple molecules such as inert gases, methane, nitrogen, water, oxygen
and benzene [21]. These potentials have been determined experimentally and have been
used in computer simulation studies of gases and liquids. To date, the molecular

complexity of nematogens have prevented the determination of reliable pair potentials and
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their subsequent use in computer simulation experiments. Currently, model potentials
must be introduced in order to approximate the relevant characteristics of the interactions.
Using these approaches, a qualitative understanding of liquid crystals from a molecular
point of view can be developed.

The Onsager molecular field theory [22] ascribes the origin of nematic
ordering to the anisotropic shape of the molecules, i.e. to short range, hard core, repulsive
interactions. The stability of the nematic phase is given in terms of the excluded volume
of hard rods with the shape of spherocylinders or ellipsoids of revolution. An analytic
expression for the free energy is derived as a fraction of the length to breadth anisotropy,
the order parameter Q, and the packing fraction. Analytical solutions for the order
parameters can be obtained using statistical mechanics, and the solution which gives the
minimum free energy of the system is taken to be equilibrium. For long, thin rods with
a length to breadth ratio of 100, this approach gives very high predictions for the order
parameters (Q=0.78) and over estimates the density change (Ap=21%) at the isotropic-
nematic transition compared to experimentally determined values (Q=0.3 and Ap=.4%)
[23]. Smaller length to breadth ratios give more reasonable results. If this ratio is 3, Q
= (.62 and Ap<1%.

Landau-DeGennes theory is an alternate approach in which any attempt to
calculate the partition function from the intermolecular potential is forsaken. Instead, the
free energy is written as an expansion in terms of parameters of importance in
characterizing the transition of interest. For liquid-gas transitions, the relevant order

parameter is the density, for ferromagnets it is the magnetization, for superconductors 11




10
is the Cooper pair potential, and for liquid crystals it is the order parameter. Landau’s
original work was successful in describing second order phase transitions. The nematic-
isotropic transition is first order because the order parameters and the entropy of transition
change discontinuously at the transition. DeGennes [16] extended Landau’s theory to
predict the order parameters near weakly first order transitions. In 1991, the Swedish
Academy of Sciences presented DeGennes with a Nobel prize in Physics in part for this
theory which "has shown that phase transitions in such apparently different physical
systems as magnets, superconductors, polymer solutions and liquid crystals can be
described in mathematical terms of surprisingly broad generality" [27].

Many other interesting theories of liquid crystal order in nematics have
been developed. The Lebwohl-Lasher model [28] is a Monte-Carlo type calculation in
which molecules, placed on a fixed lattice, interact via the potential Uij = _gilpz(cose),
where 0 is the angle between the long axes of molecules i and j, here g; is finite if i and
j are nearest neighbors and 0 otherwise. This model predicts a first order phase transition
from the liquid state to the nematic, with Q=0.333+0.009 [29]. The Lebwohl-Lasher
model is presently being used to investigate order in small droplets (microns) dispersed
in a polymer matrix where surface boundary conditions have a profound effect on the
orientation of the molecules [30]. Other Monte Carlo simulations in which hard particles
are allowed to move rotationally and translationally have been performed, giving results
similar to Onsager techniques [31]. Finally, hybrid van der Waals-type theories which
consider both short range and long range interactions for liquid crystals have also been

proposed [32,33]. The addition of a long term attractive term to hard core term in the
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potential lowers the Q at the transition by 0.10 to 0.15, while the change of density at the
transition is unaffected [33].

In this thesis, a highly successful molecular theory called mean field theory
will be used to interpret experimental results and to predict the behavior of binary
mixtures of biaxial nematogens. Mean field theory, first formulated by Maier and Saupe
{24], attributes nematic ordering to anisotropic, soft, long range attractive interactions.
The mean field approach assumes that any molecule in the system interacts with a mean
field generated by all the other molecules. In the original treatment, attractive pair-wise
London dispersion forces (induced dipole-induced dipole) were assumed which led to a

mean field pseudopotential U(Q) [24],

uQ) = -CQ EcoszB—_l. (17n
2 2

here C is a temperature independent constant, {8 is the Euler angle between the molecular
z-axis and the director shown in Figure 1.2, and Q is the orientational order parameter.
Later it was realized that any pair potential of the form U(r,,B) = -u(r,) P,(cosp)
where u(r,,) is some scalar function of distance, will give this pseudopotential [25].
Classical statistical mechanics gives the orientational order parameter Q as function of this
pseudopotential, and this equation can be solved self-consistently to find a solution for
the order parameter as a function of temperature. The free energy density, entropy
density and internal energy density of the system can also be calculated, and the order
parameter solution which gives the minimum free energy density at a given temperature
gives the stable equilibrium state of the system. Results of this theory are in qualitative

agreement with experiment. Using Maier-Saupe mean field theory. the order parameter
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at the transition isotropic-nematic transition Ty, has been calculated to be Q = 0.4289, and
the entropy of transition is AS = 3.47 J/mol°K (experiments which measure the latent heat
of transition give AS = 2.5 to 3.4 J/mole K) [26].

Mixtures of liquid crystals are often used in applications. The aim is to
get a nematic phase having specific physical properties related to the orientational order
parameter (birefringence, dielectric susceptibility, diamagnetic susceptibility) appropriate
for the application, over a reasonably wide temperature range around the ambient. Binary
mixtures of liquid crystals have been treated theoretically using extensions of mean field
lattice models [34,35], Onsager theories [36,37], van der Waals-type theories [32], lattice
models of hard rods [38], and extended Maier-Saupe models [39-41]. In the first two
chapters of the thesis, a recently developed extension of Maier-Saupe theory of binary
mixtures of biaxial molecules [41] will be used to interpret experimentally measured
orientational order parameters in a nematic liquid crystal binary mixture, and to predict
phase stability and orientational order in binary mixtures of biaxial nematogens.

1.4 Measurement of Orientational Order

The uniaxial order parameter, Q, can be determined by measuring a number
of anisotropic physical properties of liquid crystals. The magnetic susceptibility ¥ is
defined as g = u,M/B (SI units), where i, is the permeability of the vacuum, B is the
magnetic induction and M is the magnetization. An external magnetic field induces a
magnetization M in a sample by changing the orbital motion of the electrons on
constituent molecules. Most mesogens are diamagnetic, in these materials the induced

currents tend to lower the magnetic field in the sample, hence ¥ is negative. The
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orientational order parameter Q can be estimated by subtracting the susceptibility
measured along the director from that measured perpendicular to it [42]. The dielectric
susceptibility, x° = & 'P/E, where €, is the permittivity of vacuum, and P is the
polarization induced by the electric field E, have also been used to measure Q. The
dielectric susceptibility anisotropy can be estimated optically with measurements of
refractive indices and electrically with capacitance measurements [42].

Optical spectroscopies have also been used to quantify molecular order in
liquid crystal systems. Raman spectroscopy involves the inelastic scattering of a photon.
In 1928, Raman observed that a small proportion of radiation passing through a substance
emerges with an increase or decrease in frequency. This occurs when a molecule in the
ground state is excited to a virtual electronic state and instantaneously (lifetimes of the
virtual excited states are about 10" s) emits a photon as it returns to some vibrational or
rotational level in the ground electronic state. The scattered light is analyzed
spectroscopically. A study of the polarization of the Raman lines can give, with the aid
of somewhat oversimplified models, both the second and the fourth moment of the
orientational distribution function (Q and <P,(B)>) (43,44]). With fluorescence
spectroscopy, radiant energy is absorbed and an electron is elevated into an excited singlet
state. A photon is emitted after a singlet state lifetime of t~10* s, and the electron falls
from the lowest vibrational level of the first excited singlet state to the ground state.
Since most mesomorphic molecules do not fluoresce appreciably, the technique in general
uses a fluorescent probe molecule. The anisotropy in the polarization of the emitted

radiation from these probe molecules is used to determine the static order parameters
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and <P,(B)> [45]. With infrared spectroscopy, photons are absorbed resulting in
vibrational excitation of the molecule. Any molecular vibration which modulates the
molecular dipole moment can cause absorption and reemission of infrared light. A given
normal mode of vibration will absorb the radiation at a particular vibrational frequency.
The order parameter Q can be measured by observing the absorbance of infrared light
polarized parallel to and perpendicular to the nematic director at an appropriate normal
mode frequency [43,44].
1.5 Measurement of Molecular Motion

Molecular motion can also be measured with scattering and spectroscopic
experiments. With fluorescence depolarization, the degree of polarization of the
fluorescence emission depends on the reorientational dynamics of the liquid crystal
molecules. If the lifetime of the singlet state, T, is much less than the molecular
reorientational relaxation time, T, then the results of the experiment can only be used to
measure orientational order parameters. In the other extreme where T, << T, the
molecular system approaches dynamical equilibrium before emission takes place, and
again only static information is accessible. The most interesting case is when 1, = 1,
then the molecular motion strongly influences but does not totally destroy the degree of
polarization of the fluorescence emission. Time resolved fluorescence spectroscopy can
be used to measure T, using pulsed light experiments and the ratio T/t using steady state
experiments [43-46]. For Raman and infrared spectroscopy, the bandshape of the
observed frequencies is influenced by both vibrational and reorientational motion. The

basic problem for measuring molecular motion with these methods is the separation of
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broadening mechanisms due to rotation from that due to vibrations. Because the
bandshape is a convolution of two different relaxation processes [47], the Fourier
transform is simply a product of the two separate correlation functions. Models of the
motion can be used to interpret these correlation functions and give relaxation rates {43].
One scattering experiment which can probe the dynamics of liquid crystals involves
reflecting a beam of neutrons from an aligned liquid crystal. By measuring the intensity
of the scattered neutrons as a function of momentum and energy, translational and
rotational diffusion rates have been estimated using models for the molecular motion
which assume uncorrelated vibrational, rotational and translational motions [48,49].
1.6 Magnetic Resonance Spectroscopy

Magnetic resonance spectroscopy is a powerful, widely used technique for
studying both the dynamics and structural properties of nematic liquid crystals. The
phenomenon of magnetic resonance is due to the interaction of an external magnetic field
with the intrinsic spin of a nucleus or an electron. Although the fundamental behavior
of nuclei and electrons in a magnetic field is very much alike, the experimental apparatus
used to study these interactions and the types of information accessible is quite different.
These differences have lead to a division of the subject of magnetic resonance into two
broad categories: (1) electron spin resonance (ESR) and (2) nuclear magnetic resonance
(NMR).

To investigate liquid crystal systems using ESR techniques, groups of
atoms with unpaired electrons (usually nitroxide radicals) are chemically attached to probe

molecules, and these probes are diluted into the host mesogen. It is possible to derive a
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theoretical expression for the ESR line position as a function of the orientational order
parameter Q [S0] and even <P,> of the probe molecules in the host matrix [51].
Relaxation rates of these paramagnetic states are on the order of the 10”° sec, thus spectral
lineshapes are very sensitive to rotational motions of the spin tagged solute. In order to
interpret the lineshapes, a numerical solution of the stochastic Liouville Equation (a
density operator form of the time dependent Schrodinger equation with a randomly
fluctuating Hamiltonian) is solved with explicit models for the reorientational motion [52].
Information obtained using this technique is of course restricted to the dynamics of the
tagged solute, and can not be used to infer the motion of the .liquid crystal molecules
themselves.

Nuclear magnetic resonance (NMR) refers to the resonant absorption of
electromagnetic radiation by a system of atomic nuclei placed in a magnetic field. The
frequency of the resonance, V,, is the Larmor precession frequency of the nuclei in a
magnetic field. For a nucleus possessing both spin angular momentum hI and a
proportional magnetic moment p = yhl, the Larmor frequency is proportional to the
intensity of the magnetic field, v, = YB,, where v is the gyromagnetic ratio in Hertz per
Tesla. An exact quantum calculation using the Zeeman Hamiltonian:

H, = -yh B, I, (1.8)
yields an energy separation between adjacent levels of E, = hv,. There are 2I+1
eigenstates with eigenvalues E,, = -hvym, where m is the z component angular momentum
quantum number which takes integer values between -I and I. The actual energy levels

are perturbed because of interactions with other nuclei and electrons. These perturbing
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interactions make NMR spectroscopy a powerful tool for probing molecular structure,
order and dynamics.

NMR studies of liquid crystals commonly use the hydrogen (*H), carbon
(**C) and deuterium (*H) nuclei. For 'H-NMR studies, the Zeeman interaction is
perturbed by direct, through space, dipole-dipole couplings. The fact that each hydrogen
nucleus interacts with each of its many neighbors makes interpretation of the spectra
difficult, although multiple quantum techniques have been developed to simplify the
analysis of the highly complicated spectra [53]. For *C-NMR, the dominant perturbations
on the Zeeman interaction are chemical shielding anisotropies and “C-'H dipolar
couplings. Proton decoupling can provide simple, high resolution spectra of liquid
crystals, but this requires high radio frequency power making temperature control difficult
[54]. 2*H-NMR is uniquely suited for studying molecular static and dynamics.
Unfortunately the natural abundance of deuterium is low ( 0.015% ) [55], which makes
the use of isotopically enriched substances necessary. For *H nuclei, coupling between
electric field gradients generated by neighboring electrons and the nuclear quadrupole
moment is the dominant interaction.

A *H-NMR spectrum consists of a simple doublet for each inequivalent
deuterated site, and the size of the quadrupolar splittings in Hertz, 2vy, gives site specific
orientational information. Once the sites have been assigned, and the geometry of the
molecule determined, expressions for the splitting in terms of order parameters for the
liquid crystal can be derived [56]. 2H-NMR has been used to measure the static

orientational order parameter Q (S,,) and D (S,,-S,,) [57-61]. Unfortunately, since the
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electric quadrupolar interaction is second rank, the fourth rank order parameter <P,> and
higher rank order parameters can not be measured with this technique. Often for liquid
crystal systems, 2H-NMR experiments spectral widths (<200 kHz) are quite narrow on the
scale of the typical frequencies for reorientational dynamics of liquid crystal molecules
(>10 MHz). In this limit, nuclear spins experience a time averaged interaction, and the
lineshape is "motionally narrowed". In this case, the line shape of the spectrum does not
give detailed motional information, however pulsed 2H-NMR relaxation experiments,
which measure the relaxation rates of spin states, are capable of giving information about
the molecular dynamics [59,60]. The relaxation rates can be expressed in terms of
spectral density functions which characterize the spectrum of molecular fluctuations.
These spectral densities, which are Fourier transforms of autocorrelation functions, can
be interpreted using models of the molecular motion [61,62].
1.7 A .Study of Molecular Order and Motion in Liquid Crystal Mixtures

This thesis will be presented in three parts. In the first section, 2H-NMR
spectra were measured as a function of temperature in a binary mixture of the mesogen
2-ﬂuorenyl-4’f-tetradecyloxy benzoate-d,, (FLOC) and a solute probe para-xylene-d,, (p-
Xy) shown in Fig. 1.3 [58]. The molecular structure of FLOC is typical of many classical
rod-like liquid crystals. FLOC has flat, rigid fluorene core [62] with a 14 carbon tail
attached. This long, alkoxy chain is flexible and can exist in many (3'®) configurations.
Both molecules were deuterated: the FLOC was selectively deuterated on the rigid
fluorene moiety while the p-Xy was perdeuterated. In the 2H-NMR experiment, the

quadrupolar splittings allow the unambiguous determination of the order parameters (),




Figure 1.3 The molecular structures of the two components of the binary mixture.
(a) FLOC.

(b) p-Xy.

19




20

and D, of both species (i=1,2). These are the first results to provide this information on
the degree and asymmetry of orientational order of both components of a binary mixture
in the nematic phase [58]. The temperature dependence of the order parameters are
interpreted using a new mean field theory of binary mixtures of biaxial particles [41].
There is good agreement between the theoretical predictions and the four order parameters
determined from the 2H-NMR over the entire temperature range studied. Furthermore,
an identical analysis of pure FLOC data give results which are consistent with those
obtained from the binary mixture of FLOC and p-Xy.

The second section presents the results of a theoretical study of binary
r_nixtures of biaxial particles using a newly developed mean field theory [41]. In this
section, a general pseudopotential consistent with the D,, symmetry of the constituent
particles is used to calculate the eight order parameters (Q,D,P,C; for i=1,2) which
describe order in binary mixtures of uniaxial and biaxial nematic phases. For a single
component, the model only requires one parameter, r,, a ratio of anisotropic interaction
strengths, to predict the temperature dependence of the four order parameters. The
temperature dependence for all four order parameters is presented and interpreted for both
rod-like and plate-like liquid crystals. Three anisotropic interaction strengths, r,, r, and
r;, are needed to calculate the order parameters of both components of a binary mixture
as a function of concentration and temperature. Once the order parameters have been
calculated, the free energy of the system is evaluated to predict the stability of the
mixture. By systematically varying the anisotropic interaction strengths, temperature-

concentration phase diagrams for a variety of molecular shapes are presented. These
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theoretical predictions suggest that binary mixtures of molecules with highly asymmetric
shapes will display stable biaxial nematic phases [63].

The last section of the thesis will present the results of a 2H-NMR
relaxation experiment performed to investigate the molecular motion of the nematogen
FLOC [61] and a FLOC : p-Xy binary mixture. Pulse sequences have been designed to
measure spin relaxation rates of quadrupolar order and Zeeman order in two separate
experiments [59]. Using Redfield theory [64), a formalism applicable in the fast motion
regime, this combination yields spectral densities, J,*(w,) and J,*(2w,), for each site k on
the molecule. The spectral density data are interpreted by fitting the experimental results
with an anisotropic viscosity model of molecular motion in liquid crystal molecules. This
model of molecular reorientation requires three independent correlation times
corresponding to rotations of the liquid crystal molecule about specific axis and a
collision parameter related to the angular jump size of rotations about the long molecular
axis [65]. The temperature and frequency dependence of the correlation times are
examined and discussed. Finally, results of a similar experiment on a mixture of p-Xy
and FLOC are presented which provide a description of the dynamics of both components

of a binary mixture simultaneously.
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2. ORIENTATIONAL ORDER IN A LIQUID CRYSTAL BINARY MIXTURE

This section of the thesis will describe how deuterium nuclear magnetic
resonance (*H-NMR) has been used to measure the temperature dependence of the
orientational order parameters of both components of a liquid crystal binary mixture, and
how these experimental results are interpreted using a mean field theory of binary
mixtures of liquid crystals [58,66]. Many methods of measuring liquid crystal order
parameters rely on the assumption that the ordering and dynamics of dissolved probe
molecules mimic their liquid crystal hosts [67-69], this work is useful for evaluating the
validity of these assumptions.

2.1 The Quadrupolar Hamiltonian

*H-NMR takes advantage of the fact that electrons in orbit about a nucleus
have an effect on the energy required to reorient it. All nuclei with spin I > 1/2 have an
electric quadrupole moment eQ [70]. If these non-spherical nuclei experience an electric
field gradient generated by the local electron density, the electrostatic energy varies with

nuclear orientation. The Hamiltonian, Hy, describing this quadrupolar interaction is

1
H = = 3V Qo @1
af

Where V4 is the electric field gradient tensor in Cartesian coordinates

of 0x,0x,

Vo = [an(x)] 2.2)

and Qg is the nuclear quadrupole moment tensor
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Op = f (Bx g - rZSQB) p(x) d’. (2.3)

Here o, = x,y,z » V(X) is the electrostatic potential, and p(x) is the nuclear charge
density at x. These expressions appear to be extremely difficult to evaluate because they
involve distribution functions of nuclear particles. However, since only the spatial
orientation of the nucleus is of interest and not actual distributions of nucleons, only the
diagonal matrix elements ( J |Qaa| I ) need to be calculated. For these elements, the
Wigner-Eckart theorem can be applied to reexpress the quadrupole Hamiltonian in terms
of the spin operators I,z [71]

eQ 3
== NV (ZUl +L1)-8_ 1) 2.4)
e 61(21—1)§ w g Udy + 1l = O 7] (

For the analysis to follow, it will be convenient to use spherical tensor
notation. Spherical tensor matrix elements are simply linear combinations of Cartesian
tensor elements [72]. As demonstrated in Appendix I, each of the 9 elements of any
second rank spherical tensor can be presented in terms of an equivalent Cartesian tensor.

