Satisfying Williamsburg's "Meat Tooth": Butchers and Bones in Inter-Bellum Williamsburg, Virginia

Carrie Alblinger
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

Part of the American Studies Commons, and the History of Art, Architecture, and Archaeology Commons

Recommended Citation
https://dx.doi.org/doi:10.21220/s2-n4da-kx39

This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.
SATISFYING WILLIAMSBURG'S "MEAT TOOTH":
BUTCHERS AND BONES IN INTER-BELLUM WILLIAMSBURG, VIRGINIA

A Thesis
Presented to
The Faculty of the Department of Anthropology
The College of William and Mary in Virginia

In Partial Fulfillment
Of the Requirements for the Degree of
Master of Arts

by
Carrie Alblinger
2002
APPROVAL SHEET

This thesis is submitted in partial fulfillment of
the requirements for the degree of

Master of Arts

Carrie Alblinger

Approved, December 2002

Mary M. Voigt

Joanne Bowen

Marley R. Brown III
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>viii</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>2</td>
</tr>
<tr>
<td>CHAPTER I. IS THERE A GOOD BUTCHER IN TOWN? – DATA AND THEORETICAL BACKGROUND</td>
<td>9</td>
</tr>
<tr>
<td>CHAPTER II. LOOKING FOR THE BUTCHER – AN ASSESSMENT OF THE ZOOARCHAEOLOGICAL DATA</td>
<td>33</td>
</tr>
<tr>
<td>CHAPTER III. WILLIAMSBURG BETWEEN THE WARS</td>
<td>54</td>
</tr>
<tr>
<td>CHAPTER IV. BUTCHERS IN INTER-BELLUM WILLIAMSBURG</td>
<td>70</td>
</tr>
<tr>
<td>CHAPTER V. BUTCHERS AND THE DOCUMENTARY RECORD</td>
<td>83</td>
</tr>
<tr>
<td>CHAPTER VI. BUTCHERS AND BONES: INTERPRETATIONS AND CONCLUSIONS</td>
<td>101</td>
</tr>
<tr>
<td>APPENDIX A: TABULAR DATA FOR FIGURE 4 – SPECIES DIVERSITY</td>
<td>115</td>
</tr>
<tr>
<td>APPENDIX B: TABULAR DATA FOR FIGURES 5-8 - ELEMENT DISTRIBUTIONS</td>
<td>116</td>
</tr>
<tr>
<td>APPENDIX C: TABULAR DATA FOR FIGURES 9 &10 - FORE-/HINDQUARTER BREAKDOWNS</td>
<td>117</td>
</tr>
<tr>
<td>APPENDIX D: TABULAR DATA FOR FIGURE 11 - BUTCHERY</td>
<td>118</td>
</tr>
<tr>
<td>APPENDIX E: FAUNAL DATA FOR THE WILLIAMSBURG MOVIE THEATER, PIT 19</td>
<td>119</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENTS

Many people have provided support and aid to me during the course of researching and writing this paper, not least my committee members. This thesis has benefited greatly from their input and interest. I would first like to say çok çok teşekkür ederim to my chair, Dr. Mary Voigt, who provided (among other things to numerous to mention) clear-headed editing, a forum for sharing my ideas, a calm place to write, and exposure to a wider archaeological world. Many thanks, too, are due to Dr. Joanne Bowen, who put her lab and staff at my disposal during all phases of my research (no small favor!), and who gave me the benefit of her knowledge and the gift of her support and enthusiasm throughout the years I spent bothering her about the nineteenth century. Last but not least, I am deeply grateful to Dr. Marley Brown for all his help: he has challenged me, given me a venue to stretch my talents, and supported me in the exploration of my professional interests. Many (inadequate) thanks to all of you.

I must next thank my friends and colleagues, for without their forbearance and support this task would have been much the harder to complete. So, to Mark, Lisa, Kelly, Christine, the two Pauls, Dave, Jamie, Andrew, Jason, Lily, Hank, Andy and Greg, who have had to listen to me blather on about this thing for lo, these many years, I say “Thanks!”. I want to give extra-special thanks to Grey for giving me a home, cats to play with, and a creative outlet for my energies.

Finally, my thanks must go to my family and to Hüsnü. Any thanks I give to them are insufficient to repay the faith they have had in me and the encouragement they have given me.
LIST OF TABLES

Table Page
1. Site information 14
2. Relative percentage of adult cattle meat cuts 48
LIST OF FIGURES

Figure	Page
1. Location of the Movie Theater site and Block 15 in Williamsburg, Virginia | 9
2. Detail of features uncovered at the Movie Theater site | 10
3. Detail of excavations on Block 15 relating to butchers | 12
4. Location of sites discussed in this paper | 15
5. Species diversity comparisons | 34
6. Element distributions – Adult cattle | 37
7. Element distributions – Immature cattle | 38
8. Element distributions – Pigs | 39
9. Element distributions – Caprines | 40
10. Fore/hindquarter breakdowns – Pigs | 44
11. Fore/hindquarter breakdowns – Caprines | 45
12. Relative percentages of hacked and sawn bones | 49
ABSTRACT

The goal of this thesis was to answer a seemingly simple question: is the animal bone material found at the early nineteenth-century Williamsburg Movie Theater site the refuse from a butcher? To accomplish this task the faunal remains were analyzed using standard zooarchaeological measures of urbanization -- species diversity comparisons, and relative body-part ratios, along with a comparison of the proportions of hacked and sawn bones -- which had been extended to create hypotheses for the patterns that would perhaps be seen in a nineteenth-century butcher’s discarded bone material. In summary, a producer/consumer, or rural domestic site, is expected to demonstrate a wide diversity of species, and normal skeletal profiles are anticipated, illustrating self-sufficient provisioning and consumption and disposal of animals raised on the property. Urban domestic sites, then, should show an urban consumer pattern consisting of a much more restricted range of species than would a producer/consumer, or rural domestic site, and non-normal element distributions indicative of purchase of meats (Walsh et al. 1997: 67-73). Faunal assemblages from meat processor/distributor sites should, by extension, evince little-to-no species diversity and possess an element distribution profile skewed toward the waste parts and non-commercially valued pieces. They should also show greater evidence of commercial butchery than should the domestic sites.

The Movie Theater results were compared with those from a mid-eighteenth-century butcher’s site, five early-to-mid-nineteenth-century urban domestic sites, and an early nineteenth-century rural domestic site to isolate differences among the various site types. The results of the zooarchaeological analyses were ambiguous: the Movie Theater site supported the species diversity hypotheses, did not sustain the body-part ratio hypotheses, and did not entirely uphold the hacked/sawn bone proportion hypothesis. However, the documentary research pertaining to the nature of nineteenth-century Williamsburg; butchers and the acquisition of meat in that time and place; and butchers and the practice of butchery in the late-eighteenth/nineteenth century provided data that could explain the results of the analyses in terms of the practice of butchery and the lives of butchers.

Ultimately, it could not be definitely concluded that a butcher created the Williamsburg Movie Theater assemblage, but that possibility could not be ruled out. The overall results do suggest that a reworking of the standard models to take into account the unique natures of small towns such as Williamsburg in the nineteenth century should be considered – a move such as this could highlight data pertinent to this study that is obscured by the urban/rural dichotomy that the models currently support.
SATISFYING WILLIAMSBURG’S “MEAT-TOOTH”:
BUTCHERS AND BONES IN INTER-BELLUM WILLIAMSBURG, VIRGINIA
INTRODUCTION

In 1997, a group of archaeologists and historians completed a landmark study of the ways people fed and warmed themselves in the eighteenth-century towns of the Chesapeake region, focusing on the capital cities of Williamsburg, Virginia and Annapolis, Maryland (Walsh et al. 1997). This research team synthesized the results from a large number of animal bone analyses from the region and combined these data with the available historical sources regarding such topics as colonial period animal husbandry, crop raising, planters’ and farmers’ activities and economic decision-making, the dealings of merchants and middlemen, and other pertinent themes. The combination of faunal data and historical research created one of the most complete pictures that can be formed of the ways in which foodstuffs, animal and vegetable, were raised, marketed, prepared, consumed, and discarded, the foodways of Chesapeake urban residents (Anderson 1971).

The picture that the researchers paint of Williamsburg is typical of small urban places in the eighteenth-century Chesapeake. While becoming increasingly more commercialized as the century progressed, the local provisioning system was “largely based on direct urban-rural connections” (Walsh et al. 1997:159). Those in a position to do so supplied themselves from their own farms or from land that they leased. In addition, many acquired meat
through kin or social ties to rural producers. These relationships involved people who knew one another, often were related by blood or marriage, and who were frequently linked by long-standing bonds of credit and debt. Newcomers to town and others unlucky enough to have no ties with the countryside had to feed themselves by purchasing, often either on less than favorable credit terms or with cash, from the market and from middlemen such as butchers in town (Walsh et al. 1997:1-7).

The final research report, *Provisioning Early American Towns. The Chesapeake: A Multidisciplinary Case Study* (Walsh et al. 1997), fits nicely into the scholarship of the region - the towns were specifically chosen because so much research already existed as a base on which the project could be conducted. One could argue that the documentary history of eighteenth-century Williamsburg and the Chesapeake is one of the most highly researched and exhaustively published combinations of era and area in the nation. The same cannot be said for nineteenth-century Williamsburg and environs. Williamsburg was the center of Virginia’s political and social activity for most of the eighteenth century, but after 1780, when Richmond was named the capital of Virginia, and the activity that animated the town relocated west, it was little regarded by either modern historians or contemporary observers. A result of this inattention is that little is known about nineteenth-century Williamsburg residents, including the ways in which they acquired meat products and how these foods were processed, distributed, regulated, and legislated, vital bits of information for zooarchaeologists.
An opportunity to rectify this situation arose when in 2000 the Colonial Williamsburg Foundation conducted an excavation behind the Williamsburg Movie Theater in Williamsburg, Virginia. Here they discovered a large collection of animal bones that had the potential to fill in a part of this gap. Certain characteristics of the deposit suggested that they were butcher’s waste. Those bones, dating to the second quarter of the nineteenth century, are the central focus of this paper. My goal is to answer a seemingly simple question: is the animal bone material found at the Williamsburg Movie Theater site the refuse from a butcher, a middleman meat processor with an important role to play in urban provisioning?

To accomplish this task, two things were done: first, the faunal remains were analyzed using common zooarchaeological measures of urbanization -- species diversity comparisons and relative body-part ratios, along with a comparison of the proportions of hacked and sawn bones in each assemblage. These models, used to assess relative levels of production for and consumption from an urban market system, have been adapted here to create hypotheses for the patterns that would perhaps be seen in a nineteenth-century butcher’s discarded bone material. In summary, a producer/consumer, or rural domestic site, is expected to demonstrate a wide diversity of species, and normal skeletal profiles are anticipated, illustrating self-sufficient provisioning and consumption and disposal of animals raised on the property. Urban domestic sites, then, should show an urban consumer pattern consisting of a much more restricted range of species than would a producer/consumer, or rural domestic site, and
non-normal element distributions indicative of purchase of meats (Walsh et al. 1997: 67-73). Faunal assemblages from meat processor/distributor sites should, by extension, evince little-to-no species diversity and possess an element distribution profile skewed toward the waste parts and non-commercially valued pieces. They should also show greater evidence of commercial butchery than should the domestic sites.

The Movie Theater data were compared with the faunal materials from a mid-eighteenth-century butcher’s site, five early-to-mid-nineteenth-century urban domestic sites, and an early nineteenth-century rural domestic site to isolate differences among the various site types. The results of the zooarchaeological analyses were ambiguous: the species diversity ratios from the Movie Theater site resembled those proposed for a butcher’s establishment, but the body-part ratios and the hacked/sawn bone proportions did not. The species diversity ratios from the domestic sites used in the study did resemble those modeled for urban and rural domestic sites, but oddly the sites did not possess body-part ratios truly similar to those expected for domestic sites.

