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ABSTRACT

The purpose of this paper is to determine the eigenvalue bounds
of a matrix defined over either the real or complex fields.

Well known theorems concerning the condition of eigenvalues as
a function of the condition of the related matrix are stated. Theorems
which determine the bounds are derived. Closed form solutions are
expressed in terms of (1) the matrix elements, (2) matrix norms, and
(3) vectors and the eigenvalues of related matrices.

A comparison is made in terms of the relative size of the areas
of eigenvalue inclusion for the various solutions. Conditions for
boundedness and unboundedness of these bounds are derived. Examples
in terms of eigenvalue bounds for particular matrices are given.

Results of this pasper are used in the problem of determining
critical points of a function of n variableskand in the problem
of determining the convergence of iterative solutions for a system of

linear equations.
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INTRODUCTION

In various applications of matrix theory, the following question
often aerises: given a matrix A of order n for what scalers, },

and corresponding nonzero vectors x, will

Ax = Ax (1)

be satisfied. That is, for a given transformation, A, what Qectors,
X, will remain directionally invariant, and what is thelr change in
magnitude. The answer to either of these questions almost immediately

implies the answer to the other.

Equation (1), when written in the equivalent form

(A-)\In)}(:O,

where In is the identity matrix, yields n homogeneocus linear
equations in n unknown, these unknowns being the components of

X = (xl, Xys +ees xn). This system of equation will ﬂave a nonzero
solution if and only if the determinant of the coefficient matrix
vanishes. Expansion of this determiﬁah£ yields a nth degree
polynomial in A. The roots of this polynomial are cal;ed the

eigenvalues of the matrix A.



For values of n f L, the eigenvalues can always be found. How-
ever for n > r, this polynomial is not solvable by radicals.l Thus
in general? for a matrix of order n > k4, its eigenvalues cannot be
found by direct means (in closed form solutions).

Nevertheless, various techniques do exist.for determining the
bounds, both upper and lower, for the eigenvalues and quite often
this information is sufficient to solve various types of problems.

This paper will be concerned with theorems which will determine

the upper and lower bounds for the eigenvelues of a finite matrix

defined over either the real or complex number fields.

lB. L. van der Waerden, Modern Algebra, (New York: Frederick Ungar
Publishing Company, 1953), p. 177.




CHAPTER I

WELL-KNOWN THEOREMS FOR EIGENVALUES

Some well-known results concerning the eigenvalues of particular

types of matrices are given in a tabular form below.



Condition of A Notation Condition of A Footnotes
_XA
(1) Hermitian A=A All M\ are resl 2, 3, 4
(2) Real symmetric A= AT All A are real 2, 3
%
(3) Skew hermitian A= -A All A are imsginsry| 2
(4) Real skew symmetric A= -AT All A are imaginary| 2
% .
(5) Unitary A"A=1 | | 2, L
(6) Orthogonal AT A-1 l%j ’- 1 2
(7) Triangular, that is,
all c ... 0
85y 8o5pcce 0
A: . . - 7\:5,,
. . . J JJ
a a ..'a
L__nl n2 nn |
or
AT
(8) Permutation, that is,
[0 1 0...0 O]
o 0 1...0 0] 2nk
A=l 1o Do A=P 7\J=e‘j 5
0O 0 O ... 0 1
1 0 0...0 O]
2

E. T. Browne, "Limits to the Characteristic Roots of a Matrix,"
American Mathematical Monthly, vol. L6-(1939), p. 252.

5T. E. Hohn, Elementary Matrix Algebra, (New York: Macmillan Co., 1962),
P. 223

hw. V. Parker, "Characteristic Roots and Field and Velue of & Matrix,"
Bulletin of The American Mathematical Society, vol. 57, no. 2
(Maxrch 1951), pp. 103-10k.

5MQrvin Marcus, Basic Theorems in Matrix Theory, (Washington, D.C.:
U. S. Government Printing Office, 1960), . 9.




Other results which are less well known than those above, but
yet of some importance are listed below.

(1) If A is a positive real matrix,'that is =& > 0, then

ij

L¥

there exists a real, positive eigenvalue which is simple and such
. o)
that its absolute value is greater than that of any other eigenvalue.

(2) If A is a non-negative real matrix, that is a
T

>
1=

then there exists a real, positive elgenvalue.
(3) If there exists a k such that Ak is a positive real

matrix, then there exists an eigenvalue of A such that it is real,

and its abgolute value is greater than any other'eigenvalue. If,

-~

in addition, k 1s an odd integer, then this eigenvalue is positive.o

6Georg Frobenius, "Uber Matrizen aus Positiven Elementen,"
Sitzungsberichte der Berliner Akademie der Wissenchaften Mathem-
Physikal (1908), pp. 471-L76.

7Alfred Brauer, "On the Characteristic Roots of Power-Positive
Matrices," Duke Mathematical Journal, vol. 28 (1961), p. 439.

8Ibid., pp. 439-Lh3,




CHAPTER II
THEOREMS FOR EIGENVALUE BOUNDS

The bounds for eigenvalues may be determined in various ways.
In general, these relations express the bounds in terms of (1) the
elements of the matrix itself, (2) matrix norms, and (3) vectors
and eigenvalues of related matrices. Although the eigenvalues may
be approximated by considering the roots of the characteristic
equations, the necessary procedures (Newton's method, Graffe's
method, etc.) require a "first guess" of the roots combined with
successive iterations. These relations do not lend themselves to
closed form solutions of eigenvalue limits. Therefore, only those
types of relations listed above will be investigated in this paper

(in their listed order).

Section A - Bounds by Matrix Elements
-An important relationship giving the eigenvalue bounds in terms
of the matrix elements and matrix order is provided by the following

theorem.9

G
M. A. Hirsch and M. I. Bendixson, "Sur Les Racines D’une Equation
Fondamentale,” Acta Mathematica, vol. 25 (1902), pp. 367-369.




Theorem ITI.A.1

Let A be a complex matrix of order .. n.

¥
Define G =1/2 (A+A) -T =1/2 (A -A")
A

Let a = max Iaij.; g = ﬁax |g13]; 1 = max ’tij‘ N o =a+ i
Then |%l < na; |a| < ng; 'B{ <'nt ]
Proof: From Ax = Ax. follows (x, Ax) = (x, Ax) = A(x, x)

and (Ax, x) = (M, x) or (x, A" x) = N, x).
Then (x, Ax) + (x, A x)'= (o + 1B)(x, x) + (@ - 1B)(x, X)
or  (x, (A+ AN 2a(x,x) |
(x, Gx) = a(x, x).
Likewise (x, Ax) - (x, A x) = 2ip(x, x)
or (x, Tx) = ip(x, x)
-i(x, Tx) = B(x, x)-

By the Cauchy-Schwarz inequality,

n n
|%| l(x, x)l = ’(x, Ax)l < ;ﬁ 24 ’aij' 'xi l’xj'

‘——l
=1 =1

lk(x, X)|

e

1A

J= ,.—.

J:

1 : SERE ZZ s )
> 5

IIE\/jb
I
|5
+
|B
it
S
-

where the x are normelized such that (x, x) = 1. Thus ]k‘ < na

Proceeding in a similar menner, since

a(x, x) = (x, Gx)



then

'la;l < ng.
Likewise since B(x, x) = -i(x, Tx)
then

IBl < nt.

Bendixson essentially proved part of this result, and, in

addition,found a bound for the imaginary part for a real matrix

Theorem II1.A.2

Let A be a real matrix of order n,

G=1/2(a+aT), 7=1/2 (A - AT), and N = o+ iB.

Then

|8] =t 4/n(n - 1)/2.

Proof: ©Since Ax = M for x = y + iz, then

Aly + 4z) = (@ + iB)(y + 1i2) = (ay - Bz) + i(az + By).

Equating real and imaginary parts,

Ay = ay - Bz
Az = az + By.

