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ABSTRACT

The purpose of this paper is to determine the eigenvalue bounds 
of a matrix defined over either the real or complex fields.

Well known theorems concerning the condition of eigenvalues as 
a function of the condition of the related matrix are stated. Theorems 
which determine the bounds are derived. Closed form solutions are 
expressed in terms of (l) the matrix elements, (2) matrix norms, and 
(3) vectors and the eigenvalues of related matrices.

A comparison is made in terms of the relative size of the areas 
of eigenvalue inclusion for the various solutions. Conditions for 
boundedness and unboundedness of these bounds are derived. Examples 
in terms of eigenvalue bounds for particular matrices are given.

Results of this paper are used in the problem of determining 
critical points of a function of n variables and in the problem 
of determining the convergence of iterative solutions for a system of 
linear equations.
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INTRODUCTION

In various applications of matrix theory, the following question 
often arises: given a matrix A of order n for what scalars, A, 
and corresponding nonzero vectors x, will

Ax = Ax (1)

be satisfied. That is, for a given transformation, A, what vectors, 
x, will remain directionally invariant, and what is their change in 
magnitude. The answer to either of these questions almost immediately 
implies the answer to the other.

Equation (l), when written in the equivalent form

(A - AIn )x = 0,

where I is the identity matrix, yields n homogeneous linear 
equations in n unknown, these unknowns being the components of 
x = (x^, Xg, ..., xn )* This system of equation will have a nonzero 
solution if and only if the determinant of the coefficient matrix 
vanishes. Expansion of this determinant yields a nth degree 
polynomial in A. The roots of this polynomial are called the 
eigenvalues of the matrix A.

2
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For values of n H, the eigenvalues can always be found. How­
ever for n > r, this polynomial is not solvable by radicals.'*' Thus 
in general, for a matrix of order n > h, its eigenvalues cannot be 
found by direct means (in closed form solutions).

Nevertheless, various techniques do exist for determining the 
bounds, both upper and lower, for the eigenvalues and quite often 
this information is sufficient to solve various types of problems.

This paper will be concerned with theorems which will determine 
the upper and lower bounds for the- eigenvalues of a finite matrix 
defined over either the real or complex number fields.

^B. L. van der Waerden, Modern Algebra, (New York: Frederick Ungar 
Publishing Company, 1953)> P* 177*



CHAPTER I

WELL-KNOWN THEOREMS FOR EIGENVALUES

Some well-known results concerning the eigenvalues of particular 
types of matrices are given in a tabular form below.

h
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Condition of A Notation Condition of A Footnotes

(l) Hermitian *A * A All Tv are real 2, 3, h
(2) Real symmetric > 1! All * are real 2 , 5
(3) Skew hermitian > It * All Tv are imaginary 2
(h) Real skew symmetric > II All A are imaginary 2

.(5) Unitary *A A = I h = 1 2, k
(6) Orthogonal TA A » I 1I 3

= 1 2

(7) Triangular, that is t

â  0 ... 0

a21 a22*“  0

A =
• • •
• • •
• • •

a «  a _... a nl n2 nn

= a . . 
33

or TA
(8) Permutation, that is,

o' H O • • O 0~
0 0 1 ... 0 0 2itk

A = • • • « ♦ • • m « • . « •
0 0 0 ... 0
1 0 0 ... 0

.
1
0_

A = P A.
3

= e J 5

pE. T. Browne, "Limits to the Characteristic Roots of a Matrix,"
American Mathematical Monthly, vol. H6 (1959)? P* 252.
^T. E. Hohn, Elementary Matrix Algebra, (New York: Macmillan Co., 1962),
p. 225.
\l. V. Parker, "Characteristic Roots and Field and Value of a Matrix," 
Bulletin of The American Mathematical Society, vol. 57 j no. 2 
(March 1951)7 PP-" 103-10^.
^Marvin Marcus, Basic Theorems in Matrix Theory, (Washington, D.C. :
U. S. Government Printing Office, 19&)), p. 9*
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Other results which are less well known than those above, but 

yet of some importance are listed below.
(1) If A i s a  positive real matrix, that is a.. > 0, then

there exists a real, positive eigenvalue which is simple and such
ithat its absolute value is greater than that of any other eigenvalue.

(2) If A is a non-negative real matrix, that is â .. ^ 0,
7then there exists a real, positive eigenvalue.

(3) If there exists a lc such that A is' a positive real
matrix, then there exists an eigenvalue of A such that it is real,
and its absolute value is greater than any other eigenvalue. If,
in addition, k is an odd integer, then this eigenvalue is positive.0

Georg Frobenius, "liber Matrizen aus' Positiven Elementen,"
Sitzungsberichte der Berliner Akademie der Wissenchaften Mathem- 
Fhyslkal (190B), pp. Wl-^76.
7Alfred Brauer, “On the Characteristic Roots of Power-Positive 
Matrices,” Duke Mathematical Journal, vol. 28 (1961), p. U39.
8Ibid., pp. U39-M*3 .



CHAPTER II

THEOREMS FOR EIGENVALUE BOUNDS

The bounds for eigenvalues may be determined in various ways.
In general, these relations express the bounds in terms of (l) the 
elements of the matrix itself, (2) matrix norms, and (5) vectors 
and eigenvalues of related matrices. Although the eigenvalues may 
be approximated by considering the roots of the characteristic 
equations, the necessary procedures (Newton's method, Graffe’s 
method, etc.) require a ’’first guess" of the roots combined with 
successive iterations. These relations do not lend themselves to 
closed form solutions of eigenvalue limits. Therefore, only those 
types of relations listed above will be investigated in this paper 
(in their listed order).

Section A - Bounds by Matrix Elements 
- An important relationship giving the eigenvalue bounds in terms

of the matrix elements and matrix order is provided by the following
9theorem.

-M. A. Hirsch and M. I. Bendixson, "Rur Les Racines D'une Equation 
Fondamentale,” Acta Mathematica, vol. 25 (1902), pp. 567-569•

7
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Theorem II.A.1
Let A be a complex matrix of order ., n. 

Define G = 1/2 (A + A*) tT - 1/2 (A - A*)
Let a = max a . .ij
Then A 5 na; |a| < ng; |3| nt

Proof: From Ax = Ax^ follows (x,. Ax) = (x, Ax) = A(x, x)
-x- *■ __and (Ax, x) = (Ax, x) or (x, A x) = A(x, x).

Then (x, Ax) + (x-, A x) = (a + i3)(x, x) + (a - i3)(x, x)
or (x, (A + A )x) ’= 2a(x, x)

(x, Gx) = a(x, x).
-X-Likewise (x, Ax) - (x, A x) = 2i3(x, x)

or (x, Tx) = i3(x, x)
-i(x, Tx) = 3(x, x).

By the Cauchy-Schwarz inequality,
n n

A(x, x ) = I A11 (x, x) | = (x, ax) i y y
r n n/ ^ , ~ _

a, . ij x.l

i=l j=l

na . na 
T  + —  = na'

where the x are normalized such that (x, x) = 1. Thus 
Proceeding in a similar manner, since

na

a(x, x) as (x, Gx)
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then

a| 1 ng

Likewise since 3(x, x) = -i(x, Tx) 
then

| 3 1 nt.

