1989

Anion and Urea Sensitivity of Three Elasmobranch Hemoglobins

David Allen Scholnick

College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

Part of the Biochemistry Commons

Recommended Citation

https://dx.doi.org/doi:10.21220/s2-mt3q-xm35

This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.
ANION AND UREA SENSITIVITY OF THREE
ELASMOBRANCH HEMOGLOBINS

A Thesis
Presented to
The Faculty of the Department of Biology
The College of William and Mary in Virginia

In Partial Fulfillment
Of the Requirements for the Degree of
Masters of Arts

by
David Allen Scholnick
1989
APPROVAL SHEET

This thesis is submitted in partial fulfillment of the requirements for the degree of

Masters of Arts

[Signature]

Author

Approved, May 1989

[Signature]

Charlotte Mangum

[Signature]

Robert Black

[Signature]

Jack Musick
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vi</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>vii</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>2</td>
</tr>
<tr>
<td>METHODS AND MATERIALS</td>
<td>7</td>
</tr>
<tr>
<td>RESULTS</td>
<td>11</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>16</td>
</tr>
<tr>
<td>APPENDIX</td>
<td>23</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>24</td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENTS

The author wishes to express his appreciation to Professor Charlotte Mangum, for her encouragement, advice, and patience during this investigation. The author would also like to thank Professors Robert Black and Jack Musick for their careful reading and criticism of the manuscript.
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Disc widths, location and salinity, of rays collected</td>
<td>28</td>
</tr>
<tr>
<td>2.</td>
<td>The concentrations of urea, TMAO, free ions and the osmotic pressure in the blood</td>
<td>29</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>1.</td>
<td>The effect of urea, Cl(^{-}) and ATP on R. Bonasus RBCs</td>
<td>30</td>
</tr>
<tr>
<td>2.</td>
<td>Fetal and adult RBC oxygen affinity</td>
<td>32</td>
</tr>
<tr>
<td>3.</td>
<td>The effect of urea on R. bonasus Hb</td>
<td>34</td>
</tr>
<tr>
<td>4.</td>
<td>The effect of NaCl on R. bonasus Hb</td>
<td>36</td>
</tr>
<tr>
<td>5.</td>
<td>The effect of ATP on R. bonasus Hb</td>
<td>38</td>
</tr>
<tr>
<td>6.</td>
<td>The effect of TMAO on R. bonasus Hb</td>
<td>40</td>
</tr>
<tr>
<td>7.</td>
<td>The effect of substituting calcium acetate for NaCl on R. bonasus Hb</td>
<td>42</td>
</tr>
<tr>
<td>8.</td>
<td>The effect of urea on S. acnathias RBCs</td>
<td>44</td>
</tr>
<tr>
<td>9.</td>
<td>The effect of urea on S. acnathias Hb at 20(^{\circ})C</td>
<td>46</td>
</tr>
<tr>
<td>10.</td>
<td>The effect of urea and NaCl on S acnathias Hb at 35(^{\circ})C</td>
<td>48</td>
</tr>
<tr>
<td>11.</td>
<td>The effect of urea on S. acnathias Hb at pH of 7.6</td>
<td>50</td>
</tr>
<tr>
<td>12.</td>
<td>The effect of ATP, NaCl and Urea on G. altavela Hb</td>
<td>52</td>
</tr>
</tbody>
</table>
The sensitivity of elasmobranch hemoglobins to effectors that vary with salinity were determined on the euryhaline cownose ray Rhinoptera bonasus and the stenohaline butterfly ray Gymnura altavela. High concentrations of urea, TMAO, NaCl, and ATP have no significant effect on oxygen binding (P_{50}) or cooperativity (n_{50}) of RBCs or stripped hemoglobins from R. bonasus. RBCs from late gestation fetal R. bonasus have a slightly higher oxygen affinity and a greater pH dependence than those of the adult. Measurements of plasma concentrations of urea, TMAO and inorganic ions from high and low salinity adults show that these animals are either extremely impermeable to ions or that they are osmoregulating at low salinity. Neither urea, NaCl nor ATP have a significant effect on oxygen binding of stripped Hbs from G. altavela. Further studies on Hbs from the spiny dogfish Squalus acanthias show that urea and NaCl have little or no effect on Hb oxygen binding, which conflicts with some earlier studies.
ANION, UREA AND ATP SENSITIVITY OF THREE ELASMOBRANCH HEMOGLOBINS
INTRODUCTION

