
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

1980

A study of portability and retargetability of an ICS A study of portability and retargetability of an ICS

Sharon Beskenis
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Beskenis, Sharon, "A study of portability and retargetability of an ICS" (1980). Dissertations, Theses, and
Masters Projects. William & Mary. Paper 1539625083.
https://dx.doi.org/doi:10.21220/s2-253c-bc56

This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539625083&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539625083&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-253c-bc56
mailto:scholarworks@wm.edu

A STUDY OF PORTABILITY AND RETARGETABILITY
fi OF AN ICS

A Thesis

Presented to
The Faculty of the Department of Applied Science

The College of William and Mary in Virginia

In Partial Fulfillment

Of the Requirements for the Degree of
Master of Science

by

Sharon 0. Beskenis

1980

APPROVAL SHEET

This thesis is submitted in partial fulfillment of

the requirements for the degree of

Master of Science

Author

Approved, August 1980

Stefan Feyock

n C. Knight

C ' ,
Robert E. Noonan

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS iv

ABSTRACT .. V

INTRODUCTION .. 2

DESIGN CONSIDERATIONS 5

SYSTEM OVERVIEW 18

EVOLUTION OF I 3 C S 22

IMPLEMENTATION OF THE NSSC-I IN I 3 C S 32

INSTALLATION OF I3CS AT ODU 36

RETARGETING I3CS TO THE RCA 1802 40

CONCLUSIONS 44

APPENDIX A .. 45

APPENDIX B ... 46

APPENDIX C 47

APPENDIX D ... 56

NOTES .. 57
BIBLIOGRAPHY .. 58

ACKNOWLEDGEMENTS

I thank Dr. Stefan Feyock, Dr. John C. Knight, and
Mr. Ralph Will for their help, encouragement, and criticism
throughout this project. I also thank Dr. Larry Dunning of
Old Dominion University for the documentation concerning the
installation of I3CS on the DEC 10 computer and Dr. Edwin
Foudriat for the information concerning the implementation
of the RCA 1802 as a new target machine in I3CS. A special
thanks to the Flight Dynamics and Control Division at
Langley Research Center and Dr. Edwin Foudriat for making
this project possible.

ABSTRACT

The purpose of this study was to design, develop,
maintain and document an interpretive computer
simulator(ICS) suitable for use by a wide range of research
and industrial facilities. The requirements necessary to
achieve portability and retargetability were studied and
applied to the design and development of an Interactive,
Instrumented ICS, I3CS. This system was developed on the
CDC NOS operating system.

The NASA Standard Spacecraft Computer 1 (NSSC-I) was
used as a target machine in one application of I3CS. It has
been rehosted and checked out on another machine, Old
Dominion University's DEC 10, and has had the simulator
portion retargeted in-house to the RCA 1802 in another
instance. This system has proven to be portable,
retargetable and useful.

INTRODUCTION

The flexibility of design and the relatively low cost

of combining integrated circuits into a system have

encouraged the development of a multitude of microprocessors

to meet the growing needs of industry. Advances in

microprocessor technology have enabled engineers to fashion

systems tailored to their specific needs which may vary from

flight computers to industrial robots to monitors of various

systems or processes. Since an increasing number of these

microcomputers is becoming available, the range of sizes,

architectures and instruction sets is becoming overwhelming.

Determining which processor is best suited for a

particular application is a difficult task. Certainly

purchasing, implementing and benchmarking several

microprocessors to select the best one is not the answer. A
more feasible solution might be to purchase or construct

simulators for each system. Costs are still high, however,

although better results can be obtained in less time by this
method.

A portable, retargetable, interpretive computer

simulator(ICS) seems to be the most logical approach. The

2

3

proposed simulator/ which is written in a high level

language, resides on a host computer and interpretively

executes the machine code of a given target computer, the

microprocessor being analyzed. The execution of the

microprocessor is simulated at the bit level. This means,

for example, that one's or two's complement arithmetic is

performed depending on the microprocessor being studied,

regardless of how the host computer operates. The ICS

includes a clock, an interrupt mechanism and I/O devices

which are all implemented in this high level language. Only

specialized functions such as Boolean operations may be

simulated in the host machine's assembly code for greater
speed, if desired, but will have to be rewritten if the ICS

is ported to a new host machine.
Instrumentation, software probes into a program, is an

enhancement to an ICS. This capability not only aids in

processor selection and benchmarking but also is an
iimportant feature for program development and debugging once

a microcomputer has been selected. Timing information,

checking for invalid values, and detecting the execution of

incorrect paths can be made possible with instrumentation.

Memory and register values can also be displayed at various

points in the program execution. An interactive,
instrumented, interpretive computer simulator is most

attractive since the user can be given complete control over

the simulation and the ability to make several runs in one

4

interactive session for a given target machine exists.

These features combined decrease the amount of time needed

to obtain various statistics from the simulator and to debug

programs.

Most interpretive computer simulators have the drawback

that they can only be executed on a particular machine or

operating system. A portable ICS is clearly much more

useful and desirable. Not all sites within an organization
have the same machines or operating systems, but the need to

have the capability to use the ICS on all of their equipment

often exists. Unfortunately, portability is a

characteristic that is often overlooked when designing an

ICS as was the case with Reference 1 •

Another important and desirable characteristic is

retargetability. Most previous ICS systems have been

targeted 4-o a particular machine or a particular class of

machines such as the software simulator of the Minuteman
D17B computer or CDC's simulator of the Intel 4004,

4040, 8008, 8080 series machines QQ. If an ICS is written

in a generalized manner for retargetability, a great savings

of time is realized because a minimal amount of effort is

required to simulate other microprocessors. Hopefully, it

will no longer be necessary to purchase an ICS for each
microcomputer under consideration by an organization since

the ICS will have proved to be retargetable.

CHAPTER 1

DESIGN CONSIDERATIONS

1.1 Design Overview

Several factors were considered in the design of an ICS

system. These considerations include

1. portability

2. modularity

3. retargetability
4. instrumentation

5. an interactive capability
t

Portability, the ability to rehost the interpretive computer

simulator system on a wide variety of operating systems, and

retargetability, the ability to substitute alternate

machines with vastly different architectures as the target

5

6

machine, are the most important design considerations.

Other advantageous features include instrumentation, a

feature that aids in program development, debugging and

benchmarking, and interactive execution of the ICS for

greater user control over the simulation. Since a number of

interactive and/or instrumented interpretive computer

simulators are currently available, concentration on the
important aspects of designing a portable, retargetable ICS
will be made.

1.2 Designing for Portability

In order to achieve portability, the ICS must be

written in a programming language whose compiler is either

resident can be installed on the computers of interest.

High level languages meet this criterion. The language

choice is very important because it can enhance portability.

Some languages are obviously better suited for a particular

application than others and make porting from one computer

to another much simpler.

