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ABSTRACT

The purpose of this paper is to present characterizations
and properties of linear algebras over the field of real numbers.
The fhesis will consist of three parts. In cheapter I,
neither commutativity nor associativity of multiplication will
be assumed. Algebras with identity, division algebras, normed
algebras, and absblﬁteAvalued elgebras will be discussed, and

theorems characterizing and relating tﬁese concepts will be
presented.

In chapter II, algebras which are'commutative or associative
with respect to multiplicetion will be considered. 1In sddition
to éharacterizing these algebras, a proof of the classical result
of Frobenius will be presented. That is, except for isomorphisms,
the real numbérs, the complex numbers,"and the algebra qf real
quaternions form the on;y associative division algebras over the
field of real numbers.

Chapter III will be primarily concerned with automorphisms
on the algebra of real quaternions and their application'to
rotations on the real Euclidean vector space of dimension 3.
Other characterizations and properties, which follow from the

theorems of chapters I and II, will be presented.



CHARACTERIZATIONS OF REAL LINEAR ALGEBRAS



INTRODUCTION

The study of linear algebfas (or hypercomplex systems) first
began in 1841 with R. W. Hbmilton‘s discovery of quaternions.
Hemilton was then primerily interested in the solution of two
problems:

1. Given an n dimensional vector space, is it possible
to define multiplication in such a wey that thé resultant system
is a field? |

2. Can the product of two sums of n squares be expressed
as a sum of n squares?
Hemilton defined & quaternion to be a quadruple of real numbers

with the operations:

(a'l’ ae) q,3’ avh) ‘+ (le B2’ 33’ BLL)

= (al + Bl, a'g + BQ’ 0.5 + 95, a'h + Bh)
and

(“l: @y 03: a;l&) . (Bl’ 52: B}’.Bh) = (71, 72; 73: 71,_):



where

7y =0 By map By mog By -y By
Tp oy By tan By tag By -y By
75 =0 By =%y B ¥ ag By +ay By
Ty =% By Ay By o-ag By tay By,

He showed that all the axioms for a field were satisfied with the
exception of the commutative lqw of multiplication. He was also

able to obtein the striking identity:

(ai + qg + § + qi) . (Bi + gg + Bg + Bﬁ) = (7§ + 72 + 7§ + 7E).

Since Hamilton's discovery, a great desl of interest and study has
érisen in this area. Quatefnions, for exsmple, have proved to be
s useful tool in some areas of both physics and mechanics.

.The purpose of this paper is to present some of the charac-
terizations and properties of both assdciative and nonéssociative
linéar algebras over the field of réal numbers. The first part
will deel with essential definitions and théorems related
to reel linear algebras on which neither commutativity
nor associativity is assumed. Throughout this papef, absolute
valued algebras, as defined by A. A. Albert [;], will be of primsry

concern. It is interesting to note that without associativity of



multiplication we are not assured of the existence of an identity
element. However, it will be shown that given a real ebsolute
valued algebra, we can always redefine multiplication such that
the resultant algebra is an absolute.valued algebra with ldentity.
Theorems relating normed, absolute valued and division algebras
will also be presented.

The next part deals with ;the-characﬁerizations of
commutafive and gssociaxive'algebras‘over the field of real -
numbefs. A construction of the algebra of quaternions is glven
fogether with a proof of Frobenius's theorem ﬁhich showe the
unique place of complex numbers and quaternions among the algebras.
| The final objective will be to discuss,.in more detail, the
algebra of real quaternions. It will be shown here that ell
automorphisms on the‘algebré of resal qnﬁternions are of a certain
"type. These automorphisms form a group of linear orthogonal
transformations which have s pafticularly interesting effeot on
the real Euclidean vector space of dimension three. Applications
and properties of quaternions ﬁhich foliow from the theorems of
this paper are aléo given.:

Using the algebra of quaternions one can construct still
another but less attractive algebra, the eight dimensional Caley
numbers. Because of the length involved in defining this systen,
it will not be presented 1n.this'paper, For a discussion of the
properties and a proof of the uniqueness of this algebra, the

reader is referred to [1], [8], and [11].



CHAPTER I

°

GENERAL CHARACTERIZATIONS

As was mentioﬁed in the Introduction, this chapter will be
devoted to general chaxacterization theorems of algebras over the
field of real numbers. We begin with some essential definitioms.

Definition: Let A be a vector space of finite dimension n

over the field R. A is a linear algebra of order n (or simply

an algebra) if there is defined on A  a product xy which
satisfies the conditions:
(1) x(ay) = (ax)y =a(xy) for a in R and x, y in A,
(2) x(y+2z) =xy+=xz end (y+ z)x=yx+ 2zx for
X, ¥, 2 in A.

If R 15 the field of real numbers, we call A a real algebre.

Also, if A contains an element € such that ex = x¢ = x for

i

all x in A, we say that A 1is an slgebra with identity, and
we denote this element by “l", Fote that our definition does"
not assume commutativity or aBsoéiativity of multiplication on
the algebra A.

From this definition, we arrive at the following useful
representation of a product in A. Let_ € €55 o0y € be a

basis for A, and let

x=xlel+x2 82+ ...-l-xn-en
and ‘y=y1el+y2 e2-+ ...+ynen



be any two elements in A. Then

n

e |

Xy = Z‘ X ¥y e ey
i,J=1

is an element in A. Therefore

n
ei e,j = Zl 7ijk ek (i}J = l’ 2) tes, D 7i,jk in - R)
k=1
so that
a n
xy’ = ZJ Zk ek’ Zk = Z xi yj 7ijk (k = l, 24, ceey n)c
k= i,‘j:l

Thus, multiplich:ation of elements in A is completely determined
by n5 constantsv Y 13k These éonsta.nts are called .the structure
constants of the system. Throughout this paper, R will denote
the field of real numbers and it will be understood that A is of
finite dimension n.

Definition: Let A be a real algebra. A is said to be

absolute valued if there is a function ¢ on A to R such that:
(1) #(0) =0 eand @(x) >0 if x £ 0,

(2) B(xy) = B(x)B(y),



(3) @(x+y) Sd(x) + @(y), end
(L) Blax) = | o | d(x)

for 11 x, y in A and a in R. If these properties hold we

call ¢ an sbsolute value function on A. If @(xy) S d(x) ¢(y),

A is said to be a normed algebra snd ¢ is called a norm function
on A.

Theorem l;].ﬁij Every real algebra is a normed slgebra.

Proof: Let A be a real algebra having a basis 2 €5 +oes en.

As we have seen multiplication on ‘A is defined by

€1 €5 = 2_, 713k %k’
X

where the 7ijk's are real. Now let ug = aéi (1=1,2, +.., n)

for any nonzero real number &. Then ul, U,y .},,‘un forms a

new basis for A such that

be any two elements in A.



Then
o -
xy:z_,zk“k’ zk=2_, Xy ¥y B4k ¢
k .

Now we choose a such that

|8, S5 Woo k=12, .., m)
so that
PENAAE
i)
We define
g(w) = (w[ = lwl[ + [we'[ + oae. [wnl
for every

in A. Then ¢ 1is a norm function on A since

$) = ] = ) [n < Zj ol ol = [ Il

Bx v 9 =[xl = ) [r v € 5] Jsl-
‘ i i



¢ clearly satisfies the remaining properties which must hold for
a norm function. Hence A 1s & normed algebra and the proof is
complete.

Definition: A 1s a division algebra if the equations ax =.b

and ya = b always possess solutions if a £ O.

Theorem 1.2 Lil él: Every real absolute valued algebra is a
division algebra.
Proof: Let A be a resl algebra with absolute value

function ¢. For some a in A, define the mappings

and

' T X - ax or xI, = ax
La S - T

for all x in A. fheg_ R, énd  ﬁaz are’;1near:tfansformations
on A. Now if a,é 0 and x;é 0, ‘t;hen"¢(a)'> 0 and @(x) >0
implies thatA'¢(xa)'$vO‘ and.hehce. xa ¢7oL Therefore, if a # 0,
the null space o:t"“Ra consisté'of;thé zZero vectpr alone. Similarly
for L. Hence, if ;a £ 0, R, and L; are nonsingular linear
transformations on A.: Thus, it follows that the equations
xa =b and ax = b can be solved when a £ O.

