
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

1994

Compilation techniques for irregular problems on parallel Compilation techniques for irregular problems on parallel

machines machines

Subhendu Das
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Das, Subhendu, "Compilation techniques for irregular problems on parallel machines" (1994).
Dissertations, Theses, and Masters Projects. William & Mary. Paper 1539623851.
https://dx.doi.org/doi:10.21220/s2-vwj0-kj14

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at
W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an
authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623851&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623851&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-vwj0-kj14
mailto:scholarworks@wm.edu

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UNO
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely afreet reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

be from any type of computer printer.

University Microfilms International
A Bell & Howell Information C om pany

300 North Z eeb Road. Ann Arbor. Ml 48106-1346 USA
313/761-4700 800/521-0600

Order Number 950141S

Compilation techniques for irregular problems on parallel
machines

Das, Subhendu, Ph.D .

The College of William and Mary, 1994

U M I
300 N. Zeeb Rd.
Ann Arbor, MI 48106

COMPILATION TECHNIQUES FOR

IRREGULAR PROBLEMS ON PARALLEL MACHINES

A Dissertation

Presented to

The Faculty of the Department of Computer Science

The College of William and Mary in Virginia

In Partial Fulfillment

Of the Requirements for the Degree of

Doctor of Philosophy

by

Subhendu Das

1994

APPROVAL SHEET

This dissertation is submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Subhendu Das

Approved, October 1993

7 W l/UsC+fl
David Nicol

. Q C l f
Del Saltz,

University of Maryland, College Park

OS-j; w I otS
Steve Park

Rahul Simha

Dimitri Mavriplis,
ICASE, NASA Langley Research Center

I dedicate this dissertation to my parents, Nisith and Kama! Das.

C on ten ts

Acknowledgements vii

List of Figures viii

Abstract x

1 Introduction 2

1.1 Parallel P rogram m ing .. 4

1.1.1 Parallel A rch itec tu res.. 4

1.1.2 Parallel Operating S y s tem s... 7

1.1.3 Parallel Languages and Compilers .. 8

1.2 Scientific A pplications... 9

1.2.1 Static Single Phase C o m p u ta tio n s ... 10

1.2.2 Multiphase Com putations... 11

1.2.3 Adaptive Irre g u la r ... 11

1.3 Important Compiler P r o je c ts .. 13

2 Problem Definition and Approach 18

2.1 Parallelization of Irregular L o o p s .. 19

2.2 Partitioning I s s u e s ... 20

2.2.1 Data Partitioning.. 21

2.2.2 Work P a rtitio n in g ... 22

iv

2.3 Parallelization Schemes ... 22

2.3.1 Data Replicated Approach ... 22

2.3.2 Data Parallel A p p ro a c h ... 23

2.4 Compiler Issues ... 26

2.5 Solutions Suggested in this Thesis .. 27

3 Compiler Support for Irregular Problem s 29

3.1 Overview of H P F .. 30

3.2 Overview of the Initial PARTI W o rk .. 32

3.3 The PARTI P rim itives.. 34

3.3.1 Paged Distributed Translation Table ... 36

3.3.2 Primitives for Generating Inspectors/Executors................................... 42

3.3.3 Incremental Scheduling ... 49

4 Performance Analysis o f Runtim e Support 55

4.1 Applications Used for Performance A nalysis... 57

4.1.1 Real Applications .. 57

4.1.2 Synthetic W o rk lo a d ... 59

4.2 Communication Optimizations ... 63

4.2.1 Software Caching .. 63

4.2.2 Communication C oalescing ... 65

4.2.3 Example Test C o d e s ... 67

4.3 Scaling Characteristics of the Optimizations.. 70

4.4 Experiments and Results ... 73

4.4.1 Synthetic Workload Performance Results ... 73

4.4.2 Performance Results Derived from Applications................................... 77

5 Loop Transformations 83

5.1 Example Transformation.. 86

v

5.2 P relim inaries... 92

5.3 Definitions... 93

5.4 The A lg o rith m .. 96

5.4.1 Slice Graph C o nstruc tion .. 96

5.4.2 Trace Management Schemes... 99

5.4.3 Case 1: Low subscript reu se ... 100

5.4.4 Case 2: High subscript r e u s e .. 100

5.4.5 Code g e n e ra tio n .. 101

5.4.6 Using Incremental Scheduling ... 103

6 Im plem entation Issues 104

6.1 Symbolic Analysis .. 104

6.2 Program Slicing ... 108

6.3 Program Slice G eneration .. I l l

6.4 Transformation Implementation.. 114

7 Conclusion and Future Work 115

7.1 Contributions of this T h e s is ... 115

7.1.1 Development of Compiler S u p p o r t ... 116

7.1.2 Compiler T ransform ation.. 116

7.2 Future Work ... 117

vi

ACKNOWLEDGEMENTS

I cannot begin to thank Joel Saltz for his support, guidance and encouragement during
the entire period of this research. I could always go to him for help, and his contributions
during the development of the various concepts presented in this document are significant.
Likewise, Dave Nicol was the only person who took a chance on this refugee from Mechanical
Engineering and allowed me to pursue a graduate degree in computer science by hiring me
as his research assistant. He also made significant contributions during the writing of this
document. I would also like to thank the members of my committee for the time spent on
my behalf.

Thanks goes to all the people and institutions who supported me financially; they include
Joel, Dave, ICASE and various other government agencies. Also, I would like to thank
ICASE/NASA LaRC, Caltech and NIH for allowing me use their various parallel machines.

Doing systems work needs much support, and stands on the work of many other graduate
students and researchers. I would like to take this opportunity to thank the people involved
in the Parascope project at Rice University for the use of their system, and especially to
Reinhard von Hanxleden for all his help. Further I must thank Ravi Ponnusamy of Syracuse
University for developing some of the partitioning “stuff” used in this thesis. Thanks are also
due to Mustafa Uysal of University of Maryland for developing the neat synthetic workload
generator. However, this list would not be complete without thanking Alan Sussman for
the many fruitful discussions.

And finally, thanks to my parents and both my sisters for their constant encouragement
and tolerance of my tantrums.

List o f F igures

1.1 Unstructured Mesh .. 9

1.2 Static Single Phase C om putation .. 10

1.3 Multiphase Computation .. 12

1.4 Adaptive Irregular C o m p u ta tio n .. 13

2.1 Example of Simple Irregular loop ... 19

2.2 Example of Inspectors/Executors ... 25

3.1 Example of HPF Style Data Distribution ... 31

3.2 Sequential Code .. 35

3.3 Global Index Translation ... 38

3.4 Paged Translation Table (Replication = 0 .0).. 39

3.5 Paged Translation Table (Replication = 0 .5).. 40

3.6 Translation Table Functions .. 41

3.7 Inspector Code for Each P rocesso r... 43

3.8 Localize M echan ism .. 45

3.9 Parallelized Code for Each Processor.......... .. 47

3.10 Incremental Schedule ... 50

3.11 Inspector Code for Each Processor Using Incremental Scheduling................. 51

3.12 Parallelized Code for Each Processor Using Incremental Scheduling.............. 53

4.1 Simple Irregular L o o p ... 57

viii

4.2 Synthetic Workload Loops .. 62

4.3 Simple Communication Aggregation C a s e ... 68

4.4 Schedule Merging Case .. 69

4.5 Cost vs. volume of communication and Intersection Ratio (gather, A/}00p=4,

P = 32, H int = I F) .. 74

4.6 Cost vs. volume of communication and Intersection ratio (Inspector, A/i00p=4,

P = 32, K int = I F) .. 74

4.7 Cost vs Number of duplicates (Executor, low Afdup, 32 P rocesso rs)............. 75

4.8 Cost vs Number of duplicates (Executor, high Afdup, 32 Processors).............. 76

5.1 Kernel with single level of indirection.. 85

5.2 CSR kernel - original version.. 86

5.3 CSR kernel - transformed version (Part 1)... 88

5.4 CSR kernel - transformed version (Part 2)... 89

5.5 Slice graph generation algorithm.. 97

5.6 Example of a Slice Graph........................ 99

5.7 Code generation algorithm.. 102

6.1 Program fragment and SSA f o rm ... 106

6.2 Code for Program S lic in g ... 109

6.3 Slice for Slicing Criteria : (57, a) ... 110

6.4 Slice for Slicing Criteria : (5 8 ,6) ... I l l

6.5 Program Dependence Graph for Slicing E x a m p le ... 112

ix

ABSTRACT

Massively parallel computers have ushered in the era of terailop computing. Even though
large and powerful machines are being built, they are used by only a fraction of the com
puting community. The fundamental reason for this situation is that parallel machines are
difficult to program. Development of compilers that automatically parallelize programs will
greatly increase the use of these machines.

A large class of scientific problems can be categorized as irregular computations. In
this class of computation, the data access patterns are known only at runtime, creating
significant difficulties for a parallelizing compiler to generate efficient parallel codes. Some
compilers with very limited abilities to parallelize simple irregular computations exist, but
the methods used by these compilers fail for any non-trivial applications code.

This research presents development of compiler transformation techniques that can be
used to effectively parallelize an important class of irregular programs. A central aim of these
transformation techniques is to generate codes that aggressively prefetch data. Program
slicing methods are used as a part of the code generation process. In this approach, a
program written in a data-parallel language, such as HPF, is transformed so that it can be
executed on a distributed memory machine. An efficient compiler runtime support system
has been developed that performs data movement and software caching.

COMPILATION TECHNIQUES FOR

IRREGULAR PROBLEMS ON PARALLEL MACHINES

C hapter 1

In trod u ction

Techniques and methodologies have been developed that can be used to build compilers to

parallelize scientific programs. Massively parallel computers have made the possibility of

teraflop computing a reality. But programming a parallel machine is a non-trivial proposi

tion. Two basic approaches exist for using a parallel machine. The first approach involves

using a parallelizing compiler to generate parallel codes from sequential codes. The other

approach consists of hand-parallelizing a given problem. Significant difficulties are associ

ated with both these approaches. For any given program, a computational graph exists

that needs to be mapped onto the target machine’s topology. For programs written in C

or Fortran, it is often very difficult for a parallelizing compiler to identify the underlying

computational graph. In such cases, the process of automatic parallelization falls, and for

that reason, very little success has resulted in generating parallel codes for real applications.

When a code is hand parallelized, the user has to identify the computational graph and em

bed it in the machine’s topology. The process of hand parallelization is very tedious and a

certain amount of software has to be built for each code that is ported. Hand parallelization

is not a very practical approach; therefore, a more automatic method of parallelization is

desirable.

Automatic vectorization of scientific programs is accomplished aggressively by compilers.

Vectorization can be done by recognizing the existence of certain vectorizable constructs in

2

CHAPTER 1. INTRODUCTION 3

the code. In the case of automatic parallelization, a similar approach is taken. Data parallel

languages have been developed, which allow scientists to express the structure of problems

accurately, thus allowing the compilers to do an efficient job. Researchers have successfully

parallelized real application codes using data parallel languages, such as C*, *LISP and

CM Fortran. Such languages have been fairly successful, and there is an effort to define a

standard scientific data parallel language called High Performance Fortran (HPF).

The goal of effective parallelization of realistic applications is difficult to achieve. The

author recognizes that the development of a single model and software support system to

handle all types of applications is not feasible. Here, the computation domain is divided

into broad classes, each of which is large enough to warrant separate software support. This

development of specialized software models for each class of problem effectively captures

the structure of the applications, thus helping in the generation of parallel codes by the

parallelizing compilers. Tight coupling exists between the applications and software sup

port. In general, applications can be broadly divided into two classes, namely, regular and

irregular [42]. This classification is based on the underlying computational structure.

In this study, software support and compiler techniques have been developed that can

be used to automatically parallelize irregular computations expressed in a data parallel

language, such as HPF [56], Fortran D [40] or Vienna Fortran [107]. The software support

developed here can also be used directly to parallelize irregular codes written in languages,

such as Fortran 77 or C. The optimizations that have been incorporated into these software

tools are targeted for distributed memory MIMD machines, like the Intel Gamma, Intel

Delta and CM-5.

This chapter covers the necessary background required for understanding the research

and also the relevant work present in the literature. Chapter 2 defines the problem and

gives a high level description of the approach. In Chapter 3, software support developed

to automatically parallelize irregular problems is presented. Chapter 4 presents the perfor

mance analysis done using the software tools. Chapter 5 presents the loop transformation

algorithms that can be used by compilers to parallelize irregular applications. In Chapter 6,

CHAPTER 1. INTRODUCTION 4

the implementation details of the algorithms are presented, and in Chapter 7, conclusions

and possible future work are discussed.

1.1 Parallel Programming

The requirement for huge amounts of processing power to solve large problems has forced

the development of computer architectures that are different from the traditional von Neu

mann model. As problem size increases, designers have to move away from the computing

model, wherein a single instruction is executed at a time to process a single datum. Concur

rent computing, defined as several computers on a network working to solve a single large

application, is an answer to this problem. The computers that participate in a concurrent

computing environment may be identical to each other or each of them may have a different

architecture.

Parallel programming is the branch of concurrent computing in which a collection of

processors on a tightly coupled network cooperate to solve a large application. When

a number of processors are taking part in a computation, it is likely that one processor

will need some result calculated by another processor. If so, depending on the memory

configuration, there might have to be explicit message passing between the processors and

from time to time the processors might have to synchronize. Parallel programming raises a

number of complicated issues depending on the type of parallel machine used.

1.1.1 Parallel Architectures

Parallel machine architectures can be broadly divided into two models, i.e., Single Instruc

tion Multiple Data (SIMD) and Multiple Instruction Multiple D ata (MIMD). The different

models are natural deviations from the von Neumann model of computing, which is often

referred to as the Single Instruction Single Data (SISD) model. The parallel models can

be further subdivided, based on the memory structure. The following memory structures

exist:

CHAPTER 1. INTRODUCTION 5

Table 1.1: Examples of Parallel Machines

Memory Model SIMD MIMD

Shared

Distributed

Distributed Shared

Maspar MP-1, CM-2,
CM-1.DAP

Cray Y-MP C916,Sequent,
Convex 3880, NEC SX-3/44R

Intel Paragon, CM-5,
MIT J-Machine

KSR-1, Stanford Dash

• Shared memory,

• Distributed memory,

• Shared distributed memory.

In the shared memory model, the group of processors that have been allocated to work on

a particular problem has direct access to a single memory. Every data element is addressed

via its global address. In the distributed memory model, each processor has exclusive

access to its own particular chunk of memory. Data must be explicitly moved between

different processor memories using message passing. Data elements are addressed using

local addresses in each processor. In the shared distributed memory model, each processor

has its own particular chunk of memory, like the distributed memory model, but each

data element is addressed by its global address, using hardware support to automatically

move data between processor memories. Hence, if a reference is made to a data element

residing in another processor memory, the machine hardware moves the data element to

local memory. The automatic movement of data elements between the processor memories

requires considerably extra hardware support, and different protocols [69] are used to keep

the memories coherent.

CHAPTER 1. INTRODUCTION 6

Single Instruction M ultiple Data M odel

In the SIMD model of computation, all processors execute in lock step. At a given time,

every processor executes the same instruction but on a different piece of data. Synchro

nization is not a problem in such a model because either every processor wants a resource

or none wants it. When all processors want a resource, the control processor broadcasts it

to them. A single instruction memory exists in such a model and a single program counter.

Examples of distributed memory SIMD machines are shown in Table 1.1. The recent trend

has been to move away from SIMD architectures.

M ultiple Instruction M ultiple Data M odel

The MIMD model of computation is more general than the SIMD model. In fact, if certain

constraints were put on a MIMD computation model, one could achieve the SIMD model of

computation. In the MIMD model, every processor executes a separate program. There is

a separate program counter on each processor. Usually, the same program copy is executed

on each processor (Single Program Multiple Data: SPMD), but the input data to each of

the programs is different. Since all the processors work on the same problem, usually there

are dependencies. If so, processors have to exchange data. The type of communication that

takes place depends on the memory model of the machine.

In a shared memory MIMD machine, there is one large global memory visible to all

processors. There is no explicit message passing in this case because processors communicate

via shared variables. Different types of protocols, like test-and-set, semaphores and fetch-

and-add are implemented to prevent deadlock. Shared memory bus-based architectures,

such as the Sequent and Alliant, are not feasible for machines with a large number of

processors because of the clear limitation of the single bus into the main memory.

In distributed memory MIMD machines, processors exchange data via message passing.

A variety of different message passing protocols have been used [82, 100, 28]. Synchro

nization between processors can be achieved using message passing. Every processor has

its own chunk of memory and only addresses its own memory. This architecture scales to

CH APTER1. INTRODUCTION 7

a large number of processors. The popular machines, these days, are MIMD distributed

memory, e.g., the Intel Paragon, which involves a separate communications processor, as

sociated with each computation processor (they all exist on a single board). In the future,

four computation processors will share a single communication processor. The processors

on a single board will have shared memory, but otherwise the memory will be distributed.

The machine has a mesh communication structure. Another popular machine is the CM-

5, which has a fat tree structure [17]. Each of the CM-5 nodes have a Sparc chip and

four vector pipes. Both these machines have been successfully used to solve large scientific

problems.

Another type of MIMD machine is the distributed shared memory machine. In this case,

each processor has its own chunk of memory, but the processors address data in global name

space. There is hardware support to automatically move data between local memories of

processors. The MIT J-machine is a MIMD distributed memory machine, but the software

makes it a distributed shared memory machine. The operating system, COSMOS, running

on the J-machine, helps create the shared memory structure. The true distributed shared

architectures, like the KSR-1 and the Stanford Dash machine, have to maintain elaborate

directory structures for the purpose of cache coherency [68]. These machines are easier to

use, compared to the fully distributed memory machines because of the existence of the

global name space.

1.1.2 Parallel Operating Systems

Work on the development of parallel operating systems has been going on for the last two

decades. The early operating systems, like Hydra [105], Medusa [79] and StarOS [59], were

object-oriented and were developed for PDP-11 based machines. Hydra was designed for

a shared memory architecture, and it allowed multiple processors to perform OS functions

simultaneously. On the other hand, Medusa and StarOS were developed for a distributed

memory machine. Both Medusa and StartOS were implemented as a collection of processes

working with each other to solve a problem.

CHAPTER 1. INTRODUCTION 8

CMost is the operating system running on the CM-5 [28]. The computational processors

on the CM-5 are grouped together to form partitions. The whole machine may operate as

a single partition, and the smallest partition is comprised of 32 nodes. Each partition has a

partition manager and runs the full CMost operating system, making all the allocation and

swapping decisions. Each node in the partition runs a micro kernel that helps implement

the CMost functions.

In the MIT J-Machine, the operating system, COSMOS [32], provides a global address

space. It provides an object based memory management. Both data and codes are stored in

objects and each object has a unique identification number. Objects can migrate between

the nodes to reduce communication and provide load balancing. COSMOS provides the

infrastructure required for fine-grained concurrent computation. Fast access to non-local

memory is provided.

The operating system running on the DASH [69] machine was built by modifying the

the Irix (Unix like) operating system. This operating system supports multiprogramming

and multiple users on the system. The Irix operating system was changed to take advantage

of the special features of the DASH architecture like pre-fetch, queue-based locks, etc.

There exists a large body of work in the literature dealing with distributed operating

systems [73, 80, 12]. Most of the operating systems have been developed in the context of

supporting a shared memory in a distributed memory machine. Since the context of this

thesis is compilers and languages for parallel machines, the operating system issues are not

discussed in detail. Only a brief overview of some of the current work is included here.

1.1.3 Parallel Languages and Compilers

Numerous projects in the field of parallel languages and compilers targeted for the various

different architectures exist. Since parallel languages and compilers are closely related to

the subject of the thesis, the literature review section (1.3) describes them in detail.

CHAPTER 1. INTRODUCTION 9

Figure 1.1: Unstructured Mesh

1.2 Scientific A pplications

A detailed categorization of scientific applications is given by Fox [42, 27]. Applications are

divided into the following four categories according to their temporal structure:

Synchronous: These applications are typically data-parallel with the time dependence

calculation at each point on the computational graph done by the same operations.

These problems are natural for parallelization on SIMD architecture.

Loosely Synchronous: These applications are also data-parallel, but the calculations per

formed at each point on the computational graph can be done by using separate algo

rithms. The points in the computational graph are often connected with each other in

an irregular manner. Hence, these problems are often referred to as irregular. Arrays

in irregular problems are typically indexed by indirection arrays. Figure 1.1 depicts

an unstructured mesh.

CHAPTER 1. INTRODUCTION 10

LI do j=l,tim esteps

L2 do i=l,n_iterations

S2 n l = ia(i)

S3 to II Jr

S4 y(nl) = y(nl) + x(n2)

end do

end do

Figure 1.2: Static Single Phase Computation

A synchronous: These problems are irregular both in space and time. It is impossible to

suggest a general method of parallelization of such problems. Each problem has to be

parallelized separately.

E m barrassing ly Parallel: All data points in the computational graph are disconnected

both in space and time. These problems can be executed both on SIMD and MIMD

architectures. Load balancing is the only consideration during partitioning.

This discourse will explore loosely synchronous problems in more detail, presenting

examples from some of the application codes with which this researcher has worked.

1.2.1 Static Single Phase Computations

Loosely synchronous problems consist of concurrent computational phases that are repeat

edly executed. The connectivity of the underlying computational graph does not change

throughout the life of the computation. The piece of code shown in Figure 1.2 is an example

of static single phase computation. The arrays x and y are indexed using the indirection ar

rays ia and ib. This type of computation is commonly found in unstructured mesh solvers.

Examples of this type of computation consist of applications codes involving sparse matrix-

CHAPTER 1. INTRODUCTION 11

vector multiplications, explicit unstructured mesh solvers, etc. Efficient implementation

of such problems consists of partitioning the data and the work so that communication is

minimized and the load is balanced.

1.2.2 Multiphase Computations

Multiphase computations consider each phase as a static single phase computation with a

specific computational graph. The solution from one phase of the computation is used to

drive the solution in the next phase. Examples of multiphase computations are unstructured

multigrid mesh solvers, particle-in-cell codes, etc. Partitioning these types of computation

is very involved. Not only must the data and computation for a phase be partitioned, as if

it was a static single phase computation, but the phase to which the data will be transferred

after the computation has ended must be considered as well. The transfer of data between

phases must be considered during partitioning since the results from one phase are used to

drive the calculation in another. An example based on multigrid mesh solvers is presented in

Figure 1.3. The example is a very simplistic representation of the type of computation that

is required during multigrid solutions, but manages to portray the complexities involved.

In the example, the arrays wc and w f store data values at the coarse and fine mesh points,

respectively. There are two arrays, Cw eight and Fw eight, which are used to store the

weights that are required during interpolation. The arrays C in te r and F in te r are the

interpolation arrays, required to transfer data between the various meshes. Calculation

goes back and forth between the two phases, coarse and fine.

1.2.3 Adaptive Irregular

The example presented in Figure 1.4 depicts an adaptive irregular computation. After

every timestep the computational graph changes, thus changing the indirection patterns.

Rapid preprocessing is required to move data around. Data must be remapped to reduce

communication volume, although it has been found that it is not required every timestep.

Fast data partitioning algorithms are required to partition data before it can be remapped.

CHAPTER 1. INTRODUCTION 12

LI do j=l,tim esteps

C Loop over C oarse m esh

L2 do i=l,n_coarse

51 wc(i) = wc(i) + dwc(Cedge(i))

end do

C In te rp o la te from C oarse to F ine

L3 do i=l,n_fine

52 wf(i) = wf(i) + Fweight(i) * wc(Finter(i))

end do

C Loop over F ine m esh

L4 do i=l,n_fine

53 wf(i) = wf(i) + dwf(Fedge(i))

end do

C In te rp o la te from F ine to C oarse

L5 do i=l,n.coarse

54 wc(i) = wc(i) + Cweight(i) * wf(Cinter(i))

end do

enddo

Figure 1.3: Multiphase Computation

CHAPTER 1. INTRODUCTION 13

LI do j = l,timesteps

L2 do i= l,n jterations

SI y(i) = y(i) + x(edge(i))

end do

C C om pu ta tion to change th e ind irection a rra y

L3 do i=l,n-iterations

SI edge(i) = function(edge(i))

end do

end do

Figure 1.4: Adaptive Irregular Computation

Examples of such computations are adaptive unstructured mesh solvers, molecular and

particle dynamics codes, direct Monte Carlo simulations, etc.

