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Abstract

Physics th a t might lie beyond the standard model is discussed, with spe­
cial emphasis on two possible extensions of the standard model: multi-Higgs 
extension and the fourth generation leptons.

In multi-Higgs-boson extensions of the standard  model, tree-level flavor- 
changing neutral currents exist naturally, unless suppressed by some symmetry. 
For a given rate, the exchanged scalar or pseudoscalar mass is very sensitive 
to the flavor-changing coupling between the first two generations. Since the 
Yukawa couplings of the first two generations are unknown and certainly very 
small, bounds which rely on some assumed value of this flavor-changing cou­
plings are quite dubious. One might expect the size (and reliability) of the 
Yukawa couplings involving the third generation to be greater. In this study, 
we consider processes involving r ’s and B's, and determ ine the bounds on the 
flavor-changing couplings which involve third-generation fields. The strongest 
bound in the quark sector comes from B  — B  mixing and in the lepton sector, 
surprisingly, from /z —» e7 . It is then noted th a t flavor-changing couplings in 
the quark sector are related to those in the lepton sector in m any grand unified 
theories, and one can ask whether an analysis of rare r  decays or rare B  decays 
will provide the strongest constraints. We show th a t rare B  decays provide the 
strongest bounds, and th a t no useful information can be obtained from rare t  
decays. It is also noted tha t the most promising decay modes are B  —> K p r  
and B ,  —» /zr, and we urge experim enters to look for rare decay modes of the 
B  in which a r  is in the final state.

If a fourth generation of leptons exists, both the neutrino and the charged 
lepton m ust have masses in excess of 45 GeV. It is certainly possible that 
the neutrino will be the heavier of the two. In this case, the charged lepton 
can only decay through m ixing with lighter generations, and m ight thus be 
extrem ely long-lived. F irst, we investigate the implications of very long-lived 
charged leptons for cosmology and astrophysics. We calculate the bounds on 
the mass and lifetime of long-lived charged particles which arise from terres­
trial experim ents, from astrophysical searches for the decay products and from 
cosmology. The strongest bounds come from the requirem ent th a t the  decay 
products not unacceptably d istort the cosmic microwave background. Phe­
nomenological implications are also briefly discussed. Second, we study the 
production cross-sections and signatures for the SSC and LHC. Four models 
are considered which contain heavy leptons beyond the  three families of the 
standard  model. Two are fourth-generation extensions of the standard  model 
in which the right-handed heavy leptons are either isosinglets or in an isodou­
blet; the other two are m otivated by the aspon model of CP violation. In all 
these models, the heavy neutrino can either be heavier than , or comparable 
in mass to, the charged lepton leading to the possibility tha t the charged lep­
ton is very long-lived. The detection m ethods for these heavy leptons are also 
discussed.

xi



BEYOND THE STANDARD MODEL: 
NEW  SCALARS AND NEW  LEPTONS



C hapter 1 

Introduction

T he standard model of the  electroweak interactions has been extremely suc­

cessful phenomenologically, and yet the large num ber of free param eters, as 

well as the large num ber of unanswered questions, has led to a  strong belief 

th a t the standard model is incomplete. For this reason, there have been many 

studies of possible extensions of the standard model. Before discussing the pos­

sibility of new scalars and new leptons, I will first review some of the concepts 

of the  standard model[l].

The standard model is built from three types of particles: gauge bosons, 

fermions and Higgs. The best understood are the gauge bosons, whose cou­

plings to m atte r fixed by the principle of gauge invariance. The standard-m odel 

gauge group is S U (3) x S U (2 ) i  x U(1)y , so we know that there m ust be a  toted 

of twelve gauge bosons: eight gluons, three weak vector bosons and one photon, 

as shown in Table 1 . These particles have all been experimentally detected, 

and m ust form part of any extension to the standard model.

The next part of the standard model is the Higgs sector, in which the 

electroweak gauge group SU {2)i  x U(1)y is broken to the  U{1 ) q  of electro­

m agnetism . The Higgs sector contains a complex doublet $ , whose quantum  

num bers are shown in Table 1. 2
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Table 1.1: The fields of the standard model.

Particle SU (3) x SU ( 2 ) x 17(1)
Gl ( 8 , 1 , 0 )
w ? (1, 3, 0)
Bn ( 1 , 1 , o)

3 ’Td

II (3, 2, 1/6)

UR (3, 1, 2 /3)
•̂R (3, 1, -1/3)

M 2 ) (1, 2 , - 1 / 2 )
\  U ' 

efi ( l . l . - l )

- ( ! • * )
(1, 2 , 1 / 2 )

The complete gauge-invariant Lagrangian including the  scalar fields is then 

D  — Gauge 4* ^ H ig g a  4" D Y u k  aw a * ( l . i )

The gauge-field Lagrangian is determined by the gauge symmetry,

Coang. =

4- i q L Y D ^ L  4- i u r ^ D ^ u r  +  I I r Y D ^ r  

+  i h Y D j L  4- i e R T / ^ D ^ e R  , (1.2)

where

G >  =  d^G l -  dvG l  +  g z fabcG lG l  ,

W “ =  d^W ?  -  dvW?  +  g ^ W ^ W J  ,

£ M„ =  d^Bv — dvBp , (1.3)

and

D A  =  8A  -  g3AaGaA  -  iggTaW A  -  i g i ^ B A  .
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D^u'r = d ^ R  +  iff3 r a G“u‘R -  i g x ^ B A  ,

D A r — &Ar +  ^T '^G A r ~  ‘S iy ^M ^s >

D A  =  d A - i g 2T aw A - i g i ^ B A ,

D A r =  d A - i  9v j B A r - (1-4)

In these expressions, the / a6c and A  are the structure constants and color 

operator of S U (3), the e“ ^ 7  are the structure constants of 517(2), T  is the 

weak isospin operator, and Y  is the hypercharge generator. As we can see 

from Eqs. 1.3 and 1.4, the gauge-field Lagrangian depends only on the 517(3) x 

5C7(2)l x 17(l)y coupling constants <j3, g2 and g2.

The Lagrangian for Higgs field is of the form

^ as, =  ( ^ ) t ( ^ ^ ) - n ^ )  (1-5)

where

D A  = 9A  ~  i9 iT aW A  ~  '9 i j B A  • ( 1 -6 )

The Higgs Lagrangian is invariant under SU(2)l x  17(l)y transform ations. The 

potential is

7 ( $ )  =  -/j.2§ +$ +  A($+$ ) 2 . (1.7)

The most general S U ( 2 ) x 17(1) Yukawa coupling between the scalar and 

fermions is given by

^Yukawa — f ^ l A ^ R  +  f ^ q A u R  + f ^ q A ^ R  +  1i.e .  (1 .8)

with the isodoublet $  =  having hypercharge F ($ )  =  —1 .
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For positive values of fi2 and A in Eq. 1.7, we have spontaneous sym m etry 

breakdown as the scalar develops a vacuum expectation values (VEV)

< $  > 0 =  ^ ^ v  =  (/^2 /A ) l / f 2  . (1.9)

Using the polar variables for the scalar fields

*  =  )  ( 1 .1 0 )

with U{£) =  exp[i£(x) • r /u ] .  Thus the original two complex fields <f>+(x)  and 

4>°(x) in Tabel 1  are param etrized in terms of four real fields &(x)  and H{x).

Expanding around the VEV point, it is not hard to see th a t the Goldstone 

fields are massless, as required. The mass of the Higgs scalar is given by

M H = \ / 2/*, (1.11)

and the fermion masses are

m e =  f ^ v j s / 2 , m u =  f W v / y / 2 , m j =  f ^ v / V 2 ( 1 -1 2 )

The three ‘would-be-Goldstone bosons’ £(x) are ‘eaten’ by the gauge bosons to 

form three massive interm ediate vector bosons. By substituting <  $  > 0  into 

the Higgs kinetic energy, the mass term s for the electroweak gauge bosons can 

be found. The mass m atrix  is easily diagonalized; the physical mass eigenstates 

are the W ± , the Z  and the photon A:

=  cos — sin

=  sin 0wW 2 +  cos Q^B^

=  ^ w i ± i w i ) -  ( i-w )



As usual, the  weak mixing angle is given by

92

\ / 9 1  +  9 l

cos 8W =  32 . . ■ (1.14)

The mass of the W  is simply

M w  =  ^ 9iV , (1.15)

while the mass of the Z  is

M z  =  ~ 7 ^ M w  ■ (1-16)
COS vyj

The photon, of course, is massless.

The covariant derivatives tell us how the gauge fields couple to  fermions.

From Eqs. 1.2 and 1.4, we see that the W ± couples to the usual charged

current,

Cw  =  -j =(ul^ cLl W+ +  H L 'f e iW * )  +  H.c. . (1.17)

The photon A  couples to the electric charge Q, where Q = T 3 + \Y ,

Da  =  e ^ - y ^ Q q i A f t  -  u r^ Q u r A ^  -  dRA Q d R A M

+  h A Q h A ^  -  efl7 MQeflAM) , (1-18)

where

« =  -t £ £ = .  ( i . i9 )
i / s f + s l

The Z  couples to a second neutral current, specified by the weak charge Qz = 

T 3 -  sin 2  0WQ,

C z  = 32 {qL'i^QzqiZn -  u r ^ Q z u r Z ^  -  d R ^ Q z d R Z ,
cos 6,

+  -  eRr/^QzeRZn) . ( 1 .2 0 )



Although the experim ental evidence in support of the gauge boson and the 

fermion sector of the standard model is very strong, experim ental inform ation 

concerning the scalar sector is very weak. The most im portan t piece of evidence 

providing inform ation about this sector is the p-param eter, defined as the ratio 

of the neutral current to charged current strength in the effective low-energy 

Lagrangian. In the standard model, at tree level, p =  1. If one introduces N 

scalar m ultiplets, with vacuum expectation values V{, which have isospin Ii 

and hypercharge Yi, then

The simplest m ethod of satisfying experimental value of p ~  1 is to choose 

only representations such th a t Ii(Ii +  1) =  | Y 2. SU (2) x 17(1) singlets obey 

this restriction, as do 51/(2) doublets with Y  =  ±1. In chapter 2, we will 

consider the simplest extension of the scalar sector-a model with two scalar 

doublets of Y  =  ±1 . It is often believed th a t the presence of tree-level flavor- 

changing neutral currents in this model is fatal, unless a discrete sym m etry 

is added, since it requires the exchanged scalar to be extremely heavy. This 

follows, however, from the assum ption th a t the flavor-changing coupling is 

quite large. Using a more natural value for the flavor-changing coupling, much 

smaller bounds were obtained. Unlike previous calculations, we calculate the 

bounds on the  flavor-changing couplings of an additional scalar for the  processes 

involving the th ird  generation fields. We have also noted th a t in m ost grand 

unified theories, the r  and bottom  quark are in the same representation, thus 

the flavor-changing couplings in the quark sector are related to those in the 

lepton sector. Comparing flavor-changing B  decays w ith rare r  decays, we can 

answer which set of decays give be tte r constraints.



The th ird  sector of standard model fields is built from fermions, the quarks 

and leptons. Three families of quarks and leptons with quantum  num ber in 

Table 1 have been observed, with the notable exception of the top quark. 

The family index runs from 1  to 3. From chapter 3, we will work on the 

possibility of a fourth generation heavy lepton. If a fourth generation exists, 

the lepton L  and the neutrino N  m ust both be heavier than  45 GeV. It is 

certainly possible th a t the neutrino can either be heavier than , or comparable 

in mass to, the charged lepton. In this case, the charged lepton can only decay 

through mixing with lighter generations, and might thus be extremely long- 

lived. In chapter 3, we investigate the implications of very long-lived charged 

leptons for cosmology and astrophysics. In the early universe, the  relative 

abundance of a massive weakly interacted particle species “freezes ou t” when 

the annihilation ra te  becomes less than  the expansion rate. We calculate the 

annihilation cross-sections. We also assume th a t the annihilation cross-section 

is subject to unitarity  constraints and considered the  mass range from 45 GeV 

to 100 TeV. Then we calculate the abundance today. If L  decays, lim its on the 

lifetime of a long-lived charged lepton can be found from several sources: direct 

detection of the L and direct detection of its decay products. We calculate 

the bounds on the mass and lifetime of long-lived charged particles which 

arise from terrestrial experiments, from astrophysical searches for the decay 

products and from cosmology which arise from the diffuse photon background 

(lifetime in excess of 1 0 1 3  sec.), and from the requirem ent th a t decay products 

not unacceptably d istort the microwave background radiation (CM B).

In chapter 4, we study the production cross-sections and signatures for the 

SSC and LHC. We considere four models which contain heavy leptons for the



experim ental detection at the Hadron Colliders. Two models are the fourth 

generation extensions of the standard model in which the right-handed heavy 

leptons are either isosinglets or in an isodoublet, the other two are m otivated by 

the aspon model of CP violation (the Aspon model is described in appendix B), 

and contain also singlets or vector lepton doublets. We calculate the production 

cross-sections for all the processes into heavy leptons, neutrinos and aspon 

through quark fusion into a photon or Z  (or W ),  as well as through gluon 

fusion into a Higgs or a Z.  In all these models, the heavy neutrino can either 

be heavier than, or com parable in mass to, the charged lepton leading to the 

possibility tha t the charged lepton can only decay through mixing, thus L could 

be very long-lived. We will also discuss the detection of these heavy leptons in 

Chapter 4.

At the tim e when I first started  my research work, I also did some straight­

forward work about approxim ating the renormalization-group equations of 

minimal supersymmetry. I will include it in Appendix E.



C hapter 2 

N ew  Scalars

2.1 Introduction

Despite the success of the standard model, there have been m any studies of 

possible extensions of the standard model, ranging from simple extensions such 

as additional Higgs doublets to more complicated extensions such as supersym ­

m etry  and technicolor.

One feature th a t tends to occur in most extensions of the standard model 

is the  presence of tree-level flavor-changing neutral currents (FCN C’s). In 

fact, even in the simplest extension, with just the addition of a Higgs doublet, 

such currents will occur. W hen analyzing such models, virtually all theorists 

require th a t tree-level FCNC’s, in bo th  the quark and lepton sectors, are absent. 

This requirem ent is imposed in different ways; often a discrete sym m etry is 

added to the  model which eliminates these unwanted currents. In fact, m any 

have examined the effects of v irtual particles on one-loop FCN C’s to  constrain 

physics beyond the standard m odel, again assuming th a t this new physics does 

not give tree-level FCNC’s.

The elimination of tree-level FCN C’s often requires additional assumptions.



W hy do model builders insist on it so frequently? Many point to  the small 

value of the K& — K s  mass difference, arguing th a t any tree-level contribution 

m ust be suppressed by making the exchanged particle very heavy; the small 

value of muon-electron transitions (either in fi -* e j  or f iN  —» e N )  extends 

this argum ent to the lepton sector. Another reason is more psychological: 

the requirem ent tha t tree-level PCNC’s be absent led to the prediction of the 

charm ed quark and to  the general acceptance of the standard model, and it is 

natu ral to  suppose th a t it applies to the entire model.

We feel th a t the assumption of no tree-level FCN C’s may not be as necessary 

as generally believed. In a model with an extra Higgs doublet , for example, 

it is often stated  th a t the mass of the extra scalar m ust be greater than 1 0 0  

TeV, to avoid too large a contribution to the K l  — K s  mass difference[2, 3]. 

This statem ent assumes, however, that the flavor-changing coupling is as large 

as the  6 -quark Yukawa coupling. A more natural value for the coupling would 

be[4] the geometric average of the d-quark and s-quark Yukawa couplings, 

which gives a bound on the exchanged particle mass of 1  TeV. Even th a t 

applies only to  a pseudoscalar exchange; for a scalar, the bound is 300 GeV. 

Given the uncertainty in the Yukawa couplings of the first two generations, 

and the  fact th a t Yukawa couplings in the standard model span six orders of 

m agnitude, it is not implausible tha t the coupling would be somewhat smaller, 

thus making the bound even smaller. (In many grand unified theories, effective 

non-renormalizable interactions at the Planck scale[5] give ~  M w M x /M p i  ~10 

MeV uncertainties in all masses, making reliance on the value of the down- 

quark Yukawa coupling quite dubious anyway.) In addition, the information 

one obtains from this result would apply only to  mixing between the first
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and second generations. Since Yukawa couplings in the standard model vary 

with mass, one might expect FCNC’s couplings to  also vary w ith mass, and 

thus FCNC’s involving the th ird  generation (flavor-changing B  decays or r  

decays) could be considerably larger. Yet virtually all analyses of the  effects of 

tree-level FC N C’s in extended Higgs models have only addressed the first two 

generations [6 ].

In this chapter, we examine all the bounds th a t arise on flavor-changing 

couplings in extended Higgs models from an analysis of rare r  and B  decays. 

These bounds will all consist of an upper lim it on the couplings (which are 

proportional to  the exchanged scalar or pseudoscalar mass). The objective here 

will be to determine which of the many possible processes are m ost sensitive 

to these decays, and thus offer the greatest chance of success.

We will then  note tha t in grand unified theories, the quarks and leptons are 

often in the same representation. This implies th a t their FCNC’s couplings 

could be related. In other words, a r  to fi transition would be related to a 

6 -quark to  s-quark transition. Thus, one will be able to eliminate the 6 -quark 

flavor-changing couplings in favor of the r  flavor-changing couplings. In the 

simplest grand unified theories, the couplings will be equal at the unification 

scale. The principle question we will address is: which set of decays ( 6  or 

r )  will give stronger bounds? In other words, would one be more likely to 

detect them  in r  decays or in B  decays? The relevance of this question to  the 

current discussion over whether to build a r  factory or a B  factory is obvious. 

Furtherm ore, by examining the various bounds, we will be able to  determine 

which processes are most im portant, and which (in the context of this model) 

are not.
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In Sec. 2, we exam ine the model itself, and discuss the most reasonable 

value for the couplings; we also examine the relationship between the flavor- 

changing r  and 6 -quark couplings. Sec. 3 contains an analysis of leptonic 

decays, including three-body decays, radiative decays, and fi — e conversion in 

nuclei. In Sec. 4, we consider B  and B , decays, including three-body decays 

(which are sensitive to  scalar exchange), two-body decays which are sensitive 

to pseudoscalar exchange), as well as B  — B  mixing. In Sec. 5, our results are 

discussed and in Sec. 6 , we give our conclusions.

