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ABSTRACT

The purpose of this thesis 1s to study the parallel
roles of normal subgroups in group theory and those of
ideals in ring theory.

Chapter I interrelates various definitions of normal
subgroups as well as illustrates the manner in which normal
subgroups decompose their recspective groups. Certailn types
of normal subgroups, such as the center, commutator, and
anticenter, are investigated 1n detail,

Chapter II describes several important ideals of a
ring, such as principal ideals, maximal and minimal ideals,
prime ideals, and the radical. Special emphasis is given
to the development of properties of the radical of a ring
which are analogous to those of the anticenter of a group.

In the last chapter, the results of the preceding
chapters are utilized to compare analytically normal subgroups
and ideals. Analogous concepts are given with respect to set
theory, homomorphisms, isomorphisms, direct products, and
direct sums. '



ANALOGOUS CONCEPTS OF
\r
NORMAL SUBGROUPS AND IDEALS



INTRODUCTION

It has been mentioned in many books, including those
written by Kurosh (%], Birkhoff and MacLane [1], and
Van der Waerden (7], that ideals in a ring are analogous
to normal subgroups in a group. We wish to invegtigate
normal subgroups and ideals with the purpose of giving
a systematic comparison 'of the two concepts.

In order to give a comparison of normal subgroups
and ldeals, we must first investigate the manner in which
normal subgroups decompose a group. It is assumed that
the reader 1is familiar with certain group terminology and
definitions such as the définition of a subgroup, cosets
of a group, factor groups, and the order of a finlte group.
One may find these notions readily in most textbooks on
group theory or abstract algebra. In particular, the
reader is referred to Birkhoff and Maclane [1]. Several
definitions and characterizations of normality are given
in the first chapter. These characterizations are applied
to several important normal subgroups such as the center
and the commutator subgroup. A normal subgroup introduced
by Levine [5] ig considered in detail. We shall summarize
Mr. Levine's results as well ags utilize previous concepts

of normality to develop some further results.
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Chapter II is devoted to the study of ideals and the
effect they have on ring decomposition. Again, the reader's
familiarity with subrings, residue classes, factor rings,
and the elementary theory of congruences is assumed. These
concepts may be found in any book on ring theory such as
that by McCoy [6]. In characterizing ideals, we describe
principal ideals, maximal and minimal ideals, and prime
ideals as well as give several theorems connecting these
ideals. ©Special attention is given to the radical of an
ideal, whose properties ére analogous to those of an anti-
center of a group., E

The last chapter ser&es to show the parallelism between
normal subgroups and ideals by means of set theory, homo-
morphisms, isomorphi&ms, direct products, and direct sums.
With the tools we have devgloped in the preliminary chapters,
we may define concepts and prove theorems concerned with
the intersection, union, product, and sum of arbitrary sets
of normal subgroups and 1dgals. Although the Fundamental
Homomorphism Theorem for Gfoups may be found in the texts
of Birkhoff and MacLane [1], Van der Waerden [7], and
Zassenhaus [8], there are two other important homomorphism
theorems which are not so readily available in the literature.
We shall prove the three homomorphism theorems for groups
and glve analogoqs theorems for rings. lLastly, certain
relations involving direct products of normal subgroups

will be compared to direct sums of ideals.



CHAPTER I
A CHARACTERIZATION OF NORMALITY

In order to compare normal subgroups of a group and
ideals of a ring, it is necessary to investigate the manner
in which these subsete decompose their respective group or
ring. We begin this analysis with the characterization of
normal subgroups.

Definition: If G i? a group and H 1s a subgroup of G,

1isi,nH

then H is said to be pormal in G if and only if aha”
for all a in G and all h in H,

Theorem 1.1t For any subgroup H of G and any element
! |

a of G, the set aHa™ = {aha™! | h is in H} is a subgroup
|

S of G such that S & H.

Proof: Let aha™t and aka™T be elements of aHa L.
(aha™1) (aka™1) = aha™teaka™l = a(hk’l)a’l,

1 1

which is in aHa™", since hk™ ™ is in the subgroup H.

Hence 8 is a subgroup of G. Furthermore, the mapping

h - aha™t

can be readily shown to be well-defined, one-to~one,
onto, and product-preserving [7, page 26]. It follows that
S = H,

Definition: For H a subgroup of G and a in G, aHa“l

.is called a gonjugate gsubgroup of H, the isomorphic mapping

"



of Hy h = aha“l, is called conjugation by a, and the

alements h and aha“l are sald to bs gonjugate elemontg.
If we take H = G, the mapping g = aga"'l for all

g in G and some a in G defines‘an inner automorphism of

G. Thus, we may define normality as follows: |
Definition: The subgroup H of G is normal in G if

and only if H is invariant under all the inner automorphisms

of G.
\
Theorem 1.2: The set of inner automorphisms of G
1

form a normal subgroup of the group of all automorphisms of Ge

I
Froof: Let the set of inner automorphismg of G be

|

denoted by i \
\ f -
Ag = {fa | a € G and, for all g in G, fa(g) = aga 1}.

For any a and b in G and ?he corresponding f, and f, in Ag,‘
it follows that

£ap-1(8) = £,(671gb) = a(b™igp)a™ = (@ Hrgar™) ™,
|
which is in Ag. Hence Ag is a subgroup. Now consider the

automorphism & of G. Let fa be in Ag and g be in G.
[or,@™11(e) = [o£,1(@"1(g)) = @ [a0" (g)a™!] =

o(a)sged(a™l) = o(a)eged™l(a),
which is in Ag., Thus we see that Ag is normal in the group
of all automorphisms of G.

- As another definition of normality, we consider the



the decomposition of G with respect to right and left cosets
of H.

Definition: The subgroup H 6f G is pormal in G if and
only if aH = Ha for all a in G.

With the aid of these definitions, we may state the
following:

Theorem 1.3: The subgroup H of G is normal in G if
and only if H is equal to all its conjugates.

Proafs The proof 1s immediate from the above definitions.

For a normal subgroﬁp H, the group G/H, called the factor
group of G with respect @o H, denotes the set of all cosets of
H under the operation aH%bH = (ab)H for all a and b in G.

Let us now consider[a homomorphism f: G -+ G' where G

and G' are groupse.

Definition: The kernel of f, denoted by K., is the set
of all elements a in G such that £(a) = e' where e' is the
identity element of G'. :

The following Theoremil.h is often called the Fundamental
Homomorphism Theorem for Groups. Various proofs of this
theorem may be found in the works of Van der Waerden [7, page 38],
Zagsenhaus [8, page 29], and Birkhoff and MacLane [1, page 153].
It will essentially be the latter proof that we shall use.

Lemma 1: Kf is a normal subgroup.

Proof: Let a and b be elements of Koo It follows that

f(ab-l) = f(g)of(b'l) = e'-(e')hl = e',

Hence K.f ls a subgroup. Now let x e Kf and g € G.



£lgxg™) = £(g)-r(x)+£(g™L) = £(g)ee’er™L(g) = e,

and therefore gxg“l jg In Kf. This implies gng“l is in

Kf, or Kf is normal.

Lemma 2: f(a) = £(b) if and only if aKn = be for a

and b in G.

‘Proof: Let f(a) = £(b) and let x be in K.

flaxb™) = £(a)ef(x)ef(D™F) = £(adee's ™1 (b) = £(b)£71(b) = e'.
Thus axb™" is in Ko, which implies that aK.b™" C K.. It then
follows that aKy C K.b. |Since K. is a normal subgroup,

readily shown that bK

C befz be. By symmetry, it can be
|

s and, thus, the cosets aKf and be

f

CgaKf

b

are equal.

it

Now, suppose:aKf be. Since f is a homomorphic

il

function from G onto G', f(e) e'y, where e is the identity
element of G [8, page 36]. Therefore, e is in K, and ae = a

is in the coset aK. Since aK, = DK, , it follows that a is

in be. This implies there exists an element x in Kf such

that a = bx. We, therefore, have that
f(a) = £(bx) = f(D)ef(x) = £(b)ee' = £(b).