Reexpressing the Cartesian tensor V4 as a spherical tensor T, gives

1 1
T,y = 7 eQV,, T,, = v eQ [V AV ], 25
1 . '
T,, = 3 eQ [Vxx—Vyy:tZthy].

The spin part of the quadrupolar Hamiltonian becomes A, ,, in spherical tensor notation

II+1I, A, =L (2.6)

241 - ety 242

Ay=3 -1 A

Here e is the electronic charge and eQ is the electric quadrupole moment of a deuteron.
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An expression for the electric quadrupolar Hamiltonian, H,, can be derived in terms of
the scalar contraction of the two spherical tensors T and A

2
HQ = E (_l)m Al.m Tl.-m‘ . (27)

m=~2

In a typical 2H-NMR experiment, the quadrupolar nuclei are placed in a
strong static external magnetic field. The full Hamiltonian can be written as
H = H, + H, where H; is the Zeeman Hamiltonian and Hy, is the quadrupolar term.
For deuterons in a strong (i.e. 7 Tesla) external magnetic field, the quadrupolar term in
the Hamiltonian (Eg/h < 250 kHz) is much smaller than the Zeeman Hamiltonian (E,/h
= 46 MHz). Thus, the quadrupolar interaction is treated as a perturbation on the
dominant Zeeman Hamiltonian. Neglecting terms of order (e’qQ/yhB)?, perturbation

theory gives a first order approximation to energy levels of the system

E~ -myB, + E’L”;Tz‘r’(ll)"_ll (1), 2.8)

The superscript L in the term (ng> denotes that the derivatives are evaluated in the
laboratory frame in which the z-axis is parallel to B,. The brackets indicate that the field
gradients are time averaged. Figure 2.1 illustrates the perturbation of the Zeeman energy
levels by the electric quadrupolar terms in the Hamiltonian, and it shows the transitions
responsible for a symmetric spectrum with peaks at v, + v,. Each inequivalent deuteron
presents is a set of symmetric peaks in frequency space separated by 2v,. The following
discussion outlines the pulse NMR experimental techniques used to measure these

quadrupolar splittings.
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SPIN I=1

Zeeman Quadrupole

ho, hyshv,
m=0 m— +"‘—/
hy, hvghpo
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-
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Figure 2.1 Energy level diagram for a spin I = 1 in a magnetic field B,. The deuterium
quadrupolar interaction is treated as a perturbation onthe Z ¢ e m a n
interaction. In the isotropic phase the deuterium spectrum consists of a
single line because <Hy> = 0, while in the nematic phase it consists of a
doublet separated by 2v,,.
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2.2 Spin Dynamics

An NMR spectrometer creates radio frequency (rf) pulses, couples this
radiation to a sample, and observes the response. State of the art spectrometers are
capable of regulating the rf amplitude, phase, duration, and frequency. The pulsed radio
frequency current passes through a coil, generating an alternating magnetic field, B,(t),
and this field penetrates a sample inside the coil. The response of the nuclear spins in
the sample to this changing magnetic field can be understood in terms of a density matrix
formalism descfibed in the following section.

Consider a system of N noninteracting spins described by the wave
function y(t). Assuming y(t) can be expanded in a complete set of time independent

orthonormal wave functions ¢, with time dependent coefficients c,(t),

v =Y ¢ 0, (2.9)

The ensemble averaged expectation value of an operator O is

0 = JwOydr =Y. ;0,1 0 [ Y. c,00,)
= ZC’,([)C,;(t) ( ¢m I 0 | ¢n )'

(2.10)

The matrix formed by the product of ensemble averaged expansion coefficients is defined

to be the density matrix

(n|p|m)=clo)cald @.11)
Given the density matrix p, the ensemble averaged expectation value of any given

operator O can be calculated,
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O=Y(n|p|mXm|O|n)=Tr(p0) (2.12)

where Tr is the trace and it is a_ssumed that the states | n> and | m> are members of an
orthonormal basis set which spans the state space. Since the diagonal elements of p
represent a probability of the system being in a given state, normalization requires that
Tr(p) = 1.

Since the density matrix completely determines the state of an ensemble,
its time evolution will describe the behavior of the system. To determine how the density
matrix evolves in time, first consider the time-dependent Schrédinger equation:

LG 2.13)
1 t

Expanding  using Eqn. (2.9), multiplying by ¢,’, and integrating gives

iag‘ft) =Y ¢ (k]| H| n (2.14)
l n

Taking the time derivative of each element of the density matrix,

___a(klpln) = c'ﬁ + CE
ot "ot Kot (2.15)

= Zlk| [pH-Hp) | m)

In operator form, this is the Liouville-von Neumann equation

dop _ i 2.16
= i[p,H]. (2.16)

If the Hamiltonian is time independent, it is easy to verify that a Tormal solution to this
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equation is

o) = e o)™ (2.17)

Deuterium, a spin I = 1 nucleus, has three spin states (m =-1,0,1). Hence
the density matrix has 3x3 = 9 elements, but the normalization requirement, Tr(p) = 1,
reduces the degrees of freedom to 8. Therefore, eight 3x3 operators are required to span
the spin space. The eight operators are not unique; one set, which is particularly useful

for analyzing pulse sequences, is given below.
M1 =1 +il @I =l -il 31,
1
@Do =1L +11 Q=11 +II (6)0Q,= T (313—1-1) (2.18)
2 2
MD, =1I -1, ® D, =11 +1II.
Where the angular momentum operators satisfy the relations

L|Lm) = [[d+1)-mm£))]” (Lm1)

L|Lm) = m|Lm) (2.19)
P|Lm) = F{lLm) = Id+1)|I,m)
(L,1,,L,) are scaled Cartesian angular momentum operators of rank 1 (J=hI in ref. [73]),
(Q.Qy,Q,) and (D,,D,) are Cartesian forms of second rank spherical tensor operators.
In theory, the time evolution of each of the eight operator basis set can be
calculated using Eqn. (2.16) by solving the coupled differential equation. If the
Hamiltonian is time independent, the problem is simplified considerably. The density

matrix at time t, p(t) can be calculated given the initial state p(0) and the Hamiltonian
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using Eqn. (2.17) [74]. For deuterium nuclei on resonance, the Hamiltonian in a frame

rotating at the Larmor frequency is given by

H=-hv, I -hv,Q, (2.20)
where v, = ¥B,. B, gives the intensity of the magnetic field produced by the high power
if pulse applied at frequency v,. For sufficiently strong pulses, v, » Vg, and evolution
under the quadrupole term in the Hamiltonian can be neglected when the pulses are on.
State of the art, high power 2H-NMR spectrometers are capable of delivering an rf pulse
which rotates the magnetization 90° in 1.6 ps, corresponding to v, = 156 kHz.

A simple example of a pulse sequence which can be used to obtain *H-
NMR spectra is a single, high power pulse at the Larmor frequency, v,. If the phase of
the pulse is set to rotate the spins about the x-axis, and the duration of the pulse is long
enough to rotate the spins 90° (a 90, pulse in NMR jargon), the magnetization is rotated
from pointing along the z-axis in equilibrium to along the y-axis just after the pulse. This
magnetization is free to precess, inducing signal in the coil called the free induction decay
(FID). This FID is digitized and the discrete Fourier transform of this time domain signal
gives an approximation to the frequency spectrum. However, spectra collected in this
manner are highly distorted because it is impossibile to collect the weak signal
immediately after the rf pulse, whose amplitude exceeds the signal by at least a factor of
10°. One way to avoid this 20us to 40us receiver “dead time" is to use a quadrupolar
echo pulse sequence.
2.3 The Quadrupolar Echo Pulse Sequence

The‘quadrupole echo pulse sequence (90,-1-90,-T-acq) is the standard
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method for obtaining undistorted, full width 2H-NMR spectra. The reason for the
popularity of this technique is that the free induction decay (FID) refocuses at a time T
after the last pulse [75], as shown in Figure 2.2, which allows the digitizer to acquire the
beginning of the FID. The time evolution of the density matrix p can be used to describe
the spin dynamics during a quadrupolar echo pulse sequence. In equilibrium, the net
magnetization points along the external magnetic field, p(0) e I,. Immediately after the
first pulse, the spins point along the y-axis (see Appendix II for a comprehensive list of
the time evolution of the elements of the density matrix under quadrupole or rf pulse

Hamiltonians)

zho, cigh (2.21)

In the time T between the first and second pulses, the density matrix evolves under the

quadrupolar Hamiltonian

p(T) = PO [ ¢7%F = [ cosw T + Q, sinw . 2.22)
Just after the second pulse, the density matrix becomes

i

int -i%r
e? [Z, cosw ;T + @, sinw T] e * (2.23)
= I cosw,t - Q sinw ,T.

©
i

At time t after the second pulse, the density matrix is

= pleod _ ; -i0w ot
pt) = e [chosco ot ~ Q,sinw otle

= CO?O) QT [IyCOS(D Qt - QxSll.l(D Qt] (2.24)
+ sinw ;T [Q,cosw ;¢ + Iysm(o oM
= Iy CosSMW ,(t-T) - Q, sinw or=1).
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rf pulse

Figure 2.2 The quadrupole echo pulse sequence. The top line shows the pulsed rf used
to manipulate the spins. Below, the time evolution of the three non-zero
elements of the spin density matrix, L, I, and Q,, is sketched. In this
picture, the pulses are delta functions, T = 40 ps, and 2v, = 125 kHz.
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At t = 1, the two pulses have refocused the magnetization, this is the ’echo’. If 1 is
chqsen long enough (typically > 30 psec), the echo is formed outside the coil ring down
time allowing complete digitization of the FID. A Fourier transform of this time domain
data gives undistorted spectra in frequency space with a pair of symmetric peaks
separated by 2\;:2 (in Hertz) for each non-equivalent deuteron site i. The next section
will explain how these experimentally measured quadrupolar splittings are used to
measure orientational order parameters of nematogens.
2.4 *H-NMR Spectra of Molecules in Nematic Liquid Crystal Phases

Expressions for the frequency splittings need to be obtained in terms of the
orientational order parameters Q and D. The frequency splittings observed in the spectra,

2v,, correspond to transitions between the energy levels illustrated in Fig. 2.1.

2, = %(Tz'j(,). (2.25)

This expression requires the value of the quadrupole tensor in a laboratory fixed frame,

<T2f0> . However, the explicit form of the electric field gradient tensor (EFG) is known
only in the principal axis system (PAS): <T2'_I,> . The PAS is the frame in which the
field gradient tensor is diagonal. For many deuterated sites on organic molecules, the z-
axis of the PAS is aligned with the C->H internuclear vector. In the PAS, the spherical
tensor describing the electric field gradient is diagonal and traceless (Laplace’s equation

V2V=0) and thus has only three non-zero elements:
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(7o) = 2, (2:26)
(1. l) -0 (.27
(Tf) = “":"ZQ (2.28)

Here q,, is the vibrationally averaged z-component of the electric field gradient in the

PAS, <V,,>, and 7 is the asymmetry parameter, 7 = <X"%‘_/1?_> . The vibrationally

e’q,0

averaged quadrupole coupling constant is defined to be v 0 : < > . Typically,
for C-D bonds the values of VQ for sp hybridization are 2005 kHz, for sp* are 1825
kHz, and for sp® are 1695 kHz [76].

In order to derive expressions for the observed spectra in terms of the
orientational order parameters, the Euler angles which describe the rotation from the PAS
frame of the EFG tensor into the laboratory frame must be found. The advantage of
spherical tensor operators is their behavior under coordinate transformations. Rotation
of a spherical tensor from one coordinate system (CS1) to a second (CS2) using the y-
convention Euler angles (o.,B,y) is given by

CS1 - (o,B.Y) - CS2

! (2.29)
= Y Dy(aBy) TS

n=-|
where D! (oBy) is the n,m element of the I* rank Wigner rotation matrix. Elements

of the second rank (1=2) rotation matrix are listed in Appendix II1.

For rigid molecules, it is convenient (0 describe rotations from the
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laboratory frame into the EFG principal axis frame in three steps. The first rotation
(o,By.Y,) transforms the PAS frame of the electric field gradient tensor into the molecular
axis frame. In rigid molecules, these angles are time independent. The second rotation
(0,,B,,Y,) describes the time averaged position of the molecule with respect to the liquid
crystal director’s frame. The order parameters are functions of these Euler angles,

Q= <%coszﬁz—_;.> and D = <% sin?B, c032a2> . The last rotation (04,Bs,7;)
describes the orientation of the director of the nematic phase in the static external
magnetic field. The director of nematogens spontaneously aligns along a strong external
magnetic field, and thus (04,B,,%;) = (0,0,0). Combining the three rotations, a compact
expression for the field gradients in the lab frame can be derived in terms of the three sets

of Euler angles:

2

(o) = ¥ (DioByyy) Do,y Dia, By)) (1), 230

paIr=-2

Rigorously, there is one ensemble average of the entire expression. If all motions are
decoupled, the ensemble averages over ,, ,, and 2, can be performed independently.
Combining equations (2.25) and (2.30), the following general expression for quadrupolar

splittings can be derived:
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v, = _;. v, {%cos’ﬂ;%}

3 1 1 .
{ 0 <_2.coszﬂ ,-5> t D (smzﬁ lcos2'\(l>
+ % n [ 0 (sin2B1c03271>

D < (1+Coszﬂl)c052(xlC082'Yl—ZCOSBlSinzalSinzyl > ] }

(2.31)

1
3

+

The rigid solute, p-Xy, is a highly symmetric molecule. There are two
distinct deuteron sites on p-Xy: the methyl (Me) and aromatic (Ar). For the methyl

groups, the expression for the quadrupole splitting is
v = % Q, Vg’ [3cos’(Bi)-1] (2.32)
while the aromatic deuterons give

% Ve | 0BcosBy-1) + D,sin?p? | (2.33)

Ar
vy

with  BY* = 70.5°, B} = 60°, V}j = 182 kHz, and Vg = 169 kHz. ~ Since the
asymmetry parameter in the electric field gradient tensor is typically small (n=0.00 for
rapidly rotating methyl sites, and n=0.04 for aromatic sites), it has been neglected. This
could be a potential problem for aromatic sites whose average orientation with respect to
the magnetic field is close to the magic angle. If O is the angle between the C-D
internuclear vector and the magnetic field, the 'magic angle’ (54.7°) is the angle at which
(3/2c0s%0-1/2) = 0. The contribution of these asymmetry terms to the theoretical

prediction for the splittings will be investigated later,
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Almost all liquid crystal molecules have flexible tails connected to rigid
aromatic cores. In order to derive expressions for the splittings from deuterated sites on
the rigid core of the liquid crystal FLOC, four independent rotations are used. The Euler
angles (o,,8,.y,), which describe the relative orientation of the EFG PAS and core axis
systems, are time independent. These Euler angles were measured using X-ray techniques
[77], they are listed in Table 2.1 and shown in Fig. 2.3. The second rotation (o,,B,.y,)
from the core frame into the molecular frame is deceptively simple. Implicit in the
definition of this molecule fixed frame is a statistical average over all conformations of
the flexible alkyl chain. The third rotation (0;,8,,y;) describes the time averaged position
of the molecule with respect to the liquid crystal director’s frame. The orientational order
parameters are functions of 2,. Finally, because the uniaxial nematic phase orients with
the large static ;nagnetic field, the director is always coincident with the external magnetic
field and thus (0,B,.Y,) = (0,0,0). Combining the four rotations, a compact expression

for the field gradients in the lab frame can be derived:

(3,) = sz (D0, B,7.) (DiesB1)) (2.34)

pgrs=-2

<szq(a2'ﬁ 2'72)> <D‘2’ (a"B"Y')> <T2PJ> .

This summation is performed giving following theoretical expression for the quadrupolar
splittings. To keep this expression tractable, all terms involving the asymmetry parameter

are ignored.
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Figure 2.3 The fluorene moiety of the liquid crystal FLOC is pictured to illustrate the
Eulerian angles described in the text. The principle axis of the EFG tensor
is aligned along the C-D internuclear vector. X-ray analysis gives
the orientation of these principle axis with respect to the dashed axis (Ref.
62). The angle B,, which is fit using the quadrupole splittings (Ref. 58),
gives average orientation of the molecular frame (solid axis). The site
assignments are labeled for (a) FLOC and (b) p-Xy.
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3, Ar

20 KHz

Figure 2.3(c) Site assignments or the H-NMR spectra of the FLOC : p-Xy mixture for
an experiment performed at 93.82 °C.




39

T

Site No. | oy B, 87

land 4 |[180° 71° 90°

3 0° 47.5° 270°
5and 8 |0° 71° 270°
6 180° 47.5° 90°

7 0° 10.5°  270°

9and 9° | 180° 90° +144.735°

Table 2.1 X-ray studies of fluorene [62] give the location of the PAS of the EFG
tensor in the core axis frame in terms of y-convention Euler angles.
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3- (3 1
v, = 3 Ve {Ecoszﬁd-i}

{ [.g.coszﬁf.%

[ (3cos’[32— 1) (3cos2[3 - 1)

- 3cos(o,+y,)sin2f,sin2PB, + 3cos(2ai,+2y,)sin’B sin’P, ] (235

+ [%sin’ﬁscos(2a3+272)]

[ cos(20,+2Y,) (1 +coszB2) sin’f,
+ 2cos(o.,+Y ,)cosP,sinp,sin2B, + sin’p, (3coszﬁl—l) ] }

FLOC is perdeuterated on the rigid fluorene moiety. From Table 2.1, it
is observed that all seven of the aromatic sites (sites #1,#3-#8) are coplanar. For these
sites, kthe influence of a finite asymmetry parameter (n=0.04) is expected to be small,
unless the angle between the C-D bond z-axis and laboratory z-axis is close to the magic
angle. Effects of this =0 approximation on the experimentally determined order
parameters will be discussed in more detail later. Briefly, for both molecules p-Xy and
FLOC, it appears that discrepancies between the theoretical fits and the experimental data
are of the same order of magnitude as these neglected asymmetry terms. With zero
asymmetry parameter, the expression for the j* aromatic site in the plane of the fluorene

core is given below
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) 3_;
2vy, = {§VJQ}
{ Q[ (3cos,-1)(3cos?B1-1)
- 3sino.,sin2P,sin2P] - 3cos2a,sin’P ,sin?B] |
+ D [ cos2o.sin?Bi(1+cos?B,)
- sinasin2B,sin2B) + sin’B,(3cos?Bi-1) ] }

(2.36)

where v’Q is taken to have an intrinsic value of 182 kHz for the aromatic deuterons on

the fluorene core. For the j = 9 site,

3 - .
vy = 3 VolQU1 - 3o, + 3sin’cos(20,+2y,) | (2.37)

+ D [ sin?B, - (1+cos?B,)cos(2a,+2y,) 1 .
The quadrupolar coupling constant for this hybridized aliphatic deuteron, ¥ 3 , is taken
to be 169 kHz, and the asymmetry parameter for the j = 9 site is assumed to be zero.
The assumption that the asymmetry parameter in the quadrupolar tensor 1
has no effect will be explored in more detail by estimating the order of magnitude of the
error introduced. For FLOC, the expression for the splittings are functions of the order
parameters and two sets of Eulerian angles. Formally, the three successive rotations can

be done in one equivalent rotation,

RD.0Y) = R(-7,,-B-), R(-Y,-Bp-0,), R(-v,-B,-B,) (2.38)

These rotations can be expressed in terms of Cartesian rotation matrices in the y-
convention. Exploiting the inversion symmetry of the phase [78], the expression for the

splittings becomes
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2l = V) [(%cos’(@)—%) L (351"2(9)"05(2"’)]] 2.23)

2

This equation is useful for exploring the effect of neglecting n when determining the
order parameters from *H-NMR results.
2.5 Sample Preparation and Experimental Setup

The deuterated liquid crystal FLOC,,-d,, was obtained from the organic
synthesis group at the Liquid Crystal Institute at Kent State University. A detailed
description of the chemical synthesis has been published [79]. Para-xylene-d,, was
supplied by Merck, Sharp and Dohme. A homogeneous mixture was obtained by
micropipetting the p-Xy into the isotropic phase of FLOC and homogenizing with a
vortex mixer. Because of the high temperature (~160°C) and the length of time before
the 5 mm NMR tube was sealed, the concentration of p-Xy'is expected to be lower than
the gravimetrically determined value (20 mole %). Assuming complete deuteration, the
integrated intensity of the >H-NMR spectrum gives the concentration to be approximavtely
11 mole % [66].

