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ABSTRACT

This paper presents some newktechniqpes for the numerical
solution of differential equations involving rapidly changing
variables. ©Several recently developed methods are discussed,
including an original scheme which allows a step size larger than
the period of the highest frequency.

The methods are compared and evaluated to provide a guide to
the types of problems for which they are best suited.

An original method, called mean-path integration, is developed
and applied to a variety of problems. The results demonstrate that
large reductions in computer times can be dbtaihed, compared to

conventional methods.
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NUMERICAL INTEGRATION OF SYSTEMS
WITH LARGE FREQUENCY RATIOS



CHAPTER I
INTRCDUCTION

In theory almost any consistent set of differential equations can
be solved by standard numerical techniques. In practice, however, the
application of these standard techniques to actual physical or
engineering problems is frequently beset with difficulties. There is
one category of problems for which these standard techniques are
completely inadequate. This class of problems can generally be
described by saying that some of the variables involved change very
rapidly compared with others. The size of the time increment used in
the numerical integration is determined by the rapidly changing
variables while the time period over which the solution is desired is
determined by the slowly changing variables. Thus, in many cases,
standard numerical techniques require completely prohibitive amounts
of computer time to solve the problem. This difficulty has occurred
in such diverse fields as chemistry Eﬂl; meteorology [?] , and
mechanical vibrations [?]. |

Recently, several specialized methods have been developed for
solving particular problems of the above type. ‘Some of these new
methods are applicable to a wide variety of problems; others are only
applicable to the very restricted situation for which they were
developed. ©Sometimes rigorous proofs demonstrate the validity of the
method; sometimes no such proofs have been found and an appeal is

made to physical insight.

1N’um‘bers in brackets refer to references at the end of the paper.
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In the second chapter of the thesis, several methods of the
above type which have appeared in various journals in the last
2 years are developed. Rigorous developments of the methods are
provided whenever they are available. In Chapter III, the methods
are compared and evaluated in order to provide a guide for the
initial selection of one of the methods.

In the first part of Chapter IV a specialized integration scheme
which was developed by the author is described. 1In the remaining
part of the chapter, the specialized scheme is extended to apply to
more general situations. The scheme, called mean-path integration,
is unique in that it allows a time increment to be used which is
larger than the period of the highest frequency of the system. In
Chapter V, mean-path integration is applied to several examples and
questions of accuracy and validity are discussed. Comparisons are
made with Euler's method and the Runge-Kutta method indicating that
computer time can be reduced by factors of 100 or more for some

cases,



CHAPTER II

SURVEY OF RECENT INTEGRATION METHODS

Method 1

The first method to be considered in this chapter was developed
by C. E. Treanor [i]. The method was derived in order to handle
problems in which the dependent variable and its derivative are
strongly interdependent during part of the period of interest. 1In
such problems the integration formﬁla eliminates the strong oscilla-
tions which arise when standard numerical integration procedures are
used; in those parts of the problem which do not have a strong inter-
dependence the method is identical with the fourth-order Runge-Kutta
formulas and, hence, offers all of the advantages associated with the
Runge-Kutta method.

Consider a first-order ordinary differential equation.

%XX = f(x: y) (1)
Let
¥y = y(xl)

h = interval of integration
Assume that on the interval from x; to x, +h Eq. (1)

can be approximated by

Fof(o¥) =Ry -w) tArBEog) rp(x-n) @

where A, B, C, and P are constants to be determined and P > O,

L



Rewriting Eq. (2) in the form

2

%% + Py = Pyl + A+ B(x - xl) + g-(x - xl) (3)

we see that a solution to the homogeneous equation is

~P(x-xy)
A particular solution, obtained by the method of undetermined
coefficients [2] is
C
A B-5 5. C
- TP 3 C 2
yP‘Yl+ -.P-,-__-I*‘ P (x-x1)+.2—P-(x-xl) . (5)
Hence, the general solution to Eq. (2) is
B'% c
-P(x—xl) A - B - =
_ P P c 2
Y = oe Pttt (o) v (x-x)" .
(6)
The initial condition is
Y(x) =¥ - (7)
Th
us o
B - =
A P
T TP
Q= - —p— (8)
Using Eq. (8) in Eq. (6) and evaluating y(xl + h), we get
B.S B.-S
A-—— g A-—p— B3 o ,
y(xl + h) = ;- e ty, t—— t —— h + 55 0" . (9)

Hence



B.-S p.C
A P A P B C
TP -Ph - TP °F c .2
AV=Y(x1+h)"Yl= -P e +———§——+—-—F—h+§.§h .
(10)
Upon defining
Fb - e-Ph
1 (11)
F oo Fp-1 * (n - 1%
n {=-Ph
Eq. (10) can be written as
2
Ay:h{AFl+BhF2+Ch F5) . (12)

The four constants A, B, C, and P are determined by evaluating

Eq. (2) at four points and solving the resulting system of equations.

The four points chosen are (xl, yl), (xz, ye), (xB, y5)’ and (xh, yh)

where
_ h
X, = x3 = xl + 5
(13)
xu = x1 +h .
The values of Yos ya, and ), will be left unépecified for the
time being.
%i— = :f‘(xl, y"l) = A (lua)
%1973
a h . Che
&y = = - - 3 A4z
dax = f(%s ¥p) = = B(¥p = ¥y) * f(x, vy) * B+ z
Xo1¥p

(14p)



2
dy _ _ h  Ch
M LR ) I CF R VM C U VAR S A8
373
(1k4e)
& = f(%, 3y) = - P(¥y - ) *E(x, ¥y) B+ S0 (1)
Xy ¥y
Let
_ 3\
£ = 1(%5 )
£y = £(xp ¥p)
> (15)
T3 = (%35 ¥5)
Solving Eqs. (1l4), we have
£, - f
.55
S e (16)

'

Che = h[zfl + Pyi) - (f2 + Pyg) - (f3 + PyB) + (fk + Pyui} (18)

Using these results in Eq. (12),



_h{ [ (f +Py'l +2(f +Py2 +¢(f +Py5)
- (fh_ + Pyhi’ F, + h[(fl \+ Pyl) - (f2 + Pyg) - (f3 + Py5)

where P 1is given by Eq. (16) and the F  are given by Eq. (11).
Eq. (19) is the integration formula.
As P -0, Eq. (19) becomes identical with the classical Runge-

Kutta formula.

lim Ay = h{f; lim F, +E 5f, +2f,+2F -fu_] lin F,
P-0 P -0 P-0

+ uEfl - fp - £y fu] Plimo FB} (20)

provided that the limits exist.

lim Fl =1
P-0
lim F, =-32-
P-=0
lin ¥, -%
P-0
Hence,
, _h "
lim Ay = E{fl +2fy + 2 + fh} (21)

P -0
Since Eq. (2) implies f(x, y) is independent of y for P = O,

Eq. (21) is identical with the classical Runge-Kutta formula.



If we let

then Eq. (19) can be put in the form,

where (AV)R_K is the Runge-Kutta formula. Hence, in this case,
the method is identical with the Runge-Kutta method up to terms of
the fourth order in h.

When Ph is large, Eq. (22¢) provides a very poor value for Y.

A better approximation is given by Treanor [i].

