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ABSTRACT 

A Monte Carlo code has been developed which very efficiently calculates plasma par
ameters, such as currents, potentials and transport coefficients for a fully three dimen
sional magnetic field configuration. The code computes the deviation, j, of the exact 
distribution function, f, from the Maxwellian, FM, with 'if; the toroidal magnetic flux 
enclosed by a pressure surface and H the Hamiltonian. The particles in the simulation 
are followed with a traditional Monte Carlo scheme consisting of an orbit step in which 
new values for the positions and momenta are obtained and a collision step in which a 
Monte Carlo equivalent of the Lorentz operator is applied to change the pitch of each 
particle. Since the 8 f code calculates only the deviations from the Maxwellian rather 
than the full distribution function, it is about 104 times as efficient as other Monte Carlo 
techniques used to calculate currents in plasmas. 

The 8f code was used to study the aspect ratio and collisionality dependence of the 
bootstrap current and two Fourier components of the Pfirsch-Schliiter current. It was 
also used to calculate electric potentials within magnetic surfaces due to the explicit 
enforcement of the quasi-neutrality condition. The code also calculated transport co
efficients for the ions and electrons under various conditions. The agreement between 
the values predicted by the code for the plasma currents and analytic theory is excel
lent. The transport parameters calculated for the ions and electrons are in qualitative 
agreement with values predicted from neoclassical transport theory, including transport 
induced by a toroidal ripple. The in-surface electric potentials induced by explicitly 
enforcing the quasi-neutrality condition are too small to significantly enhance transport 
across the magnetic surfaces. 

xiii 
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Chapter 1 

Introduction 

1.1 Motivation 

Monte Carlo methods have been a.n important tool in plasma simulations. Despite 

their usefulness, traditional Monte Carlo methods are very inefficient when applied to 

systems which are described by distribution functions which deviate only slightly from 

a Maxwellian, such as thermonuclear plasmas used in fusion research. Thermonuclear 

plasmas are confined over times much longer than a collision time which means that 

the deviations, of, from a Maxwellian, FM, are very small. Typically, for plasmas 

of fusion interest, of I FM rv 1%. In Monte Carlo simulations, statistical fluctuations 

of the results scale inversely with the square-root of the number of particles in the 

simulation. In other words, if the number of particles is increased by a factor of a 

hundred, the statistical fluctuations decrease by a factor of ten. Using a traditional 

Monte Carlo simulation which calculates the full distribution function, at least 10,000 

particles are needed to detect fluctuations of order 1%, since 1/ y'10, 000 = 0.01. If, 

on the other hand, we can devise a method which calculates only those deviations, 

rather than the full distribution function, we could see those deviations using a single 

particle. Since the time spent on a simulation is proportional to the number of particles 

involved in the simulation, the efficiency increase of such a method over traditional 

Monte Carlo methods would be of order 104 . The of Monte Carlo method described 
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in this dissertation is such a method. The method is derived and described in detail in 

Chapter 3. It is first applied to simple systems for which there exist results from analytic 

theory and numerical simulations (section 3. 7) before it is applied to more complicated 

systems (sections 3.8-3.12). Before the of method is described, Chapter 1 gives an 

introduction to plasma confinement, thermonuclear fusion and numerical simulations of 

plasmas. In Chapter 2 we discuss the basic theory of plasma physics, including particle 

motion in electromagnetic fields, kinetic theory and magnetic coordinates. The majority 

of Chapter 2 consists of a compilation and the author's interpretation of parts of several 

excellent introductory plasma physics books [1, 2, 3, 4, 5, 6, 7, 8]. Chapter 4 gives 

concluding remarks about this work. 

1.2 What is a Plasma? 

Consider heating a solid-a block of ice, say. At normal pressure, if it is heated past 

0° Celsius, the individual molecules acquire enough thermal energy to break out of 

the lattice structure associated with solids. The ice goes through a phase transition 

and becomes water-a liquid. Let us continue the heating process. At around 100° 

Celsius, or 372 Kelvin, the individual molecules will have enough thermal energy to 

completely break their bonding with neighboring molecules and another phase transition 

occurs. The water becomes water vapor-a gas. If the vapor is heated to even higher 

temperatures, above 10,000 Kelvin, the thermal energy of the constituents becomes high 

enough to break the electrostatic bonds which hold the electrons and ions together. The 

vapor enters the fourth state of matter-a plasma. The most notable difference between 

a plasma and a gas is that a plasma is a good conductor of electricity because it consists 

of charged particles, the electrons and the ionized nuclei. A gas, on the other hand, 

consists of neutral molecules which cannot carry currents. The degree of ionization of 

the plasma increases as the temperature is increased. For hydrogen at 1 Atmosphere, the 
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ionization becomes almost complete at around 20,000-30,000 Kelvin. A vast majority 

of the matter in the universe is in the plasma state. On earth, however, the conditions 

for a plasma to exist have to be created artificially. The most widely used applications 

of plasmas are probably fluorescent lights and plasma etching of electronic components. 

Outside of the surface of the earth, the examples of known plasma phenomena are 

countless: the Aurora Borealis and lightning in the Earth atmosphere, solar wind, flares 

in the solar corona, stellar interior, interstellar gas, gaseous nebulae and, in science 

fiction, plasma guns on alien spaceships. 

Table 1-1 shows approximate densities and temperatures for some typical plasmas [9]. 

The plasma discussed in this dissertation is constrained to the category of thermonuclear 

plasma. 

Table 1-1: Approximate densities and temperatures for typical plasmas 

Plasma Density Temperature 
Type (cm)-3 (K) 

Interstellar gas 1 10'! 

Gaseous nebula 103 104 

Ionosphere (F layer) 106 103 

Solar corona 106-109 106 

Solar atmosphere 1014 104 

Thermonuclear plasma 1014 108 

Laser plasma 1020 106 

Metal plasma 1023 102 

Stellar interior 1027 107 

The word plasma comes from the Greek plasma which means "something formed or 

molded" [8]. The first use of the word related to its modern use in physics occured in 

1929 by Tonks and Langmuir [10] in conjunction with oscillations observed in a gaseous 

discharge. They referred to those oscillation as plasma oscillations. For several decades 

afterwards, plasma physics research was conducted by only a few individuals. It was 
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not until the early 1950's when the prospect of thermonuclear fusion become possible 

that the field of plasma physics began growing rapidly. 

1. 3 Thermonuclear Fusion 

The goal of thermonuclear fusion research is to create a plasma that will generate more 

energy through fusion reactions than is required to create and sustain the plasma. To 

achieve that goal, the so-called ignition condition of the plasma must be reached. The 

ignition condition is the point at which the temperature of the plasma is high enough 

for the thermonuclear power within the plasma to balance all power losses which will 

then allow external heating to be discontinued. The ignition condition depends on three 

factors. In simple terms, the plasma has to be hot enough, dense enough and remain 

so for a sufficiently long period of time. We will discuss the ignition condition in more 

detail below, but first let us consider the fuel used in thermonuclear fusion. 

The most promising fusion reaction is that in which a nucleus of deuterium and 

tritium fuse to produce an alpha particle and a neutron. The nuclear rearrangement 

results in a reduction of total mass which leads to a release of energy in the form of 

kinetic energy of the alpha particle and neutron. The energy released per reaction is 

17.6 MeV. 

(1-1) 

The fuel reserves are practically inexhaustible, as deuterium occurs in water with an 

abundance of about one part per 10,000. 'Iritium, even though it does not occur nat

urally, can be bred using the neutrons from the nuclear reaction. The element used to 

breed tritium is lithium, of which there exist large reserves. 

To achieve fusion between two positively charged particles, the ions must have 

enough kinetic energy to overcome the electrostatic repulsion due to the Coulomb force 

between them. The cross-section for the deuterium-tritium reaction increases as the 
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temperature is increased, until it peaks at around 100 keV (about one billion degrees 

Celsius). It is fortunate, however, that the plasma does not have to be heated that 

high for fusion to occur because the reactions occur for particles in the high-energy tails 

of the Maxwellian energy distribution. The necessary temperature is "only" about 10 

keV. As mentioned above, to achieve ignition the plasma energy has to be confined long 

enough at a sufficiently high density to allow an adequate fraction of the fuel to react. 

The condition for ignition is calculated by balancing the total power produced by the 

reactions with the power losses occuring in the plasma. Figure (1-1) shows the so-called 

Lawson diagram for the D-T reaction. It shows that at the necessary temperature of 

about 10 keV, the product of the plasma density and confinement time must be greater 

than about 1020 m-3 sec. 

10 100 
T (keV) 

Figure 1-1: The product of the density and energy confinement time versus temperature. 
The minimum value of nTE gives the so-called Lawson's criterion. 
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Two questions arise naturally: How do we heat the plasma efficiently to such high 

temperatures? And. . . How do we confine this hot mixture of ions and electrons? 

1.3.1 Plasma Heating 

Let us very briefly consider plasma heating. The initial heating in a plasma comes from 

the Ohmic, or resistive, heating due to collisions between plasma particles. However, 

for plasma temperatures above about 1 keV, the effect of plasma resistance becomes 

much reduced due to the decrease in collisions between particles (the collision frequency 

of the plasma particles scales as the inverse of the plasma temperature to the three

halves power: v ex r-312 ). The two main methods used to heat a plasma to ignition 

temperatures are injection of energetic neutral beams and the resonant absorption of 

radio-frequency (RF) waves. The beams used to heat plasmas must be composed of 

neutral particles because-as will be discussed below-the magnetic field used to confine 

the plasma would reflect any charged particles. The particles which eventually end up 

as neutral particles must first be ionized in order to be accelerated to the required 

energy. They are then neutralized by charge exchange in a gas target and injected into 

the plasma. Inside the plasma the particles become ionized again and are slowed down 

by collisions with the plasma particles, giving up their energy to the plasma and thus 

heating it. 

The three main methods of RF heating involve waves at the ion cyclotron frequency 

(rv 50MHz), electron cyclotron frequency (rv 100GHz) [see subsection 2.1.1] and the 

lower hybrid frequency (2:: 1GHz). The waves must propagate deep into the plasma, 

where the most energetic particles are located. This requires calculation of wave pro

pagation in non-uniform densities and non-uniform fields and transfer of wave energy 

to the plasma particles. The detailed theory of neutral beam and RF heating are are 

beyond the scope of this dissertation. 
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1.3.2 Plasma Confinement 

Due to the extremely high temperatures of the thermonuclear plasma, confinement by 

material walls is impossible. Two alternative methods of confinement were developed: 

magnetic confinement and inertial confinement. In inertial confinement research, the 

goal is to compress a plasma to ultra-high density (""' 1025 cm-3 ) and let the criterion 

for ignition be satisfied within the time it takes the plasma to blow apart. To do so, very 

high power density laser beams are used to deliver energy onto a tiny fuel pellet. The 

design of energy drivers and high gain pellets are the primary tasks of inertial fusion 

research. 

The other method of plasma confinement-magnetic confinement-takes advantage 

of the fact that the plasma consists of charged particles and therefore interacts with 

magnetic fields. In particular, as will be seen in the following chapter, charged particles 

can be confined by magnetic fields because they gyrate around magnetic field lines. 

Various magnetic field configurations have been proposed and built to confine a plasma. 

They can be broadly classified into two categories: open-ended confinement and toroidal 

confinement. In open-ended confinement magnetic coils are arranged to produce the so 

called magnetic mirror effect [cf. subsection 2.1.1, page 19] to prevent particles from 

escaping the vessel they are contained in. The magnetic field lines in open-ended con

finement do not close in on themselves and those particles which are not reversed by the 

magnetic mirror effect escape out of the ends of the device. This particle loss, referred 

to as end loss, is generally thought to be too large for fusion applications. 

End loss can be eliminated by bending the field lines into a torus. As will be discussed 

in subsection 2.3.1, the magnetic field lines in toroidal confinement form toroidally 

nested magnetic surfaces on which the particles move about. Figure 1-2 shows a picture 

of a torus and defines some of the terminology associated with toroidal geometry. 
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Figure 1-2: A geometrical torus and the terminology associated with toroidal geometry. 

The main component of the magnetic field in a toroidal confinement device is the 

toroidal field produced by external coils. In subsection 2.1.2 it will be shown that a 

toroidal field alone is not able to confine the plasma because of particle drifts. The 

magnetic field lines must have a helical twist to confine the particles. If the helical twist 

is provided by a toroidal plasma current it is called a tokamak. If, on the other hand, 

the external magnetic coils are arranged in such a way to produce the helical twist of 

the field lines, the device is called a stellerator. Due to the symmetry of the toroidal 

magnetic field around the center-line, the tokamak is referred to as an axisymmetric 

device. The stellerator, on the other hand, possesses non-axisymmetric geometry. 

Most of the research in plasma fusion today is carried out in tokamaks. Table (1-2) 
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shows some parameters for several large toroidal confinement devices built in the 1980's. 

The italicized devices are stellerators. The last three devices marked with stars have not 

yet been built and the values for the toroidal field; plasma current; temperature; and 

the product of density, energy confinement time and temperature (nrET) are predicted 

values. 

Not unlike all other large scale experiments performed today, the time and material 

resources required to design, build and maintain large scale plasma experiments are 

tremendous. The maintenance cost for the Princeton Plasma Physics Lab is on the 

order of a hundred million dollars a year. The predicted cost for ITER is on the order 

of ten billion dollars. Considering the steady decrease of the budget for fusion since 

the mid-eighties and the tremendous advances in computing speed, it is not surprising, 

therefore, that over the past decade the trend in plasma physics has moved toward 

numerical simulations. 
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Table 1-2: Several of the new, large toroidal confinement devices. Devices marked with 
stars have not yet been built, all others have been built in the 1980's. The devices with 
italicized device names are stellerators, the others are tokamaks. 

Device Major Minor Toroidal Plasma nrET T 
Name, radius radius field current x102o 

Location (m) (m) (T) (MA) (m-3 s keV) (keV) 

JET (Joint 3.0 1.2 3.5 3.5 10 30 
European Torus), 
Culham, U.K. 

JT60, 3.0 0.9 4.5 2.3 0.8 3 
Naka, Japan 

TFTR (Tokamak 2.4 0.8 5.0 2.5 4 30 
Fusion Test Reactor), 
Princeton, USA 

Wendelstein VII-AS, 2.0 0.2 3.0 0.03 0.3 
Garching, Germany 

ASDEX Upgrade, 1.6 0.4 2.7 1.6 0.2 1 
Garching, Germany 

* Wendelstein VII-X, 5.5 0.5 3.0 4 5 
Garching, Germany 

*LHD (Large 3.9 0.5 3.4 ?? ?? 
Helical Device}, 
Nagoya, Japan 

*ITER (International 6.0 2.0 4.9 22 ?? ?? 
Thermonucl. Reactor) 
Site not yet chosen 
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1.4 Numerical Simulations of Plasmas 

Numerical simulations of plasmas have begun in the 1960's, shortly after the pr<?spect 

of thermonuclear fusion had become a possibility. They have played an essential role 

in the development of plasma theory. Numerical simulations have allowed scientists to 

test new theories used to describe plasma phenomena and even allowed them to predict 

some, not yet experimentally seen plasma behavior. Simulations have also become an 

efficient design tool to provide performance predictions of confinement devices before 

entering the engineering phase. Many numerical codes are used to predict the optimum 

design of ITER [11, 12, 13, 14, 15]. One step beyond the theoretical experiments and 

engineering experiments described above is the "numerical tokamak" envisioned by some 

(very optimistic) computational plasma physicists. For a detailed review of plasma 

simulations, in particular plasmas for fusion applications, the reader is encouraged to 

examine a recent review paper by W. Arter [16]. 

Numerical simulations of any kind require an almost experimental approach to them. 

Indeed, the peculiar term "numerical experimentalist" is not as inaccurate as may be 

assumed. Experimentalists may argue that the only physics computational physicists 

get out of the computer is the physics they put in. To some extent they are correct. 

However, often the theory used to describe physical systems is so complex that it is 

beyond hope to try to solve it analytically beyond some asymptotic limits which sim

plify calculations. The analogy of numerical simulations with real life experiments are 

quite numerous. A well-engineered simulation will have undergone a designing stage 

to ensure cost effectiveness (time efficiency). Furthermore, a simulation should have a 

modular structure with built-in diagnostics which allow for checking it part by part. 

In fact, wherever possible, every part of the simulation should be checked for correct 

performance before it is integrated into the main body of the code. Once the code is 

assembled, it should be tested against known results obtained from other codes and 
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from analytic theory in asymptotic limits. Only after the testing and calibration are 

complete is the simulation ready to run, which brings forth the final analogy between 

real life and numerical experiments, the vast amounts of data to be interpreted. 

A plasma consists of a large number of charged particles moving in electric and 

magnetic fields. We must realize, however, that using slowly varying prescribed fields 

is a vast simplification of the actual physics because we only deal with the effects of the 

fields on the particles, but neglect the effects the particles have on the fields. A general 

solution of this problem, therefore, is extremely complicated. Laboratory plasmas have 

volumes of 1-100 m3 with a density of about 1020 m-3 • A simple minded simulation of 

the trajectory of every particle in the plasma followed by a calculation of the fields due 

to every particle is, therefore, vastly beyond even the fastest computer (and will remain 

so for the foreseeable future). Besides the inability of representing the true number of 

particles in the system of interest, another humbling experience every computational 

physicist must face is the inability to represent a continuous system on a computer. 

A suitable scale must therefore be chosen on which the discreteness of the numerical 

simulation will become negligible and the discrete steps taken in the simulation will rep

resent continuity with sufficient accuracy. We have to realize, however, that the smaller 

we "coarse grain" the system, the more expensive (time consuming) the simulation be

comes. A balance must be found between the two aspects of representing a continuous 

system with adequate accuracy and not making the simulations unnecessary long. 

Numerical simulations of plasma physics can be broadly classified into two categories: 

kinetic simulations and fluid simulations. In fluid simulations, the goal is to solve the 

magnetohydrodynamic (MHD) equations of a plasma. Kinetic simulations consider 

more detailed models of the plasma given by the kinetic equations. If the fluid and 

kinetic description are combined in a simulation, it is referred to as a hybrid simulation. 
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Kinetic simulations can be further classified into several categories. The first classi

fication depends on the type of kinetic equations that are being simulated. If only the 

lowest order terms in the averaged gyro-motion of the particles are being considered, 

the model is referred to as a drift-kinetic model [cf. subsection 2.1.1, pages 17 and 18]. If 

higher order corrections to the drifts are used, the model is called a gyro-kinetic model. 

Kinetic simulations are further classified into collisionless (Vlasov) models in which the 

particles are treated as uncorrelated, and collisional (Fokker-Planck) models in which 

the particle interactions are modeled by a collision operator. The collisionless treatment 

is only valid for times ~horter than the particle collision times. For times greater than 

the collision times of the particles, the diffusion in velocity space must be considered. 

The diffusion in velocity space can be modeled by either the use of a velocity space mesh 

to calculate velocity gradients, or the so-called Monte Carlo methods, in which a ran

dom number generator is used to simulate the effects of particle collisions by scattering 

parameters in velocity space. 

The concept of simulating particles by integrating their equations of motion forward 

in time may seem quite intuitive. The mathematical significance of the equations of 

motion which allows us to use them to solve a partial differential equation such as the 

Fokker-Planck equation involves the concept of characteristics, which happen to be the 

equations of motion. Therefore, what physicists look at as simulating the motion of 

particles along their trajectories, mathematicians may prefer to view as an integration 

of a PDE along the characteristics of that equation. The Fokker-Planck equation con

tains a hyperbolic part (representing orbital motion) and an elliptic part (representing 

collisions). Analytically, as well as in a traditional Monte Carlo simulation, the orbital 

part of the equation is solved by integrating along the characteristics of the equation 

given by the particle trajectories. Solving it in this fashion (by moving along particle 

trajectories) corresponds to the Lagrangian formalism, which is defined by a coordinate 
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system that moves with the particles. The collisional part is solved analytically by the 

Eulerian method, which means that a time-independent coordinate system is used to 

describe the velocity space operations. Numerically, the gradients in velocity space in 

the collisional part can be solved either using an Eulerian or Lagrangian model. In an 

Eulerian scheme, a time independent velocity space grid is used to calculate the gradi

ents. In a Lagrangian model, the particles are assigned a parameter called the pitch [cf. 

subsection 2.1.1] which is scattered by using a Monte Carlo method. 

Before we continue discussing numerical simulations of plasmas, it is necessary to 

form a basic understanding of the theory used to describe plasma behavior. The follow

ing chapter gives a brief overview of basic plasma physics theory. 



Chapter 2 

Basic Plasma Physics 

2.1 Individual particle motion 

2.1.1 Gyromotion, Magnetic Moment and Pitch 

In this subsection, we will briefly discuss the motion of a single charged particle moving 

in a prescribed electromagnetic field. The force acting on a particle due to the electric 

field E and the magnetic induction B is the Lorentz force. (The magnetic induction is 

usually-and incorrectly-referred to as the magnetic field. This dissertation will not 

be an exception ... ) If relativistic effects are neglected, the particle mass is constant 

and the equation of motion for a charged particle of mass m and charge q is 

dv 
mdt =q(E+vxB). (2-2) 

Let us consider two simple cases: 

If E = constant -=f. 0, but B = 0, the particle velocity changes linearly with time 

and the particle accelerates freely in the direction of E. This situation is not of great 

interest. 

In the other case, E = 0 and B = constant -=f. 0. It is useful to separate the motion 

into components parallel and perpendicular to the magnetic field lines. Let us introduce 

the notation 

b = B/IBI, VII= (v. b), V_i = v- vub. (2-3) 

16 
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From the parallel and perpendicular components of Eq. (2-2) we find vii = 0 and v ..L = 

-w~v ..Lithe parallel velocity component is a constant and the perpendicular component 

executes a simple harmonic motion with We = lqiB /m known as the gyro-frequency, 

Larmor frequency or cyclotron frequency. Introducing Cartesian coordinates (x, y, z) 

and choosing B = (0, 0, B) we have 

and 

Vx = V..L cos( wet+ <Po), 

Vz vii = canst, 

X = xo + V..L sin(wet +<Po), 
We 

V_[_ 
y = Yo - -cos( wet+ ¢o), 

We 

Z = Zo + Vzt. 

(2-4) 

(2-5) 

The constants of integration ¢o and xo, yo, zo are the initial phase of the gyromotion and 

the initial coordinates of the particle, respectively. The superposition of the parallel and 

perpendicular components leads to a right-handed (left-handed) helical motion around 

the magnetic field line for the electrons (ions). The radius of gyration, called the gyro-

or Larmor radius, is 

V_[_ 
PL=-. 

We 

Remembering We = lqiB jm, we obtain (pL)i ~ Jmi/me(PL)e· 

(2-6) 

The position about which the particle gyrates is known as the guiding center. The 

concept of guiding center motion, which is the particle motion averaged over one gyro-

period Te = 2rr /we, is extremely useful when studying particle motion in inhomogeneous 

fields. Figure 2-3 shows that the guiding center motion for a particle in a uniform mag-

netic field is a linear motion along B, free from rapid helical gyration associated with 
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Figure 2-3: Electron guiding-center motion v guiding along the magnetic field line B 
compared with its exact motion Vgyro· 

The particle gyration composes an electric current loop which leads to the very 

useful concept of the magnetic moment. The magnetic moment of a current loop with 

current I and area A is J.L = I A. In the case of a charged particle gyrating in a magnetic 

field, I= qwc/21f, A= 1rp'i, = 1fVJ.. 2 fw~ and the magnetic moment becomes 

_ qwc1fVJ.. 2 _ mv.1.2 

J.L - 21f w2 - 2B · 
c 

(2-7) 

The magnetic moment is an adiabatic invariant under a slowly varying magnetic field. 

An important but little known principle from classical mechanics is that in a system 

under periodic motion with a coordinate q and conjugate momertum p, the action, 

defined by 

(2-8) 
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is a constant of motion under slowly varying external parameters. For a gyrating par-

tide, p = mv1_, dq = PLd¢, the action becomes 

(2-9) 

which is the magnetic moment to within a constant. 

The invariance of the magnetic moment in a slowly varying magnetic field can be 

applied to confine particles in a system called a magnetic mirror confinement system 

or a magnetic trap. In the absence of an electric potential, the kinetic energy of the 

particle is constant 

1 2 
H = EK = 2mvll + t-LB =constant. (2-10) 

Consider a simple mirror machine configuration. If a particle starts out at the minimum 

field strength (with some initial values of 1-l and EK) and moves along the field line, 

the value of the local field strength B increases. To conserve 1-l = mv 1_ 2 /2B, v 1_ must 

increase as well. When the particle reaches a point along the trajectory where t-LB = EK, 

vii vanishes and the particle is reflected. The Aurora Borealis seen in the earth's upper 

atmosphere is a well known example of particle trapping in a magnetic field. In a 

magnetic mirror, only particles with parallel energy mv11 2 /2 < t-L(Bmax-B) are reflected. 

(Bmax is the maximum value of the field strength.) Particles which satisfy this condition 

are called trapped particles and particles with mv11 2 /2 > t-L(Bmax- B) are referred to 

as passing particles (Fig. 2-4). 