The *H-NMR experiments were performed using a home built pulse
spectrometer constructed at William and Mary by Dr. Hoatson. It has the following
components: (1) a radio frequency (rf) transmitter which creates high power rf pulses, (2)
a probe to couple this radiation to the sample, (3) a receiver to amplify the response of
the nuclear spins to the radiation, (4) a pair of analog to digital converters (ADC) to
digitize the complex signal, and (5) a pulse programmer to interface the spectrometer with

a computer (see the schematic in Figure 2.4). The transmitter has three parts: (1) a highly
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Figure 2.4 Block diagram of a pulsed NMR spectrometer.
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stable rf frequency synthesizer which is gated by (2) an rf switch which feeds (3) a power
rf amplifier. The phase and duration of the pulse is set using the rf switch. The power
amplifier, which is capable of delivering short (1-10 psec), high power (>1kW) pulses,
amplifies the gated signal from the rf switch. The pulsed signal is sent to the probe
which houses a coil in a resonant circuit. This resonant L-C circuit is tuned with variable
capacitors such that the probe impedance is strictly resistive (¢=0) matched to the line
(1zl=500), insuring a minimum reflection of rf power. The quality factor Q of the L-C
circuit is optimized such that the field induced in the coil (B, ~ 237 Gauss) is large and
the ringdown time (receiver dead time ~ 30us) is small. The response from nuclear spins
in the sample to the induced magnetic field is received using the same coil. The receiver
is comprised of a train of linear analog amplifiers which magnify the FID signal (as small
as puVolts) and a set of low pass filters used to eliminate high frequency background
noise. After several amplifications, the ADCs digitize and store the signal. The digitized
signal is sent to a computer (a Macintosh II CX) which runs software designed to read
the digitized signal from the ADC and perform data processing. The computer is also
connected to a pulse programmer which controls the three parts of the transmitter. Via
this interface, the experimenter can set the duration, frequency, amplitude and phase of
the pulsed rf used in excitation sequences.
2.6 2H-NMR Experimental Results

*H-NMR spectra for the binary mixture of FLOC:p-Xy were obtained by
Dr. G. L. Hoatson using a 32.8 MHz spectrometer at the Liquid Crystal Institute {58,66].

All H-NMR spectra were recorded using the quadrupole echo pulse sequence with the
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following relevant experimental parameters: 90° pulse length = 4.5 ps, echo delay T =
100us, dwell time = Sps, data size was 2K complex points giving a spectral width of
+100 kHz, and 2500 scans with a 1s recycle time were used to signal average. The
experimentally measured quadrupolar splittings are listed in Table 2.2 as a function of
temperature.

The first step in analyzing H-NMR spectra is to assign the spectral lines
to specific deuteron sites and to determine the relative signs of the quadrupole coupling
constants. For pure FLOC, this assignment was made by Wu, Ziemnicka and Doane and
is shown in figure 2.3(c) [80]. Values for the order parameters for FLOC in the mixture,
Q, and D,, and the Euler angle B,, which describes the orientation of FLOC’s fluorene
core, were obtained using a nonlinear least squares fitting routine. The routine minimized

the function,

j.ex ity Jj 2
) [2v"Q - VB! 0,.D.B,) ] (2.41)
X = XI: =
j

Where 2\;"5“’ are experimentally measured spectral widths for the j* site listed in Table
2.2, 2\;’5‘ are the spectral widths calculated using Eqn. (2.36), and o, is the estimated
uncertainty in the measurement of the spectral width. Data from the five independent
experimental sites on the fluorene core were used. The resulting order parameters are
presented in Table 2.3 and plotted as a function of temperature in Figure 2.5. With ¢; <
1.5 kHz, the convergence was unreliable, probably due to neglect of the asymmetry
parameter in the theoretical expressions. Measured values of the quadrupolar splittings,

2v**?, are considerably more precise, of the order + 0.4 kHz. The correlations between
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T (°C) v, vy vy v, v v 2v, vy Vg |

93.82 -34.08 747  -4097 -88.77 84.13 191.84 -88.77 747 1733
96.60 -33.59 7.54 -40.23 -837.60 83.35 188.87 -87.60 7.52 17.38
99.53 -32.81 7.57 -39.55 -86.13 8252 187.06 -86.13 7.57 17.19
102.46 -31.98 7.62  -38.63 -84.77 81.54 18398 -84.77 7.62 17.09
105.30 -31.01 744  -37.65 -83.01 80.37 18130 -83.00 7.44 16.89
108.13 -2993 7.67 -3643 -81.10 7861 177.00 -81.10 7.67 16.60
111.05 -28.17 7.62  -34.67 -7656 76.56 173.09 -76.56 7.62 1592
114.02 -28.86 7.52  -32.81 -73.88 73.88 16446 -73.88 7.18 15.87
117.00 -2075 772 -26.03 -61.57 63.10 143.26 -61.57 6.69 13.53
118.22 -19.82 7.67 -2461 -59.10 60.84 137.74 -59.10 649 12.89
118.63 -19.87 7.59  -2437 -58.06 59.96 13525 -58.06 640 12.79
119.05 -19.04 7.57 -23.58 -56.99 58.84 13340 -56.99 635 12.60
119.57 -1875 752  -2280 -56.20 57.81 13237 -56.20 6.20 12.31
120.00 -1846 747  -2231 -5483 5698 129.78 -54.83 6.15 11.95
120.44 -17.92 737  -21.93 -53.27 55.67 127.69 -53.27 6.00 1194
120.97 -17.14  7.23  -20.50 -51.45 5425 12451 -5147 590 11.04
121.52 -16.41 7.08 -1943 -4971 5278 12197 -49.71 567 1133
121.97 -1698 698  -18.26 -475 51.86 119.19 47775 5.66 10.25
122.50 -15.67 679  -16.99 -4551 50.34 115.87 -4551 547 9.86

122.99 -1468 6.59 -1644 -4299 4849 113.28 -4299 523 8.74

123.47 -13.08 649  -1577 -40.58 47.56 110.30 -40.58 5.13 7.39
123.97 -1279 640  -1499 -41.16 4531 105.02 -41.16 533 7.66

Table 2.2 The experimental data of quadrupole splittings, 2v"Q (kHz), for the binary

mixture FLOC : p-Xy.




Table 2.3

T (°C) Xz Q' D! B, Q’ D’
93.82 0.1802 0.81 -0.057 6.901° 0.205 0.141
96.60 0.4399 0.80 -0.058 6.930° 0.206 0.142
99.53 0..2355 0.79 -0.060 6.924° 0.203 0.142
10246 [0.3981 0.78 -0.061 6.946° 0.202 0.142
105.30 {0.1543 0.77 -0.062 6.960° 0.200 0.140
108.13 | 0.3701 0.75 -0.063 6.964° 0.197 0.140
111.05 [0.1768 0.73 -0.071 6.909° 0.189 0.137
114.02 [ 0.1394 0.69 -0.068 7.011° 0.188 0.133
117.00 [0.8430 0.60 -0.074 6.889° 0.160 0.119
118.22 [0.9017 0.58 -0.073 6.897° 0.152 0.114
118.63 [ 0.5614 0.57 -0.072 6.901° 0.152 0.113
119.05 1.029 0.56 -0.073 6.895° 0.149 0.112
119.57 [2.136 055 -0.074 6.874° 0.145 0.109
120.00 |-1.655 0.54 -0.074 6.875° 0.142 0.107
120.44 1.961 0.53 -0.074 6.821° 0.141 0.105
12097 12937 0.52 -0.076 6.837° 0.131 0.101
121.52 [4.303 051 -0.077 6.834° 0.134 0.100
121.97 [4.832 049 -0.080 6.857° 0.121  0.096
12250 }16.179 048 -0.083 6.874° 0.117 0.092
122.99 |[8.653 047 -0.084 6.775° 0.104 0.086
123.47 |9.1134 045 -0.087 6.756° 0.088 0.079
123.97 59930 043 -0.076 6.834° 0.091 0.082

8 8Q, = £0.010

b oD, = 10.014

€ 0B, = £0.005°

d 8Q, = £0.018

€ oD, = +0.021

47

Results of nonlinear least squares fits of the parameters for FLOC (Q,, D,
and B,) and p-Xy (Q, and D,).
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Figure 2.5 Molecular orientational order parameters of both components, Q, and
D, as a function of reduced temperature Ty.
(a) i=1, FLOC.
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Figure 2.5 Molecular orientational order parameters of both components, Q, and
D, as a function of reduced temperature Tg.
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parameters are reasonably small, with off diagonal elements of the inverse of the
covariant matrix less than 0.3. The x> were acceptable (< 1) for the lower temperature
data, but increased with increasing temperature. This is to be expected since with
decreased splittings the contributions from a finite asymmetry parameter would become
more significant.

Rather than making the assumption that the principal axes systems of the
core and molecule are coplanar [80] this description includes the possibility of a twist in
the relative orientation. In order to determine the twist angle, o, the quadrupole splitting
from the site j = 9 is required since this is the only position with deuterons out of the
plane of the core (y, = -90°). By reanalyzing the published j = 9 splittings pure FLOC
[80], the angle o, was determined using eqn. (2.37). In the nematic range for pure FLOC
(124.3°C to 136.3°C), the twist angle o, was found to be -88.8°+0.4°, For the 46K range,
including the both the nematic and the smectic-A phase, o, was found to be a
monotonically decreasing function with temperature with a mean value of -87.6°, and a
total range of 2.8°. Thus deviations from planarity appear to be insignificant and the
inclusion of the twist angle was found to have a negligible effect on the derived order
parameters. Such insensitivity makes the additional parameterization difficult to justify.
The FLOC used in the mixture was incompletely deuterated at the j = 9 sites and the low
intensities and poor accuracy of the measurements made derivation of o, unreliable.
Thus, analysis of the binary mixture assumed a fixed value o, = -90°. This is expected
on the basis of chemical intuition.

The role of the asymmetry in the electric field gradient tensor. 1, has been
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explored in detail. So far, the nine Euler angles in Eqn. (2.38) were determined by fitting
the experimental data assuming the n terms were zero. Given these Euler angles, matrix
multiplication of the Cartesian rotation matrices in Eqn. (2.38) allows the equivalent
rotation, R(P,8,¥), to be determined. The first term in Eqn. (2.39) is equivalent to Eqns.
(2.36) and (2.37), and it gives the theoretical splittings assuming 1 = 0. The second term
provides a realistic estimate of the contribution to the splittings if the asymmetry
parameter were finite, n=0.04. The theoretical splittings ( 2v’£' ) and an estimate of the
neglected asymmetry parameter on the size of the splittings ( 2\;‘}2 ) are given in Table
2.4. 1t is interesting to note that the contribution from the asymmetry terms, most
pronounced for smaller splittings, is sufficient to account for the discrepancies between
experiment and theory. What is more important to determine is whether, in addition to
better convergence, the inclusion of a finite asymmetry parameter in the calculation gives
significantly different values for the order parameters. One estimate the magnitude of
these effects can be made by attempting to compensate for the asymmetry parameter
contributions. A typical value of the for the asymmetry was assumed, i} = 0.04, and for
the j = 3 and 4 positions, the experimental splittings were replaced by the corrected
values, ( 2/ + 2\;‘}2 ). The fitting procedure was repeated for all temperatures and the
results show that, for either case, the new order parameters are within the reported errors
(Table 2.3 and Figure 2.5). This confirms that neglect of 1} in no way compromises the
orientational order parameters derived from the 2H-NMR experimental results. In order
to do a completely rigorous analysis of the values of the quadrupole coupling constants,

v/, and asymmetry parameters, 1y, for each molecular site, j, should be determined and
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T (°C) vy avy? | vy vy | v
93.82 | 19209  0.58 | 8845 435 ' 1.20
96.60 189.23 0.58 | -87.14 4.30 | 1.21
99.53 187.37 0.58 l -85.84 426 ' 1.20
102.46 | 184.39 0.58 ' -84.34 4,19 ' 1.19
105.30 | 181.55 0.58 | -82.74 4.13 | 1.18
108.13 | 177.35 0.57 ' -80.58 4.04 l 1.17
111.05 | 172.88 0.59 | -76.96 3.95 ‘ 1.13
114.02 | 164.71 0.57 : -73.70 3.77 l 1.11
117.00 | 142.75 0.52 ' -61.43 3.28 ' 0.97
118.22 | 137.20 0.51 ‘ -58.80 3.16 | 0.92
118.63 | 134.91 0.51 | -57.80 3.10 l 0.92
119.05 |} 132.90 0.51 : -56.69 3.06 l 0.90
119.57 | 131.60 0.50 | -55.86 3.03 l 0.88
120.00 | 129.10 0.50 | -54.58 2.96 | 0.86
120.44 | 126.83 0.50 | -53.29 2.92 ' 0.86
120.97 | 123.52 0.50 ] -51.42 2.85 | 0.80
121.52 | 120.70 0.50 | -49.80 2.79 ' 0.82
121.97 | 117.85 0.50 ' -47.99 2.74 l 0.75
122.50 | 114.30 0.50 l -4594  2.66 | 0.73
12299 | 111.30 0.50 ' -44.04 2.59 | 0.65
123.47 | 108.28 0.50 | -42.09 2.57 | 0.57
12397 | 103.53 046 | -41.35 241 1059

Table 2.4(b) Theoretical Splittings assuming the fit parameters are correct ( 2 é'" ) and
the asymmetry term contribution ( 2v’é"’ ) assuming 1 = 0.049 (in kHz).
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3.the 3.asy 4,the 4,asy 6,the 6,asy
T (°C) vy 2vy vy vy 2vy, vy

93.82 7.02 3.06
96.60 6.85 3.02
99.53 7.07 2.99
102.46 | 6.99 2.95
105.30 | 7.05 291
108.13 7.04 2.85
111.05 8.04 2.79
114.02 | 7.18 2.67
117.00 8.08 2.33
118.22 | 7.64 2.24
118.63 7.78 2.21
119.05 7.84 . 217
119.57 7.98 2.16
120.00 |7.97 2.21
120.44 8.14 2.08
120.97 8.22 2.03
121.52 8.33 1.99
121.97 8.52 1.96
122.50 8.63 1.91
122.99 9.01 1.86

-40.91 3.75 83.96 2.08
-40.09 3.70 | 82.99 2.05
-39.38 3.66 | 82.25 2.04
-38.48 3.61 l 81.19 2.01
-37.56 3.56 l 80.15 1.99
-36.47 3.48 | 78.42 1.95
-34.57 3.41 | 76.64 1.93
-32.64 3.26 ' 73.61 1.84
-26.88 2.86 ' 63.97 1.64
-25.58 2.75 | 61.68 1.59
-25.14 2.71 | 60.63 1.56
-24.59 2.67 | 59.79 1.54
-24.22 2.65 : 59.19 1.54
-23.57 2.60 | 58.16 1.51
-23.12 2.56 | 56.96 1.49
-22.05 2.50 | 55.75 1.46
-21.18 245 154,63 1.44
-20.06 2.40 51.86 1.42
-18.89 2.34 50.34 1.39
-18.19 2.29 | 48.49 1.39
12347 {9.29 1.82 -17.14 2.23 i47.56 135

123.97 8.05 1.73 -17.04 2.12 E 45.31 1.27
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Table 2.4(a) Theoretical Splittings assuming the fit parameters are correct ( 2v'3“ ) and the
asymmetry term contribution ( 2V/;” ) assuming 1 = 0.049 (in kHz).
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explicitly included. These values have recently been measured from a single crystal of
perdeuterated fluorene with *H-NMR [81]. Fortunately, this daunting calculation does not
appear to be necessary.

Analysis of the p-Xy splittings is comparatively straight forward because
of the rigid molecular geometry. As discussed earlier, there are two distinct deuteron
sites, methyl and aromatic. The splittings from the deuterated p-Xy sites, 2y ’g’ and

2v z’ , were measured and Eqns. (2.32) and (2.33) were be solved simultaneously to
determine the orientational order parameters of p-Xy in the mixture, Q, and D,. The
results, neglecting the asymmetry in the EFG tensor, are presented in Table 2.3 and
Figure 2.5. The primary source of error is taken to be the accuracy of measuring the
splittings (£0.4 kHz). Simple error propagation was used to estimate the errors in the
order parameters.
2.7 A Mean Field Theory of Binary Mixtures

The temperature dependence of the experimentally measured order
parameters (Q,, Q,, D, and D,) are interpreted using a mean field theory of binary
mixtures of biaxial nematic liquid crystals [41]. The parameters of the theory are
coupling constants, r,, which gives a measure of how strongly a molecule couples to a
given mean field, A. In the case of cylindrically symmetric molecules, this theory
reduces to an existing mean field theory of binary mixtures [82,83). This uniaxial theory
predicts that the two orientational order parameters, Q, and Q,, are related by
concentration and temperature independent curves. *H-NMR experimental results, from

a variety of mixtures over a wide range of temperatures and concentrations [84,85] have
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confirmed these predictions. For biaxial molecules, unique relationships between all four
order parameters Q,, D, Q, and D,, are determined by the three anisotropic interaction
strengths, the r’s, i = 1,3. The r’s will be determined by fitting the temperature
dependence of the four experimentally determined order parameters.