Yy =¥ +h {21*3 F, + £ (Fl - 2F2) + £, (Ph) F‘z} (24)

Using Eg. (24) in place of Eq. (22¢) changes Eq. (23) only in terms of
order h5 and higher.

A numerical example is given by Treanor [l] in order to
demonstrate the effectiveness of this method. The sample problem
is a differential equation describing the formation of nitrogen
atoms in the gir behind a strong shock wave. The above method, in
the form of Egs. (11), (16), (19), (22a), (22b), and (24), is

compared to the standard Runge-Kutta method. Using the same tests
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for accuracy and determining interval size, the present method
increased the interval of integration to approximately 25 times that
of the Runge-Kutta method. Note that the calculation time per step
is essentially the same for both methods since most of the calculation
time is spent in evaluating the derivatives. Hence a considerable

reduction in computer time is obtained.

Method 2

The following technique was presented by Loper and Phares [5] .

Let
rsrl(X)
y(x) =( vo(x) (25a)
n(®)
rfl (x: 3"—)\
T(x, 7) =| T2 (x, 7) > (25b)
fn (x; -i)./
afl afl afl
Wl y2 [ ] [ ] * . yn
of,  df, 31T,
J(x, ¥) = - 53;-3... 3'37; . Yn (25¢)
afn Bfn of
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Consider the equation

- Fx, 7) (26a)
with initial conditions

-37 (xo) = -y-o (26b)
Let

gx,y) =FT+J ¥ (27)

Then Egs. (26) become

%Zt- +Jy=8 (28a)

¥(*0) = Yo (28b)

It is shown by Hamming [6] and Emanuel [7] that a good practical
criterion for numerical integration of a single equation is to choose

the integration interval h such that the following condition is

satisfied.

< 0.5 (29)

of
|" 3
Using this condition as a guide let us proceed as follows. If

of (x Y )
i \"r 7k
h 7"‘3’1 < 0.5 (30)

then the ith equation will be considered suitable for 1ntegré,tion

by the Runge-Kutta method. If Eq. (30) is not satisfied for the ith



o
n

equation then that equation is transformed so that it satisfies the
condition. The transformed equation can then be integrated by the
standerd Runge-Kutta method. The transformation which accomplishes
the above result will be derived for the entire system. It will
then be shown that integration of the transformed equations by the
Runge-Kutta method is equivalent to integrating the original system

by a method which is different from the Runge-Kutta procedure.

Consider
%+'J-O-z"=-o (31a)
-z-(yo) = 'io (31b)
where
& = €(Xo» To) (32p)
Define
2 N
- 2 =3 3
ol %) _ o Ty (x - %) * o (:!' %)~ o (;' *) . ...
(33)

It is shown by WaSOW'[}] that the infinite series which defines

- -J, -
the matrix e O (x 3 ) is convergent and that e 0 (x xo) is
nonsingular ('.e., e (x-x ) exists). Also note that

- -36 (x-xd) i e-ﬁb (Xoxo)ﬁ . (3h)

o€ ) 0
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-J. (x- - =, (x-
%x_e o(“‘o)+Joeo(xo)=o (34b)

e O (%0%0) o1 (3hc)

With the definition of Eq. (33) the solution of Eqs. (31) is

ST (x-x0) (L _ -1 _ -1
z=e 0( 0)[yo_Jo 80]4-3’0 &, (35)

provided that 30 is nonsingular. Note that the method is inappli-

cable at any point where .'I'O is singular. Now let

vey-2 (36)

Then
%-;1 +JweV (37)
v (xo) =0 (38)

where
VeE-8+ (-7 = (39)

Using Egs. (34b) and (37), we have
g_x_ E‘fo (%-%o) ;3 . e:fo (x-%0) [5 ) jo (x-%o) 3, e':fo (x"‘oﬂ 5
. 3 3 -
= e O(x *0) 7

(ko)
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Using Eq. (34a) and defining

T -
5.0 (%) 2 (41)
J - -3, ( x-
s=e°(“°)[3-30]e°(”°), (b2)
Eq. (40) vecomes
- J -
%+Eﬁ=eo(xxo)*7. . (43)
Also
u (xo) = ;(xo) =0 (L4b)

Using Egqs. (27), (36), and (41), we have

- (x-X -1 -J. (%-x
§=e°( °)'a+30 [x-e o ( °ﬂ?o+3;o. (45)

Eq. (45) is the relationship between the original variables and the
transformed variables.

Comparing Egs.(43) and (28a), we see that the matrix m of the
transformed equation corresponds to the matrix J of the original

equation. Thus the condition which corresponds to Eq. (30) is

|h miil < 0.5 (46)
where m, is the diesgonal element in the ith row and ith column of

m.

By picking the value of x sufficiently close to- X,

make the elements of J (x, ¥) - 50 as small as desired (provided

we can
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of course that J(x, ¥) 1s continuous at x = x ). Hence, from

Eq. (42), lmiil can be made as small as desired as long as

X = X, + h 1is close enough to Xge
As mentioned previously, intergration of the transformed

equations (Egs. (43)) by the Runge-Kutta method is equivalent to

integrating the original system by a method different from the Runge-

Kutta procedure. To show this, we apply the classical Runge-Kutta

formulas to Egqs. (43).

~
xl = xo
w = (%) =0 5 (47a)
E =h = (:i’ )
Xp = Xg + ‘g'
k k
-52=Exo)+-é-l=§}- > (470)
£ o du £x2’ Eé)
2 dx
./
)
x5 = xo + -123
k
.1-1'5 = E(Xo) + -2-22-’?; -2-% > (l}'{c)
d
'1'{3 h . (xz; u3)




16

N\

xu = xo + h

q, =1 (xo)+ 'E5 =k, & (47a)

& -
Eh = h M
dx J
E(xo + h) = 'E(xo) + % (12'1 + 2?:'2 + 2'123 + E&) '(ua)

Using Eqs. (44) and (48) in Eq. (45), we have
- 1 o[ o | -1 T, n
y(x0+h)=6e k1+2k2+2k3+ku +Jy I-¢e ° ‘fo+§o,

Hence, in order to express ?(xo + h) in terms of the untransformed
varisbles we must express the quantities Ei s 1=1,2, 3 4, in terms
of the variables of the original system.

Using the definitions of g, u, v, W, and m 1in Eq. (43) leads

to

- T (x-x

a_ Jo(*0) [ = .= = =

s-° [;f-f0+Jo(y-yo):]. (50)
Using Eqs. (45) and (50) in Egs. (47) gives the following expressions

for the 'Ei in terms of the original variables.

kl =0 (51)

= h
. d9 B N,
'i2=he02[r?(x2, -ie)'fO'PJO(yZ-YOﬂ (52a)

where
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- - -1 [: ;30 %{].. —
y2 = JO I-e fo + yo (52b)
%o 2
- 0 - - - - -
k;=he I:f(x3, V5) = To + To (¥5 - Vo):] (532)
where
= h = h
J. A% -J )
- 02 2 -1 - -
k =he E"(,"w V) = T+ To (34 - o) (5a)
where
_ -'.'I'oh_ _-1 -.Toh_ _
y, =e k3 + J0 I-e¢e fb + Yo (54b)

Loper and Phares [?] present data which compare this method with
the classical Runge-Kutta method for some specific examples. The
results indicate that accuracy comparable to that of the classical
Runge-Kutta method is obtained with a larger step size. The increase
in step size can be as much as a factor of 10 for some cases and only

a factor 1.2 for others.