Bendixson essentially proved part of this result, and, in 
addition.,found a bound for the imaginary part for a real matrix A . ^

Theorem II.A.2
Let A be a real matrix of order n,

G = 1/2 (A + AT ), T = 1/2 (A - AT ), and /  = a + 10.

Then
0| 1 t yn(n - l)/2.

Proof: Since Ax = ?\x for x - y + iz, then

A(y + iz) = (a + i0)(y + iz) = (ay - 0z) + i(az + 3y)
Equating real and imaginary parts,

Ay = ay - 0z 
Az s az + 3y*

So
(y, Az) = (y, az) + (y, 3y)

- (z, Ay) = - (z, ay) + (z, 0z)

10Ibid., p. 368-370.



and adding

Now

(y, Az) - (z, Ay) = 3((y, y) + (z, z))

(y, Az) - (z, Ay) = (y, Az) - (A y, z),

where A is the adjoint operator of A y

= (y, Az) - (y, AT z ) = (y, (A - AT )z) = 0((y, y) + (z, z

or by definition of T, B((y, y) + (z, z)) = 2(y, Tz).
TNow, since T = -T , then t.. = -t.. and t., =0.

9 ij Oi ii

Thus

(y, Tz) = 2^
i 3

<
'ij

and upon squaring
2y + z < i+t2 yi zj * zi yj

where t - max t. .iJ
By the arithmetic-geometric mean inequality, for real numbers



Now there are n elements in the matrix; the diagonals not appearing
in the above sum since t.. = -t.,. For every two elements of theij 3±
matrix, one combination is used in the summation. Thus there are

n2 - n n(n - l)
2 ~  2

combinations.
Thus

yi - zj yi
< n(n - 1)2 yi zj

Consider now

By Lagrange’s identity,

| 2 |2\ \ 2 2 , , 2y| + •I -ii' z y z

z. y •

(3)

2 2 y z = (y, z)2 + ^  £  (y± z. - y.):
i < j

Thus

(ji  zs " *j V  ■

Substituting this result in equation (2) yields

X X <yi zj - zi yj)2 -p2 (iyi2 + izi2)
< kt2

yl ZJ • zi y jl

<  Itt2 n(n - 1)
(yi zo -

.2 < ,2 n(n - l)Thus 3 _ t — — ^— -
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The major importance of these two theorems lies in their ability
to determine an upper bound for the real and imaginary components

\

separately. However, the following theorem proven by Levy-Hadamard - 
Gerschgorin gives an even more basic result and has since been used 
as a cornerstone for many more theorems of eigenvalue bounds.

Theorem II.A.3
The eigenvalues of a matrix are inside the closed domain 

consisting of all circles k^ (i = 1, 2, ..., n) with centers
a.. and radius li n

k=l
k/i

ik

Proof: Let B be a matrix of order n. The system of 
equations Bx = 0 has a nontrival solution if and only if 
det B = 0.

Let be the dominant component of x = (x^, . . x^),

Then the kth equation is
n

bkk *k b. x km m
m=l
m^k

or

and thus

n
kk

kk

m=l
km xm

km I *
m=l
m=k



Now let B = A - AI? where A is such that det(A - Al) = 0, 
the "eigenvalue problem".
Therefore

m=l
m^k

An almost immediate consequence of the theorem is the well 
known "Theorem of Frobenius."

Corollary II.A.3 (Frobenius)

n

n

A max < max
m=l

?\ \ min

k^m

, so that from the above

n n

râ k

also > so that



.1U

TAlso, since det A = det A , then
n

m-1
m^k

akm

may be replaced in theorem II.A.3 and its corollary by

n
mk

m=l
m^k

Thus the centers of the circles containing the eignevalues will 
remain unchanged even though their radius will be changed.

As a further refinement of theorem 3> Alfred Brauer was able 
to restrict the regions containing the eigenvalues by means of 
the "ovals of Cassini" in the following.^

Theorem II.A.4
Each eigenvalue of A lies in at least one of the 

ovals of Cassini

n(n - l)
2

| A - akk A - a K
i \ i ^

b •

11Alfred Brauer, "Limits for the Characteristic Roots of a 
Matrix II,” Duke Mathematical Journal, vol.* 1^ (19^7) ? PP- 21-23*



and in at least one of the ovals

A A - a.II
<
(a,I Ii—1
\yl/k

n
‘ik

0=1
0 ^

a

Proof: let
(x = xa , x2, xn), ^  = U J  .

as was shown in a previous theorem by Gerschgorin for the matrix
A = (a . .), ij

n
(A - ) x_£ = ^  X y  i - 1, 2, . n .

.3=1

Now let |R > tz „ ty for j i k, j ^ i.

Then
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Therefore

A - akk aZZi k̂

n

i ,i=i 
\3fr

.1=1 
/ w *

so that r n \  r n
A - akk A - a11 - ih i  )

\
a7 .
lo !

j=l f <1=1
/ \ .1^
! \

which proves the theorem.
ASimilarly it may be shown that all A are contained in at 

least one of the ovals

n
A - “kk ' ! A - a ! <

11
Y

Ik i
i=l
i^k

r n

M i

There are n elements, a.., which, in part, form the ovals. Then  *
number of subsets with two elements that can be chosen from this 
set of n elements, is

n! n(n - l)(n - 2)\ n(n - l)
2! (n - 2)! ~ 2(n-^yi " 2

Thus there are P.tfl Z — • ovals.



17

Another inequality giving the regions in which the eigenvalues 
are contained is:"*"2

Theorem II.A.3
For the matrix A - (a..) ,x i,l n’

i .i A  - a. .11

for 0 ^ a 5 1»

Proof: As was shown in theorem 3 and the following corollary,
for the determinant of A - AI to vanish, the following inequalities
must be satisfied:

n
and | A - a.. i ) la. . .j lii ”  /, I ij

i £3

Thus

whenever

12Alexander Ostrovski, "Ueber das Nichtverschwinden von Determinanten 
und die Lokalisierung der Characteristischen Wurzeln von Matrizen,” 
Composito Mathematica, vol. 9 (1951)> PP* 209-212.

A - a. .li -  ) id

< 7
nX

1 j=1

A<̂x ■' n̂  \ 1-a

‘ij! ! ; L !âl
j ; k=i 
; \ k^i
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The importance of this theorem lies in its ability to exclude 

certain regions in which the eigenvalues cannot exist. This is 
true since the region containing the eigenvalues is contained in

rv n
\

n
a / \ 1-aj

"13j\ .±3=1 - i=i 1
HiAs simple corollaries to this theorem, we have

J

Corollary II.A.5a.

n
a A < iA a. . +max ii t

a

:aij!
0=1
J / i

ny 1
i /o

*\
'1-a-

a. . i
i 10|

. AA
r>

min — a.. ii i ;

f n \ a  /---1 \l-CL

J\ L  ! a u i !  L  > « i
!0=1 ' Ii-1
\o/i i /o J

<
max~

n — a - n -
1 a . . I + ) I a. . 1
i i 1 !

la.j + ) la. . I ‘ ii! Li 1 i0
0=1 i=l ! !
d/i i/j

1-a

A >
min _ s..i i

n

0=1
o / i

aid

a n
V"

’ii! + Li=l
i/0

a. .
10

1-a

all for G 1 a S 1. The corollaries and theorem hold likewi.se
for a. = 1 - }3, 1 - a = 3 where 0 1 3 < !•
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As a direct consequence of theorem k, we have

Corollary II.A .9.b.
For each a r 0 1 a 1 1, every eigenvalue of A lies in at least
„ ,, n(n - 1)one of the — — -— - ovals,

z - a. .i i
<

1-or, n A i

jaji| ^r.ik 
i-1 1 \ j-1‘M 3 J \ .i A J

for j / k.
For a - 0 or a = 1, this reduces to theorem U.