So
(¥, Az)

- (z, Ay)

(v, az) + (y, 8y)

- (z, ay) + (z, pz)

[t}

A.

01p14., p. 368-370.

10
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and adding

i}

(v, Az) = (z, Ay) = B((y, ¥) + (z, 2)).

Now

i

(v, Az) - (z, Ay) = (v, Az) - (A" y, z),

where A is the adjoint operator of A,

= (v, Az) - (v, AT 2) = (v, (& - aT)z2) = B((y, ¥) + (2, 2))

or by definition of T, B((y, y) + (z, z)) = 2(y, Tz).

v T
Now, since T = -T7, then tij = 'tji and tii = 0.
Thus
\"\—| - b T
(y, Tz) = /. Z tyy ¥y 2y = Z Z by (v4 Z25 =Y z;)
i J i<
< A
- t . 2, = 2. V.
L Tl P )
and upon squaring
2 / . 2
2 2 2 < 2
+ L Z, -2z, Y.
B 0y| Izl ) - e (Z 2 |yi J zlyJO’
(2)

where t = max It..]
iJ

By the arithmetic-geometric mean inequality, for real numbers T,

)2 f_ m(ri + ... + r2).

(r1 + ...+ T o

m
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elements in the matrix; the diagonals not appearing

Now there are n
For every two elements of the

.

in the above sum since t,, = -t,
i ji
matrix, one combination is used .in the summation. Thus there are

2 _q n(n - 1)

ne on
2 - 2
combinations.
Thus . )
. >
(Z Z lyi zy - 2y yi|) f n_.(_n_e_'_}l Z Z (yi 2 - 2 yj) .
(3)

Consider now
2 2
(7 + 1) = (11" - 1o12) = 2™ g2

By Lagrange's identity,
2 2 \2 N 2
y© oz =(y,2)+LZ(yizj-ziyj).
i<
Thus
2 -
2 2 , ‘
> : -
(M *IZI)-’*Z Z (vy 25 =25 v3)"
Substituting this result in equation (2) yields
2

ug? Z Z (v4 Zy =2y yj)e < 32 (|:sr~|2 + |Z|2)
.<. hteh(z z |yi z:j -z yjoe
<w?| e 1) 1’] ) ) Gy oz -y 2

COLLEGE oF WiLLiam ¢ MARy

Thus B 2n(n -1)
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The major importance of these two theorems lies in their ability
to determine an upper bound for thé real and imaginery components
separately. However, the followlng theorem proven b§ Levy-Hadaﬁard-
Gerschgorin gives an even more basic result and has since been used

as a cornerstone for many more theorems of eigenvalue bounds.

Theorem II.A.3

The eigenvalues of a matrix are inside the closed domsin

consisting of all circles k, (i =1, 2, ..., n) with centers

i
a,. and radius
ii n
-ﬂ .
ri = >L Iaikl.
k=1 :
k#1

Proof: Let B be a matrix of order n. The system of
equations Bx = 0 has a nontrival solution if and only 1if
det B = 0.

Let x  be the dominant component of x = (xl,..., xn).
Then the kth 'equation is.
n
bk.kxk"z Pem X

m=1
m#k

or

and thus mﬁk

£

A
>
g

m=k
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Now let B = A - AI, where A is such that det(A - AI) = O,
the "eigenvalue problem".

Therefore

n

[ -] < Z |

m=1

m#k

An almost immediate consequence of the theorem is the well
knowvn "Theorem of Frobenius."

Corollary II.A.5 (Frobenius)

3
"?\1 max S mex Z ‘akmi

m=1
n \
%%lmin f min (Iakkl - 2: |akm ).
m=1
k#m
Proof: 'k - akkl > i%l - |akk , so that from the above

n

l%‘ < lakk‘ + mZL ak!n‘ =m; Iakm‘ .

mlc

also |X - akk‘ > Iakkl - l% ’, so that

~=

L

A2 |o] 2, o]

35
L



Also, since det A = det AT, then

n
,——'
24 Iakm\'
m=1
rm#k
may be replaced in thgorem,II.A.3 and its corollary by

n

)

m=1
m#k

Thus the centers of the circles containing the eignevalues will

a

-

remain unchanged even though their radius will be changed.’
As g further refinement of theorem %, Ali'red Brauer was able
to restrict the regions containing the eigenvalues by means of

the "ovals of Cassini" in the following.ll

Thecrem II.A.L

Each eigenvalue of A 1lies in at least one 6f the ELQT%QLl
ovals of Cassini
n // n
. - < .
R I L]
J=1 | J=1
AT

1k

llAlfred Brouer, "Limits for the Cheracteristic Roots of a
Matrix II," Duke Mathematical Journsl, vol. 14 (1947), pp. 21-23.




and in at least one of the ovals

’qu, _ \/& \
]7\ - akk\ - a'ul = ZJ laik‘j Z Iaz)i‘
i1 a1
ifk J ‘37“ /

E_IL(:_JEE . Let
{x = Xys Xps e, xn}, g, = |xi| .

as was shown in a previous theorem by Gerschgorin for the matrix

and
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Therefore _ \
/‘9_, \'/;13_1 \
|'A-a]~'>\-aigg<’ a (1) ey lE
Kk AR T A N |2k ,‘\Z_, ] Zj' k51
| J=1 fla=1 !
\p#k ) \g#
so that

/ N/ A\
"‘)\-a ‘ ~‘]?\-a P < i a *' ;ﬂ | a \‘
kel | L | kj'g L, ! 1

\ 3¢k Py f
\ I\

which proves the theorem.

Similarly it may be shown that all RA are contained in at

least one of the ovgls
|y b L L < (N a a
‘7‘ N IR T S A IZ, Ia'ikh{ Z iailzi ‘

There are n elements, aii’ which, in part, form the ovals. The
number of subsets with two elements that can be chosen from this

set of n elements, is

n! _n(n -1)(n -2)!1 =n(n -1)
5T(n = 2)1 - (n -2)1 - T 2
Thus there are oS\ = 1) ovals.

2
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Another inequality giving the regions in which the eigenvalues

are contained is:l2

Theorem II.A.5

)

For the matrix A = (ai ) e

J

ii

o Nl e
b , ot )
A -agl S 21 ‘Llam]\

. H'
oy

J
{ ; \ k#i {

for O i a S 1.

Proof: As was shown in theorem 3 and the following corollary,
for theldeterminant of A -2 to vanish, the following inequalities

must be satisfied:

Z, a2,
N i o<
|A - ail‘ f ZL ;al ‘ and !l -85y - 2: [alJI'
j:l j=l
j#n i#]
Thus
] \1-o
e 1<) < /KEL f\a“ . 3
A-aggl o= \7‘ - au!’%(h - 8y 4) - | Z g’aia‘.! | (L Iaij’ E
; p ‘ j=l , 3J=,l '
| IA BREYS
~ ~

whenever 0 S a £1.

lQAlexander Ostrowski, "Ueber das Nichtverschwinden von Determinanten
und die Lokalisierung der Characteristischen Wurzeln von Matrizen,"
" Composito Mathematica, vol. 9 (1951), pp. 209-212.




The importance of this theorem lies in its ability to exclude
certain regions in which the eigenvalues cannot exist. This is

true since the region containing the eigenvalues is contained in

’ n ~n : ;ﬁ
. ’. T \a [ \ 1 ~ai
| 13

: | N
{321 e , i 1y J
7T N B I T
) J#i i3

As simple corollaries to this theorem, we have

Corollary TI.A.5a.

| n o N,
A < N H 10 N | ! \Jar
A U 2: ‘a, L N a, .|
max ii e ) VAT R DA
L= 11 |
(J#L 143 /
\ .
;A. > '
IA min — ZJ :ai1i

=1
J#i
n a n 1l
D am > less] = 0 lewsll el = ) [
min - ! 1j’ I i,' ] ii ij
Jj= i=1
J#l 14

all for O f,a < 1. The corollsries and theorem hold likewise

for Q‘zl"B,l'G*:B where Ofﬁil'
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As 2 direct consequence of theorem L, we have

Corollary TTI.A.5.b.

