2001

Shenandoah Valley Earthenware as Symbols of Identity

Sunyoon Park
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

Part of the History of Art, Architecture, and Archaeology Commons, and the Social and Cultural Anthropology Commons

Recommended Citation
https://dx.doi.org/doi:10.21220/s2-k0yy-pn35

This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.
SHENANDOAH VALLEY EARTHENWARE
AS SYMBOLS OF IDENTITY

A Thesis
Presented to
The Faculty of the Department of Anthropology
The College of William and Mary in Virginia

In Partial Fulfillment
Of the Requirements for the Degree of
Master of Arts

by
Sunyoon Park
2001
APPROVAL SHEET

This thesis is submitted in partial fulfillment of
the requirements for the degree of

Master of Arts

Sunyoon Park

Approved, May 2001

Norman F. Barka
Dennis B. Blanton
Theodore R. Reinhart
To my family for their support and confidence in me.
TABLE OF CONTENTS

Acknowledgements .. v

List of Figures ... vi

,List of Tables_ .. viii

Abstract .. ix

Chapter I. Introduction... 2

Chapter II. Historical Context.. 10

Chapter III. Results of Investigations: Site Structure .. 33

Chapter IV. Results of Investigations: Ceramic Analysis ... 57

Chapter V. Comparative Analysis .. 110

Chapter VI. Interpretation... 122

Bibliography ... 132
ACKNOWLEDGEMENTS

I wish to thank Dennis B. Blanton, Director of William and Mary Center for Archaeological Research, for introducing me to the project and for his support and guidance throughout the whole procedure of this thesis. I am also indebted to Dr. Norman F. Barka and Dr. Theodore R. Reinhart for their careful reading and criticism of my work.

The support of mom, dad, Sang Tae, Sun Min, and all my friends throughout the whole process in finishing this thesis is greatly appreciated. I’d especially like to thank Tom Chapman for his helpful editorial comments and emotional support over the years.
LIST OF FIGURES

1. Location of Pitman House (Site 44FK528) .. 7
2. Location of Pitman House (Site 44FK528) in Newtown-Stephensburg Historic District, Stephens City, Virginia ... 8
3. Andrew Pitman House, 5415 Main Street, Stephens City, Virginia 9
4. Plat of town lots in Stephensburg, Virginia, ca. 1830 17
5. Newtown-Stephensburg in 1885 .. 19
6. Pounds of red lead sold to Andrew Pitman By Godfrey Miller in 1809-1813 and 1816 .. 21
7. Value of local earthenware exchanged for goods during 1809-1813 and 1816 .. 21
8. Site 44FK528, plan showing test units after removal of Layer A 34
9. Andrew Pitman House, rear elevation and yard .. 36
10. Site 44FK528, rear (west) yard .. 36
11. Site 44FK528, Shovel Tests 100, 102, 103, 104, profiles 38
12. Site 44FK528, exterior (possible kitchen) hearth, west gable 40
13. Site 44FK528, Shovel Tests 101, 105, 106, 107, profiles 40
14. Site 44FK528, oblique view of rear (west) yard .. 42
15. Site 44FK528, excavations of Test Units 200, 202, 203, 204, 205, 206, and 207 .. 42
16. Site 44FK528, Test Unit 200, west profile .. 45
17. Site 44FK528, Pitman earthenware sherds exposed in Test Unit 200, Layer D ... 48
18. Site 44FK528, Test Units 201 and 202, after removal of Layer B, plan 49
19. Site 44FK528, Test Unit 202, south profile .. 52
20. Site 44FK528, Feature 5A/B, plan and profile .. 54
21. Vessel base showing fingerprints left from handling with glaze-covered hands .. 71
22. Identified local earthenware vessel forms and objects from 44FK528 73
23. Vessel profiles of saucer, pan, and dish .. 74
24. Selected rim and base types ... 75
25. Profiles of selected rim types ... 76
26. Square-everted crock rim with folded shoulder and rounded rolled crock rim 77*
27. Exterior of crock exhibiting horizontal and curvilinear tool grooves 78
28. Exterior of crock with beaded base ... 79
29. Small crock exhibiting square-everted rim with folded shoulder and beaded base ... 79
30. Tribeaded pan rim and rounded rolled pan rim .. 81*
31. Pan profile with tribeaded rim .. 81
32. Pan rim with pouring spout .. 82
33. Dish bases with slip-decorated interiors .. 82
34 Five of Pitman's white and black slip-decorated dish types83
35 Green slip-decorated dishes ..83
36 Dishes with crimped rim ..84
37 Chamber pot rims and handle ...84
38 Strap handle exhibiting three thumb impressions85
39 Large jug with bulbous body, evidence of constricted neck, strap handle, and beaded base ...87*
40 Mouth and neck fragments from jug and green-glazed reed tobacco pipe....87
41 Small mended jug with bulbous body, constricted neck, and beaded base...88
42 Cups and intertwined strap handle ...88
43 Interior of saucer ..90
44 Exterior of saucer ...90
45 Unglazed lid with knob ...91
46 Slip-decorated knob of lid ..91
47 Kiln tile fragments ...92
48 Figurine mold of musician playing a flute and impression taken from mold ...94
49 Interior of slip-decorated bowl ..95
50 Exterior of slip-decorated bowl ...95
51 Non-local ceramics used to calculate Test Unit 200 mean ceramic dates97*
52 Site 44FK528, total local earthenware sherds recovered from Test Unit 200 by level ...107
53 Pounds of red lead purchased monthly in 1811109

* Photographs taken by WMCAR. JRIA produced remaining photographs.
LIST OF TABLES

1 List of ceramic ware purchases by John Miller from John Pitman between 1805 and 1808 ...23
2 Site 44FK528, distribution of domestic-related artifacts by context60
3 Site 44FK528, mean date of Test Unit 200 by level ..98
4 Site 44FK528, minimum vessel counts of local earthenware from Test Unit 200 by level ..102
5 Site 44FK528, attribute averages of local earthenware from Test Unit 200 by level ..104
6 Summary of Regional Comparative Analysis ..111
ABSTRACT

The purpose of this study is to relegate the much neglected local earthenware its major role as embodying meaning and as symbolic of expressions of identity. The focus of this thesis is the result of the 1996 archaeological investigation on a portion of a 0.25 acre lot in Stephens City, Frederick County, originally owned by the potter, Andrew Pitman, from the initial purchase in 1782 to his death in 1838.

The archaeological record included artifacts resulting from household activities as well as local earthenware production activities. An exhaustive analysis of the impressive local earthenware assemblage was conducted including a minimum vessel count and an attribute analysis of the local earthenware waster sherds within the stratigraphic context. A regional comparative analysis of earthenware traits was also conducted in the study.
SHENANDOAH VALLEY EARTHENWARE
AS SYMBOLS OF IDENTITY
CHAPTER I

INTRODUCTION

Material culture is integral to the study of archaeology, providing us with insight into our past. Although archaeological theories have undergone changes throughout the years, material culture remains the crucial means to understanding the forgotten past.

One of the most popular topics of material culture study has been centered on ceramics. The ubiquitous nature of these artifacts in the archaeological record has necessitated such a focus. Although historical ceramics have been studied closely, a disproportionate amount of attention has been placed on ceramic types that are highly visible in historical documents such as price lists and advertisements produced by manufacturers or letters, diaries, bills, and household inventories recorded by consumers themselves or other sources such as probate inventories, and pictorial images. The focus on those not so well documented such as locally manufactured earthenware, has been limited to a few studies in historical archaeology (Barka 1984; Ferguson 1992; Turnbaugh 1976, 1983, 1985).

Although a more difficult task is at hand when studying with limited documentation, the neglect of such material culture for such reasons should not be as common as it is at present. It is crucial that a better understanding of local pottery is accomplished especially since it comprises much of the archaeological record, especially
those dating in the eighteenth and nineteenth centuries. The purpose of this thesis is to relegate the local earthenware its major role as embodying meaning, not as mere representations of purely functional needs.

In order to effectively examine local earthenware manufacture beyond mere description, as most often is the case, it is necessary to examine the pottery as being meaningfully constituted and not simply as a passive behavioral product. As Hodder states, “all aspects of production, from the use of space,...to the styles of pots and metal items can be seen to play a part in the negotiation and ‘fixing’ of meaning by individuals and interest groups within society” (1985:161).

The interpretive approach which entails an investigation of the “symbolic” aspects of culture is adopted in this thesis. Symbolism in objects is pancultural, the relationship between symbolic action and object-symbols is universal in social interaction (Beaudry et al 1996). In this approach, culture is meaningfully constituted and subject to multiple interpretations. Individuals play an active role in creating meaning and in shaping the world around them. An understanding of the archaeological, historical, institutional, and behavioral context must be accomplished, avoiding the treatment of meaning and context as static. Yentsch further explains the premise of the approach,

“The focus is on historical moments and repetitive events that convey information about a specific culture. The emphasis is on small-scaled and detailed examinations of specific, varied expressions of cultural meaning, on a small range of human activity that tells of ordinary social action, on the day-to-day behavior that in its particularity and complex texture reveals the meaning that gave form to peoples’ lives in a given time and place” (quoted from Beaudry et al 1996:274).
The analysis of a local earthenware manufacture site in the Shenandoah Valley will be the focal point of this thesis in which a thorough investigation of the pottery archaeological record will be conducted. Equal attention will be placed on the historical context in order to move away from solely functional descriptions of this material culture and to 'read' it as 'text' where interpretation and re-interpretation are imminent.

The highly regarded expert on Shenandoah Valley pottery, H. E. Comstock, has accomplished a phenomenal feat in exposing all of the potters historically recorded as having participated in the Valley pottery industry. His work is a valuable source that has been used throughout this thesis. However, it lacks a comprehensive understanding of the historical context and regional comparisons of earthenware manufacture. The regionally restricted nature of this study undermines the value in discovering similarities across pottery centers. This narrow focus is evident in Comstock's work as he attributes the early stage of the Shenandoah Valley pottery industry as being highly influenced by the 'Hagerstown tradition' (1994). The definition and the concept of ethnicity and ethnic groups must first be introduced in order to understand the importance of proving or disproving such a claim and the implications underlying the ethnic attribution to pottery manufacture.

Since the late 1960s, the definition of ethnicity has undergone some changes but scholars have ultimately shared the basic idea that ethnicity entails self-identification and identification by others, a 'we'/'they' opposition. Siân Jones best expresses the definition of ethnicity and ethnic group utilized throughout this thesis, "Ethnic groups are culturally ascribed identity groups, which are based on the expression of a real or assumed shared
culture and common descent (usually through the objectification of cultural, linguistic, religious, historical and/or physical characteristics)” (1997:84). Ethnicity is a process and not a static entity where reproduction and transformation are possible between groups who consciously perceive themselves to be different (Eriksen 1992:3). This self-defining system is embedded in economic and political relations (Jones 1996:67).

Ethnic affinity is experienced through recognition of similar habitual dispositions of cultural practices and social relations at both a conscious and subconscious level. This recognition and expression of ethnicity is embodied in material culture. “Material culture both structures and is structured by the expression and negotiation of ethnicity, undermining the common archaeological assumption that style is a passive reflection of isolation and interaction” (Jones 1997: 129). It not only contributes to the formulation of ethnicity but is also structured by it and is utilized to signify a self-conscious identity, and to justify and negotiate ethnic relations. Therefore, material culture takes on an active role in signaling ethnicity. Distinctive forms and styles of material culture may be actively maintained and withheld in the process of signaling ethnicity (Barth 1969; Hodder 1982). Style is utilized as a form of non-verbal communication to express this identity (Weissner 1990).

The hypothesis of this thesis is that the pottery styles found on a Shenandoah Valley manufacture site were not passive products and reproductions of a potter but that these were actively utilized as a symbolic expression of identity. Earthenware examples from the Shenandoah Valley as well as other regions such as Philadelphia, North
Carolina, and New England will be compared with those of the Valley potter, Andrew Pitman in order to understand the pottery industry context in which he participated.

The focus of this thesis is the result of the 1996 archaeological investigation by James River Institute for Archaeology (JRIA) conducted on a portion of a 0.25-acre lot in Stephens City, Frederick County, originally owned by the potter, Andrew Pitman, from the initial purchase in 1782 to his death in 1838 (Fravel 2000). The lot and the original house are located at 5415 Main Street within the Newtown-Stephensburg Historic District (Figures 1–3). The William and Mary Center for Archaeological Research (WMCAR) contracted with the Stone House Foundation of Stephens City, Virginia, to conduct a thorough analysis of the artifact assemblage recovered by the James River Institute for Archaeology (JRIA) and the Northern Shenandoah Chapter of the Archeological Society of Virginia (ASV) in 1996. The author conducted the analysis from January to December 2000, under the supervision of WMCAR Director, Dennis Blanton. A site report was subsequently produced and is incorporated in this thesis.

The next chapter will include the historical context of the Shenandoah Valley wherein the local earthenware will be evaluated with emphasis on Stephens City where Andrew Pitman manufactured his earthenwares. This will then be followed by Chapter III which provides the description of the archaeological investigation carried out at the Pitman site. Chapter IV includes an evaluation of the archaeological record as well as a thorough analysis of the local earthenware excavated from the site. A comparison with potters from other pottery centers will be conducted in Chapter V. This will then be followed by the conclusion, providing an interpretation of the results.
Figure 1

Location of Pitman House (Site 44FK528) (U.S. Geological Survey 1986).
Location of Pitman House (Site 44FK528) in Newtown-Stephensburg Historic District, Stephens City, Virginia. (VDHR).
Andrew Pitman House, 5415 Main Street, Stephens City, Virginia.
CHAPTER II

HISTORICAL CONTEXT

Historical research was conducted in order to place the site within a local historical context. This includes an evaluation of primary as well as secondary documents. Primary documents were collected and analyzed by the current property owner of 44FK528, Linden A. Fravel, for site-specific research. This consisted mostly of government and court documents, including deeds and censuses. This chapter begins with a discussion of the history of the Shenandoah Valley including Stephens City followed by the background of Andrew Pitman and his family. Finally, an evaluation of the pottery industry and a discussion of other Valley potters are also included to relate the Pitman pottery to the general trends in local earthenware production during the late eighteenth to early nineteenth century.

SHENANDOAH VALLEY

Although Native Americans had made the Shenandoah Valley their home many thousands of years before the first Europeans set foot in the Valley, Europeans began to channel their way throughout the Valley. Governors Alexander Spotswood and William Gooch who succeeded him worked to settle the area, both clearly motivated by the threat of the developing French and Indian alliance.
Immigration from Pennsylvania to the Shenandoah Valley by recent immigrants as well as internal mobilization of people from the Tidewater was encouraged by Virginia land policy in the 1730s and 1740s. A migration flow toward this area, where farmland was affordable and natural resources abundant, was immediate and soon people of German, Scotch-Irish, and English descent started populating the area (Mitchell 1977:43; Norris 1890:51). These individuals who arrived in search of new opportunities and land to make their new home, created a multiethnic environment in the Valley (Mitchell 1977; Hofstra 1986).

Self-sufficiency was key in the beginning when population was sparse, therefore mixed farming of grains and livestock, local barter of surpluses, and artisan specialization were necessary. By the mid-1760s, however, profit from farming was achieved through agricultural specialization and commercialization of wheat, hemp, and tobacco. As commercialization became the agricultural focus, the search for cheap labor resulted in the increase of the slave population as these labor-intensive crops were cultivated in greater quantities (Mitchell 1977: Stuck et al 1994). Local pottery production began in the late-18th century and remained household oriented until the late-19th century when it became more industrialized (Comstock 1994; Mullins 1992).

Iron, tanning and leather, textile, distilling, and wood-using industries developed by the end of the eighteenth century (Mitchell 1977; Wayland 1980). The development of these industries and agricultural trade was enabled largely by the building and improvement of roads connecting the Shenandoah Valley with eastern Virginia including
urban centers such as Alexandria, Fredericksburg, and Richmond (MacMaster 1988:13; Mitchell 1977:150).

Stephens City

The town of Stephens City is located on land originally patented in the 1730s by Peter Stephens and his son, Lewis. Like many other ethnic German families, the Stephens family migrated from Pennsylvania to take up land grants in the Shenandoah Valley in the first half of the eighteenth century. By the end of 1735, at least 67 families had settled in the region (John Milner Associates, Inc. [JMA] 1996:1–2).

Despite the persistent threat of French and Indian attacks on the Virginia frontier, the population of the lower Shenandoah Valley was substantial enough by the 1750s to promote the development of towns. In October 1758, the House of Burgesses granted Lewis Stephens’s petition for the establishment of a town on his tract, making Stephens City the second town patented in the Valley, after Winchester, which was founded in 1752 (JMA 1996:2).

Reminiscent of Quaker towns in southeastern Pennsylvania and New Jersey, Stephens City was laid out on a rectangular grid pattern, four blocks long and four blocks wide, with a central square and market house at the intersection of Main and Fairfax streets. The town was divided into 80 rectangular 0.5-acre lots, aligned east west along the principal north-south streets. In addition, each lot was conveyed with two noncontiguous 5-acre outlots to the north and northwest of the town (JMA 1996:2–3).

Stephens City grew quickly in the wake of the Seven Years’ War, with 55 of the
original town lots sold by the mid-1760s. Lots changing hands in the 1760s appear to have sold for several times their original value, suggesting that houses had already been erected on the properties. Most early dwellings in Stephens City were of log construction according to the National Register of Historic Places (NRHP) nomination for the Newtown-Stephensburg Historic District, and some 40 log houses have survived from the earliest period of settlement, though most have been altered in some form since the eighteenth century (JMA 1996:3; NRHP nomination 1991).

One of six towns established in the Shenandoah Valley before the Revolution, Stephens City was soon overshadowed economically and politically by Winchester, 8 mi. to the north. Though Stephens City could not compete directly with the county seat, it did emerge as an important crossroads town, supplying the regional market with agricultural produce. Located at the junction of the north-south “Great Road” (State Route 11) and the east-west Alexandria and Chester’s Gap roads, Stephens City had developed a significant wagon-making industry by the 1790s. By 1820, at least 10 wagonmakers were active in town, in turn attracting blacksmiths, saddle and harness makers, and a tannery to the area. Between 1800 and 1836, the population of Stephens City grew from 513 to 700 inhabitants. Though less populous than the neighboring towns of Winchester, Staunton, Shepardstown, and Woodstock, Stephens City boasted a strong commercial base that supported merchants, doctors, potters, weavers, hatters, shoemakers, carpenters, and stone masons (JMA 1996:3–4).