Fortran is the language that most often comes to mind

due to its availablity on most operating systems and its

standardization. Languages similar to Pascal, however, are

better suited for software support tools for the following

reasons. Pascal is a very powerful language that has the

facilities to handle user-defined data structures, linked

lists and bit manipulation, all of which are necessary for

an ICS. Since Fortran lacks these facilities, a great
amount of effort is required to accomplish the task and a

lack of clarity too often results. Pascal data structures

provide the capability for clear and concise code and
thereby enhance portability due to the ease with which

necessary changes can be recognised and made. Pascal lends

itself to structured programming which tends to cut down on

program errors, aiding in the production of portable

programs.

1.3 Arithmetic Problems Affecting Portability

An obstacle to be overcome when designing a portable

program is the problem of performing target machine

arithmetic operations in one's or two's complement

regardless of the host machine's method of arithmetic. If

changes in this area can be minimized, portability can be
maintained without too much difficulty. There are four

possible combinations to be considered: one's complement

host - one's complement target, two's complement host -
two's complement target, one's complement host - two's

complement target, and two's complement host - one's

complement target. Naturally, the first two combinations

8

present the least number of problems. Arriving at a design

to take care of as many of the cases as possible is

necessary.

The following proposed design resolves this problem in

most cases. Arithmetic registers are defined as integer

fields which have a fill field and a data field as

subfields. A sample declaration for an 18-bit register on a

60-bit host follows to illustrate this concept.

REGISTER = PACKED RECORD
CASE INTEGER OF

0 : (FILL : BIT42;
DATA : BIT1S);

1 : (INT : INTEGER);
END;

One's and two's complement number representations are the

same in the positive range. Only non-positive numbers

differ in representation. By loading the data fields with

two's complement numbers and the fill fields with zeroes,

operations between REGISTER.INT and another REGISTER.INT can

be performed on a one's > complement machine with no

adjustments necessary. This is due to the fact that the

negative two's complement numbers in the 18-bit data field

of the example look like positive one's complement numbers

when the entire 60-bit integer field is used. Since there

is no difference in operations on positive one's or two's

complement numbers, the REGISTER.INT field can be used for

addition or subtraction and the REGISTER.DATA field can be

peeled off for the correct two's complement result.

9

An illustration of two's complement addition on a one's

complement host of 3+(-3), 3+(-2), and -3+(-1) follows. The

host machine word size is 30 bits and the target machine

word size is 18 bits with 12 bits of filler for this

example. Octal representation of the numbers is used.

3+(— 3)—0 3+(-2) = 1 -3+(-1)=-4

0000|000003 0000 §000003 , 00001777775
0000|777775 0000^777776 00001777777
0001flOOOOOO 0001|000001 0001|777774

The correct two's complement results are contained within

the 18-bit data field. Had only the 18-bit data field been

used for the additions instead of the entire 30-bit word,

erroneous 2s complement results would have ensued. The

addition of negative 18-bit numbers would have 000001,
000002, and 777775 as the respective results. When adding

one's complement numbers on a two's complement host, the

fill fields are zeroed out, the data fields are loaded with

the one's complement numbers, the addition is performed on

the entire host machine word, and the carry into the fill

field of the result is added to the resulting data field for

the correct answer.

It is possible that the size of the target machine's

registers exceeds the host machine's word size. An

adaptation of the previously mentioned register design
suffices in this case. Suppose, for example, that the host

machine had a 3 2-bit word and the target machine had a

60-bit register size. Two host machine words would be

10

required to handle the target machine register. A sample

register definition for this case follows.

REGISTER = PACKED RECORD
CASE INTEGER OF

0 : (FilH : BIT2;
DATA1 : BIT30;
FILL2 : BIT2;
DATA2 : BIT30);

1 : (INT : ARRAY 1..2 OF INTEGER);
END;

Operations between REGISTER.INT 1 , REGISTER.INT 2 and

another REGISTER.INT 1 , REGISTER.INT 2 will be correct

when the fill fields are set to zero because the addition or

subtraction will appear to be an operation between positive

numbers. The result in the REGISTER.FILL2 field must be

added to REGISTER.INT 1 in order to reflect any carry out

of the addition or subtraction of the lower half of the

registers. REGISTER.DATA1 and REGISTER.DATA2 will contain

the correct 60-bit result.

1.4 Modular Design

A program that has been broken up into procedures

according to function will be called a modularized program.

Using a top-down structured design, one module may be a

loader and another module may be a simulator. Each of these

modules is further refined by being broken up into smaller

pieces according to function such as a fetch module and an

execute module within the simulator module, and so on, until

11

the pieces are quite small, the functions are quite

specific, and the dependence upon other modules is ideally

non-existent. Modification of a modularized program is much

easier than altering one that is not modularized because

typical straight-line code is extremely difficult to follow

unless the program is very small. A program broken up into
modules, each of which has a specific function, is easy to

understand and alter, if necessary, aiding portability.

Modularization also aids in the development of retargetable

programs. Due to the functionality of each module, it is

easy to select which modules should be changed or replaced

when retargeting to a new microprocessor.

1.5 PDL as a Design Tool

Program Design Language(PDL) by Caine, Farber and

Gordon, Inc. was chosen to design and document the

framework for I3CS. PDL is designed for the production of

top-down structured designs. By using "structured English",

a complete design which contains all external and internal

interface definitions, identification of all procedure

calls, global data definitions, control block definitions

and specifications of all the processing algorithms of all

procedures can be produced by PDL before any code is

written. This working document not only is self-documenting

12

by virtue of the fact that the English language is used in

the design but also facilitates keeping data consistent from

module to module by means of data and segment(procedure)

indexes The flow is easily determined by studying the

reference tree which shows how segments are. nested. This

valuable design tool simplified the design of a portable and

retargetable system due to the clarity of the working

document. Although the PDL document was not updated to

reflect the final version of the ICS, coding from the

initial PDL working document into Pascal structures for the

baseline ICS was not difficult.
A PDL version of the main program for I3CS follows.

The ref pages refer to the pages within the PDL document on

which the other modules are defined. For example, the

Initialize System Variables module is defined on page 8 of

the document. The DO-ENDO represents the flow of the

segment or module execution. This flow is repeatedly

executed until Stopflag is true. The equivalent Pascal code

follows the PDL example.

PDL Main Program Definition

ref
page ***

8 * Initialize System Variables *
* DO Repeat Until Stopflag *

12 * Read and Set Simulator Memory *
17 * Read and Set Test Instructions *
4 2 * Machine Execution *

* Process Data Output *
* ENDO *
* *

13

Pascal Main Program

Begin
Initializer;
Repeat

Loader;
Syntaxanalyser;
Simulator;
Outputformatter;

Until Stopflag;
End.

1.6 Designing for Retargetability

The capability for retargeting to another mini or

microcomputer was an essential characteristic necessary for

developing a versatile I3CS system. The following design

rationale was used to achieve retargetability. One host

machine word of memory should include the following

information:

1. a filler area

2. the instrumentation bits

3. the target machine word of memory

For example, if the host machine has a 32-bit word size, the

instrumentation requires 7 bits, and the target machine has

an 18-bit word, one host machine word of simulator memory
will contain 7 filler bits, 7 instrumentation bits and 18

bits of actual target machine memory.