Mean field theory gives the anisotropic part of the single particle
pseudopotential of each component of the mixture, €, and €,. Using a geometric mean

assumption, the general form of the single particle pseudopotential reduces to

&, = -/U, [ A (ql(O)-%Q,) - A (d,(e,\y)-%b,) ] (3.42)

for molecule 1 in the mixture, and

&, = Uy [rA @©®-20) - A GOW-2D)] @4

for particle 2. The Euler angles (¢,6,y) describe the orientation of a molecule in the

laboratory frame. The r; parameters are functions of anisotropic coupling constants:

S e T T RS (2.44)
Ull Ull Ull

A detailed derivation of this mean field will be presented in the next chapter. Coupling
constant U;; gives a measure of the strength of the coupling of the instantaneous
orientation of the distinguished (major) axis of particles of species of i with the order
parameter Q;. Similarly, W; gives a measure of the strength of the interactions coupling
the instantaneous orientation of the minor axis of species i to D;. All particles couple to

the same concentration dependent mean field, A, which is of the form,
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2
A= 3 (plﬁl-Ql + PN UpQ, + PyYWyy Dy + py/W,, D) (245)

where p, is the number density of species i.
A nonlinear routine was written to fit the three parameters, r,, successively
and self consistently using these expressions for the pseudopotentials. The orientational

order parameters can be determined by evaluation the following integrals numerically,

1
[ax-1) exp(%AX’) 10(7;’_r2A(1-x2)) dX
Q =X (2.46)

1
9 \y2 9 _y?
2 expAXY I(ZrA(1-XY) dX

X=0

1
[@xe-1) exp(%rlAXZ) 10(%3/\(1-)(2)) dx
0, = X (2.47)

1
9 9
2 exp(5rAXY [(ZrA(1-X?) dX

X=0

1
[a-x exp(%.AXz) Il(%rzA(l—Xz)) dx
D, = X0 (2.48)

1 1
2 9 9
3 [ exp(AXY I(SrA-X?) dX

X=0

and
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1
[a-x exp(_i_rlAX2) 11(%31\(1-)(2)) dxX
D, =X __ (2.49)

27 exp(%rlAXz) 10(%r3A(1-x2)) dx

X=0

I,(arg) is the modified Bessel function of the first kind and I,(arg) is the modified Bessel
function of the first kind of order one. A is the concentration and orientational order
parameter dependent nematic mean field given by Eqn. (2.46).
2.8 Interpretation of Fits To Mean Field Theory

In order to fit the temperature dependent order parameters and find the
three r; parameters, Q, is defined to be the independent variable and the dependent
variables are the three other orientational order parameters (Q,,D,,D,). At a given
temperature, Q, was used to calculate A by inverting equation (2.46). Given A, the
dependent variables Q,, D, and D, were determined for a given r,, r, and r, by evaluating
the integrals in Eqgns. (2.47-2.49). A nonlinear least squares fitting routine was applied
in successive stages. First, Q, is fit as a function of Q, to provide a value of r, keeping
r, and r, fixed. Then r, is estimated from the D, vs Q, curve with r, and r, held constant.
Finally, r, is determined by fitting the function D, with r, and r, held constant. This
procedure was iterated until all parameters converged to within one part in 10°. The
universal curves relating the order parameters are superimposed with the theoretical fits
in Figure 2.6. The final values (90% confidence limits) were determined to be r, =
0.25140.004, r, = -0.1630.01 and r, = 0.084+0.002. It is clear from the figures that the

second and third points deviate significantly from the least squares fits. This is thought
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to be due to the fact that they correspond to data taken in the isotropic-nematic
coexistence region where the splittings are small and the fractional errors are large. Using
an identical procedure to reanalyze the data from pure FLOC [80] gives the value r, = -
0.13 £ 0.01.

In order for this theoretical description to be useful, it must provide a
physical interpretation of the temperature dependence of the order parameters in terms of
anisotropic interaction potentials (r;’s). The temperature dependence of Q, and Q, indicate
that the degree of orientation of the long axis of the small rigid non-mesogenic solute is
much smaller than that of the liquid crystal (Q, > Q,). This behavior makes intuitive
sense because the probe is not expected to interact as strongly with the mean field, and
hence to orient to the same extent as the liquid crystal rﬁolecules. The parameter r,, the
ratio of the anisotropic interaction_strength coupling the long axes of each molecule to the
uniaxial order parameters, is much smaller than one. One of the most appealing results
of mean field theory of nematic binary mixtures of uniaxial molecules is that the Q, vs

Q, universal curve is completely determined by properties of the pure materials [82,83]

_ | Tz P, (2:50)
1 T p2

NI

where Ty;; is the Nematic-Isotropic transition temperature of species i and p, is its number
density. For biaxial molecules the corresponding theoretical parameter r, exists but can
no longer be rigorously defined by equation (2.50). However, for binary mixtures where
the two components transition temperatures are defined the ratio of transition temperatures

and number densities give an excellent initial guess at the parameter. Since pure FLOC
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Figure 2.6 Interrelations of the orientational order parameters with the best non linear
least squares fit to the ratios of interaction potentials, r, = 0.251 + 0.004.
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hasa Ty, =409.70 K, equation (2.50) can be applied assuming p-Xy and FLOC have
the same molar volumes. This gives a virtual transition for p-Xy as Ty = 25K, well
below the crystallization temperature, as required for a non-mesogenic compound [58].

The experimental results also indicate that the molecular biaxiality of the
p-Xy solute is larger than that of the liquid crystal FLOC (D, > D,). Initially, this seems
contradictory to the premise that the biaxiality of molecules has a profound effect on the
physical properties of liquid crystal phases. It is unclear why the ordering of p-Xy is
more asymmetric than that of FLOC, but it seems reasonable that the symmetry and
packing considerations will require a small, flat molecule to orient anisotropically.
Obviously, the dimensions of the rigid core of FLOC are larger and this suggests that the
orientation should be more asymmetric. The results indicate that this notion is
inappropriately simplistic.

It is\important to appreciate that in FLOC the fluorene core has a 14 carbon
tail attached to it, and this has a profound effect on the location of the principal axes of
the molecular order tensor. The alkoxy chain is flexible and can exist in many
conformations (3'?), each having a dramatically different geometry and hence orientational
order. It is conceivable that in most conformers the rigid segment is more biaxial than
the solute p-Xy. However, the observed molecular biaxiality is a statistical mechanical
average over all possible conformations [86] and thus it is appears that the core is
incapable of dominating the ordering of the minor axis.

The theoretical parameter governing the coupling of the instantaneous

orientation of the short axis with the biaxial order parameters, D, is given by r, =
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(W,,/U,)"2 Since these interaction f)otentials are single particle properties they can, in
principal, be derived from the behavior of pure materials. r, is equivalent to the
parameter 8 in a generalized mean field theory of pure nematogens proposed by
Bergersen, Palffy-Muhoray and Dunmur [87]. It is encouraging that an identical analysis
on pure FLOC [58,66] gave a value of r, = -0.13 * 0.01, which although not quite within
experimental error is at least consistent with that obtained from the mixture.

The third parameter, r,, determines the ratio of anisotropic interaction
potentials coupling the short and long axes of unlike species. This parameter is unique
to this treatment of binary mixtures of biaxial particles. It should be stressed that there
is a lack of reciprocity in these coupling constants [41], and hence it is incorrect to
assume a single interaction strength, even in the infinite dilution limit [88]. In the
treatment of Emsley et al. the parameter r, (corresponding to A) is a molecular property
and thus explicitly temperature independent [88]. If the binary mixture consisted of two
similar liquid crystal molecules then r, would be expected to be approximately constant
regardless of the species considered (ie. r, = [W,,/U,,]'* = [W,»/U;,]'"*) and under these
circumstances the theoretical parameters would satisfy the relationship 1; = £ rjr,. The
results for the mixture of the nonmesogenic probe p-Xy and the liquid crystal FLOC show
clearly that this relationship does not hold. It would be interesting to investigate this in
more detail by performing experiments on mixtures containing two nematogens.

In conclusion, NMR is the only technique capable of confirming
predictions and interrelations between the order parameters Q,, D,, Q, and D,, and thus

has the potential to make significant contribution to the understanding of liquid crystal
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mixtures. These *H-NMR results are the first experimental observation of all four
component order parameters in a binary mixture of biaxial molecules in the nematic phase
(58,66]. The temperature dependence of the order parameters has been obtained from
these experiments and this provides information on the order, asymmetry and flexibility
of the liquid crystal molecules. These results were interpreted using a new mean field
theory of binary mixtures of biaxial nematic liquid crystals. If the geometric mean
assumption is made all particles couple to an identical mean field. This theory is the first
to allow for calculation of the free energy explicitly, to include concentration dependence
and to allow for biaxial nematic phases. The results show.that mixtures and pure
materials are fundamentally different and it is incorrect to assume that probe molecules

are capable of monitoring a system in an unbiased manner.
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3. PHASE DIAGRAMS OF NEMATIC BINARY MIXTURES

Molecules which form nematic liquid crystal phases come in a wide variety
of shapes and sizes. It would be valuable to be able to predict how mixtures of these
very different molecules might behave. A mean field theory has been proposed to
describe binary mixtures of nematic liquid crystals with arbitrary shapes [41]. Using this
formalism, a complete theoretical description of phase stability and orientational order in
binary mixtures of biaxial molecules has been obtained. For a single component, one
anisotropic coupling parameter is required to predict the temperature dependence of the
four orientational order parameters (Q,D,P,C). Given the order parameters, the stability
of the isotropic (I), uniaxial (U), and biaxial (B) nematic phase is ascertained by
calculating the free energy density. For binary mixtures, three anisotropic interaction
strengths, r,, r,, and r,, are needed to calculate the four order parameters of each
component as a function of concentration and temperature. The free energies and
chemical potentials of each phase are calculated to access stability of the mixture, and the
results are often presented in phase diagrams [63]. One question, which has been a topic
of debate for researchers studying nematic liquid crystal mixtures, is whether binary
mixtures can form stable biaxial nematic liquid crystal -phases [89]. The results of this
computational study suggest that binary mixtures of molecules with suitably asymmetric
shapes might display a stable biaxial nematic phases [63].

3.1 Symmetry of the Nematic Phase

Liquid crystal molecules are often modeled as rigid, asymmetric molecules
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possessing D,, symmetry. Partticles with D,, symmetry have three mutually orthogonal
planes of mirror symmetry, examples include ellipsoids of revolution, elliptic cylinders,
and regular parallelopipeds or "bricks" [90]. The distribution function, p(€2), can be given

as an expansion in terms of the standard Wigner rotation matrix elements:

PQ) = Y am D). 3.1

Jm.n

Where Q = (o,B,y) are the y-convention Euler angles describing the rotations needed to
transform from the laboratory to the molecular coordinate system, and the sum runs over
J, m and n in their appropriate ranges (J from 0 to oo, and m,n from -J to J). The
assumption that both the phase and the particles possess D,, symmetry leads to the
following restrictions on the expansion coefficients, a,," [91]):

(i) only terms with J, m, and n even contribute

(ii) the expansion coefficients satisfy the identities.

a® = a® = g® o (3.2)

mn = Qm'on = Oy = a-m -n*

0.(Q) = (.‘/22)’*‘»*5»

[DQ) + D.(Q) + DEQ) + D) ()],
the expression for the distribution-function, Eqn. (3.1), can be rewritten 3.3)

[DQ) + D.(Q) + DEQ) + D) ()],
the expression for the distribution function, Eqn. (3.1), can be rewritten

PE) = Y gu QnlD). (34)

where J, m, and n are even, non-negative integers.

There are four second rank (J = 2) expansion terms:
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q= 09 = _;_ (3cos? - 1)
p=302 = % sin? cos2ot

(3.5)
d= 309 = % sin?B cos2y

c =302 = %( (1+cos?B) cos2o. cos2y - 2cosP sin2o. sin2y )

Ensemble averages of these functions (<q>=Q, <d>=D, <p>=P, <c>=C) give the four
second rank order parameters which completely characterize orientational order of biaxial
particles of D,, symmetry. These are, apart from some arbitrary normalization constants,
the four order parameters introduced by Straley [20] to describe orientational order in
biaxial nematic liquid crystals. All four order parameters are zévro in the isotropic phase.
The uniaxial nematic phase has azimuthal symmetry about the director (laboratory z-axis);
therefore, the distribution is not a function of the angle o, and the orientational order
parameters P and C vanish. In the uniaxial phase, D is finite if the particles are lack
cylindrically symmetry. In the biaxial phase, either P and/or C are finite.
3.2 Cartesian Order Tensors

An alternative representation of orientational order in nematic systems uses
Cartesian tensors. Expressions for these tensors can be derived by considering the
polarizability of a biaxial particle. Assuming that a liquid crystal molecule possessing D,,
symmetry has principle polarizabilities k,,, k;; and k,,, the polarizability tensor kg in the

lab frame is
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1
kg = k.5 + ? (kyy=~F) (Bnyynyg-8.0) | 36
+ 3 (kyy=ky) (g — Nylgg)
where the isotropic value is
k= (k, + ky + k) 3.7
The orientation of the particle enters this expression for the polarizability through the

quantities

Oy = _;: Gryny - Boy) (3.8)

and

3
Tep = 5 (n 1 - "zanzﬁ)’ (3.9)

where n,, is the projection of the unit vectors (”m = é¢,) Orientational order tensors
Ses and T,g can be defined as thermal average values of these tensorial quantities. If
it is assumed that S5 and T,g can be diagonalized simultaneously, as is expected for

reasons of symmetry [92], then in the principal axis frame of the liquid crystal phase,

1
_E(Q—P) 0 0

- - 3.10
(Oy) = Sy = 0 -%(Q+P) 0 (3.10)
| 0 0 Q)
- ;
—5(D—C) 0 0
3.11)

Gl =Ty =| —%(D+C) 0
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3.3 The Orienting Potential
Four order parameter tensors are needed to describe orientational order of
both components (1 and 2) of a binary mixture S5, Tiup Syp and T, The first
step in deriving a mean field theory of binary mixtures is to choose a form for the
orienting potential. To lowest order, a single particle pseudopotential of species 1 is
formed by taking the scalar products of orientational dependent terms, 6,5 and 7,5, and

the order parameters, S.5 and Toq. For species 1, the orienting potential €,(,) is:

1 1
g,(Q)) = —Epl‘yll - —92712
_2/3 [plU luﬁoluﬂ+p2Ul2S2ubolaB+p U Slabsluﬂ+p2U SZaleaB (312)

P Vi,s mﬁtlaa+pz 12 2ua 10f .V, laﬂ 1a5+pzv 208 1af
+plnll luﬂcluﬂ+p2r112 Zaﬂclab
+p,W aarmﬂ*'pzwlszua 108 TP W, T, laﬁ +pz ZaBTlaa]

where Q, is the generalized orientational coordinate of particle one, p; is the number
density of species i, y; are isotropic coupling constants, and Uy, U/, V;, Vy/, Iy, W;, and
W are anisotropic coupling constants. Here summation over repeated Greek indices is
implied. The pseudopotential of a particle of species 2 is obtained by interchanging the
indices 1 and 2.

The configurational free energy density of the system is given by [93]

f=-—plk8Tln 1 fe p(-21
] (3.13)

1 2( 2)
-p,k,T In |— | exp(- dQ
p2 B ] p2 J‘ p( kBT ) 2
where kg is Boltzmann’s constant, T is temperature in Kelvin, and dQ = d(cosp) da dy.

Since at equilibrium the free energy density f is a minimum, its derivative with respect
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to the order parameters must vanish. This minimum free energy requirement yields
relationships between the coupling constants, (e.g. U,,” = -% U,,, I1,, = V,,) which

simplify the expressions for the pseudopotentials to

1 1
81(91) = _Eplyll = ipz'le

2 1
’g(pluusma + p2U12S2aB + prllTlaﬂ + pzvlezaa)(cma"isma)

2 1
’g(vausma + pzvlzszaa + plWllTluﬂ + p2W12T2aB)(tluB—i laB)

1

1
-—3-[.) 2V ToopS 18- ¥ ‘§p 2Y125208 Tap

(3.14)

and a similar expression can be derived for &,(Q,).

The parameters of the pseudopotential which me'asure the strength of the
attractive intermolecular potential between species i and j. The coupling constant Uy
gives a measure of the strength of the interaction coupling the average orientation of the
distinguished (major) axis of particle i with the instantaneous orientation of the major axis
of j. Similarly W;; gives a measure of the strength of interaction coupling the average
orientation of the minor axis of particle i with instantaneous orientation of the minor axis
of j. Using the minimum free energy criterion, it can be shown that y; = ;, W;; = W;;
and U =U;,. Finally, V; gives a measure of the interaction strength coupling the average
orientation of the minor axis of species i with the instantaneous orientation of the major
axis of species j. In this case, no reciprocal relation can be found by minimizing the free
energy, and in general V; # V,,

3.4 The Geometric Mean Assumption
For the most general case of the binary mixture, there are 13 independent

coupling constants (Y1, Yo2» Yz Upi» Unss Uy Viy, Vi, Vg, Vo, Wiy, Wy, W), In order




71
to reduce the number of parameters in this description, the geometric mean assumption
is made. That is, the coupling constant for interactions between particles of different
species is assumed to be the geometric mean of the corresponding interactions between

like particles. Specifically,

U, = yUnUy Wi = YW, Wy Vi = yW, U, (3.15)
Vie = {Wi Uy Vi = WU, Va = (Wl

Making use of these relations, the pseudopotential for particle 1, €,(£2,), simplifies to the

following expression:

€ (Q) = l Yu r - ‘/— af (Glaﬂ - —Slaﬂ)

1
Wll Auﬂ (tluﬂ - 'i laB)‘

(3.16)

Replacing the subscript 1 by 2 gives £,(Q,). The isotropic mean field is

= pl‘/:y_; + pz‘/;; ’ G.17)

and the anisotropic mean field is

2
Ay = 3 PUiSis + Py UnSup + PyWi Tiog + Py W Togg)- (.18)

In the geometric mean approximation, therefore, all particles feel the same
istropic (I') and anisotropic (A,) mean fields. How strongly a given species couples to
these fields is characterized by the isotropic (y;) and anisotropic (U;; and W) interaction

strengths. The parameters of the theory are ratios of these coupling constants:

ro= Yo 11 22 (3.19)
0 ‘ - 5 | T
Yu \J U, U, U,

Now the pseudopotentiais € and €, can be expressed in terms of the scalar order
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parameters (Q,,D,P,,C,), the Euler angles , = (o,B,,,) with i=1,2, and the four coupling

parameters r; with j = 0 to 3.

£,Q) = - % A 19,0, + rd@,y,) - %Ql _rzpl]
3 1
- 2 K[ 0,0) + 1 ®.0,%) - 2P, - 1] (3.20)
- 1 I"
5T
and
3 1 1
£,(Q,) = - 3 A lrg,0,) + rd,0,v,) - 5" 0, - 5_,302
. % rPy0,8,) + 1., 0,0, - _rP - %racz] (3.21)
1
~ 3 r, I.

Where the anisotropic mean fields are:

r-= Yll (pl + ropz)v (3.22)
2
A= 3 “n p,Q, + rp, @, + rpD +rpD), (3.23)
and
A = .; Uu (plPl + rlsz2 + rszC‘ + r3p2C2)' (3.24)

3.5 The Statistical Mechanics of Binary Mixtures

Statistical mechanics was used to calculate the order parameters of both
species. The single particle partition function for the i species (Z,) and the orientational
order parameters (§= Q,D,P,,C) may be calculated, for species i, by evaluating the

integrals
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_ 00y | 5
Z = f exp(—T) sin(0) do 49 dy (3.25)
€(0.0y) = .
E exp( -———__"" ) sin(0) dd d6 dy -
f i k,T . (3.26)

(g,) = .

i

Since the pseudopotentials are simply functions of the orientational order parameters of
both species, this set of equations can be iterated until they converge to give self
consistent solutions for all eight orientational order parameters.

The o dimension of the integrals in Eqns. (3.25 and 3.26) was performed
analytically. The remaining two dimensional forms of the ten integrals are given in
Appendix IV in terms of spherical Bessel functions. For uniaxial phases, the integrands
are independent of the angle o, and in this case the integration over the angle y can be
performed analytically (gee Eqgns. 2.46-2.49) [58,94]. In the biaxial phase, all order
parameters are nonzero, in this case Romberg’s method was employed [95] to evaluate
the ten 2-dimensional integrals required for each iteration in the order parameter
calculation. The spherical Bessel functions were calculated using a polynomial expansion
[96] which gave absolute errors of less than one part in 10”. The convergence criterion
for integration in the B dimension required fractional accuracy of one part in 10% the
second dimension, v, required fractional errors of less that one part in 10°. The order
parameters themselves are reiterated until they are consistent to within one part in 10°,
The integrations were checked for a test case by comparing the results to Mathematica’s

[97] numerical evaluation of the actual three dimensional integrals, and the solution was
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found to be correct to within the errors citeh. When molecular biaxiality is ignored (D
= C = 0), this theory reduces to a mean field theory of binary mixtures of uniaxial
particles. The numerical calculations were checked by reproducing phase diagrams which
were constructed using this uniaxial theory [98]. Further verification of the results of the
calculation included comparing the temperature dependence of the order parameters Q and
D, calculated for prolate molecules in a uniaxial phase (Ny,), with previously published
results [99], and reproducing Maier and Saupe’s results for a single component, uniaxial
system [24] when r,=r,=1,=0.
Once the order parameters have converged, the configurational free energy
density of the homogeneous mixture can be calculated using Eqn. (3.13). Other
thermodynamic quantities can be evaluated, and those of particular interest include the

thermal average energy densities <€,>, <€,> and the entropy density o,

€)= p, «+@®p,. 327

€) =p, +B)p,, (3.28)
o = .

