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ABSTRACT

Massively parallel computers have ushered in the era of terailop computing. Even though 
large and powerful machines are being built, they are used by only a fraction of the com
puting community. The fundamental reason for this situation is that parallel machines are 
difficult to program. Development of compilers that automatically parallelize programs will 
greatly increase the use of these machines.

A large class of scientific problems can be categorized as irregular computations. In 
this class of computation, the data access patterns are known only at runtime, creating 
significant difficulties for a parallelizing compiler to generate efficient parallel codes. Some 
compilers with very limited abilities to parallelize simple irregular computations exist, but 
the methods used by these compilers fail for any non-trivial applications code.

This research presents development of compiler transformation techniques that can be 
used to effectively parallelize an important class of irregular programs. A central aim of these 
transformation techniques is to  generate codes that aggressively prefetch data. Program 
slicing methods are used as a part of the code generation process. In this approach, a 
program written in a data-parallel language, such as HPF, is transformed so that it can be 
executed on a distributed memory machine. An efficient compiler runtime support system 
has been developed that performs data movement and software caching.
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C hapter 1

In trod u ction

Techniques and methodologies have been developed that can be used to build compilers to 

parallelize scientific programs. Massively parallel computers have made the possibility of 

teraflop computing a reality. But programming a parallel machine is a non-trivial proposi

tion. Two basic approaches exist for using a parallel machine. The first approach involves 

using a parallelizing compiler to generate parallel codes from sequential codes. The other 

approach consists of hand-parallelizing a given problem. Significant difficulties are associ

ated with both these approaches. For any given program, a computational graph exists 

that needs to be mapped onto the target machine’s topology. For programs written in C 

or Fortran, it is often very difficult for a parallelizing compiler to identify the underlying 

computational graph. In such cases, the process of automatic parallelization falls, and for 

that reason, very little success has resulted in generating parallel codes for real applications. 

When a code is hand parallelized, the user has to identify the computational graph and em

bed it in the machine’s topology. The process of hand parallelization is very tedious and a 

certain amount of software has to be built for each code that is ported. Hand parallelization 

is not a very practical approach; therefore, a more automatic method of parallelization is 

desirable.

Automatic vectorization of scientific programs is accomplished aggressively by compilers. 

Vectorization can be done by recognizing the existence of certain vectorizable constructs in

2
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the code. In the case of automatic parallelization, a similar approach is taken. Data parallel 

languages have been developed, which allow scientists to express the structure of problems 

accurately, thus allowing the compilers to do an efficient job. Researchers have successfully 

parallelized real application codes using data parallel languages, such as C*, *LISP and 

CM Fortran. Such languages have been fairly successful, and there is an effort to define a 

standard scientific data parallel language called High Performance Fortran (HPF).

The goal of effective parallelization of realistic applications is difficult to achieve. The 

author recognizes that the development of a single model and software support system to 

handle all types of applications is not feasible. Here, the computation domain is divided 

into broad classes, each of which is large enough to warrant separate software support. This 

development of specialized software models for each class of problem effectively captures 

the structure of the applications, thus helping in the generation of parallel codes by the 

parallelizing compilers. Tight coupling exists between the applications and software sup

port. In general, applications can be broadly divided into two classes, namely, regular and 

irregular [42]. This classification is based on the underlying computational structure.

In this study, software support and compiler techniques have been developed that can 

be used to automatically parallelize irregular computations expressed in a  data parallel 

language, such as HPF [56], Fortran D [40] or Vienna Fortran [107]. The software support 

developed here can also be used directly to parallelize irregular codes written in languages, 

such as Fortran 77 or C. The optimizations that have been incorporated into these software 

tools are targeted for distributed memory MIMD machines, like the Intel Gamma, Intel 

Delta and CM-5.

This chapter covers the necessary background required for understanding the research 

and also the relevant work present in the literature. Chapter 2 defines the problem and 

gives a high level description of the approach. In Chapter 3, software support developed 

to automatically parallelize irregular problems is presented. Chapter 4 presents the perfor

mance analysis done using the software tools. Chapter 5 presents the loop transformation 

algorithms that can be used by compilers to parallelize irregular applications. In Chapter 6,
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the implementation details of the algorithms are presented, and in Chapter 7, conclusions 

and possible future work are discussed.

1.1 Parallel Programming

The requirement for huge amounts of processing power to solve large problems has forced 

the development of computer architectures that are different from the traditional von Neu

mann model. As problem size increases, designers have to move away from the computing 

model, wherein a single instruction is executed at a time to process a single datum. Concur

rent computing, defined as several computers on a network working to solve a single large 

application, is an answer to this problem. The computers that participate in a concurrent 

computing environment may be identical to each other or each of them may have a different 

architecture.

Parallel programming is the branch of concurrent computing in which a collection of 

processors on a tightly coupled network cooperate to solve a large application. When 

a number of processors are taking part in a computation, it is likely that one processor 

will need some result calculated by another processor. If so, depending on the memory 

configuration, there might have to be explicit message passing between the processors and 

from time to time the processors might have to synchronize. Parallel programming raises a 

number of complicated issues depending on the type of parallel machine used.

1.1.1 Parallel Architectures

Parallel machine architectures can be broadly divided into two models, i.e., Single Instruc

tion Multiple Data (SIMD) and Multiple Instruction Multiple D ata (MIMD). The different 

models are natural deviations from the von Neumann model of computing, which is often 

referred to as the Single Instruction Single Data (SISD) model. The parallel models can 

be further subdivided, based on the memory structure. The following memory structures 

exist:
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Table 1.1: Examples of Parallel Machines

Memory Model SIMD MIMD

Shared 

Distributed 

Distributed Shared

Maspar MP-1, CM-2, 
CM-1.DAP

Cray Y-MP C916,Sequent, 
Convex 3880, NEC SX-3/44R

Intel Paragon, CM-5, 
MIT J-Machine

KSR-1, Stanford Dash

• Shared memory,

• Distributed memory,

• Shared distributed memory.

In the shared memory model, the group of processors that have been allocated to work on 

a particular problem has direct access to a single memory. Every data element is addressed 

via its global address. In the distributed memory model, each processor has exclusive 

access to its own particular chunk of memory. Data must be explicitly moved between 

different processor memories using message passing. Data elements are addressed using 

local addresses in each processor. In the shared distributed memory model, each processor 

has its own particular chunk of memory, like the distributed memory model, but each 

data element is addressed by its global address, using hardware support to automatically 

move data between processor memories. Hence, if a reference is made to a data element 

residing in another processor memory, the machine hardware moves the data element to 

local memory. The automatic movement of data elements between the processor memories 

requires considerably extra hardware support, and different protocols [69] are used to keep 

the memories coherent.
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Single Instruction M ultiple Data M odel

In the SIMD model of computation, all processors execute in lock step. At a given time, 

every processor executes the same instruction but on a different piece of data. Synchro

nization is not a problem in such a model because either every processor wants a resource 

or none wants it. When all processors want a resource, the control processor broadcasts it 

to  them. A single instruction memory exists in such a model and a single program counter. 

Examples of distributed memory SIMD machines are shown in Table 1.1. The recent trend 

has been to move away from SIMD architectures.

M ultiple Instruction M ultiple Data M odel

The MIMD model of computation is more general than the SIMD model. In fact, if certain 

constraints were put on a MIMD computation model, one could achieve the SIMD model of 

computation. In the MIMD model, every processor executes a separate program. There is 

a separate program counter on each processor. Usually, the same program copy is executed 

on each processor (Single Program Multiple Data: SPMD), but the input data to each of 

the programs is different. Since all the processors work on the same problem, usually there 

are dependencies. If so, processors have to exchange data. The type of communication that 

takes place depends on the memory model of the machine.

In a shared memory MIMD machine, there is one large global memory visible to all 

processors. There is no explicit message passing in this case because processors communicate 

via shared variables. Different types of protocols, like test-and-set, semaphores and fetch- 

and-add are implemented to prevent deadlock. Shared memory bus-based architectures, 

such as the Sequent and Alliant, are not feasible for machines with a large number of 

processors because of the clear limitation of the single bus into the main memory.

In distributed memory MIMD machines, processors exchange data via message passing. 

A variety of different message passing protocols have been used [82, 100, 28]. Synchro

nization between processors can be achieved using message passing. Every processor has 

its own chunk of memory and only addresses its own memory. This architecture scales to
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a large number of processors. The popular machines, these days, are MIMD distributed 

memory, e.g., the Intel Paragon, which involves a separate communications processor, as

sociated with each computation processor (they all exist on a single board). In the future, 

four computation processors will share a single communication processor. The processors 

on a single board will have shared memory, but otherwise the memory will be distributed. 

The machine has a mesh communication structure. Another popular machine is the CM- 

5, which has a fat tree structure [17]. Each of the CM-5 nodes have a Sparc chip and 

four vector pipes. Both these machines have been successfully used to solve large scientific 

problems.

Another type of MIMD machine is the distributed shared memory machine. In this case, 

each processor has its own chunk of memory, but the processors address data in global name 

space. There is hardware support to automatically move data between local memories of 

processors. The MIT J-machine is a MIMD distributed memory machine, but the software 

makes it a distributed shared memory machine. The operating system, COSMOS, running 

on the J-machine, helps create the shared memory structure. The true distributed shared 

architectures, like the KSR-1 and the Stanford Dash machine, have to maintain elaborate 

directory structures for the purpose of cache coherency [68]. These machines are easier to 

use, compared to the fully distributed memory machines because of the existence of the 

global name space.

1.1.2 Parallel Operating Systems

Work on the development of parallel operating systems has been going on for the last two 

decades. The early operating systems, like Hydra [105], Medusa [79] and StarOS [59], were 

object-oriented and were developed for PDP-11 based machines. Hydra was designed for 

a shared memory architecture, and it allowed multiple processors to perform OS functions 

simultaneously. On the other hand, Medusa and StarOS were developed for a distributed 

memory machine. Both Medusa and StartOS were implemented as a collection of processes 

working with each other to solve a problem.
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CMost is the operating system running on the CM-5 [28]. The computational processors 

on the CM-5 are grouped together to form partitions. The whole machine may operate as 

a single partition, and the smallest partition is comprised of 32 nodes. Each partition has a 

partition manager and runs the full CMost operating system, making all the allocation and 

swapping decisions. Each node in the partition runs a micro kernel that helps implement 

the CMost functions.

In the MIT J-Machine, the operating system, COSMOS [32], provides a global address 

space. It provides an object based memory management. Both data and codes are stored in 

objects and each object has a unique identification number. Objects can migrate between 

the nodes to reduce communication and provide load balancing. COSMOS provides the 

infrastructure required for fine-grained concurrent computation. Fast access to non-local 

memory is provided.

The operating system running on the DASH [69] machine was built by modifying the 

the Irix (Unix like) operating system. This operating system supports multiprogramming 

and multiple users on the system. The Irix operating system was changed to take advantage 

of the special features of the DASH architecture like pre-fetch, queue-based locks, etc.

There exists a large body of work in the literature dealing with distributed operating 

systems [73, 80, 12]. Most of the operating systems have been developed in the context of 

supporting a shared memory in a distributed memory machine. Since the context of this 

thesis is compilers and languages for parallel machines, the operating system issues are not 

discussed in detail. Only a brief overview of some of the current work is included here.

1.1.3 Parallel Languages and Compilers

Numerous projects in the field of parallel languages and compilers targeted for the various 

different architectures exist. Since parallel languages and compilers are closely related to 

the subject of the thesis, the literature review section ( 1.3) describes them in detail.
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Figure 1.1: Unstructured Mesh 

1.2 Scientific A pplications

A detailed categorization of scientific applications is given by Fox [42, 27]. Applications are 

divided into the following four categories according to their temporal structure:

Synchronous: These applications are typically data-parallel with the time dependence 

calculation at each point on the computational graph done by the same operations. 

These problems are natural for parallelization on SIMD architecture.

Loosely Synchronous: These applications are also data-parallel, but the calculations per

formed at each point on the computational graph can be done by using separate algo

rithms. The points in the computational graph are often connected with each other in 

an irregular manner. Hence, these problems are often referred to as irregular. Arrays 

in irregular problems are typically indexed by indirection arrays. Figure 1.1 depicts 

an unstructured mesh.
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LI do j=l,tim esteps

L2 do i=l,n_iterations

S2 n l =  ia(i)

S3 to II Jr

S4 y(nl) =  y(nl) +  x(n2)

end do

end do

Figure 1.2: Static Single Phase Computation

A synchronous: These problems are irregular both in space and time. It is impossible to 

suggest a general method of parallelization of such problems. Each problem has to be 

parallelized separately.

E m barrassing ly  Parallel: All data points in the computational graph are disconnected 

both in space and time. These problems can be executed both on SIMD and MIMD 

architectures. Load balancing is the only consideration during partitioning.

This discourse will explore loosely synchronous problems in more detail, presenting 

examples from some of the application codes with which this researcher has worked.

1.2.1 Static Single Phase Computations

Loosely synchronous problems consist of concurrent computational phases that are repeat

edly executed. The connectivity of the underlying computational graph does not change 

throughout the life of the computation. The piece of code shown in Figure 1.2 is an example 

of static single phase computation. The arrays x  and y  are indexed using the indirection ar

rays ia and ib. This type of computation is commonly found in unstructured mesh solvers. 

Examples of this type of computation consist of applications codes involving sparse matrix-
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vector multiplications, explicit unstructured mesh solvers, etc. Efficient implementation 

of such problems consists of partitioning the data and the work so that communication is 

minimized and the load is balanced.

1.2.2 Multiphase Computations

Multiphase computations consider each phase as a static single phase computation with a 

specific computational graph. The solution from one phase of the computation is used to 

drive the solution in the next phase. Examples of multiphase computations are unstructured 

multigrid mesh solvers, particle-in-cell codes, etc. Partitioning these types of computation 

is very involved. Not only must the data and computation for a phase be partitioned, as if 

it was a static single phase computation, but the phase to which the data will be transferred 

after the computation has ended must be considered as well. The transfer of data between 

phases must be considered during partitioning since the results from one phase are used to 

drive the calculation in another. An example based on multigrid mesh solvers is presented in 

Figure 1.3. The example is a very simplistic representation of the type of computation that 

is required during multigrid solutions, but manages to portray the complexities involved. 

In the example, the arrays wc and w f store data values at the coarse and fine mesh points, 

respectively. There are two arrays, Cw eight and Fw eight, which are used to store the 

weights that are required during interpolation. The arrays C in te r and F in te r  are the 

interpolation arrays, required to transfer data between the various meshes. Calculation 

goes back and forth between the two phases, coarse and fine.

1.2.3 Adaptive Irregular

The example presented in Figure 1.4 depicts an adaptive irregular computation. After 

every timestep the computational graph changes, thus changing the indirection patterns. 

Rapid preprocessing is required to move data around. Data must be remapped to reduce 

communication volume, although it has been found that it is not required every timestep. 

Fast data partitioning algorithms are required to partition data before it can be remapped.
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LI do j=l,tim esteps 

C Loop over C oarse m esh

L2 do i=l,n_coarse

51 wc(i) = wc(i) + dwc(Cedge(i)) 

end do

C In te rp o la te  from  C oarse to  F ine

L3 do i=l,n_fine

52 wf(i) = wf(i) +  Fweight(i) * wc(Finter(i)) 

end do

C Loop over F ine m esh 

L4 do i=l,n_fine

53 wf(i) =  wf(i) +  dwf(Fedge(i)) 

end do

C In te rp o la te  from  F ine  to  C oarse 

L5 do i=l,n.coarse

54 wc(i) =  wc(i) +  Cweight(i) * wf(Cinter(i)) 

end do

enddo

Figure 1.3: Multiphase Computation
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LI do j =  l,timesteps 

L2 do i= l,n  jterations 

SI y(i) =  y(i) +  x(edge(i))

end do

C C om pu ta tion  to  change th e  ind irection  a rra y

L3 do i=l,n-iterations 

SI edge(i) =  function(edge(i))

end do 

end do

Figure 1.4: Adaptive Irregular Computation

Examples of such computations are adaptive unstructured mesh solvers, molecular and 

particle dynamics codes, direct Monte Carlo simulations, etc.

1.3 Im portant Compiler Projects

Over the past few years, a considerable amount of work has been done in developing both 

shared and distributed memory compilers. In some approaches, parallel programming lan

guages and environments have been developed, while in others a sequential language, like 

Fortran, is annotated so that transformations can be performed to generate parallel codes. 

In this section, a brief review of the important parallelizing compiler efforts may be found. 

First, the distributed memory compilers are reviewed, followed by a discussion of the shared 

memory compiler efforts.

Zima et al. developed the semi-automatic parallelization tool SUPERB [106, 44] for 

parallelization of programs for distributed memory machines. The SUPERB tool has an
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interactive environment, and it transforms annotated Fortran programs into parallel codes. 

Initially, array element level communication statements are generated, after which aggres

sive message vectorization is performed using data dependency information. The compiler 

automatically generates array overlaps which are used to store off-processor data. Rect

angular data distribution can be specified by the user to layout the data. For parameter 

passing between procedures interprocedural data-flow analysis is used.

Koelbel et al. [64, 61, 63, 62] designed the Kali compiler, the first to support both a 

regular and irregular data distribution. The development of the Kali language was based 

on BLAZE, a coarse-grained dataflow language [77]. The important parallel constructs in 

a program written for Kali are the data distribution statement, the virtual processor array 

declaration and the forall statement. The virtual processor array allows for the parameter

ization of the program, thus making it portable to various number of physical processors. 

All statements inside a forall loop can be executed in parallel. The iteration partition is 

accomplished by the special on clause. For irregular computation, an inspector/executor 

[78] strategy is used.

A distributed memory compiler, developed by Callahan and Kennedy, uses dependency 

analysis to perform transformations [21]. Like the SUPERB compiler, parallel code is gener

ated from sequential Fortran with data decomposition statements. Various transformations 

are performed to optimize data movement.

DINO [90, 89, 91] is a parallel language developed to support distributed memory 

scientific computation. Unlike Kali, it uses an explicitly parallel model of computation and 

does not derive parallelism from the sequential code. The DINO language was developed 

based on the C programming language. Instead of Kali’s processor array, a virtual parallel 

machine needs to be declared using the construct called an environment. The same data can 

be mapped to multiple environments, which can be mapped to a single physical processor. 

User-defined distributions are supported in DINO. There are no explicit communication 

statements, but nonlocal references are annotated by the user. When distributed arrays are 

passed as subroutine parameters, if necessary, array sections are communicated. Analysis for
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message vectorization is not performed by the DINO compiler because the user annotates 

all non-local references. In an explicitly parallel language like DINO, it is fairly easy to 

express pipelined computation. DIN02 [87], an extension of the DINO language, has 

richer language support for writing parallel programs.

Chen et al. developed afunctional programming language called Crystal [25, 72, 71] for 

programming distributed memory machines. The Crystal compiler does not have sophisti

cated dependency analysis tools; the existing dependencies are evident from the program 

text. Dependencies are analyzed to distribute the computation and the data. The central 

portion of Chen’s work deals with automatic partitioning of data and work. The generation 

of the communication statements is done by subscript pattern matching [70]. The output 

from the Crystal compiler is a C program with message passing statements.

CMU Wrap [8] is a distributed-memory programmable systolic-array machine developed 

at Carnegie Mellon University. The language for this machine is AL and was developed by 

Tseng [98, 97]. Each cell of the systolic array machine is programmed using the language 

W2 [67]. The AL compiler generates W2 programs that can be executed on each of the 

cells. Data objects can be scalars, arrays or distributed arrays. Only a single dimension 

of an array can be distributed because the Warp machine is a linear array. A construct 

called DO* is used to instruct the compiler to attempt parallelizing the Do-loop. The 

compiler does the parallelization if it can guarantee that the parallel order of the execution 

is same as the sequential order. The AL compiler does data and loop iteration partitioning 

based on data relations, which are those that exist between the different objects of the 

program. The compiler can handle general types of distribution. An automatic mapping 

compiler [96, 95] was developed for the applicative programming language, Sisal [76], where 

the target machine was the CMU Wrap. The mapping compiler applies different execution 

models to Sisal programs to determine the “best” mapping method. The execution models 

are developed based on the machine model and mapping models.