Since it is possible for the target machine's word size

14

to exceed the host machine's word size, a method of handling

this case without sacrificing retargetability is needed. If

the target machine had a 60-bit word size and the host

machine had a 32-bit word, for example, three host machine

words would be required to handle one target machine word of

memory. The first word would contain 25 filler bits and 7

instrumentation bits. The second and third words would each

contain 2 filler bits and the upper and lower 30 bits of

target machine memory, respectively.

Any changes in the size of either memory or registers,

in the number of registers or memory words, or in the

instrumentation can be easily accomplished when retargeting

if all of this information is readily accessible. One means
of assuring the accessibility of data is to have the

information be global data. These changes can be made by

merely filling in the appropriate blanks in the memory and

register definitions. Additional registers or memory layout

fields can be added easily within the framework of these

definitions.
A partial example of the changes necessary when

retargeting from the NSSC-I to the Nova 1200 follows. Note

that both the fill-in-the-blanks strategy and the

additional-field strategy were used. The FILL and DATA
fields were changed by filling in new values: BIT7 versus

BIT5 and BIT16 versus BIT18. Additional fields of target

machine memory were added, the 16-bit Nova fields 1 and 2,

15

and the NSSC-I fields 1, 2 , 2 , and 4 were deleted,

previously mentioned field 0 remains.

Only the

NSSC-I Memory Formats

MEMORY = PACKED RECORD
CASE INTEGER OF

0 (FILL
INST

(INT
END;

BIT5;
BIT7 ;

CASE INTEGER OF
(DATA
(IX
FILL1
VAL
(MAJOROP
MAJORIX
MAJORADR
(MINORFIL
MINOROP
(SIGN
MAG

BIT30);

BIT18);
BIT1 ;
BIT1 ;
BIT16);
BIT5;
BIT1 ;
BIT12);
BIT12;
BIT6);
BIT1 ;
BIT17));

16

Nova 1200 Memory Formats

MEMORY = PACKED RECORD
CASE INTEGER OF

0 : (FILL : BIT7?
INST : BIT7;
CASE INTEGER OF

(INT
END;

(DATA
(INDICATOR

BIT16);
BIT1 ;

CASE INTEGER OF
0

(ACS
ACD
OPAL
SHIFT
CARRY
NOLOAD
SKIP

BIT30);

(ACC
IADDR
IX
DISPL
(ACCIO
TRANS
CNTRL
DEVICE

BIT2

BIT2
BIT1
BIT2
BIT8
BIT2
BIT3
BIT2
BIT6

) 1

);
BIT2
BIT3
BIT2
BIT2
BIT1
BIT3));

The simulator should be a complete module, due to its

functionality and the fact that most changes when porting or

retargeting I3CS should be isolated to this area. Since

target machine memory, the instrumentation and the registers

are global, all changes necessary to retarget from one

machine to another should be essentially isolated to the

simulator itself. Much of the simulator can remain intact

under portation when the functions within the simulator are

modularized. The framework remains basically the same;

1. execute an instruction

2. process "run-time" requests (time out, time dump,
interrupt, and I/O requests)

17

3. satisfy instumentation requests

4. increment the program counter

Procedures to perform specific functions such as right shift

can be utilized by any target machine. The interrupt and

I/O request handler may also be suitable for the most part

for many different target machines. The actual execution of

specific target machine instructions will differ, however,

since the operation codes differ from one target machine to

another and different flags may be raised during execution.

By isolating most changes to the global data and the
simulator module, retargetability appears to be an

attainable goal.

CHAPTER 2

SYSTEM OVERVIEW

I3CS(Interactive, Instrumented, Interpretive Computer

Simulator) is broken up into five major modules to provide a

portable and easily retargetable package. These primary

modules are the initializer, the loader, the syntax

analyser, the simulator, and the output formatter. These

modules work together within I3CS in the following manner.

The initializer module is invoked to set target machine

memory, registers and other values to zero. Next, the
loader module is invoked to load target machine data and

instructions into the simulator memory. The initial program

counter value is also loaded. Simulated "run-time" events

such as interrupts and I/O requests as well as two

time-oriented commands, time out and time dump, will be

referred to as "run-time" or operating commands. Any

operating requests on a user-supplied text file, the

18

19

operating file, are processed in this module. The parser

module is then invoked. Commands supplied interactively by

the user to set memory, registers and instrumentation or to

start or stop the simulation are processed. The simulator

module is invoked next to execute instructions in the target

machine memory and advance the program counter. This

process continues with instrumentation requests and

operating commands being satisfied until a halt flag or a

quit flag is set.

Upon termination of the simulation process, one of two

paths is taken based on the value of the boolean variables,
halt flag and quit flag. The halt flag halts the simulation

and returns control to the user whereas the quit flag

terminates the entire simulation process. If the halt flag

is true, the system loops back through the loader, the

syntax analyser and the simulator modules. This enables the

user to supply any combination of the following: new
Ioperating commands; new instrumentation requests; or either

new data using the same set of instructions, a new program

using the same data, or a totally new set of data and

instructions. If the quit flag is true, the output
formatter is invoked to print information requested by the

user. This module may be written in Pascal by the user in
order to print the information supplied by instrumentation

and operating list commands in a desirable format. An

output formatter is supplied, however, for those who do not

20

care to write their own version. Block diagrams of I3CS and

of the loader, the parser, and the simulator modules follow.

Block Diagram of I3CS

SIMULATOR

HALT = FALSE

QUIT =TRUE

OUTPUT
FORMATTER

QUIT = FALSE

HALT = TRUE

Loader Diagram

SETMEMORY SETOPLIST

Parser Diagram

INS SETINSTRUMPARSERINIT READSYMBTAB

START = FALSE

21

Simulator Diagram

TESTINSTRUMEXECUTE
INSTR

RESET
NEXT
INSTR

OPLIST
PROCESSOR

HALT, QUIT = FALSE

Because each module in I3CS has a specific function,

portability and retargetability are enhanced. The loader

and the syntax analyser remain unscathed when retargeting.

Except for a few minor possible changes, the initializer can
also remain intact. Changes to the system are for the most

part isolated to the simulator module when retargeting. It

was intended that the output formatter be user-defined in

order that individual preferences in the instrumentation

information display could be accomodated. The RCA 1802 was

substituted as a new target machine in I3CS with relative

ease. Problems encountered when porting from one operating

system to another can be easily isolated and reconciled due

to I3CS's modular design. Old Dominion University has

installed this system on their DEC 10 computer. It is for

these reasons, portability and retargetability, that I3CS is
different from other previous ICSs.

