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ABSTRACT

The purpose of this study was to design, develop, 
maintain and document an interpretive computer 
simulator(ICS) suitable for use by a wide range of research 
and industrial facilities. The requirements necessary to 
achieve portability and retargetability were studied and 
applied to the design and development of an Interactive,
Instrumented ICS, I3CS. This system was developed on the
CDC NOS operating system.

The NASA Standard Spacecraft Computer 1 (NSSC-I) was
used as a target machine in one application of I3CS. It has
been rehosted and checked out on another machine, Old
Dominion University's DEC 10, and has had the simulator
portion retargeted in-house to the RCA 1802 in another 
instance. This system has proven to be portable,
retargetable and useful.



INTRODUCTION

The flexibility of design and the relatively low cost 

of combining integrated circuits into a system have 

encouraged the development of a multitude of microprocessors 

to meet the growing needs of industry. Advances in 

microprocessor technology have enabled engineers to fashion 

systems tailored to their specific needs which may vary from 

flight computers to industrial robots to monitors of various 

systems or processes. Since an increasing number of these 

microcomputers is becoming available, the range of sizes, 

architectures and instruction sets is becoming overwhelming.

Determining which processor is best suited for a 

particular application is a difficult task. Certainly 

purchasing, implementing and benchmarking several 

microprocessors to select the best one is not the answer. A 
more feasible solution might be to purchase or construct 

simulators for each system. Costs are still high, however, 

although better results can be obtained in less time by this 
method.

A portable, retargetable, interpretive computer 

simulator(ICS) seems to be the most logical approach. The
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proposed simulator/ which is written in a high level 

language, resides on a host computer and interpretively 

executes the machine code of a given target computer, the 

microprocessor being analyzed. The execution of the 

microprocessor is simulated at the bit level. This means, 

for example, that one's or two's complement arithmetic is 

performed depending on the microprocessor being studied, 

regardless of how the host computer operates. The ICS 

includes a clock, an interrupt mechanism and I/O devices 

which are all implemented in this high level language. Only 

specialized functions such as Boolean operations may be 

simulated in the host machine's assembly code for greater 
speed, if desired, but will have to be rewritten if the ICS 

is ported to a new host machine.
Instrumentation, software probes into a program, is an 

enhancement to an ICS. This capability not only aids in

processor selection and benchmarking but also is an
iimportant feature for program development and debugging once 

a microcomputer has been selected. Timing information,

checking for invalid values, and detecting the execution of 

incorrect paths can be made possible with instrumentation. 

Memory and register values can also be displayed at various 

points in the program execution. An interactive, 
instrumented, interpretive computer simulator is most 

attractive since the user can be given complete control over

the simulation and the ability to make several runs in one
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interactive session for a given target machine exists. 

These features combined decrease the amount of time needed 

to obtain various statistics from the simulator and to debug 

programs.

Most interpretive computer simulators have the drawback 

that they can only be executed on a particular machine or 

operating system. A portable ICS is clearly much more 

useful and desirable. Not all sites within an organization 
have the same machines or operating systems, but the need to 

have the capability to use the ICS on all of their equipment 

often exists. Unfortunately, portability is a

characteristic that is often overlooked when designing an 

ICS as was the case with Reference 1 •

Another important and desirable characteristic is 

retargetability. Most previous ICS systems have been 

targeted 4-o a particular machine or a particular class of 

machines such as the software simulator of the Minuteman 
D17B computer or CDC's simulator of the Intel 4004,

4040, 8008, 8080 series machines QQ. If an ICS is written

in a generalized manner for retargetability, a great savings 

of time is realized because a minimal amount of effort is 

required to simulate other microprocessors. Hopefully, it 

will no longer be necessary to purchase an ICS for each 
microcomputer under consideration by an organization since 

the ICS will have proved to be retargetable.



CHAPTER 1

DESIGN CONSIDERATIONS

1.1 Design Overview

Several factors were considered in the design of an ICS 

system. These considerations include

1. portability

2. modularity

3. retargetability
4. instrumentation

5. an interactive capability
t

Portability, the ability to rehost the interpretive computer 

simulator system on a wide variety of operating systems, and 

retargetability, the ability to substitute alternate 

machines with vastly different architectures as the target

5
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machine, are the most important design considerations. 

Other advantageous features include instrumentation, a 

feature that aids in program development, debugging and 

benchmarking, and interactive execution of the ICS for 

greater user control over the simulation. Since a number of 

interactive and/or instrumented interpretive computer 

simulators are currently available, concentration on the 
important aspects of designing a portable, retargetable ICS 
will be made.

1.2 Designing for Portability

In order to achieve portability, the ICS must be 

written in a programming language whose compiler is either 

resident can be installed on the computers of interest. 

High level languages meet this criterion. The language 

choice is very important because it can enhance portability. 

Some languages are obviously better suited for a particular 

application than others and make porting from one computer 

to another much simpler.

Fortran is the language that most often comes to mind 

due to its availablity on most operating systems and its 

standardization. Languages similar to Pascal, however, are 

better suited for software support tools for the following 

reasons. Pascal is a very powerful language that has the



facilities to handle user-defined data structures, linked 

lists and bit manipulation, all of which are necessary for 

an ICS. Since Fortran lacks these facilities, a great 
amount of effort is required to accomplish the task and a 

lack of clarity too often results. Pascal data structures 

provide the capability for clear and concise code and 
thereby enhance portability due to the ease with which 

necessary changes can be recognised and made. Pascal lends 

itself to structured programming which tends to cut down on 

program errors, aiding in the production of portable 

programs.

1.3 Arithmetic Problems Affecting Portability

An obstacle to be overcome when designing a portable 

program is the problem of performing target machine 

arithmetic operations in one's or two's complement 

regardless of the host machine's method of arithmetic. If 

changes in this area can be minimized, portability can be 
maintained without too much difficulty. There are four 

possible combinations to be considered: one's complement

host - one's complement target, two's complement host - 
two's complement target, one's complement host - two's 

complement target, and two's complement host - one's 

complement target. Naturally, the first two combinations
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present the least number of problems. Arriving at a design 

to take care of as many of the cases as possible is 

necessary.

The following proposed design resolves this problem in 

most cases. Arithmetic registers are defined as integer 

fields which have a fill field and a data field as 

subfields. A sample declaration for an 18-bit register on a 

60-bit host follows to illustrate this concept.