Another parameter used to identify a particle as trapped or passing is called the 

pitch. The pitch A of a particle is the projection of the particle velocity onto the 

magnetic field line 

(2-11) 

with Bv, the angle between v and B, the pitch angle. The pitch can take on values 

between -1 and 1 with the two extrema being the pitch of a particle moving parallel 
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Figure 2-4: Magnetic trapping occurs only for particles with total energy E < f..tBmax· 
Particles with higher energy circulate freely. 

to the field line (.X = 1) and the pitch of a particle moving anti-parallel to the field line 

(.X = -1). The critical pitch is Ac = y'1 - B / Bmax· Particles are trapped or passing 

depending on whether their pitch is less than or greater than .Xc: 

I-XI < V1- B/Bmax trapped 

(2-12) 

I-XI > J1- B/Bmax passing. 

In addition to the magnetic moment f..J,, there are two other adiabatic invariants used 

in plasma physics, the longitudinal and the flux invariant. Since those two invariants 

played no role in our analysis, we will not discuss them. For more information on the 

longitudinal and the flux invariant, the reader may refer to any introductory plasma 
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physics book, eg. Nicholson, Introduction to Plasma Theory [8]. 

2.1.2 Particle Drifts 

In this subsection, a heuristic development of theE x B, curvature and gradient B drifts 

and the expressions for the corresponding drift velocities will be presented. 

Ex B Drift 

Consider a particle gyrating in nonzero E and B fields. Let us assume that E is perpen-

dicular to B. In this case, the particle is subjected to a drift velocity in the direction 

perpendicular to both E and B. This drift, called theE x B drift, arises from the accel-

eration of the particle due to the electric field while it is gyrating around the magnetic 

field line. In Fig. 2-5, the electric field accelerates the ion on the way up, and decelerates 

it on the way down. The local gyroradius is therefore larger at the top of the orbit than 

at the bottom. The resulting motion is a drift motion to the right superimposed on the 

helical gyromotion along the magnetic field line. 

(2-13) 

Note that theE x B drift velocity is independent of mass and charge, hence it is equal 

for ions and electrons. In general, any force F x B creates a drift of the form 

Curvature Drift 

FxB 
VFxB = qB2 · (2-14) 

The second drift we will consider is due to the inertial force acting on a particle when it 

moves along a curved path, such as the magnetic field line in a tokamak. The inertial, 

or centrifugal, force acting on the particle is perpendicular to its path and is given by 

(2-15) 
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E 

ExB 

Figure 2-5: The E x B drift arises from the acceleration of the electric field, leading to 
a difference in the magnitude of the gyroradius. 

with Re the local radius of curvature. Substituting Eq. (2-15) into Eq. (2-14) yields the 

expression for the curvature drift 

vu 2 Rc X B 
Ve =- 2 ' 

We ReB 
(2-16) 

where Rc is in the direction of the centrifugal force. We note that the curvature drift 

depends on the charge through We and the ions and electrons drift in opposite directions. 

Gradient B Drift 

Consider a particle gyrating around a magnetic field line in the z direction and a mag-

netic field strength variation dB/dx i- 0. The local Larmor radius PL ex 1/B of the 

particle will consistently be smaller on the side of the stronger field. The result is a drift 

in the direction of B x \JB called the gradient B drift (see Fig. 2-6). The expression 
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for the drift velocity is 

(2-17) 

Let us also note that similar to the curvature drift, the gradient B drift is in opposite 

directions for the electrons and ions. 

dB 
dx > 0 

;---------------------------• X 

Figure 2-6: Particle drift in an inhomogeneous magnetic field. 

TheE x B, curvature and gradient B drifts form a complete set of the drifts for a 

particle in a magnetic field to lowest order in gyroradius. 

2.2 General Coordinates 

The study of plasma physics, especially plasma confinement, often deals with geometry 

for which the Cartesian coordinates used in the previous section are inadequate. One of 
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the critical issues in toroidal confinement is the drift of the particles across the toroidal 

pressure surfaces. It is advantageous, therefore, to construct a coordinate system which 

includes the pressure surfaces as one of the coordinates. The so-called magnetic coordi-

nates exhibit that property. To be able to use magnetic coordinates, we must develop 

a theory for dealing with coordinates other than the well-known Cartesian, cylindrical 

and spherical coordinates. This section will describe the theory of general coordinates 

which will be applied extensively towards the magnetic coordinates in the description 

of the tokamak in the next section. (The following description of general coordinates as 

well as subsection 2.3.2 is based on Allen Boozer's Plasma Physics [4).) 

To specify a position in three dimensions we need three coordinates (e, t;,2, e). 

Using these coordinates, a vector can be represented either using the so-called covariant 

representation 

(2-18) 

or the contravariant representation 

1 ax 2 ax 3 ax 
B = B af,l + B ae + B at;.3 (2-19) 

In the special case of Cartesian coordinates, X = e' y = t;,2 and z = e and the covariant 

and contravariant representations are identical, with 

A ax ntl A ax nt2 A ax nt3 
X = ae = v <, ' y = at;,2 = v <, ' z = af,3 = v <, (2-20) 

and 

(2-21) 

(It is important not to confuse g~ = '\1 t;,i, which is only true for the Cartesian coordi

nates with ~ = '\1 t;,i, which is the definition of the derivative of each of the coordinates 

with respect to position.) 
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The covariant and contravariant representations are in general not identical. In 

general, the two representations are related to each other through the Jacobian and the 

dual relations. The Jacobian for a three dimensional space is defined as 

J = ax (ax ax) ael . ae2 X aea 
1 

(2-22) = 

The orthogonality relation and the the dual relations in ordinary 3-d space are 

(2-23) 

and 

ax ~Eijk J(vej x vek) (2-24) aei 2 

vei = 1 ''k 1 ax ax 
2EtJ J aej x aek ' (2-25) 

with Eijk the fully anti-symmetric tensor. The orthogonality relation is obtained using 

the chain rule, and the dual relations are obtained with the help of Eqs. (2-18) and (2-

19) and the orthogonality relation. The dual relations greatly simplify the calculations 

of the gradients of the coordinates because they eliminate the need to construct the 

inverse functions ei(x). In general, given x(e,e,e) as the definition of a coordinate 

system, the inverse functions e1 (x), e(x), e(x) are very difficult to obtain. 

Using the chain rule, some vector properties and the dual relations, the gradient, 

divergence and curl in general coordinates are shown to be 

(2-26) 

(2-27) 

and 

(2-28) 
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The expressions for the line, area and volume integrals of a function B(~l, e, C) in 

general coordinates are: 

Line integral over e, with e and C treated as constants 

(2-29) 

surface integral over e and e ( ~ 1 = canst) 

(2-30) 

and the volume integral over e' e and ~3 

J J ax (ax ax) j 1 2 3 B dv = B a~ 1 • a~2 x a~3 = BJ d~ d~ d~ . (2-31) 

The Jacobian between the Cartesian coordinates x1, x2 , x3 (where x 1 = x, x2 = 

y, x3 = z ) and the general coordinates ~ 1 ' e' e is defined as the determinant of the 

matrix 

ax1 ;ae ax1 ;ae ax1 jaC 
ax2 ;a~ 1 ax2 ;ae ax2 ;ae 
ax3ja~ 1 ax3 ja~2 ax3 ja~3 

(2-32) 

Introducing the Jacobian notation, the determinant of the matrix can be written as 

(2-33) 

The Jacobian notation can also be used to write partial derivatives. The partial deriva-

tive off with respect to e' holding e and e constant, can be written in Jacobian 

notation as 

(2-34) 



Some useful properties of the Jacobian notation are 

and 

8(x1,x2 ,x3 ) 

8(ryl, ry2, ry3) 
a(x1,x2 ,x3 ) a(e,e,e) 
8(~1,~2,~3) 8(ryl,ry2,ry3) 
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(2-35) 

(2-36) 

We will use the Jacobian notation and the above described properties extensively in 

section 2.4 

2.3 The Tokamak 

As seen in subsection 2.1.1, straight (open-ended) geometry does not allow satisfactory 

confinement of particles because of the loss of passing particles. Another disadvantage 

of open-ended confinement is the susceptibility to the so-called micro-instabilities [cf. 

section 3.12]. Those disadvantages convinced scientists that the only devices which 

would lead to reasonable confinement of the plasma must contain geometry in which 

the field lines form bounded surfaces. The only geometrical arrangement exhibiting this 

property is a torus. The most widely used toroidal confinement device is the tokamak .. 

Figure 2-7 shows a picture of the world's largest tokamak, JET. The word "tokamak" 

is a Russian acronym for Toroidalna Kamera Magnitnaya, or "Toroidal magnetic cham-

ber". Despite the tokamaks' advantages over open-ended confinement devices, there are 

disadvantages associated with tokamaks due to the more complicated geometry. We 

will discuss some of those disadvantages below. 
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Figure 2-7: A picture of the Jomt European Torus (JET) located in the Culham Lab
oratories in Abingdon, U.K. JET came on line in June of 1983 as a collaboration of 
several European countries operating under the auspices of EURATOM. (This image 
was scanned from J. Wesson's book Tokamaks [3]). 

2.3.1 Tokamak Equilibrium 

The condition for plasma equilibrium requires the force due to the plasma pressure p to 

be balanced by the force due to the interaction of the plasma current with the magnetic 

field B 

'Vp =j X B. (2-37) 

This expression is referred to as the force balance equation, but we notice that the 

quantities that are balanced are the forces per unit volume, with j the current density. 

Equation (2-37) together with Ampere's Law, which relates the current density and the 
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magnetic field, 

(2-38) 

and the condition that the magnetic field be divergence free 

Y'·B=O (2-39) 

form the basis of the physics of plasma equilibrium. 

The magnetic field in a tokamak is composed of two, axisymmetric, components. 

The toroidal field (the field along the long, or ¢, direction) is produced by external 

magnetic coils wound around the torus. From subsection 2.1.2 we see that the toroidal 

field only is not able to confine the plasma because of the charge separation produced 

by the curvature and gradient B drifts. In addition to the unfavorable up-down drifts of 

the ions and electrons away from each other, the confinement is further weakened by the 

outward Ex B drift due to charge separation (Fig. 2-8). The solution to this problem 

is the poloidal magnetic field (along the short, or fJ, direction) induced by the toroidal 

plasma current. The magnetic field lines due to the superimposition of the toroidal and 

the much weaker poloidal field spiral slowly around the torus. The equation of a field 

line is given by 

rdfJ Be 
Rd¢ B<P. 

(2-40) 

The rate of precession (angle of rotation on a poloidal cross section during one toroidal 

orbit divided by 21r) of the field lines is given by the rotational transform i. 

dfJ RBe RoBe 
i=-=--~--, 

d¢ rB<P raBo 
(2-41) 

with Ro the major radius, ra the minor radius, and Bo the surface averaged value of 

the toroidal field strength. The inverse of i is known as the safety factor (or winding 

number) q. If i is an irrational number, the magnetic field lines form nested surfaces of 

constant r (Fig. 2-9). 
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Figure 2-8: The curvature and gradient B drifts produce up-down charge separation 
inducing an electric field which produces the outward Ex B drift. 

The speed of sound in fusion plasmas is typically ,....., 106m/sec therefore there is 

rapid pressure equalization along the magnetic field lines and the nested surfaces are 

constant pressure surfaces. This important result is obtained quantitatively from the 

scalar product of B with Eq. (2-37) 

B. V'p = 0. (2-42) 

which states that there is no pressure gradient along the magnetic surfaces, hence the 

magnetic surfaces are surfaces of constant pressure. Equation (2-37) also gives 

B. V'j = 0 (2-43) 

which means that the current lines also lie in the magnetic surfaces. 
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Figure 2-9: The magnetic flux surfaces form nested toroids. 

2.3.2 Magnetic Coordinates 

Magnetic coordinates can be found for a plasma in which there exist magnetic surfaces. 

Hamiltonian theory guarantees the existence of magnetic surfaces in devices with a 

symmetry direction such as an ideal, axisymmetric tokamak or a helically symmetric 

stellarator. Magnetic surfaces do not exist everywhere in non-symmetric devices be

cause of the existence of ergodic regions of non-zero volume. If the perturbations from 

symmetry are small, however, those devices can be studied by considering approximate 

magnetic surfaces. The precise condition for the existence of magnetic coordinates is 

the existence of a function f(x), such that 

B · \i'f(x) = 0 (2-44) 

with IV' !I > 0 satisfied everywhere except along isolated curves. Comparing Eq. (2-

44) with Eq. (2-42) we see that magnetic coordinates exist if an equilibrium plasma 
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has a pressure gradient. Figure 2-10 defines the magnetic coordinates consisting of the 

toroidal and poloidal angles (¢and 0) and the toroidal and poloidal fluxes ('1/J and -x). 

The expressions for the toroidal and poloidal currents (I and G) are also given. The 

derivations of the fluxes and currents will be presented following the discussion of the 

contravariant and covariant representations of the magnetic field. 

SB·dae=x 
JlxB·dae=Jlo G 

SB·da<\>='V 

SvxB-~=J..L0I 

Figure 2-10: Definitions of canonical coordinates used to describe a tokamak. The 
poloidal and toroidal angles(} and ¢and the poloidal and toroidal magnetic fluxes -x 
and 'ljJ are defined. The definitions of the toroidal and poloidal currents G and I are 
also given. 

Contravariant Representation 

The contravariant representation for the magnetic field is based on the fact that any 
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divergence-free vector can be represented by four well behaved functions of position. 

This is done by choosing an appropriate gauge function in the form of the vector poten

tial associated with the divergence-free vector. Two of the four functions are arbitrarily 

specified functions of position. We shall take these functions to be the toroidal and 

poloidal angles ( ¢ and 0). The vector potential in toroidal coordinates (with r- the 

radial coordinate) is 

A(r-, 8, ¢) = Ar(r-, 8, ¢)\lr- + Ae(r, 8, ¢)\18 + A,p(r, 8, ¢)\/¢. (2-45) 

Introducing a gauge function G(r, 0, ¢)which satisfies 8G far= Ar, the vector potential 

can be written as 

A(r-,8,¢) ='lj;\10-x\1¢+\IG (2-46) 

with 27r'lj; = Ae - 8G /88 and - 27rX = A¢ - 8G /8¢. The contravariant expression for 

the magnetic field is then 

B= 2~[\l'lj;(r-,8,¢) x\18+\1¢x\lx(r,8,¢)]. (2-47) 

Defining 'ljJ as the radial variable, we arrive at the contravariant representation of the 

magnetic field 

(2-48) 

The contravariant representation for the magnetic field can be further simplified by 

giving up the freedom of one of the angles to write x = x( 'ljJ) as required in a scalar 

pressure equilibrium [cf. Eq. (2-42)], 

B · \lp('lj;) = 2~ [\l'lj; X \10+ \1¢ X \1x('1f;,8,¢)] · \l'lj;~~ = 0. (2-49) 

The poloidal flux -x must be a function of 'ljJ alone and the contravariant expression 

for the magnetic field becomes 

(2-50) 
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Covariant Representation 

The covariant, or Boozer, representation of the magnetic field is based on the fact that 

the pressure is a function of 7/J alone and the toroidal flux 7/J satisfies the equations 

B · '\17/J = 0 and j · '\17/J = 0 [cf. Eqs.(2-42} and (2-50}]. In general, a vector can be 

represented using the magnetic coordinates (7/J, (}, ¢) in the covariant form 

Using ('V' x B) · 7/J = 0 and writing 

=~ = G(1j/) + ( G('lj;') + ~J('Ij;')) ov(~¢0 ' ¢) 

a2 = I('lj;') + (G('Ij;') + ~J('Ij;')) 8v('lj;', (}, ¢) 
~0 {)(} 

the covariant form of the magnetic field becomes 

(2-51} 

(2-52} 

(2-53} 

(2-54} 

with ( 7/J', (}', ¢') the Boozer coordinates related to the original magnetic coordinates 

through 

7/J' = 7/J 

(}' O+w('lj;',O,¢) 

¢' ¢+v('l/J',O,¢}. 

(2-55) 

(2-56) 

(2-57} 

The identifications of G and I with the toroidal and poloidal currents will be derived 

in the next subsection. 

2.3.3 Currents and Fluxes 

Poloidal Current 

The poloidal current G ( 7/J) can be obtained from the following short calculation: 

2_ J ('\1 x B}·da0 = 2_ f B · dl<P, 
~0 ~0 

(2-58} 
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which is the Stoke's theorem applied to the integration over the poloidal surface. Using 

the covariant representation of the magnetic field (2-54) and writing dlcp = g¢d¢, we 

arrive at 

2_ I (\7 x B)·da1.1 = G('¢) 
/-lO 

which corresponds to the expression for the poloidal current given in Fig. 2-10. 

(2-59) 

We can obtain an approximate relationship between the poloidal current and the 

toroidal magnetic field in terms of a characteristic length of the system. To do so, 

we approximate the toroidal field strength by B0 , the surface-averaged toroidal field 

strength. Substituting into the left hand side of Eq. 2-58 yields 

f B · dlcp = f Bcpd¢ ~ f B 0d¢ 

with Bo = const over the range of integration. Together with Eq. 2-59 this gives 

Bo(2nRo) =f.-loGo 

with Ro the major radius. The characteristic length of the system is then 

Toroidal Current 

2 R _f.-loGo 
7r o- Bo . 

(2-60) 

(2-61) 

(2-62) 

The expression for the toroidal current I('¢) can be obtained in an analogous manner 

to the calculation for the poloidal current, 

2_ I (Y' x B)·da¢ =I('¢). 
/-lO 

This is the expression for the toroidal current given in Fig. 2-10. 

(2-63) 

We can obtain an approximate relationship between the toroidal and poloidal currents 

by applying Stoke's theorem to the left hand side of Eq. (2-63) and approximating the 

poloidal field B1.1 by ~(r/Ro)Bo, which yields 

2 R 
2 J.-Loi('¢) 

7r ot: ~ = Bo , (2-64) 

http://2vr.Ro
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withE= rjR, the inverse aspect ratio. Using Eq. (2-62), we find that 

(2-65) 

which means that for large aspect ratios, the toroidal current I is much smaller that 

the poloidal current G and can be neglected. 

Toroidal Flux 

A similar calculation to the ones performed to calculate the currents can be performed 

to obtain the toroidal flux. 

j B · daq, = f dO fo!/J dV;' JB · '\1¢ (2-66) 

Using (2-22) for the Jacobian and the contravariant representation for the magnetic 

field [Eq. (2-50)], we obtain 

J B. da = _!_ f d(} {1/J d1/J' ('\11/J X '\1(} + '\1</J X "Vx). '\1</J 
¢ 21r lo ('\11/; x '\10) · '\1 ¢ 

(2-67) 

J 1 {27r {1/J 
B . daq, = 27r lo d(} lo dV;' (2-68) 

j B · daq, = 1/J. (2-69) 

In particular, the toroidal flux at the edge of the plasma, 1/Ja , in terms of the surface 

averaged toroidal field strength, Bo, can be obtained from 

(2-70) 

Poloidal Flux 

Through an analogous calculation to the one performed for the toroidal flux, the poloidal 

flux -x(V;) is shown to be 

j B · dao = x(V;). (2-71) 

The toroidal and poloidal fluxes are related through the rotational transform t by 

dx( 1/J) = (·'·) dV; - t '(/ . (2-72) 
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To prove Eq. (2-72) let us consider a small radial annulus of width dr. The toroidal flux 

through the annulus is given by (2-69) as 

d'l/J = B¢(27rr)dr (2-73) 

and the poloidal flux through the annulus can be written as 

dx('l/J) = Bo(27rR)dr. (2-74) 

Dividing Eq. (2-74) by Eq. (2-73) and remembering the equation for the rotational 

transform [Eq. (2-41)], 

RBo 
~ = rB¢' 

gives the relationship between the fluxes. 

(2-75) 

The toroidal flux '1/J is defined to be zero on the magnetic axis, which means that '1/J 

is the magnetic flux enclosed by a magnetic pressure surface. The poloidal flux, -x, is 

defined to be the flux outside of a pressure surface, which means it is the flux through 

the hole of the torus. 

2.3.4 Particle Trajectories in a Tokamak 

To lowest order in ra/ Ro, the minor radius divided by the major radius, the magnetic 

field in a tokamak, is given by 

B = Bo ( 1 - ~0 cos 0). (2-76) 

Let us recall that the radial coordinate r represents a toroidal flux surface '1/J. This form 

of the magnetic field strength and the expression for the particle energy [Eq. (2-lO)]leads 

to magnetic mirroring of particles that satisfy the trapped particle criterion ofEq. (2-12). 

The motion of the trapped particles can be projected onto a constant¢ plane (Fig. 2-11) 

and because of the axisymmetry of the B-field, the toroidal motion does not affect this 

projection. The magnetic field is weaker on the outside of the tokamak (0 = 0 side) 
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than on the inside, leading the particles to execute the characteristic "banana orbits" 

{named for obvious reasons). Note that Fig. 2-11 is a projection of the guiding center 

motion of the particle rather than a projection of the gyromotion. 

CD 

"' 

0.10 

0.05 

8 0.00 

-0.05 

-0.10 
0.480 0.485 0.490 

1/2 
\jl case 

0.495 

Figure 2-11: Projection of the guiding center motion for a deeply trapped particle in a 
tokamak magnetic field. 

The passing particles circulate around the torus. The parallel velocity of the passing 

particles is modified by local magnetic field strength variations, but it does not change 

sign. A characteristic width of the banana can be obtained from the expression for 

the canonical toroidal momentum [Eq. 2-89]. Remembering that in an axisymmetric 

configuration P¢ is a constant of motion, we have 

{2-77) 

The banana width is greater for the trapped particles because the parallel velocity 
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vanishes at the bounce point of the orbit. For the passing particles, the parallel velocity 

fluctuates, but does not vanish anywhere on the orbit. We can write, b. vii "" wll, for 

the passing particles, which gives 

( PL 
Ll'I/J)passing "" -. 

~ 

For trapped particles, we have Llv11 "" E112v, which gives 

(Ll'I/J)trapped "" ~L/2 · Lf. 

(2-78) 

(2-79) 

The final feature of the banana orbits we will mention is the toroidal precession of 

the banana orbits. The reflection of the trapped particles occurs at the same critical 

poloidal angle, but the trapped particles experience a cumulative cross-field drift as well 

as an oscillatory radial drift. This causes an advance of the mirror reflections around 

the torus leading to a toroidal precession of the banana orbit. 

2.4 The Particle Equations of Motion 

Let us now turn to obtaining the Hamilton equations of motion for a charged particle 

in a magnetic field. We will first find the poloidal and toroidal canonical momenta from 

the drift Lagrangian and then obtain the drift Hamiltonian. The analysis will be done 

in two sets of variables, ({},</J,po,Pcp) and ((},<jJ,'Ijl,pll)· 

First Set of Variables - ((}, </J,po,Pcp) 

The drift Lagrangian for a charged particle in a magnetic field is 

1 
Ld = 2mvrr + qv · A(x)- t-tB( '1/1, e, ¢)- qci>( '1/1, e, ¢), (2-80) 

where f.-L is the magnetic moment, q is the charge of the particle and A(x) is the vector 

potential of the magnetic field B. The magnetic field associated with plasma equi-

librium, \lp = j x B, has a covariant representation in Boozer coordinates ('ljl,(},<jJ) 
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[Eq. {2-54)] 

B = ~;[G(~)\7¢ + I(~)\70 + {3*(~, 0, ¢)\7~], (2-81) 

where /.Lo is the permeability of free space, G(~) and I(~) are the poloidal and toroidal 

currents and {3* is closely related to the Pfirsch-Schliiter current. The angles 0 and ¢ are 

assumed to have period 2n. In a vacuum field, also called a curl-free field, (\7 x B)q, = 0 

and the toroidal plasma current vanishes. The covariant representation simplifies to 

B = ~;[Go\7¢]. 

The covariant representation for the vector potential is 

1 
A{x) = 27!"[~\70- x(~)\7¢]. 

The velocity, v, can be written as 

Then, using the orthogonality relations of general coordinates, 

vii= v: = ~ [~ ;~ + 0~; + ¢ ~~] · ~; [Go(~)\7¢] = 2~ 1-L~G ¢ 

1 [ . ax . ax . ax] 1 . . 
v · A{x) = 27!" ~a~+ o ao +¢a¢ · [~V'O- x(~)\7¢] = 2n[~o- x(~)¢]. 

The drift Lagrangian then becomes 

1 ( 1 J..LoGo .) 2 
q . . Ld = -m ---¢ + -(~0- x(~)¢) -~LB- q<P 

2 2n B 2n 

and the canonical momenta are 

Po = 
q'lj; 
27!" 