CHAPTER 3

EVOLUTION OF I3CS

3.1 Nova 1200 Simulator

The original ICS used the Nova 1200 as the target

machine. This implementation was used primarily as a

learning tool prior to the development of a more

sophisticated interpretive computer simulator system. This

system was not interactive ! and it had no real loader.

Simulator memory was read in from a file and loaded

contiguously from location 0 to location N and the

instrumentation was "hard-wired" in the initializer. An

output formatter was called after the execution of each

instruction in order to display trace, checkpoint, and

memory protect information. This system took 3 man-months

to develop. 5.251 CP seconds were required to compile the

22

23

ICS and 20000 octal words of memory were required to

execute.

Several things were learned from this primitive system.

Basically this was an exercise in using Pascal data

structures and in realizing how powerful those structures

could be if used properly. Although a fill-in-the-blanks

philosophy was used for memory and register definitions, it

soon became obvious that these structures could become more

streamlined by using Pascal more effectively. This change

would make the notion of easy retargetability a reality.

Undue hardship was placed on the user by expecting him to

essentially "hard-wire" instrumentation information.

Development of a command language to accomplish this task,

as done in other ICS systems, appeared to be a more logical

approach. It would be necessary to design the command

language orocessor so that it in no way interfered with the

portability and retargetabilty of the finished product.

This exercise also provided some insight into the

requirements for a loader such as the ability to load blocks

of memory which are not necessarily contiguous.

24

3.2 I3CS System

3.2.1 Introduction

I3CS, the final product, incorporated all the lessons

learned from the Nova 1200 ICS. As mentioned earlier, I3CS

consists of five major modules. Since the initializer is

trivial and the output formatter is meant to be

user-supplied, the loader, the syntax analyser, and the
simulator will be discussed in terms of their functions and

how they meet the requirements of portability and

retargetability.

3.2.2 Loader Module

The loader module consists of two basic procedures: the

loader and the operating list processor. When the user

writes an assembly language program, he must assemble it and

feed the load file through a user-written interface program

in order to create MACHFILE, a load file formatted for I3CS.

The loader loads target machine memory from MACHFILE, sets
the program counter, and reads in a program name to be

associated with the run. A code heading on each MACHFILE

record enables the loader to determine whether a program

25

name, an instruction counter or a block of simulator memory

is to be read in. The number of characters necessary to

make up one word of simulator memory is determined by I3CS

given the word size and the base of the target machine. The

characters making up one word, in octal or hexadecimal

representation, are then converted to an integer value.

Blocks of memory, which need not be adjacent to one another,

are read in at one time. The first word of each block

contains the starting address of the block into which the

particular block of information is to be loaded. The

remaining words are data which is read and loaded, one at a
time, into the memory block until an end-of-line is

encountered. Now either another block of data, a program

counter value or a program file can be read in until the

end-of-file is encountered. No changes are required when

retargeting due to the fact that the loader automatically

computes how to read in the file based on the target machine
specification of the word size and the base.

The operating commands processor reads in operating

commands from the operating file, OPFILE, which is a text

file built manually by the user. These commands consist of

interrupt, cycle steal I/O, time dump, and time out

requests. The commands are inserted onto an operating list,
OPLIST, in order by time for use by the simulator module.

TIMEOUT 105.0 which sets the halt flag when clock time

equals or exceeds 105.0 ms and INTERPT 2 10 152.0 162.0

26

which causes an interrupt on channel 2 to occur when clock

time is greater than or equal to 152.0 ms and less than or

equal to 16 2.0 ms are sample operating commands. Further

examples of these commands are contained in Appendices B and

D. Portability and retargetability are not hindered by the
operating list handler. Operating commands are independent

of target machine.

3.2.3 Syntax Analysis Module

The syntax analyser performs many tasks. It reads in

the symbol table information which is in alphabetical order

by symbol name from the symbol table file, SYMFIL. When an

assembly language program is assembled, a load file

containing loader and symbol table information is fed

through a user-written interface program that formats the

symbol table for SYMFIL. This information is stored into an

array of symbol records containing the label, the location
associated with the symbol, the program name and the section

number. This enables users to refer to locations by a label

plus an offset which may be positive or negative. It is

convenient for the user to designate locations in this way

rather than to compute the actual address. When a label is

used in a command, a binary search of the symbol table array

on symbol name is performed until a match is found. The

27

address associated with that symbol plus the offset is the

address to be used in the instrumentation. If the symbol is

not in the symbol table, however, an error message to that

effect is emitted and the user is given another chance to

specify the command with the proper location.

The actual parser portion of this module contains a
scanner, syntax analysis procedures and error handling.

Commands are read into an input buffer and lexical analysis

is performed to discover tokens. The scanner places

characters into an "identifier" array, ID, until it reaches

a separator. One character lookahead strategy is used.

Separators include ",", "1", "(", ")", ".", "=" as well as
the operators: "+", , "/". Multiplication and

division have precedence over addition and subtraction and

the command language is left associative.

The syntax analysis of this language was implemented

using recursive descent parsing. A set of recursive

procedures are used to recognize the input with no

backtracking necessary. An adaptation of the reserved word

strategy is used whereby keywords are treated as

identifiers. A table of reserved words is checked to see if

the identifier is a keyword DO. Based on the keyword and

the separators obtained while parsing the command, the

syntax analyzer is directed accordingly.

In order to successfully use recursive descent

pasrsing, the parser must be able to tell, given the current

28

input symbol a and the nonterminal A to be expanded, which

one of the alternates of the production A -> al|a2|...jan is

the unique alternate that derives a string beginning with a.

The proper alternate must be detectable by looking only at

the first symbol it derives O G * This language is simple

enough that the keywords and separators encountered enable

the parser to always choose the correct alternate.

If a command is not formulated properly, the syntax

analyzer recognizes it and emits error messages accordingly.

Parsing does not halt, however. Once a line of input has

been parsed, correct commands are accepted, errors are

flagged and control is turned over to the user who can then

type in new commands and correct and resubmit any erroneous

commands. Error recovery of this type is very important if

I3CS is to be a successful interactive program. A list of

error messages and a sample command language input

containing seeded errors are available for inspection in

Appendix C.

As commands are parsed, linked lists containing set

memory, set registers, and instrumentation requests are

built. This list is processed after all the commands have

been input by the user and the appropriate registers or

memory bits "are altered. The TESTVAL command appears on
this list and either sets the test instrumentation bit of a

particular memory location to "on" or "off". When this bit

is set to "on", the upper bound and the lower bound

29

associated with that particular location are placed onto a

test list by location. If a memory location whose TESTVAL

bit is set is reached during the simulated execution of a

program, a search of the test list is made for an entry

associated with that particular location. The contents of

memory at that location are checked to see if the value is

between the upper and lower limits specified by the test

list entry. Likewise, when this bit is turned "off", the

test list is searched until that location is found and the

entry containing the location and its bounds is removed from
test list. TDUMP and TIMEOUT requests are inserted onto the

operating list, OPLIST, according to time as in the loader

module.