Hence f(a) = f(b), and the lemma is proved.

We are now able to establish the following:

Theorem 1l.%: If f is a homomorphism from a group G
onto a group G', then G/K, = G',

Proof: Let the mapping be given by ®: aK. - f(a) where
a is in G.



That ¢ is well~defined is evident, since aK, = be implies

iy
by Lemma 2 that f(a) = £(b) or ®(akp) = ®(bK.). Also, by

Lemma 2, it follows that if @(aKf) = @(be), or equivalently,

if f£(a) = £(b), then aK. = bK.. Hence the mapping is one-to-one.

Now suppose a' is in G'. Since f 1s a homomorphic function,
there is an element a in G such that f(a) = a's Thus, there

is a cosget aKe in G/Kf such that f(a) = a' = @(aKf). This

shows that & is onto. It suffices to show that the mapping @
\
is product-preserving. .Let aKf and be € G/Kf,

®(aKpebK,) = @[(gb)xf] = f(ab) = £(a)«f(b) = d(ak,) @ (LK),

and,thus, the mappipg is the isomorphism : G/Kf =G'.

We now turn our attention to specific normal subgroups
and the homomorphlsms de%ermined by them.

Definition: The seﬁ C of elements ¢ € G such that ca = ac
for all a € G is called the center of G.

We observe that the center of a group is the group
itself if and only if the[group is Abelian. Furthermore,

C is a normal subgroup of G, and the center of G/C consists
of the identity coset, i.e., the coset C, only.

Theorem 1.5: An inner automorphism fa of G is the
identity automorphism if and only if a bélongs to the center
of G.

Proof: Suppose f, is the identity automorphism. Let
g be in G, Then,

1

fa(g) = aga " = g implies ag = ga.



It follows that a is in C.

Now suppose a € C., For every g in G, ag = ga.

It follows that aga™ = g, and, thus, f, is the identity
automorphism,

Theorem l.6: G/C %’Ag.

Proof: Since G is a subgroup of itself, it follows

by Theorem 1.1 that the set aGa’l, where a ig an arbitrary
element of G is isomorphic to G. This set 1s precicely the

set, Ag, of inner automofphisms of G, and, therefore G E‘Ag.

By the previous theorem,?the kernel of the isomorphism is
the center C of G.. Appl&ing the Fundamental Theorem, we
) ' !

have G/C ;Agu ‘k‘

\
In particular, we state the following corollary:

i
Corollary: If the center of G consists only of the
i
identity element e, then the center of the group of auto-
morphisms of G consists only of the identity automorphism.

Definition: For any:group G, elements of the form

-1

aba"lb s Where a and b are in G, are called commutator

elements. Furthermore, the commutator subset 2 of G is the

set of all finite products of commutator elements of G.
Theorem 1.7: 2 is a normal subgroup of G,
Proof': Since the inverse of a commutator element is
again a commutator element, it follows that 2 is a subgroup
of G. It suffices to show that Z is normal in G. Let g ¢ G

and z € &, Since z is a finite product of commutator elements,
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we may denote z by

Zz = xi‘xé'x3°"xu’ where xl = alblal-lbl"l,
v "’l “l - -1 —l
Xy = a5Dyay by Ty eeey X, T aba b T,
It follows that gzg""l can be written as
gzg"l (alblal -1 1°l)o(a2b2a2'lb2“1)...(anbnan°lbn"l).g"l =
-1 ~1

ga; (g7 )b (g™ e)a; " g™ e v, e e)age e v " g™ e )0,

-1

We now replace galg"l bf al', gblg by bl',..., gbng"1 by bn'o

Hence,
gzg™t = a)'eby (el )"E (b ) ey by eea e 1) (b e (o, ) (D )

-1 C 2. Hence Z is a

It follows that gzgfl is in Z, or gig
normal subgroup of G.
Theorem 1.8: G/Z is Abelain.
Proof: Let aZ and bZ € G/Z. We have,
aZ.bZ = abZ = (baa™ b ab)z = vaz = bZeaZ,
since a~*b™lab € Z. It follows that G/Z is Abelian.

Theorem 1.9: A group G is Abelian if and only if all

commutator elements equal the group identity.
Proof: The proof is immediate since if G is Abelian,

for any elements x and y Iin G, xy = yx implies xyx ly -1 - €.

-1 -1

Conversely, if for any x and y in G, xyx "y. e, then

[}

xy = yx and G is Abelian.
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Theorem 1.10: If N is a normal subgroup of G, G/N

is Abelian if and only if 2 C N.

'ggggg: Suppose G/N is Abelian. Consider the homomorphic
mapping, £, of G onto G/N with kernel N. Let x and y € G
such that £(x) = u and £(y) = v. It follows that

fxyx~1y™1) = £(x)-£ () et L (x)e L (y).

By the preceding theorem, since f(x)-f(y)-f'l(x)-f_l(y) is

a commutator element of the Abelian group G/N, it is true
\

that f(xyx"lywl) = ¢!, Hence xyx”lynl
|

f, which is N. This implies Z C N,

i1s in the kernel of

Now, suppose Z C N, Let u and v be elements of G/N.
i
There exists elements x and y in G such that f(x) = u and

f(y) = v. Since xyxkly"l,e Z implies xyx‘ly'lez N,

fxyxty™h) = £ ()£ (y) = e,
and f(x)f(y) = f(y)of(x).z Hence G/N is Abelian.

As an illustration ofithe content of the last theorem
as well as the concepts of;normality, factor groups, and
inner automorphisms, let us consider the following example
[2, page 482]:

Example: Let G be a group,® a homomorphism of G onto G
such that ¢ commutes with every inner automorphism of G.
Define K as the set of all elements x of G, where ®(¢(x)) =
®(x). Show K is a normal subgroup of G and G/K is Abelian,

Proof: It is clear that for all y and z in G,
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[@fy](z) = [fy®](z) implies
[0,)(z) = olyzy™) = [£,2](2) = yo(2)y"t,

le€e, @(yzy°l) = y@(z)yul. The  following assertions are
made and justified,

Agsertion 1: K is a subgroup of G.
Proof: Let a and b € K,

®(@(ab 1)) = ¢ (@(a)o(d™1)) = 0 (@(a))-0@L(b)) =
®(a)@(@ L (p)) = @(a),[$f®(b))]”l = ®(a)ed L (b) =
@(a)-®(brl) = o(ab~1).

Hence ab"l'e K, and X 1s a subgroup of G,

Assertion 2: K is normal in G.

Proof: Let k e‘K andiy e G.
o (@(yky~ 1)) = o(yo(k)y™>) = yd(@(k))y~t =
y®(k)y'1 = @(yky"l)

implies yky™! is in K, and K is normal in G.

Agsertion 3: G/K is Abelian.
Proof: Let y and z be in G. It is sufficient to show

that yzy tz™t ¢ K, which implies by Theorem 1.10 that G/K is

Abelilan.

o @ (yzy tztY) = o(o(yzy™ )0z 1)) = o(yea(z)ey Lo t(z)) =
o (y) 00 (2)y o™ (2)] = o(y)o(z)o~L ()0~ (2) = o(yzy~tz71),

which implies yzy"’lz"1 € K.
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Having seen earlier the correspondence between
normality and invariance under Iinner automorphism, we
now turn our attention to subgroups invariant under all
automorphisms of the group.

