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ABSTRACT

The purpose of this paper is to examine gome of the different
definitions of derivatives found in contemporary mathematical litera-
ture, to compare them, and to verify the statements in some cases.

Since the topological derivative is defined as a special limit
of a function at a point, all such definitions are essentially the same,
A survey of the various mathematical society periodicals, as well as a
search of the majority of availsble mathematical titles, gives several
definitions of the abstract algebraic derivative. That of Bourbaki is
considered to be the standard.

The topological and algebraic derivatives are the same only
under gpecial circumstances. Algebraic derivatives are defined as en-
domorphisms or homomorphisms in rings, integral domains, and fields,
and in polynomial domains over all three., Certain linear mappings be-
have like the abstract derivative operator and consequently may be so
considered.



INTRODUCTION

Differentiation, or the process of finding the derivative of a
function, is a fundamental operation of calculus. Leibniz and Newton
invented calculus in the period 1665-1675, apparently working independ-
ently of each other. Subsequently, one of the most famous controversies
among not only mathematicians, but among scholars in general,arose be~
tween Newton and Leibniz and their respective supporters as to the pri-
ority of discovery. Since the notation for the derivative played a
significant role in the dispute [2]%*, we shall examine the notations
involved.

Inasmuch as Newton's calculus was oriented to his study of motion,
he took the time, t, as an independent variable and the dependent vari-
able as %, calling it the fluent [29]. The velocity of the fluent he
called the £luxion, denoting it by x, the derivative with respect to t.
The higher derivatives were denoted by %, ‘%, *°°*. The inverse process,
integration, Newton eymbolized by KI . These notations, originated in
1665, persisted in England throughout the Eighteenth ceéntury [7], and

can still be found in British mathematical papers [23].

In 1675, Leibniz abbreviated omnes linea to omm 1 and then to § 1,

to mean the sum of lines. Consequently, the familiar integral sign is
derived from the first letter of the word summa. At the same time he

s

used the symbol d in the denominator of a variable to denote a difference,

#* Numbers in brackets refer to bibliegraphy.
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and then continued with the nov classical notations dx, ¢y, dy/dx, and
the integral {S v dy. "Perhaps no mathematician has seen more clearly
than Leibniz the importance of good notation in mathematics” [8]. Hin
sywbols have stood the test of nearly three centuries of mathematical

progress.



CHAPTER I

DEFINITIONS OF DERIVATIVES OF POLYNOMIALS

1-1: The derivative is most commonly defined in a polynomial domain.
Polynomials are expressions of the form

n

RV

i=20

where the a's are from some algebraic system, i is an integer, and x is an
indeterminate. We shall examine several different definitions of deriva-
tives of polynomials.

1-2: Bourbaki [5] defines a derivative in the following manner:

"Let £ be a polynomial of the ring (commutative, with unity element)

A [Xy, Xp, "veee, X,] = B. 1In the ring A [X3; .-« X, 73, .-- Y51 of poly-
nomials with 2 p indeterminates X;j, ¥3 (1 € 1 ¥ p), let us consider the
polynomial £ (X3 + Yy, Xp + ¥y, «¢o +, X? + Yp); this polynomial can be
written as a polynomial in Y4, with coefficients in B, such that its con-
stant term is £ (X3, X3, -+ , Xp).

Then if Af = £ (X; + ¥y, +voeo, X, +Yp) = £ (Ey, se0 Xp), the
polynomial A f (also writtenaf (Xy, " 2Xs, Yy, <-- Yp) is thus a poly-
nomial of B in, Yoy evens Yn] without a constant term.

Definition 1. The derivative of the polynomial £, denoted Df, is
the homogeneous part of the firet degree of the polynomial a4 f, consider—
ed as a polynomial in ¥y, with coefficients in

B = A Xy, Xg, +ove, xp}. >

From this definition, them, one has Df = :E: g4,
i=1 '

»

where 81> 89s *°° gp are the elements of B, that is, of the polynomials
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of the ring A [xy, Koyttt xp].”
Example: Let £(x) = x2 +ax +b a, b € A
Consider the polynomial
fx+y)= (x+y)2+a (x + y) + b, then
Afw=x+2xy+yl+ax+ay+b- (x2 4+ ax +b)
=2xy+ay+y2== (2x + a) Y“'yz
The coefficient of y 1s 2x + a. Therefore Df = D(x2 + ax + b) = 2x + a.
Consider a polynomial in two variables:
Let £(x,y) = x2 y + Xyz + 4

then & £ =f (x+x, y+yy) - £ (x, 5

]

E+aD? GHy) + txp) 5y + b xby - xy? -4

= xzy + 2 xxy + xlz y + xz ¥+ 2 xRy yyt }:12 ¥y

, 2
2$2xyyl+xy12+xly'+2xlyyl

+xy 742 - x%y - xy?