Method 3
The approach taken in this method is based on an empirical scheme.
The originators of the method, Richards, Lanning, and Torrey [ﬁ], have

not been able to prove any theorems ebout the technique. The scheme
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is developed heuristically and the results indicate its validity. The
approach is based on Euler's method, but a much larger step size is
allowed.

Using previously introduced notation, we consider the vector

differential equation

&2

= T(¥). (55)

Note that since the right-hand side of Eq. (55) is independent of x,
BEq. (55) is actually a special case of Eq. (26a). Approximating
Eq. (55) by replacing T(y) with the first two terms of its Taylor

series, we have

d - - - -
E-TM =T, +HF - 5,) (56)
where, referring.to_method 2,

M=-7,. (57)

The equations must have the form of Eq. (56) with the added
restriction that the matrix M is negative definite. The latter
condition is believed to be necessary. In physical terms the system
must be highly damped.

Method 3 is based upon a qualitative description of the solution
paths of Eq. (56) under the given conditions. The general character
of the soluﬁion paths is shown in Figure 1 for a system with two
degrees of freedom. A figure similar to Figure 1 is discussed by
Richards, Lanning, and Torrey [b]. For present purposes the

significant feature of Figure 1 1is that on the side branches the
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Figure l.- Solution paths for highly damped system with two degrees of
freedom. The dashed path indicates the onset of numerical instability
for time increments which are too large.
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solutions have larger slopes than on the central "main-stream’". In
fact the central "main-stream" represents a path of minimum slopes.
When the equations are numerically integrated by Euler's method, the
solution will eventually fall onto one of the branches due to
truncation and/or round-off errors. Suppose that this happens at

X = X Because of the large slopes on the branch, Euler's method
of numerical integration wil overcorrect the solution. Hence the
numerical solution goes from point k on Figure 1 to point k + 1,
where a still larger overcorrection occurs and so on. When the
above process begins, Method 3 proceeds as follows. The values of
the variables at X4 8 abandoned and a new set of values at
xL+1 are used to replace them. The new value x;+l is selected
so as to minimize the slopes.

Begin by using Euler's method.

Nl = X X (58)
Ter = Tx *Ax T(F) (59)
Define
1/2
2@l = [ff(‘f) FEE(F) +oeee + ff(iﬂ (60)

and let the symbol "." represent the vector dot product.

It

(¥ ) (V1) 1 (61)

EAMEES

then abandon the values K1 and §k+l and replace them by



x;+1 =X+ (62)

§k+1 = yk + sAx -f-(§k) (63 )

o}
where & 1s selected so that ,'f(yk+1)l’ is minimized. This
amounts to interpolating between §k and §k+1 in such a way that
the above quantity is minimized. From Eq. (59) it follows that on

the interval from ¥, to ¥, »

Y= ¥+ 8(Tie - -ik)' (64)
A necessary condition for a minimum is
Lllz@ll =0 . (65)

From Eqs. (60) and (65),
-1/2 ar ar af
1,2 2 ... 2 1 2 n
-é- [fl + fa -+ + fn] [:Qfl —ds + 2f2 -—-ds 4 oo + an _ds ] = o "

af arf af

1l 2 n
Lhaeg thog teo v,z =0
or
~ aF
f-35=0-

Using Eqs. (56) and (64),

Efo + 05+ R (T - F) - ﬁ'fo] . [ﬁ (Fgay - iki] =0.

Since Eq. (56) implies that
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ﬁ(;ku - .ik) =fa - Ty s

it follows that

[rk +o(F, - 'fk):] : Efk+l - ?k] -0.

. - -fk : (-fk - 151;+1) (66)

[Fea - %17

Results of applying the above scheme to specifie problems are

discussed by Richards, Lanning, and Torrey [5]. The method actually
includes a provision for a variable step size even though no inter-
polation occurs, but this is not an essential feature. On a test
problem for which an analytic solutlion was available, the method

ran about 70 times as fast as Euler's method, and both methods ‘had
comparable errors. Speed-up factors as great as 10,000 have been
obtained on some complex physical problems, but the errors must be

evaluated by physical considerations.

Method 4
The technique presented in this section ié”very similar to that
of Method 2. The principle bhehind both methods is the same, but
different equations are used to obtain the final result. Both
variations are inclﬁded, since one mgy be more asdvantageous than the
other in a specific instance. Method 4 was presented by Decell,

Guseman, and Lea [ﬁ].
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Consider

- 2(x, v) (67)

¥(%0)= ¥o (68)
As in Method 2, Eq. (67) will be transformed so that the resulting
eguation allows a larger step size to be used in the numerical
integration.

Suppose that f(x, y) can be written as
(x, y) = S(x: y) + h(x) y) (69)

where h(x, y) is of a form such that an analytical solution of

dz

== h(x, z) (T702)
z(xé) = Yo (70b)

is known. Write this solution in the form

2= CPG{: yo) . (71)
Note that
z(xo) = @(xo, yo) =Y, (72)

We will attempt to determine a function w(x) such that the original

problem, Egs. (67) and (68), are satisfied by

y = o(x, w(x)) . (73)



Hopefully, the equation for w(x)
numerical integration.
From Eq. (73)
Gy 29, dpaw
dx ~ 0x oOw dx

Using Eqs. (70a) and (71)

% = h(x, ‘4)(x; W)) + (?T:: %;i

dw

Using Eq. (67) and solving for =’
av  [30]™t ) .
= - S B(x) p(x, w)) - h(x, '\P(X,W))]

3|
provided that e exists.

From Eq. (72)

(%07 ¥(%g)) = ¥(%o)

Hence, by Eq. (7%), the initial condition for Eg. (75) is

w(xo) =Yg *

will allow a larger step size in the

(74)

(75)

(76)

There is no guarantee that Eq. (75) allows the use of a larger

step size than Eq. (67).

will depend quite strongly upon the choice of h(x, y).

The step size which is acceptable in Eq. (75)
According to

Eq. (29) the step size acceptable in Eq. (75) will be larger than

that for Eq. (67) provided that h(x, y) is chosen so that

o)

poere < <

gl
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It should also be pointed out that any errors in integrating
Eq. (75) may possibly be amplified in determining y(x) due to the
form of (x, w(x)).

Decell, Guseman, and Lea.[?] apply the method to a specific
example for which the étep size could be increased by anywhere from
two to fifteen times, depending upon the magnitude of the error which

is acceptable,

Method 5

The method presented in this section was developed by Taroh
Matsuno [?] as a result of a different type of problem than those
encountered previously. In methods one through four the "high
frequencies' introduced problems in the time domain. Specifically
the problem was to numerically integrate "high frequencies" over a
long period of time. High frequencies can produce another type of
Aifficulty. For certain types of physical problems, many convgntional
methods of numerical integration can produce an unrealistic growth
of the amplitude of high frequency waves with increasing time.
Although more conventional methods do not have the above difficulty,
these methods are usually of the implicit type and hence require‘an
iterative method of solution, which is time consuming. Such
difficulties arise in meteorological problems and fluid flow problems.
Method 5 1s designed to filter out or surpress the amplitude of these
high fregquency oscillations.