As a further extension of theorem U, the largest eigenvalue
1^may be bounded from the results of

Theorem II. A. b.
Each eigenvalue, X, satisfies

A 2 max
k,j—1,2,...,n

M i

kk
V(

+  |a j j| + ' ! i h *Lv
a. .

1J j + P.k j

1/2
\ = M

n
where pk =

j=i
dM

^ 3  |

■^Brauer, "Limits pp. 23-2̂ -u



Proof: By the previous theorem

PC)

A ~ 3 I j A — orr i ! • ss
< P P r s

assume that rr ss

(l) If |a | < la |« then I I ~ rr|

A <  1

<

, then

| a | + I8 1 )1 rr' | ss '

a | + a | +rr | ss |

rr

(la I -la rr

a | ) ■ ss

+ Up pr s
1/2] < M

since
P > 0, P > 0. r 7 s

(2) If |>| > | a.a ^ 1 a y then1 rr — j ss

0 < 1 A ! - 1 a < A - ai 1 rr “ rr

O C AA _ a < A - a |ss ss

By the preceeding theorem,

A a Arr A -  ass j\J/ < A - arr A - ass



times

A 3 : +I rr i ss rr ss hp p " r s|
<

Thus either equation (?) ^ 0 and equation (8)  ̂ 0

or equation (7 )  ^ 0 and equation (8) ^ 0 .>

However since equation (7)

a ! a [ ja _ 8.rr I , ss \l11 rr SS + Up P r s

< a i - i a +rri i ss! yfi rr a | + Up Pss J r s

= equation (8),

then it must be true that equation (7) < 0 ^ equation (8)



Thus from equation (7)., it follows that

/~
>* 1 A 1

2 la | + | a + 1 rr| | ssl (Ivl - la \\2 + UP P- | ss I 1 r s
- —

1/2

In addition, if a third condition is satisfied, namely

\ k  aj,i P. P.,k 3

then a similar type of lower bound for the modulus of the eigen-
lUvalues of A can be formulated from the following

Theorem II.A.6 .
If

akk a/Li > Pk k ’ J ~ •••, *

then

A | > rain
k, j--l ?2 , * •.n kk + |ajti ~ ( ^ k j  “ ajj ) + Up. P.k j

= m > 0.

Proof: As was shown in the proof of theorem 2,
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From equation (8) and the following result,

A | - I I a 2 1 I rr + ass ,« /I I a I — la I j + UP P '< \ /1 | rr I I ssn r s 0 ,

or

1
rr + a 1 / 1  r r - |ass|) Up p r £

>

regardless of the relation of A to a and arr ss
Now assume that m is attained where k = 7 , ;) = 8 , so that

m - p 77 I I 58 rri» * t 8*..77 1 88 + kP7 P8

a +
77 88 a - 2 a a„^

771 77 88 *68| + u p r p5

> I a + -
i2a - 2 a a^ 7  + 2 + U a a.. _ I

77 1 581 77 77 58 85 77 58 j
■/

1 7 , 1 ± I f\2
a77

4" a 58| " [\a77\ + | 8 8 1J = 0 .

Note that all of the previous theorems have given bounds for 
the modulus of the eigenvalues, only. However, for a particular 
case, more definite information may be implied from exact information 
regarding the values of the elementary symmetric functions of

A^, ..., Ar. Several important results concerning these functions

are given by the following:
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Theorem II.A.6

For an arbitrary matrix A = (a^)n

n n
A. = 1

i=l i=l
a. .li (9)

n
I | A. = det A 
i-1

(10)

and
n n

i=l ti=l
a.. . (11)

if A is real.

Proof: Let

\j/(A) = det (A - Al)
By a Maclaurin’s series expansion of t(x)the coefficient of Ak-1

is
A*"1 ,d \Jr

(dA)k-1 A=0
=s (k - l)! [a-- + ... + a ' 1 11 nn

Also by the Fundamental Theorem of Algebra,

t(A) = (7^ - A)(Ag - A) ... (An - A),

where the A^, ... Afi are the eigenvalues of A.



Then

2^

a1*'1 * ( a )

(dA)k_1 = (k - l)! (A.. + ... A ) J. n
A=0

Thus
n n

A± -
i-l

\

i=l
E, , ii s trace of A

Also for \J/ = det (A - XI)

*(o) =
(dA)

det A
X=0

and for v(A') =
n n
IT (A - A ) ,  lir(O) = T T  a . 
1=1 1=1

Thus | jrV = det A.

Likewise the other elementary symmetric functions are the corresponding 
coefficients of the characteristic equation.

Now since the multiplicity of A^ in A is the same as the

itmultiplicity of A^ in A , then

trace of AK = ) X
n

i=l

(Note, if all A ?= 0, then \Jr(X) = An = det (A - XI) = det A = 0)
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Let k 

Also

Since

Thus

2. Trace A2 = + ... + 7? .1 n

Trace A =
nzi=l n n

2a.. + li aik 
i=l k=l 

i^k

Trace AT A = £  . £  £  = £  «f± + £  £
k=l i=l i=l i^k

a±k + \ ±  - 2 aik \ i ’ then

2 c TTrace A Trace A A

n n nIM2 - I X |mk=l 1 1=1 k=l

The possible accuracy (inaccuracy) of some of these theorems 
with several examples will be given in the section titled 
"Comparison and Computation."
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Section B - Bounds by Matrix Norms 

The purpose of this section is to determine the eigenvalue bounds in 
terms of matrix norms. A matrix norm )| a || , of a square matrix, A,
is any bounded, real valued function such that the following are true: 
Matrix Norm Properties

(1) I) A|| > 0 whenever A £ 0
(2 ) M l = |a| 11 A| | where a is a scalar
(3) ||A + b|| < ||a || + ||b ||
(*0 IIa • b|| < ||a)| • ||b||

A relation between the eigenvalue bounds and the value of powers of
15the matrix are given in.

Theorem II. B.l
All eigenvalues, AA, of the matrix A are contained within the 

unit circle, if and only if

lim An = 0 •n-»co

Proof (l): Assume that all eigenvalues of A are contained in the 
unit circle. Then choose an arbitrary € > 0 such that

Aa | „ + € <  1 • i max

It is now desirable to find a matrix norm with

N s  lxAL  + e < 1

15Alston S. Householder, On the Convergence of Matrix Iterations,
(Oak Ridge, Tennessee: Oak Ridge National Laboratory, 1955), PP* 4-12.



for by property (^) of matrix norms it follows that

An < ,U,n

So if II All < 1 ,  then

implies
lim||A||n = 0n—>00

lim ||Ai = 0n->oo "
By the contrapositive of property (l) of matrix norms,

llm ||An|| - 0
n->«»

implies that

lim An = 0 
n-» co

so that the stifficieney portion would be proven.

The desired matrix norm actually does exist. Define 
be the maximal row sum of absolute values of G“̂ AG; i.e.

“ Ih^Acll16

where G is a diagonal matrix such that Ge = g, where
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This is a well defined norm, since ||A||g properties (l) and (2) 
are obvious, while property (3) is immediate from Minkowski*s 
inequality, and likewise is property (^) from the Cauchy-Schwarz 
inequality.

