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Abstract

Physics that might lie beyond the standard model is discussed, with spe-
cial emphasis on two possible extensions of the standard model: multi-Higgs
extension and the fourth generation leptons.

In multi-Higgs-boson extensions of the standard model, tree-level flavor-
changing neutral currents exist naturally, unless suppressed by some symmetry.
For a given rate, the exchanged scalar or pseudoscalar mass is very sensitive
to the flavor-changing coupling between the first two generations. Since the
Yukawa couplings of the first two generations are unknown and certainly very
small, bounds which rely on some assumed value of this flavor-changing cou-
plings are quite dubious. One might expect the size (and reliability) of the
Yukawa couplings involving the third generation to be greater. In this study,
we consider processes involving 7’s and B’s, and determine the bounds on the
flavor-changing couplings which involve third-generation fields. The strongest
bound in the quark sector comes from B — B mixing and in the lepton sector,
surprisingly, from y — ey. It is then noted that flavor-changing couplings in
the quark sector are related to those in the lepton sector in many grand unified
theories, and one can ask whether an analysis of rare 7 decays or rare B decays
will provide the strongest constraints. We show that rare B decays provide the
strongest bounds, and that no useful information can be obtained from rare 7
decays. It is also noted that the most promising decay modes are B — Kur
and B, — p7, and we urge experimenters to look for rare decay modes of the
B in which a 7 is in the final state.

If a fourth generation of leptons exists, both the neutrino and the charged
lepton must have masses in excess of 45 GeV. It is certainly possible that
the neutrino will be the heavier of the two. In this case, the charged lepton
can only decay through mixing with lighter generations, and might thus be
extremely long-lived. First, we investigate the implications of very long-lived
charged leptons for cosmology and astrophysics. We calculate the bounds on
the mass and lifetime of long-lived charged particles which arise from terres-
trial experiments, from astrophysical searches for the decay products and from
cosmology. The strongest bounds come from the requirement that the decay
products not unacceptably distort the cosmic microwave background. Phe-
nomenological implications are also briefly discussed. Second, we study the
production cross-sections and signatures for the SSC and LHC. Four models
are considered which contain heavy leptons beyond the three families of the
standard model. Two are fourth-generation extensions of the standard model
in which the right-handed heavy leptons are either isosinglets or in an isodou-
blet; the other two are motivated by the aspon model of CP violation. In all
these models, the heavy neutrino can either be heavier than, or comparable
in mass to, the charged lepton leading to the possibility that the charged lep-

ton is very long-lived. The detection methods for these heavy leptons are also

discussed. .
xi



BEYOND THE STANDARD MODEL:
NEW SCALARS AND NEW LEPTONS



Chapter 1

Introduction

The standard model of the electroweak interactions has been extremely suc-
cessful phenomenologically, and yet the large number of free parameters, as
well as the large number of unanswered questions; has led to a strong belief
that the standard model is incomplete. For this reason, there have been many
studies of possible extensions of the standard model. Before discussing the pos-
sibility of new scalars and new leptons, I will first review some of the concepts
of the standard model[l].

The standard model is built from three types of particles: gauge bosons,
fermions and Higgs. The best understood are the gauge bosons, whose cou-
plings to matter fixed by the principle of gauge invariance. The standard-model
gauge group is SU(3) x SU(2); x U(1)y, so we know that there must be a total
of twelve gauge bosons: eight gluons, three weak vector bosons and one photon,
as shown in Table 1. These particles have all been experimentally detected,
and must form part of any extension to the standard model.

The next part of the standard model is the Higgs sector, in which the
electroweak gauge group SU(2)r x U(1l)y is broken to the U(1l)q of electro-
magnetism. The Higgs sector contains a complex doublet ®, whose quantum

numbers are shown in Table 1. 2



Table 1.1: The fields of the standard model.

Particle SU(3) x SU(2) x U(1)
G, (8,1,0)
we (1, 3,0)
B# (la 1; 0)

d=(g) (3,2, 1/6)
up (3,1, 2/3)
dy (3, 1,-1/3)
2 = ::L (1) 2) ‘1/2)
e(lﬂ ’ ) (1) 1) '1)

_[ ¢
-(%)]  auwn

The complete gauge-invariant Lagrangian including the scalar fields is then
L= ‘CGauge + ‘CHigg- + Ly ukawa - (11)

The gauge-field Lagrangian is determined by the gauge symmetry,

Loauge = —%G;,G““" - %W;,W““" - %BWB“”
+4dry*Dyuqr + 1ipy* Duur + 1dry* Dyudr
+ily# Dl + iegy* Dyer (1.2)
where
G, = 08.G%-08,G%+g:f*™GhG:
Wa = 8,W2-8,Wa+ g WEW)
B, = 8,B,-8,B,, (1.3)
and

Duq;, = 0uqy, — gsA°Glgp, — igaT*Wigp — igu EBqu ,



i : . , .Y .
Dyup = 0Ouup +19aT*Guyp —ig EB“uh ,

; c D 4 .
D“dia = a“d'R + 1rg3TaG:d'R -_— ngEB“dSR ’

, . N
Dy = 6.l - zggT"W:l‘L — iy ‘Q‘B#I'L ,

. .Y .
Duep = 6“8;2—7'915-3“6;2. (1.4)

In these expressions, the f° and A are the structure constants and color
operator of SU(3), the e*#7 are the structure constants of SU(2), T is the
weak isospin operator, and Y is the hypercharge generator. As we can see
from Egs. 1.3 and 1.4, the gauge-field Lagrangian depends only on the SU(3) x
SU(2)1 x U(1)y coupling constants g3, g; and g;.

The Lagrangian for Higgs field is of the form
Laigss = (Du2)1 (D) - V/(2) (1.5)

where

D, = 8,3 — igs, T°W2® — igl-}zf-B“Q : (1.6)

The Higgs Lagrangian is invariant under SU(2), x U(1)y transformations. The
potential is _
V(®) = —-p?d*d + A(319)% . (1.7)

The most general SU(2) x U(1) Yukawa coupling between the scalar and

fermions is given by
Lyuksws = fOL@er + fM7dup + f9g.2dr + H.c. (1.8)

with the isodoublet & = i7,8*, having hyperchuée Y(8) = ~1.



For positive values of u? and ) in Eq. 1.7, we have spontaneous symmetry

breakdown as the scalar develops a vacuum expectation values (VEV)

<3 >o= ( ov ) with v = (u?/A)2 . (1.9)

vz

Using the polar variables for the scalar fields

®=U"(¢) ( %Iéﬂ ) (1.10)

with U(€) = ezp[ié(z) - 7/v]. Thus the original two complex fields ¢*(z) and
¢°(z) in Tabel 1 are parametrized in terms of four real fields é;(z) and H(z).
Expanding around the VEV point, it is not hard to see that the Goldstone

fields are massless, as required. The mass of the Higgs scalar is given by
Mg =V2p, (1.11)
and the fermion masses are
me = f(°)v/\/§, my, = f(“)v/\/f, myg = f(d)v/\/i (1.12)

The three ‘would-be-Goldstone bosons’ £(z) are ‘eaten’ by the gauge bosons to
form three massive intermediate vector bosons. By substituting < & >; into
the Higgs kinetic energy, the mass terms for the electroweak gauge bosons can
be found. The mass matrix is easily diagonalized; the physical mass eigenstates

are the W, the Z and the photon A:

Z, = cos0,W}—sinb,B,
A, = sin@,W} + cosbyB,

1 .
WE = Wi (1.13)



As usual, the weak mixing angle is given by

g2

cosf, = == (1.14)
Vet + g3
The mass of the W is simply
1
MW = 'é-gz‘l) , (115)
while the mass of the Z is
Mz = ——M (1.16)
2= Cos 6 W ’

The photon, of course, is massless.

The covariant derivatives tell us how the gauge fields couplé to fermions.
From Egs. 1.2 and 1.4, we see that the W¥ couples to the usual charged
current,

Lw = %(amﬂde; +Agyre W) + He. . (1.17)

The photon A couples to the electric charge Q, where @ = T° + }Y,

Ly = B(QL’Y“ QQLA;& - ﬁR’Y“QuRAy - JR’Y“QdRAu

+ QUL A, — Ery*QerAL) , (1.18)
where
e = —192 (1.19)

Vii+al

The Z couples to a second neutral current, specified by the weak charge @z =

T3 —5in?6,Q,

Lz = cozza (7" Q29L.2, — GrY*QzurZ, — dpy*QzdrZ,

+ 1-57“QZZLZu - ER’Y“QZeRZu) . (120)



Although the experimental evidence in support of the gauge boson and the
fermion sector of the standard model is very strong, experimental information
concerning the scalar sector is verj weak. The most important piece of evidence
providing information about this sector is the p-parameter, defined as the ratio
of the neutral current to charged current strength in the effective low-energy
Lagrangian. In the standard model, at tree level, p = 1. If one introduces N
scalar multiplets, ®;, with vacuum expectation values v;, which have isospin I;
and hypercharge Y;, then

L L(L+ 1

N 1v2,.
i:liy;vt

1Y

(1.21)

-~

The simplest method of satisfying experimental value of p ~ 1 is to choose
only representations such that [;(f; + 1) = 3¥Y2. SU(2) x U(1) singlets obey
this restriction, as do SU(2) doublets with ¥ = *1. In chapter 2, we will
consider the simplest extension of the scalar sector-a model with two scalar
doublets of Y = +1. It is often believed that the presence of tree-level flavor-
changing neutral currents in this model is fatal, unless a discrete symmetry
is added, since it requires the exchanged scalar to be extremely heavy. This
follows, however, from the assumption that the flavor-changing coupling is
quite large. Using a more natural value for the flavor-changing coupling, much
smaller bounds were obtained. Unlike previous calculations, we calculate the
bounds on the flavor-changing couplings of an additional scalar for the processes
involving the third generation fields. We have also noted that in most grand
unified theories, the 7 and bottom quark are in the same representation, thus
the flavor-changing couplings in the quark sector are related to those in the
lepton sector. Comparing flavor-changing B decays with rare 7 decays, we can

answer which set of decays give better constraints.



The third sector of standard model ﬁeldg is built from fermions, the quarks
and leptons. Three families of quarks and leptons with quantum number in
Table 1 have been observed, with the notable exception of the top quark.
The family index runs from 1 to 3. From chapter 3, we will work on the
possibility of a fourth generation heavy lepton. If a fourth generation exists,
the lepton L and the neutrino N must both be heavier than 45 GeV. It is
certainly possible that the neutrino can either be heavier than, or comparable
in mass to, the charged lepton. In this case, the charged lepton can only decay
through mixing with lighter generations, and might thus be extremely loné-
lived. In chapter 3, we investigate the implications of very long-lived charged
leptons for cosmology and astrophysics. In the early universe, the relative
abundance of a massive weakly interacted particle species “freezes out” when
the annihilation rate becomes less than the expansion rate. We calculate the
annihilation cross-sections. We also assume that the annihilation cross-section
is subject to unitarity constraints and considered the mass range from 45 GeV
to 100 TeV. Then we calculate the abundance today. If L decays, limits on the
lifetime of a long-lived charged lepton can be found from several sources: direct
detection of the L and direct detection of its decay products. We calculate
the bounds on the mass and lifetime of long-lived charged particles which
arise from terrestrial experiments, from astrophysical searches for the decay
products and from cosmology which arise from the diffuse photon background
(lifetime in excess of 10!2 sec.), and from the requirement that decay products

not unacceptably distort the microwave background radiation (CMB).

In chapter 4, we study the production cross-sections and signatures for the

SSC and LHC. We considere four models which contain heavy leptons for the



experimental detection at the Hadron Colliders. Two models are the fourth
generation extensions of the standard model in which the right-handed heavy
leptons are either isosinglets or in an isodoublet, the other two are motivated by
the aspon model of CP violation (the Aspon model is described in appendix B),
and contain also singlets or vector lepton doublets. We calculate the production
cross-sections for all the processes into heavy leptons, neutrinos and aspon
through quark fusion into a photon or Z (or W), as well as through gluon
fusion into a Higgs or a Z. In all these models, the heavy neutrino can either
be heavier than, or comparable in mass to, the charged lepton leading to tﬁe
possibility that the charged lepton can only decay through mixing, thus L could
be very long-lived. We~ will also discuss the detection of these heavy leptons in
Chapter 4.

At the time when I first started my research work, I also did some straight-

forward work about approximating the renormalization-group equations of

minimal supersymmetry. I will include it in Appendix E.



Chapter 2

New Scalars

2.1 Introduction

Despite the success of the standard model, there have been many studies of
possible extensions of the standard model, ranging from simple extensions such
as additional Higgs doublets to more complicated extensions such as supersym-
metry and technicolor.

One feature that tends to occur in most extensions of the standard model
is the presence of tree-level flavor-changing neutral currents (FCNC’s). In
fact, even in the simplest extension, with just the addition of a Higgs doublet,
such currents will occur. When analyzing such models, virtually all theorists
require that tree-level FCNC’s, in both the quark and lepton sectors, are absent.
This requirement is imposed in different ways; often a discrete symmetry is
added to the model which eliminates these unwanted currents. In fact, many
have examined the effects of virtual particles on one-loop FCNC’s to constrain
physics beyond the standard model , again assuming that this new physics does

not give tree-level FCNC'’s.

The elimination of tree-level FCNC’s often requires additional assumptions.

10
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Why do model builders insist on it so frequently? Many point to the small
value of the K, — Ks mass difference, arguing that any tree-level contribution
must be suppressed by making the exchanged particle very heavy; the small
value of muon-electron transitions (either in g — ey or uN — eN) extends
this argument to the lepton sector. Another reason is more psychological:
the requirement that tree-level FCNC’s be absent led to the prediction of the
charmed quark and to the general acceptance of the standard model, and it is
natural to suppose that it applies to the entire model.

We feel that the assumption of no tree-level FCNC’s may not be as necessary
as generally believed. In a model with an extra Higgs doublet , for example,
it 1s often stated that the mass of the extra scalar must be greater than 100
TeV, to avoid too large a contribution to the Kz — Ks mass difference(2, 3].
This statement assumes, however, that the flavor-changing coupling is as large
as the b-quark Yukawa coupling. A more natural value for the coupling would
bef[4] the geometric average of the d-quark and s-quark Yukawa couplings,
which gives a bound on the exchanged particle mass of 1 TeV. Even that
applies only to a pseudoscalar exchange; for a scalar, the bound is 300 GeV.
Given the uncertainty in the Yukawa couplings of the first two generations,
and the fact that Yukawa couplings in the standard model span six orders of
magnitude, it is not implausible that the coupling would be somewhat smaller,
thus making the bound even smaller. (In many grand unified theories, effective
non-renormalizable interactions at the Planck scale[5] give ~ My Mx /Mp; ~10
MeV uncertainties in all masses, making reliance on the value of the down-
quark Yukawa coupling quite dubious anyway.) In addition, the information

one obtains from this result would apply only to mixing between the first
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and second generations. Since Yukawa couplings in the standard model vary
with mass, one might expect FCNC’s couplings to also vary with mass, and
thus FCNC'’s involving the third generation (Havor-changing B decays or
decays) could be considerably larger. Yet virtually all analyses of the effects of
tree-level FCNC’s in extended Higgs models have only addressed the first two
generations|[6].

In this chapter, we examine all the bounds that arise on flavor-changing
couplings in extended Higgs models from an analysis of rare 7 and B decays.
These bounds will all consist of an upper limit on the couplings (which are
proportional to the exchanged scalar or pseudoscalar mass). The objective here
will be to determine which of the many possible processes are most sensitive

to these decays, and thus offer the greatest chance of success.

We will then note that in grand unified theories, the quarks and leptons are
often in the same representation. This implies that their FCNC’s couplings
could be related. In other words, a 7 to p transition would be related to a
b-quark to s-quark transition. Thus, one will be able to eliminate the b-quark
flavor-changing couplings in favor of the 7 flavor-changing couplings. In the
simplest grand unified theories, the couplings will be equal at the unification
scale. The principle question we will address is: which set of decays (b or
7) will give stronger bounds? In other words, would one be more likely to
detect them in 7 decays or in B decays? The relevance of this question to the
current discussion over whether to build a 7 factory or a B factory is obvious.
Furthermore, by examining the various bounds, we will be able to determine
which processes are most important, and which (in the context of this model)

are not.
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In Sec. 2, we examine the model itself, and discuss the most reasonable
value for the couplings; we also examine the relationship between the flavor-
changing 7 and b-quark couplings. Sec. 3 contains an analysis of leptonic
decays, including three-body decays, radiative decays, and u — e conversion in
nuclei. In Sec. 4, we consider B and B, decays, including three-body decays
(which are sensitive to scalar exchange), two-body decays which are sensitive
to pseudoscalar exchange), as well as B — B mixing. In Sec. 5, our results are

discussed and in Sec. 6, we give our conclusions.