1.3 Im portant Compiler Projects

Over the past few years, a considerable amount of work has been done in developing both

shared and distributed memory compilers. In some approaches, parallel programming lan

guages and environments have been developed, while in others a sequential language, like

Fortran, is annotated so that transformations can be performed to generate parallel codes.

In this section, a brief review of the important parallelizing compiler efforts may be found.

First, the distributed memory compilers are reviewed, followed by a discussion of the shared

memory compiler efforts.

Zima et al. developed the semi-automatic parallelization tool SUPERB [106, 44] for

parallelization of programs for distributed memory machines. The SUPERB tool has an

CHAPTER 1. INTRODUCTION 14

interactive environment, and it transforms annotated Fortran programs into parallel codes.

Initially, array element level communication statements are generated, after which aggres

sive message vectorization is performed using data dependency information. The compiler

automatically generates array overlaps which are used to store off-processor data. Rect

angular data distribution can be specified by the user to layout the data. For parameter

passing between procedures interprocedural data-flow analysis is used.

Koelbel et al. [64, 61, 63, 62] designed the Kali compiler, the first to support both a

regular and irregular data distribution. The development of the Kali language was based

on BLAZE, a coarse-grained dataflow language [77]. The important parallel constructs in

a program written for Kali are the data distribution statement, the virtual processor array

declaration and the forall statement. The virtual processor array allows for the parameter

ization of the program, thus making it portable to various number of physical processors.

All statements inside a forall loop can be executed in parallel. The iteration partition is

accomplished by the special on clause. For irregular computation, an inspector/executor

[78] strategy is used.

A distributed memory compiler, developed by Callahan and Kennedy, uses dependency

analysis to perform transformations [21]. Like the SUPERB compiler, parallel code is gener

ated from sequential Fortran with data decomposition statements. Various transformations

are performed to optimize data movement.

DINO [90, 89, 91] is a parallel language developed to support distributed memory

scientific computation. Unlike Kali, it uses an explicitly parallel model of computation and

does not derive parallelism from the sequential code. The DINO language was developed

based on the C programming language. Instead of Kali’s processor array, a virtual parallel

machine needs to be declared using the construct called an environment. The same data can

be mapped to multiple environments, which can be mapped to a single physical processor.

User-defined distributions are supported in DINO. There are no explicit communication

statements, but nonlocal references are annotated by the user. When distributed arrays are

passed as subroutine parameters, if necessary, array sections are communicated. Analysis for

CHAPTER 1. INTRODUCTION 15

message vectorization is not performed by the DINO compiler because the user annotates

all non-local references. In an explicitly parallel language like DINO, it is fairly easy to

express pipelined computation. DIN02 [87], an extension of the DINO language, has

richer language support for writing parallel programs.

Chen et al. developed afunctional programming language called Crystal [25, 72, 71] for

programming distributed memory machines. The Crystal compiler does not have sophisti

cated dependency analysis tools; the existing dependencies are evident from the program

text. Dependencies are analyzed to distribute the computation and the data. The central

portion of Chen’s work deals with automatic partitioning of data and work. The generation

of the communication statements is done by subscript pattern matching [70]. The output

from the Crystal compiler is a C program with message passing statements.

CMU Wrap [8] is a distributed-memory programmable systolic-array machine developed

at Carnegie Mellon University. The language for this machine is AL and was developed by

Tseng [98, 97]. Each cell of the systolic array machine is programmed using the language

W2 [67]. The AL compiler generates W2 programs that can be executed on each of the

cells. Data objects can be scalars, arrays or distributed arrays. Only a single dimension

of an array can be distributed because the Warp machine is a linear array. A construct

called DO* is used to instruct the compiler to attempt parallelizing the Do-loop. The

compiler does the parallelization if it can guarantee that the parallel order of the execution

is same as the sequential order. The AL compiler does data and loop iteration partitioning

based on data relations, which are those that exist between the different objects of the

program. The compiler can handle general types of distribution. An automatic mapping

compiler [96, 95] was developed for the applicative programming language, Sisal [76], where

the target machine was the CMU Wrap. The mapping compiler applies different execution

models to Sisal programs to determine the “best” mapping method. The execution models

are developed based on the machine model and mapping models.

Rogers and Pingali developed the functional language Id Noveau [85, 84] to be used

for distributed memory machines. They provide a single assignment array structure called

CHAPTER 1. INTRODUCTION 16

I-structures, which considerably simplify compiler analysis. Data mapping is done using

functions supplied by the user. The user also provides the global to local address dereferenc

ing functions. Communication and computation are pipelined using compile-time analysis.

Runtime resolution of messages is performed and a separate node code is produced for each

processor.

A C ++ based language called C* [83], was developed by Quinn and Hatcher to support

SIMD data parallel programs. The language C* was developed for the Connection Machine.

In C* a virtual machine is declared. Domains that signify virtual processors are an abstract

data type and are declared the same way classes are declared in C + + . There is no global

view of the data; all references must be made with respect to the local data structure.

Data can be moved from one domain to another, and all communications are generated

automatically. When a block of statements is specified to be executed on a domain (virtual

processors), the statements are executed in parallel.

Andre et al. [6, 7] developed Pandore, where parallelism is extracted from the sequential

code. The language also has constructs to explicitly express parallelism. Pandore can

efficiently handle regular codes. Input to the Pandore compiler is an extended C program,

wherein the user declares the parallel virtual machine, and the compiler automatically

maps the data. For data communication, the compiler generates calls to the Pandore

communication library.

The Aspar compiler, developed at Caltech by Fox et al. [57], takes sequential Fortran

programs as input without annotations, and outputs a distributed memory code. The

compiler must perform significantly more analysis than the other compilers described pre

viously in order to perform the partitioning. For communication the Aspar compiler uses

the Express [81] runtime primitives.

Fortran D [41, 45, 50, 53], developed at Rice University, is a parallel programming

language based on Fortran 77, and can be used to write distributed memory programs.

This language has added a rich set of extensions to Fortran to allow for data distribution.

Fortran D supports irregular data mapping. The Fortran D compiler does a fair amount of

CHAPTER 1. INTRODUCTION 17

dependency analysis to figure out which loops can be executed in parallel. The compiler uses

a two level mapping scheme, i.e., data is mapped onto a virtual processor array, which is

then mapped onto the physical machine. All the loop transformations for irregular programs

presented in this thesis have been implemented in the Fortran D environment.

Vienna Fortran [11, 23, 22] is a Fortran D like language developed for scientific compu

tation. It does not have decomposition statements like those found in Fortran D. Vienna

Fortran supports dynamic data decomposition as well as explicit processor array declara

tions. The Vienna Fortran compiler uses the PARTI primitives, described in this thesis, for

irregular computation. A variety of other attributes can be specified for data distribution

to deal with passing of distribution information between procedure boundaries.

A few of the important compilers that use data dependency analysis [66, 10] to gen

erate parallel code for shared memory architectures are Parafrase [65], PTRAN [2] and

PFC [3]. The compilers use standard Fortran input, recognize vector operations and com

pound functions, and reorganize code for execution on vector and parallel machines. The

main goal is to extract the maximum amount of parallelism from the input code. A number

of optimizations are performed by these compilers to obtain locality of memory reference.

Improving the locality of memory reference makes good use of the registers and caches of a

processor, thus boosting performance. The optimizations performed by the shared-memory

compilers do not consider interprocessor data communication because of the presence of a

global address space.

Some important parallel compiler projects have been covered in this section; however,

there have been other compiler projects designed to support parallel computation [24,

74, 86, 43]. A few years ago, an effort was initiated to design a standard scientific parallel

programming language; the result is High Performance Fortran (HPF) [56]. HPF is expected

to be made available on most commercial machines. The first definition of this language

does not support irregular mapping of data, but will be included in the revised definition.

C hapter 2

P rob lem D efin ition and A pproach

This chapter presents an in-depth definition of the problem and gives a general outline of

suggested solutions. Data parallel languages provide users with a wide range of constructs

to distribute data and work between the processors of a distributed memory machine.

Compilers written for such languages use data and work distribution information to generate

efficient code to be executed on a parallel machine. The purpose of this dissertation is to

Define and develop compiler support and transformation techniques that can be utilized

to automatically parallelize irregular problems, written in a data parallel language, to

be executed on a distributed memory MIMD architecture.

The data parallel languages considered here are based on Fortran. The most basic and

widely used construct in such languages is the DO loop. DO loops in which the data

access pattern is irregular can be parallelized in a variety of ways. Each of the different

methods has advantages and disadvantages. The parallelization method chosen depends

on the architecture of the target machine. In this chapter, each of the methods will be

described, with special emphasis on the method that was followed.

18

CHAPTER 2. PROBLEM DEFINITION AND APPROACH 19

LI do i=l,n_steps

L2 do j=l,njedge

SI n l = nde(j,l)

S2 n2 = nde(j,2)

S3 flux = F(x(nl),x(n2))

S4 y(nl) = y(nl) + flux

S5 y(n2) = y(n2) + flux

end do

end do

Figure 2.1: Example of Simple Irregular loop

2.1 Parallelization o f Irregular Loops

In irregular loops data arrays are indexed using indirection arrays. Therefore, the access

patterns are known only a t runtime, after the indirection arrays are initialized. An example

of a simple irregular loop is presented in Figure 2.1. This example will be used to present

the different methods to parallelize irregular loops. The code shown in Figure 2.1 is a

simplified version of loops extracted from a real computational fluid dynamics code. This

illustration involves looping through the edges of an unstructured mesh and calculating the

flux. The outside loop is executed for n-steps, which is usually an input parameter. The

parameter is chosen depending on some convergence criteria. The indirection array nde

is two-dimensional in structure, where n d e (j,l) and nde(j,2) are the two nodes in the

unstructured grid connected by edge j. The two data arrays are x and y. For each iteration

the value of the variable flux is calculated using x (n l) and x (n2). The calculated flux is

stored in array y.

CHAPTER 2. PROBLEM DEFINITION AND APPROACH 20

The primary objective is to execute the loops shown in Figure 2.1 on a distributed

memory parallel machine. The purpose is to have a parallelizing compiler generate the

required code. The compiler has to perform two steps: The first step is to partition the

data and the work between the processors; the next step is to generate a code that each

processor can execute. There must be sufficient input from the user to the parallelizing

compiler to achieve these objectives. Issues involved in generating the parallel code are

described in this chapter.

2.2 Partitioning Issues

To parallelize the loops shown in Figure 2.1 so that they can be executed on a distributed

memory machine, both the data and the work must be distributed to the different processors.

After the data and work are distributed among the participating processors, each processor

executes the loop nest. The outer loop remains unchanged; the inner loop bounds are

changed to the number of local iterations assigned to each processor. For the example

code shown in Figure 2.1, the number of local iterations of the inner loop assigned to

each processor is determined by the number of unstructured mesh edges assigned to each

processor. When each processor executes the iterations assigned to it, references may be

made to non-local data. In such cases data communication between processors has to take

place for successful completion of the computation. The data partitioning and the work

partitioning are very much coupled. During the partitioning of both the data and the

work, careful consideration is taken to keep the data communication between processors

to a minimum. The amount of work distributed among the processors is maintained more

or less equal so that the load is balanced. In most data parallel languages developed for

parallel programming, there exists some sort of construct used to specify how to partition

both the data and the work. Hence, the user controls the partitioning process.

CHAPTER 2. PROBLEM DEFINITION AND APPROACH 21

2.2.1 Data Partitioning

Depending on the nature of the problem, the user can choose a number of different partition

ing strategies. The partitioning scheme is chosen to reduce data communication between

processors. The most commonly used partitioning schemes are the following:

BLO CK : In block distribution, an equal number of contiguous elements of an array are

allocated to the processors, assuming the total number of elements is divisible by the

number of processors. Hence, if there are n elements in an array, and there are p

processors, assuming that n m od p is 0, then each processor gets n div p elements

with processor 0 getting the first portion, processor 1 the next portion and so on. If

n m od p is non-zero, some pre-defined strategy may be used to distribute the extra

elements. BLOCK distribution is very common and used by most regular applications.

C Y C LIC : In cyclic distribution, instead of allocating contiguous portions to the proces

sors, each element is given to the processors one at a time and wrapping around is

performed whenever necessary. Again, if there are n elements in an array, and there

are p processors, assuming n > p, Processor 0 gets the first element, Processor 1 gets

the second and so on. Since n > p, the allocation wraps around, i.e., Processor 0

gets element p + 1, Processor 1 gets element p + 2 and so on. CYCLIC distribution

is less common than BLO CK distribution, but it is used in certain types of regular

problems.

Irreg u la r: Irregular distribution is commonly used for irregular problems. Here the actual

data distribution is specified by a map array, which is the same size as the data array

that needs to be distributed and contains processor numbers. Hence, map(i) specifies

the processor to which the data element i needs to be allocated.

There are other partitioning strategies like B L O C K -C Y C LIC , Irregular-B lock , etc.

For multi-dimensional arrays, usually one dimension is distributed and the other dimensions

are compressed. Compressing a dimension means that it remains undistributed.

CHAPTER 2. PROBLEM DEFINITION AND APPROACH 22

2.2.2 Work Partitioning

Work distribution is performed by partitioning the loop iterations. The partitioning of loop

iterations is very much dependent on the data distribution. Work is partitioned to reduce

the inter-processor data communication and to balance the load. A few of the common

schemes for performing work partitioning are presented.

O w ner C om putes: In this scheme, a particular iteration of a DO loop is allocated to

the processor that contains the left-hand side of the statement, i.e., the element that is

being updated. This partitioning is the most commonly used scheme, and is followed

as closely as possible in this thesis. In irregular problems, “owner computes” does not

always provide the best result.

On H om e: Most data parallel languages allow DO loops to be annotated using the “on

home” clause. This directive is used to assign iterations to different processors. Iter

ations can be assigned to processors containing either the right- or left-hand side of a

statement.

A number of compilers have implemented the “owner computes” scheme successfully for

regular problems. Other work partitioning schemes have been used where loop iteration is

assigned, based on the ownership of the maximum number of data references.

2.3 Parallelization Schemes

In this section, some of the different strategies that can be used to parallelize the loop shown

in Figure 2.1 will be outlined. Any of these strategies can be utilized, depending on the

architecture and available resources.

2.3.1 Data Replicated Approach

In the data replicated approach, data is not partitioned between the participating processors

but is replicated on all processors. The work, on the other hand, is partitioned between the

CHAPTER 2. PROBLEM DEFINITION AND APPROACH 23

processors in such a way that the load is balanced, making the parallelization process very

simple, uninteresting and communication intensive. At certain points in the code, every

processor communicates with all others so that the data on each processor are identical.

The parallel version of the loop shown in Figure 2.1 has the same structure as the

sequential loop, except that the loop bounds on each processor are different. After each

processor executes the iterations that have been allocated to it, the processors communicate

with each other so that the y array values on each processor are the same.

2.3.2 Data Parallel Approach

The data parallel approach of parallelization involves partitioning of both the data and the

work. Depending on the architecture of the target machine, this category can be further

subdivided. Most of the new parallel languages being developed are intended for data

parallel programming. A number of interesting synchronization issues are raised when this

approach is taken.

Inspectors/E xecutors

Using inspector/executor is the natural way to parallelize an irregular loop [78]. An

irregular loop is transformed into two constructs, the inspector and the executor. The

inspector is a piece of parallel software that at runtime analyzes the indirection arrays of

an irregular loop and figures out the data access pattern. Once the data access pattern

is generated, the inspectors, running on different processors, communicate with each other

to determine the send/receive patterns of the data. These patterns are stored in a data

structure called the schedule. A schedule needs to be generated for each type of data

access pattern. The executor is the code that is executed to solve the problem. In iterative

methods, it is frequently the case that a loop’s inspector is executed once, while its executor

is executed many times. The inspector/executor method of parallelization works well for

loops with just output dependencies [5] as the one shown in Figure 2.1. When loops have

dependencies that are loop-carried [5] then the inspector/executor method of parallelization

CHAPTER 2. PROBLEM DEFINITION AND APPROACH 24

does not work well.

After the schedules required in an irregular loop have been generated by the inspector,

the executor phase begins. During the executor phase, the already generated schedules are

used to fetch the actual data and the off-processor data are stored in buffers. Once the data

has been fetched, the actual computation can begin (the actual computation is also part of

the executor). The pre-fetching of the data causes an overall reduction in the time required

to execute the loop by reducing both the number of startups and the communication volume.

If the same off-processor data are accessed more than once, only a single copy is fetched.

Figure 2.2 shows the parallel version of the loop depicted in Figure 2.1, using the inspec

tor/executor parallelization strategy (this transformation is generated by a source-to-source

translator). The loop structure in the executor is the same as the loop structure in the se

quential code. The indirection array nde, which is in global coordinates, has been changed

to local (i.e., processor) coordinates and is called ndeJocal. The loop bounds have been

changed to the number of local iterations. The executor on each processor communicates

with the participating processors at two points. The first communication point occurs be

fore the execution of the actual computation. All data that will be used inside the loop

are pre-fetched. After the actual computation, off-processor data are accumulated through

another phase of communication. Both of these communication phases utilize the schedule

that was generated in the inspector phase.

Fetch on D em and

At the beginning of every iteration a check is performed to determine data ownership.

The processors that have non-local data references initiate fetches and block until the data

arrives. An interrupt-driven message passing mechanism is required for the fetch on demand

type of data transfer to work efficiently. Hardware or software support [100] is required for

interrupt-driven message passing mechanism. The fetch on demand mechanism can only

work on machines with very low latencies. The advantage of this method is one does not pay

for the generation of the inspector. The fetch on demand method can be further optimized

CHAPTER 2. PROBLEM DEFINITION AND APPROACH 25

SI In sp ec to r code analyzes local nde and genera tes schedule

Executor starts here

LI do i=l,n.steps

S2 U sing th e schedule from th e in specto r g a th e r x

L2 do j=l,njedgeJocal

S3 n l = ndeJocal(j,l)

S4 n2 = nde_locaI(j,2)

S5 flux = F(x(nl),x(n2))

S6 y(nl) = y(nl) + flux

S7 y(n2) = y(n2) + flux

end do

S8 U sing th e schedule from th e in spec to r accum ulate off-processor y

end do

Executor ends here

Figure 2.2: Example of Inspectors/Executors

CHAPTER 2. PROBLEM DEFINITION AND APPROACH 26

by storing off-processor data in a special buffer that can be consulted before issuing new

fetch initiations. Fetch on demand with buffering potentially reduces the number of off-

processor fetches.

2.4 Compiler Issues

The main objective of this research is to answer the compiler issues raised when one wants

to automatically parallelize irregular loops. This section presents a high-level description of

the various types of analyses required to automatically generate inspector/executor pairs.

The compiler for a data-parallel language must first analyze the data and work distri

bution directives given by the programmer. The distribution information is required for

generation of both the inspector and the executor. If two data arrays are indexed by the

same indirection array but have different distributions, separate schedules for data commu

nication must be built for each array. On the other hand, if the data arrays are distributed

identically, then one schedule will suffice. The work distribution statements are utilized to

generate the loop bounds.

The compiler takes a data-parallel program written in global coordinates as input and

transforms it so that it can be executed on the node of a parallel machine. The SPMD

(Single Program Multiple Data) model of computation is followed. The compiler splits the

irregular loops and generates the inspector and executor codes.

The inspector generation involves three phases:

• Finding the indirection arrays used in a loop.

• Analyzing the references that use indirection arrays and decide what schedules should

be generated. Analysis is done so that multiple copies of the same schedule is not

generated.

• Performing optimization so that duplicate copies of the same off-processor data will

not be fetched during the executor phase. This optimization has to be done during

CHAPTER 2. PROBLEM DEFINITION AND APPROACH 27

the inspector building phase since, during the executor run, the information stored

inside the schedule is used directly without further analysis.

Software primitives that generate data communication schedules when invoked with

indirection arrays have been developed. To generate inspectors, the compiler inserts calls

to these primitives which, during runtime, generate the required schedules.

Before generation of the executor code, the compiler must determine:

• The data references that require off-processor fetches and the schedules that will be

generated during runtime in the inspector phase for these data references. Based on

this information, the compiler makes calls to the gather/scatter routines.

• Whether more than one schedule must be used to access data from the same array.

In such cases the communication calls can be merged.

The optimizations to reduce the volume of data communication and the number of

message startups have been built into the tools developed for generation of inspectors and

executors. Also, transformation strategies have been developed to further optimize the

volume of communication.

2.5 Solutions Suggested in th is Thesis

This research makes concrete contributions in the area of automatic parallelization of ir

regular codes. In this thesis, the necessary requirements to build a parallelizing compiler

for irregular problems have been presented. Also, the solutions suggested have been imple

mented in the prototype compiler.

An efficient compiler runtime support system that performs data movement between

processors and software caching has been developed. The system is a portable library

that can be used by any parallelizing compiler. Numerous compilers use this runtime

system [18, 16].

CHAPTER 2. PROBLEM DEFINITION AND APPROACH 28

Detailed transformation techniques for irregular computations that can be used by a

compiler to generate parallel codes have been presented. These transformation methods are

developed based on program slicing [103] techniques. Using these transformations, efficient

parallel codes can be generated by a compiler for irregular problems written in data-parallel

languages.

C hapter 3

C om piler Support for Irregular

P rob lem s

This chapter focuses on the design of a suite of tools that has been developed to support

the transformation of irregular programs that run on uni-processors to ones that can be

executed on parallel machines. The tools can be used by compilers or by users directly to

generate parallel codes. The tools have been used to implement a number of large irregular

codes on distributed memory machines. This author’s prototype compiler has also utilized

these tools to parallelize irregular loops extracted from various codes.

This author has developed methods necessary to generate efficient distributed memory

codes for a large class of sparse and unstructured problems. In these problems, the depen

dency structure is determined by variable values known only at runtime. In such cases,

effective use of distributed memory architectures is made possible by a runtime preprocess

ing phase, which is used to partition work, map data structures, and schedule the movement

of data between the processor memories. The code required to carry out runtime prepro

cessing can be generated by a distributed memory compiler during a process called runtime

compilation [93].

Once data structure and loop iteration partitioning have been determined, further pre

processing is carried out to generate communication calls needed to efficiently transport

29

CHAPTER 3. COMPILER SUPPORT FOR IRREGULAR PROBLEMS 30

data between processors. In sparse and unstructured computations, distributed arrays are

typically accessed using indirection arrays. Runtime preprocessing is used to generate a

small number of communications calls to carry out the required data transport. In many

cases several loops access the same off-processor memory locations. As long as it is known

that the values assigned to off-processor memory locations remain unmodified, it is possible

to reuse stored off-processor data. A mixture of compile-time and run-time analysis can be

used to recognize such situations. Compiler analysis determines when it is safe to assume

that the off-processor data are valid. Software primitives generate communications calls

that selectively fetch only those off-processor data, not available locally.

3.1 Overview o f H PF

This section involves an overview of a data-parallel language that has been developed to

support scientific computations. Researchers from both industry and academia established

a forum to design a data-parallel language, High Performance Fortran (HPF) [56], that can

be used to write scientific programs for both SIMD and MIMD architectures. The starting

point for HPF was Fortran 90 because of its dynamic allocation and array operation features.

Other features that have been added to HPF are based on the numerous parallel languages

developed both by computer scientists and applications engineers. The data distribution

directives added to the language are based on the extensions defined in Fortran D [40], and

Vienna Fortran [107]. Some of the important features of HPF are presented here.

Constructs are present in this language that allow the programmer to explicitly specify

parallel execution. The INDEPENDENT directive precedes a loop; its purpose is to tell the

compiler that the statements in the loop do not have any sequentializing dependencies, and

that they can be executed in any order without changing the semantics of the program.

The INDEPENDENT directive allows the compiler to make various decisions regarding data

placement and optimizations. The FORALL executable construct in the language allows

simultaneous assignment of a large number of array elements. Fortran 90 has a FORALL

CHAPTER 3. COMPILER SUPPORT FOR IRREGULAR PROBLEMS 31

S I R E A L *8 x(L,N), y(M,N), z(N)

S2 !HPF PR O C E SSO R S P(10)

S3 !HPF D IS T R IB U T E z(BLOCK) ONTO P

S4 1HPF A LIG N (*,:) WITH z:: x, y

Figure 3.1: Example of HPF Style Data Distribution

statement in its definition. HPF relaxes many of the restrictions regarding array assignments

in the Fortran 90 FORALL statement.