= aL_d = m(__!_/.LoGo)
2

;.. _ qx. 
P¢ a¢ 2n B "~' 2n 

{2-82) 

{2-83) 

{2-84) 

{2-85) 

{2-86) 

{2-87) 

{2-88) 

{2-89) 
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To obtain the drift Hamiltonian, H, from the drift Lagrangian, Ld, we use 

(2-90) 

Then 

(2-91) 

(2-92) 

with ~ = Bx/8'1/J ~ x/'1/J the rotational transform. We can now use the Hamilton 

equations of motion to find the orbit equations. 

iJ = 8H (211')
2 

( B )
2 

-=~--(pcp+~po) --
8po m f-loGo 

[
(211')

2 
2 ( B )

2 
] 1 (211') 8B + --(Pcp+~po) -- +f-lB- - --

m ~~ B q ~ 
(2-93) 

(2-94) 

(2-95) 

(2-96) 

The approach of canonical variables and momenta is the most intuitive and straight 

forward approach to particle motion. We must not fail to notice, however, that the 

reason we were able to write the equations of motion in a simple form was the simple 

relationship between the toroidal flux and the canonical poloidal momentum [Eq. (2-

88)] due to the curl free-field. In general, the relationship between 'ljJ and Po is more 

complicated [cf. Eq. (2-100)]. 
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Second Set of Variables- (0, ¢, V;, PI/) 

We will now discuss another set of variables (0, ¢, V;, PI/) which can be used to describe 

particle motion. Let us go back to Eq. (2-85). Without the assumption of a curl-free 

field, the parallel velocity is 

/-tO . . . 
VII = 21TB [G(V;)¢ + I(V;)O + f3*(V;, 0, ¢)V;]. (2-97) 

It can be shown that when this expression for vii is used in the guiding center Lagrangian, 

P'I/J and V; can be determined once 0, ¢, pe, Pr/> are given. The Hamiltonian, therefore, 

depends only on four variables (0, ¢, po, Prj>), but the Lagrangian depends on six 

(0, ¢, V;, iJ, ¢, -if;). The Hamilton equations of motion can only be obtained when the 

Lagrangian depends on the same number of variables as the associated Hamiltonian. 

This is usually ensured by choosing an appropriate gauge function. In our case, the 

problem can be solved by realizing that -if; is of order gyroradius to system size pj R 

smaller than iJ and ¢. We can redefine the parallel velocity as 

1 /-tO • . 
VII = 21TB [G(V;)¢ + J(V;)O]. (2-98) 

with the difference between vii and vl/ 1 only of order pj R « 1. The drift Lagrangian 

now becomes 

(2-99) 

and the canonical momenta are 

(2-100) 

I mvu qx q 
Pr/> = -~-toG--= -(Pii9- x), 

21rB 21r 21r 
(2-101) 

with Pll = vl/ 1 /we = mvl/ 1 jqB and g(V;) = ~-toG(V;), i(V;) = ~-tol(V;). The drift Hamilto-

nian in terms of the new variables is 

(2-102) 
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To obtain the time evolution equations for 0, ¢, Pll• 'If; we perform a coordinate 

transformation from (0, ¢, po, Pep) to the new coordinate system (0, ¢, Pil• 'If;). The 

Jacobian of this coordinate transformation is given by 

Using Eqs. (2-100), (2-101) and 

(2-104) 

the Jacobian becomes 

(2-105) 

The time derivatives of the new variables (0, ¢, Pil• 'If;) in terms of (0, ¢, Pll• 'If;) 

can be obtained from the Hamilton equations of motion for the canonical variables and 

momenta with the help of some Jacobian algebra [cf. section 2.2]. The expressions for 

iJ and ¢ are obtained quite trivially, 

. (aH) o- - -- 8po -
pq,,O,cjJ 

. (aH) 
¢ = apcp Po,O,cjJ = 

8(H,pcp,O,¢) 8(H,pcp,O,¢) 8(p 11 ,'1f;,O,¢) 
8(po,Pcp,O,¢)- 8(p11 ,'1f;,O,¢) 8(po,pcp,O,¢) 

1 a(H,pcp, o, ¢) 1 [a(H,pcp)] 
-1 a(p

11
,'1f;,O,¢) = -1 a(p

11
,'l/J) o,cp 

H(~~)J~ t (~~). (~~) ,,L (2-106) 

a(H,po,O,¢) _ a(H,po,O,¢) 8('l/J,Pii•O,¢) 
8(pcp,po,O,¢)- 8('1f;,p11 ,o,¢) a(pcp,po,O,¢) 
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1 a(H,po, 0, ¢) 1 [a(H,po)] 
- -1 a('l/J,Pii•o,¢) = -1 a('l/J,pu) o,<t> 

~[(:) J~:). (~J) J~~).L (2-107) 

To obtain the expressions for Pll and -J; in terms of (0, ¢, Pll• 'If;) requires a little more 

work. We begin by writing 

riu = (aPu) e+(apu) ¢ 
aO Po,pq,,O a¢ Po,pq,,¢ 

+(apll) . + (apll) . + (apll) B Po B P¢ at 
Po pq,,O,¢ P¢ vo,O,¢ Po,Pq,,O,¢ 

= (ap 11
) (- aH) + (ap 11

) (- aH) + (apll) (2_108) 
apo ao ap"' a¢ at pq,,O,¢ po,pq,,¢ Po,O,¢ Po,pq,,O po,pq,,O,¢ 

The variables held constant in the partial derivatives must be ( (), ¢, PII, 'lj;). 

(
apll) _ a(pii,P¢,0,¢) a(P¢•PII•O,¢) a('lj;,pll•(),¢) 
8po pq,,O,¢ - 8(po,P¢, 0, ¢) = - 8('1/J, Pil• 0, ¢) 8(po,P¢, 0, ¢) 

= -}(a;;) 
Pii,O,¢ 

(
aPu) 
8p¢ Po,O,¢ 

&(PI I ,po, 0, ¢) a(po, Pll' 0, ¢) a('lj;, Pll, 0, ¢) 
= a(p¢,Po,O,¢) =- a('lj;,pii,O,¢) a(p¢,Po,O,¢) 

= 7('::;) 
Pii•O,¢ 

(2-109) 

(2-110) 

(2-111) 

(2-112) 



The last expression we have to cast in terms of the new variables is 

a(Pii•Po,prp, (), ¢) _ a(Pii,PO,Prp, 0, ¢) a(t,pll, '1/J, (), ¢) 
a(t,po,P<P,O,¢) - a(t,p

11
,'1/J,O,¢) a(t,po,p<P,O,¢) 

_.!_ a(po,P<P,PII,O,¢) = _.!_[a(po,Prp)] 
J a(t,w,p

11
,o,¢) J a(t,'I/J) 0"' 

Pii> >'+' 
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= ~ w::) J ~;) t (a; )J ~: ).L,,,,. (2-l13) 

The only time dependence in the canonical momentum P<P comes from the loop voltage 

(ax) (ax) V(t) = at = a . 
Po,pq,,O,rjJ t Pii ,'ljJ,O,rjJ 

(2-114) 

The poloidal canonical momentum Po does not have a time dependence. Using Eq. (2-

114) along with the equations for the canonical momenta (2-100) and (2-101), we have 

( a Pll ) = .!_ [- !L v ( t )] [ ( ai ( '1/J) ) + !L] 
at J 21r Pll aw 21r Po,pq,,O,¢ t,pii,O,¢ 

(2-115) 

Substituting Eqs. (2-109), (2-110), (2-111), (2-112) and (2-115) into Eq. (2-108) yields 

the desired expression for PII in terms of the new set of variables 

(2-116) 

A similar calculation is required to obtain the time derivative of '1/J. 

~ = (~~) 0+ (~~) ¢ 
Po,pq,,O po,pq,,r/J 

( a'ljJ) . (aw) . (a'ljJ) + a Po+ a P¢ + 7ft 
Po pq,,O,rp P¢ po,O,rp po,pq,,O,¢ 

= ( 8'1/J) (- aH) + ( a'ljJ) (- aH) + (a'ljJ) (2_117) 
apo ao apq, aq; at Pq, ,0 ,rjJ Po ,pq, ,¢ Po ,0 ,¢ Po ,pq, ,0 PO ,pq, ,0 ,rjJ 

http://Pd.fi
http://Pd.fi
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Again, the variables held constant in the partial derivatives must be ( e, ¢, Pii, 'ljJ). 

(
8'l/J) _ 8('l/J,p"',e,¢) __ a(P</J,'l/J,B,¢) 8(p11 ,'1fJ,B,¢) 
8po P<~>,o,¢ - 8(po,P¢, e, ¢) a(p11 , 'l/J, e, ¢) a(po,P¢, e, ¢) 

~ ~(~~t.; 

(
8H) 8(H,po,pq,,cp) _ a(H,po,P¢,¢) 8(H,'lj;,pll,¢) 
7ii -~. = 8(B,po,P¢, ¢) a(e, 'lj;, Pil,¢) a(B,po,P¢, ¢) Po,P¢,oy 

= 1 a(H,'lj;,pll,¢) a(H,p0,pq,,¢) _ (8H) 
-J 8(B,'lj;,pll,¢) a(H,'lj;,pll,¢) - 7ii ·'· -~. 

"Y>P[[ ,oy 

= 1 (apo) 
J apll 'ljl,O,¢ 

8(H,po,P¢,B) _ a(H,po,pq,,B) a(H,'lj;,p11,B) 
8(¢,po,P¢, B) a(cp, 'lj;, Pii, B) 8(¢,po,P¢, B) 

(
a'lj;) a('lj;,po,pq,, B, ¢) a('lj;,po,pq,, B, ¢) a(t, Pil• 'l/J, B, ¢) 
at 0 = a(t,po,P¢,0,¢) - a(t,pli,'l/J,B,¢) a(t,po,P¢,0,¢) Po,P¢, ,¢ 

= 1 8(pq,,po,'l/J,B,¢) 1 [a(pq,,po)] 
-J a(t,p11 ,'1fJ,B,¢) = -1 a(t,p11 ) 'ljl,o,¢ 

1 [(8pq,) (apo) (apo) (apq,) J 
J at PI[ apll t at PI[ apil P[[ 'ljl,O,¢ 

= 

(2-118) 

(2-119) 

(2-120) 

(2-121) 

(2-122) 

Again, using Eq. (2-114) and the equations for the canonical momenta (2-100) and 

(2-101), we have 

(
8'lj;) 1 [ q . ] - = -- --V(t)z('lj;) 
8t J 21f Po,P¢,0,¢ 

(2-123) 

Finally, substituting Eqs. (2-118), (2-119), (2-120), (2-121) and (2-123) into Eq. (2-117) 

yields 

~ = 1 (ap"') (aH) 1 (ap0) (8H) 
-J apii 'ljl,O,,P aB PI[,¢,¢+ J apil 'ljl,O,</J 8cp Pl[,¢,0 
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+~ [ 2~ V(t)i(V;)l (2-124) 

It should be noted that for non-zero values of the loop voltage the particle energy 

is no longer conserved. The particles gain (or loose) the equivalent of one loop voltage 

worth of energy after every toroidal circuit. The energy change is given by 

dH (8H) 8(H,po, 0, ¢) 
dt = at po,(J,cf> = 8(t,po, (), ¢) 

= 
8(H,po, e, ¢) 8(pcp,po, e, ¢) 8(x,po, e, ¢) 
8(pcj>,PO, (), ¢) 8(x,po, (), ¢) 8(t,po, (), ¢) 

= ¢( 2~)v(t), 
where Eqs. (2-94), (2-101) and (2-114) were used in the final step. 

2.5 Plasma Kinetic Theory 

(2-125) 

The study of individual particle motion is very valuable because it leads to an intuitive 

understanding of particle trajectories, drifts and the difficulties associated with confin-

ing particles in a device with complicated geometry. In practice, however, we have no 

way of measuring single particle behavior. It is not possible, therefore, to relate the the-

ory of individual particle motion to actual experiments. An alternative approach is to 

look at collective particle behavior in terms of distribution functions. In this section we 

discuss how measurable quantities such as particle density, fluid velocity, pressure and 

temperature can be represented using distribution functions. This section is concluded 

with the introduction of the Fokker-Planck equation. 
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2.5.1 The Phase Space Distribution Function 

If we wanted to describe the state of a plasma containing N particles, each with position 

Xi and velocity vi, in detail, we could do it using a 6N-dimensional phase space. Each 

state of the plasma would then occupy a single point (xi, ... ,xN, VI, ... , VN) in that 

space. Obviously, such a concept is very difficult to work with. A simpler concept is to 

reduce the space to six dimensions (x, v) and to define a distribution function f(x, v, t) 

where 

(2-126) 

is the number of particles at position x, velocity v and time t in an element of the 

six dimensional space (called a phase space) of volume dxdydzdvxdvydvz. In other 

words, Eq. (2-126) describes the number of particles at time t between (x, y, z) and 

Integrating Eq. (2-126) over all velocities, we obtain the spatial density n(x, t) 

f
+oo 

n(x, t) = -oo f(x, v, t) d3v. (2-127) 

The spatial density is often called the zeroth moment of the distribution. The first 

moment is the local fluid velocity u(x, t) given by averaging the particle velocity 

J!";:vJ(x,v,t) d3v 1/+oo 3 _ 
u(x,t) = +oo 

3 
=- vf(x,v,t) d V= (v). 

Loo f(x, v, t) d v n -oo 
(2-128) 

The second moment of the distribution function is the tensor (vv) which is proportional 

to the energy, pressure and temperature of the distribution. 

The fundamental equation in plasma kinetic theory which describes the time evolu-

tion of the distribution function is the Fokker-Planck equation. 

df- c (f) dt- F.P. 

The left hand side can be re-written using the convective derivative as 

df 

dt 

(2-129) 

~---- -~--~----- ~ 
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(2-130) 

The term on the right hand side of Eq. (2-129) 

c (f)= (a1) F.P. - at c (2-131) 

is called the Fokker-Planck collision operator and represents, as may be expected from 

the name, the effects of collisions between particles on the distribution function. In fully 

ionized plasmas, the collisionality is the effect of many small Coulomb collisions. Let us 

derive the form of the Fokker-Planck collision operator. 

Let g(v, 6.v) be the probability that a particle with initial velocity v acquires an incre-

ment of velocity 6.v in a time tlt due to the Coulomb collisions. We can then write the 

distribution function f(x, v, t) as a product of the distribution at timet- 6.t multiplied 

by the probability of change in the time 6.t integrated over all possible 6.v 

f(x, v, t) = J f(x, v- tlv, t- 6.t)g(v- 6.v, 6.v) d36.v. 

Taylor expanding the product f g to second order 

f(x,v,t) = /[J(x,v,t-6.t)g(v,6.v) -6.v· (:)fg)) 
+~Llvtlv: ( a:~v (!g))] d

3 
tlv 

we obtain 

a 1 a2 

f(x, v, t) = f(x, v, t- tlt)- av . (f(6.v)) + 2 avav :(f(6.v6.v) ), 

where 

J '1/J d3(6.v) = 1, 

j '1/Jtlv d3(6.v) = (6.v), 

and 

J '1/Jtlvtlv d3(tlv) - (tlv6.v). 

(2-132) 

(2-133) 

(2-134) 

(2-135) 

(2-136) 

(2-137) 

(2-138) 
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Using Eq. (2-131) we obtain the Fokker-Planck collision term 

a 1 a2 

CF.P.(f)L:::.t =-av. (f(L:::..v)) + 2 avav:(f(L:::..vt:::..v)). (2-139) 

The collision operator conserves particles, momentum and energy. The three conserva-

tion laws are expressed as 

j C(f)d3v = 0 

j mvC(f)d3v = 0 

j HC(f)d3v = 0. 

(2-140) 

(2-141) 

(2-142) 

We can see that the full Fokker-Planck equation is an extremely complicated integra-

differential equation and can not be solved analytically. Let us look at what the two 

terms on the right hand side represent physically. The first term describes the frictional 

force slowing down fast particles and accelerating slow ones. The negative divergence in 

velocity space means a narrowing of the the distribution. The second term describes the 

diffusion in velocity space. It describes the broadening of a narrow velocity distribution 

as a result of collisions. In an equilibrium, the two terms balance each other and the 

distribution function is a constant. An equilibrium distribution function is called a 

Maxwellian. Let us derive the form of the Maxwellian. 

From the H-theorem of thermodynamics, we know that the entropy, S, of a system 

increases until the system reaches an equilibrium. The entropy in kinetic theory is 

given by 

(2-143) 

An equilibrium distribution function must therefore satisfy 

(2-144) 

where we used Eq. (2-140). Using the conservation properties of the collision operator 

and Eq. (2-144), the Maxwellian can be written as 

FM(v) = exp(1 + 1 · v + (- f3H). (2-145) 
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In a stationary reference frame, 1 = 0 and the Maxwellian is 

FM(v) = exp(l + (- {JH). (2-146) 

Substituting FM into Eq. (2-143) and using the expression for the Gibbs free energy 

G = U- TS + pV = NJ.L with T the temperature, N the number of particles, U the 

energy and J.L the chemical potential, we can identify {3, (and H in Eq. (2-146) as 1/T, 

J.L/T and U, respectively. A equivalent, but more common expression for the Maxwellian 

is 

(2-147) 

where now 

and 1 2 H = 2mv. 

It is clear that for any system in which the distribution is a Maxwellian everywhere 

(global Maxwellian) the plasma is uniform in space and the system is free from any 

interesting physics. In tokamaks, plasmas are considered to be close to thermodynamic 

equilibrium on a local scale, even though there exist large radial temperature and density 

gradients on a global scale. The concept of a local Maxwellian-a function of a spatial 

coordinate (in this case the radial coordinate) as well as the velocity-is introduced. 

For the equations above, it means that both ( and {3, which relate to the density and 

temperature, are functions of 'if;, the radial coordinate. A system is considered to be in 

local thermodynamic equilibrium if it can be described by a local Maxwellian FM ( 'lj;, v), 

which means that the system is considered to be a Maxwellian in velocity distribution 

over a region that is small compared to its size. 

Let us make a final remark on the velocity distributions in plasmas of fusion interest. 

Fusion plasmas are generally confined for many collision times, which means that the 
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deviations from a Maxwellian must be very small. In fact, the deviations from equilib

rium on a local scale are only of order 1%. The 8f Monte Carlo method described in 

the next chapter takes advantage of the smallness of the deviations to calculate various 

parameters of the plasma much more efficiently than traditional Monte Carlo methods. 



Chapter 3 

The 6 f Method 

In this chapter, the of method is introduced and applied as a scheme for a Monte Carlo 

simulation. We will discuss the logic leading to the approach of this method and derive 

it. This chapter will also serve as a link between the plasma theory described in the 

previous chapter and the actual numerical simulation. We will describe in detail how the 

equations used in the of code were obtained from the Fokker-Planck equation discussed 

in the previous section. The of code will be used to calculate two plasma currents, the 

bootstrap current and the Pfirsch-Schliiter current. To test the of method, we first con

sider a very simplified system for which there exist well established analytical theory and 

results from previous simulations. Some preliminary results for a single species (ions), 

non-momentum conserving, axisymmetric system are presented and compared to ana

lytic theory and other numerical simulations. (That portion of the chapter follows very 

closely the paper A of Monte Carlo Method to calculate plasma currents [1 7].) After 

establishing reliability of the of method for the simple case, we apply it to more compli

cated systems. We expand the simulation to include momentum-conservation, a second 

species (electrons), non-axisymmetric fields, a loop voltage (time varying Hamiltonian), 

radial dependence in the toroidal and poloidal currents and finally, quasi-neutrality. 

53 
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3.1 Introduction 

Monte Carlo codes have proven to be an important tool for studying the confinement 

properties of plasma devices. Despite their usefulness, traditional Monte Carlo tech-

niques are extremely inefficient when calculating plasma currents because they involve 

not only calculations of the part of the distribution function directly responsible for the 

currents, but the entire distribution function. The method presented here calculates 

only the deviation f of the distribution function from a Maxwellian rather than the 

Maxwellian itself. For most flows or currents in plasmas of fusion interest j is small, 

of order 10-2 . The statistical errors in Monte Carlo techniques scale as N-1/ 2 with N 

the number of particles in the simulation. A standard Monte Carlo calculation, which 

simulates the full distribution function f would take more than 104 particles just to 

detect the presence of such a current; the 8 f Monte Carlo method is of order 104 times 

as efficient. 

We want to test the new method in areas where there exist well established analytic 

predictions as well as results from other numerical simulations before applying it to 

more complicated systems (following section 3.7). We used the 8f method to obtain 

predictions for the bootstrap current and the cos(B) and cos(2B) components of the 

Pfirsch-Schliiter current in an axisymmetric configuration. 

The simulated values for the bootstrap and Pfirsch-Schliiter currents have been 

compared with values obtained from analytic theory. Over the ranges 0.001 < v* < 100.0 

and 0.005 < E < 0.3, the simulated values for the bootstrap current accurately fit the 

formula 

Jb = I Jii \Eo= (jb)oy€(1 + CtE) 
\B I 1 + y0; + 1.44v* 

(3-148) 

where (jb)o is the analytic value for the bootstrap current divided by y€ in the limit as 

E ---+ 0, v* ---+ 0 and Ct is a constant representing the contribution to the bootstrap current 

due to trapped particles. The collisionality dependence of the simulateu bootstrap 
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current is very similar to the analytic expression obtained by Hinton and Rosenbluth 

[18], 
. 1 

Jb ex . 
1 + y'v; + 0.54v* 

(3-149) 

The analytic dependence of the bootstrap current on the aspect ratio and (jb)o were 

obtained by numerically integrating an expression given by Boozer and Gardner [19]. 

The expression represents only the passing particle contribution to the bootstrap cur-

rent. The trapped particle contribution to the bootstrap current is smaller than the 

passing particle contribution by a factor of the three-halves power of the fraction of 

trapped particles. The fraction of the trapped particles approaches zero at high aspect 

ratios, hence the analytic value for (jb)o calculated for passing particles represents (jb)o 

for all particles. The simulated values for the bootstrap current do not exhibit a linear 

dependence in E in contradiction to results recently obtained by Wu and White [20] 

using a traditional Monte Carlo method. Wu and White found the dependence of the 

bootstrap current to be Jb ex 1.6J€ - 0.6£. Their result is in agreement with the an-

alytic result obtained by Rutherford [21], who also obtained Jb ex 1.6Jf. Rutherford's 

calculation involved an analytic expansion of an elliptic integral, which he carried out 

to lowest order only. If this elliptic integral is evaluated numerically, his result becomes 

Jb ex 1.46Jf which is in agreement with our results and results obtained previously by 

Pytte and Boozer [22]. 

The simulated Pfirsch-Schliiter current does not exhibit a collisionality dependence 

in agreement with analytic theory. The aspect ratio dependences of both the cos(B) 

and cos(2B) components agree very well with their analytic predictions. The analytic 

predictions for the Pfirsch-Schliiter current were obtained by solving the Vlasov equation 

as well as the fluid equations. 

Numerical simulations were carried out using a fourth order Runge-Kutta integrator 
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in the orbit step and a Monte Carlo equivalent of the Lorentz collision operator devel-

oped by Boozer and Kuo-Petravic (23] in the collision step. We have ignored energy 

scattering in the simulation, therefore the collision operator is a pitch angle scattering 

operator only. For simplicity the initial distribution function of the particles was taken 

to be a delta function in energy. The values for the bootstrap current and the Pfirsch-

Schluter current were calculated 100 times and recorded ten times per collision time. 

There are subtleties associated with the sampling rate and the conversion of the Monte 

Carlo summation over particles into the integration over the magnetic coordinates (), ¢ 

and 'lj; found in the analytic calculation for the currents. Both subtleties will be dis-

cussed in subsequent sections. 

3.2 Derivation of the 8 f Method 

The starting point in this simulation is the Fokker-Planck equation. 

df = C(f) 
dt 

(3-150) 

As stated in the previous chapter, fusion plasmas are in near equilibrium on a local scale, 

which means the local distribution function f is almost a Maxwellian. The deviation 

from a Maxwellian is about one part in a hundred, hence we can write f as 

f = F('lj;, H)M exp{f), (3-151) 

where F('lj;, H)M is a local Maxwellian with 'lj; the toroidal magnetic flux enclosed by a 

constant pressure surface and H = ~mv2 = ~mv~ + t-LB the particle kinetic energy. The 

deviation from the Maxwellian distribution is represented by f « 1. The Fokker-Planck 

equation can then be written as 

!del efdF = O(f) 
dt + dt 

(3-152) 



Introducing a modified collision operator Cm(f) = C(f)/ f and using 

the Fokker-Planck equation becomes 

d(lnFM) 
dt 

d{lnFM) dj = G (f) 
dt + dt m · 

The local Maxwellian FM has the following form 

F('lj;, H)M = exp((('lj;)- 1- Hf3('lj;)) 
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(3-153) 

(3-154) 

where ( = JL/T, the chemical potential divided by the temperature and f3 = 1/T. The 

time derivative of ln FM can now be written as 

d(lnFM) = d( -Hdf3 -f3dH. 
dt dt dt dt 

(3-155) 

For a time independent problem the only time dependence in a drift Hamiltonian H is 

in the poloidal flux x('l/J, t) with 

(3-156) 

The time derivative of the poloidal flux is the loop voltage, V = Bx/ 8t, which increases 

the energy of particles. For simplicity we set V = 0. The Fokker-Planck equation, after 

applying the chain rule, then becomes 

dj (d( _ Hdf3) d'lj; = C (f) 
dt + d'lj; d'lj; dt m · 

(3-157) 

Eq. (3-157) is a linear equation in d'lj;jdt. It can be separated into two equations, one 

involving ( and the other involving (3. 

do( d'l/J _ _ J 
-d + -d - C (8d, where O( = !K 

t t d'ljJ 

dof3 Hd'lj; C ("' ) 1 J: - j dt - dt = u f3 , w 1ere u f3 = !!11. • 
d'I/J 

(3-158) 

(3-159) 
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To find the deviation o it appears we must solve both equations, but without energy 

scattering, H remains constant and equations (3-158) and (3-159) are trivially related. 