Like many other proteins, the hemoglobins (Hbs) of higher vertebrates denature in the presence of urea (Tanford, 1968). In contrast most elasmobranchs studied have Hbs that are insensitive to urea. The insensitivity of elasmobranch Hbs to urea was first reported in 1963 by Manwell on the spiny dogfish *Squalus acanthias* (= *suckleyi*). In 1974 Bonaventura, Bonaventura and Sullivan demonstrated urea insensitivity using three representative elasmobranchs, a shark, a skate and a ray. Since that time two additional studies (Mumm et al., 1978; Martin et al., 1979), one of which included a freshwater Amazon ray, also found elasmobranch Hbs to be insensitive to urea, at concentrations up to 4 M. From these studies it was proposed that elasmobranch Hbs have evolved an increased structural stability to high concentrations of urea, which is normally a protein denaturant (Tanford, 1968).

In 1983, Weber et al. reported that Hb from the spiny dogfish *Squalus acanthias* is sensitive to urea. In the original work the Hb may have been influenced by cyanates that form in aged urea solutions (Marier et al., 1964; Stark et al., 1960). However, Weber's (1983) second study in which deionized solutions of urea were used, reported sensitivity to concentrations of urea as low as 0.45 mM. Thus, it
appears that most of the few elasmobranch Hbs studied are insensitive to urea, compared to the urea sensitive Hbs of higher vertebrates, with the one exception being S. acanthias.

The sensitivity of elasmobranch Hbs to chloride seems to be much more variable. Of the four species for which data have been reported, high concentrations of NaCl dramatically increased Hb oxygen affinities in the electric ray Torpedo nobiliana (Bonaventura et al., 1974) and in the clearnose skate Raja eglanteria (Bonaventura et al., 1974b), while in the common stringray Dasyatis sabina (Mumm et al., 1978) and a freshwater stingray Potamotrygon (Martin et al., 1979) high concentrations of NaCl have virtually no effect on Hb oxygen binding. Moreover, unpublished data for the smooth dogfish Mustelis canis show that NaCl can lower oxygen affinity of an elasmobranch Hb (C. P. Mangum, J. Bonaventura, pers. comm.). Evolutionarily, this is of interest because Cl− consistently lowers Hb oxygen affinity in most vertebrates, including at least one marine teleost (Bonaventura et al., 1976). In addition, Mangum (1989) recently found that stripped coelacanth Hbs are insensitive to both urea and Cl−. It appears that primitive Hbs (i.e. uncooperative or poorly cooperative monomers or oligomers) are generally insensitive to Cl−, but exceptions can occur in the elasmobranchs. From
an evolutionary point of view, environmental changes in chloride may be important in determining Hb sensitivity, but a highly euryhaline and an obligate stenohaline species have yet to be compared.

In elasmobranchs and coelacanths adapted to high salinities, high concentrations of urea and methylamines, particularly trimethylamine oxide (TMAO), are used to raise internal osmotic pressure to conform to that of seawater. These compounds, which are readily reabsorbed by the kidney (Goldstein et al., 1968), account for about half the osmotic pressure in elasmobranch blood, which is usually maintained in stenohaline species at about 900-1100 milliosmolal (Holmes and Donaldson, 1969). In the moderately euryhaline skate Raja eglanteria, urea and Cl− change with salinity by about the same factor (Price and Creaser, 1967). The presence of TMAO is of physiological importance because methylamines can neutralize the denaturing effects of urea on elasmobranch enzymes and have a maximum effect when present in a 1:2 ratio with urea (Yancey and Somero, 1979, 1980). It thus seems possible that the TMAO may protect otherwise urea sensitive Hbs, much like other elasmobranch proteins (Yancey and Somero, 1980). Thus far, the only study (Weber, 1983b) has shown that TMAO does not affect Hb oxygen affinity of S.
acanthias, in either the absence or presence of urea and an organic phosphate (ATP).

Organic phosphates are well known modulators of Hb function in most higher vertebrates (Benesch and Benesch, 1974). Organic phosphates lower Hb oxygen affinity in higher vertebrates by preferentially binding to a common anion binding site in the deoxy-conformation. Interestingly, organic phosphate sensitivity also appears to be variable among the elasmobranchs, while showing the expected effects in other marine teleosts (Bonaventura et al., 1975) and the coelacanths (Wood et al., 1972). Thus, the elasmobranchs seem to be a transitional group between the more primitive insensitive Hbs of the lower vertebrates and invertebrates (Mangum, 1985), and the sensitive Hbs of the higher vertebrates.