2.2 Flavor-Changing Neutral Currents

We first consider the simplest possible extension of the  standard model - the 

addition of a Higgs doublet. Since we are interested in neutral currents only, 

effects of the charged Higgs field will be ignored. The most general Yukawa 

couplings are given by

(j>a + +  B.C. , (2-1)

where d[ =  (d1 , s' , 6 '), <j)a and <j>b are complex neutral fields and the \ i 3k 

are arbitrary. Similar term s can be w ritten for the charge 2 /3  quarks and for 

the charged leptons. In general, the real components of the Higgs fields will 

acquire vacuum expectation value va and We can then redefine two new 

scalar fields H  and <f> as

H  =  cos/3<f>a +  sinj3<f>b, <f> = —sin/3<f>a +cos/3<f>b , (2.2)

where tan/3 =  Vb/va. The new fields H  and <f> have real components with 

vacuum expectation values v = \Jv* +  v£ and zero, respectively. Note th a t in



the standard model, v = 246 GeV. The Yukawa couplings can be rew ritten in 

term s of these new fields:

U A ^ r H  +  g A d ' ^ )  +  H.c. , (2.3)

where the /;,• and are still arbitrary. The mass m atrix  is then given by

Mij = f iiv /V 2 .  (2.4)

W hen this m atrix  is diagonalized, we find, in terms of quark mass eigenstates,

/v) + m, SLSR(y/2H/v)

+mbbiJbR (\/2H /v)  +  h ijd n d jR ^  +  H.c. , (2-5)

where again, the h y  are arbitrary. We see that the H  field is the Higgs field of 

the standard model; the <j> field is simply an additional scalar which does not 

contribute to symm etry breaking or to  quark and lepton masses; its couplings 

axe , of course, completely arbitrary.

For simplicity, we will neglect mixing between the H  fields and the <j> field. 

This will not affect our bounds significantly if the mixing is small. If they 

do mix, our results for the case of pseudoscalar exchange will be completely 

unchanged by any mixing. The reason is that the basis has been chosen so 

tha t H  gets a vacuum expectation value, and <f> does not. In this basis, the 

imaginary part of H  is the Goldstone boson which gives mass to the Z , and it 

does not mix with the imaginary part of the <t> field. All results we have given 

then still hold, since the Z  couplings are flavor diagonal.

The scalars will mix, in general. If the mass eigenstates are H\ and i f 2> 

then the couplings to H i are given by

(gVidd + gVl 33 + gvJ>b)Hi cos 9 + {h J ^^d id fiH i  sin 9 , (2.6)



and the couplings to  H% are the same with the obvious replacement of cos 6 —*• 

— sin 8 and sin 9 —► cos 6. Suppose we have a process in which both interactions 

are flavor changing (such as B  —► K fir) . Then the bound on m , will change 

to
'inn , mH,

min . (2.7)
Lsmfl cosdj

If one of the couplings is flavor diagonal, then the change is a bit more compli­

cated, but straightforwardly calculated. Note th a t if the mixing is small, this 

gives the same results as before. Since all mixing angles known in the standard 

m odel have cos 9 > 0.85, we do not expect mixing to give a significant effect, 

bu t one should certainly be aware of the possibility.

Neglecting the mixing, the H  field is then identical to the standard-m odel 

Higgs field (with the imaginary component being the Goldstone boson absorbed 

by the  Z ). The complex <j> field is composed of a scalar <j>, and a pseudoscalar 

<f>p. The couplings of the scalar are given by

f a i t * .  , (2.8)

and those of the pseudoscalar by

~fi=di'ysdj<j)p , (2.9)

with similar term s for the leptons. For simplicity, we will assume here th a t the 

Yukawa coupling matrices are Hermitian (or at least th a t the deviations from 

herm iticity are small).

These ex tra  scalars will lead to tree-level flavor-changing neutral currents 

through scalar exchange. The rate for such processes will generally be pro­

portional to  hifjhh/m J. It is im portant to note tha t some processes, such as



two body B  decays, will only occur through pseudoscalar exchange, and o th­

ers, such as three body B  decays, will only occur through scalar exchange. 

Some processes, such as r  decays, occur through both. This has led to some 

m isunderstandings in the literature. In the classic work of Shankar[2], m any 

processes (again, involving only the first two generations) were listed in a table 

w ith the accompanying bound on the  scalar mass (assuming the couplings were 

all equal to the b or r  Yukawa coupling). In some cases, the bound refers to the 

scalar mass and in some, it refers to the pseudoscalar mass. In processes (such 

as /i decays) with both, it was assumed th a t the masses were equal. Although 

this was stated early in the text, the table gave the impression tha t the vari­

ous modes were competing w ith each other. This is not the case- the process 

K  —► fie for example, only bounds the  pseudoscalar mass, whereas the process 

K  —» TTfxe only bounds the scalar mass. Since the masses are expected to be 

different, these two processes do not compete with each other. In this chapter, 

we will consider bounds on the scalar mass and bounds on the pseudoscalar 

mass to  be completely separate, and give results for each. In experiments look­

ing for rare decays, it is crucial to keep this distinction in m ind when quoting 

bounds on scalar masses.

We now tu rn  to  the value of the  coupling constants, h‘̂ ark for the charged 

—1/3 sector and the corresponding couplings hl‘jpton for the lepton sector. Al­

though they are in principle arbitrary, we do have some theoretical guidance. 

W hen citing bounds, experimenters calculate the bounds using couplings of 

the order of the gauge coupling; their bound is then cited in the form m sh ij/g . 

This makes the mass scale appearing in the bound quite large. However, not 

only is there no reason to expect these Yukawa couplings to  be as large as



gauge couplings, but there is every reason to expect them  to be much smaller. 

After all, fourteen of the  fifteen Yukawa couplings in the standard model are 

orders of m agnitude smaller than  the gauge couplings, and those involving the 

first generation are five orders of m agnitude smaller.

W hat is the most reasonable value for these couplings? Some early authors 

[2 , 6 ] chose the following approach: since the most conservative approach is 

to take all couplings to  be comparable, and since in some sense the heaviest 

fermion sets the scale for the whole m atrix, we can assume th a t each element 

is given by the Yukawa coupling of the heaviest quark or lepton times some 

mixing angle. As we don’t know these mixing angle factors, we set all of them  

to 1. Thus, all of the  hij are given by the Yukawa coupling of the b or r .  

Many of the bounds cited in the literature for the mass scale of the exchanged 

scalar assume this coupling. This approach was strongly criticized in Ref. [4]. 

They argued th a t the assumption tha t all of the couplings are comparable was 

not reliable, since one of the most conspicuous features of the fermion mass 

spectrum  is its hierarchical structure. They showed th a t if one assumes th a t 

there is no fine-tuning (in which large term s add together to make a small 

term ), then  there is a small set of phenomenologically sound Yukawa m atrices, 

and th a t all of these possibilities lead to Yukawa couplings of the form

* r ‘ = vVMs r ) i . (2-10)
where (gy)i is the Yukawa coupling of di. A similar term  arises for the leptons. 

In other words, the flavor-changing coupling of the additional scalar to, for 

example, the b and a quarks, should be of the order of the geometric m ean 

of the  Yukawa couplings of the b and a quarks. This assum ption gives the 

observed Kobayashi Maskawa (KM) angles without fine-tuning.



Although we will keep our results general, we will consider the  choice in 

Eq. 2.10 to be a “preferred” value, and will also express the results in term s of 

th is value. To this end, we define
i quark i lepton

( 2 -u )

T he early estim ates will correspond to rjij =  1 . Substituting Eq. 2.10 into 

Eq. 2 . 1 1  gives the “most natural value” for the couplings. This value for 

is yjmirrij/m}, and tha t for 7j^ptm is y/m jm j/m ,..

Is there any connection between the flavor-changing neutral-current cou­

plings in the quark sector and those in the lepton sector? In general, there is 

not, but one m ight expect a connection to exist in grand unified theories. In 

517(5), for example, the b and the r  are in the same representation and have 

the  same Yukawa couplings (at the unification scale M x). If one adds a Higgs 

5-plet to the model, then the flavor-changing neutral-current couplings in the 

quark sector and in the lepton sector will be identical; i.e., the hi, coupling will 

be equal to  the coupling, etc. How generic is this result? In models with 

a “grand desert” , the b to r  mass ratio at M x  (obtained by extrapolating the 

observed low-energy value to high energies) is unity; i.e., the Yukawa couplings 

of the  6  and of the r  are equal a t M x  • If this occurs for group theoretic reasons 

[as it does in m inim al 517(5) and 50(10)], then FCNC’s couplings in simple 

extensions of the Higgs sector will be equal at M x • Even in many interm ediate 

scale models, as well as in supersymmetric models, the successful prediction of 

the  low-energy b to  r  mass ratio is not significantly affected, thus the equality 

of the  FCNC’s couplings also should not be. However, in models w ith family 

group symmetries, or in models with much more complicated Higgs structures 

[such as S U (5) with 5-plets and 45-plets], one would expect a different relation­



ship between the couplings, if any. Throughout this chapter, we will assume 

th a t the flavor-changing neutral-current couplings of the quarks equal those of 

the leptons a t M x, as expected in the simplest grand unified theories (GUTs).

If the couplings are equal at the GUT scale, we m ust renormalize them  

down to the electroweak scale. The renormalization-group equation for each 

coupling will be of the general form

= ■*" ^*a *)

+  CW{jllhkiciw +  ChijHlhjkhuhki , (2.12)

where the a ’s are the gauge couplings and the C ’s are easily calculable coeffi­

cients. In the cases of interest, the hy  will always be smaller than  the gauge 

couplings (especially smaller than  the strong coupling), so the last term  can be 

dropped. The a*, term  is identical for both quarks and leptons, so it will drop 

out of the ratio. The a ,  term , of course, only applies to h*fark. The remaining 

equation is identical to the renormalization-group equation for the conventional 

Yukawa couplings in the standard model (under the same approxim ations). As 

a result, the ratio of to /i['pton should be the same as the ratio  of the  6

to  r  Yukawa couplings, i.e., the ratio of the b mass to the r  mass (see Ref. [7] 

for an explicit derivation):

V irtually all of the contribution to this ratio  comes from the effects of the 

517(3) coupling.

One m inor caveat m ust be mentioned. In deriving the b to r  mass ratio  in 

grand unified theories, one runs the couplings down to  Q2 =  4m 2, since the 

b mass is “m easured” by the threshold for 6 -pair production. Here, we only
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need to  run the coupling down to Q 2  =  m j. This introduces a correction to 

the right-hand side of Eq. 2.13 which is given by

a,(4m g)

The factor of 12/23 is related to  the anomalous dimension and /? function of the 

QCD coupling, see Ref. [7] for details. For the range of which is of interest 

(40 to  1000 GeV). this factor ranges from 82% to 92%. Since the uncertainty 

in m atrix  elements in b decays is typically a factor of 2 , this correction will 

be smaller than  the  uncertainty in the results. We will, nonetheless, include a 

1 0 % correction in our final results (for each h ^ ark), although for simplicity, we 

will ignore it in the text.

We now can see the advantage of the notation used in Eq. 2.11. Plugging 

in Eq. 2.13, we find that

V iT Tk =  V iF *  • (2-15)

As in grand unified theories, this relation should be most reliable for second- 

and third-generation fields. We will use this relation (modulo the correction 

m entioned in the last paragraph) and express our results entirely in  term s of 

Tjicpton. the only assum ption we have m ade is tha t the  quark FCN C’s

and lepton FCNC’s are identical a t some grand unified scale-an assum ption 

which is true  in  the  simplest grand unified models. Our statem ent th a t the 

m ost natu ral value for r/,-̂ p<on is ^ym im .j/m T, although plausible, is less reliable1, 

and is based on the  “no fine-tuning” arguments of Ref. [4].

l Note th a t we have expressed our results in term s of r ^ ptm instead of r\\*ari since the 
“m ost natu ra l value” for this will not be based on quark masses. The well-known problem 
of the 517(5) prediction m i/m , — which is presumably solved by the fact th a t
nonrenormalizable Planck scale interactions (see Ref. [5]) give an  uncertainty of ~  10 
MeV in the masses, makes th is value much more reliable for second- and third-generation 
fields than  for first-generation fields, although even for these fields i t  should no t be more 
than  an order of m agnitude off (in the square of coupling).

(2.14)
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Let us summarize the results of this section. In the simplest extension of 

the standard  model, the addition of another scalar m ultiplet, one generally has 

tree-level flavor-changing neutral currents. If the flavor-changing couplings are 

taken to  be the same as the 6 -quark Yukawa coupling, then the resulting lower 

bound on the exchanged scalar mass is very large. However, it has been ar­

gued th a t a more natural value for th is couplings is the geometric m ean of the 

Yukawa couplings of the two quarks (or leptons), which leads to much lower 

couplings. We have noted tha t the Yukawa couplings of the first two genera­

tions are very small and uncertain, and have pointed out th a t bounds based on 

mixing w ith the th ird  generation should be more reliable. We have also noted 

tha t in m any grand unified theories the  r  and 6 flavor-changing couplings are 

identical at the unification scale. W hen they are renormalized, we find that 

Vtj°rk — VijPt<m> where 7 ?̂“arfc(lePton) js ratj 0  0f the flavor-changing coupling 

between th e  i th  quark and j t h  quark (lepton) to the Yukawa coupling of the 

6  ( r) . (This relation has a 10% correction which we include.) This relation will 

be used throughout, as we determine the bounds on the 77y  from various rare 

decays. The “most natural value” for the rjij will not be explicitly used, but 

should be kept in m ind in determining how strong the various constraints are.

2.3 Constraints from Rare r Decays

2.3.1 Three-body decays

The flavor-changing interactions of the <j>, and <f>p will lead to lepton-number- 

violating r  decays, as shown in Fig. 2.1.

There are six rare r  decays which will occur:



Figure 2.1: Lepton-number-violating r  decays can occur through exchange of an interme­
diate scalar. l \ ,  l 2 , and I3 are either electrons or muons. If two identical fermions are in the 
final state, an exchange diagram must be subtracted. In some cases, such as r  —> e + e ~  f i ~ ,  

the process can occur with either l \  =  fi~, 1% =  e“ and I3 =  e+ or l \  =  e ~ , l 2 =  f i ~  and 
I3 •= e+) these two diagrams have different coupling constant dependences and are added.

r  —» e~e~e+ , r  —* (i~ n ~ n + , r  —► e~e~fi+ , 

r  —*■ , t  —> e~fi~e+ , r  —► e- /i~/x+ . (2.16)

The la tte r  two can occur through two different processes; for example, r  —► 

e ~ f i ~ e +  can occur either through a /iMTAee term  or through a h „ h tfl term . For 

example, the  m atrix  element can be w ritten as

1W =  hgrli-j- T Xg Ae e Z t e Up j , (2.17)
771,

where we have ignored the m om entum  dependence of the propagator (since the 

scalar mass is so much larger than  the m om entum  transfer). A similar term  

will exist from pseudoscalar exchange (with a 7 5  in the vertices); as discussed 

in the  preceding section, since only the lighter of the scalar and pseudoscalar 

will contribute much, we are considering the two cases separately. Note th a t if
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the scalar and pseudoscalar masses were similar, then interference between the 

m atrix  elements would be im portant. However, the  masses come from different 

term s in the  Higgs potential, and will generally be different; we are assuming 

th a t they are sufficiently different tha t the interference term  will not drastically 

change the results. The m omentum dependence of the spinors has not been 

explicitly shown. Neglecting the mass of the muon, this gives a decay rate of

771̂  1
"  =  3 0 7 2 t +  /l“ ^ r +  2 heeh^ herh^  • (2‘18)

The rate  for psuedoscalar exchange is identical, with m , —* m p. The observed 

lim it on the branching ratio is 3.3 x 10“5. W ith this lim it, we then find th a t

Virile + lleVlr + < 1400
m in(m „ mp)

(2.19)
mw

using the definition of rfa given in the preceding section. Completing the squaxe, 

and assuming m axim al interference, gives

vlrVeu +  TecVur < 1800
m in(m ,,m p) 

mw
(2.20)

A similar calculation can be done for each of the above six processes. The 

results are given in Table 2.1, where we have also include the bound from the  

y  —* 3e process. All experimental bounds in this chapter are from Ref. [8], 

unless explicitly stated otherwise.

Note how poor the bounds from r  decays are. As discussed in the preceding 

section, the most natural values for the 7 7 are much less than  one, and thus 

these processes do not give any significant lim its, even for a very light scalar or 

pseudoscalar. Improvement in the experimental bounds of at least three orders 

of m agnitude (and generally four or five orders of m agnitude) would be needed
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Table 2.1: Bounds on the flavor-changing couplings which arise from three-body
leptonic decays. The numerical values should be understood as m ultiplied by 
( m ,/m v y ) 4 [ (m p/ m w ) 4]. The contribution is the same for scalar exchange and for pseu­
doscalar exchange, and so leads to identical bounds on the masses.

Decay process Expt. lim it Bound
r  —* e~e“ e+ 3.8 x 10“ 5 Tllvlr < 2000
r  —> p - p - p + 2.9 x 10"5 v L v lr  < 1 6 0 0

t  —» e- e~p+ 3.8 x 10"5 v l v L  < 2 0 0 0

t  —> p - p“ e+ 3.8 x 10~5 vlrr fu  < 2000
r  —► e~p“ e+ 3.3 x 10"5 VerVeu +  VW ur < 1800
r  — > 3.3 x 10"s v lr v L  +  ■nLvir < 1800
fj. — 7 e- e- e+ 1.0 x 10"12 <  i o - 5

to approach the interesting region 2. We now tu rn  to radiative decays.

2.3.2 R adiative decays

The flavor-violating couplings of the </>a and (j>p will also lead to  lepton-number- 

violating radiative decays of the p and r ,  through the one-loop diagrams shown 

in Fig. 2.2. One expects tha t these will give better bounds than  flavor-changing 

radiative decays of the b, since the latter already occur a t one-loop in the 

standard model. From electrom agnetic gauge invariance the on-shell —> 7 / 3  

am plitude is a m agnetic transition

M  =  etiui,(p){iq '/avll(A  +  # 7 5 ) ] ^  (p) . (2.21)

2 Even the original assum ption of Shanker gave 77^  =  1, which will not be probed by r  
decays. Note, however, th a t the difference between our assum ption regarding the most 
natural value of the 77^  and his does make a  m ajor difference in interpreting the p  —► 3e 
bound. His assum ption th a t the couplings (even for the first and second generations) 
are all equal to the r  Yukawa coupling gives a lower bound on m , of about 1 TeV. Our 
assum ption, discussed in Sec. 2.2, th a t 77,7 =  x/m im 7 /m T, gives a lower bound on m , of 
only about lG eV , i.e., no significant bound a t all.
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Figure 2.2: Diagrams which lead to lepton-number-violating radiative decays. If l\ and I3 

are identical, these diagrams give contributions to anomalous magnetic moment.