For ench «a, 0 Sa S 1, every eigenvalue of A 1lies in at least
n(n - 1}

o)

<

one of the ovals,

i1 33

n n \\1«1 /'n

O ) ) r\{"—1
z -a,., -+ z=a,.. < ; ba, .| > ia, .| a, .|
: i 4, ki VAPRRINE

for i # k.
For a -0 or a = 1, thies reduces to theorem L.

As a further extension of theorem !, the largest eigenvalue

may be bounded from the results of 13
Theorem II.A.o.
Each eigenvalue, A\, satisfies
[ \ 1/2
1 - 1/ 2 .,
N max a‘-!-a.. +- 1 - la..[1° + 4p_ P, =M
l' 2 lkk !'JJ’ ’Uakk’ ! y ko
k,j=1,25+.4,n ! )
k# L ’
' n
n
where Pk = }4 akj,'
J=1
J#k
13

Brauver, "Limits ...", pp. 23-2h.



Proof: By the previous theorem

’ AN -8

rr!gk - ass' i Pr Pa -
assume that jgrr > lassl'
(1) 1t ’K' f 'arrr then
M S 3 Uorel * Jous]) * 5 (or] = el

since

P_>D2, P_>O0.
r S

» then

(2) 1 ’%‘ > [arr, > |2es
0< l% }- larr, f I% - arr!
0 < ’R i— la

' < ’m —a__|.

By the preceeding theorem,

(-

- assi\ = lk - arr[ Lk - assl = P Ps




and

|

-

times
\

C

Thus either equation (7} ~ 0 and equation (8) =

or

However

then it

\I'

2] -

IA S - (Iarri ’a Sl) le N L 8ss| - PP i 0
Ik' - % [grr! * {ass * (larrl - 13350 + hP P
%— larﬂf + l ssl - \//(!arrl - lngg')° + P pl( i o
i

)

equation (7) 0 and equatioﬁ (8) z 0.

since equation (7)

- |W| - ;arr’ -4i§58 ~ /\/Ziarrl ~ !aSSl)e * ML Py
- 2

la__ i - a__| + ‘x/t a - |a )2 + LP P
< I [Crri ; ssl rr 585 r s
-r!“' ‘ 2

= equation (3),

must be true that equation (7) f. 0 f equation (3).

21

(7)
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Thus from equation (7), it follows that

1l/2
IMEEE (el * [oeal | (Ioeel = [osel)” # 2 mal §2 0
2 rr ss rr -| ss r s
r
In addition, if a third condition is satisfied, namely
|2 53] > P Py
then & similar type of lower bound for the modulus of the eigen-
‘. 1h
values of A can be formulated from the following 1
Theorem IT.A.O.
Ir
8, ajj’ > PPy, K, 3 =1,2, .ce,m
then
| [ , 5 1/2
A > min . '|a | + 'a.. - (l ' - ,a..D + 4P P,
1{,:17-71‘,2,»0‘11 ’ kk JJ akk B JJ k J

m> 0.

Proof: As was shown in the proof of theorem 2,

I%lg B (larrl * |assl) Nt et P T = o

lthid, pp. 2L-25.
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From equation (3) and the following result,

‘AI - é ‘a I + 'a l - ,/{Ia. I - la D + 4P P f 0,
2) rr ss \ rr S8 r s
or
R (N E TS (ORI RS
_ 2 rr s8 ] rr ss r s
regardless of the relation of A to a and a .
rr ss
Now assume that m 1is attained wvhere k = 7, Jj = &, se that
1 2
= = " + - -
m=z % 88 |. \:(l yy laas 0 P, PSJ
1 [ 2 2 1/2
- e a + - -
3 7y °s8 Sy Elaw assl + laSS, + P, Pﬁ]
> 1 a + |a l - r—a‘ 2.2 a_ a + |a 2 e a__ a 1/2
2 Y 58 Y Yy 85 55 Tyy T85
. 1/5&
1 2
= ? Iayy' + |a68| - [( 377 + laas ') ] } '= o .

Note that all of the previous theorems have given bounds for’
the modulus of the eigenvalues; only. However, for a particular
case, more definite information mayvbe implied from exact information
regarding the values of the elementary symmetric functioné of

?\1’ 7\2)

are given by the following:

ceny %n. Several important results concerning these functions
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Theorem‘II.A.S

For an arbitrary matrix A = (aij)n
R 2,
Z A = ZJ oy (9)
i=1 i=1
n
TT A = det A (10)
i=1

if A is real.

Proof: Let

¥(A) = det (A - AI)

By a Meclaurin's series expansion of {(x), the coefficient of -1
is
k-1
f————jéb% = (k - 1)! (all + ... + 2 ) .
(k" nn

A=0

Also by the Fundasmentsl Theorem of Algebra,
‘\lf(?\) = (?\l - }\)(7\2 - 7\) e e (?\n - 7\),

where the A An are the eigenvalues of A.

l, ® e 0



Then
d — v(n) = (k =2)! (A, + ... \).
(d)\)k-l 1 n
A=0
Thus

n n

-

/. Xi = ‘2J 8, = trace of A.
i=1 i=1

Alsoc for vy = det (A - AI)

V(o) = Qg_ﬂiﬁl = det A

(an)° A=0

n n
and for w(A) = TT (%i - 7)), w0o) =TT Ki'
i=1 i=1

Thus [}y = det A.

Likewise the other elementary symmetric functions are the corresponding
coefficients of the characteristic equation.

Now since the multiplicity of %i in A 1is the same as the

multiplicity of K? in Ak, then

b}

K
trace of A =

1
~

| ol
[l
fur)

(Note, if a1l A = O, then w(A) = A" = det (A - AI) = det A = 0)
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Let k = 2. Trace A2 = 7\2 + o + ?\ﬁ .

1
‘Also
n
Trace A2 =
@ = Z Bk %kt
i=1 1=1 k=1
' ik
n n n
2 2 2
Trace A A= E; .E: 84 = Ez a4 + }Z }: 85y *
k=1 di=1 i=1 i#k
. 2 2 > .
Since 8% + ay = 2 By Byy? then
Trace A° < Trace AT A.
Thus

i\ﬁ:]a = Z Z ] ©

k= i=1 k=1

)

The possible accuracy (inaccuracy) of some of these theorems
with several examples will be given in the section titled

"Comparison and Computation.”



27

Section B - Bounds by Matrix Norms
The purpose of this section is to defermine the eigenvalue bounds in
terms of matrix norms. A matrix norm ” A” s of a square matrix, A,
is any bounded, real valued function such that the foll&wing are true:

Matrix Norm Properties

(1) |All >0 vwhenever A #0

(2) Naa) = |a|‘"A” vhere a 1is a scalar

() fla+ 8| < jaj « 15|

&) - 8l < llall - g
A relation between the eigenvalue bounds and the value of powers of
15

the matrix are given in.

Theorem II. B.l

All eigenvalues, RA, of the matrix A are contained within the

unit cirecle, if and only if
lim A" = 0.

—>c0

Proof 512: Assume that all eigenvalues of A are contained in the

unit circle. Then choose an arbitrary e > O such that-
A
'K llmxx+‘e‘< 1.
It is now desirable to find a matrix norm with

4] < ‘AA‘max +e<

Ll

1
5Alston S. Householder, On the Convergence of Matrix Iterations,

(Oak Ridge, Tennessee: Oak Ridge National Leboratory, 1955), pp- F-12.




for by property (4) of matrix norms 1t follows that

o] < {la=-
So if “A“ <1, then

1n|[4]" - 0.