The responses of elasmobranch Hbs to effectors that vary with salinity appear to differ among the few species studied. In this paper we report the sensitivity of Hbs from the cownose ray Rhinoptera bonasus, a rare example of a highly euryhaline elasmobranch, to urea, Cl-, TMAO and ATP. As a control species, we chose the stenohaline butterfly ray Gymnura altavela. Due to its apparently exceptional status, further studies were also conducted on the Hb of the spiny dogfish Squalus acanthias using concentrations of NaCl well
above physiological levels and freshly prepared solutions of urea.

The opportunity also arose to further study elasmobranch fetal and adult Hbs at late stages of development. It is well established that blood from many fetal vertebrates have higher oxygen affinities than adult. While distinct fetal Hbs have been found in several elasmobranchs, McCutcheon (1947) found no difference in adult and late gestation fetal oxygen affinities in three species of rays. In addition, Manwell (1958) found only slight differences in oxygen affinities between the early embryo and adult and no difference between the late fetus and adult in the clearnose skate. Thus, the general relationship between the ontogenetic Hbs in elasmobranchs is unclear.
MATERIALS AND METHODS

Eleven specimens of the euryhaline cownose ray *Rhinoptera bonasus* (Michill), together with water samples from the site of collection, were collected during the summer months of 1988. Specimens were obtained from pound nets operated by commercial fishermen at Gloucester Point, Virginia and in the upper Chesapeake near the mouth of the Potomac. One high salinity *R. bonasus* blood sample was provided by Dr. B. Kirby-Smith from Duke University Marine Laboratory, North Carolina. Five specimens of the stenohaline butterfly ray, *Gymnura altavela* (Linnaeus) were collected by trawl off the coast of Virginia Beach in mid. June and Drs. M. Freadman and C. P. Mangum kindly provided the *Squalus acanthias* (Linnaeus) blood samples from Woods Hole Marine Laboratory, Massachusetts.

Within a few hrs of removing the fish from water blood was collected by cardiac or caudal puncture into cold syringes coated with less than 0.5 ml heparinized isotonic saline. Large samples (>4 ml) were taken to minimize the effects of the saline. RBCs were diluted and stored on ice in isotonic saline with 5mM ATP and 5mM lactate to maintain integrity. Samples were kept on ice and immediately
transported to the laboratory. Phosphate sensitivity and RBC oxygen equilibrium experiments were carried out within 2-24 hrs of sampling in all cases.

Red cells were separated from plasma by centrifuge, washed 4 or 5 times in isotonic saline and suspended in the experimental medium for oxygen binding measurements. Remaining erythrocytes were lysed with cold distilled water, centrifuged and the supernatant dialyzed overnight against 0.05 M Tris Maleate buffer for NaCl sensitivity experiments, buffered saline without urea for urea sensitivity experiments or buffered saline with urea for all other experiments, and then frozen for oxygen binding experiments.

Oxygen binding

Oxygen equilibrium curves were determined by the non-optical cell respiration method (Mangum and Lykkeboe, 1979) and also by the tonometric method (Burnett, 1979), using micro-tonometers with 1 mm light path cuvettes. All experiments were carried out at 20°C, except for S. acanthias where oxygen binding curves were also determined at 35°C because of unusually high oxygen affinities. Samples used in optical measurements were checked spectrophotometrically for presence of methemoglobin and reduced with sodium borohydride when necessary. The half saturation point (P50) and
cooperativity (n_{50}) were determined from Hill plots. Hb sensitivity to effectors was statistically analyzed using confidence intervals around regression lines describing log P_{s0} vs pH.

Elasmobranch saline (with urea) was modified from Rabinowits and Gunther (1973) and stock solutions of NaCl, TMAO, ATP and calcium acetate were buffered with 0.05 M Tris Maleate. Urea solutions were prepared fresh immediately before each experiment and kept on ice to prevent cyanate formation, as recommended by Strunk et al. (1960) and Marier et al. (1964).

Chemical analysis

Serum urea concentrations were determined as enzymatically produced ammonia (Sigma #640). Frozen plasma samples were diluted 1:10 and urea was determined at 570nm using Sigma urea standard (#535-150).

Serum TMAO concentrations were determined by Conway microcell diffusion (Forster et al., 1985). TMAO was reduced to trimethylamine using metallic zinc and allowed to diffuse into the inner chamber of the cell in the presence of KOH and formaldehyde. Boric acid with an indicator was used to combine with the amine in the inner chamber and
concentrations were determined by back titration using 0.005 N HCl (Appendix A).