This means th a t there is no need to calculate the diagrams in Fig. 2.2(b)-(c) 

since they are all proportional to  •ix(J7 Mujl and will be cancelled by the terms 

of similar form comes from the diagram in Fig. 2.2(a). As we shall make the 

approximation m , =  0, the two invariant amplitudes A  and B  are equal. We 

have

M  =  A u ls(p')iquaû ( l  +  7 5 )uil (?)

=  A'i2 (s(p/)( 2 p • e -  m 2 7  • e)(l +  7 s)uf1 (p)

(2 .22)

Thus in our calculation of A  we need only to concentrate on the p • e trem . The 

invariant am plitude A is given by

dnk(J>'~ ft + m 2) 7 „ (Jj-  /: + m 2)
tih‘ hh  [ y  ( 2 * )» (p '- , k ) 2 — m l k 2 — m 1 ( p  — k ) 2 — m l \

Here, we have only shown the result when the scalar is in the loop; if the 

pseudoscalar is in the loop, appropriate 7 5 ’s m ust be inserted.

F irst, consider r  —► e7  decay. Performing all of the integrations and ex­

panding in powers of we find that the leading term  is 0 (m 2 /m j)  and

get

e2m.2

X
4 m 2 1 

h r r h „ { ~ -  -  In —j )  +  ~ (h „ h te + h ^ h ^ )
m ‘

(2.24)

Unless there is fine-tuning, the interference term s will be negligible. Ignoring 

them , we get the  overall decay rate

e2 m 5 771
U) =

21397TS77ll 771
(2.25)

Comparing w ith the standard r  decay, we find that
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Table 2.2: Bounds on flavor-changing couplings which arise from radiative decays
of the r  and p. The numerical values should be understood as multiplied by 
(m ,/m w )4[(77lp/mw')4]- The bounds for the case of scalar exchange are slightly dif­
ferent from those for the case of pseudoscalar exchange; the number in parentheses gives the 
bound when the pseudoscalar mass is used.

Decay process Expt. limit Bound
r  erf 2.0 x 10“ 4 (4 +  3 b r n ? /m ;) ai£T7&. <  5.5 x 106(2.2 x  105)
T PH 5.5 x 10“ 4 (4 + Z ) n m l lm \? p lTPiUT < 1.7 x 107(6.8 x 10s)
It -» erf 5.0 x 10"u (3 + 2 \n m l /m ] ) 2T)lrTilr < 3.6 x 10_4(3.6 x 10-4 )

The term s in the square brackets are negligible, compared with the right-hand 

side, because of the bounds from three-body decays from Table 2.1. Dropping 

these and expressing the results in term s of the  rjij finally gives the  results in 

Table 2.2. A similar calculation can be done for the process r  —► p-y.

We can also calculate the process p  —► erf. Here, the dominant contribution 

(by m any orders of magnitude) comes when the  fermion line in the  loop is a 

r .  The calculation is similar; the m atrix  element is

\M\* = l2 >3
256?r4 m 4

x |u e(p') Jk- 2
p -e
771

which then gives the bound listed in Table 2.2:

(3 +  2 1 n ^ ) V r 7 £ < 3 . 6 x l O - 4

771

4

m w

(2.27)

(2.28)

Suppose we choose the “most natural" values for the rjij, i.e., =  y m M/77iT,

Per — \J^-e/fnr . Then the bound on m ,  and m p is 4 GeV.

After this work was complete, chang[9] estim ated the two-loop contributions 

to p  —► e j.  This is m otivated by the work of Bjorken and Weinberg[10] who



PlrPlr < 4.1 x  10- (2.29)
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showed th a t certain two-loop graphs may in fact dominate over the one-loop 

contribution. The bound is then given by

m <(m p ) 1 

m w

Then the lim it for m ,  and m p are above 200 GeV.

Let us restate  this point. In the simplest extension of the standard  model, 

w ith what we believe to be the most natural values for the additional flavor- 

changing couplings, one expects p  —> e j  to occur at a rate not much below the 

current lim it. If the  extra scalars have masses about 200 GeV, as one might 

expect, then  the decay will be observed within the next few years. Note th a t 

here, observation of p  —► try doesn’t indicate mixing between the muon and the 

electron, bu t rather between the muon and the tau , and between the electron 

and the tau . As we will see later, the bound from this process is the one of 

the most severe, and thus this decay may be the  first signature of this simple 

extension.

Suppose the decay is seen. At th a t time, all theorists will come up with 

their particular models. Is there any way to distinguish between these models? 

The clearest way to  determine which model is correct, of course, is to  observe 

additional signatures. Although p —* e7  is the  first signature likely to be 

observed, we will see in the next section tha t there are other signatures in rare 

B  decays th a t m ay not be far behind. First, we consider other lepton-number- 

violating processes.

2.3.3 Other processes

It has been pointed ou t[ll] tha t bounds from muon to electron conversion in 

nuclei are very often stronger than bounds from p -* ep. The reason is th a t the



29

“exchanged particle” often couples coherently to the nucleus. Here, however, 

the  bound from muon conversion will be weaker. The reason is th a t we axe 

interested in bounds in couplings involving the th ird  generation, i.e., it is still 

necessary to  have a r  in a loop; the relevant diagrams simply involve attaching 

the  nucleus to  the photon in the p  —> erf diagrams. The photon will couple 

coherently to  the nucleus (the cross section will vary as Z 2), but the loop is 

still necessary. We have calculated the rate  for muon to electron conversion 

in titan ium  (which gives the strongest bound) and found the bound to  be two 

orders of m agnitude weaker than that from p  —» e j.  We have not included 

QCD enhancem ents, finite-size effects, etc.; should these enhance the rate by a 

factor of 1 0 0 , then  muon to electron conversion would give bounds com petitive 

w ith p —* e7  (at least until the la tte r is improved).

Bounds can also be calculated from the contribution of scalar exchange to 

the  anomalous m agnetic moments of the electron and muon. Nor surprisingly 

(since the standard electroweak contribution is too small to  have been seen), 

these bounds are also much, much weaker than the other processes we have 

considered. Finally, one could also consider two-body r  decays, such as r  —> 

p K ° .  These processes will all involve couplings involving the first generation 

fields, and axe expected to be small; it turns out th a t the bounds are much 

weaker th an  those from B  decays.

2.4 B  and B s  Decays

2.4.1 Three-body decays

The flavor-changing neutral-current interaction will also lead to anomalous B  

decays. We will only consider semileptonic decays; nonleptonic decays are
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Figure 2.3: Contributions to three-body decays of the B  meson. The exchanged particle, 
in this case, must be a scalar.

much more difficult to  calculate and the experimental bounds are much, much 

worse. Of course, some processes, such as B  —► K ji+n~ occur at the one-loop 

level in the standard model, but some, such as B  —► K(j.+t ~ } do not. In all 

cases th a t we consider, the standard-m odel processes will occur at a rate  far 

below the  current experimented lim it. For example, the process B  —* K~fj,+ e~ 

occurs through the diagram in Fig. 2.3. Unlike r  decays, th is process can not 

occur through either scalar or pseudoscalar exchange. T he reason is simply 

th a t the  parity  of the B  and the K  axe the same, and the interaction does not 

change the spin, thus only a scalar can be exchanged. (In two-body decays, 

only the  pseudoscalar can be exchanged, as we will see.)

The m atrix  element is

M  =  , (2.30)
m j
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where f+ (q2) is a Lorentz-invariant form factor which is only a function of 

q2 = (p — p1)2- (Note tha t another possible form factor, often referred to  as /_ ,  

does not contribute because of conservation of the vector current; see Okun[12] 

for a discussion.) This form factor can be calculated with the nonrelativistic 

approxim ation of Isgur and Scora[13], which should cause an error somewhat 

less than a factor of 2. Their procedure can be outlined as follows.

We can write

f +(q2) = <  ^ - ( p ') |5 6 |S - ( p )  >  . (2.31)

The nonrelativistic state  vectors for the B~  and K ~  bosons are given by

| B  (p) >  =  s /2 m B j  d3kcf>B(k )Y ^ X tt\b m <> , i P s  +  k, s
L m B

i- r m « i x |«  — Pb - k r  im B > ,

^ - ( p ' )  >  =  y/2m K f  d3k'< hcW % 2x*'*\s  — p ^  +  k ',3  
J im K

x |0  [— PW - k ' , 5 ' ’ 
Ltuk

> , (2.32)

where Xji couples the spins 3 and 5 to the to ta l spin zero and <f>(\z) is the 

relative momentum-space wave function. Isgur and Scora chose Schrodinger 

wave functions th a t are appropriate to a Coulomb plus lineax potential and 

used variational solutions based on harmonic-oscillator wave function:

^ U(r ) =  “ 374ex p (-& 2r2/2) , (2.33)

in which f3, is the variational param eter, whose value turns out to  be /3, ~  0.3 

GeV. We now compute the  Fourier transform of these wave functions and 

substitu te the  result into Eqs. 2.31 and 2.32. Note th a t the form factor vanishes 

if a  gam m as  is present, so th a t pseudoscalar exchange does not contribute. The
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result for the  form factor is

f+ (q )  =  2 y /m BmK
Pb k

-exp
m 2{tm -  t)

0 % Km Bm K

where f3%K =  (/3B +  f i x ) / 2 and tm = (m B — m x ) 2. The decay rate  is

h2A h l ^ l 0 3Km 2Bm?K 
16ir3/3|

*B0Km Bm K {■< _
^ B K ^ rn l {

™-k Pb K'/%K
m um B

x erf mum e
'2y/2mK0BK.

(2.34)

(2.35)

where erf(x) is the error function [normalized so th a t erf(oo)= l].

Since we know that the  lifetime of the  B~  is 10“ 12 sec, we can compute 

the branching ratio for the process. The results are identical for all processes 

of the  form B~  —> K ~ lil2 for any two leptons, with the obvious change in the 

couplings. If there is one r  in the final state, there is a phase-space factor of 

0.7; if there are two r ’s. the  phase-space factor is 0.4. The resulting bound on 

the Tj’s is given by (with inclusion of the factor of 20% in the conversion from

^quark to f̂cpton^

vlrViih <  ^ x  104(branching ratio)
m .

Im w i
/ (phase — space factor) . (2.36)

All we need to do now is to  put in the various branching ratios. Note th a t a 

sim ilar calculation can be done for B ~ —* w ith an identical result (with

m x  —► m*), although the nonrelativistic approximation is a bit more suspect 

in this case. Experimental bounds have been given for decays in which the two 

leptons are muons and/or eletrons, but no bounds have been cited when one 

or both  is a r .  Nonetheless, one can make a rough estim ate of the bounds from 

two processes with have been cited[14, 15]:

T (B  -> e+ e-X )  +  T (5  - » fi+n ~ X )
T (B  -* all)

<  2.4 x 10"3 ,

T{B  - » p + p -X ) 
(T -  all)

<  5.3 x 10-5 (2.37)



where the charge of the B  is undetermined. For example, if B  —> K y r  occurs, 

it will give a signal in the above process 17% of the tim e (the percentage of 

t ’s which decay into muons). Consider the first of these bounds. We have 

m ade two modifications to  it. First, in extracting their bound, the authors 

chose m any different possible m atrix  elements to model the decay, and cited 

the one th a t gave the most conservative bound. Unfortunately, none of these 

m atrix  elements was a scalar. We have chosen to model the decay with a 

constant m atrix  element, resulting in a bound which is a factor of 2 smaller 

than  the one they cite (virtually all of their choices gave a factor w ithin 10% 

of this one). Second, they also searched for B  —* e+y ~ X , assumed this was 

zero, and used tha t to  check their background calculation. Since t ’s decay into 

electrons and muons with equal enthusiasm, we will also get a signal here, so 

we have included these data  in extracting the bound (they give the num ber of 

events seen). Regarding the second bound, we have not yet seen the  detailed 

analysis, and will simply take the number at face value. Note tha t it gives no 

information on decays with an electron in the final state. From these values, 

we estim ate th a t the lim it on B  —► -Key and B  —> Key. is 10-3 ; the lim it on 

B  —> e r X  is 3 x  10“ 3; the lim it on B  —► y r X  is 3.2 x  10—4, and the  lim it on 

B  —* t t X  is 2 x  10-3 . The other bounds are given in Ref. [8]. It is im portant to 

emphasize th a t these bounds involving final sta te  t ’s are only rough estim ates, 

and should not be considered firm experimental limits. Experim ental limits 

could be obtained from the above experiments if the appropriate M onte Carlo 

calculations were done, and we have not done so. The estimates have been 

done to give an idea of the bounds tha t can be obtained from such decays; we 

urge experim enters to determine limits on these branching ratios so th a t more
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Table 2.3: Bounds on the flavor-changing couplings from three-body B  decays. Since only 
the scalar contributes, the bound only applies to the scalar mass, and not the pseudoscalar 
man. The numerical values should be understood as multiplies by (rn ,/m \y )i .

Decay process Expt.lim it Bound
B  —> Kfi/j. 5 x 10"6 V'irV'L < 3
B  —» 7Tflfl 5 x 10"s v l n L  < 330
B  —► K e e 5 x 10"s VirVh < 3-6
B  —> 7ree 5 x 10"5 v W ,c  < 360
B  -» K f i e 10"3 VlrVlu <  70
B  —> TTfie 10~3 VcrVea < 7000
B  —» KfJLT (3 x 10“ 4) v l  < 30
B  —> TT [IT (3 x 104) v l v l r  < 3000
B ->  K e r (3 x 10"3) vtrVlr < 300
B  —> 7r e r (3 x 10“3) ■ntr < 30000
B  —» K t t (2 x 10-a) tiirVlr <  350
B  —► 7TTT (2 x 10”3) TlW rr < 35000
K  —* 7T flfi 2.3 x 1 0 " vL v lu  < 2 0 0

K  —* nfie 2.1 x 10-io 3̂ A o 1 00

K  —> 7ree 1.0 x 10-a v h l  < 9

precise bounds can be found.

The results are given in Table 2.3. Processes m arked with parentheses axe 

not from  firm experimented bounds, but simply our estim ate of the  bound th a t 

could be obtained from the results in Eq. 2.37. Note th a t the bounds are much 

stronger th an  the corresponding bounds on r  decays. Some of the processes, 

such as B  —» K e r ,  axe proportional to the same couplings as in p  —* e j.  The 

la tter bound is so strong that these processes would be unobservable. O ther 

processes depend on first-generation couplings and are expected to be small. 

Perhaps the m ost interesting process is J? —»• K fir . This decay depends only 

on 77mt, which is expected to  be the  largest flavor-changing coupling. The right- 

hand side will reach unity with an improvement of a factor of 30 in the rate.
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Figure 2.4: Contributions to two-body decays of the B  (or the B ,)  meson. The exchanged 
particle must be a pseudoscalar.

This m ay seem extremely difficult, but the process has never been looked for. 

Such an improvement seems quite possible.

These processes all depend on scalar exchange. If the scalar were much 

heavier than  the  pseudoscalar, these decays would be negligible, while r  de­

cays would still occur. We now tu rn  to two-body decays, which are not only 

sensitive to pseudoscalar exchange, but offer much m ore realistic prospects for 

experim ental improvement in the bounds.

2.4.2 Two-body decays

Two-body decays of the B  and B ,  mesons occur through the diagram  of 

Fig. 2.4. Since these mesons have negative parity, the decay can only oc­

cur through a pseudoscalar interaction. As an example, the m atrix  element for
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the decay B ,  —► e/i can be written as

M  _  , (2.38)

where f+ (q2) =<  0 |j7 s6 |5 , > . The form factor can be evaluated by the m ethod 

of the  preceding subsection3, and is given by

g3/2
f+(q2) = t (2-39)

so th a t the decay rate is

“ - - ’f c S S r -  <2-40’

The same decay rate (with the obvious change in the subscripts on the coupling 

constants) applies to all other processes. W ith one r  (two r ’s) in the final state, 

a phase-space factor of 0.76(0.36) m ust be included. This will give a bound for 

B  -  h l2

V i^v lr  <  3.0 x 104(branching ratio)
i
/(phase — space factor) . (2-41)

For B ,  decays, one obtains an identical result (the samll mass difference be­

tween the  B  and B , gives corrections much smaller than  the  factor-of-2 uncer­

tain ty  in the form factor), with 77^  —► 773r .

To determ ine the branching ratio, we compare this rate  with the observed B  

lifetime. For processes involving t ’s, we use the results which followed Eq. 2.37. 

This does not work well for B ,  decays, since the lifetime of the B , has not been

3Of course, one could also evaluate the m atrix  element in  term s of the B  decay constant. 
Since the m ethod of the preceding subsection gives the m atrix  element alm ost trivially 
(no integrals need to be done), we prefer tha t method. Com paring the two methods, one
should be able to calculate the B  decay constant. This has been done in Ref.[13], with 
the result th a t fa  — 130 MeV.
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Table 2.4: Bounds on flavor-changing couplings which arise from  two-body decays of the 
B  and B ,. Since only the pseudoscalar contributes, the only bounds apply to  m p. The 
num erical values should be understood as multiplied by ( m p /m w ) 4.

Decay process Expt.lim it Bound
B  —► ee 3 x 10~s v'Lvlr < i.o
B  —* efi 4 x 10"5 VluVlr < 1-4
B  —» /i/i 9 x lO"6 VluVlr < 0.3
B , —> ee X f a l T  <  3 x 10'X
B , —> e/i X tfuVlr < 3 X 10*X
B ,  —> /i/i 4 x  10~5 VluVlr < 1-2
B  —> e r (3 x HT3) Vtr < 140
B  —* fiT (3 x 10"4) vW ut < 14
B  —* TT (2 x 10“3) VlrVrr <  190
B , —> e r X VtrVir <  4 X 104X
B , -* flT (1.2 x HT3) Vtr < 50
B , —> TT (8 x HT3) v'utVtt < 640
K  —* /i/i 6 x lO"9 viuV'L < 0-02
K  —► /ie 2.2 x 10"lb 7/4u <  0.0008
K  —> ee 3.2 x 10-1C) vLv'L <  0.0012

m easured. However, one expects the lifetime of the B , to be the same as that 

of th e  B , since the standard-m odel decay proceeds through the weak decay 

of the  b quark. Thus, we will take the lifetime of the two to be equal. In 

determ ining the branching ratio  for the B„  we note th a t the UA1 result[15] 

does not distinguish between B ’a and B , ’s. We will assume th a t the  relative 

production ra te  for B , ’s is a factor of 4 smaller than  th a t for B ’s (since the 

probability of popping an s pair out of the vacuum is about one-fourth tha t of 

d pairs[16]), and thus the bounds on the B , branching ratio  into /i/i, /i t , and 

r r  is four tim es as large as th a t for B ’s. Note th a t no bounds currently exist 

for B t —► e/i or B , —> ee.