Before the method is presented, a brief discussion of numerical

filtering is in order. Consider the differential equation
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dy _ . o

-a'g—l“-’Y- (77)
The solution is

y =%, (78)

Let us suppose that Eq. (78) is represented by a set of digitized

data,
y(tg) =¥ =€ (79)

where

t, = kh . (80)

The central difference formula for approximating the derivative of

Eq. (79) is

dyy _ Y1 = Vg1
at 2h

(81)

Note that we are not numerically integrating Eq. (77) by a central
difference scheme. Rather we are approximating the derivative of
Eq. (79), which happens to be a digitized form of the exact solution
to Eq. (77). Later in the paper Eq. (81) will be used to integrate
Eq. (77) numerically and the filtering charactefistics of that process
will be discussed. For the present it suffices to point out that the
two processes are not equivalent. The initial discussion which
follows serves onlj’as a very brief introduction to the subject of
digital filtering.

The following approach is presented by R. W. Hamming [é]. Using

Eq. (79) in Eq. (81) we have
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¥ eiw(k+l)h - eiw(k-l)h

at 2h .
¥y _ o o1¥kh gtih _ gmith
at = 2iwh
dy.
k iwkh sin wh
& - & (82)
The correct answer is
4 iwkh
AT A (83)
t=kh

The ratio of the approximate answer to the correct answer is

sin wh

. (8k)

For this case the result is independent of % (i.e., independent of
time). The ratio is unity only for ® = 0. The amplitude of éll
other frequencies is underestimated by the approximate solution: the
higher the frequency, the greater the underestimation. Hence, the
central difference formula may be said to filter the high frequencies.

With this background let us proceed to a discussion of Method 5
as given by Taroh Matsuno [?]. The solution‘to Eq. (77) can be
obtalned by assuming

y(t) =A%, (85)

from which it follows that

A= eid) . (86)
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Al =12 (87!

Now consider the following techniques for numerically integrating

Eq. (77).

BEuler's method: Virp = Vi + h Vi

Central differences:

+ 2h jk

Y41 = Yk-1

Backward differences: y, .. =y, +h ik+l

The solutions of these equations are of the form

Y = %k . (88)
Euler's method:
ALK ¢ niapk
A =1+ hiw (89)
|A] = \]1 + 102 of (90)

Hence, lkl increases with increasing frequency. Also, Iklk

increases with increasing k (with increasing time).

Central differences:

k+l

A k-1

= N + 2hiw7\k

2

A e ZHAUA - 1 = 0O
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A = hio * -h2a>2+1 (91)

IAl=2 (92)

Thus Ih, 18 constant with'freqpency and |k|k is constant with
increasing time.

Backward differences:

7\k"‘l - Rk + hiw%k+l
A =1+ hiwA
1
ARy (93)

' 1
A = m (9%)
Hence, for the backward difference formula, |A| decreases as
frequency increases and ,klk decreases as time increases.
These results are summarized in the following table.

Table 1.- Filtering characteristics of some common numerical
integration methods.

|A] with freguency |A| with time
Euler's method increases ====§:§:§:§::======:
Central differences constant constant
Backward differences decreases decreases
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Clearly the backward difference formula possesses the desired
character., However, as previously indicated, the backward difference
method is of the implicit type. At each time increment a system of
simultaneous equations must be solved. In order to overcome the
latter difficulty let us approximate the unknowns at k + 1 by
using BEuler's method and then substitute the values into the backward

difference formula. The resulting equations are

% ,
Visy = Vi T ROV - (95)
- N
Vier = Vi T B Vg (96)
= ¥y + hio (yk + hiw yk)
2 2
Yy = T * hi® ¥y - b5 &y (97)
Solving as before we have'
ML _ K ponae N - p? oP K
?\=1-h20>2+hi(u (98)
2
A = \](1 - 12 o) 4 nf P
Il = N2 - 02 o? s nt ot (99)

This is of the form

I?\l:\‘l-X+X2 2
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where
This curve has a minimum where
-1/2
d]kl 1 2
1
xX=3
Thus provided that
0 < ho < = (100)
NE

then |A| decreased with increasing frequency. Also, under the
same condition, |K|k decreases as k increases. In applying

this scheme to a specific system h must be chosen such that

1

w  \2

max

h <

(101)

where aﬁwx> is the highest frequency present in the system. When h
1s chosen according to Eq. (101) then |A| decreases with increasing
frequency and also with increasing time. Note that the amplitude

of all frequencies is damped out by this scheme. Even low frequencies
will eventually damp out as time increases. Thus the application of
Method 5 is restricted to cases in which the time period of interest
is short enough so ﬁhat the frequencies of interest are not

significantly damped.



32

Matsuno [?] applies the method to some practical cases which
confirm the above conclusions. Applications are also discussed by
Mintz, Lilly, and Kurihars (20, 11, and 12].

Before the development of these numerical methods is concluded,
two additional papers should be mentioned. The first paper is by
Curtiss and Hirschfelder [}h]. The essential result of their paper
is that the backward difference method has properties which make it
very desirable for numerically integrating the types of equations
discussed in this thesis. Their work appears to be the earliest
publication on the subject. The second paper is by J. E. Midgley
Eii]. Midgley's paper is directed to the type of problem of Method
5. His approach requires that tﬁe system of differential equations
be solved several times by standard numerical techniques. Each
time the equations are solved a solution which dominates the other
solutions is obtained. This dominant solution is used to reduce the
order of the system of equations by one and the process is repeated.
Since the method is not, strictly spesking, a numerical integration
technique it will not be further discussed here. Details of the

procedure are given in the reference E;i].



CHAPTER III
COMPARISON OF METHODS

Selection of a method for numerical integration is not a
simple task. The literature is filled with a wide variety of
different schemes, all of which have advantages and disadvantages
in particular situations. In most cases the initial selection of
a numerical integration scheme is governed by whatever standard
routine happens to be easily available. Only when a specific
problem is encountered or anticipated in using the standard routine
is an alternate method sought. The following discussion is designed
to point out some of the relative merits of the methods developed in
the second chapter. Provided that the specific difficulty is known,
the discussion should be a useful guide to the initial selection of
one of the methods. Unfortunately, however, the discussion can
provide only & general indication. No absolute rules can be given.

Since Matsuno's method (Method 5) is directed to a different
type of protlem than the other methods, it must necessarily be "
discussed by itself. As mentioned in the second chapter, Method 5
damps out all frequencies with time. Also the method is only of
first order accuracy and the step size is restricted by Eq. {(101).
The scheme can be used to greatest advantage when the frequencies of
interest are much lower than the unwanted high frequencies and the
solution is desired for only a few cycles of the lower frequencies.
However, as the frequencies become more widely separated the

restriction on step size assumes more prominence since an increasing

55



number of steps are required in order to integrate one cycle of

the lowest frequency. Hence there seems to be an optimum ratio

of lowest and highest frequencies beyond which the method ceases

to be useful. Obviously this ratio will depend upon the specific
problem and the total time period of interest. The originator of
Method 5, Taroh Matsuno, has developed some extensions which have
higher orders of accuracy and different filtering characteristics
[13).