1in |7 = o

By the contrapositive of pfoperty (1) of matrix norms,

21n ||a7| = 0
nN—oo

implies that
lim A” = ©
nm> o

so that the sufficiency portion would be proven.

The desired matrix norm actually does exist. Define ”A"g

-1

be the maximal row sum of absolute velues of G AG; 1i.e.,

“A“g = “G-lAG"e

wvhere G 1is a diagonal matrix such that Ge = g, where

= e o o

28
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This is a well defined norm, since “A" g Droperties (1) end (2)
are obvious, while property (3) is immediate from Minkowski's
inequality, and likewise is property (4) from the Cauchy-Schwarz
inequality.

Let A be the Jordan canonical form of A, so that A = T-IAT.

Then A 1s an upper triangular matrix. Let P = diag(d%,57"1,87-2, , . .)

where & > O.

Then
g -
xi 5 0 . . . O
0 )i .+ .+ .0
P-lA-P = 0 O Aio e o 0 .
0 0 O.. .2
~ Al

Thus HP"lAP“ e S ‘)\Al max * €, since the value of its maximal row sum
may be made sufficiently close to ‘7‘|ma.x by choosing © small enough.

Then by transforming the e norm by P, i.e., Pe = g, we get

lallg = lIPaP)e < | M| pax + € -

Notice here that had the eigenvalues of A been distinet, 3 could
assume the value zero and thus so would € = O.
Therefore, the norm ||4| §||A||g is sufficient to show the

existence of the desired norms.
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Proof (2): Let 1im A" = 0. Now
n> o

A" = (172AT)" = (T7lam) (T7iAT), . . . (T7RAT), = TIAME

Therefore,
lim A" = O = 1im T~1ADT = O
>0 I
or
0 = T-1(1im A®)T.
e
Thus
1im AR = 0.
>

Then each element (7\iJ.)n of the Jordan matrix A® must be such that
n
1, ()" = 0

for all 1i,j.
Let A be partitioned into block diagonal form where each block

corresponds to & distinct eigenvalue of A.

That is
J 0
1
[ w0 ]
0 -Jk
where
—7\1 1 0
N
J'i = . . 1l .
| O A

—J(PxP)
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Then

Notice, where (Xij)n is the 1i,jth element of Jn, that

O for 1>

lor0O for 1<}

Then the diagonal elements of J2 may be described as

p P 11 i
2 ‘. ij\"'! Y—y
() =) My = ) MM = ) M * ) Mt
k=1 k=1 k=1 k=1
P
+Z 7\ik7\ki=0‘7\ki+7\12+7\1k'0=7\12.
k=1+1

Assume that for any m, (Aii)m ='K;n.
m+1
Consider (Ayy) ~. Since the product of a finite number of upper

triangular matrices (as are the Ji's) are upper triangular matrices,

it must be true that

(7‘1,5)=° for 1>].
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Thus
1-1 1
™= ) Og)™yg) + ) (g PP(yg)
k=1 k=1

P".
£ ) OgPhg) -

k=1+1
O(Ng) +N™ AL + (A )™ * 0= )\im*l.

Then for any Jin, (Kii)n = Rin, where (Rii)l = \; as was stated
before,

lim A" = 0

In—> oo
implies

Lim (A )n o
o 13 = *

Therefore in particular for 1 = J,

1
(o]

n
1im, (hg)
or

1im (Aq5)® = 1im M2 =0 .
n—éco_('ii) n—n»i

H

that is |7\1J <1, for all i.
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The impox;tance of this relation is obvious when iterative
(numerical) techniques, defining the matrix A as the error in the
approximate solution, are considered.

_ One of the most significant and-generalized results is given by

the following theorem.lé'

16Ibido, P iz2.



Theorem II. B.2

For an érbitrary matrix A, the largest possible eigenvalue modulﬁs'

|AA'max S ||A“ » the matrix norm of A.

Proof: Let ||A]] = a, real scalar. Also define B = z;ff}zj- where €
is a positive real.
Consider
_ A | B 1 , K a .
“Be" - ”(a + &)l " (a+ e) ”A” T o+ e <d

for all € > O, that is, “Be" < 1. By the proof of the previous theorem
(first part of Sufficiency), ||Be] <1 implies that 1im B® = 0, which,
' . : n —o

by the result of the previous theorem, implies that for all eigenvalues of
B

. B
Bey, M e’ it is true that ‘Ai el < 1l. Now if kiA is any eigenvalue of-
A, then theré will exist a corresponding eigenvglue of B such that

. AA
KiBe =

(o + €)

From the above,. since ‘AiB€‘<vl, for all eigenvalues of B¢, then

AP
—_— L]
(o + €)| -

or
lXiA\ <a+e= “A" + €.

Therefore ‘A;ﬂmax < ‘rAn » since the relation is true for all € > 0.
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The following is a listing of séveral possible norms for an arbitrary

“A“ E = \’-trace (A*A) = square root. of sum of squares of A (Euclidean)

(9)
“A"e = maximal row (column) sum of A (10)
“A” of = maximal row (column) sum of A¥ (lll)
lajl g = llo~as|| (12)
where G is any nonsingular matrix and "A“ is any matrix norm, where
Ge = g-
llafls= ), el (13)
i,j=1
”A“ 1= nAx " induced norm (1)

| x H =1
It is interestiné to note at this point that for an arbitrary matrix,

there does not exist a smallest norm. To show this, let "A" min edqual

minimal matrix norm of A. Then by definition "A" min < "A” for an

arbitré.xy choice of norm, and “A“ min ‘satisfies all other matrix norm’

. AT
properties. Let |[A]l ' = min {||All mins A7)l men) and 2et A . be
T .

the largest eigenvalue of AAT. (Note that N is real by

max
AAT T
Theorem II. C.3.) Then A" - < | aaT|| pin ¥ Theorem II. B.2.

[P e (TP R (T L T
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1/2
T
It has been shown that (?\AA ma.x) satisfies all requirements for

a matrix norm.17

/2
Thus, (?\AATlm)l = “AH min is such a minimal norm exists.

To show that it does not exist, consider

1 1
A=
0O O
so that
2 0
aaT -
2 0
and take
n
”A” =m3-x L Ialj|'
i=1
T
Then, “A“ max * 2, so
1/2
laff = max 21J lagsl =2 < V2= ( max) ’

i=1

a contradiction since no norm can be less than the minimal norm.

17Alberb H. Bowker, "On the Norms of a Matrix," Annals of Mathematical
Statistics, vol. XVIII, no. 2 (June 19&7), pp. 287-288. .
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As has been shown in fheorem II. B.2, the largest modulus of any
eigenvalue of a matrix A, lkAlmax’ is less than the matrix norm of A,
regardless of how the norm is defined. Thus, IAAImax is a lower bound
for the matrix norms of A.

A reasonable question becomes, is ‘AAlmax the greatest lower bound
of these matrix norms?

A. H. Bowker, in requiring a fourth prqperty of matrix norms,‘namely

for |le; > < ej“ = 1, shows that10

mex |agy| < ||
where (ey = (0, 0, «+ . ., 1,0, . . ., O).

jth position

Thus, for a simple triangular matrix, B,

[:10 0 0:] l
A= 1 3 o max la;s| = 20
20 & s’ i, 14

while ‘)ﬁ‘max = 10. Therefore, in general |AA|max is not the greatest
lower bound for the norms of A. However, ‘%A‘max is the greatest lower
"bound of a set of constant multiples of related matrices. This result is

given as:

187pid., pp. 285-286.



Theorem II. B.3

For the matrix B, the eigenvaiue of largest modulus ‘7\3

is given as the greatest lower hound of the ki' > 0 where

K={ki|A=I% and %_i:)n:oAn=O}.