Definition: Let A be an -algebra and let P a.nd; Q be

. . L*
nonsingular linear transformstions.on - A. - The algebra A  vhose
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elements are those of A but whose product operation is defined

‘ : *
by x*y = xP . yQ 1s called an isotope of A. A and A are
said to be isotopic.

Theorem lLQJ:i]': If A 1is a real absolute valued algebra,

then A hes an absolute valued isotope with identity. Furthermore,

the absolute value function of A 1is preserved in ;ts isotope.
Proof: Let ¢ be an absolute value function defined on A.

Since @(ax) = |a| @¢(x) for e%ery real a and x 1in A,»thereA

exists & nonzero element € in A such that @(€) = 1. As before,

since € £ 0 and A is absolute velued,
xRe = x€ and xLe = €x

define nonsingular linear transformetions on A. Let x, z be

any elements in A such that

R’ -
Then
X = zRé = 2€
and ‘
d(x) - d(zR,) - (=) - B}
Similarly,

#(x) = g7,

o * ;
We now define-an isotope A of A by the product

.

x ey =Ry -l
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* ‘
Since A and A are the same linear spaces over R, the properties
of ¢ 1involving addition and scalar multiplicaﬁion are preserved

on A . Also

B(x x y) = G(R) - ¢<yr:1> d(x) B(y)

* *
for all x, ¥y in A . Therefore A 1is absolute valued and
preserves the absolute value function of A.
' *
Finally, consider the product 62 #y in A . The product of

two linear transformetions R and L is defined by

x(R + L) = (xR) + L for all x in A.
Thus
2 2 -1 -1 -1 -1
€ *y=e R~ -y =e(yL.) = (L)L =

for all y in A. In a similar fashion we have

X * e2 = X, for all x in A.

*
Hence, €2 is the identity of A .



Definition: Let A be a real algebra with the basis

el, e2, ceey en. Denote the vector scalar product of

X = xl el + x2 ee + .00 + xn Qn

y yl el+y2 e2+ e +yn_en‘

by <x, i>. The norm of the vector x is defined by

N(X) = é_’ >= Xi + Xg.'i' ees + xtel.

In the theorems which follows, we will continuously use thg
fact that the scalar product<::%, i:>-def1nes a nondegenerate and
symmetric bilihear form on a resl algebra A. Now consider the
real algebras having the property that N(xy) = N(x) N(y) for

all x, y in _A.

If A 1is not assoclative thep xP 'is'hot uniquely defined'

in A. Therefore, in order to givé meaning to  xn, define

X =X ox’ n=2,3,....

Lemma 1.4: Let A be a real algebra such that N(xy) = N(x) N(y)

n n-l
X

for all x, y in A. If x = « X, n =2, 3, «+., then

N(xk) = N(x)k for all positive integers . k.
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Proof: By 1nduction. Let x be any element in A. The

lemma is obviously true for k = 1. Now let k be an arbitrary

positive integer such that

N(xE) = N(x)E.

Then

N - NGE - x) = N N(x) = N N(x) = N(x)FHL.

Hence

NG=) = N(x)¥

for all positive integers k.

Theorem 1.5: Let A be a real algebra with identity. If

N(xy) = N(x) N(y)
for all x, y in A, then A 1is absolute valued and the absolute

value function defined on A 1is unique.

Proof: To show that A 1is absolute valued we define

#(x) = |[x]] = + A/ N(x)

for all x in A. Then
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Blx +Y) = |[x+ y” = e?t.-"\/'?{+'y', x + y>|

50

e ll® < Qe 2 ]+ |

By the Cauchy-Schwarz inequality,

12+ PP < =P+ 2fjx |- [l fl + 9112 = Qi+ fsin®,

Hence
#x +3) =[x+ vl <[lx ||+ |l || = 8x) + B

The remaining properties whiqh nrg‘st ‘hold for @ to be an absolute
value function are clearly satisfied a.‘ndli_;hu‘s A 1is absolute
velued.

To avoid confusion between the identity in A and the identity
in R we denote the first by €. We first note that if ¢ is an

absolute value function on A,

Be) = Ble - €) = gle) @(e),

and hence

CB(e) = 1.



)

Now suppose @(x) is not unique in our algebra A. Then

there exists an absolute value function 6(x) on A such that

8(a) # #(a)

for some 8 £# 0 in A. Then either

e@);m@
91‘
6(a) < ¢(a).

We consider first the case when

6(a) > d(a).

If we let

Y= T
then
1171 = N) = 1.

We also have that

~ 6(a) )
8(y) >1 since 6(y) = “(:||_> ¢|sz = 1.

Furthermore, by lemma 1.k,
k 2 2 2
1=N_(y)=yl+y2+...+.yn,

which implies lyi |.<_:_1. Since © 1is an absolute iralue function,
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o) = 00) £ |wy| 8le) + |wy| Blep) + o+ 2] o)
Hence

()  S1+ 0(ey) + ...+ 8(e ).

But this is impossible since 6(y) > 1 and k is arbitrary.

Now consider the case when 6(a) < @(a). . Since A is absolute

valued, it is a division algebra. Therefore we can solve the

equation az = ¢ whenever a #0. Let y = ||a||z.
Then

o(y) = ||a||ecz).
But since

o(a) 0(z) = 6(c) = 1,

we have that

ew1=§§l>£%l;;@mmw;1.

The remainder of this case follows exactly as the first. That is,
we arrive at a contradiction to our assumption that 6(a) < @(a).

Hence 8(x) = @(x) for ell x in A, so @(x) is uniﬁue.

The following lemma will aid us in the proof of our next

characterization theorem.
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Lemms, l.§| 6,. ,10]: Let A be a resl algebra such that

N(xy) = N(x) N(y) for a1l x, y in A. Then for ell x, y,

x', y' in A:

(1) xy, x'y) = <x, xDR(y),
and

{xy, xyD = WKy, ¥,
(11) &y, x'yD +Gy', X'y = 2¢x, X', ¥O-
Proof: We can easily establish that for sll x, y in A,

(x, y>= %[N(x +y) - R(x). - N(yﬂ..

Then
&y X'y> = %E\I(xy + x'y) - R(xy) - N(x'y)] = <x, #.>N(y)-_,.
Similarly
cxy, xy'> = W)y, ¥
Therefore
Ky +3'), x'" (y + y')D>=<x, xDN(y + y").
But

Ny + y') = 2¢y, ¥ + N(y) + N(y').
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Hence
Cx(y +3%), x'(y + ¥') > = 2¢x, x4y, ¥' + <x, xDN(Y) + {x, xDR(y")

= 2&, xy, ¥ + (, x'y) +(xy's X'y,
Now since,

Gy +y), x'(y+y')> = xy, x'y> + <x\y, x'y'y
+ {xy', x'y) + {xy', x'y'>;
then
Cxy, x'y'>+(xy’, X'y>f 2%y X'> Y, Y-

Definition: Let A and B be algebras over a field F.
A one-to-one mapping ¥ of A onto B is called an isomorphism
of A onto B 1if the operations of addition and multiplication

are preéerved under the mappingQ}.That is,
(1) V(aa + Bb) = ay(a) + By(b),

(2) v(ab) = ¥(a) ¥(b), for all a, b in A
and a, B in F. A and B are said to be isomorphic if there

exists an isomorphism of A onto B. By an automorphism of an

algebra A we shell mean an isomorphism of A onto itself. If

a mepping ¥ is an isomorphism (or automorphism) except that

¥(ab) = ¥(b) w(a),

ve say that V¢ is an anti-isomorphism (or anti-sutomorphism).
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Definition: An algebra A 1is termed an alfernative algebra
if for every x, y in A, x2y = x(xy) and xy° = (xy)y-.