Distributing data between the different processor memories is a very important aspect

of parallel programming. Any data-parallel language should have constructs by which the

user can specify the required data decomposition. Many researchers have explored the

problem associated with specifying data decomposition [104, 88, 30, 83, 26, 71, 70]. The

data distribution features of HPF allow the programmer to distribute data so that locality

of data is maintained on each processor, thereby reducing data communication time. The

DISTRIBUTE directive is used to specify how the data is to be mapped to an arrangement

of virtual processors. At the moment, only regular distributions are defined in the HPF

language, and multiple dimensions of an array can be distributed. Regular distributions that

are supported in the language are BLOCK and CYCLIC. When data is distributed regularly,

the address of any data element can be found by using an algebraic expression involving

the processor number and distribution size. Data arrays can be redistributed by using the

directive REDISTRIBUTE. The other data distribution directive, ALIGN, is used to group data

objects that are to be distributed identically. Alignment of objects can be either static or

dynamic.

CHAPTER 3. COMPILER SUPPORT FOR IRREGULAR PROBLEMS 32

An example of HPF style data distribution is depicted in Figure 3.1. There are three dis

tributed arrays, x, y and z; x and y are two-dimensional arrays, while z is one-dimensional.

The statement S2 declares a set of virtual processors, P , in the shape of a linear array. The

statement S3 specifies that z should be block distributed across the set of virtual proces

sors. The statement S4 aligns x and y with z. The align statement states how the two

dimensions of x and y are to be distributed. The first dimension of the arrays x and y is

to be collapsed onto the set of virtual processors, i.e., the first dimension is not distributed.

The character shown in the first dimension in the align statement, signifies that the

first dimension of x and y is to be collapsed. The second dimension of the arrays x and y

is distributed, conforming to the distribution of the array z. The character shown in

the second dimension in the align statement, signifies that the second dimension of x and

y is to be aligned with the distribution of z.

HPF has been developed to be machine independent. For instance, the user may want to

do explicit operations based on the architecture on which the program will be executed. HPF

allows the program to call extrinsic procedures containing user defined machine dependent

operations. Extrinsic procedures constitute one way to declare and accomplish operations

on local data otherwise impossible to define within the context of the language.

The features of HPF that the author uses in some examples have been presented here.

The complete language specification is presented in High Performance Fortran Language

Specifications [56].

3.2 Overview of the Initial PARTI Work

The work thus far has been developed based on the initial development of a suite of

primitives for implementing irregular problems on distributed memory parallel architec

tures. These primitives are named PARTI (Parallel Automated Runtime Toolkit at ICASE)

[13, 93]. In this section an overview of the functionality of the PARTI primitives is given. In

many algorithms, data produced or input during a program’s initialization play a large role

CHAPTER 3. COMPILER SUPPORT FOR IRREGULAR PROBLEMS 33

in determining the nature of the subsequent computation. In the PARTI approach, when

the data structures that define a computation have been initialized, a preprocessing phase

follows. Vital elements of the strategy used by the rest of the algorithm are determined by

the preprocessing phase.

In distributed memory MIMD architecture, there is typically a non-trivial communi

cations latency or startup cost. For efficiency, information to be transmitted should be

collected into relatively large messages. The cost of fetching array elements can be reduced

by precomputing the data each processor needs to send and receive.

In irregular problems, such as solving PDEs on unstructured meshes and sparse matrix

algorithms, the communication pattern depends on the input data. The dependency on

input data typically arises due to some level of indirection in the code. In such cases, it is

not possible to predict at compile time what data must be prefetched. To deal with this lack

of information, the original sequential loop is broken up into the inspector/executor pair.

A brief description was given in the previous chapter of the inspector/executor construct; a

more detailed description of this type of transformation is given in Mirchandaney et al. [78].

During program execution, the inspector examines the data references made by a pro

cessor and calculates what off-processor data need to be fetched and where the data will be

stored once received. Inspectors on separate processors coordinate this task. The executor

loop uses the information from the inspector to implement the actual computation. PARTI

primitives can be used directly by programmers to generate inspector/executor pairs.

PARTI primitives carry out the distribution and retrieval of globally indexed, but irreg

ularly distributed, data-sets over the numerous local processor memories. Each inspector

produces a set of schedules, specifying the communication calls needed to either

(i) obtain copies of data stored in specified off-processor memory locations (i.e., gather),

or

(ii) modify the contents of specified off-processor memory locations (i.e., scatter), or

(iii) accumulate (e.g., add or multiply) values to specified off-processor memory locations

CHAPTER 3. COMPILER SUPPORT FOR IRREGULAR PROBLEMS 34

(i.e., accumulate).

In distributed memory machines, large data arrays need to be partitioned between

local memories of processors. The partitioned data arrays are called distributed arrays.

Long-term storage of distributed array data is assigned to specific memory locations in the

distributed machine. Frequently, partitioning distributed arrays in an irregular manner is

advantageous. For instance, the numbering of the nodes of an irregular computational mesh

does not have a useful correspondence to the connectivity pattern of the mesh. The data

structure in such problems is partitioned to reduce interprocessor communication. This may

cause the assignment of arbitrary array elements to each processor (irregular partitioning).

Each element of a distributed array is assigned to a particular processor. When an array

is partitioned irregularly, finding the address of a particular data element of that array is

a non-trivial task. Since any data element can reside in any processor, a global mapping

table is set up to store the address information. This mapping table is called the translation

table, and for each element of the data array, it stores the processor where the data reside

and the local address in the processor.

3.3 The PARTI Prim itives

In this section the primitives that have been developed for the generation of inspector

and executor constructs, starting from sequential irregular loops, are described in detail.

Primitives schedule and carry out movement of data between the processor memories. Var

ious optimizations are performed aggressively to reduce data communication volume and

message startups. The primitives have been designed to

(i) eliminate redundant off-processor references, and

(ii) simplify producing parallelized loops that are virtually identical in form to the original

sequential loops.

A paged distributed translation table has been developed to reduce the time required to do

address translation for irregularly distributed data.

CHAPTER 3. COMPILER SUPPORT FOR IRREGULAR PROBLEMS 35

real*8 x(N), y(N)

c Loop over edges involving x , y

LI do i= l , n.edge

n l = edgeJist(i)

n2 = edgeJist(n.edge + i)

SI y(nl) = y(nl) + x(nl) + x(n2)

S2 y(n2) = y(n2) + x(nl) + x(n2)

end do

C Loop over Boundary faces involving x, y

L2 do i=l,n_face

m l = faceJist(i)

m2 = faceJist(n_face + i)

m3 = faceJist(2 * n_face + i)

S3 y(m l) = y(m l) + x(m l) + x(m2) + x(m3)

S4 y(m2) = y(m2) + x(m l) + x(m2) + x(m3)

end do

Figure 3.2: Sequential Code

CHAPTER 3. COMPILER SUPPORT FOR IRREGULAR PROBLEMS 36

To explain how the primitives work, an example, similar to loops found in unstructured

computational fluid dynamics (CFD) codes, is used. In most unstructured CFD codes,

a mesh is constructed that describes an object and the physical region in which a fluid

interacts with the object. Loops in fluid flow solvers sweep over the mesh structure. The

two loops shown in Figure 3.2 represent a sweep over the edges of an unstructured mesh

followed by a sweep over faces that define the boundary of the object. Since the mesh is

unstructured, an indirection array is used to access the vertices during a loop over the edges

or the boundary faces. In loop LI, a sweep is carried out over the edges of the mesh and

the reference pattern is specified by an integer array edge_list. Loop L2 represents a sweep

over boundary faces, and the reference pattern is specified faceJis t. The array x only

appears in the right-hand side of the expressions in Figure 3.2, statements SI through S4,

so the values of x are not modified by these loops. In Figure 3.2, data are read from, and

written to, array y. These references involve accumulations in which computed quantities

are added to specified elements of y (statements SI, S2, S3 and S4).

3.3.1 Paged Distributed Translation Table

When irregular problems are solved on distributed memory parallel machines, it is frequently

advantageous to partition the data arrays irregularly. Data structures are partitioned to

minimize interprocessor communication, and the partitioning may lead to arbitrary assign

ment of array elements to each of the processors. Once distributed arrays have been parti

tioned between processors, each processor ends up with a set of globally indexed distributed

array elements that will be accessed during the executor phase.

Each element in a size S distributed array, A, is assigned to a particular home processor.

In order for another processor to be able to access a given element, A(t), of the distributed

array the home processor where A(t') resides must be known; also, the local address of A(i)

must be known. A translation table is built, that for each array element lists the home

processor and the local address in the home processor’s memory.

Memory considerations make it clear that it is not always feasible to place a copy of

CHAPTER 3. COMPILER SUPPORT FOR IRREGULAR PROBLEMS 37

the translation table on each processor. A translation table can be distributed between

processors. Earlier versions of PARTI supported a translation table that was partitioned

between processors in a blocked fashion [35], [104]. The partitioning was accomplished by

putting the first N /P elements on the first processor, the second N /P elements of the table

on the second processor, etc., where P is the number of processors. If access is required to an

element A(m) of distributed array A , the home processor and local offset for A(m) is found

in the portion of the distributed translation table stored in processor ((m — 1) / N) * P + 1. A

translation table lookup aimed at discovering the home processor and the offset associated

with a global distributed array index is referred to as a dereference request.

In many cases, the naive translation table described above tends to be costly to use

because

• the distribution of the translation table between processors is fixed and bears no

particular relationship to the distribution of dereference requests; and

• some distributed array elements are included in a number of reference requests. In

many cases, there is enough memory to partially (or completely) replicate the trans

lation table. The naive distributed translation table is not able to replicate portions

of the translation table in order to trade memory for improved performance.

In this section, a paged translation table is discussed. The translation table is decom

posed into fixed-sized pages which list the home processors and offsets associated with a set

of B contiguously numbered distributed array indices. Each processor stores (P * a) pages,

and at least one processor maintains a copy of each page; consequently, the total number

of stored pages (P * P * a) must be greater than or equal to the distributed array size S

divided by B. Following the convention in the virtual memory literature, the memory loca

tion associated with each page is called a page frame. Each processor maintains a complete

page table; for each page, the page table lists a processor and a page frame.

Translation table information for each index must be stored somewhere, simplifying the

assumption that each processor must store at least S / (B * P) pages. In the current paged

CHAPTER 3. COMPILER SUPPORT FOR IRREGULAR PROBLEMS 38

Dereference:
Translate local list of global indices to a list of (processor, offset) pairs

Global Indices Translation Table: Processor
Number

Global Index Array : <1,6,5,2> <(1,1), (1,3), (2,2), (2,4) >
Local Offset

Figure 3.3: Global Index Translation

translation table implementation, S / (B * P) pages are statically bound to each processor

and copies of additional pages are dynamically assigned to each processor. In the absence

of any memory constraints, each processor could dynamically store S * (P — 1) / (B * P)

pages; in this case, the entire translation table would be replicated. The replication factor

(R F) is defined as the fraction of the maximum number of pages for which frames are

allocated by each processor. The user (or compiler) sets the page size B and a replication

factor (RF). Figure 3.3 shows the index translation process. Figure 3.4 depicts a highly

simplified scenario in which there are 2 processors, an 8 element distributed array (5=8), a

page size of 2 (5 = 2) and a replication factor of 0.0 (RF=Q.O). Since no pages are replicated

each processor has the same page table. In Figure 3.5 a scenario that is identical to the one,

shown in Figure 3.3 is depicted, except now the replication factor is changed to 0.5. In this

case, processor 1 contains a dynamic copy of page 3, and processor 2 contains a dynamic

copy of page 1.

The runtime support allows each processor to choose which pages to replicate, based

on the characteristics of a user (or compiler) specified distributed array access pattern,

specified by integer array IA. Each index t of IA is dereferenced by consulting page —

+ 1. On each processor, the most heavily accessed pages are chosen as the dynamically

CHAPTER 3. COMPILER SUPPORT FOR IRREGULAR PROBLEMS 39

Replication Factor 0.0

Processor 1

1 2

—
r»—

i— 4 ;

1 2 3
Local
offset Page 1 P a 2 e ^

Processor 1 : Page Table

1 - 2

3 -4

5 -6

7 -8

Page Frame 1
Processor 1

.Page Frame2
Processor 1

Page Frame 1
Processor 2

Page Frame 2
Processor 2

Processor 2
Processor
Number

2 1 2 1

2 3 1 2

5 6 7 8

Page 3 Page 4
Global
Indices

Processor 2 : Page Table

1 - 2

3 -4

5 - 6

7 -8

Page Frame 1
Processor 1

.Page Frame2
Processor 1

Page Frame 1
Processor 2

Page Frame 2
Processor 2

Position in Table = ((index - 1)/B) + 1
Position in Page = (((index - 1)%B) + 1

Figure 3.4: Paged Translation Table (Replication = 0.0)

CHAPTER 3. COMPILER SUPPORT FOR IRREGULAR PROBLEMS 40

Replication Factor 0.5

_ Qx&esgqt 1.

r
Local 1 2 3 4 5 6
Offset p a ge i p age 2 Page 3

Processor 1 : Page Table

1- 2

3 -4

5 -6

7 -8

Page Frame 1
Processor 1

Page Frame 2
Processor 1

Page Frame 3
Processor 1

Page Frame 2
Processor 2

Processor
_ Q ;0 £ P $ g O Ii 2 . . Number

1 2 1 2 2 1
1
1 2 1 2 1 1 2

1 4 4 3 2 3 1
■ 2 3 1 2 1 4

5 6 7 8

Page 3 Page 4 Page
Global Indices

1 ' Ig e l |

1- 2

3 -4

5 -6

7 -8

Processor 2 : Page Table
Page Frame 3
Processor 2

 ^ Page Frame 2
Processor 1

 ^ Page Frame 1
Processor 2

 ^ Page Frame 2
Processor 2

Figure 3.5: Paged Translation Table (Replication = 0.5)

CHAPTER 3. COMPILER SUPPORT FOR IRREGULAR PROBLEMS 41

51 translation-table = BuildDsTable(myvals, on.proc, replication-factor)

52 call DsShuffle(translation_table, index_array, ndata)

53 call DerefDsTable(translation.table, index_array, local, proc, ndata)

Figure 3.6: Translation Table Functions

assigned ones.

T ransla tion Table G eneration

The different function calls, used to generate and use the paged distributed translation

table, are shown in Figure 3.6. The numbering of the nodes of an irregular mesh frequently

does not have a useful correspondence to the connectivity pattern of the mesh. When

such a mesh is partitioned in a way that minimizes interprocessor communication, it may

be necessary to be able to assign arbitrary mesh points to each processor. The PARTI

procedure BuildDsTable (SI in Figure 3.6) allows storage of the mapping of a globally

indexed distributed array in a regular (replicated or partially replicated) fashion.

On each processor the function BuildDsTable is passed:

1. A list of the array elements for which it will be responsible (m yvals in SI, Figure 3.6).

2. The number of array elements for which this particular processor is responsible.

3. The percentage of the total translation table that is replicated on each processor. It

is specified by the rep lication-facto r in SI shown in Figure 3.6.

The function BuildDsTable returns a pointer to the translation table. If a given processor

needs to obtain a datum that corresponds to a particular global index i for a specific

distributed array, the processor can consult the paged distributed translation table to find

the datum ’s location in the distributed memory.

The PARTI call DsShuffle, shown in statement S2 in Figure 3.6, is used to move the pages

of the translation table. Pages of the translation table can be shuffled to improve the locality

CHAPTER 3. COMPILER SUPPORT FOR IRREGULAR PROBLEMS 42

of addresses during the dereferencing phase. The shuffling capability of the translation

table becomes important when parallelizing adaptive problems (frequent dereferencing is

required).

On each processor the function DsShuffle is passed:

1. A pointer to the translation table whose pages are being shuffled.

2. The index -array according to which the pages are shuffled.

3. The number of elements in the index-array .

The function DsShuffle returns the modified translation table pointer.

The PARTI function DerefDsTable is used to obtain the addresses of distributed ele

ments. On each processor the function DerefDsTable is passed:

1. A pointer to the translation table to be used for dereferencing.

2. The global indices, index-array , for which the local addresses are required.

3. The total number of elements nda ta , for which dereferencing is required.

The function returns:

1. A processor list which is the same size as index-array .

2. A local offset list which is the same size as index-array .

The functions presented in this section can be used to build and access the translation

table.

3.3.2 Primitives for Generating Inspectors/Executors

In this section, the primitives used to generate inspectors and executors are presented.

The inspector code for the loops shown in Figure 3.2 is illustrated in Figure 3.7, and the

corresponding executor code is shown in Figure 3.9.

CHAPTER 3. COMPILER SUPPORT FOR IRREGULAR PROBLEMS 43

51 translation-table = BuildDsTable(myvals, on.proc, replication-factor)

52 call localize(translation_table, edge.sched, partjedgeJist, locaLedge-list,

2 * local_n_edge, edge_off_proc)

53 call localize(translation-table, facel-sched, part JaceJist, local-face Jist,

2 * local-n-face, faceljoff_proc)

54 call localize(translation_table, face2_sched, part_face_list(2 * local-n-face + 1),

local_faceJist(2 * local-n-face + 1), local-n-face, face2joff_proc)

55 face.off-proc = faceljoff.proc + face2joff_proc

56 n_off_proc = MAX(edge_off.proc , face.off.proc)

57 sched-array(l) = facel-sched

58 sched_array(2) = face2_sched

Figure 3.7: Inspector Code for Each Processor

Inspector Generation

Runtime support can be used either by a complier or it can be embedded into distributed

memory codes manually by programmers. The primitives carry out preprocessing that

make it easy to produce parallelized loops that are virtually identical in form to the original

sequential loops. Since the parallel and the sequential codes are virtually identical, it is

possible to generate the same quality object code on the nodes of the distributed memory

machine as produced by the sequential program running on a single node.

These primitives make use of hash tables [52] to recognize and exploit a number of

situations in which a single off-processor distributed array reference is used several times.

In such situations, the primitives fetch a single copy of each unique off-processor distributed

CHAPTER 3. COMPILER SUPPORT FOR IRREGULAR PROBLEMS 44

array reference.

The PARTI procedure localize carries out the bulk of the preprocessing needed to pro

duce the executor code depicted in Figure 3.9. On each processor P, localize is passed:

1. A pointer to a paged distributed translation table (translation-table in S2),

2. A list of globally indexed distributed array references for which processor P will be

responsible, (part_edge_list in S2), and

3. The number of globally indexed distributed array references (2 * local-njedge in S2).

Localize returns:

1. A schedule that can be used in PARTI gather and scatter procedures (edge_sched in

S2),

2. An integer array that can be used to specify the pattern of indirection in the executor

code (local_edge-list in S2), and

3. The number of distinct off-processor references found in partjedgeJist (edge-ofLproc

in S2).

A sketch of how the procedure localize works is shown in Figure 3.8. The array edge -list

shown in Figure 3.2 is partitioned between processors. The part_edge_list passed to lo

calize on each processor in Figure 3.7 is a subset of e d g e J is t depicted in Figure 3.2.

part_edge_list cannot be used to index an array on a processor since part_edge_list

refers to globally indexed elements of arrays x and y. Localize changes part_edge_list so

that valid references are generated when the edge loop is executed. The buffer for each data

array is placed immediately following the on-processor data for that array. For example,

the buffer for data array x starts at x (n_on_proc+ l). Hence, when localize changes the

p a rt-ed g e J is t to locaLedge-list, the off-processor references are changed to point to the

buffer addresses. When the off processor data are collected into the buffer using the sched

ule returned by localize, they are stored in such a way that execution of the edge loop using

the local-edge J is t accesses the correct data.

CHAPTER 3. COMPILER SUPPORT FOR IRREGULAR PROBLEMS 45

part_edge_list Iocal_edge_list

) off
Localize

f processor
........

........

| references

buffer

references

gather Into bottom of data array

buffer.

local data

off processor data

Figure 3.8: Localize Mechanism

CHAPTER 3. COMPILER SUPPORT FOR IRREGULAR PROBLEMS 46

A careful review of the face loop presented in Figure 3.2 shows that the distributed array

x is indexed by m l, m2 and m 3, but the array y is indexed only by m l and m2. Two

separate schedules are built, i.e., one with all m l and m2 references and another with just

m3 references to be used to gather and scatter from the data arrays x and y. Hence, for the

face loop there are two localize calls. Similar to the edge loop, the face-list in Figure 3.2 is

partitioned between processors; each processor’s share is represented by part_face_list in

Figure 3.7 (statements S3, S4). The first call to localize (statement S3) generates a schedule

for references m l and m2. The next call to localize (statement S4) builds a schedule for

m3 references.

In Figure 3.7, statement S5 is executed to find the total number of unique off-processor

references made during the execution of the face loop. The largest number of unique off-

processor references is stored in the variable n_off_proc. The n-oflLproc value is required

to obtain the total size of the x and y arrays that need to be allocated on each processor.

Statements S7 and S8 are executed to store the face schedule into an array sched-array

to be used later with the communication primitives.

E x ecu to r G eneration

Figure 3.9 depicts the executor code with embedded Fortran callable PARTI procedures

dgather, dscatter.add and dmultLgather. Before the code is run, one must carry out the

preprocessing phase described in Section 3.3.2. The executor code depends on the type

of scheduling technique used. In the next section other types of scheduling techniques and

their impact on the inspector and executor codes will be considered. The executor code

shown in Figure 3.9 fetches unique off-processor values, considering one irregular loop at a

time.

The arrays x and y are partitioned between processors; each processor is responsible for

the long term storage of specific elements of each array. The way in which x and y are to

be partitioned between processors is determined by the inspector. In the example, elements

of x and y are partitioned between processors in exactly the same way. Each processor is

CHAPTER 3. COMPILER SUPPORT FOR IRREGULAR PROBLEMS 47

real*8 x(mon-proc + njoff.proc), y(njon_proc + n_off-proc)

51 call dgather(edge-sched, x(mon.proc + 1), x)

52 call clear-buffer(n.off-proc, y(n_on-proc + 1))

C Loop over edges involving x, y

LI do i= l , localji.edge

n l = locaLedge-list(i)

n2 = local_edge_list(local_njedge + i)

y(nl) = y(nl) + x(nl) + x(n2)

y(n2) = y(n2) + x(nl) + x(n2)

end do

53 call dscatter_add(edge_sched, y(n-on.proc + 1), y)

C Loop over Boundary Faces involving x, y

54 call dm ulti.gather(sched-array, 2 ,y(njon.proc + 1), y)

55 call clear-bufFer(n-ofF4 >roc, y(n_on.proc+ 1))

L2 do i= l , local-n-face

m l = local-faceJist(i)

m2 = local-faceJist(local_n-face + i)

m3 = local_faceJist(2 * local_n-face + i)

y(m l) = y(m l) + x(m l) + x(m2) + x(m3)

y(m2) = y(m2) + x(m l) + x(m2) + x(m3)

end do

56 call dscatter-add(facel.sched,y(n-on-proc + 1), y)

Figure 3.9: Parallelized Code for Each Processor

CHAPTER 3. COMPILER SUPPORT FOR IRREGULAR PROBLEMS 48

responsible for n.on.proc elements of x and y.

It should be noted that, except for the procedure calls, the control structure of the loops

in Figure 3.9 is identical to that of the loops in Figure 3.2. Though the names of the arrays

x and y remain unchanged between the code shown in Figures 3.2 and 3.9, they represent

different arrays. In Figure 3.2 the arrays x and y represent the global array. In Figure 3.9

the arrays x and y represent arrays local to the processor of a distributed memory. On

each processor P, arrays x and y are declared to be larger than what would be needed to

store the number of array elements for which P is responsible. Copies of off-processor array

elements will be stored at the location beginning with local array elements x (n jo n _ p ro c + l)

and y (n_on_proc+ l). The extra elements are overlap regions [60] allocated to store off-

processor elements.

The PARTI subroutine calls depicted in Figure 3.9 move data between processors using

a precomputed communication pattern. The communication pattern is specified by either

a single schedule or by an array of schedules. The procedure dmultLgather takes an array

of schedules as input and uses all of them to fetch off-processor data. The schedules specify

the locations in distributed memory from which data are to be obtained. In Figure 3.9,

off-processor data are obtained from array x defined on each processor. Copies of the

off-processor data are placed in a buffer area beginning with x (n_on_proc+ l).

The PARTI procedure dscatter.add in statements S3 and S6, Figure 3.9, accumulates

data to off-processor memory locations. Both the dscatter.add calls obtain data to be ac

cumulated to off-processor locations from a buffer area that begins with y(n_on_proc-f-l).