It is therefore sufficient to solve only Eq. (3-158). 

3.3 The Monte Carlo Code 

To solve the equation 

do d'I/J = c (o) 
dt + dt 

(3-160) 

we monitor a large number of particles distributed over a narrow annulus in '1/J. Following 

Eq. (3-160), we can identify 8 as the displacement of a particle from its original 'ljJ 

surface, which we shall call the particle's home flux surface. The displacements 8 at 

the start of the simulation are set to zero, which is equivalent to assuming the initial 

distribution is Maxwellian. The initial toroidal and poloidal positions as well as the 

initial pitches of the particles are irrelevant because after about one collision time the 

particles will distribute themselves evenly throughout the (}, ¢and A regions with equal 

number of particles in equal volumes. The initial energies for all particles are equal 

and do not change during the simulation. We choose a monoenergetic distribution as 

our background "Maxwellian" and a collision operator that does not include energy 

scattering rather than a true Maxwellian and an energy scattering operator because it 

greatly increases the efficiency of the code. The computing time needed for a Monte 

Carlo simulation with a true Maxwellian velocity distribution which includes pitch angle 

and energy scattering is about an order of magnitude larger than the time needed for 

a simulation with a monoenergetic distribution and pitch angle scattering only. The 

reason for the inefficiency of the simulation with a Maxwellian distribution are the highly 

energetic particles which require much smaller step sizes than the average particles to 

ensure the same accuracy of the integration. The number of timesteps needed to follow 
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the highly energetic particles over one collision time is therefore much greater than 

the number required for the average particle. In addition, the collision time Tc scales 

as E 312 which means that the collision time is very long for highly energetic particles. 

Results obtained with a monoenergetic distribution can be convoluted with a Maxwellian 

energy distribution to obtain results that agree with those obtained from a Monte Carlo 

simulation with Maxwellian energy distribution [24]. 

Following the initialization procedure, we employ the usual Monte Carlo scheme 

consisting of an orbit step followed by a collision step to update the particles' positions, 

momenta and pitches. During the orbit step, in which a fourth order Runge-Kutta 

integrator is applied, the particles' toroidal and poloidal positions and their canonical 

momenta are updated using the Hamilton equations of motion. If a particle leaves the 

narrow 'lj; annulus, the event is recorded and the particle is put back into the middle of 

the annulus. To bring the Hamiltonian H into the desired form, we use Eqs. (2-88) and 

(2-89) for the canonical momenta The Hamiltonian then becomes 

(21r)2 ( B )2 ( qx)2 H=-- -- P¢+- +1-"B 
2m f-LoGo 27r 

(3-161) 

where 1-"o is the permeability of free space, Go the total poloidal current outside a 

constant-pressure surface and -x the poloidal flux. The magnetic moment 

(3-162) 

is an adiabatic invariant. It is useful to write the magnetic field strength B(fJ, ¢, 'lj;) as a 

Fourier sum for 1/ B 2 ( fJ, ¢, 'lj;) because this form simplifies calculations of the currents: 

1 __ 1 _ [~ 0 ("'') i(nrf>-mO)] 
B2(fJ, ¢,'1j;) - B5('l/J) ~ nm 'f/ e ' (3-163) 

with Bo('l/J) the average of the magnetic field on the surface. In an axisymmetric con-

figuration, B(fJ, 'lj;) can be written as 

(3-164) 
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with E the inverse aspect ratio ra/ R and '1/Ja the toroidal flux enclosed by the pressure 

surface at the edge of the plasma. The constants ct and c2 were chosen to be 2 and 

4, respectively, to simplify the analytic calculations and to make our expression for 

the magnetic field strength consistent with magnetic field models described in previous 

papers [19, 20]. Using Eq. (3-164) as the model for the axisymmetric magnetic field 

and Eqs. (2-93)-(2-96) we arrive at the explicit forms of the equations to be used in the 

Runge-Kutta integrator routine to update 0, ¢, Po and P¢ 

(3-165) 

(27r)2 ( B )2 ¢ = --(P¢ +tpo) -G 
m fLo o 

(3-166) 

Po 

(3-167) 

P¢ = o. (3-168) 

The magnetic field is independent of the toroidal position, hence according to the 

Hamilton equations of motion, the canonical toroidal momentum P¢ is time invariant. 

In the collision step, we wish to simulate the Lorentz collision operator 

(3-169) 

Following Boozer and Kuo-Petravic [23], the Lorentz collision operator is simulated by 

applying the Monte Carlo equivalent of the Lorentz operator to change each particle's 

file:///poGc
file:///PoGoJ
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pitch after every timestep with step size r according to 

(3-170) 

The symbol ± means the sign is chosen randomly with the probability of obtaining a 

plus or minus the same. This random walk in pitch space is the reason this method is 

referred to as a Monte Carlo method. 

After the orbit and collision steps, a new value of the displacement 8 is obtained by 

solving the left hand side of Eq. (3-160) for 8, 

(3-171) 

This is equivalent to the change in 8 during a time step being the change in 'ljJ during 

that step. The values of 8 are used 100 times per collision time to calculate the bootstrap 

and Pfirsch-Schliiter currents. The change in energy between successive time steps is 

calculated after the orbit step and is kept between one part in lOll and six parts in lOll 

by varying the size of the timestep. 

It is important to distinguish between the orbital or simulated time of the particles 

and the number of timesteps through which a given particle has been simulated. Even 

though all particles are initialized with equal step sizes, the step sizes are adjusted for 

each particle based on the change in energy between successive timesteps. During an 

orbit step a highly passing particle moves farther along the field line than a particle with 

smaller parallel velocity and equal step size. The farther advance along the trajectory 

for the highly passing particle results in greater change in energy and therefore a smaller 

step size. In the collision step immediately following the described orbit step, the pitch 

of the highly passing particle will be changed very slightly because of the small step 

size [cf. Eq. (3-170)]. After a large number of timesteps the distribution in pitch will 

become uneven with particles favoring the high lambda regions. To avoid this pressure 

anisotropy during the sampling time, the highly passing particles must be allowed to 
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redistribute themselves evenly throughout pitch space before the currents are calculated. 

This is accomplished by sampling the particles at equal orbital times rather than after 

equal number of timesteps. To achieve that, the sampling method was designed in the 

following manner. The total time for each particle is monitored by summing the values 

of the step sizes for each particle after every iteration. After a particle has reached 

the value of the total time corresponding to the sampling time (in our case 1/100 of a 

collision time), it is omitted from the simulation until all particles have reached that 

time. At that point the currents are calculated and the simulation is continued with all 

particles. The efficiency of the code is not affected by omitting particles during certain 

periods of the simulation, unless it is executed on a massively parallel machine which 

simulates each particle on a separate processor. 

The other subtlety associated with this Monte Carlo simulation is the conversion of 

the summation over particles in the code to the integration over the magnetic coordinates 

and velocity space found in analytic theory. The summation over all particles can be 

identified with a phase space average. We can define the average of the quantity F(x, v) 

as 

[F] = I; Fi(Xi, Vi) = fp F(x, v)d3x d3v 
- N J p d3x d3v ' 

(3-172) 

with N the number of particles in the simulation and the subscript P denoting a phase 

space integral. The volume element d3x can be written in terms of the magnetic coor-

dinates as 

3 MoGo 
d X= Jd()dcpd'lj; = (27rB)2dOd¢d'lj; (3-173) 

with the Jacobian J obtained from the scalar product of the covariant [Eq. (2-51)] and 

contravariant [Eq. (2-47)] representations of the magnetic field B. The velocity space 

volume element can be written as 

(3-174) 

where we used >.. = cos Ov, d>.. = - sinOvd() (with Ov the angle between v and B) 

file:///2skBY
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and the symmetry due to the rapid gyromotion in the ¢v direction. In the case of 

a monoenergetic distribution, F(x, v, A) = F'(x, A)8(v - vo) and the velocity space 

integration can be further simplified to 

1+oo 1+1 1+1 
-oo v2dv _

1 
dAF1(x, A)8(v- vo) = v5 _

1 
dAF'(x, A). (3-175) 

Equation (3-172) then becomes 

(3-176) 

The integration over 'ljJ is performed over the narrow region of the 'ljJ annulus. In the 

limit b.'ljJ-+ 0, the integration over 'ljJ can be neglected and [F] becomes a pressure sur-

face average of the quantity F rather than a volume average. Also, in an axisymmetric 

configuration, F is independent of the toroidal angle ¢ and J d¢ can be neglected as 

well. Finally, we have 

[F] = 

= 

I: Fi(Xi, Vi) 2nv6 Ji1f d(J r~11 dA F J 
N = 2nv2 f 2

7r d(J J+l dA J 
0 JO -1 

Ji1f d(J J!1
1 dA F J 

2 Ji1f d(J J 
(3-177) 

We were able to perform the final simplification in the denominator because the Jaco-

bian J is independent of the pitch A. 

The integration over the magnetic coordinates is required for the Fourier decomposition 

of the parallel current where them= 0, n = 0 term defines the bootstrap current and 

the nonzero m and n terms define the various components of the Pfirsch-Schliiter cur-

rent. We will come back to the conversion of the Monte Carlo summation to integrals 

found in analytic theory in section 3.6. 
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3.4 Theory of the Bootstrap Current 

The bootstrap current is due to the radial, or '1/J, gradient in the density of the particles. 

Consider the orbits of two trapped particles moving in adjacent "banana orbits" around 

their poloidal home flux surfaces. Because of the density gradient dnjd,P, the relative 

displacement of the parallel and anti-parallel moving particles is different. Let us say the 

particle moving parallel is traversing the inside banana orbit and the particle moving 

anti-parallel is traversing the outside banana. In this case there are more particles 

moving parallel to the magnetic field lines than there are particles moving anti-parallel. 

The resulting current is called the bootstrap current (Fig. 3-12). 

'

/_,-------- n I 

,' , ..... ----· n 2 

' ' ' I 
/ / 

' ' ' : 
' ' 

-------- jb 

Figure 3-12: The bootstrap current Jb ~ eo(T/m) 112 dn/d'I/J is due to the radial density 
gradient of the plasma (n1 > n2)- CL marks the center line of the torus. 



65 

The bootstrap current is approximately jb ~ e8JT{m dn/d'I/J with 8 the half-width 

of the banana orbit and ..jTjm the typical speed of the particles along the field lines. 

A better expression for the bootstrap current itl given by Boozer and Gardner [19] as 

. = -.6. (J-LoGo)Tdn 
Jb 0 Bo d'I/J' (3-178) 

where 

· J:f1r (~)dO . =I !l)B = B 
Jb \ B 0 - Ii1r d() 0 

(3-179) 

is the average of the parallel current over (), ¢ and '1/J (in our case only the () averaging 

is relevant) and .6.o, the contribution to the bootstrap current due to passing particles, 

has the form 

.6.o- f
1 
de red~~ 1 (I~~/( d(~)- I ~)I ~/c d(~)) (3-180) 

- } 0 } 0 4(v11 jB
2 ) \B2 8a v11 \B2 \Ba v11 

with a = ()- L¢, ( = ¢ and ~ = J-LBmax/ E a nondimensional variable for the pitch angle. 

(Bmax is the maximum value of the magnetic field on the surface.) The contribution to 

the bootstrap current due to trapped particles is smaller than the contribution due to 

passing particles by a factor of the three-halves power of the fraction of trapped particles 

and will be neglected. In the limit v* -+ 0 and E -+ 0, .6.o reduces to 

Vf. .6.o = 1.46-, 
L 

(3-181) 

with 

(3-182) 

the rotational transform. Boozer and Gardner [19] also showed that in order to obtain 

.6.o at non-zero inverse aspect ratios and collisionalities it is not necessary to evaluate the 

expression given in (3-180), because .6.o(E) is well approximated by .6.o(E) = 1.08.6-~(E), 

where .6.~(E) can be obtained from the boundary condition at the trapped-passing bound

ary, J-L = E/Bmax or~= 1, where 

(3-183) 
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Fig. 3-13 shows a plot of ..6.o as a function of inverse aspect ratio obtained from Eq. (3-

181) and from Eq. (3-183). 

3.0 

~o(E) 2.0 

1.0 

0.0 '----~----"-----~-----'----------' 
0.0 0.2 0.4 

Figure 3-13: Comparison of aspect ratio dependence of ..6.o(E) obtained from Eq. (3-181) 
(dashed line) and from numerical integration of Eq. (3-183) (solid line). 

The temperature Tin Eq. (3-178) can be expressed in terms of the energy from 

(3-184) 

The velocity space integral d3v should be carried out in energy and pitch space, 

Jl d)..ftoo(2E)3/2 fdE 
T = ~ -1 0 m 

3 J~ld>.fooo(~f/2fdE. 
(3-185) 

Substituting in the expression for the distribution function f ~ cot5(E - Eo) with c0 

a normalization constant and Eo the energy of the particles at the beginning of the 

simulation, the expression for the temperature reduces to 

(3-186) 
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The factor (J.LoGo/ Bo) in Eq. (3-178) can be related to parameters used in the simu-

lation through Eq. (2-61) 

(3-187) 

The expression for the bootstrap current due to the passing particles is 

. ( ) 2Eo dn 
(Jb)passing = -~o(E) 27rRo -

3
-d,if/ (3-188) 

To find an approximate analytic expression for the total bootstrap current, we will use 

the result that the contribution due to trapped particles is proportional to the three-

halves power of epsilon [19]. The analytic behavior of the bootstrap current at constant 

collisionality can then be approximated by 

(3-189) 

where 

(3-190) 

and Ct is a constant representing the contribution due to trapped particles. To find an 

expression for the analytic collisionality dependence of the bootstrap current, we will 

use the result obtained by Hinton and Rosenbluth [18], where 

(3-191) 

so that the analytic expression for the bootstrap current as a function of aspect ratio 

and collisionality is 

(3-192) 
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3.5 Theory of the Pfirsch-Schliiter Current 

The Pfirsch-Schliiter current is the current required to cancel out the iJ dependence of 

the perpendicular current. Its analytic value can be obtained from 

B. v(~) = -\l·h. (3-193) 

The Pfirsch-Schliiter current is the special solution of this inhomogeneous differential 

equation. Its surface averaged value for the m-th component is 

(. ) = j ]ucos(mO) )s = _ CmEm (J-LoGo)Tdn 
J P.S. m \ B 0 2L Bo d'ljJ · (3-194) 

The Pfirsch-Schliiter current can be obtained from the fluid equations [25] or from 

the Vlasov equation. The fluid equations approach is presented first. 

Fluid Equations Approach 

We start with the equilibrium equation 

Then 

\lp =j X B 

B x \lp = B x (j x B)= j(B ·B)- B(B · j) = B 2j- (j 11 B)B 

B X \lp-. (jll )B-. -w.- -J- B -J..L 

For p = p('ljJ), we have \lp = \1'1/Jdpfd'ljJ. Then using Eq. (2-54) 

and 

• [ a a a ] B x \lp 
\l·J..L= veae+\1¢a¢+\1'1/Ja'I/J · B 2 

ForB= B(O), 

• (/-LoGo dp) a ( 1 ) \l·J..L = vo · (\7¢ x \1'1/J) ~ d'I/J ae B 2 · 

(3-195) 

(3-196) 

(3-197) 

(3-198) 

(3-199) 

(3-200) 
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From \1 · j = 0 and using \1 · B = 0, we obtain 

V·h = -B · v(~)· (3-201) 

Using the contravariant representation for the magnetic field (2-47) and 

'\l (jll) = '\l(}!_ (jll) = \1 ¢!_ (jll) n ae n ~ ae n (3-202) 

we get 

(3-203) 

B · \l(jll) = -~ ('\l'lj; x '\l(}) · '\l¢-f!__(tll) 
B 21r 8(} B . (3-204) 

Combining Eqs. (3-200), (3-201) and (3-204) we find 

Jii poGo dp 
B =- tB2 d'lj;" (3-205) 

To find the surface average of the m-th component of the Pfirsch-Schliiter current, we 

must calculate 

j Jii cos( me)) _ _ p0G dp Jg'll"(l + c1t:eos(e) + c2 E2 cos(2(})) cos(m(})d(} 
\ B - tB'ff d'lj; Jg'll" d(} 

(3-206) 

which yields 

(
. ) = J Jii cos(me) )n __ em mJ-toGo dp 

J P.S. m - \ B o - 2t € Bo d'lj; . (3-207) 

Vlasov Equation Approach 

The Pfirsch-Schliiter current can also be obtained from the Vlasov equation which we 

will use in the form of Eq. (3-160) with C(o) = 0. 

Using 

do - + v. '\l'lj; = 0 
dt 

do ao aH 
dt = ae 8po 

(3-208) 

(3-209) 
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and 

v. \7'1/; = d,P = _ 2rr fJH 
dt q [)(} 

{3-210) 

we obtain 

8 = j 27r ( gz) d9. {3-211) 
q 8po 

Using Eqs. {2-89), {2-93), {2-95) and neglecting the magnetic field strength variation in 

the radial direction, we get 

{3-212) 

We can use Eq. {3-164) to change the variable of integration from e to B. The integral 

then takes the form 

{3-213) 

Performing the integral yields 

{3-214) 

The expression for the surface averaged m-th component of the Pfirsch-Schliiter current 

is 

j jll cos(mO)) J2 1 d).. JiTi dO~ cos me 
\ B Bo = fl d).. r2Ti dO Bo. 

-1 Jo 

{3-215) 

A few steps of algebra reduce the above equation to the result obtained in Eq. {3-207). 

3.6 Relating Monte Carlo Results to Theoretical Results 

In section 3.3 we discussed the conversion of the summation over particles in the Monte 

Carlo code to integrals found in analytic theory. Let us now apply those results to ob-

tain expressions for the bootstrap and Pfirsch-Schliiter currents in terms of parameters 

file:///noGo
file:///lioGo
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associated with the Monte Carlo code. 

The bootstrap current can be written as 

. _ I jll )B _ I ( ~ f)d3vd0d¢d'lj; 
Jb - \ B o - I d0d¢d'lj; Bo (3-216) 

The distribution function f = FM(1 +}),with FM = coci(v- vo). Using Eq. (3-177) we 

have 

. _ I in )B _ 2rrv8qco I fJ}d>.dO 
Jb - \ B o - I dO Bo 

The constant co is found from the normalization condition 

which yields 

1 
co=--. 

2rrv2 
0 

Substituting Eq. (3-219) into Eq. (3-217) gives 

. _ qvo I ¥d>.d(} B _ 2 I d(} J 'E/ffJi-l 
Jb - I d(} o - qvo I dO N Bo 

Using the form of the Jacobian given in Eq. (3-173), 

I JdO I ~do 11-oGo 
IdO = IdO = (2rrBo) 2 

the bootstrap current in terms of the sum over all particles becomes 

(3-217) 

(3-218) 

(3-219) 

(3-220) 

(3-221) 

(3-222) 

The expression for the various components of the Pfirsch-Schliiter current can be 

obtained in an analogous manner with 

(3-223) 

The factor of 1/2 with respect to the bootstrap current comes from the additional av-

eraging of the cos(mO) terms. 

file:///fiBj
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3.7 Results 

The simulations were run with a wide range of values for the collisionality and the aspect 

ratio. The ranges were: 0.001 < v* < 100.0 and 0.005 < E < 0.5. The other parameters 

in the simulations were: Eo = 5 x 10-11 , Bo = 1, m = 1, q = 1, Ro = 3.0, L = 0.43. All 

simulations were continued for several collision times after the asymptotic value of the 

currents has been reached to ensure small statistical deviations. Figure 3-14 shows the 

bootstrap and Pfirsch-Schliiter currents as functions of time in a typical simulation. 

The dashed lines in Fig. 3-14 mark the fits which enable us to obtain the asymptotic 

values for the currents. 
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Figure 3-14: Simulated bootstrap and Pfirsch-Schliiter currents (solid lines) and their 
asymptotic fits (dashed lines). The bootstrap current is the greater of the two. 

The fitting formula y = A(l-exp( -x/T)) involves two free parameters. A represents 
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the asymptotic value of the currents and T represents the correlation time, which for 

the bootstrap current is about one collision time and for the Pfirsch-Schliiter current 

about one tenth of a collision time. 

The collisionality dependence of the simulated bootstrap current was compared to 

the theoretical prediction given by Hinton and Rosenbluth [18] (Fig. 3-15). Hinton and 

Rosenbluth found the dependence to be 

. 1 
Jb ex . 

1 + y'v; + 0.54v* 
(3-224) 

Our results agree with this prediction (dashed line) well, but a slightly better fit can be 

obtained if the 0.54 is replaced by 1.44 (solid line). 
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Figure 3-15: Normalized bootstrap current vs. collisionality at E = 0.1. The circles rep
resent values obtained from Monte Carlo simulations. The dotted line is the theoretical 
prediction given by Hinton and Rosenbluth (jb ex [1 + v* 112 + 0.54v*]-1) and the solid 
curve represents a fit where jb ex [1 + v* 112 + 1.44v*]-1 . 
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To study the aspect ratio dependence of the bootstrap current, we numerically in-

tegrated Eq. (3-183). Fig. 3-16 shows a comparison of the analytical prediction and 

our results. The prediction is for passing particles represented by circles. The trapped 

particle contribution exhibits an €3/ 2 dependence in agreement with previously obtained 

results and analytic theory. 
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Figure 3-16: Normalized components of the bootstrap current vs. inverse aspect ratio 
at v* = 0.1. The squares and circles represent contributions due to trapped and passing 
particles, respectively. The total bootstrap current is represented by triangles. The 
solid line is an analytic prediction for the passing particle contribution. 

We also checked the prediction that 

(jb)trapped ex (#trapped)
312 

(Jb)passzng #pass~ng 
(3-225) 

Figure 3-17 is a log-log plot of the trapped particle contribution to the bootstrap current 

to the trapped particle ratio. The line marks the slope 1.5, hence our results support 
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the prediction strongly. 
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Figure 3-17: Log-log plot of the ratio of the fraction of trapped and passing particles 
vs. the ratio of the contribution to the bootstrap current due to the trapped and passing 
particles. The line represents the analytical prediction with slope 3/2. 

In Fig. 3-18 we plotted the various contributions to the bootstrap current divided by 

the square root of E versus E to better study higher order dependence of the bootstrap 

current on aspect ratio. The triangles, representing the total bootstrap current divided 

by the square root of epsilon, exhibit a linear dependence on epsilon with a slope of 

2.74. 

Combining our results for the collisionality and aspect ratio dependences of the total 

bootstrap current, we find 

. (jb)ov'f(1 + 2.74t:) 
]b = . 

1 + ViJ; + 1.44v* 
(3-226) 
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Figure 3-18: Normalized components of the bootstrap current divided by the square 
root of epsilon vs. epsilon at v* = 0.1. The squares, circles and triangles represent the 
trapped particle contribution, passing particle contribution and the sum, respectively. 
The solid line is an analytic prediction for the passing particle contribution. 

Figure 3-19 shows a comparison of the simulated bootstrap current to the bootstrap 

current obtained from Eq. (3-226). The solid line marks the unit slope. The average 

slope of the circles is 1.02 with a standard deviation of 1%. 

The Monte Carlo predictions for the Pfirsch-Schliiter current were studied by sim-

ulating the collisionless Vlasov equation as well as the Fokker-Planck equation. In the 

simulations involving the Fokker-Planck equation, the Pfirsch-Schliiter current did not 

exhibit a collisionality dependence over the entire range of IJ* (Fig. 3-20). 

At constant collisionality both components of the simulated Pfirch-Schliiter current 

agreed very well with their analytic predictions over the entire range of epsilon. Figures 
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Figure 3-19: (jb)Monte Carlo vs. (jb)theoretical· The solid line marks the unit slope. 
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3-21 and 3-22 show the cos(O) and cos(20) components of the Pfirsch-Schliiter currents 

normalized to their values obtained from analytic theory. Figure 3-21 shows the results 

for simulations of the Fokker-Planck equation and Fig. 3-22 shows results obtained by 

simulating the collisionless Vlasov equation. 