Proof: From Theorm II. B.l, it follows that

lim =g = lim A" = 0
> oL n—>co
i |7\A| 1 > l)‘A' .IAB_'M
if and only if . <1, so that 1 max < gy
i
P < 1
for
kieK
B
Thus lk lmax is a lower bound.
Also

= |\B
k<:: - |7‘ lma.x
is not an element of K, since

A=

o™=

and

|max’

or

38
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so that
1im A" # O.
n—> ¢
Now since
1= |7\AI
max

is the least upper bound of the

P

such that

lim AR =0
n—> o0

then it follows that |kB| is the greatest lower bound of the
ki€K.

If the matrix is partitioned such that each diagonal submatrix
is square, then eigenvalue bounds may be determined by procedures
similar to those used in Section A, Chapter II.

Let A be any matrix order n, which is partitioned as

AJ_l Aleo . cAlN
A= *

.

Amo.o--.ANN

where the diagonal submatrices A;4 are square of order nj.



ko
Define the matrix norm by:
A, .x||Q,
o = supuéi—“i
erJ HXIQJ
x#0

for an arbitrary vector norm over the subspace Qk'

If the diagonal submatrices, Ayi, are nonsingular, and 1f

Qlags ™™ > ) 12,4
k=1
k#J
for all
1<J<N

then the matrix A is to be block strictly diagonally dominant.t’

lgDavid G. Feingold, and Richard S. Varga, "Block Diagonally Dominant
Matrices and Generalizatious of the Gerschgorin Circle Theorem, " Pacific
Journal of Mathemstics, vol. 12, (1962), pp d241-124k.
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Theorem II. B.4

For the partitioned matrix, A, each eigenvelue, A, satisfies

n
(Nay,y =)D < ) 1y 4|

k=1

k#J

Por at least one j, 1< J<N.

Proof: Assume that A = AI is singular. Then there exists a nonzero

x

vector X =% such that

(A -AT)X=0 .

.
X
n

Consider A - AI 1in its partitioned form; this is equivalent to
n

z AinJ = - (Ai:l - 7\11)){1 (15)
k=1
k#3

Let X, be the largest component of X, i.e., Ixruz “XJ" ;1< <N,

Divide X by ||’S-N . Then from equation (15)
n
[ aesms]| = 10hee - 22051 as)
3=1
ifr

From the Cauchy=-Schwerz inequality, the left side of equation (16) is

such that



Lo

< ) |aeall - Ixs]] < ) fjaey] ()
J=1 J=1
arr Ifr

since

L= || 2 |

by the division of X.
Now assume that the matrix, A « AI, is block strictly diagonally

dominant.
let z_ = (Arr - Mr)xr.

Then
|| CArr = ATe)Xe|| = "(Arr“':ﬁ)xr“ - "!LZ"“_;M T “2 (] (a . -nz )Pt
rr = Np) T 2
since |
||(Arr";:|\~|1r)~-lxr“ < sup [z ],;ﬁr)-l% " = || = A1)}

Then from equations (16) and (17)
n

(e = AR Y [l
J=1

Ifr

Thus A = AI being singular implies that it cannot be block

strictly disgonally dominant.

there to exist a nonzero eigenvector corresponding to A, then A « AI

must be singular, and the conclusion follows.
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If, in theorem II. A.k, '7\ - aﬁl is replaced by the general

form (|| (ay; = AT9)7|| )L ena
n

). 1ol
J=1
Ik
is replaced by
2,
), e
1=
Wi

20
then an identical proof will give the following.

Corollary I. B.la

All eigenvalues of A, M, lie in the union of the Eﬁ(N—l):l /2

point sets Ci 3? defined by
n

n )
(g =22 =2 - gy -2z <[ ) lag,l Z I8,
' =1 =1
14 13
vhere -

1<1i, J<N and 1#j .

In a similar manner, if the above substitutions are made in

theorem II. A.5, and an identical proof is used, the result will be

the following corollary. 21

E:Ibido 3 p. 121‘70
Ibido > po 12)"’8-



Corollary II. B.Ub
For any o with 0 < a <1, each eigenvalue of A satisfies

n o n el
( feagy - a2 < Z o] | Z “AKJ”

k=1 k=1

k#J k#£J

for at least one Jj, 1< J<N .
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Section C~ Bounas by Vectérs and Related Matrices
The purpose of this section 1s to determine eigenvalue bounds
in term; of vectors or in terms of the eigenvalues of related matrices.
The majority of the following proofs will depend upon the guadratic
form of a matfix combined with simple geomepric inequalities.
Bendixéon proved the foliowing result for a real matrix
A = (a33),; extended by Hirsch to complex case.22

Theorem II.C.1

If M=-a+ iB, and %2\A+A ) L) (A+A ) are the largest and
max min

smallest eigenvalues of E(A+AT),

1
- T T
A3 (A+AT) > 7\A > 7\2(A+A )
max min

then

Proof: ILet H be an arbitrary Hermitian matrix and U be the

unitary transformation such that U*HU is a diagonal matrix. If the

zhi'j ;i X3 = OZ X4 -I-C-j

is satisfied by a non-trivial x, then

equality

H H

Npax 292N pin *

For-(x,Hx) = <Uy, HUy) =(y, U*Huy) =Z>\§ 2 -

22
Hirsch, 368-3T0.
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Now if (x, Hx) = c(x, x), then c(x, x) = o(Uy, U) = o(y, U*Uy)
o) 52, |

n
H = H = =
Thus Mmax ¥1 ¥y1 + «-- * Npin ¥n ¥n = 0/ ¥i ¥i, OF

1=1
AN .
H \ - ' - H =
Mo | ) vy Fy| 20l ) vy ¥y) 2 Muta| ) ¥y Ty ¢
=1 i=1 i=1

Therefore 7\}5&}(2 o> 7&121 .
Now as was shown in theorem II.A.l
=+ T
«-1) Bus * T51) 1 %

so that

)\%(A-rAT) >q > 7\-21—(A+AT) .
max zaeZ

min
A - A%
21

Similarly, since

is also Hermitian and since

B = EJ:{Z @ij‘ - 'é.jj:) Xy Xy, then

Corollary II.C.1l (to proof)
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Just as in the proof of theorem II.C.l related vectors may be
used to define eigenvalues and their bounds.
Assume that an elgenvalue 7\1 with a corresponding eigenvector

x3 exist for the complex matrix A. Then Axy = Axy, so that
(Xgs Bxg) = (%35 Mx5) = N(%g5 X3), OF

A _(xg, Axy)
* (x4, x3)

In the more general form, the above quotient

_ (x, ax)
a(x) = =, %) °
for arbitrary vector x, is called the Rayleigp's quotient.
Now if either A has distinct eiger;value'é, or if A is
Hermitian, then there exists a unitary matrix U such that

U¥AU = Diagonal and U*U = I. In either case

(x, Ax) = (Uy, AUy) = (y, U*AUy) = (y,[atee A ]y).

Also if (x, x) = 1, then

i

1l (x, x) = (x, U¥Ux) = (Ux, Ux) = (y, ¥). "

Thus thé values assumed by (x, Ax) on (X, x) = 1 are equivalent
to the values assumed by (y, [:diag %j:ly) on (y, y) = 1.
Hovever, (y, Ed.iag ?\;_] y) =\7\_L yi + 7\2'3’
so that (y, [diag 7\.;_] ¥) > Min (75 ¥) = Mpin
and (y, [diag 7\1] Y) € Mpax (75 ¥) = Npax -

\S 1AV

+
+
>’
o
.
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A diag Ay | x, Ax
Thus Ao = m;n (y>[: ag il_y) min (%, Ax)

|

(Y: y) X (x) x).
and [j ]
(v dieg N | V) (x, Ax)
A _ma.x _ma.x______ .
Mmax =y (v, ¥) X (x, x)

Although the preceding was predicated on the assumption that
A had distinct eigenva.lues or was Hermitian, this concept can be
extended to include a larger class of matrices, as will now be shown.
Let A = (233) be an arbitrary complex matrix and B = (vy;) =
Hermitian matrix whose order is equal to that of A, and such that
(x, Ax) =(x, Bx).