Patterns of land use in Stephens City began to shift by the mid-nineteenth century, with the abandonment of the outlot system and the subdivision of town lots into narrow
0.25-acre parcels. As early as the 1780s and 1790s, house lots were created in an area known as “Newtown” along the main road north of the original settlement, while the 5-acre outlots were gradually integrated into larger rural properties. Stephens City’s economic vitality was on the wane by the close of the Civil War, however. Astride a strategic crossroads, the town was frequently caught in a “no-man’s-land” between the opposing armies. The devastation wrought throughout the Valley by war had a detrimental effect on Stephens City, and many local industries were gradually superseded as regional and national economies became increasingly sophisticated in the latter part of the nineteenth century (JMA 1996:5).

Despite growing external economic competition, the extension of a railroad line down the Shenandoah Valley sparked a modest economic boom in post-Civil War Stephens City. With the railway came increased access to national markets for local produce, particularly apples, which had supplanted wheat as the principal agricultural crop in the Valley. A limestone quarry was opened near the rail line, along with a steam-powered flour mill, an apple-packing shed, and a cooper’s shop kept busy supplying apple barrels for transport. This concentration of businesses formed the commercial and industrial base of the town into the twentieth century. Overshadowed by the expanding Winchester area, Stephens City has stagnated economically since the Second World War, while Interstate Route 81 has tended to draw commerce away from local businesses. In 1992, the original central business and residential area of Stephens City was designated a historic district (Newtown-Stephensburg) and listed on the NRHP (JMA 1996:5; NRHP nomination 1991).
Andrew Pitman and Family

Andrew Pitman was born in 1760 to an immigrant from the Rhineland who may himself have been a potter. Andrew’s father, Anthony, first purchased a lot in Stephens City, then known as Stephensburg, in 1761 (Frederick County Records [FCR] Deed Book 6:269). Anthony was born in Framersheim, Germany, April 12, 1736 (Bly 1993:130–134). Anthony’s father, Andreas, and his grandfather Hans Heinrich, were both masons by profession (Fravel 2000). Anthony probably learned the pottery trade outside of the family as an apprentice to a professional potter. It is obvious from historical records that Anthony was literate and therefore probably did participate in an apprenticeship that also provided instruction in reading and writing as well as skills of the trade (Fravel 2000). Furthermore, being from a family of masons, Anthony probably was familiar with pottery construction techniques and likely played a role in building Andrew’s kiln.

Linden A. Fravel has speculated that Anthony’s connection to the pottery could be attributed to the time period right after immigration. It is possible that Anthony immigrated with his cousins, either with Philip Peter Becker in 1749 or with Johann Becker in 1752. There is nothing known of Anthony between the year of his arrival and the first purchase of his lot in Stephensburg in 1761. It is possible that he was apprenticed to a potter in the Valley during this time. Anthony’s cousins’ family, the Beckers, were related to a family of potters also originally from Framersheim, Germany, the Windles. Through this family connection, it is possible that Anthony learned the trade from the Windles before he made his decision to settle in Stephensburg (Fravel 2000).
Little is known of Andrew’s early life, though Frederick County pension records reveal that he served in the Virginia Militia during the Revolutionary War and was present at Cornwallis’s surrender at Yorktown. Both Andrew and his brother John appear to have been illiterate, leading H. E. Comstock to speculate that they were trained in the potting trade by their father, since an indenture to another potter would have required a more formal education (Comstock 1994:451).

After his discharge from the militia in 1782, Andrew Pitman purchased a 0.5-acre lot (Lot 32) on Main Street in Stephens City from Lewis and Mary Stephens (Figure 4). The deed of sale stipulated that a permanent structure, measuring at least 20 × 16 ft. and with a stone or brick chimney, be erected on the site before year’s end. Though such building requirements were not always diligently observed, it is likely that Pitman had constructed his house by late 1782 or early 1783 (FCR Deed Book 19:317).

The Pitman house is a two-story, log (stucco), gable-roofed, three-bay, vernacular dwelling with a one-story porch, and is approximately 25 ft. long and 20 ft. wide. The architectural feature most relevant to the current archaeological analysis is the stone interior central chimney located on the west-facing gable of the house. The chimney is characterized by an unusual first-floor triangular hearth: two fireplaces are located within the house, but the third and largest hearth faces outward on the rear yard area. Given the dimensions of the external fireplace, it is likely that an attached kitchen was envisioned as part of the overall house plan at the time of construction, though it is unclear whether such an addition was erected concurrently with the main house. When the former Pitman dwelling was later appraised by court order in 1869, it was clearly in a poor state of
Figure 4

Plat of town lots in Stephensburg, Virginia (Anti-Quitrent Society ca. 1830). Arrow marks location of Andrew Pitman’s Lot 32.
repair. The assessors particularly noted the absence of a kitchen, stable, and other outbuildings, implying that at some time such appurtenances had existed on the property (FCR Chancery Court Papers). Within the next few years, a kitchen was reconstructed, ostensibly in the same location as the original, since an 1885 plan of Stephens City clearly shows an adjoining structure at the rear of the former Pitman house (Lathrop and Dayton 1885:Plate 25) (Figure 5). The presence of the external hearth, the testimony of the 1869 court appraisers, the 1885 town plan, and archaeological evidence of posthole features in the yard all point to the presence of at least two successive kitchen additions at the rear of the Pitman house. The first kitchen presumably was constructed some time after 1782 and had been removed by 1869; the second had evidently been reconstructed by 1885.

Unfortunately, the extant documentary evidence of Pitman’s career as an important and prolific Shenandoah Valley potter is slight. The earliest known reference to Pitman’s trade is a record of his purchase of “red lead” (used for pottery glazes) from Winchester drug store owner, John Miller, in 1805 (Comstock 1994:451).

Trade was later conducted with John Miller’s brother, Godfrey Miller (Quarles and Barton 1953:50). Godfrey Miller, also known as Dr. Godfrey Miller, was also a druggist in Winchester who probably sold Pitman earthenwares as well as other household goods. Godfrey Miller’s account records indicate that red lead as well as other goods such as tobacco, linen, shoes, a hat, tea, and other household necessities were sold to Andrew Pitman frequently in exchange for his wares (Miller 1808–1816). Recorded transactions with Godfrey Miller commenced in 1808 and ended in 1816 (Miller 1808–
Newtown-Stephensburg in 1885 (Lathrop and Dayton 1885: Plate 25). Arrow marks location of Pitman house.
During the recorded nine years of trade, Andrew Pitman purchased as much as 528 pounds of red lead, an important ingredient for glazing (Miller 1808–1816). The largest amount of red lead was purchased in 1811, when an overwhelming total of 305 pounds was recorded under Andrew Pitman’s account (Figure 6). The transactions occurred through a barter system whereby earthenwares were exchanged for red lead and various household necessities. The wares exchanged were unspecified and recorded by cart load (Miller 1808–1816). The value of each cart load was recorded in English pounds, shillings, and pence. These values were transformed to decimal values of the English pound to more clearly illustrate the scale of the transactions over the eight-year period of exchange (Figure 7).

The absence of red lead purchases from Godfrey Miller in 1810, 1812, and 1815 indicates that Andrew Pitman was relying on another red lead source as he was still manufacturing wares and exchanging them for goods from Godfrey Miller’s store during those years (Miller 1808–1816). For example, in 1816, Pitman exchanged 34.87 English pounds worth of earthenware—the second largest amount of pottery exchanged in a year—for store goods when he had bought a total of only 12 pounds of lead between 1814 and 1816. This indicates that he was depending on another source during the two-year period to produce the wares necessary to continue transactions with Godfrey Miller.

Andrew Pitman was probably involved in dealings with other merchants in order to obtain red lead. It is also possible that Andrew took turns with his brother, John, who also was a potter in Stephens City, to obtain the necessary lead (Fravel 2000; Quarles and Barton 1984:77, 179). Therefore, one cannot conclude from the historical records that the
Pounds of red lead sold to Andrew Pitman by Godfrey Miller in 1809-1813 and 1816.

Value of local earthenware exchanged for goods during 1809-1813 and 1816.
large purchase of red lead in 1811 indicates the year of highest production unless this is further supported by the archaeological evidence.

The Pitman brothers appear to have been closely associated in the trade, as pottery sherds retrieved from the former John Pitman lot two blocks north on Main Street indicate attributes similar to those from 44FK528 (Fravel 2000). Between 1805 and 1808, John Miller purchased a number of wares from John Pitman (Comstock 1994:453) (Table 1). Given the archaeologically observed similarities between the pottery of the Pitman brothers, it is likely that the forms and prices of Andrew’s wares were similar to those listed above.

Pitman died in 1838, and his wife remarried John P. Minnix two years later. When she divorced Minnix in 1843, the court records noted that Pitman’s estate included “all the tools pertaining to the business of a pottery” (FCR Divorce Book 71:248). The exact location of Pitman’s kiln and related pottery production area remains uncertain, though it was likely located somewhere on the present 0.25-acre lot at 5415 Main Street. Pitman’s original house lot was 0.5 acre in size but was soon subdivided when he sold the southern half of the property to Jacob Marker in 1789 (FCR Deed Book 15:15). Pitman repurchased the 0.25-acre portion from the Marker family in 1811, by which time he already appears to have been an established regional potter (FCR Deed Book 33:117). Thus, if Pitman’s pottery operated on the Main Street property, it almost certainly would have been situated on the northern half of the lot behind the house.

An earthenware sherd was discovered on the lot that bears the mark “D. H.
Table 1

<table>
<thead>
<tr>
<th>ITEMS</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 26, 1805</td>
<td></td>
</tr>
<tr>
<td>37 smallest pots 2d</td>
<td></td>
</tr>
<tr>
<td>6 Pickle do. 9d</td>
<td></td>
</tr>
<tr>
<td>9 One gallon jug 10d</td>
<td></td>
</tr>
<tr>
<td>7½ " " 7d</td>
<td></td>
</tr>
<tr>
<td>November 16, 1805</td>
<td></td>
</tr>
<tr>
<td>6 quart " 5d</td>
<td></td>
</tr>
<tr>
<td>5 milk pots 4d</td>
<td></td>
</tr>
<tr>
<td>3 ditto 3d</td>
<td></td>
</tr>
<tr>
<td>24 ditto 2d</td>
<td></td>
</tr>
<tr>
<td>March 24, 1806</td>
<td></td>
</tr>
<tr>
<td>5 cream pots 6d</td>
<td></td>
</tr>
<tr>
<td>14 chamber pots 6d</td>
<td></td>
</tr>
<tr>
<td>May 16, 1806</td>
<td></td>
</tr>
<tr>
<td>12 dishes 5d</td>
<td></td>
</tr>
<tr>
<td>June 24, 1806</td>
<td></td>
</tr>
<tr>
<td>6 dishes small 3d</td>
<td></td>
</tr>
<tr>
<td>July 16</td>
<td></td>
</tr>
<tr>
<td>5 pickle pots 8d</td>
<td></td>
</tr>
<tr>
<td>6 dishes 4 ½d</td>
<td></td>
</tr>
<tr>
<td>3½ gal. pitcher 7d</td>
<td></td>
</tr>
<tr>
<td>3 quart " 5d</td>
<td></td>
</tr>
<tr>
<td>August 18, 1806</td>
<td></td>
</tr>
<tr>
<td>4 preserve pots 7d</td>
<td></td>
</tr>
<tr>
<td>October 18, 1806</td>
<td></td>
</tr>
<tr>
<td>7 pickle " 10d</td>
<td></td>
</tr>
<tr>
<td>May 27, 1807</td>
<td></td>
</tr>
<tr>
<td>11 dishes (milkpans) 6d</td>
<td></td>
</tr>
<tr>
<td>March 5, 1808</td>
<td></td>
</tr>
<tr>
<td>2 pitchers</td>
<td></td>
</tr>
</tbody>
</table>

List of ceramic ware purchases by John Miller from John Pitman between 1805 and 1808.
Pitman,” suggesting that Andrew’s grandson, David, was trained as a potter and may have been working on the lot. By 1869 David had moved to Zanesville, Ohio, then emerging as the preeminent pottery center in the United States (Comstock 1994:453; FCR Chancery File 89:179). Therefore, potting activities may have continued even after Andrew’s death as the property was still in possession of the Pitman family. At his death in 1838, Andrew Pitman willed his Main Street property to his son, William (FCR Chancery Court Papers). The public sale of the property in 1871 resulted in the passing of the property outside of the Pitman family.

In 1987, the current property owner, Linden A. “Butch” Fravel, purchased the then-dilapidated Pitman house to preserve it from demolition. The first significant archaeological evidence of potting activity at the Pitman site was discovered in the course of the excavation of utility lines to the house in 1989. At that time, Fravel collected a substantial number of earthenware sherds from trenched areas within 15 ft. of the main house. With renovation work ongoing in 1996, Fravel planned the construction of an addition extending 12 ft. from the rear of the house. The newly established Winchester Regional Office of the VDHR took this opportunity to sponsor an archaeological investigation of the Pitman property with the aim of assessing the potential impact of the proposed addition, and to identify production.

Andrew Pitman and the Shenandoah Valley Pottery Industry

According to H. E. Comstock’s seminal work The Pottery of the Shenandoah Valley, the potting industry in the Shenandoah Valley can be usefully divided into three
historical periods: the Colonial and Neoclassical Eras (1750–1820); the Empire, Antebellum, and Early Reconstruction Years (1820–1870); and the Golden Age of Pottery and Beyond (1870–1930) (Comstock 1994:4–10). While there is some overlap between these periods, the tripartite division reflects changes in pottery production that correspond with issues such as developing ceramic technologies, changing economies, and shifting populations.

The context established by archaeology for the locally produced pottery under study appears to fall within the first of these periods. Characterizing this era are the large migrations of Germans, Scots-Irish, English and Swiss into the Valley seeking religious freedoms and economic opportunities. These settlers, including artisans and farmers, followed the Great Wagon Road, the major north-south artery, from Pennsylvania to plant roots in the fertile area between the Blue Ridge and Allegheny mountains.

Potters in this first period played an integral role in the largely agrarian society. They were greatly needed to supply the inexpensive utilitarian wares required for the day-to-day food consumption and storage needs of the developing settlements. These population centers insured a ready market for the potter who also benefited from the abundant, and therefore relatively cheap, sources of clay, wood to fire the kilns, and glazing components such as manganese and copper (Comstock 1994:21).

According to Comstock, potters of the Colonial and Neoclassical Eras were generally financially secure, most likely male, and probably of German descent (Comstock 1994:10–11). He claims without support that a Germanic influence is reflected in the forms and decorative techniques of their products that were
predominantly utilitarian earthenwares. These vessels are well potted with thin walls and often manifest tooled embellishments, such as beading, gadrooning, or coggling, on the rims and bases. Even the most common everyday wares are often decorated with colored slips – liquid clay with metal oxides – that were trailed or brushed on the vessels.

In sum, the Colonial and Neoclassical eras encompassed a period of tremendous growth and general prosperity which was affected in varying degrees by two wars, the American Revolution and the War of 1812. But these setbacks were nothing compared to those suffered during the second period of the Empire, Antebellum, and Early Reconstruction Years. The Civil War brought a depressed economy with losses of property and labor shortages. Potters no longer had a secure market and many became itinerant, traveling to where they could find work. Slip-decoration was used less frequently as potters tried to produce wares more cheaply and efficiently. They experimented with new forms and techniques prodded by competition from English and northeastern imports. Some potters even produced molded ware in imitation of the Staffordshire chalkware figurines and whistles hawked through the Valley by peddlers (Comstock 1994:15). By mid-century, stoneware production took hold, and in the third period of the potting industry “stoneware made up almost 75 percent of the total production of Valley ceramics” (Comstock 1994:16).

The rest of the third period is characterized by the centralization of pottery production in large factories, particularly in Ohio and New Jersey, which could supply greater volume at a cheaper price than the Valley potteries. In addition, ceramic kitchenwares were being replaced by vessels made out of other materials such as glass
and metal that were cheaper to produce and considered to be more hygienic. Some Valley potters turned to the industrial production of drainage tiles which had limited demand and “as the nineteenth century came to a close, so did the Valley pottery tradition” (Comstock 1994:18).

Andrew Pitman, who was born in 1760 and died in 1838, fits neatly into the first period of Valley pottery production and this is reflected in his wares. It is known from documentary sources that he was the son of an immigrant named Anthony, originally from Framersheim, Germany. Framersheim is an area in southern Germany with a heavy Swiss influence.

John George Weis, another German immigrant who in about 1750 began work as a potter in Hagerstown, Maryland is claimed by Comstock to have influenced the Shenandoah Valley tradition, “Weis is believed to have been the first potter of importance to settle in the Shenandoah Valley and should be credited with the origin of the Shenandoah Valley tradition” (1994:94). Furthermore he suggests that Weis’s influence, through scores of apprentices, became so vast that his Germanic forms and stylistic traditions formed what is known by collectors as the ‘Hagerstown school of potting’.

It is alleged that the most outstanding signature of the ‘Hagerstown school’ is the multibeadling of the rims on hollow forms. Beading, which is a raised ridge of clay, can occur in increments of 2 through 4 but 3 is the most common (Comstock 1994:86). The wares are all thinly potted, and even the most utilitarian forms, including lids, can be slip-decorated. There is a heavy use of slip-trailed undulating lines, and manganese and
copper slips are used as accents. Jugs and jars are bulbous rather than angled or cylindrical. Beading is often used to finish the foot. These characteristics can be seen reflected in the pottery recovered from the Andrew Pitman site.

It is not known how successful Andrew Pitman was as a potter, for references to him are slight and his wares have not been documented outside the locale in which he lived. However, based upon an historic record listing of him as one of the 13 original trustees of Stephens City’s first cemetery, he seems to have held a position of some stature in his community (Steele 1906, as mentioned in Fravel 1996:5). Andrew Pitman appears to have significantly contributed to the economic viability of one of the Virginia frontier’s self-supporting settlements.