Off-processor data are accumulated to locations of y between indices 1 and n_on_proc.

When the accumulation for the face loop is done, using the dscatter.add function (state

ment S6), only the schedule facel-sched is used because it was the schedule set up using

the references m l and m 2. In Figure 3.9 statements S2 and S5 are calls to a function

clear.buffer. The calls are made to initialize the buffer location of the array y to 0.0.

CHAPTER 3. COMPILER SUPPORT FOR IRREGULAR PROBLEMS 49

3.3.3 Incremental Scheduling

In most scientific applications, the computational domain is discretized and physical quati-

ties, like velocity, pressure, charge etc., are evaluated at discrete points in the domain over

a period of time. Usually the variables, which represent the quantities of interest are evalu

ated once at the end of each timestep. In the following timestep, these variables are used to

calculate their new values. Hence there are situations where in a single timestep, multiple

loops access the same data.

A scheduling technique called incremental scheduling has been developed allowing access

to only those off-processor data that do not already exist in the processor. In this section, the

preprocessing required to generate an incremental schedule is described. The preprocessing

required to parallelize the code shown in Figure 3.2 using incremental scheduling is depicted

in Figure 3.11 and the executor code is shown in Figure 3.12.

Increm ental Inspector

In Figure 3.2 no assignments to x are carried out. In the beginning of the execution of both

the loops LI and L2, each processor can gather a single copy of every distinct off-processor

value of x referenced by these loops. The PARTI procedure multiJocalize (S4 in Figure 3.11)

makes removing these duplicate references simple. The procedure multiJocalize makes it

possible to obtain only those off-processor data not requested by a given set of pre-existing

schedules. The returned schedules can be utilized by the communication routines to bring

in the required data.

A pictorial representation of the incremental schedule is given in Figure 3.10. The

schedule to bring in the off-processor data for the edge Joop is given by the edge schedule

and is formed first. During the formation of the schedule to bring in the off-processor data

for the faceJoop the duplicates are removed, shown by the shaded region in Figure 3.10.

Removal of duplicates is achieved by using a hash table. The off-processor data to be

accessed by the edge schedule are first hashed using a simple hash function. Next, the data

to be accessed during the faceJoop are hashed. At this point, the information that exists

CHAPTER 3. COMPILER SUPPORT FOR IRREGULAR PROBLEMS 50

OFF PROCESSOR FETCHES
IN SWEEP OVER EDGES

OFF PROCESSOR FETCHES
IN SWEEP OVER FACES

INCREMENTAL
SCHEDULE

DUPLICATES

EDGE SCHEDULE
Figure 3.10: Incremental Schedule

CHAPTER 3. COMPILER SUPPORT FOR IRREGULAR PROBLEMS 51

51 translation-table = BuildDsTable(myvals, on.proc, replication-factor)

52 call localize(translation_table, edge-sched, partjedgeJist, local-edgeJist,

2 * local_n.edge, edgejoff.proc)

53 sched-array(l) = edge-sched

54 call m ultiJocalize(translation.table, face-sched, incremental-face-sched,

part-face Jist, local-faceJist, 3 * local_n-face, face-off-proc,

newJace-ofF_proc, buffer-mapping, 1, sched-array)

55 sched_array(2) = incremental-face-sched

56 njoff-proc = MAX(edgejoff.proc , face-off_proc)

Figure 3.11: Inspector Code for Each Processor Using Incremental Scheduling

in the hash table allows removal of all the duplicates and formation of the incremental

schedule. In the Section 4.4 results showing the usefulness of incremental schedule will be

presented.

The inspector code is shown in Figure 3.11. The first call after the translation table

has been generated is made to the function localize to generate the schedule for the edge

loop (edge-sched). During formation of the incremental schedule for the face loop, the

information in the schedule for the edge loop is utilized. To review the work carried out by

multiJocalize, the significance of all but one of the arguments of this PARTI procedure will

be summarized. On each processor multiJocalize is passed:

1. A pointer to a paged distributed translation table (translation-table in S4),

2. A list of globally indexed distributed array references (faceJist in S4),

3. The number of globally indexed distributed array references (3 * local-n_face in S4),

CHAPTER 3. COMPILER SUPPORT FOR IRREGULAR PROBLEMS 52

4. The number of pre-existing schedules that need to be taken into account when remov

ing duplicates (1 in S4), and

5. An array of pointers to pre-existing schedules (sched-array in S4).

MultiJocalize returns:

1. A schedule that can be used in PARTI gather and scatter procedures. This schedule

does not take any pre-existing schedules into account (face_sched in S4),

2. An incremental schedule that includes only off-processor data accesses not included

in the pre-existing schedules (incremental_face_sched in S4),

3. A list of integers that can be used to specify the pattern of indirection in the executor

code (locaLfaceJist in S4),

4. The number of distinct off-processor references in faceJist (face-off-proc in S4), and

5. The number of distinct off-processor references not encountered in any other schedule

(new_facejoff_proc in S4).

Incremental Executor

The procedure dmultLgather in the executor in Figure 3.12 obtains off-processor data using

two schedules; edgesched produced by localize (S2 Figure 3.11) and incremental-facesched

produced by multiJocalize (S4 Figure 3.11). The procedure dmultLgather has already been

discussed in Section 3.3.2 but nothing has been said so far about the distinction between

dscatter-add and dscatter.addnc. When making use of incremental schedules, a single buffer

location is assigned to each off-processor distributed array element. For the example, sepa

rate off-processor accumulations are carried out after loops LI and L2. As described below,

the off-processor accumulation procedures may no longer reference consecutive elements of

a buffer.

Copies of distinct off-processor elements of y are assigned to buffer locations, to handle

off-processor writes in loop LI, Figure 3.12. Then a schedule (edge-sched) can be used

CHAPTER 3. COMPILER SUPPORT FOR IRREGULAR PROBLEMS 53

real*8 x(njon_proc + njoff.proc), y(njon_proc + n.off-proc)

51 call dm ulti-gather(sched-array, 2, x(n_on-proc + 1), x)

52 call clear_buffer(n-off-proc, y(n_on_proc + 1))

C Loop over edges involving x, y

L I do i= l , local-n.edge

n l = locaLedgeJist(i)

n2 = local.edge_list(local_n_edge + i)

y(n l) = y (n l) + x(nl) + x(n2)

y(n2) = y(n2) + x(nl) + x(n2)

end do

53 call dscatter_add(edge-sched, y(njon.proc + 1), y)

C Loop over Boundary faces involving x, y

54 call clear_buffer(n-off-proc, y(n_on_proc + 1))

L2 do i= l , local_n.face

m l = local-faceJist(i)

m2 = local-face-list(local_n-face + i)

m3 = local_faceJist(2 * local-n-face + i)

y(m l) = y(m l) + x(m l) + x(m2) + x(m3)

y(m2) = y(m2) + x(m l) + x(m2) + x(m3)

end do

55 call dscatter_addnc(face-sched, y(njon_proc + 1), buffer-mapping, y)

Figure 3.12: Parallelized Code for Each Processor Using Incremental Scheduling

CHAPTER 3. COMPILER SUPPORT FOR IRREGULAR PROBLEMS 54

to specify where in distributed memory each consecutive value in the buffer is to be ac

cumulated. PARTI procedure dscatter.add can be employed; the procedure uses schedule

edgesched to accumulate to off-processor locations consecutive buffer locations beginning

with y(n_on_proc + 1). When off-processor elements of y are assigned to buffer locations

in L2, some of the off-processor copies may already be associated with buffer locations (done

in loop LI). Consequently, in S3, Figure 3.12, the schedule (face-sched) must access buffer

locations in an irregular manner. The pattern of buffer locations accessed is specified by

integer array buffer-mapping passed to dscatter.addnc in S3, Figure 3.12 (dscatter.addnc

stands for dscatter_add non-contiguous).

C hapter 4

P erform ance A n alysis o f R u n tim e

Support

A set of procedures has been produced that support a type of weakly coherent distributed

shared memory; these procedures can be coupled closely to distributed memory compilers.

These primitives (1) coordinate interprocessor data movement, (2) manage the storage

of and access to copies of off-processor data (3) minimize interprocessor communication

requirements and (4) support a shared name space. In this chapter a detailed performance

and scalability analysis of the communication primitives are discussed. This chapter also

presents performance data obtained from parallel implementation of adaptive and non-

adaptive irregular applications.

This chapter describes and systematically evaluates all the optimizations that have been

incorporated into the tools. The optimizations reduce communication latency and volume.

Performance data for the paged distributed translation table described in Section 3.3.1, are

also presented.

Performance of optimizations are characterized by using

• Synthetic workloads,

• Test loops with data access patterns drawn from unstructured applications, and

55

CHAPTER 4. PERFORMANCE ANALYSIS OF RUNTIME SUPPORT 56

• Real applications.

The synthetic workload was developed jointly with a group from University of Maryland

[37]. Synthetic workloads can be used to characterize the performance of the optimizations

under a wide variety of conditions.

In sparse and unstructured computations, distributed arrays are typically accessed us

ing indirection. In many cases (e.g. distributed arrays referenced in loops with no loop

carried dependencies or distributed arrays referenced in loops with accumulation type de

pendencies), it is possible to prefetch required off-processor data before a loop is executed.

Sometimes several loops access the same off-processor memory locations. As long as it is

known that the values assigned to off-processor memory locations remain unmodified, it is

possible to reuse stored off-processor data. A mixture of compile-time and run-time anal

ysis can be used to generate efficient code for irregular problems [36, 101]. This chapter

provides a detailed description of communication optimizations that prove to be useful for

optimizing irregular problem performance. The PARTI primitives described in the previ

ous chapter incorporate all the communication optimizations that will be presented in this

chapter.

The class of problems considered in this thesis consists of a sequence of clearly demar

cated concurrent computational phases, where data access patterns cannot be anticipated

until runtime, and these problems are called static irregular concurrent computations [14].

In these problems, once runtime information is available, 1) data access patterns are known

before each computational phase and 2) the same data access patterns occur many times.

Adaptive problems can fall into this class of problems as long as data access patterns change

relatively infrequently. A typical loop in such computations is shown in Figure 4.1. In this

loop, the arrays x , y , ia and ib are all distributed arrays. The arrays ia and ib are used to

index the arrays x and y , respectively. At compile time, it is not possible to determine the

the indices of x and y that are accessed because they are dependent on the values stored

in the arrays ia and ib. The data access pattern becomes available at runtime. Runtime

compilation techniques are used to parallelize such loops.

CHAPTER 4. PERFORMANCE ANALYSIS OF RUNTIME SUPPORT 57

DO i = 1, n

x(ia(i)) = x(ia(i)) + y(ib(i))

end do

Figure 4.1: Simple Irregular Loop

4.1 A pplications U sed for Performance Analysis

In this section the applications that are utilized in the performance studies are briefly

described. Both real applications and artificial workloads are used to learn the behavior of

the tools in various situations.

4.1.1 Real Applications

Many scientific codes have been implemented on parallel machines, using the PARTI primi

tives. In this section, two application codes are briefly described, stating how they stress the

primitives. In Section 4.1.1, an explicit Euler solver [75, 33] developed at ICASE by Dim

itri Mavriplis is described. Section 4.1.1 describes the molecular dynamics code CHARMM

[19,34], Both these codes have been implemented on the Intel Gamma and Delta machines.

Unstructured Euler Kernel

Unstructured meshes provide a great deal of flexibility in discretizing complex domains

and offer the possibility of easily performing adaptive meshing. However, unstructured

mesh problems result in large sparse matrices and if the problems are to be executed on a

distributed memory machine, one would require runtime preprocessing. The connectivity

of the meshes is quite low, when compared with the connectivity that is generated for other

problems, such as molecular dynamics or particle dynamics.

The unstructured Euler code solves the three dimensional compressible gas dynam

CHAPTER 4. PERFORMANCE ANALYSIS OF RUNTIME SUPPORT 58

ics equations. The solution technique has been outlined in [75, 58]. The equations are

discretized on an unstructured mesh using a Galerkin finite-element technique. The flow

variables are stored at the vertices of the mesh. However, certain precautions have to be

taken in order to stabilize the solution. The spatially discretized equations are integrated to

a steady state, using a 5-step Runge-Kutta timestepping method. The program comprises

loops over the edges and faces of the three dimensional unstructured mesh. A multigrid

solution technique can be used to speedup the solution time.

Molecular Dynamics

Molecular dynamics (MD) is a technique for simulating the thermodynamic and dynamic

properties of liquid and solid systems. For each timestep of the simulation, two separate

calculations are performed. The first part deals with the bonded and non-bonded force

calculations for each atom. The second part is the integration of the Newton equation for

each atom. In most MD codes, the bulk of the time (a little more than 90%) is spent in

the long-range force, i.e., the non-bonded force calculation. Hence the non-bonded force

calculation needs to be parallelized efficiently. The non-bonded force calculation uses an

0 (A 2) algorithm, where N represents the number of atoms. Every single atom interacts

with each other, but usually a cutoff distance R c is specified and interactions outside the

cutoff are neglected. The non-bonded force calculation has two distinct parts. For each

atom, first the pairlist (atoms within R c distance) is generated; next, the Vander Waals

and electrostatic force calculations are performed. The pairlist generation is not performed

every iteration but after every n iteration, where n is a variable that can be fixed by the

user.

The MD code used in this case was CHARMM (Chemistry at HARvard Macromolecular

Mechanics) [19], and it was developed at Harvard University for biomolecular simulations.

The program is relatively efficient, and it uses empirical energy functions to model molec

ular systems. Written in Fortran, the code is about 110,000 lines long and is capable of

performing a wide range of analyses. The important simulation routines are the dynamic

CHAPTER 4. PERFORMANCE ANALYSIS OF RUNTIME SUPPORT 59

analysis, the trajectory manipulations, energy calculations and minimization, and vibra

tional analysis. The program also performs statistical analysis, time series and correlation

function analysis as well as spectral analysis.

4.1.2 Synthetic Workload

A synthetic workload was developed as part of a group project done at the University of

Maryland [37]. A parameterized workload generator was developed to simulate the kinds of

data reference patterns and communication characteristics encountered in concurrent irreg

ular scientific problems. The synthetic workload consists of two parts, the Communication

Pattern Generator (CPG) and the Data Access Pattern Generator (DAPG). The CPG is

used to define the communication pattern induced by the problem. The DAPG generates

indirection arrays that embody the communication pattern specified by the CPG.

A communication graph G = (V, E , w) is a weighted graph where vertices correspond

to individual distributed partitions. For any two partitions u, v € V there exists an edge

(u, v) € E iff the partitions u and v need to communicate with each other a t runtime.

The volume of the communication is determined by the weight function w : E —* Af. The

generation of the communication graph is controlled by the following parameters:

• Connectivity (C)

Connectivity is the average degree of vertices in G. C = (Xlvev deg(v))l\V\, where

deg(v) is the degree of vertex v. Connection between two partitions causes commu

nication to occur at runtime between the partitions. The connectivity parameter is

translated into the total number of distinct messages for each processor to send or

receive at each phase of the computation.

• Total Volume of Communication (V).

Total volume of communication limits the assignment of weights to the edges in a

communication graph, so that the sum of the weight of all the edges in a communi

cation graph is equal to V. In the generation of the communication graphs for the

CHAPTER 4. PERFORMANCE ANALYSIS OF RUNTIME SUPPORT 60

experiments, V is used to distribute the weights to edges in a uniform way. That is,

Ve e E : w(e) = V/|J5|.

• M anhattan Distance (D).

The Manhattan Distance, D, specifies that no two partitions more than D apart

can be connected via an edge in the communication graph. The partitions in a real

world problem are physically related to each other often with a relationship that is

determined by the specific problem. These problem-imposed relationships can be

represented as a graph, called a problem topology graph, in which vertices represent

partitions and edges represent the relationships between partitions. It is usually the

case that, in the problem domain, partitions are scattered in 2 or 3 dimensional

space. The problem topology graphs, often representing the physical proximity of

partitions, arise from the fact that distant partitions have little or no relationships

with each other. The Manhattan Distance of two partitions is defined as the sum of

the canonical distances between them in the problem topology graph. For example,

if the relationships between partitions are represented by a 2D-grid, the Manhattan

Distance of u and v is |ux — vx| + |uv — vy|.

It should be noted, however, that more sophisticated communication models can be

defined to replicate the communication behavior of irregular problems. One extension is

the addition of extra features such as variability of the connectivity and communication

volume. However, the current model is general enough to illustrate the key performance

parameters of the optimization primitives.

The second part of the synthetic workload generator is the Data Access Pattern Gen

erator (DAPG), which is responsible for generating the data access patterns utilizing the

communication graph. The actual communication takes place in a way determined by the

communication graph. The data access pattern is defined to be a permutation of a subset

of the global index space. It specifies which global data indices have been accessed locally.

The output of the DAPG is a set of indirection arrays that will be used in accessing the

CHAPTER 4. PERFORMANCE ANALYSIS OF RUNTIME SUPPORT 61

distributed arrays, whereas the input is the communication graph generated by the CPG

and the following parameters :

• Number of Loops (Nioop)

The number of loops determines the number of consecutive test loops associated with

the DAPG. The test loops are of the form depicted in Figure 4.2, where two consecutive

computational phases exist, so Nioop is equal to 2. For each computational phase, the

DAPG produces Nioop indirection arrays to access the loop’s distributed arrays.

• Intersection Ratio (22,nt)

The intersection ratio of two indirection arrays is defined as the ratio of the number of

identical global data indices the indirection arrays contain over their size. Its result is

the degree to which data usage patterns in two indirection arrays are similar. If 22tnl

is zero, the global data indices stored in two different indirection arrays are completely

disjoint, and two indirection arrays are exactly the same if 22 , - is 1.0.

• Number of Duplicates (Ndup)

The number of duplicates for a given indirection array is defined to be the number

of distinct occurrences of the same off-processor data reference. If the number of

duplicates for an indirection array is 2, each unique reference in the indirection array

will occur twice. Note that this parameter has no effect on the total volume of unique

data communicated.

• Number of Dimensions (Ndim)

Ndim measures the degree of reuse of the same data access pattern across the dimen

sions of a distributed array.

A summary of the symbols that are part of the workload generator and their meaning

are presented in the Table 4.1.

An example of the type of workload generated is shown in Figure 4.2. For this case,

the various inputs to the DAPG are shown in Table 4.2. Since 22,„t equals 0.5, half the

CHAPTER 4. PERFORMANCE ANALYSIS OF RUNTIME SUPPORT 62

Table 4.1: Summary of Symbols used in the Workload.
Symbol Meaning
C
V
D
Hint
Ndup
Nloop
Ndim
P

Connectivity
Total Volume of Communication
Manhattan distance between partitions
Intersection Ratio
Duplication Factor
Number of test loops
Number of identically referenced distributed array slices in each test loop
Total Number of Processors

First Loop

do i = 1, n

x(ia(i), 1) = x(ia(i), 1) + z(ia(i), 1)

x(ia(i), 2) = x(ia(i), 2) + z(ia(i), 2)

end do

Second Loop

do i = 1, n

x(ib(i), 1) = x(ib(i), 1) + z(ib(i), 1)

x(ib(i), 2) = x(ib(i), 2) + z(ib(i), 2)

end do

Figure 4.2: Synthetic Workload Loops

CHAPTER 4. PERFORMANCE ANALYSIS OF RUNTIME SUPPORT 63

Table 4.2: DAPG parameters for Synthetic Workload Loops.
Symbol Value
Rint 0.5
Ndup 2
Nl00p 2
Ndim 2

values stored in array ia are also present in the array ib. Since Nioop equals 2, there are

two indirection arrays namely, ia and ib. Ndim equals 2, making the the upper bound of

the compressed dimension of all the data arrays 2 (in this case x(* ,2) and z(*,2)). Since

Ndup equals 2, each reference in ia is repeated twice. The same follows for ib.

4.2 Comm unication O ptim izations

In this section, communication optimizations developed for this thesis are presented. Sec

tion 4.2.1 shows how software caching can be used to reduce the volume of communication

between processors. One such optimization is to remove redundant off-processor accesses

associated with a particular indirect array reference. A more aggressive optimization re

moves redundant off-processor accesses associated with several indirect array references.

Section 4.2.2 describes the optimizations developed to reduce communication startups by

coalescing communications into a decreased number of messages.

4.2.1 Software Caching

During the execution of irregular loops on distributed memory (or distributed shared mem

ory) machines, the same off-processor data may be accessed repeatedly. In many cases, data

needed by an array reference can be prefetched before a loop’s computation begins. In other

cases, data needed by a set of irregular references to the same array can be prefetched. In

either case, the same off-processor data may be accessed multiple times, but only a single

copy of the data need to be fetched from off-processor. The process of prefetching off-

processor data and storing it locally is software caching. Informally, the prefetches can be

CHAPTER 4. PERFORMANCE ANALYSIS OF RUNTIME SUPPORT 64

carried out when

• it is possible to predict array reference patterns prior to a loop’s execution, and

• it is known that all array data subject to prefetch remains live, i.e., there is no

possibility that the prefetched values are no longer valid.

There are two ways of managing software caching, “simple” and “incremental.”

Sim ple Softw are Caching

A hash table is utilized to identify duplicate off-processor data accesses associated with the

indirect references to a single data element. A simple hash function (m od operator) is

used. Communication schedules are generated from the lists of unique off-processor data

accesses. These schedules store the communication patterns to be used by the gather and

scatter primitives. During the schedule generation process, each processor sends the lists

of data it needs from all other processors; it also receives the lists of data it must send to

other processors. These lists contain the indices of the data that need to be communicated.

Each schedule is associated with a distribution and a data access pattern, rather than being

tied to specific data arrays. Hence, if there exists two references to different arrays, where

the arrays are distributed in the same way and the data access patterns are identical, the

same schedule can be used to gather or scatter data to these arrays.

Increm en ta l Scheduling

Data communication volume is reduced by tracking and reusing live off-processor data

copies. In a number of application codes, multiple indirect references occur to the same

data array. When it is known that no array assignments can occur between some set of

indirect references, i.e., the array in question remains live between the indirect references,

then, only a single copy of each unique off-processor value needs to be fetched.

Assume there are N different indirect array references to any distributed data array

D. From each reference, off-processor indices used to access data from the array D can

CHAPTER 4. PERFORMANCE ANALYSIS OF RUNTIME SUPPORT 65

be obtained. Let I A i be the set of off-processor indices from reference I . Hence, IA =

{ IA \, IA 2 , I An} is the set of the sets of off-processor indices used to access data from

D. The use of incremental schedules allows one to bring in only the data that are not

available locally:

U IA j = { ia : ia £ IA i for some set IA i € IA }.

The number of indices belonging to the set, IA /, is potentially smaller than the number of

indices one would get by simply concatenating the indices obtained from separately applying

simple software caching to each distributed array reference. If every index listed in each

of the set IA is different, then there is no advantage in doing incremental scheduling. On

th? other hand, if there is significant overlap in the off-processor references obtained from

the reference sets, then a large reduction in communication volume is achieved by using

incremental scheduling.

4.2.2 Communication Coalescing

One can frequently collect many data items destined for the same processor into a single

message. This kind of optimization is sometimes called communication coalescing. The

object of communication coalescing is to reduce the number of message startups. For many

distributed memory systems, there is a substantial latency associated with message passing.

For instance, Bokhari [15] measured the time to communicate a message of size k (bytes)

between two nodes of an Intel iPSC/860, as

T = 65.0 + 0.425A: + lO.O/i, for 0 < k < 100, and

T = 147.0 + 0.390Jfc + 30.5/i, for k > 100

where T is the time in fisecs and h is the number of hops between the communicating

processors. On the Intel iPSC/860, the cost of a startup latency is equal to the cost of

sending one to several hundred bytes. The three types of communication coalescing are

• Simple Communication Aggregation,

CHAPTER 4. PERFORMANCE ANALYSIS OF RUNTIME SUPPORT 66

• Communication Vectorization, and

• Schedule Merging.

Simple Communication Aggregation

It is frequently possible to anticipate which data must be communicated before a loop

executes. Preprocessing is needed to characterize the data required by a given right-hand

side array reference. Prior to a loop’s execution, all the data that each pair of processors need

to exchange is packed into a single message. In a similar manner, the communication (and

accumulations) associated with left hand side array references can often be deferred until

after a loop’s computation. This optimization may be referred to as simple communication

aggregation.