Theorem 1.7 [6, 10): Let A be a real algebra with identity 1.

If N(xy) = N(x) N(y) for all x, y in A, then A is an
alternative algebra with involution (anti-automorphism) ¥ ;:x -x
such that:
xx = N(x).1
and
X + X =‘T(i)-l, T(x) real.

Proof: Let I denote the éﬁbspace of A spanned by the .
identity and let It denote its orthogonal complement. . Then A
is a direct sum of I and I1 and we write Ai= Ie 1t That is,
every x in A can be written aé‘fa-l‘+ a fof some féal'ﬁ;'“ﬁ“h‘m
and a in 1I+ For a proof of this the rgéder is referred to - -
[9, p- 157]. L .

Now for x = a-1 +a in A we:défihé?f§f=ia-l -la dnd; |
consider the ﬁapping ¥ ix-X giveniby ¥(x) = X. _blearly"i

V(ax + By) = a¥(x) + B¥(y).
We now show that
¥(xy) = ¥(y) ¥(x).

Consider (ii) of the previous lemma. If we put x' = 1 and take

x in IJ' we have

RS
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Kxy, ¥ Ay, ¥y 24, D, yD=0

for all Sr, y' in A. Also, by the law of multiplication defined

on A,
{a1)y, y'> =<7, (a:l)y'>=0  for all real a.
Thus .
vy 70 +<(ad)y, v + &'y vd - (e, y>=0

and

-»v<(x +a1)y, v =<{(a1 - x)y', ¥
for all real a, x in 11 and Y, ¥' ' in- A. Now if we put
w=a-l+x, then vy, y')= ¢L vy, forall w,y, y' in A.
Similarly, if we put y' = 1 and take y in I* in (11) of our lemma.,
we find that <xz, x> = {x, x'2)> for all x, x', z in A.
Combinin‘gvthese results we have that for all x, y,' z in. A4,

G, 2> = <y, &2 =C¥E, B =5, T
Now if we let x = 1, then <y,z> = {z, 5‘}. * Therefore

Sy, _zf{)v',%("?; .-

]

Thus we have that .
<2: ﬁ) '<§: ;‘_Y>= 0
which implies that F% = Xy, and.

V(xy) = T = §% = ¥(y) ¥(x).
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Now suppose that V¥(x) = ¥(y) for some X, y in A. Then since
¥(%X) = x we have that

x = ¥(¥(x)) = ¥(¥(y)) = v.

¥ is a.n.onto mapping and thus is an'involution on A. -

I contains all those elements of A left fixed by fhet
involution while I+ éontaiins all x in A such tha.f Vv(x) = -x.
Now since V¥(xX) = x%X, then x¢ is in I, .so tﬁere exists a real

nurber « such that x% = a-l. Now,

a=ad, 1)>=Cal, 1)= <::?'c, l>§<(l-x), x» = N(x).

Hence‘ xX = N(x)-1 for all “'x in A. Also,
%k = N(%)-1 = N(x)-1.

Finaliy, s;’.nce. X+ X is 1e:f'f fixed by V¥, there is a real
number B such that x + X =Bl. We Writeil X + x = T(x)+1, where
T(x) = is a linear functional and is defined to be the trace ét X.

To complete the prdof , it réma.iné to show that the a.ltei‘na.tiirg
lav is satisfied for all elements in K. Now from the first part |
of this proof we have that {xy, x2> =<y, x(xz)) for all x, y, z
in A. But <{xy, xz)= N(x)é?, z‘> from (i) of lemma 1.6. ﬁence

s x(xz) > =Ky, W(x)-2>=<y, X(xz) - (xx)z > = 0.

This implies that x(xz) = (xi'c)z Now since there exists some

real number f such that x + X = B-l, then

x(xz) = (Bl - x)(xz) = (B-1)(xz) - x(xz)



22

(xx)z = [X'(ﬁ'l - x) ]2 = (B.1)(xz) - %% z,
Hence
x(xi) = %2z for all %, z in A.

If we consider (xz, yz), we can similarly show that

~—

xz° = (xz)z for all x, z in A.
Thus A 1s alternative and our proof is complete.

A direct consequence of this theorem is the following.

Corollsry: Let A Dbe a real slgebra with identity 1 and
let I denote the subspace spanned by the identity of A. If
N(xy) = N(x) N(y) for all x, y in A, then every element of A
satisfies the quadratic equation <= - P(x)-x + N(x) = 0 over I.

Furthermore, the space I is the set of all elements left fixed

by the involution V(x) i,_while Il is the set of all a 4in A
such that \V(a-) =8 = -a.

The proof of the converse to this: théoran depends on the
validity of the Moufang iden'l_:ity on an alternative algebra. That

is,

(xy)(zx) = xByz):E] for all x, y, z in A.

In view of this, we present the following lemms which will be
valuable in proving the converse. We begin by making the following

definitions.



Definition: The associator of an slgebra A 1is a function

S defined on A° to A by

S(x, ¥, z) = (xy)z - x(yz)
for €11 x, y, 2z in A.

Definition: Let A Dbe an arbitrary algebra end let

f(xl, Xps oves xn) be a multilinear function defined on A" +to

f is sald to be skew-symmetric provided:

1. f takes on the velue O whenever at least two of
its arguments are equal, and
2. f changes sign whenever two of its arguments are

‘interchanged.

23

Leyms 1.8 [L) 1il£'~Let A be an slternative algebra over a

‘field F. Define the function K from Ah' 40 A by

K(w, x, ¥, 2) = S(WIY"Z‘V),*‘ XS(V:-Y:. z) - S(X:AY: z) .w
for all w, x, ¥, 2 in A. Then S and K are linear skew

symmetric functions.

Proof: The proof is contained in two parts:
I. That S5 4is linear in x 1is readily verified by
expanding S(axi + BxXy, ¥, z) for any Xy5 %55 ¥, 2 in A and
@, p in F. Similarly S 4is linear in y and z. It is also

clear that S(x, X, y) = 0 = S(x, ¥, y) vwhen A is alternative.
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Therefore,

S(x, y+ 2z, y+2z)=8(x, y, z) +8(x, 2, y) = 0.
and
S(y + 2z, y+ 2, x) = S(z, ¥, x) + s(y, z, x) = O.
Thus
s(x, y, z) = -5(x, z, y) end S(z, vy, x) = -S(y, z, x).
Finslly,

S(x, Y, 2z) = ‘S(x: 2, Y) = S(Z, X, ¥) = “S(Z: ¥, x).

Hence S 1is a linear skewe-symmetric function from 1\3 to A.
II. ©Now consider the function K. It is immediate that
X 41s linear from the linea.rity 6f S. Also, from the definition
of K, we note that K(w, %, y, y) = O. Therefore
- K(w, X, ¥, 2) = "K_(W: X, Zy ),
sihce
K(w, x, y + z, y + z) =k(w, x, ¥y, 2) +K(w, %, 2, ¥) = O.

Now we define & function G on Ab' by

G(W) X, ¥, 2) = S(wx, y, z) - 8(w, xy, z) + S(w, x, yz)

- WS(X,’ NE) z) - S(W: Xy ¥)z.
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By expanding all the sssociators we find that G(w, x, y, z) = O.

Therefore

-K(z, w, X, y) = G(W’ X, Y, z) - K(z, W, x,‘y)°

Expanding G and K in terms of their associstors and applying

part I of this lemma we have

‘K(z: Wy, X, y) é'S(WX, ¥, 2) - 8(xy, z, w)
+ S(yz, w, x) = S(zw, x, y).

Using the fact that

s(wx, vy, z) = K(w, x, ¥y, 2) + x8(v, y, z) + 8(x, ¥y, z)-w
we find that a cyclic permutation of the elements z, w, X, ¥
changes the sign on the right hand side of the expression for
-K(z, w, x, y). That is,

K(Y:- z:AV; x) ="‘K(z: V)' X, ¥)e o

Thus we have shown that for all w,.x, ¥, 2 in A,

K(w, x, y, 2) = "K(W: X, Zy ¥)

K(w, x, y, 2) = 'K(z) W, X, ¥).
Since these two permutations of the elements w, x, ¥y, z generate

the entire symmetric group of permutations, we have proved the skew-

symmetry of K.
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We are now prepared to prove the converse to the last theorem.