Figure 3-23 is a comparison of simulated and analytic results for both components 

of the Pfirsch-Schliiter current in the v* = 0 and the v* f; 0 cases. The line marks the 

unit slope. The average slope of the circles is 1.04 with a standard deviation of 1%. 
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Figure 3-20: Cos{O) and cos{20) components of the Pfirsch-Schliiter current vs. colli
sionality at E = 0.1. 
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Figure 3-21: Normalized cos(O) (circles) and cos(20) (squares) components of the 
Pfirsch-Schliiter current vs. inverse aspect ratio at v* = 0.1. 
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Figure 3-22: Normalized cos(O) (circles) and cos(20) (squares) components of the 
Pfirsch-Schliiter current vs. inverse aspect ratio obtained from simulations of the Vlasov 
equation (v* = 0.0). 
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cos(O) component of the Pfirsch-Schliiter current with v* ::j:. 0 and v* = 0, respectively. 
The triangles and circles represent the cos(20) component with v* ::j:. 0 and 11* = 0, 
respectively. The solid line marks the unit slope. 
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3.8 Momentum Conservation 

The Lorentz collision operator CL is used to simulate collisions due to stationary par-

tides. If one wishes to simulate effects of collisions due to moving particles, the collision 

operator must include a term representing the flow velocity u of the fluid. One form of 

a momentum conserving operator was given by Rosenbluth, Hazeltine and Hinton [26] 

m o [ ( of uB )] Cm.c.U) = v B vuOf-L /-L vuOf-L + T f . (3-227) 

The collision operator can be written in terms of the pitch, rather than the magnetic 

moment 

v o [ 2 (of u )] Cm.c.(f) = 2 OA (1- A ) OA - 3-;/ · (3-228) 

where we used 

mv2 (1- >..2 ) 

f.L= 2B ' (3-229) 

o B o 
Of-t - mv2>.. o>.. (3-230) 

and Eq. (3-186). For a near Maxwellian distribution, f = FMef, and 

Cm.c.(f) = 

(3-231) 

because FM is independent of >... Working through the partial derivatives, 

(3-232) 

Dividing both sides by f and neglecting the subdominant terms (the second and third 

term), yields 

u 
Cm.c.(f) = Cm(f) + 3v->.., 

v 

with Cm(f) the modified Lorentz collision operator defined in section 3.2. 

(3-233) 
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An expression for the local flow velocity u is obtained from the momentum conser-

vation condition for Cm.c. (f) 

(3-234) 

Due to the rapid gyro-motion perpendicular to the field, the distribution function is 

isotropic in that direction. Therefore, only the momentum conserving properties along 

the field line are important. The momentum conservation condition for Cm.c.U) be-

comes 

(3-235) 

Inserting the momentum conserving operator and integrating twice by parts while re-

membering that 

J 3 21+1 d v = 21rv0 _
1 

dA, (3-236) 

we find 

= j mv>.l!_~ [(1- >.2) (aj - 3'!!:. 1)] d3v 
2 a>. a>. v 

mv~j :>.[>.(1->.2)(~{ -3;!)] 
-[(1->.2)(~{ -3;!)] d

3
v 

-mv~ j :>. [ >.(1- >.2)!] + f(2>.) 

-3(1- >.2 )'!!:. f d3v 
v 

-mvv j j>. d3v + 3mv~ j (1- >.2);! d3v 

= 0. (3-237) 

Substituting for f = FM(1 + ]) = co8(v- vo)(1 + }) yields 

mvv21fv5co j (1 + ])>.d>. = 3mv~27rv5co j (1- >.2);(1 + ])d>. (3-238) 

and finally 

VIA 1/A u = 2 J >.d>. = 2 Jv 11 d>.. (3-239) 
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We notice that u in Eq. (3-239) is just the definition of the local parallel flow velocity 

uu(x) 

(3-240) 

In the axisymmetric case ull depends only on the poloidal variable (} and the toroidal 

flux (radial variable) '1/J. The local parallel flow velocity ull (x) is related to the local 

parallel current jll ( x) through the charge q, jll ( x) = qull ( x). The local parallel current 

can be expressed in terms of the bootstrap and Pfirsch-Schliiter currents by a Fourier 

decomposition in e. 

jll ('1/J, (}) = [ ( ~ J + 2 L \ jll cos; me)) cos(m(})] B('lj;, (}) 

= [ 1;
0 

+ 2jb:· + 2j~:· + ... ] B('lj;, (}). (3-241) 

The subscripts on the Pfirsch-Schliiter current indicate the corresponding poloidal com-

ponent of the P.S. current. To show that Eq. (3-241) holds true, we divide by B/Bo 

and average over (} to arrive at our definition of the bootstrap current [Eq. (3-179)] 

f27l' (t.u.) d(} . 
Jo B _ (JII J _ . 

271' Bo = B Bo - Jb· 
fo d(} 

(3-242) 

Similarly, for the m-th component of the Pfirsch-Schliiter current, we divide by B / B 0 , 

multiply by cos(m(}) and average over (} to obtain 

f27l' (jll cos{mO)) d(} 
.Jo B B = / jll cos( me) )B = . 

fg1l' d(} 0 \ B o (JP.S.)m. (3-243) 

To implement momentum conservation into the Monte Carlo code, the initial idea 

may be to find a Monte Carlo equivalent of the momentum conserving collision operator 

in analogy to the procedure applied to the Lorentz operator and update the pitch of 

every particle after each timestep according to the newly obtained prescription. A 

more esthetic and clever approach is to go back to the final form of the Fokker-Planck 
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equation [Eq. (3-160)] with the momentum conserving operator in place of the Lorentz 

operator, with j replaced by o, 

do d'l/J u 
-d + -d = CL(o) + 3v->.. 

t t v 
(3-244) 

If we bring the momentum conserving term to the left hand side of the equation, 

do d'l/J u - +-- 3r/->. = CL(o) 
dt dt v 

(3-245) 

we notice that we can use the non-momentum conserving form of the collision operator 

(and the already obtained form for the Monte Carlo equivalent) to enforce momentum 

conservation if o for every particle is updated after each timestep according to 

(3-246) 

with b.ri the increment for the particle. The flow velocity u is obtained from the 

previous results for the bootstrap and Pfirsch-Schliiter currents [cf. Eq. (3-241)]. To 

minimize statistical fluctuations, the results for the currents were averaged over the last 

100 timesteps using a running average. 

Conservation of momentum increases the value of the bootstrap current by the factor 

1/(1- k) [19], where k deviates from unity by approximately the fraction of the trapped 

particles. We can find k from 

3 rl rl de 
k = 4 lo d~ l~;. (vnfv) (3-247) 

with~ a nondimensional variable for the pitch angle defined previously in section 3.4 as 

~ = J.LBmax/ E. Figure 3-24 shows the parameter k as a function of the inverse aspect 

ratio E. 

Figure 3-25 shows the momentum conserving bootstrap current normalized to its 

theoretical value as a function of the inverse aspect ratio E. 
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Figure 3-24: The parameter k vs. the inverse aspect ratio E. 
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Figure 3-25: Results for the bootstrap current obtained with momentum conservation 
normalized to the theoretically predicted values as a function of the inverse aspect ratio. 
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3.9 Electron Contribution 

So far, in our discussion of the plasma currents, we have included only one species. 

In principle, we have not explicitly stated whether the treatment was meant for the 

ions or electrons, but from the form of the collision operator it becomes clear that the 

species we dealt with were the ions. The reason is that we only dealt with collisions 

due to like species, and ignored the collisional effects of the other species. This can 

only be done for the ions because mi »me. Had we wanted to calculate the electron 

currents, the collision operator would have to had included two collision frequencies, Vee, 

the frequency of electrons scattering off of electrons, and Vei, the frequency of electrons 

scattering off of ions. One form of a momentum conserving collision operator for the 

electrons is [19) 

(3-248) 

Assuming equal ion and electron temperatures, the collision operator can be written in 

terms of ). as 

c~.c.U) 

(3-249) 

For the operator to be momentum conserving, the electron-electron scattering part of 

the collision operator must obey 

with the part of the operator representing electrons scattering on ions vanishing if the 

electrons are isotropic in a frame moving with the ion parallel velocity Ui. In other 

words, the expression for Ue obtained through Eq. (3-250) in the collision operator 
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ensures that c:n.c. (f) vanishes for electrons moving along the magnetic field lines with 

the same velocity as the ions. The collision frequencies of the electrons scattering on 

electrons and electrons scattering on ions are approximately equal, Vee ~ Vei = Ve· 

In analogy to the procedure described in the previous section, the momentum conserving 

operator for the electrons becomes 

(3-251) 

with v in Cm(f) replaced by (vee+ v8 i) ~ 2v8 and the local parallel flow velocity for the 

species s given by 

us(~,e) = ;s [ ( ~·~) s + 2(j~:·) s + 2e~:·) s + .. . ]B(~,e). (3-252) 

Again, in analogy with the previous section, we arrive at the prescription for updating 

8 for every electron after each timestep given by 

(3-253) 

The Monte Carlo calculation of the electron bootstrap and Pfirsch-Schliiter currents 

can be done in two ways. The electron collision operator depends on the ion flow, but, 

as previously mentioned, the ion collision operator does not depend on the flow of the 

electrons. The ion bootstrap and Pfirsch-Schliiter currents can therefore be calculated 

without the electrons. This fact enables us to first run a simulation for the ions only 

and, after the currents have reached their asymptotic values, run the simulation for 

the electrons using the asymptotic values for the ion currents in Eq. (3-253). This 

method allows the electron currents to reach their asymptotic values sooner, but it does 

not allow any feedback from the electrons on the ions because the ion simulation is 

completed before the electron simulation has begun. That disadvantage prohibits us 

from using this method for the enforcement of the quasi-neutrality condition through 

electrostatic potentials [section 3.12]. The other way to calculate the electron currents 
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is to run the simulation for the ions for some fraction of a collision time and then switch 

to the electrons until they have reached the same time, etc. This can be done rather 

easily because the simulation already has an artificial time-boundary built in it which 

has to be reached by all particles each time the currents are calculated [cf. section 3.2]. 

The advantage of running the simulation concurrently for both species is the possibility 

of feedback of electron behavior on ions; the disadvantage is the longer time needed for 

the electron currents to reach their equilibrium values. Figure (3-26) shows the electron 

and ion bootstrap currents vs. time as a comparison of the two ways of executing a dual 

species Monte Carlo code. 
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Figure 3-26: The ion and electron bootstrap currents obtained by executing the code 
concurrently for both species (solid line) and first for the ions and then electrons using 
the ion results in the electron code (dashed line). 
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The total bootstrap current is the sum of the ion and electron bootstrap currents 

· = ( jll ) B + ( jll ) B Jb B o B o-
i e 

(3-254) 

Ironically, the bootstrap current calculated using both ion and electron momentum 

conservation is almost identical to the bootstrap current calculated using a single species, 

non-momentum conserving Monte Carlo code. Figure 3-27 is a comparison of the single-

species, non-momentum conserving bootstrap current and the sum of the momentum 

conserving ion and electron currents for several different values of collisionality and 

aspect ratio. 

0.80 

0.60 

~ 0.40 
~ 

.c 
~ 

+ 
<! 
e 
~ 0.20 
~ 

0 

0 

0 

0.00 '-'L_-~---'---~---'---~---'---~----' 
0.00 0.20 0.40 

(jb).o m.c. [a.u.] 

0.60 0.80 

Figure 3-27: A comparison of the results for the bootstrap current obtained from a 
single-species, non-momentum conserving simulation and the sum of the momentum 
conserving ion and electron contributions to the bootstrap current for several values of 
collision frequency and aspect ratio. The solid line marks the unit slope. 
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3.10 Non-Axisymmetric Configuration 

So far, our discussion involved magnetic field configurations that did not exhibit a 

toroidal, or ¢, dependence. In practice, however, a finite number of toroidal field coils 

prevents perfect axisymmetry. To model magnetic field dependence in the toroidal 

direction, we introduce a parameter called the toroidal ripple, Or. The Fourier expansion 

for the magnetic field strength [cf. Eqs. (3-163) and (3-164)] now takes on the form 

B = Bo ( 1 + co1E{I cos(O) + co2E2(:J cos(20) 

1-¢ ~ _l 

+ c10ory ~cos(¢)+ c2oo; (~J cos(2¢)) 
2 

(3-255) 

where we have included the first two cos(n¢) terms, the same number as the cos(mO) 

terms. 

In non-axisymmetric systems, the rotational transform L cannot be approximated 

by a constant, but rather must be a function of the radial variable ~· In tokamaks, the 

rotational transform is about one on the magnetic axis (~ = 0) and about one-third at 

the plasma edge ('1/J = ~a)· The expression for the rotational transform that we have 

used is 

(3-256) 

where ~m denotes the middle of the annulus we are considering. Figure 3-28 shows Las 

a function of radial position with to= 0.43 and '-1 = -0.67. 

The toroidal ripple causes a shift of the banana bounce point across magnetic sur-

faces. The shift can be obtained by calculating the cross surface drift with and without 

ripple and taking the difference. It is given by Wu and White [20] 

(3-257) 

with p the Larmor radius, E the inverse aspect ratio and N the toroidal mode number 

(in our case N = 2). Goldston, White and Boozer [27] have shown that if the ripple 
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Figure 3-28: The rotational transform Las a function of the normalized radial distance. 
'1/Ja gives the toroidal flux at the edge of the plasma. 

exceeds a certain limit, in particular when the banana tip shift due to the perturbation 

is of order the banana width, the radial drifts dominate and the banana orbits of the 

trapped particles become stochastic. Figure 3-29 shows the effect of the toroidal ripple 

on the banana orbits. 



94 

0,=0.0 0,= 0.001 

0.6 0.6 

0.4 0.4 

0.2 0.2 
CD CD 

.s .!3 
"' -0.0 ell -0.0 ;; t }-

-0.2 -0.2 

-0.4 -0.4 

-0.6 -0.6 
-0.6 -0.4 -0.2 -0.0 0.2 0.4 0.6 -0.6 -0.4 -0.2 -0.0 0.2 0.4 0.6 

'lfl'lf, cos e 'lfl'lf. cos e 

0,= 0.02 0,=0.07 

0.6 0.6 

0.4 0.4 

0.2 0.2 
CD CD 

= ·~ 'til -0.0 -0.0 ;; t }-
-0.2 -0.2 

-0.4 -0.4 

-0.6 -0.6 
-0.6 -0.4 -0.2 -0.0 0.2 0.4 0.6 -0.6 -0.4 -0.2 -0.0 0.2 0.4 0.6 

'lfl'lf, cos e 'lfl'lf, cos e 

o, = 0.1 0, = 0.15 

0.6 0.6 

0.4 0.4 

CD 0.1 
CD 0.1 

= .!3 
'til "' ;; 
}- -0.1 t -0.1 

-0.4 -0.4 

-0.6 -0.6 
0.2 0.3 0.4 0.6 0.2 0.3 0.4 0.5 0.6 

'lfl'lf, cos e 'lfl'lf, cos e 

Figure 3-29: The destruction of the banana orbits by the toroidal ripple Or. 
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One of the consequences of the destruction of the banana orbits is that the parallel 

and anti-parallel moving particles are not forced into orbits which set up the bootstrap 

current [cf. section 3.4]. We expect, therefore, to see a destructive effect on the bootstrap 

current due to the toroidal ripple. Figures 3-30 and 3-31 examine the influence of the 

toroidal ripple on the bootstrap current obtained from the of simulation. 

Figure 3-30 shows the bootstrap current as a function of time for Or = 0 and 

Or = 0.02. We can see that the bootstrap current grows until it reaches the asymp-

totic value and then oscillates around that value. The magnitude of the asymptotic 

value is not affected by the toroidal ripple. Figure 3-31 shows the bootstrap current as 

a function of time for Or = 0.07 and Or = 0.15. The bootstrap current exhibits much 

stronger fluctuations and at some points even changes sign. It is important to note that 
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Figure 3-31: The bootstrap current vs. time for two values of the toroidal field ripple. 
The solid line represents Or = 0.07 and the dashed line represents Or = 0.15. 

all six simulations have been executed with the same number of particles and the large 

fluctuations do not represent statistical fluctuations. 

3.11 New Set of Variables 

The poloidal current G and the toroidal current I (which was previously neglected} 

are also taken to be functions of the radial position '1/J. The existence of the toroidal 

current does not allow for the simple relationship between 'ljJ and the poloidal momentum 

Po which is calculated in every time step. To obtain values for the currents and the 

rotational transform using the canonical toroidal and poloidal positions and momenta 

as the variables used in the Runge-Kutta algorithm, the code would have to calculate 
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'1/J as a function of the old values of (po,P<t>,G('IjJ),I('I/l),t('I/J)) [cf. Eqs. (2-100) and (2-

101)] and then use the newly calculated '1/J to obtain new values for G('I/J), I('I/J) and 

t('I/J). Clearly this approach is inefficient. A much better approach is to define a new 

set of variables to be used in the Runge-Kutta algorithm which includes '1/J as one of 

the variables. The new set of variables was introduced in section 2.4 and included the 

poloidal and toroidal angles, the toroidal flux and the parallel gyro-radius (0, ¢, '1/J, Pll ). 

The explicit equations of motion for the new variables to be used in the Runge-Kutta 

routine can be obtained from Eqs. (2-102), (2-105), (2-106), (2-107), (2-116) and (2-124). 

iJ = 

-c:r g ~ ti [g('I/J) [ c2rr)~ll2 B2 + ILB) ~ ( c:!) + q( ~!)] 
_ i('I/J) [ c2rr)~11 2B

2 

+ ILB) ~ (a::) + q( ~:)] 
- 2~ V(t) i('I/J)] 

(3-258) 

(3-259) 

(3-260) 
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The partial derivatives are taken holding the other variables constant. Using Eq. (3-255) 

for the magnetic field we have 

(~!) = (~!) 0,¢,pll 

1 (B) 2 
( c01 ~: co2E

2 cw8r c2o8; ) -2 Bo 2y'#a cos()+ Tacos 2() + 2~ cos¢+ ~cos 2¢ 

(3-262) 

(~!) = (~!) ~.¢,pll 
= ~ (:J 2 

(c01~:{i sin()+ 2co2E
2 :a sin2()) (3-263) 

(~!) = ( ~!) ~,O,pll 
~ (:J 2 

( cw8r{i sin¢+ 2c2o8; :a sin 2¢) (3-264) 

3.12 Enforcement of Quasi-Neutrality 

The condition of quasi-neutrality in a plasma means that the ion and electron densities 

are almost equal everywhere in the plasma. Small deviations from charge neutrality 

are called micro-instabilities. The fluctuations in densities leading to micro-instabilities 

in toroidal confinement devices result from the difference in radial excursions of the 

particles from their original toroidal flux surfaces. The excursions are proportional to 

the Larmor radius of the particles and are much greater for ions than for electrons 

[cf. Eqs. (2-78) and (2-79)]. The resulting electric fields associated with charge separa-

tion in the magnetic surfaces produce E x B drifts across the surfaces, thus weakening 

confinement. The resulting transport is referred to as anomalous transport because it 

exceeds the theoretically predicted values for transport by several times for the ions and 

file:///dipj
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about two orders of magnitude for the electrons. We will try to reproduce anomalous 

transport using the of code by explicitly enforcing quasi-neutrality. We will discuss two 

different methods which lead to enforcement of the quasi-neutrality condition. 

The density n at each point on the surface can be written as a sum of the average 

density on the surface ii and the deviation from the average density b.n. 

with 

and 

n = ii + b.n, 

_ f f d3vd0d</J 
n= dOd¢ 

(3-265) 

(3-266) 

(3-267) 

The density fluctuations on the magnetic surface normalized to the average density on 

the surface can be written in a Fourier decomposed form in (} and <P for each species 

with 

(N ) =I b.n e-i(n<fJ-mO)d(}dA. = ! I 8 e-i(n</1-mO)d)..d(}dA.. 
m~s ii ~ 2 s ~ 

The electron density is approximated by the Gibb's distribution 

which can be written in terms of the deviation from the average density 

( ~) e = elqi<I>(1j!,O,</J)/Te 

(1 + ~fin) e ~ 1 + qif!('ljJ, 0, <P)/Te 

(3-268) 

(3-269) 

(3-270) 

(3-271) 

(3-272) 

Combining Eq. {3-268) with Eq.(3-272) gives a Fourier representation for the so-called 

ambipolar, or self-consistent, electrostatic potential. 

{3-273) 
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The quasi-neutrality condition can then be explicitly enforced by inserting CI!('ljJ, fJ, ¢) 

with (Nn,m)i into the Hamiltonian for the next iteration and calculating (t:l.nfn) and 

CI!('ljJ, fJ, ¢) again. Repeating this procedure will eventually force (Nm,n)i = (Nm,n)e 

thereby explicitly enforcing the quasi-neutrality condition. 

In practice, the deviations from the density were decomposed using the trigonometric 

functions keeping the first three sine and cosine terms for each direction 

b..n 
C01 cos fJ + C02 cos 2fJ + C03 cos 3fJ 

n 

+ So1 sin fJ + So2 sin 2fJ + So3 sin 3fJ 

+ C10 cos¢ + C2o cos 2¢ + C3o cos 3¢ 

+ S10 sin¢+ S2o sin 2¢ + Sao sin 3¢ (3-274) 

with the coefficients calculated from 

(3-275) 

Som = ~ ~ Oi sin( mfJ) (3-276) 
z 

1 
Cno = N ~ Oi cos(n¢) (3-277) 

z 

Bno = ~ ~ Oi sin(n¢) (3-278) 
z 

where the sum is over all particles and N is the total number of particles in the simu-

lation. The expression for the weight Oi for each particle is obtained by following the 

derivation given in section 3.2 with EK replacing H as the variable for the particle 

kinetic energy. We now let H be the total energy of the particle 

1 2 
H = 2mv + qii!('ljJ, fJ, ¢). 

Equation (3-155) can now be written as 

dlnFM 
dt 

8lnFM d'ljJ 8lnFM dEg 
8'ljJ dt + 8Ex dt 

= ( 8( _ mv
2 

8{3) d'ljJ _ {3dEx. 
8'1/J 2 8'1/J dt dt 

(3-279) 

(3-280) 
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The time derivative of the kinetic energy is 

dEK = dH _ d~(V;, (}, ¢) = O _ v. \7~("'' (} ,~.,) 
dt dt q dt 'f/' ' 'f/ 

(3-281) 

For the potential within a constant pressure surface (V; =canst.) 

(3-282) 

and the Fokker-Planck equation given in Eq. (3-157) now contains the extra terms 

consisting of the partial derivatives of the electric potential with respect to (} and ¢ 

(3-283) 

The extra terms are carried over into the prescription for updating 8 after every timestep 

which now reads 

(3-284) 

for the ions and 

(3-285) 

for the electrons. The expression for the ion density fluctuations obtained from Eq. (3-

274) is now used to calculate the new potential 

~(V;, (}, ¢) = T (tl_n) 
q n . 

t 

(3-286) 

for the ions and electrons which will be inserted into the Hamiltonian [Eq. (3-279)] 

in the next timestep. The potential obtained from the ion fluctuations will force the 

electrons into orbits with greater radial excursions (on the order of the ion radial excur-

sions), thereby enforcing quasi-neutrality. Figure 3-32 shows the 801 Fourier coefficient 

of the density for the ions and electrons with (dashed-lines) and without (solid lines) 

enforcement of quasi-neutrality. The density component for the electrons without en-

forcement of quasi-neutrality is of order square-root of the mass ratio smaller than the 

-- --~· ------------
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ion component, as expected. With the quasi-neutrality condition enforced, however, the 

electrons density component is of order of the ion density component which means that 

the electrons are performing radial excursions with magnitude comparable to the ions 

excursions. 
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Figure 3-32: The 801 Fourier coefficient of the density for the ions and electrons. The 
solid lines represent the coefficients without enforcement of quasi-neutrality. The dashed 
lines show the density coefficients with quasi-neutrality enforcement. 

This method of enforcing quasi-neutrality has a drawback. To understand the draw-

back we will discuss the two parts of the displacement of the particles from their original 

flux surfaces; the even and odd parts in vii. The even part of the displacement measures 

the non-closure of the banana orbits. Trapped particles bounce back and forth between 

two points on the field line (precessing slowly) with their parallel velocity switching sign 

at the reflection point, hence their displacement is mostly even in vii. Passing particles, 

however, circulate around the torus keeping the same sign in parallel velocity, hence 
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their displacement is odd in vii. Only the odd part of the displacement leads to a net 

parallel current. The magnitude of the parallel current is determined by the odd part 

of the trapped particles, even though most of the current itself is carried by the passing 

particles. The part of the displacement which is even in vii does not contribute to the 

current. Let us now look at Eqs. (3-284) and (3-285). The last term-associated with 

the ambipolar potential-in both equations changes the magnitude of 8. As previously 

stated, it should only change the part in 8 which is even in vii because the magnitude 

of the parallel current should not be affected. Due to the small number of particles in 

the simulation, the contribution to the odd part of 8 may not be able to cancel itself 

out completely, as it should. In particular, for the ions, the last term in Eq. (3-284) 

is of order of the other terms in the equation, so this effect is not great. For the elec

trons, however, the effect of the ambipolar field is greater than the other terms and 

the ambipolar field increases the magnitude of the parallel current. This effect is due 

to the small number of particles and the statistical problems associated with few par

ticle simulations and is inversely proportional to the number of particles included in the 

simulation. Increasing the number of particles in the simulation is not a very efficient 

solution, however. There exist another possibility. The method described below allows 

us to enforce quasi-neutrality without the problems encountered in the previous method. 

In the new method, the prescription for updating 8 will not be changed from the 

original, non-quasi-neutrality enforcing, prescription since this created the problem in 

the previous method. To eliminate the unwanted terms in Eqs. (3-284) and (3-285), let 

us look back to Eq. (3-280). We realize that the last term in that equation must vanish 

because it is that term which leads to the extra terms in Eqs. (3-284) and (3-285). 