2.2 Flavor-Changing Neutral Currents

We first consider the simplest possible extension of the standard model - the
addition of a Higgs doublet. Since we are interested in neutral currents only,
effects of the charged Higgs field will be ignored. The most general Yukawa

couplings are given by
()‘ijagiLd;R‘ﬁa + Aijb‘Z:Ld;R‘i{’b) +He., (2.1)

where d; = (d' ,s' ,¥'), ¢a and ¢» are complex neutral fields and the A
are arbitrary. Similar terms can be written for the charge 2/3 quarks and for
the charged leptons. In general, the real components of the Higgs fields will

acquire vacuum expectation value v, and v, We can then redefine two new

scalar flelds H and ¢ as

H = cosBoa +sinf¢y, ¢ = —sinfBd, + cosB¢s , (2.2)

where tanf8 = vy/vs. The new fields H and ¢ have real components with

vacuum expectation values v = /v2 + v? and zero, respectively. Note that in
p a b ) p
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the standard model, v = 246 GeV. The Yukawa couplings can be rewritten in

terms of these new fields:
(fidipdipH + gijdi dipd) + Hee. | (2.3)
where the f;; and g;; are still arbitrary. The mass matrix is then given by
M = fiu/V2. (2.4)
When this matrix is diagonalized, we find, in terms of quark mass eigenstates,

[deLdR(\/EH/‘U) + m,EL.SR(\/iH/’U)
+mszbR(\/§H/‘U) + h.'j(i,'[,dj}zcﬁ] + H.e., (2.5)

where again, the h;; are arbitrary. We see that the H field is the Higgs field of
the standard model; the ¢ field is simply an additional scalar which does not
contribute to symmetry breaking or to quark and lepton masses; its couplings
are , of course, completely arbitrary.

For simplicity, we will neglect mixing between the H fields and the ¢ field.
This will not affect our bounds significantly if the mixing is small. If they
do mix, our results for the case of pseudoscalar exchange will be completely
unchanged by any mixing. The reason is that the basis has been chosen so
that H gets a vacuum expectation value, and ¢ does not. In this basis, the
imaginary part of H is the Goldstone boson which gives mass to the Z, and it
does not mix with the imaginary part of the ¢ field. All results we have given
then still hold, since the Z couplings are flavor diagonal.

The scalars will mix, in general. If the mass eigenstates are H; and Hj,

then the couplings to H; are given by

(9vodd + 9y, 35 + 9,,50) Hy cos 8 + (R did;) Hy sin 6 (2.6)
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and the couplings to H; are the same with the obvious replacement of cos § —
—sinf and sin 4 — cos . Suppose we have a process in which both interactions
are flavor changing (such as B — Kur). Then the bound on m, will change

to

L
n[sino’cose ' (2.7)

If one of the couplings is flavor diagonal, then the change is a bit more compli-
cated, but straightforwardly calculated. Note that if the mixing is small, this
gives the same results as before. Since all mixing angles known in the standard
model have cosf > 0.85, we do not expect mixing to give a significant effect,
but one should certainly be aware of the possibility.

Neglecting the mixing, the H field is then identical to the standard-model
Higgs field (with the imaginary component being the Goldstone boson absorbed
by the Z). The complex ¢ field is composed of a scalar ¢, and a psendoscalar

¢p. The couplings of the scalar are given by
hij -
_—;did.'i‘ﬁl ’ (2‘8)

and those of the pseudoscalar by

hij <

Wd‘-‘ysd,-zﬁp , (2.9)
with similar terms for the leptons. For simplicity, we will assume here that the
Yukawa coupling matrices are Hermitian (or at least that the deviations from
hermiticity are small).

These extra scalars will lead to tree-level flavor-changing neutral currents

through scalar exchange. The rate for such processes will generally be pro-

portional to A%h}/m}. It is important to note that some processes, such as
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two body B decays, will only occur through pseudoscalar exchange, and oth-
ers, such as three body B decays, will only occur through scalar exchange.
Some processes, such as T decays, occur through both. This has led to some
misunderstandings in the literature. In the classic work of Shankar(2), many
processes (again, involving only the first two generations) were listed in a table
with the accompanying bound on the scalar mass (assuming the couplings were
all equal to the b or 7 Yukawa coupling). In some cases, the bound refers to the
scalar mass and in some, it refers to the pseudoscalar mass. In processes (such
as p decays) with both, it was assumed that the masses were equal. Although
this was stated early in the text, the table gave the impression that the vari-
ous modes were competing with each other. This is not the case- the process
K — pe for example, only bounds the pseudoscalar mass, whereas the process
K — 7wpe only bounds the scalar mass. Since the masses are expected to be
different, these two processes do not compete with each other. In this chapter,
we will consider bounds on the scalar mass and bounds on the pseudoscalar
mass to be completely separate, and give results for each. In experiments look-
ing for rare decays, it is crucial to keep this distinction in mind when quoting

bounds on scalar masses.

quark
)

We now turn to the value of the coupling constants, h for the charged

—1/3 sector and the corresponding couplings hg;-””" for the lepton sector. Al-
though they are in principle arbitrary, we do have some theoretical guidance.
When citing bounds, experimenters calculate the bounds using couplings of
the order of the gauge coupling; their bound is then cited in the form msh;;/g.
This makes the mass scale appearing in the bound quite large. However, not

only is there no reason to expect these Yukawa couplings to be as large as
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gauge couplings, but there is every reason to expect them to be much smaller.
After all, fourteen of the fifteen Yukawa couplings in the standard model are
orders of magnitude smaller than the gauge couplings, and those involving the
first generation are five orders of magnitude smaller.

What is the most reasonable value for these couplings? Some early authors
[2, 6] chose the following approach: since the most conservative approach is
to take all couplings to be comparable, and since in some sense the heaviest
fermion sets the scale for the whole matrix, we can assume that each element
is given by the Yukawa coupling of the heaviest quark or lepton times some
mixing angle. As we don’t know these mixing angle factors, we set all of them
to 1. Thus, all of the h;; are given by the Yukawa coupling of the b or 7.
Many of the bounds cited in the literature for the mass scale of the exchanged
scalar assume this coupling. This approach was strongly criticized in Ref. [4].
They argued that the assumption that all of the couplings are comparable was
not reliable, since one of the most conspicuous features of the fermion mass
spectrum is its hierarchical structure. They showed that if one assumes that
there is no fine-tuning (in which large terms add together to make a small
term), then there is a small set of phenomenologically sound Yukawa matrices,

and that all of these possibilities lead to Yukawa couplings of the form

R = fari(ar); » (2.10)

where (gy ); is the Yukawa coupling of d;. A similar term arises for the leptons.
In other words, the flavor-changing coupling of the additional scalar to, for
example, the b and s quarks, should be of the order of the geometric mean
of the Yukawa couplings of the b and s quarks. This assumption gives the
observed Kobayashi Maskawa (KM) angles without fine-tuning.
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Although we will keep our results general, we will consider the choice in
Eq. 2.10 to be a “preferred” value, and will also express the results in terms of

this value. To this end, we define

. quark . lepton
quark — 1 fepton = 249 2.11

The early estimates will correspond to 7;; = 1. Substituting Eq. 2.10 into

quark

Eq. 2.11 gives the “most natural value” for the couplings. This value for nj;
is me and that for -r;f;”"’" is \fmm;/m,.

Is there any connection between the flavor-changing neutral-current cou-
plings in the quark sector and those in the lepton sector? In general, there is
not, but one might expect a connection to exist in grand unified theories. In
SU(5), for example, the b and the 7 are in the same representation and have
the same Yukawa couplings (at the unification scale Mx). If one adds a Higgs
5-plet to the model, then the flavor-changing neutral-current couplings in the
quark sector and in the lepton sector will be identical; i.e., the Ay, coupling will
be equal to the h,, coupling, etc. How generic is this result? In models with
a “grand desert”, the b to 7 mass ratio at My (obtained by extrapolating the
observed low-energy va;lue to high energies) is unity; i.e., the Yukawa couplings
of the b and of the 7 are equal at M. If this occurs for group theoretic reasons
[as it does in minimal SU(5) and SO(10)], then FCNC’s couplings in simple
extensions of the Higgs sector will be equal at Mx. Even in many intermediate
scale models, as well as in supersymmetric models, the successful prediction of
the low-energy b to T mass ratio is not significantly affected, thus the equality
of the FCNC’s couplings also should not be. However, in models with family
group symmetries, or in models with much more complicated Higgs structures

[such as SU(5) with 5-plets and 45-plets], one would expect a different relation-
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ship between the couplings, if any. Throughout this chapter, we will assume
that the flavor-changing neutral-current couplings of the quarks equal those of
the leptons at My, as expected in the simplest grand unified theories (GUTs).

If the couplings are equal at the GUT scale, we must renormalize them
down to the electroweak scale. The renormalization-group equation for each
coupling will be of the general form

dhi;

#—cl—p,— = hij(Cyay + C,a,)

where the a’s are the gauge couplings and the C’s are easily calculable coeffi-
cients. In the cases of interest, the &;; will always be smaller than the gauge
couplings (especially smaller than the strong coupling), so the last term can be
dropped. The o, term is identical for both quarks and leptons, so it will drop
out of the ratio. The «, term, of course, only applies to AJ;” vk The remaining
equation is identical to the renormalization-group equation for the conventional
Yukawa couplings in the standard model (under the same approximations). As
a result, the ratio of h?;-‘"k to hﬁ;?'"" should be the same as the ratio of the b
to 7 Yukawa couplings, i.e., the ratio of the b mass to the T mass (see Ref. [7]

for an explicit derivation):

h‘i‘,‘“"k
g T (2.13)

Virtually all of the contribution to this ratio comes from the effects of the
SU(3) coupling.

One minor caveat must be mentioned. In deriving the b to 7 mass ratio in
grand unified theories, one runs the couplings down to Q% = 4m2, since the -

b mass is “measured” by the threshold for b-pair production. Here, we only
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need to run the coupling down to Q? = mj. This introduces a correction to

the right-hand side of Eq. 2.13 which is given by
12/23

[ an(mg) ] / )

o (8md)

The factor of 12/23 is related to the anomalous dimension and 3 function of the

(2.14)

QCD coupling, see Ref. [7] for details. For the range of my4 which is of interest
(40 to 1000 GeV). this factor ranges from 82% to 92%. Since the uncertainty
in matrix elements in b decays is typically a factor of 2, this correction will

be smaller than the uncertainty in the results. We will, nonetheless, include a

quark
5

10% correction in our final results (for each hY;*™"), although for simplicity, we
will ignore it in the text. .
We now can see the advantage of the notation used in Eq. 2.11. Plugging
in Eq. 2.13, we find that
0§ = i (2.15)
As in grand unified theories, this relation should be most reliable for second-
and third-generation fields. We will use this relation (modulo the correction
mentioned in the last paragraph) and express our results entirely in terms of
17,";”“"‘. Note that the only assumption we have made is that the quark FCNC’s
and lepton FCNC’s are identical at some grand unified scale~an assumption
which is true in the simplest grand unified models. Our statement that the

most natural value for 175?’“’" is , /Mm; [ m.,, although plausible, is less reliable?,

and is based on the “no fine-tuning” arguments of Ref.[4].

1Note that we have expressed our results in terms of 11:;’""' instead of pfter™

H since the
“most natural value” for this will not be based on quark masses. The well-known problem
of the SU(5) prediction mq/m, = m./m,, which is presumably solved by the fact that
nonrenormalizable Planck scale interactions (see Ref. [5]) give an uncertainty of ~ 10
MeV in the masses, makes this value much more reliable for second- and third-generation
fields than for first-generation fields, although even for these fields it should not be more

than an order of magnitude off (in the square of coupling).
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Let us summarize the results of this section. In the simplest extension of
the standard model, the addition of another scalar multiplet, one generally has
tree-level flavor-changing neutral currents. If the flavor-changing couplings are
taken to be the same as the b-quark Yukawa coupling, then the resulting lower
bound on the exchanged scalar mass is very large. However, it has been ar-
gued that a more natural value for this couplings is the geometric mean of the
Yukawa couplings of the two quarks (or leptons), which leads to much lower
couplings. We have noted that the Yukawa couplings of the first two genera-
tions are very small and uncertain, and have pointed out that bounds based on
mixing with the third generation should be more reliable. We have also noted
that in many grand unified theories the 7 and b flavor-changing couplings are

identical at the unification scale. When they are renormalized, we find that

uvark le.pton

q _ quark(lepton)
N =G j

, where 7;; is the ratio of the flavor-changing coupling
between the ith quark and jth quark (lepton) to the Yukawa coupling of the
b (7). (This relation has a 10% correction which we include.) This relation will
be used throughout, as we determine the bounds on the 7;; from various rare
decays. The “most natural value” for the 7;; will not be explicitly used, but

should be kept in mind in determining how strong the various constraints are.

2.3 Constraints from Rare 7 Decays

2.3.1 Three-body decays

The flavor-changing interactions of the ¢, and ¢, will lead to lepton-number-

violating T decays, as shown in Fig. 2.1.

There are six rare 7 decays which will occur:
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L ly

Figure 2.1: Lepton-number-violating T decays can occur through exchange of an interme-
diate scalar. [;, ly, and I3 are either electrons or muons. If two identical fermions are in the
final state, an exchange diagram must be subtracted. In some cases, such as 7 — e"’e"p‘,
the process can occur with either l; = p~, [y = e~ andlz =etorly =e~, I3 = p~ and
l3 = et} these two diagrams have different coupling constant dependences and are added.

T—oeeTet T pTut, T eTemput

T upTet T e pTet, T e uTut. (2.16)

The latter two can occur through two different processes; for example, 7 —
e~p~e* can occur either through a Ay, ke, term or through a k. k., term. For

example, the matrix element can be written as

i 1 - - -
M= m_g(u“hepueueheruf + u,h“ueu‘,hm.u.,.) , (2.17)

where we have ignored the momentum dependence of the propagator (since the
scalar mass is so much larger than the momentum transfer). A similar term
will exist from pseudoscalar exchange (with a s in the vertices); as discussed
in the preceding section, since only the lighter of the scalar and pseudoscalar

will contribute much, we are considering the two cases separately. Note that if
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the scalar and pseudoscalar masses were similar, then interference between the
matrix elements would be important. However, the masses come from different
terms in the Higgs potential, and will generally be different; we are assuming
that they are sufficiently different that the interference term will not drastically
change the results. The momentum dependence of the spinors has not been
explicitly shown. Neglecting the mass of the muon, this gives a decay rate of

5
m,

—_——— T (32
W = S Tamd er

1
th + hzehir + 'Z'huhephg-rhpr) . (218)

The rate for psuedoscalar exchange is identical, with m, — m,. The observed

limit on the branching ratio is 3.3 x 10~5. With this limit, we then find that

min(m,, mp)] ¢

1
Nerlew T NeeTlr + 5 ler TeeTeulur < 1400 [ (2.19)

mw

using the definition of 7;; given in the preceding section. Completing the square,

and assuming maximal interference, gives

(2.20)

min(m,, mp)]*
mw '

N2, + neni, < 1800 [

A similar calculation can be done for each of the above six processes. The
results are given in Table 2.1, where we have also include the bound from the
g — 3e process. All experimental bounds in this chapter are from Ref. [8],
unless explicitly stated otherwise.

Note how poor the bounds from 7 decays are. As discussed in the preceding
section, the most natural values for the 7;; are much less than one, and thus
these processes do not give any significant limits, even for a very light scalar or
pseudoscalar. Improvement in the experimental bounds of at least three orders

of magnitude (and generally four or five orders of magnitude) would be needed



Table 2.1:

leptonic decays.

Bounds on the flavor-changing couplings which arise from three-body

The numerical values should be understood as multiplied by
(m, / mw)“[(mp/ mw)‘]. The contribution is the same for scalar exchange and for pseu-
doscalar exchange, and so leads to identical bounds on the masses.

Decay process | Expt. limit | Bound

T —e"e"et |3.8x107° |nini <2000

T o uTpTpt 129x107° | g2 2, < 1600

T—oe e put [3.8x107° 773177:& < 2000

T pp e |38x10° | 0?2, < 2000

T—e pTet |33x107° | nZnZ, +nind, <1800
T— e p pt [3.3x107° |92 2 +19i.02 <1800
p— e eet | 1.0x107% | n2p? < 107°

to approach the interesting region 2. We now turn to radiative decays.