+ =y

it

' 2
(2xy + yz) Kl + (1;2 + 2 xy) yl + (y + yl) %

‘ 2
+ (2% + 2y) X Ny + (x + xl) vy

The coefficients of xy and Yis in this case, are the partial deri-

vatives of f(x,y) with respect to x and y respectively, and are denoted

O f (x,¥) and Qf (x,y)
Dx Oy

Their sum is called the total derivative of f (x,y), denoted

Df (xy)=_9f (x,5) + O£ (x,¥)
' O x vy

1-3: wvan der Waerden [31] defines the derivative, without mention
of a limit, in a manner similar to Bourbaki, but uses a congruence which

simplifies the definition:



Given a commutative ring R, let f(x) be a polynomial in R [x}. Then
form the polynomial £(x + h) in R [x,h],

£(x+h) = £(x) +h £ (x) + 0% £, (x) + +eoreo
where

fx+h) = £ +h £ ) (wod h?) (1.1)
The derivative f(x) then, is defined to be the coefficient of h in (1.1)
above.

Consequently

F(x) + hE' (x) + g(x) + hg' (x) (mod h)

]

f{x+ h) + g {x + h)

whence
(E+g) =£ +g' (1.2)
and
f(x+h) gla+h) = [f (x) +h £ ()] [g x) +hg' (x)] (mod h%)
S £ () g @ +h[f @) gl + £ & g (] (mod b?)
whence
(fg)' = £'g + fg’ (1.3)

The above definition is then used to define the derivative of a
rational function,

Given polynomials £(x) and g(x) with coefficients in a field ¥, let

s(x) = _f (x)
g (x)
then let
s(x + h) - s(x) = _f (x+K) E G
g (x+h) g (x)
= f(x + h) g(x) -~ £(x) g (x + h) (1.4)

g({x) g(x + h)
If h = 0, the numerator of (l.4) becomes zero, which impliesg that h is a

factor. Dividing both sides of (1.4) by h, one obtains



fzx+h) g(x) ~ £(x) g(x+h)
s(x+ h) -8 (x) = B il
h g (x) g(x + h)

= __9q (x,h)
g(x) g(x + h)

The expression on the right is, therefore, a rational function of h, which
has a particular value when h = 0, since the denominator does not vanish.

The derivative of s(x) is defined to be this particular value, ie,

s' (x) = g _(x,0)
e O

The value q (x,0) is determined by expressing the numerator of (1.4)
in terms of ascending powers of h, dividing by h, then setting b= 0, to

obtain f(x + h) g(x) - £(x) g(x + h)
h h

L 2

=h [f (x)+ hi, (x) +h £y (@) + o0 + nt £, (018 &)

2

1
- £(x) () [8(x) + g, ) +h g, (x) + o0 & n"® g, (x)1]

pod . 5 _ -1
“““““ HE @ HRE, (@) b+ W E ()] g ()
- £00 [BEL 4+ g @) thgy )+ e+ v g (0]
=€ D +h £, @)+ + 0 £ @] g
- £ [g; () +hgy (X) + +oer + B g (0]
and setting h = 0, we get

However, fl(x) and gl(x), are the derivatives of f(x) and g(x), as defined

in {1.1).
Therefore,
s'(x) =/ £(x) \' f£'x) g x) -~ f (x) g"(x)
g(x) g (x)?

MacDuffee's [21] definition of a derivative coincides with that given

by van der Waerden.



1~4: Schreier and Sperner [30] define the derivative of a polynemial
in a different fashion;
Let the polyponial £(x) = (x-al} (m-an) o (z-a,), a, € ¥, a field ;

define f(x) to be the polynomials 84 {z). Then the sum of the poly-
x~a
i

nomials g N (x) is defined to be the derivative of £(x}, ie,
n
£' (x) = Z 84 {x) (1.5)
1=1
Example: let £(x) = x3 - &xz + 1ix ~ & = (x-1) (&2} (=3},

then £(x) + £(x) + £() = (x-1)(z-2) (x-3) +Q(-1) (x-2) (x-3) +

w1 X2 X-3 - x-1 ®x=-2
(x-1)_(5-2) (x-3) so that £'(x) =3 x° - 12x+11, - 7 ~ 1 N
B 3 T e ~— T T
e "\\.
B
Congider the derivative of a constant:
n
If §f(x) = %, then £'(n) = z' 8 (x) =x =1
=1 ®
n
If f(x) = x + ¢, ¢ e constant, then £'{(x) = Z' gy (x) s wko =1
i=1 whe

By (1.2) we have £' {x +¢) = £' () + £' (¢)
Therefore 1 = 1 + £' (c) implies that £' (c) = 0

i~53: Another definition of the derivative of a polyvomial over a

field is found in Dubredl [12}:

Let £ (x) € X [x], K a field
Denote F (x,y) = f(») -~ £(y) . f£(y) € K [x,yl. and
B -y
2 n
£{x) = Z a i:ti and £(y) = Z agyd
i=} i=l

Then the derivative of f£(z) iec defined to be f'(x) = F {(x,x), where ® is
set equal to y after £(x) and f£(y) have been evaluated and the expression

gimpiified. Note that (x-y) will have been cancelled out before we set x = y.