OTHER CONTEMPORARY POTTERS IN FREDERICK COUNTY

As the Valley became more widely settled, the need for local manufacturing industries increased. Potters were drawn to the area which offered increasing consumer demands and the availability of abundant resources. One of the few who resided and manufactured in Frederick County was Peter Lauck (1754–1839). A collection of earthenwares and stacking tiles attributed to Lauck was obtained during construction work on 44FK552 in 1999, a site where Lauck was known to have lived, operated a tavern, and worked as a potter. No archaeological work was conducted on the site (Robert Jolley 2000, personal communication). The only documentary evidence of Lauck’s involvement in the pottery trade is found in the Frederick County order book which mentions that Lauck took on an apprentice to teach him the pottery trade in 1779. Lauck
was also involved in buying and selling buildings for profit in Winchester from 1780 until his death in 1839 (Comstock 1994:433).

Jacob Foulk probably learned the trade from Peter Lauck in Winchester or in Shepherdstown where his extended family lived. He may have started his own pottery business on one of his father’s lots in Winchester in 1792. Some time after 1801, he moved to Morgantown to live with his parents where competition between potters was almost nonexistent and land was cheap. In 1817, he moved to Brooke County, Virginia. There is no evidence of his work (Comstock 1994:403).

Philip Woolwine frequently bought and sold land in Winchester. The only evidence of his involvement in the pottery industry is evident in an advertisement he placed in 1777 for a runaway servant, in which he identified himself as a potter. Therefore, it is unclear as to how active he was in the pottery industry. Woolwine moved to Staunton in 1783. None of his work has been identified. (Comstock 1994:496).

Peter Bell moved to Winchester after some failed financial transactions in Hagerstown in 1824. When Peter Bell moved to Winchester in 1824, the Frederick County potters had already been producing wares for the local market for several decades, but Peter Bell probably maintained trade with his customers up the Valley. Peter Bell’s sons, John, Samul, and Solomon, helped with the Winchester business for a few years. In addition to his sons, apprentices Philip Byers and Nicholas Smith added to the work force. Peter Bell produced earthenwares and possibly stonewares toward the end of his career (Comstock 1994:101). Earthenware vessels associated with Peter Bell exhibit the typical attributes and vessel forms of the ‘Hagerstown school of potting’.
John followed his father to Winchester but stayed and produced wares for a short period of two to four years. He left for Pennsylvania where he started his own pottery business. John continued making earthenware vessels exclusively until 1845 when he began producing stonewares (Comstock 1994).

Samuel and Solomon were probably still learning the trade when they moved to Winchester, then continued to help their father. Samuel moved to Strasburg to help Philip Byers and John Miller in 1843. In 1847, he built a kiln to start his own pottery. Solomon moved to Pennsylvania in 1839 to join his brother then later moved to Strasburg to join Samuel in his business (Comstock 1994). Both made earthenwares and stonewares.

Philip Byers remained in Winchester until 1832 even after his indenture was over. He continued to work for Peter Bell as well as with William Miller in Strasburg as accounts from different merchants indicate. It is most likely that Byers made the transition to producing stoneware through his association with William Miller who produced stoneware, later transferring the knowledge to the Bell family (Comstock 1994).

There are two known potters who may have worked closely with Andrew and John Pitman in Stephens City. John Coffman from New Market, a distant relative through marriage, probably worked for Andrew and John Pitman (Comstock 1994:388; Fravel 2000). Because Coffman’s wife was originally from Stephensburg, John Coffman and his wife visited often, leading them to even purchase Lot 57 in Stephensburg in 1833 (Fravel 2000). Coffman’s apprenticeship under a Hagerstown-trained potter, Christian Adam is apparent in his earthenwares. Coffman also produced stonewares later in his career.
The other potter who worked closely with the Pitman brothers is their sister’s son, John Noland. Born in 1788, Noland was apprenticed to the family pottery as he is mentioned in John Miller’s account book in 1806 under John Pitman’s account (Comstock 1994:447). He was later able to establish his own pottery in Stephensburg. He made large purchases of flour from Kline’s Mill in 1840 probably for the purposes of glazing his wares. There are no known examples of his work (Comstock 1994:448).

Within Stephens City, Andrew and John Pitman, John Noland, and occasionally John Coffman were actively producing utilitarian earthenwares, indicating that this family controlled the local market. The fact that Andrew and John were selling their wares in Winchester indicates that the market demands were met even in Winchester, even though there were potters based in Winchester. Even with the kin network in Stephens City, the use of slaves in Andrew Pitman’s pottery business indicates that there was a shortage of labor. In the 1810 census, seven slaves were recorded within his household. It is possible that all seven of these individuals were involved in the manufacture in some manner since there is no recorded evidence of Pitman being involved in any other industries (Comstock 1994:453).

There is no evidence of any of Andrew’s sons continuing the trade. However, there is evidence that the family tradition was carried on by the next generation, his grandson, David H. Pitman. With the early death of his father, David H. probably learned the trade from his grandfather and manufactured pottery on the property as indicated by two marked sherds with his name found on the southern half of Lot 32 (Fravel 2000).
David H. sold his grandfather's property in 1869, by which time he was in Zanesville, Ohio, a leading pottery location in the United States (Comstock 1994:453).

During the late eighteenth to early nineteenth century, the above potters were in direct competition with Andrew Pitman, producing utilitarian earthenwares to meet consumer demands of the growing population in Frederick County. There is no record of any potter who was producing stonewares during this early time period of the Shenandoah Valley pottery industry.
CHAPTER III
RESULTS OF INVESTIGATIONS: SITE STRUCTURE

From April 19 through May 8, 1996, JRIA conducted archaeological investigations on the rear yard area of the Pitman house. Plans to renovate and develop on the historic site prompted the archaeological investigation. This work was carried out under contract with the Winchester Regional Preservation Office of the Department of Historic Resources (WRPO-DHR) through funding from the Threatened Sites Program. A principal goal of the JRIA testing of the Pitman property was the definition of site boundaries. Extensive shovel-testing of the 0.25-acre lot was not undertaken, however, since a visual inspection of the property indicated that substantial quantities of Pitman-type pottery were scattered across the entire lot. In addition, the presence of several standing structures prevented shovel testing throughout much of the rear yard area, while portions of the property were also visibly disturbed by previous utility excavations. The boundaries of 44FK528 were thus determined to be identical to those of the 0.25-acre lot, measuring approximately 41 ft. north south × 264 ft. east-west (Figure 8).

The limits of the JRIA excavation area were delineated in consultation with the property owner and Robert Jolley of the VDHR Winchester Regional Office, and encompassed that area of the rear yard immediately west of the Pitman house not obscured by standing structures. Testing was conducted in the proposed footprint of the
Site 44FK528, plan showing test units after removal of Layer A.
addition to the Pitman house but was extended beyond the immediate construction impact area with the purpose of potentially locating evidence of Pitman’s pottery kiln. A portion of the project area was initially covered by an early twentieth-century porch addition on the west gable of the house and also by a concrete-floored warehouse approximately 18 ft. west of the house. The porch addition was dismantled immediately prior to the archaeological investigation, and segments of the warehouse floor were removed during the course of excavations to facilitate testing in that area. The main project area, including the proposed footprint of the building addition, measured approximately 27 ft. north-south × 18 ft. east-west. In addition, a narrow area along the southern lot boundary was tested with the purpose of locating the Pitman kiln, as well as determining the nature of site stratigraphy.

The JRIA field team established a datum point, designated N500/E500, in the center of the exterior hearth. A site map (1 in. = 1 in. scale) was subsequently generated showing the location of grid points, test units, shovel tests, landscape features, and adjacent structures in relation to the datum (see Figure 8).

Eight test units were excavated according to natural stratigraphy (Figures 8, 9, and 10). In addition, eight shovel tests were excavated in a 13-x-18-ft. area along the southern edge of the lot (Laird et al. 1996). Additional excavations on three of the eight test units were carried out by the Northern Shenandoah Chapter of the ASV supervised by Robert Jolley of WRPO-DHR between November 8 and 11, 1996 (Laird et al. 1996).

Soil stratigraphy throughout the tested area was relatively complex. Significant disturbances to the integrity of the project area included two sewer pipe trenches and two
Figure 9

Andrew Pitman House, rear elevation and yard.

Figure 10

Site 44FK528, rear (west) yard.
subsurface cisterns constructed at some time during the early twentieth century. In the undisturbed portions of the site, stratigraphy consisted generally of four distinct cultural strata, though slight variations in color and consistency were encountered in different shovel test holes and test units. The depths of strata also varied considerably across the site and within each test unit.

SHOVEL TESTING

Eight shovel tests were excavated by JRIA at 10-ft. intervals across the approximately 800-ft.² project area. Shovel tests measured at least 1.2 ft. in diameter and were dug into sterile subsoil. Backfill was screened through ¼-inch hardware cloth, and all artifacts were retrieved. The results of each shovel test were recorded on a standard shovel-test form. The location of each shovel test was recorded on a 1 in. = 1 ft. scale map of the project area, and each was numbered for identification. Stratigraphic profiles were drawn to provide a record of typical stratigraphy within the project area.

All eight shovel tests excavated at Site 44FK528 contained artifacts, and all strata included Pitman-type earthenwares. Three general types of stratigraphy were encountered in shovel tests excavated across the site. Shovel Tests 100, 102, 103, and 104 were characterized by an “A” layer of loose, dark gray loam with a wide range of artifacts dating from the late eighteenth to the late twentieth century (Figure 11). This layer likely represents debris associated with the destruction of a late nineteenth-century kitchen addition. Layer B consisted of a yellow-orange compact clay and generally exhibited heavy concentrations of glazed earthenware sherds attributable to Andrew Pitman’s
Figure 11

A-Loose, dark loam
B- Yellow-Orange compact clay
C-Gray Brown clay with charcoal inclusions

Site 44FK528, Shovel Tests 100, 102, 103, 104, profiles.
pottery production. This stratum may be a backfill layer associated with nineteenth-century landscaping efforts. Layer C consisted of a gray or brownish-gray clay, often with charcoal inclusions and a moderate amount of artifacts, principally Pitman-type earthenwares and domestic artifacts. This layer exhibited characteristics of a sealed topsoil. Layer D was a medium brown or grayish-brown compact clay with occasional concentrations of charcoal and fewer artifacts. Subsoil consisted of a light orange compact clay.

Shovel Test 101 was excavated at the base of the external hearth (Figure 12). Layer A consisted of a loose layer of dark gray loam. Layer B was comprised entirely of large, densely packed limestone fragments that may represent debris from either the construction or destruction of the hearth. Excavations were terminated here due to the difficulty of penetrating the limestone layer.

The last three shovel tests, 105, 106 and 107, were excavated at 10-ft. intervals proceeding west from the rear of the Pitman house (Figure 13). The test pits exhibited strata different from the five shovel tests excavated adjacent to the house. Layer A consisted of a loose dark gray loam with a substantial number of artifacts dating from the late eighteenth to the late twentieth century. Layer B consisted of a yellow-orange compact clay with a moderate amount of artifacts, primarily Pitman-style glazed earthenwares, sealing a subsoil of gray-brown, compact clay.
Site 44FK528, exterior (possible kitchen) hearth, west gable.

Site 44FK528, Shovel Tests 101, 105, 106, 107, profiles.
TEST UNITS

JRIA excavated 8 test units, encompassing a total area of approximately 154 ft.², in the rear (west) yard of the Pitman house to assess the integrity of subsurface stratigraphy and features within the project area (Figures 14 and 15). Five of the units measured 5 ft. square, two measured 2 × 5 ft., and one measured 3 ft. square. A number was assigned to each test unit as well as grid coordinates corresponding to the northeast corner of the unit. All test units were excavated according to natural stratigraphic layers, and each layer was assigned a letter. All layers were screened through ¼-inch mesh, and all artifacts were retained. With the exception of Test Unit 200, the excavation of test units was suspended once it was determined that an apparently intact stratigraphic layer had been exposed. Rather than wholly disturb intact layers and features, JRIA obtained representative stratigraphic profiles of the test units by excavating a shovel test hole to subsoil in the northeast corner of the unit.

A 1 in. = 1 ft. scale measured profile was drawn of one wall of each unit, as well as a 1 in. = 1 ft. scale plan drawing of all features located within each unit. Notes on each test unit were recorded on a standard excavation register form.

In November 1996, the VDHR/ASV team continued with the excavation of three contiguous test units begun by JRIA (Test Units 201, 202, 207). The purpose of the additional work was to obtain a larger sample of artifacts from the stratigraphic context. Fieldwork was hampered by intense rainfall throughout the course of the excavations. The construction of a roof made of tarpaulins and wooden supports allowed fieldwork to
Site 44FK528, oblique view of rear (west) yard.

Site 44FK528, excavations of Test Units 200, 202, 203, 204, 205, 206, and 207.
continue but created poor light conditions.

The excavation of Test Unit 207 was terminated at Layer A due to extensive utility line disturbances. Test Unit 202 was excavated to sterile subsoil, but time constraints precluded the excavation of all of Test Unit 201. The western half of Test Unit 201 was excavated to subsoil, though the eastern half was excavated only through Layer A. In addition, all intrusive cultural features were excavated according to natural and cultural stratigraphy. As with the JRIA testing, all excavated soils were screened through ¼-in. mesh. It was not possible to record complete east-west stratigraphic profile drawings of the test units as intended due to the incomplete excavation of Test Units 201 and 207 and the disturbed nature of Test Unit 202. However, the north and west profiles of Test Unit 201 and the south profile of Test Unit 202 were recorded.

TEST UNIT 200 (N498 E500)

Located immediately adjacent to the west elevation of the Pitman house, Test Unit 200 was excavated to determine if any structural remains related to a kitchen addition survived intact beneath modern grade. Originally 10 × 4 ft. in size, the test unit was reduced to a 4-ft. square due to disturbances from two cisterns located to the west and a sewer line running west from the southwest corner of the house. The presence of the sewer line made excavation in the southern quarter of the test unit impossible.

The 4-ft.-square excavated portion of the unit was located directly in front of the rear entrance door to the Pitman house. Excavated according to natural soil layers, Test
Unit 200 exhibited eight distinct strata (Figure 16). Because of its deeper stratigraphy, differentiation within each layer was more evident than in other test units. For the sake of consistency and overall site analysis, the eight layers noted in Test Unit 200 were redefined according to the four principal strata evident throughout the rest of the site.

Layer A1 was a thin layer of destruction debris and pottery fragments with a late twentieth-century *terminus post quem*. Measuring 0.05 ft. in depth, Layer A1 was a medium brown loam with heavy inclusions of destruction debris. Much of the debris in Layer A1 relates to destruction of the porch on the western elevation of the Pitman house prior to archaeological investigation. Layer A2, 0.05 ft. deep, was another destruction layer dating to the late twentieth century. This stratum consisted of loose, light tan clay with heavy inclusions of plaster and shale. Layer A3, measuring 0.5 ft. in depth, consisted of medium to dark gray-brown sandy clay, and charcoal and plaster inclusions. This layer also contained substantial twentieth-century debris.

Layer B, encountered at 0.6 ft. below modern grade, appeared to be the first sealed cultural layer at the Pitman site. Measuring 0.5 ft. in depth, the layer primarily consisted of sherds of glazed earthenwares that may have been produced by Andrew Pitman. Although pottery wasters comprised the majority of the soil matrix, a small amount of medium yellowish-orange clay with medium gray-brown loam mottling was observed in the layer. In addition to the local earthenwares, several specimens of imported domestic ware types, including creamware, shell-edged pearlware, and whiteware sherds, were recovered from the fill. Layer B2 was a dense, compact orange clay measuring 0.5 ft. in depth. Although the artifact density was not nearly as great as in
A1 – Medium brown loam with destruction debris
A2 – Light tan clay with shale and plaster inclusions
A3 – Medium to dark gray-brown sandy clay with charcoal and plaster inclusions
B1 – Medium yellow-orange clay mottled with medium gray-brown loam
B2 – Dense, compact orange clay with shale rubble
C – Medium brown clay mottled with orange clay
D1 – Medium gray-brown loamy clay
D2 – Dark yellow-orange clay

Site 44FK528, Test Unit 200, west profile.
the previous layer, the presence of several ca. 1800 imported kitchen wares and a small-bore English pipe stem fragment fixes the date of this layer firmly in the late eighteenth and early nineteenth centuries. This layer contained large fragments of shale that do not appear to be related to the limestone hearth. The shale may have formed a base for the pottery fill or paving. The density of earthenware sherds in the “B” layer suggests the possibility that ceramic wasters were used as landscape fill or paving in this area. Given Pitman’s occupation, pottery sherds may have served as an inexpensive and abundant source of paving material in the yard area, much as crushed oyster shell did in Tidewater Virginia. In fact, Stephens City ordinances throughout the nineteenth century mandated the upkeep of sidewalks and roadways, recommending the use of slate or shale as effective materials. It is possible that pottery sherds, when available, may have served a similar purpose. When water lines were first laid in Stephens City, resident Mildred Lee Grove noticed a subsurface stratum of pottery sherds along the frontage of the Pitman house and two other Main Street lots, both of which were once owned by potters (John Pitman and John Noland) (Fravel 1996:5–6). Concentrations of Pitman-type pottery have also been discovered on the property south of 44FK528, part of Pitman’s original 0.5-acre town lot.

There is an early eighteenth-century precedent for this use of pottery wasters in Virginia. In the 1720s, potter William Rogers served as surveyor of Yorktown’s streets and landings (Barka et al. 1984:33). Responsible for overseeing any roadway repairs, Rogers evidently turned to wasters from his pottery kiln for easily accessible and inexpensive filling material. To the present day, large numbers of Rogers’s sherds are
excavated along Yorktown’s historic roads.

Layer C consisted of 0.3 ft. of medium brown clay with orange clay mottling. A small amount of Pitman-period pottery was recovered from this layer. Layer D1, 0.3 ft. of medium gray-brown loamy clay, also contained a small number of Pitman pottery fragments (Figure 17). Layer D2, 0.3 ft. in depth, contained no artifactual material and consisted of a dark yellowish-brown clay. This layer likely represents a transition to subsoil. A dark, yellowish-orange clay subsoil was encountered at 2.4 ft. below modern grade. No cultural features were observed at this level.