ET (o, (3.29)

where

U U
0 = - @erD ) - Py - 11 (3:30)
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U
) = (o) = -—10,+,D)(rQ,+1,Dy) -
_%(Pl+r2Cl)(rlP2+r3C2) , rozzi‘_ ,
and
(B') = - -l—jil—l(",Qzﬂ‘?,Dz)z - _%'.'-(r,P2+r3C2)2 - r(fy_z". ) (3.32)

For a pure component, if the entropy density jumps discontinuously at the transition, i.e.
there is a finite entropy of transition, then the phase change is first order [100]. For
second order transitions, the entropy changes continuously thrd;.xgh the transition. Thus,
the order of the transition can. be determined by calculating ¢ just above and below the
transition temperature.

For homogeneous mixtures, the chemical potentials for each component,
W, (i = 1,2) can be calculated. These chemical potentials are crucial for constructing
temperature-concentration phase diagrams, since coexistence regions occur where the

follow'ing chemical potentials of different species are equal. For a binary mixture,

_OF _ o] _
b= g, - NG AT IR0
rp Lpvlod+ (py-pvXB ) - pyip )]
and
_oF _ 1 _
U, = pa k,T ln[.p_222] + kTP, (v,-v)) (3.34)

-p, Lpyvlod + (Py-pvXB)-pyiB 1.

Where v, is the molecular volume of the i species.
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3.6 Temperature Dependence of Orientational Order in a Single Component System

Only one parameter, 1,, the ratio of the biaxial coupling strength to the
uniaxial coupling strength, is needed to predict the temperature dependence of
orientational order for a single component system. The temperature dependence of the
nematic order parameters can be calculated. In the uniaxial phase, order parameters are
calculated with P and C held fixed at 0. In this case, the algorithm converges to one of
three states depending on the initial guesses for the order parameters. These three
uniaxial solutions correspond to: (1) a solution describing the isotropic phase (I) with
Q=P=C=D=0, (2) a solution with Q < 0 corresponding to a discotic nematic phase (Ny,.),
and (3) a solution with Q > 0 indicating a calamitic nematic phase (N,). In the biaxial
phase (Np), all four order parameters are non-zero, and it is found that the self-consistent
equations converge to the same orientational distribution independent of initial order
parameter guess; however, the principal axis from which the Euler angles were defined
depends on the initial conditions for the order parameters. For all phases, the scaled free
energy density is calculated for a single component using Eqn. (3.14) with p, = 0. The
solution for the order parameters which have the minimum orientational free energy gives
the equilibrium phase of the system.

The temperature dependence of the four order parameters of a single
component nematic for five different values of the biaxial coupling parameter, r,, are
presented in Figure 3.1. At each given temperature, Eqns. (3.25 and 3.26) were iterated
to calculate the four order parameters. Depending on initial conditions and phase

assumption, at most four solutions for the order parameters were found: a biaxial solution
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Figure 3.1(a) Orientational order parameters (Q,D,P,C) as a function of temperature
for the biaxial coupling parameter r, = 0.20. Temperatures are
normalized with respect to the Maier-Saupe transition temperature.
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Figure 3.1(b) Orientational order parameters (Q,D,P,C) as a function of temperature
for the biaxial coupling parameter r, = 0.30. Temperatures are
normalized with respect to the Maier-Saupe transition temperature.
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Figure 3.1(c) Orientational order parameters (Q,D,P,C) as a function of temperature
for the biaxial coupling parameter r, = 0.35. Temperatures are
normalized with respect to the Maier-Saupe transition temperature.
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Figure 3.1(d) Orientational order parameters (Q,D,P,C) as a function of temperature
for the biaxial coupling parameter r, = 0.50. Temperatures are
normalized with respect to the Maier-Saupe transition temperature.
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Figure 3.1(e) Orientational order parameters (Q,D,P,C) as a function of temperature
for the biaxial coupling parameter r, = 0.70. Temperatures are
normalized with respect to the Maier-Saupe transition temperature.
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(Np), a uniaxial solution of prolate objects (Ny,), a uniaxial solution of oblate objects
(Ny.), and the isotropic phase solution (I). The equilibrium solution for the system was
taken to be that of minimum free energy (Eqn. (3.13)). Small values of r, (r,<0.33)
describe rod-like or prolate molecules, while for r,=0 the rods are cylindrically symmetric
and the Maier-Saupe results are reproduced [24]. Large values of r, (r,>0.33) describe
plate-like or oblate molecules, and larger values (r, > 1.0) describe nearly cylindrically
symmetric plates. A biaxial nematic phase is found near the isotropic-nematic transition
temperature (Ty;) for intermediate values of r, (r,=0.33). This is in agreement with
previous work [21,102-108] which predicted that low molecular weight thermotropic
biaxial nematic liquid crystals should display characteristics of both rod-like and disk-like
molecular shapes [109,110].

As the temperature is lowered, mean field theory predicts that a nematic
liquid crystal becomes more ordered and follows the sequence I-Ny,-Ng (rods) or [-Ny, -Np
(disks). To illustrate this ordering as a function of temperature, an ensemble of 1000
molecules whose orientational distribution gives the order parameters are presented for
r, = 0.3 (Figure 3.2) and r, = 0.35 (Figure 3.3). For prolate molecules, the order
pararﬁeters converge to Q=1, D=0, P=0 and C=3 as the system cools to T = 0; this gives
an orientational distribution in the (a,B,y) space concentrating on the line f=0 and o=-y.
This distribution is one of complete alignment with the molecular z-axis parallel to the
laboratory z-axis. As C becomes finite, the phase becomes biaxial, and the molecular x-
axis aligns parallel to the lab x-axis. For oblate molecules, as the temperature lowers, the

order parameters converge to Q=-0.5, D=-1.5, P=-1.5 and C=1.5. Figure 3.3(c)
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Figure 3.2(a) An ensemble of 1000 molecules whose orientational distribution gives
the order parameters for rod-like liquid crystals with biaxial coupling
parameter r,=0.30 for T = 0.700




84

Figure 3.2(b) An ensemble of 1000 molecules whose orientational distribution gives
the order parameters for rod-like liquid crystals with biaxial coupling
parameter r,=0.30 for T = 0.316..
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Figure 3.2(c) An ensemble of 1000 molecules whose orientational distribution gives
the order parameters for rod-like liquid crystals with biaxial coupling
parameter r,=0.30 for T = 0.100.




86

Figure 3.3(a) An ensemble of 1000 molecules whose orientational distribution gives
the order parameters for disk-like liquid crystals with biaxial coupling
parameter r,=0.35 for T = 0.900.
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Figure 3.3(b) An ensemble of 1000 molecules whose orientational distribution gives
the order parameters for disk-like liquid crystals with biaxial coupling
parameter 1,=0.35 for T = 0.400.
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Figure 3.3(c) An ensemble of 1000 molecules whose orientational distribution gives
the order parameters for disk-like liquid crystals with biaxial coupling
parameter r,=0.35 for T = 0.100.
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demonstrates that this distribution is also one of complete alignment except the molecular
z-axis aligns along the laboratory y-axis. The entropy of transition was calculated using
Eqn. (3.29) and the results indicate that the phase transition from the isotropic phase
(Q=D=P=C=0) to the uniaxial nematic phases (P=C=0) is first order. The entropy of
transition between the isotropic phase and the uniaxial nematic phase decreased as the
molecular biaxiality parameter approached r,=0.33 from either above (I-Ny.) or below (I-
Ny,). The phase transition from the uniaxial nematic phase to the biaxial nematic phase
(Ny,-Ng and Ny.-Ng) was found to be second order.
3.7 Temperature-Concentration Phase Diagrams of Binary Mixtures

After the behavior of pure components had been studied, binary mixtures
of biaxial liquid crystals were investigated. For binary mixtures, phase separation occurs
when the combined free energy of two phases is lower when the two components are
apart than the free energy of the homogeneous mixture. Temperature-composition phase
diagrams give the physical conditions where miscibility gaps occur [98,100,111]. Itis of
interest to calculate phase diagrams of different mixtures of molecules with a variety of
uniaxial and biaxial coupling strengths. For a given temperature, once the free energy of
a homogeneous mixture is known as a function of composition (Eqn. (3.13)), the
minimum free energy phase of the system can be determined. If any line connecting two
points on the homogeneous free energy curves lie below it, the composition range
between the two points is unstable and phase separation will occur. The most stable
configuration can be found by constructing a double tangent to the homogeneous mixture

free energy curves [98,100]. An equivalent method to constructing this double tangent
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involves the calculation of the chemical potential of both components (Eqns. (3.33) and
(3.34)) [98,100]. When the chemical potentials of both components, y,, are equal, the
phases are in thermal and diffusive equilibrium and they can coexist. Therefore, the
concentradons where the chemical potentials are equal gives the location of the miscibility
gaps. Plotting the chemical potentials p, against p, and locating the point where the
curve crosses itself gives a second, more numerically efficient, method of determining
coexistence regions. In producing the temperature-concentration phase diagrams, the
volumetric fraction (Y) will be given in lieu of the number density (see Appendix IV).
In all phase diagrams presented, the volume per molecule and the isotropic interaction
strengths are set equal for both components to emphasize the effect of the anisotropic
interaction strength.

For mixtures, three parameters are needed; r,, which reduces in the uniaxial
case to a ratio of transition temperatures (r, = (v,Ty/v, Ta)') [112], r, which measures
molecular biaxiality for component 1, and r,, the biaxiality parameter for the second
species (r, for species 2 is ry/r, = (W,,/U,,)"?). First, a mixture of rod-like liquid crystals
was chosen with r, approximately that expected for uniaxial nematogens, (r,=0.632,
r,=0.163, r,=0.158). For the rod-like uniaxial nematogen FLOC,,-d,, the temperature
dependence of Q and D were experimentally measured and fit to this theory to give r, =
-0.1610.01 {58]). Comparison of results, shown in Figure 3.4, to an earlier study of binary
mixtures of uniaxial, prolate liquid crystals (r;=0.632, r,=r,=0) [98) shows that the effect
of increasing molecular biaxiality is a decrease in the area of the Ny,-I coexistence region

and the appearance of an inhomogeneous mixture of two biaxial phases (at different
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Figure 3.4 Temperature-concentration phase diagram for a biaxial binary mixture
of rod-like liquid crystals with r,=0.6325, r,=0.1633, r,=0.1581. The
two solid lines on the top of the diagram are prolate nematic (Ny,) -
isotropic (I) coexistence curves. The dotted lines are the coexistence
curves if the molecules were cylindrically symmetric (r,=0.6325, r,=0.0,
r, = 0.0). Below T = 0.17, biaxial solutions give the minimum free
energy. The bottom line is a biaxial nematic (Np) - biaxial nematic
(Ng) coexistence region. For all phase diagrams, Y is the volumetric
fraction of species i = 1 and T is the temperature normalized such that
T = 1.00 is Ty; in Maier-Saupe theory.
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concentrations) in the biaxial phase at lower temperatures. A mixture of disk-like liquid
crystals (r,;=0.5, r;=0.7, r;=1.2), presents qualitatively similar results, as shown in Figure
3.5. Figures 3.6 and 3.7 give the results of mixing rod-like with plate-like liquid crystal
molecules, here r=1, r,=0.16, r,=0.7. This temperature-concentration phase diagram
demonstrates that mixtures of prolate and oblate liquid crystals are unstable to spinodal
decomposition into two coexisting uniaxial phases, Ny, and Ny, even when the molecules
are slightly perturbed from cylindrical symmetry. A mixture of a rod-like liquid crystal
molecules with an asymmetrically shaped disk (r,=0.632, r,=0.1633, r,=0.25) has a small
stable biaxial phase as demonstrated in Figure 3.8. The last temperature-concentration
phase diagram (Figure 3.9) shows that for mixtures of liquid crystals with asymmetric
shapes between that of rods and disks (r,=1.0, r,=0.30, r;=0.35), the homogeneous mixture
in the biaxial phase is stable. The parameter r,=0.30 describes a flattened rod shaped
molecule while r;=0.35 corresponds to a lopsided disk shaped one. The mixture of these
two liquid crystals does not phase separate, a result which can be understood by
comparing the free energy curves in Figure 3.10. For the mixture of nearly cylindrically
symmetric rods and plates in Figure 3.10(a), a concave free energy envelope shows that
a heterogeneous mixture minimizes the free energy. For the mixture shown in Figure
3.10(b), the free energy curve is convex which indicates that this mixture will not phase
separate but remain a homogeneous mixture. The implications of this result are discussed
below.

3.8 Conclusions

Predictions of the temperature dependence of all four order parameters
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Figure 3.5 Temperature-concentration phase diagram for a biaxial binary mixture
of disk-like liquid crystals with r,=0.5, r,=0.7, r;=1.2. The iwo solid
lines on the top of the diagram are oblate uniaxial nematic (Ny) -
isotropic (I) coexistence curves. Below T=0.6, the system is biaxial.
The bottom line is a biaxial nematic (Np) - biaxial nematic (Np)
coexistence region.
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Figure 3.6 Temperature-concentration phase diagram for a biaxial binary mixture
of disk-like liquid crystals with rod-like liquid crystals, here r=1.0,
1,=0.166, r,=0.70. The two solid lines on the top of the diagram are
oblate nematic (Ny) - isotropic (I) coexistence curves. The bottom
lines show that the biaxial nematic (Ng) phase is unstable, and the
mixture phase separates into two coexisting uniaxial nematic phases
(Ny, and Ny).
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Figure 3.7 Temperature-concentration phase diagram for a biaxial binary mixture
of disk-like liquid crystals with rod-like liquid crystals with r;=0.5,
r,=0.166, r,=0.50. The bottom lines again show that the biaxial nematic
(Np) phase is unstable, and the mixture phase separates into two
coexisting uniaxial nematic phases (Ny, and Ny.). Here the two pure
components have roughly equal isotropic-nematic  transition
temperatures close to the Maier-Saupe value T = 1.0.
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Figure 3.8 Temperature-concentration phase diagram for a binary mixture of rod-
like nematogens with highly asymmetric disk-like molecules, here
r,=0.6325, r,=0.166, r,;=0.25. A small region where the biaxial phase
is stable exists. The dotted lines are not coexistence curves, but simply
phase boundaries. The bottom line is a biaxial nematic (Np) - uniaxial
nematic (Ny,) coexistence region.
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Figure 3.9 Temperature-concentration phase diagram for a biaxial binary mixture
of flattened rod-like liquid crystals with lopsided disk-like liquid
crystals, r,=1.0, r,=0.3, r,=0.35. The dotted lines are not coexistence
curves, but simply phase boundaries. For this mixture the biaxial phase
is stable and is found close to the nematic - isotropic transition
temperature (Ty,) for Y=0.33.
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Figure 3.10(a) The free energy density at a fixed temperature is plotted at a function
of concentration for the four possible phases of the mixture: isotropic
(I), prolate uniaxial (Ny,), oblate uniaxial (Ny.) and biaxial (Ng). For
the system illustrated in Figure 3.7 at T = 0.50, the free energy density
of all four phases is shown in Figure 3.10(a). To obtain the minimum
free energy, the mixture phase separates into two uniaxial components.




99

free energy

Figure 3.10(b) The free energy density at a fixed temperature is plotted at a function
of concentration for the four possible phases of the mixture: isotropic
(D), prolate uniaxial (Ny,), oblate uniaxial (Ny.) and biaxial (Ng). For
the system illustrated in Figure 3.9 at T = 0.85, the free energy density
of all four phases is shown in Figure 3.10(b). The minimum free energy
corresponds to a homogeneous biaxial phase.
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describing a biaxial nematic phase in a single component liquid crystal have been
presented for the first time [63]. The general result that asymmetric liquid crystals exhibit
a second order phase transition between uniaxial and biaxial nematic phases is consistent
with previous predictions [21,101-108]. These theoretical results motivated searches for
low molecular weight biaxial nematogens [109,110,113-115]. The success of these
searches is a topic of debate [116]. Experimental investigations of single component
biaxial nematogens in the uniaxial calamitic phase have been performed in which the
temperature dependence of the order parameters was successfully fit using this model
[58]. It would be interesting to perform analogous experiments on the newly reported
biaxial nematic liquid crystal systems to determine if they are truly biaxial nematic
phases.

Behavior of biaxial nematogens in binary mixtures has also been predicted
using mean field theory. Temperature-composition phase diagrams of a number of binary
mixtures have been calculated in order to explore the behavior of biaxial molecules in
nematic liquid crystal phases. Previous work on nematic mixtures have suggested that
it may be possible to achieve phase biaxiality by mixing rod-like nematogens and plate-
like nematogens [89]. Mean field calculations of cylindrically symmetric molecules (D,
symmetry) concluded that for binary mixtures of prolate and oblate liquid crystal
molecules, the biaxial phase is unstable to spinodal decomposition into separate
inhomogeneous mixtures of uniaxial phases (N, and Ny) [98]. In the present study it
has been shown that the inclusion of slight molecular biaxiality into the theory does not

affect this conclusion. A mixture of a plate-like liquid crystal and a rod-like liquid
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crystal (with a shape anisotropy comparable to those observed in real uniaxial rod-like
liquid crystal systems [58]) is predicted to phase separate into two uniaxial phases, rather
than to produce a stable biaxial nematic. Only mixtures composed of extremely
asymmetric or lopsided molecules prefer the biaxial nematic phase. And, for binary
mixtures the interesting result that a blend of highly asymmetric molecules with opposite
shape anisotropy (asymmetric rods with disks) form a more stable, higher temperature

biaxial nematic phase than either pure component alone.
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4. Molecular Motion of Nematic Liquid Crystals

The anisotropic intermolecular forces which cause liquid crystals to align
also have a strong influence on their molecular motion. *H-NMR relaxation experiments
have been used to investigate the anisotropic molecular motion of nematic liquid crystals.
Relaxation experiments measure how fast a spin system undergoes the transitions
necessary to return it to thermal equilibrium. Spontaneous transitions between magnetic
energy levels are hopelessly slow (e.g. for deuterons in a 7 Tesla magnetic field, the
transition rate is W = 10" §'). Therefore, transitions between magnetic energy levels
occur by stimulated absorption and emission. Thermal photons can induce transitions.
However, this coupling also gives negligible transition rates (W = 10 s for deuterons
in a 7 Tesla magnetic field in a coil with a Q = 100, volume of the sample = 10° m?, and -
T =300 K) [117]. Since coupling with the radiation field is inadequate as a relaxation
mechanism, interactions of the spin system with its surrounding environment, the 'lattice’,
must be invoked to explain the observed relaxation rates. For 2H-NMR of liquid crystals,
reorientational motion of the molecules give rise to rapidly fluctuating terms in the
quadrupolar Hamiltonian which induce transitions. The rate at which a spin system
relaxes to thermal equilibrium can be expressed in terms of spectral density functions
which characterize the spectrum of the fluctuations [118). Proper selection of relaxation
experiments allows the determination of these individual spectral densities of motion as
a function of frequency and temperature [119]. These spectral densities can be interpreted

using various models of the molecular motion. In this chapter of the thesis, spectral
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density data from both pure FLOC and a FLOC:p-Xy binary mixture will be interpreted

by fitting experimentally measured spectral densities to a composite diffusion model of
molecular motion in a nematic liquid crystal [61,65].
4.1 Pulse Sequences

The measurement of deuteron relaxation rates in liquid crystals requires the
use of sophisticated pulse sequences. Examples of the pulse sequences for a number of
relaxation experiments are given in Figure 4.1. Assuming the system starts from thermal
equilibrium, individual magnetizations or higher order coherences are established using
a series of rf pulses and delays in the preparation part of the pulse sequence. Any of
the eight quantum operators, (L, L, L, Q,, Q,, Q,, D,, D,) [120], can be excited using a
suitable pulse sequence. Pulse sequences which are used to establish spin order include
the Jeener-Broekaert sequence which [121,122] creates quadrupolar order (Q,), an
inversion-recovery experiment [123,124] in which Zeeman order (-L) is excited, and an
experiment [125,126] in which double quantum coherences (D, or D,) are established.
After the coherence has been prepared, the system is allowed to evolve for a given period
of time, T, during which the spin system relaxes back to thermal equilibrium. The
evolution of the operators can only be detected if mixing pulses are applied to create
single quantum coherence. A measure of the decay of the order or coherence in the time,
T, gives the relaxation rates, i.e. the decay of Q, gives T,q, the decay of I, gives T,; and
the decay of D, or D, give Ty,

A simple example of a pulse sequence used to measure relaxation rates is

the inversion-recovery pulse sequence with quadrupolar echo detection (IRQE). As
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shown in Figure 4.1, the preparation part consists of a high power 180° pulse which
inverts all the spins. After this pulse, the system is allowed to evolve freely for a time
T. The mixing sequence is a conventional quadrupolar echo pulse sequence (90,-1-90,-1-
acq).