As stated earlier, Method 4 is very similar to Method 2. Basic

to determining which one of them is more advantageous in a given
)

question cannot be answered in general, but the answer can obtained

situtation is the relationship between lmiil and

for specific problems. As pointed out by Decell, Guseman, and Lesa

@], ®(x, w) 1s linear in w then

%%=%ﬂmw-%me-

Hence in this case, if h(x, y) can be chosen so that it includes
the high frequency part of f(x, y) then a significant improvement
can be expected with Method 4, Even in this instance, however,
p(x, W) may amplify any errors committed in the integration of

Eq. (i5).

Method 5 appears to offer the greatest advantage as far as
computer time is concerned, provided that the system satisfies the
necessary restrictions. The penalty for this savings in computer
time i1s a reduction in accuracy. If high order accuracy is not

important in the problem at hand, if good physical checks on the
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solution are available, and if large reductions in computer time are
required, then Method 3 could prove to be a very helpful scheme.

Method 2, in actual computation, can be used in either of two
forms. The transformed equation can be numerically integrated and
y obtained from Eq. (45), or the original equation can be
integrated directly by means of Egs. (49), (51), (52), (53), and
(54). Loper and Phares [3] point out that in actual practice the
second approach is more efficient in so far as accuracy, computer
time, and program simpliclity are concerned. Since the increase in
step size is not too great for some cases and additional computation
and testing is required compared to standard procedures, Method 2
could conceivably result in an increase of computer time. Note
also that the condition on h which is required to reduce the size
of Imiil could actually be more restr}ctive than the condition
dictated by the original problem. Analogously to the conclusion
about Method 4, a large increase in step size should result with
problems in which J(x, §) 1is a slowly changing function. Although
Method 2 does account for the fact that some portions of the problem
may be suitable for integration by standard procedures, no_real
advantage is taken of the situation; the same amount of additional
computation and testing must be performed.

In contrast to the latter point, Method 1 does take particular
advantage of the fact that part of the problem may be suitable for
standard techniques. The integration formula automatically reduces
to the classical Runge-Kutta procedure as P -» 0., However, Method 1

does not provide any direct means for evaluating the improvement which
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can be expected over conventional methods. The method has been
successfully used in cases for which |Ph| is much larger than
the value dictated by the stability requirement of the Runge-Kutta
procedure. If the original equation is in the form of Eg. (2) then
Method 1 is exact.

These conclusions can be summarized as follows. If Eq. (1)
can be reasonably approximated by Eq. (2) on each integration
interval, then use Method 1. If J(x, y) 1is a slowly changing
function, then use Method 2. If a judicious selection of h(x, y) is
possible, then use Method 4. If extreme reductions in computer time
are needed, if the equation satisfies the necessary conditions, and

if great sccuracy is not required, then use Method 3.



CHAPTER IV
MEAN-PATH INTEGRATION

In an analytical investigation of the landing dynamics of leg
trusses of lunar landing vehicles a set of equations of motion were
developed which involved some very high, but physically unimportant,
frequencies. A consideration of the physicsbof the probelm led to
the development of a specialized integration scheme that allowed a
significant reduction in the amount of computer time required for
the numerical integration. The scheme, called impulsive damping,
will first be explained in its original context and then generalized
to apply to a larger class of problems.

The equations of motion of the system discussed above have the

following form for j =1, 2, «c¢, N

my %y = £y (X500 %o Xyprs Vig0 Vo Yyapo Gyops @gp %5)  (102a)
mj yj = f2 (x'j-l, XJ’ xj"‘l’ yj-l’ yj’ yjfl’ a‘j-l’ C(:j: a'.j+l) (102b)
Ij cc,J = f3 (xj-l’ xj, xj*l; yj-l’ YJ: Y5+1, aj-l’ aj, aﬁ+l) (102c)

where
nﬁ jth mass
IJ ’moment of rotary inertia associated with jth mass
(xj, yj) po:ition of jth mass in an inertial coordinate
ystem
aj slope of truss member at jth mass in inertial

coordinate system
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Variables with zero subscripts do not appear. The functions fl,

f

o9 and f, are nonlinear.

b)
The numerical integration of Egs. (102) is carried out by using
Euler's method, with a special modification to be explained below.
This very simple scheme is well suited to the problem for a number
of reasons: it is self starting, does not require an interstive
solution, and needs only one evaluation of the derivatives on each
time step. Since the evaluation of the derivatives requires a
considerable amount of computing time, the latter point is believed
to outweigh any advantage of more sophisticated schemes, such as
Runge-Kutta, which require several evaluations of the derivatives
on each step.

The amount of computer time required for the numerical integration
can be considerably reduced by giving special consideration to Eq.
(102¢). The rotary inertia IJ which appears in Lg. (102¢c) was
included in the analysis not because it was important, but because
Egs. (102) were the simplest way to arrive at a consistent set of
equations of motion. The differential equation (102¢) could be
completely eliminated from the analysis by putting the Ij equal to
zero. However, since f5 is a nonlinear function, the resulting
system would require an interative solution at each time increment
in order to determine the o's.

Because the parameters Ij are nearly zero, the o«

J
(102) oscillate at extremely high freguencies comvared to the x

's in Egs.

and v motion. The high frequencies require a very small time

interval for numerical integration, resulting in unduly long computer
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runs. In order to reduce the computer time an impulsive damper
was introduced into the « motion. The behavior of o both with
and without the impulsive damper is shown in Figure 2. Without ﬁhe
impulsive damper, a diverges quite rapidly due to numerical insta-
bility of the integration scheme. If a time increment about 50
times smaller were used the curve would oscillate harmonically with
a maximum amplitude approximately equal to the first peak of the
broken line.

The solid line shows the influence of the impulsive damper.
As the problem begins o« 1is most generally not in its instantaneous
equilibrium position and an acceleration moves a towards its
instantaneous equilibrium position. At this stage of the problem
the two curves are identical. Since o 1is moving towards its
instantaneous equilibrium position, the computation is allowed to
proceed normally. In the process of moving to its instantaneous
equilibrium position, ¢ acquires a finite velocity increment. -
Therefore, once « reaches its instantaneous equilibrium position,
this velocity will cause a to overshoot and begin to oscillate.
In order to damp out the oscillaﬁion, once « reaches its'instanta-
neous equilibrium position, its velocity‘is set equal to zero.
This procedure amounts to adding a ficticious impulsive moment to
the system which is just enough to reduce the o velocity to zero.
Thus o 1s prevented from overshooting and is actually stopped in
its instantaneoué equilibrium position. As the solution progresses
the instantaneous equilibrium value of o« changes. When this

occurs o 1is accelerated sgain and the entire process starts all
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over. As shown in Figure 2, a can have quite high accelerations
even with the impulsive damper. The high accelerations indicate
that the instantaneous equilibrium value of a is changing rapidly
and o 1is lagging behind. Once a reaches its new instantaneous
equilibrium position the high accelerations are damped out. It is
essential, of course, that « remaihs as near as possible to its
instantaneous equilibrium position since in the physical problem
a reaches its new position almost instantaneously. For this reason,
when the above method is applied to an actual problem, periodic
checks must be made in order to assure that o 1is not lagging too
far behind. In all of the cases to which the method has been
applied, @ has been found to follow along satisfactorily. An
example is shown in Figure 3. The upper plot is a time history of
the lateral deflection of the center of a vertical strut with a
shock absorber of the type presently being considered for the landing
gear of a meanned lunar landing vehicle. The lower plot is a time
history of the c~coordinate of the lower end of the strut. As the
plots show, the o motion is in excellent agreement with the
lateral oscillations. Note that the decreasing amplitude of the .
waves 1s a physical effect and is not due to the impulsive.damping.
Rather than discuss questions of accuracy and reduction in
computer time for the specialized scheme, we will develop a
generalized method which applies to a wider class of problems.
Then, in the neif chapter, these questions will be discussed in

detail for the generalized scheme.
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Generalization of the above integration scheme was empirically
accompliéhed by means of a number of computer experiments involving
the numerical integration of several systems with one, two, and
many degrees of freedom. Only after the computational algorithm
had beeh déveloped was an attempt made to prove any theorems about
the method. Proofs have been found for some special applications of
the method to systems with one degree of freedom. Experimental
evidence indicates that similar results hold for more general types
of problems. The generalized integration scheme, hereafter called
mean-path integration, will be developed for a system with one degree
of freedom. Subsequently the computational schemes used for the
other cases will be stated.