Definition: A subgroup H of a group G is called a
characteristic subgroup of G if H is invariant under all
automorphisms of G,

It is clear that a characteristic subgroup is normal
in G. Furthermore, G and {e} are examples of characteristic

i
X
1

subgroups.
Theorem 1.11: The center C is a characteristic subgroup.
Proof: Let ¢ 'be in C. For all g in G, gc = cg. Let
® be an automorphism of G.
d(g)e@(c) = o(ge) = d(eg) = d(c)ed(g)e
Since ®(g) varies over G as g varies, ®(e) is in C, and, thus,
C is a characteristic subéroup.
We state the following corollary, which may be proved
in a similar manner as Theorem l.l1l.
Corollary: G/C is a characteristic subgroup.
Theorem 1.,12: Z is a characteristic subgroup.
Proof: The proof is lmmediate, since for z in Z, and
® an automorphism of G,
“Ip "leeea b a "lo ") = @(ap )0 )0 (a) )0 (b))

®(z) = @(alblal' 1

veed(a )0(b )07 (2307 (b)), which is in Z.
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We are now ready to investigate a normal subgroup
introduced by Norman Levine [5, page 61].
Definition: The set of all elements a in G such that

for any b in G, ab = ba implies there is an element ¢ in G

such that a = ¢ and b = ¢9

s Where i1 and j are integers, is
called the rim of G. The rim of G is denoted by R(G).,

It can be readily shown [5, page 61] that the identity,
e, of G is in the rim of G and, also, that the inverse of
any element a in R(G) ié itself in R(G). However, in general,
the rim of G is not a su%group of G. For example, in the
group of symmetries of assquare [1, page 114], we find that
R(G) consists of the elements I, R, and R". Since R".R" = R!'
which is not in R(Ga, itafollows that the rim in this case
is not a subgroup. \

Theorem 1.,13:¢ If aiis in R(G), then for all b in G,

pab™L € R(G).

i

Proof: Let (bab“l)x‘ x(babal) for gsome x in G.

Multiplying on the left by b F, and on the right by b

yields a(b"lxb) = (b“lxb)a. Thig implies there is an

element ¢ in G such that a = ¢+ and b~t

in R(G). We may write bab™ ! as belb™t = (beb™1)i, Also

1

xb = cY since a is

xb = e’ implies x = pedp~l = (bcb"l)j. Hence, there is
-1.1i
1 )" a

b‘-

-1 = (beb nd

an element bcb ~ in G such that bab

1

x = (bcb'l)j, for i and j positive integers, i.e., bab ~ ¢ R(G).
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Definition: The set of all finite products of the

rim of G is called the anticenter of G, and is denoted by
AC(G).

Theorem 1.,14: AC(G) is a normal subgroup of G.

Proof: AC(G) contains the identity, e, of G, is closed
under multiplication, and contains the inverse of every
element a in AC(G). Hence AC(G) 1s a subgroup. Now, let
b € G and a € AC(G). 8Since a 1s a finite product of rim

elements, 81285500058 s Ye have

1

-1 el -1 p-1 -1
bab = b(al°a2! o '&n)b = (balb ) (ba2b XX (banb )e

!
!

By the previous theorem, each product baib"I for 1 = 1,2,.00yn

is in R(G), hence bab~te AC(G), and AC(G) is normal.

Theorem 1.15: AC(AC(G)) = AC(G).

Proof: Since AC(AC(G)) = {a | a is a finite product
of the rim of AC(G)}, it suffices to show that R(G) C R(AC(G)).
This implies that AC(G) will be the set of all finite products
of the rim of AC(G), hence the theorem is proved.
Let a be in RkG), b be in AC(G) and ab = ba.

There exists an element ¢ in G such that a = cj and b = ck,

where j and k are integers. Let s be the least positive

integer such that ¢® is in AC(G). We assert that J and k
are both divisiﬁle by s. Otherwise, suppose J is not divisible

. m [
by s. Then jJ = mg + n, where O<n <s., Now cj = ¢ socn.

Since ¢ € AC(G), it follows that ¢™e AC(G). Also, ¢ = a
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is in AC(G). We, therefore, have that c¢® ig in AC(G). This
contradicts the fact that s is the least positive integer

such that ¢ € AC(G), since n <s. Thus, j, and similarly k,

S

are divisible by s. Denote ¢” by d. Hence a = ed = (cs)t

st for some integer t. Also, b = oK = (c5)P

since

i

since k sp for some integer p. We therefore have ab = ba

implying that there is an element d in AC(G) such that a = at

and b = dP, i.e., a € R(AC(G)). It follows immediately that
R(G) C R(AC(G)), which gives the desired result.
Theorem 1,16: If Hiis a subgroup of G, then R(G)N H C R(H).
Eggéﬁ: Let a € R(G) NH and b ¢ H guch that ab = ba.,
Since a in in R(G); theré is a ¢ in G such that a = ¢J and

k s

b =c¢". Let s be the least positive integer such that ¢~ € H.
As in the proof of the previous theorem, it follows that j and

k are divisible by s. Hence a = cj = (%)% and b = ck = (cs)v

for some integers u and v{ Thus a ¢ R(H) and R(G) N H C R(H).
The concepts introduéed by Levine may be extended to
observe the behavior of the rim and the anticenter under
isomorphism.
Theorem 1.17: If groups G and G' are isomorphic under
the mapping f, the f(R(G)) = R(G').

Proof: Let f(a) e f(R(G)) and b' € G'. There is an

element b in G such that £(b) = b'. Suppose f(a).f(b) = £(b).f(a).
This implies f(ab) = f(ba), or equivalently ab = ba. Since a
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is in R(G), there is an element ¢ in G where a = ¢’ and

b= el Hence, there is an element f(c¢) in G' such that

£(a) = £(c) = [£(c)I ana £(b) = £(c?) = [£(e)]Y, i.e.,
f(a) € R(G'). 1t follows that f£(R(G)) C R(G').

Now, suppose a' € R(G'). There is an element a
in G such that f(a) = a'. We must show that a is in R(G).
Let ab = ba for some b in G.

f(ab) = f(a)ef(b) = f(ba) = £(b).f(a) implies
\

there is an element ¢ in G where f(a) =[f(cﬁi and f(b) =[}(cﬂj.

Hence a = ci and b = cj,}whiah implies a e R(G). It follows
that R(G') C £(R(G)), and the equality results.

Theorem 1.,18: AC(G) 'is a characteristic subgroup.

LS
|

Proof: The proof islimmediate from the previous theorem,
since an automorphism of G carries rim elements of G into rim
elements of G. |

Theorem 1.19: If G %’G' under £, then AC(G) ¥ AC(G').

Proof: Let ® be theimapping: a » f(a), where a « AC(G).
Since f is well-defined, one-to-one, and product-preserving,

so is ®. Now, suppose a' e€ AC(G'). Hence a' = al’.az'...an',

where each a;' € R(G'), i = 1,25¢.45n. By the previous theorem,

a ' = f(al), ay' = f(a2), ceey a ' = f(an) where each a, € R(G).

Hence, there is an element a = aycayeened in AC(G) such that
$(a) = £(a) = a', and the mapping is onto. Hence AC(G) = AC(G').
In the next chapter, we shall characterize ideals of a

ring which play the role of normal subgroups of a group.



CHAPTER II
THE ROLE OF IDEALS IN A RING

The concept of normal subgroups in a group has an
analogue in the theory of rings, namely the ideals of
a ring. We now proceed to describe various ideals as
well as to investigate the corresponding manner in which
they decompose thelr respective rings.