Rogers and Pingali developed the functional language Id Noveau [85, 84] to be used 

for distributed memory machines. They provide a single assignment array structure called
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I-structures, which considerably simplify compiler analysis. Data mapping is done using 

functions supplied by the user. The user also provides the global to local address dereferenc

ing functions. Communication and computation are pipelined using compile-time analysis. 

Runtime resolution of messages is performed and a separate node code is produced for each 

processor.

A C ++ based language called C* [83], was developed by Quinn and Hatcher to support 

SIMD data parallel programs. The language C* was developed for the Connection Machine. 

In C* a virtual machine is declared. Domains that signify virtual processors are an abstract 

data type and are declared the same way classes are declared in C + + . There is no global 

view of the data; all references must be made with respect to the local data structure. 

Data can be moved from one domain to another, and all communications are generated 

automatically. When a block of statements is specified to be executed on a domain (virtual 

processors), the statements are executed in parallel.

Andre et al. [6, 7] developed Pandore, where parallelism is extracted from the sequential 

code. The language also has constructs to explicitly express parallelism. Pandore can 

efficiently handle regular codes. Input to the Pandore compiler is an extended C program, 

wherein the user declares the parallel virtual machine, and the compiler automatically 

maps the data. For data communication, the compiler generates calls to the Pandore 

communication library.

The Aspar compiler, developed at Caltech by Fox et al. [57], takes sequential Fortran 

programs as input without annotations, and outputs a distributed memory code. The 

compiler must perform significantly more analysis than the other compilers described pre

viously in order to perform the partitioning. For communication the Aspar compiler uses 

the Express [81] runtime primitives.

Fortran D [41, 45, 50, 53], developed at Rice University, is a parallel programming 

language based on Fortran 77, and can be used to write distributed memory programs. 

This language has added a rich set of extensions to Fortran to allow for data distribution. 

Fortran D supports irregular data mapping. The Fortran D compiler does a fair amount of
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dependency analysis to figure out which loops can be executed in parallel. The compiler uses 

a two level mapping scheme, i.e., data is mapped onto a virtual processor array, which is 

then mapped onto the physical machine. All the loop transformations for irregular programs 

presented in this thesis have been implemented in the Fortran D environment.

Vienna Fortran [11, 23, 22] is a Fortran D like language developed for scientific compu

tation. It does not have decomposition statements like those found in Fortran D. Vienna 

Fortran supports dynamic data decomposition as well as explicit processor array declara

tions. The Vienna Fortran compiler uses the PARTI primitives, described in this thesis, for 

irregular computation. A variety of other attributes can be specified for data distribution 

to deal with passing of distribution information between procedure boundaries.

A few of the important compilers that use data dependency analysis [66, 10] to gen

erate parallel code for shared memory architectures are Parafrase [65], PTRAN [2] and 

PFC [3]. The compilers use standard Fortran input, recognize vector operations and com

pound functions, and reorganize code for execution on vector and parallel machines. The 

main goal is to extract the maximum amount of parallelism from the input code. A number 

of optimizations are performed by these compilers to obtain locality of memory reference. 

Improving the locality of memory reference makes good use of the registers and caches of a 

processor, thus boosting performance. The optimizations performed by the shared-memory 

compilers do not consider interprocessor data communication because of the presence of a 

global address space.

Some important parallel compiler projects have been covered in this section; however, 

there have been other compiler projects designed to support parallel computation [24, 

74, 86, 43]. A few years ago, an effort was initiated to design a standard scientific parallel 

programming language; the result is High Performance Fortran (HPF) [56]. HPF is expected 

to be made available on most commercial machines. The first definition of this language 

does not support irregular mapping of data, but will be included in the revised definition.



C hapter 2

P rob lem  D efin ition  and A pproach

This chapter presents an in-depth definition of the problem and gives a general outline of 

suggested solutions. Data parallel languages provide users with a wide range of constructs 

to distribute data and work between the processors of a distributed memory machine. 

Compilers written for such languages use data and work distribution information to generate 

efficient code to be executed on a parallel machine. The purpose of this dissertation is to

Define and develop compiler support and transformation techniques that can be utilized 

to automatically parallelize irregular problems, written in a data parallel language, to 

be executed on a distributed memory MIMD architecture.

The data parallel languages considered here are based on Fortran. The most basic and 

widely used construct in such languages is the DO loop. DO loops in which the data 

access pattern is irregular can be parallelized in a variety of ways. Each of the different 

methods has advantages and disadvantages. The parallelization method chosen depends 

on the architecture of the target machine. In this chapter, each of the methods will be 

described, with special emphasis on the method that was followed.

18
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LI do i=l,n_steps

L2 do j=l,njedge

SI n l =  nde(j,l)

S2 n2 = nde(j,2)

S3 flux = F(x(nl),x(n2))

S4 y(nl) =  y(nl) +  flux

S5 y(n2) =  y(n2) +  flux

end do 

end do

Figure 2.1: Example of Simple Irregular loop

2.1 Parallelization o f Irregular Loops

In irregular loops data arrays are indexed using indirection arrays. Therefore, the access 

patterns are known only a t runtime, after the indirection arrays are initialized. An example 

of a simple irregular loop is presented in Figure 2.1. This example will be used to present 

the different methods to parallelize irregular loops. The code shown in Figure 2.1 is a 

simplified version of loops extracted from a real computational fluid dynamics code. This 

illustration involves looping through the edges of an unstructured mesh and calculating the 

flux. The outside loop is executed for n-steps, which is usually an input parameter. The 

parameter is chosen depending on some convergence criteria. The indirection array nde 

is two-dimensional in structure, where n d e (j,l)  and nde(j,2 ) are the two nodes in the 

unstructured grid connected by edge j. The two data arrays are x  and y. For each iteration 

the value of the variable flux is calculated using x ( n l)  and x (n2). The calculated flux is 

stored in array y.
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The primary objective is to execute the loops shown in Figure 2.1 on a distributed 

memory parallel machine. The purpose is to have a parallelizing compiler generate the 

required code. The compiler has to perform two steps: The first step is to partition the 

data and the work between the processors; the next step is to generate a code that each 

processor can execute. There must be sufficient input from the user to the parallelizing 

compiler to achieve these objectives. Issues involved in generating the parallel code are 

described in this chapter.

2.2 Partitioning Issues

To parallelize the loops shown in Figure 2.1 so that they can be executed on a distributed 

memory machine, both the data and the work must be distributed to the different processors. 

After the data and work are distributed among the participating processors, each processor 

executes the loop nest. The outer loop remains unchanged; the inner loop bounds are 

changed to the number of local iterations assigned to each processor. For the example 

code shown in Figure 2.1, the number of local iterations of the inner loop assigned to 

each processor is determined by the number of unstructured mesh edges assigned to each 

processor. When each processor executes the iterations assigned to it, references may be 

made to non-local data. In such cases data communication between processors has to take 

place for successful completion of the computation. The data partitioning and the work 

partitioning are very much coupled. During the partitioning of both the data and the 

work, careful consideration is taken to keep the data communication between processors 

to a minimum. The amount of work distributed among the processors is maintained more 

or less equal so that the load is balanced. In most data parallel languages developed for 

parallel programming, there exists some sort of construct used to specify how to partition 

both the data and the work. Hence, the user controls the partitioning process.
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2.2.1 Data Partitioning

Depending on the nature of the problem, the user can choose a number of different partition

ing strategies. The partitioning scheme is chosen to reduce data communication between 

processors. The most commonly used partitioning schemes are the following:

BLO CK : In block distribution, an equal number of contiguous elements of an array are 

allocated to the processors, assuming the total number of elements is divisible by the 

number of processors. Hence, if there are n elements in an array, and there are p 

processors, assuming that n m od p  is 0, then each processor gets n div p elements 

with processor 0 getting the first portion, processor 1 the next portion and so on. If 

n m od p is non-zero, some pre-defined strategy may be used to distribute the extra 

elements. BLOCK distribution is very common and used by most regular applications.

C Y C LIC : In cyclic distribution, instead of allocating contiguous portions to the proces

sors, each element is given to the processors one at a time and wrapping around is 

performed whenever necessary. Again, if there are n elements in an array, and there 

are p processors, assuming n > p, Processor 0 gets the first element, Processor 1 gets 

the second and so on. Since n > p, the allocation wraps around, i.e., Processor 0 

gets element p +  1, Processor 1 gets element p +  2 and so on. CYCLIC distribution 

is less common than BLO CK  distribution, but it is used in certain types of regular 

problems.

Irreg u la r: Irregular distribution is commonly used for irregular problems. Here the actual 

data distribution is specified by a map array, which is the same size as the data array 

that needs to be distributed and contains processor numbers. Hence, map(i) specifies 

the processor to which the data element i needs to be allocated.

There are other partitioning strategies like B L O C K -C Y C LIC , Irregular-B lock , etc. 

For multi-dimensional arrays, usually one dimension is distributed and the other dimensions 

are compressed. Compressing a dimension means that it remains undistributed.
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2.2.2 Work Partitioning

Work distribution is performed by partitioning the loop iterations. The partitioning of loop 

iterations is very much dependent on the data distribution. Work is partitioned to reduce 

the inter-processor data communication and to balance the load. A few of the common 

schemes for performing work partitioning are presented.

O w ner C om putes: In this scheme, a particular iteration of a DO loop is allocated to 

the processor that contains the left-hand side of the statement, i.e., the element that is 

being updated. This partitioning is the most commonly used scheme, and is followed 

as closely as possible in this thesis. In irregular problems, “owner computes” does not 

always provide the best result.

On H om e: Most data parallel languages allow DO loops to be annotated using the “on 

home” clause. This directive is used to assign iterations to different processors. Iter

ations can be assigned to processors containing either the right- or left-hand side of a 

statement.

A number of compilers have implemented the “owner computes” scheme successfully for 

regular problems. Other work partitioning schemes have been used where loop iteration is 

assigned, based on the ownership of the maximum number of data references.

2.3 Parallelization Schemes

In this section, some of the different strategies that can be used to parallelize the loop shown 

in Figure 2.1 will be outlined. Any of these strategies can be utilized, depending on the 

architecture and available resources.

2.3.1 Data Replicated Approach

In the data replicated approach, data is not partitioned between the participating processors 

but is replicated on all processors. The work, on the other hand, is partitioned between the
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processors in such a  way that the load is balanced, making the parallelization process very 

simple, uninteresting and communication intensive. At certain points in the code, every 

processor communicates with all others so that the data on each processor are identical.

The parallel version of the loop shown in Figure 2.1 has the same structure as the 

sequential loop, except that the loop bounds on each processor are different. After each 

processor executes the iterations that have been allocated to it, the processors communicate 

with each other so that the y array values on each processor are the same.

2.3.2 Data Parallel Approach

The data parallel approach of parallelization involves partitioning of both the data and the 

work. Depending on the architecture of the target machine, this category can be further 

subdivided. Most of the new parallel languages being developed are intended for data 

parallel programming. A number of interesting synchronization issues are raised when this 

approach is taken.

Inspectors/E xecutors

Using inspector/executor is the natural way to parallelize an irregular loop [78]. An 

irregular loop is transformed into two constructs, the inspector and the executor. The 

inspector is a piece of parallel software that at runtime analyzes the indirection arrays of 

an irregular loop and figures out the data access pattern. Once the data access pattern 

is generated, the inspectors, running on different processors, communicate with each other 

to determine the send/receive patterns of the data. These patterns are stored in a data 

structure called the schedule. A schedule needs to be generated for each type of data 

access pattern. The executor is the code that is executed to solve the problem. In iterative 

methods, it is frequently the case that a loop’s inspector is executed once, while its executor 

is executed many times. The inspector/executor method of parallelization works well for 

loops with just output dependencies [5] as the one shown in Figure 2.1. When loops have 

dependencies that are loop-carried [5] then the inspector/executor method of parallelization



CHAPTER 2. PROBLEM DEFINITION AND APPROACH 24

does not work well.

After the schedules required in an irregular loop have been generated by the inspector, 

the executor phase begins. During the executor phase, the already generated schedules are 

used to fetch the actual data and the off-processor data are stored in buffers. Once the data 

has been fetched, the actual computation can begin (the actual computation is also part of 

the executor). The pre-fetching of the data causes an overall reduction in the time required 

to execute the loop by reducing both the number of startups and the communication volume. 

If the same off-processor data are accessed more than once, only a single copy is fetched.

Figure 2.2 shows the parallel version of the loop depicted in Figure 2.1, using the inspec

tor/executor parallelization strategy (this transformation is generated by a source-to-source 

translator). The loop structure in the executor is the same as the loop structure in the se

quential code. The indirection array nde, which is in global coordinates, has been changed 

to local (i.e., processor) coordinates and is called ndeJocal. The loop bounds have been 

changed to the number of local iterations. The executor on each processor communicates 

with the participating processors at two points. The first communication point occurs be

fore the execution of the actual computation. All data that will be used inside the loop 

are pre-fetched. After the actual computation, off-processor data are accumulated through 

another phase of communication. Both of these communication phases utilize the schedule 

that was generated in the inspector phase.

Fetch  on D em and

At the beginning of every iteration a check is performed to determine data ownership. 

The processors that have non-local data references initiate fetches and block until the data 

arrives. An interrupt-driven message passing mechanism is required for the fetch on demand 

type of data transfer to work efficiently. Hardware or software support [100] is required for 

interrupt-driven message passing mechanism. The fetch on demand mechanism can only 

work on machines with very low latencies. The advantage of this method is one does not pay 

for the generation of the inspector. The fetch on demand method can be further optimized



CHAPTER 2. PROBLEM DEFINITION AND APPROACH 25

SI In sp ec to r code analyzes local nde and  genera tes schedule

Executor starts here

LI do i=l,n.steps

S2 U sing th e  schedule from  th e  in specto r g a th e r x

L2 do j=l,njedgeJocal

S3 n l =  ndeJocal(j,l)

S4 n2 = nde_locaI(j,2)

S5 flux = F(x(nl),x(n2))

S6 y(nl) =  y(nl) +  flux

S7 y(n2) =  y(n2) +  flux

end do

S8 U sing th e  schedule from  th e  in spec to r accum ulate  off-processor y

end do

Executor ends here

Figure 2.2: Example of Inspectors/Executors
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by storing off-processor data in a special buffer that can be consulted before issuing new 

fetch initiations. Fetch on demand with buffering potentially reduces the number of off- 

processor fetches.

2.4 Compiler Issues

The main objective of this research is to answer the compiler issues raised when one wants 

to automatically parallelize irregular loops. This section presents a high-level description of 

the various types of analyses required to automatically generate inspector/executor pairs.

The compiler for a data-parallel language must first analyze the data and work distri

bution directives given by the programmer. The distribution information is required for 

generation of both the inspector and the executor. If two data arrays are indexed by the 

same indirection array but have different distributions, separate schedules for data commu

nication must be built for each array. On the other hand, if the data arrays are distributed 

identically, then one schedule will suffice. The work distribution statements are utilized to 

generate the loop bounds.

The compiler takes a data-parallel program written in global coordinates as input and 

transforms it so that it can be executed on the node of a  parallel machine. The SPMD 

(Single Program Multiple Data) model of computation is followed. The compiler splits the 

irregular loops and generates the inspector and executor codes.

The inspector generation involves three phases:

• Finding the indirection arrays used in a loop.

• Analyzing the references that use indirection arrays and decide what schedules should 

be generated. Analysis is done so that multiple copies of the same schedule is not 

generated.

• Performing optimization so that duplicate copies of the same off-processor data will 

not be fetched during the executor phase. This optimization has to be done during
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the inspector building phase since, during the executor run, the information stored 

inside the schedule is used directly without further analysis.

Software primitives that generate data communication schedules when invoked with 

indirection arrays have been developed. To generate inspectors, the compiler inserts calls 

to these primitives which, during runtime, generate the required schedules.

Before generation of the executor code, the compiler must determine:

• The data references that require off-processor fetches and the schedules that will be 

generated during runtime in the inspector phase for these data references. Based on 

this information, the compiler makes calls to the gather/scatter routines.

• Whether more than one schedule must be used to access data from the same array. 

In such cases the communication calls can be merged.

The optimizations to reduce the volume of data communication and the number of 

message startups have been built into the tools developed for generation of inspectors and 

executors. Also, transformation strategies have been developed to further optimize the 

volume of communication.

2.5 Solutions Suggested in th is Thesis

This research makes concrete contributions in the area of automatic parallelization of ir

regular codes. In this thesis, the necessary requirements to build a parallelizing compiler 

for irregular problems have been presented. Also, the solutions suggested have been imple

mented in the prototype compiler.

An efficient compiler runtime support system that performs data movement between 

processors and software caching has been developed. The system is a portable library 

that can be used by any parallelizing compiler. Numerous compilers use this runtime 

system [18, 16].
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Detailed transformation techniques for irregular computations that can be used by a 

compiler to generate parallel codes have been presented. These transformation methods are 

developed based on program slicing [103] techniques. Using these transformations, efficient 

parallel codes can be generated by a compiler for irregular problems written in data-parallel 

languages.
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C om piler Support for Irregular  

P rob lem s

This chapter focuses on the design of a suite of tools that has been developed to support 

the transformation of irregular programs that run on uni-processors to ones that can be 

executed on parallel machines. The tools can be used by compilers or by users directly to 

generate parallel codes. The tools have been used to implement a number of large irregular 

codes on distributed memory machines. This author’s prototype compiler has also utilized 

these tools to parallelize irregular loops extracted from various codes.

This author has developed methods necessary to generate efficient distributed memory 

codes for a large class of sparse and unstructured problems. In these problems, the depen

dency structure is determined by variable values known only at runtime. In such cases, 

effective use of distributed memory architectures is made possible by a runtime preprocess

ing phase, which is used to partition work, map data structures, and schedule the movement 

of data between the processor memories. The code required to carry out runtime prepro

cessing can be generated by a distributed memory compiler during a process called runtime 

compilation [93].

Once data structure and loop iteration partitioning have been determined, further pre

processing is carried out to generate communication calls needed to efficiently transport

29
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data between processors. In sparse and unstructured computations, distributed arrays are 

typically accessed using indirection arrays. Runtime preprocessing is used to generate a 

small number of communications calls to carry out the required data transport. In many 

cases several loops access the same off-processor memory locations. As long as it is known 

that the values assigned to off-processor memory locations remain unmodified, it is possible 

to reuse stored off-processor data. A mixture of compile-time and run-time analysis can be 

used to recognize such situations. Compiler analysis determines when it is safe to assume 

that the off-processor data are valid. Software primitives generate communications calls 

that selectively fetch only those off-processor data, not available locally.

3.1 Overview o f H PF

This section involves an overview of a data-parallel language that has been developed to 

support scientific computations. Researchers from both industry and academia established 

a forum to design a data-parallel language, High Performance Fortran (HPF) [56], that can 

be used to write scientific programs for both SIMD and MIMD architectures. The starting 

point for HPF was Fortran 90 because of its dynamic allocation and array operation features. 

Other features that have been added to HPF are based on the numerous parallel languages 

developed both by computer scientists and applications engineers. The data distribution 

directives added to the language are based on the extensions defined in Fortran D [40], and 

Vienna Fortran [107]. Some of the important features of HPF are presented here.

Constructs are present in this language that allow the programmer to explicitly specify 

parallel execution. The INDEPENDENT directive precedes a loop; its purpose is to tell the 

compiler that the statements in the loop do not have any sequentializing dependencies, and 

that they can be executed in any order without changing the semantics of the program. 