Serum and environmental water sample Na⁺, Cl⁻, Ca++ and Mg++ ion activity were determined with ion selective electrodes (Radiometer, Orion and A. H. Thomas Cos.) using stirred, buffered samples and a double junction reference electrode, and IAPSO sea water for ion activity standards as described by Mangum et al. (1978).

Measurements of serum and environmental water osmotic pressures were made using Precision Systems freezing point or Wescor vapor pressure osmometers.
RESULTS

Disc widths (distance between the tips of the pectoral fins in cm), salinity (‰) and location of collection are given in Table 1, for adult and two fetal rays, which were delivered upon capture.

Blood osmotic variables

Chemical analysis data for *R. bonasus* and *G. altavella* plasma and sea water samples are given in Table 2. *Rhinopera bonasus* plasma urea concentrations were 38% lower and Cl concentrations were 20% lower in animals collected from low salinity than those collected from high salinity. Plasma Na concentrations for high salinity *R. bonasus* (362 mmol/l) are higher than other elasmobranchs studied, which normally range from 230 to 290 mmol/l (Holmes and Donaldson, 1969). Our results for both urea and Cl are similar to those for the lemon shark *Negaprion brevirostris* (Goldstein et al., 1968) after acclimation to half sea water. Changes in serum Cl⁻, Na concentrations and osmotic concentration were surprisingly low considering that these rays are usually thought to be osmoconformers at high salinity. Plasma osmotic concentration only changed from 1108 to 813, a 27%
decrease, while sea water changed from 1034 to 368, a 64% decrease. Thus, these rays appear to be osmoregulating at low salinity. In addition, TMAO concentrations remained relatively low for both high and low salinity R. bonasus, compared to G. altavella (Table 2.).

Oxygen binding of Rhinoptera RBCs

The Bohr plots for R. bonasus RBC oxygen binding are illustrated in Fig. 1. Values for log P_{50} are about 1.0 at pH 7.5, which is similar to those reported by McCutcheon (1947) on Rhinoptera quadriloba (= bonasus) at 25°C. Concentrations well above the physiological range of urea, NaCl and ATP have no significant effect on oxygen binding ($P > .05$ based on overlapping confidence intervals around regression lines). The Bohr coefficient ($\log P_{50}/\text{pH}$) is -0.77 and cooperativity ranges from about 1.2 to 1.8 for all treatments.

The oxygen affinity and cooperativity of adult and fetal R. bonasus RBCs are shown in Fig. 2. Fetal RBCs have a slightly higher oxygen affinity and significantly greater pH dependence ($P > .05$) than adult RBCs. P_{50} values are significantly different above pH 7.2 ($P < .05$) and the largest differences occur at very high pH (e.g. change of 0.4 at pH
of 8.1). Cooperativity appears to be the same (P=0.5 according to Student's t test).

Oxygen binding of Rhinoptera Hbs

The oxygen affinity of stripped R. bonassus hemolysates examined in the presence of urea, NaCl, TMAO and ATP (ratio of 1.0 ATP:0.8 heme and 5 ATP:0.8 heme) are presented in Figs. 3-6. No effector has any significant effect on oxygen binding (P>.05) and cooperativity varies little more than 0.4, except for treatments with NaCl where n50 varies little more than 1. The effects of substituting calcium acetate for NaCl were also measured, to eliminate any possible effect of NaCl while still maintaining ionic strength (Fig. 7); stripped Hbs are insensitive.

Oxygen binding of Gymnura Hbs

The oxygen affinity of stripped Gymnura altavela hemolysates was examined at 20°C and pH of 7.6 (+ 0.2) as a function of urea and NaCl concentrations (Fig. 11). Neither urea or NaCl has a significant effect on oxygen binding (slope does not differ from zero at P=.05) up to 5 M and log P50 varies little more than 0.18 over the entire range.

Oxygen binding of Squalus Rbc's and Hbs
The response of *Squalus acanthias* RBCs to urea at 35°C are shown in Fig 8. Urea concentrations up to 2.5 M had no significant effect on oxygen binding (P>.05). There was considerably more variability (the correlation coefficient r for a regression line describing the Bohr plot for the 2.5 M urea data in Fig. 8 is not significant at P=.05) than found for the other Hbs studied. Bohr plots for stripped *Squalus* Hbs in the presence of urea at 20°C are shown in Fig. 9. We chose to repeat these experiments at a higher temperature because the unusually high oxygen affinities made the resolution of possible differences very difficult. Bohr plots for stripped *Squalus* Hbs in the presence of high concentrations of urea and NaCl are shown in Fig. 10, considerable scatter was also observed. High concentrations of urea significantly increase Hb oxygen affinity above pH 7.7 (.01<P<.05), while 2 M NaCl significantly decreases oxygen binding below pH 7.5 (.01<P<.05). The relationship between urea concentration and oxygen affinity of dialyzed *S. acanthias* Hb at pH 7.6 is shown in Fig 11. There is a slight decrease in oxygen affinity but log P_{50} varies little more than 0.15 over the entire range. However, the effect of urea is very small. Moreover, our data do not agree numerically with those of Weber *et al.* (1983), who showed much lower
oxygen affinities ($\log P_{so}=0.6$ at 15 $^\circ$C, pH=7.5) and a much larger urea sensitivity ($\log P_{so}=0.3$).
DISCUSSION