\
Definition: A nonjempty subset A of a ring R is

called a left ideal (right ideal) of R if and only if:
(1) A is a subring of R, i.e., ab is in A and a~b
is in A for all a and b in A.
(i1) For any r in R and a in A, ra (ar) is in A.
If, in (ii) above, both fa and ar are in A, then A is

called a two-sided idea;ior simply an ideal. Clearly

all ldeals in a commutative ring are two-gided.
For example, in the ring of all real matrices of
order n, the set of all matrices of the form

A = (aij)n where 3, = 0 for 1 = 2,sveyn and j = 1,2,¢005n

and aij

# 0 fbr i =1 and J = l,...,n
constitutes a right ideal, but not a left ideal, whereas
the set of all real matrices of the form

A = (aij)n where a5y = 0 for 1 # J and ay 4 #0 for i = j

congstitutes a two-sided ideal.
18
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Theorem 2,1t The intersection of an arbitrary
system of left (right) ideals of a ring R is itself
a left (right) ideal of R.

Proof: Let Ai be a system of left ideals of R
where i ranges over the set of positive integers, and
let D be the intersection of these ideals. D is non-
void, since O belongs to each ideal, and, hence, 0 is
in Do lLet a and b € Do This implies a and b are in

each Ai' Since a-=b is in each Ai’ a~-b € D,

Now, let r € R and d € Do rd is in each

Ass hence rd is in D. Dgis therefore a left ideal.
A gimilar proof holds for right ideals.

We may thus speak of the smallest ideal containing
a subset S of R, or the iﬁtersection of every ideal
containing S? .

Definition: Let S bé a non~empty subset of the
ring R. The left, right, ?r two~gided ideal generated
by § is the smallest left, right, or two-sided ideal,
respectively, containing S, and is denoted by (S). If
8 concists of a single element a, then (a) is called the
principal (left, right, or two-sided) ideal generated by a.

Clearly, if R has a unit element e, (e) = R, Also, if
b is any element of R having an inverse, (b) = R. Thus the
ideal (S) generated by the set of elements S = {a,b,.e.} of
the ring R is the set of all elements of R expressible as

finite sums of terms, each term being a finite product of
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elements of R, at least one of which is in the set S.
The left ideal generated by S consists of all elements
of R expressible a finite sums of terms of the form
rs + ns where r e R, s € 8 and n is an integer. A
similar description can be given for the right ideal
generated by S.

The principal left (right) ideal (a) consists of
all elements of the form ra + na (ar + na). If R has
a unit element e, the principal left (right) ideal (a)
congists of all element#\of the form ra (ar),

As an example of a ﬁrincipal ideal, it may be verified
that in the ring of inteéers, every ldeal 1s a principal
ideal [6, page 56]:

Let us now define the center of a ring R.

|
Definition: The center of a ring R is the set of all

elements a of R such that ar = ra for all r in R. We denote

the center of fing R by CR‘

Theorem 2.2: The center of a ring R is a commutative
subring of R. |
Proof:s Let a and b ¢ CR' For any r in R,

ra-rb = r(b-a).

il

(a=b)r = ar-br

Hence a~b is in CR’ Also,

it
1]

(ab)r = aﬁbr) = a(rb) (ar)b (ra)b = r(ab).

This implies ab € CR’ and CR is a subring of R, which is

obviously commutative,.
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We now proceed to further characterize properties
of ldeals,
Definition: An ideal M of a ring R is called maximal

(divisorless) in R if and only if M is contained in R
properly, and for any ideal Q of R, MC Q C R implies Q = R.

Definition: An ideal M of a ring R is called minimal
in R if M # (0), and for any ideal Q of R, Q C M implies
Q = (0).

Theorem 2,3: A minimal ideal is a principal ideal.

Proof: Let M be a minimal ideal in ring R. M # (0)
implies there is an x in M such that x is not the zero
element. Consider the ideal generated by x. Since every
element of a ring can generate a principal ldeal, x generates
the ideal (x). Any ideal containing x must contain the
ideal (x)« Thus M contains (x). However, since M is
minimal, it contains no proper ideals except (0). It
follows that (x) = M. Since (x) is a principal ideal,

M is a principal ideal.

That the converse of this theorem is false may be
shown by the following counterexample:

Counterexample: Let I denote the ring of integers.
Since every ideal in I is principal, we choose some arbitrary
non zero integer n and consider the ideal (n). We wish to
show that (n) is not a minimal ideal. Suppose (n) = M is
a minimal ideal. Consider the ideal (2n). Clearly, (2n) C (n).

Let us show this inclusion is proper. . The element n is in (n).
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Suppose (2n) contained n. Then n could be expressed as
n = 2nspr where r € I, Since I is an integral domain and
n is non zero, we get 1 = 2r which is a contradiction.
Thus, (2n) is properly contained in (n). Since (n) is
minimal by assumption, this implies (2n) = (0), an obvious
contradiction. It follows that the principal ideal (n)
is not minimal.

The above example serves to prove the result:

Theorem 2.%: The ring of integers contains no minimal

1

ideals., E

In the preceding chgpter we investigated various normal
subgroups and their corrésponding factor groups. Since ldeals
are normal subgroups of,the additive group of a ring R, it
follows that an ideal S defines a partition of R into disjoint

cosets called residue classes modulo the ideal N.

i

Definition: The regidue clasg , X = {r | r = x(modN)},
is the set of all elementslr in R congruent to x modulo the
ideal N.

It is clear that the ;et of residue classes of R modulo
the ideal N forms a ring under the operations:

a+b=a+ band asb = ab.
This is called the regidue class ring of R modulo N and is
denoted by R/N.

Theorem 2.5: Let R be a ring with unity and M an ideal
in R, M is maximal 1f and only i1f R/M is a field.
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Proof: Assume M is maximal. Since R contains the unit
element e, R/M contains the residue class €. Hence R/M is
a ring with unity. We must show, for any @ in R/M where
a # 0, there is an inverse element (&)~ % in R/M such that
(8)"1+a = 8, Let & be a non zero element of R/M. Thus
a # 0(mod M), This implies a is not in M. Consider the
ideal N generated by all elements of the form xa + m
where m ¢ M and x € R, Obviously, M C N, 8ince M is
maximal, the ldeal N must generate the ring R. Hence
there is an element x°' ih R and m' in M such that e = x'a + m',
This implies x'a=e = 0 + (-m') where -m' is in M. Hence
x'a = e(mod M). It follows that X'-3 = & and X' = (3)"1
is the inverse of a and R/M is a field.

Now, aésume;R/M is a field. We assert M is
maximal. Since R/M is a field, it contains at least two
elements. For this reasoh M # R. Let Q be an ideal in R
that contains M properly.! We must show that Q = R. Let
a belong to Q and not to M, and let b be in R. Since R/M
is a field, there is an X in R/M such that X+a = b. This
implies xa & b(mod M). Hence xa~b = 0(mod M), and xa=b
beiongs to M. Let xa~b = my It follows that b = Xa~m, .

Since a is in Q, xa 1s in Q. Also ~my is in Q since M C Q.