The time evolution of the density matrix during the IRQE experiment can
be calculated starting from the thermal equilibrium distribution: p(0) = L. An rf voltage
is applied across the coil at the Larmor frequency, v,, with the intensity ®, = yhH, for

a time t,, such that w,t, = &. The resulting density matrix is (see Appendix III)

p(r) = exp(ilot) I, exp(-ifw,t)
I, cos(n) - I, sin(r) 4.1

= -1

2z

The Zeeman order relaxes back to equilibrium exponentially during the time T,

p(D = -1, [1 -2 exp(—i)} 4.2)
TIZ

The quadrupole echo pulse sequence is used to create the detected signal quantum
coherence [60]. Here, the first pulse projects the magnetization onto the x-y plane, and
after a time, 7, the second pulse refocuses precession due to the quadrupole Hamiltonian.
To obtain the most accurate values of the relaxation rate, T,;, the inversion-recovery
sequence requires uniform initial inversion. When pulse power is limited (@ < @),
composite 90° and 180° pulses are often used to acquire undistorted spectra [123,127].

Most measurements of deuterium quadrupolar order relaxation in liquid

crystal systems have used the conventional Jeener-Broekaert (JB) pulse sequence [119-

122]. The preparation sequence for a conventional JB experiment is 90,-t-45,. Starting
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Figure 4.1 Three pulse sequences used to investigate molecular motion using 2H-NMR.
The sequences pictured are (a) an inversion recovery experiment with a
quadrupolar echo (IRQE) which is used to measure the rate of decay of
Zeeman order T,,, (b) the Jeener-Broekaert pulse sequence used to measure
T,z and rate of decay of quadrupolar order T,q, and (c) the broad band
Jeener-Broekaert pulse sequence used to measure T,
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from equilibrium, p(0) = L. After the 90, pulse has been applied, p(t) = L. This
transverse magnetization is allowed to evolve under the quadrupolar Hamiltonian for some
time T

P(T) = expliQ,w ;T) I, exp(-iQ o T) = [ cos(w,T) + Q, sin(w,v). (4.3)
If T is chosen such that 20,7 = (2n+1)m, then p =+ Q,. Supposing a y-pulse is applied

at this time, the density matrix becomes

p = exp(il 1) Q, exp(-il )

4.4
Q, cos2w,t) + _;. (3Q,-D,) sin20,t). @

Choosing t, such that w,t, = /4 gives p = 1/2(3Q,-D,). Next, the system is allowed to

relax back to equilibrium for a time T after the second pulse,

T 3 T 1 T
= I [l-exp(-—1)] + = -——)+ =D _——), 4,
p(D = I, [1-exp( le)] t3 Q, exp( Tm) t 3 . exp( TDQ) (4.5)

where Tp, is the double quantum relaxation rate. In the mixing part of the JB sequence,

a pulse is applied along the x-direction; 8 = w,t, gives

p = {l-exp(-Tl)} {1z cosO + I sine}

1z

+ % exp(-Tl) {% Q, (3cos™-1) - @ sin@ cos® - _;. D, sinze} (4.6)
)
+lexp(-i) {-Qy sin cos® - 3 Q, sin’0 + 1 D, (l+cos29)}.
2 T, 2 2

If the flip angle, O, is chosen to be 45°, a maximum amount of Q, is produced from Q,.
Notice, however, that this choice of flip angle reduces the amplitude of the Zeeman order,
L, by a factor of V2. Phase cycling can be used to cancel the double quantum coherence

[60,119], this leaves the following measurable part of the density matrix:
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V2 T, 3 T,
=Y [1 - ~—)} 1 - = ———
P = [1 - exp( le)] y = 7 expl o

The relaxation rates, T, and T,q, can be measured by measuring the sum (to get L) and

) Q,- 4.7

the difference (to get Q) of intensities of the quadrupolar doublets as a function of
relaxation time, T. Denoting the intensity of left and right absorption peaks by m(T) and
m,(T) respectively, the signal is Tr(pI") = m(T) + m(T). An automated procedure which
uses nonlinear least squares fitting was developed [128] for determining the relaxation

rates based on the relations

SN = m(T) + m(D) 4.8)
D(T) = m(T) - m(D) (4.9)
S(T) = [5(0)-S(=9] exp(-Tl) + 509 @.10)
12
D(T) = D) exp(-_L), @.11)
T,Q

where S(e<) and S(0) are the equilibrium and initial sum intensities respectively, and D(0)
is the initial difference intensity. Obtaining the relaxation rates with this conventional
Jeener-Broekaert pulse sequence is called the sum and difference (SAD) method
[119,124].

For the SAD experiment, digitation is started immediately after the last
pulse. Finite spectrometer recovery time precludes this, and distortions appear in the
spectrum. Also, the conventional JB experiment only creates quadrupolar order with
maximum intensity for specific frequencies vy, such that T = (2n+1)/(4vy). In general,
however, there is a distribution of 2v, values in the >H-NMR spectrum, and the value of

7 chosen will be a compromise which leads to less than optimal excitation of quadrupolar
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order for some values of 2vq.

Broadband Jeener-Broekaert experiments have been proposed by Wimperis
[129-131] to help overcome this problem. One such pulse sequence is
90, - 2t - 67.5; -2t - 45, -1 - 45,- [129]. A spin density matrix calculation of
this multiple pulse sequence demonstrates the creation of broadband quadrupolar
excitation [129-133]. The quadrupolar order, Q,, is measured as a function of relaxation
time, T, using a final 45, mixing pulse. Because of the dead time of the receiver, this
method produces similar spectral artifacts as the traditional JB pulse sequence. To avoid
this problem, a 90, pulse is inserted after the 45, mixing pulse to refocus the single
quantum coherence [59]. This refocusing is analogous to the quadrupolar echo. The
symmetries of the refocusing pulse required for Zeeman and quadrupolar order are
incompatible; that is, the phase cycle which maximizes quadrupolar order suppresses
Zeeman order, and vice-versa [59,60]. As a result, two separate experiments need to be
performed: a broadband Jeener Broekaert (BBJB) and an inversion recovery experiment
quadrupolar echo detection (IRQE). It has been shown that this approach (BBJB and
IRQE) yields relaxation rates, T,; and T,o, with significantly greater precision and
accuracy than those determined using a conventional Jeener-Broekaert experiment [60].
Examples of stacked plots created using this sequence of experiments are shown in Figure
42
4.2 Relaxation Theory

Having measured the decay rate of quadrupolar and Zeeman order (T, and

T,z), the results of these experiments need to be interpreted. The first step in this process
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Figure 4.2(a) Stacked plots from an inversion-recovery experiment (IRQE) performed on
pure FLOC.
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Figure 4.2(b) Stacked plots from a broad-band Jeener-Broekaert experiment (BBIB)
performed on pure FLOC.
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is to derive a theoretical description of relaxation in spin I=1 systems. In the fast motion
regime, these relaxation rates are expressed in terms of spectral density functions
(J(Mw,)) which characterize the molecular motion. Two different relaxation experiments
(BBJB and IRQE) allows the determination of the individual spectral densities. These
spectral densities represent the maximum amount of information available on molecular
motion from magnetic resonance experiments (59,60,119].

When a time dependent perturbation is present, the Hamiltonian can be
written as:

H=H, + H(® (4.12)
where the time independent term H,, is responsible for the 2H-NMR spectrum and includes
the static Zeeman, quadrupolar, dipolar and scalar couplings. H’(t) describes time
dependent interactions and is defined to have a zero time average, <H'(t)> = 0. Suppose
¢, is an eigenvector of H, with eigenvalue hw,, then a general solution of the time

dependent Schréidinger equation can be written in the form

Moy - g (4.13)
ot
v=Y ¢00,=Y a0, (4.14)

A time dependent density matrix operator p’ can be defined:

4 mp:,. ={a(® ayn)

- p"m ei(mn-m-)‘.

Time dependent perturbation theory [132] gives expressions for the

expansion coefficients at time t+At, a (t+At), given a,(t).
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a (t+Ar) = Za;"(nm) (4.16)

To order zero, the coefficients are static in time
al(t+Ar) = a (1), 4.17)

and higher order terms describe the time dependence of the expansion coefficients

AL

ay (e = -i ¥ f al@) {n | H(e ™" 1 1) dr. (4.18)
LYy

Expanding the density matrix to second order (i=2) gives

Pom (t+A) = 2 a(t+Ar) 2 a2 (t+Ar) )

=P ® +{af) a“"(t+At) ) + {aP(+Ar) al(n ) (4.19)
+ (a0 aa)'(t+At) ) + (aP(erAt) al@) )
+ (a® g™ (rAs) )

This expansion can be used to derive an expression for the time
dependence of the elements of the density operator. For the second order expansion to
be valid, the density operator p,,’'(t) must not change appreciably in the time At,
otherwise, higher order terms need to be included. In the interaction representation (a
frame rotating at v, about the laboratory z-axis), the time dependent terms in the density
matrix change at frequencies tvq. This implies that At « 1/v,, in order for the second
order expansion to remain valid. In addition, the definition of a spectral density requires
that Atst., where T, is the correlation time for molecular motion. Physically, these two
conditions are met for any system where the rotational motion of the molecule changes
on time scales much smaller than 1/v, i.e. 1/vy»t.. In this motional regime, Redfield

theory describes the time dependence of the density matrix {133-136).
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p,, ) (0 0 +0 -0 ) ’ ’
p"a"; = YOt R [pu) - pued] (420
k

The elements of the relaxation superoperator are

R = Juymi®@ -0 ) + J (00 -00)

= 8 Y @ ,-0) - 8,34, (@,-0 ) 21)
Y v

and the spectral densities are defined in terms of Fourier transforms of autocorrelation

functions:

Jnmlk(mk_ml) = J‘G’lmuei(mrmxﬁdt (4.22)
0
The autocorrelation function, G,,,, of a time dependent perturbing

Hamiltonian is defined to be

G, ) =TnTHO ImXITH@+T) Tk ) (4.23)

This function is defined with the following two assumptions: -

(1) G(eo) = 0, i.e., H'(t) and H'(t+7) are statistically uncorrelated at long times.

(2) G(7) is an even function of 7.

The first assumption implies that there exists some correlation time 1, such that G(t,) <<
G(0) for all T > t.. The integral expressions for the spectral densities can be evaluated
with an upper limit of infinity because G(t>>1.) = 0. Nonsecular terms with (©,-w,) #
(0-0,) will oscillate at high frequencies, and make a negligibly small contribution to

Ro.a. Thus with this secular approximation, equation (4.20) is simplified to

ap,. (1) , )
%,— =Y R [0,® -p, 1 (4.24)

ik

The R, are elements of a four dimensional relaxation super-matrix often

called the "Redfield super-operator’ which describes the time evolution of a density matrix
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subject to a time dependent Hamiltonian H'(t). Some of the elements have a simple

physical interpretation; R,,.. gives the probability per unit time that a transition from

state m to state n will occur. The rate of depletion of state n is -R,,,,, and conservation
of populations requires

Ropn = =32 R (4.25)

The spectral density J ,,(w) is amgeneralized transition probability requiring

fluctuations with frequency components at @. These spectral densities are one sided

Fourier transforms of the correlation function of the perturbing Hamiltonian as shown in

Eqn. (4.22). Given the time dependent part of the Hamiltonian in terms of spherical

tensors,

H® =Y (D" A, [T - T4 (4.26)

m

where the static part of the quadrupole Hamiltonian, T , is subtracted off to insure that

(H) = 0. Placing this Hamiltonian into (4.22) gives

Lo (@ - ) J‘ (n|H@® | mX1| H(t+t) 2% JLCRTR
]

4.27) Y DM (n A, , |IXm|A, | k) x
MN

[ (@t - TEXTEest) - Tm) ) 70722 ds,
0
where TV, (t) are spatial derivatives of the electric potentials in the laboratory frame.

These spatial derivatives are only know in the PAS of the EFG tensor T**5, . Neglecting

bond asymmetry, this is a frame with the z-axis points along the C-D bond:

T = D& QM) Ty (4.28)
where Q(t)=(o«(t),B(t),¥(t)) are the time dependent Euler angles which rotate the laboratory




115

frame into the PAS frame of the EFG tensor. In this expression, the time dependence of
the quadrupolar Hamiltonian is attributed to changes in the orientation of the C-D bond
with respect to the laboratory frame. That is, the time dependence of Hy'(t) results from
molecular motions. For uniaxial liquid crystals, the orientational potential is independent

of a(t), so M is constrained to be equal to N in equation (4.27)

Jnmlk(mk—o')l) = 2 (n l AZ,-M | m Xl | AZ.-M ' k )- X

M

2.0 2 (4.29)
e
i (2] o
where
J(®,-0,) =
(4.30)

f [ (DSJ(Q(r)) Dy '(Q(m))) - (Dg_;,)z ] 0, g
0

The spectral density of motion, J,(w), is the value of the Fourier transform of the auto-
correlation function of the Wigner rotation matrix elements D,,*(Q) at frequency «.
Physically, the J,(®)’s are a measure of the intensity of fluctuations in the electric field
gradient at the frequency .

Using the Zeeman basis set, |1) = |, = +1), |2) = |L, = 0), and |3)
= ]I, = -1), the non-zero spin operators A, can be evaluated and are presented in Table
4.1. These results along with Eqn. (4.29) can be used to find J,,(®) in terms of the
spectral densities Jy(w). Of the 405 theoretically possible J,.,(®)’s, symmetry requires
that only 14 of them are non-zero [119], these are listed in Table 4.2. Combining these
results, the Redfield relaxation matrix elements can be calculated explicitly in terms of

spectral densities and these are presented in Table 4.3.
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1A, =1 2]4,,12) = 2 (314,013 = -2
(1|4,,12) = -2 Q4,13 = /2
QA1) =y2 B4, |2 = -2
(114,,]3) = 2 BlA, ,|1) =2
Table 4.1 The non-zero matrix elements of the spin operators A, .
_ 1
i = I = i = 3 J,(0)
T = 'g‘ o(0)
1
iz = Iy = 3 o(0)
1
Tz = Doy = Doy = Iy = 3 J (@)
1
Jom = I = 3 ACH)
Jian = Ty = 1,200,
2
Table 4.2 The 14 non-zero matrix elements of the spectral densities in units of .3:_ [

e*q, 0
h

:
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= Ry, = - Ji(0,) - 2/,2w,)
Ry, = - J(@y) - 27,20,
Rzzzz -2 ‘ll(mo)
R

-2 BAO - 3@, - 2,00,

13

R
R

3333

R
R

=R

2121

1212 23 =

=R
2 = Ry = Ryypy = Ryyyy = Ji (@)
R 5 = Ry, = 2 J,200)
= Ry = Ry = - Ji(00)

R.,,. =R

2132

1223

2
) . .. 3n? | €°q,0
Table 4.3 Redfield relaxation matrix elements for I = 1 in units of = p .
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4.3 Relaxation Rates and Spectral Densities
Finally, the connection between the relaxation rates (T,z T,y) and the
spectral densities J(w) needs to be made. The equation governing the decay of Zeeman

order is

au) ) - U
. T

1Z
Recalling the definition of the expectation value in terms of the trace in Eqn. (2.12), and

(4.31)

given that the equilibrium density matrix is proportional to I, gives,
(L) = Trpl) = (p,;~Py)- (4.32)
Substituting (4.32) into (4.31), applying Redfield’s equation of motion (4.24), and taking

into account that Ry, = Ry, and R, ;53 = Ryyy, gives

di) dP,-py
2 - n"Pal Ry 0P () + Ry (Pay=pyy(o9)

dt dt
= Ry (PP 14(%9) = Rypyy (P33 = Pyy(e9)) (4.33)
= Ry - Ryy) [(Py=P39) - (P (o9-p () ]
= Ry =Ry [ (’z) - (Iz(°°)> 1
therefore

1 434
T =Ry - Ry, (4.34)

1z

Using Table 4.3, an expression for the relaxation rate in terms of the spectral density of

motion can be derived

(4.35)

_ 3r? (ezun

2
1
| ][4@@+uﬁ%n.
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Similarly, the decay of quadrupolar order

dlg) (@)
dt To
can be expressed in terms of the expectation values of the density matrix elements:

(4.36)

Q) = Tr(pQ,) = % (P11=2P 2 +P33)- (4.37)

This gives

d{ 0, ) _d P20 5+P s
dt dt 3

= (R -2R,;p+R

1122 1133)

(pll—2p22+p33] (4.38)
3

= (R~ 2R, 1 +R,5) ( 0, ).
Thus the relaxation rate is, :

p—

T = -R,,,,+2R, 5, -R,;5
12
4.39)
9n? | €%q,0
- [ i ] 37,®,).

Given the quadrupole coupling constant (e?q,,Q/h), the spectral densities
of motion J,(®,) and J,(2w,) can be obtained. In the next section, motional models of
liquid crystals are used to interpret these experimental relaxation times.

4.4 Models of Molecular Reorientation

In order to interpret the spectral density data, a theoretical expression for
the autocorrelation function of the Wigner rotation matrix elements (Eqn. 4.30) needs to
be calculated. If the molecular motion is considered to be a stationary Markovian

process, probability theory can be used to derive an expression for the time dependence
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of the correlation function [137]. A stationary Markovian process is a stochastic process
having statistical parameters which are invariant to changes in the time origin.
Defining E_(Q),

E_(Q() = DIQ@) - DEQW). (4.40)

The general form of the autocorrelation function is given below [65,138,139]

( EQQ) ES " (Q(+1) ) =

fdno fdQ pQ,) PQQ7) E Q) E, (Q(1)),
where p(€Y) is the equilibrium orientational probability distribution function, and

(4.41)

- P(£2,:€2,7) is the conditional probability of finding the molecule at the angle Q at time t
when the initial orientation is €, at time T = 0. Implicit in this definition of the
autocorrelation function is the assumption that no correlation exists between components
of the molecular angular momentum L at any time, i.e. each collision randomizes the
angular momentum of the molecule [138). Specific models of molecular motion can be
used to provide equations governing the time evolution of the conditional probability
function P(2,;Q2,7).