Next, historical sources pertaining to three topics were consulted: the social and economic nature of nineteenth-century Williamsburg; butchers and the acquisition of meat in that time and place; and butchers and the practice of butchery in the late-eighteenth/nineteenth century. These three themes were combined in the construction of an historical context that could be used to meaningfully interpret the results of the faunal analyses and possibly explain the ambiguities seen there. These documentary sources provided data that were
able to explain the results of the analyses in terms of the practice of butchery and the lives of butchers, and prevented the exclusion of a butcher as the creator of the Movie Theater assemblage. At the same time, however, documentary data could not completely provide for the positive identification of a butcher. And, for the most part they were not useful in explaining the odd results of the analyses.

The uncertain results for all the sampled site types do suggest that a reworking of the standard models of urbanization used by zooarchaeologists to take into account the unique natures of small towns such as Williamsburg in the nineteenth century should be considered – a reevaluation such as this could highlight data pertinent to this study which is obscured by the urban/rural dichotomy that the models currently support. It is possible that the provisioning system in place during the early nineteenth century is a thing that was distinctive to small towns, and that requires additional study to isolate and understand.

Terms

A number of terms used frequently in this paper require explanations. First, an urban consumer or urban domestic site is one located in a town or city whose occupants are presumed to buy, not raise, the foodstuffs that are eventually disposed of on site. The occupants of a rural consumer, rural domestic, or producer/consumer site raise foods, consume them, and discard the waste products on site. A processor/distributor site, such as a butcher’s or slaughterer’s establishment, is a place where animal foods are handled and altered in some way – butchered, dressed, and sectioned in these cases – with
the bulk of the material ending up elsewhere. A *caprine* is a sheep or goat; these animals are very different to tell apart based solely on their bones, and are consequently lumped together here as caprines for convenience. *TPQ*, or *terminus post quem*, is a statement indicating the earliest date that an archaeological layer or feature could have been created, based on the most recent artifact contained within it. Finally, *inter-bellum* is the term used here to indicate the time period on which this paper is primarily focused – the period between the Revolutionary and Civil Wars.

Paper format

The format of the paper is as follows: Chapters 1 and 2 are revised versions of an analysis written with the advice of Dr. Joanne Bowen of the Colonial Williamsburg Foundation for the Williamsburg Movie Theater archaeological report (Harwood 2001). Chapter 1 describes the site, explains the problem, and lays out the theoretical background and analytical models used in creating the hypotheses employed here. Chapter 2 presents the results of those tests of those hypotheses.

The failure of the results to support some of the hypotheses directed the respective emphases of Chapters 3, 4, and 5. Because the nature of the town at the time that the Movie Theater assemblage was deposited was poorly understood, available documentary sources about the town -- its people, economy, and businesses -- were compiled and are presented in Chapter 3 as a snapshot of Williamsburg during the inter-bellum period. Chapter 4 then
presents the available information about butchers and meat acquisition in nineteenth-century Williamsburg. To enhance the rather scanty information about butchers and butchery in nineteenth-century Williamsburg outlined in Chapter 4, Chapter 5 takes a wider view of the profession, gathering information from far ranging sources. Chapter 6 takes the knowledge collected in the previous three sections and marries it to the test results, to attempt explanations for the patterns seen in Chapter 2.
CHAPTER I:
IS THERE A GOOD BUTCHER IN TOWN? –
DATA AND THEORETICAL BACKGROUND

The Williamsburg Movie Theater Site

In April 2000, Colonial Williamsburg’s Department of Archaeological Research began an excavation in anticipation of the renovation of the historic Williamsburg Movie Theater, located on Block 15 at the west end of Duke of Gloucester Street in Williamsburg, Virginia (figure 1) (Harwood 2001). The excavation revealed a brick house foundation built after 1820, with three associated refuse pits, two outbuildings, garden features and fence lines (figure 2) (Harwood 2001:18). The dwelling appears to have stood until 1921.

Figure 1. Location of the Movie Theater site and Block 15 in Williamsburg, Virginia
Documentary evidence identifying the owners or occupants of the structure is scanty at best, as it falls into the part of town that lies within James City County, a "burned county" whose records were destroyed in the Civil War. Ownership of the plot between 1720 and about 1875 is completely unknown (Harwood 2001:3-4).

Among the discoveries from the excavations conducted at this site was a collection of 3,279 animal bones from two pits (refuse pits 19 and 48 -- TPQ 1830) associated with the post-1820s domestic structure. Joanne Bowen and Stephen Atkins, Colonial Williamsburg zooarchaeologists studying the bones, quickly noticed that the assemblage did not look like that from a domestic site. For one thing, the artifact lists from the pits did not contain the typical

\[\text{Figure 2. Detail of features uncovered at Movie Theater site.} \]
assortment of trash related to a domestic occupation; in fact, there were very few artifacts associated with the bones, a highly unusual occurrence. Trash pits dug to hold the garbage from a household do just that - they are filled not only with bone, but with broken and unwanted goods such as bottles, dishes, and other domestic debris as well. These pits contained little other than tightly packed bone, suggesting that they were dug solely for the purpose of disposing that material.

While the recovery of “just bones” sent up a signal to examine those bones much more closely, a lack of associated artifacts was not the only odd thing about the assemblage. The bones themselves possessed some curious qualities, seeming to represent only three species: cattle, pigs, and sheep. This combination of animals is common; the discovery of them unaccompanied by other food species, is not. Domestic sites ordinarily have domestic birds, wild birds and mammals, fish, and turtles in their faunal assemblages, as well as domestic mammals (Reitz 1986a). In addition, many of the bones showed butcher’s marks, both hacking and sawing, the latter a nineteenth-century innovation indicative of increased commercialization in meat marketing (Bowen and Manning 1994).

The combination of characteristics described above led the archaeologists to speculate that the pits contained the refuse not from a household, but from a butcher’s operation. This conjecture was strengthened by evidence from archaeological and documentary investigations conducted on Williamsburg’s Block 15 at the previous Post Office in the 1960s (Hume 1961) and at the old
Firehouse in the 1980s (Samford and Bowen 1990), which suggested that Block 15 had been the home and/or workspace for butchers through the middle and late eighteenth century (figure 3)(Harwood 2001:35). Block 15 was an intermediate area of colonial and nineteenth-century Williamsburg, on the sparsely populated western edge of town away from the more closely settled east end of town, and was in the area of town in which craftsmen plied their trades (Harwood 2002, pers. comm.). This space was an ideal location for a rather messy profession requiring contact with the country for its raw materials, and close interaction (but not too close, as is often ensured by increasing legal sanctions) with an urban area to distribute them. The finds at the Movie Theater suggest that this trend continued into the nineteenth century, as well.

Figure 3. Detail of excavations on Block 15 relating to butchers.
The possibility that an occupant of the Movie Theater site was a butcher, and that the refuse in the pits was the detritus of this craft, presented a zooarchaeological opportunity. Other than the assemblage from the mid-eighteenth-century Firehouse site (Samford and Bowen 1990), no other butcher site has been explored in Williamsburg, or is known to have been analyzed in the Chesapeake region. In addition, the Movie Theater assemblage is the only known example of a possible nineteenth-century butcher in the area to have been analyzed as research in the region has focused on domestic, not commercial sites. And, while the food provisioning system in the Chesapeake has been extensively researched for the eighteenth century (Walsh et al. 1997), very little is known about how meat foods were produced, acquired, processed and cooked in the nineteenth century, a time period which saw major shifts in the performance and meaning of these actions (Bowen and Manning 1994). Discovery of the faunal assemblage from the Movie Theater site provided a unique occasion to examine one possible aspect of this as-yet-poorly-understood system.

The Comparisons

To ascertain whether the bones from the Movie Theater Site were indeed those from a butcher's enterprise, a team of Colonial Williamsburg zooarchaeologists began a detailed analysis of the bones. Carrying out this test, however, was more easily proposed than accomplished. Since no previously analyzed butcher site from the nineteenth century was available for comparison
with the Movie Theater assemblage, another way to isolate the characteristics of this bone collection had to be found. For this purpose, a combination of sites was drawn on. First, the mid-eighteenth-century Firehouse butcher's site was used as a site of presumably the same type, although from an earlier time period (table 1). This site, excavated in 1983, is located on the south half of Block 15 [the same block on which the Williamsburg Movie Theater is found] (see figure 3). Among the archaeological features explored was an eighteenth-century refuse deposit (15C-41) containing over 4000 bones. Given the predominance in it of bones associated with butcher's waste (sheep heads and cattle hooves, for example), the deposit has been attributed to Benjamin Hanson, a free mulatto who worked as a butcher from about 1736 to 1753/4 (Harwood 2001: 7-8).

Table 1. Site information

<table>
<thead>
<tr>
<th>Site</th>
<th>TPQ</th>
<th>Bones recovered</th>
<th>Identifiable bones</th>
<th>Percent identifiable</th>
</tr>
</thead>
<tbody>
<tr>
<td>18<sup>th</sup> C. Processor/Distributor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firehouse</td>
<td>1740s-60s</td>
<td>4486</td>
<td>1929</td>
<td>42.1</td>
</tr>
<tr>
<td>Possible 19<sup>th</sup> C. Processor/Distributor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Movie Theater</td>
<td>1830</td>
<td>3152</td>
<td>616</td>
<td>19.5</td>
</tr>
<tr>
<td>19<sup>th</sup> C. Urban Domestic Consumer Sites</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grissell Hay</td>
<td>1820</td>
<td>485</td>
<td>202</td>
<td>41.6</td>
</tr>
<tr>
<td>Late Burdett's</td>
<td>1830</td>
<td>1133</td>
<td>259</td>
<td>22.9</td>
</tr>
<tr>
<td>Morrison</td>
<td>1804-30</td>
<td>2443</td>
<td>465</td>
<td>19</td>
</tr>
<tr>
<td>Early Peachy</td>
<td>1820</td>
<td>1510</td>
<td>273</td>
<td>18</td>
</tr>
<tr>
<td>Late Peachy</td>
<td>1845-50</td>
<td>576</td>
<td>102</td>
<td>17.7</td>
</tr>
<tr>
<td>19<sup>th</sup> C. Rural Producer/Consumer Site</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steptoe</td>
<td>1811-32</td>
<td>2759</td>
<td>780</td>
<td>28.3</td>
</tr>
</tbody>
</table>
Figure 4. Location of sites discussed in this paper.
In addition, it needed to be determined if and how the Movie Theater assemblage differed from contemporary household faunal assemblages. To this end, the Theater assemblage also was contrasted with six early-to-mid nineteenth century domestic, or consumer, sites from Williamsburg and environs (table 1), described below. If this series of comparisons allowed the identification of the Theater assemblage as that of a butcher, it would then be possible to make some preliminary statements about meat processor/distributor sites, and to create a baseline for what a nineteenth century butcher's establishment looks like archaeologically.

Urban domestic sites

Grissell Hay (TPQ 1820)

The Grissell Hay site, so called for the boarding house owner/proprietor who lived and worked on the property from the late 1760s, is located on the northwest corner of Market Square within the town of Williamsburg, Virginia. The faunal assemblage studied from the Grissell Hay site appears to date to the ownership of William W. Webb, a New York transplant who owned the property from 1823 to at least 1835, but who may not have been the source for the assemblage. John E. Browne and his family were living on the property in 1830, and may have created the deposit (Stephenson 1990 (1948): 10). The 485 bones recovered were excavated from a trash pit with a TPQ of 1820 along with a large number of artifacts and oyster shells during the 1992 Learning Weeks session, a training opportunity run by Colonial Williamsburg for amateur archaeologists. The pit likely was filled after 1825, as Webb had a great deal of
construction performed on the lot at this time (ibid), and the bottom of the pit was filled with brick and mortar rubble (Colonial Williamsburg excavation form 29CB255, on file).