The results are given in Table 2.4. Processes m arked with parentheses are
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not firm experimental bounds, but simply our estim ate of the bound th a t could 

be obtained from the results in Eq. 2.37. For the processes B , —* ee, B ,  —» efi 

and B t —> er, there is currently no experimental lim it; once a lim it X is 

determ ined, the bound given in the th ird  column follows. As in the three- 

body case, the bounds from  two-body B  decays are m uch strong th an  the 

corresponding bounds from r  decays.

2.4.3 K  — K  and B — B m ixing

The strongest bounds on scalar- and/or pseudoscalar-mediated tree-level FC N C ’s 

quoted in the literature come from K  — K  mixing. We now discuss the  con­

straints from this and similar processes.

As discussed earlier, it has generally been recognized th a t the most stringent 

bounds on flavor-changing couplings (involving the first two generations) come 

from K  — K  mixing. Here, this result is extended to include B  — B  mixing.

A discussion of the calculation o iK —K  mixing due to Higgs-scalar exchange 

can be found in Ref. [4], and references therein. The relevant m atrix  element 

discussed in these papers is <  .K’|(J7 5 <£)(s7 5 d)|.K’ > , which has a value[3] of 

0.0085 GeV3. W ith  a value for the coupling of \J{gy)d{gY); a bound of 1.0 

TeV on the mass of the exchanged particle is obtained.

The 7 5  in the above m atrix  element shows th a t pseudoscalar exchange only 

was treated  in these papers. If one considers scalar exchange, the m atrix  ele­

m ent will be different. It is easy to see why the m atrix  element with scalars 

will be smaller: If one uses the vacuum-insertion m ethod, and inserts the vac­

uum  sta te  in the m atrix  element, then the fact that the kaon is a pseudoscalar 

implies th a t the m atrix  element for scalar exchange will vanish. The scalar
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m atrix  element has been calculated[17] and is smaller by a factor of 12. This 

will lower the bound on the mass by a factor of y/l2 . One thus finds th a t the 

bound on the pseudoscalar mass is 1000 GeV, and the bound on the scalar 

mass is only 300 GeV.

The weakness of these bounds may surprise those who have always felt 

th a t the bounds from K  — K  mixing put very stringent constraints on the 

mass of flavor-changing scalars. Let us emphasize why this bound is so much 

smaller. The m ain difference is in the choice of coupling. The early authors 

chose a coupling equal to  the 6-quark Yukawa coupling; Cheng and Sher[4] 

then argued th a t choosing the geometric average of the d-quark and s-quark 

Yukawa couplings was much more natural and realistic. Finally, the scalar 

m atrix  element is much smaller than  the pseudoscalar m atrix  elem ent, leading 

to weaker bounds on the scalar mass. We wish to emphasize th a t this bound 

is highly uncertain, since it depends so heavily on mixing between the first two 

generations and on the light-quark Yukawa couplings.

P u tting  all of this together, we can extract the bound on the coupling:

Veft <  9.0 X lO "14 

V l  <  1.3 x l O '11

.TTlW.
m ,

(2.42)
m w

W hat about the bound on B  — B  mixing? In the case of K  — R  mixing, it 

was assumed th a t the contribution due to scalar exchange was not greater than  

the standard-m odel contribution, reflecting the factor-of-2 uncertainty in the 

standaxd-model contribution. The same uncertainty applies to B  — B  mixing. 

The ratio  of B  — B  mixing to K  — K  mixing is given by

hfa < B\(lrfsd)(bysd)\B > 
Amjc h]d < fir|(s75£i)(s7sd)|iir >
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Estim ating the m atrix  elements by the vacuum-insertion m ethod, we find[4]

<  B\(Jrfsd)(irfSd)\B > /£ m , +  m /
.mb +  m j

(2.44)
<  K\(s'rsd)(s'ysd)\K  > f 2K m zK 

Numerically, this ratio is 0.9. We will take the ratio of scalar m atrix  elements 

to be the same. We see th a t the ratio of A tub to  A m ir is almost entirely due 

to  the  difference in couplings. Taking the observed value of the mass splitting 

gives our bounds:

m ,
mw  J 
m ,

LmwJ
(2.45)

vtr <  2.0 x lO " 9 

77^  < 3.0 x lO -7

It is interesting to note tha t our “most natural value” for rjCT is y m e/ m r> 

giving 7 7 =  7.8 x 10-8 , so that the bounds (in this case) on m , and m v are 

60 and 200 GeV, respectively. These bounds should be more reliable them 

bounds from K  — K  mixing (since they do not involve m ixing between the first 

two generations), but less reliable than bounds involving mixing between the 

second and th ird  generations.

Finally, what about B , — B ,  bounds? In the standard  model, this mixing is 

m axim al, and adding extra contributions will make no difference. The only way 

in which scalar exchange could m atter would be if it contributed with roughly 

the same m agnitude and opposite sign to the standard model contribution. 

The uncertainties in both calculations would make any bounds found from this 

meaningless.

2.5 Results

Of ail of the processes tha t have been considered , three stand out as giving 

very stringent bounds on flavor-changing neutral currents. Those three are



fi —► erf, K  — K  mixing, and B  — B  mixing. The bounds are given in Eqs. 2.29, 

2.42, and 2.45. As discussed earlier, the bound on fi —* e-y arises from a 

diagram  in which a r  is on an internal line, and is thus sensitive to the (more 

reliable) couplings which mix the third generation, and it is also a t the edge 

of the  most interesting region of param eter space. Prom the tables, one can 

see im m e d ia te ly  th a t these three bounds eliminate the possibility of seeing 

m any other processes. For example, the bound in Eq. 2.45 is much, much 

more stringent than  tha t from B  —> er or B  —> 7rer; the bound in Eq. 2.42 is 

m uch more stringent than  tha t from K  —> e/i or K  —► 7re/i; and the bound in 

Eq. 2.29 is much m ore stringent than that from B  —> fir, B ,  —> er, B  —> r /tr , 

or B  —► Ker.

The bounds from these three processes are so strong, in fact, th a t one can 

use perturbation theory to derive many additional constraints. In a grand 

unified theory, the validity of perturbation theory forces all of the 7 7,j to  be 

small a t all scales between the electroweak and unification scales. This gives 

an upper bound on the rfo at the electroweak scale. A similar calculation for 

the top quark Yukawa coupling gives an upper bound on the top quark mass 

of 230 GeV, i.e., a bound on the coupling of 1.3. The same bound will apply 

here, and thus we have ha  <  1.3, corresponding to rjij <  45. Combining this 

with Eqs. 2.42 and 2.45, and noting that we are interested in cases in which 

the exchanged scalar is heavier than  its current lim it of 40 GeV, we find
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tf a l  <  2.9 x 10"J [ ^ ] 4  . (2.46)

This bound m ust hold for any i and j, and is easily seen to  be a more stringent 

bound than  many of the processes in Tables 2.1, 2.2, and 2.3.

Let us now examine the various processes more explicitly to  determine 

which offer the best possibilities in the future (as well as whether r  or B  

decays are more likely to  be productive). We first consider the  case of scalar 

exchange.

Consider the various three-body r  decays. It is easy to see tha t the bounds 

on the six r  decays in Table 2.1 are much weaker than  other processes. In 

th e  order given in Table 2.1, the processes which give b e tte r bounds are (i) 

B  —► 7ree, (ii) B  —► Kfifi, (iii) Eq. 2.46, (iv) B  —» K fie , (v) Eq. 2.46 and 

B  —* K ee ,  and (vi) B  —*■ ir/ifi and B  —► Kfj,e. Now consider the two radiative 

r  decays. The bound from r  —► erf is weaker than  th a t from Eq. 2.46, and the 

bound from t  —> m  is weaker them that from B  —» K t t .  In  all of these cases, 

th e  bound from r  decays is so much weaker tha t even a slight improvement 

in  the  bound will not help. We conclude th a t there is no useful information 

which can be obtained from r  decays in these models in which a scalar mediates 

flavor-changing neutral currents.

We have already noted th a t the most useful experiment in improving these 

bounds (or finding Jin  effect) is fi —> e7 . W hich of the B  decays is m ost likely 

to  be productive? The decays which stand out here are B  —> Kee, B  —* 

Kfifi , B  —► Kfir,  and B  —> K t t .  Using our “preferred” range of couplings, 

one can easily see th a t one needs to reach branching ratios of 3 X IO-10, 3 x 

10~9, 3 x  10-8 , and 3 x 10~7, respectively. In the case of B  —* Kfifi and
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B  —» K t t , these branching ratios are below (barely below for the  la tte r) the 

standard model (one-loop) branching ratios. Keep in m ind, however, th a t our 

“preferred range” is just a rough estimate, and the couplings could easily be 

somewhat higher (recall th a t a factor of 10 increase in a coupling corresponds 

to  104 in the rate). The process B  —» K fir ,  however, vanishes in the standard 

model, and thus may offer the best (and least ambiguous) hope. M easuring its 

branching ratio  to a level of a few times 10-8 obviously is difficult, although at 

a B  factory, it may not be impossible.

Next, we consider the case of pseudoscalar exchange. The bound from the 

decay r —+ e“ e"e+, t  —> f i ~  f i ~  f i + , (r —> e ~ e ~ / i +, r —*• /i ~ / i ~ e +, r —► e ~ f i ~ f i + )  

is much weaker than  tha t from the decay B  —> ee, B  —► f i f i  [all the  others are 

weaker than  the bound from Eq. 2.46]. The bound from r —* e ~  f i ~ e +  is 

still b e tter than  other bounds, however, if one can m easure B ,  —» ee to  have 

branching ratios less than  5%, then this process will set a b e tte r bound. It is 

hard  to  imagine tha t such a large branching ratio would have gone undetected 

(there would be many dram atic four electron events at UA1), and it is quite 

likely th a t this bound will be determined in the  very near future. W hat about 

radiative decays? Again, the bound from B  —* t t  in much be tte r them th a t 

from r —> e j .  Similarly, the bound from B ,  —> rr is more stringent th an  tha t 

from t  —» fi7 . We thus conclude tha t improvement in rare r  decays will not 

be useful in setting bounds, even in the case of pseudoscalar exchange.

Finally, which of these B  decays will be most productive? The decays 

which stand out are those of the B ,  meson into r r ,  /i t , fj.fi, and fie. The 

branching ratios needed to  reach the preferred range of param eter space axe 

7 x 10-7 , 8 x  10-8 , 6 x 10-9 , and 3 x 10- u , respectively. Here the  rate  for
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B ,  —► t t  is well below the standard-model prediction ( ~  10-6 ), and B ,  —► \l \l is 

slightly below the standard-m odel prediction. Again, our preferred range is just 

an estim ate, and the couplings could be somewhat larger. The m ost intriguing 

decay is B ,  -* /xr, which only depends on the single 7/Mr coupling. M easuring 

the branching ratio to  get into the preferred range seems difficult,although the 

fact th a t it is a two-body decays with charged leptons may make it detectable 

at a B  factory.

2.6 Conclusion

The simplest extension of standard model has an extra scalar field. This model 

will autom atically have tree-level flavor-changing neutral currents, unless they 

axe suppressed by some additional symmetry. It is often believed th a t the 

presence of tree-level flavor-changing neutral currents in this model is fatal, 

since it requires the exchanged scalar to be extremely heavy. This belief, how­

ever, is based on the assumption that the flavor-changing coupling is quite 

laxge. It has been pointed out that using a more natural value for the coupling 

(the geometric m ean of the Yukawa couplings of the two fields) leads to much 

smaller bounds , closer to  the range of several hundred GeV. Even this bound, 

however, is very sensitive to the precise value of the coupling. Given the un­

certainty in assumptions involving the first generation Yukawa couplings (the 

couplings are five to six orders of m agnitude smaller than  gauge couplings, they 

axe subject to uncalculable Planck mass corrections, etc.), even this bound of 

several hundred GeV certainly should not be considered particularly reliable.

W ith  this in mind, we have calculated the bounds on the couplings of an 

additional scalar or pseudoscalar for processes involving the th ird  generation
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scalar and the pseudoscalar axe likely to be quite different, we have considered 

the bounds on each separately. The m ost stringent bound in the quark sector 

comes from B  — B  mixing; using our “most na tu ra l” value of th e  couplings, 

one gets a bound of about a hundred GeV on the  exchanged scalar mass. In 

the lepton sector, the strongest bound comes from fi —*■ e'f, in which a r  is 

on an internal line. This process is sensitive to mixing between the  first and 

th ird  generations as well as between the second and th ird  generations (and is 

not as sensitive to  mixing between the first and second generations, which is 

expected to  be small). Using our most “natural” value, we get a bound of 

about 200 GeV on the exchanged scalar and pseudoscalar masses. Unlike the 

case of B  — B  mixing, however, this process does not exist in the  standard 

model, and thus the bound will be improved considerably as the experimental 

bound is lowered. We thus feel th a t | i —>e 7  is the best place to look for mixing 

involving the th ird  generation.

In most grand unified theories, the r  and b are in the same representation, 

and thus we expect flavor-changing couplings in the quark sector to  be related 

to those in lepton sector. We have then asked the  question: which processes, 

r  or B  decays, give the strongest bounds? The answer, from Tables 2 .1- 2.4, 

is cleax: B  decays. We find no case in which r  decays give be tte r bounds, nor 

in which they are likely to  in the near future. The most promising B  decays 

are B  —* K f i r  and B, —* y.T . In general, the interesting decays are those 

with r ’s in the final state. A search for B  —> f ie X  would have relatively little 

background and could be quite productive; a search for exclusive processes 

with a final state  r ,  while more difficult, could also be quite useful.



C hapter 3 

C osm ological Bounds on th e L ifetim e  
of th e  N ew  Leptons

It is now known th a t the standard model has three generations of fermions 

with light or massless neutrinos. If a fourth generation exists, its neutrino, as 

well as the associated lepton, must be heavier than  approximately 45 GeV [8 ]. 

This would m ean th a t, unlike the other three generations, the neutrino and 

its associated chaxged lepton have masses of approxim ately the same order 

of m agnitude. As a result, there is no particular reason to assume th a t this 

neutrino is lighter than  the charged lepton.

The possibility th a t the fourth generation neutrino, N ,  could be heavier 

than  the fourth generation charged lepton, L, has not been discussed in detail. 

One would expect the neutrino to decay rapidly into the L  and a real or virtual 

W .  The L, however, could not decay through normal weak interactions, unless 

there is mixing between the N  and the three light neutrinos. In this case it 

would decay as a normal lepton (into a light neutrino and a W ),  bu t with an 

anomalously long lifetime, longer by a factor of 1 / sin 2  9, where 9 is the largest 

m ixing angle between the N  and the light neutrinos. In see-saw models, the

46
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mixing angle is a ratio of masses; in this case, the ratio  of the tau  neutrino 

mass to  the N  mass is smaller than  about 10—11, and it is thus plausible that 

the lifetime of the L  is very long.

If the lifetime turned out to be less than  10~13 seconds or so, detection 

would be identical to  a conventional heavy lepton. If it is between 10-13 and 

about 10~8 seconds, it  would decay (at least occasionally) inside the detectors 

at the  SSC and would be easily detected. If it is longer than  10~8 seconds, it 

would be effectively stable, and would look like a muon. However, since the 

cross section peaks at around the mass, many of the L ’s would not be extremely 

relativistic. This would cause a tim e delay in the drift chambers at the SSC, 

which could also be detected, as long as a sufficient num ber of V s is produced. 

The production cross section calculations for heavy leptons[18] indicate tha t 

effectively stable leptons up to about 200 GeV in mass could be detected. 

Detection at an electron-positron collider would be very straightforward. The 

details of the phenomenology are currently under investigation. In this chapter, 

we investigate the implications of very long-lived chaxged leptons for cosmology 

and astrophysics.

W hat are the cosmological and/or astrophysical implications? Much work 

has been done on the effects of very long-lived neutrinos. In this case, bounds 

on the  mass and lifetime arise from two sources. F irst, the current density 

of neutrinos could be so large tha t it exceeds the critical density. Second, i f  

the neutrino decays into a state with photons or (to a good approximation) 

charged particles, then the photons associated with the decay could either be 

directly detected, would affect the cosmic microwave background, or would



affect nucleosynthesis1. These bounds are all reviewed in detail in the book of 

Kolb and Turner (KT)[19].

In the  case of a long lived charged lepton, similar effects can occur (and 

the  decay will certainly involve charged particles). Another type of bound, 

not relevant for the case of long-lived neutrinos, is th a t the  charged lepton (if 

sufficiently long-lived) may combine with electrons to form anomalously heavy 

isotopes of hydrogen, which can also be directly searched for. In addition, 

solid sta te  and plastic track detectors could detect the lepton directly. We now 

consider these bounds in detail. Throughout, we will assume th a t there is no 

net asym m etry between positively charged and negatively charged leptons.

In the early universe, the L's will be in therm al equilibrium with all other 

particles. As the universe cools, the tem perature will drop below the mass of 

the i ,  and their num ber density will be suppressed by a Boltzm ann factor. 

The num ber density continues to fall, until a tem perature is reached at which 

electroweak interactions are too slow to  keep them  in therm al equilibrium  (i.e. 

the expansion rate  of the universe exceeds the annihilation rate), and then  the 

num ber density “freezes out” . For particles with masses above a few GeV, 

the freeze-out tem perature is considerably smaller than  the particle mass. The 

num ber density today is then easily determined, since the particle effectively no 

longer interacts. The calculation of the relic abundance, given the annihilation 

cross section, is a straightforward (if tedious) chore, outlined in KT. We first 

need to determ ine the annihilation cross section.

The possible annihilation diagrams are given in Fig. 3.1. As discussed

by Enqvist et al.[20], for mi, > m w ,  the dominant process will be W  pair-

1Astrophysical bounds, such as constraints from supernovae, are irrelevant for neutrinos 
above a  hundred MeV.
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Figure 3.1: Diagrams contributing to the annihilation of long-lived charged leptons.
Crossed diagrams have not been explicitly shown.
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production. Enqvist et al. considered the annihilation of very heavy neutrinos. 

In th is case, the diagrams are similar except tha t here we have s-channel anni­

hilation through photons as well as Z 's, and the t-channel annihilation can go 

into 7 7  and 7 Z  as well.

Since the  annihilation ra te  is given by T =  n&au, where a is the annihilation 

cross section and v  is the relative velocity, one sees th a t if the cross section is 

proportional to 3 — 4m \ ,  the relative velocity is small and the contribution is 

small. As noted by Enqvist et al.[20], this means th a t the contribution from 

Higgs exchange is small, unless the Higgs mass is fairly close to twice the  lepton 

mass (in which case the large resonant cross section overcomes the small relative 

velocity). Diagrams with s-channel Higgs exchange will thus generally give a 

small contribution, as will diagrams in which Higgs bosons are produced (these 

processes generally contribute much less than  W -pair production). Even if the 

contribution were not small (due to resonance), these diagrams will increase 

the cross section. Increasing the cross section will decrease the abundance. 