The term can be made to vanish if the expression for the Maxwellian involves the total 

energy H rather than the kinetic energy only because dH / dt = 0. Let us define the 

--------------------- ----- ---



Maxwellian as 

with 

F (·'·H)= (- mv2 q~(7/J,O,¢) - q<l!(7jJ)) 
M '~'' - co exp 2T + T T , 

<l!(7/J) = f ~(7/J, 0, ¢}dOd¢ 
f dOd¢ 

104 

(3-287} 

(3-288} 

the potential averaged over the pressure surface. Let us define the deviation from the 

surface averaged potential if?(7jJ, 0, ¢) = ~(7/J, 0, ¢) - <l!(7jJ). For simplicity and to be 

consistent with previous work, let us replace the Maxwellian energy distribution with a 

monoenergetic distribution. FM(7/J, H) can now be written as 

( ) ( ) (
qif?(7jJ,O,¢)) 

FM 7/J, H = coo v - vo exp T · (3-289} 

The density n(7/J, 0, ¢) at every point of the surface is again written as the sum of 

the average density on the surface n( 7/J) and the deviation from the average density 

D..n(7/J, 0, ¢) 

n n+ D..n 

= I Fm exp(j)d3v =I coo(v- vo} exp ( ~ + j) d3v 

= no + ~0 I ( ~ + j) dA (3-290} 

In analogy with Eqs. (3-268} and (3-269} the Fourier decomposed form of (D..njn) 8 is 

(3-291} 

with 

(3-292} 

In practice this means that the Fourier coefficients are now obtained from 

1 ( qii?) Com= N ~ Oi + T cos(mO) (3-293) 



Born=~~ (oz + ~) sin(m¢) 

Cno = ~ ~ (oz + ~) cos(nO) 

Bno = ~ ~ (oz + ~) sin(n¢). 
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(3-294) 

(3-295) 

(3-296) 

This method allows us to keep the old prescription for updating o and instead uses the 

ambipolar potential in the expressions used to calculate the Fourier coefficients for the 

density to enforce quasi-neutrality. 

To study particle transport across magnetic flux surfaces, a coefficient of diffusion 

across surfaces is obtained. The coefficient is the sum over the squares of the radial 

displacement in a time !:lt averaged over all particles. 

(3-297) 

The time increment !:lt must be large enough to allow effects due to collisions to be 

included. A sensible choice is letting !:l.t = Tc· 

The code correctly predicted neo-classical transport and the enhancement of trans-

port due to toroidal ripple. Figure 3-33 shows the diffusion coefficient as a function of 

time for the ions and electrons. The logarithmic scale on the ordinate allows us to see 

that Di ~ v'mi/meDe, as expected [cf. subsection 2.3.4]. 

Figure 3-34 shows the transport of the ions as a function of the collisionality and 

toroidal ripple. Figure 3-35 shows the collisionality and toroidal ripple dependence of 

the electron transport. Both graphs show qualitative agreement with neoclassical and 

ripple induced transport. 
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Figure 3-33: The diffusion coefficient vs. time for the ions (solid line) and electrons 
(dashed line). 
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Figure 3-34: Ion transport as a function of collisionality. The solid line represents 
the diffusion coefficients for the ions in an axisymmetric configuration. The squares 
represent the diffusion coefficients for Dr = 0.01 and the triangles represent the diffusion 
coefficients for Dr = 0.1. 
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Figure 3-35: Electron transport as a function of collisionality. The solid line represents 
the diffusion coefficients for the electrons in an axisymmetric configuration. The squares 
represent the diffusion coefficients for Or = 0.01 and the triangles represent the diffusion 
coefficients for Or = 0.1. 
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An initially surprising result was the non-dependence of the diffusion coefficient 

on the enforcement of the quasi-neutrality condition. To understand the reason, the 

Fourier density coefficients were further investigated. It turned out that the value of 

qifJ /T was much smaller than anticipated. For the ambipolar field to contribute to 

transport at least as much as the toroidal ripple does, qifJ /T must be of order the 

toroidal ripple Or. We can obtain this result from the particle Hamiltonian with the 

expression for B expanded in a binomial series, keeping only the first terms in € and Or. 

From Figures 3-34 and 3-35 we see that the toroidal ripple contributes significantly to 

transport around Or ,....., 0.1. The values of the Fourier components for qifJjT, however, 

are much smaller, of order w- 5-10-6 • Our results seem to contradict results obtained 

earlier by Garabedian and Taylor [28], who claim that transport is driven by explicitly 

enforcing quasi-neutrality. The apparent disagreement is very interesting and warrants 

further investigation. 



Chapter 4 

Conclusion 

This dissertation introduced a new and efficient approach to calculate parameters in 

plasmas. The 8 f method was tested against analytic theory and previous numerical 

simulations for magnetically confined thermonuclear plasmas. In particular, values for 

the single species, non-momentum conserving bootstrap current and several components 

of the Pfirsch-Schliiter current in an axisymmetric magnetic field configuration were cal

culated and expressions for the currents in the parameter range 0.001 :::; v* :::; 100.0 and 

0.005 :::; E :::; 0.3, with v* the collisionality and E the inverse aspect ratio, were obtained 

(17]. The results agreed very well with results given by analytic theory in asymptotic 

limits as well as previous simulations which gave results for a smaller parameter range. 

Following the preliminary tests, the simulation was upgraded to include momentum 

conservation, a second species and a non-axisymmetric magnetic field configuration. 

The currents were calculated again and gave results which agreed with results obtained 

analytically in asymptotic limits. 

The final addition to the 8f simulation was the explicit enforcement of the quasi

neutrality condition. This was done by calculating density fluctuations in the magnetic 

surfaces and creating an in-surface potential to counteract the variations in the ion and 

electron densities. The parameters of interest in this part were not currents, but rather 

the cross surface diffusion coefficients for the ions and electrons. The preliminary results 

seem to exclude in-surface electric potentials as one of the explanations for anomalous 

110 
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transport. 

The 8 f Monte Carlo code has allowed us to make efficient predictions for currents 

and transport coefficients. This method eliminates the need for including hundreds 

of thousands, or even millions of particles in Monte Carlo simulations, but instead 

uses a few hundred to a thousand. Most of the results presented in this dissertation 

came from codes executed with 500-2000 particles. The time required to simulate 

1000 particles over twenty collision times is about 10 hours of"' 100% CPU on a SUN 

Sparc5 workstation. The floating point operations speed of a Sparc5 is roughly that of 

a Pentium90 personal computer. For many of the calculations it is not even necessary 

to run the simulation over twenty collision times. For example, the diffusion coefficients 

can be obtained after only one collision time, which, for a simulation with 1000 particles, 

is equivalent to 30 minutes of CPU time. The same holds true for the Pfirsch-Schliiter 

current and the density coefficients. The only parameter which takes several collision 

times to reach its final value is the bootstrap current. This phenomenon is not purely 

numerical. It represents the time needed by the passing particles to interact with the 

barely trapped particles executing their banana orbits. 

In conclusion, let us remark that the 8f method isn't by any means limited to 

the calculations of currents or diffusion coefficients in thermonuclear plasmas. It can be 

easily applied to a variety of problems, such as heat transport calculations near divertors 

or even astrophysical plasma problems. In short, the 8 f Monte Carlo method is a new 

and very efficient tool with many potential applications. 

---------------------- ------



Appendix 

The 8f Monte Carlo code 

#include <math.h> 
#include <stdio.h> 
#include <errno.h> 
#include <stdlib.h> 
#include <string.h> 

# define MOMENTUM_CONSERVATION on 
I* # define QUASI_NEUTRALITY on *I 
I*# define LOOP_VOLTAGE 1.0e-16 *I 
I* # define CURRENT_GRADIENTS on *I 
I*# define TOROIDAL_RIPPLE 0.1 *I 

# define PARTICLES 2001 
# define COLLISION_TIMES 30 
# define CALCULATE_PER_COLTIME 100 
# define PRINT_PER_COLTIME 10 

!******************************! 
I* Comment out the things not *I 
I* to be included in the *I 
I* simulation. *I 
!******************************! 

# define CALC_TO_PRINT_RATIO (CALCULATE_PER_COLTIME/PRINT_PER_COLTIME) 
# define MINOR_RADIUS 0.3 
# define MAJOR_RADIUS 3.0 
# define ELECTRON_CHARGE -1.0 
# define ION_CHARGE 1.0 
# define ELECTRON_MASS 2.72e-04 
# define ION_MASS 1.0 
# define ION_SPEED 0.00001 
# define ELECTRON_SPEED (ION_SPEED*sqrt(ION_MASS/ELECTRON_MASS)) 
# define IOTAO 0.43 
# define IOTA1 -0.64 
# define C01 2.0 
# define C02 4.0 
# define C10 2.0 
# define C20 4.0 
# define NUSTAR 0.1 
# define BNAUGHT 1.0 
# define ANNULUSWIDTH 0.15 

!******************************************************************! 
!******************************************************************! 
I** These variables are constant during the execution of the code**/ 
!******************************************************************! 
!******************************************************************! 
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double PI; 
double twoPI; 
double twoPisq; 
double oneovertwoPI; 
double length; 
double epsilon; 
double temperature; 
double Psia; 
double Psimiddle; 
double Psiupper; 
double Psilower; 
double BMAX; 

1******************************************************************1 
1******************************************************************1 
I** These variables are intrinsic to the code **I 
1******************************************************************1 
1******************************************************************1 
int ende[2]; 
int t; 
int p; 
enum SPECIES {IONS, ELECTRONS} species; I* IONS=O; ELECTRONS=! *I 
int evaluateflag; 
int diffusionflag[2]; 
int ommitflag[2][PARTICLES]; 
long ommitcount[2]; 
int runningavgflag[2]; 
long N[2] [PARTICLES]; 
int calcbutnoprint[2]; 

1******************************************************************1 
I****************************************************************** I 
I** These are control variables (not essential) **I 
1******************************************************************1 
1******************************************************************1 
int totalnumber[2]; 
double increment[2] [PARTICLES]; 
double totaltime[2] [PARTICLES]; 
double avgincrement[2]; 
double maxincrement[2]; 
double minincrement[2]; 

1******************************************************************1 
1******************************************************************1 
I** These are the simulated variables and physical parameters **I 
1******************************************************************1 
1******************************************************************1 

double THETA[2] [PARTICLES]; 
double PHI[2] [PARTICLES]; 
double PSI[2] [PARTICLES]; 
double RH0[2] [PARTICLES]; 
double B[2] [PARTICLES]; 
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double LAMBDA[2] [PARTICLES]; 
double ENERGY[2] [PARTICLES]; 
double KINETICENERGY[2] [PARTICLES]; 
double NU[2][PARTICLES]; 
double TAU[2] [PARTICLES]; 
double MU[2] [PARTICLES]; 
double WEIGHT[2][PARTICLES]; 
double THETAOLD[2] [PARTICLES]; 
double PHIOLD[2] [PARTICLES]; 
double PSIOLD[2] [PARTICLES]; 
double RHOOLD[2] [PARTICLES]; 
double BOLD[2] [PARTICLES]; 
double ENERGYOLD[2] [PARTICLES]; 
double bsqavg; 
double speed[2]; 
double m[2]; 
double e[2]; 
double VAVERAGE[2]; 
double ENERGYAVERAGE[2]; 
double WEIGHTOLDD~r~USION[2] [PARTICLES]; 

1******************************************************************1 
1******************************************************************1 
I** These variables represent the results **I 
1******************************************************************1 
1******************************************************************1 

int trapped[2]; 
int passing[2]; 

double 
double 
double 
double 
double 
double 
double 

double 
double 
double 
double 
double 

bootstrap[2]; 
pscostheta[2]; 
pscos2theta[2]; 
pscosphi[2]; 
pscos2phi[2]; 
boottrapped[2]; 
bootpassing[2]; 

bootstrapavg[2]; 
pscosthetaavg[2]; 
pscos2thetaavg[2]; 
pscosphiavg[2]; 
pscos2phiavg[2]; 

double bootstrapavgoverv[2]; 
double pscosthetaavgoverv[2]; 
double pscos2thetaavgoverv[2]; 
double pscosphiavgoverv[2]; 
double pscos2phiavgoverv[2]; 

1********************************1 
I** The number of trapped and **I 
I** passing particles **I 
1********************************1 
1********************************1 
I** Names for variables rep- **I 
I** resenting the bootstrap **I 
I** and P.S. currents while **I 
I** they are accumulating in **I 
I** the getcurrents() **I 
I** subroutine. **I 
I** **I 
1********************************1 
1********************************1 
I** Names for variables rep- **I 
I** resenting the bootstrap **I 
I** and P.S. currents averaged **I 
I** over 1 C.T. divided by **I 
I** "CALC_TO_PRINT_RATIO". **I 
1********************************1 
I******************************** I 
I** Variables representing **I 
I** the currents divided by v **I 
I** used to obtain the local **I 
I** flow velocity in the **I 
I** adjustweights() subroutine **I 
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1********************************1 
I******************************** I 

double diffusioncoefficient[2]; I** Variable representing the **I 
I** diffusion coefficient. **I 
1********************************1 

double constant[2]; 
double mcos1theta[2]; 
double mcos2theta[2]; 
double mcos3theta[2]; 
double msin1theta[2]; 
double msin2theta[2]; 
double msin3theta[2]; 
double ncos1phi[2]; 
double ncos2phi[2]; 
double ncos3phi[2]; 
double nsin1phi[2]; 
double nsin2phi[2]; 
double nsin3phi[2]; 

double constavg[2]; 
double mcos1avg[2]; 
double mcos2avg[2]; 
double mcos3avg[2]; 
double msin1avg[2]; 
double msin2avg[2]; 
double msin3avg[2]; 
double ncos1avg[2]; 
double ncos2avg[2]; 
double ncos3avg[2]; 
double nsin1avg[2]; 
double nsin2avg[2]; 
double nsin3avg[2]; 

1********************************1 
I** Variables representing the **I 
I** Fourier coefficients of **I 
I** the density while they are **I 
I** still accumulating in the **I 
I** calculateandprintdensi- **I 
I** ties() subroutine. **I 
I** These variables are NOT **I 
I** used in the various QNPOT()**I 
I** subroutines. **I 
I** **I 
I** **I 
I** **I 
I** **I 
1********************************1 
1********************************1 
I** **I 
I** **I 
I** Fourier density coeffic. **I 
I** used in the QNPOT() **I 
I** subroutines. **I 
I** **I 
I** **I 
I** **I 
I** **I 
I** **I 
I** **I 
I** **I 
I** **I 
1********************************1 

1******************************************************************1 
1******************************************************************1 

1******************************************************************1 
1******************************************************************1 
I** These are the subroutines in the code. **I 
1******************************************************************1 
1******************************************************************1 
void initrand(); 
void gaussian(); 
void init(); 
double maxfield(); 
void hamilton(); 
int errorcontrol(); 
void getincrements(); 
void collision(); 
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void adjustweights(); 
void psicheck(); 
void makeold(); 
void getcurrents(); 
void averagecurrents(); 
void resetcurrents(); 
void printstuff(); 
void printparameters(float time); 
void calculateandprintdiffusion(float time); 
void calculateandprintdensity(float time); 
float rando () ; 
double drand48(); 

1*****************************************************************1 
1*****************************************************************1 
I** These are the inline functions (used with 'gee') **I 
1*****************************************************************1 
1*****************************************************************1 
inline double Bfield(double theta, double phi, double psi) 
{ 
#ifdef TOROIDAL_RIPPLE 
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return(BNAUGHTisqrt(1.0 + C01*epsilon*sqrt(psiiPsia)*cos(theta) + C02 
*epsilon*epsilon*(psi1Psia)*cos(2.0*theta) + C10*TDROIDAL_RIPPLE*sqrt(p 
siiPsia)*cos(phi) + C20*TDROIDAL_RIPPLE*TDROIDAL_RIPPLE*(psi1Psia)*cos( 
2.0*phi))); 
#endif 
#ifndef TOROIDAL_RIPPLE 

return(BNAUGHTisqrt(1.0 + C01*epsilon*sqrt(psi1Psia)*cos(theta) + C02 
*epsilon*epsilon*(psi1Psia)*cos(2.0*theta))); 
#endif 
} 

inline double eQNPOT(double theta, double phi) 
{ 

return(-2.0I3.0*m[species]*VAVERAGE[species]*VAVERAGE[species]*(mcos1 
avg[O]*cos(theta) + mcos2avg[O]*cos(2.0*theta) + mcos3avg[O]*cos(3.0*th 
eta) + msin1avg[O]*sin(theta) + msin2avg[O]*sin(2.0*theta) + msin3avg[O 
]*sin(3.0*theta) + ncos1avg[O]*cos(phi) + ncos2avg[O]*cos(2.0*phi) + nc 
os3avg[O]*cos(3.0*phi) + nsin1avg[O]*sin(phi) + nsin2avg[O]*sin(2.0*phi 
) + nsin3avg[O]*sin(3.0*phi))); 
} 

inline double eQNPOTbyT(double theta, double phi) 
{ 

return(-2.0*(mcos1avg[O]*cos(theta) + mcos2avg[O]*cos(2.0*theta) +me 
os3avg[O]*cos(3.0*theta) + msin1avg[O]*sin(theta) + msin2avg[O]*sin(2.0 
*theta) + msin3avg[O]*sin(3.0*theta) + ncos1avg[O]*cos(phi) + ncos2avg[ 
O]*cos(2.0*phi) + ncos3avg[O]*cos(3.0*phi) + nsin1avg[O]*sin(phi) + nsi 
n2avg[O]*sin(2.0*phi) + nsin3avg[O]*sin(3.0*phi))); 
} 

inline double edQNPOTdtheta(double theta, double sin1t, double sin2t, d 



ouble cos1t, double cos2t) 
{ 
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return(-2.0I3.0*m[species]*VAVERAGE[species]*VAVERAGE[species]*(-mcos 
1avg[O]*sin1t - 2.0*mcos2avg[O]*sin2t - 3.0*mcos3avg[O]*sin(3.0*theta) 
+ msin1avg[O]*cos1t + 2.0*msin2avg[O]*cos2t + 3.0*msin3avg[O]*cos(3.0*t 
heta))); 
} 

inline double edQNPOTdphi(double phi, double sin1p, double sin2p, doubl 
e cos1p, double cos2p) 
{ 

return(-2.0I3.0*m[species]*VAVERAGE[species]*VAVERAGE[species]*(-ncos 
1avg[O]*sin1p - 2.0*ncos2avg[O]*sin2p- 3.0*ncos3avg[O]*sin(3.0*phi) + 
nsin1avg[O]*cos1p + 2.0*nsin2avg[O]*cos2p + 3.0*nsin3avg[O]*cos(3.0*phi 
) ) ) ; 
} 

inline double iota(double psi) 
{ 

return(IOTAO + IDTA1*(psi-Psimiddle)1Psia); 
} 

inline double g(double psi) 
{ 

return(length*BNAUGHT); 
} 

inline double dgdpsi(double psi) 
{ 

return(O.O); 
} 

inline double i(double psi) 
{ 

return(iota(psi)*epsilon*epsilon*g(psi)); 
} 

inline double didpsi(double psi) 
{ 

return(O.O); 
} 

I* toroidal transform *I 

I* poloidal current *I 

I* toroidal current *I 

inline double dBdthetaoverB(double sin1t, double sin2t, double psi, dou 
ble bno) 
{ 

return(0.5*bno*bno*(C01*epsilon*sqrt(psiiPsia)*sin1t + 2.0*C02*epsilo 
n*epsilon*psiiPsia*sin2t)); 
} 

#ifdef TOROIDAL_RIPPLE 
inline double dBdphioverB(double sin1p, double sin2p, double psi, doubl 
e bno) 
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{ 
return(0.5*bno*bno*(C10*TDROIDAL_RIPPLE*sqrt(psi/Psia)*sin1p + 2.0*C20* 
TOROIDAL_RIPPLE*TDROIDAL_RIPPLE*psi/Psia*sin2p)); 
} 
#endif 

inline double dBdpsioverB(double cos1t, double cos2t, double cos1p, dou 
ble cos2p, double psi, double bno) 
{ 
#ifdef TOROIDAL_RIPPLE 

return(-0.5*bno*bno*(0.5*C01*epsilon/sqrt(psi*Psia)*cos1t + C02*epsil 
on*epsilon/Psia*cos2t + 0.5*C10*TDROIDAL_RIPPLE/sqrt(psi*Psia)*cos1p + 
C20*TOROIDAL_RIPPLE*TDROIDAL_RIPPLE/Psia*cos2p)); 
#endif 

#ifndef TOROIDAL_RIPPLE 
return(-0.5*bno*bno*(0.5*C01*epsilon/sqrt(psi*Psia)*cos1t + C02*epsil 

on*epsilon/Psia*cos2t)); 
#endif 
} 

#ifdef LOOP_VOLTAGE 
inline double loopvoltage() 
{ 

return(LOOP_VOLTAGE); 
} 
#endif 

inline double thetadot(double oneoverJ, double Prho, double rhodgdpsi, 
double iota, double g, double Prhosq, double dBdpsioverB) 
{ 

return(-oneoverJ*(Prho*(rhodgdpsi - oneovertwoPI*e[species]*iota) - g 
*Prhosq*dBdpsioverB)); 
} 

inline double phidot(double oneoverJ, double Prhosq, double dBdpsioverB 
, double i, double rhodidpsi, double Prho) 
{ 

return(-oneoverJ*(Prhosq*dBdpsioverB*i - (rhodidpsi + oneovertwoPI*e[ 
species])*Prho)); 
} 

inline double psidot(double oneoverJ, double g, double Prhosq, double d 
BdthetaoverB, double edQNPOTdtheta, double edQNPOTdphi, double i, doubl 
e dBdphioverB, double loopvoltage) 
{ 

return(oneoverJ*(g*(-Prhosq*dBdthetaoverB - edQNPOTdtheta) + i*(Prhos 
q*dBdphioverB + edQNPOTdphi) + oneovertwoPI*e[species]*loopvoltage*i)); 
} 

inline double rhodot(double oneoverJ, double rhodgdpsi, double iota, do 
uble Prhosq, double dBdthetaoverB, double edQNPOTdtheta, double edQNPOT 



119 

dphi, double rhodidpsi, double dBdphioverB, double loopvoltage) 
{ 

return(oneoverJ*((rhodgdpsi - oneovertwoPI*e[species]*iota)*(Prhosq*d 
BdthetaoverB + edQNPOTdtheta) - (rhodidpsi + oneovertwoPI*e[species])*( 
Prhosq*dBdphioverB + edQNPOTdphi) - oneovertwoPI*e[species]*loopvoltage 
*(rhodidpsi + oneovertwoPI*e[species]))); 
} 

!**********************************************************************! 
!**********************************************************************! 
!************************* MAIN() **************************/ 
!**********************************************************************! 
!**********************************************************************! 
main() 
{ 

int stepback; * variable for errorcontrol() *I 

initrand(); !*******************************! 
for(species = IONS; species<=ELECTRONS; species++){ /**initialize **I 

for(p=1; p<PARTICLES; p++){ I** the random seed and **I 
init(); I** all parameters for the **I 
printparameters(O.O); I** particles **I 

} !****************************! 
} !****************************! 

!***************************************************************! 
!***************************************************************! 
!**************** MONTE CARLO SCHEME *********************/ 
!***************************************************************! 
!***************************************************************! 

species = 0; I***** Start with the Ions *****I 
while(!ende[species]){ 

t++; I***** uddate timestep *****I 
for(p=1; p<PARTICLES; p++){ 

if(!ommitflag[species][p]){ 

!******** STEP 1. Updating Positions and Momenta *******! 

stepback = 1; 
for(; stepback; ){ 

hamilton(); 

!********************************! 
I** Execute hamilton() again **I 
I** if deltaE[p] is above the **I 

stepback = errorcontrol(); 
I** upper limit (6E-11) and **I 
/**adjust increment[species] [p]**l 
I** depending on deltaE[p]. **I } 

get increments 0 ; 
psicheck(); 

!************* STEP 2. 

collision(); 

!********************************! 
/**Calculate min,max,avgincrem.**l 
/**Check if psi is inside ann. **I 
!********************************! 

Updating The Pitches **************! 