Morrison - east lot 58 (1804-1830)

The eastern half of lot 58, located right next to the Capitol Square on the north side of Duke of Gloucester Street in Williamsburg, Virginia, was from 1765 to 1771 the site of Richard Charleton’s coffeehouse, frequented by the wealthy and once subject to Stamp Act-related mob actions. Merchant George Morrison purchased the property in 1804 to use as a residence for himself and his family. George’s wife Charlotte and their children remained in the house after George’s death in 1834. Charlotte and daughter Emily were in residence through the Civil War, and Emily lived in the house until her death in 1887 (Gibbs 1996: 13-22). The 2443 animal bones examined in this study were excavated during Colonial Williamsburg’s archaeological explorations on the property conducted in 1998 to recover data pertaining to the 1765-1771 coffeehouse (Garden et. al 2001). The faunal assemblage is from a refuse layer characterized by a build-up of dark brown loam, which dates to the period 1804 - 1830, when the Morrison family lived on the property. The faunal remains are thought to be associated with their household.

Late Burdett’s - west lot 58 (TPQ 1830 [corrected])

The western portion of lot 58, a plot of land on the north side of Duke of Gloucester Street immediately adjacent to the Capitol Square in Williamsburg, Virginia, was once the site of Burdett’s Ordinary, a tavern operating from before
1739 to 1746. The property was variously used as a tavern, store, or coffeehouse through 1777, when documentary sources about its use and occupancy become elusive. These data appear in the record once again in 1817, when the property is purchased by David Chalmers, a merchant who used the land as his home and store. Chalmers sold the property in 1830 to George Morrison, but by this time Chalmers lived and worked elsewhere, the residence/store having been occupied since before 1830 by William Lee. During Morrison’s ownership to 1834, and under the purview of his estate from 1834-1853, two other tenants kept home and shop on the property, Peter H. A. Bellett by 1839, and John M. King by 1846. (Gibbs 1996: 25-37).

The faunal remains from the western half of lot 58 were also recovered during the 1996 season of the coffeehouse excavations, and were found in two refuse layers, a dark brown loam with shell, and a dark brown loam below shell, as designated by excavators. The layers have a TPQ of 1864, corrected to 1830 on the basis of yellowware, as the index artifact for the 1864 date (colorless unleaded glass) is no longer recognized as diagnostic for that date by the Colonial Williamsburg laboratory unless specifically identified as Leighton’s Patent glassware (Fischer 2001, pers. comm.). The 1830 TPQ associates the faunal remains possibly with one of these households of merchant-tenants who occupied and kept shop on the property from before 1830 to at least 1859, and likely into the late 1860s (Garden et. al 2001).
Early Peachy (TPQ 1820)

Late Peachy (TPQ 1845-50)

The Peachy assemblages were recovered during an excavation at what is called the Peyton Randolph house, located on the southeast corner of the intersection of Nicholson and England Streets, in Williamsburg, Virginia (Edwards et al. 1988). The property, once owned by Randolph, was owned and occupied by various members of the Peachy family from about 1799 to 1858 (Gibbs 1990). Thomas Griffin Peachy, of Petersburg, relocated to Williamsburg in 1799, purchased the lots, and moved into the house. He was joined in 1803 by Mary M. Peachy, his son's widow, and their four children. Heavy debts against Peachy's son's Flowerdew Hundred plantation led Peachy to sell it, in violation of Mary Peachy's marriage and dower rights. However, Peachy made arrangements to leave her all his own property and possessions for her use and maintenance after his death.

Thomas Peachy died in 1810. Mary Peachy continued to live in the house, but began to take in boarders to support herself and her children. One of her boarders, Mr. Morse, ran a girls' academy; he, his daughter, and apparently a number of the students lived at Mrs. Peachy's. Mrs. Peachy seems to have run a very genteel establishment, as one guardian notes that girls boarded there would "see the best society in the place [Williamsburg], & be more in company than in most of the Houses here" (letter of Susan Bowdoin to Joseph Prentis 1825 in Gibbs 1990: n. p.). Indeed, Mrs. Peachy was the woman elected to play hostess to General Lafayette on his celebrated return to Williamsburg in 1824.
Mrs. Peachy and her boarders appear to have occupied the house until her death in 1836.

Upon Mary Peachy's demise, one of her sons, Dr. Thomas Griffin Peachy, Jr. and his family took up residence in the house. Dr. Peachy, a director of the Eastern State Hospital from 1817 through 1841, lived with his family in the house until 1849, at which time the property was transferred to his son Archibald, a resident of California. Archibald Peachy owned the property until 1857, but must have rented it out, as he remained living in the west.

The faunal assemblage dating to the Early Peachy period is from a group of loam, shell, and rubble layers that have a TPQ of 1820. These bones likely are associated with the tenancy of Mary Peachy and her boarders. The Late Peachy bones studied for this project were pulled from two dark loam layers, one with a TPQ of 1845, the other dating from 1850. These are believed to be associated with the latter part of Dr. Thomas G. Peachy and his family's occupancy, or of the unknown tenants living on the property after 1849.

Rural domestic site
Steptoe (c. 1811 to 1832)

The Hewick plantation is located in rural Middlesex County on Virginia’s Middle Peninsula. First inhabited in 1658, it was under the management of Elizabeth Steptoe, a descendent of the original owner, during the period 1803 – 1832. The faunal assemblage from this site was recovered during excavations conducted under the guidance of Dr. Theodore Reinhart of the College of William and Mary in 1989-1990s, and is from a layer of refuse deposited in a
exposed cellar hole, dating from c. 1811 to 1832, the year that Elizabeth Steptoe
died, and the property abandoned. During the time in which the refuse layer in
the cellar was put down, Steptoe ran the plantation alone, her husband having
died in 1803 (Davis 1995:1-3), and appears to have been in financial distress.

General Analytical Procedures And Taphonomic Considerations

All assemblages were analyzed and recorded in accordance with the
general procedures followed by the Colonial Williamsburg faunal laboratory
(Dean 1999: 71-73). For each site, relative dietary importance was calculated
using the standard measures: *number of individual specimens (NISP)*, a tally of
each bone identified to a taxon; the *minimum number of individuals (MNI)* for a
species, a calculation of the smallest number of individual animals that could
account for the array of bones present; the *meat weight*, a measure of the
amount of meat that the MNI represents for each species; and the *biomass*
estimate, an allometric method which calculates the amount of meat supported
by the weight of bone for each species (see appendices). Each of these
quantification methods has its strengths and weaknesses (Walsh et al.
1997:312-314), which were taken into consideration in this study. Results of the
various analyses conducted here are made somewhat tentative by the small
numbers of bone in the assemblages, a few of which did not meet the
recommended minimum MNI of 25 (Cruz-Uribe 1988).

All faunal assemblages examined in this study come from well-dated
contexts within sites excavated using shovels and trowels, and were sieved
through 1/4-inch hardware cloth, resulting in the recovery of small bird and mammal elements for the sites in the sample. Taphonomic processes such as weathering and animal chewing (Gifford 1981) that can affect bone identification were noted during the bone classification procedures. None of the sites examined show significant amounts of these post-depositional modifications.

The sites in the sample do show varying levels of bone fragmentation that may have had some effect on bone identification. High levels of assemblage fragmentation can skew identifications toward those bones that are more durable, such as teeth and foot bones (carpals, tarsals, and phalanges), or those easily identified even if broken up, such as teeth, foot bones, and cranial bone fragments. However, the majority of the assemblages have a similar identifiable bone percentage, that is, the percent of bones able to be identified to at least the taxonomic level of Order, of between 17.7 and 28.3 percent (table 1), and do not show inflated MNI based on those stronger or more easily identified bones. This group includes both assemblages from protected contexts such as pits, and those from exposed outdoor soil layer contexts. Fragmentation and small sample size may prove factors in the strength of interpretations of the results of this study, but faunal analyses of early nineteenth-century sites in the Tidewater are not common and need to be undertaken even if they are not optimal.

Analytical models

Comparisons between the above sites were accomplished through the creation of hypotheses to be tested by the application of current theories about
and measures of urbanization and its effect on faunal assemblages. Zooarchaeological studies of the establishment and growth of cities in Europe, the Near East, and North America have revealed patterns that seem to apply worldwide (Maltby 1979; Stein 1987; Zeder 1988; Crabtree 1990; Bowen 1992; Landon 1996). In brief, as human populations become more concentrated, the open spaces within towns necessary for households to raise their own livestock for food become restricted. Concurrently, rural areas surrounding the city react to the urban need for provisions by first selling excess produce in the city, then producing foodstuffs specifically for urban consumption. Middlemen, such as butchers or grocers, take on the role of procuring, processing, and distributing foods to urban dwellers. In addition, laws are commonly enacted limiting the location of noxious industries such as butchery, and the importation of their raw materials (animals or carcasses) and disposal of their waste products (bones and offal), as well as household participation in and disposal of the same.

Zooarchaeologists studying urban societies have isolated three measures by which the level of an assemblage’s participation in an urban market economy could be ascertained: species diversity, element (or body part) distribution, and age ratio comparisons. Walsh et al. summarize:

"In an urban environment, age profiles from domesticated cattle, pigs, and sheep should show a specialized form of animal husbandry. The variety and relative importance of different animals should reveal whether the combination of decreased habitat in urban areas and decreased contact with rural residents markedly reduced the availability of wild animals for urban consumers. Element distributions of the major domestic mammals should show the effects of commercial butchery and marketing. Taken as a whole, these pieces of evidence provide a measure of the"
extent to which the provisioning system has become specialized” (1997:68). [emphasis mine]

The focus of this study is on differentiating the remains of a butcher’s operation from other types of assemblages in an environment known to have had a nascent specialized provisioning system (Walsh et al. 1997). Two of the three measures of market participation, species diversity comparisons and element distributional analyses, were chosen as best suited to allow the sorting out of differences between site types and to give researchers the means to begin to recognize nineteenth-century butchers’ sites. The third measure, age ratio comparisons, was not considered appropriate for this study due to the small sample sizes of most of the assemblages.

Species diversity

My study of the sites in the current data set began with species diversity analysis. Zooarchaeologists looking to understand the nature and relationships of urban and rural domestic sites have often employed observation of the range of species of animals utilized at a site. Reitz conducted a study of 16 urban and rural sites from South Carolina and Georgia dating from the late-eighteenth to the mid-nineteenth century, which revealed a clear pattern of difference between the two (1986a:55-56). In contrast to the rural sites, which likely were more self-supporting entities, the urban diet consisted of greater amounts of meat from domestic animals, including domestic birds; wild species were much less frequent in urban assemblages than in rural. Reitz concluded that urban diets
were less diverse than rural ones, a trend she related to the dependence of urban consumers on market distribution systems to obtain their meat.

Rothschild echoes Reitz’s conclusions in her 1989 article comparing the diversity of species between highly urbanized New York City and Florida’s less developed St. Augustine, showing again that urban domestic sites have less diversity of species than rural sites, especially for those inhabitants most dependent on the market for their subsistence (92-93). She also proposes that “… the increasing participation of an urban community in a market economy, and an increasing reliance on specialist provisioners (butchers and commercial fishermen)…will lead to greater standardization in foods consumed and consequently lower diversity” (Rothschild 1989:93). The spectrum of diversity seen in these studies and others (Zeder 1988; Bowen 1992; Landon 1996), with highly diverse rural diets on one end, and less diverse urban ones on the other, is hypothesized to extend to and include the faunal assemblages from the “specialist provisioners” mentioned by Rothschild, bumping the urban domestic sites to the center of the range. The refuse from a butcher’s operation in an urbanized area should be, by the logic used above, the least diverse faunal assemblage seen in our comparisons.