REGISTER = PACKED RECORD
CASE INTEGER OF

0 : (FILL : BIT42;
DATA : BIT1S);

1 : (INT : INTEGER);
END;

One's and two's complement number representations are the 

same in the positive range. Only non-positive numbers 

differ in representation. By loading the data fields with 

two's complement numbers and the fill fields with zeroes, 

operations between REGISTER.INT and another REGISTER.INT can 

be performed on a one's > complement machine with no 

adjustments necessary. This is due to the fact that the 

negative two's complement numbers in the 18-bit data field 

of the example look like positive one's complement numbers 

when the entire 60-bit integer field is used. Since there 

is no difference in operations on positive one's or two's 

complement numbers, the REGISTER.INT field can be used for 

addition or subtraction and the REGISTER.DATA field can be 

peeled off for the correct two's complement result.
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An illustration of two's complement addition on a one's 

complement host of 3+(-3), 3+(-2), and -3+(-1) follows. The 

host machine word size is 30 bits and the target machine

word size is 18 bits with 12 bits of filler for this

example. Octal representation of the numbers is used.

3+(— 3)—0 3+(-2) = 1 -3+(-1)=-4

0000|000003 0000 §000003 , 00001777775
0000|777775 0000^777776 00001777777
0001flOOOOOO 0001|000001 0001|777774

The correct two's complement results are contained within

the 18-bit data field. Had only the 18-bit data field been

used for the additions instead of the entire 30-bit word,

erroneous 2s complement results would have ensued. The

addition of negative 18-bit numbers would have 000001,
000002, and 777775 as the respective results. When adding

one's complement numbers on a two's complement host, the

fill fields are zeroed out, the data fields are loaded with

the one's complement numbers, the addition is performed on

the entire host machine word, and the carry into the fill

field of the result is added to the resulting data field for

the correct answer.

It is possible that the size of the target machine's

registers exceeds the host machine's word size. An

adaptation of the previously mentioned register design
suffices in this case. Suppose, for example, that the host

machine had a 3 2-bit word and the target machine had a

60-bit register size. Two host machine words would be
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required to handle the target machine register. A sample 

register definition for this case follows.

REGISTER = PACKED RECORD
CASE INTEGER OF

0 : (FilH : BIT2;
DATA1 : BIT30;
FILL2 : BIT2;
DATA2 : BIT30);

1 : (INT : ARRAY 1..2 OF INTEGER);
END;

Operations between REGISTER.INT 1 , REGISTER.INT 2 and

another REGISTER.INT 1 , REGISTER.INT 2 will be correct 

when the fill fields are set to zero because the addition or 

subtraction will appear to be an operation between positive 

numbers. The result in the REGISTER.FILL2 field must be 

added to REGISTER.INT 1 in order to reflect any carry out

of the addition or subtraction of the lower half of the

registers. REGISTER.DATA1 and REGISTER.DATA2 will contain 

the correct 60-bit result.

1.4 Modular Design

A program that has been broken up into procedures 

according to function will be called a modularized program. 

Using a top-down structured design, one module may be a 

loader and another module may be a simulator. Each of these

modules is further refined by being broken up into smaller

pieces according to function such as a fetch module and an 

execute module within the simulator module, and so on, until
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the pieces are quite small, the functions are quite 

specific, and the dependence upon other modules is ideally 

non-existent. Modification of a modularized program is much 

easier than altering one that is not modularized because 

typical straight-line code is extremely difficult to follow 

unless the program is very small. A program broken up into 
modules, each of which has a specific function, is easy to 

understand and alter, if necessary, aiding portability. 

Modularization also aids in the development of retargetable 

programs. Due to the functionality of each module, it is 

easy to select which modules should be changed or replaced 

when retargeting to a new microprocessor.

1.5 PDL as a Design Tool

Program Design Language(PDL) by Caine, Farber and 

Gordon, Inc. was chosen to design and document the

framework for I3CS. PDL is designed for the production of 

top-down structured designs. By using "structured English", 

a complete design which contains all external and internal 

interface definitions, identification of all procedure 

calls, global data definitions, control block definitions 

and specifications of all the processing algorithms of all 

procedures can be produced by PDL before any code is 

written. This working document not only is self-documenting
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by virtue of the fact that the English language is used in 

the design but also facilitates keeping data consistent from 

module to module by means of data and segment(procedure) 

indexes The flow is easily determined by studying the

reference tree which shows how segments are. nested. This 

valuable design tool simplified the design of a portable and 

retargetable system due to the clarity of the working 

document. Although the PDL document was not updated to 

reflect the final version of the ICS, coding from the 

initial PDL working document into Pascal structures for the

baseline ICS was not difficult.
A PDL version of the main program for I3CS follows.

The ref pages refer to the pages within the PDL document on 

which the other modules are defined. For example, the 

Initialize System Variables module is defined on page 8 of 

the document. The DO-ENDO represents the flow of the 

segment or module execution. This flow is repeatedly

executed until Stopflag is true. The equivalent Pascal code

follows the PDL example.

PDL Main Program Definition

ref
page *******************************************

8 * Initialize System Variables *
* DO Repeat Until Stopflag *

12 * Read and Set Simulator Memory *
17 * Read and Set Test Instructions *
4 2 * Machine Execution *

* Process Data Output *
* ENDO *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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Pascal Main Program

Begin
Initializer;
Repeat

Loader;
Syntaxanalyser;
Simulator;
Outputformatter;

Until Stopflag;
End.

1.6 Designing for Retargetability

The capability for retargeting to another mini or 

microcomputer was an essential characteristic necessary for 

developing a versatile I3CS system. The following design 

rationale was used to achieve retargetability. One host 

machine word of memory should include the following 

information:

1. a filler area

2. the instrumentation bits

3. the target machine word of memory

For example, if the host machine has a 32-bit word size, the 

instrumentation requires 7 bits, and the target machine has 

an 18-bit word, one host machine word of simulator memory 
will contain 7 filler bits, 7 instrumentation bits and 18 

bits of actual target machine memory.

Since it is possible for the target machine's word size
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to exceed the host machine's word size, a method of handling 

this case without sacrificing retargetability is needed. If 

the target machine had a 60-bit word size and the host 

machine had a 32-bit word, for example, three host machine 

words would be required to handle one target machine word of 

memory. The first word would contain 25 filler bits and 7 

instrumentation bits. The second and third words would each 

contain 2 filler bits and the upper and lower 30 bits of 

target machine memory, respectively.

Any changes in the size of either memory or registers,

in the number of registers or memory words, or in the

instrumentation can be easily accomplished when retargeting 

if all of this information is readily accessible. One means 
of assuring the accessibility of data is to have the 

information be global data. These changes can be made by

merely filling in the appropriate blanks in the memory and 

register definitions. Additional registers or memory layout 

fields can be added easily within the framework of these 

definitions.
A partial example of the changes necessary when 

retargeting from the NSSC-I to the Nova 1200 follows. Note 

that both the fill-in-the-blanks strategy and the 

additional-field strategy were used. The FILL and DATA 
fields were changed by filling in new values: BIT7 versus

BIT5 and BIT16 versus BIT18. Additional fields of target 

machine memory were added, the 16-bit Nova fields 1 and 2,
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and the NSSC-I fields 1, 2 ,  2 , and 4 were deleted, 

previously mentioned field 0 remains.