Thus b is an element of Q. It follows that RC Q, or R = Q.
We therefore have that M is a maximal ideal.
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Definition: The ideal P in a commutative ring R
is prime if and only if ab belonging to P implies a 1s
in P or b is in P.
Let us observe that this definition implies P is a
prime ideal 1f and only if ab £ O(mod P) implies a = O(mod P)
or b £ 0O(mod P). In a proof similar to the previous theorem,
we may establish the following result:
Theorem 2,6: Let P be an ideal in R such that P # R,
P is a prime ideal if and only if R/P 1s an integral domain.
From this theorem i% follows that in a commutative ring
with unity, every maximai ideal is prime. That the converse
of thig theorem 1is ?alse‘}s shown by the following counter-

example: \

\

Coupterexample:a Let}I[x,Y] be the ring R of polynomials

\

with integral coefficient%. Since I[x,y] is an integral
domain [1, page 67], if a\product of two polynomials has
X as a factor, then at leagt one of the polynomials must
have x as a factor. Hencez(x) is prime in R. The ideal
(x), however, is properly contained in (x,y), which is the
ideal consisting of all polynomials in two variables with
constant term zero. (x,y) 1s obviously not R itself. Hence’
(x) is not maximal.

In order to interrelate the concepts of principal,

maximal, and prime ideals, we have the following results:
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Theorem 2.7: 1In a principal ideal domain R, l1.e.,
an integral domain in which every ideal 1s principal,
the prime ideals coincide with ideals of the form (p),
where p i1s a prime element.

Proof: ILet p be a prime element in R. Congider the

ideal (p). Let x and y € R such that xy belongs to (p).
This implies Xy = pr for some r in R. Since p is a prime,
p|xy implies plx or ply, Hence x is in (p) or y is in (p),
It follows that (p) g a prime ideal.

Now suppos% q is not a prime element in R.
Consider the ideal (q). fSince q is not prime, q = ab,
where neither a nor b isla divisor of unity and ab belongs
to (q). Suppose a belongs to (q). This implies that there

is a ¢ in R such that a = gqc. Thus a = q¢ = abc. Since

1

R is an integral domain, 1t follows that 1 be which
implies that b is a divisor of unity, contrary to our
initial assumption. Hence b is not in (q). In a similar
manner, we may show that é is not in (q). We have shown
that (q) is not a prime ideal if q 1s not a prime elemente.

Theorem 2.8: Let R be a principal ideal domain. A
non zero ideal P is prime if and only if it is maximal.

Proof: Obviously, if P is maximal in R then P is prime..
It suffices to show that if P is a prime ideal # (0), then
P is maximal. By the previous theorem, P = (p) where p

is a prime element of Rs P # R obviously, since R = (1)

and 1 is not a prime element of R. Hence P is properly



contained in R. Let Q be an ideal of R such that P C Q.

We must show Q = R. Since Q properly contains P, there

is an element a in Q that is not in P. It follows that

(a,p) = 1. This implies 1 = ra + sp where r and s belong

to R. We have the ideal (a,P) generated by elements of

the form ra + sp for r and s in R. Hence, it follows that
‘R = (1) C (a,P) C QCR.

This implies equality between Q and R. Thus Q = R, and

P ig maximal.

We concluded the fi?st chapter by investigating a
normal subgroup, the anticenter, derived from integral
powers of group elements; with the property that the
operation of formiﬁg theianticenter is idempotent, 1i.e.,
AC(G) = AC(AC(G)). Furtﬁermore, we found that the
anticenter is invariant under automorphisms of the
group. It is therefore fitting to develop an analogous
ideal, formed by considering integral powers of ring
elements, having similar properties.

Definition: Let R bé’a commutative ring and A # R
be an ideal of R. The radical of A is defined as

VA = {a | a € R and al ¢ A for some pogitive integer i}.

Let us note that the radical of R i1g defined as the

' = 0(mod R) for some

set of all elements x such that x
positive integér n. This definition is in accordance
with the fact that x" = O(mod R) implies x™ is in R for

some positive integer n.
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Theorem 2.9: JA i1s an ideal of R containing A.
Proof: Let a and b belong tovA, This implies

ai and bj are in A where 1 and J are positive integers.

Consider the expansion of (a-b)1* 3=l since R is

commutative, every term in the expansion contains either

i

a” or bJ as a factor. Hence (anb)l+3"1

is in A, i+j-1
is a positive integer and a-b is inv/A. Moreover, for

any r in R, (ra)! = riai, which is in A. Thus ra evA

\

andVA is an ideal of R. \Thatvﬁ'contains A ig trivial.

|
If A and B are ideals and A C B,
|

Iheorem 24803
then V& C /B, ‘
Proof: Let c‘bélong}tolﬂl There is a positive

integer m such that ém“isiin A. This implies c™ is
in B, henqe ¢ is invB. 1
Theorem 2.11: VI =\,
Proof: Since A C A, Py the previous theorem we have
JE cJUE. Now, let ce JVA. iThis implies ¢™ is invA for
some positive integer m. (cm)n is thus in A for (™)™ = ™

implies there is some positive integer k = mn such that

¢® is in A. Hence ¢ is invE, and it follows thatvlUA CvA.
We then have the equalityJK'=J7§T

With the preliminary definitions and results we have
established,hwe'are now able to compare in an analytical
manner various analogous concepts of normal subgroups and

ideals.



CHAPTER III
ANALOGOUS CONCEPTS OF NORMAL SUBGROUPS AND IDEALS

We now wish to compare normal subgroups and ideals
with respect to set propertlies, homomorphisms and iso~-
morphisgmg, direct products and direct sums. Basic to
the comparison are the concepts of set theory.

The Intersection ef an arbitrary

|
set of normal subgroups of a group G is itself a normal
\

subgroup of G.

i
Proof: Let Si be a?system of normal subgroups of

, \ .
G where i ranges over the et of positive integers; and

let D be the interseétionaof these subgroups. D is non-
void, since the gréup identity, e, belongs to each normal
subgroup, and, hence, e isEin D. Let a and b € D. This
implies a and b are in each 8,. Since ab~! is in each 8,

ab™t e D, and D is a subgroup.

Now, let g ¢ G and d e D. It follows that
d is in each 8, hence gdg"l is in each S;. This implies
ng"l is in D, and D is normal.
In chapter II, it was proved that the intersection
of an arbitrary system of ideals in a ring R is itself
an ideal of R.

28
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Definition: Let {Si}i=? be a finite system of subgroups
of a group G. The upnion of these subgroups, denoted by USn,

is the get of all finite products, each factor of the product

belonging to some Si‘

Theorem 3.2: The union of a finite system of normal
subgroups of a group G is itself normal in G.

Proof: Let {Si}igg be a finite system of normal sub-

groups of G, and let D bé the union of these subgroups.
\
Also, let a.and b € D. Thus, a = apcageeea , where each

ayo 1<j<m, is in some Si.‘ Likewise b = bl'b2"'bk’ where
each bj’ 1<{j<k, is in some Si' It follows that

= . L § [ ml _1. e '.1

is a finite product, each factor of the product belonging

to some §,. Hence US 1is a subgroup.

Now, let g € G'and d € D, Since d belongs to D,

d = dl'da"'dp where each qp is in some Si'

=L 1yeee(ga g™1)

d
gag D

— LA K ] —l = -l -
= g(dyrdyeeedde ™ = (gdyg ) (gdyg

Since each S; is normal, the factors gdjg"l

¥: D. D is normal, and the proof

sy 1<{j<p, are in
gome S;, and hence ghg~
is completed.

Definition: Let {Ai}i=? be a finite system of subrings
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of a ring R. The gum of these subrings, denoted by

AJ + A2 + ees An’ i1s the sget of all elements r in R
such that r = a1+a2+...+an where each ay s 1<i<n, belongs

to Ai.

Theorem 3,32 The sum of a finite gystem of ideals

in a ring R is itself an ideal in R.
Proof: Let {Ai}izn be a finite system of ideals

in R, and let D be the s%m of these ideals. Also, let
a and b € D. Thus, |

a = al+a2+.g.+§n, where each ai & Ai’ 1<i<n and

i

b=2>» +b2+...+bn, wﬁgre each b, € B

1 1<i<n.

i i?