Element distributions

Element distributional analyses were then conducted on the sites in the study. These involve looking at the frequencies of body parts and bones for each species in an assemblage and comparing them to those of the same species in each of the other assemblages studied. Both prehistoric and historical
archaeologists have used variants of element distribution analyses to make statements about why certain bones or groupings of bones are found at archaeological sites. Walsh et al. (1997:315) summarize a number of the ways in which prehistoric archaeologists have applied element distributions (White 1952; Perkins and Daly 1968; Yellen 1977; Binford 1978; Lyman 1979; Gifford 1981; Jones and Metcalfe 1988; O'Connell et al 1988). Some archaeologists have explained the differences in the presence of some bones over others in terms of their different densities and the resulting differential element preservation. Others have attempted to explain differences in bone frequencies through differences in nutritional content of various body parts; a number have focused on the ratio of meat to bone in meat cuts as the main reason for differences in assemblages. Still others have focused on efficiency as the primary reason determining what bones appear in an archaeological assemblage and what do not. These latter studies have tended to focus on either how much various cuts weigh, or how easily meat can be removed from the bone as being the agent that determines which bones get left at the kill site and which get transported, or ‘schlepped’ back to the base camp.

Historical archaeologists, too, have applied the techniques of element distributional analysis to explain the patterns of butchery found on more recent sites. Zooarchaeologists studying faunal assemblages from eighteenth-century urban and rural domestic sites in the American south have made use of a basic method popularized by Reitz (1986b) in which a site’s ratios of head (cranial bones), body (ribs, vertebrae, pelvis, and upper fore- and hind-limbs) and foot
(lower fore- and hind-limbs) skeletal elements is compared to the proportions seen in a whole animal to isolate discrete patterns in these ratios. At sites that participate in an urban market economy, a preponderance of meaty body elements is seen, greatly outnumbering the presumably less desirable head and foot parts (Landon 1996:8; Walsh et al. 1997:73). Rural sites, in contrast, where animals are raised, slaughtered, and disposed of on site, show an element distribution approaching that of the (normal) ratio seen in the complete skeleton. This pattern is seen as well in studies conducted in New England (Bowen 1992) and in the Near East (Zeder 1988). Extending this model for the present study, butchers’ sites, as processor/distributor rather than consumer sites, were hypothesized to possess mostly waste parts -- heads and feet -- a reversal of the pattern seen at urban domestic sites, the likely final destination of the missing fleshy parts.

Meat cut distributions

In conjunction with the simple element analysis of comparing frequencies of head, body and foot bones, a study of meat cut distributions, not individual bones, was performed. As a butcher would generally have sold a part of an animal as a cut of meat (a roast, for example), rather than in the form of a single bone such as a femur, it was postulated that looking at bones as cuts of meat may be a complementary measure for exploring differences between processor/distributor sites and those of consumers.

Element distributions based on meat cuts have often been employed in studies attempting to determine the level of wealth or socioeconomic status of a
site’s occupants. Schulz and Gust (1983), for example, looked at the ratios of different cuts of beef found at a range of sites from late nineteenth-century Sacramento, among them a high-class hotel, saloons of varying distinction, and a prison. Using contemporary data about meat cuts and prices, they created a rank value of meats and found that, indeed, the establishments catering to wealthier, higher status clients had faunal assemblages containing the remains of pricier cuts of meat, and those entertaining lower-class patrons had correspondingly cheaper meat remains. Lyman (1987) elaborated on Schulz and Gust’s method, but, hearkening back to methods used by the prehistorians, proposed that bones should be sorted into meat cuts ranked by greatest meat to bone ratios, creating more- and less-cost-efficient meat cuts. It was felt that this type of method could be “tweaked” to the purposes of the present study, but, because of constraints imposed by availability of contemporary documentary information, this analysis had to be accomplished in two stages: first, through the creation of a comparison between rankings of caprine and pig fore- and hind-quarter elements; next, by looking at rank values of adult cattle meat cut percentages.

Contemporary accounts reveal that in the early nineteenth-century, the hindquarters of pigs and caprines were in greater demand and were considered more desirable than the forequarters. The relative prices of these pieces given by contemporary writers bear this out. Child, for example, urges thrifty housewives to buy the forequarters of both animals “for economy”, noting that a hindquarter of mutton was more expensive than the shoulder (1833: 46). Fogg
too prices the hindquarter at two to four cents more than the forequarter (1832: xxxii-xxxiii). In light of this, the relative percentages of these parts were examined for each site in the current to see whether there was a preponderance of hindquarter elements in relation to forequarter parts at the domestic sites, the former being the more highly valued parts of these animals. Urban domestic sites were hypothesized to contain more hindquarter elements -- representing the purchase of such coveted meaty parts as hams, for example, or legs of mutton -- than would a butcher's site, which would have sold off those pieces to consumers.

Similarly, the adult cattle bones in the assemblages were ranked according to the meat cut value found in contemporary records. Arthur Young, in his 1793 "Annals of Agriculture and Other Useful Arts" presents a diagram of the cuts of meat created from a steer, along with a chart providing the price of each cut in London at that time. From this, the adult cattle remains from the sites in this study were broken down into the relative percentage of elements present for each cut of meat, then plotted by price category. An hypothesis was formulated that bones from cheaper, less desirable cuts of meat would be found at a butcher's site, not as markers of socioeconomic status, but under the assumption that consumers would be more likely to purchase the more desirable (i.e. higher priced) cuts, which remains would then be found in greater relative quantities at the urban domestic sites in the study. The bones remaining at the butcher's were supposed to represent cheaper cuts, as the butcher would be more motivated to sell high priced cuts of beef.
Butchery type

One final analysis was performed on the assemblages in this study, a comparison of the relative ratios of hacked and sawn bone from each site. In the course of the development of butchery studies among historic sites, a number of analysts began to study the methods and marks of butchery, as well as the cuts produced (Crader 1990; Bowen and Manning 1994; Landon 1996). The zooarchaeologists had noted that although modern animals are sawn into the cuts of meat familiar today, bones from colonial assemblages are chopped. Bowen and Manning summarize the transition in their analysis of faunal remains from various Harper’s Ferry (W. Va.) sites dating from the nineteenth and early twentieth century: animals used to be marketed to consumers in large cuts of meat, which were broken down even further with axes, knives, and cleavers by the consumer for cooking and serving. At some point, however, the job of the cook became the job of the butcher, and animals were sold sectioned into much smaller pieces than before, sawn neatly into even sizes ready for cooking with little further processing necessary (1994: 9.3). The presence of sawn bone has thus been interpreted as evidence of professional, commercial butchery.

Dean’s (1999) study of the fortunes of one Oliver Phelps of Suffield, Connecticut, is relevant. It addresses a faunal record that stretches over two hundred years, from the 1770s into the 1990s. Her look at the butchery patterns present on site finds a clear break between the 1770 - 1820 period in which 9.1% of her butchered bone sample was sawn, and the 1820 - 1870
assemblage, in which 57.1% of the butchered bone was sawn. The remaining
time periods -- 1870-1930 and 1930-1993 -- continue to show sawn bone
percentages of between fifty and sixty percent (1999:80). Dean attributes this
change to a “network of food sharing breaking down in favor of relationships with
professional butchers” (ibid.). She also lays out what she sees as signs of
professional versus home butchery: professional butchery is seen in more meaty
cuts, smaller cuts, and saw marks, as opposed to home butchery’s bony cuts,
large pieces, and hack marks (1999: 79).

Other analyses, too, note the presence of sawn bone. Faunal studies
conducted by Burk on the armory workers’ assemblages from Harper’s Ferry
show a trend toward increased sawing as the nineteenth century progressed
(Shackel 1996). The pre-1841 armory workers’ assemblage (1820s- 1841) from
Harper’s Ferry sports an assemblage with a high (65%) percentage of butchered
cattle bones, “almost all” of which were sawn. Only two-thirds of the butchered
pig bones were sawn (1996:139). The later armory workers’ assemblage (1841-
52) in general showed “an increase of sawed bones relative to chopped and
hacked bones” (1996:141). Langenwalter’s recovery of sawn cattle and sheep
bones in an 1883-1885 trash pit associated with a Chinese store in California is
interpreted to represent purchases from commercial Anglo establishments, as
only bones from these animals showed signs of having been sawn, a technique
alien to Chinese butchers. The pig and chicken remains found at the site were
These associations of sawn bone with increasing commercialization and professionalization of butchery led to the formation of an hypothesis that the processor/distributor sites would be the first to contain quantities of sawn bone, and that it would be greater in proportion to hacked bone than the domestic consumer sites. Rural sites would be likely to have no sawn bone, on the assumption that the occupants would be provisioning themselves, not purchasing meat foods from butchers in the towns.
CHAPTER II:
LOOKING FOR THE BUTCHER – AN ASSESSMENT OF THE
ZOOARCHAEOLOGICAL DATA

This chapter gives the results of the tests explained in the previous chapter. To recap, the comparisons employed in this study are intended to create contrasts between the spectrum of site types referred to in the literature, with the goal of distinguishing the faunal refuse of a butcher, a meat processor/distributor, from that of other sources. Two of the sites studied are considered to be meat processor/distributor sites: a confirmed example from the eighteenth century (the Firehouse site), and possible case from the early nineteenth (the Movie Theater). These sites should evince little-to-no species diversity and possess an element distribution profile skewed toward the waste parts and non-commercially valued pieces. In addition, five urban domestic sites from the first half of the nineteenth century (Grissell Hay; Late Burdett's; Morrison; Early Peachy; and Late Peachy) are used. These should show an urban consumer pattern consisting of a much more restricted range of species than would a producer/consumer, or rural domestic site, and non-normal element distributions indicative of purchase of meats. The final site engaged in this study is a producer/consumer site, an early-nineteenth century rural domestic site (Steptoe) in which a wide diversity of species, and normal skeletal profiles are
expected, illustrating self-sufficient provisioning and consumption and disposal of animals raised on the property.

Results

Species diversity

Based on results from species diversity analyses (summarized above), refuse from a butcher's shop was hypothesized to consist of a narrow range of species, as would be expected from a specialized producer/distributor. The Movie Theater assemblage fits the proposed scenario perfectly, almost shockingly so, and in great contrast to all other sites in the sample under discussion (figure 5 – see Appendix A for raw data). Fully 97% of the Movie

![Species diversity comparisons, based on MNIs](image)

Figure 5. Species diversity comparisons
Theater bones belong to the domestic mammal category: cattle, pigs, and caprines. The remaining percentage came from a dog, a commensal species (commensal species are not normally part of the cuisine of the culture under study, but often, as with dogs, cats, and mice in Anglo-American culture, associated with human habitation). This extreme lack of species diversity was entirely unexpected; faunal assemblages like that from the Movie Theater are clearly not representative of domestic sites.

The other sites in the sample are typical of urban and rural domestic sites: the urban sites display more reliance on domestic meats, mammal and bird, and have fewer wild species than the rural site, which reverses these generalizations. However, regardless of overall abundance or lack of diversity, all of the domestic sites have in their faunal assemblages domestic mammals and birds, wild mammals and birds, turtles, and fish, in varying proportions. Next to these assemblages, the overwhelming concentration of domestic mammal bones - to the exclusion of all else - found at the Theater makes it stands out as something very different.