The INDEPENDENT directive allows the compiler to make various decisions regarding data 

placement and optimizations. The FORALL executable construct in the language allows 

simultaneous assignment of a large number of array elements. Fortran 90 has a FORALL
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S I R E A L *8 x(L,N), y(M,N), z(N)

S2 !HPF PR O C E SSO R S P(10)

S3 !HPF D IS T R IB U T E  z(BLOCK) ONTO P

S4 1HPF A LIG N  (*,:) WITH z:: x, y

Figure 3.1: Example of HPF Style Data Distribution

statement in its definition. HPF relaxes many of the restrictions regarding array assignments 

in the Fortran 90 FORALL statement.

Distributing data between the different processor memories is a very important aspect 

of parallel programming. Any data-parallel language should have constructs by which the 

user can specify the required data decomposition. Many researchers have explored the 

problem associated with specifying data decomposition [104, 88, 30, 83, 26, 71, 70]. The 

data distribution features of HPF allow the programmer to distribute data so that locality 

of data is maintained on each processor, thereby reducing data communication time. The 

DISTRIBUTE directive is used to specify how the data is to be mapped to an arrangement 

of virtual processors. At the moment, only regular distributions are defined in the HPF 

language, and multiple dimensions of an array can be distributed. Regular distributions that 

are supported in the language are BLOCK and CYCLIC. When data is distributed regularly, 

the address of any data element can be found by using an algebraic expression involving 

the processor number and distribution size. Data arrays can be redistributed by using the 

directive REDISTRIBUTE. The other data distribution directive, ALIGN, is used to group data 

objects that are to be distributed identically. Alignment of objects can be either static or 

dynamic.
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An example of HPF style data distribution is depicted in Figure 3.1. There are three dis

tributed arrays, x, y  and z; x  and y  are two-dimensional arrays, while z is one-dimensional. 

The statement S2 declares a set of virtual processors, P , in the shape of a linear array. The 

statement S3 specifies that z should be block distributed across the set of virtual proces

sors. The statement S4 aligns x and y  with z. The align statement states how the two 

dimensions of x  and y  are to be distributed. The first dimension of the arrays x  and y  is 

to be collapsed onto the set of virtual processors, i.e., the first dimension is not distributed. 

The character shown in the first dimension in the align statement, signifies that the 

first dimension of x and y  is to be collapsed. The second dimension of the arrays x  and y 

is distributed, conforming to the distribution of the array z. The character shown in 

the second dimension in the align statement, signifies that the second dimension of x  and 

y is to be aligned with the distribution of z.

HPF has been developed to be machine independent. For instance, the user may want to 

do explicit operations based on the architecture on which the program will be executed. HPF 

allows the program to call extrinsic procedures containing user defined machine dependent 

operations. Extrinsic procedures constitute one way to declare and accomplish operations 

on local data otherwise impossible to define within the context of the language.

The features of HPF that the author uses in some examples have been presented here. 

The complete language specification is presented in High Performance Fortran Language 

Specifications [56].

3.2 Overview of the Initial PARTI Work

The work thus far has been developed based on the initial development of a suite of 

primitives for implementing irregular problems on distributed memory parallel architec

tures. These primitives are named PARTI (Parallel Automated Runtime Toolkit at ICASE) 

[13, 93]. In this section an overview of the functionality of the PARTI primitives is given. In 

many algorithms, data produced or input during a program’s initialization play a large role
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in determining the nature of the subsequent computation. In the PARTI approach, when 

the data structures that define a computation have been initialized, a preprocessing phase 

follows. Vital elements of the strategy used by the rest of the algorithm are determined by 

the preprocessing phase.

In distributed memory MIMD architecture, there is typically a non-trivial communi

cations latency or startup cost. For efficiency, information to be transmitted should be 

collected into relatively large messages. The cost of fetching array elements can be reduced 

by precomputing the data each processor needs to send and receive.

In irregular problems, such as solving PDEs on unstructured meshes and sparse matrix 

algorithms, the communication pattern depends on the input data. The dependency on 

input data typically arises due to some level of indirection in the code. In such cases, it is 

not possible to predict at compile time what data must be prefetched. To deal with this lack 

of information, the original sequential loop is broken up into the inspector/executor pair. 

A brief description was given in the previous chapter of the inspector/executor construct; a 

more detailed description of this type of transformation is given in Mirchandaney et al. [78].

During program execution, the inspector examines the data references made by a pro

cessor and calculates what off-processor data need to be fetched and where the data will be 

stored once received. Inspectors on separate processors coordinate this task. The executor 

loop uses the information from the inspector to implement the actual computation. PARTI 

primitives can be used directly by programmers to generate inspector/executor pairs.

PARTI primitives carry out the distribution and retrieval of globally indexed, but irreg

ularly distributed, data-sets over the numerous local processor memories. Each inspector 

produces a set of schedules, specifying the communication calls needed to either

(i) obtain copies of data stored in specified off-processor memory locations (i.e., gather), 

or

(ii) modify the contents of specified off-processor memory locations (i.e., scatter), or

(iii) accumulate (e.g., add or multiply) values to specified off-processor memory locations
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(i.e., accumulate).

In distributed memory machines, large data arrays need to be partitioned between 

local memories of processors. The partitioned data arrays are called distributed arrays. 

Long-term storage of distributed array data is assigned to specific memory locations in the 

distributed machine. Frequently, partitioning distributed arrays in an irregular manner is 

advantageous. For instance, the numbering of the nodes of an irregular computational mesh 

does not have a useful correspondence to the connectivity pattern of the mesh. The data 

structure in such problems is partitioned to reduce interprocessor communication. This may 

cause the assignment of arbitrary array elements to each processor (irregular partitioning).

Each element of a distributed array is assigned to a particular processor. When an array 

is partitioned irregularly, finding the address of a particular data element of that array is 

a non-trivial task. Since any data element can reside in any processor, a global mapping 

table is set up to store the address information. This mapping table is called the translation 

table, and for each element of the data array, it stores the processor where the data reside 

and the local address in the processor.

3.3 The PARTI Prim itives

In this section the primitives that have been developed for the generation of inspector 

and executor constructs, starting from sequential irregular loops, are described in detail. 

Primitives schedule and carry out movement of data between the processor memories. Var

ious optimizations are performed aggressively to reduce data communication volume and 

message startups. The primitives have been designed to

(i) eliminate redundant off-processor references, and

(ii) simplify producing parallelized loops that are virtually identical in form to the original 

sequential loops.

A paged distributed translation table has been developed to reduce the time required to do 

address translation for irregularly distributed data.
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real*8 x(N), y(N)

c Loop over edges involving x , y

LI do i= l  , n.edge

n l =  edgeJist(i)

n2 = edgeJist(n.edge +  i)

SI y(nl) =  y(nl) +  x(nl) +  x(n2)

S2 y(n2) =  y(n2) +  x(nl) +  x(n2)

end do

C Loop over Boundary faces involving x, y

L2 do i=l,n_face

m l =  faceJist(i)

m2 = faceJist(n_face + i)

m3 = faceJist(2 * n_face + i )

S3 y(m l) = y(m l) + x(m l) + x(m2) +  x(m3)

S4 y(m2) =  y(m2) +  x(m l) +  x(m2) +  x(m3)

end do

Figure 3.2: Sequential Code
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To explain how the primitives work, an example, similar to loops found in unstructured 

computational fluid dynamics (CFD) codes, is used. In most unstructured CFD codes, 

a mesh is constructed that describes an object and the physical region in which a fluid 

interacts with the object. Loops in fluid flow solvers sweep over the mesh structure. The 

two loops shown in Figure 3.2 represent a sweep over the edges of an unstructured mesh 

followed by a sweep over faces that define the boundary of the object. Since the mesh is 

unstructured, an indirection array is used to access the vertices during a loop over the edges 

or the boundary faces. In loop LI, a sweep is carried out over the edges of the mesh and 

the reference pattern is specified by an integer array edge_list. Loop L2 represents a sweep 

over boundary faces, and the reference pattern is specified faceJis t. The array x only 

appears in the right-hand side of the expressions in Figure 3.2, statements SI through S4, 

so the values of x  are not modified by these loops. In Figure 3.2, data are read from, and 

written to, array y. These references involve accumulations in which computed quantities 

are added to specified elements of y  (statements SI, S2, S3 and S4).

3.3.1 Paged Distributed Translation Table

When irregular problems are solved on distributed memory parallel machines, it is frequently 

advantageous to partition the data arrays irregularly. Data structures are partitioned to 

minimize interprocessor communication, and the partitioning may lead to arbitrary assign

ment of array elements to each of the processors. Once distributed arrays have been parti

tioned between processors, each processor ends up with a set of globally indexed distributed 

array elements that will be accessed during the executor phase.

Each element in a size S  distributed array, A, is assigned to a  particular home processor. 

In order for another processor to be able to access a given element, A(t), of the distributed 

array the home processor where A(t') resides must be known; also, the local address of A(i) 

must be known. A translation table is built, that for each array element lists the home 

processor and the local address in the home processor’s memory.

Memory considerations make it clear that it is not always feasible to place a copy of
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the translation table on each processor. A translation table can be distributed between 

processors. Earlier versions of PARTI supported a translation table that was partitioned 

between processors in a blocked fashion [35], [104]. The partitioning was accomplished by 

putting the first N /P  elements on the first processor, the second N /P  elements of the table 

on the second processor, etc., where P is the number of processors. If access is required to an 

element A(m ) of distributed array A , the home processor and local offset for A(m) is found 

in the portion of the distributed translation table stored in processor ( (m — 1 ) / N ) * P + 1. A 

translation table lookup aimed at discovering the home processor and the offset associated 

with a global distributed array index is referred to as a dereference request.

In many cases, the naive translation table described above tends to be costly to use 

because

• the distribution of the translation table between processors is fixed and bears no 

particular relationship to the distribution of dereference requests; and

• some distributed array elements are included in a number of reference requests. In 

many cases, there is enough memory to partially (or completely) replicate the trans

lation table. The naive distributed translation table is not able to replicate portions 

of the translation table in order to trade memory for improved performance.

In this section, a paged translation table is discussed. The translation table is decom

posed into fixed-sized pages which list the home processors and offsets associated with a set 

of B  contiguously numbered distributed array indices. Each processor stores (P  * a) pages, 

and at least one processor maintains a copy of each page; consequently, the total number 

of stored pages (P  * P  * a) must be greater than or equal to the distributed array size S  

divided by B. Following the convention in the virtual memory literature, the memory loca

tion associated with each page is called a page frame. Each processor maintains a complete 

page table; for each page, the page table lists a processor and a page frame.

Translation table information for each index must be stored somewhere, simplifying the 

assumption that each processor must store at least S / ( B  * P)  pages. In the current paged
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Dereference:
Translate local list of global indices to a list of (processor, offset) pairs

Global Indices Translation Table: Processor
Number

Global Index Array : <1,6,5,2> <(1,1), (1,3), (2,2), (2,4) >
Local Offset

Figure 3.3: Global Index Translation

translation table implementation, S / ( B  * P)  pages are statically bound to each processor 

and copies of additional pages are dynamically assigned to each processor. In the absence 

of any memory constraints, each processor could dynamically store S  * (P — 1 ) / (B * P) 

pages; in this case, the entire translation table would be replicated. The replication factor 

(R F ) is defined as the fraction of the maximum number of pages for which frames are 

allocated by each processor. The user (or compiler) sets the page size B  and a replication 

factor (RF). Figure 3.3 shows the index translation process. Figure 3.4 depicts a highly 

simplified scenario in which there are 2 processors, an 8 element distributed array (5=8), a 

page size of 2 (5 = 2 ) and a replication factor of 0.0 (RF=Q.O). Since no pages are replicated 

each processor has the same page table. In Figure 3.5 a scenario that is identical to the one, 

shown in Figure 3.3 is depicted, except now the replication factor is changed to 0.5. In this 

case, processor 1 contains a dynamic copy of page 3, and processor 2 contains a  dynamic 

copy of page 1.

The runtime support allows each processor to choose which pages to replicate, based 

on the characteristics of a user (or compiler) specified distributed array access pattern, 

specified by integer array IA. Each index t of IA  is dereferenced by consulting page —

+  1. On each processor, the most heavily accessed pages are chosen as the dynamically
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Figure 3.4: Paged Translation Table (Replication =  0.0)
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51 translation-table = BuildDsTable(myvals, on.proc, replication-factor)

52 call DsShuffle(translation_table, index_array, ndata)

53 call DerefDsTable(translation.table, index_array, local, proc, ndata)

Figure 3.6: Translation Table Functions

assigned ones.

T ransla tion  Table G eneration

The different function calls, used to generate and use the paged distributed translation 

table, are shown in Figure 3.6. The numbering of the nodes of an irregular mesh frequently 

does not have a useful correspondence to the connectivity pattern of the mesh. When 

such a mesh is partitioned in a way that minimizes interprocessor communication, it may 

be necessary to be able to assign arbitrary mesh points to each processor. The PARTI 

procedure BuildDsTable (SI in Figure 3.6) allows storage of the mapping of a globally 

indexed distributed array in a regular (replicated or partially replicated) fashion.

On each processor the function BuildDsTable is passed:

1. A list of the array elements for which it will be responsible (m yvals in SI, Figure 3.6).

2. The number of array elements for which this particular processor is responsible.

3. The percentage of the total translation table that is replicated on each processor. It 

is specified by the rep lication-facto r in SI shown in Figure 3.6.

The function BuildDsTable returns a pointer to the translation table. If a given processor 

needs to obtain a datum that corresponds to a particular global index i for a specific 

distributed array, the processor can consult the paged distributed translation table to find 

the datum ’s location in the distributed memory.

The PARTI call DsShuffle, shown in statement S2 in Figure 3.6, is used to move the pages 

of the translation table. Pages of the translation table can be shuffled to improve the locality
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of addresses during the dereferencing phase. The shuffling capability of the translation 

table becomes important when parallelizing adaptive problems (frequent dereferencing is 

required).

On each processor the function DsShuffle is passed:

1. A pointer to the translation table whose pages are being shuffled.

2. The index -array  according to which the pages are shuffled.

3. The number of elements in the index-array .

The function DsShuffle returns the modified translation table pointer.

The PARTI function DerefDsTable is used to obtain the addresses of distributed ele

ments. On each processor the function DerefDsTable is passed:

1. A pointer to  the translation table to be used for dereferencing.

2. The global indices, index-array , for which the local addresses are required.

3. The total number of elements nda ta , for which dereferencing is required.

The function returns:

1. A processor list which is the same size as index-array .

2. A local offset list which is the same size as index-array .

The functions presented in this section can be used to build and access the translation 

table.

3.3.2 Primitives for Generating Inspectors/Executors

In this section, the primitives used to generate inspectors and executors are presented. 

The inspector code for the loops shown in Figure 3.2 is illustrated in Figure 3.7, and the

corresponding executor code is shown in Figure 3.9.
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51 translation-table =  BuildDsTable(myvals, on.proc, replication-factor)

52 call localize(translation_table, edge.sched, partjedgeJist, locaLedge-list,

2 * local_n_edge, edge_off_proc)

53 call localize(translation-table, facel-sched, part JaceJist, local-face Jist,

2 * local-n-face, faceljoff_proc)

54 call localize(translation_table, face2_sched, part_face_list(2 * local-n-face +  1),

local_faceJist(2 * local-n-face +  1), local-n-face, face2joff_proc)

55 face.off-proc = faceljoff.proc +  face2joff_proc

56 n_off_proc = MAX(edge_off.proc , face.off.proc)

57 sched-array(l) =  facel-sched

58 sched_array(2) =  face2_sched

Figure 3.7: Inspector Code for Each Processor 

Inspector Generation

Runtime support can be used either by a complier or it can be embedded into distributed 

memory codes manually by programmers. The primitives carry out preprocessing that 

make it easy to produce parallelized loops that are virtually identical in form to the original 

sequential loops. Since the parallel and the sequential codes are virtually identical, it is 

possible to generate the same quality object code on the nodes of the distributed memory 

machine as produced by the sequential program running on a single node.

These primitives make use of hash tables [52] to recognize and exploit a number of 

situations in which a single off-processor distributed array reference is used several times. 

In such situations, the primitives fetch a single copy of each unique off-processor distributed
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array reference.

The PARTI procedure localize carries out the bulk of the preprocessing needed to pro

duce the executor code depicted in Figure 3.9. On each processor P, localize is passed:

1. A pointer to  a paged distributed translation table (translation-table in S2),

2. A list of globally indexed distributed array references for which processor P will be 

responsible, (part_edge_list in S2), and

3. The number of globally indexed distributed array references (2 * local-njedge in S2). 

Localize returns:

1. A schedule that can be used in PARTI gather and scatter procedures (edge_sched in 

S2),

2. An integer array that can be used to specify the pattern of indirection in the executor 

code (local_edge-list in S2), and

3. The number of distinct off-processor references found in partjedgeJist (edge-ofLproc 

in S2).

A sketch of how the procedure localize works is shown in Figure 3.8. The array edge -list 

shown in Figure 3.2 is partitioned between processors. The part_edge_list passed to lo

calize on each processor in Figure 3.7 is a subset of e d g e J is t depicted in Figure 3.2. 

part_edge_list cannot be used to index an array on a processor since part_edge_list 

refers to globally indexed elements of arrays x  and y. Localize changes part_edge_list so 

that valid references are generated when the edge loop is executed. The buffer for each data 

array is placed immediately following the on-processor data for that array. For example, 

the buffer for data array x  starts at x (n_on_proc+ l). Hence, when localize changes the 

p a rt-ed g e  J is t  to locaLedge-list, the off-processor references are changed to point to the 

buffer addresses. When the off processor data are collected into the buffer using the sched

ule returned by localize, they are stored in such a way that execution of the edge loop using 

the local-edge J is t  accesses the correct data.
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Figure 3.8: Localize Mechanism
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A careful review of the face loop presented in Figure 3.2 shows that the distributed array 

x  is indexed by m l,  m2 and m 3, but the array y is indexed only by m l  and m2. Two 

separate schedules are built, i.e., one with all m l  and m2 references and another with just 

m3 references to be used to gather and scatter from the data arrays x  and y. Hence, for the 

face loop there are two localize calls. Similar to the edge loop, the face-list in Figure 3.2 is 

partitioned between processors; each processor’s share is represented by part_face_list in 

Figure 3.7 (statements S3, S4). The first call to localize (statement S3) generates a schedule 

for references m l and m2. The next call to localize (statement S4) builds a schedule for 

m3 references.

In Figure 3.7, statement S5 is executed to find the total number of unique off-processor 

references made during the execution of the face loop. The largest number of unique off- 

processor references is stored in the variable n_off_proc. The n-oflLproc value is required 

to obtain the total size of the x  and y  arrays that need to be allocated on each processor. 

Statements S7 and S8 are executed to store the face schedule into an array sched-array  

to be used later with the communication primitives.

E x ecu to r G eneration

Figure 3.9 depicts the executor code with embedded Fortran callable PARTI procedures 

dgather, dscatter.add and dmultLgather. Before the code is run, one must carry out the 

preprocessing phase described in Section 3.3.2. The executor code depends on the type 

of scheduling technique used. In the next section other types of scheduling techniques and 

their impact on the inspector and executor codes will be considered. The executor code 

shown in Figure 3.9 fetches unique off-processor values, considering one irregular loop at a 

time.