Since we are interested in upper bounds on the abundance, the effect of Higgs 

bosons will be to strengthen our bounds 2. We will thus not include diagrams 

with s-channel Higgs exchange and with Higgs pair production.

If the annihilation cross section decreases, the abundance (for a given life­

tim e) increases. If one requires that the annihilation cross section obey unitar- 

ity bounds, then it has an upper lim it, and thus the abundance of a stable par­

ticle will have a lower lim it. The further requirement th a t this abundance not 

overclose the  universe has been used [21] to put an upper bound of 0(200) TeV

3There could be destructive interference, but the graphs of Enqvist et al.[20] show th a t this 
is a t  most a  factor of two or so in the current abundance, and this is sm aller than  the 
uncertainty in the Hubble constant.
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on the  mass of any elementary, stable particle. Throughout, we will assume 

th a t the  annihilation cross section of the L's is subject to  unitarity  constraints, 

and thus will not consider masses in excess of 100 TeV. Once the L mass ex­

ceeds 1 TeV, its coupling to the Higgs boson is nonperturbative-furtherm ore, 

above a TeV, the cross section calculated from the diagrams of Fig. 3.1 exceeds 

the un itarity  bound. We will thus use the larger of the unitarity  bound and 

the diagrams of Fig. 3.1 for the annihilation cross section3. One should be 

cautioned about our results for masses between 1 and 100 TeV ; above a TeV 

it isn’t  even clear tha t the L  can be treated  as an elem entary particle.

Partia l cross sections and the total cross section are shown in Fig. 3.2 and 

Fig. 3.3 respectively as a function of the lepton mass. Complete expressions 

for the  cross section may be found in the Appendix A. The only arbitrary  

param eter is the heavy neutrino mass, which we have taken to be twice the  

lepton mass (its value has very little effect on the to ta l annihilation cross 

section)4. As in the case of Enqvist et al.[20], the dom inant process is into 

W  pairs, if kinematically accessible. Unlike their work, however, the diagram 

with s-channel Z  exchange is not very im portant. This is because in the lim it 

of s —> 4m £, only the vector coupling of the lepton to the Z  enters. Since 

the vector coupling of charged leptons is very small, the diagram is suppressed 

relative to  the  same diagram for neutrino annihilation. The axial coupling does 

enter next order in v2; we have calculated this correction and found it to  be

3For lepton masses near a TeV, the Yukawa coupling is large and diagrams involving 
s-channel Higgs exchange may not be negligible, even if the relative velocity is small. 
Nonetheless, these processes will still be much smaller than  the W -pair production cross 
section, and as stated above, including them will slightly strengthen our bounds

4The top quark mass has a very small effect on the cross section; we have taken it to be 
100 GeV.
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Figure 3.2: Partial cross sections for L*L~ annihilation as a function of the L mass in 
the non-relativistic limit. For t-channel annihilation into W 's, a neutrino mass of twice the 
L  mass was used.
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Figure 3.3: The total cross section for L^L~  annihilation as a function of the L  mass. 
When the cross section exceeds the unitarity bound, which occurs for L  masses above 1500 
GeV, the unitarity bound has been used.
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negligible. However, also unlike the case of neutrino annihilation, we do have 

an s-channel photon exchange diagram, which dominates the annihilation. We 

thus still find annihilation into W  pairs to be the dominant process, bu t find 

s-channel photon exchange to be the m ost im portant diagram.

Given the annihilation cross section, the abundance today (ignoring decays) 

can be calculated. Explicit formulae for the abundance in term s of the cross 

section can be found in KT[19]. In this case, since W -pair production through 

s-channel photon exchange dominates, the annihilation is predom inantly s- 

wave, and the calculation of the relic abundance is very similar to th a t of 

Dirac neutrinos (the m ajor difference is in the numerical value of the cross 

section). The result for the  abundance today is given in Fig. 3.4. We see th a t 

if the lepton mass is below the threshold for W pair production, the abundance 

increases with mass (since the annihilation cross section decreases with mass). 

Above the threshold, W -pair production dominates rapidly, and the  abundance 

decreases w ith mass, un til the unitarity  bound becomes im portan t. These 

results are qualitatively similar to  those of Enqvist et al.[20], who first noted 

the  im portance of considering W -pair producation. The requirem ent th a t the 

abundance not overclose the universe only gives the very weak bound of 100 

TeV on the lepton mass5. At this mass, as discussed earlier, it is unclear th a t 

L  can be treated  as an elem entary paxticle.

If L  decays, its abundance today is, of course, smaller by a factor of 

exp(tcr/r), where tu  is the current age of the Universe and r  is the L  life­

tim e. W hat about the decay products? Since we are interested in fairly long

5It was originally believed th a t the bound was closer to 1 TeV, but this ignored W -pair 
production. Enqvist et al. argued th a t W -pair production eliminates the bound altogether, 
then Griest and Kamionkowski noted that the unitarity lim it gives a very weak bound of 
100 TeV.
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Figure 3.4: The value of H/lJ is given as a function of the L  mass. Here, f2 is the ratio of 
the L  density to the critical density, and h is the Hubble constant in units of 100 km/s/Mpc.
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lifetimes, all pious, muons, etc., will decay into relativistic electrons, neutrinos 

and photons. If the V s do not overclose the universe (if stable), then neither 

will the  decay products, since their energy density redshifts im m ediately after 

they are produced (thus the net energy density will decrease). Limits can be 

found from two sources: direct detection of the L and direct detection of its 

decay products. We first consider direct detection of the L.

In the work of Dimopoulos, Eichler, Esmailzadeh and Starkman(DEES)[22], 

they considered the possibility th a t the L  could be the dark m atter. As we 

have seen, this requires the mass of the L to  be approximately 100 TeV. Still, 

the bounds of DEES can easily be carried over to the case in which the L ’s do 

not dom inate the mass density. They considered many different processes: (a) 

the failure to find (p L ~ ) or (eL+) bound states in water, (b) the effects of the 

L  on nucleosynthesis, (c) the effects on galaxies and stars, (d) the  effects of L  

annihilation on the heating of gas giant planets, (e) detection in cosmic ray de­

tectors, (f) radiation damage caused by L im pacts on electronic components of 

satellites and (g) direct detection by plastic track detectors. Their results were 

generally given in term s of the mass of the charged lepton and its abundance; 

they were interested in the case in which the abundance gave closure density. 

In the mass range up to 10 TeV, the strongest bound comes from searches for 

heavy isotopes of hydrogen in water. The L +,s will combine w ith electrons 

to form a substance chemically identical to heavy hydrogen; those arriving at 

the E arth  will stop, primarily, in the ocean and will form an unusual water 

molecule (LHO). DEES show that the num ber density of LHO relative to  H 2O 

is approxim ately 8 x 10-18(TeV/mx,)(<oec/yr)f2£,, where t acc is the tim e period 

over which LHO accumulates in the ocean and is not removed by geological or
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chemical processes, and fix, is the current density of L's  in units of the critical 

density. Smith[23] has searched for anomalously heavy hydrogen in water and 

finds, over the mass range up to 1200 GeV, tha t this ratio is less than  10-28. 

Over the mass range between 1200 GeV and 10 TeV, the lim it is 10-24. From 

this, we find the bound

m L >  1016 TeV fiL (3.1)

for th e  mass range up to 1200 GeV, and

mx, >  1012 TeV fiL (3.2)

for th e  range up to 10 TeV. Here, we have taken tace to be approxim ately 

10s years, which is the typical tim e scale for geologic processes to  completely 

mix the  oceans. Above 10 TeV, the strongest bound comes from plastic track 

detectors, and is given by

m L >  3.5 x  1017/3(/>/10-24 gem"3) TeV , (3.3)

where 0  ~  10“3 is the velocity of the L. They do note tha t the plastic track 

detectors have not yet been calibrated at this value of 0 ,  and this m ight weaken 

the bound by a few orders of magnitude. In our case, a few orders of m agnitude 

in th e  bound will be irrelevant. We find the  bound to be

mx, >  7 x 109 fiL . (3.4)

The value of fix; is given by the result in Fig. 3.4 m ultiplied by exp(—tu /r )]  

thus for a given mass, we find an upper bound on the lifetime. Note tha t since 

the lifetim e bound only varies logarithmically with the mass, and since we will 

be p lotting the lifetime on a logarithmic scale, a change in these bounds by a 

couple of orders of m agnitude will not significantly affect the results.
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W hat about direct detection of the decay products? Since the  L  is charged, 

there will generally be photons associated with the decay. Following KT, we 

will assume th a t the decay produces a single photon with energy m x/2 . While 

this assum ption is reasonable for radiative neutrino decays, it is not particularly 

good in this case. Instead, one expects a num ber of photons to  be produced, 

each w ith an energy somewhat smaller. Nonetheless, bounds on fluxes and 

energies of diffuse photons are typically uncertain by an order of m agnitude or 

two (see Fig. 5.5 of K T), and thus we will make the same assumption. Bounds 

arise from two sources. F irst, the photons could be detected directly in the 

diffuse photon background. These bounds will apply to  photons produced 

after the  cosmic microwave background (CM B), i.e. to lifetimes in excess of 

1013 seconds. Second, if the photons are produced before the CMB, then the 

energy density in the decays must not significantly distort the CMB and the 

entropy produced in the decays must not change the successful nucleosynthesis 

predictions.

Since terrestrial experiments preclude the possibility of a lifetime in excess 

of the age of the Universe for the L, we first consider the case in which the 

I t ’s decay after recombination (formation of the CMB at 1013 s) and before 

the present era. The photons produced should appear in the diffuse photon 

background. The present flux of such photons[19]is

^  ^  (3 5)
dSl 4tt ’ t 3,5'

where n i  =  0,Lpc/ m i  is the number density tha t the L 's would have if they

were stable. The observational limit on the flux is given by[19]

dF^ /IMeVN _2 _! _j .
:5nHTV™  31 3 ■ (3-6)
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Each photon is produced with an energy of m ^ /2 (see above discussion), 

which then redshifts by a factor of (1 +  z)  ~  ( ty / r ) 2/3. Thus, using E  = 

( m i /2 ) ( l  +  z ) in Eq. 3.6, and Eq. 3.5 for the flux in Eq. 3.6, we find th a t

r  <  8 x 10s s(fiLA2) - 1,5 . (3.7)

From the values of fix, given in Fig. 3.4, we see tha t the right-hand side of 

Eq. 3.7 is always less them 1013 seconds. Since the bound is only relevant 

for lifetimes in excess of 1013 seconds (the photons would become p art of the 

microwave background if they were produced earlier), we see th a t all lifetimes 

in excess of 1013 seconds are ruled out. It should be noted th a t if the  lifetime 

were much longer than  the age of the Universe, then this bound, as well as the 

following bound from the CMB distortion, would not apply (since there  are no 

decay photons), however terrestrial experiments preclude tha t possibility.

For lifetimes between 10® and 1013 seconds, one must ensure th a t the  pho­

tons produced do not unacceptably distort the microwave background radiation 

(CM B). If one requires tha t the electromagnetic energy density dum ped into 

the vacuum not be greater than  a fraction 6 of the CMB, then we m ust have

PL &LPc

Pi Pi

which gives us the bound

<  6 , (3.8)

9 x 109 s c2 .
r < W  - (3-9)

W hat value should one choose for 61 KT choose 6 =  1 in determ ining bounds 

on radiative neutrino lifetimes, i.e. they simply required that the neutrino not 

dum p more energy into the background than was already there. More recently, 

however, COBE has shown th a t the CMB is a pure black-body distribution to



60

unprecedented precision. The COBE results were used in Ref. [24] to  place 

a lim it on the fraction of electromagnetic energy th a t could be added to the 

microwave background as a function of the tim e of injection, which was taken 

to be between 106 and 1013 seconds. Their results thus give us 6 as a function 

of t ,  which can be input into Eq. 3.9. To within a factor of two, their result 

for 6 is given by .01 for redshifts up to 2.2 X 10® (corresponding to lifetimes 

above 2 X 10® seconds) and it rises rapidly to  unity by a redshift of 5 X 10® 

(corresponding to  a lifetime of 4 X 10® seconds). This rise occurs because 

photons em itted a t this early epoch are still able to therm alize and approach a 

Bose-Einstein distribution. We have thus taken 6 to be .01 for lifetimes above 

2 X 10® seconds, rising rapidly to  unity for lifetimes of 4 X 10® seconds. As 

can be seen from Ref. [24], the precise value for 6 may differ from this by 

up to  a factor of two, however the uncertainty in the Hubble constant will 

overwhelm this discrepancy. For shorter lifetimes, it is easy to see th a t bound 

from nucleosynthesis will not significantly constrain leptons lighter than  100 

TeV.

Our results are plotted in Fig. 3.5. We see th a t cosmological lim its are 

m uch more stringent than terrestrial bounds, and th a t there is little  hope for 

terrestrial experiments to approach the cosmological bounds. However, the 

cosmological bounds do not elim inate lifetimes much in excess of the age of 

the Universe, and the terrestrial limits are thus necessary to preclude that 

possibility. The COBE data  provides the strongest bound, by fax, on the 

lifetime. More precise data on the cosmic microwave background could improve 

the bound significantly; in Ref. [24], it is noted that more precise measurements 

at wavelengths greater than  1 cm will improve 6 by a factor of 10. In our case,
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Figure 3.5: Final results for the limits on the mass and lifetime of charged leptons. The 
limits in the upper line arise from searches for heavy hydrogen in water and from plastic 
track detectors. The limit restricting the lifetime to be less than 1013 seconds arises from 
failure to directly detect the photons emitted in the decay in the diffuse photon background. 
The strongest bound, the lower line, comes from failure of the decay photons to appreciably 
distort the cosmic microwave background. The latter two limits would not eliminate the 
possibility of lifetimes much in excess of the age of the Universe (1017 seconds), but the 
bound from terrestrial searches does so. For masses in excess of 10s GeV, the bounds will 
continue, until the =  1 line is reached; for masses in excess of 10s GeV, this line is at 
1q32-3v gecouds for a mass of 10w GeV.



62

this would lower the peak in the CMB distortion curve of Fig. 3.5 by two orders 

of m agnitude; further improvements could bring the bound, across the entire 

mass region, down to approximately 107 seconds.

W ith these results, we can speculate as to plausible values for the L  lifetime. 

As discussed above, the lifetime is a typical weak interaction lifetime divided by 

sin2 9, where 6 is the mixing angle between the fourth generation neutrino, N ,  

and the  lighter neutrinos. W hat are reasonable values for this mixing angle? If 

the mixing is confined to the neutrino mass matrices, then one might be guided 

by see-saw models for neutrino masses and mixings. In this case, sin2 9 is given 

by the ratio of the tau  neutrino mass to the N  mass. For vr masses between 

10“4 eV and 10 eV, this gives an L  lifetime of approxim ately 10-1° — 10-s 

seconds, which is an extremely interesting value for detection at the SSC. It is 

not an interesting value for cosmological purposes, however. One could modify 

the see-saw mechanism to generate smaller values of sin2 9 (which vary, say, 

as the  square of the mass ratio); these would give lifetimes approaching our 

bounds. More natural, however, might be to assume that there is no mixing 

at all in the mass matrices. In this case, the only source of mixing would 

come from grand unified and/or Planck mass effects. This might give a typical 

mixing angle of M w /M p i , leading to lifetimes in the cosmologically interesting 

range. Thus, the long lifetimes considered in this chapter axe not completely 

implausible.

Should the lifetime exceed a few years, one can also think about the possible 

uses of these leptons. Since only a few hundred thousand can be produced 

annually (at best) at the SSC, they could not be used as an explosive device. 

They also could not be used to catalyze fusion reactions; even at one catalysis



per picosecond, a  million U s could only generate about 100 kilowatts. Since 

these objects would have the mass of a  large nucleus, and would orbit deeply 

inside the  nucleus, they could teach us a good deal about nuclear structure. 

Obviously, the first step is to  find them  at the supercollider; studies of the 

signatures are discussed in next chapter.



C hapter 4 

N ew  Leptons

4.1 Introduction

Since the accurate measurement of the parameters of Z°  decay[25], it has been 

known th a t there exist only three light neutrinos, ve) vu and i/T, coupling to the 

Z°  in the m anner prescribed by the standard model. The simplest supposition 

is then th a t the lepton sector comprises these three light neutrinos and their 

charged counterparts, e, fi and r .  However, it is quite possible th a t heavy 

leptons exist. Such heavy leptons, which shall be designated as L  and N ,  for 

the charged and neutral varieties respectively, will be a target of investigation 

at the  next generation of particle colliders, most notably the Superconducting 

Super Collider (SSC) and the Large Hadron Collider (LHC). In this chapter 

we specify four simple models which contain such heavy leptons and calculate 

their production cross sections at the SSC and LHC. The first two models axe 

fourth-generation models where the  right-handed L  and N  are doublets and 

singlets respectively under electroweak 517(2). The th ird  and fourth models 

are inspired by the aspon model[26] of CP violation.

Many analyses of heavy lepton production have previously been done[18].
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O ur work differs from Ref. [18] in two respects. First, it is now known[25] th a t 

the masses of any additional neutrinos m ust be greater than  45 GeV. It is thus 

possible tha t the mass of the heavy charged lepton is degenerate w ith or smaller 

than  th a t of its neutral counterpart. In particular, the charged lepton is mass 

degenerate w ith the heavy neutrino at lowest order in models with vector-like 

leptons; it can be lighter in models with right-handed singlet leptons. These 

considerations lead to  the possibility th a t the L  could be very long-lived, per­

haps not decaying inside a detector. To our knowledge, no discussion of this 

possibility has appeared. Second, if the right-handed L  and N  are in an 517(2) 

doublet, the GIM mechanism breaks down, leading to the flavor changing decay 

L —► t Z.  Discovery of such heavy leptons would revolutionize our understand­

ing of the  fundam ental fermion spectrum . If they exist, it would be natural, 

by consideration of quark-lepton symmetry, to expect further quarks, beyond 

the top quark, to occur also, bu t in the present thesis we shall not consider 

this possibility.

The layout of this chapter is as follows: Sec. 2 discusses the four models 

containing heavy leptons; in Sec. 3 are rem arks on how detection of the heavy 

leptons depends crucially on their lifetime which could lie w ithin a wide range, 

depending on the details of the mass spectrum ; the production cross section 

formulae are presented in Sec. 4; finally, the results are provided in Sec. 5.