Interestingly, the Firehouse assemblage, while possessing a greater percentage of domestic mammal bones than the domestic sites both rural and urban, does not approach the lack of diversity seen at the Movie Theater site. It is possible that the time period covered in the Firehouse assemblage, ca. 1740-60, is early enough in Williamsburg’s trajectory of increasingly specialized meat production that although the element distributions indicate specialized marketing of meat products (see below), the focus of production on only certain animals
had not yet become common. Indeed, the species diversity from the Charleston Beef Market (Calhoun et al. 1984) for the first half of the eighteenth century is even more varied than the Firehouse site, possibly supporting this supposition.

Basic element distributions

To review models of relative levels of market participation based on basic element distributions, rural sites, where animals are raised, slaughtered, and disposed of on site, show an element distribution approaching that of the normal ratio seen in the complete skeleton, a producer/consumer model. At domestic sites that participate in an urban market economy, a preponderance of meaty body elements is seen, greatly outnumbering the less desirable head and foot parts, an urban consumer profile. Extending this model then, a processor/distributor site, such as a butcher’s establishment, is hypothesized to possess mostly waste parts -- heads and feet -- reversing the pattern seen at urban domestic sites.

While Bowen and Manning (1994: 9.10) have pointed out that creating element distributions based on MNIs is a more statistically valid method than those based on NISPs, for this small analysis the NISP method was employed as a means of observing general similarities and differences among the assemblages, which are too small to be statistically significant.

Adult cattle

The Firehouse butcher site has the hypothesized processor/distributor pattern; it consists of a high proportion of head and foot elements (the “waste”
parts associated with butchery) and few body elements, in contrast to the "normal" ratios seen in the cattle skeleton (figure 6 – see Appendix B for raw data). The Movie Theater site, however, does not. It actually contains the highest proportion of body parts in relation to head and foot elements of any site examined, and does not fit the proposed processor/distributor model.

Interestingly, the urban domestic sites and the rural domestic site have similar profiles, with body part proportions ranging between 53.5 percent and 75 percent (the rural Steptoe site fell in the middle of the range with a ratio of 60.2 percent body elements) of the total NISP and varying smaller proportions of head and foot bones.

![Element Distributions - Adult Cattle](image)

Figure 6. Element distributions – Adult cattle
Immature cattle

The Firehouse butcher site again fits the hypothesized model for processor/distributor sites, showing a very high proportion of head and foot element in relation to body parts (figure 7 – see Appendix B for raw data). Strangely, the rural domestic site has almost exactly this same element distribution. The Movie Theater site again does not fit the model, showing slightly more head elements than body parts elements. The urban domestic sites do not fall into a coherent pattern, either. The Late Peachy site and the Grissell Hay site are the only sites which evince a clear primacy of body part elements; the Morrison and Late Burdett’s sites both have a barely higher ratio of body part elements than cranial elements; and the Early Peachy assemblage

![Element Distributions - Immature Cattle](image)

Figure 7. Element distributions – Immature cattle
consists of over 80 percent calf head elements, a small proportion of body part elements, and no foot elements.

Pigs

In examining the pig element distributions, not a single site fits the hypothesized model for its site type: processor/distributor, urban domestic consumer, or rural domestic producer/consumer (figure 8 – see Appendix B for raw data). The Firehouse profile is very similar to that of the rural domestic site and most of the urban domestic sites in having a definite majority of head elements, followed by a much smaller ratio of body part elements, then an even smaller percentage of foot elements. Neither of the remaining sites, the Movie

![Element Distributions - Pigs](image)

Figure 8 Element distributions - Pigs
Theater or the Grissell Hay sites, have any pig foot elements at all. The Grissell Hay assemblage is in fact made up of almost 90 percent pig head elements. The Movie Theater site is anomalous in being the only site in the sample with a greater proportion of body part elements, although that proportion is only slightly greater than the ratio of pig head elements.

Caprines

The caprine element distributions return in the main to the expected patterns for the site types (figure 9 – see Appendix B for raw data). The Firehouse assemblage is composed of over 90 percent head element, with only small percentages of body and foot elements rounding out its totals, a profile which fits the proposed processor/distributor model. The Movie Theater does

![Element Distributions - Caprines](image)

Figure 9. Element distributions - Caprines
not follow this model, instead having a majority of body part elements as do the majority of the urban domestic sites. The lone urban oddity is the Grissell Hay site, in which caprine foot elements are the primary element type, followed by body part elements and then head elements. The rural Steptoe site appears to follow the rural domestic site pattern for this species, and possesses a near-normal bone distribution.

Summary

The Firehouse butcher’s assemblage illustrates the processor/distributor model for element distribution very well. In this assemblage, body parts are never the dominant proportion of bones for any of the major domesticates under study. Head bones are most likely to be the majority element, followed typically by body elements, with foot elements making up the smallest proportion of the totals. The Movie Theater element distribution differs from this pattern, as a rule showing an inverse profile to that described above, so that it looks surprisingly like a typical urban domestic site. Body part elements are the greatest percentage of bones in the pig, adult cattle, and caprine assemblages, accompanied by smaller proportions of head elements, and few if any foot elements. The immature cattle pattern differs from that seen for the other species, a possible consequence of very small sample size. The calf head elements just outnumber the body elements, which in turn are more than double the percentage of foot elements.

The Movie Theater site does not evince such a clear pattern of difference in comparison with the domestic sites in the sample, rural and urban, on the
whole looking very much like household refuse on the basis of the element
distributions. The proportions of head/body/feet elements for adult cattle and
caprines are very similar for both the Theater site and the various domestic sites.
In each case, body elements predominate over the other skeletal parts. Three of
the sites mirror the frequencies found at the Theater, with head elements
showing up as the next most prevalent bone type, followed by foot bones. The
remaining three sites reverse that pattern; foot elements predominate over head
elements. The element distribution for immature cattle does not show a strong
correlation among the domestic sites, but appears commonly to show more body
part elements than heads and feet. The Movie Theater assemblage, however,
has a bare majority of its immature cattle bones in head elements, followed
closely by body elements.

The urban domestic sites in the main behaved as hypothesized, each
species' elemental breakdown generally showing more body parts than head or
foot elements. This pattern was very strong for adult cattle, marginally less so
for the caprines. The urban domestic sites had in general much closer ratios of
immature cattle head and body part elements than those seen for the other
species. The ratios for pigs, however, were completely different than the model
proposed. Pig head elements were the clear majority for all urban domestic sites
in the sample, followed by body, then foot elements.
Fore- / hindquarter ratios

The failure of the basic element distributional analysis, based on individual head, body, and foot bone ratios, required a reexamination of the method. Because animal foods were not generally distributed as individual bones, but as cuts of meat, the analysis was run again, this time using data that reflected the historical values and desirability of specific animal parts. In this section, caprine and pig fore and hindquarters are compared in light of known historical preferences for the hindquarters of these animals, which were in greater demand and were considered more desirable than the forequarters. The body elements of the animals were combined into fore-quarter (scapula, humerus, radius, and ulna) and hind-quarter (inominate, femur, tibia, and fibula) groups, as suggested by contemporary accounts, then the ratios of each versus the other were compared (adult cattle, possessing a different, more detailed historical value ranking, were handled separately - see below). Urban domestic sites were hypothesized to possess more hindquarter elements -- representing the purchase of such coveted, meaty parts as hams, for example, or legs of mutton -- than would a butcher’s site, which would have sold off those pieces to consumers.

Pigs

Both the Firehouse site and the Movie Theater show the preponderance of forequarter elements hypothesized for a processor/distributor site (figure 10 – see Appendix C for raw data). However, so too does the rural domestic site, with an element distribution consisting of over 70 percent forequarter elements. Four
Figure 10. Fore-/hindquarter breakdowns - Pigs

of the urban domestic sites have equal or nearly equal proportions of pig fore- and hindquarter elements. Only one, the Late Peachy assemblage, possesses the expected preponderance of hindquarters for an urban domestic site.

Caprines

The Firehouse and Movie Theater sites again both show a higher ratio of forequarter to hindquarter elements (figure 11 – see Appendix C for raw data). This time, though, one of the urban domestic sites, the Early Peachy assemblage, shows the same profile as the known and the proposed butcher sites. Two of the remaining four urban consumer sites have an equal distribution of fore- and hindquarter elements, while the remaining two show a greater proportion of hindquarter elements, as was hypothesized for consumer sites.
The rural domestic site, too, possesses a somewhat greater percentage of hindquarter elements, unlike the profile that would be expected from it as a presumed producer/consumer site.

Summary

Again, as in the study of overall element distributions, the Firehouse butcher site fits the proposed processor/distributor model, with a minimum of 60% of elements in the forequarter category for these two species. So, too, does the Movie Theater site, having proportionately more pig and caprine forequarter than hindquarter elements. The domestic sites, rural and urban, do not fall into place quite as neatly: no consistent consumer pattern emerges. Like the
element distributions, the urban domestic sites have no common profile -- no site has a uniform majority of fore- or hindquarter elements, varying both by site and by species. The rural Steptoe site, like the other domestic sites, does not fit a producer/consumer model of even proportions of fore and hindquarter elements, but shows disproportionate distributions of these parts.

Ranked meat cut percentages

Beef cuts too were ranked according to contemporary notions of value. Here, though, more detailed historical information was available, allowing for the division and ranking of beef carcasses not just into fore-or hindquarters as with caprines and pigs, but into specific meat cuts, such as “rump”, or “mouse buttock”. The historical sources gave price information as well, facilitating comparisons of the sites based on ratios of high priced versus lower priced beef cuts. It was posited that the higher-priced cuts would appear at the domestic sites, a result of consumers’ preference for desirable, higher-priced beef cuts, and butchers’ preference for a profit from selling these pieces before they spoiled. Lower priced cuts were expected to be found in the butcher’s refuse, presuming a smaller incentive to rid oneself of less expensive meat cuts. The Firehouse site was not included in this particular analysis. Although it would have been useful to see how a known butcher site fared in this test, the site dates to a period too early for the price and cut breakdowns to be applicable.

As with the other element distribution comparisons attempted above, no common pattern was seen among the domestic sites which made them distinguishable as a group from the Movie Theater assemblage (table 2). The
expected meat cut distributions did not appear in either the domestic assemblages or the processor site. Among the domestic sites, results were highly variable, each site exhibiting a mix of bones from meat cuts in all price categories. This pattern was seen as well at the Movie Theater site, where a surprisingly high percentage of bones associated with more expensive meat cuts such as sirloin and rump cuts were seen, along with the expected remains from cheaper cuts.
Table 2.
Relative Percentage of Adult Cattle Meat Cuts
broken down into pricing structure given by Young (1793)

<table>
<thead>
<tr>
<th></th>
<th>1.5 d.</th>
<th>2 d.</th>
<th>3 d.</th>
<th>3.5 d.</th>
<th>4 d.</th>
<th>4.5 d.</th>
<th>5.5 d.</th>
<th>Total NISP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Movie Theater</td>
<td>18</td>
<td>6.2%</td>
<td>73</td>
<td>25.1%</td>
<td>2</td>
<td>0.7%</td>
<td>55</td>
<td>18.9%</td>
</tr>
<tr>
<td>Grisell Hay</td>
<td>15</td>
<td>21.1%</td>
<td>4</td>
<td>5.6%</td>
<td>0</td>
<td>0.0%</td>
<td>20</td>
<td>28.2%</td>
</tr>
<tr>
<td>Late Burdette</td>
<td>2</td>
<td>7.4%</td>
<td>6</td>
<td>22.2%</td>
<td>1</td>
<td>3.7%</td>
<td>4</td>
<td>14.8%</td>
</tr>
<tr>
<td>Morrison</td>
<td>9</td>
<td>12.1%</td>
<td>13</td>
<td>17.6%</td>
<td>2</td>
<td>2.7%</td>
<td>17</td>
<td>23.0%</td>
</tr>
<tr>
<td>Early Peachy</td>
<td>9</td>
<td>23.1%</td>
<td>4</td>
<td>10.2%</td>
<td>0</td>
<td>0.0%</td>
<td>12</td>
<td>30.8%</td>
</tr>
<tr>
<td>Late Peachy</td>
<td>5</td>
<td>33.4%</td>
<td>2</td>
<td>13.3%</td>
<td>0</td>
<td>0.0%</td>
<td>3</td>
<td>20.0%</td>
</tr>
<tr>
<td>Steptoe</td>
<td>28</td>
<td>43.8%</td>
<td>0</td>
<td>0.0%</td>
<td>0</td>
<td>0.0%</td>
<td>15</td>
<td>23.4%</td>
</tr>
</tbody>
</table>