Example:

Let £(x) = 22% + 3x + 1

F(x,y) = 2x2 4+ 3x 4+ 1 - 2y°> ~ 3y ~ 1

I

3 -3

o K
AR R

2 (x2 - y° )

B

H

2(x +y) + 3
Let y = x and we get

T (%,%)

i

f'x) =4 x+ 3

Also, we have

[£(x) g (®)]' = _£(x) g(x) ~ £(v) g(¥) (from 1.6)
X -y
= f(x) g(x) - £(x) a(y) + £(x) g(y) ~ £(y) g(y)
X -y
= £f(x) [a(x) ~ g(y)] + [ £(x) - £(y)] a(x)
x -y X~y

(and from 1.6)

f

£(x) g'(x) + £'(x) g(x)

1-6: Herstein [15] defines the derivative of a polynomial £(x) ¢ F [x],
F a field, to be £'(x) = nagx®™ ' 4 (0 - 1) ax™ 2+ coe 4 ay g, (1.7)
where

xn”l +

f(x) = 80Kn + ay seee 4+ a_, a€ F, and gives as lemmas:

n

(1) [£fx) +gx)]' = £'(x) + g'(x)

(2) [af(x)]' = af'(x)

(3) [f(x) g1 = £'(x) glx) + £(x) g'(x)
Proof of (3):

i
Let £(x) = an + a.x + +++ + amx® = Zg a xi
0 1 : i
i=0

n
-3 3 s ® 3 & nw z j
g(x) b@ + blx + + bpx : bjx

j=0

1
:E: iaiximl

i=

Then f'(X) = al 3 2 32 K e + mamxm“"‘l .
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3=0
"' (3 = “+ 2 . e Q "'"}. - 9. i'-l
g'(x) = by box + + Tb_x 5 ib %
j=0
m n
Therefore, f£(x) g(x) = Z Z aibjxi-!-j
i=( =0
it} n
and {f(x) g(x)}' = z z (i + j) aibjxi+jW1
i=0  j=0
318 n . a
=0 3=0 1=0 =0
I " m n
=0 3&.{) 1=0 j =0

)

£'(x) g(x) + £(x) g'(x)

Herstein obgerves that if the field F is of characteristic p¥+ 0 (p
a prime), the derivative of the polynomial xP is p xP"1= 0. Therefore the
usual rule that an element, whose derivative is zero, is a constant is

not valid in all fields; it is either a constant or a polynomial in xP.
If, however, the characteristic of the field ¥ is 0, £(x) € F {x], then
£'(x) = 0 implies £(x) = a € F.

The treatment of the derivative in polynomials by Albert [1] and
Jacobson [17] is essentially the same as that of Herstein.

1~7: Barnes [3] considers the integral domain F [x] (F, any fileld)
as an infinite dimensional vector space over F, defines the derivative as
in 1.7), and calls it an F-endomorphism of the vector space F [x], where
F is the kermel of D, the derivative napping.

1-8: Birkhoff and MacLane [4], as well as Jacobson [17], refer to

the derivative of polynomial rings as the ""formal derivative"”, presumably
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in contradistinction to the topological derivative. Generally, however,
in the literature, the labelling, abstractly, as a derivative, of the
mapping of a polynomial into a polynomial is sufficiently meaningful be-
cause it coincides with the notion of the derivative operator from analy~-
sis. From the preceding it is clear that we can define abstractly the
derivative of g polynomial and one would suspect that it might be possible
to define abstractly the derivative of functions in general.

1-9: The derivative from calculus is a topological derivative. A
standard cqlculus text (Harxt [14] defines the derivative as follows:

"At a given point x = x4, if the ratio of the increment of the func~
tion f£(x) to the corresponding increment A x of x approaches a limit as
A x> 0, thisg limit is called the derivative of f(x) with respect to
X at X = X Or, the derivative of f£(x) at x = X is the instantaneous
rate of change of £(x) with respect to x at x = xO".

Let y = f(x) be a polynomial. The derivative of y with respect to
X at X = Xy, denoted dy/dx, is given by

lim f(x} 4+ 8 x) - £(x)
Ax-> 0 X

This derivative is also denoted as y', £'(x), ny, Df(x).
The result obtained by the above method is the same as that obtained

by the abstract methods given in the preceding sections [14].



CHAPTER II

THE ALGEBRAIC DERIVATIVE

2-1: Let M be a module over a ring A, such that for all a, b ¢ A
and x, y € M, the following holds:

i) a{x+y)=ax+ay

{i) (@a+ b)) x=ax+ b x
iii) a (bx) = (ab) x
iv) 1 - % =%

Chevalley [9] defines an algebra E over A to be "a module over A with
an associative multiplication which makes E a ring satisfying

v) a (xy) = (ax) vy = x (ay)”

2-2: "The algebraic derivative is defined by Bourbaki [5] as
follows:

"Let E be an algebra over a commutative ring A (having a unity ele-
ment). A derivative, B, of E is defined to be an endomorphism, D, of the
A-module E such that

D(xy) =y D (x})+xD (MN".

It follows that

D(x+y)=Dx+Dy, and

D (ax) =ab (x) a€ A

2--3: The derivative of a constant may be determined as follows
{see [5]):

Let E be an algebra over a commutative ring A, having & unity ele~
ment e,

Then

12
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D (e) =D (ez) =D (e) e+eD (e) =2D (e),
which infers that D (e) = 0.