Mean-path integration is based on the characteristics of the
dynamic response of an undamped system with several degrees of
freedom. In general the response consists of oscillations about a
mean path. When a point of the system crosses the mean path the
acceleration of the point changes sign. At this instant in time the
point is on its mean path and its acceleration away from the mean
path is zero. By simply adjusting the velocity of the point to
correépond to the slope of the mean path, the point can be made to
follow the mean path reasonably well. The scheme allows time
increments which are ;arger than the period of the highest frequency
of the system because the continual readjustment of the velocities
damps out the large oscillations about the mean path that accompany

the onset of instability.



Consider the equation

2
= £(t, ¥) (203)

at
y(0) =y, (104a)

Note that Eq. (103) is independent of §. This is a necessary
condition since the presence of veloelty dependent forces interferes
with the 1dentifica£ion of the points at whiech the acceleration
changes sign. Although Eq. (103) could be expressed as two first
order differential equations; this will not be done because mean-
path integretion mekes special use of the second derivative.
Mean-path integration begins by using Euler's method, the

equations of which are restated for reference,

Vi1 = Vi + h #‘k (105a)
y.ik‘l‘l = yk + h fk (lo5'b)

If
sign yk*l ¢ sign ¥y (106)

then abandon the values at X + 1 and replace them by the following

interpolated values.

L)

Yk

ty =ty - = h (107a)

Ye+t1 = Y%
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' &k
Yge1 = Yk (yk+1 - yk) ¢ 5 (107p)
k+1 k
L

' Y - V.
Feag = —= (107¢)

k+1 & -t

k+1 T

where ¥ and tI are the values of y and t at the previous
interpolation point. The points at which the above interpolation
is performed will be referred to as "good points". Once a good
point has been gound, one full size step is taken before attempting
to find another good point.

For & system with a single degree of freedom, mean-peth integration
can be interpreted in terms of Method 3 with the following differences.
Mean-path integration applies only to undamped systems; Method 3 applies
only to highly damped systems. Mean-path Integration selects points
of maximum velocity; Method 3 selects points of minimum velocity.

Note that in Eq. (106) it is tacitly assumed that ¥(t) is of
an oscillatory nature. If ¥ does not change sign (is not equal to
zero) at a sequence of points as t increases then no good points
will be found and mean-path integration reduces to Euler's method.
Hence, in all that follows, f(t, y) 1is assumed to be of such a
form that the solution of Eq. (103) actually has a sequence of
good points.

In order to illustrate the basic principle of mean-path

integration let us consider the following problem.
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y + o y=t (108)
¥(0) =y, (109)
y(0) =¥, (110)

The exact solution is

wy,
\/yo +(_-__> sin u)t+ta.n'l. 01 +£§, (111)
w

y -
0" 2
If
Vo = © (112a)
V. = .:.L_.
1o
then equation (111) reduces to
t
y==5. (123)
w

In this case, the exact solution, Euler's method, and mean-path

integration are identical. Euler's method gives

o h
yl=y0+hy0=—=Y(h)

&

. . 2\ 1 .,
yl"yo"'h(to'w yo)"u?=y(h)

.o 2
yl"‘"tl'wyl"h"h O=Y(h)

2h
= = = y(2n
= v(2h)

Sml o

h
y2=yl+h91=-a—.)§+
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o 3 2 __l __L_o
y2=yl+h(tl-a) yl)_;-é-+h(h-h)_we—y(2h)

§, =ty - & ¥, =2h - 2h = 0 = §(2h)

and so on. Since §k =0 for all k, sign &k never changes and
mean-path integration is identical to Euler's method. The above
results hold for any value of the time increment h. Note, however,
that the results are valid only if all the computations are carried
out exactly. If any round-off error whatsoever is introduced inte
the numerical integration schemes, then the results change radically.
This point is illustrated in the following example.

Let

w

1

h = 10
The value of h was deliberately selected to be larger than the
period of the frequency ®, which in the present case is 2rx.
Egs. (112) become

Yo =0 (11ka)
5’0 =1 (1140)

When Eqs. (114) are represented correctly to eight significant

figures and the same number of figures are carried in all computions
on a digitai computer then Euler's method and mean-path integration
produce identical results and give the exact solution. However, if

the initial conditions are subjected to the slightest amount of



round-off error then Euler's method diverges whereas mean-path
integration still produces good results. A test case which demon-
stratesthis point is shown in Figure 4. Eq. (llla) was represented

correctly to 14 significant figures. Eq. (1llkb) was entered as

Jo = 0.9999999999999

The error is 9b is one unit in the 135 significant figure.
Fourteen significant figures were carried in all computations.
Because of the round-off error the oscillatory term is introduced
into the solution. Euler's method cannot correctly integrate the
oscillatory term due to the large step size and a divergent
oscillation results. Mean-path integration detects the presence
of the oscillation slmost immediately. At t = 20, sign y is

positive; at t = 30, sign ¥ is negative. The values at t

30 are

abandoned and Egs. (107) are used to find a good point at t = 20.202.
The value of ¥ at this time is zero to 1l significant figures. The
veloclty is adjusted to correspond to the straight line solut;on and
the oscillation is eliminated. From this time on the value of ¥
remaing equal to zero and no more interpolations are required on the

succeeding time increments.

Now suppose that the initial conditions are chosen such that

]

o [
¥
2 o 1 I3
yo + (UJ— - —=—)) <<l . (ll))

As before, Euler's method will diverge for large values of h. Mean-

path integration will behave exactly as it did for round-off error.

™ oscillatory part of the solution will be damped out, leaving
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only the straight line. Hence, using Eq. (115) in Eq. (111),

we see that mean-path integration closely approximates the exact
solution. It should be pointed out that pfior to the first good point
mean-path integration will, in generel, be quite different from the
exact solution. In other words, mean-path integration prdduces a
series of good points; the approximate solution 1s obtained by
connecting the successive good points by straight lines. Some of

the examples in the next chapter will clarify this.