The two extreme models of reorientational dynamics are strong collision
and small step rotational diffusion. With the strong collision model, motion of the
molecule is assumed to occur in uncorrelated, large angle jumps. The orientation after
the collision is assumed to be independent of the orientation before the collision and the
duration of collisions is assumed to be negligible when compared to the residence time
in any given orientation [138-141]. This model is well suited for small solute molecules
dissolved in a solvent of larger, rigid molecules. Strong collision models are also used

to describe rotations of rod-like liquid crystals about the long molecular axis [65]. The
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second limiting case, small step rotational diffusion, describes the situation when
molecules rotate in small angular steps and a strong correlation between orientations
before and after each collisions exist [138,139,142-144].

For small step Brownian motion in isotropic medium, the time dependence
of the conditional probability function P(£2,;€2,7) is given by solutions of the rotational
diffusion equation. If the diffusion is isotropic, the rotational diffusion equation is given

below {139]

dP(Q,;:Q.1)
T
The diffusion constant, D, can be calculated hydrodynamically using the Stokes-Einstein

= -D V? P(Q;Q.1) (4.42)

model., With this model, the molecule is viewed as a sphere of radius a in a continuous,

stationary, homogenous medium [139], and

p- kT (4.43)

8na’n

where 1 is the viscosity of the medium.

Using this model, analytic expressions for the autocorrelation functions of
the Wigner rotation matrix elements (E,‘,","(Q(;)) Ef:,(g(;+z))> and the spectral densities
Ju(May) are easily derived. The solution for the conditional probability is assumed to be

of the form

PQ,;Qr) = Y Chx) D). (4.44)

jmk

Assigning the time dependence to the expansion coefficients
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OP(Q; Q) _ 3 aCY(t)
ot jmk ot
and applying the Laplacian operator gives [145]

D,(,{}(Q), (4.45)

V2 DUQ) = -j(i+1) DIQ). (4.46)

Multiplying the resulting equation by D,,%°(Q) and integrating over the Euler angles
gives

9 C9%x .

_% = -j(j+1) D C9). (4.47)

The orthonormality properties of the Wigner rotation matrix elements [146] requires that

G+ ) _ 8m?
f K2 Dy, €V Dy () = @ +D) M mm 5, (4.48)
These simple uncoupled differential equation can be solved with the initial condition

P(Q;Q.0) = §(Q,-Q)

i 44
-y 2L por@, poe) “49)
m 8m?
giving
PQ Q1) = Y 2;*21 DL *(Q,) DAK) exp(-jj+1)Dr). (4.50)
Jmk n
The that conditional probability for an isotropic distribution is p(Q,) = 1/87,
(E2Q() EZ"Qtst) ) = 1 e 5, @sh)
The spectral densities can be calculated by taking a Fourier transform,
I Moy = L[ 1P __ 4.52)
5 | 1+(Mo /6D)

In the extreme motional narrowing limit Mw, < 1/6 D (in a 7 Tesla magnetic field, 1/6

D <« 20,000 ps, a condition typically satisfied by most liquids). The spectral densities are
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predicted to be equal with J,(®w,) = J,(2w,) = 1/30 D.

All liquid crystal molecules lack spherical symmetry. In order to model

the molecular motion of cylindrical molecules, the diffusion equation can be generalized

oP(Q,;Q,1)
at
where L is a scaled angular momentum vector L = (id/dx, id/dy, id/az), and D is the

= LDL P(QQ1), (4.53)

second rank Cartesian diffusion tensor. This tensor is assumed to be diagonal in the
molecular frame [139). For an axially symmetric rotor D,, = I3, and D,, =D,, = D,,

thus
dP(Q,;Q,1)

Jt
This can be solved to yield the conditional probability (65,139]

= [D, L? + (D;-D)) L; ] P(Q;Q.7). (4.54)

P = Y 2L p&@,) DAQ) exp(-L), (4.55)
m 8®? T,
where
1
Ty = — (4.56)
JG+D, + k’(DI-DL)

The next step is to calculate the Fourier transform of the autocorrelation

functions

JuMay) = I(Dﬁl(mt» DR (Q(e+1)) €™ dt (4.57)
given that Q represents the set :f Euler angles which rotate the principal axis system of
the EFG (P) into the laboratory frame (L): Q = Q,_,. If a molecular axis system (M) is
defined, the orientation of the PAS of the EFG with respect to the laboratory frame can

be described with two consecutive rotations:
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D(Q, (1) = ;;Z Dy "(Q, () Din"(Qy ) (4.58)
where €, _(t) are the time dependent Euler angles which change as the molecule moves,
and Q. are the time independent angles describing the relative orientation of the
molecular axis and the PAS of the EFG tensor. Performing the Fourier transform of this

autocorrelation functions gives

2 2
T.
J (Mw,) = J . (Mo) = D2, ) ———* . (4.59)
WMog = 3, Moy = 3, D@ S[L+ (Mo, T, )]
Here, the asymmetry of the bond is assumed to be negligibly small (n = 0).
For liquid crystal systems, the molecules are orientationally ordered, and
models of molecular reorientation must be modified to include the orienting potential,

U(€, ). Statistical mechanics gives the equilibrium probability distribution as

uiQQ)

exp( - )
p(Q) = U(gf (4.60)
f exp(- T ) dQ

B
The differential equation governing the time dependence of the conditional probability

becomes [147]

dP(Q,;Q,T
PEAD _ LpL .+ LYD
ot k,T
The inclusion of an orienting potential in Eqn. 4.61 makes the solution for P(€;Q2,7)

1 P(Q;Q,7) (4.61)

much more complicated. First, the orientational ordering of the molecules makes p(£))
angle dependent. Second, when solving the differential equation with this condition, the
analog to Eqn. 4.47 is no longer a simple decoupled result; 3C,, /a1 couples to C,, #*".

As aresult, an infinite set of coupled differential equations needs to be considered. These
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coupled equations have been solved by constructing progressively larger basis until the
results converge (65]. Freed and his coworkers have proposed a theory to describe the
rotational motion of liquid crystals based on small step diffusion in the presence of a
restoring potential [148-151]. In the "anisotropic viscosity" model, the diffusion tensor
D is assumed to be diagonal in the laboratory fixed frame. This theory can be applied
to predict spectral densities given the uniaxial order parameter Q, and two rotational
correlation times: T, for rotational motion of the molecular axis about the director, and
T for rotational tumbling about an axis perpendicular to the director as depicted in
Figure 4.3.

In 1988 a composite diffusion model of molecular reorientation of nematic
liquid crystals was proposed [65] which combines Freed’s anisotropic viscosity model
with a statistically independent rotation of the liquid crystal molecule about the molecule
fixed z-axis. This "third rate model" requires an additional correlation time describing
the rate of rotation of the liquid crystal molecule about its axis of symmetry, 7,, and a
continuously variable collision parameter p. The collision parameter, p, is defined in the
range 0 < p < 1, where p = 0 corresponds to the assumption of strong collision (arbitrary
step size), while p = 1 implies small step diffusion for the y-motion. Using this model,
the spectral densities J(M,) can be calculated from the following parameters: the angle
B between the molecule z-axis and the principal axis of the bond, the uniaxial order
parameter Q, the collision parameter p, and the three correlation times 7,, T3 and T,

The "third rate" model of molecular motion in anisotropic fluids gives

explicit forms for the spectral densities,
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Figure 4.3 Molecular reorientational motion is described with the following correlation
times: (1) t,, for rotations of the molecular z-axis about the director,
(2) 7. for rotations about axis perpendicular to the director, and (3) <,
for spinning motion about the molecular z-axis.
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@) = [ G0 e ar (4.62)
[
with
2
G, = Y DFP) D "(B) G, (4.63)
kkn-2

where the asymmetry in the field gradient tensor, n, is neglected. The individual

correlation functions are given by

Gu®) = [ dQ, p@y) [ dQ PQQ0) E,Q) E, Q) (4.64)
Assuming that the motion of the long axis is uncorrelated with motions about this axis,

the integrals above can be separated:

G, = T(x) g,,.(%) (4.65)
given
2x ® .
P = f &y PUYY) f dy P(ysyx) e O (4.66)
o °
and

2x 1
Ep(T) = fdao f d(cosP,) ple,,Byx
Jaon | 4.67)

2% 1
fda [ dtcosB) P(@BiB.7) E,(0B4,0) Ei(0,8.0)
0 -
where [,(t) are correlation lfunctions for motions about the molecular z-axis and g, are
correlation functions for motions of this axis.
The 1, motion is modeled with N equally spaced sites about the molecular

axis. Equal probability jumps between any two sites gives an exponential correlation
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function [152,153]

T =5, e K if k=12 (4.68)
=9, ifk=0
where 7, is the lifetime in any one orientation. For rotational diffusion, the jumps are
restricted to be between nearest neighbors, and as the number of sites approaches infinity
[152,154]

-kt
I = e—r'—. (4.69)

Therefore, the conditional probability for motions about the molecular z-axis is
T =9, ifk=0
@70)  =8,,e"  ifk=1
=8, e" ifk =2

The conditional probability function for motions of the molecular z-axis
in an ordered medium P(o,B,;0,B,7) is obtained by solving equation (4.67) subject to the
initial condition P(0y,By;,B,0) = 8(Q-€). In accord with Freed’s anisotropic viscosity
model, the principal components of the diffusion tensor refer to rotational motion about
the space fixed x, y and z axis. Equation (4.61) is solved for a symmetric rotor (D, =
l/t, = D, and Dg = 1/13 = D, = D,, = D,,) in a Maier-Saupe potential:
U = -C Q (3/2cos’p - 1/2)- Details of the calculation are given in reference [65], here

the correlation function g,..(t) is shown to be

<3
(0 =3, ¢, Q@ aQ) exp -t 4.71)
S w Cmr § mk b,(,a(Q) ~

Where ¢,,(Q) is the initial amplitude of the correlation function, a,,”(Q) are the relative
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weights of each exponential decay, and b,,(Q) are coefficients which scale time
constants for anisotropic diffusion in an isotropic medium, t, in Eqn. (4.56). The
coefficients a,(Q), b, "(Q) and ¢, *(Q) are expressed as a power series expansion
2q,Q" with the coefficients q, [65].

In the following section, this composite diffusion model of molecular
motion of nematic liquid crystal molecules is used to interpret the temperature and
frequency dependence of the experimentally measured spectral densities J,(®,) and J,(2w,).
This "third rate model” of molecular reorientation, which assumes that the rotational
diffusion tensor is diagonal in the laboratory frame, that the liquid crystal is well
approximated by a symmetric rotor, and that molecular reorientation about the molecule’s
long axis is statistically independent. These approximations will be tested by fitting
experimentally measured relaxation data.

4.5 Experimental Determination of Rotational Dynamics

The liquid crystal studied (FLOC, the nematogen 2-fluorenyl-4’-
tetradecycloxy benzoate-d,) is unique because of the large number of inequivalent
deuterated sites on the rigid head group. This provides a wealth of information which can
be used to provide a particularly rigorous test of the various motional models. In many
previous studies, [154-159] the number of measured relaxation rates is equal to the
number of variable parameters in the motional model. This makes rigorous, statistical
estimations of the validity of the model and simultaneous determination of confidence
limits for the parameters impossible. As shown in Figure (2.3), the deuterated rigid head

group has seven inequivalent, deuterated sites. The signal to noise ratio for the 9,9°
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deuterons was not sufficient to extract quantitative information from relaxation
measurements. While the doublets from sites | and 4 are resolvable, the relaxation rates
are the same within experimental error; thus, in the numerical analysis, data from site 4
was excluded. Even though results from only five of the sites were used, the abundance
of experimental data provides a more stringent test of motional models than has been
possible heretofore.

Pure FLOC,,-d, was placed in a five millimeter sample tube, degassed
using several freeze-pump-thaw cycles, and sealed under vacuum. Relevant experimental
parameters include the following: 90° pulse width of 1.6 usec, dwell time of 6;25 usec
(spectral width £ 80 kHz), 1K complex points, 250 ms recycle time, and 2K scans for
signal averaging. The temperature was controlled to within 0.1°C between 120°C and
140°C using flowing nitrogen gas. The nitrogen was preheated to 110°C using a 32 watt
continuously run, noninductively wired Nichrome preheater. The temperature of the
sample was regulated by a 9000 Omega temperature controller with PID feedback to a
40 watt heater.

As discussed in section 4.1, the decay of quadrupolar order and the
recovery of Zeeman order were measured in separate experiments. The inversion
recovery experiment with a quadrupole echo was used to measure T,;', while T,y' was
determined using a broadband Jeener-Broekaert sequence with echo detection. This
allows the two spectral densities J,'(«,) and J,'(2a,) to be obtained for each resolvable site
i on the nematogen FLOC,,-d,. Thus, these relaxation data from the five deuterated sites

on the rigid fluorene moiety provide ten experimental spectral densities at each
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temperature. The intensity of each peak was determined by having the computer search
for a maximum intensity between two user-specified endpoints. A baseline for intensity
measurements was established by averaging five neighboring points picked on either side
of the endpoints and interpolating linearly to the position of the peak maximum. Peak
separations (2vq' listed in Table 4.4) were determined simultaneously for later use in
order parameter determinations. Arrays of sum magnetizations (from the IRQE
experiment) and difference magnetizations (from the BBJB experiment) for, typically,
sixteen t-values were constructed and passed to iterative, nonlinear least squares routines
[128]. S(0) and S(oo) were adjusted along with T, in a three parameter fit to Eqn. (4.10),
while D(0) and T, were independently adjusted in a two parameter fit to Eqn. (4.11).
All these procedures were incorporated into FELIX data processing software [160], and
the user need only specify a list of t-values and an appropriate window width for the
peak determination. The relaxation rates for all resolvable sites are listed in Tables 4.5
and 4.6.

As previously outlined, the quadrupolar splittings (listed in Table 4.4) were
used to determine the temperature dependence of the static order parameters, Q and D,
and these are listed in Table 4.4 and plotted in Fig. 4.4. The order parameters are the
thermally averaged orientation of the long molecular axis (see Figure 2.3) relative to the
laboratory fixed axes, and f, refers to the orientation of the fluorene head group with
respect to the long molecular axis.

In the fast motion regime, Redfield theory [133-136] applies and the

relaxation times T,z and T,q can be related to the spectral density parameters J,(w,) and
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Figure 4.4 The uniaxial (Q) and biaxial (D) order parameters of FLOC,, as a function
of temperature in the nematic phase.
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1,(2w,) using eqgs. (4.35) and (4.39). Here (¢’qQ/h) is the vibrationally averaged
quadrupole coupling in Hertz, estimated [66] to be 182 kHz for all aromatic deuterated
sites in FLOC,,-d,. The temperature dependence of the spectral density functions, J,'(w,)
and J,'(2w,), for different deuterated sites, i, are preselnted in Figs. 4.5(a)-4.5(f). Second
order polynomial fits to the temperature dependence of the spectral densities for each site
were made; the average deviation of the spectral density data from these polynomial fits
(8]," and 31,) is used to estimate random errors. It is these errors which are used in the
calculation of %2 in the fit of the experimental data to the model of molecular motion.

The third rate model of molecular reorientation [65] was used to fit spectral
density data for the five sites using a minimum % technique. This technique, which was
used to find the four motional parameters 1,,%;,%, and p, from the spectral densities,

involves calculating %* defined by

(4.72)

= 2’: Uitexp)-Jiahel _Jy(exp)-Jitthe):
inl [81{']2 [8.];_]2 .

J'exp) and J,'(exp) are the experimentally measured spectral densities at @, and 2w,
respectively for the i® site, J,'(the) and J,i(the) are the theoretically predicted spectral
densities for the same site, and 8J,' and 8J,' are the estimated errors in the experimentally
measured spectral density data.

Given the experimentally determined uniaxial order parameter (Q), and a
guess for the motional variables, (%,,T,%,.p), x> was calculated on a grid in the four
dimensional parameter space, and minimum values of %* were found. The reduced chi

squared parameter, ¥’gep, is defined to be the minimum chi squared divided by the
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Figure 4.5(a) Site 1: Spectral densities measured as a function of inverse temperature for
each deuterated site. Closed circles are J,(w,) measured at 46 MHz,
closed triangles are J,(®,) measured at 38.4 MHz, closed squares are
J,(2w,) measured at 46 MHz, and closed diamonds are J,(2w,)
measured at 38.4 MHz. The open circles and squares, which are
connected by a dotted line to guide the eye, are fits of the 46 MHz
data to the third rate model of molecular reorientation.
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Figure 4.5(b) Site 3: Spectral densities measured as a function of inverse temperature for
each deuterated site. Closed circles are J,(w,) measured at 46 MHz,
closed triangles are J,(w,) measured at 38.4 MHz, closed squares are
J,(2w,) measured at 46 MHz, and closed diamonds are J,(2w,)
measured at 38.4 MHz. The open circles and squares, which are
connected by a dotted line to guide the eye, are fits of the 46 MHz
data to the third rate model of molecular reorientation.
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Figure 4.5(c) Site 4: Spectral densities measured as a function of inverse temperature for
each deuterated site. Closed circles are J,(w,) measured at 46 MHz,
closed triangles are J,(«,) measured at 38.4 MHz, closed squares are
J,(2w,) measured at 46 MHz, and closed diamonds are J,(20,)
measured at 38.4 MHz. The open circles and squares, which are
connected by a dotted line to guide the eye, are fits of the 46 MHz
data to the third rate model of molecular reorientation.
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Figure 4.5(d) Sites 5 and 8: Spectral densities measured as a function of inverse
temperature for each deuterated site. Closed circles are J,(w,) measured at
46 MHz, closed triangles are J,(w,) measured at 38.4 MHz, closed squares
are J,(2w,) measured at 46 MHz, and closed diamonds are J,(2¢,) measured
at 38.4 MHz. The open circles and squares, which are connected by a
dotted line to guide the eye, are fits of the 46 MHz data to the third rate
model of molecular reorientation.
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Figure 4.5(e) Site 6: Spectral densities measured as a function of inverse temperature for
each deuterated site. Closed circles are J,(w,) measured at 46 MHz,
closed triangles are J,(w,) measured at 38.4 MHz, closed squares are
J,(2w,) measured at 46 MHz, and closed diamonds are J,(2wy)
measured at 38.4 MHz. The open circles and squares, which are
connected by a dotted line to guide the eye, are fits of the 46 MHz
data to the third rate model of molecular reorientation.
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Figure 4.5(f) Site 7: Spectral densities measured as a function of inverse temperature for

each deuterated site. Closed circles are J,(w,) measured at 46 MHz,
closed triangles are J,(w,) measured at 38.4 MHz, closed squares are
J,(2w,) measured at 46 MHz, and closed diamonds are J,(2a,)
measured at 38.4 MHz. The open circles and squares, which are
connected by a dotted line to guide the eye, are fits of the 46 MHz
data to the third rate model of molecular reorientation.
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degrees of freedom (six for the FLOC,,-d, system). X%zep €an be used to calculate the
probability of measuring a given set of spectral densities [161]. A reasonably high
probability gives the experimenter confidence that it is appropriate to use the model to
interpret the data. Plots of the experimentally measured spectral densities and the J,(the)
and J,'(the) calculated with the motional parameters which give minimum % are presented
in Fig. 4.5. The probabilities listed in Table 4.7 demonstrate that the model works best
in the middle of the nematic range. Assuming that the model is correct, boundaries of
confidence regions in the parameter space can be estimated [162]. For our experiment
with six degrees of freedom, a contour of Ay’ = 7.04 give a 68.3% confidence level
[163]). As examples, these boundaries are plotted in the three dimensional t space, for
three different temperatures, in Fig. 4.6.

The ability of the third rate model to fit ten independent spectral densities
with reasonable confidence in terms of four parameters is encouraging. The agreement
between experiment and model is best for sites 3, 5 and 8 (Figs. 4.5(b) and 4.5(d)).
These sites have the largest signal to noise ratios and the smallest experimental errors in
the relaxation rates. Because the angle between the symmetry axis of the molecule and
the principal axis of the EFG tensor is large for these sites, the motional parameters T,
and p are largely determined by spectral densities measured for these sites. The sites 6
and 7 are more closely aligned with the molecular axis, and thus these sites play a
dominant role in determining 7, and 73. The quadrupolar splittings for sites 6 and 7 are
the largest and most temperature dependent (approximately 20 kHz per °C for the site 7).