Converse; ['6, LQl: Let A be a real algebra with ic}entity 1.
If A is an alternati§e algebra with involution :‘lr : x - X%, where
x% = N(x)-1 and x + % = T(x).1, T(x) a real number, then
N(xy) = N(x) N(y) for all x, y .in A.

Proof: We first prove the validity of the Moufang identity on
A, We can easily verify that

() (2zx) = x[y(zx)] + s(x, y, 2x).
From lemma 1.8, .
s(x, y, zx) = -8(zx, y, x) = -S(x, ¥y, x)-2

- XS(Z, N x) = K(Z, X, YV, x).

Therefore

8(x, y, zx) = x8(y, 2, x) = x[(yz)x] - x[y(=x)].
Hence | |
() (2x) = x[(yz)x]
for a1l x, y, z. in A. Now since x + i'c= T(x)-1 for all x

in A, then

2

x“ y + (xx)y

[x((x) 1]y

and

(3

x [ ((x)-1)y]

for all x, y in A. By the law of multiplication defined on A,

x(xy) + x(%&y)



[x(2(x)1)] ¥ = 2(x) -(xy) = x[(2(x) -2)y).
Therefore, since A is alterngtive,
(x)y = x(Xy).

Similarly,

x(3%) = (x)7-

Now for every x, y in A,
N(xy) -1 = (xy)(7%) = (xy)[F(2(x)-1 - x)]

= (x) (x)¥ - (xy)(Fx).
By the Moufang identity

N(xy) 1 = T(x) [ x(y¥)] - x[ (y3)x]

= T(x) N(y)-x - N(y)-x°.

Hence

N(xy) 1 = B(y)x [T(x)-1 - x] = M) -(%) = Ny) Wx)-1.

a7



CHAPTER II
COMMUTATIVE AND ASSOCIATIVE ALGEERAS

In chapter I we assumed neither commutativity ndr associativity
of multiplication. This chapter will be devoted to further character-
izations and uniqueness of real linear algebras having these properties.

Definition: A skew field is a ring in which the nonzero elements

Torm a group under multiplication. A commutative skew field is called
a _i_‘_iﬂ_@ . .

Theorem 2.1 ! 12, Pp. 18'-@1: Let A be a real division algebra.
If multiplication on A is associative, then A is a skew field. (If,
in addition, A is commutative with respect to multiplication, then
A is a field.)

Proof: First, if A is assoclative with respect tomultipiication,
then A is a rlng Let a,b be nohzero elements of ‘A," Then since
A is a division algebra, there is an clement x in A such that
ex = b. Similarly, there is an element y in A ‘such that by = X.
Hence a(by) = ax =b and since b # 0 and a(by) = (ab)y then it
follows that é.b # 0. Thus A has no nonzero divisors of zero. We cen
now show that A has an idenfity.

Let &a Dbe any nonzero element in A. Then there e:gists an element
€ in A such that ac =a. Then € £0. Now ac® = ac, which implies

‘that €2 = ¢ since a is not a divisor of zero. Let x be any element

28
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in A. Then
(x - xe)e = 0 and e(x - ex) = 0.
Hence Xx€ = €x = x, so € 1is the identity element of A.‘ As before,
we denote this element by 1.
We next show that every nonzero element of A has a multiplicative
inverse. Let a De any nonzero element of A. Then there exists an

x in A such that ax = 1. Then x # 0. Furthermore,
(xa - 1)x = x(ax) - x = 0.

Therefore, xa - 1 =0 or xa =1 and hence, x 1is the inverse a1
of a. We have shown that the nonzero elements of A form a multipli-
cative group. Hence A is a skew field. Furthermore, if A is
commutative with respect to multiplication, then A 1is a commutative
skew field or simply a field.

We shall now prove that except for isomorphisms, the real and
complex’numbers form the only cdmmutativé éivisiéh algebras over the
real numbers. As before, we denote the spacé spanned by the identity
of A by I. Since A 1is reél, I is cleariy‘iéombrphic to the.
field of real numbers. We begin ﬁith the following définitidnf

Definition: Let A be a division algebra{wiﬁh idéhtityA 1 over
a field F. A is said to be algebraic over a field K if:

(1) K is contained in the center of A, and
(2) Every element a in A satisfies a nontrivial

polynomial with coefficients in K.
In the theorems which follow we shall denote the center of A by C(A).

Lerma 2.2 [7,Ap. lQJ: If A is a real associative diviéion

algebra, then A 1is aigébraic over I. Furthermore, each element of

A satisfies a nontrivial linear or dﬁadratic equation over I..
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Proof: Sinee A 1is an assoclative division algebra, A has an
identity and since A 1is real, If is isomorphic to the field of real
numbers. Also, if o is any real number, then by the rule of
multiplication defined on A, (a-l)a_= a(a-1) for all ;, in A.

Thus I 1is contained in c(a).

Now, since A is associative, we can express the product of k
factors a by ak. If A is of order n, the set of n + 1 elements
1, a, a2, ..., a' are linearly dependent with respect to R. Hence
there exist real numbers oy, @3, ..., 4y, not all zero, such that

Gyl + oy & + ap a + ... + Oy a® = 0.
Therefore a 1is a root of an equation of degree ;s'n ﬁith'coefficients
in I. Let
p(x) = ag*l + a3 x + ... + ap x°.
Since I is isomorphic to R, we have by the fundamehtal theorem of
algebre that _ | i
p(x) = £1(x) fp(x) .or £x(H), |
"k<n and fi(x) is of degree 1 or 2. Now, since p(a) fog'then
some £i(a) = 0 and thus a is a root of a 1inear or quadratic -

equation over I.

Lemma 2.3 [9, pp. 326-327): Let A be an associative division

algebra over the field C of complex numbers. If A is algebraic
over C¥ = C.1, then A = C¥, - 5

Proof: Since A is algebraic over C¥, if a is any element of
A, there exist complex numbers cg,, €y, 02"'.., Cns not all zero,
such that '
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Agein making use of the fundamental theorem of algebra, the polynomial
p(x) = cgel + ¢ x+ ... + ¢y xB

can be factored into a product of linear factors. That is

p(x) = (x - M -1)(x = Ape1)(x - A3:1) oo (x - A,e1)
vhere N, A, ..., A, are in C. Now since p(a) = O, some

a=-N\-1=0.

Hence a is in C* and we have shown that ACC*. Since A is

C*.

algebraic over C¥, C*¥CA. Therefore A

Theorem 2.4 [9, p. 327): Let A be a real associative division

algebra. If A 1is commutative, then 'A is isomorphic to either
the field of real numbers or the field of complex numbers.
Proof: By lemma 2.2, A 1is algebraic over I and hence I,
which is isomorphic to R, is contained in C(A). Now suppose
I £ A. Then there exists an a in A which is not in I,
Therefore, a satisfies some quadratic equation with real coefficients.
Otherwise, a would be in I. Let
p(x) = x2 + 20x + 0y°l
such thét p(a) = 0 and where o, ap are real. Then
(a + @-1)® = ¢2.1 - op-1.
We note here that for any x in A and 7' in R, if x2 =yl
and 7' > 1, then there is a real number 7 such that
x° = 721,
Then

x2 - 72.1 = (x + 7.1)(x - 7-1) = O,
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which implies that x =+ 7.1. Hence we have that ol - %o <k), for
if this were positive, there would exist a 7y in R such that
a+al=+71.
But‘this implies that a 1is in 1I. Henée, there is a reél number
B8 such that a? - O, = _52. Therefore

(a + a1)2 =-p2.1.

Thus, if a is in A but not in I, we can find real numbers

(a + (1,-1)2 = -1.

a, B3 such that

We put
i = fatal
(22
so that i2 = -1, and hence A contains I + I-i which is isomorphic

to the field of complex.numbers. We denote this. field by C¥*. It
remains only to shbw.that, A=c¥, .