2.3.2 Radiative decays

The flavor-violating couplings of the ¢, and ¢, will also lead to lepton-number-
violating radiative decays of the y and 7, through the one-loop diagrams shown
in Fig. 2.2. One expects that these will give better bounds than flavor-changing
radiative decays of the b, since the latter already occur at one-loop in the
standard model. From electromagnetic gauge invariance the on-shell {; — i3

amplitude is a magnetic transition

M = e, (p')[ig"ouu(A + Bs)lw, (p) - (2.21)

2Even the original assumption of Shanker gave n;; = 1, which will not be probed by
decays. Note, however, that the difference between our assumption regarding the most
natural value of the 7;; and his does make a major difference in interpreting the 4 — 3e
bound. His assumption that the couplings (even for the first and second generations)
are all equal to the 7 Yukawa coupling gives a lower bound on my of about 1 TeV. Our
assumption, discussed in Sec. 2.2, that n;; = /7 /m,, gives a lower bound on m, of
only about 1GeV, i.e., no significant bound at all.
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Figure 2.2: Diagrams which lead to lepton-number-violating radiative decays. If [; and {3
are identical, these diagrams give contributions to anomalous magnetic moment.
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This means that there is no need to calculate the diagrams in Fig. 2.2(b)-(c)
since they are all proportional to #;y*u;, and will be cancelled by the terms
of similar form comes from the diagram in Fig. 2.2(a). As we shall make the
approximation m, = 0, the two invariant amplitudes A and B are equal. We

have

M = Au,(pYig"se (L + 76, (p) (2.22)

Aty (p')(2p - € — may - €)(1 + 5 )ur, (p)

Thus in our calculation of A we need only to concentrate on the p-¢ trem. The

invariant amplitude A is given by

- drk(f'— k+ma) 4 (b= k+ma)
4= ehuhn |- | R T ] e

Here, we have only shown the result when the scalar is in the loop; if the
pseudoscalar is in the loop, appropriate vs’s must be inserted.
First, consider 7 — ey decay. Performing all of the integrations and ex-

pa.ﬁding in powers of m3/m?, we find that the leading term is O(m2/m3) and

get
P = T (p) [ £~ 22w o)
256mima |
4 mdi 1 ?
X [h,,h,,(-§ ~1 )+ Sk + hurkes)| - (224)

Unless there is fine-tuning, the interference terms will be negligible. Ignoring

them, we get the overall decay rate

elm; [4( ”"2)2 2 2 2 32 2 p2] (2.25)
w=—-I—(4(4+3Iln —< hZ_ RS+ RS R+ RS R 2.25
21397Smd m3’ T ¢ HT Cep

Comparing with the standard 7 decay, we find that

2 2 12 hz hz hz hz . 4
4(4+31nm—;)’h"f"+[ eoler X o ‘“] <14[2]"
™y g g mw

(2.26)
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Table 2.2: Bounds on flavor-changing couplings which arise from radiative decays
of the 7 and u. The numerical values should be understood as multiplied by
(m,/mw)‘[(mp/mw)‘]. The bounds for the case of scalar exchange are slightly dif-
ferent from those for the case of pseudoscalar exchange; the number in parentheses gives the
bound when the pseudoscalar mass is used.

Decay process | Expt. limit | Bound

e 3.0 x 107 | (4 + 3lnm2/mI) 0% < 5.5 x 10°(2.2 x 10°)

T — py 5.5 x 107* [ (4 +3Inml/m?)*n2 n2 <1.7x 107(6.8 x 10°)
p— ey 5.0 x 107 | (3 +2lnmf/m?)*n2 n2 < 3.6 x 107%(3.6 x 10~%)

The terms in the square brackets are negligible, compared with the right-hand
side, because of the bounds from three-body decays; from Table 2.1. Dropping
these and expressing the results in terms of the 7;; finally gives the results in
Table 2.2, A similar calculation can be done for the process + — pv.

We can also calculate the process u — ey. Here, the dominant contribution
(by many orders of magnitude) comes when the fermion line in the loop is a

r. The calculation is similar; the matrix element is

2 2,,2 2

3 _ _& MMyurg 3 Mry2

M = 2567¢ mi hurh (2 tla mf)
‘€

e | £- 225wl (2.2)

My
which then gives the bound listed in Table 2.2:

mia a2 2 -4 | Ma(myp) !

Suppose we choose the “most natural” values for the #;;, i.e., 4 = \/mu/m.,
Ner = /Me/m, . Then the bound on m, and m, is 4 GeV.
After this work was complete, chang[9] estimated the two-loop contributions

to 4 — ey. This is motivated by the work of Bjorken and Weinberg[10] who
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showed that certain two-loop graphs may in fact dominate over the one-loop

contribution. The bound is then given by

4
2 2 -7 [ m.(m,)
Nurler < 4.1 %X 10 [—m-w } . (2.29)

Then the limit for m, and m, are above 200 GeV.

Let us restate this point. In the simplest extension of the standard model,
with what we believe to be the most natural values for the additional flavor-
changing couplings, one expects 4 — ey to occur at a rate not much below the
current limit. If the extra scalars have masses about 200 GeV, as one might
expect, then the decay will be observed within the next few years. Note that
here, observation of y — ey doesn’t indicate mixing between the muon and the
electron, but rather between the muon and the tau, and between the electron
and the tau. As we will see later, the bound from this process is the one of
the most severe, and thus this decay may be the first signature of this simple
extension.

Suppose the decay is seen. At that time, all theorists will come up with
their particular models. Is there any way to distinguish between these models?
The clearest way to determine which model is correct, of course, is to observe
additional signatures. Although g — ey is the first signature likely to be
observed, we will see in the next section that there are other signatures in rare
B decays that may not be far behind. First, we consider other lepton-number-

violating processes.

2.3.3 Other processes

It has been pointed out[11] that bounds from muon to electron conversion in

nuclei are very often stronger than bounds from y — ey. The reason is that the
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“exchanged particle” often couples coherently to the nucleus. Here, however,
the bound from muon conversion will be weaker. The reason is that we are
interested in bounds in couplings involving the third generation, i.e., it is still
necessary to have a 7 in a loop; the relevant diagrams simply involve attaching
the nucleus to the photon in the x — ey diagrams. The photon will couple
coherently to the nucleus (the cross section will vary as Z?2), but the loop is
still necessary. We have calculated the rate for muon to electron conversion
in titanium (which gives the strongest bound) and found the bound to be two
orders of magnitude weaker than that from g — ey. We have not included
QCD enhancements, finite-size effects, etc.; should these enhance the rate by a
factor of 100, then muon to electron conversion would give bounds competitive
with g — ey (at least until the latter is improved).

Bounds can also be calculated from the contribution of scalar exchange to
the anomalous magnetic moments of the electron and muon. Nor surprisingly
(since the standard electroweak contribution is too small to have been seen),
these bounds are also much, much weaker than the other processes we have
considered. Finally, one could also consider two-body 7 decays, such as r —
uK?®. These processes will all involve couplings involving the first generation
fields, and are expected to be small; it turns out that the bounds are much

weaker than those from B decays.

2.4 B and Bg Decays

2.4.1 Three-body decays

The flavor-changing neutral-current interaction will also lead to anomalous B

decays. We will only consider semileptonic decays; nonleptonic decays are
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Figure 2.3: Contributions to three-body decays of the B meson. The exchanged particle,
in this case, must be a scalar.

much more difficult to calculate and the experimental bounds are much, much
worse. Of course, some processes, such as B — Ku*u~ occur at the one-loop
level in the standard model, but some, such as B — Ku*r~, do not. In all
cases that we consider, the standard-model processes will occur at a rate far
below the current experimental limit. For example, the process B — K~ u*te~
occurs through the diagram in Fig. 2.3. Unlike 7 decays, this process can not
occur through either scalar or pseudoscalar exchange. The reason is simply
that the parity of the B and the K are the same, and the interaction does not
change the spin, thus only a scalar can be exchanged. (In two-body decays,

only the pseudoscalar can be exchanged, as we will see.)

The matrix element is

heuhnb

M=: - tev,f+(d%) , (2.30)
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where fi(g?) is a Lorentz-invariant form factor which is only a function of
g® = (p—p')%. (Note that another possible form factor, often referred to as f_,
does not contribute because of conservation of the vector current; see Okun{12]
for a discussion.) This form factor can be calculated with the nonrelativistic
approximation of Isgur and Scora[13], which should cause an error somewhat

less than a factor of 2. Their procedure can be outlined as follows.

We can write
f*(g®) =< K~(p")[38|B~(p) > . (2.31)

The nonrelativistic state vectors for the B~ and K~ bosons are given by

[B~(p) >

I

VEms [ £hgs(k) T xalb [-n’:‘—;pa +k, s] >
x|a .g—‘-‘-pg —k,.'s'] >,
L7
K=(P)> = VImx [ dKx(K) T xuwls [%p'x +K, .s'] >
K

x|z | —p% -k’,s’] >, (2.32)

where x,; couples the spins s and 3 to the total spin zero and ¢(k) is the
relative momentum-space wave function. Isgur and Scora chose Schrédinger
wave functions that are appropriate to a Coulomb plus linear potential and

used variational solutions based on harmonic-oscillator wave function:

,33/2
¢"(r) = rexp(=B,7%/2) , (2.33)

734

in which g, is the variational parameter, whose value turns out to be 8, ~ 0.3
GeV. We now compute the Fourier transform of these wave functions and
substitute the result into Eqs. 2.31 and 2.32. Note that the form factor vanishes

if a gammas is present, so that pseudoscalar exchange does not contribute. The



32

result for the form factor is

3/243/2 34, — t)
) = o, mpmr oL LK [-——-—m“( m ] 2.34
where B3 = (B2 + B%)/2 and t, = (mp — mg)?. The decay rate is
huhouOabiembmic (| muxfacvor [ mams ) g
167304 ,rmim3 mump 2v/2mxBek

where erf(x) is the error function [normalized so that erf(co)=1].

Since we know that the lifetime of the B~ is 10~!? sec, we can compute
the branching ratio for the process. The results are identical for all processes
of the form B~ — K~ I, for any two leptons, with the obvious change in the
couplings. If there is one 7 in the final state, there is a phase-space factor of
0.7; if there are two 7’s. the phase-space factor is 0.4. The resulting bound on

the n's is given by (with inclusion of the factor of 20% in the conversion from

,nquark to nl:pton)

"7,2.1-77(2;1, < 7 x 10*(branching ratio)

4
X [&] /(phase ~ space factor) . (2.36)
mw

All we need to do now is to put in the various branching ratios. Note that a
similar calculation can be done for B~ — 7~ll3, with an identical result (with
Mg — My), although the nonrelativistic approximation is a bit more suspect
in this case. Experimental bounds have been given for decays in which the two
leptons are muons and/or eletrons, but no bounds have been cited when one
or both is a 7. Nonetheless, one can make a rough estimate of the bounds from

two processes with have been cited[14, 15]):

(B —ete~X)+ (B — ptu~X)
[(B — all)
(B - ptu~X)
(T — all)

< 24x1073,

< 53x107%, (2.37)
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where the charge of the B is undetermined. For example, if B — Kur occurs,
it will give a signal in the above process 17% of the time (the percentage of
7’s which decay into muons). Consider the first of these bounds. We have
made two modifications to it. First, in extracting their bound, the authors
chose many different possible matrix elements to model the decay, and cited
the one that gave the most conservative bound. Unfortunately, none of these
matrix elements was a scalar. We have chosen to model the decay with a
constant matrix element, resulting in a bound which is a factor of 2 smaller
than the one they cite (virtually all of their choices gave a factor within 10%
of this one). Second, they also searched for B — e*u~X, assumed this was
zero, and used that to check their background calculation. Since 7’s decay into
electrons and muons with equal enthusiasm, we will also get a signal here, so
we have included these data in extracting the bound (they give the number of
events seen). Regarding the second bound, we have not yet seen the detailed
analysis, and will simply take the number at face value. Note that it gives no
information on decays with an electron in the final state. From these values,
we estimate that the limit on B — mey and B — Kep is 1073; the limit on
B — erX is 3 x 1073; the limit on B — u7X is 3.2 x 1074, and the limit on
B — 77X is 2x 1073, The other bounds are given in Ref. [8]. It is important to
emphasize that these bounds involving final state 7’s are only rough estimates,
and should not be considered firm experimental limits. Experimental limits
could be obtained from the above experiments if the appropriate Monte Carlo
calculations were done, and we have not done so. The estimates have been
done to give an idea of the bounds that can be obtained from such decays; we

urge experimenters to determine limits on these branching ratios so that more
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Table 2.3: Bounds on the flavor-changing couplings from three-body B decays. Since only
the scalar contributes, the bound only applies to the scalar mass, and not the pseudoscalar
mass. The numerical values should be understood as multiplies by (m,/mw)*.

Decay process | Expt.limit | Bound

B - Kuu 5x10°° MorToy, < 3

B - mup 5x10~° 773,,7772 < 330
B — Kee 5x10°° nﬁ,n?: < 3.6
B — Tee 5x10™° | nin? <360
B — Kpue 10-3 T):.,.T]:L< 70
B — wue 1073 n2.n, < 7000
Bo Kpr |(3X10°%) [t <30

B — mur (3x10%) | nZni <3000
B — Ker (3 x107°) | ni.n2 < 300
B — wer (3 x 10=°) |53 < 30000
B — KT1 (2x107°) [ nin% <350
B — 1T (2 x 107°) | n2 n?. < 35000
K - mup 2.3 x 107" | nZ,nz, < 200
K — mue 2.1x107* {57, < 0.18

K — wee 1.0x 107" | nZni, <9

precise bounds can be found.

The results are given in Table 2.3. Processes marked with parentheses are
not from firm experimental bounds, but simply our estimate of the bound that
could be obtained from the results in Eq. 2.37. Note that the bounds are much
stronger than the corresponding bounds on 7 decays. Some of the processes,
such as B — Ker, are proportional to the same couplings as in 4 — ey. The
latter bound is so strong that these processes would be unobservable. Other
processes depend on first-generation couplings and are expected to be small.
Perhaps the most interesting process is B — Kur. This decay depends only
on 7,r, which is expected to be the largest flavor-changing coupling. The right-

hand side will reach unity with an improvement of a factor of 30 in the rate.
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B(8,) |45 e

Figure 2.4: Contributions to two-body decays of the B (or the B,) meson. The exchanged
particle must be a pseudoscalar.

This may seem extremely difficult, but the process has never been looked for.
Such an improvement seems quite possible.

These processes all depend on scalar exchange. If the scalar were much
heavier than the pseudoscalar, these decays would be negligible, while 7 de-
cays would still occur. We now turn to two-body decays, which are not only
sensitive to pseudoscalar exchange, but offer much more realistic prospects for

experimental improvement in the bounds.

2.4.2 Two-body decays

Two-body decays of the B and B, mesons occur through the diagram of
Fig. 2.4. Since these mesons have negative parity, the decay can only oc-

cur through a pseudoscalar interaction. As an example, the matrix element for
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the decay B, — eu can be written as

M= ihephab

2 ﬁ,v,,f+(q’) ) (238)

where f.(g*) =< 0|375b| B, >. The form factor can be evaluated by the method

of the preceding subsection?®, and is given by

3/2

Fule®) = Vs (2.39)

so that the decay rate is
hz hz ﬁa mz
_ en'tab¥B'''B
= T (2.40)
The same decay rate (with the obvious change in the subscripts on the coupling
constants) applies to all other processes. With one 7 (two 7’s) in the final state,
a phase-space factor of 0.76(0.36) must be included. This will give a bound for

B - 1113

ni,Me < 3.0 x 10*(branching ratio)

4
X [ﬁ] /(phase — space factor) . (2.41)
mw

For B, decays, one obtains an identical result (the samll mass difference be-
tween the B and B, gives corrections much smaller than the factor-of-2 uncer-
tainty in the form factor), with 2. — 7.

To determine the branching ratio, we compare this rate with the observed B
lifetime. For processes involving 7's, we use the results which followed Eq. 2.37.

This does not work well for B, decays, since the lifetime of the B, has not been

30f course, one could also evaluate the matrix element in terms of the B decay constant.
Since the method of the preceding subsection gives the matrix element almost trivially
(no integrals need to be done), we prefer that method. Comparing the two methods, one
should be able to calculate the B decay constant. This has been done in Ref.[13], with
the result that fg = 130 MeV.
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Table 2.4: Bounds on flavor-changing couplings which arise from two-body decays of the
B and B,. Since only the pseudoscalar contributes, the only bounds apply to mp. The
numerical values should be understood as multiplied by (m,/mw )*.

Decay process | Expt.limit | Bound

B — ee 3 x107° Ne.na. < 1.0
B—eu 4 %107 7}2@3, <1l4

B — up 9x10-° Nauller < 0.3

B, — ee X nema, <3 % 10°X
B, - eu X 7752&7)3,. <3 x10°X
B, — pu 4 x 1073 ne.ni, < 1.2

B er @B x107) |78 < 140

B — ur (3x107%) [nZnf <14
BT (2 x107%) | nini. <190

B, — et X Nartar <4 % 10°X
B, - ut (1.2 x107°%) | 75, < 50

B, =TT (8 x107%) [ 7i 97, < 640

K — pp 6 x 107° NN < 0.02
K= e 22 x 10°° | 77, < 0.0008

K — e 32 x 10°° | nink, <0.0012

measured. However, one expects the lifetime of the B, to be the same as that
of the B, since the standard-model decay proceeds through the weak decay
of the b quark. Thus, we will take the lifetime of the two to be equal. In
determining the branching ratio for the B,, we note that the UA1l result[15]
does not distinguish between B’s and B,’s. We will assume that the relative
production rate for B,’s is a factor of 4 smaller than that for B’s (since the
probability of popping an s pair out of the vacuum is about one-fourth that of
d pairs[16]), and thus the bounds on the B, branching ratio into pu, uT, and
77 is four times as large as that for B’s. Note that no bounds currently exist

for B, — eu or B, — ee.