Because of incomplete deuteration and large quadrupolar splittings, these spectral peaks
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FIGURE 4.6(a) Constant Ax* boundary of 68% confidence in the three dimensional
parameter space of the third rate model’ (1,,%,,7,) at 131.6 °C.
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FIGURE 4.6(b) Constant Ay’ boundary of 68% confidence in the three dimensional
parameter space of the third rate model’ (%,,,.t,) at 135.7 °C.
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FIGURE 4.6(c) Constant Ax? boundary of 68% confidence in the three dimensional
parameter space of the third rate model” (z,%,,t,) at 140.0 °C.
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had smaller signal to noise ratios, consequently data for these sites had larger errors.
Since it is more difficult for the model to fit the data for these sites (Figs. 4.5(e) and
4.5(f)), errors in T, and Ty are larger.

The correlation times obtained from the third rate model imply that the
frequency dependence of the spectral densities is weak, and this was tested by comparison
to experiments performed at 38.4 MHz [164]. These results (solid diamonds and solid
triangles in Fig. 4.5) demonstrate that for two temperatures in the nematic range, there
is no appreciable change in the spectral densities with Larmor frequency. This provides
confirmation that the correlation times reported here are not seriously in error.

Attempts were made to improve the fit between calculated and
experimental spectral densities by incorporating effects of nematic director fluctuations.
According to a theory developed by several authors [148,165,166], director fluctuations

contribute in first order exclusively to J,(wy):

A Q@ Uo Jo,)

I, = -AQ? E o T, (4.73)
0g? n
where
A l”
42rKk*

and
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(0 /0)-Qo Jo,)?+]
(0 J0,)+Qw Jo ) +1

(4.74)

1
Uwl/n) = — In
(@ Jo,) 2n

Where 1 and K are one constant approximations to the anisotropic viscosity and elastic
tensors of the medium, , is a high frequency (short wavelength) cutoff parameter, and
Q is the order parameter for the molecular z-axis relative to the nematic director. The
cutoff function, U(wy/w,), is unity at low frequency and becomes small for @, > ©, [167].
In accordance with Freed’s original theory (148], a negative cross term has been included
in Eqn. (4.73). Since viscosities and elastic constants have not been measured for
FLOC,,-d,, it is not possible to obtain an accurate independent estimate of A. Hence,
values appropriate for a “typical’ nematic liquid crystal (EBBA) were used, and A was
assumed to be 1 to 5 x 10° s [167]. The cutoff frequency was taken to be 200 MHz
(corresponding to a cutoff wavelength of molecular dimensions for the highest frequency
director modes). These values of A and w, were used with Eqn. (4.73) to calculate
director fluctuation contributions at each temperature including the cross term. Resulting
values for the best fit rotational correlation times did not differ appreciably from those
reported in Table 4.7. It may be concluded that director fluctuations make negligible
contributions to the spectral densities reported in the nematic phase of the liquid crystal
FLOC.

This conclusion is in agreement with results of low frequency proton and

deuteron relaxation measured with field cycling methods on other thermotropic nematics
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[168-170] and lyotropic liquid crystals [171], but differs remarkably from results reported
previously for small solute probes in nematics [158,159,168,171,172]. The resolution of
this apparent paradox lies in the fact that the rotational correlation times for the liquid
crystals themselves are typically much larger than those of the small solute probes. This
has the effect of increasing the negative cross term, to the point where the total
contribution from eqn. (4.73) approaches zero. For example, with A =2 x 10 s, o, =
200 MHz and t3 = 500 ps, the autocorrelation part (first term) of Eqn. (4.73) is found
to be 23.7 ps at 46 MHz and the cross correlation term is -11.0 ps. But, when 5 is
increased to 1200 ps, the second term increases to -24.0 ps and effectively cancels the
first. It should be noted that in this regime, the assumptions on which Eqn. (4.73) is
based are no longer valid, but a more rigorous generalized Langevin equation
representation of the dynamics of a molecule [173,174] yields similar results to those
reported here. It would be interesting to extend this theory [173] to asymmetric rotors
like FLOC,,-d, with off-axis deuterons to further explore the interaction between the
rotational diffusion of liquid crystal molecules and the director fluctuations of liquid
crystal systems when the time scales are comparable.

The temperature dependence of the correlation times fit using the i
analysis is given in Table 4.7 and illustrated in Fig. 4.7. The collision parameter
decreases with increasing temperature (Fig. 4.8), indicating that near the isotropic-nematic
phase transition, the T, motion is in the strong collision limit and proceeds by large
angular jumps. As the temperature decreases, the nematogen rotates about it’s axis of

symmetry with increasingly smaller angular jumps. Although this conclusion relies on
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Figure 4.7 An Arrhenius plot of the temperature dependence of the motional
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Figure 48 The collision parameter plotted as a function of inverse temperature.
p = 0 corresponds to strong collision and p = 1 implies small step
diffusion.
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the assumption that y motion and o, motions are statistically uncorrelated, it is
physically plausible. If an Arrhenius temperature dependence is assumed, the T, values,
yield activation energy E,(y) = 41 £ 25 kJ/mol over the 9.4 °C nematic temperature range
investigated. FLOC,,-d, is a long molecule with a rather small molecular biaxial order
parameter (D < 0.08) in the nematic phase. Because motion about the molecular axis of
symmetry is not hindered much by the shape of the rotating molecule, a comparatively
low activation energy and short correlation time is expected. The 3 motion is about 5 to
7 times slower than the y motion and also has a lower activation energy, E,(B) = 12
47 KJ/mol. This is surprising since a strong nematic aligning potential might be expected
to give Ty a large temperature dependence. Large T3 and small E,(B) is characteristic
of several liquid crystals [175,176]. A possible explanation for the combination of long
correlation time and small activation energy may be librational motion of the liquid
crystal about an axis perpendicular to the director. The temperature dependence for T,
the correlation time for motion about the director, gives activation energy, E,(a) = 210
% 100 kJ/mol. This seems anomalously high. Although error limits are large, a high
activation energy is expected because this motion inevitably requires the displacement of
many surrounding molecules.

The liquid crystal FLOC,,-d, presents a uniquely rich system for the
investigation of molecular dynamics in the nematic phase. With many well resolved sites
on the rigid fluorene moiety, the motion of the liquid crystal can be investigated in detail
without complications introduced by the rotational degrees of freedom of the alkyl chain.

A general, global least squares technique was developed to fit the relaxation data gathered
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from five deuterated sites to the third rate model of molecular reorientation in ordered
media. Uncertainties in the parameters of this model are larger than those of previous
investigations, a result of insisting that the model fit the data from all measured sites.
Much lower errors could be obtained by looking at only one or two sites. However, since
the number of deuterated sites is greater than the number of motional parameters,
confidence in the model can be estimated for the first time by the global fitting procedure
and the results are encouraging. In the nematic phase, the third rate model adequately
describes the molecular reorientation of the nematogen FLOC,,-d, and there is no
evidence for contributions to the relaxation from director fluctuations.
4.6 Reorientational Dynamics in a Liquid Crystal Mixture

A similar series of experiments were used to investigate the molecular
motion of a binary mixture of the liquid crystal FLOC and the small, rigid molecule para-
Xylene (p-Xy). The mixture was sealed in a Smm tube after several freeze-pump-thaw
cycles. One result of mixing the small, non-mesogenic probe in with the liquid crystal
FLOC is a depressed nematic-isotropic transition temperature Ty;, and in this case Ty, fell
by 50°C. As the sample was cooled, the phase changed from the isotropic to the nematic
at Ty;" = 78.3°C and from the nematic to the crystal phase at Ty = 74.7°C. Integrating
the static H-NMR spectrum and assuming complete deuteration, it was discovered that
only 30 mole % of the mixture becomes nematic, the rest stay in the isotropic state until
the entire system crystallizes. Assuming that the concentration of FLOC in the isotropic
phase is small, the integrated intensities were used to determine the molar concentration

of molecules in the nematic phase: 50 mole % are FLOC and 50 mole % are p-Xy.
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Figure 4.9(a) The uniaxial (Q,) and biaxial (D,) order parameters of FLOC as a function
of temperature in the FLOC,, : p-Xy binary mixture.
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Figure 4.9(b) The uniaxial (Q,) and biaxial (D,) order parameters of p-Xy as a
function of temperature in the FLOC,, : p-Xy binary mixture.
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The experimentally observed splittings were used to find the biaxial (D,)
and uniaxial (Q,) order parameters of both components of the mixture. These are shown
as a function of temperature for FLOC (Figure 4.9(a)) and p-Xy (Figure 4.9(b)), and they
are listed in Table 4.8. Values for the order parameters are similar to those found
previously for an 11 mole % binary mixture of p-Xy:FLOC, except that the temperature
width of the phase is reduced from 12 °C to 3.5 °C.

The relaxation rates, T,z and Ty, for all sites on both molecules were
determined using the same experimental techniques as described for the pure FLOC
sample. The relaxation rates for the FLOC splittings were measured using 16 relaxation
times with 1.6 psec 90° pulse widths, 100 ms recycle times and 4096 scans. The p-Xy
lines had much longer relaxation rates and required a 3 sec recycle time and 256 scans
were signal averaged. The relaxation rates are presented inn figure 4.9 and 4.10, and the
calculated spectfal densities are presented as a function of temperature in 4.10 and Figure
4.10.

The spectral density data were fit to the third rate model with the same
minimum ¥? technique used in the investigation of pure FLOC, the results of the fit to
the correlation times are given in Figure 4.11 and Table 4.11. These correlation times are
in qualitative agreement with the results from pure FLOC. The general trend that 73 >
T« > T, is followed, although t, is somewhat longer in the mixture. This slowing of
the T, motion may be caused by collisions of the smaller p-Xy molecules with the core
of the FLOC which serve to brake this rotational motion. The collision parameter for

FLOC was found to be p = 0.50 throughout the nematic range, this is in qualitative
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Figure 4.10(a) Site 1: Spectral densities measured as a function of inverse temperature
for each deuterated site. Circles are J,(®,) measured at 46 MHz, squares
are J,(2,) measured at 46 MHz, and the lines are fits of the data to the
third rate model of molecular reorientation.
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Figure 4.10(b) Site 3: Spectral densities measured as a function of inverse temperature
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are J,(2m,) measured at 46 MHz, and the lines are fits of the data to the
third rate model of molecular reorientation,
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Figure 4.10(c) Site 4: Spectral densities measured as a function of inverse temperature
for each deuterated site. Circles are J,(w,) measured at 46 MHz, squares
are J,(2w,) measured at 46 MHz, and the lines are fits of the data to the
third rate model of molecular reorientation.
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Figure 4.10(d) Site 5 and 8: Spectral densities measured as a function of inverse
temperature for each deuterated site. Circles are J,(w,) measured at 46
MHz, squares are J,(20),) measured at 46 MHz, and the lines are fits of the
data to the third rate model of molecular reorientation.
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Figure 4.10(e) Site 7: Spectral densities measured as a function of inverse temperature
for each deuterated site. Circles are J,(w,) measured at 46 MHz, squares
are J,(2w,) measured at 46 MHz, and the lines are fits of the data to the
third rate model of molecular reorientation.
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Figure 4.10(f) Aromatic Site on p-Xy: Spectral densities measured as a function of
inverse temperature for each deuterated site. Circles are J,(w,) measured
at 46 MHz, squares are J,(20),) measured at 46 MHz, and the lines are fits
of the data to the third rate model of molecular reorientation.
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Figure 4.10(g) Methyl Site on p-Xy: Spectral densities measured as a function of
inverse temperature for each deuterated site. Circles are J,(w,) measured
at 46 MHz, squares are J,(2a),) measured at 46 MHz, and the lines are fits
of the data to the third rate model of molecular reorientation.
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agreement with the pure FLOC values. The temperature dependencies of the correlation
times (Figure 4.11) were not used to find activation energies for either molecule in the
mixture because of the small nematic temperature range and larger experimental
uncertainties. The para-xylene data was fit to the third rate model assuming that fast
spinning of the methyl groups motionally averages the quadrupolar coupling constant.
For this motion, the principal axis of the effective field gradient tensor is along the
spinning axis and is reduced by a factor of three [177]. The results of fits to the third
rate model for p-Xy are presented in Table 4.12. The motions of this molecule are at
least a factor of 10 faster than that of the larger liquid crystal host. The relative values
of the correlation times of the para-xylene motion follow the general trend of the liquid
crystal host, with T, > 73 > t,. The T, motion occurs by a strong collision mechanism
as is observed for other small solute molecules [65,178-180].

These relaxation rates for molecular motion in the nematic phase were fit
assuming that no exchange between molecules in the nematic phase and the coexisting
nematic phase occurs on the time scale of the NMR experiment (100 ms for the FLOC,,
and 3 s for the p-Xy). This assumption was checked using a selective inversion-recovery
experiment. In this experiment (shown in Figure 4.12), a low power, 180° pulse is used
to invert the zero frequency line which originates from molecules in the isotropic phase.
The system is then allowed to evolve for some time T;,. If molecules in the isotropic
phase diffuse into the nematic phase during this time Ty, signal from inverted spins on
the diffusing molecules should change the intensity of the quadrupolar doublets. By

taking a difference between this experiment and one run without the inverting pulse, any
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Figure 4.11 An Arrhenius plot of the temperature dependence of the motional correlation
times of FLOC,, molecular motion in the FLOC,, : p-Xy binary mixture
showing 68% confidence boundaries for each parameter. T, data are
circles, T, data are squares, and T, data are triangles.
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Figure 4.12 The selective inversion experiment is shown in Figure 4.12(a). A low power
if pulse is applied long enough (t, = 800 ps) to invert the low frquency
signal (o,t, = 1) as shown in 4.12 (b). The system is allowed to evolve
during a time Tp, then a quadrupole echo pulse sequence is used to detect
the magnetization. The difference between the this signal and one acquired
using a standard quadrupolar echo is used to detect translational diffusion
between molecules in coexisting nematic and isotropic phases.
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off resonance signal would indicate translational diffusion between coexisting nematic and
isotropic phases. No signal was detected away from the zero frequency isotropic peak
in the difference spectrum. This negative result implies that the assumption that
translational diffusion across the nematic-isotropic boundary is not occurring on the time
scale of the NMR experiment is correct (T > 3s).

In this chapter, the molecular motion of a liquid crystal and a liquid crystal
binary mixture were investigated using 2H-NMR relaxation experiments analyzed with a
composite diffusion model of molecular reorientation in an ordered medium. The results
from the pure material showed that in the nematic phase, the third rate model adequately
described the molecular reorientation of the nematogen FLOC,, with no evidence of
director fluctuations at 46 MHz. Curiously, no evidence for director fluctuations were
found in the analysis of the relaxation data for a p-Xy:FLOC binary mixture. Although
the experimental data for the mixture experiment are less accurate, previous studies of
small molecules have reported that contributions to the spectral densities from director
fluctuations are needed to interpret the relaxation data [170,180-183], especially at Larmor
frequencies below 500 kHz. Both the low accuracy of the experimentally measured
spectral densities and the high Larmor frequency of the experiment (46 MHz) do not
allow for contributions to the spectral densities from director fluctuations to be estimated
from the FLOC:p-Xy relaxation experiments. In fact, estimates using equation 4.73 and
the results quoted in Table 4.12 show that the director fluctuation contribution to J,(w,)
for the p-Xy deuterons is within experimental error. The motion of the smaller, rigid p-

Xy occurs on a much faster time scale than that of the long, flexible liquid crystal. The
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7, motion of FLOC is measurably different in the mixture compared to the pure material.
The time scale for p-Xy motion differs from that of FLOC by an order of magnitude, this
suggests that mixtures and pure materials are fundamentally different, and it is incorrect

to assume that probe molecules are capable of monitoring a system without biasing it.
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APPENDIX I

I |m | Ty

0 |0 | -(1/3)[Ty+T,+T,]

1 {0 | -(N2T, Tyl

1 | £1 | -(UT Ty £ (T, T,p))
2 |0 | (INOBT,, - (Tu+T,+T,,)]
2 | 1 | #(U2) T+ Ty £ i(T,+T,)]
2 | 22 | (12)[T,e-T,, £ i(T,+T,)]

Spherical Tensors. The spherical tensors T,, are obtained from the nine
elements of the Cartesian tensor T, (00, = x,y,z). The indices | and m denote the rank
and component index of the spherical tensor, respectively.
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APPENDIX Il

U©0,)0, = e™0,e™-

UL, = Lcosd - 1,sind
ULk = L,cos® + Lsin®
U(Q)L, = Lcos® + Q,sind

UL = Lcosd + Lsin@
U(L)L, = Lcos@ + Lsin

UL, = Lcosd + Lsin®
UL, = L,cosH - Lsin®
U(Q)I, = Lcos8 - Q,sind

U(I,)Q; = Q,c0s0 - D,sind

U(L)Q; = Q,c0s20
+ 1/2(3Q, - D,)sin20

U(L)Q; = Qcos6 + Qysind
U(Q)Q, = Qo6 + Lsind

U()Q, = 1/2Q,(3cos*1)
- Q,sinBcosO - 1/2D,sin’0

U(1,)Q, = 1/2Q,(3cos1)
+ Q,sinBcosd + 1/2D,sin’0

U(1,)Q, = Q,c0s20
+ 1/2(2Q,+D,)sin20

U(1,)Q, = Q,co88 + D,sind
U(L)Qy = Q,cos0 - Q,sind
U(Q)Q, = Q,c0s0 - Lsin

U(L,)D, = -Q,sinBcosd - 3/2Q,sin’0

+ 1/2D,(1+c05°0)

U(L,)D, = -Q,sinBcosd + 3/2Qsin’0
+ 1/2D,(1+c0s%0)

U(I)D, = D,c0s20 + D,sin20

U(L)D, = D,cos8 + Q,sind

U()D, = D,cos® - Q,sin®

U(I,)D, = D,cos20 - D,sin20

Exponential operator commutation relations (0 = wt).
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APPENDIX IV

As explained in the text, integration of the expressions needed to calculate
the order parameters (Eqns. (11) & (12)) can be performed analytically over the angular
variable o.. This yields the following two dimensional integrals which must be evaluated
numerically.

1 2x

2 | Al
Z = 5= ;[o y'[o exp(a) I,(§) dx dy (A.D)
l 3 1 2=
. A2
0.2 +5=2 fo Y[o x* exp(a) L(E) dx dy (A2)
3 1 2= b
= - —x? A3)
D, Z Hi Y!o (1= 5 exp(a) 1(8) d oy (
3 1 2x
- ) Ad
P Z = ‘fo ,Io (1-x% cos(y) exp(a@) L&) dx o (A.4)
1 2=
- 3 2 . Il(g) (A.S)
CZ= -fo ’ !o (boos(y) +hoos(y)s*+2axsin(y)] = d o

The integrals for species 2 are obtained by performing the following substitutions:

r r r
a-ra b-2bh c-2lc & -2E
! r

r 2 T,




The functions a, b, ¢ and ¢ are given below.

a= 2 A(ix’-_
2 2 2

Ly . % N (1-x?) cos(y)

b= -% (1-x%) + %A’rz(lu’)cos(y)

c= —%A’rzxsin(y)

a = yb? + ¢?

Y=Y =p v

(I-D=Y,=p,v
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(A.6)

(A7)

(A.8)

(A9)

As a last note, the calculations are presented in the results and discussion
section as functions of the volumetric fraction of molecule i=1. Given the volume per
molecule of each component, v, and v, the number density, p, is related to the volumetric
fraction, ¥, by the following simple relations.

(A.10)

(A.11)
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