The arrays x and y  are partitioned between processors; each processor is responsible for 

the long term storage of specific elements of each array. The way in which x and y  are to 

be partitioned between processors is determined by the inspector. In the example, elements 

of x  and y  are partitioned between processors in exactly the same way. Each processor is
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real*8 x(mon-proc +  njoff.proc), y(njon_proc +  n_off-proc)

51 call dgather(edge-sched, x(mon.proc +  1), x)

52 call clear-buffer(n.off-proc, y(n_on-proc +  1))

C Loop over edges involving x, y

LI do i= l ,  localji.edge

n l =  locaLedge-list(i) 

n2 =  local_edge_list(local_njedge + i) 

y(nl) =  y(nl) +  x(nl) +  x(n2) 

y(n2) =  y(n2) +  x(nl) +  x(n2) 

end do

53 call dscatter_add(edge_sched, y(n-on.proc +  1), y)

C Loop over Boundary Faces involving x, y

54 call dm ulti.gather(sched-array, 2 ,y(njon.proc +  1), y)

55 call clear-bufFer(n-ofF4 >roc, y(n_on.proc+ 1))

L2 do i= l ,  local-n-face

m l =  local-faceJist(i) 

m2 = local-faceJist(local_n-face + i) 

m3 =  local_faceJist(2 * local_n-face +  i ) 

y(m l) =  y(m l) +  x(m l) +  x(m2) +  x(m3) 

y(m2) =  y(m2) +  x(m l) +  x(m2) +  x(m3) 

end do

56 call dscatter-add(facel.sched,y(n-on-proc +  1), y)

Figure 3.9: Parallelized Code for Each Processor



CHAPTER 3. COMPILER SUPPORT FOR IRREGULAR PROBLEMS 48

responsible for n.on.proc elements of x  and y.

It should be noted that, except for the procedure calls, the control structure of the loops 

in Figure 3.9 is identical to  that of the loops in Figure 3.2. Though the names of the arrays 

x  and y  remain unchanged between the code shown in Figures 3.2 and 3.9, they represent 

different arrays. In Figure 3.2 the arrays x  and y represent the global array. In Figure 3.9 

the arrays x and y  represent arrays local to the processor of a distributed memory. On 

each processor P, arrays x  and y are declared to be larger than what would be needed to 

store the number of array elements for which P is responsible. Copies of off-processor array 

elements will be stored at the location beginning with local array elements x (n jo n _ p ro c + l)  

and y (n_on_proc+ l). The extra elements are overlap regions [60] allocated to store off- 

processor elements.

The PARTI subroutine calls depicted in Figure 3.9 move data between processors using 

a precomputed communication pattern. The communication pattern is specified by either 

a single schedule or by an array of schedules. The procedure dmultLgather takes an array 

of schedules as input and uses all of them to fetch off-processor data. The schedules specify 

the locations in distributed memory from which data are to be obtained. In Figure 3.9, 

off-processor data are obtained from array x  defined on each processor. Copies of the 

off-processor data are placed in a buffer area beginning with x (n_on_proc+ l).

The PARTI procedure dscatter.add in statements S3 and S6, Figure 3.9, accumulates 

data to off-processor memory locations. Both the dscatter.add calls obtain data to be ac

cumulated to off-processor locations from a buffer area that begins with y(n_on_proc-f-l). 

Off-processor data are accumulated to locations of y  between indices 1 and n_on_proc. 

When the accumulation for the face loop is done, using the dscatter.add function (state

ment S6), only the schedule facel-sched  is used because it was the schedule set up using 

the references m l  and m 2. In Figure 3.9 statements S2 and S5 are calls to a function 

clear.buffer. The calls are made to initialize the buffer location of the array y  to 0.0.
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3.3.3 Incremental Scheduling

In most scientific applications, the computational domain is discretized and physical quati- 

ties, like velocity, pressure, charge etc., are evaluated at discrete points in the domain over 

a period of time. Usually the variables, which represent the quantities of interest are evalu

ated once at the end of each timestep. In the following timestep, these variables are used to 

calculate their new values. Hence there are situations where in a single timestep, multiple 

loops access the same data.

A scheduling technique called incremental scheduling has been developed allowing access 

to only those off-processor data that do not already exist in the processor. In this section, the 

preprocessing required to generate an incremental schedule is described. The preprocessing 

required to parallelize the code shown in Figure 3.2 using incremental scheduling is depicted 

in Figure 3.11 and the executor code is shown in Figure 3.12.

Increm ental Inspector

In Figure 3.2 no assignments to x  are carried out. In the beginning of the execution of both 

the loops LI and L2, each processor can gather a single copy of every distinct off-processor 

value of x  referenced by these loops. The PARTI procedure multiJocalize (S4 in Figure 3.11) 

makes removing these duplicate references simple. The procedure multiJocalize makes it 

possible to obtain only those off-processor data not requested by a given set of pre-existing 

schedules. The returned schedules can be utilized by the communication routines to bring 

in the required data.

A pictorial representation of the incremental schedule is given in Figure 3.10. The 

schedule to bring in the off-processor data for the edge Joop is given by the edge schedule 

and is formed first. During the formation of the schedule to  bring in the off-processor data 

for the faceJoop the duplicates are removed, shown by the shaded region in Figure 3.10. 

Removal of duplicates is achieved by using a hash table. The off-processor data to be 

accessed by the edge schedule are first hashed using a simple hash function. Next, the data 

to be accessed during the faceJoop are hashed. At this point, the information that exists
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Figure 3.10: Incremental Schedule
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51 translation-table = BuildDsTable(myvals, on.proc, replication-factor)

52 call localize(translation_table, edge-sched, partjedgeJist, local-edgeJist,

2 * local_n.edge, edgejoff.proc)

53 sched-array(l) =  edge-sched

54 call m ultiJocalize(translation.table, face-sched, incremental-face-sched,

part-face Jist, local-faceJist, 3 * local_n-face, face-off-proc, 

newJace-ofF_proc, buffer-mapping, 1, sched-array)

55 sched_array(2) =  incremental-face-sched

56 njoff-proc =  MAX(edgejoff.proc , face-off_proc)

Figure 3.11: Inspector Code for Each Processor Using Incremental Scheduling

in the hash table allows removal of all the duplicates and formation of the incremental 

schedule. In the Section 4.4 results showing the usefulness of incremental schedule will be 

presented.

The inspector code is shown in Figure 3.11. The first call after the translation table 

has been generated is made to the function localize to generate the schedule for the edge 

loop (edge-sched). During formation of the incremental schedule for the face loop, the 

information in the schedule for the edge loop is utilized. To review the work carried out by 

multiJocalize, the significance of all but one of the arguments of this PARTI procedure will 

be summarized. On each processor multiJocalize is passed:

1. A pointer to a paged distributed translation table (translation-table in S4),

2. A list of globally indexed distributed array references (faceJist in S4),

3. The number of globally indexed distributed array references (3 * local-n_face in S4),
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4. The number of pre-existing schedules that need to be taken into account when remov

ing duplicates (1 in S4), and

5. An array of pointers to pre-existing schedules (sched-array in S4).

MultiJocalize returns:

1. A schedule that can be used in PARTI gather and scatter procedures. This schedule 

does not take any pre-existing schedules into account (face_sched in S4),

2. An incremental schedule that includes only off-processor data accesses not included 

in the pre-existing schedules (incremental_face_sched in S4),

3. A list of integers that can be used to specify the pattern of indirection in the executor 

code (locaLfaceJist in S4),

4. The number of distinct off-processor references in faceJist (face-off-proc in S4), and

5. The number of distinct off-processor references not encountered in any other schedule 

(new_facejoff_proc in S4).

Incremental Executor

The procedure dmultLgather in the executor in Figure 3.12 obtains off-processor data using 

two schedules; edgesched produced by localize (S2 Figure 3.11) and incremental-facesched 

produced by multiJocalize (S4 Figure 3.11). The procedure dmultLgather has already been 

discussed in Section 3.3.2 but nothing has been said so far about the distinction between 

dscatter-add and dscatter.addnc. When making use of incremental schedules, a single buffer 

location is assigned to each off-processor distributed array element. For the example, sepa

rate off-processor accumulations are carried out after loops LI and L2. As described below, 

the off-processor accumulation procedures may no longer reference consecutive elements of 

a buffer.

Copies of distinct off-processor elements of y  are assigned to buffer locations, to handle 

off-processor writes in loop LI, Figure 3.12. Then a schedule (edge-sched) can be used
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real*8 x(njon_proc +  njoff.proc), y(njon_proc +  n.off-proc)

51 call dm ulti-gather(sched-array, 2, x(n_on-proc +  1), x)

52 call clear_buffer(n-off-proc, y(n_on_proc +  1))

C Loop over edges involving x, y

L I do i= l ,  local-n.edge

n l =  locaLedgeJist(i) 

n2 =  local.edge_list(local_n_edge + i) 

y(n l) = y (n l) +  x(nl) +  x(n2) 

y(n2) =  y(n2) +  x(nl) +  x(n2) 

end do

53 call dscatter_add(edge-sched, y(njon.proc + 1), y)

C Loop over Boundary faces involving x, y

54  call clear_buffer(n-off-proc, y(n_on_proc +  1))

L2 do i= l ,  local_n.face

m l =  local-faceJist(i) 

m2 =  local-face-list(local_n-face +  i) 

m3 =  local_faceJist(2 * local-n-face +  i ) 

y(m l) = y(m l) +  x(m l) +  x(m2) +  x(m3) 

y(m2) = y(m2) +  x(m l) +  x(m2) +  x(m3) 

end do

55 call dscatter_addnc(face-sched, y(njon_proc +  1), buffer-mapping, y)

Figure 3.12: Parallelized Code for Each Processor Using Incremental Scheduling
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to specify where in distributed memory each consecutive value in the buffer is to be ac

cumulated. PARTI procedure dscatter.add can be employed; the procedure uses schedule 

edgesched to accumulate to off-processor locations consecutive buffer locations beginning 

with y(n_on_proc +  1). When off-processor elements of y  are assigned to buffer locations 

in L2, some of the off-processor copies may already be associated with buffer locations (done 

in loop LI). Consequently, in S3, Figure 3.12, the schedule (face-sched) must access buffer 

locations in an irregular manner. The pattern of buffer locations accessed is specified by 

integer array buffer-mapping passed to dscatter.addnc in S3, Figure 3.12 (dscatter.addnc 

stands for dscatter_add non-contiguous).



C hapter 4

P erform ance A n alysis o f  R u n tim e  

Support

A set of procedures has been produced that support a type of weakly coherent distributed 

shared memory; these procedures can be coupled closely to distributed memory compilers. 

These primitives (1) coordinate interprocessor data movement, (2) manage the storage 

of and access to copies of off-processor data (3) minimize interprocessor communication 

requirements and (4) support a shared name space. In this chapter a detailed performance 

and scalability analysis of the communication primitives are discussed. This chapter also 

presents performance data obtained from parallel implementation of adaptive and non- 

adaptive irregular applications.

This chapter describes and systematically evaluates all the optimizations that have been 

incorporated into the tools. The optimizations reduce communication latency and volume. 

Performance data for the paged distributed translation table described in Section 3.3.1, are 

also presented.

Performance of optimizations are characterized by using

• Synthetic workloads,

• Test loops with data access patterns drawn from unstructured applications, and

55
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• Real applications.

The synthetic workload was developed jointly with a group from University of Maryland 

[37]. Synthetic workloads can be used to characterize the performance of the optimizations 

under a  wide variety of conditions.

In sparse and unstructured computations, distributed arrays are typically accessed us

ing indirection. In many cases (e.g. distributed arrays referenced in loops with no loop 

carried dependencies or distributed arrays referenced in loops with accumulation type de

pendencies), it is possible to prefetch required off-processor data before a loop is executed. 

Sometimes several loops access the same off-processor memory locations. As long as it is 

known that the values assigned to off-processor memory locations remain unmodified, it is 

possible to reuse stored off-processor data. A mixture of compile-time and run-time anal

ysis can be used to generate efficient code for irregular problems [36, 101]. This chapter 

provides a detailed description of communication optimizations that prove to be useful for 

optimizing irregular problem performance. The PARTI primitives described in the previ

ous chapter incorporate all the communication optimizations that will be presented in this 

chapter.

The class of problems considered in this thesis consists of a sequence of clearly demar

cated concurrent computational phases, where data access patterns cannot be anticipated 

until runtime, and these problems are called static irregular concurrent computations [14]. 

In these problems, once runtime information is available, 1) data access patterns are known 

before each computational phase and 2) the same data access patterns occur many times. 

Adaptive problems can fall into this class of problems as long as data access patterns change 

relatively infrequently. A typical loop in such computations is shown in Figure 4.1. In this 

loop, the arrays x , y , ia and ib  are all distributed arrays. The arrays ia and ib  are used to 

index the arrays x  and y , respectively. At compile time, it is not possible to determine the 

the indices of x  and y  that are accessed because they are dependent on the values stored 

in the arrays ia and ib. The data access pattern becomes available at runtime. Runtime 

compilation techniques are used to parallelize such loops.
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DO i =  1, n

x(ia(i)) = x(ia(i)) + y(ib(i))

end do

Figure 4.1: Simple Irregular Loop

4.1 A pplications U sed for Performance Analysis

In this section the applications that are utilized in the performance studies are briefly 

described. Both real applications and artificial workloads are used to learn the behavior of 

the tools in various situations.

4.1.1 Real Applications

Many scientific codes have been implemented on parallel machines, using the PARTI primi

tives. In this section, two application codes are briefly described, stating how they stress the 

primitives. In Section 4.1.1, an explicit Euler solver [75, 33] developed at ICASE by Dim

itri Mavriplis is described. Section 4.1.1 describes the molecular dynamics code CHARMM 

[19,34], Both these codes have been implemented on the Intel Gamma and Delta machines.

Unstructured Euler Kernel

Unstructured meshes provide a great deal of flexibility in discretizing complex domains 

and offer the possibility of easily performing adaptive meshing. However, unstructured 

mesh problems result in large sparse matrices and if the problems are to be executed on a 

distributed memory machine, one would require runtime preprocessing. The connectivity 

of the meshes is quite low, when compared with the connectivity that is generated for other 

problems, such as molecular dynamics or particle dynamics.

The unstructured Euler code solves the three dimensional compressible gas dynam
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ics equations. The solution technique has been outlined in [75, 58]. The equations are 

discretized on an unstructured mesh using a Galerkin finite-element technique. The flow 

variables are stored at the vertices of the mesh. However, certain precautions have to be 

taken in order to stabilize the solution. The spatially discretized equations are integrated to 

a steady state, using a 5-step Runge-Kutta timestepping method. The program comprises 

loops over the edges and faces of the three dimensional unstructured mesh. A multigrid 

solution technique can be used to speedup the solution time.

Molecular Dynamics

Molecular dynamics (MD) is a technique for simulating the thermodynamic and dynamic 

properties of liquid and solid systems. For each timestep of the simulation, two separate 

calculations are performed. The first part deals with the bonded and non-bonded force 

calculations for each atom. The second part is the integration of the Newton equation for 

each atom. In most MD codes, the bulk of the time (a little more than 90%) is spent in 

the long-range force, i.e., the non-bonded force calculation. Hence the non-bonded force 

calculation needs to be parallelized efficiently. The non-bonded force calculation uses an 

0 (A 2) algorithm, where N  represents the number of atoms. Every single atom interacts 

with each other, but usually a cutoff distance R c is specified and interactions outside the 

cutoff are neglected. The non-bonded force calculation has two distinct parts. For each 

atom, first the pairlist (atoms within R c distance) is generated; next, the Vander Waals 

and electrostatic force calculations are performed. The pairlist generation is not performed 

every iteration but after every n iteration, where n is a variable that can be fixed by the 

user.

The MD code used in this case was CHARMM (Chemistry at HARvard Macromolecular 

Mechanics) [19], and it was developed at Harvard University for biomolecular simulations. 

The program is relatively efficient, and it uses empirical energy functions to model molec

ular systems. Written in Fortran, the code is about 110,000 lines long and is capable of 

performing a wide range of analyses. The important simulation routines are the dynamic
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analysis, the trajectory manipulations, energy calculations and minimization, and vibra

tional analysis. The program also performs statistical analysis, time series and correlation 

function analysis as well as spectral analysis.

4.1.2 Synthetic Workload

A synthetic workload was developed as part of a group project done at the University of 

Maryland [37]. A parameterized workload generator was developed to simulate the kinds of 

data reference patterns and communication characteristics encountered in concurrent irreg

ular scientific problems. The synthetic workload consists of two parts, the Communication 

Pattern Generator (CPG) and the Data Access Pattern Generator (DAPG). The CPG is 

used to define the communication pattern induced by the problem. The DAPG generates 

indirection arrays that embody the communication pattern specified by the CPG.

A communication graph G =  (V, E , w) is a weighted graph where vertices correspond 

to individual distributed partitions. For any two partitions u, v  € V  there exists an edge 

(u, v) € E  iff the partitions u and v need to communicate with each other a t runtime. 

The volume of the communication is determined by the weight function w : E  —* Af. The 

generation of the communication graph is controlled by the following parameters:

• Connectivity (C)

Connectivity is the average degree of vertices in G. C =  (Xlvev deg(v))l\V\, where 

deg(v) is the degree of vertex v. Connection between two partitions causes commu

nication to occur at runtime between the partitions. The connectivity parameter is 

translated into the total number of distinct messages for each processor to send or 

receive at each phase of the computation.

•  Total Volume of Communication (V).

Total volume of communication limits the assignment of weights to  the edges in a 

communication graph, so that the sum of the weight of all the edges in a communi

cation graph is equal to V. In the generation of the communication graphs for the
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experiments, V is used to distribute the weights to edges in a uniform way. That is, 

Ve e  E  : w(e) =  V/|J5|.

•  M anhattan Distance (D).

The Manhattan Distance, D, specifies that no two partitions more than D apart 

can be connected via an edge in the communication graph. The partitions in a real 

world problem are physically related to each other often with a relationship that is 

determined by the specific problem. These problem-imposed relationships can be 

represented as a graph, called a problem topology graph, in which vertices represent 

partitions and edges represent the relationships between partitions. It is usually the 

case that, in the problem domain, partitions are scattered in 2 or 3 dimensional 

space. The problem topology graphs, often representing the physical proximity of 

partitions, arise from the fact that distant partitions have little or no relationships 

with each other. The Manhattan Distance of two partitions is defined as the sum of 

the canonical distances between them in the problem topology graph. For example, 

if the relationships between partitions are represented by a 2D-grid, the Manhattan 

Distance of u and v is |ux — vx| +  |uv — vy|.

It should be noted, however, that more sophisticated communication models can be 

defined to replicate the communication behavior of irregular problems. One extension is 

the addition of extra features such as variability of the connectivity and communication 

volume. However, the current model is general enough to illustrate the key performance 

parameters of the optimization primitives.

The second part of the synthetic workload generator is the Data Access Pattern Gen

erator (DAPG), which is responsible for generating the data access patterns utilizing the 

communication graph. The actual communication takes place in a  way determined by the 

communication graph. The data access pattern is defined to be a permutation of a subset 

of the global index space. It specifies which global data indices have been accessed locally. 

The output of the DAPG is a set of indirection arrays that will be used in accessing the
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distributed arrays, whereas the input is the communication graph generated by the CPG 

and the following parameters :

•  Number of Loops (Nioop)

The number of loops determines the number of consecutive test loops associated with 

the DAPG. The test loops are of the form depicted in Figure 4.2, where two consecutive 

computational phases exist, so Nioop is equal to 2. For each computational phase, the 

DAPG produces Nioop indirection arrays to access the loop’s distributed arrays.

•  Intersection Ratio (22,nt)

The intersection ratio of two indirection arrays is defined as the ratio of the number of 

identical global data indices the indirection arrays contain over their size. Its result is 

the degree to which data usage patterns in two indirection arrays are similar. If 22tnl 

is zero, the global data indices stored in two different indirection arrays are completely 

disjoint, and two indirection arrays are exactly the same if 22 , - is 1.0.

• Number of Duplicates (Ndup)

The number of duplicates for a given indirection array is defined to be the number 

of distinct occurrences of the same off-processor data reference. If the number of 

duplicates for an indirection array is 2, each unique reference in the indirection array 

will occur twice. Note that this parameter has no effect on the total volume of unique 

data communicated.

• Number of Dimensions (Ndim)

Ndim measures the degree of reuse of the same data access pattern across the dimen

sions of a  distributed array.

A summary of the symbols that are part of the workload generator and their meaning 

are presented in the Table 4.1.