This module is designed for retargetability because the

symbol table handler, the command language processor, and

the instrumentation can be accomplished with no regard to

the target machine being used. Only changes to the way the

interactive command language file is handled may affect

portability because there is no standardized means of

handling interactive I/O. This module is quite portable,

however, because the changes needed to alter the interactive

I/O problem are easy to spot. They are confined to the

scanner.

30

3.2.4 Simulator Module

The simulator module operates in the following manner.

An instruction is fetched and executed, an attempt to

satisfy operating list requests is made and instrumentation

requests are satisfied. This cycle continues until the halt

flag or the quit flag has been set. When the halt flag is

set, the simulation stops and control is returned to the

user who can then issue commands requesting additional

information and either resume or stop the entire simulation

process. The halt flag can either be set by the program

being interpretively executed via a halt instruction or by

the user by setting halt bits in memory. The quit flag,

when set, causes the simulation process to come to a

complete halt. The user must issue the quit command in

order to terminate execution of I3CS.

Once an instruction is fetched and executed, the

instrumentation bits associated with that instruction are

tested. These instrumentation requests, if any exist, are

then satisfied. Appendix C, the command language writeup

contains a discussion of the instrumentation functions.

If the operating list, OPLIST, is not empty, one

operating list request may be serviced between execution

cycles if it meets the time constraints. Therefore, after

an instruction executes, if OPLIST is not empty, the first

item on OPLIST, the item having the lowest starting time, is

31

selected for servicing. This request is satisfied if the

starting time is less then or equal to the current clock

time unless it is an interrupt or an I/O service request.

If the request meets this criterion, then it is serviced and

removed from OPLIST; otherwise, it remains on OPLIST to be

serviced at a later point in time. In the case of

interrupts or I/O service requests, the request is satisfied

if the starting time is less than or equal to the clock time

and the clock time is less than or equal to the ending time

for the request. If the criterion is met, it is serviced

and removed from OPLIST, otherwise, the next item from

OPLIST is selected for possible service.

It was intended that all major changes necessary to

retarget I3CS would be performed within this module. Fetch

the next instruction, process operating list commands, and

perform certain specialized tasks within the execution phase

such as right shift should remain basically intact. The
Iexecution of the target machine instructions will be

different and the information desired when instrumentation

requests exist may have to be reformatted somewhat. Such
changes are to be expected when retargeting and can be made

within the general framework of this module with little

difficulty.

CHAPTER 4

IMPLEMENTATION OF THE NSSC-I IN I3CS

4.1 NSSC-I Characteristics

The NSSC-I(NASA Standard Spacecraft Computer 1) flight

computer was chosen for simulation. Not only is this

computer widely used but also the instruction set is broad

enough for development of a reasonable simulator. The

NSSC-I has an 18-bit word, two's complement arithmentic,

three fixed point registers: the accumulator; the extended

accumulator? and the index register and two major status

registers: the lockout status register and the storage

limitation register. Two types of I/O, cycle steal and

program controlled I/O, are also available on the NSSC-I
making it an even more appealing choice as the target

machine.

32

33

The NSSC-I has two instruction formats: memory

access(major opcode) and non-memory access(minor opcode).

These formats are depicted in Appendix A. The lower order

12 bits of a major opcode instruction limit an instruction

to 4096 memory locations when using direct addressing. The

NSSC-I has the ability to address 16 memory banks of 4096

locations by combining a 4-bit page register with the 12-bit

operand address to form a 16-bit address. The zero page was

always used in I3CS in order to limit the amount of memory

required by the simulator. By increasing memory size, more

than one page can be addressed because the paging mechanism

was built into the simulator.

Effective addresses can be altered in two ways during

execution, by indexing or by using indirect instructions.

If the index bit in a memory access instruction is set, the

contents of the index register are added to the operand

address with the sum becoming the effective address. The

contents of the location specified becomes the effective

address when an indirect addressing instruction is executed.

If indexing occurs when an indirect addressing instruction

executes, the contents of the location specified in the

operand address plus the index register contents becomes the

new effective address.
The storage limitation register(SLR) is used to specify

a protected block of memory. Bits 0 - 8 of the SLR specify

the lower limit(L) and bits 9 - 17 specify the upper

34

limit(U). If the effective address is within the limits, L

= EA = U, then a write into EA is permitted. All of the

aforementioned characteristics of the NSSC-I made it an

interesting choice for the I3CS simulator.

4.2 NSSC-I Implementation Statistics

I3CS required seven man-months to develop. The

implementation and testing of the NSSC-I as the target

machine required an additional 1.5 man-months. Software

sneak circuits were introduced to ensure that overflows and

carries, for example, were detected and treated properly.

Test cases written for NASA Goddard to check out NSSC-I

simulators were run successfully through I3CS. Interrupts

and storage of data into valid and invalid areas were tested

extensively as were all of the instructions.

I3CS requires 27.121 octal CP seconds to compile using

the NSSC-I as the target machine. 42241 octal locations are

required to load and execute. This figure includes 21000

octal locations for the heap which is needed when many

instrumentation and operating list requests are made. An

experiment was conducted using the segmented loader to cut

down on the memory required to load and execute given the

heap size of 21000 octal locations. This resulted in a

field length of 34000 octal locations necessary. By further

35

segmentation, the amount of field length will be reduced

even further but a sacrifice must be made. More time to

execute will be required in order to get the segments

swapped in and out of memory. Appendix D contains a sample

run of I3CS with the NSSC-I as the target machine.

CHAPTER 5

INSTALLATION OF 13CS AT ODU

5.1 Introduction

As has been stressed earlier throughout this

presentation, portability was a very desirable design

requirement for a more useful and versatile interpretive

computer simulator. I3CS was ported to Old Dominion

University's DEC 10 which has a 36-bit word and performs

two's complement arithmetic. It was very interesting to see

just how portable I3CS was since it was developed on a one's

complement host.

36

37

5.2 Modifications Required by the DEC 10

A few changes were necessary in order to port I3CS to

the DEC 10 computer. One expected modification was the

adjustment of fill fields in memory and register definitions

and of the upper bounds of the range specifications for some

variables. These alterations reflect the change from a

60-bit host to a 36-bit host machine word size. Other minor

alterations included the following:

1. Change $ to " for hexadecimal constants.

2. Change the definition of the variable, HEXDIGIT,
from a set of 'A'. . ' 9 ' where 'A'..,F ,,,0 ,..I9 , is
the active set on NASA Langley Research Center's
version of CDC NOS to a set of '0'..'F' for Old
Dominion University's system. This reflects a
change in the character set collating sequence.

3. Change reads, writes, and formal parameter passing
of packed arrays to unpacked arrays.

4. Cease the packing of negative numbers(used to
denote signed integers). An example of this is the
following: Sgbit6 = -"1F.."1F.

More extensive changes included the heap management, set

handling, and the file system. Each of these topics are

treated in the following paragraphs.