The results are given in Table 2.4. Processes marked with parentheses are
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not firm experimental bounds, but simply our estimate of the bound that could
be obtained from the results in Eq. 2.37. For the processes B, — ee, B, — eu
and B, — er, there is currently no experimental limit; once a limit X is
determined, the bound given in the third column follows. As in the three-
body case, the bounds from two-body B decays are much strong than the

corresponding bounds from 7 decays.
2.4.3 K - K and B - B mixing

The strongest bounds on scalar- and/or pseudoscalar-mediated tree-level FCNC’s
quoted in the literature come from K — K mixing. We now discuss the con-
straints from this and similar processes.

As discussed earlier, it has generally been recognized that the most stringent
bounds on flavor-changing couplings (involving the first two generations) come
from K — K mixing. Here, this result is extended to include B — B mixing.

A discussion of the calculation of K — K mixing due to Higgs-scalar exchange
can be found in Ref. [4], and references therein. The relevant matrix element
discussed in these papers is < K|(5ysd)(5ysd)|K >, which has a value[3] of
0.0085 GeV3. With a value for the coupling of W, a bound of 1.0

TeV on the mass of the exchanged particle is obtained.

The 45 in the above matrix element shows that pseudoscalar exchange only
was treated in these papers. If one considers scalar exchange, the matrix ele-
ment will be different. It is easy to see why the matrix element with scalars
will be smaller: If one uses the vacuum-insertion method, and inserts the vac-
uum state in the matrix element, then the fact that the kaon is a pseudoscalar

implies that the matrix element for scalar exchange will vanish. The scalar
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matrix element has been calculated(17] and is smaller by a factor of 12. This
will lower the bound on the mass by a factor of +/12. One thus finds that the
bound on the pseudoscalar mass is 1000 GeV, and the bound on the scalar
mass is only 300 GeV.

The weakness of these bounds may surprise those who have always felt
that the bounds from K — K mixing put very stringent constraints on the
mass of flavor-changing scalars. Let us emphasize why this bound is so much
smaller. The main difference is in the choice of coupling. The early authors
chose a coupling equal to the b-quark Yukawa coupling; Cheng and Sher{4]
then argued that choosing the geometric average of the d-quark and s-quark
Yukawa couplings was much more natural and realistic. Finally, the scalar
matrix element is much smaller than the pseudoscalar matrix element, leading
to weaker bounds on the scalar mass. We wish to emphasize that this bound
is highly uncertain, since it depends so heavily on mixing between the first two
generations and on the light-quark Yukawa couplings.

Putting all of this together, we can extract the bound on the coupling:

~1a[me]*
nd, < 9.0x107% {;n—v:] ,

4 ~1 [ma®
N < 1.3x10 [E] . (2.42)

What about the bound on B — B mixing? In the case of K — K mixing, it
was assumed that the contribution due to scalar exchange was not greater than
the standard-model contribution, reflecting the factor-of-2 uncertainty in the
standard-model contribution. The same uncertainty applies to B — B mixing.
The ratio of B — B mixing to K — K mixing is given by

Amp _ R}, < B|(bysd)(bysd)| B >
Amg ~ R, < K|(3vsd)(3vsd)| K >

(2.43)
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Estimating the matrix elements by the vacuum-insertion method, we find[4]

< B|(bysd)(bysd)|B > _ f3 my [m. + mar
< K|(37sd)(3vsd)|K > fpmk lmy+ myl

Numerically, this ratio is 0.9. We will take the ratio of scalar matrix elements

(2.44)

to be the same. We see that the ratio of Amp to Amg is almost entirely due
to the difference in couplings. Taking the observed value of the mass splitting

gives our bounds:

4
7t < 2.0x10°° [ﬂ] ,
mw

Pt < 3.0x1077 [-’1’—]4 : (2.45)
mw

It is interesting to note that our “most natural value” for 7., is \/7T/rn:,
giving 7, = 7.8 x 1078, so that the bounds (in this case) on m, and m, are
60 and 200 GeV, :espectively. These bounds should be more reliable than
bounds from K — K mixing (since they do not involve mixing between the first
two generations), but less reliable than bounds involving mixing between the
second and third generations.

Finally, what about B, — B, bounds? In the standard model, this mixing is
maximal, and adding extra contributions will make no difference. The only way
in which scalar exchange could matter would be if it contributed with roughly
the same magnitude and opposite sign to the standard model contribution.
The uncertainties in both calculations would make any bounds found from this

meaningless.

2.5 Results

Of all of the processes that have been considered , three stand out as giving

very stringent bounds on flavor-changing neutral currents. Those three are
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p — ev, K — K mixing, and B — B mixing. The bounds are given in Eqs. 2.29,
2.42, and 2.45. As discussed earlier, the bound on g — ey arises from a
diagram in which a 7 is on an internal line, and is thus sensitive to the (more
reliable) couplings which mix the third generation, and it is also at the edge
of the most interesting region of parameter spacé. From the tables, one can
see immediately that these three bounds eliminate the possibility of seeing
many other processes. For example, the bound in Eq. 2.45 is much, much
more stringent than that from B — er or B — mer; the bound in Eq. 2.42 is
much more stringent than that from K — ep or K — wep; and the bound in
Eq. 2.29 is much more stringent than that from B — ur, B, — er, B — wur,
or B — Ker.

The bounds from these three processes are so strong, in fact, that one can
use perturbation theory to derive many additional constraints. In a grand
unified theory, the validity of perturba.tioﬁ theory forces all of the 7;; to be
small at all scales between the electroweak and unification scales. This gives
an upper bound on the 7;; at the electroweak scale. A similar calculation for
the top quark Yukawa coupling gives an upper bound on the top quark mass
of 230 GeV, i.e., a bound on the coupling of 1.3. The same bound will apply
here, and thus we have h;; < 1.3, corresponding to 7;; < 45. Combining this
with Eqgs. 2.42 and 2.45, and noting that we are interested in cases in which

the exchanged scalar is heavier than its current limit of 40 GeV, we find
i < 03[72]
nind < 44 [—-—

2 -3 m 4.
nEna, < 24x10 [ﬁ] ,
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m, 14
i, < 2.9x 107 [;;] . (2.46)
This bound must hold for any 1 and j, and is easily seen to be a more stringent
bound than many of the processes in Tables 2.1, 2.2, and 2.3.

Let us now examine the various processes more explicitly to determine
which offer the best possibilities in the future (as well as whether v or B
decays are more likely to be productive). We first consider the case of scalar
exchange.

Consider the various three-body 7 decays. It is easy to see that the bounds
on the six 7 decays in Table 2.1 are much weaker than other processes. In
the order given in Table 2.1, the processes which give better bounds are (i)
B — mwee, (ii) B — Kupu, (iii) Eq. 2.46, (iv) B — Kpe, (v) Eq. 2.46 and
B — Kee, and (vi) B — wup and B — Kpue. Now consider the two radiative
7 decays. The bound from r — ey is weaker than that from Eq. 2.46, and the
bound from 7 — uv is weaker than that from B — K7r. In all of these cases,
the bound from 7 decays is so much weaker that even a slight improvement
in the bound will not help. We conclude that there is no useful information
which can be obtained from 7 decays in these models in which a scalar mediates
flavor-changing neutral currents.

We have already noted that the most useful experiment in improving these
bounds (or finding an effect) is p — ey. Which of the B decays is most likely
to be productive? The decays which stand out here are B — Kee, B —
Kupp, B — Kpr, and B — K77. Using our “preferred” range of couplings,
one can easily see that one needs to reach branching ratios of 3 x 1019, 3 x

10~°, 3 x 1078, and 3 x 10”7, respectively. In the case of B — Kpup and
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B — K77, these branching ratios are below (barely below for the latter) the
standard model (one-loop) branching ratios. Keep in mind, however, that our
“preferred range” is just a rough estimate, and the couplings could easily be
somewhat higher (recall that a factor of 10 increase in a coupling corresponds
to 104 in the rate). The process B — Kpur, however, vanishes in the standard
model, and thus may offer the best (and least ambiguous) hope. Measuring its
branching ratio to a level of a few times 10~ obviously is difficult, although at
a B factory, it may not be impossible.

Next, we consider the case of pseudoscalar exchange. The bound from the
decay r = e~e"et, 1 - pmput, (1o emempt, T o ppTet, T > emppt)
is much weaker than that from the decay B — ee, B — ppu [all the others are
weaker than the bound from Eq. 2.46]. The bound from 7 — e~p~et is
still better than other bounds, however, if one can measure B, — ee to have
branching ratios less than 5%, then this process will set a better bound. It is
hard to imagine that such a large branching ratio would have gone undetected
(there would be many dramatic four electron events at UA1), and it is quite
likely that this bound will be determined in the very near future. What about
radiative decays? Again, the bound from B — 77 in much better than that
from 7 — ey. Similarly, the bound from B, — 77 is more stringent than that
from 7 — pvy. We thus conclude that improvement in rare 7 decays will not
be useful in setting bounds, even in the case of pseudoscalar exchange.

Finally, which of these B decays will be most productive? The decays
which stand out are those of the B, meson into 77, ur, up, and pe. The
branching ratios needed to reach the preferred range of parameter space are

Tx10"7, 8 x 1078, 6 x 1079, and 3 x 10™!?, respectively. Here the rate for
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B, — 77 is well below the standard-model prediction (~ 10~¢), and B, — ppu is
slightly below the standard-model prediction. Again, our preferred range is just
an estimate, and the couplings could be somewhat larger. The most intriguing
decay is B, — ut, which only depends on the single 7,, coupling. Measuring
the branching ratio to get into the preferred range seems difficult,although the
fact that it is a two-body decays with charged leptons may make it detectable

at a B factory.

2.6 Conclusion

The simplest extension of standard model has an extra scalar field. This model
will automatically have tree-level flavor-changing neutral currents, unless they
are suppressed by some additional symmetry. It is often believed that the
presence of tree-level flavor-changing neutral currents in this model is fatal,
since it requires the exchanged scalar to be extremely heavy. This belief, how-
ever, is based on the assumption that the flavor-changing coupling is quite
large. It has been pointed out that using a more natural value for the coupling
(the geometric mean of the Yukawa couplings of the two fields) leads to much
smaller bounds , closer to the range of several hundred GeV. Even this bound,
however, is very sensitive to the precise value of the coupling. Given the un-
certainty in assumptions involving the first generation Yukawa couplings (the
couplings are five to six orders of magnitude smaller than gauge couplings, they
are subject to uncalculable Planck mass corrections, etc.), even this bound of

several hundred GeV certainly should not be considered particularly reliable.

With this in mind, we have calculated the bounds on the couplings of an

additional scalar or pseudoscalar for processes involving the third generation
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fields, which should be considerably more reliable. Since the masses of the
scalar and the pseudoscalar are likely to be quite different, we have considered
the bounds on each separately. The most stringent bound in the quark sector
comes from B — B mixing; using our “most natural” value of the couplings,
one gets a bound of about a hundred GeV on the exchanged scalar mass. In
the lepton sector, the strongest bound comes from y — ey, in which a 7 is
on an internal line. This process is sensitive to mixing between the first and
third generations as well as between the second and third generations (and is
not as sensitive to mixing between the first and second generations, which is
expected to be small). Using our most “natural” value, we get a bound of
about 200 GeV on the exchanged scalar and pseudoscalar masses. Unlike the
case of B — B mixing, however, this process does not exist in the standard
model, and thus the bound will be improved considerably as the experimental
bound is lowered. We thus feel that 4 — ey is the best place to look for mixing
involving the third generation.

In most grand unified theories, the 7 and b are in the same representation,
and thus we expect flavor-changing couplings in the quark sector to be related
to those in lepton sector. We have then asked the question: which processes,
T or B decays, give the strongest bounds? The answer, from Tables 2.1- 2.4,
is clear: B decays. We find no case in which 7 decays give better bounds, nor
in which they are likely to in the near future. The most promising B decays
are B — Kyt and B, — ur . In general, the interesting decays are those
with 7's in the final state. A search for B — ueX would have relatively little
background and could be quite productive; a search for exclusive processes

with a final state 7, while more difficult, could also be quite useful.



Chapter 3

Cosmological Bounds on the Lifetime
of the New Leptons

It is now known that the standard model has thr_ee generations of fermions
with light or massless neutrinos. If a fourth generation exists, its neutrino, as
well as the associated lepton, must be heavier than approximately 45 GeV [8].
This would mean that, unlike the other three generations, the neutrino and
its associated charged lepton have masses of approximately the same order
of magnitude. As a result, there is no particular reason to assume that this
neutrino is lighter than the charged lepton.

The possibility that the fourth generation neutrino, N, could be heavier
than the fourth generation charged lepton, L, has not been discussed in detail.
One would expect the neutrino to decay rapidly into the L and a real or virtual
W. The L, however, could not decay through normal weak interactions, unless
there is mixing between the N and the three light neutrinos. In this case it
would decay as a normal lepton (into a light neutrino and a W), but with an
anomalously long lifetime, longer by a factor of 1/ sin? 4, where 6 is the largest

mixing angle between the N and the light neutrinos. In see-saw models, the

46
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mixing angle is a ratio of masses; in this case, the ratio of the tau neutrino
mass to the N mass is smaller than about 107!, and it is thus plausible that
the lifetime of the L is very long.

If the lifetime turned out to be less than 10~3 seconds or so, detection
would be identical to a conventional heavy lepton. If it is between 10~® and
about 1072 seconds, it would decay (at least occasionally) inside the detectors
at the SSC and would be easily detected. If it is longer than 108 seconds, it
would be effectively stable, and would look like a muon. However, since the
cross section peaks at around the mass, many of the L’s would not be extremely
relativistic. This would cause a time delay in the drift chambers at the SSC,
which could also be detected, as long as a sufficient number of L’s is produced.
The production cross section calculations for heavy leptons(18] indicate that
effectively stable leptons up to about 200 GeV in mass could be detected.
Detection at an electron-positron collider would be very straightforward. The
details of the phenomenology are currently under investigation. In this chapter,
we investigate the implications of very long-lived charged leptons for cosmology
and astrophysics.

What are the cosmological and/or astrophysical implications? Much work
has been done on the effects of very long-lived neutrinos. In this case, bounds
on the mass and lifetime arise from two sources. First, the current density
of neutrinos could be so large that it exceeds the critical density. Second, if
the neutrino decays into a state with photons or (to a good approximation)
charged particles, then the photons associated with the decay could either be

directly detected, would affect the cosmic microwave background, or would
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affect nucleosynthesis®!. These bounds are all reviewed in detail in the book of
Kolb and Turner (KT)[19].

In the case of a long lived charged lepton, similar effects can occur (and
the decay will certainly involve charged particles). Another type of bound,
not relevant for the case of long-lived neutrinos, is that the charged lepton (if
sufficiently long-lived) may combine with electrons to form anomalously heavy
isotopes of hydrogen, which can also be directly searched for. In addition,
solid state and plastic track detectors could detect the lepton directly. We now
consider these bounds in detail. Throughout, we will assume that there is no
net asymmetry between positively charged and negatively charged leptons.

In the early universe, the L’s will be in thermal equilibrium with all other
particles. As the universe cools, the temperature will drop below the mass of
the L, and their number density will be suppressed by a Boltzmann factor.
The number density continues to fall, until a temperature is reached at which
electroweak interactions are too slow to keep them in thermal equilibrium (i.e.
the expansion rate of the universe exceeds the annihilation rate), and then the
number density “freezes out”. For particles with masses above a few GeV,
the freeze-out temperature is considerably smaller than the particle mass. The
number density today is then easily determined, since the particle effectively no
longer interacts. The calculation of the relic abundance, given the annihilation
cross section, is a straightforward (if tedious) chore, outlined in KT. We first
need to determine the annihilation cross section.

The possible annihilation diagrams are given in Fig. 3.1. As discussed

by Enqvist et al.[20], for m; > mw, the dominant process will be W pair-

1 Astrophysical bounds, such as constraints from supernovae, are irrelevant for neutrinos
above a hundred MeV.
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Figure 3.1: Diagrams contributing to the annihilation of long-lived charged leptons.
Croased diagrams have not been explicitly shown.
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production. Enqvist et al. considered the annihilation of very heavy neutrinos.
In this case, the diagrams are similar except that here we have s-channel anni-
hilation through photons as well as Z’s, and the t-channel annihilation can go
into 47 and yZ as well.

Since the annihilation rate is given by I' = npov, where ¢ is the annihilation
cross section and v is the relative velocity, one sees that if the cross section is
proportional to s — 4m2, the relative velocity is small and the contribution is
small. As noted by Enqvist et al.[20], this means that the contribution from
Higgs exchange is small, unless the Higgs mass is fairly close to twice the lepton
mass (in which case the large resonant cross section overcomes the small relative
velocity). Diagrams with s-channel Higgs exchange will thus generally give a
small contribution, as will diagrams in which Higgs bosons are produced (these
processes generally contribute much less than W-pair production). Even if the
contribution were not small (due to resonance), these diagrams will increase
the cross section. Increasing the cross section will decrease the abundance.
Since we are interested in upper bounds on the abundance, the effect of Higgs
bosons will be to strengthen our bounds 2. We will thus not include diagrams
with s-channel Higgs exchange and with Higgs pair production.