Only the

NSSC-I Memory Formats

MEMORY = PACKED RECORD 
CASE INTEGER OF

0 (FILL
INST

(INT
END;

BIT5; 
BIT7 ;

CASE INTEGER OF
(DATA
(IX
FILL1
VAL
(MAJOROP 
MAJORIX 
MAJORADR 
(MINORFIL 
MINOROP 
(SIGN 
MAG 

BIT30);

BIT18); 
BIT1 ; 
BIT1 ; 
BIT16); 
BIT5; 
BIT1 ; 
BIT12); 
BIT12; 
BIT6); 
BIT1 ; 
BIT17));
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Nova 1200 Memory Formats

MEMORY = PACKED RECORD 
CASE INTEGER OF 

0 : (FILL : BIT7?
INST : BIT7; 
CASE INTEGER OF

(INT
END;

(DATA
(INDICATOR

BIT16); 
BIT1 ;

CASE INTEGER OF
0

(ACS 
ACD 
OPAL 
SHIFT 
CARRY 
NOLOAD 
SKIP 

BIT30);

(ACC 
IADDR 
IX
DISPL 
(ACCIO 
TRANS 
CNTRL 
DEVICE

BIT2

BIT2
BIT1
BIT2
BIT8
BIT2
BIT3
BIT2
BIT6

) 1

);
BIT2 
BIT3 
BIT2 
BIT2 
BIT1 
BIT3));

The simulator should be a complete module, due to its 

functionality and the fact that most changes when porting or 

retargeting I3CS should be isolated to this area. Since 

target machine memory, the instrumentation and the registers 

are global, all changes necessary to retarget from one 

machine to another should be essentially isolated to the 

simulator itself. Much of the simulator can remain intact

under portation when the functions within the simulator are 

modularized. The framework remains basically the same;

1. execute an instruction

2. process "run-time" requests (time out, time dump, 
interrupt, and I/O requests)
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3. satisfy instumentation requests

4. increment the program counter

Procedures to perform specific functions such as right shift 

can be utilized by any target machine. The interrupt and 

I/O request handler may also be suitable for the most part 

for many different target machines. The actual execution of 

specific target machine instructions will differ, however, 

since the operation codes differ from one target machine to 

another and different flags may be raised during execution. 

By isolating most changes to the global data and the 
simulator module, retargetability appears to be an 

attainable goal.



CHAPTER 2

SYSTEM OVERVIEW

I3CS(Interactive, Instrumented, Interpretive Computer 

Simulator) is broken up into five major modules to provide a 

portable and easily retargetable package. These primary 

modules are the initializer, the loader, the syntax 

analyser, the simulator, and the output formatter. These 

modules work together within I3CS in the following manner. 

The initializer module is invoked to set target machine 

memory, registers and other values to zero. Next, the 
loader module is invoked to load target machine data and 

instructions into the simulator memory. The initial program 

counter value is also loaded. Simulated "run-time" events 

such as interrupts and I/O requests as well as two 

time-oriented commands, time out and time dump, will be 

referred to as "run-time" or operating commands. Any 

operating requests on a user-supplied text file, the

18
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operating file, are processed in this module. The parser 

module is then invoked. Commands supplied interactively by 

the user to set memory, registers and instrumentation or to 

start or stop the simulation are processed. The simulator 

module is invoked next to execute instructions in the target 

machine memory and advance the program counter. This 

process continues with instrumentation requests and 

operating commands being satisfied until a halt flag or a 

quit flag is set.

Upon termination of the simulation process, one of two 

paths is taken based on the value of the boolean variables, 
halt flag and quit flag. The halt flag halts the simulation 

and returns control to the user whereas the quit flag 

terminates the entire simulation process. If the halt flag 

is true, the system loops back through the loader, the 

syntax analyser and the simulator modules. This enables the 

user to supply any combination of the following: new
Ioperating commands; new instrumentation requests; or either 

new data using the same set of instructions, a new program 

using the same data, or a totally new set of data and 

instructions. If the quit flag is true, the output 
formatter is invoked to print information requested by the 

user. This module may be written in Pascal by the user in 
order to print the information supplied by instrumentation 

and operating list commands in a desirable format. An 

output formatter is supplied, however, for those who do not
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care to write their own version. Block diagrams of I3CS and 

of the loader, the parser, and the simulator modules follow.

Block Diagram of I3CS

SIMULATOR

HALT = FALSE

QUIT =TRUE

OUTPUT 
FORMATTER

QUIT = FALSE

HALT = TRUE

Loader Diagram

SETMEMORY SETOPLIST

Parser Diagram

INS SETINSTRUMPARSERINIT READSYMBTAB

START = FALSE
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Simulator Diagram

TESTINSTRUMEXECUTE
INSTR

RESET
NEXT
INSTR

OPLIST
PROCESSOR

HALT, QUIT = FALSE

Because each module in I3CS has a specific function, 

portability and retargetability are enhanced. The loader 

and the syntax analyser remain unscathed when retargeting. 

Except for a few minor possible changes, the initializer can 
also remain intact. Changes to the system are for the most 

part isolated to the simulator module when retargeting. It 

was intended that the output formatter be user-defined in 

order that individual preferences in the instrumentation 

information display could be accomodated. The RCA 1802 was 

substituted as a new target machine in I3CS with relative 

ease. Problems encountered when porting from one operating 

system to another can be easily isolated and reconciled due 

to I3CS's modular design. Old Dominion University has 

installed this system on their DEC 10 computer. It is for 

these reasons, portability and retargetability, that I3CS is 
different from other previous ICSs.



CHAPTER 3

EVOLUTION OF I3CS

3.1 Nova 1200 Simulator

The original ICS used the Nova 1200 as the target 

machine. This implementation was used primarily as a 

learning tool prior to the development of a more 

sophisticated interpretive computer simulator system. This 

system was not interactive ! and it had no real loader. 

Simulator memory was read in from a file and loaded 

contiguously from location 0 to location N and the 

instrumentation was "hard-wired" in the initializer. An 

output formatter was called after the execution of each 

instruction in order to display trace, checkpoint, and 

memory protect information. This system took 3 man-months 

to develop. 5.251 CP seconds were required to compile the

22
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ICS and 20000 octal words of memory were required to 

execute.

Several things were learned from this primitive system. 