There is no garbage collection in Old Dominion

University's version of Pascal. The dispose command has no

effect on their DEC 10 system. The heap management

commands, new and dispose, are simulated by keeping a free

space list for each pointer type. A dispose procedure adds

38

an item from the heap to the appropriate free space list. A

new procedure checks the appropriate type free space list

for any pointer elements. If this list is empty, a Pascal

new command is executed, otherwise, an element is delinked

from the free space list and used.

Set handling is different on the DEC 10. Sets take two

words or 72 objects. By switching sets to packed arrays of

Boolean, a true value indicates that a subscript is in the
set. By accessing a packed array of Boolean and storing it

into a variable that is overlayed as a set and a packed

array of Boolean, set operations can be performed.

The DEC 10 Pascal RTS(Run Time System) has no segmented

files and has a truly interactive file system. All

references and operations for segmented files can be

replaced with standard file references. A small driver

program w^s written to ask what files will or will not be

used. A boolean value telling whether or not a particular

file is used determines if a reset or rewrite should be

performed. A reset or rewrite requires assignment of a

value to the buffer variable which is undesirable when the

file is not to be used.

5.3 Implementation Statistics

The utility package SOUP, a file comparison program

39

resident on Old Dominion's system, was used to flag changes

to the baseline CDC version of I3CS. It is for this reason

that a very accurate description of all of the changes made

when porting I3CS to the DEC 10 system exists. Two

man-months were required to port this system to the DEC 10.

This figure includes the time spent learning how to use

utilities such as SOUP and the text editor, tools to assist

in making and documenting all necessary changes, and how the

CDC and the DEC 10 versions of the Pascal compiler differ.

Dr. Larry Dunning of Old Dominion University estimates that

a similar task would now only take a couple of man-weeks

since there would no longer be a learning curve.

CHAPTER 6

RETARGETING I3CS TO THE RCA 1802

6.1 RCA 1802 Characteristics

The RCA 1802, which performs two's complement

arithmetic, was chosen as the new target machine for I3CS.

The RCA 1802 architecture is based on a register array

comprising sixteen general-purpose 16-bit scratch-pad
Iregisters. The high-order or the low-order byte of a

particular scratch-pad register, R, may be referenced.

Three 4-bit registers labeled N, P, and X hold the hex

digits used to select individual scratch-pad registers in

the following manner: R(N), R(P), or R(X). Register P

contains the hex digit value determining which of the

registers is being used as the program counter. The unique

capability to specify any one of 16 registers as program

40

41

counter in a single instruction is provided. This feature

makes it possible to maintain pointers to several different

programs simultaneously and to transfer control quickly from

one to another. A pointer to a program that services

interrupt requests is a special and important example of

this feature. The I register is used to determine the

instruction type.

The RCA 1802 has three instruction formats: one-byte,

two-byte, and three-byte. These formats are depicted in

Appendix B. Most instructions are the one-byte type. The

first machine cycle fetches or reads the appropriate

instruction byte from memory and stores two hexadecimal

instruction digits in registers I and N, respectively. The

operation specified by I and N is performed in the second

machine cycle. I specifies the instruction type and N

either designates a scratch-pad register or acts as a

special code. Immediate and short-branch instructions have

a two-byte format. The first byte contains values for I and

N and the second byte contains either an operand or an

address. Long-branch instructions and long-skip

instructions have a three-byte format and require one fetch

and two execute cycles. I and N are specified in the first

byte. The high-order and low-order address bits are
contained in bytes two and three for the long-branch

instructions. Bytes two and three contain the first and

second skipped byte for long-skip instructions.

42

There are four basic addressing modes in the RCA 1802

architecture: register, register-indirect, immediate, and

stack. In register addressing, the address of the operand

is contained in the N-field of the instruction byte. Direct

addressing of any of the 16 scratch-pad registers for the

purpose of counting or moving data in or out of registers is

possible. In register-indirect addressing, register N

specifies one of 16 scratch-pad registers whose contents are

the address of the data in memory. R(P) addresses memory so

that the operand is the byte following the instruction in

immediate addressing. In stack addressing, one specific CPU

register is implied as the pointer to memory. Usually R(X)

is used. By using stacks for working space, immediate

addressing for all constants, register pointers for tabular

and vector arrays and the registers themselves for

miscellaneous counters and switches, optimal use of program
space is made.

6.2 Modifications Required to Retarget I3CS

Modifications to the simulator and the output

formatter, which was intended to be user-supplied, were

required when implementing the RCA 1802 as a new target

machine in I3CS. The initializer, the loader, and the

parser modules remained intact, however. The new simulator

43

module was built within the same framework as the NSSC-I

simulator. Modules performing the execution, satisfying

instrumentation requests, and performing operating command

execution, if time constraints were met, still existed. The

appropriate changes were made to reflect the new target

machine's architecture. Specific details within the

simulator to reflect the way interrupts are handled, the new

target machine's instruction set, and the setting of various

registers when certain operations are performed, for

example, had to be reprogrammed.

At the memory and register definition level, changes

were made to define the new memory and register formats.

New register definitions were added using the previously

described additional-field strategy and a fill-in-the-blanks

strategy was also used. Memory definitions were also

altered by these two strategies. These modifications

required 2.5 man-weeks to complete. A successful simulation
of the RCA 1802 was attained.

CHAPTER 7

CONCLUSIONS

I3CS was designed for portability and retargetability.

Whether or not an interpretive computer simulator containing

both of these features could be written was questionable.

The ease with which the system could be ported and
retargeted was another major Concern. I3CS has proven to be

both portable and retargetable. It resides on the both the

DEC 10 ana the CDC Cyber Series computers using the NSSC-I

as the target machine. I3CS was retargeted to the RCA 180 2

using the CDC Cybers as hosts. A minimal amount of effort

was required for retargeting and porting this system to

another host. Having an ICS that is both portable and

retargetable has proven to be not only feasible but also

easily attainable.

44

45

APPENDIX A

NSSC-I Instruction Formats

There are 55 instructions, 31 of which require memory

access and are referred to as major opcodes. The other 24,

referred to as minor opcodes, have an opcode in the operand

field of the instruction word. These instructions do not

access memory. An illustration of the two formats follows.

MAJOR OPCODE - MEMORY ACCESS

B B B B B B |B B B B B B B B B B B B
17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
OPERATION IN- OPERAND ADDRESS

DEX

MINOR OPCODE - NON-MEMORY ACCESS

B B B B B B B B B B B B B B B B B B
17 16 15 14 13 12 1 1 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 NOT USED OPERATION

46

APPENDIX B

RCA 1802 Instruction Formats

One-Byte Instruction

$ B B B B B B B ---B
1 7 6 5 4 3 2 1 0

I N

Two-Byte Instruction

I 1 I n I

B B B B B B B --B
7 6 5 4 3 2 1 0

Operand or Address
1

Three_Byte Instruction

1 I I N |

B B B B B B B B
7 6 5 4| 3 2 1 0

High Address or Skipped Byte 1

B B B B B B B B
7 6 5 4 3 2 1

Low Address or Skipped Byte 2

47

APPENDIX C

An ICS Instrumentation Language

A command language which can be used for interactive

instrumentation of an ICS has been developed. The purpose

of this language is to enable the user to put

instrumentation test points and set simulator conditions

into the interpretive simulation of his machine code program

giving him control over the simulation execution and the

output. The language facilitates quick and easy debugging

of machine code segments.