Now since A is algebraic o&er 1, then"A is algebraic over
C*. For if a in. A éaﬁiéfiéé a'pélﬁnomiéliwi;h coéfficients in I,
then a clearly satisfies a polyﬁOm;al:With-cqéfficients in. C*., Also,
c*CCc(A) since A is commutative. Henée,ABy‘lemma 2.3, C¥=A and
our proof is complete.

We now drop the property of commutativity on A and continue our
characterization of real division a;gebras which are associative.

Theorem 2.5 [2, Dp. 240-2#;1: Let A be an associative division

algebra. For some a contained in A, let Ra and La be the linear
transformations on A such that xRy = xa and xL, = ax .for all x

in A. Then A 1is isomorphic to



Ag = {(Bx | x in A}

and anti-isomorphic to

L}

(g | x in &),

Rx for all x in A and we shall

Ay,
Proof: We define ¥(x)

show V¥ defines an isomorphism of A onto. Aﬁ.- First consider

\l’(C&X + BY) = ch + By

for x, y in A and a, B in R. Note that for any a in A
aRyy + py = alax + By) = a(aBy) + B(aRy.).
Hénce

R

ax + py ~ Fx * PRy

s0
V(ax + By) = a¥(x) + B¥(y).
Now consider V¥(xy) = Ryy. For a in A,

&Ry, = a(xy) = (ex)y = '(aRx_)“R;Arvf-‘ ?L(Rx “Ry).

Hence

S0

W) = W) V).

Finally, suppose V¥(x) = v(y)f'énd let a be any nonzero element
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in A. Then aRy = aR, so a(x - y) = 0 and since A 1is an associative

division algebra, x = y. Hence, sinece ¥ 1is an onto mapping, A is

isomorphic to Ag.

Now consider the mapping V¥'(x) = Lx. Note that for a in A,

alygy = (xy)a = x(ya) = (‘t}Ly) Lx = a(Ly ° Lx)



Hence
v(xy) = ¥ (y) v'(x),
so ¥' defines an anti-isomorphism‘from A onto Aj.
Thus if A 1s an associative division algebra with basis
e, ep, ceey € and if

x=x1el+x2e2+ ...-l-xnen'

is any element in A, then

X ex) Rel + X Re2 + .. * Xp Ren

under the mapping ¥ and

under the mapping V'. Hence( Re;, Reys -++5 Rey form & basis for
Ar and Lel’ Lee, seoy Len form a basis for AL'

Theorem 2.6 [2 . 202-213]: -Let A be‘g reai associative
division algebra. Then’thé algéﬁfas AR - and 'AL of linear
transférmgtions on 'A.‘are igombrfhic to-élgebrasfof;?ealf nxn
matrices. | |

‘Proof: Let x =% e +fX2:82:+i.‘;‘+ Xy €ps. where x4 1s real

and ey, ey, ..., e, form a basis for A.  Now kRa =xa 1is in A

so we put
xRy =Xa=y=y] €] +y2 e + ... +¥n €
g =(Z X3 f%i) R, =in (ei Ra)
' i
~and

e; Ry =“Zu,id ej.
. 'j



. Now ‘ _ ‘
' i joi

Hence

Y3 "—fZ“’ij X3
i

and we denote the matrix (og3) by m(R,). ‘Thus the linear
transformation R, which ‘ser-xd-s the vector x vhaving components
(xl, X2y ooy Xp ) into the vector y having 'components
(yl, Yo cces yn) can be represeni;ed by the real 'n X n matrix
(C‘ij) where ej Ry =Za.ij es.
J

We now show that the mapping S(RX) = m(RX) for all x in A,
defines an isomorphism of Ap onto M(Ag) ={,m(Rx) \ R, _,.in AR}

First, we note that for real ob.,' B and R, Ry in AR"

ey + oy ) - m(ae + 55y) - @ n(R) + B a(Ry)

since ' - SR

eu(ale + By) = oos ) + 8ot By).

Now suppose

e; Ry .—.Za,ij ej ~and ej Ry :—Z Bik ex-
J . k ‘

Then L | B
ei(Rx Ry) =Zo;ij(e3 Ry-) .-.-.Za,ij ZBJK ek
i J ko

Therefore

e1(Rx Ry) %Z@iﬂ Bik €k
3k

35
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which implies

o B) = (o13) () = m(Re) - n(zy)-

That is

n(R, Ry) = (Tax) =) %5 B,
L

Hence
o(Ry y) = n(R,) n(Ry).
Now suppose G(RX) = G(Ry). Then m(Rx - Ry) = (0). 1If
m(Ry, - Ry) = (ay;)
then each a4 = 0 so
ei(Rx - Ry)= ei (X - y’) = 0.
This implies thet x =y so that R, = Ry. Hence the mapping 8 is
an isomorphism of Ap onto M(AR).
Similarly, if we define _
M(az) "'{..m,(LX) | Lx in Ap}
we can show that the mapping ©6' defined by '
o (ix) = m(Lg)
for 211 x in A, is an isomorphism of . Ap onto M(Ar).
Corollary: Let A Dbe a real associative division algebra. Then
A is isomorphic to the algebra M(AR) and aﬁti-iéomorphic to the
algebra M(A’L )
Definition: The isomorphism A = M(Ag) is known as the first

regular representation of A and the anti-isomorphism A £ M(AL)

is called the seccond regular representation of A.

Hence, given an associative division algebra A with basis

€1, €, « + +, €y, We have for any
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X=X € + X, 6+ ... + X, e
in A the following correspondence:
X & Xy Rel + Xp Re2 + ... + Xy Ren
and
x & x, n(R + m(R + ... 4+ m(R_ ).

Similarly

X & Ly eym(Lx).'

Example: Regular representation of the algebra of complex numbers:

Let C denote the algebra of complex numbers. ~Then l, i is a basis
for C, so we have for any o + Bi in C,

@+ i ©oR) + BR; ean(R) +B m(R; ),

where m(Rl) is given by

| | AR =041
and m(Ri) is-givenwby‘
lRi- O+1i

Hence ' ‘ : :

(1 0 0. 1 a B
o+ Bi e + B | = .

0 1 -1 0/ \-B a
Since C 1is a commutative algebra, the first and second regular
representations of C are identical.
‘We shall now construct the algébra of real quaternions by

“imitating the construction of the complex numbers. Again,.let‘ c

denote the algebra of complex numbers.
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Consider the set Q of all ordered pairs (a, b) where a, b are

complex numbers. Q 1is a vector space over the ﬁeld of complex
numbers. Each (a, b) in Q can be expressed as

(2, b) = a(1, 0) + v(0, 1).
We define multiplication on Q as follows:

(a, b)(e, 4) = (ac - db, da + be),

where the bar indicates the complex conjuga.te. The multiplicative
identity is clearly 1 = (1, 0). If we put J = (0, 1) we find that

j = -1. Now, every (a, b) in @ is uniquely expressible in the

(2, b) = a.1 + by,
and the rule of multiplication on Q can be written as
(a1 + bj)(c-1 + d3j) = (ac - db)el + (da + be)j.