4.2 The M odels

In the standard  model, each of the three generations of quarks and leptons 

mimics the first generation in which the leptons transform  under S U (2) x 17(1) 

as one doublet (i/e, e~) w ith Y  =  — 1 (Q — Tz +  \ Y )  and a singlet e+ with



It is still unclear whether the V{ (i — e, fi, r )  jure strictly  massless or 

if there exist nonzero neutrino masses. Evidence for the la tte r comes from 

at least two sources: the  solar neutrino measurements which suggest a solar 

neutrino flux below th a t predicted by the standard solar model[27]; the re­

cent gallium experiment results from SAGE[28] and GALLEX[29] lend some 

support to the deficit established at the Davis chlorine experiment[30] and at 

the Kamiokande water detector[31], suggesting neutrino oscillations between 

massive neutrinos. A popular oscillation mechanism is tha t of MSW[32] where 

the electron neutrinos partially convert to  muon neutrinos w ithin the interior 

of the Sun. Another evidence for a massive neutrino is the  17 keV neutrino 

claimed in the Simpson experiment and later experiments, bu t not reproduced 

in other efforts[33]. All in all, none of these claims clearly disproves tha t the 

first three neutrinos are massless. On the other hand, we know from Z°  decay 

measurements[25] tha t any fourth neutrino coupling normally to Z°  m ust be 

heavier than M z / 2 ~  45 GeV.

In our first model (model 1), we shall suppose th a t the fourth generation 

leptons fall into the following representations

(4.1)

similar to the three light families except for the inclusion of the right handed 

neutrino N r  which allows a Dirac neutrino mass.

The second model (model 2) will instead assume representations
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They Me called vector leptons because both the left- and right-handed compo­

nents transform  identically under SU(2)l .

Our th ird  and fourth models are inspired by the aspon model[26] of CP 

violation. To solve the strong CP problem, the aspon model incorporates 

vector quarks at a  scale of a few hundred GeV. Only colored states contribute 

to  the relevant anomaly so th a t leptons are not required in solving the strong 

CP problem but by quark-lepton symm etry we m ay expect th a t such a model 

possesses also vector leptons. The vector quarks may be in S U (2) doublets or 

singlets. So there is a corresponding choice for the heavy leptons. Our th ird  

m odel (model 3) will therefore contain vector lepton doublets as in Eq. 4.2 

above, appended to the aspon model of Ref. [26]. Finally, the fourth model 

(model 4) will contain singlets

Lt,  , N t , L r  , N r  , (4.3)

added to  the aspon model with 5Z7(2)-singlet vector quarks.

4.3 Detection

In this section, we first note th a t L  could be very long-lived. If it is lighter 

them the N ,  and if both N  and L  do not mix with the standard model leptons, 

then  L  would be absolutely stable. This would be a cosmological disaster; 

cosmological and astrophysical arguments from last chapter lim it the lifetime 

to  under 100 years. In the models we are considering in this chapter, it is 

quite natural to have mixings, and thus the lifetime of L  is model dependent. 

Knowing the lifetime is crucial for experimental detection: if it is under 10-13 

seconds, the L  will decay at the vertex; if it is between 10-13 and 10-8 seconds,



it will decay in the middle of the detector; if it is greater than  10-8 seconds, it 

will pass through the detector, and will look like a  muon.

Let us first consider model 1. If the N  is heavier than  the L, and if it does 

mix w ith a lighter neutrino (taken to be i/T), the L  lifetime will be increased 

by a factor of sin2 6 ( where 9 is the mixing angle) over the lifetime it would 

have if the N  were massless. For a 100 GeV L, this gives a lifetime of O (10"2° 

s)/sin2 0. W hat are plausible values of sin20? In see-saw type models, sin2 8 

is given by either m T/m£, or by m VT/m tf ,  depending on whether the mixing 

can occur in the charged lepton sector or whether it is confined to the neutrino 

sector. In the former case, the lifetime is O(10-18) seconds; i.e. L  will decay 

at the vertex. However, in the latter case, the lifetime is O(10-9) seconds, and 

could easily be long enough tha t the L  would pass through any detector.

In the case in which the L r  and N r  form a doublet (model 2 and model 

3), the masses are degenerate at tree level. The L  and N  will acquire a mass 

splitting from radiative corrections. This gives a splitting of 0(200) MeV; the 

precise splitting depends on masses and on the particle content of the model. 

This splitting gives a lifetime between 10-9 seconds and 10-7 seconds, L  will 

decay inside the detector.

One can thus see th a t all three lifetimes: (a) decay at the  vertex, (b) decay 

in the detector and (c) decay outside the detector are all plausible, and each 

possibility m ust be considered.

If L  decays before leaving the  vertex, the analysis of the  detection will be 

the same as tha t for a conventional heavy lepton, with one crucial exception. 

The heavy V s transform  differently from the standard model charged leptons 

in models 2, 3 and 4, and the GIM mechanism will break down, leading to
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flavor changing decays such as L —> t Z.

By neglecting the mass of r ,  one finds the ratio (for m u  >  m z):

T ( L ^ r Z )  _  16\UL t\2 ( m j  -  2 m | +  m £ /m |) (m £  -  m%)
T(L -* vTW )  cos29w \Ul„t \2 (m 2L — 2 m l v + m 4L/ m l v-)(rri2L —m lv)  '

An estim ate of the value of Ui,T can be m ade by analogy with similar GIM 

violation in the aspon model[26] which gives Ult  =  (m T/m £,)xTI where x T 

gives the ratio of M34 to M44 in the lepton mass m atrix. U lUt is expected to be 

of order of \Jmr /mi,  or \ j m Vr/m N .  In the former case, one finds the branching 

ratio  to be of the order of a few percent; in the la tte r it is nearly one hundred 

percent. Even if we take a small branching ratio, the background for a particle 

decaying into Z t  would be extremely small (especially if a vertex detector 

could pick up the tau). A m ajor problem  with the conventional heavy lepton 

detection has been backgrounds; the L  —* t Z  signal, even w ith a branching 

ratio  as low as 1%, may be easy to pick up.

If the decay is in the middle of the detector, but away from the vertex, it 

should be easy to detect. An apparent muon will suddenly decay into missing 

energy and a real or v irtual W .  The backgrounds should be negligible.

If the decay is outside the detector, the L will be indistinguishable from a 

muon. The production cross section, as will be shown in the next section, is 

large enough tha t thousands of L ’s could be produced annually at the SSC, 

but it is small compared with muon pair production, so the “ex tra” muons 

would not be noticed. One possible m ethod of detection would be time-of- 

flight. Many of the L ’s will have /3 <  1 ( see Sec. 5 for da/d(3), and if tim ing is 

installed in the detectors, the L ’s could be seen. It is interesting th a t 1000’s of 

L ’s could be produced, bu t tha t they could be missed if tim ing is not present.
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In this chapter, we consider the production processes for pp —» L +L ~ , N N ,  

N L *, as well as pp —► L +L~ A, N N A  and N L A  where A  is the aspon in models 

3 and 4. The cross sections and Feynman graphs for all relevant subprocesses 

are given in Appendix C and Fig. 4.1 respectively. The Fortran program  for 

the  process pp —» L L  is given in Appendix D as an example. The to ta l cross 

sections for all the above processes are computed by using EHLQ[34] parton 

structure functions (set 1). Previous calculations of heavy neutrino production 

have been done (see Ref. [18]); we include these cross sections for completeness 

and because, if the N  is heavier than  the L, each N  will im m ediately decay into 

an L  and a virtual W .  This will increase the production rate  of L ’s. As noted 

in Ref. [18], if the N ’s are M ajorana particles, some of the L-pairs produced 

will be like-sign.

For model 1, gluon fusion production (see Fig. 4.1(a)), by Z  and H  ex­

change, is more im portant because the cross sections are proportional to  the 

square of the  lepton mass. For the vector lepton models (models 2, 3 and 4), 

gluon fusion will not contribute, since vector leptons do not couple to H  and 

a vectorlike coupling to the Z  gives no contribution due to Furry’s theorem. 

Thus, the only contributions for the pair production of leptons in these models 

are by quark fusion (see Fig. 4.1(b)) in which the cross sections fall off faster.

In addition, an aspon A can be produced through the  brem sstrahlung effect 

from the heavy leptons (see Fig. 4.1(c)). For completeness, we include also the 

production cross sections for pp —» L +L~A, N N A  and N L A  at the SSC and 

LHC.
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Figure 4.1: Feyman diagram for the process (a) gg —* L +L~ and N N ,  (b)
qq L+L~ , N L * and N N ,  and (c) qq -> L +L~A, N L A  and N N A
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As we discussed in the previous sections, a long-lived charged lepton can 

only be discovered if there are tim ing facilities in detectors. A long-lived 

charged lepton is more likely to appear in the vector lepton doublet models 

such as models 2 and 3. The velocity distribution, <£<7 / d/3, where /3 is defined 

as the  ratio of the m om entum  to the energy of L  in lab-frame, has been calcu­

lated at the LHC and SSC energies for m i  =  100,300 and 500 GeV; the  results 

are reported at the end of the following section.

4.5 Results and Conclusions

The results for the production cross sections at the SSC (y/3  =  40 TeV) and the 

LHC (y/s  =  17 TeV) are displayed for the different final states of pp collisions in 

Figs. 4.2-4.6. From these figures one can estim ate easily the num ber of events 

per collider-year using the projected luminosities of the two machines (SSC: 

1033 cm "Js_1; LHC: 1034 cm-2s-1 ) and the corresponding annual integrated 

luminosities 10 fb”1 y " 1 and 100 fb-1y-1 respectively.

For heavy L  or N ,  the cross sections for pp —» L +L~, N N  are largest for 

model 1 because of the  dominant gluon fusion contribution (with Z  and H  

exchange) in which cross sections are proportional to the square of the  masses; 

there is no such contribution for vector leptons (models 2, 3 and 4) because both 

the Z  and H  diagrams (Fig. 4.1(a)) vanish, as discussed earlier. In particulax, 

for pp —► L +L~ (Fig. 4.2) and M i  =  400 GeV there are predicted to  be 10,000 

events for model 1 per year at the SSC and the LHC. For models 2, 3 and 4 

(where the gluon fusion contributions vanish), there are 1,000 or 2,000 events 

for model 2 and 3; and 500 or 1,000 events for model 4 at the  SSC or the LHC 

respectively. Similar rates axe predicted for pp —» N N  (which is not allowed in
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Figure 4.2: Total cross sections for heavy lepton production p p  —► L + L~  as a  function 
of the charged lepton mass for model l(solid lines), model 2 and 3(dashed lines) and 
model 4(dotted lines). The upper and lower sets are for the Ecm =  40 TeV and E^n — 17 
TeV. m u  =  100 GeV is assumed.
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F ig u r e  4.3: Total cross sections for the process pp —► N N  as a  function of the heavy 
neutrino m ass m jv  for model l(solid lines), and model 2 and 3 (dashed lines). The upper 
and lower sets sue for Ecm — 40 TeV and Ecm. =  17 TeV. m jr  =  100 GeV is assumed.
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Figure 4.4: Total cross sections for the process pp  —* N L *  for model l(so lid  lines), and 
model 2 and 3(dashed lines) for (a) m u / m i ,  — 0.5, (b) m u / m i ,  =  1, (c) m j j / m i  =  2. 
T he upper and lower sets are for E an — 40 TeV and E m  =  17 TeV. m jj =  100 GeV is 
assumed.
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Figure 4.5: Total cross sections for the process pp —» L +L~ A (A  =  aspon) as a  function 
of aspon m ass for (a)model 3 and (b) model 4 with 771& =  50 GeV(solid lines) and 
7 7l£  =  150 GeV(dashed lines). The upper and lower sets are for E m  — 40 TeV and 
Ecm  =  17 TeV. m u  =  100 GeV and the coupling of the aspon a.a  — 0.1 are assumed.
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Figure 4.6: Total cross sections for the processes pp —► N N A  in model 3 for
J7i£ =  m j t  — 50 GeV(solid lines) and m jj  =  m u  =  150 GeV(dashed lines). The 
upper and lower sets are for Ecm =  40 TeV and Ecm — 17 TeV. m j j  =  100 GeV and 
the coupling of the aspon a  a  = 0 . 1  are assumed.
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F ig u r e  4.7: Total cross sections for the processes p p  —> N L A  in model 3 for
m i  =  m jj  — 50 GeV(solid lines) and  m i  =  m u  =  150 GeV(dashed lines). The 
upper and lower sets are for Ecm — 40 TeV and Ecm =  17 TeV. m j j  — 100 GeV and 
the coupling of the aspon a x  — 0.1 are assumed.
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Figure 4.8: The velocity distributions \  ja{d<Tjdff) for the process pp —► L L  in  model 2 
an d  3 a t  (a) E m  =  17 TeV, and (b) Ecm =  40 TeV and for m t  =  100 GeV(solid line), 
300 GeV(dashed line) and 500 GeV(dotted line) respectively.
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m odel 4) although the photon contribution vanishes. Finally, the  cross sections 

for pp —* N L *, which are allowed by W  exchange, can be read off from Fig. 4.4. 

Although the luminosity is ten  times higher at the LHC, the num ber of heavy 

leptons produced in general is just two times that at the  SSC.

Note that although the cross sections for models 2, 3 and 4 are considerably 

smaller, these models do have an L  —» t Z  decay mode, and thus possibly a 

m uch cleaner signature, if it decays in the detector. For pp —* N L ± in which 

only the W  exchange is allowed, models 1, 2 and 3 give similar cross sections.

For pp —► L +L~A, N N A  and N L A  with an aspon in the  final state, the  

cross sections, which are shown in Figs. 4.5-4.7, are about 100 times smaller 

th an  w ithout an aspon, but are still within the range of detectability of SSC 

and LHC. Model 3 (heavy lepton doublets) gives a slightly larger cross section 

th an  model 4 (heavy lepton singlets) because the former allows certain W  and 

Z  couplings.

If tim ing facilities are installed in detectors, the /3 distribution functions 

l/cr(dcr/d/3) would be relevant. In Fig. 4.8, we plot the  /3 distributions for 

pp —> L +L~ in the vector doublet models (models 2 and 3) for m i  =  100, 

300 and 500 GeV at the LHC (Fig. 4.8(a)) and the SSC (Fig. 4.8(b)). For a 

muon, the distribution is, of course, a delta function at 0  =  1; whereas the 

/3 distribution spreads out to /3 <  1 for a heavy lepton with an enhancement 

near /3 =  1. From Fig. 4.8, we conclude tha t in searching for a long-lived 

charged lepton, time-of-fiight is a valuable m ethod because of the  characteristic 

spreading to 0  <  1; at SSC this is viable up to at least m i  =  500 GeV. Thus 

tim ing in the SSC detector would be particularly useful. Actually, the designers 

of the  detector at the LHC have been using our results. They are aware of the
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of the  possibility of missing these leptons and will arrange the  hardware and 

software to  have the capability of looking for them.



C hapter 5 

C onclusion and Future W ork

Two extensions beyond the standard model were discussed.

The first extension of standard model involved an additional Higgs-boson. 

This m odel will autom atically have tree-level flavor-changing neutral currents, 

unless they are suppressed by some additional symmetry. It is often believed 

tha t the  presence of tree-level flavor-changing neutral currents in this model 

is fatal, unless a discrete symm etry is added, since it requires the exchanged 

scalar to  be extremely heavy. This follows, however, from the assum ption th a t 

the flavor-changing coupling is quite large. Using a more natural value for the 

flavor-changing coupling, much smaller bounds were obtained. Unlike previous 

calculations, we calculated the bounds on the flavor-changing couplings of an 

additional scalar for the processes involving the th ird  generation fields which 

should be considerably more reliable. Since the masses of the scalar and the 

pseudoscalar are likely to be quite different, we have considered the bounds on 

each separately. Prom the processes r  three-body and radiative decays, muon- 

electron conversion in nuclei, B  and B ,  three-body decays, B  and B ,  two-body 

decays and B  — B  mixing, we found tha t in the quark sector the strongest

86
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bound comes from B  — B  mixing and in the lepton sector the strongest bound 

on the flavor-changing coupling involving the r  comes from the radiative de­

cay of the muon. We have also noted tha t in m ost grand unified theories, the 

r  and bottom  quark are in the same representation, thus the flavor-changing 

couplings in the quark sector are related to  those in the lepton sector. Compar­

ing flavor-changing B  decays with rare r  decays, we found th a t rare B  decays 

provide the strongest bounds and tha t the m ost promising decay modes are 

B  —* K /jlt and B , —> y.T with r ’s in the final state.

The second extension of the standard model we considered is about the 

fourth generation heavy leptons. If a fourth generation exists, the lepton L  

and the neutrino N  m ust both be heavier than  45 GeV. It is certainly possible 

th a t the  neutrino will be the heavier of the two. In this case, the charged 

lepton can only decay through mixing with lighter generations, and might thus 

be extrem ely long-lived. First, we investigated the implications of very long- 

lived charged leptons for cosmology and astrophysics. In the early universe, 

the relative abundance of a massive weakly interacted particle species “freezes 

out” when the annihilation rate becomes less than  the expansion rate. We 

calculated the annihilation cross-sections and found th a t the  dom inant process 

will be W  pair-production with the s-channel photon exchange. We also as­

sume th a t the annihilation cross-section is subject to unitarity  constraints and 

considered the mass range from 45 GeV to 100 TeV. Then we calculated the 

abundance today and obtained the bounds on the mass. If L  decays, limits on 

the lifetime of a long-lived charged lepton can be found from several sources: 

direct detection of the L  and direct detection of its decay products. From 

terrestrial experiments, the strongest one comes from searches for the heavy



isotopes of hydrogen in water for the mass range up to 10 TeV, and above 10 

TeV, the strongest bounds comes from plastic track detectors. From astro- 

physical searches for the  decay products and from cosmology, we checked the 

the bounds from  the diffuse photon background (lifetime in excess of 1013 sec.) 

and from the requirem ent that the decay products not unacceptably distort the 

microwave background radiation (CMB). We found the strongest cosmological 

bounds on the lifetime come from very recent COBE data. Then we studied 

the production cross-sections and signatures for the SSC and LHC. We consid­

ered four models which contain heavy leptons for the experim ental detection at 

the Hadron Colliders. Two models are the fourth generation extensions of the 

standard model in which the right-handed heavy leptons are either isosinglets 

or in an isodoublet, the  other two are motivated by the aspon model of CP 

violation, and contain also singlets or vector lepton doublets. We calculated 

the production cross-sections for all the processes into heavy leptons, neutrinos 

and aspon through quark fusion into a photon or Z(o i W ) ,  as well as through 

gluon fusion into a Higgs or a Z.  For the  first model, gluon fusion production 

is more im portant, and for the vector lepton models, only quark fusion con­

tributes, in which case the cross-sections fall off faster. And the production 

cross-section for the processes with an aspon in the final state will be even 

smellier. In all these models, the heavy neutrino can either be heavier than, or 

comparable in mass to, the charged lepton leading to the possibility tha t the 

charged lepton can only decay through mixing, thus L could be very long-lived. 