Leg:
- Distal tibia, metatarsal, phalanges
- Sticking Piece: atlas, axis, cervical vertebrae

Shin:
- Distal radius/ulna, metacarpal, phalanges

Mouse Buttock:
- Tibial shaft

Chuck:
- Proximal and central scapula
- Shoulder, or Leg of Mutton Piece: distal scapula, humerus, proximal radius/ulna

Aitch Bones:
- Pubis, ischium, proximal femur

Buttck:
- Femoral shaft

Sirloin:
- Ilium, lumbar vertebrae

Rump:
- Ilium, sacrum, sacral vertebrae, caudal vertebrae

Pieces not examined in this study: 3d.- Clod; 4d.- Veiny Piece, Thin Flank, Brisket; 4.5d.: Midrib; 5.5d.: Forerib.
Hacked vs. Sawn Bones

The final analysis run on the assemblages in the current sample was a simple look at the type of butchery that the bones had been subject to (figure 12 – see Appendix D for raw data). Sawn bones, as explained above, are considered by some zooarchaeologists to be hallmarks of professional as opposed to home butchery. Butchery analysis was conducted by first examining every bone for marks of intentional modification (see above). Hack and saw marks were then noted on a chart of bones and their relative percentages calculated. Processor/distributor sites were hypothesized to possess more sawn bone earlier than urban consumer sites would, and rural sites were expected to have none. The Firehouse site was again left out of this analysis,
because as expected for the time period the site represents, no sawn bone was seen in the assemblage.

The most recent site, the 1845-1850 Late Peachy assemblage, possessed the greatest proportion of sawn bone, with 30 percent of the assemblage's total butchered bone. As expected, the Movie Theater site possessed sawn bone, too, but a contemporary urban domestic site, Grissell Hay, had a higher ratio of sawn to hacked bone than did the proposed butcher's site. Two of the remaining urban sites had no sawn bone at all; neither did the rural site.

Preliminary Discussion

After an examination of the element distribution results, only two definitive statements can be made about the marketing and distribution of meat as seen in the Movie Theater faunal remains: they represent only large domestic mammals; and, the occupant of the site was probably not acquiring and processing whole animals on site. While all element types except pig foot elements were represented in the assemblage, the generally low ratio of head and foot to body elements indicates that most animals had been partially processed - likely having their heads and feet removed - prior to their arrival at the Theater site. This is consistent with patterns established once municipal areas implement laws prohibiting slaughtering within city limits (Landon 1996:8).

Beyond this, few definite assertions may be made. None of the sites in the sample display the patterns hypothesized by this study or truly any pattern at
all when the element distributional analysis was performed. There is evidence that all of the sites were purchasing animal products – the distributions clearly are not the near “normal” ratios (i.e. the proportion of head-body-and-foot elements actually found in a whole carcass) seen when animals are slaughtered, consumed, and discarded on the same property. Possibly, a differentiation would be visible if the domestic sites in this study were understood in greater detail. Information about the inhabitants of the sites, their levels of wealth, or their social standing, is sparse, and few other early nineteenth-century faunal assemblages from the Chesapeake have been analyzed to put them into context. Nor do we have information on links these households may have had to the surrounding rural areas, and the level of their ability to bypass the urban distributors. A project undertaking a greater understanding of domestic faunal assemblages of the nineteenth century, a task beyond the scope of this analysis, would be of great aid in creating a backdrop against which to explore contemporary meat processing and distribution sites. Perhaps a pattern is present in element distributions, but is not understood because of lack of knowledge about the nature of any nineteenth-century faunal assemblages, or of provisioning in small towns during this period.

Some other possibilities exist, however, for explaining the perceived lack of patterns in the element distributions. One relates to the fact that the Theater assemblage is located behind a dwelling. Perhaps the assemblage is the refuse from a butcher’s operation; at the same time, however, it may have served as the repository for meat food remains consumed by his own family. This commingling
of distributor-processor and household consumer food remains may have masked any attributes that would have been apparent had only processing gone on at the site, giving it some of the characteristics of a domestic site.

An alternative explanation for the odd results is the possibility of the filleting of meat before sale, leaving the quantities of meaty bones seen at the Theater site that confounded the hypotheses posed above. Filleting also allows for the potentiality that the ambiguities found in the Theater assemblage in comparison to the domestic sites, and likely the lack of pattern seen in the domestic sites themselves is a result of the supposedly “modern” purchasing practice of selling and buying boneless meats. This in itself could explain the quantities of bones representing both high and low priced cuts of meat found at all the nineteenth-century sites in this study. The lack of pattern for the sawn vs. hacked bone comparison is possibly related to a different cause – one associated with the practice of butchery, the sequence of its technological changes, and the speed with which these new methods and tools were taken up by the different butchers in an area.

Only the species diversity analysis proved successful in revealing an obvious difference in the assemblages, one which may be the key element in distinguishing between processor and consumer sites in the nineteenth century: the Movie Theater site evinced an amazing lack of diversity, showing only large domestic mammals, in contrast to the other sites in the study, which had birds, fish, and wild species in evidence. This measure of difference may be the way, at this point, to mark the Movie Theater assemblage as a different type of site
than the domestic sites. The high concentration of only domestic mammal remains may be an attribute of nineteenth-century butchers’ faunal assemblages, and one piece in the puzzle of the distribution systems of which they were a part.

The results of the analyses appear to say that the day-to-day working of butchers and other middlemen processors and distributors are not well enough understood to enable the creation of fruitful predictions about differences between these sites and domestic sites. Research on rural towns such as Williamsburg for which a lack of historical context for the results exists because the nineteenth century distribution system is not yet well understood is essential to any further explanation of the results. The next chapter begins the creation of this knowledge base by looking at the history of Williamsburg between the Revolutionary and Civil Wars. From this, a framework will exist against which the results of the analysis can be re-examined, and in combination with further research on butchers (chapters 4 & 5), stronger interpretations can be generated.
CHAPTER III: WILLIAMSBURG BETWEEN THE WARS

As is apparent from the previous chapter, the carefully constructed assumptions made about faunal assemblages from butchers’ sites failed when examined against the real world. The results were highly inconclusive, enough so that it is not possible at this point to tell whether the Movie Theater site is a butcher site (as the species diversity tests indicate), a highly non-diverse domestic site (as the element distributions appear to suggest), or something else entirely. The “failure” to learn this does not necessarily mean that the assumptions are flawed. It just may indicate that other factors are at work. But what factors?

Because so little is known about what is here called “inter-bellum” Williamsburg (that is, Williamsburg between the Revolutionary and Civil Wars), many circumstances could have brought about the results seen in Chapter 2. Questions to be answered include: did Williamsburg’s population fall so low in the inter-bellum period as to not require butchers any longer? Did all the professionals, merchants, and specialists -- people most likely to have employed a butcher -- leave town? Was Williamsburg still “urban”? Did other enterprises exist during this time period that may have produced an intermediate faunal profile to those assumed for a butcher and a domestic site, such as a prepared
foods shop -- and is the Movie Theater site an example? All of these considerations can shape the results of an analysis.

This chapter looks at Williamsburg during the inter-bellum period. It attempts to ferret out some of the factors that could have thrown off the results of the analyses. This activity is in keeping with calls from zooarchaeologists and others for the gathering of as much documentary, oral, and folkloric data as possible (Bowen and Manning 1994: 9.2; Yentsch 1994: 320-321; Landon 1996: 115) to weave into a meaningful interpretation of a site and an understanding of the people and activities that created it.

Inter-bellum Williamsburg and the Historians

The role of eighteenth-century Williamsburg in the creation and development of a new nation from a collection of established colonies, and its association with many of the influential figures who were instrumental to this process has generated massive amounts of scholarship focused on Williamsburg's colonial period. So, too, has much ink been consumed in documenting Williamsburg's part in the series of Civil War raids and battles known as the Peninsula Campaign. In addition, the creation in 1926 of a large outdoor-history museum dedicated to Williamsburg's colonial past produced new interest in the area, and engendered studies of modern Williamsburg and its museum.
The history of Williamsburg between these three periods is scanty at best. One historian laments, "As past scholarship has virtually ignored the history of Williamsburg and its surrounding areas from 1782 to 1926, it is difficult to formulate an exacting picture of the region, its buildings, structures, sites, and objects" (Smart 2001:114). The popular opinion is that little of historical note occurred in the town, indeed in small southern towns in general (Tolbert 1999:2), between the wars. This notion is aided by a lack of extant public and civic documentation dating from the early nineteenth century, a sad result of the burning of courthouses and governmental buildings during the wars in the region.

Attempting, then, to create a local historical context for the faunal assemblages discussed in the previous chapter is no easy matter. A few sources do allow for the creation of a picture of the town in the early nineteenth century, though not as detailed a one as could be wished for. Both travelers passing through the area and residents of Williamsburg sometimes left behind descriptions of the town and its environs in letters, journal entries, and published accounts. Advertisements and articles in contemporary newspapers add more detail, as do census schedules and the existing York County records compiled by the Colonial Williamsburg Foundation. The following discussion of Williamsburg in the early nineteenth century is drawn largely from the above sources and Ann Morgan Smart's work with them (Smart 1986; 2001).
General impressions of the town during the late Colonial and Inter-bellum periods

Those leaving records of their personal encounters with the town had perceptions shaped by their expectations and experiences, and their accounts vary widely in their accuracy (three accounts from the same year - 1781- for example, tally the number of houses in the town at 60, 150, and 300, respectively, (Carson 1965: 19; 18; 21) and in their authors’ opinions of the place. Some thought it fine and handsome, others found it dull and lacking any merit. Principally the observers described the architecture of the large public buildings, although some few made note of population, society, trade, and economic conditions at the times of their visits (Carson 1965).

Most people seemed to agree that Williamsburg was unimpressive in appearance. An example is the account of Josiah Quincy, a lawyer from Boston visiting in 1773, at the height of Williamsburg’s influence and population; he had little to say about the place, except that it was “inferior to my expectation” and that the only reason that it functioned was that it possessed the college and the capital (cited in Carson 1965:27). Others found it a neat little town, reminding one visitor of “an English village” (cited in Carson 1965:92). The most common comment, after the capital had moved, was that the town showed little sign of the important events that it had seen, one observer lamenting the lack of “even a venerable ruin to rescue its decay from insignificance!” (cited in Carson 1965:107).
Despite the town’s general lack of glamour and supposed absence of trade, many accounts from both before and after Williamsburg’s reign as capital of Virginia had ended note that one could buy anything in Williamsburg, indicating a strong merchant presence and connection to the world. A 1724 account relates that the town is “well stocked with rich stores, of all sorts of goods, and well furnished with the best provisions and liquors” (cited in Carson 1965:6). This opinion is echoed more than one hundred years later in an 1827 letter from a college professor to a friend in Richmond, when he remarks that “there is not an article whatever in the world which could not be found in it [Williamsburg]” (cited in Carson 1965:102).