Let A  be the Jordan canonical form of A, so that A = T"^AT. 
Then A  is an upper triangular matrix. Let P = diag(5n,5n"1 ,6n"2, 

where 5 > 0 .
Then

p-^AP =
0

0

0 . . . 0
5 ... 0

• • * 0 
• •
• •
• *

0 • . * A,

M g  - l|P_1AP||e < K | max + €

Notice here that had the eigenvalues of A been distinct, S could 
assume the value zero and thus so would € = 0 .

Therefore, the norm ||a|| s||A||g is sufficient to show the 
existence of the desired norms.

.)

Thus j|p“̂ Ap||e < | AA| + €, since the value of its maximal row sum 
may be made sufficiently close to | a |maY by choosing 5 small enough. 
Then by transforming the e norm by P, i.e., Pe = g, we get
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nProof (2): Let lim A * 0. Nown-»oo

An * (T^AT)11 = (T“1AT)1 (T“1AT)2 . . . {tTmmlAT)n = T ^ A 1̂

Therefore,

lim An * 0 *> lim T“^AnT n-*«» n—>co = 0

or

0 = T^flim An)T .n-*»

Thus

lim An = 0 .

Then each element (A..)n of the Jordan matrix An must be such that

- 0

for all i,j*
Let A  be partitioned into block diagonal form where each block 

corresponds to a distinct eigenvalue of A.
That is

-J-, 0
A -P 1L o *-jk J

where

Ai 1 on

l 

’ \ (Pxp)
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Then

An =
j "  0

Jp”
0

Notice, where (<\y)n is "the i>Jth element of Jn, that

'0 for i > j

XiJ = ( Ai ^ 0 for 1 = 3 
1 or 0 for i < j

Then the diagonal elements of J may be described as

i-1
“ ) ^ik^kj 

k=l
/ Aik\i 
k=l

* y *ik*ki +  ̂̂ ik^ki
k=l k-i

+ y  *ikAki = 0 • *ki + *i2 + *ik * 0 = V
k=i+l

hi jnAssume that for any m, (^n) ** •
m+1Consider ) . Since the product of a finite number of upper

triangular matrices (as are the J^'s) are upper triangular matrices, 
it must be true that

(A±J) = 0  for i > 3 .
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Thus
i=l i

(Xi)m+1 = y  + ^
k=l k=i

P
+ =
k=i+l

°(\i> + \ m • \  + < V m • Y * 1 .

Then for any w^ere as was seated
before,

lim An = 0 n-» oo

implies

Therefore in particular for i = j,

lim )” = 0n—>00 XJ-

or

lim (A±1)n = lim A±n = 0 •n-> oo t 00

that is <  1 , for all i.
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The importance of this relation is obvious when iterative 
(numerical) techniques, defining the matrix A as the error in the 
approximate solution, are considered.

One of the most significant and-generalized results is given by
16the following theorem.

■j £
Ibid., p. 12.
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Theorem II. B.2

|aa| <I max —

For an arbitrary matrix A, the largest possible eigenvalue modulus 
IIa|| , the matrix norm of A.

Proof: Let ||a || =• a, real scalar. Also define B€ = ■-— ~ r y  where e
is a positive real.

Consider

B, (a + e) (a + e) Ml -
a

a + e < 1

for all € > 0, that is, ||b €|| < 1. By the proof of the previous theorem
(first part of Sufficiency), Be < 1 implies that lim Bn * 0, which,' n —> co
by the result of the previous theorem, implies that for all eigenvalues of

B,
Be, Aj_ , it is true that |A^ €| <1. Now if A-j_ is any eigenvalue of 
A, then there will exist a corresponding eigenvalue of B such that

a A
a ±a

(a + €)

From the above, since |a ^ €|< 1, for all eigenvalues of Be, then

*iA

(a + €) < 1

or

Therefore

|\iA| < a + € = ||A|| + e .

^  ||AI| » slnce the ^ t i o n  is true for all c > 0 .
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The following is a listing of several possible norms for an arbitrary 

matrix, A = (aij)n*

||a || e = J trace (A*A) = square root, of sum of squares of A (Euclidean)

(9)

IIA|| ss maximal row (column) sum of A (10)

Alt eT as maximal row (column) sum of A* (ll)

M g “ Ib 'M Ie  (12>

where G is any nonsingular matrix and || a || is any matrix norm, where
Ge » g.

n
a '1 s = ^  l u l  ( « )

i,j=l

A|| j - |j max. ||AX || , induced norm (I1*)

It is interesting to note at this point that for an arbitrary matrix, 
there does not exist a smallest norm. To show this, let ||a || min equal 
minimal matrix norm of A. Then by definition ||a || m£n < ||a || for an 
arbitrary choice of norm, and ||a || satisfies all other matrix* norm
properties. Let ||a || r » min { ||A|| ||at || and let XM  be

m  , A A  Tthe largest eigenvalue of AAX. (Note that A is real by
Theorem II. C.^0 Then A ^  * < ||aAT || m±n by Theorem II. B.2.

I M I  min <(|| a|| ' Y  or < INI ’-
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/ A T \1/2It has been shown that (A m Y ) satisfies all requirements for 
a matrix norm.*^

Thus, (^AAT^a^ J" s ||a|| min is such a minimal norm exists.
To show that it does not exist, consider

so that

AAT =

and take

'2 0

n
INI = ^  |aij|

i=l

Then, ||A|| = 1, ^  = 2, so

n l/2
11*11 m m x  K j I  =  1 <  V ^ w a x )  5

i=l

a contradiction since no norm can be less than the minimal norm.

■^Albert H. Bowker, ”0n the Norms of a Matrix,11 Annals of Mathematical
Statistics, vol. XVIII, no. 2 (June 19^7), pp. 287-288.
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As has been shown in Theorem II. B.2, the largest modulus of any 
eigenvalue of a matrix A, less than the matrix norm of A,

regardless of how the norm is defined. Thus, j^jmax *-s a bound
for the matrix norms of A.

A reasonable question becomes, is |a |̂ the greatest lower bound 
of these matrix norms?

A. H. Bowker, in requiring a fourth property of matrix norms, namely 
for ||ê  > < ej j| - 1, shows that"^

f ?  M  <  I M Ix ? J
where (e^ = (0, 0, . . ., 1, 0, . . ., 0).

jth position
Thus, for a simple triangular matrix, B,

r 10
A as 1

L20
o on
5 0 , max |an* J =• 20
If 5J  iiJ ' 01

while M  max » 10. Therefore, in general | mnY is not the greatest 
lower bound for the norms of A. However, |x̂ | mn.x is the greatest lower 
bound of a set of constant multiples of related matrices. This result is 
given as:

-*-%[bid., pp. 285-286.
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Theorem II* B.5
For the matrix B, the eigenvalue of largest modulus 

is given as the greatest lower hound of the k̂ . > 0 where

K = f K, I A - and 11m An = o) .V 1 1 n->oo J

Proof: From Theorm II. B.l, it follows that

•nil
lim — lim A = 0  n—> ooi n-̂ co

if and only if . |â | < 1 , so that 1 > Ix̂ l ® 1—  I max* 1 'max 9 I I max k 9

k B f <  k.I I max 1

for

ki£K

1BI^ is a lower bound.i max
Also

k = IXB max

is not an element of K, since

o
and

1̂  - 1 ,I max

max*

or



so that

Now since

39

lim An / O.n-»co

A,
max

is the least upper hound of the

max

such that

lim An = 0
Tt-> oo

then it follows that |a |̂ is the greatest lower hound of the
k±dC.