Communication Vectorization

If a number of columns of a multi-dimensional array are distributed in a conforming manner,

and if the data access patterns from these columns are the same, then the primitives gather

and scatter data from all the columns using a single communication phase. The optimization

does not reduce the communication volume but reduces the startup latency. Hence, if any

processor P is to receive data from N processors for L columns then the reduction of startup

latency time is given by

• Latency_Reduction = N * Timeiatency * (L - 1).

The PARTI primitives for multi-dimensional arrays perform communication vectorization.

Schedule Merging

When data are gathered from or scattered to the same data array using a number of different

schedules, then the schedules can be merged to reduce the number of message startups and

thereby the latency. Schedule merging is orthogonal to the software caching optimizations;

for instance, one can merge sets of schedules that arise from simple software caching or sets

CHAPTER 4. PERFORMANCE ANALYSIS OF RUNTIME SUPPORT 67

of schedules obtained from incremental scheduling. The total reduction in latency is by the

factor (5 - 1), where the number of merged schedules is S. PARTI provides primitives

that merge a number of schedules to form a single communication schedule.

4.2.3 Example Test Codes

The application of the runtime support depends on the nature of the communication opti

mization. The type of communication optimization to be used at any particular situation

has to be determined by the compiler. Depending on compile time analysis, calls to the cor

rect runtime support routines have to be made by the parallelizing compiler. For instance,

in Figures 4.3 and 4.4 the test loops associated with simple communication aggregation

are compared to schedule merging. The simple communication aggregation case shown in

Figure 4.3 does the preprocessing with the various indirection arrays at the beginning.

It returns four schedules, one for each of the indirection arrays. The z values are fetched

immediately before each loop executes; the schedule for ic is employed before the first loop,

and the schedule for id is employed before the second loop. After the execution of the first

loop, the off-processor x values are accumulated using the schedule for ia. Similarly, after

the second loop’s computation, the off-processor accumulation of x values are done by using

the schedule for ib.

The schedule merging code is shown in Figure 4.4. As in the previous case schedules are

built using all the indirection arrays. In this case, the schedules are merged, and instead

of four, there are two schedules, one for ia and ib and one for ic and id. All the required

values of z are fetched using vectorized communication (z being a multi-dimensional array

) before execution of the loops. Off-processor values of x are accumulated by using the

schedule for ia and ib after both loops execute. Accumulation can be delayed until the

completion of execution of both the loops because of the commutative property of the ’+ ’

operator. The executor communication cost, when schedule merging and vectorization are

performed, is much lower than that of the simple software caching. The inspector cost for

schedule merging is higher than the inspector cost of the software caching.

CHAPTER 4. PERFORMANCE ANALYSIS OF RUNTIME SUPPORT 68

Preprocessing for indirection arrays ia, ib, ic and id

gather the values of array z using schedule for ic

do i = 1, n

x(ia(i)) = x(ia(i)) + z(ic(i))

end do

accumulate values of x using schedule for ia

gather the values of array z using schedule for id

do i = 1, n

x(ib(i)) = x(ib(i)) + z(id(i))

end do

accumulate values of x using schedule for ib

Figure 4.3: Simple Communication Aggregation Case

Note that while the software caching and communication coalescing optimizations are

orthogonal, on distributed memory machines it makes sense to use certain optimizations

together. For instance, if incremental scheduling is employed, one can easily produce a

single merged schedule to perform the communication of the unique off-processor elements,

identified by the incremental scheduling process.

CHAPTER 4. PERFORMANCE ANALYSIS OF RUNTIME SUPPORT 69

Preprocessing to build a single schedule using arrays ia and ib

Preprocessing to build a single schedule using arrays ic and id

Gather for z using the single schedule for arrays ic and id

do i = 1, n

x(ia(i), 1) = x(ia(i), 1) + z(ic(i), 1)

x(ia(i), 2) = x(ia(i), 2) + z(ic(i), 2)

end do

do i = 1, n

x(ib(i), 1) = x(ib(i), 1) + z(id(i), 1)

x(ib(i), 2) = x(ib(i), 2) + z(id(i), 2)

end do

Accumulate x using the single schedule for arrays ia and ib

Figure 4.4: Schedule Merging Case

CHAPTER 4. PERFORMANCE ANALYSIS OF RUNTIME SUPPORT 70

4.3 Scaling Characteristics of the O ptim izations

Optimizations are applied to data access patterns generated when a given unstructured

problem is mapped onto a multiprocessor. Measured performance on a given architecture

consequently depends on

• the nature of the unstructured code (e.g., the real codes outlined in Section 4.1.1 or

the test loops in Figure 4.2),

• the dataset (e.g., the data structures used to represent unstructured meshes and molec

ular interactions described in Section 4.1.1), and

• the way in which the dataset is partitioned among processors.

In this section, effects of the various optimizations on unstructured problem communi

cation requirements are examined. In the analysis presented in this section, the synthetic

workload described in Section 4.1.2 is used, which employs a set of loops of the type de

picted in Figure 4.2. In the experimental analysis presented in the following sections, both

the synthetic workload and data access patterns derived from real applications are utilized.

The volume of communication and the number of communication startups associated

with bringing in off-processor data are presented in Table 4.3. The row labeled “naive”

stands for no optimization at all; each processor requests its data whenever that data is

needed locally. In the “naive” case, the number of communication startups is equal to the

number of data elements communicated. From Section 4.1.2, recall that V /P represents the

volume of communication that must be sent and received by each processor, Nioop repre

sents the number of test loops employed by the Data Access Pattern Generator, and

represents the number of identically referenced array slices. When targeted at distributed

memory architectures, the naive implementation is extremely inefficient (see [94]).

The row labeled “simple communication aggregation” gives the communication char

acteristics associated with the optimization described in Section 4.2.2. The optimization

reduces the number of messages that must be transmitted. For each array slice (JV*-m) and

CHAPTER 4. PERFORMANCE ANALYSIS OF RUNTIME SUPPORT 71

each test loop (Nioop), every processor must communicate with each of the neighboring C

processors. Note that the optimization does nothing to reduce communication volume. The

optimization reduces latency costs compared to the naive implementation, but incurs two

other costs: The costs are the memory overhead of storing the schedules associated with

the communication and the pre-processing overhead for precomputing the communication

requirements in the irregular computation.

The next optimization depicted in Table 4.3, labeled “simple software caching,” includes

both simple software caching (Section 4.2.1) along with simple communication aggregation.

Simple software caching involves eliminating intra-loop duplicates. The addition of this

optimization reduces the communication time and space requirements compared to the

simple communication aggregation case. The trade-off is the extra preprocessing required

by the inspector and the memory required for the hash table. The communication volume

for simple software caching is a factor of Ndup smaller than the communication volume for

simple communication aggregation.

The next optimization depicted in Table 4.3, labeled “communication vectorization,” in

cludes communication vectorization (Section 4.2.2) along with simple software caching and

simple communication aggregation. The addition of the communication vectorization opti

mization leaves the communication volume unchanged but reduces the number of startups

by an additional factor of Ndim- The next row of the table, “schedule merging,” adds the

schedule merging optimization (Section 4.2.2) to the optimizations represented in the rows

above. The “schedule merging” optimization makes it possible to prefetch all data needed

by the entire set of test loops before executing the first of the test loops. The number of

startups in this case is reduced by a factor of Nioop and is equal to C.

Finally, the incremental scheduling optimization (Section 4.2.1) is added to the opti

mizations mentioned above. Incremental scheduling allows one to fetch from off-processor

only the unique data values needed by any one of the test loops and it produces a savings

when more than one test loop uses the same datum.

CHAPTER 4. PERFORMANCE ANALYSIS OF RUNTIME SUPPORT 72

Table 4.3: Executor Communication Requirements (Gather, Scatter or Accumulate)
Optimization Communication

Volume Number Startups

Naive P
Ndim ̂ looo V

P

Simple Communication Aggregation NdimNloooV
P Ndim NloopC

Simple Software Caching NdimNlooxtV
PNdup Ndim-N\o<ypC

Communication Vectorization NdimNloooV
PNd up NloopC

Schedule Merging NdimWloopV
P Ndup c

Incremental Scheduling NAimV n
PNdup(2-Rin,)Nl°°r-1

The left hand side array references in the test loops in Fignre 4.2, involve accumulations.

In most cases, experience with real applications has indicated that it is permissible to defer

off-processor accumulations until after a loop. The deferring of accumulations until after the

loop has the effect of changing the order in which the accumulations are carried out. In the

author’s experience, the change in operation order does not usually cause problems, since

such loops are routinely vectorized, and vectorization also changes the order in which values

are accumulated. Limited to carrying out deferred accumulations after each loop, it is found

that the schedule merging and incremental scheduling optimizations cannot be employed.

In some applications, such as molecular dynamics, programmers find that they can defer

accumulations until after a sequence of (non-dependent) loops are executed. In these cases,

one could make use of schedule merging and incremental scheduling optimizations.

The communication requirements associated with preprocessing are very closely tied

to the communication requirements needed to execute off-processor gathers, scatters and

accumulations. Table 4.4 depicts these communication requirements. Some advantage is

gained from the fact that the same schedule can be reused each time communication is

CHAPTER 4. PERFORMANCE ANALYSIS OF RUNTIME SUPPORT 73

Table 4.4: Inspector Communication Requirements (Gather, Scatter or Accumulate'
Optimization Communication

Volume Number Startups

Naive - -

Simple Communication Aggregation NloovV
P+NloopC 2 NloopC

Simple Software Caching NloooV 2 NtoopC

Communication Vectorization NlomV
PNdUp+NioopC 2 NloopC

Schedule Merging NtomV
PWdup + iVfoopC 2NioopC

Incremental Scheduling V
PNtupp-Rintf'^v-'+C 2 C

carried out for identically referenced, identically distributed arrays (or array sections). In

the case of the test loops, it is clear that the preprocessing for identically distributed array

sections need not be repeated. The advantage is reflected in the communication volume

and startup numbers depicted in Table 4.4.

4.4 Experim ents and R esults

This section describes the experiments performed and the corresponding results. A number

of different experiments were performed using the synthetic workload generator and the

application code kernels. The results show the performance of the primitives and also how

they scale with the increase in the number of processors. All experiments were executed on

the Intel Gamma machine, and the number of processors ranged from 32 to 128.

4.4.1 Synthetic Workload Performance Results

Empirical performance results to characterize the effectiveness of the communications op

timizations are presented in Section 4.2.

CHAPTER 4. PERFORMANCE ANALYSIS OF RUNTIME SUPPORT 74

30

in c r . achad (HV)
p la in n M (HV) •+—
p la in achad (MV) • s -
in c r . achad (MV)
p la in achad (LV) - a -
in c c . achad (LV)

2S

20

IS

10

s

0
0 0 .2 0 .4 0 .6 0 .6 1

IP

Figure 4.5: Cost vs. volume of communication and Intersection Ratio (gather, Afioop=4, P
= 32, R int = IF)

Comparison of Communication Optimizations

The reduction in communication time associated with incremental schedules is shown in Fig

ure 4.5. Performance of a code which employs schedule merging with incremental scheduling,

400

330

ln c r . achad (HV)
p la in achad (HV)
p la in achad (MV) -»~-
ln c r . achad (MV) • * -
p la in achad (LV) * a -
ln c r . achad (LV) * -

250

2 200

ISO

100

0 0 .2 0 .4 0 .6 0.1 1

Figure 4.6: Cost vs. volume of communication and Intersection ratio (Inspector, A//oop=4,
P = 32, Hint = IF)

CHAPTER 4. PERFORMANCE ANALYSIS OF RUNTIME SUPPORT 75

(0

n o n u l (HV) * « -
Dupl. I l i a (HV)

I M l l l (LV) -* ~
Dupl. I l i a (LV) * -50

40

30

20

10

0
0 2 4 6 I 10

D up lica tion F ac to r

Figure 4.7: Cost vs Number of duplicates (Executor, low A/dup, 32 Processors)

versus simple software caching carried out separately for each loop presents an interesting

comparison. Four loops are used in the test loop code (Nioop = 4). The communication

graph is kept constant (C=4) but the 72,„t parameter is varied in order to change the num

ber of shared off-processor accesses. The loop structure is similar to the one presented in

Figure 4.4. The experiment is repeated for low (« 100 floating point numbers), medium

(« 1000 floating point numbers), and high (~ 2000 floating point numbers) communication

volume. The results shown in the different graphs are obtained from experiments executed

on a 32 processor Intel Gamma machine. Figure 4.5 gives the timings for the gather calls

both for incremental scheduling and simple software caching. For both high and medium

communication volumes, communication time for the incremental case drops rapidly as the

intersection ratio becomes close to 1. The inspector times are presented in Figure 4.6. The

inspector time for incremental scheduling is higher compared to simple software caching

because of the larger volume of data that has to be hashed.

Next, the performance effects of simple software caching are quantified. The communi

cation graph is kept constant while varying Afdup and the volume of communication. The

structure of the test loop associated with the duplicate elimination version and the pre-

CHAPTER 4. PERFORMANCE ANALYSIS OF RUNTIME SUPPORT 76

K tfM l (KV) * -
Dupl. i l i a {HV) - v -

n o n t l (LV) * • -
Dupl. I l i a (LV) < -3SOO

3000

1000

500

0 SO 100 ISO 300 3S0 300 3S0 400 4S0 SOO
D uplica tio n F ac to r

Figure 4.8: Cost vs Number of duplicates (Executor, high A/jupi 32 Processors)

scheduled communication version is very similar to the one shown in Figure 4.3. Figure 4.7

shows the results when the duplication factor Afdup is low, ranging from 0 to 10. Such a case

is usually found in unstructured mesh computational fluid dynamic calculations. In these

calculations, the connectivity of the mesh ranges from 6 to 10. Figure 4.8 shows the case

where the duplication factor is very high, ranging from 0 to 500. The case is similar to the

data access pattern found in molecular dynamics and particle dynamics codes, where each

particle interacts with a large number of other particles (usually within a cut-off radius).

Performance improvement associated with software caching increases with the duplication

factor, except when the communication volume and duplication factor are both low.

Performance of the Primitives

A useful property of the workload generator is that it can be used to produce localized

communication patterns whose communication structure is preserved with the increase in

the number of processors. If the synthetic workload is scaled in the above manner, one

cannot expect to observe significant changes in performance with increasing numbers of

processors.

CHAPTER 4. PERFORMANCE ANALYSIS OF RUNTIME SUPPORT 77

Tab: e 4.5: Results Supporting Scalability (Time in secs.)
Intersection ratio 32 processors 64 processors 128 processors

Inspector Executor Inspector Executor Inspector Executor
0.0 0.8 6.2 0.9 6.2 0.9 6.1
0.2 0.8 5.9 0.9 5.7 0.9 5.7
0.4 0.8 5.5 0.8 5.5 0.9 5.5

Table 4.5 illustrates the absolute timings for schedule merged incremental gathers, using

the communication pattern for which the Manhattan Distance, D = 1, connectivity C = 4.

The total communication volume, V , is scaled up in proportion to the number of processors

employed and this maintains a volume per processor of « 2K floating point numbers. A

nearly fixed communication cost is obtained as the problem size grows linearly with the

number of processors. This pattern has been observed for a number of different commu

nication patterns. The observation supports the view that the primitives scale within the

limits of scalability of the problems in which they are employed.

4.4.2 Performance Results Derived from Applications

Comparison of Communication Optimizations

A representative kernel was extracted from the Euler code and timed varying the number of

processors from 16 to 128. All timings presented are for 10 iterations of the outermost loop.

The communication times for the different levels of optimizations are shown in Table 4.6.

It is seen that for both the 53k and 100k mesh input, schedule merging and vectorization

make the communication time decrease slightly as the number of processors is increased.

Similarly the total running time presented in Table 4.9, goes down significantly as more

processors are used. It was shown before that if the problem is scaled as the number of

processors is increased, then the primitives scale accordingly. Even though the volume of

data communicated for the incremental case is the least, the buffer management to store

off-processor data is complicated. Hence for certain input data, running time is higher than

in other optimized cases.

CHAPTER 4. PERFORMANCE ANALYSIS OF RUNTIME SUPPORT 78

Table 4.6: Euler kernel, 53kfel00kMesh (Time in secs)
Optimization Total Communication (Executor)

53K vfesh 100K Mesh
16 32 64 128 32 64 128

Simple Software Caching 22.4 22.7 29.1 37.3 29.2 29.9 34.7
Schedule Merging (SM) 19.1 20.1 24.7 28.5 25.0 25.1 26.4
Vectorized (Vect) + SM 15.9 15.7 13.1 12.8 20.7 19.3 18.1

Incremental + SM 18.9 20.2 24.3 27.9 24.3 25.1 26.7
Incremental + SM + Vect 16.1 15.7 12.9 12.7 21.2 19.1 18.0

Behavior of Paged Translation Table

Several experiments were run to measure the performance of the Paged Translation Table.

Table 4.7 shows the effects of replication factor on the scheduling time for a 53k node

unstructured mesh, and a benchmark input for CHARMM (MbCO + 3830 water molecules;

14026 atoms) on a 64-processor iPSC/860. The column labeled “Before” corresponds to

performance with the initial block distribution of pages across the processors. The column

labeled “After” corresponds to the performance after a re-organization of replicated pages,

according to access behavior on each processor. In this experiment, the number of pages

replicated on each processor is varied. As expected, performance improves as the replication

factor increases. For the unstructured mesh, reshuffling of translation table pages does

not make much difference in the scheduling time. For the molecular dynamics case, the

reshuffling makes a large difference, especially for low replication factors.

Table 4.8 shows the performance of dereferences with varying block sizes for a fixed

replication factor, 7Z = 0.5. As observed, reasonable communication times can be obtained

with relatively large page sizes. When the page size is decreased, the communication effi

ciency of the fully replicated case can be achieved without having to replicate all the data

associated with the translation table.

CHAPTER 4. PERFORMANCE ANALYSIS OF RUNTIME SUPPORT

T&ble 4.7: Effects of Replication Factor (Time in secs.)
Replication Euler kernel (53k) CHARMM kernel

Before After Before After
0.0 0.4 0.4 7.9 7.2
0.1 0.4 0.3 6.8 5.1
0.2 0.4 0.3 6.0 3.2
0.3 0.4 0.3 5.7 2.0
0.4 0.4 0.2 5.3 1.4
0.5 0.3 0.2 5.0 1.1
0.6 0.3 0.2 4.3 1.0
0.7 0.2 0.2 4.0 0.9
0.8 0.2 0.1 2.9 0.9
0.9 0.2 0.1 2.2 0.9
1.0 0.1 0.1 0.9 0.9

Table 4.8: Effects of Page Size, TZ ~ 0.5, (time in secs)
Euler rernel (53k) CHAR VIM kernel

Page Size Before After Block Size Before After
85 0.3 0.2 89 5.0 1.2
43 0.3 0.2 44 5.0 1.2
29 0.3 0.2 22 5.0 1.1
22 0.3 0.2 15 5.0 1.1
17 0.3 0.2 11 5.0 1.1
9 0.3 0.1 6 5.4 1.0
5 0.4 0.1 5 5.4 1.0
3 0.4 0.1 3 5.3 1.1

Table 4.9: Euler kernel, 53kfel00kMesh (Time in secs)
Optimization Total Running Time

53K Mesh 100K Mesh
16 32 64 128 32 64 128

Simple Software Caching 104.3 63.9 50.0 48.9 108.5 67.4 52.6
Schedule Merging (SM) 100.3 60.5 46.8 39.3 104.7 62.3 45.4
Vectorized (Vect) + SM 97.5 57.3 34.8 24.1 99.7 57.1 37.2

Incremental + SM 100.6 60.7 46.3 38.7 103.6 61.9 44.6
Incremental + SM + Vect 97.1 57.9 34.5 23.8 100.3 56.8 36.7

CHAPTER 4. PERFORMANCE ANALYSIS OF RUNTIME SUPPORT 80

Table 4.10: Explicit Euler Solver Timings Using Incremental Schedule

Size
Mesh

Number of Processors
1 2 8 16 64

3600
Mflops 4.1 7.1 16.9 17.4 -

comp/iter(s) 4.6 2.4 0.6 0.34 -
comm/iter(s) - 0.25 0.48 0.73 -

26K
Mflops - - 23.8 38.8

comp/iter(s) - - 4.5 2.3
comm/iter(s) - - 1.1 1.1

210K
Mflops - - - - 144.3

comp/iter(s) - - - - 4.75
comm/iter(s) - - - - 2.3

Performance of Optimizations on Large Scale Application

This section presents the timing results obtained from real applications that have been

implemented on parallel machines using the runtime support. Timing data resulting from

using both the Euler solver and the molecular dynamics code is presented.

Table 4.10 presents some timings for the explicit Euler solver [33]. These timings were

obtained on the Intel Gamma machine. The multigrid Euler solver is also implemented,

using the PARTI runtime support. The largest test case run so far consists of computing

a highly resolved flow over a three-dimensional aircraft configuration. The mesh contains

804,056 points and approximately 4.5 million tetrahedra. The explicit unstructured mesh

code achieves a rate of 1.5 Gflops on 512 Delta processors. By comparison, the unstructured

solver runs at about 100 Mflops on a single processor of the CRAY-YMP, regardless of

problem size for both the explicit and multigrid schemes. Similarly, both schemes achieve

a computational rate of about 750 Mflops, using all eight processors of the CRAY-YMP.

A well converged solution (100 multigrid cycles) can be obtained for the three-dimensional

aircraft configuration in about 15 minutes on the eight processor CRAY-YMP, or just under

two hours, using a single CRAY-YMP processor. When the unstructured multigrid Euler

code is executed, the computational rate achieved is 1.2 Gflops on 512 Delta processors,

CHAPTER 4. PERFORMANCE ANALYSIS OF RUNTIME SUPPORT 81

and the converged solution can be obtained in 10.5 minutes.

The timing data obtained for CHARMM is presented in Tables 4.11 and 4.12. Both

an irregular block partitioning (with load balancing) and a recursive coordinate bisection

scheme were used to partition the data. The largest input file consisted of 14026 atoms

((MbCO + 3830 water molecules). The timings obtained are comparable to all other imple

mentations [20]. From the results, it is clear that the implementation, which uses binary

dissection to partition the data scales better than the blocked partition implementation.

Experiments in which the partitioning was performed based on geometry and the workload

on each atom yielded the best results. The indirection array generated for the force cal

culation has an extremely high duplication factor. Each atom in the calculation interacts

with hundreds of other atoms, hence the large duplication factor.

CHAPTER 4. PERFORMANCE ANALYSIS OF RUNTIME SUPPORT 82

Table 4.11: CHARMM timings using Irregular Block Data Partition
Nodes Ejxt E?int Comm3 List4 Total Eff. Speedup

1 7023.9 44.5 0.0 382.1 7459.5 100.0% 1

16 421.57 2.65 43.17 17.50 486.85 95.7% 15

32 212.47 1.34 44.68 9.06 268.43 86.8% 28

64 108.11 0.69 52.62 4.85 167.15 70.0% 45

128 53.43 0.35 62.33 2.78 119.22 48.8% 63

1 Nonbond energy: Electrostatic, van der Waals

2 Internal energy: Bond, Angle, Torsion,...

3 Total communication times

4 Nonbond list generation times

5 Efficiency for N processors is defined by the following ratio: tt- ^°r *Proc\ ^J ° (time for N processors) x N

Table 4.12: CHARMM timings using Binary Dissection Partition
Nodes Eext Eint Comm List4 Total Eff.* Speedup

1 7023.9 44.5 0.0 382.1 7459.5 100.0% 1

16 465.98 2.42 22.92 18.55 511.15 91.2% 15

32 294.85 1.21 24.58 10.08 331.42 70.3% 23

64 194.61 0.64 23.82 5.66 225.83 51.6% 33

128 101.70 1.14 25.79 3.20 132.13 44.1% 57

C hapter 5

L oop T ransform ations

An increasing fraction of the applications targeted by parallel computers make heavy use of

indirection arrays for indexing data arrays. A limitation of existing techniques addressing

this problem is that they are only applicable for a single level of indirection. However,

many codes using sparse data structures access their data through multiple levels of indi

rection. A number of compilers have implemented the inspector/executor transformation

of an irregular loop, so that it can be executed on a distributed memory machine. Other

than the author’s implementation of the inspector/executor transformation the Kali com

piler [60] and the Vienna Fortran compiler [18] have also successfully implemented this

transformation.

This section presents a method for transforming programs using multiple levels of indi

rection into programs with, at most, one level of indirection, thereby broadening the range

of applications that a compiler can parallelize efficiently. A central concept of this algorithm

is to perform program slicing on the subscript expressions of the indirect array accesses.