The Hbs of *R. bonasus*, *G. altavela* and *S. acanthias* are either insensitive or virtually insensitive to urea. These results are similar to those for Hbs of most other elasmobranchs previously examined (Bonaventura et al., 1974; Mumm et al., 1978; Martin et al., 1979). It seems probable that this insensitivity protects these Hbs from the denaturing effects of urea. In the presence of urea most higher vertebrate Hbs, including human, dissociate into dimers, associated with a large increase in oxygen affinity (Toulmond, 1985). Knowing that urea tends to dissociate hydrogen bonds, Mumm et al. (1978) suggested that elasmobranch Hbs may have different amino acid residues at crucial points of contact between subunit chains than are found in higher vertebrates. At least on the alpha chains (Aschauer et al., 1985) these residues appear to be histidine. They are important in preventing the dissociation of the chains and probably maintain the integrity of the molecule in the presence of urea.

The urea insensitivity of all but one elasmobranch Hb studied lends support to the notion that urea sensitivity is an important physiological adaptation to the presence of high
levels of urea in vivo. These results do not eliminate the possibility that urea insensitivity is a primitive, conservative feature that was inherited by the elasmobranchs. If these molecules do represent a primitive insensitive state, one would expect to find many similarities between elasmobranch Hbs and tissue heme proteins, which are widely believed to represent the primitive condition. Bonaventura et al. (1974) suggested that myoglobins which, like elasmobranch Hbs, are also unresponsive to all effectors may be a precursor-like molecule to the elasmobranch Hbs; this hypothesis, however, assumes that Hbs arose de novo in the vertebrates, which is by no means clear (Mangum et al., 1986). Moreover, the response of primitive Hbs to urea is completely unknown.

The insensitivity of R. bonasus and G. altavela Hbs to organic phosphate appears to be consistent with some other studies, but this insensitivity is not uniform in the elasmobranchs. While the primary effectors differ in each group of vertebrates, all preferentially bind to the deoxyconformer lowering oxygen affinity, and enhancing the Bohr effect (Coates and Riggs, 1980). In addition, the difference between phosphate sensitivity and insensitivity entails only one or two amino acid substitutions (Coates and Riggs, 1980; Perutz et al., 1980). Since these responses are
not found in invertebrates and agnathans, are variable within the elasmobranchs, and are found in all classes of higher vertebrates studied, phosphate sensitivity would appear to be closely related to Hb evolution. Thus, elasmobranchs would be considered a transitional Hb group and may represent a very primitive phosphate response.

While *R. bonasus* was collected from a broad range of salinities in this study, from 12.5‰ to 34‰, they have been reported in areas as low as 7‰ (Smith and Marriner, 1986). Moreover, these animals migrate into low salinities in enormous numbers. These large changes in salinity, which significantly alter the concentration of effectors in elasmobranch blood plasma (Table 2), do not influence the respiratory function of the oxygen transport system. The insensitivity of *R. bonasus* Hbs to Cl⁻ is surprising considering the Cl⁻ sensitive Hbs from the moderately euryhaline clearnose skate (Bonaventura et al., 1974). However, the present results do indicate insensitivity of *R. bonasus* Hb to organic phosphate, which is believed to bind to the same site as Cl⁻. The variability of elasmobranch Hbs to Cl⁻ and phosphate is of evolutionary interest considering the vast majority of tetrameric vertebrate Hbs studied have shown large responses to these effectors. Recently Mangum et al. (1988) reported the insensitivity of RBC's from the blood
worm Glycera to Cl−, but at this time the responses of other primitive Hbs to Cl− is not known.