Basically this was an exercise in using Pascal data 

structures and in realizing how powerful those structures 

could be if used properly. Although a fill-in-the-blanks 

philosophy was used for memory and register definitions, it 

soon became obvious that these structures could become more 

streamlined by using Pascal more effectively. This change 

would make the notion of easy retargetability a reality. 

Undue hardship was placed on the user by expecting him to 

essentially "hard-wire" instrumentation information. 

Development of a command language to accomplish this task, 

as done in other ICS systems, appeared to be a more logical 

approach. It would be necessary to design the command 

language orocessor so that it in no way interfered with the 

portability and retargetabilty of the finished product. 

This exercise also provided some insight into the 

requirements for a loader such as the ability to load blocks 

of memory which are not necessarily contiguous.
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3.2 I3CS System

3.2.1 Introduction

I3CS, the final product, incorporated all the lessons 

learned from the Nova 1200 ICS. As mentioned earlier, I3CS 

consists of five major modules. Since the initializer is 

trivial and the output formatter is meant to be 

user-supplied, the loader, the syntax analyser, and the 
simulator will be discussed in terms of their functions and 

how they meet the requirements of portability and 

retargetability.

3.2.2 Loader Module

The loader module consists of two basic procedures: the 

loader and the operating list processor. When the user 

writes an assembly language program, he must assemble it and 

feed the load file through a user-written interface program 

in order to create MACHFILE, a load file formatted for I3CS. 

The loader loads target machine memory from MACHFILE, sets 
the program counter, and reads in a program name to be 

associated with the run. A code heading on each MACHFILE 

record enables the loader to determine whether a program
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name, an instruction counter or a block of simulator memory 

is to be read in. The number of characters necessary to 

make up one word of simulator memory is determined by I3CS 

given the word size and the base of the target machine. The 

characters making up one word, in octal or hexadecimal 

representation, are then converted to an integer value. 

Blocks of memory, which need not be adjacent to one another, 

are read in at one time. The first word of each block 

contains the starting address of the block into which the 

particular block of information is to be loaded. The 

remaining words are data which is read and loaded, one at a 
time, into the memory block until an end-of-line is 

encountered. Now either another block of data, a program 

counter value or a program file can be read in until the 

end-of-file is encountered. No changes are required when 

retargeting due to the fact that the loader automatically 

computes how to read in the file based on the target machine 
specification of the word size and the base.

The operating commands processor reads in operating 

commands from the operating file, OPFILE, which is a text 

file built manually by the user. These commands consist of 

interrupt, cycle steal I/O, time dump, and time out 

requests. The commands are inserted onto an operating list, 
OPLIST, in order by time for use by the simulator module. 

TIMEOUT 105.0 which sets the halt flag when clock time 

equals or exceeds 105.0 ms and INTERPT 2 10 152.0 162.0
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which causes an interrupt on channel 2 to occur when clock 

time is greater than or equal to 152.0 ms and less than or 

equal to 16 2.0 ms are sample operating commands. Further 

examples of these commands are contained in Appendices B and 

D. Portability and retargetability are not hindered by the 
operating list handler. Operating commands are independent 

of target machine.

3.2.3 Syntax Analysis Module

The syntax analyser performs many tasks. It reads in 

the symbol table information which is in alphabetical order 

by symbol name from the symbol table file, SYMFIL. When an 

assembly language program is assembled, a load file 

containing loader and symbol table information is fed 

through a user-written interface program that formats the 

symbol table for SYMFIL. This information is stored into an 

array of symbol records containing the label, the location 
associated with the symbol, the program name and the section 

number. This enables users to refer to locations by a label 

plus an offset which may be positive or negative. It is 

convenient for the user to designate locations in this way 

rather than to compute the actual address. When a label is 

used in a command, a binary search of the symbol table array 

on symbol name is performed until a match is found. The
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address associated with that symbol plus the offset is the 

address to be used in the instrumentation. If the symbol is 

not in the symbol table, however, an error message to that 

effect is emitted and the user is given another chance to 

specify the command with the proper location.

The actual parser portion of this module contains a 
scanner, syntax analysis procedures and error handling. 

Commands are read into an input buffer and lexical analysis 

is performed to discover tokens. The scanner places 

characters into an "identifier" array, ID, until it reaches 

a separator. One character lookahead strategy is used. 

Separators include ",", "1", "(", ")", ".", "=" as well as 
the operators: "+", , "/". Multiplication and

division have precedence over addition and subtraction and 

the command language is left associative.

The syntax analysis of this language was implemented 

using recursive descent parsing. A set of recursive 

procedures are used to recognize the input with no 

backtracking necessary. An adaptation of the reserved word 

strategy is used whereby keywords are treated as 

identifiers. A table of reserved words is checked to see if 

the identifier is a keyword DO. Based on the keyword and 

the separators obtained while parsing the command, the 

syntax analyzer is directed accordingly.

In order to successfully use recursive descent 

pasrsing, the parser must be able to tell, given the current
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input symbol a and the nonterminal A to be expanded, which 

one of the alternates of the production A -> al|a2|...jan is 

the unique alternate that derives a string beginning with a. 

The proper alternate must be detectable by looking only at 

the first symbol it derives O G  * This language is simple

enough that the keywords and separators encountered enable 

the parser to always choose the correct alternate.

If a command is not formulated properly, the syntax 

analyzer recognizes it and emits error messages accordingly. 

Parsing does not halt, however. Once a line of input has

been parsed, correct commands are accepted, errors are

flagged and control is turned over to the user who can then 

type in new commands and correct and resubmit any erroneous 

commands. Error recovery of this type is very important if 

I3CS is to be a successful interactive program. A list of 

error messages and a sample command language input 

containing seeded errors are available for inspection in 

Appendix C.

As commands are parsed, linked lists containing set 

memory, set registers, and instrumentation requests are 

built. This list is processed after all the commands have 

been input by the user and the appropriate registers or 

memory bits "are altered. The TESTVAL command appears on 
this list and either sets the test instrumentation bit of a 

particular memory location to "on" or "off". When this bit 

is set to "on", the upper bound and the lower bound
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associated with that particular location are placed onto a 

test list by location. If a memory location whose TESTVAL 

bit is set is reached during the simulated execution of a 

program, a search of the test list is made for an entry 

associated with that particular location. The contents of 

memory at that location are checked to see if the value is 

between the upper and lower limits specified by the test 

list entry. Likewise, when this bit is turned "off", the 

test list is searched until that location is found and the 

entry containing the location and its bounds is removed from 
test list. TDUMP and TIMEOUT requests are inserted onto the 

operating list, OPLIST, according to time as in the loader 

module.