If the annihilation cross section decreases, the abundance (for a given life-
time) increases. If one requires that the annihilation cross section obey unitar-
ity bounds, then it has an upper limit, and thus the abundance of a stable par-
ticle will have a lower limit. The further requirement that this abundance not

overclose the universe has been used [21] to put an upper bound of O(200) TeV

3There could be destructive interference, but the graphs of Enqvist et al.[20] show that this
is at most a factor of two or so in the current abundance, and this is smaller than the
uncertainty in the Hubble constant.
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on the mass of any elementary, stable particle. Throughout, we will assume
that the annihilation cross section of the L’s is subject to unitarity constraints,
and thus will not consider masses in excess of 100 TeV. Once the L mass ex-
ceeds 1 TeV, its coupling to the Higgs boson is nonperturbative~furthermore,
above a TeV, the cross section calculated from the diagrams of Fig. 3.1 exceeds
the unitarity bound. We will thus use the larger of the unitarity bound and
the diagrams of Fig. 3.1 for the annihilation cross section®. One should be
cautioned about our results for masses between 1 and 100 TeV ; above a TeV
it isn’t even clear that the L can be treated as an elementary particle.

Partial cross sections and the total cross section are shown in Fig. 3.2 and
Fig. 3.3 respectively as a function of the lepton mass. Complete expressions
for the cross section may be found in the Appendix A. The only arbitrary
parameter is the heavy neutrino mass, which we have taken to be twice the
lepton mass (its value has very little effect on the total annihilation cross
section)®. As in the case of Enqvist et al.[20], the dominant process is into
W pairs, if kinematically accessible. Unlike their work, however, the diagram
with s-channel Z exchange is not very important. This is because in the limit
of s — 4m}, only the vector coupling of the lepton to the Z enters. Since
the vector coupling of charged leptons is very small, the diagram is suppressed
relative to the same diagram for neutrino annihilation. The axial coupling does

enter next order in v?; we have calculated this correction and found it to be

3For lepton masses near a TeV, the Yukawa coupling is large and diagrams involving
s-channel Higgs exchange may not be negligible, even if the relative velocity is small,
Nonetheless, these processes will still be much smaller than the W-pair production cross
section, and as stated above, including them will slightly strengthen our bounds

4The top quark mass has a very small effect on the cross section; we have taken it to be
100 GeV.
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Figure 3.2: Partial cross sections for L+ L~ annihilation as a function of the L mass in
the non-relativistic limit. For t-channe! annihilation into W's, a neutrino mass of twice the

L mass was used.



53

10°®

S (GeV'?)

107

108

10‘9 gl L sl - - L g sl L I W N N W W}

100 1000 1¢0* 10

Figure 3.3: The total cross section for L* L™~ annihilation as a function of the L mass.
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negligible. However, also unlike the case of neutrino annihilation, we do have
an s-channel photon exchange diagram, which dominates the annihilation. We
thus still find annihilation into W pairs to be the dominant process, but find
s-channel photon exchange to be the most important diagram.

Given the annihilation cross section, the abundance today (ignoring decays)
can be calculated. Explicit formulae for the abundance in terms of the cross
section can be found in KT[19]. In this case, since W-pair production through
s-channel photon exchange dominates, the annihilation is predominantly s-
wave, and the calculation of the relic abundance is very similar to that of
Dirac neutrinos (the major difference is in the numerical value of the cross
section). The result for the abundance today is given in Fig. 3.4. We see that
if the lepton mass is below the threshold for W pair production, the abundance
increases with mass (since the annihilation cross section decreases with mass).
Above the threshold, W-pair production dominates rapidly, and the abundance
decreases with mass, until the unitarity bound becomes important. These
results are qualitatively similar to those of Enqvist et al.[20], who first noted
the importance of considering W-pair producation. The requirement that the
abundance not overclose the universe only gives the very weak bound of 100
TeV on the lepton mass®. At this mass, as discussed earlier, it is unclear that
L can be treated as an elementary particle.

If L decays, its abundance today is, of course, smaller by a factor of
exp(ty/r), where ty is the current age of the Universe and 7 is the L life-

time. What about the decay products? Since we are interested in fairly long

51t was originally believed that the bound was closer to 1 TeV, but this ignored W-pair
production. Enqvist et al. argued that W-pair production eliminates the bound altogether,
then Griest and Kamionkowski noted that the unitarity limit gives a very weak bound of
100 TeV.
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Figure 3.4: The value of 2A? is given as a function of the L mass. Here, (] is the ratio of
the L density to the critical density, and A is the Hubble constant in units of 100 km/s/Mpc.
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lifetimes, all pions, muons, etc., will decay into relativistic electrons, neutrinos
and photons. If the L's do not overclose the universe (if stable), then neither
will the decay products, since their energy density redshifts immediately after
they are produced (thus the net energy density will decrease). Limits can be
found from two sources: direct detection of the L and direct detection of its
decay products. We first consider direct detection of the L.

In the work of Dimopoulos, Eichler, Esmailzadeh and Starkman(DEES)[22],
they considered the possibility that the L could be the dark matter. As we
have seen, this requires the mass of the L to be approximately 100 TeV. Still,
the bounds of DEES can easily be carried over to the case in which the L’s do
not dominate the mass density. They considered many different processes: (a)
the failure to find (pL~) or (eL*) bound states in water, (b) the effects of the
L on nucleosynthesis, (c) the effects on galaxies and stars, (d) the effects of L
annihilation on the heating of gas giant planets, (e) detection in cosmic ray de-
tectors, (f) radiation damage caused by L impacts on electronic components of
satellites and (g) direct detection by plastic track detectors. Their results were
generally given in terms of the mass of the charged lepton and its abundance;
they were interested in the case in which the abundance gave closure density.
In the mass range up to 10 TeV, the strongest bound comes from searches for
heavy isotopes of hydrogen in water. The L*’s will combine with electrons
to form a substance chemically identical to heavy hydrogen; those arriving at
the Earth will stop, primarily, in the ocean and will form an unusual water
molecule (LHO). DEES show that the number density of LHO relative to H,0
is approximately 8 x 107'8(TeV /mf )(tacc/yr)lL, Where 2, is the time period

over which LHO accumulates in the ocean and is not removed by geological or
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chemical processes, and {1, is the current density of L’s in units of the critical
density. Smith{23] has searched for anomalously heavy hydrogen in water and
finds, over the mass range up to 1200 GeV, that this ratio is less than 10~%,
Over the mass range between 1200 GeV and 10 TeV, the limit is 10~%4, From
this, we find the bound

mg > 10%® TeV Qg (3.1)

for the mass range up to 1200 GeV, and
mg > 10" TeV Oy (3.2)

for the range up to 10 TeV. Here, we have taken {,.. to be approximately
10% years, which is the typical time scale for geologic processes to completely
mix the oceans. Above 10 TeV, the strongest bound comes from plastic track

detectors, and is given by
myg > 3.5 x 10178(p/10™% gem™3) TeV , (3.3)

where @ ~ 10~2 is the velocity of the L. They do note that the plastic track
detectors have not yet been calibrated at this value of 3, and this might weaken
the bound by a few orders of magnitude. In our case, a few orders of magnitude

in the bound will be irrelevant. We find the bound to be
mg > Tx10° Qg . (3.4)

The value of , is given by the result in Fig. 3.4 multiplied by exp(—ty/7);
thus for a given mass, we find an upper bound on the lifetime. Note that since
the lifetime bound only varies logarithmically with the mass, and since we will
be plotting the lifetime on a logarithmic scale, a change in these bounds by a

couple of orders of magnitude will not significantly affect the results.
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What about direct detection of the decay products? Since the L is charged,
there will generally be photons associated with the decay. Following KT, we
will assume that the decay produces a single photon with energy mr /2. While
this assumption is reasonable for radiative neutrino decays, it is not particularly
good in this case. Instead, one expects a number of photons to be produced,
each with an energy somewhat smaller. Nonetheless, bounds on fluxes and
energies of diffuse photons are typically uncertain by an order of magnitude or
two (see Fig. 5.5 of KT), and thus we will make the same assumption. Bounds
arise from two sources. First, the photons could be detected directly in the
diffuse photon background. These bounds will apply to photons produced
after the cosmic microwave background (CMB), i.e. to lifetimes in excess of
10*3 seconds. Second, if the photons are produced before the CMB, then the
energy density in the decays must not significantly distort the CMB and the
entropy produced in the decays must not change the successful nucleosynthesis
predictions.

Since terrestrial experiments preclude the possibility of a lifetime in excess
of the age of the Universe for the L, we first consider the case in which the
L’s decay after recombination (formation of the CMB at 10'* s) and before
the present era. The photons produced should appear in the diffuse photon

background. The present flux of such photons(19]is

dF, mnpc
0= (3.5)

where ny = Qpp./my is the number density that the L's would have if they

were stable. The observational limit on the flux is given by[19]

dFy, _ (IMeV\ . 1
—_—_ < | — . .
- S ( 5 )cm sr™ls (3.6)
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Each photon is produced with an energy of mp/2 (see above discussion),
which then redshifts by a factor of (1 + z) =~ (ty/7)*/°. Thus, using E =
(mp/2)(1 + 2) in Eq. 3.6, and Eq. 3.5 for the flux in Eq. 3.6, we find that

T < 8 x10% s(QLh?) 1S, (3.7)

From the values of §); given in Fig. 3.4, we see that the right-hand side of
Eq. 3.7 is always less than 10'® seconds. Since the bound is only relevant
for lifetimes in excess of 10'® seconds (the photons would become part of the
microwave background if they were produced earlier), we see that all lifetimes
in excess of 10! seconds are ruled out. It should be noted that if the lifetime
were much longer than the age of the Universe, then this bound, as well as the
following bound from the CMB distortion, would not apply (since there are no
decay photons), however terrestrial experiments preclude that possibility.

For lifetimes between 108 and 10 seconds, one must ensure that the pho-
tons produced do not unacceptably distort the microwave background radiation
(CMB). If one requires that the electromagnetic energy density dumped into

the vacuum not be greater than a fraction é of the CMB, then we must have

pr_ Qpe o (3.8)
P P
which gives us the bound
9x10%s ,
T < W& . (3.9)

What value should one choose for §? KT choose § =1 in determining bounds
on radiative neutrino lifetimes, i.e. they simply required that the neutrino not
dump more energy into the background than was already there. More recently,

however, COBE has shown that the CMB is a pure black-body distribution to
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unprecedented precision. The COBE results were used in Ref. [24] to place
a limit on the fraction of electromagnetic energy that could be added to the
microwave background as a function of the time of injection, which was taken
to be between 10® and 103 seconds. Their results thus give us § as a function
of 7, which can be input into Eq. 3.9. To within a factor of two, their result
for § is given by .01 for redshifts up to 2.2 x 108 (corresponding to lifetimes
above 2 x 10° seconds) and it rises rapidly to unity by a redshift of 5 x 108
(corresponding to a lifetime of 4 x 10° seconds). This rise occurs because
photons emitted at this early epoch are still able to thermalize and approach a
Bose-Einstein distribution. We have thus taken § to be .01 for lifetimes above
2 x 10° seconds, rising rapidly to unity for lifetimes of 4 x 10° seconds. As
can be seen from Ref. [24], the precise value for § may differ from this by
up to a factor of two, however the uncertainty in the Hubble constant will
overwhelm this discrepancy. For shorter lifetimes, it is easy to see that bound
from nucleosynthesis will not significantly constrain leptons lighter than 100

TeV.

Our results are plotted in Fig. 3.5. We see that cosmological limits are
much more stringent than terrestrial bounds, and that there is little hope for
terrestrial experiments to approach the cosmological bounds. However, the
cosmological bounds do not eliminate lifetimes much in excess of the age of
the Universe, and the terrestrial limits are thus necessary to preclude that
possibility. The COBE data provides the strongest bound, by far, on the
lifetime. More precise data on the cosmic microwave background could improve
the bound significantly; in Ref. {24}, it is noted that more precise measurements

at wavelengths greater than 1 cm will improve § by a factor of 10. In our case,
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Pigure 3.5: Final results for the limits on the mass and lifetime of charged leptons. The
limits in the upper line arise from searches for heavy hydrogen in water and from plastic
track detectors. The limit restricting the lifetime to be less than 102 seconds arises from
failure to directly detect the photons emitted in the decay in the diffuse photon background.
The strongest bound, the lower line, comes from failure of the decay photons to appreciably
distort the cosmic microwave background. The latter two limits would not eliminate the
possibility of lifetimes much in excess of the age of the Universe (10" seconds), but the
bound from terrestrial searches does so. For masses in excess of 10° GeV, the bounds will
continue, until the ! = 1 line is reached; for masses in excess of 10% GeV, this line is at
1032-3¥ geconds for a mass of 10¥ GeV.
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this would lower the peak in the CMB distortion curve of Fig. 3.5 by two orders
of magnitude; further improvements could bring the bound, across the entire
mass region, down to approximately 107 seconds.

With these results, we can speculate as to plausible values for the L lifetime.
As discussed above, the lifetimeis a typical weak interaction lifetime divided by
sin? 4, where 8 is the mixing angle between the fourth generation neutrino, N,
and the lighter neutrinos. What are reasonable values for this mixing angle? If
the mixing is confined to the neutrino mass matrices, then one might be guided
by see-saw models for neutrino masses and mixings. In this case, sin? § is given
by the ratio of the tau neutrino mass to the N mass. For v, masses between
10~* eV and 10 eV, this gives an L lifetime of approximately 1071 — 10-%
seconds, which is an extremely interesting value for detection at the SSC. It is
not an interesting value for cosmological purposes, however. One could modify
the see-saw mechanism to generate smaller values of sin?# (which vary, say,
as the square of the mass ratio); these would give lifetimes approaching our
bounds. More natural, however, might be to assume that there is no mixing
at all in the mass matrices. In this case, the only source of mixing would
come from grand unified and/or Planck mass effects. This might give a typical
mixing angle of My /Mpi, leading to lifetimes in the cosmologically interesting
range. Thus, the long lifetimes considered in this chapter are not completely
implausible.

Should the lifetime exceed a few years, one can also think about the possible
uses of these leptons. Since only a few hundred thousand can be produced
annually (at best) at the SSC, they could not be used as an explosive device.

They also could not be used to catalyze fusion reactions; even at one catalysis
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per picosecond, a million L’s could only generate about 100 kilowatts. Since
these objects would have the mass of a large nucleus, and would orbit deeply
inside the 'nucleus, they could teach us a good deal about nuclear structure.
Obviously, the first step is to find them at the supercollider; studies of the

signatures are discussed in next chapter.



Chapter 4

New Leptons

4.1 Introduction

Since the accurate measurement of the parameters of Z° decay(25], it has been
known that there exist only three light neutrinos, v., v, and v,, coupling to the
Z° in the manner prescribed by the standard model. The simplest supposition
is then that the lepton sector comprises these three light neutrinos and their
charged counterparts, e, p and 7. However, it is quite possible that heavy
leptons exist. Such heavy leptons, which shall be designated as L and N, for
the charged and neutral varieties respectively, will be a target of investigation
at the next generation of particle colliders, most notably the Superconducting
Super Collider (SSC) and the Large Hadron Collider (LHC). In this chapter
we specify four simple models which contain such heavy leptons and calculate
their production cross sections at the SSC and LHC. The first two models are
fourth-generation models where the right-handed L and N are doublets and
singlets respectively under electroweak SU(2). The third and fourth models
are inspired by the aspon model[26] of CP violation.

Many analyses of heavy lepton production have previously been done[18].

64
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Our work differs from Ref. 18] in two respects. First, it is now known[25] that
the masses of any additional neutrinos must be greater than 45 GeV. It is thus
possible that the mass of the heavy charged lepton is degenerate with or smaller
than that of its neutral counterpart. In particular, the charged lepton is mass
degenerate with the heavy neutrino at lowest order in models with vector-like
leptons; it can be lighter in models with right-handed singlet leptons. These
considerations lead to the possibility that the L could be very long-lived, per-
haps not decaying inside a detector. To our knowledge, no discussion of this
possibility has appeared. Second, if the right-handed L and N are in an SU(2)
doublet, the GIM mec}_lanism breaks down, leading to the flavor changing decay
L — 7Z. Discovery of such heavy leptons would revolutionize our understand-
ing of the fundamental fermion spectrum. If they exist, it would be natural,
by consideration of quark-lepton symmetry, to expect further quarks, beyond
the top quark, to occur also, but in the present thesis we shall not consider
this possibility.

The layout of this chapter is as follows: Sec. 2 discusses the four models
containing heavy leptons; in Sec. 3 are remarks on how detection of the heavy
leptons depends crucially on their lifetime which could lie within a wide range,
depending on the details of the mass spectrum; the production cross section

formulae are presented in Sec. 4; finally, the results are provided in Sec. 5.