)
\
\

It follows that \
a=p = (al+a2+...+an) - (bl+b2+...+bn) = (al-bl)+...+(an-bn).

Since each A; is an ideal, each a;-b, € A;. Hence a-b e D.

Now let r be in R and d be in D. It follows that

rd = r(d1+d2+...+dn) = prd +rd2+...rdn

1

where each rdi is in Ai. Hence rd € D, and D is an ideal in R.

Definition: Let {Si}i=2 be a finite system of subgroups
of a group G. The product of these subgroups, denoted by TTSn,

is the set of all elements g In G such that g = S1°Sp°°*s,

where each Sq belongs to Si.
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Theorem 3.4: The product of a finite system of normal

gsubgroups of a group G 1ls itself normal in G.
Proof: The proof im exactly like the proof of Theorem 3,2,
We observe that in any finite system of subgroups, not
necessarily normal, the product of the subgroups is, in
general, properly contained in the union of the subgroups.
However, we have the following result:
Theorem 3,5t In a finite system of normal subgroups,
the product of the subgfoups is equal to their union.

Proof: Let {Si}iz?\be a finite system of normal sub-

groups. It 1s clear tha?'ﬁsn C US . We wish to show that
|

USn'C’WSn. Let b p@ in ySn. Hence b = b1°b2"‘bm where

each bj’ 1<j<m, is in some ;. Furthermore, suppose one
\ .

of the factors of b, call it b, is in S, and no factor
bj where Jj<k is in Sl‘ Since we may insert the factor e

in the product without al@ering b, such an element bk in

Sl exists. Since each Si’is normal, we may permute the

factors of b as follows:

) o~ . ]
bk-l bk bk b'knl where bk—l’ b k-1 are in the same Si’
bkm2'bk = bk-b'k_2 where bk~2’ b'k~2 are in the same Si’
o0
N P oeh? . Wt 1 P
bl bk bk b 1 where bl’ b ; are in the same Si‘

Hence b = bkob'l-b'2'~-b'k_1-bk+lo--bm. By repeating the

same process, we can rearrange the factors of b, inserting
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the identity element whenever needed, so that

b = §1°Sp°° S, where each sy € Si‘
It follows that b e §,» or US_ c‘ﬁsn. This implies

equality.
Definitions Let {Ai}i=§ be a finite system of subrings

of a ring R. The product of these subrings, denoted by TA,,

is the set of all finlte sums, each term of the sum a product
of n faetors, =sash fagtor of the preduct belonglng te soms Aia
Theorem 3.6: The p?oduct of a finlte system of ldeals
of a ring R is itself aniideal.
Proof: Let {Ai}izgibe a finite system of ideals, and

let B be their product. Also let b, and b, € B.

bl = all'al2°°'alp+"'+ akl'ak2°"akn and

b oD eeeb I:l._+.'.+ b b,

P 11 P12 7Py 51°P32°° " Pyne

L

2
It follows that

e o0 - j ene -4
831°° 810 = %=1 P351°° Py,

k * o0 j o e
¥=1 841" 8qp * F=1 (wbypdeccbyp.

Hence b1»b2 eﬁmi. Also, for r in R, and b in ﬂhi, it is
clear that rb is in'ﬂki. The product, MA,, 1s therefore

an ldeal.

We observe that in a ring with unity, the sum of a
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system of ldeals 1s contained in the product of the 1deals.,

Let us now conslder an illustration of the concept of
set theory.

Example: TLet I be the ring of integers and let the
ideal A = (9) and the ideal B = (12). ANB is the set of
all integers which are multiples of both 9 and 12, namely,
AMB = (36). The sum, A + B 1s the set of all integers
which can be expressed in the form 9a+12b where a and b e I.
From elementary number theory, we know that A + B = (3).

Having seen the par%llel thus far between the roles
of normal subgroups and ldeals in respect to set theory,
we naturally wish to see 1f the parallel extends to the
notions of homomorphism énd isomorphism.

In the first chépter? we proved the Fundamental
Homomorphism Theorem for éroups. We now consider a homo-
morphism £ from a ring'R énto a ring R'.

Lemma_1: The kernel ;of f, Kp» is an ideal.

Proof: Since K. is a normal subgroup under addition,

T

o a-b e.Kf. Now let r be in R and a be in Kf.

f(ar) = f(a).f(r) = 0'+f(r) = 0O',

if a and b € K

. where 0' is the additive identity element of R'. Hence Kf

is an ideal.

Lemma 2: a = b(mod Kf) if and only if f(a) = £(b).

it

Proof: Suppose a = b(mod Kf). Then, a = b+x where

x is in K Then,

f.

£(a) = £(b+x) = £(b) + £(x) = £(b) + 0' = £(b).

H|
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Now, suppose f(a) = £f(b). Since both a and b € R,
a~b is in R, and f(a-b) = f(a) - £(b) = 0. Hence a = b(mod Kf).

Theorem 3.7: If f ls a homomorphism from ring R onto
ring R', then R/Kf'E R'.
Proof: Let us denote the coset of the factor ring R/K,

containing a as @. Hence 3 1s the residue class containing a.

Let the mapping ® be given by ®: @ » £(a). By Lemma 2,
the mapping ® is well-defined and one~to-one. Lat a' e R's
Since [ is a homomorphiém, there iz an element a in R such
that f(a) = a', Hence tgere is a residue class & containing
a in R/Kf such that @(5)5= f(a) = a', and ® is onto. Lastly,
f(a) + £(b) = (&) + @(b)
f(a)+f(b) = d(a)d(b).

il

®(a+b) = ®(a+b) = f(a+b)
and ©(a+.D) = ®(ab) = f(ab)
Thus, R/K. ¥ R'. |

{

i

The next theorems fufther develop  the relations between
normal subgroups and ideals under homomorphisms as well as
utlilize set properties previously developed.

Theorem 3.8: Let f ge a homomorphism mapping the
group G onto a group G' with kernel Kf. Let H be the set
of all subgroups U of G that contain Kf, and let H' be the
gset of all subgroups V of G'. Then the following are true:

(i) There is a one-to-one function & from H onto H!
given by @(U) = £(U).

(ii) If U is normal in G, then ®(U) is normal in G',
and conversely.

(ii1) If U is normal if G, G/U T G'/a(U).
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Proof of (i): Let V be in H'. First, we wish to find
a subgroup U in H such that ®(U) = V. This will show that

® maps H onto H'e Let U = £~1(V). Hence U = {x| x ¢ G and
f(x) € V}. sSince e', the identity element of G', is in V,
£ (e') = K, 1s contained in £™(V) = U. Now, let x and y ¢ U,

£(x"ty) = £x"1)er(y) = £ 1 (x)£(y)

1

which is in V, since V is a subgroup. Hence x "y is in U.

We now have a subgroup U:of G containing Kf, i.e., U € H.

(FI£t )] | he V) =
V and ® maps H onto H'. It

i

(r(g) | g o U}
V. Hence @(U)

®(U) = £(U)
{h | h eV}

remaing to show that & is a one~to-one function.

i

i
L H

Suppose @(Ul) mi@(Ug). Let x be in U;. There is
i ‘
a y in U, such that £(x) = £(y) since ®(U) = £(U) for all

U in H,.
fley™) = £(x)e ™1 (y) = £)r L (x) = e

Hence x'y"l is in Kf. Sincg Ué(: H, this implies Kf - U2 or

i

x-y ! 1 in U,. Hence x = x(y"'y) = (xy™M)y, which is in Uye

It follows that x is in U2 or U1 - U2. In a similar manner,

it can be shown that U2 cCVUuU As a result Ul= U2 and the

1'
mapping & is one~to-one.