This module is designed for retargetability because the

symbol table handler, the command language processor, and

the instrumentation can be accomplished with no regard to

the target machine being used. Only changes to the way the

interactive command language file is handled may affect 

portability because there is no standardized means of 

handling interactive I/O. This module is quite portable, 

however, because the changes needed to alter the interactive 

I/O problem are easy to spot. They are confined to the 

scanner.
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3.2.4 Simulator Module

The simulator module operates in the following manner. 

An instruction is fetched and executed, an attempt to 

satisfy operating list requests is made and instrumentation 

requests are satisfied. This cycle continues until the halt 

flag or the quit flag has been set. When the halt flag is 

set, the simulation stops and control is returned to the 

user who can then issue commands requesting additional 

information and either resume or stop the entire simulation 

process. The halt flag can either be set by the program 

being interpretively executed via a halt instruction or by 

the user by setting halt bits in memory. The quit flag, 

when set, causes the simulation process to come to a 

complete halt. The user must issue the quit command in 

order to terminate execution of I3CS.

Once an instruction is fetched and executed, the 

instrumentation bits associated with that instruction are 

tested. These instrumentation requests, if any exist, are 

then satisfied. Appendix C, the command language writeup 

contains a discussion of the instrumentation functions.

If the operating list, OPLIST, is not empty, one 

operating list request may be serviced between execution 

cycles if it meets the time constraints. Therefore, after 

an instruction executes, if OPLIST is not empty, the first 

item on OPLIST, the item having the lowest starting time, is
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selected for servicing. This request is satisfied if the 

starting time is less then or equal to the current clock 

time unless it is an interrupt or an I/O service request. 

If the request meets this criterion, then it is serviced and 

removed from OPLIST; otherwise, it remains on OPLIST to be 

serviced at a later point in time. In the case of 

interrupts or I/O service requests, the request is satisfied 

if the starting time is less than or equal to the clock time 

and the clock time is less than or equal to the ending time 

for the request. If the criterion is met, it is serviced 

and removed from OPLIST, otherwise, the next item from 

OPLIST is selected for possible service.

It was intended that all major changes necessary to 

retarget I3CS would be performed within this module. Fetch 

the next instruction, process operating list commands, and 

perform certain specialized tasks within the execution phase 

such as right shift should remain basically intact. The
Iexecution of the target machine instructions will be 

different and the information desired when instrumentation 

requests exist may have to be reformatted somewhat. Such 
changes are to be expected when retargeting and can be made 

within the general framework of this module with little 

difficulty.



CHAPTER 4

IMPLEMENTATION OF THE NSSC-I IN I3CS

4.1 NSSC-I Characteristics

The NSSC-I(NASA Standard Spacecraft Computer 1) flight 

computer was chosen for simulation. Not only is this 

computer widely used but also the instruction set is broad 

enough for development of a reasonable simulator. The 

NSSC-I has an 18-bit word, two's complement arithmentic, 

three fixed point registers: the accumulator; the extended 

accumulator? and the index register and two major status 

registers: the lockout status register and the storage

limitation register. Two types of I/O, cycle steal and 

program controlled I/O, are also available on the NSSC-I 
making it an even more appealing choice as the target 

machine.

32
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The NSSC-I has two instruction formats: memory

access(major opcode) and non-memory access(minor opcode). 

These formats are depicted in Appendix A. The lower order 

12 bits of a major opcode instruction limit an instruction 

to 4096 memory locations when using direct addressing. The 

NSSC-I has the ability to address 16 memory banks of 4096 

locations by combining a 4-bit page register with the 12-bit 

operand address to form a 16-bit address. The zero page was 

always used in I3CS in order to limit the amount of memory 

required by the simulator. By increasing memory size, more 

than one page can be addressed because the paging mechanism 

was built into the simulator.

Effective addresses can be altered in two ways during 

execution, by indexing or by using indirect instructions. 

If the index bit in a memory access instruction is set, the 

contents of the index register are added to the operand 

address with the sum becoming the effective address. The 

contents of the location specified becomes the effective 

address when an indirect addressing instruction is executed. 

If indexing occurs when an indirect addressing instruction 

executes, the contents of the location specified in the 

operand address plus the index register contents becomes the 

new effective address.
The storage limitation register(SLR) is used to specify 

a protected block of memory. Bits 0 - 8 of the SLR specify 

the lower limit(L) and bits 9 - 17 specify the upper
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limit(U). If the effective address is within the limits, L 

= EA = U, then a write into EA is permitted. All of the 

aforementioned characteristics of the NSSC-I made it an 

interesting choice for the I3CS simulator.

4.2 NSSC-I Implementation Statistics

I3CS required seven man-months to develop. The 

implementation and testing of the NSSC-I as the target 

machine required an additional 1.5 man-months. Software 

sneak circuits were introduced to ensure that overflows and 

carries, for example, were detected and treated properly. 

Test cases written for NASA Goddard to check out NSSC-I 

simulators were run successfully through I3CS. Interrupts 

and storage of data into valid and invalid areas were tested 

extensively as were all of the instructions.

I3CS requires 27.121 octal CP seconds to compile using 

the NSSC-I as the target machine. 42241 octal locations are 

required to load and execute. This figure includes 21000 

octal locations for the heap which is needed when many 

instrumentation and operating list requests are made. An 

experiment was conducted using the segmented loader to cut 

down on the memory required to load and execute given the 

heap size of 21000 octal locations. This resulted in a 

field length of 34000 octal locations necessary. By further
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segmentation, the amount of field length will be reduced 

even further but a sacrifice must be made. More time to 

execute will be required in order to get the segments 

swapped in and out of memory. Appendix D contains a sample 

run of I3CS with the NSSC-I as the target machine.



CHAPTER 5

INSTALLATION OF 13CS AT ODU

5.1 Introduction

As has been stressed earlier throughout this 

presentation, portability was a very desirable design 

requirement for a more useful and versatile interpretive 

computer simulator. I3CS was ported to Old Dominion 

University's DEC 10 which has a 36-bit word and performs 

two's complement arithmetic. It was very interesting to see 

just how portable I3CS was since it was developed on a one's 

complement host.

36
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5.2 Modifications Required by the DEC 10

A few changes were necessary in order to port I3CS to 

the DEC 10 computer. One expected modification was the 

adjustment of fill fields in memory and register definitions 

and of the upper bounds of the range specifications for some 

variables. These alterations reflect the change from a 

60-bit host to a 36-bit host machine word size. Other minor 

alterations included the following:

1. Change $ to " for hexadecimal constants.

2. Change the definition of the variable, HEXDIGIT, 
from a set of 'A'. . ' 9 ' where 'A'..,F ,,,0 ,..I9 , is 
the active set on NASA Langley Research Center's 
version of CDC NOS to a set of '0'..'F' for Old 
Dominion University's system. This reflects a 
change in the character set collating sequence.