Such slices peel off the levels of indirection, one by one, and create opportunities for aggre

gated data prefetching in between. A slice graph eliminates redundant preprocessing and

gives an ordering in which to compute the slices. The work is presented in the context of

High Performance Fortran.

HPF offers the promise of significantly easing the task of programming distributed mem

83

CHAPTER 5. LOOP TRANSFORMATIONS 84

ory machines and making programs independent of a single machine architecture. Current

prototypes of compilers for HPF-like languages produce Single Program Multiple Data

(SPMD) code with message passing and/or runtime communication primitives.

Reducing communication costs is crucial in achieving good performance on applica

tions [51, 53]. While current systems like the Fortran D project [54] and the Vienna For

tran Compilation system [22] have implemented a number of optimizations for reducing

communication costs (like message blocking, collective communication, message coalescing

and aggregation), these optimizations have been developed mostly in the context of regular

problems (i.e., for codes having only regular data access patterns). Special effort is required

in developing compiler and runtime support for applications that do not have regular data

access patterns.

When irregular loops are parallelized, the off-processor data must be pre-fetched before

the loop computation begins. If the off-processor data is not pre-fetched, data communica

tion inside the computation loop will occur, resulting in bad performance. Runtime support,

analysis techniques, and compiler prototypes have been designed to transform loops where

distributed arrays are accessed through a single level of indirection into inspector/executor

pairs. During program execution, the inspector examines the data references made by a

processor and calculates what off-processor data need to be fetched and where to store it

once received. The executor loop then uses the information from the inspector to implement

the actual computation.

An example for the class of kernels that can be handled by the techniques, developed

so far, is the irregular kernel in Figure 5.1. In this example, data arrays col, x and y

are block distributed between processors. The t-loop iterations are partitioned using the

HPF-directive O N -H O M E, which in this case is equivalent to the owner computes rule

that assigns the computation of an assignment statement to the processor that stores the

left-hand side reference. A single level of indirection arises because data array y is indexed,

using the array col in statement K2.

While such simple indirection patterns can be handled, many application codes have

CHAPTER 5. LOOP TRANSFORMATIONS 85

SU B R O U T IN E simple(x, y, col, m, n)

IN T E G E R i, m, n, col(m)
R E A L x(n), y(n)

!HPF$ D IST R IB U T E (B L O C K) :: col, x, y

!HPF$ E X E C U T E (i) O N -H O M E x(i)
K1 FO RA LL i = 1, n
K2 x(i) = x(i) + y(col(i))
K3 EN D FO RA LL
K4 EN D

Figure 5.1: Kernel with single level of indirection.

code segments and loops with more complex access functions that go beyond the scope

of current compiling techniques. In many cases, a chain of distributed array indexing is

set up where values stored in one distributed array are used to determine the indexing

pattern of another distributed array, which in turn determines the indexing pattern of a

third distributed array. Such loops with multiple levels of indirection are very common

and appear, for example, in unstructured and adaptive applications codes associated with

particle methods, molecular dynamics, sparse linear solvers and, in some, unstructured mesh

CFD solvers.

This section develops techniques that can be used by compilers to transform loops with

array accesses, involving more than a single level of indirection into loops where array ref

erences are made through, at most, one level of indirection. This transformation technique

is presented in the context of distributed memory machines and therefore often refers to

prefetching as “communication” or “message blocking.” However, this method is likely to

be useful on any architecture where it is profitable to prefetch data between different levels

of a memory hierarchy.

The rest of this section is organized as follows: Section 5.1 gives an overview of the

transformation technique by transforming an example code that shows two levels of indi

rection. Section 5.3 introduces some terminology that is used in Section 5.4, which gives

CHAPTER 5. LOOP TRANSFORMATIONS 86

SU B R O U T IN E CSR(x, y, col, ija, m, n)

IN T E G E R i, j, m, n, col(m), ija(n)
R EA L x(n), y(n)

!HPF$D ISTRIBU TE(BLO CK) :: col, ija, x, y

!HPF$EXECUTE (i) O N -H O M E x(i)
R1 FO RA LL i = 1, n
R2 x(i) = 0
R3 DO j = ija(i) + 1, ija(i + 1)
R4 x(i) = x(i) + y(col(j))
R5 EN D D O
R6 EN D FO RA LL
R7 EN D

Figure 5.2: CSR kernel - original version.

a formal description of the algorithms and illustrates how the transformation, shown in

Section 5.1, was derived. Section 5.4.6 concludes with a brief discussion on how to use

incremental scheduling.

5.1 Exam ple Transformation

This section illustrates the effect of applying the transformation to the HPF subroutine

CSR, shown in Figure 5.2. The code is based on a sparse matrix vector multiplication

kernel and uses the Compressed Sparse Row format [92]. The matrix values are all assumed

to be equal to zero or one. The columns associated with non-zero entries in row i are

specified by col(j), where ya(t') + 1 < j < ija(i + 1). For simplicity, all distributed arrays

are distributed blockwise in this example; these techniques apply equally well to other

potentially irregular decompositions. The indexing of y by array col causes a first level of

indirection. The dependence of the loop bounds of the inner y'-loop on the distributed array

ija causes an additional level of indirection. This double indirection becomes clear when

CHAPTER 5. LOOP TRANSFORMATIONS 87

rewriting the computation as

x(») = y(col(ija(i) + 1 : ija (i+ 1)))

for i = 1 . . . n.

All references to the distributed array x are indexed by the loop induction variable i.

The HPF ON-HOME construct partitions the iteration space of the FORALL loop so

that iteration i is performed on the processor that owns x(i); there is no communication

required for referencing x. For the other three arrays, ija, col and y, data communication

is required. As already mentioned, keeping the total number of these communication steps

down is key to high performance on a distributed memory machine. Therefore, only a small

number of aggregate prefetch operations should be performed, instead of communicating

each reference individually. This operation requires a significant amount of preprocessing to

determine what data need to be prefetched and in which order. The code will be transformed

so that the compiler runtime support will have access to the subscripts of all elements of

ija, col and y that need to be prefetched from other processors. This information makes it

possible to carry out the communication optimizations described previously, i.e., to reduce

the volume of communication, reduce the number of messages and to prefetch off-processor

data to hide communication latencies.

The transformed version of subroutine CSR is shown in Figures 5.3 and 5.4. For ease of

presentation, a variation of HPF that contains additional directives B E G IN LOCAL and

EN D LO CAL is used to indicate local variables. These variables do not reside in the global

name space inhabited by the other HPF variables, but instead they exist independently in

the local name space of each processor. In strict HPF, such variables can be emulated

by either adding another dimension of size n$proc (the total number of processors) and

referencing this dimension with my$proc (the id of each processor) or by manipulating

them only through so called extrinsic functions. Except for these local variables, the whole

code is presented in global name space, and for simplicity, it is assumed that all global to

CHAPTER 5. LOOP TRANSFORMATIONS 88

SU B R O U T IN E CSR(x, y, col, ija, m, n)

IN T E G E R i, j, m, n, col(m), ija(n)
REA L x(n), y(n)

!HPF$ D IST R IB U T E (B L O C K) :: col, ija, x, y

!HPF$ B E G IN LOCAL
IN T E G E R v4, v5
IN T E G E R , ALLOCATABLE(:) ::

• vlarr, v2arr, v3axr
!HPF$ EN D LOCAL

C COUNTING SLICE D
C Count local iterations of outer loop
C to determine size of vlarr.

T1

©II>

T2 !HPF$ E X E C U T E (i) ON JH O M E x(i)
T3 FO RA LL i = 1, n
T4 v4 = v4 + 1
T5 EN D FO RA LL

C COLLECTING SLICE A
C Collect “i + 1” into vlarr(l:v4).

SI A LLOCATE (vlarr, v4)
S2 v4 = 0
S3 !HPF$ E X E C U T E (i) O N -H O M E x(i)
S4 FO RA LL i — 1, n
S5 v4 = v4 + 1
S6 vlarr(v4) = i + 1
S7 EN D FO RA LL
S8 C Prefetching ija(vlarr(l:v4)) goes here

C COUNTING SLICE E
c Count local iterations of inner loop to
c determine size of v2arr and vSarr.

T6 < II o

T7 v5 = 0
T8 !HPF$ E X E C U T E (i) O N -H O M E x(i)
T9 FO RA LL i = 1, n
T10 v4 = v4 + 1
T i l DO j = ija(i) + 1, ija(vlarr(v4))
T12 v5 = v5 + 1
T13 EN D D O
T14 EN D FO RA LL

Figure 5.3: CSR kernel - transformed version (Part 1).

CHAPTER 5. LOOP TRANSFORMATIONS 89

c COLLECTING SLICE B
c Collect “j ” into v2arr(l:v5).

S9 A LLO C A TE (v2arr, v5)
S10 v4 = 0
S ll v5 = 0
S12 !HPF$ E X E C U T E (i) O N JH O M E x(i)
S13 FO RA LL i = 1, n
S14 v4 = v4 + 1
S15 DO j = ija(i) + 1, ija(vlarr(v4))
S16 v5 = v5 + 1
S17 v2arr(v5) = j
S18 EN D D O
S19 EN D FO R A LL
S20 C Prefetching col(v2arr(l:v5) goes here

C COLLECTING SLICE C
C Collect acol(j)” into v3arr(l:v5).

S21 A LLO C A TE (v3arr, v5)
S22 v4 = 0
S23 v5 = 0
S24 !HPF$ E X E C U T E (i) ON_HOM E x(i)
S25 FO RA LL i = 1, n
S26 v4 = v4 + 1
S27 DO j = ija(i) + 1, ija(vlarr(v4))
S28 v3arr(v5) = col(v2arr(v5))
S29 v5 = v5 + 1
S30 EN D D O
S31 EN D FO R A LL
S32 C Prefetching y(v3arr(l:v5)) goes here

C ACTUAL COMPUTATION
El v4 = 0
E2 v5 = 0
E3 !HPF$ E X E C U T E (i) O N JH O M E x(i)
E4 FO RA LL i = 1, n
E5 x(i) = 0
E6 v4 = v4 + 1
E7 DO j = ija(i) + 1, ija(vlarr(v4))
E8 v5 = v5 + 1
E9 x(i) = x(i) + y(v3arr(v5))
E10 EN D D O
E ll EN D FO R A LL
E12 EN D

Figure 5.4: CSR kernel - transformed version (Part 2).

CHAPTER 5. LOOP TRANSFORMATIONS 90

local address translations will be handled by the HPF compiler. Note, however, that index

translation in the presence of indirect addressing and further complications, like irregular

decompositions, is a nontrivial task; the code actually generated by this implementation

assists in the address translation process.

In the example, the distributed array ija is distributed conformable to the array x (ija(k)

is always assigned to the same processor as x(kj). Since the reference ija(i) in statement

R3 occurs in a FORALL loop whose iteration space is aligned to the index space of x,

this reference does not generate any communication. It is also assumed that the back end

compiler recognizes the use of induction variable i in this reference and does not require

any preprocessing for performing the global to local name space conversion.

The references ija{i + 1), col(j), and y(col(j)), however, may require preprocessing. In

general, for a reference of the form arr(subaat), the preprocessing may perform the following:

• It must collect all values of su&0*t used by a processor in order to prefetch the data

referenced in arr(subatt) en bloc. In some cases, preprocessing is also carried out to

reduce communication volume through recognition of duplicate references in suba,t.

• It has to provide a mechanism to access the prefetched data during the actual com

putation.

Here, suba)t stands for the Abstract Syntax Tree (AST) index of the subscript. Note that

while this index is different for each reference in the program, the value numbers of these

references may be identical, even for subscripts that might textually appear different.

In the transformed code, the statements proceeding the actual computation (in E l . . .E12)

perform this preprocessing. Statements S8, S20 and S32 indicate opportunities for aggre

gated prefetching of the data required for references ija(i + 1), col(j) and y(col(j)), respec

tively. For the CSR kernel, it is assumed that subscript reuse is relatively low. Therefore,

the prefetching and indexing are performed via temporary trace arrays that store global in

dices and are themselves indexed through counters that are incremented with each reference.

Alternative mechanisms are described in Section 5.4.2.

CHAPTER 5. LOOP TRANSFORMATIONS 91

The first prefetch statement, S8, brings in the trace of the reference ija(i + 1). State

ments T l . . .T5 and S I .. .S7 perform the preprocessing necessary for the prefetch. Since this

example is basing the prefetching mechanism on temporary trace arrays that have to be

allocated dynamically, the size of the trace, i.e., the number of references has to be deter

mined first. This size is computed and stored in v4 by statements T l . . .T5. Statement SI,

then, allocates the local array vlarr, which has been declared ALLOCATABLE. Statements

52 .. .S7 generate and store the trace into vlarr. Finally, the prefetching operation in S8

brings in all the non-local data and stores them in the right locations of the array ija. This

process might require resizing the array ija to store the off-processor data. For the purpose

of this example, it is assumed that storing of the off-processor data in the resized ija array

is such that they can be referenced in global coordinates.

The next potential communication is generated by the prefetching statement, S20, which

collects on each processor the off-processor references to col(j) in statement R4. Statements

510.. .S19 collect the trace of the value j indexing the array col into the local array vSarr.

Note that in the expression for the upper bound of the j'-loop, array ija is no longer indexed

by (i + 1) but by the trace vector vlarr generated in statements S4.. .S7. The statements

T 6 .. .T14 in Figure 5.3 compute the size of the array v2arr into the local scalar v5. The

array v2arr, like vlarr has been declared ALLOCATABLE in statement S9.

The values of y that are required on each processor at statement R4 are communicated

in the prefetching statement S32. The trace of the values that index y is done in statements

522.. .S31 and it is stored in the dynamic local array vSarr. Note that the number of

references to y(col(j)) is the same as the number of references to col(j); therefore, the size

of v3arr is the same as the size of v2arr. Hence there is no need for any additional code to

find out the size of vSarr, instead, the already computed local variable v5 that stores the

size of v2arr can be used. Note also that in statement S28 the array col is referenced by

the local array v2arr, which stores global indices, instead of being referenced by j . After

the execution of statement S32, all processors have the required values of y in their local

memories.

CHAPTER 5. LOOP TRANSFORMATIONS 92

The actual loop computation is performed in statements E l . . .E ll. During this compu

tation, no communication is required because everything that is necessary on each processor

has already been fetched. To summarize, the original code shown in Figure 5.2 has been

transformed into the code in Figures 5.3 and 5.4 and the transformed code does all the

necessary data communication in phases after several preprocessing steps. Within the dif

ferent loops in the transformed code, all distributed arrays are referenced by at most one

level of indirection and require no data communication.

In the CSR kernel example, there is no assignment to the indirection array. If there is an

assignment inside the compute loop, the method will work and this process will be explained

when the slice generation process is described. The method suggested here is completely

general and will work for all cases though it might not produce the most efficient code when

an assignment to the indirection arrays exists at the innermost loop.

If the program CSRJnit was executed on a shared memory multiprocessor which has

no memory hierarchy (i.e., there is only one main memory and memory access time to read

consecutive words, is the same as the time required to read two words at arbitrary locations),

then the transformation presented here becomes redundant. But for all real machines this

is not the case, hence such a transformation which prefetches data into contiguous locations

helps to speed up the computation.

5.2 Prelim inaries

In this section, some of the compiler terminology that will be used in the description of the

algorithm is clariiied.

A b s tra c t S yn tax Tree: After the parser analyzes the program, it maps it onto a tree

structure called the Abstract Syntax Tree. The program analysis and transformation

is done on the AST, and this goes into the backend of the compiler. An AST node is

generated for every basic element of the input code.

CHAPTER 5. LOOP TRANSFORMATIONS 93

Value Number: An abstract value graph is generated for the code that is being paral

lelized. Value numbering is a symbolic analysis tool that can be effectively used to do

subexpression elimination during code optimization. A value is given to each node of

the abstract syntax tree. Analysis is done so that, if it can be guaranteed that two

variables (syntactically different) will have the same value during program execution,

they will have the same value number in the value graph.

51 A = 5

52 B = 5

53 C = A + B

54 D = B + A

In the value graph for the above piece of code variables C and D will have the same

value number, even though they are syntactically different.

5.3 Definitions

This section introduces some concepts that will be used in the algorithms in Section 5.4.

A Slice is a tuple

■S = (^uni &targeti ̂ codei &identi ̂ <fep_jet[> ̂ cnt_tm])

that contains a value number svn, a designated program target location s*orjet, a sequence

of statements an identifier s^ent, a dependence set SdepMt, and optionally another

value number s There are two types of slices:

• A collecting slice stores the sequence of values (trace) that are assigned to a variable

(e.g. Figure 5.2: statement R3 reference i + 1; statement R4 reference col(j)) during

the execution of the program in some data structure identified by s,-jent. The type of

the data structure is determined by the degree of subscript reuse within the trace of

the subscript, as described in Section 5.4.2. Examples of collecting slices are shown in

CHAPTER 5. LOOP TRANSFORMATIONS 94

Figure 5.4. Two slices B and C, shown in statements S9-S19 and S21-S31 respectively,

are collecting slices.

• Counting slices are created from the collecting slices; they calculate the size of the

subscript trace that will be generated during the execution of the collecting slice. A

counting slice is needed if the collecting slice requires the size of the trace it is to

record (for example, preallocating a data structure to store the trace). Examples of

counting slices are shown in Figure 5.3. The two slices, D and E shown in statements

T1-T5 and T6-T14 respectively, are counting slices.

Each of the slices has the following properties with respect to the original program P:

• Inserting sC0(je at starget in P is legal; i.e., it does not change the meaning of P. The

Scode is similar to a dynamic backward executable slice [99].

• After executing sCO(fe> sident will have stored the values of sv„.

• If s is a collecting slice, then swn will be the value number of a subscript subast of a

nonlocal array reference arr(subatt) in P, and s,denl will store the sequence of all the

values that subaat will be assigned during the execution of P. Note that the length of

this sequence depends on the location in the program, which is given by starget- For

example, if s*arael is the statement of the reference itself, then the sequence consists

of only a single subscript. If starget is the header of a loop enclosing the reference,

then the sequence contains the subscripts for all iterations of the loop.

• If counting slices are computed, then Scnt_vn will be the value number of the counter

indexing Sijent after execution of scoj e is finished; i.e., the value of Scnt-un will be the

size of the subscript trace computed in a,de„t.

• If s is a counting slice, then there exists a collecting slice t for which svn = tmt.vn

and starget = t̂arget- St'dent will store the size of the subscript trace computed in

Udcnt- Since s,-dent corresponds to a single value, smt_m will be the value number

corresponding to the constant “1.” Note: starget = Uarget because otherwise too many

CHAPTER 5. LOOP TRANSFORMATIONS 95

(for ^target preceding ttarget) or too few (for starget succeeding ttarget) subscripts may

be counted.

• The sjepset stored in each slice is a set of AST indices of subscript variables that need

runtime processing. Only the references in s cotie that require runtime processing are

considered when the SdepMt is created.

A Slice Graph is a directed acyclic graph

G = (S ,E)

that consists of a set of slices S and a set of edges E. For s , t € S, an edge e = (s ,t) € E

establishes an ordering between s and t. The presence of e implies that tco* contains a

direct or indirect reference to suent and therefore has to be executed after scode• G has to

be acyclic to be a valid slice graph. Note that the edges in the slice graph not only indicate

a valid ordering of the slices, but they also provide information for later optimizations. For

example, it might be profitable to perform loop fusion across slices; the existence of an edge

between slice nodes, however, indicates that these slices cannot be fused.

A Subscript Descriptor

Sub a at = (su6un, subtarget)

for the subscript subaat of some distributed array reference consists of the value number

of subaat i subvn and the location in P, where a slice generated for sub should be placed,

subtarget■ The algorithm will generate a slice for each unique subscript descriptor cor

responding to a distributed array reference requiring runtime preprocessing. Identifying

slices by subscript descriptors is efficient in that it allows a slice to be reused for several

references, possibly of different data arrays, as long as the subscripts have the same value

number. It is conservative in that it accounts for situations where different references might

have the same subscript value number but different constraints with respect to prefetch

aggregation that corresponds to different target nodes.

CHAPTER 5. LOOP TRANSFORMATIONS 96

5.4 The A lgorithm

This section gives a description of the algorithm to perform the transformation shown in

Section 5.1. The algorithm consists of two parts: The first part, described in Section 5.4.1,

analyzes the program and generates the slices and the slice graph. The second part, de

scribed in Section 5.4.5, uses the slice graph to do the code generation.

5.4.1 Slice Graph Construction

The procedure G enerate_slice-graph(), shown in Figure 5.5, is called with the program P

and the set of subscripts R of the references that need runtime preprocessing, i.e., the

irregular references. It returns a slice graph consisting of a set of slices S and edges E . This

procedure first generates all the necessary slices and then finds the edges between these

slices.

The Foreach statement in A 4.. .A8 computes a subscript descriptor (subvn,subtarget) for

each subscript AST index subast. It is assumed that P has an associated value number

table that maps AST indices to value numbers. Lookup_vaLnum ber() uses this table to

compute subvn from suba,t. G en_target() maps the AST index subaat to the target node

sub target for the slice generated, starting from that AST index. The constraints on subtaTget

are the following:

• In the Control Flow Graph (CFG), subtarget predominates the reference subaat; i.e.,

it is guaranteed that su b target will be executed before subast is used to reference its

data array orr.

• There is no modification of the data array arr between subtarget and subaat.

• Any code inserted at subtarget is executed as infrequently as possible.

G en_ target() implements these constraints using a Tarjan interval tree [1] and array MOD

information; starting at the node corresponding to the reference, it walks the interval tree

upwards and backwards until it reaches a modification of arr.

CHAPTER 5. LOOP TRANSFORMATIONS 97

P ro ced u re Generate-slice.graph(P, R)

/ / P: Program to be transformed
I I R: A S T indices of subscripts of references
/ / that need runtime preprocessing

A1 S := 0 / / Slices
A2 E := 0 / / Slice ordering edges
A3 U := 0 / / Subscript descriptors

/ / Compute subscript descriptors.
A4 Foreach suba,t € R
A5 suft,,,, := Lookup_val_number(su6OJt)
A6 subtarget •= Gen-target(su6aJj)
A7 U := ^ U {(5ix6un) su6jarj ej)}
A8 Endforeach

/ / Compute slices.
A9 Foreach sub € 17
A10 s := Gen_slice(su6)
A ll S := S-Uls}

/ / The following steps are executed
/ I iff counting slices are required.

01 t := Lookup-Slice(S, (smt.m , S t a r g e t))
02 I f f = 0 T hen
03 t := Gen-slice(scnt_„n, Starget)
04 5 := S U {0
05 E := J5U{(i,s)}
06 E nd if

A12 E nd if
A13 Endforeach

/ / Compute edges resulting from
I I dependence sets of slices.

A14 Foreach 3 € S
A15 Foreach subast € s</ep_«t
A16 subvn := Lookup_val.number(su6aat)
A17 subtarget '= Lookup.target(su60,()
A18 t := Lookup.slice(5, (subvn, su6torjei))
A19 E := £ U { (i,s)}
A20 E ndforeach
A21 Endforeach

A22 R e tu rn (S ,E)

Figure 5.5: Slice graph generation algorithm.

CHAPTER 5. LOOP TRANSFORMATIONS 98

The next Foreach statement in A 9.. .A13 iterates through the subscript descriptors

sub £ U and generates for each subscript descriptor both the collecting slice s and, if needed,

the counting slice t. Gen_slice() takes a subscript descriptor sub = (subvn,subtarget)

and generates for location subtarget the slice that computes the values corresponding to

subvn. The slice generation function uses the program’s CFG and the SSA (Static Single

Assignment). Roughly speaking, Gen_slice() follows the use-def and control dependence

chain starting in suba,t until it reaches subtarget•

If the size of the subscript trace recorded in s (e.g., for allocating trace arrays) is required,

then the statements 0 1 .. .06, a counting slice t for each s, is executed. However, different

collecting slices can share a counting slice, if they have the same counter value number

submt_vn and target location subtarget- Therefore, the set of already created slices must first

be examined. Lookup_slice() takes as input a set of slices S and a subscript descriptor

sub, and returns the slice t £ S corresponding to sub if there exists such a f; otherwise, it

returns 0. If a counting slice has not yet been created, a new counting slice t is generated.

Since the counting slice t must be executed before the collecting slice s, a directed edge

(t,s) is added to the edge set E.