4.2 The Models

In the standard model, each of the three generations of quarks and leptons
mimics the first generation in which the leptons transform under SU(2) x U(1)

as one doublet (v, e”) with Y = -1 (Q = T3 + }Y) and a singlet e* with
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Y =42

It is still unclear whether the v; (1 = e, p, T) are strictly massless or
if there exist nonzero neutrino masses. Evidence for the latter comes from
at least two sources: the solar neutrino measurements which suggest a solar
neutrino flux below that predicted by the standard solar model[27]; the re-
cent gallium experiment results from SAGE(28] and GALLEX(29] lend some
support to the deficit established at the Davis chlorine experiment{30] and at
the Kamiokande water detector[31], suggesting neutrino oscillations between
massive neutrinos. A popular oscillation mechanism is that of MSW[32] where
the electron neutrinos partially convert to muon neutrinos within the interior
of the Sun. Another evidence for a massive neutrino is the 17 keV neutrino
claimed in the Simpson experiment and later experiments, but not reproduced
in other efforts[33]. All in all, none of these claims clearly disproves that the
first three neutrinos are massless. On the other hand, we know from Z° decay
measurements[25] that any fourth neutrino coupling normally to Z° must be
heavier than Mz/2 ~ 45 GeV.

In our first model (model 1), we shall suppose that the fourth generation

leptons fall into the following representations

<]LV) )LR)NR7 (41)
L

similar to the three light families except for the inclusion of the right handed
neutrino Ny which allows a Dirac neutrino mass.

The second model (model 2) will instead assume representations

(£),- (%), 42
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They are called vector leptons because both the left- and right-handed compo-
nents transform identically under SU(2);.

Our third and fourth models are inspired by the aspon model[26] of CP
violation. To solve the strong CP problem, the aspon model incorporates
vector quarks at a scale of a few hundred GeV. Only colored states contribute
to the relevant anomaly so that leptons are not required in solving the strong
CP problem but by quark-lepton symmetry we may expect that such a model
possesses also vector leptons. The vector quarks may be in SU(2) doublets or
singlets. So there is a corresponding choice for the heavy leptons. Our third
model (model 3) will therefore contain vector lepton doublets as in Eq. 4.2
above, appended to the aspon model of Ref. [26]. Finally, the fourth model

(model 4) will contain singlets
Ly, Np, Lr, Ng, (4.3)

added to the aspon model with SU(2)-singlet vector quarks.

4.3 Detection

In this section, we first note that L could be very long-lived. If it is lighter
than the N, and if both N and L do not mix with the standard model leptons,
then L would be absolutely stable. This would be a cosmological disaster;
cosmological and astrophysical arguments from last chapter limit the lifetime
to under 100 years. In the models we are considering in this chapter, it is
quite natural to have mixings, and thus the lifetime of L is model dependent.
Knowing the lifetime is crucial for experimental detection: if it is under 103

seconds, the L will decay at the vertex; if it is between 10~?% and 10~® seconds,
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it will decay in the middle of the detector; if it is greater than 108 seconds, it

will pass through the detector, and will look like a muon.

Let us first consider model 1. If the NV is heavier than the L, and if it does
mix with a lighter neutrino (taken to be v,), the L lifetime will be increased
by a factor of sin? 4 ( where 6 is the mixing angle) over the lifetime it would
have if the N were massless. For a 100 GeV L, this gives a lifetime of O(10~2°
8)/sin? §. What are plausible values of sin?§? In see-saw type models, sin? 4
is given by either m,/my or by m,, /my, depending on whether the mixing
can occur in the charged lepton sector or whether it is confined to the neutrino
sector. In the former case, the lifetime is O(107!8) seconds; i.e. L will decay
at the vertex. However, in the latter case, the lifetime is O(10~®) seconds, and
could easily be long enough that the L would pass through any detector.

In the case in which the Lr and Ng form a doublet (model 2 and model
3), the masses are ;iegenerate at tree level. The L and N will acquire a mass
splitting from radiative corrections. This gives a splitting of 0(200) MeV; the
precise splitting depends on masses and on the particle content of the model.
This splitting gives a lifetime between 10~° seconds and 10~7 seconds, L will
decay inside the detector.

One can thus see that all three lifetimes: (a) decay at the vertex, (b) decay
in the detector and (c) decay outside the detector are all plausible, and each
possibility must be considered.

If L decays before leaving the vertex, the analysis of the detection will be
the same as that for a conventional heavy lepton, with one crucial exception.
The heavy L’s transform differently from the standard model charged leptons

in models 2, 3 and 4, and the GIM mechanism will break down, leading to
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flavor changing decays such as L — 72.

By neglecting the mass of 7, one finds the ratio (for mg > mz):

ML r2) | AGULE (= 2+ mjmy)omd — )
T(L — v, W) cos?8w|UL,, |2 (mE — 2m¥, + m}/m¥ ) (mi —m¥,) "

(4.4)

An estimate of the value of Uy, can be made by analogy with similar GIM
violation in the aspon model(26] which gives Uy, = (m,/mp)z,, where z.,

gives the ratio of M34 to My, in the lepton mass matrix. Ur,, is expected to be

- of order of \/;,. /my or \/ ™My, /my. In the former case, one finds the branching
ratio to be of the order of a few percent; in the latter it is nearly one hundred
percent. Even if we take a small branching ratio, the background for a particle
decaying into ZT would be extremely small (especially if a vertex detector
could pick up the tau). A major problem with the conventional heavy lepton
detection has been backgrounds; the L — 7Z signal, even with a branching
ratio as low as 1%, may be easy to pick up.

If the decay is in the middle of the detector, but away from the vertex, it
should be easy to detect. An apparent muon will suddenly decay into missing
energy and a real or virtual W. The backgrounds should be negligible.

If the decay is outside the detector, the L will be indistinguishable from a
muon. The production cross section, as will be shown in the next section, is
large enough that thousands of L’s could be produced annually at the SSC,
but it is small compared with muon pair production, so the “extra” muons
would not be noticed. One possible method of detection would be time-of-
flight. Many of the L’s will have 8 < 1 ( see Sec. 5 for do/df), and if timing is
installed in the detectors, the L’s could be seen. It is interesting that 1000’s of

L’s could be produced, but that they could be missed if timing is not present.



70
4.4 Production Cross Sections

In this chapter, we consider the production processes for pp — L*L~, NN,
NL*, aswellaspp — LTL~A, NNA and NLA where A is the aspon in models
3 and 4. The cross sections and Feynman graphs for all relevant subprocesses
are given in Appendix C and Fig. 4.1 respectively. The Fortran program for
the process pp — LL is given in Appendix D as an example. The total cross
sections for all the above processes are computed by using EHLQ[34] parton
structure functions (set 1). Previous calculations of heavy neutrino production
have been done (see Ref. [18]); we include these cross sections for completeness
and because, if the N is heavier than the L, each N will immediately decay into
an L and a virtual W. This will increase the production rate of L’s. As noted
in Ref. [18], if the N’s are Majorana particles, some of the L-pairs produced
will be like-sign.

For model 1, gluon fusion production (see Fig. 4.1(a)), by Z and H ex-
change, is more important because the cross sections are proportional to the
square of the lepton mass. For the vector lepton models (models 2, 3 and 4),
gluon fusion will not contribute, since vector leptons do not couple to H and
a vectorlike coupling to the Z gives no contribution due to Furry’s theorem.
Thus, the only contributions for the pair production of leptons in these models
are by quark fusion (see Fig. 4.1(b)) in which the cross sections fall off faster.

In addition, an aspon A can be produced through the bremsstrahlung effect
from the heavy leptons (see Fig. 4.1(c)). For completeness, we include also the
production cross sections for pp — L*L~A, NNA and NLA at the SSC and
LHC.
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Figure 4.1: Feyman diagram for the process (a) g9 — L*L~ and NN, (b)
g — L*L~, NL* and NN, and (c) g§ — L*L~A, NLAand NNA
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As we discussed in the previous sections, a long-lived charged lepton can
only be discovered if there are timing facilities in detectors. A long-lived
charged lepton is more likely to appear in the vector lepton doublet models
such as models 2 and 3. The velocity distribution, do/dB, where 8 is defined
as the ratio of the momentum to the energy of L in lab-frame, has been calcu-

lated at the LHC and SSC energies for my = 100,300 and 500 GeV; the results

are reported at the end of the following section.

4.5 Results and Conclusions

The results for the production cross sections at the SSC (/s = 40 TeV) and the
LHC (/s = 17 TeV) are displayed for the different final states of pp collisions in
Figs. 4.2-4.6. From these figures one can estimate easily the number of events
per collider-year using the projected luminosities of the two machines (SSC:
103 em~3~1; LHC: 10 cm™%"!) and the corresponding annual integrated
luminosities 10 fb~! y~* and 100 fb~'y~? respectively.

For heavy L or N, the cross sections for pp — L*L~, NN are largest for
model 1 because of the dominant gluon fusion contribution (with Z and H
exchange) in which cross sections are proportional to the square of the masses;
there is no such contribution for vector leptons (models 2, 3 and 4) because both
the Z and H diagrams (Fig. 4.1(a)) vanish, as discussed earlier. In particular,
for pp — L*L~ (Fig. 4.2) and M, = 400 GeV there are predicted to be 10,000
events for model 1 per year at the SSC and the LHC. For models 2, 3 and 4
(where the gluon fusion contributions vanish), there are 1,000 or 2,000 events
for model 2 and 3; and 500 or 1,000 events for model 4 at the SSC or the LHC

respectively. Similar rates are predicted for pp — NN (which is not allowed in
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Figure 4.2: Total cross sections for heavy lepton production pp — L* L~ as a function
of the charged lepton mass ™, for model 1(solid lines), model 2 and 3(dashed lines) and
model 4(dotted lines). The upper and lower sets are for the En, = 40 TeV and E.,, = 17
TeV. my = 100 GeV is assumed.
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Figure 4.3: Total cross sections for the process pp — NN as a function of the heavy
neutrino mass my for model 1(solid lines), and model 2 and 3 (dashed lines). The upper
and lower sets are for Eqn = 40 TeV and E,, = 17 TeV. myg = 100 GeV is assumed.
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Figure 4.4: Total cross sections for the process pp — N L for model 1(solid lines), and
model 2 and 3(dashed lines) for (a) my/mg = 0.5, (b) my/m = 1, (c) my/myp = 2.
The upper and lower sets are for Eo, = 40 TeV and B = 17 TeV. mpyg = 100 GeV is
assumed.
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Figure 4.5: Total cross sections for the process pp — L+ L~ A(A = aspon) as a function
of aspon mass m 4 for (a)model 3 and (b) model 4 with mz = 50 GeV(solid lines) and
myr = 150 GeV(dashed lines). The upper and lower sets are for E, = 40 TeV and
Eem =17 TeV. my = 100 GeV and the coupling of the aspon ct4 = 0.1 are assumed.
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Figure 4.6: Total cross sections for the processes pp — NNA in model 3 for
mr = my = 50 GeV(solid lines) and mg = my = 150 GeV(dashed lines). The
upper and lower sets are for E, = 40 TeV and Eqy, = 17 TeV. myg = 100 GeV and
the coupling of the aspon ag4 = 0.1 are assumed.



00}

00¢

00&

(429) "w

007y

Figure 4.7: Total cross sections for the processes pp — NLA in model 3 for
mp = my = 50 GeV(solid lines) and mz = my = 150 GeV(dashed lines). The
upper and lower sets are for Eoqn = 40 TeV and B = 17 TeV. myg = 100 GeV and
the coupling of the aspon a4 = 0.1 are assumed.
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Figure 4.8: The velocity distributions 1/0(do /df3) for the process pp — LL in model 2

and 3 at (a) Egn = 17 TeV, and (b) Ecn = 40 TeV and for my = 100 GeV(solid line),
300 GeV(dashed line) and 500 GeV(dotted line) respectively.
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model 4) although the photon contribution vanishes. Finally, the cross sections
for pp — NL*, which are allowed by W exchange, can be read off from Fig. 4.4.
Although the luminosity is ten times higher at the LHC, the number of heavy
leptons produced in general is just two times that at the SSC.

Note that although the cross sections for models 2, 3 and 4 are considerably
smaller, these models do have an L — 7Z decay mode, and thus possibly a
much cleaner signature, if it decays in the detector. For pp — NL¥ in which
only the W exchange is allowed, models 1, 2 and 3 give similar cross sections.

For pp = L*L~A, NNA and NLA with an aspon in the final state, the
cross sections, which are shown in Figs. 4.5-4.7, are about 100 times smaller
than without an aspon, but are still within the range of detectability of SSC
and LHC. Model 3 (heavy lepton doublets) gives a slightly larger cross section
than model 4 (heavy lepton singlets) because the former allows certain W and
Z couplings. ‘

If timing facilities are installed in detectors, the 8 distribution functions
1/o(do/dB) would be relevant. In Fig. 4.8, we plot the § distributions for
pp — L*L~ in the vector doublet models (models 2 and 3) for m; = 100,
300 and 500 GeV at the LHC (Fig. 4.8(a)) and the SSC (Fig. 4.8(b)). For a
muon, the distribution is, of course, a delta function at § = 1; whereas the
B distribution spreads out to 8 < 1 for a heavy lepton with an enhancement
near § = 1. From Fig. 4.8, we conclude that in searching for a long-lived
charged lepton, time-of-flight is a valuable method because of the characteristic
spreading to 8 < 1; at SSC this is viable up to at least mp = 500 GeV. Thus
timing in the SSC detector would be particularly useful. Actually, the designers

of the detector at the LHC have been using our results. They are aware of the
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of the possibility of missing these leptons and will arrange the hardware and

software to have the capability of looking for them.



Chapter 5

Conclusion and Future Work

Two extensions beyond the standard model were discussed.

The first extension of standard model involved an additional Higgs-boson.
This model will automatically have tree-level flavor-changing neutral currents,
unless they are suppressed by some additional symmetry. It is often believed
that the presence of tree-level flavor-changing neutral currents in this model
is fatal, unless a discrete symmetry is added, since it requires the exchanged
scalar to be extremely heavy. This follows, however, from the assumption that
the flavor-changing coupling is quite large. Using a more natural value for the
flavor-changing coupling, much smaller bounds were obtained. Unlike previous
calculations, we calculated the bounds on the flavor-changing couplings of an
additional scalar for the processes involving the third generation fields which
should be considerably more reliable. Since the masses of the scalar and the
pseudoscalar are likely to be quite different, we have considered the bounds on
each separately. From the processes 7 three-body and radiative decays, muon-
electron conversion in nuclei, B and B, three-body decays, B and B, two-body

decays and B — B mixing, we found that in the quark sector the strongest
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bound comes from B — B mixing and in the lepton sector the strongest bound
on the flavor-changing coupling involving the T comes from the radiative de-
cay of the muon. We have also noted that in most grand unified theories, the
7 and bottom quark are in the same representation, thus the flavor-changing
couplings in the quark sector are related to those in the lepton sector. Compar-
ing flavor-changing B decays with rare 7 decays, we found that rare B decays
provide the strongest bounds and that the most promising decay modes are
B — Kur and B, — ur with 7's in the final state.

The second extension of the standard model we considered is about the
fourth generation heavy leptons. If a fourth generation exists, the lepton L
and the neutrino N must both be heavier than 45 GeV. It is certainly possible
that the neutrino will be the heavier of the two. In this case, the charged
lepton can only decay through mixing with lighter generations, and might thus
be extremely long-lived. First, we investigated the implications of very long-
lived charged leptons for cosmology and astrophysics. In the early universe,
the relative abundance of a massive weakly interacted particle species “freezes
out” when the annihilation rate becomes less than the expansion rate. We
calculated the annihilation cross-sections and found that the dominant process
will be W pair-production with the s-channel photon exchange. We also as-
sume that the annihilation cross-section is subject to unitarity constraints and
considered the mass range from 45 GeV to 100 TeV. Then we calculated the
abundance today and obtained the bounds on the mass. If L decays, limits on
the lifetime of a long-lived charged lepton can be found from several sources:
direct detection of the L and direct detection of its decay products. From

terrestrial experiments, the strongest one comes from searches for the heavy
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isotopes of hydrogen in water for the mass range up to 10 TeV, and above 10
TeV, the strongest bounds comes from plastic track detectors. From astro-
physical searches for the decay products and from cosmology, we checked the
the bounds from the diffuse photon background (lifetime in excess of 103 sec.)
and from the requirement that the decay products not unacceptably distort the
microwave background radiation (CMB). We found the strongest cosmological
bounds on the lifetime come from very recent COBE data. Then we studied
the production cross-sections and signatures for the SSC and LHC. We consid-
ered four models which contain heavy leptons for the experimental detection at
the Hadron Colliders. Two models are the fourth generation extensions of the
standard model in which the right-handed heavy leptons are either isosinglets
or in an isodoublet, the other two are motivated by the aspon model of CP
violation, and contain also singlets or vector lepton doublets. We calculated
the production cross-sections for all the processes into heavy leptons, neutrinos
and aspon through quark fusion into a photon or Z(or W), as well as through
gluon fusion into a Higgs or a Z. For the first model, gluon fusion production
is more important, and for the vector lepton models, only quark fusion con-
tributes, in which case the cross-sections fall off faster. And the production
cross-section for the processes with an aspon in the final state will be even
smaller. In all these models, the heavy neutrino can either be heavier than, or
comparable in mass to, the charged lepton leading to the possibility that the
charged lepton can only decay through mixing, thus L could be very long-lived.
If the lifetime of L is under 10~ seconds, it will decay in the middle of the
vertex; the analysis of the detection will be the same as that for a conventional

heavy lepton, with one crucial exception. For the vector lepton models, the
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GIM mechanism will break down, leading to flavor-changing decays such as
L — 1Z. For this decay the background would be extremely small and the
signal may be easy to pick up. If the lifetime is between 10~!3 and 10~% sec-
onds, the L will decay in the middle of the detector. If the lifetime is greater
than 1078, it will pass through the detector like a muon. The only possible
method of detection would then be time-of-flight. Since 1000’s of L’s could be
produced at the SSC and LHC, timing in these detector would be very useful
for finding these heavy leptons.