Therefore,

D (ne) = n (D(e)) = 0 for all integers n, and D (ge) = a D (e) =0
for all a ¢ A,

2-4: Proposition: For each derivation D of an algebra E and all
elements b of the center of E, the endomorphism x —> b D (x) denoted by
bD of the A-module E, is a derivation of the algebra E. [5]

Proof:

Let %, v € Eand b € center of E

Then

bDx+y)=bD (x) +bD (y)

and

bD(xy) =bD(x)y+bzxd (y)

=D &]y+=x[bD (y)]

2-5: Proposition: If D; and D, are any two derivations of E, the
endomorphism D = Dznlw DyD, of the A-module E is a derivation of the
algebra E. [5]

Proof:

Let x, y € E. Then

j3] (X 4+ Y) w (Bzﬁl" Blnz) (X + Y)

i

(Bzﬁl— ﬁlDZ) x + (DZD1~ DIBZ) y

B

Dx+Dy
and

D (xy) = DylDy(x) y + 2 Dy(¥)] - DD, (x) y + x D,y(y)1]
&= anlcx) y + bltx) ﬁz(Y) + BZ(X) Dl(y)

+ X Dznl(Y) - DIDQ(X) y - Dz(x)Dl(Y)
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i

By (x) Dy(y) = x DD, ()

]

Dzbl(x) y + x Dzﬁl(y) - DlDz(x) vy - X DIDQ(Y)
= Dzﬂl(xy) - DlDZ(xy)

=yD (x) + =D (y)

One observes that if £ is the algebra of polynomials and D an endo-
morphism of the algebra F satisfying the properties of the definition in
2-2, then D is the derivative of E.

2-6: Let E and F be two algebras over a commutative ring A, having a
upnity element. Let ¢ be a function of E into F. Every linear mapping
D of E into F such that for all x and y € E:

D (xy) =) & () + ¢ () vy
is called a <b derivation of the algebra E into the algebra F. Cb satis~
fies the properties:

1) If £ is a subalgebra of ¥, Cb is the canconical injection of E
into ¥:

2) If F is the ring A and E is the set of functions B (i.e., B into

A), then (b ( £ ) is equal to f {xo) at xg € B.



CHAPTER III

TRE TOPOLOGICAL AND ALGEBRAIC DERIVATIVES

3-1: We have seen that the topological derivative of a function is
a special limit of the function at a point. The abstract algebraic deri-
vative, on the other hand, is an operator which, without mention of c¢on-
tinuity or limit of a function, does, in general, behave like the topo-
logical derivative operator. Actually, the topological and algebraic
derivatives are the same under special circumstances. In this chapter we
examine this relation.

3-2: Definition: Let £ be a funetion defined in an interval T € R,
not reduced to a point, with values in a normed vector space over the

real numbers R. f is said to be diffeventiable at Xq € TICRif
x~> s x#xgggxffgar ( f (x) - £ (xg;l exists:

the value of this limit being called the derivative of f at x, and being
denoted by f' (xa) or D f (XG). (Bourbaki [6])

Proposition: If £ and g are functions defined in the interval I C R,
not reduced to a point, with values in a normed vector space E over R and
if f and g are differentiable at a point x, € I, then £f4+gand g £
(a € R) are differentiable at the same point and

1) D (£+48) (xy) =D £ (xp) + D g (xp)

1) D (af (x3) ) =a D £ (xy)

Furthermore, if f and g are functions defined in the interval I C R,
not reduced to a point, with values in a normed algebra E over R and if

f and g are differentiable at x. € I, then f g is differentiable at the

4]

15
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same point and
iid) D (£8) (=) = DE (xy) - 8lxy) + £lxg) D 5lxy)

Proof:

From Defhh.  3-2 above, we have

Df (x) = 1lim I
0 ® > xg,x¥ X, X - X (£ (x) ~ £ (x5) )

and from 1 ) above we get

lim .
D (f (xg) *g (xg) ) = x>x, X = Xy [£(x) + g(x)] - {f(xﬁ) + g(x5)]
XF Xy
= lim WM};WM \
x> xy % - % £ () ~-£ G+ e ()-8 &)
b g = Xq
,, , .
= Mo L [E(x) - £x)] + Lim x-x [8( - glx)]
X-> X X - X t o 5 0 0
0 0 0
XF %y x¥ xg
= Df(xg) + ﬁg(xﬁ)
From ii ) above we have
S
D(af(xﬂ) ) = lim x - x5 (af(x) - af(xo) )
X> X%
Q
X F XG

= 1lim a(__1 ) (f(x) - £(zx) )
x> X X - x 0
% 0

x:\:xo

= a lim S (£(=) - £(x4) )

x¥ KO
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=ahf (xo)
Fyom 1ii) above it follows that
D(fg) ("g) = 1im 1

%+ L

(£(x) glx) ~ 'f(xak g(xﬂ) )

= U L [£G0s(e) - £(xy) 8() - £xy) glxg) + £0xp) g(x)]
K*%O X~ X

0
x =+ g
= e L [£) - fG)] e() + Mm 1 (£(x) e - exg)]
x> XG X~ Xy ®>xy X - Hy
X ¥ X x¥ Xq

= ﬁf(xg) [ e g+ [ lim £ (x52] Dgixy)

K-> ®q 3-9-30
%
X% XO X XG

e Df(xs} g(xo} * :E(::G) Dg(ﬂa)