Test Unit 201 (N510 E490)

This 5-ft.-square test unit was located beneath a recently removed concrete floor associated with the warehouse/shed structure directly west of the Pitman house. JRIA removed approximately 0.4 ft. of Layer A, a dark gray loose dusty loam, to expose several features. A thin, compact layer of light yellow clay and plaster was encountered in the northwest corner of the unit (Figure 18). Edges of this stratum were well defined and terminated abruptly. The plaster-filled stratum sealed a portion of what was designated Feature 1 A/B/C, a posthole, postmold, and possible repair. Feature 1A was a postmold approximately 0.6 ft. in diameter, and was characterized by loose dark brown loam with concentrations of charcoal. Feature 1B, possibly representing a post repair, measured approximately 0.5 ft. in diameter and was characterized by loose dark brown loam with dense charcoal concentrations. The posthole, Feature 1C, was roughly square
Site 44FK528, Pitman earthenware sherds exposed in Test Unit 200, Layer D.
Figure 18

Site 44FK528, Test Units 201 and 202, after removal of Layer B, plan.
in shape; the feature measured approximately 1.65 ft. wide and consisted of compact yellow clay. The JRIA field team encountered an additional stratum, with dense limestone rubble, in the west-central portion of the unit. The plaster layer described above defined the north and east edges of this stratum. An additional posthole and mold, Feature 2A/B, was visible in the southwest corner of the unit. Feature 2A was 0.4 ft. in diameter, and the related posthole, Feature 2B, was rectangular and approximately 0.9 ft. in length.

The VDHR/ASV team subsequently excavated the western half of Test Unit 201. They first removed approximately 0.4 ft. of the loose dark gray loam of Layer A, including the thin layer of plaster debris, to expose Layer B, a yellow-orange compact clay with somewhat less charcoal evident than in Layer A. At this point, the posthole Feature 1A/B/C identified by JRIA was excavated. Feature 1B extended to a depth of only 0.1 ft., suggesting that it was not actually a postmold as originally thought. The other postmold (Feature 1A) consisted of a dark brown loose loam with light charcoal inclusions, while the posthole (Feature 1C) was characterized by a yellow-orange compact clay. When fully excavated, the posthole/mold feature was found to measure approximately 1.5 ft. deep.

Layer B varied in depth between 0.2 and 0.45 ft. and contained only a limited amount of pottery. The heavy concentration of limestone rubble in the southwest corner of the unit was left in situ during further excavations in this test unit. Layer C consisted of a brownish-gray clay approximately 0.1–0.15 ft. in depth with a heavy concentration of limestone fragments. A new feature, designated Feature 6A/B, was noted in the northwest
corner of the test unit at the interface of Layers C1 and C2. This feature appeared to be a posthole and mold. The posthole (6A) consisted of a gray clay, while the mold (6B) was a yellow-orange compact clay. The visible portion of the feature measured approximately 0.7 ft. wide (east-west) and when excavated was found to be 1.0 ft. deep. The function of the feature remains undetermined, and may have been a posthole/mold or a small pit feature. Finally, Layer D was excavated. This stratum consisted of a brown compact clay between 0.1 and 0.2 ft. in depth, and was characterized by charcoal inclusions and limestone fragments. This last layer sealed subsoil, a light orange compact clay. The limestone rubble in the southwest corner of the unit was found to extend to subsoil and may be evidence of the foundation of the first kitchen addition to the Pitman house.

Test Unit 202 (N505 E490)

Like Test Unit 201, much of this 5-ft.-square unit was preserved under a preexisting concrete floor. JRIA excavated Layer A, approximately 0.6 ft. of loose gray loam, to reveal one-quarter of Feature 2A in the northwest corner of the unit. A layer with a dense artifact concentration was also encountered in the southwestern portion of the test unit (Figure 19). The VDHR/ASV team continued with the excavation of the unit. Layer B, characterized by yellow-orange compact clay with heavy subsoil mottling, was discontinuous in this test unit, and was most evident in the northeast corner of the unit. Layer B measured a maximum of 0.25 ft. deep and was characterized by a heavy concentration of Pitman pottery sherds in the western section of the unit, particularly nearer the southwest corner. This stratum also contained a concentration of domestic or
Figure 19

A – Loose, dark gray loam
B – Yellow-orange compact clay
C – Gray-brown clay with charcoal inclusions
D – Medium gray-brown compact clay

Site 44FK528, Test Unit 202, south profile.
kitchen-related artifacts such as pearlware, glass, and faunal remains, and sealed a concentration of limestone, brick, and domestic refuse in the northeast corner. Once Layer B had been removed, the VDHR/ASV excavators were able to identify another posthole/postmold feature, designated Feature 5A/B (Figure 20). The posthole (Feature 5B) measured approximately 1.3 ft. wide, and the mold (Feature 5A) was 0.4 ft. in width. When excavated, the flat-bottomed posthole feature measured roughly 1.0 ft. deep. Layer C, measuring approximately 0.1 to 0.35 deep, consisted of a medium brown clay with charcoal mottling. This layer contained heavy concentrations of Pitman pottery sherds and faunal remains, and a significant number of maple tree pods. Limestone rubble was removed from the center of the unit. Once Layer C had been excavated, a discontinuous lens of gray clay was observed throughout the southern half of the test unit. This layer ranged in depth between 0.15 and 0.2 ft. and contained a significant amount of Pitman pottery sherds. This lens has tentatively been identified as “potter’s clay,” and may be an indication that the addition to the rear of the house served at some time as Pitman’s pottery preparation area. Layer D consisted of a medium gray-brown clay, approximately 0.2–0.35 ft. deep, sealing sterile yellow-orange compact clay subsoil.

Test Unit 203 (N510 E485)

The JRIA team excavated this 2-x-5-ft. unit flush with the remnants of the concrete floor running north south. The limestone gravel concentration evident in the west-central portion of Test Unit 201 continued to the west, and appeared to extend beyond the bounds of the unit. Another posthole and mold (Feature 3A/B) was located in
Figure 20

Site 44FK528, Feature 5A/B, plan and profile.
the southwest corner of the unit. Feature 3A was a postmold approximately 0.6 ft. in diameter and was defined by a heavy circular charcoal concentration. The posthole, Feature 3B, was roughly square in shape and approximately 1.65 ft. wide; the fill consisted of compact yellow clay. The west half of Feature 3A/B was obscured from view by the remnants of the concrete flooring.

Test Unit 204 (N505 E485)

After the removal of Layer A, JRIA excavators noted that this 2-x-5-ft. unit was characterized by a stratum consisting almost entirely of kiln stacking tiles and Pitman earthenware sherds. This stratum appeared to be a continuation of Layer B encountered in the west-central portion of Test Unit 202. No further excavation was conducted.

Test Unit 205 (N495 E485)

The JRIA team excavated this 3-ft.-square unit to determine the spatial relationship between the postholes located in Test Units 201, 202, and 207. A heavily disturbed layer was encountered after the removal of 0.4 ft. of Layer A, and excavation was discontinued.

Test Unit 206 (N503 E478)

Located within the existing warehouse structure, JRIA excavators noted that Test Unit 206 contained two distinct soil layers. Layer A consisted of 0.7 ft. of dark gray-brown loam with orange clay mottling. The disturbed fill in Layer A can be attributed to the presence of a sewer line in the east half of the 3-ft.-square test unit. Layer A
contained a moderate amount of artifacts, most of which were Pitman coarseware vessel sherds. Layer B consisted of 0.4 ft. of light yellowish-orange clay with moderate to heavy charcoal and shell inclusions. No artifacts postdating the early nineteenth century were recovered from this layer. Layer B sealed a subsoil layer of yellowish-orange clay. No cultural features were observed at the subsoil interface.

Test Unit 207 (N500 E490)

JRIA commenced excavation of this 5-ft.-square unit, located south and adjacent to Test Unit 202, revealing a posthole (Feature 4A/B) similar to those found in Test Units 201 and 203. As in the neighboring units, Layer A consisted of approximately 0.4 ft. of loose, dusty gray-brown loam sealing Feature 4A/B. The same heavy artifact concentration (Layer B) encountered in Test Units 202 and 204 was evident primarily in the northwest corner of the unit. Feature 4A was a postmold approximately 0.6 ft. in diameter and characterized by a concentration of heavy charcoal. The posthole, Feature 4B, consisted of compact, yellow clay and was roughly square with sides measuring approximately 1.65 ft.

The VDHR/ASV team continued the excavation of Test Unit 207 but quickly encountered a ceramic sewer line in the southeast corner in addition to heavy subsoil disturbances in the western half of the unit. Further excavation was attempted in an area measuring approximately 1.5 ft. wide \times 5.0 feet long until further disturbances were noted, at which time the excavation of the test unit was discontinued.
CHAPTER IV

RESULTS OF INVESTIGATIONS: CERAMIC ANALYSIS

The artifacts recovered from 44FK528 consist of domestic debris and impressive quantities of waster sherds from local earthenware production. The material culture reflects the use of the site as both a household area as well as a pottery manufacturing site from the late eighteenth century to the mid-nineteenth century. In order to gain insight into the daily lives and activities of past occupants, an analysis of the material culture is necessary.

This chapter is divided into two sections: artifact description and local earthenware analysis. The artifact description section consists of two parts: (1) the domestic debris which consisted mostly of food preparation/consumption, faunal, and architectural artifacts and (2) artifacts associated with local earthenware production. The local earthenware analysis section investigates the local earthenware within a stratigraphic context and pottery manufacture over time.

The artifacts were labeled according to their appropriate proveniences and cataloged utilizing a hierarchical coding system developed by the WMCAR that operates using Microsoft Access relational database software. With this system, artifacts are coded during analysis on standard data sheets for entry into a data file. Using this file, overall project inventories as well as particularistic data reports can be readily generated for inclusion in reports or for routine analysis.
The hierarchical artifact coding scheme includes both functional and temporal dimensions. At the most general level, artifacts were classified according to Group, which includes Food Preparation/Consumption, Architectural, Furniture, Arms and Military, Clothing, Personal, Medicinal/Hygiene, Domestic Activities, Smoking, Industrial/Commercial, and Unassigned categories. Subsumed within the Groups are artifact Classes, including, for example, Ceramic Cooking/Storage, Ceramic Tableware, Glass Tableware, Window Glass, Nails, Firearm, Apparel, and Writing categories. The next level consists of Objects, which describe specific artifact forms such as Holloware, Jug, Crock, Bowl, Nail, Button, and Auto Part. Temporally significant attributes are described as Datable Attributes such as Creamware, Pearlware, Whiteware, Wrought and Cut (nails). An additional descriptive level is provided under the Descriptor category, which includes such information as pipe stem bore diameter, glass color, and vessel part. Each artifact category is further recorded by count. The results of the analysis are tabulated in a comprehensive inventory by context.

Description of Artifacts

A total of 10,951 artifacts were recovered from the site (Park 2000). The following presentation of artifacts is divided into two activity-based categories: artifacts resulting from domestic use and from pottery manufacture. The artifacts enable us to visualize the social and economic life of Andrew Pitman who was one of the first potters to settle and trade in the Valley. Although the majority of the archaeological investigation
revealed recent disturbances, valuable information can be drawn in order to understand the extent of Pitman’s involvement in the pottery trade.

DOMESTIC ARTIFACT GROUPS

The domestic debris includes 2,788 artifacts representing 25% of the total artifacts recovered. This artifact category includes objects from the food preparation/consumption, architectural, medicinal/hygiene, clothing, smoking, activities, personal, arms, and domestic activities groups (the number of faunal remains was not included in the category total but is analyzed below). The distribution of these artifact groups according to stratum is documented in Table 2. However, interpretation or comparisons of artifact content in each stratum or occupation period are limited because the four strata found across the site are not fully represented through the fieldwork. Only three out of the eight test units were excavated to subsoil due to time constraints and discovery of recent disturbances (refer to Chapter III). Therefore, most of the early strata related to Pitman’s occupation (Strata C and D) are underrepresented.

Food Preparation/Consumption

This group consists of ceramic and glass tablewares and containers. Approximately ten percent \((n=1,127)\) of the total assemblage or 40% of the domestic debris is represented by this artifact class. Local earthenwares are not included in this category because it is impossible to distinguish pottery use versus production.

A total of 722 ceramic sherds is included with the domestic artifacts found on the site. The ceramic artifacts reflect consumer choice, status, as well as increased
Table 2

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>PCL</th>
<th>F1A</th>
<th>F1C</th>
<th>F5A</th>
<th>F5B</th>
<th>F6A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food preparation/Consumption</td>
<td></td>
</tr>
<tr>
<td>Ceramic cooking/storage(non-Pitman)</td>
<td>22</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Ceramic tableware(non-Pitman)</td>
<td>367</td>
<td>16</td>
<td>5</td>
<td>3</td>
<td>16</td>
<td>n/a</td>
<td>9</td>
<td>5</td>
<td>12</td>
<td>n/a</td>
</tr>
<tr>
<td>Glass tableware</td>
<td>38</td>
<td>16</td>
<td>6</td>
<td>n/a</td>
<td>1</td>
<td>n/a</td>
<td>1</td>
<td>n/a</td>
<td>n/a</td>
<td>1</td>
</tr>
<tr>
<td>Glass storage containers</td>
<td>125</td>
<td>18</td>
<td>3</td>
<td>n/a</td>
<td>6</td>
<td>n/a</td>
<td>2</td>
<td>2</td>
<td>9</td>
<td>n/a</td>
</tr>
<tr>
<td>Glass beverage containers</td>
<td>30</td>
<td>37</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>3</td>
</tr>
<tr>
<td>Faunal/floral</td>
<td></td>
</tr>
<tr>
<td>bone</td>
<td>154</td>
<td>74</td>
<td>11</td>
<td>1</td>
<td>27</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>12</td>
<td>n/a</td>
</tr>
<tr>
<td>shell</td>
<td>39</td>
<td>32</td>
<td>2</td>
<td>1</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Architectural</td>
<td></td>
</tr>
<tr>
<td>Window glass</td>
<td>258</td>
<td>59</td>
<td>17</td>
<td>1</td>
<td>12</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>12</td>
<td>n/a</td>
</tr>
<tr>
<td>Nails</td>
<td>199</td>
<td>7</td>
<td>11</td>
<td>3</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>7</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Construction material</td>
<td>146</td>
<td>25</td>
<td>27</td>
<td>67</td>
<td>90</td>
<td>n/a</td>
<td>22</td>
<td>n/a</td>
<td>13</td>
<td>n/a</td>
</tr>
<tr>
<td>Medicinal/Hygiene</td>
<td></td>
</tr>
<tr>
<td>Grooming and Hygiene</td>
<td>1</td>
<td>1</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Pharmaceutical containers</td>
<td>8</td>
<td>n/a</td>
<td>5</td>
<td>n/a</td>
<td>4</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Clothing</td>
<td></td>
</tr>
<tr>
<td>Fasteners</td>
<td>25</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Jewelry/Ornamentation</td>
<td>n/a</td>
<td>1</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Smoking</td>
<td></td>
</tr>
<tr>
<td>Pipes</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>1</td>
</tr>
<tr>
<td>Activities</td>
<td></td>
</tr>
<tr>
<td>Writing</td>
<td>1</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Stable/Barn</td>
<td>n/a</td>
<td>n/a</td>
<td>1</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Transportation</td>
<td>5</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Personal</td>
<td></td>
</tr>
<tr>
<td>Toys and Leisure</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Arms</td>
<td></td>
</tr>
<tr>
<td>Ammunition/Artillery</td>
<td>3</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Domestic Activity</td>
<td></td>
</tr>
<tr>
<td>Sewing</td>
<td>2</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Furniture</td>
<td></td>
</tr>
<tr>
<td>Decorative furnishings</td>
<td>1</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Lighting Devices</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>1</td>
</tr>
</tbody>
</table>

Site 44FK528, distribution of domestic-related artifacts by context (Test Units 200-207).
availability of mass-produced goods during the second half of the nineteenth century. These are represented by a wide variety of ware types mostly consisting of creamware, pearlware, and whiteware suggesting that the occupation of the site was heaviest during the late eighteenth century to the last quarter of the nineteenth century. Forty-three percent of the ceramic sherds are whiteware (n=310), 26% are pearlware (n=188), and 16% are creamware (n=118). Of these three ware types, 64% are undecorated (n=393), painted wares are represented by 82 sherds (14%), and 66 sherds (11%) are transfer-printed. The rest are minimally decorated: shell-edged, sponge-decorated, and mocha. Other ware types found in the assemblage are Albany slip stoneware, American stoneware, ironstone, tin-enamed earthenware, English iron-glazed earthenware, yellowware, and white saltglazed stoneware sherds (Park 2000). The vessel forms are mostly tablewares including plates, cups, bowls, and dishes.

The distribution of the ceramic assemblage suggests that most of the ceramics were used and purchased after Pitman’s occupation of the site represented by Strata A and B. However, Strata C and D indicate that Pitman also purchased and used the popular ceramic tableware of his time. This illustrates consumer choice and status as Pitman who was a skilled potter could have directly manufactured the tableware needed in his household. Status can also be represented by the presence of porcelain sherds in the assemblage but because artifacts are not fully represented by the fieldwork, such an interpretation is not possible.

A total of 328 glass sherds related to food consumption or storage is also a part of the food preparation/consumption group. The vessel forms include tumblers, stemware,
beverage bottles, and glass storage containers. The distribution of these glass sherds also indicates that the use of glass to serve and store food was mostly limited to the upper strata of the entire site.

Architectural

The architectural component of the material culture accounts for approximately 10% (n=1,116) of the total assemblage or 40% of the domestic debris. This group includes 304 fragments of nails (170 unidentified, 89 wire, 38 cut, and 7 wrought), brick (n=368), window glass (n=419), daub (n=15), plaster (n=5), drain pipe (n=5), and mortar (n=2). The distribution of these artifacts is listed in Table 2.