Proof of (ii): 'Let us assume U is normal in G. Let

g' be in G'. There is a g in G such that £(g) = g'. Let
y be in ®(U). There is an x in U such that f(x) = y since
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®(U) = £(U). Now,
gleye(g)7™F = £(g) £ (x)-[£(e)]1 ™= £ ()L™ = £gxg™).

-1

Since U is normal in G, gxg is in U and f(gxg'l) is in V.

Hence g'»V'(g')"l C Vor V= &(U) is normal in G'.

To prove the converse, let us assume V is normal
in G'e We must show U is normal in G. Let x « U and g ¢ G.
£(x) = y. 8Since V is normal in G', there is a z in V such

that £(g)ey-£™1(g) = f(g)°f(x)°f(g”l) = f(gxg™t) = z.

-1 -1

Hence gxg C U. This implies U is normal

in G. i

Proof of (11i): ‘We muqt show if U 1s normal in G, then
G/U = G'/(U). Let us define f

\
By the Fundamental Theore?, f1 is a homomorphism of G' onto

is in U or gﬁg
|

1 8s a mapping G' onto G'/®(U).

G'/9(U) with kernel Kf = .®(U) and the identity element of
1

G'/®(U) 1g the coset ®(U) which, of course, is normal since
U is normal in G. Now, let f, be the mapping: G - G'/o(U)

where for all g in G, f,(g) = £ [f(g)]. Since the product
of two homomorphisms is itself a homomorphism [8, page 36],

f, 1s a homomorphism of G onto G'/o(U)., Kf i1s the set of
2

all elements of G which map onto the identity of G'/®(U),

which is the coset ®(U). Hence Kp = U. It follows that
, 2

G/U = G'/®(U) and the theorem is proved.
We now state the corresponding theorem for rings

which is proved in an almost identical manner.
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Theorem 3.9: Let f be a homomorphism from a ring
R onto a ring R' with kernel Kf. Let A be the set of

all subrings S of R that contain K., and let A' be the

set of all subrings T of R's Then the following are true:

(i) There is a one-to-one function ® from A onto
A' given by ®(s) = f£(8).

(ii) 1If S is an ideal in R, then ®(S) is an ideal
in A', and conversely.

(111) If 8 is an ideal in R, R/S ¥ R'/(S).

Let us recall that in chapter I we found that if two
groups G and G' were isoﬁcrphic under the mapping f, then
£(AC(G)) = AC(G'). ; As a further analogy between the anti-
center of a group and the radical of an ideal, we utilize
Theorem 3.9 to estabiish %he following:

Theorem 3,10¢ If rings R and R' are isomorphic under

the mapping f, and A 1s an ideal of R containing KT, then

£(V& ) = Jr(a).
Proof: Since A is an'ideal in R containing Kf, £(A)

is an ideal in R' by Theorem 3.9. Suppose f(x) ¢ £(VA ).
Since x is invA, there is a positive integer i such that

xi is in A. Hence f(xi) = [f(x)]i igs in £(A) implies
£(x) e Vf(A). This shows £(V& ) c Jf(a) .
Now suppose £(x) i1s in VFf(A) . There is
a positive integer i such that [f(x)]i‘e f(A). This implies
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£(x) e £(A) or xie: A. Hence x 1s in VK and f(x) e f(VA ).
It follows that JE(A) € f(VE ) and the equality ensues.

The next theorems indicate the interrelating concepts
of set theory and isomorphism.

Lemma 1: TIf H is a subgroup of G and N is a normal
subgroup of G, HN is a subgroup of G,‘and N is normal in HN.

Proofs Since N is normal in G, HN = NH. Let hlnl and

h2n2 be in HN.

1 1

(hyn) ) (hony)™d = (hyny )0, ™hy™) = (hynyny ™) (™) = (hyng) (ny™)

- -1 — t =
where nln2 = Ny Sincg N is normal, hln3 nhhl‘ Hence
-1 “1. _

-1

i

-]l -
(hln3)(h2 ) = h3.

Now m,hy is in NH which is HN. Hence (hyn;)(h,ny)™t is in HN,

i

and HN is a subgroup of G% Obviously N is normal in HN since
N is normal in G.

Lemma 2: H N N is a normal subgroup of H.

Proof: We know H N N is a subgroup of H. Now, let x

1 is in H and also in N,

be in HN N and h be in H. hxh™
Hence hxh™* is in H N N, or H N N is normal in H.
Theorem 3.11: If H is a subgroup of G and N is a
normal subgroup of G, then HAH N N)= HN/N.
Proof: Le? us consider the natural homomorphism f
of G onto G/N given by f: g » gN. We wish to show that

£(H) = HN/N with kernel H N N. Consider the set £ L[f(i)].
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We first must show that £ L [f(H)] = HN. Now,
£™em] = {g | g € G and £(g)e £(H)]}.

Let x e f”l[f(H)]. There 1s an h in H such that f(x) = f{(h).
From a previous theorem, f(x) = f(h) implies that the cosets

XN and hN are equal, l.e., x is in hN. It follows that there
is an element nq in N such that x = hnl. This proves that

x 1s in HN, or f"l[f(H)] belongs to HN. Conversely, let

y € HN. Then y = hn, where h is in H and n is in N. Hence
f(y) = £(hn) =\f(h)of(n) = f(h)ee',

since N is the kernel ofif. Hence f(y) = f(h) implies that

£f(y) 4s in £(H) or y ¢ fﬁl[f(H)]. It follows that HN belongs

) , \
to f 1[f(H)] and the desired result ensues.
Since HN is a subgroup with N normal in HN, we may
form HN/N. Suppose f(x) € f(H). We have that x e £ [f(H)] =
] |

HN., It follows that x = hlnl and f(x) = f(hlnl) = (hlnl)N.

This implies f(x) ¢ HN/N, pr £(4) C HN/N. Conversely, let
 f(g) e HN/N. £(g) = (hyn,)N = hyN, which implies £(g) is in

f(H) or HN/N C £(H). Thus, f(H) = HN/N, and f is a homomorphis
mapping of H onto HN/N.
Lastly, f(h) = f(e) if and only if h € N. It follows
that H N N is the kernel of this mapping and HAH N N)= HN/N.
Theorem 3.;2: If M and N are ideals of the ring R, then
MAM N N)=(M + NVN.

Proof: This theorem is proved in a similar manner to
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the preceding theorem. We observe that M+ N and MN N
are ideals, and consider the homomorph}sm f from R onto
R/N. We show f induces a homomorphism from N onto (M + N)/N
with kernel M N N,

Using our knowledge of set theory and effects of homo=
morphism on groups and rings, we consider the possibility
of bullding up a group from normal subgroups and building
up-a ring from ideals. To this end, we define the direct
produet of a gset of normal subgroups, and the direct sum
of a set of ideals. \

Definition: The direct product H = G, x sz...x Gn of

1
a finite set of normal subgroups, {Gl, Gg,..., Gn} is the set

{(al,az,...,an) l a; € Gi} and multiplication is defined by:

(al’ag,ooo ’an)" (bl,bZ’...'bn) = (albl,32b2,a3b3’ootganbn)o
We observe that the operation is clearly well-defined,

and its agsociativity follows at once from the associativity

of the operations in the groups Gi' The identity of H is

e = (el,eg,...,en) and the inverse of a = (al,az,...,an) is

1 1

A’oco,a

..]_)

n « Hence H is a groupe.