There are several related projects that I hope to pursue in the next few
months. One involves the phenomenology of production of these heavy leptons
in electron colliders; especially in the vector-like models, which naturally have
long-lived heavy leptons. In the aspon model, one has a diagram which could
lead to resonant production of an aspon. Another project, also related to the
aspijon model, concerns CP violation in the lepton sector. The asﬁon model
was desired to eliminate strong CP problem. The CP-violating couplings are
thus constrained by the observations of K decay. Such constraints are much

weaker in the lepton sector, which could then have large CP violation effects.



Appendix A

The Cross Sections for Chapter 2

Here we shall give explicit expressions for all the cross sections in Chapter 2.

1) Annihilation LL — ff

2 f L _ 2 2
a,Brel = Ncﬂfﬂaz{(sQ + 4ngg'4(s mZ)IDZ| )

3s Jzw(l — zw)
g (1 4 2(m? + m'}) N 4m'£2m§>
S S
+ s [+ el + o)1+ 356)
+(o% + )l - gfxz)irsn—% + (9% - 9Nt + 9 é—?i
— (o500 + g k" — 205%01%) @;,in—?]} , (A1)

where zw = sin 6%, and gy and g, are the standard neutral vector and axial

current couplings, respectively. N, is a color factor, s is the center of mass
. . /2 .

energy squared, and (5 is the velocity of f: (f = (1 — 4mf‘/s) . Finally,

|Dz|? is the propagator factor of the Z-boson;
-1
Dz [ = [(s = m})? + Tym}]
2) Annihilation LL — W+W-
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O(LL-W+W=) = Oay+ 04z +0zz+0LL+0L2+ 0Ly, (A.2)
4 2 53 83 343 - .2
a‘r’f-!-‘vZ-i-ZZﬁrel = mwﬂwvra 'E + —3— - —5— -8 (3 + 2mL) (A3)
1 _ghs=mB)Dal* | |Dzl* ( 12 g&’(3 —4rm})
X |= - + 3 v t =i ,
$3 Tws? 4z, s (3+2m})
- ﬁw‘ll‘az[l -l - 1_ 5 -2 3,4
U'LLﬂml = m 12(8 +208 24)+(63 3)mL 2mL
1 - -
+ P1L1 - ‘2‘(2 - mi - mL)le
— (% ~1-3m2 + 2P, L, + %PlRl)
— (% —3(5—2 —4id)Ly — %PgRl)
. 1
+ m; (4L1 - (%s -1- ZﬁL},)Rl) - -2-77»3,}21] , (A.4)
2,2 (o _ om3 2
w

— (8% 4 65 + 8)n] — 6(3 — 2)m}]) + 4L, [85 + 4 — (105 + 4)m}
+ (3 +2)mt + (5 - 2)mi] + M [(* — 45 — 4 — (45 - 8)m]
+ 4L, (45% — 55 — 6 + (3% — 53 — 2yl — 3(5 — 2)m})]
4 g [2(5 — 2) — 4L1(3(3 — 4) — 3(5 — 2l )] — MY L (45 - 8)]
~(g% - g5yR3(12 + 105)[1 + 2Ly (i}, -} — 1)]} (A.5)
Bwraimiy gy

dzws?

x(5 — 2)mt] — 4L, [85 + 4 + (2 — 53)m} — (45 + 4)mi + (5 — 2)mi]

O1rBre {%[53 + 185 — 283 — 24 — (5* — 243 — 28)m2 — 6

— 3 [3 — 45 — 4 — (45 — 8)rm} + 4L, (43 — 55 — 6 + (3° + &)}

~ 3(5 = 2)ry )] — (25 — 2) — 4L (3(5 - 4) - 3(5 - 2)rng)]
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+m$ (45 - 8)L1} (A.6)
where Py, P;, L, and R; are defined as

= s/my, mj=mi/my,

oy

P, 4(3 — 2) + 45m% + (3 — 6)mt — 4mf |

P, = 45-54 (25 ~6)mi —6mi,

Lo 1 2 — 54 2m2 — 2, + 3BLBw
VT T 23w \2-3+2mi —2m% — 3BBw )

Ry = [(1-md) —md(2—3+2m2) +my]” . (A7)
3) Annihilation LL — ZZ
0Bl = Bama’ [(.qz'2 + gI‘z)2 + 49“9“] -2 -2m + g3

dowi(l — zw)?s v 4 v Ja L

3 532 . .2 e -4
+Lz -§'+T+3—8+mb(6— ) —Rz(2+2mL(s-—3)+mL

8 2
~ 4 2~2_8v_12 L4_ L4 v 2 — 9%
+7hy (25" — 83 ))] +(9v — 94 )[mL(S 23)

) £
+B (’—+§3— S 105 4 (=5 — 25 + 305 + 20)

+ 12Ryrn}(rh} — 1) + Lorh}(25% — 65 — 8)

+B (1} (25° - 25 — 283) — m} (837 — 323 - 16))]
23

x(gh” - g5')? [r'n"i({? —6) — Lym3 (8 — 105 - 2)

+ Ryn}(25 — 2 — 19} ) + B (rn}(—3° + 83° — 263 + 12)

+m}(657 - 245 +28)) |} , (A.8)
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where § = s/m%, and mi =m}]/m%,

L = - 1 ln(z-5+5ﬁ,,ﬁz)
23BrBz  \2-3-3PLBz) "’
Ry = (1-4m]+mis)?,
L,
B = Go5 (A.9)
4) Annihilation LL — 42
_ ____"f‘_’____ L2 L2 2 2
0B = 2zw(l — zw)s {(gv g4 )6mi(Ls + 4Ramy)
— (95" + 95") [8Ram} + Ls (—2m} — 25 + m}3(1 — Bz))
2 -
5 (—Sm}, +2mis —3s + 1’;(1 + ﬂz))] } ) (A.10)
where Lz and R3 are defined as
Ry = (sm%)-l ’
2 1-6L
Ly = —1 . A.ll
: Br (1 + ,BL) (A11)

5)Annihilation LL — vy

2
0B = ”—;‘— —8s + L3(32m}, — 16m}s — 4s?) - 32Rsmis| . (A.12)



Appendix B

Aspon Model

Frampton and Kephart proposed a simple model , the aspon model[26}, in
which the gauge group is SU(3)¢ x SU(2), X U(1)y X U(1)new with an additional
vectorlike quark (lepton) doublet and two singlet Higgs scalars transforming
nontrivially under the global U(1)new. Vacuum expectation values of the Higgs
singlet are responsible for U(1),.» and CP breaking. Mass matrix elements are
complex but their determinants are real at the tree level. Therefore, 8 picks up
a nonzero value only through radiative corrections. Since U(1)ney is anomaly-
free, it makes this solution of strong CP problem seem more appealing than
solutions which involve the necessarily global anomalous U(1)pq. The particle
assignments are showed in Table B. The particle content is not unique; U, D,
N, and L can be alternatively assigned to be SU(2) singlets.

The Yukawa interactions are given by
2 2.
—Ly = qrmgdg [-—\/‘v——ﬁ] 4+ JrMuUR [\/T—'Q]
= 2
+ lzmeegn [‘/T-Q] + h*q,QrXa + H.c. , (B.l)

where v/+/2 is defined as the VEV of ¢° and & as (§° —¢~)T. @ =1,2. The

generation indices are implicit. Usual quarks and leptons acquire their masses
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Table B.1: The fields of the aspon model.
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through spontaneous symmetry breaking induced by the VEV of the double
Higgs scalar. The new quarks and leptons acquire their mass through a gauge-
invariant mass of the form MQ;Qr. Hence, U (N) and D (E) quarks (leptons)
are degenerate in mass. my, mg, me, v, h’?, and M are real by the assump-

tion of CP invariance. The VEV’s of x; and ¥ are chosen to be

1 . 1
< x1>= —-Iﬁe'a and < X2 >= —=K3 . (BZ)

V2 V2
Hence CP is broken spontaneously.

Take the lepton mass matrix as an example, it is in the form

M,=[;“l§4], | (B.3)

where F = h! < y; > +h? < x3 >.

After introducing the new vectorlike lepton doublet, we find that there are
FCNC’s induced by Z coupling because of the mismatch of the new and usual
leptons in the right-handed sector. Therefore, the flavor-changing Z couplings

are induced by the terms

LECNC = (-l) 72 Lry,Lr2" + (Ng contribution) , (B.4)
27/ cos By

where the factor —1 is the isospin of Lg and g; is the SU(2) gauge coupling

constant. Without losing any generality, we assume the lepton mass matrix is

diagonalized form
mMe 0 0 F 1
- 0 my 0 F 2
M 1= 0 0 m, F3 (B . 5)
0 0 0 M

Thus Eq B.4 can be rewritten in terms of mass eigenstates " as

L5ON = Bylivaliz* fori#j, (B-6)
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and

o (_ly g Ty,
Bi = (=) sty 30T = - (B.7)

where z; = F;/M. Therefore, the FCNC induced by Z coupling is highly

suppressed by the small ratio of usual to new leptons.

FCNC'’s can also be induced by aspon(A) couplings, which are given by
LENC = — g ziz}liylf A fori#j . (B.8)

Therefore, FCNC’s induced by A will be important if A is not too heavy

compared to Z.



Appendix C

The Cross Sections for Chapter 3

The cross sections for the various subprocesses in chapter 3 are listed below.

gg — L*L™ and gg - NN

This production mechanism, by Z and H exchange, is allowed in model 1

only. The cross sections by Z and H exchange are given respectively by

- - aam
52099 — L*L7) Bofa,mi ip2,

2048~ sin* mW
. _ Biala 3?

L*L = %, 2 A
ou(9g = ) = %s08r sin4m§V Gomayp s amgy | (C1)

where v/3 is the center of mass energy available for the subprocess and 3 defined

as B =/1—-4m%/5 is the velocity of L. I and J are given by

22 :i:)/ d:z:/ mz/s
32/ d [ d l_my“"’y . (C.2)

§/m?2

-
I

J

The sum runs over all known quarks and top-quark (m; = 100 GeV is assumed).

The +(—) sign in the above equation applies to the quarks with isopins T3 =
1/2 (-1/2).
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6z(99 — NN) and 6y(g99 — NN) are the same as Eq. C.1 respectively

with my, replaced by my.

g — L*L~ and ¢ — NN

The cross section for ¢§ — L*L~ (and ¢ — NN, see below) is given by

ora?SB ¢:(8 — m%)(gi + 9%)(gk + gk)
Al - +r-y . 20EPEA 2 s ZINIL RINJIL R
e~ 1707) = —5; ( * 7 25in® by cos? by ((3 — m3)? + [ami)

wa?Bi(gh” + gh")(B(gL + 93)” + 28°(s} — 98)%) )
36O cos O (— 3P £ THE)

where B = 3~ f? with f=,/1 —4m} /§, and ge is the charge of the quark

of type 1. g} = T3 —g;sin’ fy and g} = —g; sin? G are the quark and Z boson

neutral coupling coefficients. For leptons, the coefficients g}, and gk for various

models are given by

T3 — Qsin’fw , modell, 2and3

| -
L= [ —Qusin?bw , model 4 ! (C.4)
and
i _ [Ts— @Qisin?fy, model2and3
9R=| _Qsin?6w, modelland4 ’ (C.5)

where T3 = 1/2 (-1/2) and @Q; = 0 (-1) for | = N (L). For the process
gqq — NN, g; =0 is used in Eq. C.3 because the photon does not contribute.
qf - NL*

The cross section of this sub-process is

e |Uy|*B3F

(g3 — NL*) =
5(eq - ) 24 sin* 0w ((5 — m¥, )2 + T3,m%,)’

(C.6)
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where
0.5 [1 +4%/3 - (m} — m&)/3)] , model 1
F=|[1+4/3 - ((m} —m%)/3)" + 3mymn/35] , models2and3 » (C.7)
0, model 4

with 8 = [1 — 2(m2 +m3%,)/§ + (m3 — m%)/5)2]*/? is again the speed of the

charged lepton L in the ¢f’ center-of-mass.

qfj— L*L"A, qfj - NNA and ¢q§' > NLA

The amplitude squared of these sub-processes (in model 3 and 4 only), with

the momenta p; + pa — p3 + ps + ps respectively, are given by

32(Gr? + Gr*)(A; + Az + A1a), (C.8)
with
1
4= Gerppomp
X [(2P3 +ps — 2m3)(P1 - P4 P2 Ps + P1 - Ps P2 Pa)
~(2m3+my)(p1 Ps P2 Pa+P1-Pap2 - Pa)
—2mamq py - p2 (M3 +m} +ps - ps)] ; (C.9)
Az = Ay(ps © ps, ma o my), (C.10)
Au = 1

((ps + ps)? — m3)((p4 + ps)? — m})
X [~4ps ps p1-Pa P2 P3—4 P2 Ps P Da P2 Pa

+2p3-ps (P1 P4 P2 Ps+ D1 Ps P2 Pa+P1-P3P2'Ps + P1:Ps D1+ P3)
+(4p3 - pa+ 2ps - ps + 2p3 - ps)(pr - P3 P2 - Pa + P1 Pa P2 - P3)
+mamy (—4py - ps P2 Ps + 1 - Pa(2pa - Ps + 2pa s + 4pa - pa + 2m3)
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In A;, A; and A, the heavy lepton masses are taken to be m3 = my = mg
for q§ = L*L~A, ma = my = my for q§ = NNA and m3 = my,mg = myg

for gg — NLA.

Finally, in Eq. C.8, the values of G and Gr are given as follows:

Gy Gr
g — L¥L-A 94 (gFoiP — qie/5)  ga (gEgkP — qie?/3)
qf— NNA gagl 9L P 949% 9% P
g3 — NLA (model 3) 9492/2(3 - m%,) 0
q§ — NLA (model 4) 0 0

(C.12)
where P = (g/ cos 8w )? /(8§ —m%) and g¥ and g in model 3 and 4 are given

in Eq. C4forl=L and N.



Appendix D

Fortran Programm for Chapter 3

As an example, we give here the Fortran program for the heavy lepton produc-

tion pp — LL in Chapter 3.

LE R EERESESCEREREEEEEEEEEEEEEEEEEE R EERESEEEESEEEEE R
Production of heavy lepton in pp collider.

model = 1 : right-handed singlet

model = 2 : right-handed doublet

model = 3 : singlet aspon model

model = 4 : doublet aspon model

qi is the charge of the quark in the unit of e.