} 

} 

} 
} 

} 
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!************* STEP 3. Updating The Weights **************/ 

adjustweights 0; 

makeold(); I** Adjust variables for next timestep. **I 
} 

!***************************************************************! 
!***************************************************************! 
/**CALCULATION OF CURRENTS, DENSITIES AND AVERAGING PROCEDURES**/ 
!***************************************************************! 
I*************************************************************** I 

if(ommitcount[species] == (PARTICLES-!)){ 
!*********************************! 
I** All particles have reached **I 

getcurrents(); 

averagecurrents(); 

I** the time boundary. **I 
I** Calculate bootstrap and P.S.**I 
I** currents and densities and **I 
I** average them over 0.1 C.T. **I 
!*********************************! 

calcbutnoprint[species]++; /**Update variable for calc/print**/ 

if(calcbutnoprint[species] == CALC_TO_PRINT_RATIO){ 
!***********************************! 
/**Calc/print variable has reached**/ 
I** assigned calc/print ratio. **I 
!***********************************! 

runningavgflag[species]++; I** Start running average now. **I 
!***********************************! 

printstuff(); I** Print currents and- if 1 C.T.**I 
I** has passed- also print dens. **I 
I** coeff. and diff. parameter. **I 
!***********************************! 

calcbutnoprint[species] = 0; I** Reset calc/print variable.**/ 
!***********************************! 

resetcurrents(); I** set currents to zero for next step **I 
species = 1 - species;/** switch specie Ions <---> Electrons **I 

void initrand() 

{ 
srand48(2121.21); I* random seed initialization *I 
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I* calculations of the constants *I 
PI 4.0*atan(1.0); 
twoPI = 2.0*PI; 
twoPisq 4.0*PI*PI; 
onEtovertwoPI 1. 0/twoPI; 
length 2.0*PI*MAJOR_RADIUS; /*length= 2*Pi*R = char. lenght*/ 
epsilon = MINOR_RADIUS/MAJOR_RADIUS; 
Psia PI*MINOR_RADIUS*MINOR_RADIUS*8NAUGHT; 
Psimiddle = 0.85*Psia; 
Psilower = Psimiddle - 0.5*ANNULUSWIDTH*Psia; 
Psiupper = Psimiddle + 0.5*ANNULUSWIDTH*Psia; 
8MAX = maxfield(); 

} 

void init() 
!**********************************************************************! 
!**********************************************************************! 
I** Initialize! **I 
I********************************************************************** I 
!**********************************************************************! 
{ 
double v; 
double qnpotential = 0.0; 
if(species -- IONS){ 

e[IONS] ION_CHARGE; 
m[IONS] ION_MASS; 
speed[IONS] ION_SPEED; 

} 
else{ 

} 

e[ELECTRONS] 
m[ELECTRONS] 
speed [ELECTRONS] 

v = speed[species]; 

ELECTRON_ CHARGE; 
ELECTRON_MASS; 
ELECTRON_SPEED; 

1; 
20000.0; 
0.0; 

N [species] [p] 
increment[species] [p] = 
WEIGHT[species] [p] 
THETA[species] [p] = twoPI*rando () ; 

= twoPI*rando(); 
= Psimiddle; 

PHI [species] [p] 
PSI [species] [p] 
8 [species] [p] = Bfield(THETA[species] [p], 

-0.99+1.98*rando(); 

PHI[species][p], PSI 
[species] [p]) ; 
LAM8DA[species] [p] 
RHO [species] [p] = (oneovertwoPI)*m[species]*LAMBDA[species] [p]*v 

/8 [species] [p] ; 
MU[species] [p] = 0.5*m[species]*V*V*(1.0- LAM8DA[species] [p]*L 

AM8DA[species] [p])/8[species] [p]; 
NU[species] [p] = NUSTAR*(IDTAO + IOTAh(PSI[species][p]-Psimidd 

le)/Psia)*v*epsilon*sqrt(epsilon)/MAJOR_RADIUS; 



TAU[species] [p] 
ommitflag[species][p] 

= 1.0/NU[species] [p]; 
= 0; 

#ifdef QUASI_NEUTRALITY 
qnpotential = eQNPOT(THETA[species][p], PHI[species] [p]); 

#endif 
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ENERGY[species] [p] = 0.5*(twoPisq)*RHO[species] [p]*RHD[species] [p]* 
B[species] [p]*B[species][p]/m[species] + MU[species] [p]*B[species] [p] + 
qnpotential; 

printf( 11 Initial Conditions: %i\nEnergy = %e VTOT = %e E2 = %e MU[sp 
ecies] [p] = %e\nNU=%e LAMBDA= %e\nthetas = %f phi= %f\n\n 11 ,p, ENERGY[ 
species] [p], v, 0.5*m[species]*v*v, MU[species] [p], NU[species] [p], LAM 
BDA[species] [p], THETA[species] [p], PHI[species] [p]); 

VAVERAGE[species] = speed[species]; 
evaluateflag = 1; 
makeold(); 
WEIGHTOLDDIFFUSION[species] [p] = WEIGHT[species] [p]; 

} 

void hamilton() 
{ 

!**********************************************************************! 
I** These are the local variables used in the Runge - Kutta routine***/ 
!**********************************************************************! 

double theta!, theta2, theta3, theta4; 
double phi1, phi2, phi3, phi4; 
double psi1, psi2, psi3, psi4; 
double rho1, rho2, rho3, rho4; 
double b1, b2, b3, b4; 
double bno1, bno2, bno3, bno4; 
double del taH1, del taH2, del taH3, del taH4; 
double sin1t1, sin1t2, sin1t3, sin1t4; 
double sin2t1, sin2t2, sin2t3, sin2t4; 
double cos1t1, cos1t2, cos1t3, cos1t4; 
double cos2t 1, cos2t2, cos2t3, cos2t4; 
double sin1p1, sin1p2, sin1p3, sin1p4; 
double sin2p1, sin2p2, sin2p3, sin2p4; 
double cos1p1, cos1p2, cos1p3, cos1p4; 
double cos2p1, cos2p2, cos2p3, cos2p4; 
double tempiota1, tempiota2, tempiota3, tempiota4; 
double g1, g2, g3, g4; 
double i1, i2, i3, i4; 
double oneoverJ1, oneoverJ2, oneoverJ3, oneoverJ4; 
double Prhosq1, Prhosq2, Prhosq3, Prhosq4; 
double Prho1, Prho2, Prho3, Prho4; 
double dBdthetaoverB1, dBdthetaoverB2, dBdthetaoverB3, dBdthetaoverB4; 
double d8dpsiover81, d8dpsiover82, d8dpsiover83, d8dpsiover84; 
double phidot1, phidot2, phidot3, phidot4; 
double k1theta, k2theta, k3theta, k4theta; 
double k1phi, k2phi, k3phi, k4phi; 
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double k1psi, k2psi, k3psi, k4psi; 
double k1rho, k2rho, k3rho, k4rho; 
double k1deltaH, k2deltaH, k3deltaH, k4deltaH; 
double loopvoltage1 = 0.0, loopvoltage2 0.0, 

loopvoltage3 = 0.0, loopvoltage4 = 0.0; 
double rhodgdpsi1 0.0, rhodgdpsi2 0.0, 

rhodgdpsi3 = 0.0, rhodgdpsi4 = 0.0; 
double rhodidpsi1 = 0.0, rhodidpsi2 = 0.0, 

rhodidpsi3 = 0.0, rhodidpsi4 0.0; 
double edQNPDTdphi1 = 0.0, edQNPDTdphi2 0.0, 

edQNPOTdphi3 = 0.0, edQNPDTdphi4 0.0; 
double edQNPDTdtheta1= 0.0, edQNPDTdtheta2 = 0.0, 

edQNPOTdtheta3 = 0.0, edQNPDTdtheta4= 0.0; 
double dBdphioverB1 = 0.0, dBdphioverB2 = 0.0, 

dBdphioverB3 = 0.0, dBdphioverB4 = 0.0; 
double qnpotential = 0.0; 

1**********************************************************************1 
I** Check whether the particle p will reach (or surpass) a time- **I 
I** boundary. If so, decrease increment[species][p] such that the **I 
I** boundary is reached precisely after the execution of this **I 
I** timestep and ommit particle [p] from now on until all particles **I 
I** have reached that time-boundary. N[][p] is the number of **I 
I** collision times over which particle p has been simulated. **I 
1**********************************************************************1 

if(ommitflag[species] [p]){ 
ommitcount[species]--; 

} 
ommitflag[species][p] = 0; 
if((increment[species] [p]+totaltime[species][p]) >= (((float)(N[speci 

es] [p]))*TAU[species] [p]l((float)(CALCULATE_PER_CDLTIME)))){ 
increment[species] [p] = (((float)(N[species] [p]))*TAU[species] [p]l( 

(float)(CALCULATE_PER_COLTIME)))- totaltime[species][p]; 
ommitflag[species] [p] = 1; 
N[species] [p]++; 
ommitcount[species]++; 

} 

1**********************************1 
I** initialize local variables **I 
1**********************************1 

theta! THETADLD[species][p]; 
phi1 = PHIDLD[species] [p]; 
psi1 = PSIDLD[species] [p]; 
rho1 RHDDLD[species] [p]; 
b1 = BDLD[species][p]; 

1*********************************************************************1 
I** Need this when coefficients in QNPDT change to prevent deltaE **I 
I** from becoming too large **I 
1*********************************************************************1 

if(evaluateflag){ 
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#ifdef QUASI_NEUTRALITY 
qnpotential = eQNPOT(theta1, phi1); 

#endif 
ENERGYOLD[species] [p] = 0.5*(twoPisq)*rho1*rho1*b1*b1lm[species] + 

MU[species][p]*b1 + qnpotential; 

if(p == (PARTICLES-!)) {evaluateflag = 0;} 
} 

1**********************************1 
I***** obtain k1-values ******I 
1**********************************1 

sin1t1 = sin(theta1); 
sin2t1 sin(2.0*theta1); 
cos1t1 = cos(theta1); 
cos2t1 cos(2.0*theta1); 
sin1p1 = sin(phi1); 
sin2p1 sin(2.0*phi1); 
cos1p1 = cos(phi1); 
cos2p1 = cos(2.0*phi1); 
bno1 = b1IBNAUGHT; 
Prho1 = (twoPisq)*rho1*b1*b1lm[species]; 
Prhosq1 = (twoPisq)*rho1*rho1*b1*b1lm[species] + MU[species] [p]*b1; 
tempiota1 = iota(psi1); 
g1 = g(psi1); 
i1 = i (psi1); 

#ifdef QUASI_NEUTRALITY 
edQNPOTdtheta1 edQNPDTdtheta(theta1,sin1t1,sin2t1, cos1t1, cos2t1); 
edQNPDTdphi1 = edQNPOTdphi(phi1, sin1p1, sin2p1, cos1p1, cos2p1); 

#endif 

#ifdef LOOP_VOLTAGE 
loopvoltage1 = loopvoltage(); 

#endif 

#ifdef CURRENT_GRADIENTS 
rhodgdpsi1 rho1*dgdpsi(psi1); 
rhodidpsi1 = rho1*didpsi(psi1); 

#endif 

oneoverJ1 = 1.0I(g(psi1)*(rho1*rhodidpsi1+oneovertwoPI*e[species]) -
i(psi1)*(rho1*rhodgdpsi1- oneovertwoPI*tempiota1*e[species])); 

dBdthetaoverB1 = dBdthetaoverB(sin1t1, sin2t1, psi1, bno1); 

#ifdef TORDIDAL_RIPPLE 
dBdphioverB1 = dBdphioverB(sin1p1, sin2p1, psi1, bno1); 

#endif 

dBdpsioverB1 = dBdpsioverB(cos1t1,cos2t1,cos1p1,cos2p1,psi1,bno1); 
phidot1 = phidot(oneoverJ1,Prhosq1,dBdpsioverB1,i1,rhodidpsi1,Prho1); 
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kltheta = increment[species] [p] * thetadot(oneoverJ1, Prho1, rhodgdps 
i1, tempiota1, g1, Prhosq1, dBdpsioverB1); 

klphi = increment[species] [p] * phidot1; 
klpsi = increment[species] [p] * psidot(oneoverJ1, g1, Prhosq1, dBdt 

hetaoverB1, edQNPOTdtheta1,edQNPOTdphi1,i1,dBdphioverB1, loopvoltage1); 
klrho increment[species] [p] * rhodot(oneoverJ1, rhodgdpsi1, tempi 

ota1, Prhosq1, dBdthetaoverB1, edQNPOTdtheta1, edQNPOTdphi1, rhodidpsi1 
, dBdphioverB1, loopvoltage1); 

kldeltaH = increment[species] [p] * oneovertwoPI*e[species]*loopvoltag 
ehphidot1; 

1**********************************1 
I***** obtain k2-values ******I 
1**********************************1 

theta2 = theta! + 0.5*k1theta; 
phi2 = phil + 0.5*k1phi; 
psi2 = psi1 + 0.5*k1psi; 
rho2 rho1 + 0.5*k1rho; 
sin1t2 = sin(theta2); 
sin2t2 = sin(2.0*theta2); 
cos1t2 = cos(theta2); 
cos2t2 cos(2.0*theta2); 
sin1p2 sin(phi2); 
sin2p2 sin(2.0*phi2); 
cos1p2 = cos(phi2); 
cos2p2 = cos(2.0*phi2); 
b2 = Bfield(theta2, phi2, psi2); 
bno2 = b2IBNAUGHT; 
Prho2 = (twoPisq)*rho2*b2*b2lm[species]; 
Prhosq2 = (twoPisq)*rho2*rho2*b2*b2lm[species] + MU[species] [p]*b2; 
tempiota2 = iota(psi2); 
g2 = g(psi2); 
i2 = i(psi2); 

#ifdef QUASI_NEUTRALITY 
edQNPOTdtheta2 edQNPOTdtheta(theta2,sin1t2,sin2t2, cos1t2, cos2t2); 
edQNPOTdphi2 = edQNPOTdphi(phi2, sin1p2, sin2p2, cos1p2, cos2p2); 

#end if 

#ifdef LOOP_VOLTAGE 
loopvoltage2 = loopvoltage(); 

#endif 

#ifdef CURRENT_GRADIENTS 
rhodgdpsi2 = rho2*dgdpsi(psi2); 
rhodidpsi2 = rho2*didpsi(psi2); 

#end if 

oneoverJ2 = 1.0I(g(psi2)*(rho2*rhodidpsi2+oneovertwoPI*e[species]) -
i(psi2)*(rho2*rhodgdpsi2- oneovertwoPI*tempiota2*e[species])); 

dBdthetaoverB2 = dBdthetaoverB(sin1t2, sin2t2, psi2, bno2); 
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#ifdef TOROIDAL_RIPPLE 
dBdphioverB2 dBdphioverB(sin1p2, sin2p2, psi2, bno2); 

#endif 

dBdpsioverB2 = dBdpsioverB(cos1t2,cos2t2,cos1p2,cos2p2,psi2,bno2); 
phidot2 = phidot(oneoverJ2,Prhosq2,dBdpsioverB2,i2,rhodidpsi2,Prho2); 
k2theta = increment[species] [p] * thetadot(oneoverJ2, Prho2, rhodgdps 

i2, tempiota2, g2, Prhosq2, dBdpsioverB2); 
k2phi increment[species][p] * phidot2; 
k2psi increment[species] [p] * psidot(oneoverJ2, g2, Prhosq2, dBdt 

hetaoverB2, edQNPOTdtheta2,edQNPOTdphi2,i2,dBdphioverB2, loopvoltage2); 
k2rho = increment[species] [p] * rhodot(oneoverJ2, rhodgdpsi2, tempi 

ota2, Prhosq2, dBdthetaoverB2, edQNPOTdtheta2, edQNPOTdphi2, rhodidpsi2 
, dBdphioverB2, loopvoltage2); 

k2deltaH = increment[species] [p] * oneovertwoPI*e[species]*loopvoltag 
e2*phidot2; 

!**********************************! 
I***** obtain k3-values ******! 
!**********************************! 

theta3 theta1 + 0.5*k2theta; 
phi3 = phil + 0.5*k2phi; 
psi3 psi1 + 0.5*k2psi; 
rho3 = rho1 + .5*k2rho; 
sin1t3 sin(theta3); 
sin2t3 sin(2.0*theta3); 
cos1t3 cos(theta3); 
cos2t3 = cos(2.0*theta3); 
sin1p3 sin(phi3); 
sin2p3 = sin(2.0*phi3); 
cos1p3 cos(phi3); 
cos2p3 = cos(2.0*phi3); 
b3 = Bfield(theta3, phi3, psi3); 
bno3 = b3/BNAUGHT; 
Prho3 (twoPisq)*rho3*b3*b3/m[species]; 
Prhosq3 = (twoPisq)*rho3*rho3*b3*b3/m[species] + MU[species] [p]*b3; 
tempiota3 = iota(psi3); 
g3 = g(psi3); 
i3 = i(psi3); 

#ifdef QUASI_NEUTRALITY 
edQNPOTdtheta3 = edQNPOTdtheta(theta3,sin1t3,sin2t3, cos1t3, cos2t3); 
edQNPOTdphi3 = edQNPOTdphi(phi3, sin1p3, sin2p3, cos1p3, cos2p3); 

#endif 

#ifdef LOOP_VOLTAGE 
loopvoltage3 = loopvoltage(); 

#endif 

#ifdef CURRENT_GRADIENTS 
rhodgdpsi3 = rho3*dgdpsi(psi3); 
rhodidpsi3 = rho3*didpsi(psi3); 
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#endif 

oneoverJ3 = 1.0I(g(psi3)*(rho3*rhodidpsi3+oneovertwoPI*e[species]) -
i(psi3)*(rho3*rhodgdpsi3- oneovertwoPI*tempiota3*e[species])); 

dBdthetaoverB3 = dBdthetaoverB(sin1t3, sin2t3, psi3, bno3); 

#ifdef TDRDIDAL_RIPPLE 
dBdphioverB3 = dBdphioverB(sin1p3, sin2p3, psi3, bno3); 

#endif 

dBdpsioverB3 = dBdpsioverB(cos1t3,cos2t3,cos1p3,cos2p3,psi3,bno3); 
phidot3 = phidot(oneoverJ3,Prhosq3,dBdpsioverB3,i3,rhodidpsi3,Prho3); 
k3theta = increment[species] [p] * thetadot(oneoverJ3, Prho3, rhodgdps 

i3, tempiota3, g3, Prhosq3, dBdpsioverB3); 
k3phi increment[species] [p] * phidot3; 
k3psi = increment[species] [p] * psidot(oneoverJ3, g3, Prhosq3, dBdt 

hetaoverB3, edQNPOTdtheta3,edQNPOTdphi3,i3,dBdphioverB3, loopvoltage3); 
k3rho increment[species][p] * rhodot(oneoverJ3, rhodgdpsi3, tempi 

ota3, Prhosq3, dBdthetaoverB3, edQNPOTdtheta3, edQNPOTdphi3, rhodidpsi3 
, dBdphioverB3, loopvoltage3); 

k3deltaH = increment[species] [p] * oneovertwoPI*e[species]*loopvoltag 
e3*phidot3; 

1**********************************1 
I***** obtain k4-values ******I 
1**********************************1 

theta4 = theta! + k3theta; 
phi4 phi1 + k3phi; 
psi4 psi1 + k3psi; 
rho4 = rho1 + k3rho; 
sin1t4 sin(theta4); 
sin2t4 sin(2.0*theta4); 
cos1t4 = cos(theta4); 
cos2t4 = cos(2.0*theta4); 
sin1p4 = sin(phi4); 
sin2p4 sin(2.0*phi4); 
cos1p4 cos(phi4); 
cos2p4 = cos(2.0*phi4); 
b4 = Bfield(theta4, phi4, psi4); 
bno4 b4IBNAUGHT; 
Prho4 = (twoPisq)*rho4*b4*b4lm[species]; 
Prhosq4 = (twoPisq)*rho4*rho4*b4*b4lm[species] + MU[species] [p]*b4; 
tempiota4 iota(psi4); 
g4 = g(psi4); 
i4 = i(psi4); 

#ifdef QUASI_NEUTRALITY 
edQNPOTdtheta4 = edQNPOTdtheta(theta4,sin1t4,sin2t4, cos1t4, cos2t4); 
edQNPOTdphi4 = edQNPOTdphi(phi4, sin1p4, sin2p4, cos1p4, cos2p4); 

:ti-endif 

#ifdef LOOP_VDLTAGE 



loopvoltage4 = loopvoltage(); 
#endif 

#ifdef CURRENT_GRADIENTS 
rhodgdpsi4 = rho4*dgdpsi(psi4); 
rhodidpsi4 = rho4*didpsi(psi4); 

#endif 
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oneoverJ4 = 1.0I(g(psi4)*(rho4*rhodidpsi4+oneovertwoPI*e[species]) -
i(psi4)*(rho4*rhodgdpsi4- oneovertwoPI*tempiota4*e[species])); 

dBdthetaoverB4 = dBdthetaoverB(sin1t4, sin2t4, psi4, bno4); 

#ifdef TOROIDAL_RIPPLE 
dBdphioverB4 = dBdphioverB(sin1p4, sin2p4, psi4, bno4); 

#endif 

dBdpsioverB4 = dBdpsioverB(cos1t4,cos2t4,cos1p4,cos2p4,psi4,bno4); 
phidot4 = phidot(oneoverJ4,Prhosq4,dBdpsioverB4,i4,rhodidpsi4,Prho4); 
k4theta = increment[species] [p] * thetadot(oneoverJ4, Prho4, rhodgdps 

i4, tempiota4, g4, Prhosq4, dBdpsioverB4); 
k4phi increment[species] [p] * phidot4; 
k4psi = increment[species] [p] * psidot(oneoverJ4, g4, Prhosq4, dBdt 

hetaoverB4, edQNPOTdtheta4,edQNPOTdphi4,i4,dBdphioverB4, loopvoltage4); 
k4rho increment[species] [p] * rhodot(oneoverJ4, rhodgdpsi4, tempi 

ota4, Prhosq4, dBdthetaoverB4, edQNPOTdtheta4, edQNPOTdphi4, rhodidpsi4 
, dBdphioverB4, loopvoltage4); 

k4deltaH = increment[species][p] * oneovertwoPI*e[species]*loopvoltag 
e4*phidot4; 

1**********************************************************************1 
I** Obtain new values for global THETA, PHI, RHO, KINETICENERGY, **I 
I** ENERGY and B. Calculate edQNPOTdthetaglobal and edPOTdthetaglobal**l 
I** to be used in function adjustweights(). **I 
I** Also adjust ENERGYOLD to be used in function errorcontrol(). **I 
I** Calculate parameter totaltime[species] [p] for boundary check in **I 
I** the next timestep in function hamilton(). **I 
1**********************************************************************1 

THETA[species] [p] = THETAOLD[species] [p] + 0.16666667*(k1the 
ta + 2.0*k2theta + 2.0*k3theta + k4theta); 

PHI[species] [p] = PHIOLD[species] [p] + 0.16666667*(k1phi 
+ 2.0*k2phi + 2.0*k3phi + k4phi); 

PSI[species] [p] = PSIOLD[species][p] + 0.16666667*(k1psi 
+ 2.0*k2psi + 2.0*k3psi + k4psi); 

RHO[species][p] = RHOOLD[species][p] + 0.16666667*(k1rho 
+ 2.0*k2rho + 2.0*k3rho + k4rho); 

ENERGYOLD[species][p] -= 0.16666667*(k1deltaH + 2.0*k2deltaH 
+ 2.0*k3deltaH + k4deltaH); 

B[species] [p] = Bfield(THETA[species] [p], PHI[species][p] 
, PSI[species] [p]); 

KINETICENERGY[species][p] = 0.5*(twoPisq)*RHO[species] [p]*RHO[species 
] [p]*B[species] [p]*B[species] [p]lm[species] + MU[species] [p]*B[species] 
~; 



#ifdef QUASI_NEUTRALITY 
qnpotential = eQNPOT(THETA[species][p], PHI[species] [p]); 

#endif 
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ENERGY[species][p] KINETICENERGY[species][p] + qnpotential; 

totaltime[species] [p] += increment[species] [p]; 
} 

int errorcontrol() 
I********************************************************************** I 
1**********************************************************************1 
I** Check the error in the previous timestep by comparing the new **I 
I** Energy of the particles to the old Energy adjusted for the **I 
I** expected change in energy due to the loopvoltage and new **I 
I** coefficients in QNpotential **I 
1**********************************************************************1 
1**********************************************************************1 
{ 

int stepback = 0; 
double deltaE; 
deltaE = (ENERGY[species] [p] - ENERGYOLD[species] [p])IENERGYOLD[sp 

ecies] [p]; 
if(fabs(deltaE) < 1.0E-11){ 

increment[species] [p] += ((2.0E-11)-fabs(deltaE))I(2.0E-10)*increme 
nt [species] [p] ; 

} 

if(increment[species] [p]*NU[species] [p] > 0.01){ 
increment[species][p] = 0.01*TAU[species][p]; 

} 

else if((3.0E-11 < fabs(deltaE)) && (fabs(deltaE) <= 6.0E-11)){ 
increment[species] [p] -= (fabs(deltaE)-(2.0E-11))1(2.0E-10)*increme 

nt [species] [p] ; 
} 
else if(fabs(deltaE) > 6.0E-11){ 

totaltime[species] [p] -= increment[species] [p]; I* assign old va 
lue to totalnumber[species] [p] *I 

} 

} 

increment[species][p] -= 0.4*increment[species] [p]; 
I* printf("stepback at time %i for particle %i\n\n", t, p); *I 
stepback = 1 ; 

return(stepback); 

void getincrements() 
1**********************************************************************1 
1**********************************************************************1 
I** Get the minimum, maximum and average increment for this time **I 
I** series to check if everything is running O.K. (Increments that **I 
I** are unusually small mean something is wrong. **I 
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!**********************************************************************! 
!**********************************************************************! 
{ 

if(p == 1){ 

} 

minincrement[species] = increment[species][p]; 
maxincrement[species] = increment[species] [p]; 
avgincrement[species] = 0.0; 

else{ 
if(increment[species][p] > maxincrement[species]){maxincrement[spec 

ies] = increment[species][p];} 
if(increment[species] [p] < minincrement[species]){minincrement[spec 

ies] = increment[species] [p];} 

} 

} 
avgincrement[species]+=increment[species][p]/((double)(PARTICLES-1)); 

void psicheck() 
!**********************************************************************! 
!**********************************************************************! 
I** Check if particle p is still inside the PSI-annulus. If not, **I 
I** re-initialize particle p by putting it in the middle of the **I 
I** annulus with arbitrary initial THETA, PHI and LAMBDA. Then, **I 
I** execute one timestep forward for that particle. **I 
I** Also adjust LAMBDA for all particles because MU is constant until**/ 
I** collision, but B(THETA, PHI, PSI) changed. **I 
!**********************************************************************! 
!**********************************************************************! 
{ 

int stepback; 
double v; 
int tempN; 
if((PSI[species] [p] < Psilower) 

totalnumber[species] += 1; 
tempN = N[species] [p]; 
init(); 

} 

N[species] [p] = tempN; 
step back = 1; 
for(;stepback;){ 

hamilton(); 
stepback = errorcontrol(); 

} 

getincrements(); 

I I (PSI[species] [p] > Psiupper)){ 

!****************************! 
I* execute hamilton() again *I 
I* if deltaE[p] is above *I 
I* the upper limit (6E-12) *I 
I* also adjust increment *I 
I* depending on deltaE[p] *I 
!****************************! 