If the matrix is partitioned such that each diagonal submatrix 
is square, then eigenvalue hounds may he determined by procedures 
similar to those used in Section A, Chapter II.

Let A he any matrix order n, which is partitioned as

A =
~An  Ai2

ani

where the diagonal suhmatrices Aj_̂  are square of order n^



Define the matrix norm by:

INI - „ 1.1SUP
xeD II x
x#)

a.

for an arbitrary vector nonn over the subspace
If the diagonal submatrices, A^i> are nonsingular, and if

-1 > lM
k=l
k*3

for all

1 < j <  N
then the matrix A is to be block strictly diagonally dominant 19

19David G. Feingold, and Richard S. Varga, "Block Diagonally Dominant
Matrices and Generalizations of the Gerschgorin Circle Theorem, " Pacific 
Journal of Mathematics, vol. 12, (1962), pp J.2kl-12kk.
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Theorem II. B.4

For the partitioned matrix, A, each eigenvalue, XA , satisfies
n

k=l

for at least one j, 1 < j < N .

Proof: Assume that A - XI is singular. Then there exists a nonzero
vector X =

Xn

such that

(A - AI)X ■- 0 .

Consider A - XI in its partitioned form; this is equivalent to
n
X  AijXj - - (Aii - AI1)X1 (15)
k=l
k^3

Let Xp he the largest component of X, i.e., 11 > ||Xj|j $ 1 £  j < N

Divide X by Then from equation (15)
n
^  ApjXj ■ ||(Arr * ̂ r^^rll * (16)
<5=1

From the Cauchy -Schwarz inequality, the left side of equation (l6) is 

such that
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<XlMNh|| ̂ IHI (17)
3=1

since

1 “ *r * ih
by the division of X.

Nov assume that the matrix, A - AI, is block strictly diagonally 

dominant.

Let Z = ( A ^  - AIr)Xi
Then 

(Arr AIr W  II - II ̂ rr" ^ r ^ l lr|1 |WI ||tArr -.^r) Zrrllr m r -  ( ll

since

II (Arr - ^r)~lxr|| I (Arr ' ... i|,
||Xr || “  IIXll H(Arr “ XIr) II*

Then from equations (16) and (17)

llxll
n

«)=!
&

Thus A - XI being singular implies that it cannot be block 

strictly diagonally dominant.

However, for A to be an eigenvalue of A, then in order for 

there to exist a nonzero eigenvector corresponding to A, then A - Al 

must be singular, and the conclusion follows.
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If, in theorem II. A.4, )a  - 

form (|| ( A ^  - AXi) 11 )"■*■ and

is replaced by the general

nZ Nl
is replaced by

j=i

nz
1*1
i

Ail

20then an identical proof will give the following.
Corollary I. B.4a

All eigenvalues of A, AA , lie in the union of the [n (N-1)]] /2

point sets C^, defined by
n

-1 .

where '

<ajj - )"1 s[ Z IK*!
i*i 
V i

1 <  i, j <  N and i 4 j .

(fwi y»i

In a similar manner, if the above substitutions are made in

theorem II. A.5> and an identical proof is used, the result will be
21the following corollary.

20
2i

Ibid. .p. 1247. 
Ibid., p. 1248 i.



Corollary II. B.^b
For any a with 0 < a < 1, each eigenvalue of

n

k=l
& 3

a n
A IK

k=l

for at least one j, 1 <  j <  N .

A satisfies



Section C— Bounds by Vectdrs and Related Matrices 

The purpose of this section is to determine eigenvalue bounds 

in terms of vectors or in terms of the eigenvalues of related matrices 

The majority.of the following proofs will depend upon the quadratic 

form of a matrix combined with simple geometric inequalities.

Bendixson proved the following result for a real matrix 

A = (aij)n* ex"tended by Hirsch to complex case.^
Theorem II.C.l

1 f T q TIf = a + ip, and ^ ( A + A  ) f ^(A+A ) are the largest and
max min

smallest eigenvalues of i(A+A^) ,2
then X 5 (A+aT) > XA > xl(A+AT) . 

max min

Proof: Let H be an arbitrary Hermitian matrix and U be the

unitary transformation such that U*HU is a diagonal matrix. If the 

equality y hij xj = ° y ^j

is satisfied by a non-trivial x, then

H H
^ max —  a —  ^ min

For -fx,Hxj = ^Uy, HUy) = ( y, U*HUy)

22Hirsch, 368-370.
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Now if ^x, Hx^ s a^x, 3^, then a^x, x^ = o^Uy, Uy^ = o(y, U*l^

■ ■ ’I d -
n

Thus >iax yi yi + ... + 7̂±n yn yn = yi y±> or

Ttaaax

Therefore >ffav> a >  A^ln

Now as was shown in theorem II.A.l

a = lS fa + aJi) *i V
so that

1(A+A T) > J ( A +AT )
max —  —  'min

Similarly, since

(a  -V 21 ,
is also Hermitian and since

P = 2 l Z  (aij -■ aji) *i xj> then'

Corollary II.C.l (to proof)

^ a,) > .  > > •
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Just as in the proof of theorem II.C.l related vectors may be 

used to define eigenvalues and their bounds.

Assume that an eigenvalue A^ with a corresponding eigenvector 

x^ exist for the complex matrix A. Then Ax^ = Ax^, so that

(Xj., Axi) = (x±y Ax±) = A(x±, x±), or

^  _ (xj, Axj.) _
(xi> *1)

In the more general form, the above quotient

(x, Ax)
i W  s TxT-xT’

for arbitrary vector x, is called the Rayleigh’s quotient.

Now if either A has distinct eigenvalues, or if A is 

Hermitian, then there exists a unitary matrix U such that

U*AU = Diagonal and U*U *s I. In either case

(x, Ax) » (Uy, AUy) *= (y, U*AUy) = (y,[diag A^y) .

Also if (x, x) as 1, then

1 = (x, x) = (x, U*Ux) = (Us, Ux) = (y, y) .
Thus the values assumed by (x, Ax) on (x, x) = 1 are equivalent

to the values assumed by (y, £diag ^i]y) on (y, y) = 1.

However, (y, [diag Â j y) = y| + A2 y| + ... + An y^,
so that (y, Qliag l] y) > (y, y) « \,in
and (y, Qliag aJ  y) < \,ny (y, y) = 7 ^  .
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A min (y, diag X, y) min (x, Ax) Thus V t n  = v ---^  -iJ „  ---- —
y (y, y) x (X, X)

and
A max (y [diag TvJ y) maJC (x, Ax)
iax y (y* y) x (*, x)

Although the preceding was predicated on the assumption that 
A had distinct eigenvalues or was Hermitian, this concept can be 
extended to include a larger class of matrices, as will now be shown.

Let A = (aij) be an arbitrary complex matrix and B = (bij) a 
Hermitian matrix whose order is equal to that of A, and such that 
(x, Ax) »= (x, Bx).