The high density of architectural-related artifacts and the presence of postholes and postmolds (Features 1A, 1C, 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 6A, 6B) suggest that two structures existed on the area of excavation. The concentration of architectural-related artifacts in Stratum A indicates that the structures were destroyed recently. The postholes and postmolds associated with the more recent structure are Features 1A, 1C, 2A, 2B, 3A, 3B, 4A, and 4B, which were uncovered after the removal of Stratum A. Postholes and postmolds (Features 5A, 5B, 6A, and 6B) uncovered after the removal of Stratum C represent the initial structure that was destroyed. Because of the noted absence of a kitchen and the presence of kitchen-related artifacts and a hearth, the structures represent a kitchen addition where food preparation and storage occurred. In addition to the archaeological evidence, historical documents also indicate this. It is noted by court appraisers after Andrew Pitman’s death that there was no kitchen in 1869, indicating that
the original kitchen was destroyed (Fravel 2000). In 1885, a structure adjoining the rear of the house was included in a map of Stephens City, suggesting the reconstruction of a kitchen (Lathrop and Dayton 1885:Plate 25). Therefore, both the archaeological and historical record indicate that two successive kitchens existed in the rear of the house: one between 1782, with the purchase of the lot by Andrew Pitman (Fravel 2000), and 1869, and the other between 1869 and 1885.

Faunal/Floral

A total of 405 bone fragments was found on the site. Identified taxa include turtles, birds, ducks, turkey, chicken, opossum, squirrel, pig, cow, sheep/goat, and deer. The assemblage is dominated by cow and pig indicating typical consumption trends during the post-Revolutionary period (Park 2000). The presence of wild taxa such as opossum, squirrel, and turtles, suggests that food procurement was not limited to domestic animals. Strata C and D consist of a relatively high number of faunal remains despite its under-representation. This indicates that Pitman’s household was incorporating a high amount of meat into their diet. Also, oyster shell and egg shell fragments were recovered from the site.

Other Artifacts

The remaining artifacts are minimal and thus grouped together under this category. The artifact groups include medicinal/hygiene, clothing, smoking, activities, personal, arms, domestic activity, and other miscellaneous/unidentifiable artifacts. The
total artifacts in this category represent 20% of the domestic debris assemblage (n=545). This indicates further that the area of excavation was used as an area for food preparation.

Pitman Family as Consumers

During an era of population and economic growth, Andrew Pitman purchased his lot in 1782 in Stephens City, one of the six towns established in the Valley before the Revolution. Anthony Pitman, Andrew’s father, settled in the town in 1761 after his arrival in Pennsylvania from Germany. Stephens City was an agrarian-based town with a growing commercial base that supported several manufacturers such as wagonmakers, blacksmiths, merchants, potters, carpenters, and stone masons. This was due to the increase in trade throughout the Valley and because of the location of Stephens City at the junction of the Great Road and the Alexandria and Chester’s Gap roads.

Access to goods through trade with regions outside the Valley is reflected in the consumer behavior of the Pitman family. This is especially apparent in the ceramic assemblage. The family engaged in the dining habits of most others by purchasing refined earthenwares imported from England. By the nineteenth century, English imported ceramics such as creamware, pearlware, and whiteware dominated the ceramic market and became widespread as more and more people began using these refined earthenwares (Miller 1991; Noël Hume 1969).

Instead of stocking his kitchen with outdated or outmoded tablewares, Pitman was able to acquire the wares that were popular in the market. As a potter with the skills of pottery manufacture, this is unusual for it is obvious that he was completely capable of
making various types of vessels. However, he chose imported ceramics to dress his table rather than making them. Well connected to markets and merchants, imported goods were easily accessible especially because Stephens City is located at the junction of the Great Road and the Alexandria and Chester’s Gap roads. Increased agriculture, diversification of trade and manufacture in the Valley in the late eighteenth century, and the well-connected transportation routes enabled growth in trade relations with Richmond, Alexandria, Baltimore, and Philadelphia (Higgins et al 2000:45; Mitchell 1977:189). The increase in trade and accessibility of imported consumer goods contributed to the increase of consumerism by the end of the eighteenth century (Martin 1991).

According to Lucas and Shackel (1994:29, 32), the presence of imported ceramics is an indication of a movement away from traditional customs of dining, usually symbolized by old or outmoded wares, into an adoption of new dining rituals and fashionable wares. This exemplifies the trend of eighteenth- and nineteenth-century households within the Valley as well as other regions that were increasingly concerned with status (Crass et al. 1999; Geier and McGee 1981; Mitchell 1977). Through visible, material items such as ceramics, status was demonstrated and symbolized. The status reflected from the ownership of European imported goods enabled the owner to communicate his affiliation with a certain socioeconomic group in the presence of others. Thus, the presence of the latest imported wares not only illustrates the consumer choices made but also suggests the socioeconomic status of Andrew Pitman as a potter. Pitman conveyed his success as a member of the Stephens City community by choosing to purchase popular tableware items rather than manufacturing them himself.
An indication of wealth and status that is apparent in owning the latest ceramic wares on the market is also reflected by the ownership of slaves. Census records indicate that Andrew Pitman owned slaves throughout the period of pottery manufacture. The substantial increase of slaves in Frederick and Berkeley counties by the end of the eighteenth century was a result of the influx of small planters into the lower Valley and the increase in commercial-based agriculture (Mitchell 1977:98). It is noted that some German sects in the Valley such as the Mennonites, Dunkers, and the United Brethren were opposed to slavery and preferred to rely on their own labor force. Opposing the institution of slavery is a rule in German religious teachings. Therefore, records of Germans owning slaves are scant compared to the rest of Virginia (Mitchell 1977; Wust 1969). However, the use of indentured labor was more costly than the ownership of slaves and the economic advantage of owning slaves may have been the key factor in obtaining a labor force for the Pitman pottery manufacture. The need for extra hands outside of the kin network in Pitman's pottery manufacture suggests further that he led a busy and profitable operation. This was rare in the Valley during this period when most crafts people were engaged in other activities such as farming in order to maintain subsistence (Mullins 1992:181). The archaeological investigation as well as the evaluation of historical documents do not indicate that Pitman was involved in any other activities. The ownership of up to seven slaves at one point required economic means to help maintain them by providing clothing, food, and shelter, provisions acquired through pottery manufacture.

Although Andrew Pitman was the son of a German immigrant, his house did not
portray this background. Instead, Pitman’s house is reflective of a typical Anglo-
American architectural tradition, the I-form, which was more balanced with a central
entrance passage, gable chimneys, and a kitchen ell (Linebaugh 1998:205). By 1800, the
traditional Rhenish house plan, which was unbalanced and asymmetrical with an off-
center internal chimney, was being abandoned for the I-form including a movement to
separate the kitchen area from the living room which was formerly contained within the
same space as the living room (Chappell 1977:37, 38, 181, 182; 1980:8; Linebaugh
1998:205). Archaeological and documentary investigation demonstrates that Pitman’s
kitchen was located at the rear of the house where the chimney is also located. These
characteristics indicate that the construction of Pitman’s house was carried out following
the typical Anglo-American architectural trend with no evidence of the Rhenish house
plan.

Although the artifact assemblage discussed above may be indistinguishable from
a typical Anglo-American site of similar socio-economic status, this should not be
immediately interpreted as indicative of complete assimilation. When faced with a new
social setting, individuals of an ethnic group negotiate and determine the adoption of
various alternative ethnic behaviors. Unlike the artifact groups discussed above, the local
earthenware is more directly reflective of Pitman’s behavior who was directly in charge
of manufacture, and thus, more valuable in understanding identity.

Artifacts Associated with Local Earthenware Production

A total of 7,931 sherds and kiln tile fragments is associated with local
earthenware production. The local earthenware in the artifact assemblage is composed of waster sherds of mostly utilitarian wares. There are a total of 7,630 local earthenware sherds and 301 kiln tile fragments in the assemblage. Both the earthenware and kiln tile artifacts account for 72% of the total number of artifacts in the assemblage. Only 833 sherds were positively attributed to specific vessel form or object as most of the sherds were too small or ambiguous. There is no evidence of a maker’s mark on any of the vessel sherds.

Clay

All of the sherds including the kiln tiles exhibit a similar salmon-colored paste indicating similar clay composition. It is probable that Pitman relied on a local source where he would obtain the clay to produce his wares. Like many Valley potters, he probably dug clay by the cart loads, storing it in storage pits on the property until it was ready to be processed and used (Barber 1970; Comstock 1994; Ketchum 1991). Evidence of this may be found in the Potter’s Clay Lens stratum found in Test Unit 202. A sample from this lens was taken and fired by JRIA in order to verify if this was indeed the type of clay used in manufacturing the earthenware. The same salmon color resulted after the clay was fired in an electric kiln at 1800–2000 degrees Fahrenheit.

Glaze

The local earthenware sherds demonstrate that lead glaze was exclusively used. The typical lead glaze contained clay, silica, red lead, and water (Comstock 1994:52). Most of the sherds are glazed on the interior (78%, n=5,951) only, whereas a smaller
percentage is glazed on both the interior and exterior (11%, n=858). Unglazed wares are also part of the assemblage (11%, n=821). None of the bottoms of the bases exhibited signs of being glazed.

The glaze color varies greatly from the darkest to the lightest on the color spectrum. Black, variations of brown, purple, green, orange, tan, and yellow are some of the common colors. It is possible that Andrew Pitman maintained a secret recipe for the types of glaze that were used on his wares as did many other Valley potters such as Emanuel Suter, Letcher Eberly, and the Strasburg Bells (Comstock 1994:57). Cobalt, iron, manganese, tin, and copper were added to glazes in order to obtain the different colors (Comstock 1994). The local earthenware excavated from the site suggests that Andrew Pitman used various amounts of iron, manganese, and copper in order to glaze his wares with different colors. It is also possible that he added flour to his lead glaze as his past apprentice, John Noland, was apparently doing (Comstock 1994:448). Flour was added to glazes to increase durability (Comstock 1994:53).

There is also evidence of more highly decorated wares. Slip-trailed wares including white, black, and green slips were also part of the local earthenware assemblage. The slip-trailed vessels are represented by 165 sherds (2% of the total assemblage). This decorative technique is evident generally on plates, saucers, dishes, and bowls (Comstock 1994:89, 90). The slip, a white clay mixed with water, is applied by placing the mixture into a slip cup with an attached quill through which the slip would fall onto the vessel (Barber 1970; Bivins 1972; Comstock 1994). The slip decoration consisted of undulating lines and concentric circles.
Manufacturing Tools

No manufacturing tools were found on the site. However, the sherds suggest that they were being used. The use of finishing tools to incise horizontal grooves is evident on mostly crock vessels. Seven percent (n=572) of the sherds exhibit horizontal tool grooves which range from 1 to 5 horizontal lines. Due to time constraints, the number of horizontal tool grooves was noted for 356 sherds. Of these, 19% (n=68) exhibited 1 horizontal tool groove, 45% (n=160) exhibited 2, 28% (n=100) exhibited 3, 7% (n=24) exhibited 4, and 1% (n=4) exhibited 5. This decorative technique was used on crocks as well as jars, throughout the three periods of Valley pottery production by John Bell, John Coffman, and Emanuel Suter (Comstock 1994:30, 87, 109, 203, 335). Also, fingerprints are visible on the exterior of some sherds, including the bottom of a base sherd, indicating handling before vessels were fired (Figure 21). It is possible that Pitman was utilizing a bat, which is a flat board placed on top of the wheel to prevent unintentional marking of the vessels and to make maneuvering the vessels an easier task. None of the base sherds exhibit the use of a separating wire commonly used to detach the thrown vessels from the wheel (Comstock 1994:34). This technique would have left spiral marks on the bottom of the bases. Instead bases are flat and do not provide evidence of separation from the turning wheel.

Vessel Forms

The local earthenware vessel forms found throughout the site are mostly utilitarian. Examples of more refined wares such as cups and saucers are also present in
Figure 21

Vessel base showing fingerprints left from handling with glazed hands.
the collection. The number of sherds from different vessel forms that were identified is shown in Figure 22. Representative rims and bases for various vessel forms are illustrated in Figures 23–25. Different terminology is used to categorize various vessel forms depending on the author or collector. The terminology is so varied that a description of some vessel forms is necessary.

Crocks/Pots. Crocks are the most numerous vessel form in the Pitman collection represented by 496 sherds. They are glazed on the interior only. The rims are usually square-everted with folded shoulders although some are rounded and rolled (Figure 26). The body of the crocks is slightly tapered toward the base but relatively rectilinear and is usually decorated with horizontal tool grooves slightly above the midgirth of the vessel (Figure 27). The bases are usually beaded (Figure 28). These characteristics are consistent with the first period of Valley pottery production. A John Bell crock illustrated in Comstock (1994:109) is very similar.

A small crock was mended and excavated from Test Unit 202B. This is the only crock example that is almost complete. It is 11.5 cm in height with a beaded base diameter of 7 cm. Its square-everted rim with folded shoulder is typical of Andrew Pitman’s manufacture. The rim width is 0.93 cm, the length of the fold is 1.92 cm, and the body width is 0.5 cm. It is glazed orangish-brown with black mottling on the interior (Figure 29).
Identified local earthenware vessel forms and objects from 44FK528.
Figure 23

Vessel profiles of saucer, pan, and dish (from top).
Selected rim and base types (top row – beaded dish rims; middle row – tribeaded pan rims; bottom row – beaded bases).
Profiles of selected rim types (a - jug, rounded rolled; b - chamber pot, wide square-everted; c - cup, rounded; d - bowl, rounded; e - saucer, rounded; f-h - dishes, tribeaded; i-j - dishes, rounded rolled; k-m - pans, tribeaded; n-o - pans rounded rolled; p-s - crocks, square-everted with folded shoulder; t-u - crocks, rounded rolled).
Square-everted crock rim with folded shoulder (a) and rounded rolled crock rim (b).
Exterior of crock exhibiting horizontal and curvilinear tool grooves.
Figure 28

Exterior of crock with beaded base.

Figure 29

Small crock exhibiting square-everted rim with folded shoulder and beaded base (height=12cm; diameter=7cm).
Pans. These are the second most numerous vessel forms represented by 130 sherds. These forms resemble a truncated cone. The sherds are usually glazed on the interior only. The rims are usually tribeaded or rounded and rolled (Figure 30). The Weis multibeaded rim sherds (Comstock 1994:97) are very similar to the tribeaded rims, a technique attributed to the ‘Hagerstown school’ (Comstock 1994:86). The body profile exhibits an angular and short body. The base is usually not beaded (Figure 31). One example of a pouring spout exists for this vessel form (Figure 32).

Dishes. This form is represented by 109 sherds. Dishes are wide and not as deep as pans. They have a less angled body profile than pans, are usually less thick-bodied, and 3% (n=3) exhibit a marley. Pitman dishes are glazed on the interior only (Figures 33—35). The rims are usually tribeaded or rounded and rolled. The base is usually not beaded. There are also 11 examples of a crimped rim (Figure 36). This highly decorative and time-consuming technique is unique as similar rim forms were not found in the literature.

Chamber pots. Attributes for this form include a handle and a wide square-everted rim with a relatively rectilinear body tapering slightly toward the base. Thirteen sherds associated with this vessel form were found. They are glazed both on the interior and exterior. A very small part of a handle has been found associated with one of these vessel sherds (Figure 37).

Jugs. These are bulbous in form with a constricted mouth and include a handle. Sixty-eight jug sherds were identified. The handle is extruded. These attributes are consistent with the lower Valley first period tradition (Comstock 1994:89). The strap handles were connected to the vessel by applying thumb pressure to the terminals (Figure 38). This
Figure 30

Tribeaded pan rim (a) and rounded rolled pan rim (b).

Figure 31

Pan profile with tribeaded rim (approximate height=8cm).
Figure 32

Pan rim with pouring spout.

Figure 33

Dish base with slip-decorated interiors.
Five of Pitman's white and black slip-decorated dish types.

Green slip-decorated dishes.
Figure 36

Dishes with crimped rim.

Figure 37

Chamber pot rims and handle.
Figure 38

Strap handle exhibiting three thumb impressions.
technique was also used by Moravian potters in North Carolina and by other contemporary Valley potters such as Peter Bell (Bivins 1972:138; Comstock 1994:88, 104). An almost complete jug was mended and excavated from Test Unit 202B with part of the body and complete neck missing (Figure 39). This jug is glazed dark brown on the interior and exterior. The strap handle is pulled and was secured at the bottom terminal with three thumb prints. The widest part of the bulbous body measures 19 cm. The base diameter is 12 cm and includes a beaded foot. Examples of a jug neck and mouth are shown in Figure 40.

A smaller example of a jug is also included in the assemblage. It exhibits the same attributes: a bulbous body, constricted neck, pulled handle, and beaded foot. The mendable fragments were recovered from Stratum A and the Potter’s Clay Lens in Test Unit 201 (Figure 41).

Cups. These are the most delicate vessels in the collection represented by seven sherds. They are very thin bodied with a bulbous body slightly flaring toward the rim which exhibits no distinct form (Figure 42). These are glazed on both the interior and exterior. One cup excavated from Test Unit 200D1 is glazed orangish-brown on the interior and exterior. An unusually elaborate cup handle was found in Test Unit 202D. It is made of two orange and green mottled lead glazed straps that were intertwined (see Figure 42), a technique that originated in England and later was copied by others such as the Moravian potters in North Carolina (Bivins 1972:166). It is difficult to say whether it is a Pitman product or not.

Saucers. One example of such can be found in the Potter’s Clay Lens of Test Unit
Large jug with bulbous body, evidence of constricted neck, strap handle, and beaded base (approximate height=24cm).

Mouth and neck fragments from jug (a) and green-glazed reed tobacco pipe (b).
Small mended jug with bulbous body, constricted neck, and beaded base (approximate height=15cm).

Cups and intertwined strap handle.
The sherd is glazed with an orange and black mottling on the interior only. The rounded rolled rim measures 18 cm in diameter and the marley is approximately 2 cm. The base diameter measures 14 cm. This is the only saucer example (Figures 43 and 44).