Now let a = a4 + aq_'\/-—l and b = ap + a,;‘\/-l, where
Ups Gps Gpy Oz aTE real. Then

(a, b) = a-l +bj = ol + qlw/:i-l + az'j + aﬁ\/:i 3.
Let ('\/E, 0) =1 and ‘(-O,'\/:I) = k. Thus, each element (a, b) in
'‘Q is uniquely represented in thé form |
(a, b) = agel + alyi +ay § +as k.
By our rule of multiplicatibn we compute the folldwing table which also |
defines multiplication on Q:
12 = 32 - ¥° = -1,
ij=-ji=k

Jk = -ki = i,

N
Cae
L]

ki = =ik
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Under this rule of multiplication, “

= {ao-l +oy i + ag J. +. ag k' | ao, ai, a2, a3 real}
is a real associative algebra with identity. The elements of Q are

1

known as guaternions and Q is called the algebra of real quaternions.

o Theorem.z.z. The algebra of real qnaternions 1s an absolute

valued algebra; | : A ":i( ' lA ‘ B

ggggg' We: apply the converse to theorem 1.7.,:t ;

First, for every q in Q we define the quaternion conjugate Q
of q by LT ‘, |

,q=%‘1-(°‘1i+“23+“3k) |

By straight forward multiplication we. can easily show that the mapping
¥(q) = § defines an 1nvolution on Q Similarly, ve. can show that

N(q) i1 ‘for. all a in Q.a Finally, we define T(q) l q + ﬁ'

for all q. T(q) is clearly real. S1nce Q is associative, we have

tthat N(pq) N(y) N(q) and our proofhis)complete.lmﬂlg,j; I‘

Lh’the fbllowing proof of the uniqueness”

ws conclude this chapter“

;‘°f u ”lge"rﬁ 3 real. quat mians.'» g

Let A be a real

associative division algebra. If A 1s not commutative, then A is '
‘isomorphlc to the algebra of quaternions.‘;qug‘*5' ’ L .
Proof:. We first show that I C(A) By lexmna 2 2, I“ < C(A) 2

Now suppose there exists an element a in C(A) *such that a is not

in I. Then, as we have previously shown, there w0uld exist real
numbers c, B such that (EhEJEJE)

, :t-l. Thus, C(A) _would.contain
a field C* isomorphic to the field of complex numbers. Hence A would




. ko
be algebraic over C* and so by lemma 2.3, A = C*. This contradicts
our assumption that A 1is not commutative. Therefore I = C(A)Q

Now let a be any element of A such that a is not in' I and

B

take i = (2;1;222;) such that i2 =-1. Then i is not in I so
there exists an element b in A such that '

c=bl-ibf 0.

Note that o  -{1if‘ .
ic + ci = 1(bi - ib) + (‘bi‘- 1‘_£>)i - 151 - ;é»b& b12 - 1bi = 0,

so 1ic = =-ci. v

Furthermore,

1c® = (ie)e = -(ei)e

c(ei) =_'c2 i,
so ¢ commutes with i. |
Now c satisfies some quadraticlequatiqn avéf I. Let

e+ ye+Bl =0, .7, b real.
_Since‘ L T ! ‘
then 7c’ cbﬁmutéﬁiﬁ;tﬁ'*i;' ﬁéﬁc§ ' v

yel = iye = yie = -yei,
50 .

2yeci = O.

Since 2ci £#0 and A 1is a division algebra, 7 = O. Therefore
¢ = - 81, Also ¢ can not be in I since ic'= -ci. Hence

5>0 so we let .2, & real.

.
Now let jJ =-‘§3 . Then 3% = -1. Also
, ci + ic

= 0.
£

i+ 1 =-



Therefore ij = -ji. Let k = ij.
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Hence A contains the algebra C* + C¥*¥.j which is isomorphic

to the algebra of real quaternions. We denote this algebra by Q¥.

We finally show that Q* = A, Suppose Q*¥*CA. Then for some x

in A but not in

7(.

Q¥*, we can determine an element 1 in A which

not in Q¥ and such that 12 = ~-1l. Now i+ 1 are roots of a

quadratic equations over I. For real oy, ap, By, Bp, we let

(1 - 2)%=-2.1-11- 1

Adding, we get

(1 + 2102 #a(i+1) +apl=0
and a
(1 -1)2+p0 -+ Bl = O.
Hence .
(1+ 02221 +42+ 1 = -0 (i +12) - ayl
‘and

-y (i - 1) - Bp-l.

(aq + By)i + (g - By)2 + (g + By - 4)-1 = 0.

Since 1, i, 1 are lineariy independent,

is

a = By = 0.
Hence -
il + 11 = a-l, o real.
Similarly,
jl+ 13 =81
and

kil + 1k = 7-1, B, 7 real.



Thus
k= (1)) = (a1 - 12)J = o - 1(B-1 - J1) = o - BL + ki.
Then
2kl = 7-1 + Bi - oJ.
Multiplying by k we get
-21 = 7k + Bj + ai.
This implies that ! is in Q¥* contradicting our assumption that
Q*%iA. Hence A = Q% completing the proof.
Combining some of our previous results we have the following:
Corollary: Let A be a real associative absolute valued
algebra. Then A 1is isomorphié to the real numbers, the complex

numbers or the real quaternions.

L2



CHAPTER III
THE ALGEBRA OF REAL QUATERNIONS

Let Q denote the algebra of real quaternions.

Theorem 3;1_£32, P 257;25§1:' Let p bve a fixed nonzero

quaternion. Then 6(q) = pqp-l is an asutomorphism on Q.
Furthermore, every automorphism on @ d1s of this type.
Proof: Since Q 1s an associative division algebra, every

nonzero element of @ has a unique inverse.  Now consider

o(a) = pap~t,

for a1l q in Q@ and some fixed nonzero element p. If 9 94

are arbitrary elements in Q, and a, B are real, then

~ o(aq, + Bay) = plag, + Bay)p™ = apayp™ + Bpas™
Hence
8(aqy + Bay) = =b(q;) + Be(ée)A
Also,
6(a,a,) = pa; (p™'pla, P - (pqlp'l)(pqep'l)
50

0(q,a,) = 8(q;)-8(a,) .

k3



Finally, if e(ql) = e(qe), then q, = q, since Q has no non-
zero divisors of zero. Hence © 1s an inner-sutomorphism on Q.

Now suppose 6' is an automorphism of Q and let

8'(q) = q’'.

Suppose that under the mapping ¢6°

ke—s>e,.

Levlyderey, Javey, ke,

Then 1, el, e2,-e3 obey the same rule of multiplication as
defined for 1, i, j, k. Now there exist elements Pys Pos p5

in Q@ such that

P, = ejj-- e2k + el‘+ i

Py = elk - e31 + e, + 5
p3.= eei‘f‘elj,f~e3 + k.

We will show that for every q in Q
N .
where q' is the imege of q under the mapping 6'.-

From our rule of multiplicatibn on @ we have

&P, = - eej - e5k -1+ eli,
and

pli_= - e3k - eaj + eli -1,
so that

_elpl'= pli.



Similarly
e2pl = plj and ejpl = plk.

Hence for every q in Q,

Similarly

If one of the elements p,, pa,'p5 is not zero, the theorem is -
complete.

Now, suppose that

Py =p, = 0.
Then
e, *+ i=-ek - eBJ.
Also
P, = ek - e31 +;ejel ~‘ik}e,e5(el‘- i) + (e -1)k = Q;-f
Since, |
k7t - R/N(k) - -k",
(e1 -1) = e5(el -1i)k = ek + eBJ.
From above, we have
el +1i= eak - eij.

Hence
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which implies that e3 = k. Similarly, if

]
o
-
o5
L]
o

P2Fp§

and if

p3 = pl = o? j = 62.
‘Thus, if py = P, = P; = O, then 0' must be the identity mapping,
in which case we take p = 1. This completes the proof of our

theorem.

Theorem'§.2: The collection of all automorphisms on Q@ form

a multipliqative group of linear orthogonal transformations on Q.

Proof: Let G be the collection of all automorphisms on Q.
By the previous theorem, the elements of G are linear transformations.

of the form Tp where p 1is a fixed nonzero quaternion and
-1 ' :
qﬂb = pgp 'for all q in Q.

First we note £hat G 1s closed under multiplication. For

_suppose 'pl, p, are fixed nonzerc elements of Q. Then'for:aqy,_

q(,,apl . sz) . GTP:L)‘% - (272 (i 5"

P, Py =P, P / N(p, P,)

Qe in Q

But

)L,

P, Py / N(p; p,) = (», Py
Hence

T T =T 5 so G 1s closed.
Py Py Pp Py



T

Similarly, we can show

_for fixed nonzero elements Py> Py p3 and q in Q. Thus G
is associative.
Now, T, is clearly in G. If '1‘P is eny element of G and
q 1is an arbitrary element of Q, we have
q('I‘l . Tp) = q'rl').
Hence T, is the identity in G. Finally, since each element of

1
G 1is a nonsingular linear transformation on Q,hjgl

exists for
each Tb in G. Hence G is a multiplicative group of linear
transformations on Q.