3. Change reads, writes, and formal parameter passing 
of packed arrays to unpacked arrays.

4. Cease the packing of negative numbers(used to 
denote signed integers). An example of this is the 
following: Sgbit6 = -"1F.."1F.

More extensive changes included the heap management, set

handling, and the file system. Each of these topics are

treated in the following paragraphs.

There is no garbage collection in Old Dominion 

University's version of Pascal. The dispose command has no 

effect on their DEC 10 system. The heap management 

commands, new and dispose, are simulated by keeping a free

space list for each pointer type. A dispose procedure adds
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an item from the heap to the appropriate free space list. A 

new procedure checks the appropriate type free space list 

for any pointer elements. If this list is empty, a Pascal 

new command is executed, otherwise, an element is delinked 

from the free space list and used.

Set handling is different on the DEC 10. Sets take two 

words or 72 objects. By switching sets to packed arrays of 

Boolean, a true value indicates that a subscript is in the 
set. By accessing a packed array of Boolean and storing it 

into a variable that is overlayed as a set and a packed 

array of Boolean, set operations can be performed.

The DEC 10 Pascal RTS(Run Time System) has no segmented 

files and has a truly interactive file system. All 

references and operations for segmented files can be 

replaced with standard file references. A small driver 

program w^s written to ask what files will or will not be 

used. A boolean value telling whether or not a particular 

file is used determines if a reset or rewrite should be 

performed. A reset or rewrite requires assignment of a 

value to the buffer variable which is undesirable when the 

file is not to be used.

5.3 Implementation Statistics

The utility package SOUP, a file comparison program
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resident on Old Dominion's system, was used to flag changes 

to the baseline CDC version of I3CS. It is for this reason 

that a very accurate description of all of the changes made 

when porting I3CS to the DEC 10 system exists. Two 

man-months were required to port this system to the DEC 10. 

This figure includes the time spent learning how to use 

utilities such as SOUP and the text editor, tools to assist 

in making and documenting all necessary changes, and how the 

CDC and the DEC 10 versions of the Pascal compiler differ. 

Dr. Larry Dunning of Old Dominion University estimates that 

a similar task would now only take a couple of man-weeks 

since there would no longer be a learning curve.



CHAPTER 6

RETARGETING I3CS TO THE RCA 1802

6.1 RCA 1802 Characteristics

The RCA 1802, which performs two's complement 

arithmetic, was chosen as the new target machine for I3CS. 

The RCA 1802 architecture is based on a register array 

comprising sixteen general-purpose 16-bit scratch-pad
Iregisters. The high-order or the low-order byte of a 

particular scratch-pad register, R, may be referenced. 

Three 4-bit registers labeled N, P, and X hold the hex 

digits used to select individual scratch-pad registers in 

the following manner: R(N), R(P), or R(X). Register P

contains the hex digit value determining which of the 

registers is being used as the program counter. The unique 

capability to specify any one of 16 registers as program

40
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counter in a single instruction is provided. This feature 

makes it possible to maintain pointers to several different 

programs simultaneously and to transfer control quickly from 

one to another. A pointer to a program that services 

interrupt requests is a special and important example of 

this feature. The I register is used to determine the

instruction type.

The RCA 1802 has three instruction formats: one-byte,

two-byte, and three-byte. These formats are depicted in 

Appendix B. Most instructions are the one-byte type. The 

first machine cycle fetches or reads the appropriate 

instruction byte from memory and stores two hexadecimal 

instruction digits in registers I and N, respectively. The 

operation specified by I and N is performed in the second 

machine cycle. I specifies the instruction type and N 

either designates a scratch-pad register or acts as a 

special code. Immediate and short-branch instructions have 

a two-byte format. The first byte contains values for I and 

N and the second byte contains either an operand or an 

address. Long-branch instructions and long-skip

instructions have a three-byte format and require one fetch 

and two execute cycles. I and N are specified in the first 

byte. The high-order and low-order address bits are 
contained in bytes two and three for the long-branch 

instructions. Bytes two and three contain the first and

second skipped byte for long-skip instructions.
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There are four basic addressing modes in the RCA 1802 

architecture: register, register-indirect, immediate, and

stack. In register addressing, the address of the operand 

is contained in the N-field of the instruction byte. Direct 

addressing of any of the 16 scratch-pad registers for the 

purpose of counting or moving data in or out of registers is 

possible. In register-indirect addressing, register N 

specifies one of 16 scratch-pad registers whose contents are 

the address of the data in memory. R(P) addresses memory so 

that the operand is the byte following the instruction in 

immediate addressing. In stack addressing, one specific CPU 

register is implied as the pointer to memory. Usually R(X) 

is used. By using stacks for working space, immediate 

addressing for all constants, register pointers for tabular 

and vector arrays and the registers themselves for 

miscellaneous counters and switches, optimal use of program 
space is made.

6.2 Modifications Required to Retarget I3CS

Modifications to the simulator and the output 

formatter, which was intended to be user-supplied, were 

required when implementing the RCA 1802 as a new target 

machine in I3CS. The initializer, the loader, and the 

parser modules remained intact, however. The new simulator
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module was built within the same framework as the NSSC-I 

simulator. Modules performing the execution, satisfying 

instrumentation requests, and performing operating command 

execution, if time constraints were met, still existed. The 

appropriate changes were made to reflect the new target 

machine's architecture. Specific details within the 

simulator to reflect the way interrupts are handled, the new 

target machine's instruction set, and the setting of various 

registers when certain operations are performed, for 

example, had to be reprogrammed.

At the memory and register definition level, changes 

were made to define the new memory and register formats. 

New register definitions were added using the previously 

described additional-field strategy and a fill-in-the-blanks 

strategy was also used. Memory definitions were also 

altered by these two strategies. These modifications 

required 2.5 man-weeks to complete. A successful simulation 
of the RCA 1802 was attained.



CHAPTER 7

CONCLUSIONS

I3CS was designed for portability and retargetability. 

Whether or not an interpretive computer simulator containing 

both of these features could be written was questionable. 

The ease with which the system could be ported and 
retargeted was another major Concern. I3CS has proven to be 

both portable and retargetable. It resides on the both the 

DEC 10 ana the CDC Cyber Series computers using the NSSC-I 

as the target machine. I3CS was retargeted to the RCA 180 2 

using the CDC Cybers as hosts. A minimal amount of effort 

was required for retargeting and porting this system to 

another host. Having an ICS that is both portable and 

retargetable has proven to be not only feasible but also 

easily attainable.