An example of the type of workload generated is shown in Figure 4.2. For this case, 

the various inputs to the DAPG are shown in Table 4.2. Since 22,„t equals 0.5, half the
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Table 4.1: Summary of Symbols used in the Workload.
Symbol Meaning
C
V
D
Hint 
Ndup 
Nloop
Ndim
P

Connectivity
Total Volume of Communication 
Manhattan distance between partitions 
Intersection Ratio 
Duplication Factor 
Number of test loops
Number of identically referenced distributed array slices in each test loop 
Total Number of Processors

First Loop 

do i =  1, n 

x(ia(i), 1) =  x(ia(i), 1) +  z(ia(i), 1) 

x(ia(i), 2) = x(ia(i), 2) +  z(ia(i), 2) 

end do 

Second Loop 

do i =  1, n 

x(ib(i), 1) =  x(ib(i), 1) +  z(ib(i), 1) 

x(ib(i), 2) =  x(ib(i), 2) +  z(ib(i), 2) 

end do

Figure 4.2: Synthetic Workload Loops
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Table 4.2: DAPG parameters for Synthetic Workload Loops.
Symbol Value
Rint 0.5
Ndup 2
Nl00p 2
Ndim 2

values stored in array ia are also present in the array ib. Since Nioop equals 2, there are 

two indirection arrays namely, ia and ib. Ndim equals 2, making the the upper bound of 

the compressed dimension of all the data arrays 2 (in this case x(* ,2) and z(*,2)). Since 

Ndup equals 2, each reference in ia is repeated twice. The same follows for ib.

4.2 Comm unication O ptim izations

In this section, communication optimizations developed for this thesis are presented. Sec

tion 4.2.1 shows how software caching can be used to reduce the volume of communication 

between processors. One such optimization is to remove redundant off-processor accesses 

associated with a particular indirect array reference. A more aggressive optimization re

moves redundant off-processor accesses associated with several indirect array references. 

Section 4.2.2 describes the optimizations developed to reduce communication startups by 

coalescing communications into a decreased number of messages.

4.2.1 Software Caching

During the execution of irregular loops on distributed memory (or distributed shared mem

ory) machines, the same off-processor data may be accessed repeatedly. In many cases, data 

needed by an array reference can be prefetched before a loop’s computation begins. In other 

cases, data needed by a set of irregular references to the same array can be prefetched. In 

either case, the same off-processor data may be accessed multiple times, but only a single 

copy of the data need to be fetched from off-processor. The process of prefetching off- 

processor data and storing it locally is software caching. Informally, the prefetches can be



CHAPTER 4. PERFORMANCE ANALYSIS OF RUNTIME SUPPORT 64

carried out when

• it is possible to predict array reference patterns prior to a loop’s execution, and

• it is known that all array data subject to prefetch remains live, i.e., there is no 

possibility that the prefetched values are no longer valid.

There are two ways of managing software caching, “simple” and “incremental.”

Sim ple Softw are Caching

A hash table is utilized to identify duplicate off-processor data accesses associated with the 

indirect references to a single data element. A simple hash function (m od operator) is 

used. Communication schedules are generated from the lists of unique off-processor data 

accesses. These schedules store the communication patterns to be used by the gather and 

scatter primitives. During the schedule generation process, each processor sends the lists 

of data it needs from all other processors; it also receives the lists of data it must send to 

other processors. These lists contain the indices of the data that need to be communicated. 

Each schedule is associated with a distribution and a data access pattern, rather than being 

tied to specific data arrays. Hence, if there exists two references to different arrays, where 

the arrays are distributed in the same way and the data access patterns are identical, the 

same schedule can be used to gather or scatter data to these arrays.

Increm en ta l Scheduling

Data communication volume is reduced by tracking and reusing live off-processor data 

copies. In a  number of application codes, multiple indirect references occur to the same 

data array. When it is known that no array assignments can occur between some set of 

indirect references, i.e., the array in question remains live between the indirect references, 

then, only a single copy of each unique off-processor value needs to be fetched.

Assume there are N  different indirect array references to any distributed data array 

D. From each reference, off-processor indices used to access data from the array D can



CHAPTER 4. PERFORMANCE ANALYSIS OF RUNTIME SUPPORT 65

be obtained. Let I A i  be the set of off-processor indices from reference I .  Hence, IA  = 

{ IA \, IA 2 , I  An}  is the set of the sets of off-processor indices used to access data from 

D. The use of incremental schedules allows one to bring in only the data that are not 

available locally:

U IA j = { ia : ia £ IA i  for some set IA i  € IA }.

The number of indices belonging to the set, IA /, is potentially smaller than the number of 

indices one would get by simply concatenating the indices obtained from separately applying 

simple software caching to each distributed array reference. If every index listed in each 

of the set IA  is different, then there is no advantage in doing incremental scheduling. On 

th? other hand, if there is significant overlap in the off-processor references obtained from 

the reference sets, then a large reduction in communication volume is achieved by using 

incremental scheduling.

4.2.2 Communication Coalescing

One can frequently collect many data items destined for the same processor into a single 

message. This kind of optimization is sometimes called communication coalescing. The 

object of communication coalescing is to reduce the number of message startups. For many 

distributed memory systems, there is a substantial latency associated with message passing. 

For instance, Bokhari [15] measured the time to communicate a message of size k (bytes) 

between two nodes of an Intel iPSC/860, as

T  = 65.0 +  0.425A: + lO.O/i, for 0 < k < 100, and

T  =  147.0 +  0.390Jfc +  30.5/i, for k > 100

where T  is the time in fisecs and h is the number of hops between the communicating 

processors. On the Intel iPSC/860, the cost of a startup latency is equal to the cost of 

sending one to several hundred bytes. The three types of communication coalescing are

• Simple Communication Aggregation,
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• Communication Vectorization, and

• Schedule Merging.

Simple Communication Aggregation

It is frequently possible to anticipate which data must be communicated before a loop 

executes. Preprocessing is needed to characterize the data required by a given right-hand 

side array reference. Prior to a loop’s execution, all the data that each pair of processors need 

to exchange is packed into a single message. In a similar manner, the communication (and 

accumulations) associated with left hand side array references can often be deferred until 

after a loop’s computation. This optimization may be referred to as simple communication 

aggregation.

Communication Vectorization

If a number of columns of a multi-dimensional array are distributed in a conforming manner, 

and if the data access patterns from these columns are the same, then the primitives gather 

and scatter data from all the columns using a single communication phase. The optimization 

does not reduce the communication volume but reduces the startup latency. Hence, if any 

processor P  is to receive data from N  processors for L columns then the reduction of startup 

latency time is given by

• Latency_Reduction = N  * Timeiatency * (L -  1).

The PARTI primitives for multi-dimensional arrays perform communication vectorization.

Schedule Merging

When data are gathered from or scattered to the same data array using a number of different 

schedules, then the schedules can be merged to reduce the number of message startups and 

thereby the latency. Schedule merging is orthogonal to the software caching optimizations; 

for instance, one can merge sets of schedules that arise from simple software caching or sets
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of schedules obtained from incremental scheduling. The total reduction in latency is by the 

factor (5  -  1), where the number of merged schedules is S. PARTI provides primitives 

that merge a number of schedules to form a single communication schedule.

4.2.3 Example Test Codes

The application of the runtime support depends on the nature of the communication opti

mization. The type of communication optimization to be used at any particular situation 

has to be determined by the compiler. Depending on compile time analysis, calls to the cor

rect runtime support routines have to be made by the parallelizing compiler. For instance, 

in Figures 4.3 and 4.4 the test loops associated with simple communication aggregation 

are compared to schedule merging. The simple communication aggregation case shown in 

Figure 4.3 does the preprocessing with the various indirection arrays at the beginning. 

It returns four schedules, one for each of the indirection arrays. The z values are fetched 

immediately before each loop executes; the schedule for ic is employed before the first loop, 

and the schedule for id is employed before the second loop. After the execution of the first 

loop, the off-processor x  values are accumulated using the schedule for ia. Similarly, after 

the second loop’s computation, the off-processor accumulation of x  values are done by using 

the schedule for ib.

The schedule merging code is shown in Figure 4.4. As in the previous case schedules are 

built using all the indirection arrays. In this case, the schedules are merged, and instead 

of four, there are two schedules, one for ia and ib and one for ic and id. All the required 

values of z are fetched using vectorized communication ( z being a multi-dimensional array 

) before execution of the loops. Off-processor values of x  are accumulated by using the 

schedule for ia and ib after both loops execute. Accumulation can be delayed until the 

completion of execution of both the loops because of the commutative property of the ’+ ’ 

operator. The executor communication cost, when schedule merging and vectorization are 

performed, is much lower than that of the simple software caching. The inspector cost for 

schedule merging is higher than the inspector cost of the software caching.
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Preprocessing for indirection arrays ia, ib, ic and id 

gather the values of array z using schedule for  ic 

do i =  1, n 

x(ia(i)) =  x(ia(i)) +  z(ic(i)) 

end do

accumulate values of x  using schedule for ia

gather the values of array z using schedule for id

do i =  1, n 

x(ib(i)) =  x(ib(i)) +  z(id(i)) 

end do

accumulate values of x  using schedule for  ib

Figure 4.3: Simple Communication Aggregation Case

Note that while the software caching and communication coalescing optimizations are 

orthogonal, on distributed memory machines it makes sense to use certain optimizations 

together. For instance, if incremental scheduling is employed, one can easily produce a 

single merged schedule to perform the communication of the unique off-processor elements, 

identified by the incremental scheduling process.
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Preprocessing to build a single schedule using arrays ia  and ib 

Preprocessing to build a single schedule using arrays ic and id 

Gather for z using the single schedule for arrays ic and id 

do i =  1, n 

x(ia(i), 1) =  x(ia(i), 1) +  z(ic(i), 1) 

x(ia(i), 2) =  x(ia(i), 2) +  z(ic(i), 2) 

end do

do i =  1, n 

x(ib(i), 1) =  x(ib(i), 1) +  z(id(i), 1) 

x(ib(i), 2) =  x(ib(i), 2) +  z(id(i), 2) 

end do

Accumulate x  using the single schedule for arrays ia and ib

Figure 4.4: Schedule Merging Case
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4.3 Scaling Characteristics of the O ptim izations

Optimizations are applied to data access patterns generated when a given unstructured 

problem is mapped onto a multiprocessor. Measured performance on a given architecture 

consequently depends on

• the nature of the unstructured code (e.g., the real codes outlined in Section 4.1.1 or 

the test loops in Figure 4.2),

• the dataset (e.g., the data structures used to represent unstructured meshes and molec

ular interactions described in Section 4.1.1), and

• the way in which the dataset is partitioned among processors.

In this section, effects of the various optimizations on unstructured problem communi

cation requirements are examined. In the analysis presented in this section, the synthetic 

workload described in Section 4.1.2 is used, which employs a set of loops of the type de

picted in Figure 4.2. In the experimental analysis presented in the following sections, both 

the synthetic workload and data access patterns derived from real applications are utilized.

The volume of communication and the number of communication startups associated 

with bringing in off-processor data are presented in Table 4.3. The row labeled “naive” 

stands for no optimization at all; each processor requests its data whenever that data is 

needed locally. In the “naive” case, the number of communication startups is equal to the 

number of data elements communicated. From Section 4.1.2, recall that V /P  represents the 

volume of communication that must be sent and received by each processor, Nioop repre

sents the number of test loops employed by the Data Access Pattern Generator, and 

represents the number of identically referenced array slices. When targeted at distributed 

memory architectures, the naive implementation is extremely inefficient (see [94]).

The row labeled “simple communication aggregation” gives the communication char

acteristics associated with the optimization described in Section 4.2.2. The optimization 

reduces the number of messages that must be transmitted. For each array slice (JV*-m) and
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each test loop (Nioop), every processor must communicate with each of the neighboring C 

processors. Note that the optimization does nothing to reduce communication volume. The 

optimization reduces latency costs compared to the naive implementation, but incurs two 

other costs: The costs are the memory overhead of storing the schedules associated with 

the communication and the pre-processing overhead for precomputing the communication 

requirements in the irregular computation.

The next optimization depicted in Table 4.3, labeled “simple software caching,” includes 

both simple software caching (Section 4.2.1) along with simple communication aggregation. 

Simple software caching involves eliminating intra-loop duplicates. The addition of this 

optimization reduces the communication time and space requirements compared to the 

simple communication aggregation case. The trade-off is the extra preprocessing required 

by the inspector and the memory required for the hash table. The communication volume 

for simple software caching is a factor of Ndup smaller than the communication volume for 

simple communication aggregation.

The next optimization depicted in Table 4.3, labeled “communication vectorization,” in

cludes communication vectorization (Section 4.2.2) along with simple software caching and 

simple communication aggregation. The addition of the communication vectorization opti

mization leaves the communication volume unchanged but reduces the number of startups 

by an additional factor of Ndim- The next row of the table, “schedule merging,” adds the 

schedule merging optimization (Section 4.2.2) to the optimizations represented in the rows 

above. The “schedule merging” optimization makes it possible to prefetch all data needed 

by the entire set of test loops before executing the first of the test loops. The number of 

startups in this case is reduced by a factor of Nioop and is equal to C.

Finally, the incremental scheduling optimization (Section 4.2.1) is added to the opti

mizations mentioned above. Incremental scheduling allows one to fetch from off-processor 

only the unique data values needed by any one of the test loops and it produces a savings 

when more than one test loop uses the same datum.
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Table 4.3: Executor Communication Requirements (Gather, Scatter or Accumulate)
Optimization Communication

Volume Number Startups

Naive P
Ndim ̂ looo V

P

Simple Communication Aggregation NdimNloooV
P Ndim NloopC

Simple Software Caching NdimNlooxtV
PNdup Ndim-N\o<ypC

Communication Vectorization NdimNloooV
PNd up NloopC

Schedule Merging NdimWloopV 
P Ndup c

Incremental Scheduling NAimV n
PNdup(2-Rin,)Nl°°r-1

The left hand side array references in the test loops in Fignre 4.2, involve accumulations. 

In most cases, experience with real applications has indicated that it is permissible to defer 

off-processor accumulations until after a loop. The deferring of accumulations until after the 

loop has the effect of changing the order in which the accumulations are carried out. In the 

author’s experience, the change in operation order does not usually cause problems, since 

such loops are routinely vectorized, and vectorization also changes the order in which values 

are accumulated. Limited to carrying out deferred accumulations after each loop, it is found 

that the schedule merging and incremental scheduling optimizations cannot be employed. 

In some applications, such as molecular dynamics, programmers find that they can defer 

accumulations until after a sequence of (non-dependent) loops are executed. In these cases, 

one could make use of schedule merging and incremental scheduling optimizations.

The communication requirements associated with preprocessing are very closely tied 

to the communication requirements needed to execute off-processor gathers, scatters and 

accumulations. Table 4.4 depicts these communication requirements. Some advantage is 

gained from the fact that the same schedule can be reused each time communication is
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Table 4.4: Inspector Communication Requirements (Gather, Scatter or Accumulate'
Optimization Communication

Volume Number Startups

Naive - -

Simple Communication Aggregation NloovV
P+NloopC 2 NloopC

Simple Software Caching NloooV 2 NtoopC

Communication Vectorization NlomV
PNdUp+NioopC 2 NloopC

Schedule Merging NtomV
PWdup + iVfoopC 2NioopC

Incremental Scheduling V
PNtupp-Rintf'^v-'+C 2 C

carried out for identically referenced, identically distributed arrays (or array sections). In 

the case of the test loops, it is clear that the preprocessing for identically distributed array 

sections need not be repeated. The advantage is reflected in the communication volume 

and startup numbers depicted in Table 4.4.

4.4 Experim ents and R esults

This section describes the experiments performed and the corresponding results. A number 

of different experiments were performed using the synthetic workload generator and the 

application code kernels. The results show the performance of the primitives and also how 

they scale with the increase in the number of processors. All experiments were executed on 

the Intel Gamma machine, and the number of processors ranged from 32 to 128.

4.4.1 Synthetic Workload Performance Results

Empirical performance results to characterize the effectiveness of the communications op

timizations are presented in Section 4.2.
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Figure 4.5: Cost vs. volume of communication and Intersection Ratio (gather, Afioop=4, P 
=  32, R int =  IF)

Comparison of Communication Optimizations

The reduction in communication time associated with incremental schedules is shown in Fig

ure 4.5. Performance of a code which employs schedule merging with incremental scheduling,
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Figure 4.6: Cost vs. volume of communication and Intersection ratio (Inspector, A//oop=4, 
P =  32, Hint = IF)
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Figure 4.7: Cost vs Number of duplicates (Executor, low A/dup, 32 Processors)

versus simple software caching carried out separately for each loop presents an interesting 

comparison. Four loops are used in the test loop code (Nioop =  4). The communication 

graph is kept constant (C=4) but the 72,„t parameter is varied in order to change the num

ber of shared off-processor accesses. The loop structure is similar to the one presented in 

Figure 4.4. The experiment is repeated for low («  100 floating point numbers), medium 

(«  1000 floating point numbers), and high (~  2000 floating point numbers) communication 

volume. The results shown in the different graphs are obtained from experiments executed 

on a 32 processor Intel Gamma machine. Figure 4.5 gives the timings for the gather calls 

both for incremental scheduling and simple software caching. For both high and medium 

communication volumes, communication time for the incremental case drops rapidly as the 

intersection ratio becomes close to 1. The inspector times are presented in Figure 4.6. The 

inspector time for incremental scheduling is higher compared to simple software caching 

because of the larger volume of data that has to be hashed.

Next, the performance effects of simple software caching are quantified. The communi

cation graph is kept constant while varying Afdup and the volume of communication. The 

structure of the test loop associated with the duplicate elimination version and the pre-
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Figure 4.8: Cost vs Number of duplicates (Executor, high A/jupi 32 Processors)

scheduled communication version is very similar to the one shown in Figure 4.3. Figure 4.7 

shows the results when the duplication factor Afdup is low, ranging from 0 to 10. Such a case 

is usually found in unstructured mesh computational fluid dynamic calculations. In these 

calculations, the connectivity of the mesh ranges from 6 to 10. Figure 4.8 shows the case 

where the duplication factor is very high, ranging from 0 to 500. The case is similar to the 

data access pattern found in molecular dynamics and particle dynamics codes, where each 

particle interacts with a large number of other particles (usually within a  cut-off radius). 

Performance improvement associated with software caching increases with the duplication 

factor, except when the communication volume and duplication factor are both low.

Performance of the Primitives

A useful property of the workload generator is that it can be used to produce localized 

communication patterns whose communication structure is preserved with the increase in 

the number of processors. If the synthetic workload is scaled in the above manner, one 

cannot expect to observe significant changes in performance with increasing numbers of 

processors.
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Tab: e 4.5: Results Supporting Scalability (Time in secs.)
Intersection ratio 32 processors 64 processors 128 processors

Inspector Executor Inspector Executor Inspector Executor
0.0 0.8 6.2 0.9 6.2 0.9 6.1
0.2 0.8 5.9 0.9 5.7 0.9 5.7
0.4 0.8 5.5 0.8 5.5 0.9 5.5

Table 4.5 illustrates the absolute timings for schedule merged incremental gathers, using 

the communication pattern for which the Manhattan Distance, D =  1, connectivity C =  4. 

The total communication volume, V , is scaled up in proportion to the number of processors 

employed and this maintains a volume per processor of «  2K  floating point numbers. A 

nearly fixed communication cost is obtained as the problem size grows linearly with the 

number of processors. This pattern has been observed for a number of different commu

nication patterns. The observation supports the view that the primitives scale within the 

limits of scalability of the problems in which they are employed.

4.4.2 Performance Results Derived from Applications 

Comparison of Communication Optimizations

A representative kernel was extracted from the Euler code and timed varying the number of 

processors from 16 to  128. All timings presented are for 10 iterations of the outermost loop. 

The communication times for the different levels of optimizations are shown in Table 4.6. 