Population and society

The number of people who called Virginia’s former capital city “home” has, not surprisingly, varied with the activities and the fortunes of the town. Williamsburg population grew steadily as the town was settled, grew, and became an important center of activity in the fashioning of the idea of a new nation. People were drawn to the place either as members of the government, or as providers of the infrastructure of services required to cater to that body. The first tally of residents in the 1730s puts the occupation of the town at about 500 people living in fifty to seventy-five households. By 1747/8, the town consisted of around 100 households, in which lived some 885 people. Williamsburg’s colonial-period population reached its peak in 1775, when just under 1900 people, in almost 200 households, made the town their home, an
increase of more than a thousand people in just twenty-seven years (Walsh et al 1997: 13, 61, 62).

The exuberant growth seen in Williamsburg during the colonial period came to an abrupt halt in 1780, when Virginia Governor Thomas Jefferson -- who hated Williamsburg and had referred to it as “Devilsburg” (Powers 2000: 74) -- transferred the seat of government from Williamsburg to Richmond. As would be suspected, a great population decline occurred in the early 1780s after this debilitating move, as Williamsburg was no longer host to the spectacle(s) that accompanied the governance of a colony. The population in 1782 came in at just about 1400 souls, a loss of almost 500 people in seven years, and dropped even further by 1790, to almost 1350 (Walsh et al 1997: 62). Williamsburg was not to approach the population it held in 1775 until the Civil War.

Over the next forty years from 1790 until about 1830, the population of Williamsburg was somewhat stable, fluctuating between 1200 and 1400 people (Walsh et al 1997: 61). The town’s growth stagnated as the result of a number of factors, of which the removal of the capital to Richmond was only one. Williamsburg’s situation on old, worn-out soils, coupled with its unfortunate distance away from navigable waters did not tend to recommend it as a place to settle. In addition, inexpensive, newly “opened” lands to the west with fresh soils were becoming more accessible and called the many landless Tidewater residents -- Smart places them at 50 percent of the local population in 1815 (1986:106) -- to relocate to the farmlands of the Piedmont or to its growing towns (Smart 1986: 22). The emigration from the Williamsburg area not only reduced
population size; it shifted the proportions of black and white residents of the town and its environs. About half of the population of late eighteenth-century Williamsburg had consisted of enslaved African-Americans and some few freedmen (Walsh et al. 1997:63). By 1820, Williamsburg had lost 20 percent of its white male inhabitants, but saw a 19 percent increase in the town's slave population (Smart 1986: 32).

The decline of Williamsburg's population ended about 1830 when certain events served to stem the outward flow of people, and the population began again to increase. Local agriculture began to be more profitable as experiments in soil amendments began to pay off. Too, the national economy, which had been in sorry shape after the Revolutionary War, started a recovery that would be complete by 1840. The College drew more students and both boys' and girls' academies brought people to the town, as did the "mad-house" (Powers 2000: 77-78). These factors contributed to a population of 1895 inhabitants by 1860, a total just above Williamsburg's 1775 population (Powers 2000: 75).

Regardless of its population dynamics, Williamsburg did not recede into complete obscurity, and not all those attached to the government and its support left the town. Although at least one disillusioned contemporary account indicated that "with the removal of the government, merchants, advocates, and other considerable residents took their departure as well..." (cited in Carson 1965: 73), Smart's research has indicated that in 1815, Williamsburg had a higher proportion of merchants and professionals per capita than any of her other study
areas, which included the new capital Richmond and other population and trade centers such as Norfolk, Petersburg, and Alexandria (1986: 34).

These people, along with the students and faculty who made up the College of William and Mary, provided the town with social and intellectual opportunities. Contemporaries make note of card parties, dances and other hospitable gatherings (Smart 1986: 39-41) and debates and discussions were carried on not only at the College but in such unexpected places as the post office, if one professor is to be believed (cited in Carson 1965: 102). A visitor to the town in 1807 notes that "the town contains about twelve hundred inhabitants, and the society in it is thought to be more extensive and more genteel at the same time than what is to be met with in any other place of its size in America" (cited in Carson 1965:92).

Indeed, Smart's work with the 1815 tax lists indicates that Williamsburgers possessed substantial quantities of the fashionable status and luxury goods, such as carriages, tea and coffee services, and dining equipment, required for genteel social performance. This ownership of luxury items occurred well down the economic ladder, especially compared to rural areas, but it also matched or even exceeded the levels and quantities of ownership of these goods in places equal to or much greater in size than Williamsburg (Smart 1986: 41-58). Not only did Williamsburg continue to have a viable population of well over one thousand residents between the wars, but this group of people supported services, thrived economically, and participated in the social events that characterized urban living.
Economy and services

Williamsburg’s economy fluctuated in a manner similar to that of its population: troubled and shrunken for a time due to national recession, local and regional agricultural failures, and population decreases, but never so diminished as to be insignificant. Local agriculture made a resurgence by 1830, spurred by improved techniques such as manuring and marling, the planting of a more varied range of crops, and a different, more efficient use of slave labor -- by 1830 (Smart 2001: 91-95). This reversal of agricultural fortune coupled with the return of national economic stability by the 1840s encouraged the growth of the region’s economy. The town of Williamsburg grew with it, its population increasing, its manufactures and production base broadening, and its place in the economy of the region intact, if reduced from its colonial zenith.

Through these periods of fat and famine, inter-bellum Williamsburg retained an important role in the region. It was the local market center; it was the home of the county court, the College, and the hospital for the insane; and it numbered among its residents the professionals and tradesmen -- doctors, lawyers, merchants, blacksmiths, carpenters -- required by both residents of the town and the surrounding countryside. Williamsburg remained viable because it provided a central place where all these needed services could be had. It was, in Smart’s words, “an important local urban center” (1986:20).
Williamsburg as market-center

Williamsburg was declared a market town in 1699 (Lounsbury 1986:6) but the market did not initially become well established. The first market house was likely erected almost 60 years after incorporation, followed (or accompanied) by a series of curious structures used as market houses: the town guard house in 1770, then the powder magazine by 1795 (Lounsbury 1986:8-9). The late construction of a market house, and the odd choice of standing structures employed for that purpose is doubtless related to what St. George Tucker called a “not very regular” market (cited in Carson 1965: 85). The lack of a reliable market was a phenomenon engendered in part by a practice, described by Robert Carter in 1761, of Williamsburg residents owning small pieces of land near town to provision themselves. Carter himself followed this pattern, although he noted that “such a Custom must inevitably bar every attempt towards improving Markets” (quoted in Walsh et al. 1997: 83).

Williamsburg’s “irregular” markets may also have influenced the growth of shops in the town. St. George Tucker writes in 1795 that: “There never was much trade in Williamsburg; probably little more than at present...the evidence of its present trade is to be found in about a dozen stores of European, and West Indian goods” (cited in Carson 1965: 85). As these shops often took produce as payment, De La Pena describes one of the possible substitutes for a flourishing market in the town, when he notes that one could obtain anything one wanted in Williamsburg, but that “It is in a Book Seller’s store in which you will find hams and french brandy; it is in an apothecary’s shop in which you can provide
yourself with black silk stockings and shell oysters; it is in a post office in which you may have glisters, chewing tobacco..." (cited in Carson 1965: 102).

These unorthodox venues for produce notwithstanding, Williamsburg is listed as having sixteen stores in 1835, along with a new markethouse, possibly indicating growth (and a new regularity?) of the market in response to Williamsburg’s growing fortunes, and maybe an attempt at reshuffling the sale of produce to a more logical venue (cited in Carson 1965: 106, 107). The new market house could also be a result of the region’s rejuvenated agricultural prosperity. With the soils renewed, farmers planted a wide range of crops, from potatoes to rhubarb to hay, a large portion of which was sent to Norfolk to be shipped out to places as far as New York (Smart 2001:94-96). The area around Williamsburg had begun growing foodstuffs for faraway markets, both staples and truck produce, likely to the benefit of Williamsburg’s own market.

The courts, the College, and the crazies

Along with the market, the town was supported by the traffic created by the presence in town of the county courts, the College of William and Mary, and the state Insane Hospital. With the removal of the capital, Williamsburg may have lost the state courts that had helped spur its growth in the eighteenth century, but it retained the county court for James City County, which was “held on the 2d Monday in every month; --Quarterly in March, My [sic], August, and November.” As of 1835, “JUDGE UPSHUR holds his Circuit Superior Courts of Law and Chancery on the 7th of April and the 22d of October” (cited in Carson 1965: 106). A new courthouse was under construction in 1855 (cited in Carson...
1965:114). Thus Williamsburg was still the scene of gatherings of plaintiffs and defendants, judges and lawyers, and of the industries and entertainments required to support such activities.

The town was also home to the College of William and Mary, the presence of which is one of the reasons for the establishment of the City of Williamsburg in its present location. The fortunes, reputation, and enrollment of the College fluctuated in the early nineteenth century, resulting in its closure during some bad times. In flush times, the college enjoyed the presence of well-respected professors, enrollments of over 100 students, and needed improvements to its building (Powers 2000: 76-78). Augmenting the concentration of college students, professors, and support staff in the town were numerous private educational academies for both boys and girls. Some were small concerns like that of Mr. Morse and his daughter, teaching girls at the Peachy residence, (Chapter 1), others were “Academies” with a capital “A”, such as the imposing Williamsburg Female Academy established in 1849 on the site of the former capitol building (Powers 2000: 80). In 1855, four educational academies were enrolling students, two for boys, two for girls (cited in Carson 1965:114).

Finally, Williamsburg saw the founding of a hospital for “insane” people (today’s Eastern State Hospital). Opened in 1773, the facility seems to have grown steadily, with space for 60 patients in 1835 (cited in Carson 1965: 106), increasing to 289 in 1860 (Powers 2000: 78).
These three institutions produced a town with high proportion of professionals in its population -- the lawyers, judges, professors, and physicians that ran, supported, and were supported by these establishments -- higher than many towns and cities of the same size or greater (Smart 1986: 34). The presence of these institutions and individuals helped prevent the demise of Williamsburg as a functional urban entity, and aided its reinterpretation of itself not as a capital, but as a county seat.

Trades and manufactures

In addition to inter-bellum Williamsburg’s role as the market, legal, educational, and medical center of the James-York peninsula, it was also host to numerous trades carried on within its limits and in its vicinity, which had the effect of drawing people to the town to take advantage of its services. Williamsburg was by no means an industrial center. It did, however, provide employment to “a few mechanicks, such as blacksmiths, chair makers, wheelwrights, saddlers and harnessmakers, boot and shoemakers, and tailors” in 1795, as Tucker relates (cited in Carson 1965: 85). Martin in 1835 documents the presence of “1 manufactory a short distance from the city, 4 merchant mills in the vicinity, 3 tanyards, 1 sadler’s shop, and a number of mechanics, who are generally employed” (cited in Carson 1965: 106). Smart’s work with the James City and York County manufacturing census returns for 1810 and 1840 shows that these undertakings were not insubstantial. The tanneries in James City County, for example, had $41,500 of capital invested in their businesses (Smart 1986: 105). These were not huge businesses, but enterprises that served the
needs of the residents of the town and the people in the surrounding
countryside, and created marketable export products for the larger areas of
which Williamsburg was itself now a satellite.

Inter-bellum Williamsburg: a snapshot and summary

What has been learned from the above description of a town, its people
and their activities? Williamsburg between the wars endured some hard times.
It also experienced good ones. After the time of its population and prestige
zenith in 1775, the town saw agricultural decline; a detrimental shift in its regional
(and indeed national) importance and livelihood; economic downturns; and
population decline. Once the pendulum began to swing the other way around
1830, the agriculture revived; the economy recuperated; people stopped leaving,
even began returning; new and old economic enterprises prospered; and
reconstruction and renovation of the town’s infrastructure took place.