3-3: Let £ be a function defined and continuous in the interval
I CR. If the derivative f' exists at x,€ I and is itself differentiasble
at xg, its derivative is called the pecond derivative of £ at %y and is
denoted £% {x{}) or ﬁzf(:&{}}e If this seccond derivative existe at all
points of I (vhich implies that £' exists and is continuous in I},
x > f"(x) is a function denoted f" or DE, By recurrence, we define
the ntP derivative of £ in the same manner and denote it £ or DPf; by
defdnition, it has for a value at xge I the derivative of the function
£ (n-1) at zg! this definition therefore supposes the existence of all the
derivatives f’{}‘k‘) of order ¥ § n-l at LN and the differentiability of
g(n-1) 4¢ Xg. If £ is n times differentiable at x,, we will say f ¢ r;:n‘
where (TS:‘ % 4g the faz;ily ofg't.hcsca functions which are n times differen—

L= =]

(V
tiable. If f is indefinitely differentiable at By we will say f ¢ &
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3-4; Consider the set of indefinitely differentiable functions,
£ G{ETG‘. We shall say that, if a function is continuous at a point xg,
it belongs to the class C (of functions continuous at-xe).

Theorem from calculus [14}: "If a function is differentiable at a
point, then the function is continuous at that point”.

If f’(xo) exists, then f ¢ C (and since fe ?§76¢ . f'(xo) exists).

Consequently, if fk(xo) exists (and this is guaranteed), fkml' € C,

and by rvecursion e ¢, n {== + Therefore, an indefinitely differen-

tiable function is indefinitely continuous.

k
Note: If F eﬁ§l . k= 1, a mapping D of ¥ into R satisfying the
properties:
1) D(f+g) =D £+ D g f,g € T
2) D(af) = aDf a € R
3) Dlfg) = Df-glxy) + £(xy)-Dg %3 € ICR

is a ¢  derivation of F into R.
Consider the set of all functions £ € ?;ruo which are indefinitely
differentiable and continuous at R We define an algebra [9]:
1) r(f+g)=rf+rp f, g e €§:°o
il) (r+s8) f=r f+8f r, s € R
iii) r (sf) = r s (£)
iv) 1-f= ¢
v) v (fg) =r £ (g) = £ (r )
The set of functions,tf eq}rpo must fulfill the following properties
from the topological point of view:
Property (1): D (rf + sg) = rD(f) + sD{(g)
Property (2): D (fg) = D(f) g(xg) + £(x5) D(g)

Property (1) dmplies D(f) = § if f is a constant function, because
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if f(xg) = 1 and g(xg) has an arbitrary value F 0, then Property (2)
gives

(1 glxg) ) = D(1) glxg) +1 . D(xp) or

D g(xg) = D(L)g(xg) + Dglxg) ,
whence D(1) glxg) = 0, g (xg) +* ¢
which implies that D(1) =

Property (3): D(f) = 0, if £ is a constant functionm.

3-5: Definition: Let f be a function defined in the block B & RE

(B = I x 12 X eee X In’ Ii R, for 0 £ 1 £ 1) not reduced to a point,

with values in a normed vector space over R. £ is partially differentiable

at the point tg € B if

lim [ MMMMMMMMMM gf (b'g) - £ (te)ﬂ exists

t‘g—-)-tg
for t'g *+ tg, t'g € By the value of this limit is called the partial

th

derivative of ty with respect to the i™™ variable and is denoted

t'i (tg) or Dy f(to), t, € B.

Note: o= (tips 205 vrt s E(am1) > e Fqangs 00t s Eag)

Bp
$ y
tly= (tlﬁ tZQ’ cvee ﬁ(iwl)gs tios t(i*l)ﬁg ., tﬁg>
When B = I, this definition reduces to the definition in 3-2 above.

Moreover, it can be shown that the proposition in 3-2 above for derivatives

is also valid for partial derivatives.
7

By Bf(t :E: Dy £(tqy) we denote the total derivative

o =
i=1

of £ at tg € B,
Thus, each derivative from the topological viewpoint can be expressed
ag a sum of derivatives of this type.

3~6: Proposition: Let FX be the set of all functions defined in an
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interval I ¢ R (not reduced teo a point), with values in a normed algebra
E over R, such that FK € (-F kK ¥ 2 14inI. The linear mapping D of
the algebra ¥X into the algebra F =1 guch that for all £, g € FE

&

D(fg) = Df.g + £ . Dg, is a derivation of the algebra FF into the algebra
rk-1,

Proof: The proof is immediate from the definition of a @ deri-
vation.

3~7: Theorem: Consider the set of functions defined in an interval
I € R (not reduced to a im\int),} which are continuous at & point x, € I
and which have values in g normed algebra. A derivation, D, of these
functions in the topological senmse is the same as that in the algebraic
senge if and only if D is an endomorphism of r‘f\" “

Proof: Let B R® (B =1y X1y X ... X 1I,) and let F be a normed
algebra over R. Let ?’wbe the gset of functions which are indefinitely
differentiable at ty € B. Let By & B be a star-shaped open set about

tg, i.e., an open set such that if z € B,

t0+x(z~»'ﬁg)€ By for0 £ x £ 1 [25]}
1
. é n
Then fBO (z) = fBO(tG) + S e fEO (tg 4+ x%x (z tﬁ) ) dz
0
=2 fBO (tg} + fBO (tﬁ + (2 - tg) ) - fBQ (ED)

e fBO (tO} + fBO (tg) 4+ fBG (z} - fBO (to) - fBQ (tQ)

i

fBO (z), which verifies the identity.