Before discussing command formats, a few terms must be

defined. LOCATION will be used to denote a single location

(LOC) and LOCATION* will be used to denote either a single

location (LOC) or a range of locations (L0C1..L0C2). A

location can be specified by a symbol (SYMB), an integer

(100), or an expression (SYMB+3), i.e., offset from the

symbol by three words. Symbols are included by inputting an

alphabetically ordered symbol table. Integers may be in

48

binary, octal, decimal, or hexadecimal. VALUE will be used

to denote the values to be assigned to the specified

location or locations. Values may be expressed as a single

integer (INT) with a predefined multiplier of 1, a pair of

integers with the multiplier denoting the number of values

(MUL*INT), or a series of values (INT;MUL*INT;INT).

Examples of LOCATION*=VALUE:

B '1011=2 means LOC 5 = 2

(2+3)*5=0 means LOC 25 = 0

O'12'..O'14'=3*1 means LOC 10,11,12 = 1

3..8=2*0;1;0;2*1 means LOC 3,4,6 = 0 and LOC 5,7,8 = 1

The commands are divided up into four groups according
to command types. Brackets, , denote that the contents

where applicable can be repeated a number of times.

Multiple commands may be placed on a line. A command and

its parameters may not exceed column 72. Commands may be

continued on the next line, however. A discussion of the
I

commands and their formats follows.

I. Parameterless and Simple Commands

1. (Quit,Save)

Quit;

Quit - Causes the simulated execution to terminate.

Save - Causes the contents of all the registers and
memory to be saved enabling a restart of the system
at a later date.

2. (Start)

Start(LOCATION);

Start;

Start - Causes the execution to begin at the
specified location.

Start(325); Set the program counter to 325
and begin simulation.

Start; Resume simulation using current
program counter value.

Instrumentation Setting Commands

1. (Brtrace,-Brtrace,Checkpt,-Checkpt,Dump,-Dump,
Halt,-Halt,Protect,-Protect,-Testval,Trace,-Trace)

Brtrace(LOCATION* ,LOCATION*);

Brtrace,-Brtrace - Sets the trace bits of all jump
instructions to "on" and "off" respectively within
the location range specified. Tracing the program
execution path and the results of the executed
statements can be formulated using this command.

Checkpt,-Checkpt - Sets the checkpoint bits to "on"
and "off" respectively at the specified locations
enabling users to determine register values at that
point in the program.
Dump,-Dump - Sets and resets the dump bit at the
specified locations enabling the user to
selectively display memory contents each time those
locations are reached.

Halt,-Halt - Sets and resets the halt bit at the
specified locations. Halt causes the simulation to
stop when a location whose halt bit is set has been
reached. It is intended to keep a program from
executing in an undesirable area. Upon Halt,
control is returned to the user who may issue more
commands for further execution, end, or resume the
simulation. -Halt reverses this effect.

50

Protect,-Protect - Sets the protect bits to "on"
and "off" respectively at the specified locations
enabling the user to determine when and how
critical data areas in his program are being used.

-Testval - Sets the test bits to "off" at specified
locations and delinks those locations and their
bounds from the test list. -Testval enables the
user to cease testing whether or not the value at a
particular location lies between the bounds
specified by a previously executed Testval command.

Trace ,-Trace - Sets and resets the trace bits
respectively at the specified locations allowing
tracing of the program execution path.

Checkpt(O' 121+ 2 ,20.•27)? Set checkpoint bits at
locations 12 and 20-27
to "on".

-Checkpt(22..24); Set checkpoint bits at
locations 22-24 to
"off".

2. (Testval)
Testval(LOCATION,LB. .UB ,LOCATION,LB..UB);

Testval - Sets the test bits at the specified
locations to "on" and adds the location and its
bounds to the test list. When locations whose test
bits are set to "on" are reached by the simulation,
a search of the linked test list is performed.
Once the proper location is found, a test is made
to determine if the value at that location is
within the limits specified by the test list.

Testval(51,0.•2,73,1•.9); Set test bits at
locations 51 and 73 to
"on" and the limits of
those locations, 0-2 at
loc. 51 and 1-9 at
loc. 73, to the test
list.

51

III. Memory and Register Commands

1. (Set,Fltreg,Fxreg,Statreg)

Set(LOCATION*=VALUE ,LOCATION*=VALUE);

Set - Sets memory locations to the values given in
the command.

Fltreg - Sets the appropriate floating point
registers to the values specified in the command.

Fxreg - Sets the appropriate fixed point registers
to the values specified in the command.

Statreg - Sets the appropriate status registers to
the values given in the command.

Set(5=2,10..14=2*0;3*1);

Fxreg(0..2=3*0;3=10);

IV. Operating Commands

1. (Timeout)

Timeout(TIME);

Timeout - Causes the simulated execution to stop if
the clock exceeds timeout time and returns control
to the user. Time is a real number and is normally
interpreted in microseconds.

Timeout(100.0); Stop when clock time exceeds
100.0 ms.

2. (Tdump)

Set location 5 to 2,
locations 10 and 11 to
0, and 12-14 to 1.

Set fixed registers
0-2 to 0 and fixed
register 3 to 10.

Tdump(TIME,LOCATION* ,TIME,LOCATION*);

52

Tdump - The contents of the specified locations are
dumped onto DUMPFILE when the clock time equals or
exceeds TIME.

Tdump(195.5,A+3..450); At a clock time of
195.5 ms, a dump of
the contents of memory
represented by 3 +
symbol A's location
through location 45 0
inclusive is made.

Two other operating commands, Ioreq and Interpt,

may be entered into the system via OPFILE, the

operating command text file. Tdump and Timeout

commands may also be entered into the system

through OPFILE as an alternate to the previously
mentioned interactive method. OPFILE commands may

extend over a line and multiple commands may appear

on a single line. The layout of each of these

commands on OPFILE follows.

Timeout TIME

Tdump STARTLOC COUNT TIME

Interpt CHANNEL COUNT TIME1 TIME2

Ioreq CHANNEL COUNT TIME1 TIME2 MUL VAL MUL VAL

TIME1 and TIME2 are real numbers indicating the

time interval during which an operating file

command is valid. CHANNEL is the channel number of

which the I/O request must be honored. A
description of Interpt and Ioreq follows.

Interpt - If the clock time is less than or equal
to TIME2 and greater than or equal to TIME1, then

53

an interrupt may occur based on the ability of the
machine to handle an interrupt and the machine
status. For example, in the NSSC-I, the result of
an occurrence of an interupt depends on whether or
not the interrupt override is set and if an
interrupt of higher priority has not occurred at
the same time.