If the  lifetime of L  is under 10-13 seconds, it will decay in the middle of the 

vertex; the analysis of the  detection will be the same as th a t for a conventional 

heavy lepton, w ith one crucial exception. For the vector lepton models, the
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GIM mechanism will break down, leading to flavor-changing decays such as 

L  —* t Z.  For this decay the background would be extremely small and the 

signal m ay be easy to pick up. If the lifetime is between 10-13 and 10-8 sec­

onds, the L  will decay in the middle of the detector. If the lifetime is greater 

than 10-8 , it will pass through the detector like a muon. The only possible 

m ethod of detection would then be time-of-flight. Since 1000’s of V s could be 

produced at the SSC and LHC, timing in these detector would be very useful 

for finding these heavy leptons.

There are several related projects tha t I hope to pursue in the next few 

months. One involves the phenomenology of production of these heavy leptons 

in electron colliders; especially in the vector-like models, which naturally have 

long-lived heavy leptons. In the aspon model, one has a diagram which could 

lead to  resonant production of an aspon. Another project, also related to  the 

aspijon model, concerns CP violation in the lepton sector. The aspon model 

was desired to  eliminate strong CP problem. The CP-violating couplings are 

thus constrained by the observations of K  decay. Such constraints are much 

weaker in the lepton sector, which could then have large CP violation effects.



A p p en d ix  A  

T he Cross Sections for C hapter 2

Here we shall give explicit expressions for all the cross sections in Chapter 2.

1) Annihilation LL  —► / /

3s 3 iw ( l  — iiv )
l + 2( m |  +  m^) +

e2

+

s
2

(5v +  5a )(5v +  9 a  )(1 +
8 1 ^ ( 1  — i f f ) 2

L 2 , L2v  / 2 /2N4 m / , i L 2 L2v  / 2 ,
+  (5v +  5x )(Sv “ 5a )— i  +  (5v - 5 a  )(5v + 9 a ) ‘

f L* f 2 , f 2 L2 r, L2
-  (5a 5v + 9a  9v  -  25A 5a ) ------5—

s s
2W2'

(A .l)

where i f f  =  sin#^-, and gv  and ga are the standard neutral vector and axial 

current couplings, respectively. N c is a color factor, s is the  center of mass 

energy squared, and (3f is the velocity of f: /3/ =  ( l  — 4 m )/s ]   ̂ . Finally, 

\D z\2 is the propagator factor of the Z-boson;

\DZ \2 = [(a -  m |) 2 +  r |m | ]  1 .

2) Annihilation L L  -» W +W ~
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f f (L L -*W + W -)  =  a -n  +  +  a LL  +  a LZ  +  a ^ i  > (A-2)

/  5 3  g j 2 \
o-yy+iz+zzfini =  rnwPwrt<x2 ( -g—i— g-------- j -----8 j (s +  2m£J (A.3)

_1_ _  9 v (3 ~  ™2z)\D z \2 , \Dz\2 ( j A  , 5 ^ ( j  ~ 4 m ^ ) \
3 xw33 4x ^3  y v  ( 3  +  2m^) J  ’

CLL/Siel = T ( i 2 +  203 -  24) +  ( i s  -  |) * n j  -  1 m l
fiyfRC?
4 XyyS

+ P1L1 -  1{2 -  m l -  ml)2Ri

-  m 2N Q s  -  1 -  3m l  +  2P2L 1 +  \ P 1R 1)

-  rh]f -  3(5 -  2 -  4m £).t1 -  ^ P j R i j

+  m 6N ^ 4 i i  -  ( ^ 3  -  1 - 2 m 2L)R ^ j  -  im y-H i] , (A.4)

^  =  / W m M * - , r n W t f  ^  +  1 [j3 +  lg J ,  _  ^  _  24

— (S2  -f 65 +  8 ) m l  — 6 ( 3  — 2)?n^] +  4Zi[8S +  4 — (10S +  4)m£

+  ( 3  +  2)m£ +  (5 -  2)m£,] +  m 2N[32 -  4S -  4 -  (4S -  8 )mJ,

4- 4 ii(4 S 2  — 5S — 6  +  (S2  — 5S — 2 )m 2L — 3(S — 2)m£)]

-1- m^[2(S — 2) — 4Zri(S(S — 4) — 3(S — 2)m£)] — m ^L i(4S  — 8 )j 

~ (9 v  ~  9a )™1(12 +  10S)[1 +  2 L i (m l  - m 2N -  !)]]• , (A.5)

T Lyfa  =  l3wT? -m '".9v. (  i [ i 3 +  18S2 -  28S -  24 -  (S2 -  24S -  28 )m% -  6 
4z w s  <3

x(S — 2)ml]  -  4Ii[8S +  4 +  (2 -  5S)m£ -  (45 +  4)m£ +  (S -  2)m®]

—  m^[S2 —  4S —  4 —  (4S —  8)m^ +  4L1(4S2 —  5S —  6 +  (S2 +  4)m^

-  3(S -  2)m£)] — mjf[2(s — 2) — 4L1(S(S -  4) — 3(S — 2)m 2L)]
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+771^(45 - 8 ) L i}  , (A.6)

where Pi, P i ,L i  and R i  are defined as

5 = s/my,, m l = ml /mfy  ,

Pi = 4(5 -  2) +  4 3 m l +  (5 -  6)to£ -  4m® ,

jPj =  45 — 5 +  (25 — 6)m L — 6 m l  ,

I  = _  1 jn (  2 -  5 +  2rhl -  2m 2N +  3(3lPw  \
23(3l(3w  \ 2  -  5 +  2m2L -  2m 2N -  3(3l (3w  J ’

R i = [(1 -  m l ) 2 -  m 2N(2 -  5 +  2m 2L) +  m]^] 1 . (A .7)

3) Annihilation L L  —» Z Z

=  i x j ^ - x „ f ,  { t ( ^ ‘ +  s i ’ ) !  +  i g ? 3 * ] [ ~ 2 -  2 ” i  +  ^
/ j 3  e ; 2  \

+  L 2 ( — +  +  5 — 8 +  7 7 1 ^ ( 6  — J2) j  — R 2{2 +  27nJ(J — 3) +  m l )

f i 4 H i 2
+  B  I — +  53 ---------    105 +  77i£,(—i 3 — 252 +  305 -f 20)

+rh£(252 -  85 -  12))] +  { g ?  -  g ? )  [m2L(8 -  25)

-I- 12R2m 2L( m l  — 1) +  L 2m 2L(232 -  65 — 8)

+ B  (m l(233 -  232 -  285) -  tti£(852 -  325 -  16))]

x (S y2 ~  9a 2)2 ^ i C y  ~  6) -  L 2m 2L(32 -  105 -  2)

+  R 2m 2L(23 -  2 -  19771 )̂ +  B  ( tti£ (-5 3 +  852 -  265 +  12)

+77i£(652 — 245 +  28))]}  , (A.8)
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where J =  3 /m 3Zi and rh \  =

1 , ( 2 -  i  +  sf3i/3z\
2 2 i(3i,/3z \ 2  -  s  — sPl P z )  ’

R 2 =  (1 -  4m£ +  m \s )~ l ,

B  =  W = T ) '  <A9>

4) Annihilation L L  —> 7 2

-  (s£ 2 +  Sa2) [8 i?3 m£, +  £ 3  ( - 2  m 2L -  2s +  m £ s(l -  0 z j)

|  ( - 8 m £ +  2 m£,j -  3s +  y ( l  +  fo)) j j , (A.10)

where L 2 and R 2 are defined as

2  \ - iJ?3 =  ( im £ )

• <A11>
5)Annihilation L L  —► 7 7  

2
o-/?rei =  —j -  [—8s +  L 2(22m\  — 16m |s — 4s3) -  32i23m£s] . (A. 12)



A p p en d ix  B

A sp on  M odel

Fram pton and Kephart proposed a simple model , the aspon model[26], in 

which the gauge group is SU (3)c x  SU (2)l x U(1)y  x l / ( l ) neti; w ith an additional 

vectorlike quark (lepton) doublet and two singlet Higgs scalars transforming 

nontrivially under the global 17(l)„eil,. Vacuum expectation values of the Higgs 

singlet are responsible for 17(l)nei0 and CP breaking. Mass m atrix  elements are 

complex bu t their determinants are real at the tree level. Therefore, 9 picks up 

a nonzero value only through radiative corrections. Since U (l)neu; is anomaly- 

free, it makes this solution of strong CP problem seem more appealing than  

solutions which involve the  necessarily global anomalous f7(l)j»<j. The particle 

assignments are showed in Table B. The particle content is not unique; U, D, 

N , and L  can be alternatively assigned to be 5)7(2) singlets.

The Yukawa interactions axe given by

\ V 2 ;

+ h m eeR

+  qi,mnUR — $
V

V
+  h a qi,QRXa + H.C. (B .l)

where v /y /2  is defined as the VEV of (f>° and $  as a  = 1,2. The

generation indices are implicit. Usual quarks and leptons acquire their masses
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Table B .l: The fields of the aspon model.

Particle SU (3)c  x SU{2 ) l  x  C/(l)y x C ^ l)™

(3, 2, 1/6, 0)

U R (3, 1, 2/3, 0)
<1r (3, 1, -1/3, 0)

(1, 2, -1/2, 0)

(1, 1 ,-1 , 0)

- ( ? ) (1, 2, 1/2, 0)

H u ,
(3, 2, 1/6, -1)

(3, 2, 1/6, -1)

(1, 2, -1/2, -1)

- u l
(1, 2, -1/2, -1)

Xi>Xa (1, 1, 0, 1)
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through, spontaneous symm etry breaking induced by the  VEV of the double 

Higgs scalar. The new quarks and leptons acquire their mass through a gauge- 

invariant mass of the  form MQlQr - Hence, U (N)  and D (E)  quarks (leptons) 

are degenerate in mass. m u , m j ,  m e, v, h 1,J, and M  are real by the assump­

tion of CP invariance. The VEV’s of x i  and X2  are chosen to be

1 a  j  1<  Xi > =  and <  % 2  > =  -~ ^K* •

Hence CP is broken spontaneously.

Take the lepton mass m atrix as an example, it is in the  form

(B.2)

M i =
m i F 
0 M (B.3)

where F  =  h 1 <  Xi > + h 2 < X2  >•

A fter introducing the new vectorlike lepton doublet, we find th a t there are 

FC N C’s induced by Z  coupling because of the m ism atch of the new and usual 

leptons in the  right-handed sector. Therefore, the  flavor-changing Z  couplings 

are induced by the  terms

£ F c n o  _  ( 1 )  9* L rh^Lr Z^ +  (N r  contribution) , (B.4)
/  COS OW

where the  factor —|  is the isospin of L r  and 5 2  is the SU (2) gauge coupling 

constant. W ithout losing any generality, we assume the  lepton mass m atrix  is 

diagonalized form

M i =

m c 0 0 Fl 1
0 0 f 2
0 0 TTLr f 3
0 0 0 M

(B.5)

Thus Eq B.4 can be rew ritten in term s of mass eigenstates I1' as

£ Fz ° NC = P i J f o J k P  for i  #  J . (B.6)



where X{ = F{/M . Therefore, the FCNC induced by Z coupling is highly 

suppressed by the small ratio of usual to  new leptons.

FC N C’s can also be induced by aspon(A) couplings, which are given by

£F cnc  _  - g AS i X * ^ J l A ,t for i ^ j .  (B.8)

Therefore, FCN C’s induced by A  will be im portant if A  is not too heavy 

compared to Z.



A p p en d ix  C 

T he Cross Sections for C hapter 3

The cross sections for the various subprocesses in chapter 3 are listed below.

gg —> L +L~ and gg —» N N

This production mechanism, by Z and H exchange, is allowed in model 1 

only. The cross sections by Z and H exchange are given respectively by

a,(gg~ L* L - )  = . |fI* ,
20487T sin m y,

■ , !  p  m» 1|J |2  ' ( a i )4 dUo7T Sin 777. jy — 771̂ )  -j- 1

where %/! is the center of mass energy available for the subprocess and /3 defined 

as j3 =  \ / l  - 4 m | /  i  is the velocity of L. I  and J  are given by

I  = 2 Y , ( ± )  f  dx T X dy-----
„ Jo Jo xy — mXV -  m l / s

j  = 3 Y ,  f  dx J d y j - — -T ? -; • ( c -2 )q Jo Jo 1 -  x y s /m ‘

The sum runs over all known quarks and top-quark (m t =  100 GeV is assumed). 

The + (  —) sign in the above equation applies to the quarks with isopins T3 =  

1/2 ( - 1/ 2).
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^Z^gg -*  N N )  and cth{99 —* N N )  are the same as Eq. C .l respectively 

w ith m L  replaced by m # .

qq —» L +L~  and qq —» N N

The cross section for qq —> L +L~ (and qq —* N N ,  see below) is given by

*(<,3 -> L + L -)  =  2nai/3B (a? _  ~  ™.2z )(gqL +  gqR)(g j +  9 r)  \
9J 2 sin2 $w cos2 Bw((s ~  m %)2 +  ^ z m z )  J

, *<x20 K 9 l2 +  9lR ) (B (g qL +  9%)2 +  2 p 2(g j  -  9 r ) 2 )( c  

36 sin4 flw'cos4 5vv((a — m |) 2 +  r | m | )

where B  = 3 —/32 with /3 — yj 1 — 4m 2LN ls  , and g ê is the charge of the  quark 

of type i. 9i  = T3 — qi sin2 9w and gR =  —g,- sin2 9w are the quark and Z  boson 

neutral coupling coefficients. For leptons, the coefficients glL and glR for various 

models are given by

'T 3 — Q1 sin2 9w , model 1, 2 and 3 . v
. — Qi sin2 9w , model 4 ’ \ ‘ )9 l  =

and

9 r  =
T3  — Qi sin 9w , model 2 and 3 . .

. —Q ism 2 9 w ,  model la n d  4 ’ '

where T 3  =  1/2 (—1/2) and Qi =  0  (—1 ) for I = N  (L). For the  process 

qq —► N N , q, =  0 is used in Eq. C.3 because the photon does not contribute.

g q '->  N L *

The cross section of this sub-process is

N L ±y\ = ________ * a 2\Uqql\20 s F ________
( "  '  24 sin ̂ w a s - m ^ y  + T l y m ^ ) ’  ̂ ^



100

where

F  =
0.5 [l +  /02/3 — ((m £ — m ^ ) / i ) 2] , model 1

[l +  /02/3  — ((mj, — 7njy)/j)J +  3mi77iAr/5j , m odels2and3  > (C-7) 
0, model 4

with /? =  [1 — 2(m£ +  mj f ) / s  +  ( (m j — m ^ J / i ) 2]1̂ 2 is again the speed of the

charged lepton L  in the qq1 center-of-mass.

qq —> L+L~A, qq —» iViVA and gg* —> N L A

The am plitude squared of these sub-processes (in model 3 and 4 only), with 

the m om enta pi +  pa -+ P3  +  ? 4  +  Ps respectively, are given by

32(G l2 +  Gr2)(Ai +  Aj +  A n ) , (C.8)

with

A \

A%

A n

((Ps +  Ps)2 ~  m i)2

X [(2p3 • P5 -  2rri3)(pi • p4 p2 • Ps +  Pi • Ps P2 • Pi)

- ( 2 m \  +  m 2A){pi • p3 Pa • P4 +  Pi • P4 Pi ■ Pa)

- 2 m 3m 4 p! • pi (m 2 +  +  p5 • p3)| , (C.9)

A i(p3 p4, m 3 <-► m 4) , (C.10)

 1_______________
((pa + P s ) 2  -  m§)((p4 + P s ) 2  -  mj)
X [—4p 4 • Ps P i • P3 P2 • P3 — 4 p 3 • ps p i P i-  P a

+2p3 • p4 (pi • p4 P2 • P5 +  Pi • ?5 P2 • P4 +  Pi • P3 Pi -Ps  +  Pi • P5 Pi ' Pi)  

+(4p3 • Pa +  2Pa - Ps +  2p3 • p5)(pi • ?3 ? 2  • P4 +  Pi • ?4 Pi ■ P3 )

+ m 3m 4 ( -4 p :  - p s P i - p s + P i -  Pz(2p3 • p5 +  2p4 • p5 +  4p3 • p4 +  2m ^)) 

+2m ^ p3 • p4 pi • p2] • (C .l l)
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In Ai, A-i and A n  the heavy lepton masses are taken to be m 3 =  m 4 =  m^, 

for qq —> L +L ~ A , m 3 =  m* =  mjv for qq —> N N A  and m 3 =  m # , m 4 =  m i  

for qq —> N L A .

Finally, in Eq. C.8, the values of Gi  and Gr are given as follows:

Gl Gr
qq —* L +L~ A  gA (g fa lP  -  qie2/ s ) gA (ig%gqRP  -  g;e2/ i )
q q -*  N N A  9a9l 9lP 9a9l 9rP
qq —* N L A  (model 3) gAg2/2 (s  — m y/)  0
qq —* N L A  (model 4) 0 0

(C.12)

where P  = (g /  cos 6w) /(a  — rn2z ) and g% and g^ in model 3 and 4 are given 

in Eq. C.4 for I =  L  and N .



A p p en d ix  D 

Fortran P rogram m  for C hapter 3

As an example, we give here the Fortran  program  for the heavy lepton produc­

tion pp —* L L  in Chapter 3.