I EREEREEEREREEEEEREEEEEREE R EEEEE R R EEEEEEEREEEREEEEE?

implicit real*8(a-h,m,o-z)

dimension ppLL(4)
common/dum/rts,ml,mh,mz,zwidth,hwidth,sinthw?2
common/main/nmodel

external fxnq,fxng

data mh,hwidth,mz,zwidth,sinthw2/100.,0.5,91.175,2.48,0.23/
rts=17000.

open(1,file=“ppLL.data”)

ndim=2

ncall=1000

nitf=10

ndim=2

do 1i=1,16

ml=50.0*float(i)

nmodel=1
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glufusn=avgi(ndim,fxng,ncall,nitf)
quafusn=avgi(ndim,fxnq,ncall,nitf)
ppLL(1)=glufusn+quafusn

do 2 nn=2/4

nmodel=nn
ppLL({nn)=avgi(ndim,fxnq,ncall,nitf)
write(1,'(5€15.5)’) ml,(ppLL(k),k=1,4)
write(*,'(5e15.5)’") ml,(ppLL(k),k=1,4)
continue

stop

end

include “avgi.for”

include “ehlq.for”

double precision function fxng(ww)

implicit real*8 (a-h,m,o-z)

dimension ww(9)
common/dum/rts,ml,mh,mz zwidth,hwidth,sinthw2
xm=4.0%ml**2/rts**2

det1=0.95%0.95-xm

tau=xm-+detlxww(1)

det2=0.95-tau

x1=tau+det2xww(2)

x2=tau/x1

shead=tauxrts**2

nset=1

scale2=shead /4.

call ehlq(nset,x1,scale2,uv,dv,se,st,ch,bo,to,g)
gl=g/x1

call ehlg(nset,x2,scale2,uv,dv,se,st,ch,bo,to,g)
g2=g/x2

gluon=gl*g2/x1

if(gl .1t. 0. .or. g2 .1t. 0.)write (2,¢)x1,x2
fxng=gluon*ggLL(shead)*det1xdet2

return

end

double precision function fxng(ww)
implicit real*8 (a-h,m,o-2)
dimension ww(9)



common/dum/rts,ml,mh,mz zwidth,hwidth,sinthw2
xm=4.0%ml#*2/rts**2

det1=0.95%0.95-xm

tau=xm+detlxww(1)

det2=0.95-tau

xl=tau+det2*ww(2)

x2=tau/x1

shead=tauxrts**2

nset=1

scale2=shead/4.

call ehlq(nset,x1,scale2,uv,dv,se,st,ch,bo,to,gl)
ul=(uv+se)/x1

dl=(dv+se)/x1

cl=ch/x1

sl=st/x1

aul=se/x1

adl=se/x1

call ehlq(nset,x2,scale2,uv,dv,se,st,ch,bo,to,gl)
u2=(uv+se)/x2

d2=(dv+se)/x2

c2=ch/x2

s2=st/x2

au2=se/x2

ad2=se/x2
up=(ul*au2+aul*u2+2.xclxc2)/x1
down=(d1xad2+adl*d2+2.%s1s2)/x1

if (up .1t. 0. .or. down .1t. 0.) then

write (2,%)x1,x2

endif

fxnq=(up*qqLL(1,shead)+down*qqLL(2,shead))* detlxdet2

return
end

double precision function qqLL(i,s)

implicit real*8 (a-h,m,o-z)
common,/dum/rts,ml,mh,mz,zwidth,hwidth,sinthw?2
common/main/nmodel

pie=3.1415926

costhw2=1.-sinthw2

if (i .eq. 1) then

4i=2.0/3.0
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ti=1.0

endif

if (i .eq. 2) then

qi=-1.0/3.0

ti=-1.0

endif

scale2=s/4.

qcd2=0.2%%2

aem=1.0/128.

as=alphas(scale2,qcd2)

beta=Sqrt(1-4xmlx*2/s)

B=3.0-betaxx2

if (nmodel .eq. 1) then

gel=-1.0+2.xsinthw2

ger=2.xsinthw2

endif

if (nmodel .eq. 2 .or. nmodel .eq. 4) then
gel=-1.04+2.xsinthw2

ger=gel

endif

if (nmodel .eq. 3) then

gel=0.

ger=0.

endif

gaql=ti-2.0xqi*sinthw2

gar=-2.0xqixsinthw2
zpro=(s-mz**2)/((s-mz#*2)x*2+zwidth**2xmz**2)
sigl =qi*s*zpro(gql+gqr)*(gel+ger)/8.0/sinthw2/costhw?2
sig2=Dbetaks**2
K=(Bx(gql+gqr)**2+2.xbetax2x(gql-gqr)**2)
8ig2=sig2*(gel**2+ger*»2)xK
sig2=sig2/256./sinthw2%x2/costhw2**2xzpro/(s-mz**2)
qqLL=(4.*piexaemx%2/9.0/s)*(0.5xbeta*Bx(qi**2-sigl )+sig2)
qqLL=qqLL*0.389d6

return

end

double precision function ggLL(s)

implicit real*8 (a-h,m,o-z)
common/dum/rts,ml,mh,mz,zwidth,hwidth,sinthw?2
complexx*16 ah,az
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pie=3.1415926
mw=mz*sqrt(1.0-sinthw2)

scale2=s/4.

qcd2=0.2%%2

aem=1.0/128.

as=alphas(scale2,qcd2)

beta=sqrt(1-4*ml*2/s)
hpro=s*#2/((s-mh#%2)#*2+hwidth**2*mhx*2)
ahr=real(ah(s))

ahi=dimag(ah(s))

AJ=9.0%(ahr**2+ahi*x2)

azr=real(az(s))

azi=dimag(az(s))

AJ=4.0x(azr*x2+azix*2)
sigz=betax(aemx*asxml)*x2xAJ/(2048.¢piexsinthw2s*2«mwxx4)
V=(4608.*piexsinthw2#*2+mwx*4)
sigh=Dbetax*3x(aemxasxml)**2xAlxhpro/V
ggLL=(sigz+sigh)+0.389d6

return

end

double precision function alphas(scale2,qcd2)
implicit real*8 (a-h,m,o0-z)

pie=3.1415926

mb2=4.8x%x2

mt2=100.0%*2

d=25.0*dlog(scale2/qcd2)

if (scale2 .1t. mb2) go to 1
d=d-2.0+dlog(scale2/4.0/mb2)

if (scale2 .gt. mt2) d=d-2.0xdlog(scale2/4.0/mt2)
alphas=12.0xpie/d

return

end

complexx*16 function Ah(s)
implicit real*8 (a-h,m,o0-2)
dimension x(2)
complex*16 rml,phi(2)
rm1=(0,1.0d0)
pie=3.1415926
mb2=4.8xx2



mt2=100.0%%2

x(1)=4.0¥mb2/s

x(2)=4.0¥mt2/s

do 2 i=1,2

if (x(i) .gt. 1.0) then

phi(i)=-(asin(1.0/sqrt(x(i))))**2

else

y1=1.0-sqrt(1.0-x(i))

y2=1.0+sqrt(1.0-x(i))

phi(i)=0.25%(dlog(y2/y1)-rm1*pie)#*2

endif

continue
=x(2)*(1.0+(x(2)-1.)*phi(2)))

ah=0.5%(x(1)*(1.+(x(1)-1.)*phi(1))+U

return

end

complex*16 function Az(s)
implicit real*8 (a-h,m,o-z)
dimension x(2)

complex*16 rm1,phi(2)
rm1=(0,1.0d0)

pie=3.1415026

mb2=4.8%%2

mt2=100.0%x*2

x(1)=4.0%mb2/s
x(2)=4.0xmt2/s

do 2 i=1,2

if (x(i) .gt. 1.0) then
phi(i)=-(asin(1.0/sqrt(x(i)})))**2
else

y1=1.0-sqrt(1.0-x(i))
y2=1.0+sqrt(1.0-x(i))
phi(i)=0.25x(dlog(y2/y1)-rm1*pie)*x2
endif

continue

az=0.5%(1.4x(1)*phi(1))+0.5%(1.0+x(2)*phi(2))

return
end
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Appendix E

Approximating the
Renormalization-Group Equations of
Minimal Supersymmetry

The minimal supersymmetric model has remarkable predictive power. One
inputs, at the grand unification scale, five parameters:[35] the gaugino mass
parameter M, the top-quark Yukawa coupling k¢, the scalar mass-squared
parameter mg, the Higgs mixing parameter my, and the A parameter. The
renormalization-group equations (RGE’s) are then used to evolve down to the
electroweak scale. One can then extract the masses of the top quark, W and Z
bosons, the gluinos, the two charginos, the four neutralinos, the twelve scalar
quarks, the nine scalar leptons, the three physical neutral Higgs scalars , the
charged Higg scalar, as well as all of the couplings, mixing angles, etc.

As a result of this predictive power, a flurry of papers appears whenever new
experimental data become available. The four-dimensional parameter space
(the weak scale determines the fifth parameter) must be scanned, and the
RGE’s solved for each point in the parameter space. Since this involves a large

amount of computer time, approximation schemes for the solution of the RGE'’s
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can be quite useful.

One such scheme was proposed by Kounnas et al.[36]. They found an
approximation which gave analytic formulas for the low-energy parameters
in terms of the parameters which were input at the unification scale. This
approximation has since been used by many authors[37]. At the time of their
work, it was widely believed that the top quark had been discovered with a
mass of about 40 GeV, and they stated explicitly that their approximation
was valid for masses in that range. It is now known that the top quark is
much heavier(38]. We examine the validity of their approximation for heavier
top-quark masses.

Consider the RGE's for two of the parameters of the minimal supersym-
metric model, the difference between the mass squared of the scalar top and

that of the scalar up, A = m}, —m}, and the top-quark Yukawa coupling:

da R

=
dhe _ hy
T T T (B1)
where ¢ = In (u/Mw) and
16 , 13
Fy = my + my, +my, + Agms . (E.2)

Here, we use the notation of Ref. [35] for the scalar mass-squared parameters.

These equations can be trivially integrated to give

h(M) — h(Mw) = /oln(Mx/Mw) h3(t)

602 Fh(t)dt
/ln(Mx/Mw) hz(t)

A(My) = Fu(t)dt . (E.3)
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Note that A(Mx) = 0.
The approximation of Ref. [36] consists of using the approximation

In (Mx/Mw)

/(;ln(Mx/Mw) K()6(2)dt = 4(0) /O h3(t)dt (E.4)

in Eq. E.3. This means that the only integration to be performed is the inte-
gration of A} from My to My; this integral will then give all of the relevant
mass-squared parameters, as well as h; itself. Solving iteratively, the integral
can then be determined from the Yukawa coupling. As a result, no integrals
need be evaluated numerically (see Ref. [35] for expressions).

The rationale for using the approximation of Eq. E.4 is that the Yukawa
coupling is a very rapidly decreasing function of ¢, and thus most of the contri-
bution of the integral on the left-hand side of Eq. E.4 comes from small ¢, and
thus if ¢(2) is not too rapidly changing, the approximation should be valid. It
was argued in Ref. [36] that the approximation is valid for top-quark masses
below 50-100 GeV. Many of the detailed numerical results of Refs. [35]-[37]
depend on this approximation (although most of the qualitative features do
not).

To examine the validity of this approximation, we will consider three cases:
(1) the calculation of the Yukawa coupling at Mw, (2) the calculation of the
difference between the low-energy mass-squared parameters of the third gen-
eration and those of the first (or second) generation, and (3) the calculation of
the ratio of the vacuum expectation values of the Higgs fields (which leads to

all the scalar masses, top-quark mass, etc.).

We first examine the result of the Yukawa coupling. Here, there are no free

parameters—given h¢ at Mx, one can determine h, at Mw. We have calculated
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Figure E.1: Given the Yukawa coupling at My, the Yukawa coupling at Mw can be found
in two ways: (1) using the renormalization-group equations and (2) using the approximation.
The ratio of the resulta of the second method to the results of the first is plotted as a function

of the Yukawa coupling at Mw .
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he(Mw) in terms of he(Mx) in two ways: (1) solving the RGE numerically, and
(2) using the formulas given in Refs. [35] and [36]. In Fig. E.1, we have plotted
the ratio of the results of the two methods as a function of h((Mw). Keeping
in mind that the top-quark mass probably never be measured to much better
than 10%, we see that the analytic formula gives good results for all reasonable

values of the Yukawa coupling.

However, the formula is not, in general, useful unless one can also extract
the mass-squared parameters. We now examine the RGE for the difference
between the first- and third-generation mass-squared parameters A = mz, -
m®. We have chosen this quantity since m} can be found analytically (in terms
of integrals over gauge couplings which can be explicitly solved); the difference
A is independent of the gauge couplings. Here, the calculation does depond
on several of the input parameters; we will give a few representative samples.
In Fig. E.2, we have plotted the ratio of the result for A calculated using the
above approximation to that calculated numerically from the RGE’s. We see
that the approximation is not , in general, very accurate. However, it does
not have to be. The value of A in most models ranges from 20 to 60 GeV.
Experimentally, it will be difficult to measure scalar quark masses (or splitting)
to an accuracy much better than about 20 GeV (recall that the cross section
for scalar production just above threshold rises very slowly). As a result, 30%
accuracy will always be sufficient, and in many cases, even accuracy of a factor
of 2 in A would suffice. The approximation typically does give results which are
accurate to within a factor of 2, and also typically over estimates the splitting.
We conclude that the approximation will give a reasonable qualitative estimate

of the size of the splitting, but that a precise quantitative estimate, which
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approaches the resolution of a typical experiment, will not be possible without
solving the RGE’s numerically.

Finally, we turn to the accuracy of the approximation for calculating the
ratio of the vacuum expectation values of the two Higgs bosons: tan 8 = vy/v;.
This ratio is essential in finding the top-quark mass, given the Yukawa cou-
pling, the scalar quark masses, the various Higgs-boson masses, the chargino
and neutralino masses, etc. Here, we cannot show how the approximation be-
haves as a function of A, since only a small range of h; gives (for a given set of
the other parameters) acceptable masses; rather we give results for a few rep-
resentative values. One might expect the approximation to be most suspect in
this calculation. The reason is that the value g is extracted from the quadratic
mass-squared parameters in the potential: sin28 = 2m3/(m2 + m2), and the
value of m3 is very sensitive to the contribution of A, to its RGE’s, and a small
change in m3 can give a large change to sin28. Even more importantly, the
W-boson mass is very sensitive to the value of m2 and m32 and thus the overall
scale of the masses will be sensitive to changes in m2. The results, for several
representative values of the parameters, are shown in Table E. The top-quark
mass is calculated from the relation m?,_/M}, = (2h?/g%)sin? B. We see that
although the calculation of tan 8 using the approximation is very inaccurate,
the prediction of the top-quark mass is fairly close (since it is proportional to
sin B not tan 3), especially for fairly light top quarks. As the top-quark mass
increases, however, the prediction value begins to deviate significantly. As a
result, the range of Yukawa couplings which give acceptable electroweak sym-
metry breaking can be determined accurately using the approximation, but

the acceptable range of top-quark masses cannot be determined with any sig-
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Figure E.2: The splitting between the third-generation scalar quark mass and that of the
other two is calculated in two ways: (1) using the renormalization-group equations and (2)
using the approximation. The ratio of the results of the second method to the results of
the firat is plotted as a function of the Yukawa coupling at M. Several choices of input
parameters are used: for the upper line, { = 2.5, A = 0.5, and mq/mq = 1.4; for
the middle line, { = M/mo = 1.0, A = 0.5, and mq/mg = 0.5; for the lower line,
¢ =1.0, A=1.0, and my/mo = 1.4. .
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nificant accuracy. A much more serious discrepancy occurs in the calculation
of scalar quark masses. This is due to the sensitivity of these masses to the
overall scale, which, as noted above, is very sensitive to the precise value of

m3. Here, we see that the approximation gives very inaccurate results.

What would happen in more complicated models? One can easily add
extra gauge bosons to the analysis, since their contributions can be determined
analytically. If one were to add singlets, additional terms can be added coupling
those singlets to the Higgs doublets. The 8 functions for these couplings depend
on the gauge couplings and the Yukawa coupling. Again, the approximation
will work well given the Yukawa coupling, but will not if one is given the top-
quark mass. In addition, if these couplings are large, the approximation is
suspect. Note also that in string models, the Yukawa couplings are of the same
order as the gauge couplings, and thus the approximation will be likely to have

similar difficulties in these models.

In finding the phenomenological implication of the minimal supersymmetric
model, it is necessary to integrate many coupled renormalization-group equa-
tions from the grand unified theory or Planck scale down to the weak scale.
In many papers, an approximation has been used in order to avoid having
to numerically integrate the equations for many points in a multiple dimen-
sional parameter space!. In this chapter, we have looked at the validity of this
approximation, in light of the fact that top quark is much heavier than was
believed when the approximation was first proposed. It has been shown that

the calculation of the weak-scale Yukawa coupling is quite reliable, that the

10Of course, in a serious appempt to extract the predictions of any model, one would need
to do an exact one-loop treatment (if not a two-loop); but one could hope to use the
approximation to get a rough idea of the region of parameter space in which to explore.
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Table E.1: For five representative values of the parameters. M, A, my, and h¢, we cal-
culate the ratio of vacuum expectation values tan § = v;/v;, the top-quark mass, and the
scalar quark mass using both the renormalization-group equations and the approximation.
All masses are given in GeV,

M]mo(Mx) | 2.5 | 2.5 | 1.0 | 1.0 | 1.0
A(Mx) |05 05 ]05]05]| L0
maJmo(Mx) | 05 | 1.4 | 0.5 | 1.4 | 1.4
h{(Mw) | 0.41|0.54 | 0.63 | 0.86 | 0.92
(tanf)rce | 11.4 | 135 | 7.4 | 3.5 | 4.1
(tanB)epy | 31 |20.1 | 2.4 | 1.7 | 1.6
(Mep)ree | 72 | 94 | 108 | 144 | 155
(Micp)ars | 60 | 94 | 100 | 130 | 135
(mo)rce | 560 | 430 | 270 | 385 | 170
(maQ)epe | 190 | 170 | 130 | 100 | 75

calculation of scalar quark mass splitting is qualitatively reliable but quantita-
tively suspect (depending on the precision needed), and that the calculation of
the weak scale, top-quark mass, Higgs-boson masses, etc., are very inaccurate.
Thus, to extract the low-energy predictions of the minimal supersymmetric

model, there appears to be no substitute for a full numerical analysis.
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