Let a,.

ij iBiJ

0
8
Cue

= + S3
xJ r‘j i J

Note that as5 = bii’ i=1, ..., n, and we require that

i
aij §i xj + a‘ji X, ;,j = bij ;1 x'j + bji Xy ;j

where by, = Fj_i Thus,

(a3 + 1Byy)(ry = is3)(ry + is3) + (ay+ 1B44)(ry + 1s5)(r; - isy) =

-E"ij (ri rj‘+ s{ sj) "Bij (ri sy - Ty Si)] + 1 [Bi;] (ri ?j + 8y sj)

+ oy (ri sy - Ty siﬂ +qui(ri T + s, 'Sj) + B:ji (r:1 8y - Ty siﬂ

+ 1| =asi(ry sy - Ty sg) + B,ji(ri ry + 55 sj)]

=E(°‘i.j + (Lji)(ri rj + 84 SJ) + (Bji - Bij)(ri Sj - I‘j Siﬂ



49

+ i[zaij - ji)(ri 8y - Tj si) + (Bij + Bji)(ri r; + 84 sji] =
2713 (ri 5 + 5, sj) - 2513 (:r'i 8y - Ty Si) + 0.1,

Thus equating real and imaginary parts

= 2713 (ri Ty 8y sj) - 25ij (ri sy - Ty si)

and
a, . - &, r, r. + s S
ij Ji\ _["1 73 i3
Bij + Bji rj Si ol ri Sj

Notice that for equality in the real part, it is sufficient that

i ( + )
71[] > G'ij a.ji
and

=1 -
85 =5 (Byy = Byy)s

conditions independent of the vector components. However for equality
in the imaginary, it is necessary to restrict the vector components.
Thus we have proven :

Theorem II.C.2

An arbitrary complex matrix A = (aié)n is equivalent to a

Hermitian matrix, B, under the quadratic form if: for

"

bij 7ij + 1513

. = + .
xJ :|:"j isJ

215 = %y * Py
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(18)
1
813 = ‘é’ (BiJ -'Bji)
S I R Y e M (19)
Bi;}+Bji I"j si-ri SJ

\

whenever the domain is restricted to values of equation(19) for all
1<i, j<n.

Notice that if the matrix A and vectors x are all real, so
that the real scalar product is used, then necessary conditions reduce
to equation (18).

A relation which glves eigenvalue bounds of the matrix A in
terms of eigenvalues of the related matrix A¥*A is from:

Theorem II.C.3

2
A< [T <

Proof: Let Xy be an eigenvector corresponding to the eigenvalue,

A, of A, S0 that Ax; = A; X, and
(Axy, Axg) = (M x4, N x3) or
(g, A%xg) = N (N xg5 %g) = N Ny (xg, x5)
Since

(A*Ax, x)

(Ax, A**x) = (Ax, Ax) = (x, A*Ax)

L]

((A*A)*x, A), then (A*A)¥* = A%A
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Xq, A¥Ax;) :
(%1, 1, and by the

so that A*A is Hermitian. Thus |%i|2
Xi, xi)

same reasoning as that of theorem II.C.1l
A*A

2
A¥A A‘
Ihi < Mpax -

n <

I.C.%a
A*A

2
< e -

Corolla

SR o P

Corollary II.C.3b
A

is real, then:

it < P < [

If the matrix

2
AT
< Mpax
The largest eigenvalue cannot only be bounded by considering

related vectors, but in fact, can be approximated as closely as

desired. This result is due to Collatz.

Theorem II.C.k.
For a matrix A of order k, with k distinct eigenvalues and

for an arbitrary €>0, there exists an N > O such that for all

n >N,

n
= - 7\m;t;uc < e

An" l

Proof: ILet v = By y1 +Boyp + «ev + By Vs and let x3 = By ¥y,
so that v =Xx3 + Xp + .+ + X Assume that the eigenvalues of A
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are ordered such that

Then

N

As n o, then|~=]-0 for i =2, thus 1lim ARy = %; X,
n —eo

likewise 1im a™1l v = %&‘l X;. Therefore

n - o
n
1im ARy =7\1xl =N .
n -e ,n=1 n=-1 1

AT v NTx
Severel theorems which give eigenvglue bounds in terms of
eigenvalues of related mstrices were shown by Wit'bmeyer.23 Several of
these are given below.

Theorem II.C.5

* ¥* *
7\(AB) (aB) < A%, \B B
max - maX max

Proof: ILet h
Z

Br
aAh So that z = aBr.

As was shown in the proof of theorem II.C.l and 2

o1 = (8 I

23He1mut Wittmeyer, "Einfluss der anderung einer Matrix," Zeitschrift
fur ewandte Mathematik und Mechanik, band 16 (October, 1936),
PpP. 207=300.




(A*A-é-
=] s (882 |x)
1
o1 = (8292 (29 1=

Iet r, be the eigenvector of (AB)*(AB) corresponding to

K(mng)*(“B), that is (AB)*(4B) vy = Ngﬁ)%(w) ry.

so that

= 2 - =
Let 2z, = ABr,. Then ,zll = (zl, Zl) = (ABrl, ABrl)

= (rl’ (AB)*(AB)I']_) = 7\;:3{3)*(}&3) II‘1|2 .

Thus, let =z = zy, so.that

and conclusion.
It follows from theorem II.C.3 and its corollary that

Corollary II.C.5

e, | < (gmrte) 2,

1 1
AB L Axa\2 [ B*B\3
7‘max\ = ()\ma.x> (’\na.x) )

Now in a manner similer to that of theorem II.C.5, we have

and also

so that



3 1
LA¥*a\2 [ B¥B\2
et (.
Iet r, be such that (aB)*(AB) r; = (Aﬁ)*(AB) ry, so that for
zy = ABr; results in:
AB)*(AB)
|20 | = AR ).

ILetting z = z,,

] () 2 |,

thus proving

2 |n) () - 62

Theorem II.C.6

(aB)*(AB) A¥p B*B
Anin 2 7‘in:l.::; Npin
Again from this and the corollary to theorem II.C.5, we have

Corollary‘II.C.6

L
ARGk

1 1
AB A¥A B*B)2
ez, = (ea)? - (e

54

Another theorem which follows from a somewhat different geometric

considerstion if A and B are normsl nmstrices is:

(7\(“"'3)*(‘“‘35]2. > (;gx*A)lé’ + (7\13*13>;a‘
max T\ max max

Proof: Consider

Theorem II.C.7

7\(A+B)*(A+B) = mex S_X_J; (A + B)*(A + B) x)
max X

(x, x)
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= max [(x, A¥Ax) N (x, B¥Bx) . (x, B*Ax) . (x, A*Bxf]
X

(x, x) (x, x) (x, x) (%, x)

A% - (%, B¥ * *
(x,AAx)+max(,BBx)+max(szAx)_+m(x!_ABx)

< mex -
x (x, x) x (x, x) x (x, x) x  (x, x)
7\32? + 7\32 + }\xBn:.i + 7\A B which by the corollary to Theorem II.C.5
is
l 1
< M*A + }\B*B + (hBB* - M*% (N\A* . KB*B) )\A*A + ?\B*B
= max max max max max max max

R . NIV R
max max, max

Thus
' 1/ . \i A\
E\(A+B)*(A+Bﬂ D) S<7\A»'""A> 2 4 (AB’VB 2,
mex mex, max

and likewise we have

Corollary II.C.7

7\A+B
max

1 1
< <7\A*A)'é' + (7\3*1’*]2 .

Theorems II.C.5 through 7 with thelr respective corollaries may

be repeated as corollaries for the special case where A and B are

real matrices snd tranjugete is replaced by transpose.



CHAPTER III
COMPARISON AND COMPUTATION

From the results of the preceeding sections, it is seen that
there are many ways to compute the bounds for eigenvalues. Two
obvious questions at this point are:

(1) Do any theorems give more precise eigenvalue bounds in
all cases than other theorems?