Let a .. = a.. + iB.. ij ij

bij = yij + 1 5ij
xj  = r j  + i s J

Note that a.^ = bu , i = i, n, and we require that

au  xi xj + aji xi xj = h j  xi xj + bji xi xj 

where b^j « b*ji* Thus,

W j + '  isi ) ( rj  + is j> + (aj i + W jiX r i  + is iH r j  - iSj)

Caij (rl rj + si sj) -pij (ri Sj * rj »i>] + 1 [?1J (rl rj + S1 sj>

+ aij (ri sj * rj sl^ + C a'3i<ri rj + si sj) + Pji <ri sj - S± B

+ l^-ajifri sj - rj Si) + PjiCri rj + s± Sjj]

= (jaij + ajl)(ri rj + si sj) + (Pji - PijHri sj - rj Si)]



Thus equating real and imaginary parts 

K j + aji>(ri rj + si sj) - - 0j i H ri sj - rj si)

- 27ij (ri rj + E1 sj} - 25ij (ri sj - rj si}

and

S j ' aji\ = S  rj + si sj

h i  + pji/ \r J 8i - rl Sj

Notice that for equality in the real part, it is sufficient that

7ij - | (alj + °3i>
and

6 - 1 (3 - B ),ij 2 VPij Pji''

conditions independent of the vector components. However for equality 
in the imaginary, it is necessary to restrict the vector components. 

Thus we have proven :
Theorem II.C.2
An arbitrary complex matrix A = (aij )n is equivalent to a 

Hermitian matrix, B, under the quadratic form if: for
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7ij “ I âij + a,)i7'ij ji
(18)

(19)

whenever the domain is restricted to values of equation (19) for all 

1 < J < n *
Notice that if the matrix A and vectors x are all real, so 

that the real scalar product is used, then necessary conditions reduce 
to equation (l8).

A relation which gives eigenvalue bounds of the matrix A in 
terms of eigenvalues of the related matrix A*A is from:

Theorem II.C.5

Proof: Let x^ be an eigenvector corresponding to the eigenvalue,
7^, of A, so that Ax^ = x^ and

(Axjl, Ax ±) = xj,, Ai x±) or

(x±, A*Ax±) s Ai (7^ x^, x±) = 7^ Ai (x±, x±) .

Since

(A*Ax, x) s (Ax, A**x) c (Ax, Ax) = (x, A*Ax) 
= ((A*A)*x, A), then (A*A)* s A*A



so that A*A is Hermitian. Thus N 2 (x1, A*Ax±)
= (x±, '

and by the

same reasoning as that of theorem II.C.l

-vA*A^min £

Corollary I.C.^a

Corollary II. C. 5b
If the matrix A is real, then:

A _ A
min < \ a x

The largest eigenvalue cannot only be bounded by considering 
related vectors, but in fact, can be approximated as closely as 
desired. This result is due to Collatz.

Theorem Il.C.lf.
For a matrix A of order k, -with k distinct eigenvalues and 

for an arbitrary eX), there exists an N > 0 such that for all 
n > N,

Proof: Let v = y^ + 32 y2 + ... + 0n yn, and let xi * y±,

so that v = xi + x2 + ... + Xn. Assume that the eigenvalues of A



52

are ordered such that

I^l I >  1^1 >  >  | \ l  •

Then /
A » v - ^ L  + ( ^ J  x I

As n -*«, then (^~]~*0 **or i *= 2, thus lim An v = x^j

likewise lim An“^ v = TsP"*1 x-,. Therefore 
n —> oo

n
An v ^1 X1lim . ■"■ = — ±— A- = A-i .n-1 .. ^n-1 x

1n ~*eo a—  v X p  x.

Several theorems which give eigenvalue bounds in terms of 
eigenvalues of related matrices were shown by Wittmeyer. ̂  Several of 
these are given below*

Theorem II* C. 3

A(AB)*(AB) jA*A . ab*b 
max — max max

Proof: Let h = Br
z = Ah 80 ^ a t  z = a Bt «

as was shown in the proof of theorem II*C*1 and 2

/ b *b\|
r a 2 h

2 ̂Helmut Wittmeyer, "Einfluss der Anderung einer Matrix, ” Zeitschrift 
fur Angewandte Mathematik und Mechanik, band 16 (October, 1956), 
pp. 287-300.



so that

< 0 * ^ 2  ( H a-  \ max/ \ max/

Let r, be the eigenvector of (aB)*(a B) corresponding to

that is ri = ri-

Let z^ = ABr^. Then Zl|2 = ^Zl> Zl^ = ( ^ l *  ABri^

Thus, let z = Zj_, so.that

1. U * B ) * ( A B ) )  2 . 
1| \ max «ii < irii \C if (C T 2,

and conclusion.
It follows from theorem II. G. 3 and its corollary that 
Corollary II.C.3

kk b
max

< A,(AB)*(AB)) g 
— \ max / *

I

and also
AB\max s ( c F - W

Now in a manner similar to that of theorem II. C. 5, we have



Let r, be such that (AB)*(AB) r^ = r-,, so that for1'
* ABrj_ results in:

Letting z * z^,

'a (a b )*(a b )\ 2 =
l min j

. L  I [/>a*a\§ Ab*^\2 
- |rl| \minJ V'minJ »

thus proving
Theorem II.C.6

X(AB)*(AB) .A*A . .B*B # 
min —  min min

Again from this and the corollary to theorem II. C. 5, we have

Corollary II. C. 6
|ABVia

and
\7f*min

> (,(aB)*(aB) 2 
— V min /

\ 1

Another theorem which follows from a somewhat different geometric 
consideration if A and B are normal matrices is:

Theorem II.C.7
/x (a +B)*(a +b }\ 2 > /xA*i\2 + A b*b\2 #
\ max / I max/ \ max/

Proof: Consider

a (a +B)*(A+B) max
(a^ (A + B)*(A + B) x )
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max
x

(x, A*Ax) (x, B*Bx) . (x, B*Ax) t (x, A*Bx)
(x, x) (x, x) (x, x) (x, x) -

(x, A*Ax) (x, B*Bx)< max — L------ + max
* X (x, x) x (x, x)

(x, B*Ax)+ max --f— ■■  + max
x (x, x)

(x, A*Bx) 
x (x, x)

“ ^  + ^  + + ?W  whlch by the corollaiy to Theorem IX-c-5
is
< *ft*A + AB*B + ( W  . M*a\? + ( W *  . AB*B)| = XA*A + AB*B— max max \ max max) \ max max/ max max

+ 2 XA*A . aB*b )£ . V max

Thus

Aa**)2 + ( j W s  y max/ V max/

A(A+B)*(a +B)max
2 <(aA*A)2 + “ Vmax/ Ab *b\Imax,/ 9P I

and likewise we have 
Corollary II.C.7

\A + B max < (aA*A ) 2 + (?P*^\2 .

Theorems II,C.5 through 7 with their respective corollaries may 
he repeated as corollaries for the special case where A and B are 
real matrices and tranjugate is replaced by transpose.



CHAPTER III

COMPARISON AND COMPUTATION

From the results of the preceeding sections, it is seen that 
there are many ways to compute the bounds for eigenvalues. Two 
obvious questions at this point are:

(1) Do any theorems give more precise eigenvalue bounds in 
all cases than other theorems?