Note that for all q in Q and each Tp in G,

; -1
<{qT, aT > = N(pap ) = N(a) = {q, )
Thus G is a group of linear orthogonal trensformations on Q.

As in theorem 1.7, we note that

Q=Ie1,

vhere I 1s isomorphic to the field of real numbers. Furthermore,

from our construction of‘lQ, we have that I+ is isomorphié to

the real Euclidean vector space of dimension three. Denote i

by E5. Then every element in Q 1s of the form

Q=Tr+v,

where r isin I and v in E3.



Theorem 5.3: Let G be the group of all automorphisms on
Then
(1) The elements of I are invarient under the
transformatiohs of G, and

(2) G defines the group of all rotations on E3°

Proof: That the elements of G leave fhe elements of I
fixed is clear since each r in I is of the form «-.l, where

a 1is real. Thus,for each r in I, and ?p in G,
-1
rTb = pla-l)p ™ =r.

Hence for any q=r + v in Q, and ?P in G}

-1
'I' =T <+ \Y p .

Nov consider the effect of an element in G on an element

. et
of E5 L
p_‘z c;(-).-l‘.ul— o,l i + %y J +‘.u.3. ‘k
be any fixed nonzero element of @, and let

v=uxi+yj+zk

be an arbitrary element of EB' Then

vE =2 v = gy [P vE]
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transformation, ew

E.

.Hﬁ%Hﬂnﬁ#Ob_Ob

. Expanding this expression we find that

vT
P

defines either a rotation on

is in E,.

m»some
3 P

wu oﬂm woamﬁwow onHo:on uwm

Let v' =x'f{ +y'j + z'k denote the vector in mw,:msau,nwm&

From the expansion of vT

transformation:

p—

2
And +

mAnw

b

QW
1

%

2

+
a gdv

3

] mAnu @ - a, de

2

- Q

5

) 2ey _mm

2
a

2
(o) + oy

mnnm oy

we have the following swaupu.umvameUdmwpou of this

- o_wuv __.L mmaw a + a QMVJ
- QW l,ﬂwv ;NAQM.QW % QHV
vy ek

-is an orthogonal

Let Iﬁawv denote the imﬁuwn of the transformation aw_ nnn.www

A(p) = N(p)-m(T)).
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Since‘
det En('rp] = %1,
then
det A(p) = *N(p)°>.

Since det A(p) is a polynomial in @ s G, Oy, a,, itis s

continuous function from

{%h - (0, 0, 0, 6}}

to R. Then det A(p) is either always positive or always negative.
For suppose there exist fixed.nonzero quaternions Py and Py such

that

det A(p,) >0 and det A(p,) < O.
1 2

{Rl‘ - (0, 0, o,'oﬁ

is connected, we have by the intermediate value theorem [}5, p.BEéJ

Now, since

that there exists a p5 in Q such that

det A(p3) = :“.N(p3)5 = 0.

But this implies that p3 = 0 which is impossible since p3 =0

is not in the domein of det A(p). Hence,

det =1 all T in G
e [@(gpﬂ for p

or



.COLLEGE o WiLLIAW & MARY

51

detfn(r))] = -1 for all T in G.

Nov consider T, in ¢ defined by

p' = s,
Then clearly det A(..p') = 'a.6 = -'0-l!'l’(p'_)3 » and so is positive for all

trgnsformations in G. Therefore

detm(2J] =41 forall T in G

Hence G 1is a group of rotations on E:3
We shall now show that- G 1s the group of all rotations
on 1«:3 Let R denote eny rotation on E,. From enalytic
geometry we know that R can bg .defined by the direction cosines
of the axis of rotation together with the angle ot rotation about
that exis.  Let .&, n, { denote the direction:cosines of the
axis of rotetion withithe’ xjiy,:z. axis; respectively.. Alsc let

o --denote the angle of rotation.. Whittaker |17, p.7[ has shown

that R has the following matrix representation:.
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| 1-2(1- wmvmw.sm W 2 sin lﬁwa mau |+ ¢ cos Mv 2 mu.u Aww sin = 5 = 1 cos
mmub Awamublumogmw Hnmﬁwaavﬁ. W. mm»un?wm»uw.._.woom
2 sin Tw sin = 5 + 1 cos mv 2 sin Tw sin .m.. - w cos Wv u. ..hu. - nmum.... m

But this is precisely the matrix we obtain when we make . gm..w@wi&ﬁuou"

a = COo8 x |

s -sin’

~e.

a, = =) mu.b.

M-I

a, = ={ sin

DIE

-1
p

)|
2

B

in the expansion of VI = pvp = glven earlier. Now LS QH» ) Qu can not all be zero

since

62 + dm + mm.u 1.

.
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Thus, we have found a fixed nonzero quaternion, namely

) ® X )
p=cos§-.l.-§s_;l.n-é-i.-'qsin§3 -Cs:l.n-é-lg,

such that

VT = VRO
P

Hence R is in G and the proof of the theorem is complete.

Corollgx: vThe most general rotation of a vector v 1in h.!’5

can be defined by

3

pvp , ‘
where

p..cos-.l-sin-(gi+qg+§k)

& n, & are the direction cosines of the axis of rotation with
the X, ¥, z axis respectively, and. w 151 the angle of rotation
ebout the axis. | ' o
We shall now l:!.st some of the properties and characterizat:lons
of Q which follow from the theorems of this paper.

1. Multiplication on @ in Gibbs notation [ 3, pp. 403-k28]:
Let [‘v;l, v2] ‘denote the vector ‘cross product of elements in EB'

Then by the rule of multiplication defined on Q, we can readily

establish that

(1) vlv = <l"?l+l:vl’ vaj

Hence for all q, = x'-l + vy and Q =T, + v2 we have



5k

(i1) 4 9, = (rl r, - (vl, ve).l) ( ry 2 +r, v, + E} , vé])

The relationships (i) and (1i) yield the following interesting

identities:
(ii1) V1 Vo tv, vy = =2 (vl, v,)-1,
Vi Vp = Vy Vy o= [l’ va],
and
Q% - %Y = 2[Fy Yy

2. From theorem 1.5, we have that for all q=r + v
in Q, ¥(a) =q =71 - v 1s an involution on Q. q is defined

to be the conjugete of gq. Thus

®(g)-l=q+q=2r,

9,

ap + Bq = ap + BQ,
and

Pa =4q9p
for all p, q in Q@ and real d, Be.

5. First regular representation of Q:

Let

qQ= 0,°~1 + i +‘a.é J -l-.cx.3 k.



For some p imn Q we define the linear transformation R, by
® =@
for all q in Q. Then from theorems 2.5 and 2.6

qHa'oR1+alki+a'2RJ+u'3Rk

e—a, n(R) + o n(R) + a, m(RJ) +ay m(R ).

As an example,‘m(Ri) is given by:

R, =4 =01+ i +0-j+0k
iRy = 12 as 0-1 + 0.3 + 0k
By =31 =01 401409 <k

22



Thus we have

l1 0 o O 0O 1 o0 o
: o 1 o0 O co -1 0 -0 O
n(R,) = a(R) =
o o0 1 O O 0 0 =1
o 0o o0 1 0O 0 1 o
0O 0 1 O O 0 o0 1
(8.) o 0o 1 ®) 0O -1 O©
m(R,) = m(R ) =
" la o o o & 0 1 0 o
0 -1 0 O 1 0 0 O
Hence
L. Second regular representation of Q:
In a2 similar manner we have
and

q—a _m(Ll) '-l- ay m(Li)» +a, m(LJ) + ag m(Lk).

56
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Here, ‘Lp is defined by qu = pq fdr all q in Q.