The insensitivity of \textit{R. bonasus} Hb to TMAO is consistent with Weber's (1983) results on \textit{S. acanthias} Hb. Considering the insensitivity of \textit{R. bonasus} Hb to urea and ATP, these results are not surprising. It appears that TMAO does not protect \textit{R. bonasus} Hb from urea. If methylamines are neutralizing the denaturing effects of urea on elasmobranch proteins, this mechanism is not uniform. Interestingly, plasma TMAO concentrations were found to be relatively low in \textit{R. bonasus} compared to \textit{G. altavela} (Table 2) and \textit{S. acanthias} (Goldstein et al., 1967). Also, Goldstein et al. (1968), showed a 60\% decrease in plasma TMAO concentration in the lemon shark \textit{Negaprion brevirostris} after acclimation to dilute sea water, which we did not find. While these results differ, a euryhaline ray had never been examined. It seems possible that in \textit{R. bonasus} urea may vary with salinity (Table 2) and TMAO may be maintained at relatively constant low levels.

There are at least two possible explanations for the osmotic profile in \textit{R. bonasus} collected from low salinity:

1) It is possible that this ray is osmoregulating at lower salinities. While urea concentrations greatly decreased in the low salinity animals, sodium and chloride changes were
much smaller and TMAO did not contribute to this osmoregulatory process. Also, Price et al. (1967) found low Cl\(^{-}\) levels in clearnose skate blood plasma, before dilutions with sea water, which supports the possibility that R. bonasus might not be a strict osmoconformer. 2) It is also possible that these large and fast-swimming animals undergo such rapid diurnal feeding migrations (which usually occur in groups or schools) that they do not have enough time to acclimate osmotically. Price and Creaser (1967) showed that the clearnose skate Raja eglanteria requires at least 48 hrs to acclimate to a salinity change of only 2.4 %o (at about 24°C). If both integument and gill epithelia are extremely impermeable, R. bonasus may not reach osmotic equilibrium during the time they invade very low salinities.

The higher oxygen affinity of R. bonasus fetal Hb observed in this study agrees with similar findings in other vertebrates but has not been well established in the elasmobranchs (McCutcheon, 1947; Manwell, 1963; Penelly et al., 1975). While it is known that very extensive uterine villi (trophonemata) invade the spiracles and gill slits of embryos from some rays, it is not known how important these structures are late in the development of the fetus (J. Musick, pers. comm.). Studies on the skate Raja binoculata (Manwell, 1958) separated early embryonic Hb from
adult but showed no difference in oxygen binding properties between the late embryo or fetus and the adult.

Electrophoresis and fingerprinting of adult and fetal Hb of the spiny dogfish, showed distinct Hb proteins and oxygen affinities for adult and fetus (Manwell, 1963). In addition, Ingermann and Terwilliger's (1984) data on fetal and adult seaperch, which have a pseudoplacental connection, suggest that there are structural and functional differences between Hbs from early and late stages of development. It would be interesting to examine the difference between embryonic and fetal Hbs in the rays, to determine whether the villi are of importance and if there is an in-utero shift from fetal to adult hemoglobin.

Our results indicate that *S. acanthias* Hbs do not show considerable sensitivity to urea or NaCl. These findings do not agree with previous studies by Weber et al. (1983) and Weber (1983). The discrepancy may prove to be related to the fact that *S. acanthias* Hb has been shown to be highly polymorphic when it is in the oxyconformation (Fyhn and Sullivan, 1965). In addition, our results show considerable scatter in oxygen affinity compared to the other elasmobranch Hbs studied, which could conceivably involve variability of the molecule. Considering the numerous Hb phenotypes observed by Fyhn and Sullivan (1965), it seems at least
possible that the Eastern Atlantic Coast species Hb may be phenotypically different than those collected from the North Sea. At this time _S. acanthias_ Hb should be regarded as at least various.

The overall insensitivity of the elasmobranch Hbs studied seems to indicate a molecular stability in the presence of urea not found in the higher vertebrates. Environmental changes in chloride do not appear to be an important factor in determining Hb sensitivity in the euryhaline species studied but the variability in Cl− and phosphate sensitivity found in the elasmobranchs may indicate a primitive response to these effectors compared to the highly sensitive Hbs of most higher vertebrate. It will be interesting to learn the responses of a large number of primitive Hbs, especially teleosts and the yet studied monomeric Hbs of the lamprey, considering these molecules may represent primitive states before the separation and differentiation of higher vertebrate Hbs.
APPENDIX A

Procedure for determination of TMAO using Conway microcell diffusion.