It is seen that for both the 53k and 100k mesh input, schedule merging and vectorization 

make the communication time decrease slightly as the number of processors is increased. 

Similarly the total running time presented in Table 4.9, goes down significantly as more 

processors are used. It was shown before that if the problem is scaled as the number of 

processors is increased, then the primitives scale accordingly. Even though the volume of 

data communicated for the incremental case is the least, the buffer management to store 

off-processor data is complicated. Hence for certain input data, running time is higher than 

in other optimized cases.
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Table 4.6: Euler kernel, 53kfel00kMesh (Time in secs)
Optimization Total Communication (Executor)

53K vfesh 100K Mesh
16 32 64 128 32 64 128

Simple Software Caching 22.4 22.7 29.1 37.3 29.2 29.9 34.7
Schedule Merging (SM) 19.1 20.1 24.7 28.5 25.0 25.1 26.4
Vectorized (Vect) +  SM 15.9 15.7 13.1 12.8 20.7 19.3 18.1

Incremental +  SM 18.9 20.2 24.3 27.9 24.3 25.1 26.7
Incremental +  SM + Vect 16.1 15.7 12.9 12.7 21.2 19.1 18.0

Behavior of Paged Translation Table

Several experiments were run to measure the performance of the Paged Translation Table. 

Table 4.7 shows the effects of replication factor on the scheduling time for a 53k node 

unstructured mesh, and a benchmark input for CHARMM (MbCO + 3830 water molecules; 

14026 atoms) on a 64-processor iPSC/860. The column labeled “Before” corresponds to 

performance with the initial block distribution of pages across the processors. The column 

labeled “After” corresponds to the performance after a re-organization of replicated pages, 

according to access behavior on each processor. In this experiment, the number of pages 

replicated on each processor is varied. As expected, performance improves as the replication 

factor increases. For the unstructured mesh, reshuffling of translation table pages does 

not make much difference in the scheduling time. For the molecular dynamics case, the 

reshuffling makes a  large difference, especially for low replication factors.

Table 4.8 shows the performance of dereferences with varying block sizes for a fixed 

replication factor, 7Z = 0.5. As observed, reasonable communication times can be obtained 

with relatively large page sizes. When the page size is decreased, the communication effi

ciency of the fully replicated case can be achieved without having to replicate all the data 

associated with the translation table.
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T&ble 4.7: Effects of Replication Factor (Time in secs.)
Replication Euler kernel (53k) CHARMM kernel

Before After Before After
0.0 0.4 0.4 7.9 7.2
0.1 0.4 0.3 6.8 5.1
0.2 0.4 0.3 6.0 3.2
0.3 0.4 0.3 5.7 2.0
0.4 0.4 0.2 5.3 1.4
0.5 0.3 0.2 5.0 1.1
0.6 0.3 0.2 4.3 1.0
0.7 0.2 0.2 4.0 0.9
0.8 0.2 0.1 2.9 0.9
0.9 0.2 0.1 2.2 0.9
1.0 0.1 0.1 0.9 0.9

Table 4.8: Effects of Page Size, TZ ~  0.5, (time in secs)
Euler rernel (53k) CHAR VIM kernel

Page Size Before After Block Size Before After
85 0.3 0.2 89 5.0 1.2
43 0.3 0.2 44 5.0 1.2
29 0.3 0.2 22 5.0 1.1
22 0.3 0.2 15 5.0 1.1
17 0.3 0.2 11 5.0 1.1
9 0.3 0.1 6 5.4 1.0
5 0.4 0.1 5 5.4 1.0
3 0.4 0.1 3 5.3 1.1

Table 4.9: Euler kernel, 53kfel00kMesh (Time in secs)
Optimization Total Running Time

53K Mesh 100K Mesh
16 32 64 128 32 64 128

Simple Software Caching 104.3 63.9 50.0 48.9 108.5 67.4 52.6
Schedule Merging (SM) 100.3 60.5 46.8 39.3 104.7 62.3 45.4
Vectorized (Vect) +  SM 97.5 57.3 34.8 24.1 99.7 57.1 37.2

Incremental +  SM 100.6 60.7 46.3 38.7 103.6 61.9 44.6
Incremental +  SM +  Vect 97.1 57.9 34.5 23.8 100.3 56.8 36.7
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Table 4.10: Explicit Euler Solver Timings Using Incremental Schedule

Size
Mesh

Number of Processors
1 2 8 16 64

3600
Mflops 4.1 7.1 16.9 17.4 -

comp/iter(s) 4.6 2.4 0.6 0.34 -
comm/iter(s) - 0.25 0.48 0.73 -

26K
Mflops - - 23.8 38.8

comp/iter(s) - - 4.5 2.3
comm/iter(s) - - 1.1 1.1

210K
Mflops - - - - 144.3

comp/iter(s) - - - - 4.75
comm/iter(s) - - - - 2.3

Performance of Optimizations on Large Scale Application

This section presents the timing results obtained from real applications that have been 

implemented on parallel machines using the runtime support. Timing data resulting from 

using both the Euler solver and the molecular dynamics code is presented.

Table 4.10 presents some timings for the explicit Euler solver [33]. These timings were 

obtained on the Intel Gamma machine. The multigrid Euler solver is also implemented, 

using the PARTI runtime support. The largest test case run so far consists of computing 

a highly resolved flow over a three-dimensional aircraft configuration. The mesh contains 

804,056 points and approximately 4.5 million tetrahedra. The explicit unstructured mesh 

code achieves a rate of 1.5 Gflops on 512 Delta processors. By comparison, the unstructured 

solver runs at about 100 Mflops on a single processor of the CRAY-YMP, regardless of 

problem size for both the explicit and multigrid schemes. Similarly, both schemes achieve 

a computational rate of about 750 Mflops, using all eight processors of the CRAY-YMP. 

A well converged solution (100 multigrid cycles) can be obtained for the three-dimensional 

aircraft configuration in about 15 minutes on the eight processor CRAY-YMP, or just under 

two hours, using a single CRAY-YMP processor. When the unstructured multigrid Euler 

code is executed, the computational rate achieved is 1.2 Gflops on 512 Delta processors,
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and the converged solution can be obtained in 10.5 minutes.

The timing data obtained for CHARMM is presented in Tables 4.11 and 4.12. Both 

an irregular block partitioning (with load balancing) and a recursive coordinate bisection 

scheme were used to partition the data. The largest input file consisted of 14026 atoms 

((MbCO +  3830 water molecules). The timings obtained are comparable to all other imple

mentations [20]. From the results, it is clear that the implementation, which uses binary 

dissection to partition the data scales better than the blocked partition implementation. 

Experiments in which the partitioning was performed based on geometry and the workload 

on each atom yielded the best results. The indirection array generated for the force cal

culation has an extremely high duplication factor. Each atom in the calculation interacts 

with hundreds of other atoms, hence the large duplication factor.
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Table 4.11: CHARMM timings using Irregular Block Data Partition
Nodes Ejxt E?int Comm3 List4 Total Eff. Speedup

1 7023.9 44.5 0.0 382.1 7459.5 100.0% 1

16 421.57 2.65 43.17 17.50 486.85 95.7% 15

32 212.47 1.34 44.68 9.06 268.43 86.8% 28

64 108.11 0.69 52.62 4.85 167.15 70.0% 45

128 53.43 0.35 62.33 2.78 119.22 48.8% 63

1 Nonbond energy: Electrostatic, van der Waals

2 Internal energy: Bond, Angle, Torsion,...

3 Total communication times

4 Nonbond list generation times

5 Efficiency for N processors is defined by the following ratio: tt- ^°r *Proc\  ^J °  (time for N processors) x N

Table 4.12: CHARMM timings using Binary Dissection Partition
Nodes Eext Eint Comm List4 Total Eff.* Speedup

1 7023.9 44.5 0.0 382.1 7459.5 100.0% 1

16 465.98 2.42 22.92 18.55 511.15 91.2% 15

32 294.85 1.21 24.58 10.08 331.42 70.3% 23

64 194.61 0.64 23.82 5.66 225.83 51.6% 33

128 101.70 1.14 25.79 3.20 132.13 44.1% 57
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L oop T ransform ations

An increasing fraction of the applications targeted by parallel computers make heavy use of 

indirection arrays for indexing data arrays. A limitation of existing techniques addressing 

this problem is that they are only applicable for a single level of indirection. However, 

many codes using sparse data structures access their data through multiple levels of indi

rection. A number of compilers have implemented the inspector/executor transformation 

of an irregular loop, so that it can be executed on a distributed memory machine. Other 

than the author’s implementation of the inspector/executor transformation the Kali com

piler [60] and the Vienna Fortran compiler [18] have also successfully implemented this 

transformation.

This section presents a method for transforming programs using multiple levels of indi

rection into programs with, at most, one level of indirection, thereby broadening the range 

of applications that a compiler can parallelize efficiently. A central concept of this algorithm 

is to perform program slicing on the subscript expressions of the indirect array accesses. 

Such slices peel off the levels of indirection, one by one, and create opportunities for aggre

gated data prefetching in between. A slice graph eliminates redundant preprocessing and 

gives an ordering in which to compute the slices. The work is presented in the context of 

High Performance Fortran.

HPF offers the promise of significantly easing the task of programming distributed mem

83
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ory machines and making programs independent of a single machine architecture. Current 

prototypes of compilers for HPF-like languages produce Single Program Multiple Data 

(SPMD) code with message passing and/or runtime communication primitives.

Reducing communication costs is crucial in achieving good performance on applica

tions [51, 53]. While current systems like the Fortran D project [54] and the Vienna For

tran Compilation system [22] have implemented a number of optimizations for reducing 

communication costs (like message blocking, collective communication, message coalescing 

and aggregation), these optimizations have been developed mostly in the context of regular 

problems (i.e., for codes having only regular data access patterns). Special effort is required 

in developing compiler and runtime support for applications that do not have regular data 

access patterns.

When irregular loops are parallelized, the off-processor data must be pre-fetched before 

the loop computation begins. If the off-processor data is not pre-fetched, data communica

tion inside the computation loop will occur, resulting in bad performance. Runtime support, 

analysis techniques, and compiler prototypes have been designed to transform loops where 

distributed arrays are accessed through a single level of indirection into inspector/executor 

pairs. During program execution, the inspector examines the data references made by a 

processor and calculates what off-processor data need to be fetched and where to store it 

once received. The executor loop then uses the information from the inspector to implement 

the actual computation.

An example for the class of kernels that can be handled by the techniques, developed 

so far, is the irregular kernel in Figure 5.1. In this example, data arrays col, x  and y 

are block distributed between processors. The t-loop iterations are partitioned using the 

HPF-directive O N -H O M E, which in this case is equivalent to  the owner computes rule 

that assigns the computation of an assignment statement to the processor that stores the 

left-hand side reference. A single level of indirection arises because data array y is indexed, 

using the array col in statement K2.

While such simple indirection patterns can be handled, many application codes have
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SU B R O U T IN E  simple(x, y, col, m, n)

IN T E G E R  i, m, n, col(m)
R E A L x(n), y(n)

!HPF$ D IST R IB U T E (B L O C K ) :: col, x, y

!HPF$ E X E C U T E  (i) O N -H O M E  x(i)
K1 FO RA LL i =  1, n
K2 x(i) =  x(i) +  y(col(i))
K3 EN D FO RA LL
K4 EN D

Figure 5.1: Kernel with single level of indirection.

code segments and loops with more complex access functions that go beyond the scope 

of current compiling techniques. In many cases, a chain of distributed array indexing is 

set up where values stored in one distributed array are used to determine the indexing 

pattern of another distributed array, which in turn determines the indexing pattern of a 

third distributed array. Such loops with multiple levels of indirection are very common 

and appear, for example, in unstructured and adaptive applications codes associated with 

particle methods, molecular dynamics, sparse linear solvers and, in some, unstructured mesh 

CFD solvers.

This section develops techniques that can be used by compilers to transform loops with 

array accesses, involving more than a  single level of indirection into loops where array ref

erences are made through, at most, one level of indirection. This transformation technique 

is presented in the context of distributed memory machines and therefore often refers to 

prefetching as “communication” or “message blocking.” However, this method is likely to 

be useful on any architecture where it is profitable to prefetch data between different levels 

of a  memory hierarchy.

The rest of this section is organized as follows: Section 5.1 gives an overview of the 

transformation technique by transforming an example code that shows two levels of indi

rection. Section 5.3 introduces some terminology that is used in Section 5.4, which gives
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SU B R O U T IN E  CSR(x, y, col, ija, m, n)

IN T E G E R  i, j, m, n, col(m), ija(n) 
R EA L x(n), y(n) 

!HPF$D ISTRIBU TE(BLO CK ) :: col, ija, x, y

!HPF$EXECUTE (i) O N -H O M E x(i)
R1 FO RA LL i =  1, n
R2 x(i) =  0
R3 DO j =  ija(i) +  1, ija(i + 1)
R4 x(i) =  x(i) +  y(col(j))
R5 EN D D O
R6 EN D FO RA LL
R7 EN D

Figure 5.2: CSR kernel -  original version.

a formal description of the algorithms and illustrates how the transformation, shown in 

Section 5.1, was derived. Section 5.4.6 concludes with a brief discussion on how to use 

incremental scheduling.

5.1 Exam ple Transformation

This section illustrates the effect of applying the transformation to the HPF subroutine 

CSR, shown in Figure 5.2. The code is based on a sparse matrix vector multiplication 

kernel and uses the Compressed Sparse Row format [92]. The matrix values are all assumed 

to be equal to zero or one. The columns associated with non-zero entries in row i are 

specified by col(j), where ya(t') +  1 < j  < ija(i +  1). For simplicity, all distributed arrays 

are distributed blockwise in this example; these techniques apply equally well to other 

potentially irregular decompositions. The indexing of y by array col causes a first level of 

indirection. The dependence of the loop bounds of the inner y'-loop on the distributed array 

ija causes an additional level of indirection. This double indirection becomes clear when
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rewriting the computation as

x(») =  y(col(ija(i) + 1 : ija (i+  1)))

for i =  1 . . .  n.

All references to the distributed array x are indexed by the loop induction variable i. 

The HPF ON-HOME construct partitions the iteration space of the FORALL loop so 

that iteration i is performed on the processor that owns x(i); there is no communication 

required for referencing x. For the other three arrays, ija, col and y, data communication 

is required. As already mentioned, keeping the total number of these communication steps 

down is key to high performance on a distributed memory machine. Therefore, only a small 

number of aggregate prefetch operations should be performed, instead of communicating 

each reference individually. This operation requires a significant amount of preprocessing to 

determine what data need to be prefetched and in which order. The code will be transformed 

so that the compiler runtime support will have access to the subscripts of all elements of 

ija, col and y that need to be prefetched from other processors. This information makes it 

possible to carry out the communication optimizations described previously, i.e., to reduce 

the volume of communication, reduce the number of messages and to prefetch off-processor 

data to hide communication latencies.

The transformed version of subroutine CSR is shown in Figures 5.3 and 5.4. For ease of 

presentation, a variation of HPF that contains additional directives B E G IN  LOCAL and 

EN D  LO CAL is used to indicate local variables. These variables do not reside in the global 

name space inhabited by the other HPF variables, but instead they exist independently in 

the local name space of each processor. In strict HPF, such variables can be emulated 

by either adding another dimension of size n$proc (the total number of processors) and 

referencing this dimension with my$proc (the id of each processor) or by manipulating 

them only through so called extrinsic functions. Except for these local variables, the whole 

code is presented in global name space, and for simplicity, it is assumed that all global to
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SU B R O U T IN E  CSR(x, y, col, ija, m, n)

IN T E G E R  i, j, m, n, col(m), ija(n)
REA L x(n), y(n)

!HPF$ D IST R IB U T E (B L O C K ) :: col, ija, x, y

!HPF$ B E G IN  LOCAL
IN T E G E R  v4, v5
IN T E G E R , ALLOCATABLE(:) ::

• vlarr, v2arr, v3axr
!HPF$ EN D  LOCAL

C COUNTING SLICE D
C Count local iterations of outer loop
C to determine size of vlarr.

T1

©II>

T2 !HPF$ E X E C U T E  (i) ON JH O M E x(i)
T3 FO RA LL i =  1, n
T4 v4 =  v4 +  1
T5 EN D FO RA LL

C COLLECTING SLICE A
C Collect “i + 1” into vlarr(l:v4).

SI A LLOCATE (vlarr, v4)
S2 v4 =  0
S3 !HPF$ E X E C U T E  (i) O N -H O M E  x(i)
S4 FO RA LL i — 1, n
S5 v4 = v4 + 1
S6 vlarr(v4) =  i +  1
S7 EN D FO RA LL
S8 C Prefetching ija(vlarr(l:v4)) goes here

C COUNTING SLICE E
c Count local iterations of inner loop to
c determine size of v2arr and vSarr.

T6 < II o

T7 v5 = 0
T8 !HPF$ E X E C U T E  (i) O N -H O M E  x(i)
T9 FO RA LL i = 1, n
T10 v4 = v4 +  1
T i l DO j = ija(i) +  1, ija(vlarr(v4))
T12 v5 = v5 + 1
T13 EN D D O
T14 EN D FO RA LL

Figure 5.3: CSR kernel -  transformed version (Part 1).
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c COLLECTING SLICE B
c Collect “j ” into v2arr(l:v5).

S9 A LLO C A TE (v2arr, v5)
S10 v4 =  0
S ll v5 =  0
S12 !HPF$ E X E C U T E  (i) O N JH O M E x(i)
S13 FO RA LL i = 1, n
S14 v4 =  v4 +  1
S15 DO j =  ija(i) +  1, ija(vlarr(v4))
S16 v5 =  v5 + 1
S17 v2arr(v5) =  j
S18 EN D D O
S19 EN D FO R A LL
S20 C Prefetching col(v2arr(l:v5) goes here

C COLLECTING SLICE C
C Collect acol(j)” into v3arr(l:v5).

S21 A LLO C A TE (v3arr, v5)
S22 v4 =  0
S23 v5 = 0
S24 !HPF$ E X E C U T E  (i) ON_HOM E x(i)
S25 FO RA LL i =  1, n
S26 v4 = v4 +  1
S27 DO j =  ija(i) +  1, ija(vlarr(v4))
S28 v3arr(v5) =  col(v2arr(v5))
S29 v5 =  v5 + 1
S30 EN D D O
S31 EN D FO R A LL
S32 C Prefetching y(v3arr(l:v5)) goes here

C ACTUAL COMPUTATION
El v4 = 0
E2 v5 =  0
E3 !HPF$ E X E C U T E  (i) O N JH O M E x(i)
E4 FO RA LL i =  1, n
E5 x(i) =  0
E6 v4 = v4 +  1
E7 DO j =  ija(i) +  1, ija(vlarr(v4))
E8 v5 = v5 +  1
E9 x(i) =  x(i) +  y(v3arr(v5))
E10 EN D D O
E ll EN D FO R A LL
E12 EN D

Figure 5.4: CSR kernel -  transformed version (Part 2).
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local address translations will be handled by the HPF compiler. Note, however, that index 

translation in the presence of indirect addressing and further complications, like irregular 

decompositions, is a nontrivial task; the code actually generated by this implementation 

assists in the address translation process.

In the example, the distributed array ija is distributed conformable to the array x (ija(k) 

is always assigned to the same processor as x(kj). Since the reference ija(i) in statement 

R3 occurs in a FORALL loop whose iteration space is aligned to the index space of x, 

this reference does not generate any communication. It is also assumed that the back end 

compiler recognizes the use of induction variable i in this reference and does not require 

any preprocessing for performing the global to local name space conversion.

The references ija{i +  1), col(j), and y(col(j)), however, may require preprocessing. In 

general, for a reference of the form arr(subaat), the preprocessing may perform the following:

• It must collect all values of su&0*t used by a processor in order to prefetch the data 

referenced in arr(subatt) en bloc. In some cases, preprocessing is also carried out to 

reduce communication volume through recognition of duplicate references in suba,t.