1
So, £ = f t +S 4 fn (tg +x (z ~ ty) ) dx
0 BB(Z) 30(9) ) S BD(@ 0 )
n 1
= £, (tg) + D (zg - ty) S D E (g v x (a -ty ) dx
.BO 0 o] 0 Dty 0 0

0

1
Let S o £ (t(} + x (zi - tg) ) dx be denoted by
t
0 Oty
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6 N OO
g (£) = I f (t) , where g (4 f' and where
i 0 0 i
zy = coordinates of z.
Therefore,
n
4] i}
i=1
For D satisfying properties (1), (2) and (3), with ty fixed and =
variable:

0
BfBG (Z) = + Z iB (Zi hoad ti9> gi (to) + (zi nd to) Dgi (ta)}

i=]1

]

n
0+ Z {m (zg ~ 01 . gy (gg) + (24 - tg) . 0}

i=1
n
= ;Z; D (z4) 8y (tq)
n
& Z B (z;) O £ (to)
i=1 o tiﬁ

which is consistent with the definition of a2 total derivative of a function

defined in a block. The above proof faills if we start from ‘%’, = r'f\" k,
k L e° , since the functions g; are not necessarily in the set for which
properties (1), (2) and (3) hold, inasmuch as a function is continuously
differentiable if and only if its partial derivatives exists and are con-

tinuous.



CHAPTER 1V

OTHER DERIVATIVES IN CONTEMPORARY LITERATURE

4-1: 1In this chapter we will survey some definitions of derivatives
in general, as found in the contemporary literature. The derilvatives of
polynomials, which we have already considered, are algebraic in nature,
and are endomorphisms of the ring of polynomials, which are indefinitely
differentiable.

4-2: Chevalley [10] defines a derivation of R into 8, where R is a
subfield of a field S, to be a mapping such that:

(1) D(x+y)=Dx+Dy X,y € R

(2) D(xy) =D (x) y+xD (y),
where (1) is a homomorphism of the additive group of R into that of 8,
and

(3) (uD) (y) =u (Dy), u € 8
whence the derivations of R into & form a vector space over 8.

This is an algebraic definition, more inclusive than that of Bourbaki,
differing in that it is defined as a mapping of a subfield into a field,
rather than an endoworphism of a ring R.

Note: (1) and (2) above will hereinafter be referred to as the stand-
ard forms for the derivatives of sums and products.

4-3: FKawada [19] defines a derivation D to be an operation obeying
(1) and (2) above, where the domain is a commutative ring R and the
range M is an R-module.

This 1is an glgebraic definition, more inclusive than that of Bourbaki,

and differing only in that it is the mapping of a ring into a ring module

22
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rather than of an algebra of a ring into itself.

4~4: Consider an arbitrary collection of elements, which obey the
field postulates, as an algebraic field ¥, of characteristic zero. Ritt
[28] defines a derivation to be an operation which replaces every element
of F by its derivative, where the derivative operator obeys (1) and (2)
above.

This is an algebraic definition. Since it is defined in a field, it
is more inclusive than that of Bourbaki, which is defined in a ring.

4-5: Weil [32] defines a derivation D in a field F to be a mapping
of F into itself which obeys (1) and (2) above. He further defines a
derivation D in F over a subfield K of ¥ to be one such that Dx = 0 for
every x in K.

This is an algebraic definition, more inclusive than that of Bourbaki.
In the abstract field F, the elements x € K are constants in differentia-
tion.

4~6: The derivation of an arbitrary algebra R over a commutative
field F is defined by Jacobson [18] to be a single-valued mapping of R
onto itself such that (1) and (2) are obeyed. He notes that D. + DZ
is a derivation, but that DiDpis not, in general, a derivation. However,
DP is a derivation, where F has characteristic p ¥ 0:
D (xy) = D(x) * y + x D(y)
D2(xy) = D2(x) y + 2 D(x) D(y) + x p2(y)
p3xy) = D3(x) y + 3 DX Dly) + 3 D) DAy + x03(y)
which follows the pattern

(@+b)P=aP+ () aPlip+ . ent ®) aP~i pl... 4 B0,

where (li’)s 0 (Mod p)

Therefore DP(xy) = DP (x) y + x BP (y)
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whence DP  is a derivation.

Jacobson's definition is an algebraic one, which is more inclusive
than that of Bourbaki. It would be the same as Bourbaki's if a ring were
specified rather than a field.