Materials:

Metallic Zinc - zinc mesh
Boric acid solution with indicator -
 Use a mixed indicator of 25 ml 0.033% bromocresol green and 100 ml of 0.066% methyl red in alcohol.
 Add 10 grams boric acid to 200 ml alcohol, add 700 ml distilled water and about 40 ml indicator solution.
 Adjust pH until solution is yellowish green, with 1N NaOH and bring up to 1 liter with distilled water.
40% KOH
Formaldehyde solution - about 37% W/W

If plastic Bel-Art Microdiffusion chambers are used, replace lids with glass plates and seal using excess vacuum grease and use the following volumes.

In this order add:
 Outer Chamber
 excess zinc (>0.5 grams)
 0.5-1 ml plasma
 1ml formaldehyde
 Inner Chamber
 0.5 ml Boric acid solution with indicator

Let stand for 5 min., and then add 1ml of 40% KOH to outer chamber, cover immediately and let stand 6-10 hrs.
Back titrate using 0.005N HCl into boric acid solution which should go from green to bright red. Titration volumes are usually no larger than 1-2 ml so titration must be carried out with microliter pipetts. Standard curve is sigmoidal possibly due to second order chemical reactions.

Table 1. The number of species collected (N), disc widths (cm), salinity (parts per thousand) and the location of collection.

<table>
<thead>
<tr>
<th>Species</th>
<th>N</th>
<th>Disc Width</th>
<th>Salinity</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. bonasus (adults)</td>
<td>6</td>
<td>89-100</td>
<td>19</td>
<td>Gloucester Pt., VA</td>
</tr>
<tr>
<td>R. bonasus (fetuses)</td>
<td>2</td>
<td>13</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>R. bonasus</td>
<td>4</td>
<td>50-97</td>
<td>12.5</td>
<td>Potomac River, VA</td>
</tr>
<tr>
<td>R. bonasus</td>
<td>1</td>
<td>--</td>
<td>34.5</td>
<td>Beaufort, NC</td>
</tr>
<tr>
<td>G. altavela</td>
<td>5</td>
<td>40-185</td>
<td>30</td>
<td>Virgina Beach, VA</td>
</tr>
<tr>
<td>S. acanthias</td>
<td>1</td>
<td>--</td>
<td>31-32</td>
<td>Woods Hole, MA</td>
</tr>
</tbody>
</table>

28
Table 2. The concentrations of urea (mmol/l), TMAO (umol/l), free ions (millimolar), and the osmotic concentration.

<table>
<thead>
<tr>
<th></th>
<th>Urea</th>
<th>TMAO</th>
<th>Na⁺</th>
<th>Ca²⁺</th>
<th>Mg²⁺</th>
<th>Cl⁻</th>
<th>MOSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOW SALINITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R. bonasus</td>
<td>256</td>
<td>15.9</td>
<td>221</td>
<td>3.24</td>
<td>6.9</td>
<td>317</td>
<td>813</td>
</tr>
<tr>
<td></td>
<td>±6.0</td>
<td></td>
<td>+14</td>
<td>±0.3</td>
<td>+1.3</td>
<td>+15</td>
<td>+4.3</td>
</tr>
<tr>
<td>Sea water</td>
<td>166</td>
<td>3.65</td>
<td>12.3</td>
<td>228</td>
<td>368</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>±7.4</td>
<td>±0.1</td>
<td></td>
<td>±0.5</td>
<td></td>
<td>±13</td>
<td>+1.0</td>
</tr>
<tr>
<td>HIGH SALINITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R. bonasus</td>
<td>411</td>
<td>13.8</td>
<td>362</td>
<td>4.47</td>
<td>9.14</td>
<td>395</td>
<td>1108</td>
</tr>
<tr>
<td></td>
<td>±9.2</td>
<td></td>
<td>+12</td>
<td>±0.1</td>
<td>+1.8</td>
<td>+24</td>
<td>+1.0</td>
</tr>
<tr>
<td>Sea water</td>
<td>400</td>
<td>8.67</td>
<td>12.5</td>
<td>531</td>
<td>1034</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>±23</td>
<td>±0.6</td>
<td>±2.3</td>
<td></td>
<td>±16</td>
<td></td>
<td>+2.1</td>
</tr>
<tr>
<td>G. altavela</td>
<td>252</td>
<td>64.1</td>
<td>137</td>
<td>1.65</td>
<td>3.78</td>
<td>211</td>
<td>792</td>
</tr>
<tr>
<td></td>
<td>±13.8</td>
<td></td>
<td>±5.7</td>
<td>±0.2</td>
<td>+0.2</td>
<td>+14</td>
<td>+13</td>
</tr>
<tr>
<td>Sea water</td>
<td>340</td>
<td>7.24</td>
<td>10.3</td>
<td>475</td>
<td>920</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>±10</td>
<td>±0.5</td>
<td>±0.9</td>
<td></td>
<td>±9.3</td>
<td>+1.5</td>
<td></td>
</tr>
</tbody>
</table>