• It has to provide a mechanism to access the prefetched data during the actual com

putation.

Here, suba)t stands for the Abstract Syntax Tree (AST) index of the subscript. Note that 

while this index is different for each reference in the program, the value numbers of these 

references may be identical, even for subscripts that might textually appear different.

In the transformed code, the statements proceeding the actual computation (in E l . . .E12) 

perform this preprocessing. Statements S8, S20 and S32 indicate opportunities for aggre

gated prefetching of the data required for references ija(i + 1 ), col(j) and y(col(j)), respec

tively. For the CSR kernel, it is assumed that subscript reuse is relatively low. Therefore, 

the prefetching and indexing are performed via temporary trace arrays that store global in

dices and are themselves indexed through counters that are incremented with each reference. 

Alternative mechanisms are described in Section 5.4.2.
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The first prefetch statement, S8, brings in the trace of the reference ija(i + 1). State

ments T l . . .T5 and S I .. .S7 perform the preprocessing necessary for the prefetch. Since this 

example is basing the prefetching mechanism on temporary trace arrays that have to be 

allocated dynamically, the size of the trace, i.e., the number of references has to be deter

mined first. This size is computed and stored in v4 by statements T l . . .T5. Statement SI, 

then, allocates the local array vlarr, which has been declared ALLOCATABLE. Statements

52 .. .S7 generate and store the trace into vlarr. Finally, the prefetching operation in S8 

brings in all the non-local data and stores them in the right locations of the array ija. This 

process might require resizing the array ija to store the off-processor data. For the purpose 

of this example, it is assumed that storing of the off-processor data in the resized ija array 

is such that they can be referenced in global coordinates.

The next potential communication is generated by the prefetching statement, S20, which 

collects on each processor the off-processor references to col(j) in statement R4. Statements

510.. .S19 collect the trace of the value j  indexing the array col into the local array vSarr. 

Note that in the expression for the upper bound of the j'-loop, array ija is no longer indexed 

by (i +  1) but by the trace vector vlarr generated in statements S4.. .S7. The statements 

T 6 .. .T14 in Figure 5.3 compute the size of the array v2arr into the local scalar v5. The 

array v2arr, like vlarr has been declared ALLOCATABLE in statement S9.

The values of y that are required on each processor at statement R4 are communicated 

in the prefetching statement S32. The trace of the values that index y is done in statements

522.. .S31 and it is stored in the dynamic local array vSarr. Note that the number of 

references to y(col(j)) is the same as the number of references to col(j); therefore, the size 

of v3arr is the same as the size of v2arr. Hence there is no need for any additional code to 

find out the size of vSarr, instead, the already computed local variable v5 that stores the 

size of v2arr can be used. Note also that in statement S28 the array col is referenced by 

the local array v2arr, which stores global indices, instead of being referenced by j .  After 

the execution of statement S32, all processors have the required values of y  in their local 

memories.
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The actual loop computation is performed in statements E l . . .E ll. During this compu

tation, no communication is required because everything that is necessary on each processor 

has already been fetched. To summarize, the original code shown in Figure 5.2 has been 

transformed into the code in Figures 5.3 and 5.4 and the transformed code does all the 

necessary data communication in phases after several preprocessing steps. Within the dif

ferent loops in the transformed code, all distributed arrays are referenced by at most one 

level of indirection and require no data communication.

In the CSR kernel example, there is no assignment to the indirection array. If there is an 

assignment inside the compute loop, the method will work and this process will be explained 

when the slice generation process is described. The method suggested here is completely 

general and will work for all cases though it might not produce the most efficient code when 

an assignment to the indirection arrays exists at the innermost loop.

If the program CSRJnit was executed on a shared memory multiprocessor which has 

no memory hierarchy (i.e., there is only one main memory and memory access time to read 

consecutive words, is the same as the time required to read two words at arbitrary locations), 

then the transformation presented here becomes redundant. But for all real machines this 

is not the case, hence such a transformation which prefetches data into contiguous locations 

helps to speed up the computation.

5.2 Prelim inaries

In this section, some of the compiler terminology that will be used in the description of the 

algorithm is clariiied.

A b s tra c t S yn tax  Tree: After the parser analyzes the program, it maps it onto a tree 

structure called the Abstract Syntax Tree. The program analysis and transformation 

is done on the AST, and this goes into the backend of the compiler. An AST node is 

generated for every basic element of the input code.
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Value Number: An abstract value graph is generated for the code that is being paral

lelized. Value numbering is a symbolic analysis tool that can be effectively used to do 

subexpression elimination during code optimization. A value is given to each node of 

the abstract syntax tree. Analysis is done so that, if it can be guaranteed that two 

variables (syntactically different) will have the same value during program execution, 

they will have the same value number in the value graph.

51 A = 5

52 B = 5

53 C = A +  B

54 D = B +  A

In the value graph for the above piece of code variables C and D will have the same 

value number, even though they are syntactically different.

5.3 Definitions

This section introduces some concepts that will be used in the algorithms in Section 5.4.

A Slice is a tuple

■S =  (^uni &targeti ̂ codei &identi ̂ <fep_jet[> ̂ cnt_tm])

that contains a value number svn, a designated program target location s*orjet, a sequence 

of statements an identifier s^ent, a dependence set SdepMt, and optionally another 

value number s There are two types of slices:

• A collecting slice stores the sequence of values (trace) that are assigned to a variable 

(e.g. Figure 5.2: statement R3 reference i +  1; statement R4 reference col(j)) during 

the execution of the program in some data structure identified by s,-jent. The type of 

the data structure is determined by the degree of subscript reuse within the trace of 

the subscript, as described in Section 5.4.2. Examples of collecting slices are shown in
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Figure 5.4. Two slices B  and C, shown in statements S9-S19 and S21-S31 respectively, 

are collecting slices.

• Counting slices are created from the collecting slices; they calculate the size of the 

subscript trace that will be generated during the execution of the collecting slice. A 

counting slice is needed if the collecting slice requires the size of the trace it is to 

record (for example, preallocating a data structure to store the trace). Examples of 

counting slices are shown in Figure 5.3. The two slices, D and E  shown in statements 

T1-T5 and T6-T14 respectively, are counting slices.

Each of the slices has the following properties with respect to the original program P:

• Inserting sC0(je at starget in P  is legal; i.e., it does not change the meaning of P. The 

Scode is similar to a dynamic backward executable slice [99].

• After executing sCO(fe> sident will have stored the values of sv„.

• If s is a collecting slice, then swn will be the value number of a subscript subast of a 

nonlocal array reference arr(subatt) in P, and s,denl will store the sequence of all the 

values that subaat will be assigned during the execution of P. Note that the length of 

this sequence depends on the location in the program, which is given by starget- For 

example, if s*arael is the statement of the reference itself, then the sequence consists 

of only a single subscript. If starget is the header of a loop enclosing the reference, 

then the sequence contains the subscripts for all iterations of the loop.

• If counting slices are computed, then Scnt_vn will be the value number of the counter 

indexing Sijent after execution of scoj e is finished; i.e., the value of Scnt-un will be the 

size of the subscript trace computed in a,de„t.

• If s is a counting slice, then there exists a collecting slice t for which svn = tmt.vn 

and starget =  t̂arget- St'dent will store the size of the subscript trace computed in 

Udcnt- Since s,-dent corresponds to a single value, smt_m  will be the value number 

corresponding to the constant “1.” Note: starget =  Uarget because otherwise too many
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(for ^target preceding ttarget) or too few (for starget succeeding ttarget) subscripts may 

be counted.

• The sjepset stored in each slice is a set of AST indices of subscript variables that need 

runtime processing. Only the references in s cotie that require runtime processing are 

considered when the SdepMt is created.

A Slice Graph is a directed acyclic graph

G = (S ,E )

that consists of a set of slices S  and a set of edges E. For s , t  € S, an edge e =  (s ,t)  € E  

establishes an ordering between s and t. The presence of e implies that tco* contains a 

direct or indirect reference to suent and therefore has to be executed after scode• G has to 

be acyclic to be a valid slice graph. Note that the edges in the slice graph not only indicate 

a valid ordering of the slices, but they also provide information for later optimizations. For 

example, it might be profitable to perform loop fusion across slices; the existence of an edge 

between slice nodes, however, indicates that these slices cannot be fused.

A Subscript Descriptor

Sub a at =  (su6un, subtarget)

for the subscript subaat of some distributed array reference consists of the value number 

of subaat i subvn and the location in P, where a slice generated for sub should be placed, 

subtarget■ The algorithm will generate a slice for each unique subscript descriptor cor

responding to a distributed array reference requiring runtime preprocessing. Identifying 

slices by subscript descriptors is efficient in that it allows a slice to be reused for several 

references, possibly of different data arrays, as long as the subscripts have the same value 

number. It is conservative in that it accounts for situations where different references might 

have the same subscript value number but different constraints with respect to prefetch 

aggregation that corresponds to different target nodes.
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5.4 The A lgorithm

This section gives a description of the algorithm to perform the transformation shown in 

Section 5.1. The algorithm consists of two parts: The first part, described in Section 5.4.1, 

analyzes the program and generates the slices and the slice graph. The second part, de

scribed in Section 5.4.5, uses the slice graph to do the code generation.

5.4.1 Slice Graph Construction

The procedure G enerate_slice-graph(), shown in Figure 5.5, is called with the program P  

and the set of subscripts R  of the references that need runtime preprocessing, i.e., the 

irregular references. It returns a slice graph consisting of a set of slices S  and edges E . This 

procedure first generates all the necessary slices and then finds the edges between these 

slices.

The Foreach statement in A 4.. .A8 computes a subscript descriptor (subvn,subtarget) for 

each subscript AST index subast. It is assumed that P  has an associated value number 

table that maps AST indices to value numbers. Lookup_vaLnum ber() uses this table to 

compute subvn from suba,t. G en_target() maps the AST index subaat to the target node 

sub target for the slice generated, starting from that AST index. The constraints on subtaTget 

are the following:

• In the Control Flow Graph (CFG), subtarget predominates the reference subaat; i.e., 

it is guaranteed that su b target will be executed before subast is used to reference its 

data array orr.

• There is no modification of the data array arr between subtarget and subaat.

• Any code inserted at subtarget is executed as infrequently as possible.

G en_ target() implements these constraints using a Tarjan interval tree [1] and array MOD 

information; starting at the node corresponding to the reference, it walks the interval tree 

upwards and backwards until it reaches a modification of arr.
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P ro ced u re  Generate-slice.graph(P, R)

/ /  P: Program to be transformed
I I  R: A S T  indices of subscripts of references
/ /  that need runtime preprocessing

A1 S  := 0 / /  Slices
A2 E  := 0 / /  Slice ordering edges
A3 U := 0 / /  Subscript descriptors

/ /  Compute subscript descriptors.
A4 Foreach suba,t € R
A5 suft,,,, := Lookup_val_number(su6OJt)
A6 subtarget •= Gen-target(su6aJj)
A7 U := ^  U {(5ix6un) su6jarj ej)}
A8 Endforeach

/ /  Compute slices.
A9 Foreach sub € 17 
A10 s := Gen_slice(su6)
A ll S  := S-Uls}

/ /  The following steps are executed 
/ I  iff counting slices are required.

01 t := Lookup-Slice(S, (smt.m , S t a r g e t))
02 I f f  =  0 T hen
03 t  := Gen-slice(scnt_„n, Starget)
04 5  := S  U {0
05 E  := J5U{(i,s)}
06 E nd if

A12 E nd if
A13 Endforeach

/ /  Compute edges resulting from 
I I  dependence sets of slices.

A14 Foreach 3 € S
A15 Foreach subast € s</ep_«t
A16 subvn := Lookup_val.number(su6aat)
A17 subtarget '= Lookup.target(su60,()
A18 t := Lookup.slice(5, (subvn, su6torjei))
A19 E  := £ U { (i,s )}
A20 E ndforeach
A21 Endforeach

A22 R e tu rn  (S ,E )

Figure 5.5: Slice graph generation algorithm.
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The next Foreach statement in A 9.. .A13 iterates through the subscript descriptors 

sub £ U and generates for each subscript descriptor both the collecting slice s and, if needed, 

the counting slice t. Gen_slice() takes a subscript descriptor sub = (subvn,subtarget) 

and generates for location subtarget the slice that computes the values corresponding to 

subvn. The slice generation function uses the program’s CFG and the SSA (Static Single 

Assignment). Roughly speaking, Gen_slice() follows the use-def and control dependence 

chain starting in suba,t until it reaches subtarget•

If the size of the subscript trace recorded in s (e.g., for allocating trace arrays) is required, 

then the statements 0 1 .. .06, a counting slice t for each s, is executed. However, different 

collecting slices can share a counting slice, if they have the same counter value number 

submt_vn and target location subtarget- Therefore, the set of already created slices must first 

be examined. Lookup_slice() takes as input a set of slices S  and a subscript descriptor 

sub, and returns the slice t £ S  corresponding to sub if there exists such a f; otherwise, it 

returns 0. If a counting slice has not yet been created, a new counting slice t is generated. 

Since the counting slice t must be executed before the collecting slice s, a directed edge 

(t,s )  is added to the edge set E.

The nested Foreach statements in A14.. A.21 are used to find the directed edges resulting 

from the dependence sets in each slice. The outer Foreach iterates through the slices s and 

the inner one loops through the references subref  stored in the dependence set Sdep_,e< of s - 

All the relevant information has already been generated previously; therefore, these loops 

only have to consult tables to complete the set of edges.

The slice graph corresponding to the transformation example, done in Section 5.1, is 

shown in Figure 5.6. There are five nodes in the slice graph, of which nodes A, B and 

C contain collecting slices, while nodes D and E contain counting slices. Note that the 

collecting slices B and C share the counting slice E, which reflects that the number of 

references to y(col(j)) is the same as the number of references to col(j).
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v4 = 0

i
, - " T

I
II

i!HPF$ EXECUTE (i) ON HOME x(i)
FORALL i = 1, n 

v4 = v4 +1 
ENDFORALL

v4 = 0
!HPF$ EXECUTE (i) ON HOME x(i) 

FORALL i = 1, d  

v4 = v4 +1 
vlatr(v4) = i + l 

ENDFORALL A

v4 = 0 
v5 = 0

!HPF$ EXECUTE (i) ON HOME x(i) 
FORALL i = l ,n  

v4 = v4 +1
DO j = ija(i) +1, ijafi+1) 

v5 = v5 + 1 
v2arr(v5)=j 

ENDDO 
ENDFORALL B

\

. . i f ___________________
v4 = 0 
v5 = 0

•!HPF$ EXECUTE (i) ON HOME x(i)| 
FORALL i = 1, n 

v4 = v4 +1
DO j  = ijafi) +1, ijaO+1) 

v5 = v5 +1 
ENDDO 

ENDFORALL E
 ,----------------

i i ■ i

v4 = 0 
v5 = 0

!HPF$ EXECUTE (i) ON HOME x(i) 
FORALL i = 1, n 

v4 = v4 +1
DO j = ija(i) +1, ijaO+1) 

v5 = v5 +1 
v3air(v5) = col(j)

ENDDO 
ENDFORALL C

Figure 5.6: Example of a Slice Graph.

5.4.2 Trace Management Schemes

Precomputing the subscript trace has been defined so that prefetching can be performed. 

Before actually generating code, however, decision has to be made regarding the data struc

tures to be used for first recording the traces to prefetch nonlocal data and then accessing 

these prefetched data. The example presented in Section 5.1 used temporary trace arrays 

for performing both of these operations. It turns out, however, that this is just one of several 

options, and there are different tradeoffs involved depending on the characteristics of the
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subscript traces. Consequently, when generating the statements scode of a slice s, the code 

for manipulating these data structures is not included, i.e., the counter initializations and 

increments or the assignments into trace arrays. Instead, place holders for these operations 

are included and the generation of these statements are delayed until the slice instantiation 

phase.

Let T  be the size of the trace, i.e., the number of times a subscript is evaluated with 

respect to the target location of the slice; let R  be the number of unique elements in T, 

and let N  be the global size of the subscripted array, i.e., the number of different subscripts 

possible. Note that R <  N , R < T  must hold.

5.4.3 Case 1: Low subscript reuse

In this case, which is characterized by R  «  T , each subscript typically appears at most 

once in the trace produced by the slice. A possible example is the CSR kernel described in 

Section 5.1. Here it is reasonable to use a dynamically allocated array th a t is indexed through 

a counter incremented with each reference. This array can be used both for precomputing 

the subscripts and for looking them up during the actual computation. Since each subscript 

must be stored individually, the space requirements are 0 (T ). Usually counting slices must 

be generated to perform the dynamic allocation of the arrays. The time per access, however, 

is only 0(1).

5.4.4 Case 2: High subscript reuse

This case is characterized by R<T; each subscript typically appears several times in the 

trace produced by the slice. An example of this is the pair list used for the non-bonded 

force kernel in molecular dynamics applications. Since each atom interacts with many 

other atoms, it appears many times in the pair list. Here some set representation, like 

a hash table, which collects subscripts and stores each of them at most once, would be 

an appropriate trace recording mechanism. Using a hash table to store off-processor data 

values was first introduced in [52]. The space requirements are only O(R), and counting
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slices are not needed. The time per access, however, will be 0(log(Ji)) for most common 

set representations.

As a subscripting mechanism in the actual computation, some dictionary representation, 

can be used, like a hash table (of a different kind than the one used for representing sets), 

that maps global indices to local indices. This typically requires space O (N ) and C?(log(JV)) 

time per access.

An alternative subscripting mechanism is a “global shuffle,” where, roughly speaking, 

everything is translated to local coordinates, including the subscripting arrays themselves. 

The space requirements would be at most O (N ), depending on how much data a processor 

needs locally and whether things can be shuffled in place or not. The time per access would 

be 0 (1).

5.4.5 Code generation

The code generation algorithm is shown in Figure 5.7. The procedure Gen_code() takes 

as input the original program P  and the slice graph consisting of slices S  and their order

ing E. Gen_code() traverses the program and changes the subscripts of all the references 

that required runtime preprocessing. The function In stan tia te_p rog ram () takes the pro

gram P  and the set of slices S  and replaces the subscripts in P  on which preprocessing has 

been performed, with accesses to data structures defined in the preprocessing phase. The 

program instantiation depends on what type of data structure is used to store the trace of 

subscripts in the collecting slices, as discussed in Section 5.4.2.

Topological_sort() performs a topological sort of the slice graph, so that the partial 

order given by the directed edges in E  is maintained during generating code for the slices 

in S. The Foreach statement in C3.. .C6 iterates through the slices 5 . Instan tia te_slice() 

is similar to Instantiate_program(), but instead of a program P, it takes a slice s. However, 

it not only replaces subscript references but also adds the code mentioned in Section 5.4.2 

for collecting the subscript trace. Accordingly, this instantiation, like the program instan

tiation, depends on the type of data structure that is used to store the subscript trace of



CHAPTER 5. LOOP TRANSFORMATIONS 102

P ro ced u re  Gen_code(P, S , E)

C l Instantiate.program(P, S)
C2 Topological-sort^S, E)
C3 Foreach s € S  
C4 Instantiate_slice(s, 5)
C5 Insert_code(P, sC0(je, starget)
C6 E ndforeach

C7 R e tu rn  P

Figure 5.7: Code generation algorithm.

the references that affect the computation in this slice. After s has been instantiated, In- 

sert_code() inserts scoj e into the program at the target location s target- The transformed 

program is returned to the calling procedure.