LAMBDA[species] [p] = (twoPI)*B[species] [p]*RHD[species] [p]/sqrt(2.0*m 
[species]*KINETICENERGY[species] [p]); 
} 

void collision() 
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1**********************************************************************1 
1**********************************************************************1 
I** Obtain new LAMBDA (leading to new MU and RHO) from the Monte **I 
I** Carlo equivalent of the Loretz operator. The NU for the **I 
I** electrons is multiplied by a factor of two because it represents **I 
I** the sum of NU(electrons on ions) and NU(electrons on electrons), **I 
I** which are equal to each other. **I 
1**********************************************************************1 
1**********************************************************************1 
{ 

double lambdacol; 
float sign; 

if(species == IONS){ 
sign = rando(); 
if (sign < 0.5){ 

lambdacol = LAMBDA[O][p]*(1.0- NU[O][p]*increment[O][p]) + sqrt 
((1.0- LAMBDA[O] [p]*LAMBDA[O] [p]) * NU[O] [p]*increment[O] [p]); 

} 
else { 

lambdacol = LAMBDA[O] [p]*(1.0- NU[O][p]*increment[O][p])- sqrt 
((1.0- LAMBDA[O] [p]*LAMBDA[O] [p]) * NU[O] [p]*increment[O] [p]); 

} 
} 

else { I* species -- ELECTRONS *I 
sign rando(); 
if (sign < 0.5){ 

lambdacol =LAMBDA[!] [p]*(1.0- 2.0*NU[1] [p]*increment[1] [p]) + 
sqrt((1.0- LAMBDA[!] [p]*LAMBDA[1] [p]) * 2.0*NU[1] [p]*increment[1] [p]); 

} 
else { 

lambdacol =LAMBDA[!] [p]*(1.0- 2.0*NU[1] [p]*increment[1] [p]) -
sqrt((1.0- LAMBDA[!] [p]*LAMBDA[1] [p]) * 2.0*NU[1] [p]*increment[1] [p]); 

} 
} 

LAMBDA[species] [p] = lambdacol; 
MU[species] [p] = KINETICENERGY[species] [p]I(B[species] [p])*(1.0 -

LAMBDA[species] [p]*LAMBDA[species] [p]); 
RHO[species] [p] = (oneovertwoPI)*LAMBDA[species][p]*sqrt(2.0*m[spe 

cies]*KINETICENERGY[species] [p])IB[species] [p]; 
} 

void adjustweights() 
1**********************************************************************1 
1**********************************************************************1 
I** Adjust the weights for each particle according to the **I 
I** prescription given by the transformed Fokker-Planck equation. **I 
I** Note that the new weight for the ions doesn't depend on the **I 
I** background flow of the electrons. **I 
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1**********************************************************************1 
1**********************************************************************1 
{ 

double momconsstuff = 0.0; 
double deltapsi = PSI[species][p]- PSIOLD[species] [p];; 

I* double deltatheta = THETA[species][p]- THETAOLD[species] [p];; 
double deltaphi = PHI[species][p]- PHIOLD[species] [p];; *I 
if(species == IONS){ 

#ifdef MOMENTUM_CONSERVATION 
momconsstuff = 3.0ie[O]*LAMBDA[O][p]*NU[O][p]*increment[O] [p]*(boot 

strapavgoverv[O] + 2.0*pscosthetaavgoverv[O]*cos(THETA[O][p]) + 2.0*psc 
os2thetaavgoverv[O]*cos(2.0*THETA[O][p]) + 2.0*pscosphiavgoverv[O]*cos( 
PHI[O] [p]) + 2.0*pscos2phiavgoverv[O]*cos(2.0*PHI[O] [p]))*B[O] [p]; 
#endif 

WEIGHT[O] [p] += deltapsi + momconsstuff; 

I*+ 1.0IKINETICENERGY[O][p]*(edQNPOTdtheta(THETA[O] [p], sin(THETA[O] [p 
]), sin(2.0*THETA[O][p]), cos(THETA[O][p]), cos(2.0*THETA[O][p]))*delta 
theta+ edQNPOTdphi(PHI[O] [p], sin(PHI[O] [p]), sin(2.0*PHI[O] [p]), cos( 
PHI[O] [p]), cos(2.0*PHI[O] [p]))*deltaphi); 
*I 

} 

else{ I* species == ELECTRONS *I 

#ifdef MOMENTUM_CONSERVATION 
momconsstuff = 3.0ie[1]*LAMBDA[1][p]*NU[1][p]*increment[1] [p]*(boot 

strapavgoverv[1] + 2.0*pscosthetaavgoverv[1]*cos(THETA[1] [p]) + 2.0*psc 
os2thetaavgoverv[1]*cos(2.0*THETA[1][p]) + 2.0*pscosphiavgoverv[1]*cos( 
PHI[1] [p]) + 2.0*pscos2phiavgoverv[1]*cos(2.0*PHI[1] [p]))*B[1] [p] + 3.0 
le[O]*(speed[1]lspeed[O])*LAMBDA[1] [p]*(NU[1] [p])*increment[1] [p]*(boot 
strapavgoverv[O] + 2.0*pscosthetaavgoverv[O]*cos(THETA[1][p]) + 2.0*psc 
os2thetaavgoverv[O]*cos(2.0*THETA[1][p]) + 2.0*pscosphiavgoverv[O]*cos( 
PHI[1] [p]) + 2.0*pscos2phiavgoverv[O]*cos(2.0*PHI[1] [p]))*B[1] [p]; 
#endif 

WEIGHT[!] [p] += deltapsi + momconsstuff; 

I*+ 1.0IKINETICENERGY[1][p]*(edQNPOTdtheta(THETA[1] [p], sin(THETA[1] [p 
]), sin(2.0*THETA[1] [p]), cos(THETA[1][p]), cos(2.0*THETA[1][p]))*delta 
theta+ edQNPOTdphi(PHI[1] [p], sin(PHI[1] [p]), sin(2.0*PHI[1] [p]), cos( 
PHI [1] [p]), cos (2. O*PHI [1] [p])) *deltaphi); 
*I 

} 
} 

void makeold() 
{ 
THETAOLD[species][p] 
PHIOLD[species][p] 
PSIOLD[species] [p] 

= THETA[species] [p]; 
= PHI[species][p]; 
= PSI[species] [p]; 



} 

RHDDLD[species] [p] 
ENERGYOLD[species] [p] 
BOLD [species] [p] 

RHO[species][p]; 
ENERGY[species][p]; 

= B [species] [p] ; 

void getcurrents() 
{ 

int pcount; 
double const_multiplier; 
VAVERAGE[species] = 0.0; 
ENERGYAVERAGE[species] = 0.0; 
for(pcount=1; pcount<PARTICLES; pcount++){ 
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VAVERAGE[species] += sqrt(2.0*KINETICENERGY[species] [pcount]lm[spec 
ies])l((double)(PARTICLES-1)); 

ENERGYAVERAGE[species] += ENERGY[species][pcount]l(((double)(PARTIC 
LES-1))); 

} 
I* calculate bootstrap and P.S. currents *I 

for(pcount=1; pcount<PARTICLES; pcount++){ 
double bno = B[species] [pcount]IBNAUGHT; 
const_multiplier = e[species]*WEIGHT[species] [pcount]*LAMBDA[specie 

s] [pcount]*VAVERAGE[species]*bnol(((double)(PARTICLES-1))); 
bootstrap[species] += const_multiplier; 
pscostheta[species] += const_multiplier*cos(THETA[species][pcount] 

) j 

pscos2theta[species] 
unt]); 

+= const_multiplier*cos(2.0*THETA[species] [pco 

pscosphi[species] 
pscos2phi[species] 

t]); 

+= const_multiplier*cos(PHI[species] [pcount]); 
+= const_multiplier*cos(2.0*PHI[species][pcoun 

} 
} 

bsqavg += bno*bnol((double)(PARTICLES-1)); 

I* calculate the passing and trapped particle *I 
I* contribution to the bootstrap current *I 

if(MU[species] [pcount] <= ENERGY[species] [pcount]IBMAX){ 
passing[species]++; 
bootpassing[species] += const_multiplier; 

} 
else { 

trapped[species]++; 
boottrapped[species] += const_multiplier; 

} 

ommitflag[species] [pcount] = 0; 

void calculateandprintdiffusion(float time) 
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{ 
int count; 
int pcount; 
double deltaweightsq[2][PARTICLES]; 
static FILE *cp; 
char filename[20]; 
for(pcount=1; pcount< PARTICLES; pcount++){ 

deltaweightsq[species][pcount] = ((WEIGHT[species] [pcount]- WEIGHT 
OLDDIFFUSION[species][pcount])*(WEIGHT[species][pcount]- WEIGHTOLDDIFF 
USION[species] [pcount])); 

diffusioncoefficient[species] += deltaweightsq[species] [pcount]/(2. 
O*((double)(PARTICLES-1))); 

} 

WEIGHTOLDDIFFUSION[species][pcount] = WEIGHT[species] [pcount]; 
} 
sprintf (filename, "diffusioncoeff%i", species); 
cp = fopen(filename, "ab"); 
fprintf (cp, "%f %e\n", time, (diffusioncoefficient [species])); 
diffusioncoefficient[species] = 0.0; 
fclose(cp); 

void calculateandprintdensity(float time) 
!**********************************************************************! 
!**********************************************************************! 
I** Calculate the density components. constant[species], mcos[] etc.**/ 
I** are temporary (until the values accumulate for all particles). **I 
I** They are not used in localQ~POTbyT below (avg[species] are) **I 
!**********************************************************************! 
!**********************************************************************! 
{ 

double multiplier; 
int count; 
int pcount; 
enum files {CONST, COSTHETA, COS2THETA, COS3THETA,SINTHETA,SIN2THETA, 

SIN3THETA, COSPHI, COS2PHI, COS3PHI, SINPHI, SIN2PHI, SIN3PHI, FCOMP}; 
static FILE *dp[FCOMP]; 
char filename[25]; 
char name [FCOMP] [25] = {"densityconstavg", "densitycosthetaavg", "den 

sitycos2thetaavg", "densitycos3thetaavg", "densitysinthetaavg", "densit 
ysin2thetaavg", "densitysin3thetaavg", "densitycosphiavg", "densitycos2 
phiavg", "densitycos3phiavg", "densitysinphiavg", "densitysin2phiavg", 
"densitysin3phiavg"}; 

double localeQNPOTbyT = 0.0; 
for(pcount=1;pcount<PARTICLES;pcount++){ 

double bno = B[species] [pcount]/BNAUGHT; 

#ifdef QUASI_NEUTRALITY 
localeQNPOTbyT = eQNPOTbyT(THETA[species][pcount], PHI[species] [pco 

unt]); 
#endif 

c_multiplier = (WEIGHT[species][pcount] + localeQNPOTbyT)*bno*bno/( 
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((double)(PARTICLES-1))); 
constant[species] += c_multiplier; 
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mcos1theta[species] += c_multiplier*cos(THETA[species][pcount]); 
mcos2theta[species] += c_multiplier*cos(2.0*THETA[species] [pcount]); 
mcos3theta[species] += c_multiplier*cos(3.0*THETA[species] [pcount]); 
msin1theta[species] += c_multiplier*sin(THETA[species][pcount]); 
msin2theta[species] += c_multiplier*sin(2.0*THETA[species][pcount]); 
msin3theta[species] += c_multiplier*sin(3.0*THETA[species][pcount]); 
ncos1phi[species] += c_multiplier*cos(PHI[species][pcount]); 
ncos2phi[species] += c_multiplier*cos(2.0*PHI[species][pcount]); 
ncos3phi[species] += c_multiplier*cos(3.0*PHI[species][pcount]); 
nsin1phi[species] += c_multiplier*sin(PHI[species][pcount]); 
nsin2phi[species] += c_multiplier*sin(2.0*PHI[species][pcount]); 
nsin3phi[species] += c_multiplier*sin(3.0*PHI[species][pcount]); 

} 

I* set avg[species] equal to the accumulated value to be used *\ 
I* in the eQNPOT subroutines *I 
constavg[species] = constant[species]; 
mcos1avg[species] = mcos1theta[species]; 
mcos2avg[species] = mcos2theta[species]; 
mcos3avg[species] = mcos3theta[species]; 
msin1avg[species] = msin1theta[species]; 
msin2avg[species] = msin2theta[species]; 
msin3avg[species] = msin3theta[species]; 
ncos1avg[species] ncos1phi[species]; 
ncos2avg[species] = ncos2phi[species]; 
ncos3avg[species] ncos3phi[species]; 
nsin1avg[species] = nsin1phi[species]; 
nsin2avg[species] = nsin2phi[species]; 
nsin3avg[species] = nsin3phi[species]; 

I* Set constant[species], mcos1theta[species] etc. to zero for next *I 
I* time around, so they start accumulating from zero. *I 
constant[species] = 0.0; 
mcos1theta[species] 0.0; 
mcos2theta[species] = 0.0; 
mcos3theta[species] = 0.0; 
msin1theta[species] 0.0; 
msin2theta[species] 0.0; 
msin3theta[species] = 0.0; 
ncos1phi[species] 0.0; 
ncos2phi[species] 0.0; 
ncos3phi[species] 0.0; 
nsin1phi[species] 0.0; 
nsin2phi[species] = 0.0; 
nsin3phi[species] = 0.0; 

I* print out the density Fourier coefficients *I 

for(count=O; count<FCOMP; count++){ 
sprintf(filename, "%s%i", name[count], species); 
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dp[count] fopen(filename, "ab"); 
} 

fprintf(dp[CDNST], "%f %e\n", time, constavg[species]); 
fprintf(dp[COSTHETA], "%f %e\n", time, mcos1avg[species]); 
fprintf(dp[COS2THETA], "%f %e\n", time, mcos2avg[species]); 
fprintf(dp[COS3THETA], "%f %e\n", time, mcos3avg[species]); 
fprintf(dp[SINTHETA], "%f %e\n", time, msin1avg[species]); 
fprintf(dp[SIN2THETA], "%f %e\n", time, msin2avg[species]); 
fprintf(dp[SIN3THETA], "%f %e\n", time, msin3avg[species]); 
fprintf(dp[COSPHI], "%f %e\n", time, ncos1avg[species]); 
fprintf(dp[COS2PHI], "%f %e\n", time, ncos2avg[species]); 
fprintf(dp[COS3PHI], "%f %e\n", time, ncos3avg[species]); 
fprintf(dp[SINPHI], "%f %e\n", time, nsin1avg[species]); 
fprintf(dp[SIN2PHI], "%f %e\n", time, nsin2avg[species]); 
fprintf(dp[SIN3PHI], "%f %e\n", time, nsin3avg[species]); 

for(count=O; count<FCOMP; count++){ 
fclose(dp[count]); 

} 
} 

void averagecurrents() 
{ 

int timeparameter = calcbutnoprint[species] + 1; 

static double boot[2] [CALC_TO_PRINT_RATI0+1]; 
static double pscos1t[2][CALC_TO_PRINT_RATI0+1]; 
static double pscos2t[2] [CALC_TO_PRINT_RATI0+1]; 
static double pscos1p[2] [CALC_TO_PRINT_RATID+1]; 
static double pscos2p[2] [CALC_TO_PRINT_RATID+1]; 

double multiplier= 1.0I((double)(CALC_TO_PRINT_RATID)); 
double deltaboot; 
double deltaps1theta; 
double deltaps2theta; 
double deltaps1phi; 
double deltaps2phi; 

1***************************************************************1 
I* Before the first print out *I 
I* (not all elements of the array are occupied) *I 
1***************************************************************1 

if(!runningavgflag[species]){ 
boot[species] [timeparameter] bootstrap[species]; 
pscos1t[species] [timeparameter] pscostheta[species]; 
pscos2t[species] [timeparameter] pscos2theta[species]; 
pscos1p[species] [timeparameter] pscosphi[species]; 
pscos2p[species] [timeparameter] = pscos2phi[species]; 
bootstrapavg[species] += multiplier*boot[species] [timeparameter]l 

bsqavg; 
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pscosthetaavg[species] += multiplier*pscoslt[species][timeparamete 
r]lbsqavg; 

pscos2thetaavg[species] += multiplier*pscos2t[species] [timeparamete 
r]lbsqavg; 

pscosphiavg[species] += multiplier*pscoslp[species] [timeparamete 
r]lbsqavg; 

pscos2phiavg[species] += multiplier*pscos2p[species][timeparamete 
r]lbsqavg; 

} 

1***************************************************************1 
I* After the first print out the elements[] are changed. *I 
I* A running average over the fraction of the collision time *I 
I* corresponding to PRINT_PER_COLTIMEICALCULATE_PER_COLTIME is *I 
I* kept to minimize statistical fluctuations *I 
1***************************************************************1 

else{ 

} 

es]; 

deltaboot = bootstrap[species]- boot[species][timeparameter]; 
bootstrapavg[species] += multiplier*deltabootlbsqavg; 
boot[species][timeparameter] = bootstrap[species]; 

deltapsltheta =pscostheta[species]-pscoslt[species] [timeparameter]; 
pscosthetaavg[species] += multiplier*deltapslthetalbsqavg; 
pscoslt[species][timeparameter] = pscostheta[species]; 

deltaps2theta=pscos2theta[species]-pscos2t[species] [timeparameter]; 
pscos2thetaavg[species] += multiplier*deltaps2thetalbsqavg; 
pscos2t[species][timeparameter] pscos2theta[species]; 

deltapslphi = pscosphi[species]- pscoslp[species][timeparameter]; 
pscosphiavg[species] += multiplier*deltapslphilbsqavg; 
pscoslp[species] [timeparameter] = pscosphi[species]; 

deltaps2phi = pscos2phi[species] - pscos2p[species] [timeparameter]; 
pscos2phiavg[species] += multiplier*deltaps2philbsqavg; 
pscos2p[species][timeparameter] = pscos2phi[species]; 

bootstrapavgoverv[species] bootstrapavg[species]IVAVERAGE[speci 

pscosthetaavgoverv[species] = pscosthetaavg[species]IVAVERAGE[spec 
ies]; 

pscos2thetaavgoverv[species] = pscos2thetaavg[species]IVAVERAGE[spe 
cies]; 

pscosphiavgoverv[species] pscosphiavg[species]IVAVERAGE[specie 
s]; 

pscos2phiavgoverv[species] 
es]; 
} 

void resetcurrents() 

= pscos2phiavg[species]IVAVERAGE[speci 
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I********************************************************************** I 
!**********************************************************************! 
I** Reset all currents, min- and maxincrement[species] and **I 
I** ommitcount[species] to zero for next time. **I 
I********************************************************************** I 
!**********************************************************************! 
{ 

} 

= 0.0; 
= 0.0; 

0.0; 
0.0; 

bootstrap[species] 
pscostheta[species] 
pscos2theta[species] 
pscosphi[species] 
pscos2phi[species] 
bootpassing[species] 
boottrapped[species] = 
passing[species] 
trapped [species] 
bsqavg 
ommitcount[species] 
evaluateflag 

= 0.0; 
0.0; 
0.0; 
0; 

= 0; 
0.0; 
0; 

= 1; 

void printparameters(float time) 
{ 

double qnpotential = 0.0; 
int count; 

I* print important parameters*/ 

enum PARAMETERS {P_THETA, P_PHI, P_LAMBDA, P_WEIGHT, P_PARENERGY, P_N 
UM}; 

static FILE *pp[P_NUM]; 
char name [P _NUM] [15] = {"theta", "phi", "lambda", "weight", "parenergy"}; 
char filename[15]; 
for(count = 0; count < P_NUM; count++){ 

sprintf(filename, "%f%s%i", time, name[count], species); 
pp[count] = fopen(filename, "ab"); 

} 

fprintf(pp[P_THETA], 
fprintf(pp[P_PHI], 
fprintf(pp[P_LAMBDA], 
fprintf(pp[P_WEIGHT], 

"%i %e\n", p, THETA[species][p]); 
"%i %e\n", p, PHI[species] [p]); 
"%i %e\n", p, LAMBDA[species] [p]); 
"%i %e\n", p, WEIGHT[species] [p]); 

#ifdef QUASI_NEUTRALITY 
qnpotential = eQNPOT(THETA[species] [p], PHI[species] [p]); 

#endif 
fprintf(pp[P_PARENERGY], "%~. %e\n", p, (ENERGY[species] [p]-qnpotenti 

al)); 

} 

for(count = 0; count < P_NUM; count++){ 
fclose(pp[count]); 

} 
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void printstuff() 
!**********************************************************************! 
!**********************************************************************! 
I** Print bootstrap and P.S. currents, totalparticles and increments.**/ 
!**********************************************************************! 
!**********************************************************************! 
{ 

int count; 
int pcount; 
float time = 0.0; 
static float oldtime[2]; 
enum FILES {BOOTSTRAP, PSCOSTHETA, PSCOS2THETA, PSCOSPHI, PSCOS2PHI, 

TOTALNUMBER, MAXINCREMENT, MININCREMENT, NUMFILES}; 
static FILE *fp[NUMFILES]; 
char filename[20]; 
char name[NUMFILES][20] = {"bootavg","pscosthetaavg","pscos2thetaavg" 

, "pscosphiavg", "pscos2phiavg", "totalnumber", "max increment", "minincreme 
nt"}; 

I* calculate the fraction of the C.T. at this point in time *I 
for(pcount=1; pcount< PARTICLES; pcount++){ 

time+= (((float)(totaltime[species] [pcount]))/TAU[species] [pcount] 
)/((float)(PARTICLES-1)); I* MUST CHANGE IF GAUSSIAN E DIST *I 

} 
if(time >= COLLISION_TIMES) ende[species] = 1; 

for(count=O; count<NUMFILES; count++){ 
sprintf(filename, "%s%i", name[count], species); 
fp [count] = fopen(filename, "ab"); 

} 

fprintf (fp [BOOTSTRAP] , "%f 
fprintf (fp [PSCOSTHETA] , "%f 
fprintf(fp[PSCOS2THETA], "%f 
fprintf (fp [PSCOSPHI] , "%f 
fprintf (fp [PSCOS2PHI] , "%f 
fprintf(fp[TOTALNUMBER], "%f 
fprintf(fp[MAXINCREMENT], "%f 
fprintf(fp[MININCREMENT], "%f 

%e\n", time, bootstrapavg[species]); 
%e\n", time, pscosthetaavg[species]); 
%e\n", time, pscos2thetaavg[species]); 
%e\n", time, pscosphiavg[species]); 
%e\n", time, pscos2phiavg[species]); 
%i\n", time, totalnumber[species]); 
%e\n", time, maxincrement [species]); 
%e\n", time, minincrement [species]); 

for(count=O; count<NUMFILES; count++){ 
fclose(fp[count]); 

} 

!*******************************************************************! 
I** This happens once per collision time. Diffusion is calculated**/ 
I** and printed and density components are calculated and printed.**/ 
!*******************************************************************! 
if((time-oldtime[species]) > 0.95){ 

calculateandprintdiffusion(time); 



} 

calculateandprintdensity(time); 
oldtime[species] =time; 

I* for(pcount=1; pcount< PARTICLES; pcount++){ 
printparameters(time); 

} 

*I 
} 

double maxfield() 
{ 

double Bmax; 
double Bold; 
double thetamax = 0.0; 
double inc = 0.01; 
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Bmax = 1.0isqrt(1.0 + C01*epsilon*sqrt(Psimiddle)*cos(thetamax) + C02 
*epsilon*epsilon*(Psimiddle)*cos(2.0*thetamax)); 

while(fabs((Bmax-Bold)IBmax) > 1e-15){ 

} 

do{ 
Bold = Bmax; 
thetamax += inc; 
Bmax = 1.0isqrt(1.0 + C01*epsilon*sqrt(Psimiddle)*cos(thetamax) + 

C02*epsilon*epsilon*(Psimiddle)*cos(2.0*thetamax)); 

} 

printf("%f %f %f\n", thetamax, Bmax, inc); 
} 
while((Bmax-Bold) > 0); 
inc = -0.5*inc; 

return(Bmax); 

float rando () 
{ 

} 

float rand= drand48(); 
return(rand); 
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