Lids. These were produced for hollowwares although it is uncertain for which as no matching rims were found. Three sherds represent this vessel form. An unglazed lid sherd found in the Potter’s Clay Lens of Test Unit 202 exhibits two incised, concentric circles surrounding the knob of the lid (Figure 45). Another example, found in Test Unit 200C, is represented by a knob that is slip-decorated. This is the only example of such a highly decorated lid, glazed a dark brown with yellow dotted slip on the exterior (Figure 46). Highly decorated lids, an alleged characteristic of the ‘Hagerstown tradition’, were also made in the Valley (Comstock 1994:85). Lids were also slip-decorated by the Moravian potters of North Carolina to accompany sugar bowls (Bivins 1972:250, 251).

Kiln Tiles. There are 301 kiln tile fragments in the assemblage. Kiln tiles are rectangular blocks of clay used to stack vessels on top of each other. Because they were probably used and fired many times, they are usually very dark in color and are sometimes covered in glaze that dripped from vessels (Figure 47). The thickness varies but averages approximately 2 cm.

Pipes. It is possible that Andrew Pitman was also producing pipes. A green-glazed reed tobacco pipe bowl fragment was excavated from Test Unit 207A (see Figure 40). Although this is a single example of such a pipe, there was evidence of two pipe saggers found when installing a sewer line (Fravel, personal communication).

Figurines. A figurine mold, constructed from four fragments, was found in Test Unit
Figure 43

Interior of saucer.

Figure 44

Exterior of saucer.
Figure 45

Unglazed lid with knob (approximate diameter=16cm).

Figure 46

Slip-decorated knob of lid.
Figure 47

Kiln tile fragments.
202, in both Strata A and B. This would have produced a clay figurine of a person playing a pipe. A positive impression of the mold was created by JRIA (Figure 48). A similar figurine was also made by Moravian potters in North Carolina (Bivins 1972:198).

Bowls. There is only one sherd of this vessel form represented in the assemblage. It is a thin-bodied vessel that is orange-glazed with a white slip appearing yellow on the interior and exterior (Figure 49 and 50). Because of the single example and the unique slip decoration style, it remains unclear as to whether this is a Pitman product or not.

LOCAL EARTHENWARE ANALYSIS

A total of 1,597 local earthenware sherds was evaluated for this in-depth local earthenware analysis. Such an analysis was needed in order to understand the nature of pottery production through time. In other words, a close investigation of the stratigraphy was required in order to provide a useful time line against which the local earthenwares could be analyzed to demonstrate any changes or patterns. Test Unit 200 demonstrated the best stratigraphic integrity for the purposes of carrying out this contextual analysis. Two sections are included in this section: first a description of the steps taken toward a contextual analysis, second, a summary of the results.

CONTEXTUAL PATTERNS

Three steps were crucial in carrying out the analysis. First, mean ceramic dates were calculated for each stratum of the test unit. Secondly, a minimum vessel count for each vessel form in each stratum was found. Finally, an investigation of rim, base, glaze color, and decorative attributes was carried out for each identifiable vessel form in each
Figurine mold of musician playing a flute and impression taken from mold (approximate length=12cm; width=7cm).
Figure 49

Interior of slip-decorated bowl.

Figure 50

Exterior of slip-decorated bowl.
each stratum of Test Unit 200.

Mean Ceramic Date

The formula used to calculate the mean ceramic date was first developed by Stanley South (1977). According to South, the mean ceramic date calculated using artifacts with historically known manufacture date ranges should approximate the period of major activity at the site. This formula was used to provide a mean ceramic date for each stratum of the test unit.

With the aid of ceramics with historically known dates of manufacture, it was possible to derive a mean ceramic date for each stratum of Test Unit 200. The imported ceramics consisted of whiteware, pearlware, creamware, ironstone, and white saltglazed stoneware sherds (Figure 51). In addition to the ceramics, there was one English-made white clay pipe stem found in Stratum B2 that was also included in the calculations. The bore diameter measures 5/64 in., providing a date range of 1710–1750 (Noël Hume 1969). The results are shown in Table 3.

The small number of vessels in Strata B2 (mean ceramic date: 1785), C (mean ceramic date: 1798), and D1 (mean ceramic date: 1783) probably explains an inconsistency in the dates toward the bottom of the test unit. The mean date of Stratum B2 may also be skewed by the early pipe stem dates mentioned previously. If the pipe stem is omitted from the calculations, the mean ceramic date is 1794. Stratum D1 is consistent with the beginning of Andrew Pitman’s occupation, indicating a period right after the purchase of the property in 1782 (Fravel 2000). Strata A1, A2, and A3 represent
Non-local ceramics used to calculate Test Unit 200 mean ceramic dates (a – whiteware; b – pearlware; c – creamware; d – white saltglazed stoneware).
<table>
<thead>
<tr>
<th>Level</th>
<th>Datable Artifact</th>
<th>Total</th>
<th>Manufacture Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Pearlware: Edged</td>
<td>1</td>
<td>1780-1840</td>
</tr>
<tr>
<td>A1</td>
<td>Whiteware</td>
<td>4</td>
<td>1815-1900</td>
</tr>
<tr>
<td>A1</td>
<td>Whiteware</td>
<td>1</td>
<td>1815-1900</td>
</tr>
<tr>
<td>A1</td>
<td>Whiteware</td>
<td>1</td>
<td>1815-1900</td>
</tr>
<tr>
<td>A1</td>
<td>P: printed blue</td>
<td>1</td>
<td>1795-1840</td>
</tr>
<tr>
<td>A1</td>
<td>Creamware</td>
<td>1</td>
<td>1770-1820</td>
</tr>
<tr>
<td>A1</td>
<td>Whiteware</td>
<td>1</td>
<td>1815-1900</td>
</tr>
<tr>
<td>A1</td>
<td>Whiteware</td>
<td>1</td>
<td>1815-1900</td>
</tr>
<tr>
<td>A1</td>
<td>W: printed blue</td>
<td>1</td>
<td>1820-1870</td>
</tr>
<tr>
<td>A1</td>
<td>Whiteware</td>
<td>1</td>
<td>1815-1900</td>
</tr>
<tr>
<td>Level A1 Mean</td>
<td></td>
<td></td>
<td>1846</td>
</tr>
<tr>
<td>A2</td>
<td>Whiteware</td>
<td>1</td>
<td>1815-1900</td>
</tr>
<tr>
<td>A2</td>
<td>Pearlware</td>
<td>1</td>
<td>1780-1840</td>
</tr>
<tr>
<td>A2</td>
<td>P: pastel polychrome</td>
<td>1</td>
<td>1790-1815</td>
</tr>
<tr>
<td>A2</td>
<td>P: painted</td>
<td>1</td>
<td>1780-1840</td>
</tr>
<tr>
<td>A2</td>
<td>Creamware</td>
<td>3</td>
<td>1770-1820</td>
</tr>
<tr>
<td>A2</td>
<td>Whiteware</td>
<td>1</td>
<td>1815-1900</td>
</tr>
<tr>
<td>A2</td>
<td>Whiteware</td>
<td>6</td>
<td>1815-1900</td>
</tr>
<tr>
<td>A2</td>
<td>Stoneware: Albany slip</td>
<td>1</td>
<td>19th century</td>
</tr>
<tr>
<td>A2</td>
<td>W: painted</td>
<td>1</td>
<td>1815-1860</td>
</tr>
<tr>
<td>A2</td>
<td>W: painted</td>
<td>1</td>
<td>1815-1860</td>
</tr>
<tr>
<td>A2</td>
<td>Stoneware: Albany slip</td>
<td>1</td>
<td>19th century</td>
</tr>
<tr>
<td>A2</td>
<td>Whiteware</td>
<td>1</td>
<td>1815-1900</td>
</tr>
<tr>
<td>A2</td>
<td>W: printed other</td>
<td>1</td>
<td>1830-1870</td>
</tr>
<tr>
<td>Level A2 Mean</td>
<td></td>
<td></td>
<td>1843</td>
</tr>
<tr>
<td>A3</td>
<td>Creamware</td>
<td>2</td>
<td>1770-1820</td>
</tr>
<tr>
<td>A3</td>
<td>Creamware</td>
<td>3</td>
<td>1770-1820</td>
</tr>
<tr>
<td>A3</td>
<td>Creamware</td>
<td>3</td>
<td>1770-1820</td>
</tr>
<tr>
<td>A3</td>
<td>Pearlware: Edged</td>
<td>3</td>
<td>1780-1840</td>
</tr>
<tr>
<td>A3</td>
<td>Creamware</td>
<td>1</td>
<td>1770-1820</td>
</tr>
<tr>
<td>A3</td>
<td>Pearlware: Edged</td>
<td>1</td>
<td>1780-1840</td>
</tr>
<tr>
<td>A3</td>
<td>Creamware</td>
<td>2</td>
<td>1770-1820</td>
</tr>
</tbody>
</table>

Site 44FK528, mean date of Test Unit 200 by level (continues next page).
Table 3 (continued)

<table>
<thead>
<tr>
<th>Level</th>
<th>Datable Artifact</th>
<th>Total</th>
<th>Manufacture Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3</td>
<td>Creamware</td>
<td>1</td>
<td>1770-1820</td>
</tr>
<tr>
<td>A3</td>
<td>Pearlware</td>
<td>1</td>
<td>1780-1840</td>
</tr>
<tr>
<td>A3</td>
<td>Pearlware</td>
<td>1</td>
<td>1780-1840</td>
</tr>
<tr>
<td>A3</td>
<td>Ironstone</td>
<td>4</td>
<td>post 1850</td>
</tr>
<tr>
<td>A3</td>
<td>Pearlware: Edged</td>
<td>2</td>
<td>1780-1840</td>
</tr>
<tr>
<td>A3</td>
<td>W: printed blue</td>
<td>1</td>
<td>1820-1870</td>
</tr>
<tr>
<td>A3</td>
<td>Whiteware</td>
<td>2</td>
<td>1815-1900</td>
</tr>
<tr>
<td>A3</td>
<td>Whiteware</td>
<td>5</td>
<td>1815-1900</td>
</tr>
<tr>
<td>A3</td>
<td>Pearlware: Edged</td>
<td>1</td>
<td>1780-1840</td>
</tr>
<tr>
<td>A3</td>
<td>W: printed blue</td>
<td>1</td>
<td>1820-1870</td>
</tr>
<tr>
<td>A3</td>
<td>P: painted</td>
<td>1</td>
<td>1780-1840</td>
</tr>
<tr>
<td>A3</td>
<td>Stoneware: Albany slip</td>
<td>1</td>
<td>19th century</td>
</tr>
<tr>
<td>A3</td>
<td>P: mocha</td>
<td>1</td>
<td>1795-1835</td>
</tr>
<tr>
<td>A3</td>
<td>P: mocha</td>
<td>1</td>
<td>1795-1835</td>
</tr>
<tr>
<td>A3</td>
<td>Stoneware: Albany slip</td>
<td>8</td>
<td>19th century</td>
</tr>
</tbody>
</table>

Level A3 Mean

B1	Creamware	3	1770-1820
B1	Creamware	2	1770-1820
B1	Creamware	3	1770-1820
B1	Creamware	2	1770-1820
B1	Creamware	1	1770-1820
B1	C: edged	1	1770-1820
B1	C: edged	2	1770-1820
B1	Creamware	3	1770-1820
B1	Creamware	3	1770-1820
B1	Creamware	2	1770-1820
B1	Pearlware: Edged	1	1780-1840
B1	W: painted	1	1815-1860
B1	Whiteware	2	1815-1900
B1	Whiteware	2	1815-1900
B1	P: printed other	1	1795-1840
B1	P: painted	1	1780-1840
B1	P: painted	1	1780-1840
B1	P: painted	1	1780-1840
B1	Pearlware: Edged	4	1780-1840
B1	Creamware	3	1770-1820
B1	Pearlware	2	1780-1840
B1	Pearlware	1	1780-1840

Site 44FK528, mean date of Test Unit 200 by level (continues next page).
<table>
<thead>
<tr>
<th>Level</th>
<th>Datable Artifact</th>
<th>Total</th>
<th>Manufacture Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>Pearlware</td>
<td>1</td>
<td>1780-1840</td>
</tr>
<tr>
<td>B1</td>
<td>Pearlware: Edged</td>
<td>2</td>
<td>1780-1840</td>
</tr>
<tr>
<td>B1</td>
<td>Pearlware</td>
<td>3</td>
<td>1780-1840</td>
</tr>
<tr>
<td>B1</td>
<td>Pearlware: Edged</td>
<td>1</td>
<td>1780-1840</td>
</tr>
</tbody>
</table>

Level B1 Mean 1807

B2	Pearlware: Edged	1	1780-1840
B2	Pearlware	1	1780-1840
B2	Creamware	3	1770-1820
B2	White saltglazed	1	1720-1805
B2	White clay pipe stem	1	1710-1750

Level B2 Mean 1785

Level B2 Mean (without pipe stem) 1794

C	Creamware	1	1770-1820
C	Creamware	4	1770-1820
C	Pearlware	1	1780-1840

Level C Mean 1798

D1	WSG: molded	1	1740-1775
D1	Creamware	1	1770-1820
D1	Creamware	1	1770-1820

Level D1 Mean 1783

Site 44FK528, mean date of Test Unit 200 by level.
disturbed layers from the installation of a cistern and, thus, provide questionable mean ceramic dates. Therefore the final stages of Pitman’s occupation and involvement in pottery manufacture is represented by the period between Stratum A3 and Stratum B1, with a mean ceramic date of 1807 (Fravel 2000).

Minimum Vessel Count

A minimum vessel count of the various vessel forms represented in Test Unit 200 was conducted utilizing rim and base sherds. The higher count of either rim or base sherds were the number recorded as the minimum vessel count for the vessel form in question. A minimum vessel count was compiled in order to establish an understanding of the frequency of manufacture of each vessel form throughout the period of pottery manufacture. The different forms that were encountered were crocks, pans, dishes, a jug, a cup, a lid, and a chamber pot (Table 4).

It is apparent from the total inventory of Pitman earthenware as well as from the more in-depth, minimum vessel count in Test Unit 200 that crocks were generally the most frequently produced vessel form. More specifically, this is especially true for the time period represented by Stratum B1, which provides a mean ceramic date of 1807. These may have been used for pickling, food storage, and for holding apple butter (Randolph 1856; Suter 1994). The next most common form produced was pans, used for holding milk until the cream rose while the wide mouth of the vessel facilitated the skimming of the cream. Also, it could have been used as a wash basin or for cooking (Beaudry et al. 1991). Dishes were the third most commonly made vessel. The contextual
Table 4

<table>
<thead>
<tr>
<th>Crock:</th>
<th>Level</th>
<th>Rims</th>
<th>Bases</th>
<th>MVC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A1</td>
<td>12</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>A2</td>
<td>12</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>A3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>B1</td>
<td>78</td>
<td>42</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>D1</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>117</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pans:</th>
<th>Level</th>
<th>Rims</th>
<th>Bases</th>
<th>MVC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A1</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A3</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B1</td>
<td>21</td>
<td>14</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>8</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>D1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>38</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dishes:</th>
<th>Level</th>
<th>Rims</th>
<th>Bases</th>
<th>MVC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B1</td>
<td>7</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other Forms:</th>
<th>Level</th>
<th>Cups MVC</th>
<th>Jugs MVC</th>
<th>Lids MVC</th>
<th>Chamber Pots MVC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>A2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>A3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>B1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>D1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Percentage from total minimum vessel count:

<table>
<thead>
<tr>
<th>Crock</th>
<th>Pans</th>
<th>Dishes</th>
<th>Other Forms</th>
</tr>
</thead>
<tbody>
<tr>
<td>67%</td>
<td>22%</td>
<td>9%</td>
<td>2.00%</td>
</tr>
</tbody>
</table>

Site 44FK528, minimum vessel count of local earthenware from Test Unit 200 by level.
analysis of Test Unit 200 also demonstrates that these vessel forms may have been produced in different frequencies prior to Stratum B1. However, it is not possible to draw any conclusions from these strata (B2, C, D1) because of the small number of vessel sherds available for comparison.

Attribute Analysis

An attribute list was created in order to detect any stylistic changes in pottery manufacture through time. Because the Pitman earthenware sherds seemed consistent through time in the initial analysis of the collection, a closer analysis of the vessels was necessary to demonstrate any change. Therefore, for each vessel type within the collection, a list was compiled to include measurements of rim width, rim length, rim diameter, body width, length of horizontal tool grooves from rim, width of base bead, and base diameter. Glaze color was also noted. Because of the single examples of cups, jugs, and chamber pots, measurements were only recorded for crocks, pans, and dishes (Park 2000).

The attribute averages of each vessel form are listed in Table 5. Because different rim types may represent a single vessel form, the most numerous rim type for each vessel form was taken into account when creating the averages. For crocks, the square-everted rims with folded shoulder were included in the rim attribute averages. For pans, the tribeaded rims were calculated in the averages and for dishes, rounded rolled rims. There is a consistent change, although slight, toward a longer fold or tribead through time for both crocks and pans, respectively (see Table 5). The rim averages no longer increase in
Table 5

<table>
<thead>
<tr>
<th>Crock Averages:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>A1</td>
</tr>
<tr>
<td>A2</td>
</tr>
<tr>
<td>A3</td>
</tr>
<tr>
<td>B1</td>
</tr>
<tr>
<td>B2</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pan Averages:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>A1</td>
</tr>
<tr>
<td>A3</td>
</tr>
<tr>
<td>B1</td>
</tr>
<tr>
<td>B2</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dish Averages:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>A1</td>
</tr>
<tr>
<td>A3</td>
</tr>
<tr>
<td>B1</td>
</tr>
<tr>
<td>B2</td>
</tr>
<tr>
<td>C</td>
</tr>
</tbody>
</table>

Site 44FK528, attribute averages of local earthenware from Test Unit 200 by level.
the disturbed Strata A1, A2, and A3. No conclusive evidence can be found demonstrating a consistent change of any other attributes of each vessel form. Therefore, it is not possible to conclude that changes were being made to each vessel form throughout the period of manufacture.