The nested Foreach statements in A14.. A.21 are used to find the directed edges resulting

from the dependence sets in each slice. The outer Foreach iterates through the slices s and

the inner one loops through the references subref stored in the dependence set Sdep_,e< of s -

All the relevant information has already been generated previously; therefore, these loops

only have to consult tables to complete the set of edges.

The slice graph corresponding to the transformation example, done in Section 5.1, is

shown in Figure 5.6. There are five nodes in the slice graph, of which nodes A, B and

C contain collecting slices, while nodes D and E contain counting slices. Note that the

collecting slices B and C share the counting slice E, which reflects that the number of

references to y(col(j)) is the same as the number of references to col(j).

CHAPTER 5. LOOP TRANSFORMATIONS 99

v4 = 0

i
, - " T

I
II

i!HPF$ EXECUTE (i) ON HOME x(i)
FORALL i = 1, n

v4 = v4 +1
ENDFORALL

v4 = 0
!HPF$ EXECUTE (i) ON HOME x(i)

FORALL i = 1, d

v4 = v4 +1
vlatr(v4) = i + l

ENDFORALL A

v4 = 0
v5 = 0

!HPF$ EXECUTE (i) ON HOME x(i)
FORALL i = l ,n

v4 = v4 +1
DO j = ija(i) +1, ijafi+1)

v5 = v5 + 1
v2arr(v5)=j

ENDDO
ENDFORALL B

\

. . i f ___________________
v4 = 0
v5 = 0

•!HPF$ EXECUTE (i) ON HOME x(i)|
FORALL i = 1, n

v4 = v4 +1
DO j = ijafi) +1, ijaO+1)

v5 = v5 +1
ENDDO

ENDFORALL E
 ,----------------

i i ■ i

v4 = 0
v5 = 0

!HPF$ EXECUTE (i) ON HOME x(i)
FORALL i = 1, n

v4 = v4 +1
DO j = ija(i) +1, ijaO+1)

v5 = v5 +1
v3air(v5) = col(j)

ENDDO
ENDFORALL C

Figure 5.6: Example of a Slice Graph.

5.4.2 Trace Management Schemes

Precomputing the subscript trace has been defined so that prefetching can be performed.

Before actually generating code, however, decision has to be made regarding the data struc

tures to be used for first recording the traces to prefetch nonlocal data and then accessing

these prefetched data. The example presented in Section 5.1 used temporary trace arrays

for performing both of these operations. It turns out, however, that this is just one of several

options, and there are different tradeoffs involved depending on the characteristics of the

CHAPTER 5. LOOP TRANSFORMATIONS 100

subscript traces. Consequently, when generating the statements scode of a slice s, the code

for manipulating these data structures is not included, i.e., the counter initializations and

increments or the assignments into trace arrays. Instead, place holders for these operations

are included and the generation of these statements are delayed until the slice instantiation

phase.

Let T be the size of the trace, i.e., the number of times a subscript is evaluated with

respect to the target location of the slice; let R be the number of unique elements in T,

and let N be the global size of the subscripted array, i.e., the number of different subscripts

possible. Note that R < N , R < T must hold.

5.4.3 Case 1: Low subscript reuse

In this case, which is characterized by R « T , each subscript typically appears at most

once in the trace produced by the slice. A possible example is the CSR kernel described in

Section 5.1. Here it is reasonable to use a dynamically allocated array th a t is indexed through

a counter incremented with each reference. This array can be used both for precomputing

the subscripts and for looking them up during the actual computation. Since each subscript

must be stored individually, the space requirements are 0 (T). Usually counting slices must

be generated to perform the dynamic allocation of the arrays. The time per access, however,

is only 0(1).

5.4.4 Case 2: High subscript reuse

This case is characterized by R<T; each subscript typically appears several times in the

trace produced by the slice. An example of this is the pair list used for the non-bonded

force kernel in molecular dynamics applications. Since each atom interacts with many

other atoms, it appears many times in the pair list. Here some set representation, like

a hash table, which collects subscripts and stores each of them at most once, would be

an appropriate trace recording mechanism. Using a hash table to store off-processor data

values was first introduced in [52]. The space requirements are only O(R), and counting

CHAPTER 5. LOOP TRANSFORMATIONS 101

slices are not needed. The time per access, however, will be 0(log(Ji)) for most common

set representations.

As a subscripting mechanism in the actual computation, some dictionary representation,

can be used, like a hash table (of a different kind than the one used for representing sets),

that maps global indices to local indices. This typically requires space O (N) and C?(log(JV))

time per access.

An alternative subscripting mechanism is a “global shuffle,” where, roughly speaking,

everything is translated to local coordinates, including the subscripting arrays themselves.

The space requirements would be at most O (N), depending on how much data a processor

needs locally and whether things can be shuffled in place or not. The time per access would

be 0 (1).

5.4.5 Code generation

The code generation algorithm is shown in Figure 5.7. The procedure Gen_code() takes

as input the original program P and the slice graph consisting of slices S and their order

ing E. Gen_code() traverses the program and changes the subscripts of all the references

that required runtime preprocessing. The function In stan tia te_p rog ram () takes the pro

gram P and the set of slices S and replaces the subscripts in P on which preprocessing has

been performed, with accesses to data structures defined in the preprocessing phase. The

program instantiation depends on what type of data structure is used to store the trace of

subscripts in the collecting slices, as discussed in Section 5.4.2.

Topological_sort() performs a topological sort of the slice graph, so that the partial

order given by the directed edges in E is maintained during generating code for the slices

in S. The Foreach statement in C3.. .C6 iterates through the slices 5 . Instan tia te_slice()

is similar to Instantiate_program(), but instead of a program P, it takes a slice s. However,

it not only replaces subscript references but also adds the code mentioned in Section 5.4.2

for collecting the subscript trace. Accordingly, this instantiation, like the program instan

tiation, depends on the type of data structure that is used to store the subscript trace of

CHAPTER 5. LOOP TRANSFORMATIONS 102

P ro ced u re Gen_code(P, S , E)

C l Instantiate.program(P, S)
C2 Topological-sort^S, E)
C3 Foreach s € S
C4 Instantiate_slice(s, 5)
C5 Insert_code(P, sC0(je, starget)
C6 E ndforeach

C7 R e tu rn P

Figure 5.7: Code generation algorithm.

the references that affect the computation in this slice. After s has been instantiated, In-

sert_code() inserts scoj e into the program at the target location s target- The transformed

program is returned to the calling procedure.

In the CSR example in Section 5.1, it is assumed that the subscript traces are stored

in dynamically allocatable arrays. The instantiation routines add the code for maintaining

and referencing these arrays to the slices in the graph presented in Figure 5.6. A topological

sort on the graph yields the node order to be D, A, E, B and C; this is the same order in

which the slices appear in the transformed code in Figure 5.5. For each of the slices, the

subscripts of the references requiring runtime preprocessing present in the slice are changed

to the local array that stores a trace of the subscript. At runtime the trace must already

have been generated because an edge from the node exists where the trace was created to the

node where it is being used. The slice is substituted in the program before the slice target

node. Note that the topological sort order is unique; this indicates, for instance, that there

is no loop fusion possible in the example. Note also that the transformed code in Figures 5.3

and 5.4 would be equally valid without having the subscripts of the references ija(i + 1),

col(j) and y(col(j)) replaced with references to trace arrays. However, this replacement

makes the subsequent task of translating global indices to local indices simpler; instead of

having to modify user declared variables and subscript arrays, it is sufficient to translate

the trace arrays.

CHAPTER 5. LOOP TRANSFORMATIONS 103

5.4.6 Using Incremental Scheduling

The use of incremental schedules makes it possible to avoid retransmission of unchanged

distributed array references. Proper use of incremental schedules can have a marked effect on

the communication time. The generation of incremental schedules can be carried out in two

passes. A compiler first generates an inspector and executor for loop L with full schedules.

During the second pass, some full schedules are replaced with incremental schedules.

Substantial analysis must be carried out if incremental schedules are used to eliminate

duplicate data communication between loops. For this, comprehensive information about

the program behavior is required. To use incremental scheduling, the following must be

known:

• when off-processor data copies become invalidated by new assignments, and

• which communication schedules have been already invoked by the time one reaches a

distributed array reference.

Such information will be available if one performs a global data flow analysis. Global

dataflow analysis has been investigated for the purpose of incremental scheduling together

with researchers from Rice University [46].

C hapter 6

Im p lem en ta tion Issues

This chapter covers some of the details about the loop transformation implementation

accomplished by using the infrastructure developed for the Fortran D compiler project, at

Rice University. An implementation of the transformation algorithm presented in Chapter 5

has been completed and further improvements are being carried out.

The Fortran D compiler environment has been chosen for implementation of the trans

formations because of the availability of various symbolic analysis tools. A brief description

of these tools and how they were utilized to perform the transformations is included in

this chapter, which is divided into three sections. Section 6.1 covers the symbolic analysis

tools, followed by the section describing program slicing and how it is utilized to perform

inspector generation. The last section gives a high-level description of the implementation

already completed.

6.1 Sym bolic Analysis

Symbolic analysis helps to perform various types of code transformations to vectorize or

parallelize a given code. It is a powerful analysis tool that allows one to perform various

code optimizations [1], such as common subexpression elimination, detection of loop invari

ant computation, code motion to move invariant to preheader of loop, induction variable

elimination, etc. This section offers a brief description of the various symbolic analysis tools

104

CHAPTER 6. IMPLEMENTATION ISSUES 105

utilized in this work.

Two types of dependencies exist in programs: data dependence and control dependence.

These dependencies are best explained by using examples.

51 A = B + C

52 D = C * A

The execution order of these two statements has an effect on the calculated value of the

variable D. Switching the order of the statements will give variable D an incorrect result.

In such a case, a data dependence exists between statements SI and S2. Data dependencies

can be further subdivided: true, anti and output dependencies [4].

51 if (A) then

52 B = C + D

53 end if

In the above case, the value of variable A decides whether statement S2 will be executed

or skipped. In such cases, there exists a control dependence between statements SI and S2.

However, control dependence can always be replaced by an equivalent data dependence [4].

The control flow graph (CFG) is a DAG that represents the flow of control between the

basic blocks of a program. A basic block is a sequence of statements with a single entry

pad (first statement) and a single exit pad (last statement). Branching statements cannot

be present in the basic block. In the representation of CFG used here, a graph node is

generated for each basic block that may contain zero or more statements. There is a special

E N T R Y node that has no incoming edges but one or more outgoing edges to each entry

point of the program. There also exists a special E X I T node that does not have any out

edges but has a number of incoming edges from each exit point of the program. For any

node 6,- in this graph, there exists a path from E N T R Y to 6,- and a path from 6, to E X IT .

Hence,

CFG = (V ,E),

CHAPTER 6. IMPLEMENTATION ISSUES 106

SI a = 1 Tl ai = 1

S2 b = 2 T2 bj = 2

S3 if (a) then T3 if (ai) then

S4 b = b + 2 T4 b2 = bi + 2

S5 end if T5 end if

S6 c = b + d T6 i>3 = 0(bi, b2)

S7 a = a - c T7 ci = b3 + di

T8 a2 = a2 - ci

Figure 6.1: Program fragment and SSA form

where V = {bi,b2 , . .. ,bn,E N T R Y ,E X IT } , b\,b2 ,- • - ,bn represent the nodes correspond

ing to the basic blocks and E is the set of edges. For bj € V, an edge e = (6,-, bj) € E,

establishes a flow of control from block 6,- to block bj.

The program dependence graph (pdg) [38] provides an intermediate representation of

the program. Each statement in the program is a node in the pdg. When there is an edge

from node A to node B, there exists either a control dependence or a data dependence

between the statement represented by node A and the statement symbolized by node B.

The static single assignment (SSA) form of the pdg is generated by introducing a new

symbol for each definition of a variable in the pdg. Cytron et al. [31] suggest a method to

generate the minimal SSA form for a given program. When many definitions for a variable

reach a particular node, a 0-function is introduced for tha t variable at that node. The

0 -function represents a special type of function tha t takes a variable number of arguments

as input and outputs a single value. The net effect of introducing a 0-function at a merge

node is that only a single incoming value will pass through. The variable for which the

^-function is introduced, is assigned the return value of the function. Since renaming every

new assignment is not very practical because of the obvious limitations in the size of the

symbol table, most implementations provide def-use [1] links for each of the new definitions.

CHAPTER 6. IMPLEMENTATION ISSUES 107

Special ^-functions are inserted at points where more than one definition of a variable

reaches a node. If more than one control flow edge is incident on a node, there is a possibility

that more than one definition of any variable reaches that node. The placing of ^-functions

is a non-trivial problem because minimal number of them are to be generated for each of the

program variables. Even though placing unnecessary ^-functions may generate a correct

SSA form, it adds overhead to the optimization or transformation process for which the SSA

form is used. The minimal SSA form can be generated by calculating the dominator [1]

information. Consider two nodes 6; and bj in a program dependence graph. At the node

b{ a variable a is defined and is used in some computation in bj. If the only path to node

bj from E N T R Y has to pass through 6;, then 6; is said to strictly dominate bj. When 6,-

strictly dominates bj, the value of the variable a that reaches bj has to come from 6,-. Hence,

in this case a ^function for a is not needed before entrance to bj. For instance, if there were

other paths from E N T R Y to node bj, and the path through 6; was just one of the many,

then bj would be in the dominance frontier of 6,-. In this case, not only does the definition

of a in b{ reaches bj but also other definitions of a reach bj. Hence, a <£-function for a just

before the entrance to bj is required. Calculating the dominance frontier information helps

generate the minimal SSA form.

Figure 6.1 shows two versions of the same piece of code. Statements S1-S7 present

the original version of the code. Statements T1-T8 depict the SSA form of the code. In

statement T 6, a ^-function has been placed because two definitions of the variable b were

reaching statement S6 (code in original form). All variables have been renamed so that only

a single assignment is made to each variable.

Various definitions reach the merge nodes (^-function nodes) in the SSA form of the

pdg. The information reaching the ^-function nodes are the different values. H the control

flow information is also made to be an input to these ^-functions, then one can interpret

which values will be assigned at these merge nodes. The problem is solved by using a gated

single assignment form of the pdg [9]. The gated single assignment form replaces the original

(^functions with gating functions, which carry enough control information to interpret the

CHAPTER 6. IMPLEMENTATION ISSUES 108

values at the merge nodes. There are three types of gating functions introduced. They are

as follows:

7 : The 7 -functions are introduced to capture the if-then-else condition. The ^-function,

shown in statement T 6 in Figure 6.1, would be replaced by a function such as 7 (ai,

b2, bi). Hence the statement T6 in Figure 6.1 would be replaced by the following

statement:

T6 b3 = 7 (ai, b2, bx)

When the value of ax is true, then b3 will take on the value b2. The gated single

assignment form gives far more information than the original ^-functions.

p : The /i-functions are used to analyze the value flows inside a loop. These functions

are generated for each of the variables defined inside the loop body. They are placed

at the loop header and the function has three arguments: The first argument is a

predicate that determines whether control will pass into the loop body; the second

argument is the definition of the variable that is entering the loop before any iterations

have been executed; the third argument is the definition of the variable that reaches

the loop header after a complete iteration.

i] : These function are placed at the loop exit, and they return the loop exiting definition

of a variable. An 77- function is placed at the loop exit for each of the definitions that

flow out.

For this implementation, a variant of the gated single assignment form of the pdg called

the thinned gated single assignment (TGSA) form has been used. The TGSA form of the pdg

was developed at Rice University [48, 49,47] and is part of the Parascope [29] environment.

6.2 Program Slicing

Program slicing is a source to source transformation technique suggested by Weiser [103].

The transformation finds every statement in a program that affects the value of any variable

CHAPTER 6. IMPLEMENTATION ISSUES 109

51 Input a,b

52 if (a) then

53 a = a - b

54 b = b - a

55 if (a) then

56 a = a + 5

endif

endif

57 Output a

58 Output b

Figure 6.2: Code for Program Slicing

at any point in the program. A point in the program may be defined as an expression

in any statement in the program body. The program slice that is generated for some

expression £ in the program, when executed, should evaluate expression (£) values identical

to that of the original program for all inputs. Program slicing can be effectively used

for analysis, debugging, testing of programs, parallelization and automatic integration of

program version. A program slice is defined with respect to a statement S in program V

and an expression £ in <S, as the statements and predicates of S that might effect the value

of £ in S . Slicing criteria of a program V is a, tuple (S ,£), where S is a statement of the

program V , and £ is an expression in the statement S.

Programs can be thought of as multiple threads, each of which computes a particular

variable. These threads may or may not overlap one another. During program slicing, the

thread for the variable based on which the slicing is being performed is found. Construction

of program slices is complicated by nested structure. For a straight line code with no

intricate control structures, one has to follow the use-def chains to get a complete slice.

Since most programs have many control structures, a sophisticated version of the use-def

CHAPTER 6. IMPLEMENTATION ISSUES 110

51 In p u t a,b

52 if (a) th e n

53 a = a - b

55 if (a) th en

56 a = a + 5

e n d if

en d if

Figure 6.3: Slice for Slicing Criteria : (57, a)

chaining mechanism is required.

For a given program, a number of slices based on different slicing criteria can be gener

ated. There always exists at least one slice for a given program and a slicing criteria, i.e., the

program itself. It is desired that a slice of a program for a given slicing criteria be statement

minimal. For a given program, V and a given slicing criteria C, the generated slice 5 is said

to be statement minimal, if no other slice for C on V can be generated with a lesser number

of statements. Proving that a slice is a statement minimal slice is undecidable. Weiser

in his informal proof reduces the halting problem to that of finding a statement-minimal

slice [103].

Figure 6.2 depicts the program to be used for program slicing. There are two variables

in the program namely, a and b. Two different slicing criteria will be used to generate

the slices. Figure 6.3 depicts the slice generated when the slicing is performed, based on

statement S7 and variable a. The slice shown in Figure 6.3 has been generated by removing

statements S4, S7 and S8 from the original code. The removed statements do not have any

bearing on the value of the expression based on which the slicing is performed. Statements

S i, S3 and S6 are introduced into the slice because variable a is being assigned a new

value in these statements. Statements S2 and S5 are introduced into the slice because of

control dependence. The conditional in statement S2 controls the assignment to variable

CHAPTER 6. IMPLEMENTATION ISSUES 111

51 In p u t a,b

52 if (a) th en

S4 b = b - a

end if

Figure 6.4: Slice for Slicing Criteria : (S8 , 6)

a in statements S3 and S6. The conditional in statement S5 controls the assignment to

variable a in statement S6 .

Figure 6.4 depicts another program slice in which slicing is done based on statement S8

and the variable b. Note that the slice has substantially fewer statements compared to the

slice shown in Figure 6.3. Figure 6.2 shows that variable b has been used in statements S3

and S4. In statement S3, variable b is used but not defined, hence it is not included in the

slice. On the other hand, statement S4 is where b is being defined, hence it is included in the

slice. Statement S4 is executed if the value of the conditional in statement S2 is computed to

be true. Statement S2 is introduced into the slice because of control dependence; statement

Si is present in the slice because it reads in the value of the variables a and b.

6.3 Program Slice Generation

From the algorithms described in Chapter 5, it is known that the generation of slices is a

very important part of the transformation process. For every node in the slice graph, a slice

must be generated. Popular dataflow algorithms [103] can be used to generate slices but

the process is very time consuming. Generating slices efficiently can be done by using the

pdg [55].

A pdg, for the example program shown in Figure 6.2, is depicted in Figure 6.5. Each node

in the pdg represents a statement in the program. The nodes are marked by the statement

numbers. All data dependencies in the program are shown by the solid arrows, while the

CHAPTER 6. IMPLEMENTATION ISSUES 112

S2

Figure 6.5: Program Dependence Graph for Slicing Example

CHAPTER 6. IMPLEMENTATION ISSUES 113

control dependencies are shown by the dotted arrows. Using the pdg the slice shown in

Figure 6.3 can be easily generated. Starting from node S7 (Slicing criteria : (57, a)), all the

reaching definitions of the variable a are found and they are nodes S6 , S3 and SI. Starting

from each of the new nodes, all the nodes that are reachable are gathered. The complete

set of nodes provides the slice. Starting from S6, nodes S5 and S3 can be reached. Again

starting from node S3, S2 and Si are reached. At this point, all nodes reachable from S6,

S3 and SI have been collected, and they are the nodes SI, S2, S3, S5 and S6. The different

nodes represents the slice.

Similarly to generate the slice shown in Figure 6.4, starting from node S8 (Slicing criteria

: (58,6)) all the reaching definitions of the variable b are found. Starting from node S8,

nodes S4, S2 and SI can be reached. Hence the slice is given by nodes SI, S2 and S4. It

follows that slice generation becomes a problem of simple graph traversal.

The program slicer that has been developed takes as input an abstract syntax tree

(AST) node and a pdg. The AST node is equivalent to the slicing criteria. The AST node

is mapped onto its corresponding node in the pdg. Starting from this node, all reachable

nodes are found. Each new node encountered becomes a part of the slice. Use-def (ud)

chaining [1] must be performed to find all of the reaching definitions. In conjunction to ud-

chaining, the control dependence paths are followed to get a complete slice. The slice must

be generated so that it can be placed (the target node) at the beginning of the procedure

without changing the meaning of the program. Generation of a slice where the target node

is at the beginning of the procedure fails, when there is a statement 5 which modifies a

distributed array and the statement also happens to be part of the slice being generated.

In this case, the node T in the graph whose predominator is the node corresponding to 5 is

found and made the target node. Having this constraint imposed on the generation of the

target node allows working with any type of irregular code.

CHAPTER 6. IMPLEMENTATION ISSUES 114

6.4 Transformation Im plem entation

This section includes a high level description of how the transformation discussed in the

previous chapter has been implemented. The actual transformation uses the different tools

that were described in this chapter. The transformations have been implemented in the

Parascope environment. The regular part of the Fortran D compiler analyzes the input code,

collects the array references it cannot handle and calls the irregular part of the compiler.

The set of irregular references are passed to the slice graph generation procedure. Each

unique slice and its target node become a node in the slice graph. After the nodes in the

slice graph have been built, the edges of the graph are generated using the dependencies

that exist between the slices. A topological sorting routine is called with the generated slice

graph. After the sorting, inspector/executor pairs are created for each of the nodes in the

slice graph.

Various loops with more than one level of indirection have been run through the trans

formation process. Progress is being made to further generalize this method and generate

a more robust implementation.

C hapter 7

C on clu sion and F uture W ork

The work presented here explains in detail the type of compiler support and transformation

techniques required to parallelize irregular programs written in data parallel languages. The

information provided here will be invaluable to anyone writing a parallelizing compiler for

irregular problems. This chapter summarizes the contributions made by this dissertation

followed by the direction of future research.

7.1 Contributions o f this Thesis

There has been some preliminary work in the area of automatic parallelization of irregular

problems [60]. Tools have been developed to generate inspector/executor pairs, but they

lack the optimizations necessary to parallelize any real application codes. The contributions

of this thesis have been in two different but related areas. They are:

• A compiler runtime compilation system has been designed and developed to help

parallelize irregular loops.

• Transformation techniques have been suggested that allow for automatic paralleliza

tion of real irregular applications.

115

CHAPTER 7. CONCLUSION AND FUTURE WORK 116

7.1.1 Development of Compiler Support

An efficient runtime compilation system has been designed and implemented. The compila

tion system is comprised of a set of highly optimized tools that can be used to automatically

generate inspector/executor pairs for irregular loops. A variety of different irregular appli

cation codes were studied and, based on experience with these codes, tools were developed.

The development of software caching methods is an important contribution of this work.

Techniques have been developed for caching off-processor data. Incremental scheduling is an

important concept that has been developed to optimize off-processor data caching. There

axe a number of application codes (especially particle codes) that would be nearly impossible

to parallelize on the available distributed memory hardware without using the basic ideas of

incremental scheduling. Compiler transformations designed to use incremental scheduling

automatically were developed as part of a joint project with a group at Rice University [46]

but have not been presented in this dissertation.

A highly scalable global to local address translation mechanism has been developed. This

addressing uses a paged distributed translation table, which stores all required information.

This mechanism will be useful when parallelizing highly adaptive irregular application codes.

This thesis presented a detailed performance analysis of the various tools, using both a

synthetic workload generator and a number of actual application codes. The parallelization

of the actual application codes was done to show the efficiency of the methods developed

here.