If the initial conditions do not satisfy Eq. (115) then
mean-path integration will still produce the straight line solution.
The mean-path solution will be a line (or a curve in the more general
case) abouf vhich the exaect solution is oscillating. The mean-path
solution should not be interpreted as a particular solution of the
differential equation. In some cases the two may be identical; in
others they may be different. As mentioned earlier, no proofs have
been found for epplications of mean-path integration in the general
case. However, based on & number of computer experiments, some
remarks cen be made about conditions which are at least necessary.
The equations must be in the form of Eq. (103). The genergl nature
of the solution must be an oscillation about some mean path. Several
good points must be obtained on each cycle of the highest frequency
which 18 a significant part of the solution. This implies some a
priori knowledge about the general nature of the solution. For
example, if the Qignificant part of the solution is known to have
e period of 2n. then the good points must be spaced closely enough

so that when connected by straight lines they adequately describe a
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function with a period of 2n. Since the spacing of the good points
is not controllable, the latter condition merely provides a confidence
check on the results; if the condition is not satisfied, the results
must be questioned. An example of this is presented in the next
chapter. As a final word of caution, care must be exercised to assure
that significant features of the solution are not filtered out,
especially in systems with several degrees of freedom. An example of
this type of difficulty is given in Chgpter V.

In a system of equations, more than one dependent variable is
involved and the test corresponding to Eq. (106) becomes more
complicated., Two different approaches have been used with some
success. The first of these approaches was used to obtain the results
for the two degree of freedom system which is discussed in the next
chapter.

Let the depehdent variables in a system with two degrees of freedom
be denoted by yl(t) and ya(t). The differential equations have the

form

B

¥y =5 (8 ¥ ¥p)

(116)

]

".5;'2 f2 (t: Vl: y2)

The test corresponding to equation (106) is as follows. If

sign &l (t + h) £ sign yl (t)

and

sign §2 (t + h) £ sign ?é (t)

then abandon the values at t + h and compute tk+l by using §i
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in Eq. (107a). Assume that the same time is a good point for Voo
(This will be discussed below.) Interpolate to find y,, ¥y, ¥,

t
¥,» at t =t ., using equations analogous to Egs. (107b) and (107c).

Count this point as a good point for both variebles. If
sign ¥, (t +h) # sign 7, (%)

and

sign ¥, (t + h) = sign ¥, (t)

then abandon the values at t + h and use Egs. (107) on y, only.

Integrate the y, equation normally with a reduced step size

1 t
b=t - %
Count the point as a good point for ¥y only.

An analogous procedure is followed if
sign 51 (¢t + h) = sign ?l (t)

and
sign ¥, (¢t + h) # sign ¥, (t) .

Once a good point has been found for either vaiiable, one full size
step is taken before attempting to find another good point.

The crucial point in this scheme is the assumption that when
the second derivativeg of both variables change sign during a step
the change of ié occurs at the same time as the change of &i.

In general, the assumption is not true. However, since &é does

actually change sign on the interval we obtain at least a first’
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approximation to the good point of Yoo As the example 1in the next
chapter will show, the good points for Yo have been close enough
to the true values so that no significant errors are introduced.
The effect of this assumption can be somewhat reduced by considering
the good points of ¥y to be only those points which are actually
obtained by interpolating on Yoo

For a general system with several degrees of freedom the
assumption discussed above can lead to erroneocus results. The
scheme presented hbelow overcomes the difficulty.

Let the dependent variablesof a system:» with n degrees of freedom

be denoted by

Vl (t)) Yo (), sy ¥y (t) .

On each time interval proceed as follows. Compute

G = {}l sign ?i (tk+l) £ sign ?i (tki}

1
For each J € G, compute ¢, ., from Eq. (107a). Denote these by

J
tyyy © Let
=04 ’
SENE
and let
1 3
Yy = mén Y1

. 1 . ) ) ) ) - .
Use t.,, in Egs. (107) to interpolate on y, . For 1 £ 1,
integrate ﬁi normally with a reduced step size

! ’ 1

b=ty - % -



Count the point as a good point for Y, only. Do not interpolate
on y, on the next step, but do allow interpolation on vy if

i # l. To avoid taking steps which are excessively small, the above
procedure can be modified to impose a minimum step size h*. If

té+l - tk < h* then set

tk+1 t, + 0¥

and count tz

K+l 25 @ good point for all ti+l € T such that

4 -t < ¥,

k+1
Do not allow two interpolation in a row on the same variable.

For systems which have several degrees of freedom mean-pati
integration can be used only on selected variables, the remaining
ones being integrated by the standard Euler's method. This is very
useful when some, but not all, of the dependent varisbles involve

high frequencies.



CHAPTER V
APPLICATIONS OF MEAN-PATH INTEGRATION

Mean-path integration has been applied to a variety of
differential equations in order to check its validity and accuracy.
The applications presented in this chapter were selected to ilius-
trate the main features of thé method. As some of the examples will
show, mean-path integration must be used with care to avoid erroneous
results. When adequate physical checks on the accuracy of the
solution are availeble, mean~path integration can result in significant

reductions in computer time.

The first example illustrates the general nature of a mean-path

solution. Consider

G 4100y =200t - 102 |
y(0) = 0.002 $ (117)
i(O) = 12.0 J

The exact solution of Egs. (117) is

y=5inl10t +2 4t - 0.1 t° + 0.002 (118)

¢ The graph of Eq. (118) is shown in Figure 5 for time increments of
0.1l second. The period of the sine term in Eq. (118) is approximately
0.628 second, ‘Standard numerical integration methods would require
a step size smaller than 0.628 in order to obtain a solution to

Egs. (117). The Runge-Kutte method, for example, would require a

22



56

*WopadLy JO
92339p 8UO U3 TA I03BTTIISO IBBUTT JO FUTOIO0J dTToqered I0j

UOTINTOS 30BX3 YFTM UUTINTOS Y3Ed=-UBSW JO UUSTJLRANO) -°*¢ JINITJ .
das ‘aumyy
0c et 91 #T et (033 8 9 c
LY [ T I [ T [ | |
\
\
L6
(N
N
) \
sautod poon X ‘ ' '
0°'T = 9V ‘uzed uedy| — — — <

308Xy

0ot

()4



57

step size at least as small as 0.06 to prevent the numerical solution
from diverging. Euler's method would need a step size even smaller,
probebly 0.006 or less. The dashed curve in Figure 5 shows the mean-
path solution for a step size of 1.0. After two normal steps, mean-
path integration interpolates to find a good point at t = 2.02. The
mean-path solution is obtained by connecting the initial position and
the first good point with a straight line. Proceeding in this fashion,
mean-path integration takes about two normal steps between each
interpolation. The average step size is 0.679, which is larger than
the period. The price for the increase in step size is a reduced
amount of information about the solution. No information whatsoever
is obtained about the oscillatory term. Hence, to be assured that
the mean-path solution is adequate, we must have a priori knowledge
that the oscillatory terms which have been eliminated are not an
important part of the solution. Such information can often be
obtained from the physics of the problem.

For the gbove problem, the average step size for mean-path
integration is spproximately ten times that required by the Runge-
Kutta method. In addition, mean-path integration requires only one
evaluation of the derivatives oﬁ each stép whereas the Ruﬁge-Kutta
method requires four evaluations. Thus the computer time for
' mean-path integration is at least one-tenth of the computer time
needed by the Runge-Kutta method. If the major part of the computing
time is spent iﬁ evaluating the derivatives, then the mean-path
computer ‘time could be as small as one=fortieth of the Runge-Kutta

computer time for the above example. Compared with Euler's method,



mean-path integration reduces the computer time by a factor of
100 or more for the case discussed. The savings become even larger
as the frequency of the sine term is increased.