No changes in glaze color or percentage of slip decoration were noted stratigraphically. Therefore, the glaze color of each vessel form was evaluated as a whole because of the wide variety of colors represented. The most common glaze color was recorded for each vessel form. For crocks, the most common glaze color that appears is black applied on the interior, which means that Pitman was using more manganese in his crock glaze solution. The most common glaze color used for pans is orange appearing on the interior. This could have resulted from the use of iron in the glaze. Except for one that was glazed with a mottling of orange and green applied onto both sides of the vessel, dishes were always slip-decorated and usually glazed an orangish-brown over a white slip appearing yellow. The slip was applied in undulating lines and concentric circles on the interior of the vessel. The only vessels that were glazed on the interior and exterior are single examples of a cup, a chamber pot, a jug, and a slipware dish.

Pitman Pottery Manufacture over Time

The investigation of local earthenware from Test Unit 200 indicates that from Strata D1 to B2 (1783–1785) there was a steady increase in the production of earthenware vessels. The beginning of the manufacture is marked by Stratum D1 with a mean ceramic date of 1783, a year after Andrew Pitman purchased the lot (Fravel 2000).
As time progressed and as Pitman became better known throughout the community as a prominent figure in the pottery industry, consumer demand probably rose. Thus, he increased his pottery manufacture. This is demonstrated by the increase in the number of Pitman earthenware sherds within each stratigraphic layer until the disturbed Strata A1, A2, and A3. Stratum B1, with a mean ceramic date of 1807, demonstrates a dramatic increase of sherds (Figure 52). The unusually large concentration of Pitman earthenware sherds occurred between 1807 (Stratum B1) and 1824 (Stratum A3). The large quantity of Pitman pottery may point to a climax in production during the first quarter of the nineteenth century.

The historical records appear to confirm this climax in production. According to the account ledger of Winchester store owner Godfrey Miller, a peak in red lead purchased by Andrew Pitman occurred in 1811. The enormous amount of 305 pounds of red lead purchased that year indicates that Pitman produced and glazed a large quantity of wares. If Pitman was trading some of this lead with other local potters, however, the peak purchase year may not correlate as precisely with a peak in Pitman’s production.

An evaluation of the seasonal cycles of pottery production provides us with the months of major pottery manufacture throughout the year. This analysis is possible as exact dates of each red lead exchange were recorded in Godfrey Miller’s ledger (1808–1816). The year 1811 was chosen for this evaluation as this was when the most frequent exchange of wares for red lead occurred (see Figure 6). Except for the months of February, September, and October, Pitman purchased at least 18 pounds of lead to as much as 60 pounds each month. Summer months of May through August marked the
Site 44FK528, total local earthenware sherds recovered from Test Unit 200 by level.
period of major activity in pottery manufacture during the year (Figure 53). The summer
allowed good conditions for manufacture, when the weather was hot enough so that the
clay was more malleable and the vessels dried more quickly before being glazed and
fired. Also the demand for such utilitarian wares would have increased in the summer as
people prepared for the fall harvest.
Figure 53

Pounds of red lead purchased monthly in 1811.
CHAPTER V
COMPARATIVE ANALYSIS

Earthenwares from several potteries and a consumer site will be compared to those of 44FK528. This will lead to a better understanding of the context of the local pottery industry in which Pitman participated. More specifically, such a study will facilitate the search for consistent stylistic attributes throughout different areas.

Comparisons are made between Pitman earthenwares and those of contemporary potters in regions that are renown for their local earthenwares. These include pottery examples from four areas: Shenandoah Valley, North Carolina, Pennsylvania, and New England. Due to the lack of examples from historical local potteries at the present time, this analysis is a preliminary study which provides an introduction to future comparative studies of local pottery when more data is available from other pottery sites.

This analysis has been conducted utilizing Pitman pottery characteristics of the three most frequently represented vessels in the assemblage which include crock/pot, pan, and dish. The various attributes of slipware are also included in the evaluation. The results are summarized in Table 6. Comparisons were made with illustrated vessels and sherds included in published works. Conducting this analysis in such a manner eliminates the complication of interpretation of the varied pottery descriptions utilized by different authors.
Table 6

<table>
<thead>
<tr>
<th>CROCK/POT:</th>
<th>Shenandoah Valley</th>
<th>North Carolina</th>
<th>Pennsylvania</th>
<th>New England</th>
</tr>
</thead>
<tbody>
<tr>
<td>rim</td>
<td>Pitman</td>
<td>Peter Bell</td>
<td>Parnassus</td>
<td></td>
</tr>
<tr>
<td>sq-everted w/ folded shoulder</td>
<td>yes</td>
<td>Comstock 1994: fig.4.57</td>
<td>Higgins 2001: 67,98, 99, 100</td>
<td>n/a</td>
</tr>
<tr>
<td>rounded rolled</td>
<td>yes</td>
<td>Higgins 2001:98, 99, 100</td>
<td>Bivins 1972:144, fig. 105; South 1999:fig.14.1, 28.21</td>
<td>n/a</td>
</tr>
<tr>
<td>body</td>
<td>horizontal tool grooves</td>
<td>yes</td>
<td>n/a</td>
<td>Higgins 2001:75, 100</td>
</tr>
<tr>
<td></td>
<td>base</td>
<td>yes</td>
<td>n/a</td>
<td>Higgins 2001:98</td>
</tr>
<tr>
<td>PAN: rim</td>
<td>tribebeaded/ multibeaded</td>
<td>yes</td>
<td>n/a</td>
<td>Higgins 2001: 99,100</td>
</tr>
<tr>
<td></td>
<td>rounded rolled</td>
<td>yes</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>DISH: rim</td>
<td>tribebeaded/ multibeaded</td>
<td>yes</td>
<td>Comstock 1994:fig. 4.56</td>
<td>Higgins 2001: 99,100</td>
</tr>
<tr>
<td></td>
<td>rounded rolled</td>
<td>yes</td>
<td>yes</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>crimped</td>
<td>yes</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Summary of Regional Comparative Analysis (continues next page).
<table>
<thead>
<tr>
<th>SLIPWARE:</th>
<th>Shenandoah Valley</th>
<th>North Carolina</th>
<th>Pennsylvania</th>
<th>New England</th>
</tr>
</thead>
<tbody>
<tr>
<td>color</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>black</td>
<td>yes</td>
<td>Pitman</td>
<td>Bivins 1972:</td>
<td>Watkins 1950:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Peter Bell</td>
<td>fig. 270, 271</td>
<td>fig. 26,55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parnassus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>green</td>
<td>yes</td>
<td></td>
<td>Bivins 1972:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>fig. 243, 269, 271</td>
<td></td>
</tr>
<tr>
<td>white</td>
<td>yes</td>
<td>Comstock 1994:</td>
<td>Bivins 1972:</td>
<td>Turnbaugh 1976:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fig. 4.63;</td>
<td>fig. 4.63:</td>
<td>1976:191;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fig. 26,55</td>
</tr>
<tr>
<td>style</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>undulating</td>
<td>yes</td>
<td>Comstock 1994:</td>
<td>Bivins 1972:</td>
<td>Teller 1985:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fig. 4.63;</td>
<td>fig. 269, 270, 271:</td>
<td>259;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wiltshire 1975:</td>
<td>South 1999: 30;199</td>
<td>Turnbaugh 1976:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>fig. 28. 22</td>
<td>1976:191;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Watkins 1950:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fig. 21,26,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>concentric circles</td>
<td>yes</td>
<td>Comstock 1994:</td>
<td>Bivins 1972:</td>
<td>Turnbaugh 1976:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fig. 4.63;</td>
<td>fig. 269, 270, 271:</td>
<td>1976:191;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wiltshire 1975:</td>
<td>South 1999: 30;199</td>
<td>Watkins 1950:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>fig. 28. 22</td>
<td>fig. 55</td>
</tr>
<tr>
<td>sideways "8"</td>
<td>yes</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dotted</td>
<td>yes</td>
<td>n/a</td>
<td>Bivins 1972:</td>
<td>Turnbaugh 1976:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ch. 6</td>
<td>1976:191</td>
</tr>
</tbody>
</table>

Summary of Regional Comparative Analysis.
SHENANDOAH VALLEY

A comparative study of Pitman earthenwares and those of a consumer site in Augusta County, site 44AU634 was conducted by Tom Higgins of WMCAR. This site measuring approximately 1,308m² was systematically excavated by WMCAR. The local earthenware sample was taken from a dwelling site of a German family who occupied the area from 1790 to 1834 (Higgins 2001). The results of the comparative analysis support the previous observations that local earthenwares of this time period were produced in a very similar fashion to Pitman’s.

The comparative sample was also examined and illustrated by the author. Nineteen earthenware rim sherds were compared by Higgins (2001). These were thin-bodied, glazed on the interior only, and exhibited no maker’s mark. Pot/crock were also square-everted with folded shoulders and rounded and rolled. Three of these included horizontal tool grooves. The single example of flatware demonstrated a tribeaded rim. The bottle/jug rim example is rounded and rolled as is the case for Pitman’s wares. Comparisons of vessel dimensions also suggest that these were similar to those of Pitman except that Pitman’s wares were slightly more refined. An almost complete pot/crock vessel is also consistent with the Pitman wares as it exhibits a beaded base, brown interior glaze, square-everted rim with folded shoulders (Higgins 2001).

The only discrepancy is that two Parnassus pot/crock rim examples are tribeaded unlike any of the Pitman pot/crock wares. The tribeaded rims were only observed on dishes and pans in the Pitman collection.
The earthenware products of the renown Valley potter, Peter Bell, is another subject of comparison. Bell, a second generation German immigrant, was first recorded as working in the Leisinger and Bell pottery, Hagerstown, Maryland in 1798 (Comstock 1994; Rice and Stoudt 1929; Wiltshire 1975). He later established his own pottery business in 1802 providing wares for both the Hagerstown and Lower Valley communities. (Comstock 1994; Rice and Stoudt 1929; Wiltshire 1975). When Peter Bell moved to Winchester in 1824 after some failed financial transactions in Hagerstown, the Frederick County potters had already been producing wares for the local market for several decades, but Peter Bell probably maintained trade with his customers up the Valley. Peter Bell’s sons, John, Samuel, and Solomon, helped with the Winchester business for a few years. In addition to his sons, apprentices Philip Byers and Nicholas Smith added to the work force. Peter Bell produced earthenwares and possibly stonewares toward the end of his career (Comstock 1994; Rice and Stoudt 1929; Wiltshire 1975). Earthenware examples associated with Peter Bell exhibit similar attributes to Pitman wares, especially in rim treatment.

North Carolina

The North Carolina earthenware tradition was initiated with the settlement of the Moravians. Landing in Pennsylvania, the Moravians were eager to enlarge their missionary efforts to the colonies. Being met with anti-Moravian sentiments especially in Virginia, they made their way to Wachovia, North Carolina beginning in 1753 in order to create a permanent, self-sufficient, religious community (Bivins 1972; Fogleman 1996;
South 1999). Although Moravian communities were found throughout central Europe, as well as in Sweden and in England, their heaviest concentration was in Saxony and Wetteravia where most of the Moravian immigrants originated (Fogleman 1996).

Gottfried Aust was a skilled potter who played a crucial role in providing the necessities of the Wachovia Moravian community. Aust was originally from Silesia (now part of Czechoslovakia) and emigrated to Herrnhut, a small German town, at the age of 19 to join the activities of the Unity of Brethren. He was apprenticed to Br. Andreas Dober and later left for America to be trained by master potter, Michael Odenwald, who had been operating the pottery trade in Bethlehem, Pennsylvania since 1744 (Bivins 1972; South 1999). Aust moved to Wachovia in 1755 and produced earthenwares in Bethabara until 1771 when he moved to Salem. He continued pottery manufacture in Salem until 1788 (Bivins 1972; South 1999). Aust’s earthenwares are very similar to those found on 44FK528. However, there are instances of a double beading in some of Aust’s pan examples unlike the tribeadning in Pitman’s (Bivins 1972: 141, fig. 98). Rudolf Christ, an apprentice under Aust (ca. 1766-1773), followed suit producing wares in Bethabara until 1789 then in Salem until 1821 (Bivins 1972; South 1999). Slipwares produced by both Aust and Christ are unique in that vessels were commonly first applied with white or dark brown slip and then decorated with slip designs in other colors, such as black, brown, and green. This technique may have been used to provide a more pronounced appearance of the slip design. The slip design range from floral motifs to the similar undulating and concentric circle design found on Pitman slipwares.
The Pennsylvania pottery tradition largely commenced in Philadelphia as early as 1685 with the English settlement in area (Bower 1985:268). Unfortunately evidence of these early earthenwares has not been recorded at this time. The trade grew quickly through the 18th century with the increase in population resulting both from natural growth and immigration (Bower 1985:268). The immigrant population was mostly composed of German-speaking individuals from the present borders of Germany as well as Switzerland and Alsace (Fogleman 1996).

As population and immigration began to increase in Pennsylvania, a movement inland towards the back-country occurred during the second quarter of the 18th century. Southeastern Pennsylvania was heavily inhabited by German immigrants who were mostly farmers but also those who were skilled in pottery, blacksmithing, weaving, carpentry, shoemaking, as well as many other crafts (Swank et al 1983: 9). The pottery evidence from this area is highly decorative in both slip and sgraffito, usually consisting of floral (tulips), animal (especially birds), and human figure (soldiers on horseback) motifs, accompanied usually with German inscriptions, topics ranging from the religious to the mundane (Garvan 1982; Schwind 1983). These were more elaborate than those found in any other region of the colonies.

Starting from the second quarter of the 18th century, Philadelphia had expanded the marketing of their wares to New England and the South (Bower 1985:276; Steen 1989 and 1999). Earthenwares from this region soon gained popularity and developed such unique characteristics that they were specifically labeled from the mid-18th century.
as ‘Philadelphia earthenware’. Evidence of this is present in newspaper advertisements in Rhode Island, New York, and Maryland (Prime 1929:112).

Soon potters throughout the regions were imitating these earthenwares, indicating further that these wares were unique in their quality and style. For example, in 1767 Joseph Wilson, a potter in Providence, Rhode Island advertised in the *Newport Mercury* that he made “Earthen Ware at a cheap Rate, made in the best Manner and glazed in the Same Way as Practised in Philadelphia” (Watkins 1950:209). Also Henry Piercy, a potter in Alexandria, Virginia advertised in 1792 in the *Virginia Gazette* that his work was “equal to any work in Philadelphia” (Magid 1995: 47). One of the unique qualities of ‘Philadelphia earthenware’ described by experts, Bower and Steen, is the stylistic design of undulating lines between concentric circles or spiraling slip, a characteristic also exhibited in the Pitman wares (Bower 1985:280; Steen 1989:28, 30: Steen 1999:63).

NEW ENGLAND

Although English settlers had long established potteries in this region before the period in question, examples are limited to only a few. However, the work of Watkins and Turnbaugh provide us with enough information to conduct the analysis.

Earthenware examples from the Massachusetts Bay Colony were utilized in the analysis, especially those of Joseph and Daniel Bayley. The slip design from a seventeenth century site associated with Joseph Bayley is notably different from Pitman’s. The examples from the late 17th to early 18th century exhibit an adherence to the Metropolitan slipware tradition (Turnbaugh 1977:189; Watkins 1950:fig. 11).
However, later in the 18th century Joseph’s son, Daniel Bayley was decorating his slipwares in a similar manner found in the regions discussed above (Turnbaugh 1977:191; Watkins 1950:fig. 21, 22, 24). Bayley’s wares were made after the Philadelphia earthenwares were renown throughout the regions. Also, slipware sherds attributed to Abraham Hews I of Weston, Massachusetts who was manufacturing pottery between ca. 1765 to 1820 hints at a similar style (Teller 1985:258). The sherds are in very poor condition with evidence of undulating lines of slip and approximately 90% of the glaze missing (Teller 1985:259).

DISCUSSION

Most of the Pitman earthenwares especially utilitarian storage vessels could not be compared due to the scant amount of archaeological work completed to date on local pottery sites. Thus regional comparisons of these variations were not as thorough as desired. However, a closer comparison of slip-decorated earthenwares was possible as more publications were available concerning these decorated wares.

The slipware examples from all the regions mentioned above indicate that similar stylistic characteristics exist, especially the undulating lines surrounded by concentric circles of slip and bands of concentric circles. However, it remains to be discussed whether this characteristic shares a common source.

The technique of slip decoration probably originated in the Far East (Cooper 1968:5). In Europe the use of slip to decorate wares was initiated in Italy in the sixteenth century and spread to France, Austria, England, and Germany (Barber 1907 and
1927; Cooper 1968:8). Similarities across these regions may be attributable to the common origin of slipware manufacture. Although the decoration motifs were similar in that they were based on religious, floral, animal, human figures, and abstract designs, distinct differences in style exist in most cases. Therefore, European potters who emigrated to the New World were familiar to a distinct tradition from the way it was practiced in their respective countries.

It has been commonly stated that the pottery tradition in the New World, especially local earthenware produced in Philadelphia, was similar to that of England but no conclusive evidence has been presented (Bower 1985; Myers 1980; Steen 1989 and 1999). The claim of British influence is assumed by two simple facts; (1) the majority of early potters were English and therefore practiced the British pottery tradition, (2) predominantly English wares were being imported to the British colony therefore, local potters were compelled to imitate these wares to remain competitive in the market. These assumptions are too simplistic and insufficient in that they do not place enough emphasis on historical context. Local earthenware experts have largely ignored the impact and influence of the German immigrant population.

Based on a close evaluation of the slipware tradition in England and Germany, no slipware examples from England provided conclusive evidence of English influence. Metropolitan slipwares demonstrated abstract slip decoration, sometimes exhibiting undulating slip around the border of vessels but none exhibited the concentric circles or spiraling technique evident in all of the regions above (Cooper 1968). However, the exact
same design was found in Germany (Kaufman 1979:18, 74, 122 130; Mellen 1988: 136). These earthenware examples were discovered in North German pottery centers.

The exact replica of the German pottery tradition in all of the above regions suggests that the stylistic attributes of slipware design were continued by the influx of German-speaking immigrants entering the British colonies in the eighteenth century. The similarities discovered in this comparative analysis indicate that this was a stylistic trend that occurred throughout, in North Carolina, Pennsylvania, and New England and not just the Shenandoah Valley where Andrew Pitman manufactured his wares. This trend also influenced non German-speaking potters and was recognized as ‘Philadelphia earthenware’ and imitated throughout the colonies beginning in the mid-eighteenth century. This occurred after approximately 26,300 German-speaking immigrants had already arrived in the colonies (Fogleman 1996:2).