44
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APPENDIX A 

NSSC-I Instruction Formats

There are 55 instructions, 31 of which require memory 

access and are referred to as major opcodes. The other 24, 

referred to as minor opcodes, have an opcode in the operand 

field of the instruction word. These instructions do not 

access memory. An illustration of the two formats follows.

MAJOR OPCODE - MEMORY ACCESS

B B B B B B |B B B B B B B B B B B B
17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
OPERATION IN- OPERAND ADDRESS

DEX

MINOR OPCODE - NON-MEMORY ACCESS

B B B B B B B B B B B B B B B B B B
17 16 15 14 13 12 1 1 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 NOT USED OPERATION
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APPENDIX B

RCA 1802 Instruction Formats

One-Byte Instruction

$ B B B B B B B ---B
1 7 6 5 4 3 2 1 0

I N

Two-Byte Instruction

I 1 I n I

B B B B B B B --B
7 6 5 4 3 2 1 0

Operand or Address
1

Three_Byte Instruction

1 I I N |

B B B B B B B B
7 6 5 4| 3 2 1 0

High Address or Skipped Byte 1

B B B B B B B B
7 6 5 4 3 2 1

Low Address or Skipped Byte 2
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APPENDIX C 

An ICS Instrumentation Language

A command language which can be used for interactive 

instrumentation of an ICS has been developed. The purpose 

of this language is to enable the user to put 

instrumentation test points and set simulator conditions 

into the interpretive simulation of his machine code program 

giving him control over the simulation execution and the 

output. The language facilitates quick and easy debugging 

of machine code segments.

Before discussing command formats, a few terms must be 

defined. LOCATION will be used to denote a single location 

(LOC) and LOCATION* will be used to denote either a single 

location (LOC) or a range of locations (L0C1..L0C2). A 

location can be specified by a symbol (SYMB), an integer 

(100), or an expression (SYMB+3), i.e., offset from the

symbol by three words. Symbols are included by inputting an 

alphabetically ordered symbol table. Integers may be in
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binary, octal, decimal, or hexadecimal. VALUE will be used 

to denote the values to be assigned to the specified

location or locations. Values may be expressed as a single 

integer (INT) with a predefined multiplier of 1, a pair of 

integers with the multiplier denoting the number of values 

(MUL*INT), or a series of values (INT;MUL*INT;INT).

Examples of LOCATION*=VALUE:

B '1011=2 means LOC 5 = 2

(2+3)*5=0 means LOC 25 = 0

O'12'..O'14'=3*1 means LOC 10,11,12 = 1

3..8=2*0;1;0;2*1 means LOC 3,4,6 = 0 and LOC 5,7,8 = 1

The commands are divided up into four groups according
to command types. Brackets, , denote that the contents 

where applicable can be repeated a number of times. 

Multiple commands may be placed on a line. A command and

its parameters may not exceed column 72. Commands may be 

continued on the next line, however. A discussion of the
I

commands and their formats follows.

I. Parameterless and Simple Commands

1. (Quit,Save)

Quit;

Quit - Causes the simulated execution to terminate.

Save - Causes the contents of all the registers and
memory to be saved enabling a restart of the system
at a later date.



2. (Start)

Start(LOCATION); 

Start;

Start - Causes the execution to begin at the 
specified location.

Start(325); Set the program counter to 325 
and begin simulation.

Start; Resume simulation using current
program counter value.

Instrumentation Setting Commands

1. (Brtrace,-Brtrace,Checkpt,-Checkpt,Dump,-Dump,
Halt,-Halt,Protect,-Protect,-Testval,Trace,-Trace)

Brtrace(LOCATION* ,LOCATION* );

Brtrace,-Brtrace - Sets the trace bits of all jump 
instructions to "on" and "off" respectively within 
the location range specified. Tracing the program 
execution path and the results of the executed 
statements can be formulated using this command.

Checkpt,-Checkpt - Sets the checkpoint bits to "on" 
and "off" respectively at the specified locations 
enabling users to determine register values at that 
point in the program.
Dump,-Dump - Sets and resets the dump bit at the 
specified locations enabling the user to 
selectively display memory contents each time those 
locations are reached.

Halt,-Halt - Sets and resets the halt bit at the 
specified locations. Halt causes the simulation to 
stop when a location whose halt bit is set has been 
reached. It is intended to keep a program from 
executing in an undesirable area. Upon Halt, 
control is returned to the user who may issue more 
commands for further execution, end, or resume the 
simulation. -Halt reverses this effect.
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Protect,-Protect - Sets the protect bits to "on" 
and "off" respectively at the specified locations 
enabling the user to determine when and how 
critical data areas in his program are being used.

-Testval - Sets the test bits to "off" at specified 
locations and delinks those locations and their 
bounds from the test list. -Testval enables the 
user to cease testing whether or not the value at a 
particular location lies between the bounds 
specified by a previously executed Testval command.

Trace ,-Trace - Sets and resets the trace bits 
respectively at the specified locations allowing 
tracing of the program execution path.

Checkpt(O' 121+ 2 ,20.•27)? Set checkpoint bits at
locations 12 and 20-27 
to "on".

-Checkpt(22..24); Set checkpoint bits at
locations 22-24 to 
"off".

2. (Testval)
Testval(LOCATION,LB. .UB ,LOCATION,LB..UB );

Testval - Sets the test bits at the specified 
locations to "on" and adds the location and its 
bounds to the test list. When locations whose test 
bits are set to "on" are reached by the simulation, 
a search of the linked test list is performed. 
Once the proper location is found, a test is made 
to determine if the value at that location is 
within the limits specified by the test list.

Testval(51,0.•2,73,1•.9); Set test bits at
locations 51 and 73 to 
"on" and the limits of 
those locations, 0-2 at 
loc. 51 and 1-9 at 
loc. 73, to the test 
list.
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III. Memory and Register Commands

1. (Set,Fltreg,Fxreg,Statreg)

Set(LOCATION*=VALUE ,LOCATION*=VALUE );

Set - Sets memory locations to the values given in 
the command.

Fltreg - Sets the appropriate floating point 
registers to the values specified in the command.

Fxreg - Sets the appropriate fixed point registers 
to the values specified in the command.

Statreg - Sets the appropriate status registers to 
the values given in the command.

Set(5=2,10..14=2*0;3*1);

Fxreg(0..2=3*0;3=10);

IV. Operating Commands

1. (Timeout)

Timeout(TIME);

Timeout - Causes the simulated execution to stop if 
the clock exceeds timeout time and returns control 
to the user. Time is a real number and is normally 
interpreted in microseconds.

Timeout(100.0); Stop when clock time exceeds
100.0 ms.

2. (Tdump)

Set location 5 to 2, 
locations 10 and 11 to 
0, and 12-14 to 1.