7.1.2 Compiler IVansformation

This dissertation presented a method to automatically parallelize irregular applications for

execution on distributed memory machines. This operation is accomplished by transforming

irregular loops into inspector/executor pairs. The generation of inspector/executor pairs for

loops with a single level of indirection has been accomplished by both this author and other

researchers [60, 18]. But most irregular loops found in application codes have indirection

patterns that axe not easily deciphered. Hence the original code must be transformed

CHAPTER 7. CONCLUSION AND FUTURE WORK 117

into an intermediate state so that the inspector/executor transformation can be applied to

parallelize it.

This thesis presented algorithms that can be used to parallelize irregular codes with

multiple levels of indirection. The method is based on program slicing techniques. The

algorithms presented are very general and work for all irregular codes. The original code

is transformed until there is, at most, a single level of indirection. The single level of

indirection is achieved by peeling off each level of indirection until loops in the code have

only a single level of indirection. At this point, the inspector/executor transformation is

applied.

7.2 Future Work

This thesis has been one of the more serious efforts to automatically parallelize real irregular

applications codes. Techniques have been developed for a subset of irregular problems; the

loosely synchronous variety comprises 25% to 30% of the irregular applications. There axe,

however, irregular applications which cannot be effectively parallelized by the techniques

presented here.

Some irregular codes are highly adaptive; the indirection arrays change every iteration.

In such cases, the inspector/executor type of parallelization is not effective because the

cost of generating the inspectors cannot be amortized. If the inspector/executor type of

computation is used to parallelize such applications, a large percentage of the time will

be invested in inspector generation. Overlapping communication and computation in such

highly adaptive codes may be very useful. One might generate partial inspectors; start a

phase of data communication and, while the data is being moved, generate the rest of the

inspector. This procedure would require some form of loop stripmining.

The possibility of using interprocedural slicing [55] to generate inspectors should be

explored. Such an approach might allow an experimenter to generate highly efficient parallel

code.

CHAPTER 7. CONCLUSION AND FUTURE WORK 118

This author would like to extend the methods developed in this thesis to handle appli

cations that have distinct phases of computations, where each of the phases can be either

regular or irregular (Example: particle-in-cell codes [39, 102]). Such computations require

additional tools to handle the regular parts of the codes and also the extension of irregular

tools to do efficient data movements. The data partitioning between the different phases

must be performed efficiently to obtain effective parallelization. Development of compiler

transformations to automatically parallelize such codes is indeed challenging.

The area of automatic parallelization of irregular codes is very new in the parallel com

piler world. A great deal of work remains; this thesis has provided a solid foundation for

exploring these issues.

B ib liography

[1] A. V. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and Tools.
Addison-Wesley, Reading, MA, second edition, 1986.

[2] F. Allen, M. Burke, P. Charles, R. Cytron, and J. Ferrante. An overview of the
PTRAN analysis system for multiprocessing. In Proceedings of the First International
Conference on Supercomputing. Springer-Verlag, Athens, Greece, June 1987.

[3] J. R. Allen and K. Kennedy. PFC: A program to convert Fortran to parallel form.
In K. Hwang, editor, Supercomputers: Design and Applications, pages 186-203. IEEE
Computer Society Press, Silver Spring, MD, 1984.

[4] J. R. Allen and K. Kennedy. Automatic translation of Fortran programs to vector
form. ACM Transactions on Programming Languages and Systems, 9(4):491-542,
October 1987.

[5] Randy Allen and Ken Kennedy. Automatic translation of Fortran programs to vector
form. ACM Transactions on Programming Languages and Systems, 9(4):491-542,
October 1987.

[6] F. Andre, J. Pazat, and H. Thomas. Data distribution in Pandore. In Proceedings of
the 5th Distributed Memory Computing Conference, Charleston, SC, April 1990.

[7] F. Andre, J. Pazat, and H. Thomas. Pandore: A system to manage data distribu
tion. In Proceedings o f the 1990 ACM International Conference on Supercomputing,
Amsterdam, The Netherlands, June 1990.

[8] M. Annaratone, E. Arnould, T. Gross, H.T. Kung, M. Lam, 0 . Menzilcioglu, and J.A.
Webb. The warp computer: Architecture, implementation, and performance. IEEE
Trans, on Computers, C-36(12):1523-1538, December 1987.

[9] Robert A. Ballance, Arthur B. Maccabe, and Karl J. Ottenstein. The program de
pendence web: A representation supporting control-, data-, and demand-driven in
terpretation of imperative languages. In Proceedings of the SIGPLAN ’90 Conference
on Programming Language Design and Implementation, pages 257-271, June 1990.

[10] U. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic Publishers,
Boston, MA, 1988.

[11] S. Benkner, B. Chapman, and H. Zima. Vienna Fortran 90. In Proceedings o f the 1992
Scalable High Performance Computing Conference, Williamsburg, VA, April 1992.

119

BIBLIOGRAPHY 120

[12] J. K. Bennett, J. B. Carter, and W. Zwaenepoel. Munin: Distributed shared mem
ory based on type-specific memory coherence. In Proceedings 2nd ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages 168-175,1990.

[13] H. Berryman, J. Saltz, and J. Scroggs. Execution time support for scientific programs
on distributed memory machines. In Proceedings of the Fourth SIAM Conference on
Parallel Processing for Scientific Computing, December 1989.

[14] Harry Berryman, Joel Saltz, and Jeffrey Scroggs. Execution time support for adaptive
scientific algorithms on distributed memory machines. Concurrency: Practice and
Experience, 3(3):159-178, June 1991.

[15] S. Bokhari. Communication overhead on the intel ipsc-860 hypercube. Report 90-10,
ICASE Interim Report, 1990.

[16] Zeki Bozkus, Alok Choudhary, Geoffrey Fox, Tomasz Haupt, Sanjay Ranka, and Min-
You Wu. Compiling Fortran 90D/HPF for distributed memory MIMD computers. To
appear in the Journal of Parallel and Distributed Computing, March 1993.

[17] Zeki Bozkus, Sanjay Ranka, and Geoffrey Fox. Benchmarking the cm-5 multicom
puter. To appear in Frontiers ’92,1992.

[18] P. Brezany, M. Gerndt, V. Sipkova, and H.P. Zima. SUPERB support for irregular
scientific computations. In Proceedings o f the Scalable High Performance Computing
Conference (SHPCC-92), pages 314-321. IEEE Computer Society Press, April 1992.

[19] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and
M. Karplus. Charmm: A program for macromolecular energy, minimization, and
dynamics calculations. Journal of Computational Chemistry, 4:187,1983.

[20] B. R. Brooks and M. Hodoscek. Parallelization of charmm for mimd machines. Chem
ical Design Automation News, 7:16, 1992.

[21] D. Callahan and K. Kennedy. Compiling programs for distributed-memory multipro
cessors. Journal of Supercomputing, 2:151-169, October 1988.

[22] B. Chapman, P. Mehrotra, and H. Zima. Programming in Vienna Fortran. Scientific
Programming, l(l):31-50, Fall 1992.

[23] Barbara Chapman, Piyush Mehrotra, and Hans Zima. Programming in Vienna For
tran. Technical Report 92-9, ICASE, NASA Langley Research Center, March 1992.

[24] C. Chase, A. Cheung, A. Reeves, and M. Smith. Paragon: A parallel programming
environment for scientific applications using communication structures. In Proceedings
of the 1991 International Conference on Parallel Processing, St. Charles, IL, August
1991.

[25] M. Chen, Y. Choo, and J. Li. Theory and pragmatics of compiling efficient paral
lel code. Technical Report YALEU/DCS/TR-760, Dept, of Computer Science, Yale
University, New Haven, CT, December 1989.

BIBLIOGRAPHY 121

[26] M. C. Chen. A parallel language and its compilation to multiprocessor architectures
or VLSI. In 2nd ACM Symposium on Principles of Programming Languages, January
1986.

[27] A. Choudhary, G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, S. Ranka, and
J. Saltz. Software support for irregular and loosely synchronous problems. Computing
Systems in Engineering, 3(l-4):43-52,1992. Papers presented at the Symposium on
High-Performance Computing for Flight Vehicles, December 1992.

[28] The connection machine cm-5 technical summary. Report, Thinking Machines Cor
poration, 1991.

[29] Keith D. Cooper, Mary W. Hall, Robert T. Hood, Ken Kennedy, Kathryn S. McKin
ley, John M. Mellor-Crummey, Linda Torczon, and Scott K. Warren. The ParaScope
parallel programming environment. Proceedings o f the IEEE, 81(2):244-263, February
1993. In Special Section on Languages and Compilers for Parallel Machines.

[30] Thinking Machines Corporation. CM Fortran reference manual. Technical Report
version 1.0, Thinking Machines Corporation, Feb 1991.

[31] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. An efficient method
of computing static single assignment form. In Proceedings o f the Sixteenth Annual
ACM Symposium on the Principles o f Programming Languages, Austin, TX, January
1989.

[32] W. J. Dally, J. A. Stuart Fiske, J. S. Keen, R. A. Lethin, M. D. Noakes, and P. R.
Nuth. The message-driven processor: A multicomputer processing node with efficient
mechanisms. IEEEM, pages 23-39, April 1992.

[33] R. Das, D. J. Mavriplis, J. Saltz, S. Gupta, and R. Ponnusamy. The design and
implementation of a parallel unstructured Euler solver using software primitives. In
To appear AIAA Journal,AIAA-92-0562, Jan 1992.

[34] R. Das and J. Saltz. Parallelizing molecular dynamics codes using parti software
primitives. In Parallel Processing for Scientific Computation, Proceedings of the Sixth
SIAM Conference on Parallel Processing for Scientific Computing, Norfolk VA, March
1993, 1993.

[35] R. Das, J. Saltz, D. Mavriplis, and R. Ponnusamy. The incremental scheduler. In
Unstructured Scientific Computation on Scalable Multiprocessors, Cambridge Mass,
1992. MIT Press.

[36] Raja Das, Joel Saltz, and Reinhard von Hanxleden. Slicing analysis and indirect
access to distributed arrays. Technical Report CS-TR-3076 and UMIACS-TR-93-42,
University of Maryland, Department of Computer Science and UMIACS, May 1993.
Appears in LCPC ’93.

[37] Raja Das, Mustafa Uysal, Joel Saltz, and Yuan-Shin Hwang. Communication opti
mizations for irregular scientific computations on distributed memory architectures.
Technical Report CS-TR-3163 and UMIACS-TR-93-109, University of Maryland, De
partment of Computer Science and UMIACS, October 1993. Submitted to Journal of
Parallel and Distributed Computing.

BIBLIOGRAPHY 122

[38] J. Ferrante, K. Ottenstein, and J. Warren. The program dependence graph and its
use in optimization. ACM Transactions on Programming Languages and Systems,
9(3):319-349, July 1987.

[39] R. D. Ferraro, P. C. Liewer, and V. K. Decyk. Dynamic load balancing for a 2d
concurrent plasma pic code, submitted to Journal of Computational Physics, 1991.

[40] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng, and M. Wu.
Fortran D language specification. Department of Computer Science Bice COMP
TR90-141, Rice University, December 1990.

[41] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, and C. Tseng. Fortran
D specification. Technical Report, Dept, of Computer Science, Rice University, 1991.

[42] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. Solving Problems
on Concurrent Computers. Prentice-Hall, Englewood Cliffs, New Jersey, 1988.

[43] D. Gelernter. Generative communication in Linda. ACM Transactions on Program
ming Languages and Systems, 7(1):80-112, January 1985.

[44] M. Gerndt. Automatic Parallelization for Distributed-Memory Multiprocessing Sys
tems. PhD thesis, University of Bonn, December 1989.

[45] M. W. Hall, S. Hiranandani, K. Kennedy, and C. Tseng. Interprocedural compilation
of Fortran D for MIMD distributed-memory machines. Technical Report TR91-169,
Dept, of Computer Science, Rice University, November 1991.

[46] R. v. Hanxleden, K. Kennedy, C. Koelbel, R. Das, and J. Saltz. Compiler analysis for
irregular problems in Fortran D. In Proceedings of the 5th Workshop on Languages
and Compilers for Parallel Computing, New Haven, CT, August 1992.

[47] Paul Havlak. Personal communications.

[48] Paul Havlak. Construction of thinned gated single-assignment form. In Proceedings
of the 6th Workshop on Languages and Compilers for Parallel Computing, Portland,
OR, August 1993.

[49] Paul Havlak. Interprocedural Symbolic Analysis, in preperation. PhD thesis, Rice
University, Houston, TX, 1993.

[50] S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, and C. Tseng. An overview
of the Fortran D programming system. In U. Banerjee, D. Gelernter, A. Nicolau,
and D. Padua, editors, Languages and Compilers for Parallel Computing, Fourth
International Workshop, Santa Clara, CA, August 1991. Springer-Verlag.

[51] S. Hiranandani, K. Kennedy, and C. Tseng. Evaluation of compiler optimizations
for Fortran D on MIMD distributed-memory machines. In Proceedings of the Sixth
International Conference on Supercomputing. ACM Press, July 1992.

[52] S. Hiranandani, J. Saltz, P. Mehrotra, and H. Berryman. Performance of hashed
cache data migration schemes on multicomputers. Journal o f Parallel and Distributed
Computing, 12:415-422, August 1991.

BIBLIOGRAPHY 123

[53] Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. Compiler optimizations for
Fortran D on MIMD distributed-memory machines. In Proceedings Supercomputing
’91, pages 86-100. IEEE Computer Society Press, November 1991.

[54] Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. Compiling Fortran D for
MIMD distributed-memory machines. Communications of the ACM, 35(8):66-80,
August 1992.

[55] S. Horowitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence
graphs. In Proceedings of the SIGPLAN ’88 Conference on Program Language Design
and Implementation, Atlanta, GA, June 1988.

[56] High performance fortran language specification : Version 1.0. Report, High Perfor
mance Fortran Forum, 1993.

[57] K. Ikudome, G. Fox, A. Kolawa, and J. Flower. An automatic and symbolic paral
lelization system for distributed memory parallel computers. In Proceedings o f the 5th
Distributed Memory Computing Conference, Charleston, SC, April 1990.

[58] A. Jameson, T. J. Baker, and N. P. Weatherhill. Calculation of inviscid transonic flow
over a complete aircraft. AIAA paper 86-0108, January 1986.

[59] A. K. Jones, R. J. Chansler, I. Duram, K. Schwans, and S. R. Vegdahl. Staros, a
multiprocessor operating system for the support of task forces. In Proceedings of the
7th Symposium on Operating Systems Principles, pages 117-127,1979.

[60] C. Koelbel. Compiling Programs for Nonshared Memory Machines. PhD thesis,
Purdue University, West Lafayette, IN, August 1990.

[61] C. Koelbel. Compile-time generation of regular communications patterns. In Proceed
ings of Supercomputing ’91, pages 101-110, Albuquerque, NM, November 1991.

[62] C. Koelbel and P. Mehrotra. Compiling global name-space parallel loops for dis
tributed execution. IEEE Transactions on Parallel and Distributed Systems, 2(4):440-
451, October 1991.

[63] C. Koelbel and P. Mehrotra. Programming data parallel algorithms on distributed
memory machines using Kali. In Proceedings of the 1991 ACM International Confer
ence on Supercomputing, Cologne, Germany, June 1991.

[64] C. Koelbel, P. Mehrotra, and J. Van Rosendale. Supporting shared data structures
on distributed memory architectures. In Proceedings o f the Second ACM SIGPLAN
Symposium on Principles & Practice of Parallel Programming (PPOPP), pages 177-
186. ACM Press, March 1990.

[65] D. Kuck, R. Kuhn, B. Leasure, and M. J. Wolfe. The structure of an advanced retar-
getable vectorizer. In Proceedings of COMPS AC 80, the 4th International Computer
Software and Applications Conference, pages 709-715, Chicago, IL, October 1980.

[66] D. Kuck, R. Kuhn, D. Padua, B. Leasure, and M. J. Wolfe. Dependence graphs and
compiler optimizations. In Conference Record of the Eighth Annual ACM Symposium
on the Principles of Programming Languages, Williamsburg, VA, January 1981.

BIBLIOGRAPHY 124

[67] Monica Lam. A Systolic Array Optimizing Compiler. PhD thesis, Carnegie Mellon
University, May 1987. Also available as Technical Report CMU-CS-87-187.

[68] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy. The directory-
based cache coherence protocol for the DASH multiprocessor. In Proceedings of
the 17th Annual International Symposium on Computer Architecture, pages 148-159.
IEEE Computer Society Press, May 1990.

[69] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Wolf-Dietrich Weber, Anoop
Gupta, John Hennessy, Mark Horowitz, and Monica S. Lam. The Stanford dash
multiprocessor. IEEE Computer, 25(3):63-79, March 1992.

[70] J. Li and M. Chen. Generating explicit communication from shared-memory program
references. In Proceedings of Supercomputing ’90, New York, NY, November 1990.

[71] J. Li and M. Chen. Index domain alignment: Minimizing cost of cross-referencing
between distributed arrays. In Frontiers90: The 3rd Symposium on the Frontiers of
Massively Parallel Computation, College Park, MD, October 1990.

[72] J. Li and M. Chen. Synthesis of explicit communication from shared-memory program
references. Technical Report YALEU/DCS/TR-755, Dept, of Computer Science, Yale
University, New Haven, CT, May 1990.

[73] Kai Li and Paul Hudak. Memory coherence in shared virtual memory systems. In
Proceedings o f the Second Annual ACM Symposium on Principles of Distributed Com
puting, pages 229-239. ACM Press, 1986.

[74] R. Littlefield. Efficient iteration in data-parallel programs with irregular and dynam
ically distributed data structures. Technical Report 90-02-06, University of Washing
ton, Dept, of Computer Science and Engineering, Seattle, WA, February 1990.

[75] D. J. Mavriplis. Three dimensional multigrid for the Euler equations. AIAA paper
91-1549CP, pages 824-831, June 1991.

[76] James McGraw, Stephen Skedzielewski, Stephen Allan, Rod Oldehoeft, John Glauert,
Chris Kirkham, Bill Noyce, and Robert Thomas. Sisal: Streams and Iteration in a
Single Assignment Language, Language Reference Manual Version 1.2. Lawrence
Livermore National Laboratory, March 1985.

[77] P. Mehrotra and J. Van Rosendale. The BLAZE language: A parallel language for
scientific programming. Parallel Computing, 5:339-361,1987.

[78] R. Mirchandaney, J. H. Saltz, R. M. Smith, D. M. Nicol, and Kay Crowley. Prin
ciples of runtime support for parallel processors. In Proceedings of the 1988 ACM
International Conference on Supercomputing, pages 140-152, July 1988.

[79] J. K. Ousterhout, D. A. Scelza, and P. S. Sindhu. Medusa: An experiment in dis
tributed operating system structures. CACM, Feb 1980.

[80] W. Appelbe P. Dasgupta, R. Leblanc. The Clouds distributed operating system: Func
tional description, implementation details and related work. In IEEE International
Conference on Distributed Computing Systems, 1988.

BIBLIOGRAPHY 125

[81] Parasoft Corporation. Express User’s Manual, 1989.

[82] Paul Pierce. The NX/2 operating system. In Proceedings of the Third Conference
on Hypercube Concurrent Computers and Applications, Vol. 1, pages 384-390. ACM
Press, January 1988.

[83] Michael J. Quinn and Philip J. Hatcher. Data-parallel programming on multicom
puters. IEEE Software, 7(5):69-76, September 1990.

[84] A. Rogers. Compiling for Locality of Reference. PhD thesis, Cornell University, Ithaca,
NY, June 1990.

[85] A. Rogers and K. Pingali. Process decomposition through locality of reference. In
Proceedings o f the SIGPLAN ’89 Conference on Program Language Design and Im
plementation, Portland, OR, June 1989.

[86] J. Rose and G. Steele, Jr. C*: An extended C language for data parallel programming.
Technical Report PL87-5, Thinking Machines, Inc, 1986.

[87] M. Rosing. Efficient Language Constructs for Complex Data Parallelism on Dis
tributed Memory Multiprocessors. PhD thesis, Dept, of Computer Science, University
of Colorado, November 1991.

[88] M. Rosing and R. Schnabel. An overview of Dino - a new language for numerical
computation on distributed memory multiprocessors. Technical Report CU-CS-385-
88, University of Colorado, Boulder, 1988.

[89] M. Rosing, R. Schnabel, and R. Weaver. Expressing complex parallel algorithms in
DINO. In Proceedings of the 4 th Conference on Hypercube Concurrent Computers
and Applications, Monterey, CA, March 1989.

[90] M. Rosing, R. Schnabel, and R. Weaver. Massive parallelism and process contraction
in Dino. In Proceedings of the Fourth SIAM Conference on Parallel Processing for
Scientific Computing, Chicago, IL, December 1989.

[91] M. Rosing, R. Schnabel, and R. Weaver. The DINO parallel programming language.
Technical Report CU-CS-457-90, Dept, of Computer Science, University of Colorado,
April 1990.

[92] Y. Saad. Sparsekit: a basic tool kit for sparse matrix computations. Report 90-20,
RIACS, 1990.

[93] J. Saltz, H. Berryman, and J. Wu. Multiprocessors and run-time compilation. Con
currency: Practice and Experience, 3(6):573-592,1991.

[94] J. Saltz, K. Crowley, R. Mirchandaney, and Harry Berryman. Run-time scheduling
and execution of loops on message passing machines. Journal of Parallel and Dis
tributed Computing, 8:303-312,1990.

[95] A. Sussman. Model-driven mapping onto distributed memory parallel computers.
In Proceedings Supercomputing ’92, pages 818-829. IEEE Computer Society Press,
November 1992.

BIBLIOGRAPHY 126

[96] Alan Sussman. Model-Driven Mapping o f Computation onto Distributed Memory
Parallel Computers. PhD thesis, Carnegie Mellon University, September 1991. Also'
available as Technical Report CMU-CS-91-187.

[97] P.-S. Tseng. A systolic array parallelizing compiler. Journal of Parallel and Distributed
Computing, 9(2):116-127, June 1990.

[98] Ping-Sheng Tseng. A Parallelizing Compiler For Distributed Memory Parallel Com
puters. PhD thesis, Carnegie Mellon University, May 1989. Also available as Technical
Report CMU-CS-89-148.

[99] G. A. Venkatesh. The semantic approach to program slicing. In Proceedings of the
SIGPLAN ’91 Conference on Programming Language Design and Implementation,
pages 107-119, June 1991.

[100] T. von Eicken, D.E. Culler, S.C. Goldstein, and K.E. Schauser. Active messages: A
mechanism for integrated communication and computation. In Proceedings of the 19th
Annual International Symposium on Computer Architecture, pages 256-266. ACM
Press, May 1992.

[101] Reinhard von Hanxleden, Ken Kennedy, Charles Koelbel, Raja Das, and Joel Saltz.
Compiler analysis for irregular problems in Fortran D. Technical Report 92-22,
ICASE, NASA Langley Research Center, June 1992.

[102] D. W. Walker. Characterizing the parallel performance of a large-scale, particle-in-cell
plasma simulation code. Concurrency Practice and Experience, 4:257,1990.

[103] M. Weiser. Program slicing. IEEE Trans, on Software Eng., SE-10(4):352-357, July
1984.

[104] J. Wu, J. Saltz, S. Hiranandani, and H. Berryman. Runtime compilation methods
for multicomputers. In Proceedings of the 1991 International Conference on Parallel
Processing, volume 2, pages 26-30,1991.

[105] W. A. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C.Pierson, and F.Pollack.
Hydra: The kernel of a multiprocessor operating system. CACM, June 1974.

[106] H. Zima, H.-J. Bast, and M. Gerndt. SUPERB: A tool for semi-automatic
MIMD/SIMD parallelization. Parallel Computing, 6:1-18,1988.

[107] H. Zima, P. Brezany, B. Chapman, P. Mehrotra, and A. Schwald. Vienna Fortran
— a language specification, version 1.1. Interim Report 21, ICASE, NASA Langley
Research Center, March 1992.

VITA

Subhendu Das was born in Calcutta, India on September 23, 1961. After graduating

from St. Xaviers Collegiate School in Calcutta, he attended Jadavpur University in his

home state and received a B.S. degree in Mechanical Engineering, June 1984. He then

continued his education at Clemson University in Clemson, South Carolina and received

an M.S. degree in Mechanical Engineering, May 1987. In January 1989, Mr. Das entered

the College of William and Mary as a graduate assistant in the Department of Computer

Science.

	Compilation techniques for irregular problems on parallel machines
	Recommended Citation

	00001.tif