(2) Are the eigenvalue bounds, themselves, bounded?

The answer to the first question will be given as the major
portion of this chapter. |

With respect to the second question, it can be stated that:

Theorem IIT.1 (a) If the eigenvalue bound is expressed in

terms of_the off-diagonal elements in powers not less than 1, then
the eigenvalue bound is unbounded.

{(b) If the bound is expressed in terms of the diagonal elements
only, the eigenvalue bound is bounded.

Proof': '(a) Thus

<
|%max| R (a12’ 8pnys cees aij)
143

i’ j =l’ 2’ ..., nQ
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For a triangular matrix, A . = max a,,-
Fbr, say ap; unbounded, A\,,y 18 as given above for all possible

values of 8oy .

Then

a liﬁm fn (al2’ a2l, vy aiJ) = @
21 1 £ 3

i’J=1,2, ese NN

since the off-diagonal elements are in powers not less than 1.

Thus the bound, 1

n» 1s unbounded, even though the Amax

remains constant for all possible values of b.

The bounds given in: chapter 1, section A, theorems 1 and 2
(whenever a, g, or t correspond to off-diagonal elements),
3 with its corollary, 4, 5 with its corollaries, 6, 8 (part 3);
section B, matrix norms 1-5, theorem 4 and its corollaries, are
all covered by theorem III.l.

Proof: (b) by theorem II.A.8, the values of the diagonal
elements are explicitly connected to the eigenvalues of the

matrix A, by

n n

Z 7\122 aii

i=1 i=1
and

n

TT N = det A.



Then if any diagonal element is increased without bound, that

is ay4 —~ 1implies n

=
1im Z‘ 7\1 —
2137%40
so that at least one of the eigenvalues increases without bound. This
part applies to theorems 1 and 2 of section A whenever a, g or t are
diagonal elements.
Comparison will now be made between the inclusion regions of
elgenvalues for several theorems of section A.

Since n
mi.xz Iaijl f. n ]ma.x aij|,
,J=l

then the corollary to theorem IT.A.3 gives a smaller region than
theorem II.A.l in all cases.

Theorem II.A.4t (ovals of Cassini) give a smaller region than
theorem IT.A.3 since every point of the oval lies in at least one

of the two circles which form it. This is readily seen in figure 1.
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===~= Gerschgorin circles
— Qvels of Cassini

7"—'2’5;5

>
1
[NV ol \V]
H OO
1
FHO

Figure 1

Theorem II.A.5 gives a smaller inclusion region (when considered
over all _0'S a = 1)than theorem II.A.3. An example of this is seen
in figure 2 for the matrix A, whose approximate eigenvalues are

30.55, 10.07, and 0.38
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The figure contains the region of the first two eigenvalues only.2h
The curves for theorem II.A.3 correspond to. a = 1. Note that
theorem 5 thus excludes region (shaded portion of figure) for
eigenvalues. From this it is clear that the second corollary to
theorem II.A.5 is superior to theorem II.A.4.

With respect now to the theorems of seétion 2, it is clear that
the matrix norms (1), (2), (3) and (5) are no better than the results
of theorem II.A.3. However theorem II.B.4 gives a fundamental result
superior to that of theorem ITI.A.3. As an example, consider the

partitioned matrix,25

wia o [

- | -

-2 4 i 0 -1 Alli A12

A,= - e o }- ----- =-—--=----
=1 0! Lk .2 Aal;Ae
0-11-2 & i 22

with eigenvalues, A =1, 3, 5, 7 and where the vector norm is taken as

i ,xil 2|2

i=

QuOStrowski, PP. 219-220.

25Féingold and Varga, pp. 1246-1247.
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Clearly ”A12" = "A.21" =1 .

For”Au“ = “A22”'= sup ué—]ﬁ'j—u, consider

1) (s - )7 e (“(Aull;nu) XID _

- (”An A P
W T

ls

2 2
[[A14 ] | _=2/5"1+5x2'8x1x2=25_§_’il_;"_2_.

W T [T 2 T2

Ay x - 7‘x“ >

inf =] - inf ”Ai;i( "‘” _mf

8Xl X2
Let k(x,, = - 3 for a minimum value of Kk,
1 *2 > |
X5 + X
1 2
ok ok
so that
2
dkp  =8xp [x2 - x_-l]
=— 5.z -9
Bxl x] + %5
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so that
X, = X,
=%
Thus

inf ”fﬁi“fil= 2 for X = Xp

6 for Xy = =Xy -

By theorem II.B.4t all eigenvalues are contained in the region
defined by: |2°- 21 ana |6 - AZ1.

A comparison between theorem II.B.4 (whose inclusion region is
shaded) and theorem II.A.3 is given in figure 3.

From this result is clear that corollary II.B.4 a is superior
to theorem II.A.4. ILikewise corollary II.B.4b is superior to

theorem II.A.5.



Figure 3

6h



CHAPTER IV
APPLICATIONS

Questions relating to the convergence of series and sequences
of matrices arise in many situations. The eigenvalue bounds of the
related matrices can give sufficiency conditions for convergence. For
example, consider the system of iinear equations, Ax =y, where A 1is
a n X n nonsinguler matrix of coefficients and x and y are
n dimensional vectors.26
Let G be an approximate inverse of A, so that the approximate
solution is t = Gy.

It can be shown by induction that

D
N
\
/

L.
h=0
Denote the error in t by e€e=.x «t and let D=1 - GA. Thus

D+l

X = (T - ca)Pt + (1 - ga)P™t .

p; ;
= j{; Dht + Dp+lx .
h=]
Now if \7\ |<1, the 1im DP = O. fThus
w‘.
- Z pht
h=1

places a bound on the error e.

A. de la Garzo, "Error Bounds on Approx.mate Solutions to Systems
of Linear Algebraic FEquations.” Aids to Computation, vol. T, no. 43

(July 1953), pp 81-8k4.
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As another example, consider again the system of linear equations
Ax =y where A is nons.’mguxla.r.a7 Iet Xp be the pth approximation
of x, so that Sp =X - Xpe

Define rp = A(x = xp) =y - Ax,. Assume that A = A) + Ay where

Al is nonsinguler. To form the iterative solution of x, let each

successive Xp+l be defined by the equation

Alxp+1 =y - Azxp .

Now if the iteration converges, the sequence of Xp will do so in the

Cauchy sense. Thus

lim = .
oo (Ale+l + A2xp) Ax

Then
Ap(x = xpyq) = = Ap(x - xp)
or
AySpyy = = A5
so that
Spl = = (A177A2)S, -
2

Alston S. Householder, On Norms of Vectors and Matrices, (Oak
Ridge, Tennessee, Oak Ridge National Laboratory, 1954, pp 6-8.
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Now if Xq

Sy = (-1)P (4 Ag)pso. Thus a sufficient condition for the iteration

is the initiel guess for x, them S, = x - x, so that

g -l
to converge is that '%(Al A2)’ < 1.
mex max

Along the same lines, the ratio

Miex
Nain

gives a rough measure of the probable accuracy of the computation of

=P

the inverse of A. This ratio, P, is called the "P-condition number"
of the matrix.28 In general, the accuracy of the results is in pro-
portion to the reciprocal of P.

As a further extension of the results given in chapter I, iterative
schemes may be established to give close epproximations to all of the
eigenvalues of a matrix. A surveyvbf these techniques together with
comparative accuracy and computation time is given by White.29

As a final application of the results of the preceding chapters,
consider the problem of determining for a function of n variables,
the values for which it attains its maximum and minimum.

et (X, %5y ¢ « «, X,) Dbe a real function of the set of real
varlables X1s Xoy o ¢ o5 X, OVEr a closed interval, I, in E..
Apsume that it possesses a convergent Teylor series ebout each point

in the interior of I, with continuous partial derivations.