* * * * * * * * *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
Production of heavy lepton in pp collider, 
model =  1 : right-handed singlet 
model =  2 : right-handed doublet 
model =  3 : singlet aspon model 
model =  4 : doublet aspon model 
qi is the charge of the quark in the unit of e. 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

implicit real*8(a-h,m,o-z) 
dimension ppLL(4)
com m on/dum /rts,m l,m h,m z,zw idth,hw idth,sinthw 2 
com m on/m ain /  nmodel 
external fxnq,fxng
da ta  m h,hwidth,m z,zw idth,sinthw2/100.,0.5,91.175,2.48,0.23/ 
rts=17000.
open (l,file= “ppLL.data” )
ndim =2
ncall=1000
nitf=10
ndim =2
do 1 i= l,16
ml=50.0*float(i)
nm odel= l
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glufusn=avgi(ndim )fxng,ncall1nitf)
quafusn=avgi(ndim,fxnq,ncall,nitf)
ppLL(l)=glufusn+quafusn

do 2 1111=2,4 
nm odel=nn 

2 ppLL(nn)=avgi(ndim )£xnq,ncall,nitf)
w rite (l,‘(5el5.5)’) m l,(ppLL(k),k=l,4) 
write(*,‘(5el5.5)’) m l,(ppLL(k),k=l,4)

1 continue
stop 
end
include “avgi.for” 
include “ehlq.for”

double precision function fxng(ww) 
implicit real*8 (a-h,m,o-z) 
dimension ww(9)
com m on/dum /rts1ml,mh,mz,zwidth,b.widtli)sinthw2
xm =4.0*m l**2/rts**2
detl=0.95*0.95-xm
tau= xm + det 1 *ww( 1)
det2=0.95-tau
xl= tau+det2*w w (2)
x 2 = ta u /x l
shead=tau*rts**2
n se t= l
scale2=shead/4.
call ehlq(nset,xl,scale2,uv)dv)se,st,ch,bo,to)g) 
g l= g /x l
csdl ehlq(nset)x2,scale2,uv,dv,se,st,ch,bo,to,g)
g2=g/x2
gluon=gl*g2/xl
if(gl .It. 0. .or. g2 .It. 0.)write (2,*)xl,x2
fxng=gluon>t‘ggLL(shead)*detl>t<det2
return
end

double precision function fxnq(ww) 
implicit real*8 (a-h,m,o-z) 
dimension ww(9)
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com m on/dum /rts)ml,mh,mz,zwidth,hwidth)sinthw2
xm =4.0*m l**2/rts**2
detl=0.95*0.95-xm
tau = x m + d et l*ww( 1)
det2=0.95-tau
xl= tau+det2*w w (2)
x 2 = ta u /x l
shead=tau*rts**2
n se t= l
scale2=shead/4.
call ehlq(nset)xl,scale2,uv,dv)se,st,ch,bo)to,gl)
u l= (u v + se ) /x l
d l= (d v + se ) /x l
c l= c h /x l
s l= s t /x l
a u l= s e /x l
a d l= s e /x l
call elilq(nset,x2lscale2,uv,dv,se,st)ch)boIto )gl)
u2= (uv+ se)/x2
d2=(dv+se)/x2
c2=ch/x2
a2=st/x2
au2=se/x2
ad2=se/x2
up= (u l*au2+ au l*u2+ 2 .*cl*c2)/x l 
dow n= (d l*ad2+ adl*d2+ 2 .*sl*s2)/x l 
if (up .It. 0. .or. down .It. 0.) then 
write (2,*)xl,x2 
endif
£xnq=(up*qqLL(l,sbead)+down*qqLL(2,ahead))* detl*det2
return
end

double precision function qqLL(i,s) 
implicit real*8 (a-h,m,o-z)
com m on/dum /rts)m l,m h)mz,zwidth)hwidthlsinthw2
common /  m ain /  nmo del
pie=3.1415926
costhw2=1 .-sinthw2
if (i .eq. 1) then
qi=2.0/3.0
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ti=1.0
endif
if (i .eq. 2) then 
q i= - l.0/3.0 
ti=-1.0 
endif
scale2=s/4. 
qcd2=0.2**2 
a e m = l.0/128. 
as=alphas(scale2,qcd2) 
beta=Sqrt(l-4*m l**2/s)
B=3.0-beta**2
if (nmodel .eq. 1) then
gel=-1.0+2.*sinthw2
ger=2.*sinthw2
endif
if (nmodel .eq. 2 .or. nmodel .eq. 4) then
gel=-1.0+2.*sinthw2
ger=gel
endif
if (nmodel .eq. 3) then
gel=0.
ger=0.
endif
gql=ti-2.0*qi*sinthw2
gqr=-2.0*qi*sinthw2
zpro=(s-mz**2)/((s-mz**2)**2+zwidth**2*mz**2)
sigl=qi*s*zpro*(gql+gqr)>i<(gel+ger)/8.0/sinthw2/costhw2
sig2=beta*s**2
K=(B*(gql+gqr)**2+2.*beta**2*(gql-gqr)**2)
sig2=sig2*(gel**2+ger**2)*K
sig2=sig2/256./sinthw2**2/costhw2**2*zpro/(s-mz**2)
qqLL=(4.*pie*aem**2/9.0/s)*(0.5*beta*B*(qi**2-sigl)+sig2)
qqLL=qqLL*0.389d6
return
end

double precision function ggLL(s) 
implicit real*8 (a-h,m,o-z)
com m on/dum /rts1ml,m h,mz,zwidth1hwidth,sinthw2 
complex*16 ah,az
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pie=3.1415926
mw=mz*sqrt(1.0-sinthw2)
scale2=s/4.
qcd2=0.2**2
£iem=l.0/128.
as=alphas(scale2,qcd2)
beta=sqrt(l-4*m l**2/s)
hpro=s**2/((s-mh**2)**2+hwidth**2*mli**2)
ahr=real(ah(s))
ahi=dim ag(ah(s))
AI=9.0*(ahr**2+ahi**2)
azr=real(az(s))
azi=dim ag(az(s))
AJ=4.0*(azr**2+azi**2)
sigz=beta*(aem*as*ml)**2*AJ/(2048.*pie*sinthw2**2*mw**4)
V=(4608.*pie*sinthw2**2*mw**4)
sigh=beta**3*(aem*as*ml)**2*AI*hpro/V
ggLL=(sigz+sigh)*0.389d6
return
end

double precision function alphas(scale2,qcd2)
implicit real*8 (a-h,m,o-z)
pie=3.1415926
mb2=4.8**2
mt2=100.0**2
d=25.0*dlog(scale2/qcd2)
if (scale2 .It. mb2) go to 1
d=d-2.0*dlog(scale2/4.0/mb2)
if (scale2 .gt. mt2) d=d-2.0*dlog(scale2/4.0/m t2)

1 alphas=12.0*pie/d 
return 
end

complex* 16 function Ah(s) 
implicit real*8 (a-h,m,o-z) 
dimension x(2) 
complex* 16 rm l,phi(2) 
rm l=(0,1.0d0) 
p ie=3.1415926 
mb2=4.8**2
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mt2=100.0**2
x(l)=4 .0*m b2/s
x(2)=4.0*m t2/s
do 2 i= l,2
if (x(i) .gfc. 1.0) then
phi(i)=-(asin(1.0/sqrt(x(i))))**2
else
yl=1.0-sqrt(1.0-x(i)) 
y2=1.0+sqrt(1.0-x(i)) 
phi(i)=0.25*(dlog(y2/yl)-rm l*pie)**2 
endif 

2 continue
U =x(2)*(1.0+(x(2)-l.)*phi(2)))
ah = 0 .5 * (x (l)* (l.+ (x (l)- l.)* p h i(l))+ U
return
end

complex* 16 function Az(s)
implicit real*8 (a-h,m,o-z)
dimension x(2)
complex*16 rm l,phi(2)
rm l=(0,1.0d0)
p ie= 3 .1415926
mb2=4.8**2
mt2=100.0**2
x(l)=4.0*m b2/s
x(2)=4.0*m t2/s
do 2 i= l,2
if (x(i) .gt. 1.0) then
phi(i)=-(asin(1.0/sqrt(x(i))))**2
else
yl=1.0-sqrt(1.0-x(i)) 
y2=1.0+sqrt(1.0-x(i)) 
phi(i)=0.25*(dlog(y2/yl)-rm l*pie)**2 
endif 

2 continue
az=0.5*(l.+x(l)*phi(l))+0.5*(1 .0+x(2)*phi(2))
return
end



A p p en d ix  E

A pproxim ating the  
R enorm alization-G roup Equations o f  
M inim al Supersym m etry

The m inim al supersymmetric model has remarkable predictive power. One 

inputs, at the grand unification scale, five param eters:[35] the gaugino mass 

param eter M , the top-quark Yukawa coupling ht , the scalar mass-squared 

param eter mo, the Higgs mixing param eter 7 7 1 4 , and the A  param eter. The 

renormalization-group equations (RGE’s) are then used to evolve down to the 

electroweak scale. One can then extract the masses of the top quark, W  and Z  

bosons, the gluinos, the two charginos, the four neutralinos, the twelve scalar 

quarks, the nine scalar leptons, the three physical neutral Higgs scalars , the 

charged Higg scalar, as well as all of the couplings, mixing angles, etc.

As a result of this predictive power, a flurry of papers appears whenever new 

experim ental da ta  become available. The four-dimensional param eter space 

(the weak scale determines the fifth param eter) m ust be scanned, and the 

RG E’s solved for each point in the param eter space. Since this involves a large 

am ount of computer tim e, approximation schemes for the solution of the RG E’s
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can be quite useful.

One such scheme was proposed by Kounnas et al.[36]. They found an 

approxim ation which gave analytic formulas for the low-energy param eters 

in term s of the param eters which were input a t the unification scale. This 

approxim ation has since been used by many authors[37]. At the  tim e of their 

work, it was widely believed th a t the top quark had been discovered w ith a 

mass of about 40 GeV, and they stated explicitly th a t their approxim ation 

was valid for masses in th a t range. It is now known that the  top quark is 

m uch heavier[38]. We examine the validity of their approxim ation for heavier 

top-quark masses.

Consider the RG E’s for two of the param eters of the m inimal supersym- 

m etric model, the difference between the mass squared of the scalar top and 

th a t of the scalar up, A =  — rriq, and the top-quark Yukawa coupling:

dA h\ „
i t  ~  2ir2 M ' 

dht K%
i t  167T2

where t  =  In ( p / Mw)  and

7-1 16 o o 2 13 2 « .  2
Fh =  - y 5 s  “  3g2 ~  +  6At ,

Fm  =  TOq, +  mcrs +  m 2H2 + A u m l . (E.2)

Here, we use the notation of Ref. [35] for the scalar mass-squared param eters. 

These equations can be trivially integrated to give

h * x ) - w * w ) =

A(M iv) -  - 2  (E.3)

Fk , E .l)
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Note th a t A  (M y) =  0.

The approxim ation of Ref. [36] consists of using the approxim ation

/•In (Afx/A'fvv) _ /,ln(iWjc/Miy)
J  h\{t)<f>{t)dt =  < (̂0) J  h \(t)d t  (E.4)

in Eq. E.3. This means th a t the only integration to  be performed is the in te­

gration of h \  from M w  to M x\  this integral will then give all of the relevant 

mass-squared param eters, as well as ht itself. Solving iteratively, the integral 

can then be determined from the Yukawa coupling. As a result, no integrals 

need be evaluated numerically (see Ref. [35] for expressions).

The rationale for using the approximation of Eq. E.4 is th a t the  Yukawa 

coupling is a very rapidly decreasing function of t, and thus most of the  contri­

bution of the  integral on the left-hand side of Eq. E.4 comes from small t, and 

thus if <j>(t) is not too rapidly changing, the approximation should be valid. It 

was argued in  Ref. [36] th a t the approximation is valid for top-quark masses 

below 50-100 GeV. Many of the detailed numerical results of Refs. [35]-[37] 

depend on this approximation (although most of the qualitative features do 

not).

To examine the validity of this approximation, we will consider three cases:

(1) the  calculation of the Yukawa coupling at M w , (2) the calculation of the 

difference between the low-energy mass-squared param eters of the th ird  gen­

eration and those of the first (or second) generation, and (3) the calculation of 

the ratio of the vacuum expectation values of the Higgs fields (which leads to 

all the scalar masses, top-quark mass, etc.).

We first examine the result of the Yukawa coupling. Here, there are no free 

param eters-given ht at M x ,  one can determine ht at M w- We have calculated
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Figure E .l: Given the Yukawa coupling a t M x, the Yukawa coupling a t M w  can be found 
in two wayB: (1) using the renormalication-group equations and (2) using the approxim ation. 
The ratio  of the  results of the second method to the results o f the first is p lotted as a  function 
of the Yukawa coupling a t Mw-



112

h t(M w ) in term s of ht(M x )  in two ways: (1) solving the RGE numerically, and

(2) using the formulas given in Refs. [35] and [36]. In Fig. E .l , we have plotted 

the  ratio of the results of the two m ethods as a function of ht{M w )• Keeping 

in m ind th a t the top-quark mass probably never be m easured to much be tte r 

th an  10%, we see th a t the analytic form ula gives good results for all reasonable 

values of the Yukawa coupling.

However, the form ula is not, in general, useful unless one can also extract 

the mass-squared param eters. We now examine the RGE for the difference 

between the first- and third-generation mass-squared param eters A  =  m,qi — 

ttIq . We have chosen this quantity since rriq can be found analytically (in term s 

of integrals over gauge couplings which can be explicitly solved); the difference 

A  is independent of the gauge couplings. Here, the calculation does depond 

on several of the input parameters; we will give a few representative samples. 

In Fig. E.2, we have plotted the ratio of the result for A calculated using the 

above approxim ation to tha t calculated numerically from the RG E’s. We see 

th a t the approxim ation is not , in general, very accurate. However, it does 

not have to be. The value of A in m ost models ranges from 20 to  60 GeV. 

Experim entally, it will be difficult to m easure scalar quark masses (or splitting) 

to  am accuracy much be tte r than  about 20 GeV (recall th a t the cross section 

for scalar production just above threshold rises very slowly). As a result, 30% 

accuracy will always be sufficient, and in many cases, even accuracy of a factor 

of 2 in A  would suffice. The approxim ation typically does give results which are 

accurate to  w ithin a factor of 2, and also typically over estim ates the  splitting. 

We conclude th a t the approximation will give a reasonable qualitative estim ate 

of the size of the splitting, but tha t a precise quantitative estim ate, which
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approaches the  resolution of a typical experiment, will not be possible w ithout 

solving the RG E’s numerically.

Finally, we turn  to the accuracy of the approximation for calculating the 

ratio of the vacuum expectation values of the two Higgs bosons: tan/3 =  v2jv \ .  

This ratio  is essential in finding the top-quark mass, given the Yukawa cou­

pling, the  scalar quark masses, the various Higgs-boson masses, the chargino 

and neutralino masses, etc. Here, we cannot show how the approximation be­

haves as a function of ht since only a small range of ht gives (for a given set of 

the other param eters) acceptable masses; rather we give results for a few rep­

resentative values. One might expect the approximation to be most suspect in 

this calculation. The reason is th a t the value /3 is extracted from the quadratic 

m ass-squared param eters in the potential: sin 2/3 =  -f- m 2), and the

value of m \  is very sensitive to the contribution of ht to  its RG E’s, and a small 

change in m \  can give a large change to sin 2/S. Even more im portantly, the 

W -boson mass is very sensitive to the value of m \  and m \  and thus the overall 

scale of the masses will be sensitive to changes in m \. The results, for several 

representative values of the param eters, are shown in Table E. The top-quark 

mass is calculated from the  relation m ^ / M ^  =  (2/i2/y 2) sin2 /3. We see th a t 

although the calculation of tan/3 using the approximation is very inaccurate, 

the prediction of the top-quark mass is fairly close (since it is proportional to 

sin/3 not tan/3), especially for fairly light top quarks. As the top-quark mass 

increases, however, the prediction value begins to deviate significantly. As a 

result, the  range of Yukawa couplings which give acceptable electroweak sym ­

m etry breaking can be determ ined accurately using the approximation, bu t 

the acceptable range of top-quark masses cannot be determined with any sig-
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Figure E.2: The splitting between the thiid-generation scalar quark mass and that of the 
other two is calculated in two ways: (1) using the renormali2ation-group equations and (2) 
using the approximation. The ratio of the results of the second method to the results of 
the first is plotted as a function of the Yukawa coupling at Mw- Several choices of input 
parameters are used: for the upper line, £ =  2.5, A  =  0.5, and m^/mo =  1.4; for 
the middle line, £ =  M/mo =  1.0, A  =  0.5, and 7714/m o =  0.5; for the lower line,
£ =  1.0, A  =  1.0, and 7714/7710 =  1.4.
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nificant accuracy. A much more serious discrepancy occurs in the calculation 

of scalar quark masses. This is due to the sensitivity of these masses to the 

overall scale, which, as noted above, is very sensitive to  the precise value of 

m \. Here, we see th a t the approximation gives very inaccurate results.

W hat would happen in more complicated models? One can easily add 

extra gauge bosons to the analysis, since their contributions can be determ ined 

analytically. If one were to  add singlets, additional term s can be added coupling 

those singlets to the Higgs doublets. The j3 functions for these couplings depend 

on the gauge couplings and the Yukawa coupling. Again, the approxim ation 

will work well given the Yukawa coupling, but will not if one is given the top- 

quark mass. In addition, if these couplings are large, the approxim ation is 

suspect. Note also th a t in string models, the Yukawa couplings are of the same 

order as the gauge couplings, and thus the approximation will be likely to have 

similar difficulties in these models.

In finding the phenomenological implication of the minimal supersym metric 

model, it is necessary to integrate many coupled renormalization-group equa­

tions from the grand unified theory or Planck scale down to the weak scale. 

In many papers, an approximation has been used in order to avoid having 

to numerically integrate the  equations for many points in a m ultiple dimen­

sional param eter space1. In this chapter, we have looked at the validity of this 

approximation, in light of the fact tha t top quark is much heavier than  was 

believed when the approximation was first proposed. It has been shown that 

the calculation of the weak-scale Yukawa coupling is quite reliable, th a t the

l Of course, in a  serious appem pt to extract the predictions of any model, one would need 
to  do an exact one-loop treatm ent (if not a two-loop); but one could hope to  use the 
approxim ation to  get a  rough idea of the region of param eter space in which to  explore.
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Table E .l: For five representative values of the parameters. M , A , 7 7 1 4 , and ht,  we cal­
culate the ratio  of vacuum expectation values t a n  jd =  V j/vx, the top-quark mass, and the 
scalar quark mass using both the renormalization-group equations and the approxim ation. 
All masses are given in GeV.

1 2 3 4 5
M /m 0( Mx ) 2.5 2.5 1.0 1.0 1.0

A ( M X ) 0.5 0.5 0.5 0.5 1.0
m 4/m 0(M x) 0.5 1.4 0.5 1.4 1.4

ht(M w ) 0.41 0.54 0.63 0.86 0.92
(tan/3 )RGE 11.4 13.5 7.4 3.5 4.1
(tan/3)app 3.1 20.1 2.4 1.7 1.6
(mtop)RGE 72 94 108 144 155
(^ltop)app 69 94 100 130 135
(m<?).RCE 560 430 270 385 170
(t71<j)qpp 190 170 130 100 75

calculation of scalar quark mass splitting is qualitatively reliable but quantita­

tively suspect (depending on the precision needed), and tha t the  calculation of 

the weak scale, top-quark mass, Higgs-boson masses, etc., are very inaccurate. 

Thus, to  extract the low-energy predictions of the m inimal supersym m etric 

model, there appears to be no substitute for a full numerical analysis.
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