The costly endeavor of immigration forced immigrants including the German-speaking individuals to sell themselves as servants to pay off their debts (Fogleman 1996:73). This included selling themselves to English businessmen such as Edward Annely who advertised in the New York Gazette in 1751 that he had “set up the Potter’s Business, by Means of a Family of Germans he bought, supposed by their Work, to be the most Ingenious in that Trade, that ever arrived in America” (quoted from Schwind 1983:171). The exposure to the Germanic pottery tradition through this manner as well as from German-speaking immigrants who established their own pottery locally was inevitable and more importantly, influential. Early potters of German descent with their
own business included Philadelphia potters, Matthias Meyer, Jacob Roat, and Jacob Utteree/Udney (Bower 1985).

As the tradition became more widespread with the increase in the German population, the styles were adopted by non German-speaking potters and reproduced not as German wares but as ‘Philadelphia earthenwares’. The wares were traded, sold, and recognized by individuals as products of local manufacture and were ubiquitous throughout the colonies.
CHAPTER VI
INTERPRETATION

Archaeologists have largely ignored the potential of discovering distinct characteristics in the archaeological record between European groups and have generally grouped them together as constituting one homogenous group (McGuire 1982). This is based on the assumption that European immigrants were quick to assimilate into the more dominant Anglo-American culture without a trace in the archaeological record. Linebaugh (1998) has illustrated in his study of the upper Shenandoah Valley that such a supposition is erroneous and that Valley Germans left their distinctive mark in architectural styles and that culture change was not an immediate one but a more gradual process. Because of the deep involvement of Germans in the decorative arts, the local earthenware manufacture in the Valley provides an excellent opportunity to understand the expression of their identity through material culture.

Ethnicity is defined as a mechanism utilized by interest groups to symbolize a “within-group organization in opposition to and in competition with other interest groups” (Hodder 1979:452). Such a mechanism would have been prevalent among the German-speaking group that was persecuted for being culturally different from the Anglo-American majority that was already established economically and politically in the New World. The effects of this can be studied archaeologically if material culture is viewed as a mechanism of symbolic communication of common ethnic identity.
The danger inherent in any study of ethnicity is the assumption that the archaeological record correlates to the measurement of acculturation, or in other words, that a distinct unidirectional process of progressive change is involved in whatever factors formed the archaeological record. The quantification of the Anglo-American material culture versus that of the German culture in Pitman’s assemblage to measure the “Germanness” or “Americanness” is not a goal of this thesis. Such a positivistic approach undermines the dynamic and complex nature of ethnicity. Rather this study underscores the importance of evaluating material culture as a form of non-verbal communication to express ethnic identity. Furthermore, it is crucial that one comprehends that within different multi-ethnic social settings, an individual takes on an active role in negotiating and determining the appropriateness of various alternative ethnic behaviors.

In a multi-ethnic community such as that found in Frederick County where 40% of the population were English, 30% were German, and 25% were Scotch-Irish in 1775, the study of ethnicity is promising (Mitchell 1977:43). The German population in Virginia demonstrated a high degree of homogeneity, especially in the Shenandoah Valley where towns such as Stephens City were almost exclusively settled by Germans according to Kercheval and Wust (1902:179; 1969:64). These immigrants maintained their linguistic and cultural traditions for generations through the establishment of German schools, churches, literature and political leaders. Political involvement was facilitated by the growing number of bilingual Germans after the Revolutionary War (Wust 1969).

The cultural persistence of German-speaking Virginians led them to become the
target of discrimination and xenophobic sentiments. Derogatory statements were common such as that made by French agronomist La Rochefoucauld-Liancourt in 1796 describing Germans as "good subjects, honest people, middling cultivators; but awkward, rude, uninformed and dirty" (Wust 1969: 174). Another example is a comment made by a Richmonder, "The German population is not liked in Virginia; they seldom associate, and never assimilate with the regular citizens, and are generally dirty and untidy in their habits" (Wust 1969:208).

Xenophobic sentiments led some to fear for the future of their neighborhoods, as one Rockingham County resident proclaims, "The neighborhood has rather gone back in a way. The Dutch will take over the county" (Wust 1969:197). (German-speaking individuals were commonly referred to as the "Dutch" (Fogleman 1996; Wust 1969)). This sentiment was also shared by influential politicians such as Governor Dinwiddie and Thomas Jefferson. Governor Dinwiddie states,

"The Germans in Pennsyl’a live all in a Body together, as if in a Principality of Germany, may they not in Time throw off their Obedience and Submission to the British Crown? It was, I think a very imprudent Step in the first Settlem’t of y’t Province not to mix them in their Settlem’ts with the Eng., and have English School Masters &c. Whereas there are now many Thousands cannot speak one word of English" (Wust 1969:52).

Thomas Jefferson also voices similar worries, "It’s better to discourage the settlement of foreigners in large masses, wherein, as in our German settlements, they preserve for a long time their own languages, habits, and principles of government" (Wust 1969:107). The German-speaking group became the Anglo-American majority’s scapegoat as they did not assimilate easily and posed a threat by their substantial number. Their Scotch-
Irish neighbors who were not faced with the obvious linguistic barrier were not perceived as such a menace.

In such a new and hostile environment, German-speaking immigrants who were not necessarily from the same regions in the Old World developed a common identity. In such an atmosphere, it was advantageous for individuals to assemble and accentuate a common ethnic identity with those in the same predicament, who shared a common linguistic and cultural background. Archaeological work on the Chinese community in Sacramento provides us with a comparable example and illustrates the manner in which behavioral expressions of ethnicity can be found in material form and thus be studied archaeologically (Praetzellis et al. 1987). The Chinese were targets of discrimination and persecution due to their cultural and physical difference and ethnic boundary maintenance was a mechanism utilized to symbolize a within-group membership in opposition to the American majority. This was materialized in a perpetuation of traditional behavior or adoption of non-traditional behavior to create new symbols of ethnic identity (Praetzellis et al. 1987).

The largely German community base in Stephens City was encouraged by the deliberate actions of the founder of the town, Lewis Stephens, who attempted to attract it to incoming German immigrants as he advertised his land in the Germantown newspaper, *Pensylvanische Berichte* (Wust 1969:36). German-speaking immigrants preferred living close to kin or within German communities when settling in the colonies. It was not rare for some to even settle with people from their village in the Old World (Fogleman 1996:74). Communities such as these were established in areas throughout the colonies.
including the Shenandoah Valley. Although widely dispersed into areas where land was affordable, intricate networks of communication were established and maintained between members of these communities. These ties also enabled financial networks to develop, a crucial element for the immigrants’ success in the colonies (Fogleman 1996). Furthermore, the establishment of a German community enabled a persistence of cultural traditions through generations following the first generation of immigrants. Resources throughout the Valley such as German churches, schools, newspapers, and almanacs encouraged the perpetuation of the German ethnic identity in towns such as Stephens City (Wust 1969).

This is the context in which Andrew Pitman was producing and marketing his earthenwares. An interpretation of his involvement in the continuation of the Germanic pottery tradition lies deeper than a mere transplantation of a craft to fulfill the pragmatic, functional needs for such wares. The manufacture of local earthenware was a means of self-expression for Andrew Pitman. As the prime producer of the pottery, Pitman actively made decisions on how they were to be made and decorated. Pitman perceived and directed the manufacturing process as a way of demonstrating his cultural identity as a German descendant. In an area where Germans were both numerous and close-knit within the community, this would have been readily accepted and even embraced. In such communities, group identity and membership were crucial to the survival of a trade dependent on the local exchange network.

Marketing to the local community was the most important source of income for pre-industrial pottery manufacturers from the mid-eighteenth century until the nineteenth
The Stephens City community probably provided Andrew Pitman with the most demand for his wares. Andrew, his brother, John, as well as their nephew, John Noland, were manufacturing and marketing their wares in Stephens City during Andrew’s career. This provides insight into the advantages of such a kin network where labor, ideas, and even customers were probably shared. The fact that all three of these potters were able to remain successful in a town that was composed of 513 inhabitants in 1800 and 700 in 1836 suggests that demands for their wares extended beyond the boundaries of their town (JMA 1996).

Andrew Pitman was directly involved in exchange relationships, exchanging his earthenwares for goods, labor, or cash. Therefore, a strong bond with the community was crucial to the success of Pitman’s potting business. Shared religious beliefs, linguistic and cultural traditions were instrumental in developing social networks that would guarantee a steady consumer group. A mutual recognition of the Germanic potting tradition between potter and consumer would have communicated and reinforced the within-group membership of a German community.

Transactions outside Pitman’s community were facilitated by an intermediary who was better connected to the local market. Such an intermediary, Godfrey Miller, was responsible for distributing his wares in Winchester. Although Pitman was not directly involved in these exchange networks, his wares were attractive to German-speaking consumers as they signaled a common ethnic identity. Godfrey Miller’s ledger indicates that cart loads of Pitman pottery were exchanged for red lead and household goods.
(Miller 1808–1816). Miller probably sold the pottery from his Winchester drug store as well as utilized them for his own household needs.

The archaeological record that illuminates Andrew Pitman’s life as a consumer rather than a potter is more indicative of status behavior rather than ethnic symbolism. As discussed earlier in the chapter, individuals in an ethnic group negotiate and determine the appropriateness of various alternative behaviors in their social settings. Therefore, newly adopted practices do not necessarily conflict with traditional values and suggest a completely assimilated group. The evaluation of Pitman’s dietary and ceramic consumption habits suggests a typical trend of an individual of comparable socio-economic status. Furthermore, the distinctively Anglo-American style of Pitman’s house was part of an architectural movement in the Valley where ethnically distinct architecture was gradually being replaced by the I-form (Linebaugh 1998). This may be due to the public nature of architecture, an overt manifestation of ethnic identity which would have attracted more antagonism by the Anglo-American majority. Although the Germanic pottery tradition was also an overt symbol of identity, non-German potters and consumers had adopted earthenwares following this tradition as “Philadelphia earthenware” by the middle of the eighteenth century. Therefore, these products associated with Philadelphia by those unfamiliar with the Germanic tradition did not impose a threatening manifestation of ethnic cohesion to the Anglo-American majority.

The in-depth analysis of a Shenandoah Valley earthenware manufacturing site has shed light on the early developmental stage of a Virginia pottery center and a potter’s role in creating and negotiating meaning through the manufacture of his wares. Acting as an
overt signal or sign of ethnic identity, pottery style functioned as a medium of communication that reinforced a common heritage. As a potter who depended on the sale of his wares, it communicated a within-group message to his local consumers who were also shunned by the Anglo-American majority as being different.

Therefore, the continuity of this distinct tradition was a ‘choice’ made by potters whose world was transformed as they were confronted with the larger majority of English settlers in the New World. In opposition to the English who were already well established politically and economically, the immigrants were faced with a self-conscious recognition of themselves as ‘others’. German potters were actively demonstrating to those in their community who were in large part the consumers, a shared background and cultural identity. German-speaking potters deliberately chose to continue the tradition and to reject the already well-established local English pottery trend which preceded them (Turnbaugh 1977; Watkins 1950). Therefore, the distinct pottery styles utilized were active symbols signaling identity as well as a means to express cohesion as a group. The local earthenware as seen produced by Andrew Pitman provides an observable set of distinct signs and symbols that played an important role in the maintenance of the German immigrant community in the lower Shenandoah Valley in the late eighteenth and early nineteenth century.

Future Research

Local earthenware has been overlooked for too long due to the common consensus in historical archaeology that it lacks interpretive value. The extant literature
on local potteries has been generally limited to archaeological investigations of kiln sites with limited analysis of wares and collector-based observations of pottery (Comstock 1994; Russ 1986, 1990, 1991, 1999). The collector-based observations are biased in that the sample is limited to only a small number of vessels that have survived over the years, usually highly decorated wares that were intentionally manufactured as gifts or heirlooms. Unique characteristics observed may be true in the very small sample that the collector has available for comparison but may not be the case when a larger one is accessible. Therefore, archaeological investigations at pottery production sites are necessary in providing a wider database of comparison of regional pottery. This should not only focus on kilns but also the pottery products themselves as was attempted in this study. It is only then that an in-depth comparison of potters and their wares can be successfully conducted and an understanding of the multiple social and economic dimensions of local pottery manufacture achieved.

The investigation of 44FK528 has attempted to provide the necessary steps in effectively evaluating pottery manufacturing sites and should be utilized as a benchmark for future archaeological investigations of a pottery site. An evaluation of the various vessel forms produced is important in understanding both the skills of the potter and the demands of the consumer market. The attribute analysis of vessel forms, which includes rim types, rim diameter, glaze color, base diameter, and decoration with the use of finishing tools, is crucial in understanding vessel production and helps in potential identification of specific potter’s wares found on domestic sites in the area. Furthermore,
such an in-depth analysis will allow for a more consistent data set which would facilitate comparisons of products throughout different regions.

Future study of the pottery industry in the Shenandoah Valley should not only emphasize the need for more quality descriptions of earthenware or stoneware products from a pottery site but should also incorporate consumption aspects of the industry. For example, it would be interesting to study the consumption trends of local earthenware through time. Were stonewares imported from other regions before it was first produced in the Valley in the first quarter of the nineteenth century? More specific to Andrew Pitman, did consumption trends of his earthenwares differ from those outside of his community where ethnic and communal bonds were less pronounced? Did the earthenware products differ between Andrew, his brother, and his nephew, John Noland?

The documentary evidence left by Shenandoah Valley potters may also add insightful knowledge to the development of the industry. For example, a careful examination of potters' ledgers may help provide an understanding of the variation of prices through time as more and more competition arose with the availability of stonewares, refined earthenwares, and glasswares.
BIBLIOGRAPHY

Anti-Quitrent Society(?)

Barber, Edwin Atlee
1907 *Lead Glazed Pottery.* Ceramic Series, No. 3. Pennsylvania Museum and School of Industrial Art, Philadelphia.
1927 *Tulip Ware of the Pennsylvania-German Potters.* Pennsylvania Museum and School of Industrial Art, Philadelphia.

Barka, Norman F., Edward Ayres, and Christine Sheridan

Beaudry, Mary C., Lauren J. Cook, and Stephen A. Mrozowski

Beaudry, Mary C., Janet Long, Henry M. Miller, Fraser D. Neiman, and Gary Wheeler Stone

Bivins, John Jr.

Bly, Daniel W.

Bower, Beth A.

Chappell, Edward

Comstock, H. E.

Cooper, Ronald G.

Crass, David Colin, Bruce R. Penner, and Tammy R. Forehand

Eriksen, T. H.

Ferguson, Leland

Fogleman, Aaron Spencer

Fravel, Linden A.
1996 *Andrew Pitman—Potter; Lot 32, 1782–1870, Stephens City, Virginia.* Unpublished manuscript.

2000 *The Potters of Newtown/Stephensburg.* Unpublished manuscript.

Frederick County Records
n.d. *Chancery Court Papers, Chancery Files, Deed books, Divorce Books.* On file, Clerk of the Circuit Court of Frederick County, Winchester, Virginia.
Garvan, Beatrice B.

Geier, Clarence R., and Melissa McFee

Higgins, Thomas F., III, John W. Underwood, Veronica L. Deitrick, and Charles M. Downing, with contributions by Gregory J. Brown, Justine W. Mcknight, and Donald L. Smith
2001 *Early Family Life in the Valley: Archaeology at an Eighteenth- and Nineteenth-Century Farmstead in the Shenandoah Valley: Data Recovery at Site 44AU634, Associated with the Proposed Route 42 Project, Augusta County, Virginia*. William and Mary Center for Archaeological Research, Williamsburg, Virginia. Submitted to Virginia Department of Transportation, Richmond.

Hodder, Ian

Hofstra, Warren R.
1986 *A Separate Place: The Formation of Clarke County, Virginia*. Clarke County Sesquicentennial Committee, Berryville.

John Milner Associates, Inc.

Jolley, Robert
2000 Personal communication.

Jones, Siân

Kaufmann, Gerhard
1979 North German Folk Pottery of the 17th to the 20th Centuries. W.M. Brown & Son, Richmond, Virginia.

Kercheval, Samuel

Ketchum, William C., Jr.

Laird, Matthew R., David M. Givens, Bradley M. McDonald, and S. Fiona Bessey

Laird, Mathew R. and Beverly A. Straube

Lathrop, J. M., and A. W. Dayton

Linebaugh, Donald W.

Lucas, Michael T., and Paul A. Shackel

MacMaster, Richard K.

Magid, Barbara H.
1996 An Archaeological Perspective on Alexandria’s Pottery Tradition. Journal of
Early Southern Decorative Arts 21(2):41-82.

Martin, Ann Smart

McGuire, Randall H.

Mellen, Werner

Miller, George L.

Miller, Godfrey
1808– Account ledger. Winchester, Virginia.
1816

Mitchell, Robert D.

Mullins, Paul R.

Myers, Susan H.
National Register of Historic Places

Noël Hume, Ivor

Norris, J. E.

Park, Sunyoon with contributions by Matthew Laird, Beverly Straube, and Gregory J. Brown.

Praetzellis, Adrian, Mary Praetzellis, and Marley Brown III

Quarles, Garland R., and Lewis N. Barton

Randolph, Mary

Rice, A.H. and John Baer Stoudt

Russ, Kurt C.
1991 Understanding the Historic Pottery Manufacturing Industry in Rockbridge County, Virginia: Archaeological Excavations at the Firebaugh Pottery

Schwind, Arlene Palmer

South, Stanley

Stark, Miriam T.

Steele, Inez Virginia

Steen, Carl

Stuck, Kenneth E., Christopher L. McDaid, and Leslie McFaden

Suter, Scott Hamilton

1994 The Importance of Making Progress: The Potteries of Emanuel Suter, 1851–

Swank, Scott T

Teller, Barbara Gorely

Turnbaugh, Sarah

U.S. Geological Survey

Watkins, Lura Woodside

Wayland, John W.

Weissner, Polly

Wiltshire, William E., III
Wust, Klaus
VITA

Sunyoon Park