28Philip Davis et al., "Bound for the P-Condition Number of Matrices
With Positive Roots,” Journal of Research of the National Bureau of
‘Standards, vol. 65(B), no. 1, (Jemusry-Merch, 1961), pp. 13-1k.

Paul A. White, "The Computation of Eigenvalues and Eigenvectors
of a Matrix, "Journal of the Society for Industrial and Applied Mathe-
matics, vol. 6, no. ¥ (December, 1958).
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Since by Rolle's theorem, if f(ay, . « .,a,) = £(by, « « .,by),
where a and bel, then there exists ce interior of I such that
f'(°1’°2’ .. .,cn) = 0. Assume that such a "c¢" exlsts.

It
£"(cyy « « e5cy) >0

f has a relative minimum at x = c¢.

Ir
f"(cl’ ¢ o u,én) <O

f has a relative maximum at x = c.

Ifr
f"(cl, « o .,Cn) =0

higher order derivative of f must be considered.

Let
X =c vt
o = ¢p + gt (20)
5‘:n = én + &ht °

Then

F(t) = f(x1,x2, * . .,,Xn) = f(Cl + a:lt, « . .,Cnu,n't)v
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Expanding F(t) in a Maclaurin's series results in

F"(0) .2

F(t) = F(0) +F'(0)t + il (21)
Then
ax n
of dxy of n of of d
Pr(t) = 2= =L + T e of.
&x; at Sx_ at x, g L k3
n n ax n (22)
S3-[\" o i }; 2
FM t) - Z —— o — = f
( Oy e 3y | 4t % xyxg
i=] i\ k=1 i=1
n (23)
+ 2 Z a.ia.jfxixj;j=2, e« .y .
i=]
i<y
since t = 0 implies that
¥ =%
¥ F %
Xn = Cn .
Thus
A : 2
Fﬂ(o) = Z G’.i f}iixi(cl’ Y Cn)
i=1l
n (2%)
+ 2 Z. a/iajfxix'j(Cl,cg, 3 . L) Cn),‘ j = 2, 3 ) vy n.
i=1

1<
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Then, assuming the c¢ = (cl’ « « «scy) 1s a critical point, so that

fxl(cl’ L] L "cn) = * . L = fxrl(cl’ . . O,Cn) = O

the nature of f(xy, . . .,x;) at cj,cp, . . .,c, will depend upon

. " 2
the values of F(0)t2 4 equation (21). Notice that from equation (1),

n n
e o < 3
E_i%lﬁ_ = %» >: digtgfxixi(c) ) “idgtgfxixj(c)i J =2, « « eyn
: i=1 i=!
i<
n
z;- :\11 (x - C )2f (c) +§1 ( - C )(X - C )f (C)'
A R A T ] VAR T S B b Ut TR
i=j 1=1
1<
j = 2, * o+ g n (25)

Let Yy =% - ¢y substitute in equation (25) and define the result as

Qyys « « <5¥n).
Define

1. (e 1, (o)

a3 =5 Tyyxg 2 Pig =3 Xixj . (26)

From this substitution into equation (25) results in a quadratic form

in n variables, so that equation (25) becomes

A, A
3 2 :

Q(Yl: ) ':Yn) = [.* a3;y4 + 2 2 bijyiyj (27)
i=1 1
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Thus consider the critical points of Q (yl, o e oy yn) under the
constraining condition that y12 + . ¢ o+ yn2 = 1.
Using the general method of lagrange multipliers, form the

function

F=Q(yy, - « «» ¥n) - 7\(y12 + ...+ yne) (28)

where ‘A is the parameter to be determined.

Using the n eguations
——:O,i=l,ooo,n (29)

and equation (28), A can be determined.

From equation (29) it follows that

n
oF _
- . J=2 . .
. . nel .
- ap . . .
. O=-é_-y—-=28.n'yn+2 Z anYJ -EN’n
n
J=1
or
(ay = Nyp + by, + b13y3 oo e+ by
(A - NI)y = bpyy; + (a2 = Nya + bozyz + . . . + bopyy =0

Dpi¥l + ¢« ¢ ¢ o o o o o s o o o oot (ag = Nyn
(31)



T2

In order for a nentrivisl solution of equation (31) to exist,
the determinant of the coefficient matrix of equation (31) must
vanish.

To determine the nature of ,f(xl, cees xn) in the neighborhood
of (cl, cees cn), the nature of Q(yi, ceey yh) must be determined
for those Yyr vees Vg in the € neighborhood of zero, that is, all
y' = (yi, Yhs wees yé) sucﬂ that y contained in Ne(O}, € >0.
Notice that just by determining the values of Q(yi, sy yn) con-
sidering only those values of y which are on the radius of the €
neighborhood, is sufficient for determining the nature of Q(yi, ceny yh)
over the entire space. This is because Q 1is homogeneous of
degree 2, that is, Q(%yl, cees kyn) = )?Q(yi, cees yn). Thus, the

values assumed on yi + yg + cee *+ yg = 62 are related to the values

2
on yi+ooo+yi=l-

Now if Q(yl, cees yn) is to be positive for all values of

yi’ yé, ceey yh, then,

minimum Q(yl, ceey yn) >0 (positive definite)

2 2
yl+oc'+yn=l

and likewise if Q(yl, cees yn) is to be negative for every
yi’ cee Yo then,

maximum Q(yl, ceey yn) > 0 (positive indefinite)

2 2
yl+-oo+yn=l

If either of the above conditions for Q(yiy seey yh) hold, then
it is necessary and sufficient for Q(yi, cees yh) to satisfy either

of the above inequalities at both its maximum and minimum. Since it wes



>

assumed that the function had continuous partial derivatives, and

was a real valued function, then the coefficient matrix is Hermitian

so that values for. A are real. Thus the values of y(A) corresponding
to dist;nct values of A are orthogonal.

These values of y are determined by roots of the characteristic
equation corresponding to equation (31). When the condition that
(y(A),y(A\)) =1 1is added, the resulfing y'(A) will ve the points
at wvhich Q attains its maximum and minimum. From these values of
Q, it may be determined at what points in the space that 'f(xl, . . .,xn)
is a maximum or minirmm.

Since the matrix in equation (31) is real and symmetric, there
exists an orthogonal transformation matrix, T, whose.columns consist

of the associated eigenvectors of A, such that
T :
T AT — diag(xl, . . . ,7\n)

vhere the A are the eigenvalues of A.

Now
Ay) = (v,4y) .
Let
Tz = y.
Then
(v,Ay) = (T2,ATz) = (z,TTATzZ) .
Thus

Q('.Y) = (z,zdiag(l)) = i 7\1212-
1=1



Therefore, a necessary and sufficient condition for

minimum2 Qly) >0
v +...+y’n =1

is that all MA's be positive.

Likewise 2 necessary and sufficient condition for

_ma.ximua aly) <0
yl“+...+yn.=l

is that all A's be negative.

Th

Thus in this example, it is not necessary to know the exact values

of the A to determine if one or the other of the above inequalities

exist. To be more specific, if, for the matrix under consideraticn,

n
ai - Z' lbij >0
J=1

J#

for 211 4i=1, . . ., n and a; > 0 then it is positive definite.

Likewlise for ay < 0 and

n
SIS
J=1
J=1

then the matrix is positive indefinite.



APPENDIX

Notation
a matrix of order n
matrix transpose of A
complex conjugate of A
conjugate transpose of A

diagonal matrix with a;, . . ., ay down the
main diagonal

matrix norm of A

determinant of A

the ith eigenvalue of A

Jordan canonical form of A

the ith Jordan block corresponding to Ai
n-square identity matrix

row vector, (Xy, Xp, « « +, Xp)

column vector (X1, Xp, « + ., xn)T

n-tuple with 1 as ith coordinate, O otherwise

complex scalar product

[P
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