Ioreq - An I/O request may be satisfied, based on
the machine interrupt capability and the machine
status, if the clock time is within the limits,
TIME1 and TIME2. In the case of the NSSC-I, if the
channel over which the cycle steal or program
controlled I/O is active and no other I/O requests
of higher priority are pending, then an I/O request
can be satisfied. MUL and VAL are used to denote
the values to be input into memory. COUNT denotes
the number of values to be input or output. Inputs
into or outputs from memory occur at the data block
associated with each channel.

The syntax analyser has a built-in error recovery system

enabling the user to correct mistakes made when inputting

the interactive commands. The error is displayed on the

succeeding line by " (error number)" indicating the location

of the error and its type. An error within a command will

inhibit it from inclusion into the test conditions. When an

error occurs, the user should repeat the command. The error

numbers and the corresponding error messages are listed

below.
1: Instruction argument or (missing.

2: Too many arguments.

3:) missing.

4: Value expression is missing.

5: Argument not valid or ; missing.

6: Error in location interval.

54

7: Improper separator.

8: Operation symbol missing.

9: 1 missing.

10: Improper number designator.

11 : Improper numeric symbol.

12: Illegal number system.

13: Improper value expression.

14: Location range error.

15: Locations and values not equal

16 : Incorrect instruction.

17 : Unknown symbol.

A sample command language input with deliberate errors

has been provided to demonstrate the error handling. Syntax

diagrams have also been provided to aid in the understanding

of this simple, easy-to-use command language. This command

language has proven to be extremely beneficial as an aid in

debugging the I3CS system itself as well as the assembly

language programs simulated by I3CS.

55

Sample Command Language Input With Deliberate Errors

? Dump; Start(10..20); Haltt(5); Checkpt(10.20);
* 1 A 2 a 16 a 6

? Halt(A'101')? Halt(0'101'); Trace(O'1A'); Halt(B11011);
A 12 A 8A 3 A12 A 8A 3 A11 A

9
? Set(5..10=3*2;2*1); Set(2..3=2*5;2); Set(5..8=3*1,2);

A 15 a15 a 15a 4
? Halt(B'101G';ABC); Halt(B 1 I 011'+ABC); Hit(B '101';3);

a 11a 7a 3 A16 A17 A16 A16
Halt (5 ; 3) ;

A 7A 3a16
? Trace(ABC); Dump(100); Protect(5..10,15; Set(2*(1+2,9);

A17 A12A 7 A 7A 3 A 3a
4a 4
? Set(10);

A 4

? Fxreg(1=0'400000'); Start;

56

APPENDIX D

NSSC-I Sample Run

? Trace(0'1514'..O'1515*)?
? Checkpt(O'471' ,0'1514' ..O' 1515');
? Statreg(1=0'7000'); Start(O '367');

SIMULATION START TIME = 28335 MS
SIMULATION END TIME = 28454 MS

TRACE TIME=1532•00 IC= 845 ACCUM=030000 EXT=000000 INDX=000000
EFFECT ADDR=000043 EFFECT ADDR VAL=001524

MNEMONIC=BRC

CHECKPT TIME=1532•00 IC= 845 ACCUM=030000 EXT=000000 INDX=000000
STATUS REG=000000 STORAGE REG=007000 INTERRUPT OVERRIDE=000000

MNEMONIC=BRC

TRACE TIME=1528.00 IC= 844 ACCUM=030000 EXT=000000 INDX=000000
EFFECT ADDR=00 0046 EFFECT ADDR VAL=030 000

MNEMONIC=TAE

CHECKPT TIME=15 28.00 IC= 844 ACCUM=030000 EXT=000000 INDX=000000
STATUS REG=001000 STORAGE REG=007000 INTERRUPT OVERRIDE=00 0000

MNEMONIC=TAE

CHECKPT TIME=159.00 IC= 313 ACCUM=200000 EXT=000000 INDX=000000
STATUS REG=Q00000 STORAGE REG=007000 INTERRUPT OVERRIDE=000000

MNEMONIC=LDA

? Quit;

SIMULATION START TIME = 28692 MS
SIMULATION END TIME = 28693 MS

57

NOTES

1 B. Chatterton, Software Simulation of the Minuteman
D 17B Computer/ NTIS No. AD-742-965, (Government Report
Annul, Vol. 73, No. 14, 1973).

2 Anon., Microprocessor Support Software, Intel 4004,
4040, 8008, 8080 Simulators, Publication No. 76077900,
(Minneapolis, Minnesota: Control Data Corporation, 1976).

3 Anon., Program Design Language Reference Guide
(Processor Version 3), 4th edition, (Pasadena, California:
Caine, Farber and Gordon, Inc., 1977).

4 Stephen H. Caine and E. Kent Gordon, "PDL - A tool
for software design," (National Computer Conference, 1975),
p. 271.

5 Alfred V. Aho and Jeffrey D. Ullman, Principles of
Compiler Design, (Reading, Massachussets: Addison-Wesley
Publishing Co., 1977), p. 82.

6 Ibid., p. 180.

58

BIBLIOGRAPHY

Aho, Alfred V. and Jeffrey D. Ullman. Principles of
Compiler Design* Reading, Massachussets: Addison-Wesley
Publishing Co., 1977.

Anon. Microprocessor Support Software, Intel 4004, 4040,
8008, 8080 Simulators. Publication No. 76077900.
Minneapolis, Minnesota: Control Data Corporation, 1976.

Anon. Program Design Language Reference Guide (Processor
Version 3). 4th edition. Pasadena, California: Caine,
Farber and Gordon, Inc., 1977.

Anon. RCA 1800 Microprocessors, User Manual for the CDP
180 2 COSMAC Processor. Sommerville, New Jersey:
RCA Solid State, 1977.

Caine,Stephen H. and E. Kent Gordon. "PDL - A tool for
software design," National Computer Conference, 1975.

Chatterton, B. Software Simulation of the Minuteman D17B
Computer. NTIS No. AD-742-965, Government Report Annul,
Vol. 73, No. 14, 1973.

Jensen, Kathleen and Niklaus Wirth. Pascal User Manual and
Report. New York: Springer Verlag, 1974.

59

VITA

Sharon Otero Beskenis

Born in Cheverly, Maryland, May 16, 1952. Graduated

from Kecoughtan High School in Hampton, Virginia, June 1970.

Attended Mary Washington College of the University of

Virginia, 1970 - 1971 with a concentration in Pre-Foreign

Service studies. Received a B.S. in Management Information

Science, Christopher Newport College, 1973. Employed by

Kentron International, Inc. as a senior software analyst.

M.S. candidate, College of William and Mary, 1976 - 1980,

with a concentration in Applied Science.

	A study of portability and retargetability of an ICS
	Recommended Citation

	tmp.1539793463.pdf.1olT1