1 0 0 O 0O 1 0 o
@) 0O 1 0.0 @) 1 0 O0 O
m = . H m L =
g 0 0 1 0 1 0 0 o0 1
O 0 0 1 0 0 -1 0
0O 0 1 0 o 0 1
@) 0O 0 0 -1 ) 0 o0 1 0
m(L.) = m =
J <1 0 0 o g 0O -1 0 0
0 1 0 0 1 0 0 O
Hence

°'1 %2
% %
@ a
N

5. Rotations [1h s 16___]: The Euler angles V¥, 6, @ provide
the most widely used technique for describing a rotation in E3
Let O xyz denote a right handed system of rectangular axes fixed
in space and let v denote any vector in this system. In theorem 3.3
we have shown that any-rotation of v can be defined by

=1
VTP = PVp F}
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where p 1s some fixed nonzero quaternion

p.—.a.o.1+a.li+q.2,j+a.3k.

This rotatioxi can also be described.‘by three successive Euler

. angle rotations. We shall now 'derive the relationship between

the quaternion components L a.l > G a.3 end the Euler_ ‘angles
¥, 0, P.
Let R v,z denote a rotation of V¢ about the 2z axis,
3
rotating the oxyz system into Oxiylz and let

Then by theorem 3.3, jbheré is a fixed nonzero quaternion Py such

that,
YR, =Vl =p, vDlav
where ‘
Py = »ccss’_"g-if.. sin -2“1 ke
Similarly, let
R :t 0 -0, 4
0,y XN % x'yy%y
such that
vl Re,yl = v2-
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Then there exists & p, in Q such that

: , ) 8
vy Re,y =V Tp =D, vy Py = vy
a8 2 :
where
8 .0
p, = cos 5-1 - sin 5 Je
" Finally, let
Ro,xt OX'lel > Oxryrzr
such that
- 1
vy Re,x' =v'.

Then there is a Py in Q such that

' - s D -1 _
V2 Ry xt = V2 ?pB. TPV P =V
“whereg : '
p.mcos %1 -sin21.
 Pg=cosgpl-singt.
The total rotation of a yector v in oxyz into v' in Ox,y,z,
is given by
VD = pvp Tt = v,

p

vhere p is some fixed nonzero quaternion

P = ab-l + %y i+ o, J+ a3 k.



Now since
Ayl -l
v' =y 2y(p) v )py P
we have that

Hence,

- [cos 21 - 610 2 1) cos & - s1n & Y ¥
P = (cos 2-.1‘ s:!.na:l)(ccs:2 s:!.r;e,j)(coas2 sinek.

Expending the right hand side of this eicpression we obtain the

following relstionships between the quaternion components end Euler

angles:
o, cos % cos 3 cos 3 + sin 5 s:!.n,2 sin 59
v = cos Latn & sin ¥ - sin 2 cos & cos ¥
Gy = cos 5 eln g sin 5 - sin 3 cos 3 co8 3
o m e cos @sin ® cos ¥ o kin D cos & s1n X
Gp = = €08 5'sln 7 cos 3 - &in 3 cos 5 sin g,

@ ain 2 éo‘s"‘g.,

sin 2,+ sin 3 5

Nje

a = - cos § cos



@ fhe rotation of v 4into v' has the following matrix representstion in terms of the Buler
pbmn_.mm. ﬁw@," |

x! ‘cos ¥ cos § cos @ siny - -sin 6 |{x
Y'|=|cos ¥sin 0 siln¢p -cos ¢ sin ¢y sin @ ,muu, @ sin ¥+ oom ¥ aom.e_, sin o cos 8 Yy
z'! o_om @ sin 8 cos ¥ + sin ¢ sin ¥ cos @ sin ..c .m»._u éu mwu e cos ¥ " cos ® cos 6]} 2

Since the Euler transformation is identical to the pﬁm&mwﬁwoﬂ, &wmuﬂ.ogﬁou we easily

determine the additionsl relationships:

[«>]
0
B
-]
5

-
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6. Rate equations Ej, 1k, 16] : Suppose that the system

ox'y' .1 18 rotating with en angular velocity . Let

w=pi+q]+rk

where p, g, r are the angular velocities about the 'x','y'., z'

axes respectively. The Euler angle rates are exp_ressed as follows [_lh]:

-~ - - -
v 0 sin @/cos © cos ¢/cos © o)
o [=]o cos @ -sin @ q
) 1 sin ¢ sin 6/cos © cos @ sin 6/cos 6| | r |.

The obvious disadventage of this system of equations is the singu-
-~ larity existing at ' |
e=(2n ’l"g’, n=l’ 2’ cee e

. We shall now show thet no such problem exists in the
corresponding rate equations for the quaternion components.
Suppose that the quaternion q 1is a function of the scalar

quantity t. That is,

a = a(t) = o(t)-1 + x(£)L + y(t)3 + z(t)k.
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Then analogous to our definition of & derivative in the Euclideen

vector space of dimension 3, we define

dq(t) L um q(t + At) - a(t)
at At >0 At

or

?1%59(*’) = aa'E‘”(t)'l + "‘ x(e) + = y(t)J + = dt - 2(t)k -

From this it followe that

dt (a) 9,) = (dt ql)qé *+ 91(?%;' 'qe) y

Now let Tp be the quaternion transformation rotating the

\ :
vector v in oxyz into v' in Ox,y,z,. That is,
- -1.

'V" = 'VT = ) .

where  p, v_are functions’ df""’t. Furthermore, let 0 iy z' = ‘be

: rotating with an. angula.r velocity ® es defined above. F_ina.lly ’

A= AL . 'b'
define the quaternion = ?\0 l + 7\1 1_+ ‘)\2 3 + 7\5 ¥ by

A= —2 . _ P

[[o]] +VEG)

vhere

120,132,3°



Then
' -1 ~
v' = v‘l'p = PVP = = AVA.
Also
A T e
= v! = yip
v=v Tp v Ep p vp = . AV

From this, we have the following matrix representétion for“:p:

>§+7§->§-7§' 20 Ay = Ay Ag) 200 A + )
R R S I S o A (R W W
| 2 2 .2

_(:«5)\1-7\2%) 2(hy Ay + Ay ) >\§+x3->\l-7\2,

—

From theoretical mechanics [5, pp.lhl-lhi], we have the

following relationship:.

(3:) + toé 3

The prime denoting the 0x y z,' 'Or-mo'ving Systgn. :

Hence, in terms of the quaternion transformstion Tp, ve can write

EIE S

(%%) ) )\E’—t_(xv 7\)] dt at * 7‘(?%—,‘ i)v’ + v'(‘—% )7\.

Now,



Since M =1,
av av! a .\= d
(EE)TP =3 - (a%- 7\)7\\7' + v! (a-_-t- 7\) A

. a = [a )=
[@) VZ] = V'(afg?))\ - (a-;?))\\r'.
Note that for any A in Q we can write

dA\R-r +v
a-.E =T +vVv

* »* ) )
wvhere r 1sin I end v 1is in E3-A Then from (iii) of (1) we

have

[0, v1] - ;2[3’*’ vy,
or -
[w * EV*, vﬂ- 0.
Since fhis e;@feééion -i‘s valid fora.llv' | inEB’and ;'sim;e the"
“vector ‘crose product. is nondegéneifé;té',_ Lol |

Finally,




Thus
a \-
or -
a . 1
a‘.&'}\_=-¢§w7\-

Expending, we have the following matrix representation:

rl ainl
)b 0 -p -q -r %O
Kl _ . l‘_ P 0 -r q 7\1
- 2
2 q r R 4] N
A r -q P 0 %3 .
ot L -l e
Equivalently,
. ) - ‘ i
AN 17\0 RS R HINaE
0 -] R s SR SR
}\3 Aa "M 7\0 r s
where
. a
%1 = I ki, i-= Q, l, 2, 3.

Note: The substitutioh

Nz —b
+1/R(p)

is equivalent to using v‘l‘P - pvpt

pﬁ = N(p) = 1.

and epplying the constraint

66
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