Values given are means ± standard deviation for replicate measurements on pooled samples, where N≥3 in all cases except for TMAO determination where N=1.
Figure 1. The effect of urea, Cl⁻ and ATP on whole cell oxygen affinity (Log P₅₀) and cooperativity (n₅₀) as a function of pH in the cownose ray Rhinoptera bonasus at 20°C. Log P₅₀ and n₅₀ were determined at 1M urea (+), 0.5M NaCl (x), normal saline (■), and 1mm (△) and 5mm (○) ATP.
Figure 1

A graph showing the relationship between pH and the values of n_{50} and LOG P$_{50}$. The pH values range from 6.7 to 8.3, and the values of n_{50} and LOG P$_{50}$ are plotted on the y-axis.
Figure 2. The difference between adult (■) and fetal (□) Rhinoptera bonasus whole cell oxygen affinity on Log P_{50} and n_{50} as a function of pH at 20°C.
Figure 3. The effect of urea on oxygen affinity (P_{50}) and cooperativity (n_{50}) of stripped *Rhinoptera bonasus* Hbs as a function of pH at 20°C. Log P and n were determined at 0.3M urea (■) and 1M urea (□).
Figure 3
Figure 4. The effect of NaCl on oxygen affinity (P_{50}) and cooperativity (n_{50}) of stripped Rhinoptera bonasus Hbs as a function of pH at 20°C, using the optical analysis method. Log P_{50} and n_{50} were determined at 0.2M (■), 2.5M (+) and 5M NaCl (×).
Figure 5. The effect of ATP on oxygen affinity \(P_{50}\) and cooperativity \(n_{50}\) of stripped *Rhinoptera bonasus* Hbs as a function of pH at 20°C. Log \(P_{50}\) and \(n_{50}\) were determined at 0 (■), 1mM (✘), and 5mM ATP (+).
Figure 5
Figure 6. The effect of TMAO on oxygen affinity (P_{50}) and cooperativity (n_{50}) on stripped Rhinoptera bonasus Hbs as a function of pH at 20°C. Log P_{50} and n_{50} were determined at 0 (■) and 2M TMAO (×)
Figure 6

Graph showing the relationship between n_{50} and $\log P_{50}$ against pH. The graph indicates a horizontal trend in the data points across the pH range of 7.0 to 8.0.
Figure 7. The effect of substituting calcium acetate for NaCl on oxygen affinity (P_{50}) and cooperativity (n_{50}) on stripped Rhinoptera bonasus Hbs as a function of pH at 20°C. Log P_{50} and n_{50} were determined at normal saline (■) and and 300 mM calcium acetate (x).
Figure 7
Figure 8. The effect of urea on whole cell oxygen affinity ($\text{Log } P_{50}$) and cooperativity (n_{50}) as a function of pH in the shark Squalus acantbias. $\text{Log } P_{50}$ and n_{50} were determined at 0.3M (■), 1M (x) and 2.5M urea at 35°C.
Figure 9. The effect of urea on oxygen affinity (P_{50}) and cooperativity (n_{50}) on stripped *Squalus acantbias* Hbs as a function of pH at 20°C. Log P_{50} and n_{50} were determined at normal saline (■) and 2.5M urea (□).
Figure 10. The effect of urea and NaCl on oxygen affinity (P_{50}) and cooperativity (n_{50}) on stripped *Squalus acanthias* Hbs as a function of pH at 35°C. Log P_{50} and n_{50} were determined at normal saline (■), 2M urea (+) and 2M NaCl (×).
Figure 10

[Graph showing the relationship between pH and the logarithm of the number of individuals at two different species, one represented by 'X' and the other by '■', with different lines for each species, indicating a decrease in the logarithmic scale as pH increases.]
Figure 11. The effect of urea on *Squalus acanthias* stripped Hb at 35°C and pH of 7.6.
Figure 11

![Graph showing the relationship between LOG P₅₀ and Urea (M).]
Figure 12. The effect of ATP, NaCl and urea on oxygen affinity \((P_{50})\) of stripped *Gymnura altavela* Hbs at 20°C. Concentration is given in mM for ATP and M for NaCl and Urea.
Figure 12

Concentration vs. LOG P₅₀ for ATP, NaCl, and UREA.
VITA

David Allen Scholnick

Currently a candidate for the degree of Master of Arts in Biology.