In the CSR example in Section 5.1, it is assumed that the subscript traces are stored 

in dynamically allocatable arrays. The instantiation routines add the code for maintaining 

and referencing these arrays to the slices in the graph presented in Figure 5.6. A topological 

sort on the graph yields the node order to be D, A, E, B and C; this is the same order in 

which the slices appear in the transformed code in Figure 5.5. For each of the slices, the 

subscripts of the references requiring runtime preprocessing present in the slice are changed 

to the local array that stores a trace of the subscript. At runtime the trace must already 

have been generated because an edge from the node exists where the trace was created to the 

node where it is being used. The slice is substituted in the program before the slice target 

node. Note that the topological sort order is unique; this indicates, for instance, that there 

is no loop fusion possible in the example. Note also that the transformed code in Figures 5.3 

and 5.4 would be equally valid without having the subscripts of the references ija(i + 1), 

col(j) and y(col(j)) replaced with references to trace arrays. However, this replacement 

makes the subsequent task of translating global indices to local indices simpler; instead of 

having to modify user declared variables and subscript arrays, it is sufficient to translate 

the trace arrays.
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5.4.6 Using Incremental Scheduling

The use of incremental schedules makes it possible to avoid retransmission of unchanged 

distributed array references. Proper use of incremental schedules can have a marked effect on 

the communication time. The generation of incremental schedules can be carried out in two 

passes. A compiler first generates an inspector and executor for loop L with full schedules. 

During the second pass, some full schedules are replaced with incremental schedules.

Substantial analysis must be carried out if incremental schedules are used to eliminate 

duplicate data communication between loops. For this, comprehensive information about 

the program behavior is required. To use incremental scheduling, the following must be 

known:

• when off-processor data copies become invalidated by new assignments, and

• which communication schedules have been already invoked by the time one reaches a 

distributed array reference.

Such information will be available if one performs a global data flow analysis. Global 

dataflow analysis has been investigated for the purpose of incremental scheduling together 

with researchers from Rice University [46].



C hapter 6

Im p lem en ta tion  Issues

This chapter covers some of the details about the loop transformation implementation 

accomplished by using the infrastructure developed for the Fortran D compiler project, at 

Rice University. An implementation of the transformation algorithm presented in Chapter 5 

has been completed and further improvements are being carried out.

The Fortran D compiler environment has been chosen for implementation of the trans

formations because of the availability of various symbolic analysis tools. A brief description 

of these tools and how they were utilized to perform the transformations is included in 

this chapter, which is divided into three sections. Section 6.1 covers the symbolic analysis 

tools, followed by the section describing program slicing and how it is utilized to perform 

inspector generation. The last section gives a high-level description of the implementation 

already completed.

6.1 Sym bolic Analysis

Symbolic analysis helps to perform various types of code transformations to vectorize or 

parallelize a given code. It is a powerful analysis tool that allows one to perform various 

code optimizations [1], such as common subexpression elimination, detection of loop invari

ant computation, code motion to move invariant to preheader of loop, induction variable 

elimination, etc. This section offers a brief description of the various symbolic analysis tools
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utilized in this work.

Two types of dependencies exist in programs: data dependence and control dependence. 

These dependencies are best explained by using examples.

51 A = B +  C

52 D = C * A

The execution order of these two statements has an effect on the calculated value of the 

variable D. Switching the order of the statements will give variable D an incorrect result. 

In such a case, a data dependence exists between statements SI and S2. Data dependencies 

can be further subdivided: true, anti and output dependencies [4].

51 if (A) then

52 B = C + D

53 end if

In the above case, the value of variable A decides whether statement S2 will be executed 

or skipped. In such cases, there exists a control dependence between statements SI and S2. 

However, control dependence can always be replaced by an equivalent data dependence [4].

The control flow graph (CFG) is a DAG that represents the flow of control between the 

basic blocks of a program. A basic block is a sequence of statements with a single entry 

pad (first statement) and a single exit pad (last statement). Branching statements cannot 

be present in the basic block. In the representation of CFG used here, a graph node is 

generated for each basic block that may contain zero or more statements. There is a special 

E N T R Y  node that has no incoming edges but one or more outgoing edges to each entry 

point of the program. There also exists a special E X I T  node that does not have any out 

edges but has a number of incoming edges from each exit point of the program. For any 

node 6,- in this graph, there exists a path from E N T R Y  to 6,- and a path from 6, to  E X IT .  

Hence,

CFG = (V ,E ),
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SI a = 1 Tl ai = 1

S2 b = 2 T2 bj = 2

S3 if (a) then T3 if (ai) then

S4 b = b + 2 T4 b2 = bi + 2

S5 end if T5 end if

S6 c = b + d T6 i>3 = 0(bi, b2)

S7 a = a - c T7 ci = b3 + di

T8 a2 = a2 - ci

Figure 6.1: Program fragment and SSA form

where V  =  {bi,b2 , . .. ,bn,E N T R Y ,E X IT } , b\,b2 ,- • - ,bn represent the nodes correspond

ing to the basic blocks and E  is the set of edges. For bj € V, an edge e =  (6,-, bj) € E, 

establishes a flow of control from block 6,- to block bj.

The program dependence graph (pdg) [38] provides an intermediate representation of 

the program. Each statement in the program is a node in the pdg. When there is an edge 

from node A to node B, there exists either a control dependence or a data dependence 

between the statement represented by node A and the statement symbolized by node B.

The static single assignment (SSA) form of the pdg is generated by introducing a new 

symbol for each definition of a variable in the pdg. Cytron et al. [31] suggest a method to 

generate the minimal SSA form for a given program. When many definitions for a variable 

reach a particular node, a 0-function is introduced for tha t variable at that node. The 

0 -function represents a  special type of function tha t takes a  variable number of arguments 

as input and outputs a single value. The net effect of introducing a 0-function at a merge 

node is that only a single incoming value will pass through. The variable for which the 

^-function is introduced, is assigned the return value of the function. Since renaming every 

new assignment is not very practical because of the obvious limitations in the size of the 

symbol table, most implementations provide def-use [1] links for each of the new definitions.
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Special ^-functions are inserted at points where more than one definition of a variable 

reaches a node. If more than one control flow edge is incident on a node, there is a possibility 

that more than one definition of any variable reaches that node. The placing of ^-functions 

is a non-trivial problem because minimal number of them are to be generated for each of the 

program variables. Even though placing unnecessary ^-functions may generate a correct 

SSA form, it adds overhead to the optimization or transformation process for which the SSA 

form is used. The minimal SSA form can be generated by calculating the dominator [1] 

information. Consider two nodes 6; and bj in a program dependence graph. At the node 

b{ a  variable a is defined and is used in some computation in bj. If the only path to  node 

bj from E N T R Y  has to pass through 6;, then 6; is said to strictly dominate bj. When 6,- 

strictly dominates bj, the value of the variable a that reaches bj has to come from 6,-. Hence, 

in this case a ^function for a is not needed before entrance to bj. For instance, if there were 

other paths from E N T R Y  to node bj, and the path through 6; was just one of the many, 

then bj would be in the dominance frontier of 6,-. In this case, not only does the definition 

of a in b{ reaches bj but also other definitions of a reach bj. Hence, a <£-function for a just 

before the entrance to bj is required. Calculating the dominance frontier information helps 

generate the minimal SSA form.

Figure 6.1 shows two versions of the same piece of code. Statements S1-S7 present 

the original version of the code. Statements T1-T8 depict the SSA form of the code. In 

statement T 6, a ^-function has been placed because two definitions of the variable b were 

reaching statement S6 (code in original form). All variables have been renamed so that only 

a single assignment is made to each variable.

Various definitions reach the merge nodes (^-function nodes) in the SSA form of the 

pdg. The information reaching the ^-function nodes are the different values. H the control 

flow information is also made to be an input to these ^-functions, then one can interpret 

which values will be assigned at these merge nodes. The problem is solved by using a gated 

single assignment form of the pdg [9]. The gated single assignment form replaces the original 

(^functions with gating functions, which carry enough control information to interpret the
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values at the merge nodes. There are three types of gating functions introduced. They are 

as follows:

7 : The 7 -functions are introduced to capture the if-then-else condition. The ^-function, 

shown in statement T 6 in Figure 6.1, would be replaced by a function such as 7 (ai, 

b2, bi). Hence the statement T6 in Figure 6.1 would be replaced by the following 

statement:

T6 b3 =  7 (ai, b2, bx)

When the value of ax is true, then b3 will take on the value b2. The gated single 

assignment form gives far more information than the original ^-functions.

p : The /i-functions are used to analyze the value flows inside a loop. These functions 

are generated for each of the variables defined inside the loop body. They are placed 

at the loop header and the function has three arguments: The first argument is a 

predicate that determines whether control will pass into the loop body; the second 

argument is the definition of the variable that is entering the loop before any iterations 

have been executed; the third argument is the definition of the variable that reaches 

the loop header after a complete iteration.

i] : These function are placed at the loop exit, and they return the loop exiting definition 

of a variable. An 77- function is placed at the loop exit for each of the definitions that 

flow out.

For this implementation, a variant of the gated single assignment form of the pdg called 

the thinned gated single assignment (TGSA) form has been used. The TGSA form of the pdg 

was developed at Rice University [48, 49,47] and is part of the Parascope [29] environment.

6.2 Program Slicing

Program slicing is a source to source transformation technique suggested by Weiser [103]. 

The transformation finds every statement in a program that affects the value of any variable
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51 Input a,b

52 if (a) then

53 a = a - b

54 b = b - a

55 if (a) then

56 a = a + 5

endif

endif

57 Output a

58 Output b

Figure 6.2: Code for Program Slicing

at any point in the program. A point in the program may be defined as an expression 

in any statement in the program body. The program slice that is generated for some 

expression £  in the program, when executed, should evaluate expression (£) values identical 

to that of the original program for all inputs. Program slicing can be effectively used 

for analysis, debugging, testing of programs, parallelization and automatic integration of 

program version. A program slice is defined with respect to a statement S  in program V  

and an expression £  in <S, as the statements and predicates of S  that might effect the value 

of £  in S . Slicing criteria of a program V  is a, tuple (S ,£ ), where S  is a statement of the 

program V , and £  is an expression in the statement S.

Programs can be thought of as multiple threads, each of which computes a  particular 

variable. These threads may or may not overlap one another. During program slicing, the 

thread for the variable based on which the slicing is being performed is found. Construction 

of program slices is complicated by nested structure. For a straight line code with no 

intricate control structures, one has to follow the use-def chains to get a complete slice. 

Since most programs have many control structures, a sophisticated version of the use-def
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51 In p u t a,b

52 if  (a) th e n

53 a =  a - b

55 if (a) th en

56 a =  a +  5

e n d if

en d if

Figure 6.3: Slice for Slicing Criteria : (57, a)

chaining mechanism is required.

For a given program, a number of slices based on different slicing criteria can be gener

ated. There always exists at least one slice for a given program and a slicing criteria, i.e., the 

program itself. It is desired that a slice of a program for a given slicing criteria be statement 

minimal. For a given program, V  and a  given slicing criteria C, the generated slice 5  is said 

to be statement minimal, if no other slice for C on V  can be generated with a lesser number 

of statements. Proving that a slice is a statement minimal slice is undecidable. Weiser 

in his informal proof reduces the halting problem to that of finding a statement-minimal 

slice [103].

Figure 6.2 depicts the program to be used for program slicing. There are two variables 

in the program namely, a and b. Two different slicing criteria will be used to generate 

the slices. Figure 6.3 depicts the slice generated when the slicing is performed, based on 

statement S7 and variable a. The slice shown in Figure 6.3 has been generated by removing 

statements S4, S7 and S8 from the original code. The removed statements do not have any 

bearing on the value of the expression based on which the slicing is performed. Statements 

S i, S3 and S6 are introduced into the slice because variable a is being assigned a new 

value in these statements. Statements S2 and S5 are introduced into the slice because of 

control dependence. The conditional in statement S2 controls the assignment to variable
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51 In p u t a,b

52 if  (a) th en  

S4 b = b - a

end if

Figure 6.4: Slice for Slicing Criteria : (S8 , 6)

a in statements S3 and S6. The conditional in statement S5 controls the assignment to 

variable a in statement S6 .

Figure 6.4 depicts another program slice in which slicing is done based on statement S8 

and the variable b. Note that the slice has substantially fewer statements compared to the 

slice shown in Figure 6.3. Figure 6.2 shows that variable b has been used in statements S3 

and S4. In statement S3, variable b is used but not defined, hence it is not included in the 

slice. On the other hand, statement S4 is where b is being defined, hence it is included in the 

slice. Statement S4 is executed if the value of the conditional in statement S2 is computed to 

be true. Statement S2 is introduced into the slice because of control dependence; statement 

Si is present in the slice because it reads in the value of the variables a and b.

6.3 Program Slice Generation

From the algorithms described in Chapter 5, it is known that the generation of slices is a 

very important part of the transformation process. For every node in the slice graph, a slice 

must be generated. Popular dataflow algorithms [103] can be used to generate slices but 

the process is very time consuming. Generating slices efficiently can be done by using the 

pdg [55].

A pdg, for the example program shown in Figure 6.2, is depicted in Figure 6.5. Each node 

in the pdg represents a statement in the program. The nodes are marked by the statement 

numbers. All data dependencies in the program are shown by the solid arrows, while the
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S2

Figure 6.5: Program Dependence Graph for Slicing Example
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control dependencies are shown by the dotted arrows. Using the pdg the slice shown in 

Figure 6.3 can be easily generated. Starting from node S7 (Slicing criteria : (57, a)), all the 

reaching definitions of the variable a are found and they are nodes S6 , S3 and SI. Starting 

from each of the new nodes, all the nodes that are reachable are gathered. The complete 

set of nodes provides the slice. Starting from S6, nodes S5 and S3 can be reached. Again 

starting from node S3, S2 and Si are reached. At this point, all nodes reachable from S6, 

S3 and SI have been collected, and they are the nodes SI, S2, S3, S5 and S6. The different 

nodes represents the slice.

Similarly to generate the slice shown in Figure 6.4, starting from node S8 (Slicing criteria 

: (58,6)) all the reaching definitions of the variable b are found. Starting from node S8, 

nodes S4, S2 and SI can be reached. Hence the slice is given by nodes SI, S2 and S4. It 

follows that slice generation becomes a problem of simple graph traversal.

The program slicer that has been developed takes as input an abstract syntax tree 

(AST) node and a pdg. The AST node is equivalent to the slicing criteria. The AST node 

is mapped onto its corresponding node in the pdg. Starting from this node, all reachable 

nodes are found. Each new node encountered becomes a part of the slice. Use-def (ud) 

chaining [1] must be performed to find all of the reaching definitions. In conjunction to ud- 

chaining, the control dependence paths are followed to get a  complete slice. The slice must 

be generated so that it can be placed (the target node) at the beginning of the procedure 

without changing the meaning of the program. Generation of a slice where the target node 

is at the beginning of the procedure fails, when there is a statement 5  which modifies a 

distributed array and the statement also happens to be part of the slice being generated. 

In this case, the node T  in the graph whose predominator is the node corresponding to 5  is 

found and made the target node. Having this constraint imposed on the generation of the 

target node allows working with any type of irregular code.
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6.4 Transformation Im plem entation

This section includes a high level description of how the transformation discussed in the 

previous chapter has been implemented. The actual transformation uses the different tools 

that were described in this chapter. The transformations have been implemented in the 

Parascope environment. The regular part of the Fortran D compiler analyzes the input code, 

collects the array references it cannot handle and calls the irregular part of the compiler.

The set of irregular references are passed to the slice graph generation procedure. Each 

unique slice and its target node become a node in the slice graph. After the nodes in the 

slice graph have been built, the edges of the graph are generated using the dependencies 

that exist between the slices. A topological sorting routine is called with the generated slice 

graph. After the sorting, inspector/executor pairs are created for each of the nodes in the 

slice graph.

Various loops with more than one level of indirection have been run through the trans

formation process. Progress is being made to further generalize this method and generate 

a more robust implementation.
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C on clu sion  and F uture W ork

The work presented here explains in detail the type of compiler support and transformation 

techniques required to parallelize irregular programs written in data parallel languages. The 

information provided here will be invaluable to anyone writing a parallelizing compiler for 

irregular problems. This chapter summarizes the contributions made by this dissertation 

followed by the direction of future research.

7.1 Contributions o f this Thesis

There has been some preliminary work in the area of automatic parallelization of irregular 

problems [60]. Tools have been developed to generate inspector/executor pairs, but they 

lack the optimizations necessary to  parallelize any real application codes. The contributions 

of this thesis have been in two different but related areas. They are:

•  A compiler runtime compilation system has been designed and developed to help 

parallelize irregular loops.

•  Transformation techniques have been suggested that allow for automatic paralleliza

tion of real irregular applications.
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7.1.1 Development of Compiler Support

An efficient runtime compilation system has been designed and implemented. The compila

tion system is comprised of a set of highly optimized tools that can be used to automatically 

generate inspector/executor pairs for irregular loops. A variety of different irregular appli

cation codes were studied and, based on experience with these codes, tools were developed.

The development of software caching methods is an important contribution of this work. 

Techniques have been developed for caching off-processor data. Incremental scheduling is an 

important concept that has been developed to optimize off-processor data caching. There 

axe a number of application codes (especially particle codes) that would be nearly impossible 

to parallelize on the available distributed memory hardware without using the basic ideas of 

incremental scheduling. Compiler transformations designed to use incremental scheduling 

automatically were developed as part of a joint project with a group at Rice University [46] 

but have not been presented in this dissertation.

A highly scalable global to local address translation mechanism has been developed. This 

addressing uses a paged distributed translation table, which stores all required information. 

This mechanism will be useful when parallelizing highly adaptive irregular application codes. 

This thesis presented a detailed performance analysis of the various tools, using both a 

synthetic workload generator and a number of actual application codes. The parallelization 

of the actual application codes was done to show the efficiency of the methods developed 

here.

7.1.2 Compiler IVansformation

This dissertation presented a method to automatically parallelize irregular applications for 

execution on distributed memory machines. This operation is accomplished by transforming 

irregular loops into inspector/executor pairs. The generation of inspector/executor pairs for 

loops with a single level of indirection has been accomplished by both this author and other 

researchers [60, 18]. But most irregular loops found in application codes have indirection 

patterns that axe not easily deciphered. Hence the original code must be transformed
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into an intermediate state so that the inspector/executor transformation can be applied to 

parallelize it.

This thesis presented algorithms that can be used to parallelize irregular codes with 

multiple levels of indirection. The method is based on program slicing techniques. The 

algorithms presented are very general and work for all irregular codes. The original code 

is transformed until there is, at most, a single level of indirection. The single level of 

indirection is achieved by peeling off each level of indirection until loops in the code have 

only a single level of indirection. At this point, the inspector/executor transformation is 

applied.

7.2 Future Work

This thesis has been one of the more serious efforts to automatically parallelize real irregular 

applications codes. Techniques have been developed for a subset of irregular problems; the 

loosely synchronous variety comprises 25% to 30% of the irregular applications. There axe, 

however, irregular applications which cannot be effectively parallelized by the techniques 

presented here.

Some irregular codes are highly adaptive; the indirection arrays change every iteration. 

In such cases, the inspector/executor type of parallelization is not effective because the 

cost of generating the inspectors cannot be amortized. If the inspector/executor type of 

computation is used to parallelize such applications, a large percentage of the time will 

be invested in inspector generation. Overlapping communication and computation in such 

highly adaptive codes may be very useful. One might generate partial inspectors; start a 

phase of data communication and, while the data is being moved, generate the rest of the 

inspector. This procedure would require some form of loop stripmining.

The possibility of using interprocedural slicing [55] to generate inspectors should be 

explored. Such an approach might allow an experimenter to generate highly efficient parallel 

code.
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This author would like to extend the methods developed in this thesis to  handle appli

cations that have distinct phases of computations, where each of the phases can be either 

regular or irregular (Example: particle-in-cell codes [39, 102]). Such computations require 

additional tools to handle the regular parts of the codes and also the extension of irregular 

tools to do efficient data movements. The data partitioning between the different phases 

must be performed efficiently to obtain effective parallelization. Development of compiler 

transformations to automatically parallelize such codes is indeed challenging.

The area of automatic parallelization of irregular codes is very new in the parallel com

piler world. A great deal of work remains; this thesis has provided a solid foundation for 

exploring these issues.
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