4~7: Zariskie and Samuel [34] define a derivation to be a mapping D
of a ring R into a subring S such that (1) and (2)’abové are obeyed, and
add that 1f R is an integral domain and D a derivation of R ih a field F
which contains R, that the derivative of the quotient field of F is

5 (iﬁ_ik) yD{x) - xD(y)

S

.37, N -yz ] é F;xijR,y* 00

i

This follows from (2) above:

s(x)wb@é . y) = D(fx) 'y + X D(y)
3 ¥y ;-)»;g y = y

p(E)y =@ -2 (p
'y y = y

¢
+

D (%E:) = _¥ D(X)yg xD(y)

Furthermore,
D (x2) = D(x+x) = D (x): x + xD(x) = 2xD(x)
D (x3) = D(x? 'x) = D(x?) x + x2 “I)(x} = 3x%D(x)
and for every integer n > 1,

D M =1 x®1 p(x)

The derivative defined by Zariskie and Samuel is an algebraic one.
It differs from that of Bourbaki only in that it is a mapping of a ring R
into a subring of R, rather than an endomorphism of R.

4-8: TFinkbeinmer (13) states that the derivative of a matrix exists

if and ogzly if each element a,. is a differentiable function., Let A and

ij

&

n ¥ n matrices of differentiable functions. Then



25

(i) D (A + B) =D (A) + D(B)
(i1) B (AB) = D(A) B+ A D (B)
(111) D (A1) = -a"1 p (a) a71, 1f A is a non-singular matrix.

(i) and (i1) follow from (1) and (2) above. Consider (iii):
0 =D@a1a) =p (a"1) A+ 471 p (4), then
p (A1) o = -a"1 p(a)

Multiplying both sides on the right by A1, we get
palya - al = -alpg) sl
whence,

p (o™l =« a1 payat

Since the multiplication of matrices is not in general commutative,
Nehring [24] points out that particular attention must be paid to the
order of all factors, e.g.,

D(A%) = D(A) A + AD(A)

This definition of the derivative of z matrix is algebraic. It is
a special case of Bourbaki's definition, d4.e., an endomorphism of the ring
of matrices.

4~9: Let F be a set of indefinitely differentiasble functions which
form an algebra over the field of real numbers and V a differentiable
manifold of dimension n, with the set of real-valued functions F = F (V)
on V, Nomizu [26] considers a vector field X as a linear mapping of F
into the algebra of all real-valued functions on V such that

X (fg) =Xf£ « g+ f . Xg f, g F

It follows that, since X may be considered as a linear mapping, then

XK(f+g)=Xf+Xg

Since X fulfills the abstract requirements of a derivative, it may be

considered ag an algebraic derivative. This differs from Bourbaki's defi-
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nition in that this is a homomorphism of a subalgebra into the algebra.

4-10: 1If Ap is the set of analytic functions which are defined at p,
and R is the set of real numbers, Cohn [11] defines a mapping L of Ap into
R to be a tangent vector if and only if it is linear over R:

L (af +bg) =a.-LE+Db - Lg (f, g€ Apm a4, be R)
and satisfies

L (fg) = L - g(p) + £ (p) + Lg (£, 8 € A)

Again we have an operator which fulfills the abstract requirements
of a derivative and may be likewise considered as an algebraic derivative.
The operation, in this case, is a (b derivation.

4-11: Let K be a field of characteristic 0 and K [ﬁl, veey, %, 2
ring of integral (i.e.., with exponents Q) formal power series in =n
variables Xys terrs X, OVer K. Hochschild [16] defines a mapping D of K
ixl”"" gn} into itself to be a derivation, 1f;

(1) p(a) =0 , for every a € K

(ii) YFor any two power series p and g, D obeys (1) and (2) above.

This derivation is an endomorphism of a ring and coincides with the
definition given by Bourbaki.

4-12: Leger [20] defines a linear transformation T on the vector
space of a Lie algebra L to be a derivation of L if:

T 9) =T &) .vy+x.7T (y), for all s, y € L.

Since T 48 a linear transformation,

TE+y) =T &) +T )
and we are justified in classifying T among the abstract algebraic opera-
tors. This is a less ineclusive definition than that of Bourbaki, inas-
much as it describes an endomorphism of the vector space of an algebra.

4-13: If R is a ring, not necessarily associative, Patterson [27]
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defines a derivation of R to be a mapping D of R into itself such that
(1) and (2) above are obeyed.

An algebraic derivation, this is a special case of that defined by
Bourbakl, differing in that it is an endomorphism of a non-associative
ring.

4-14: Let f be a mapping of an open sub-set R of E? into EP, where
R is the set of real numbers and E® and ER are Eutlidean spaces. For any
point p € R and any vector v of EP, Whitney [33] defines the derivative of
£ at p with respect to v as:

DyE(P) =lim L (£ (p+tv - £(p))
tﬁ+t

if this exists; this is the vector in ER,

Clearly the definition of a derivative in the topological sense,
this is a special case of that given by Bourbaki.

4-15: In summary, the algebraic derivative is variously defined as
homomorphisms or endomorphisms of rings and fields without mention of a
limit. 1In the algebraic sense, any linear mapping of an algebra into an
algebra, which obeys the sum and product properties defined in 2-2, may
be called a derivative. In order to compare the definitions of the deri-
vative from the algebraic and topological points of view, 1t is necessary
to considexr the algebra of funetions. In the algebra of functions, if
the derivative exists in the algebralc sense, it always exists in the
topological sense. On the other hand, the topological derivative exists
at points where the required limit exists, that is, differentiation of a
function from the topological point of view is a pointwise operation. The
definition of the derivative from the topological point of view is there-
fore more general than the definition from the algebraic point of view,
since a derivation of an algebra from the topological point of view is a
derivation from the“algebraic point of view only if the algebra is that of

indefinitely differentiable functions.