(2) Are the eigenvalue bounds, themselves, bounded?
The answer to the first question will be given as the major 

portion of this chapter.
With respect to the second question, it can be stated that:

Theorem III.l (a) If the eigenvalue bound is expressed in 
terms of the off-diagonal elements in powers not less than 1, then 
the eigenvalue bound is unbounded.
(b) If the bound is expressed in terns of the diagonal elements 
only, the eigenvalue bound is bounded.

Proof: (a) Thus



For a triangular matrix, A = max a.. .■ 7 max . ii
For, say api unbounded, A ^ y  is as given above for all possible 

values of &219

Then

lim f (a12> a21> •••* ail) = 03o —} OO °
21 i ^ J

i* J — 2, • • • n

since the off-diagonal elements are in powers not less than 1.
Thus the bound, is unbounded, even though the A ^ y  

remains constant foi all possible values of b.
The bounds given in: chapter 1, section A, theorems 1 and 2

(whenever a, g, or t correspond to off-diagonal elements),
3 with its corollary, k, 5 with its corollaries, 6, 8 (part 3)> 
section B, matrix norms l-5> theorem ^ and its corollaries, are 
all covered by theorem III.l.

Proof: (b) by theorem II.A.8, the values of the diagonal
elements are explicitly connected to the eigenvalues of the 
matrix A, by
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Then if any diagonal element is increased without hound, that 
is a u  implies n

so that at least one of the eigenvalues increases without "bound. This 
part applies to theorems 1 and 2 of section A whenever a, g or t are 
diagonal elements.

Comparison will now he made between the inclusion regions of 
eigenvalues for several theorems of section A.

then the corollary to theorem II.A.3 gives a smaller region than 
theorem H.A.l in all cases.

Theorem H.A.U (ovals of Cassini) give a smaller region than 
theorem II.A.3 since every point of the oval lies in at least one 
of the two circles which form It. This is readily seen in figure 1.

Since n
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Gerschgorin circles 
Ovals of Cassini

A =
2 0 0 
1 6 - 1  
2 1  i*

A = 2, 5, 5

Figure 1

Theorem II.A.5 gives a smaller inclusion region (when considered 

over all 0 —  a —  l)than theorem II.A.3* An example of this is seen 
in figure 2 for the matrix A, whose approximate eigenvalues are 

30.55, 10.07, and O .38



6o

A =
1 1 3   ̂10 2 
3 2 30

a  = 0

10

Figure 2
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The figure contains the region of the first two eigenvalues only.
The curves for theorem II .A. 3 correspond to a = 1. Note that 
theorem 5 thus excludes region (shaded portion of figure) for 
eigenvalues. From this it is clear that the second corollary to 
theorem II.A.5 is superior to theorem II.A.*k

With respect now to the theorems of section 2, it is clear that 
the matrix norms (l), (2), (3) and (5) are no better than the results 
of theorem II.A.3- However theorem II.B.^f gives a fundamental result 
superior to that of theorem II.A.3* As an example, consider the 
partitioned matrix,^

k -2 
-2 k

( 
O 

r|1
H 

O 
I

J A11 A12

-1 0 
0 -1

k -2 
-2 k > ^22

with eigenvalues, 7\ = 1, 3, 5, 7 and where the vector norm is taken as

2kOstrowski, pp. 219-220.
2^Feingold and Varga, pp. 12^6-12^7.



Clearly ||a12|| = [[a^ U  = 1

A n  XH K l J I  = H A22 II = SUP | P •9 consider

jj (Ail - Al)i|
-1

= inf

inf lAi i x - H I  >
11*11

inf [|A n  HI _ I M I
ll*ll IWI

= inf
A

For i a 1, 2

flA ii X H
IWI

/ 2 2 
2P X1 + 5*2 ' 8xl x2

+ x - 2/5

8x/ \ '"'1 x2 Let X2J - - ■■ ■ ■ for a minimum value of2 2 
xl 'a
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so that

inf

X1 “ X2 

*1 = -x2 "

Thus

^li x llP I P  - 2 ftr *1 - JCj,

= 6 for = -Xg •

By theorem II. B. 4 all eigenvalues are contained in the region
defined by: 12' - >s| ̂  1 and 16 - 7v| ̂  1.

A comparison between theorem II.B.^ (whose inclusion region is 
shaded) and theorem II.A.3 is given in figure 3«

From this result is clear that corollary II.B.^ a Is superior
to theorem.II.A.b. Likewise corollary II.B.^b is superior to 
theorem II.A.5*



Figure 3



CHAPTER IV

APPLICATIONS

Questions relating to the convergence of series and sequences 
of matrices arise in many situations. The eigenvalue bounds of the 
related matrices can give sufficiency conditions for convergence. For 
example, consider the system of linear equations, Ax = y, where A is 
a n x n nonsingular matrix of coefficients and x and y are 
n dimensional vectors.2^

Let G be an approximate inverse of A, so that the approximate 
solution is t - Gy.

It can be shown by induction that

x = ^  (I - GA)ht + (I - GA)P+1t . 
h=0

Denote the error in t by e =.x - t and let D - I - GA. Thus
P

€ - y  j k  + d p +i x  .
ifei

Now if 'xD7C < 1, the lim DP = 0. Thus max J p-» oo
CO

e = y  D^t
Z_ ;h=l

places a bound on the error e.

26A. de la Garzo, "Error Bounds on Approximate Solutions to Systems 
of Linear Algebraic Equations." Aids to Computation, vol. 7* no. ^3 
(July 1953), PP 81-81*.
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As another example, consider again the system of linear equations 
Ax * y where A is nonsingular. ̂  Let Xp he the pth approximation 
of x, so that Sp = x - Xp.

Define rp = A(x - Xp) = y - AXp. Assume that A = A^ + Ag where 
is nonsingular. To form the iterative solution of x, let each 

successive Xp+i he defined hy the equation

AlXp+l = y - A2Xp .
Now if the iteration converges, the sequence of Xp will do so in the 
Cauchy sense. Thus

<A1XP+1 + *2XV '> = A* ■

Then

Ai(x - Xp+1) = - Ag(x - Xp)

or

W l  = -

so that

Sp+1 - - (Ai-^JSp .

Alston S. Householder, On Norms of Vectors and Matrices, (Oak 
Ridge, Tennessee, Oak Ridge National Laboratory, 195^, pp 6-8.
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No\r if xQ is the initial guess for x, then SQ = x - xQ so that

gives a rough measure of the probable accuracy of the computation of 
the inverse of A. This ratio, P, is called the "P-condition number”

portion to the reciprocal of P.
As a further extension of the results given in chapter X, iterative

As a final application of the results of the preceding chapters, 
consider the problem of determining for a function of n variables, 
the values for which it attains its maximum and minimum.

Let f (x^, Xg, . . ., xn) be a real function of the set of real

Assume that it possesses a convergent Taylor series about each point 
in the interior of I, with continuous partial derivations.