(al” ,aQ"
Definition: The direct sum S = RfE R ®. 440 Rn of a

finite set of ideals {Rl, Rpseses Rn} is the set given by
{(al,a2,,..an) flai & Ri} and addition and multiplication

are defined by:
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(al)azjoonan) + (bl’bQ"”bn) = (a1+b1’a2+b2"..,an+bn) and
(alyag,...an)-(blpba,..,,bn) = (albl,aabz,.o.,anbn).
Again, we note that this set S has well-defined
operations, is an Abelian group under addition, and is

associative and distributive with respect to addition

under multiplication. Hence S is a ring.
Theorem 3,13: Suppose {Gl,Gg,...,Gn} are subgroups

of a group G such that:\
(1) Each Gy is nor@al in G,
|
(11) G Z‘WGi’ i=1’2,990’no
, i |

1
(1ii) G ﬂ G' o - . o ® LN
i‘ i —~ G’EWhere G'i - Gl G2-..Gi—1 Gi+1 Gn’

|

; \
lees, G'y =TG,, j#l. |
N !

j’
Then for any g; in Gi and: any g in Gj where 1#j, 818y = 84847

and for any g in G, g is uniquely expressible in the form

g = glngQQan’ Where gi is in Gi.

!

Proof: Let g; € Gi and gy < Gj with i#j. Since Gi and

G. are both normal, we have

J
-1

(gi'gj'ginl)gj —1)

Giﬂ Gj

s [ _10 )
= g;(g 78y gy C G6;N G'y
as defined in (iii) of the hypothesis. Since G,NG'y = e,
, -1, =1 -
we have (gi'gj‘gi )gj = e or glgj - gjgi'
Now suppose g € G where g = aj*a,*cca and g = bl~b2°°'bn.

: -1 ' coo “l,ee, =1 \
It follows that b,""a; = (by***b )(a "“:**a,""). By what we
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have just established, b1°1a1¢ (b2a2“l)"'(bnan“l) and

1"131 is in Glﬂ G'l as in hypothesis (iii). Since

-1
t ' =
Glﬂ G 1 e, b1 a;

b

= @, and this implies a, = bl. In

a gimilar manner, an= b2, 333 b3,..., a_= bn. Thus the

n
representation of every element in G is unilque.

Theorem 3.1%: Suppose {Rl,Rz,...,Rn} are subrings of

a ring R such that:
(1) EachrRi is an ideal of R.
| \
(11) R-—-Rl@Rzéaf...@Rn.
1,4 ', = =
(1i1) Riﬁ R 4 = O where R'i : Rl @ Ry ® 44 @RiwleRi«v

Then any r in R is uniquely exprescible in the form
+ré+...+rn, where ri € Ri'

I'=Tl

Proof: Since R is an Abelian group under addition,

i+rj = rj+ri. Suppose r\ G where r = a1+a2+...+an and

also, r = bl+b2+...+bn. IF follows that

r

al”bl = b2+o . .+bn+ ("'an)"" ("'an_l )+ es et ("8.2) .

Since R is Abelian,
al”bl = (bz“az) + (b3'33) + eee + (bn“an)o
- i - '
Bach bj aj is in the ideal Rj’ hence aq b1 Rln R 1

as defined in (iii) of the hypothesis. This implies
al»bl = 0 or a, =‘b1’ Similarly, a, = b2, ajy = b3,

esey A = bn. Each element of R is therefore uniquely

n
represented.

@9 ° '@Rnﬁ
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Theorem 3,15t If group G has normal subgroups
Gl’G2""’Gn such that G =‘WCi'where i=1l,2,..en and

' = _ = : =
N G 1 e where G'i 'WGj, j#¥i, then G =T G_x ng...x Gn'

G 1

i
Proof: Let £ be the mapping G - Glx sz...xGn given

by‘ f(g) = f(gloggooogn) = (gl’gé,‘oao,gn)c By Theorem 3.13,
g = gl-g2~°~gn is a unique expression of g. This uniqueness

guarantees that f is one~to-one and the operation is well=-

, \
defined. f is-evidently onto since any product g,°8p°°°8,
\

is an element of G, Now, suppose a and b are in G,
£(ab) = flagrageayesra ) (b wbyeeeb )] = £l(arb))e e (ap)l,
since the elements of distinct Gi's commute with each other.

We have that :
f[(albl)(azbz)"'(anbn)] = (a;byeeera b ) =
(31,32’a.o,an)(blybzzv’nao,bn) = f(a).f(b)o

Hence f preserves the group operation. We have proved

|
that G = Glx Gax...x Gn.

It is interesting to note that this property may also

be formulated for ringse.

T!;eorem 551 s If I‘ing R has 1deals Rl,Rzgioo,Rn such
that R = §_7 R; and R;0 R'y = 0, where R'; = I Ry for j#i,
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Proof: Let f be the mapping R = R, @ R, D eee ® Rn
giVen by f(r) = f(rl*r2+.,.+rn) = (rlprggooo’rn)o By
Theorem 3.1%, r =,rl+r2+,..rn is a unique expression

of r and guarantees that f 1s well~defined and one-to-one.

f 1g onto since any sum rl+r2+...+rn is in R. Let us now

conslder both operations of addition and multiplication
under f. Suppose a and b are in R.

f(a+b) = £l (aj+aytes.ta ) + (bl+b2+..,+bh)] =

\

n
(algaggdno’an) +i(b1’b2,””bn) = f(a) + f(b)o

f[(al+bl)+(a2+b2)+.,.+(a +bn)] = (al+b1€ 32+b2,p-o’an+bn) =

Algo, f(ab) = f[(al+a2+.;:+an)°(b1+b2+...+bn)] =

f[al(bl+b2+»..+bn) + eee + an(b1+b2+...+bn)].

1

Since R 1s a ring, ai§bl+%..+bn) =a,;b, + 0 = a;b, , for
bl+coo+bi_l+bi+l+oo.+bn is in R'i- Hence
f(ab) = f(albl+a2b2+...+anbn) =

(albl’asz""’anbn) = (al’aZ""’an)'(bl’b2”"’bn) =
f(a).-f(b).
Since f preserves both ring operations, it follows that
RER]_@R2@"'@Rn'
As illustrations of the direct product of a group
and the direct sﬁm of a ring, let us consider the following

examples:

Example: Let G be the group of real numbers under
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F, it follows that b is in A. Hence every element of
Fisgs in A, or A = F. This suffices to show that every
field 1s a simple ring.

Wedderburn proved perhaps the most important theorem
concerning the structure of simple rings, a recent and
short proof of which may be found in [3, pages 385-386].

Wedderburn's Theorem: Any simple ring R is isomorphic
to the ring of all m square matrices over a fileld F, where
the field F and the integer m are uniquely defined by R.
Conversely, for any inteéer m and any fileld F, the set

of all m square matricesiover F 1s a simple ring.



APPENDIX

ANALOGOUS THEOREMS

Groupg

Theorem
Theorem
Theorem
Theorem
Theorem
Theorem
Theorem
Theorem
Theorem
Theorem
Theorem

Theorem

1.k

1.1% (anticenter)
1.15 (anticenterb
1.16 (anticenteri
1.19 (anticenter)
3.1

3.2

3.k

3.8

3.11

3.13

3.15

18

Rings

Theorem
Theorem
Theorem
Theorem
Theorem
Theorem
Theorem
Theorem
Theorem
Theorem
Theorem

Theorem

3.7

2,9 (radical)
2,11 (radical)
2.10 (radical)
3.10 (radical)
2.1

3.3

3.6

3.9

3.12

.14

3.16
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