10.

11.
12.

13.

14‘

15.

BIBLIOGRAPHY

Albert, A. Adrian. Modern Higher Algebra. Chicago: University of
Chicago Press, 1937.

Anthony, H. D. Sir Isaac Newton. London: Abelard-Schumann, Limited,
1960.

Barnes, Wilfred E. Introduction to Abstract Algebra. Boston: D. C.
Heath and Co., 1963.

Birkhoff, Garrett, and Saunders MacLane. A Brief Survey of Modern
Algebra. New York: Macmillan Co., 1962.

Bourbaki, Nicolas. Eléments.gghﬂathématique, Livre II, Algebre,
Chapitre 4, Paris: Hermann, 1958.

Bourbaki, Nicolas. Eléments gg_Hathématiqge, Livre IV, Fonctions
d’une Variable Reelle. Paris: Hermann, 1958.

Brewster, Sir David, K. H. Memoirs of the Life, Writings, and
Discoveries of Sir Isaac Newton, Vol. 1. Edinburgh: Thonas

Constable and Co., 1855.

Cajori, Florian. A History of Mathematics. London: Maemillan Co.,
1919.

Chevalley, Claude. The Construction and Study of Certain Important
Alpgebras. Tokyo: The Mathematical Soeciety of Japan, 1955,

Chevalley, Claude. Introduction gg_thé Theory of Algebraic Functions
of One Variable. WNew York: American Mathematical Society, 1951,

Cohn, P. M. Lie Groups. Cambridge: Cambridge University Press, 1957.

i i daroa

Dubriel, Pauil, g&géggg, Vol. I. Paris: Gauthiler-Villars, 1954.

Finkbeiner, Daniel T., II. Introduction to Matrices and Linear
Trangformations. San Francisco: W, H. Freeman and Co., 1960.

Hart, William L. Calculus. Boston: D. C. Heath and Co., 1953.

Herstein, I. N. Topics in Algebra. New York: Blailsdell Publishing
CQ' ’ 19640

28



16.

17.

is.,

19,

20,

21'

22.

23Q

24.

25.

26.

27.

28.

29’

30.

31.

32,

33,

29
Hochschild, G. "Lie Algebras and Differentiations in Rings of Power
Series”. American Journal of Mathematics, Vol. 72, 1950.

Jacobson, Nathan. Lectures in Abstract Algebra. Vol. 1III. Princeton:
D, Van Nostrand Co., Inc., 1964, ‘

Jacobson, Nathan., "Abstract Derivation and Lie Algebras'. American
Mathematical Society Transactions, Vol. 42, 1937.

Kawada, Yukiyosi. "On the Derivations in Number Fields". Annals of
Mathematics, Vol. 34, Ho., 2, 1951.

Leger, George Fi; Jr,, "A Note on the Derivations of Lie Algebras".
American Mathematical Society Proceedings, Vol. 4, 1953.

Macduffee, Cyrus Colton. Amr Introduction to Abstract Algebra. New
York: John Wiley and S Sons, Inc., 1940.

Miller, Keuneth 5. Elements of Modexrn Abstract Algebra. New York:
Harper and Brothers, 1958,

Mirsky, L. ggvintroéﬁction,gg Linear Algebra. Oxford: The Clarendon
Press, 1955,

Nehring, Evar D. Linear Algebra and Matrix Theory. New York: John
Wiley and Soms, Inc., 1963. ’

Nicholgon, H. K., N. E. Steenrod, and D. C. Spencer. Advanced
Calculus. Princeton: D, Van Nostrand Co., Inc., 1959.

Nomizu, Katsumi. Lie Groups and Differential Geometry. Tokyo:
The Herald Printing Co., Ltd., 1956.

Patterson, E. M. "On Certain Types of Derivatives”. Proceedings of
Cambridge Philosophical Society, 54, 1958.

Ritt, Joseph Fels. Differential Algebra. New York: American
Mathematical Society, 1950.

Rosenthal, Arthur. “The History of Calculus"”, American Mathematics
Monthly, Vol. 58, 1951,

Sehreier, Otto, and Emanuel Sperner. Modern Algebra and Matrix Theory.
New York: Chelsea Publishing Co., 1959.

van der Waerden, B. L. Modern Algebra. New York: Frederick Ungar
Publishing Co., 1948,

Weil, André. Poundations of Algebraic Geometry. New York: American
Mathematical Society, 1946.

Whitney, Hassler. Geometric Integration Theory. Princeton: Princeton
University Press, 1957.




30

34. Zariskie, Oscar, and Pierre Samuel. Commutative Algebra. Princeton:
D. Van Nostrand Co., Ine., 1958,




GULLEGE UF WILLIAM & MARY

VITA

Richard Francis Barry, Jr.

Born in Quincy, Massachusetts, December 26, 1915, Graduated from
Quincy High School, Jume 1933, B.S., United States Naval Academy, 1939,
Armed Forces Staff College, 1953. Retired from United States Navy in

the grade of Captain, June 1965.

31



	Comparative Definitions of the Derivative
	Recommended Citation

	tmp.1539811433.pdf.5Z0zm