Set fixed registers 
0-2 to 0 and fixed 
register 3 to 10.

Tdump(TIME,LOCATION* ,TIME,LOCATION* );
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Tdump - The contents of the specified locations are 
dumped onto DUMPFILE when the clock time equals or 
exceeds TIME.

Tdump(195.5,A+3..450); At a clock time of
195.5 ms, a dump of 
the contents of memory 
represented by 3 + 
symbol A's location 
through location 45 0 
inclusive is made.

Two other operating commands, Ioreq and Interpt,

may be entered into the system via OPFILE, the

operating command text file. Tdump and Timeout

commands may also be entered into the system

through OPFILE as an alternate to the previously
mentioned interactive method. OPFILE commands may

extend over a line and multiple commands may appear

on a single line. The layout of each of these

commands on OPFILE follows.

Timeout TIME

Tdump STARTLOC COUNT TIME 

Interpt CHANNEL COUNT TIME1 TIME2 

Ioreq CHANNEL COUNT TIME1 TIME2 MUL VAL MUL VAL 

TIME1 and TIME2 are real numbers indicating the 

time interval during which an operating file 

command is valid. CHANNEL is the channel number of 

which the I/O request must be honored. A 
description of Interpt and Ioreq follows.

Interpt - If the clock time is less than or equal 
to TIME2 and greater than or equal to TIME1, then
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an interrupt may occur based on the ability of the 
machine to handle an interrupt and the machine 
status. For example, in the NSSC-I, the result of 
an occurrence of an interupt depends on whether or 
not the interrupt override is set and if an 
interrupt of higher priority has not occurred at 
the same time.

Ioreq - An I/O request may be satisfied, based on 
the machine interrupt capability and the machine 
status, if the clock time is within the limits, 
TIME1 and TIME2. In the case of the NSSC-I, if the 
channel over which the cycle steal or program 
controlled I/O is active and no other I/O requests 
of higher priority are pending, then an I/O request 
can be satisfied. MUL and VAL are used to denote 
the values to be input into memory. COUNT denotes 
the number of values to be input or output. Inputs 
into or outputs from memory occur at the data block 
associated with each channel.

The syntax analyser has a built-in error recovery system

enabling the user to correct mistakes made when inputting

the interactive commands. The error is displayed on the

succeeding line by " (error number)" indicating the location

of the error and its type. An error within a command will

inhibit it from inclusion into the test conditions. When an

error occurs, the user should repeat the command. The error

numbers and the corresponding error messages are listed

below.
1: Instruction argument or ( missing.

2: Too many arguments.

3: ) missing.

4: Value expression is missing.

5: Argument not valid or ; missing.

6: Error in location interval.
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7: Improper separator.

8: Operation symbol missing.

9: 1 missing.

10: Improper number designator.

11 : Improper numeric symbol.

12: Illegal number system.

13: Improper value expression.

14: Location range error.

15: Locations and values not equal

16 : Incorrect instruction.

17 : Unknown symbol.

A sample command language input with deliberate errors 

has been provided to demonstrate the error handling. Syntax 

diagrams have also been provided to aid in the understanding 

of this simple, easy-to-use command language. This command 

language has proven to be extremely beneficial as an aid in 

debugging the I3CS system itself as well as the assembly 

language programs simulated by I3CS.
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Sample Command Language Input With Deliberate Errors

? Dump; Start(10..20); Haltt(5); Checkpt(10.20);
*  1 A 2 a 16 a  6 

? Halt(A'101')? Halt(0'101'); Trace(O'1A'); Halt(B11011);
A 12 A 8A 3 A12 A 8A 3 A11 A

9
? Set(5..10=3*2;2*1); Set(2..3=2*5;2); Set(5..8=3*1,2);

A 15 a15 a 15a 4
? Halt(B'101G';ABC); Halt(B 1 I 011'+ABC); Hit(B '101';3);

a 11a 7a 3 A16 A17 A16 A16
Halt (5 ; 3 ) ;

A 7A 3a16
? Trace(ABC); Dump(100); Protect(5..10,15; Set(2*(1+2,9);

A17 A12A 7 A 7A 3 A 3a
4a  4
? Set(10);

A 4

? Fxreg(1=0'400000'); Start;
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APPENDIX D 

NSSC-I Sample Run

? Trace(0'1514'..O'1515*)?
? Checkpt(O'471' ,0'1514' ..O' 1515');
? Statreg(1=0'7000'); Start(O '367');

SIMULATION START TIME = 28335 MS 
SIMULATION END TIME = 28454 MS

TRACE TIME=1532•00 IC= 845 ACCUM=030000 EXT=000000 INDX=000000 
EFFECT ADDR=000043 EFFECT ADDR VAL=001524 

MNEMONIC=BRC

CHECKPT TIME=1532•00 IC= 845 ACCUM=030000 EXT=000000 INDX=000000 
STATUS REG=000000 STORAGE REG=007000 INTERRUPT OVERRIDE=000000 

MNEMONIC=BRC

TRACE TIME=1528.00 IC= 844 ACCUM=030000 EXT=000000 INDX=000000 
EFFECT ADDR=00 0046 EFFECT ADDR VAL=030 000 

MNEMONIC=TAE

CHECKPT TIME=15 28.00 IC= 844 ACCUM=030000 EXT=000000 INDX=000000 
STATUS REG=001000 STORAGE REG=007000 INTERRUPT OVERRIDE=00 0000 

MNEMONIC=TAE

CHECKPT TIME=159.00 IC= 313 ACCUM=200000 EXT=000000 INDX=000000 
STATUS REG=Q00000 STORAGE REG=007000 INTERRUPT OVERRIDE=000000 

MNEMONIC=LDA

? Quit;

SIMULATION START TIME = 28692 MS 
SIMULATION END TIME = 28693 MS
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NOTES

1 B. Chatterton, Software Simulation of the Minuteman 
D 17B Computer/ NTIS No. AD-742-965, (Government Report 
Annul, Vol. 73, No. 14, 1973).

2 Anon., Microprocessor Support Software, Intel 4004, 
4040, 8008, 8080 Simulators, Publication No. 76077900,
(Minneapolis, Minnesota: Control Data Corporation, 1976).

3 Anon., Program Design Language Reference Guide 
(Processor Version 3), 4th edition, (Pasadena, California: 
Caine, Farber and Gordon, Inc., 1977).

4 Stephen H. Caine and E. Kent Gordon, "PDL - A tool 
for software design," (National Computer Conference, 1975), 
p. 271.

5 Alfred V. Aho and Jeffrey D. Ullman, Principles of 
Compiler Design, (Reading, Massachussets: Addison-Wesley 
Publishing Co., 1977), p. 82.

6 Ibid., p. 180.
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