The next example illustrates one of the difficulties which lead

to erroneous results with mean-path integration.

y+y=s8int (119a)

y(0) = 3(0) = 0 (119b)

Physically speaking, these equations represent the forced
response of a spring-mass system with one degree of freedom. Since
the frequency of the forcing function is equal to the frequency of
the system, we know from physics that the solution is an oscillation
at the natural freqpency of the system with a continually increasing
amplitude,

The mean-path solution was obtained by using a step size of
0.5 second, which is approximately 10 steps per cycle. However, as
shown in Figure 6, the first good point is not found until 2.267 seconds
and thereafter the goods points occur about every 3 seconds. Thus,
only about two good polnts are obtained on each cycle. These good
points are not spaced closely enough to describe the significant
features of the response and an erroneous solution results. This
example serves as ahother warning that mean-path integration must be
used with care.

For nonlinear differential eavations, step size can be an

important i{uctor in obtaining correct mean-path solutions. The
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Figure 6.~ Example of erroneous mean-path solution due t
spacing of good points.
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limitation in step size arises due to the linearity of the inter-
polation scheme. For large step sizes, linear interpolation simply
does not produce a good point which is satisfactory if the function
is nonlinear. However, mean-path integration does provide its own
indication of the occurrence of the difficulty. At a good point,
|¥| should be much smaller than its values elsewhere. Ideally,

in fact, | ¥| should be zero at a good point. Hence, if |¥| 1s not
much smaller at the good points than it is elsewhere, then linear
interpolation is inadequate for the step size. This point is

illustrated in the following example.

Gy AP =t (120a)

y(0) = y(0) =0 (120b)

The solution of Egs. (120), obtained by various methods, are shown
in Figure 7 for A = 0.01. The so-called true solution was obtained
by Euler's method with At = 0.0005. The mean-path solution was
obtained with At = 1.5. For this case, the linear interpolation
was adequate. The Runge-Kutta method was also used with At = 1.5.
The Runge-Kutta solution oscillates about the’méan-path solution
with decreasing amplitude and then diverges.

We now put A = 1.0 1in Eq. (120). Some solutions for various
time increments are shown in Figure 8. The mean-path solution for
At = 0.1 and At = 0.5 are in reasonably close sgreement. In fact,
after a time of 5 seconds, the two are practically identical. For

Nt = 1.0, the mean-path solution is completely different. The error
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is due to the linear interpolation. This can be seen by examining
the values of | ?, at the good‘points for the various step sizes.
Since the good points do not occur at exactly the same times for the
different step sizes, a direct time comparison cannot be made.

Table 2 compares the absolute values of y at the good points which
are closest to the time shown.

Table 2.~ Effect of step size on good point values for
& nonlinear system.

Now consider the following system with two degrees of freedom.
. )+
¥, +107 y; +¥, = 5000 ¢ (121a)
¥, + ¥, = -5000 t (121p)

¥,(0) = 103.0 > (121¢)

&2(0) = =24998.C

J
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Note that these equations are actually uncoupled. We can solve
Eq. (121b) independently and use the result in Eq. (121a). The

exact solution is

¥y, =t+2sint + sin 100 ¢ (122a)

¥, = -5000 t + 1999 sin ¢ (122v)

The numerical solution was obtained without taking any special
advantage of the uncoupled nature of the system. Eqs. (121) were
numerically integrated as a coupled system with two degrees of
freedom. Figure 9 shows some solutions for N0 for a step size of
0.1, which is larger than the period of the highest frequency. The
solid line in Figure 9 is the mean-path solution using the mean-path
integration scheme for a system with two degrees of freedom. The
high frequency is filtered out completely. The low frequency is
present until a time of 3.1% seconds. At this time, a good point is
obtained for yy- From 3.1% seconds onward, both frequencies are
filtered out and only the straight line remains,

In many applications, it is desirable to filter out only the
high frequency term. For the case presented hefe, this can be
accomplished by using mean-path integration on Eq. (121a) only.

The integration scheme is exactly the same as before except that
sign §é ié'never tested. The results are shown by the dashed curve
in Figure 9. The high frequency is filtered out but not the low

frequency. The dashed curve in Figure 9 is in general agreement with
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Figure 9.- Mean-path solutions for interpolation on one variable only
and on both variables of a system with two degrees of freedom.
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the solution given by the first two terms of Eq. (122a). The
error decreases as the step size is decreased.

In Figure 10, the mean-path solution obtained by interpolating
only on ¥, with: At = 0,01 is compared to the exact solution. The
filtering effect of mean-path integration is clearly evident. Also
shown on Figure 10 are the results of using Euler's method with a
step size of 0.0l. As the figure shows, the solution obtained by
Euler's method diverges immediately.

The next exemple illustrates the application of mean-path
integration to a system with 15 degrees of freedom. The system is
a lumped mass, finite element spproximation of a strut of the type
currently being considered_for the leg trusses of a manned lunar
landing vehicle. The equations of motion for the system are given by
Egs. (102) with J = 5. A heavy mass is attached to the upper end of
the strut. The étrut is dropped vertically onto a rigid surface.

The impact veloclity 1s 2 feét per second and the initial conditions are
chosen so that no lateral vibrations occur. The latter condition
essentially reduces the degrees of freedom of the system to ten since
five of the variables, xj, J =1, eve, 5, remain essentially zero
throughout the computation.

The equations were numerically integrated using both the
specialized integration scheme (interpoletion on Eq. (102¢c) only) and
the generalized scheme (interpolation on both Eq. (102b) and Eq.
(102¢)). Figure 11 shows a time history of the vertical acceleration
of the upper end of the strut for At = l()'5 in the specialized

integration scheme. As Figure 11 shovs, for "his time increment
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Figure 1ll.- Divergence of specialized integration scheme due to
large step size.
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the integration scheme is unstaeble and ¥ begins to oscillate with
large amplitudes. If At = 0.5 x 10~° 1is used in the specialized
scheme, the integration is stable, as shown by the dashed curve in
Figure 12. In order to obtain the dashed curve of Figure 12 out to
0.05 second, 5.4 minutes of computer time was needed.

The solid curve in Figure 12 shows the results of using the
generalized scheme with At = 10°°. As Figure 12 indicates, the
high frequency oscillations are filtered out. The generalized
scheme required approximately 2.7 minutes of computer time to reach
0.05 second. Hence, compared with the specialized scheme, mean«path
integration reduced the computer time 50 percent. Some short
computer runs using Euler's method indicate that a step size as small
a8 10a6 may be required. Thus mean-path integration requires only
about one tenth the computer time of Euler's method for this case.

As mentioned previously, if the high frequency oscillations
shown in Figure 12 are an important effect, then mean-path integration
cannot be used. For the case presented here, these osclllations are
not important. In cases involving lateral vibrations, results
indicate that filtering out the high frequency oscillations may have

an affect on the solution. Each case must be considered individually.
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3000 —————— Mean-path integration, At = 10-5

______ Specialized scheme, At = 0.5 x 1077
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Figure 12.- Comparison of mean-path integration with specialized scheme
for one variable of a system with 15 degrees of freedom.
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