^Philip Davis et al., "Bound for the P-Condition Number of Matrices 
With Positive Roots," Journal of Research of the National Bureau of 
Standards, vol. 65(B), no. 1, ^January-March, 1961), pp. 13-1^.
25Paul A. White, "The Computation of Eigenvalues and Eigenvectors 
of a Matrix, "Journal of the Society for Industrial and Applied Mat he

Sp = (-l)P (ax ~1a2)PS0. Thus a sufficient condition for the iteration
to converge is that

ITIEIX
Along the same lines, the ratio

-  = P
4 i n

of the matrix. In general, the accuracy of the results is in pro-

schemes may be established to give close approximations to all of the
eigenvalues of a matrix. A survey of these techniques together with 
comparative accuracy and computation time is given by White. ̂ 9

variables x^, x2, . . ., x^ over a closed interval, I, in En,

matics, vol. 6, no. ^ X^ece^er, 1958).
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Since by Rolle*s theorem, if f(a^, . . *,an) = ffai* • • •jbn)* 
vhere a and bel, then there exists cc interior of I such that 

f*(c^,C2> • • **cn) = 0* Assume that such a "c" exists.
If

f'CcjL, . . .,cn) > 0

f has a relative minimum at x - c.
If

. . .,cn) < 0

f has a relative maximum at x = c.
If

f (c-̂ , • • = 0

higher order derivative of f must be considered.
Let

X^ ss + Ojt 

“  ?2 +

= fcn + “n* •
Then

F(t) = f(x1,x2r . • *,^1 * fCcj + ajt, . . •̂ Cjjdjjt)*
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Expanding F(t) in a Maclaurin's series results in

F(t) = F(0) + F'(o)t + t2 + . . . (21)
2!

Then
n

dx-̂  dt Sxn dt ^  Sx^ Sxjj Z j Sx

i=l xi \ k=l xk/ i=i

(22)

n
2 ^  aj_ajf\ĉ x ; j - 2, . . ., n

i»X
i<J

since t = 0 implies that

X1 35 C1

x2 f c2

xn ~ cn *

Thus
F ,!(0)

i=l
” ^  ^  ^XjX-^C0!* • * •» Qn)

(23)

A  (2M
+ ^ A j ^ ajfXi*j(cl'c2' * * • * • > n .

i=l
±<j
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Then, assuming the c - (c^, . • «>cn) is a critical point, so that

. . -,cn) = . . . = ^ ( c j ,  • • .,en) = 0

the nature of f(x^, • « *^xn) cl>c2> * • *>cn v m  depend upon
the values of ^ (Q,) ^  in equation (21). Notice that from equation (l),

21
a^t - (x^ - c^). Thus

F X Q lilt. = | ) a12t2fXjLXjL(c) + ) Oiajt^a^Xj^^ J - 2, . . .,n 
i=l i=l

i<3

^ 2  ) (xi “ ci)2fxixi(C) (*1 - ci)(xj - cj K lXl(c)}
i«i
±<j

j = 2, . * ., n (25)

Let y^ = x^ - c^ substitute in equation (25) and define the result as

Q(yi> • • ->yn)*
Define

» _  I  -p K  . 1 ,  (c ) (of,\ai “ 2 Ixixi ■> Dij ~ 2 Xixj * ^ 0)

From this substitution into equation (25) results in a quadratic form
in n variables, so that equation (25) becomes

,jx M,

«(yx, • • -,y„) = ^  aiy± + 2 ^ bijy±yj (27>
i*i i=l
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Thus consider the critical points of Q (ŷ _, . . ., yn) under the
2 ? constraining condition that y^ + . . . + y^ = 1.

Using the general method of Lagrange multipliers, form the
function

f  = Q(yi> • • yn ) - M y i 2 + . . - + yn2 ) (28)

where A is the parameter to be determined. 
Using the n equations

= 0, i — 1, n

and equation (28), A can be determined.
From equation (29) it follows that

n
bF V

0 = = 2aiyi + 2 L  blJy J ' 2?yi
* 3=2 ■

OF
n-1 ’

- 0 = |=- = V n  + 2 L  *njy3 - 2^ n  
'n 3=1

(29)

(50)

or

(A - Al)y =
(ai - *)yi + bi2ya + bi3y5 + 
b2iyi + (a2 - A )y2 + b23y3 +

+

+ b2r>y n

bniyi + ........................... + (an - A)ynJ

= 0

(31)
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In order for a nontrivial solution of equation (31) to exist, 
the determinant of the coefficient matrix of equation (31) must 
vanish.

To determine the nature of f ^ ,  xR) in the neighborhood
of (c^, ..., cn ), the nature of Q.(ŷ , . yn) must be determined 
for those y^, . y^ in the e neighborhood of zero, that is, all 

y* = (y^ •«*> y^} such that y contained in N^fO), e > 0.
Notice that ,just by determining the values of •••* yn ) con“
sidering only those values of y which are on the radius of the € 

neighborhood, is sufficient for determining the nature of Q(y^> •••> yn) 
over the entire space. This is because Q is homogeneous of
degree 2, that is, Q(Xy1, •••, Ayn ) = A Qfy^, yn ). Thus, the

2 2 2 2 values assumed on y^ + y^ + ... + y^ = € are related to the values
2 2 on y1 + ... + yn = 1.

Now if •••> yn) is to be positive for all values of
y-,; y0> y„, then,

minimum
2 2 _ yx + *.. + yn » l

^ yl> *' *, yn^ > ^ (positive definite)

and likewise if Q(yj> •••? yn ) is to be negative for every 
y-L> ••• Jn> then,

maximum Q(y_ , y ) > 0  (positive indefinite)
2 2 n 

yi + ••• + yn = 1

If either of the above conditions for Q(y^, •••, yR ) hold, then 
it is necessary and sufficient for Q(y^> •••, yn ) to satisfy either 
of the above inequalities at both its maximum and minimum. Since it was
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assumed that the function had continuous partial derivatives> and 
was a real valued function, then the coefficient matrix is Hermitian 
so that values for X are real. Thus the values of y(X) corresponding 
to distinct values of X are orthogonal.

These values of y are determined by roots of the characteristic 
equation corresponding to equation (31)* When the condition that 
(y(X),y(X)) = 1  is added, the resulting y'(X) will be the points 
at which Q attains its maximum and minimum. From these values of 
Q, it may be determined at what points in the space that f(xj_, . . *,xn) 
is a maximum or minimum.

Since the matrix in equation (31) is real and symmetric, there 
exists an orthogonal transformation matrix, T, whose columns consist 
of the associated eigenvectors of A, such that

TTAT * H a g ^ ,  .

where the X are the eigenvalues of A.
Now

Q(y) * (y>Ay).
Let

Tz » y.
Then

(y>Ay) - (Tz,atz) = (z,ttatz) .
Thus

n
Q(y) « (z,zdiag(X))

i=l



7^

Therefore, a necessary and sufficient condition for

minimum Q(y) > 0

is that all A’s be positive.
Likewise a necessary and sufficient condition for

maximum Q(y) < 0 P  2yx +* • 1=1

is that all V s  be negative.
Thus in this example, it is not necessary to know the exact values 

of the ?\ to determine if one or the other of the above inequalities 
exist. To be more specific, if, for the matrix under consideration,

for all i=l, • . ., n and a^ > 0 then it is positive definite. 
Likewise for a^ < 0  and

n
> 0

3=1

n
> 0

3=1
3=1

then the matrix is positive indefinite.



APPENDIX

Notation 
a matrix of order n 
matrix transpose of A 
complex conjugate of A 
conjugate transpose of A
diagonal matrix with a^, . . ., an down the 
main diagonal

matrix norm of A
determinant of A
the ith eigenvalue of A
Jordan canonical form of A
the ith Jordan block corresponding to Ai
n-square identity matrix
row vector, (xj, xg, . . ., xn )
column vector (xĵ , x^, • • •,
n-tuple with 1 as ith coordinate, 0 otherwise 
complex scalar product
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