Throughout this sequence, Williamsburg remained viable, never dropping
below 1200 people, and continued to provide to its residents and those living in
the area surrounding it, medical, legal, mercantile, and “mechanick”-al services.
Williamsburg acted as, indeed had become, a county seat, the kind of place
described in 1816 as “depend[ing] in a great degree on the expenditures of those
who are brought there by law business, and the employment given to the
tradesmen of different kinds, by a circle of the surrounding country, of which
each town forms a sort of center” (cited in Smart 1986:32-33).
Williamsburg's status as the "local urban center" for the region is accented even further when some of Smart's conclusions are considered. Williamsburg, she found, acted more "urban" than the other small-town county seats in her sample, sharing with the larger population centers of at least 2500 residents in what Smart calls "urban lifestyle" (the ownership of goods essential to the "urban social behavior" of teas, dinners, and entertaining) and "urban function" (the presence of professionals and merchants serving the area) (1986:20). "Small population size" she found, "does not negate 'urbanism' in pre-industrial Virginia" (ibid.)

The implications of these findings for the interpretation of the assemblages in this study are twofold. First, it is clear that Williamsburg did keep a population high enough between the wars to continue to encourage farmers to include production for the local market into their economic strategies (Walsh et al. 1997: 1). Second, the population statistics show that among Williamsburg's residents there was a high percentage of professionals and tradesmen, specialists who would more often have to buy their provisions than produce them themselves. In addition, a large proportion of Williamsburg's non-slave citizenry did not own land, constituting a group that would likely also need to buy foodstuffs in lieu of producing for themselves.

So where did Williamsburg's inter-bellum residents acquire their foods, especially their meat foods? No indications of sources for meats were found in the lists of trades and professions that were cited above, and no mention was made of slaughterers, butchers, or prepared foods vendors. Walsh et al. (1997:
lay out a number of sources from which eighteenth-century Williamsburgers obtained meats: they produced for themselves on farms outside town; they acquired meats from friends or relatives who raised meat animals; they bought from large planters; and they bought from farmers or butchers at the market. Is the same pattern seen for later residents of the town -- and where does a butcher fit into this system? In the next chapter, an attempt is made at answering that question. A study of the documentary sources concerning inter-bellum provisioning, and a look through some early nineteenth-century accounts should foster greater understanding of these issues.
CHAPTER IV:
BUTCHERS IN INTER-BELLUM WILLIAMSBURG

As we have seen, inter-bellum Williamsburg was a place with a concentrated population that consisted to a significant extent of people such as professionals and tradesmen employed in their specialties full time, students at the college, and hospital patients. These people often owned no land on which to raise animals, and they required provisioning. How did they get their meat? This section explores that question through the study of available documentary sources relating to food procurement, with a focus on butchers. Unfortunately, examination of available, indexed collections of letters, records, account books, and documents dating to the first half of the nineteenth century in local research libraries (the Colonial Williamsburg Foundation’s Rockefeller Library; the College of William and Mary’s Earl Gregg Swem Library; the State Library of Virginia; and the Virginia Historical Society) turned up no specific listings for butchers in Williamsburg during that period. Nor did any information turn up that would shed light on city regulations of the profession and its licensing, location, and waste disposal, likely another result of the destruction of county records in the wars.

Some little information is available about the activities of butchers in eighteenth-century Williamsburg. Five butchers are known, from advertisements in the Virginia Gazette and other sources, to have practiced in the eighteenth-century town (Brandau 1984:8), and eight are known for York County (Walsh et
al. 1997: 96). (Some overlap may be involved in these numbers, as part of Williamsburg was included within York County.) One, free mulatto Benjamin Hanson, a self-titled “butcher and grazier” advertised his interest in buying animals to fatten (Harwood 2001:35). Another, George Chaplin, referred to himself in 1769 as the “butcher, on main street” (Brandau 1984:9). “Timothy Telltruth’s” scathing 1769 editorial in the *Virginia Gazette* about the market conditions in Williamsburg indicate that butchers worked at the market (Harwood 2001:45), but the location Chaplin gives (above) in his ad suggests that butchers conducted their business elsewhere in town as well. The butchers in the market charged a penny a pound to cut meat into pieces smaller than sides or quarters, an outrageous sum compared to the Norfolk butchers who, “Telltruth” gripes, only charged a farthing.

The sources give little enough data about eighteenth-century butchers in Williamsburg, and none for the nineteenth. It appears that direct evidence is not at hand that would aid understanding of how butchers went about their business. There is some indirect evidence, however. Thomas Griffin Peachy’s 1796 – 1810 memorandum book lists the ways in which one family acquired meat in the early nineteenth century, opening up a window from the perspective of the consumer onto the type of meats one could buy from various sources -- butchers among them -- at this time. In addition, receipts for accounts from the Galt Family Papers dating from 1800 through 1840 list meat sources, species, and often cuts from the vendors themselves. None of the meat-providers with whom Galt kept accounts are listed as butchers, but (as will be shown below) a couple
of the sellers may have followed that profession. These two datasets are examined in an attempt to expose and flesh out the knowledge base regarding the activities of butchers and other sources for meat in early inter-bellum Williamsburg.

The Memorandum Book of Thomas Griffin Peachy

Thomas Peachy, a wealthy planter from Petersburg, relocated to Williamsburg in 1799, where he lived in what is now called the Peyton Randolph house. Peachy’s household was extensive; in 1805, for example, it was comprised of his daughter-in-law Mary Munro Cary Peachy, four grandchildren, and 28 slaves at the Williamsburg house (Peachy: 35), in addition to numerous other slaves at the Flowerdew Hundred plantation that he administered for his deceased son William S. Peachy. He kept a memorandum book from 1796 through 1810, detailing among other things, transactions of foodstuffs. It is not a complete listing by far, as food purchases for entire years are unaccounted for or glossed over. However, the book lists enough transactions to get a view of Peachy’s provisioning strategy.

In the eleven years of Williamsburg residency that his memorandum book covers, Peachy lists acquisitions of animal products largely from four sources: from his plantation, Flowerdew Hundred, located south of the James River; from individual producers; from butchers; and from the marketplace. The pattern of his purchases and transfers from the farm is revealing. It shows a large quantity of meat, mostly pork, raised on the plantation, which was augmented by large-
scale purchases of meat, again primarily pork, from a number of individuals. Peachy added to these meat acquisitions with purchases of smaller quantities of meats in specifically named pieces from individuals listed in his ledger as “butchers” and from others not so designated, but from whom Peachy is buying similar provisions. His final venue for meat acquisition, apparently infrequently used, is the market.

From the farm

Peachy had a good deal of animal produce brought to Williamsburg from the Flowerdew Hundred farm. His entry for 20 May 1802 notes that he had ten hams, eight shoulders, and three “midlings” of bacon brought to town (p.16). In September of that year, he received one mutton; ducks, chickens, turkeys, and geese; and butter. Another mutton came in November, and in early December the plantation sent to Williamsburg six hogs totaling 700 pounds, turkeys, geese, and ducks (p.25). In November and December of 1803, Peachy brought to town a large amount of meat: 25 hogs which weighed 2724 pounds, “3 grass beeves, 2 stall’d do.”, and three muttons.

From producers

Peachy bought large amounts of meat from sources that do not appear to be middlemen, but instead look to be other planters or farmers. For example, on 4 January 1800, Peachy “salted 1231[pounds] pork bot. of Wilkinson and 15 do. of Sam George” (p.17). That same year, in November, Peachy notes receiving 151 pounds of pork from Bacon on the 18th (p.18) and 1522 pounds of Mrs. Allen on the 28th (p. 20; also listed on p.18 as “of Allen’s Est[ate]”).
From the butcher

Peachy receives both large and small quantities of meat from butchers. On 20 December 1799, he bought two quarters of beef totaling 144 pounds from "Wm. Cole butcher" (p.17), [whose property was investigated archaeologically by the Colonial Williamsburg Foundation's Department of Archaeological Research in 1961 (see Harwood 2001: 9)] along with almost thirty pounds of tallow, possibly indicating candle and/or soap production at the house. The following August though, which is the next time Cole is listed, Peachy buys smaller foods, all veal: a breast on the 6th, a rack on the 10th, followed by a loin on the 12th, another breast on the 16th, and a "legg" on the 22nd. In September Peachy continues this purchasing pattern obtaining from Cole another leg of veal, but also buying 3 1/2 pounds of mutton and eleven pounds of beef. October sees the purchase of more beef, ten pounds, and some tallow (p.19), and in November Peachy buys brisket and shins of beef.

Peachy lists one other person as "butcher" in his book, Richard Lively, from whom he first buys a shank and a "shote" in November of 1800. Lively appears a second time in 1807 as a source of beef, and again in the summer of 1808, providing the Peachy household with veal: two legs, a shoulder, and a head and harslett (p.40). In November of that year, Peachy bought just over seventy pounds of beef from Lively, possibly a quarter, and tallow (p.41). Lively continues as a source of meats for the Peachy household through January of 1810, his last appearance, and the latest transaction in the volume. He sells primarily the same parts of veal, and small amounts of beef and mutton, and the
occasional shoat and tallow. In September and October of 1809 though, two
“new” cuts of beef are listed in Peachy’s tally: flank and rack, in addition to the
brisket, shank, and shin noted earlier (p.43).

Richard Coke, not listed as a butcher in Peachy’s volume, nonetheless
shows up a few times, providing the same kinds of products that those
specifically called “butcher” do. Peachy first buys beef from Coke in 1807. From
March to June of 1808, Peachy buys the “head and haslett” of veal, two
shoulders, a loin, and the head and feet of veal, and also a “beef’s head” (p.39).
A James Taylor, like Coke not designated as a butcher, is also in the ledger,
providing small quantities of beef, veal, and mutton to Peachy in 1809.

From the market

Peachy has very few references to the market in his book. The first is in
November of 1800, when he pays the “Clerk of the market” for weighing 853
pounds of pork (p.20), a quantity he presumably bought there, as it is not
referenced anywhere else in his ledger. He does, however, buy some of the
pork laid in during the autumns of 1802 and 1806 from the market.

Payment

Peachy pays for his purchases in a number of ways, which may be a
function of Williamsburg’s transitional, not yet “modern” economy, but may also
be a result of the cash-poor economy of the times. Some transactions are paid
for at the time of purchase, in cash. Others, including purchases from the
butchers listed in his ledger, are paid for in cash, but after some time has
passed. At least one transaction, with butcher William Cole, is handled by
Peachy’s payment of a doctor’s bill that Cole owed, instead of directly paying Cole (p.21). Peachy once pays Lively’s bill through a combination of cash and plowing services. And in two cases, with two different people (one of them butcher Cole), Peachy exchanges a veal in anticipation of future consideration: “June 1805 sold to Chaplin a veal for [illeg.] to pay me meats in return equal to 4 qtr. of the veal” (p.48).

A Summary

Peachy acquires his meats from four different sources, but appears to get different meats from these suppliers. Pork is obtained from his farm, apparently both as preserved meat and as whole living or dead animals. He also gets pork in large quantities from what appear to be large-scale producers, likely other planters, and in smaller quantities from the market. The only pork he buys from butchers is in the form of shoats, small suckling pigs.

Beef was also sent from the farm, but it is unknown whether they were living or dead at the time of transport. Peachy also bought beef from butchers, sometimes in quarters, other times in smaller increments, paid for by the pound. Sometimes these smaller quantities were in the form of named cuts: brisket, flank, rack, shin, and shank. Once, Peachy bought a beef’s head.

Mutton came from the farm, like beef perhaps alive, perhaps not, and was purchased from the butchers in small pound increments. No specific cuts are given. Oddly, Peachy lists no lamb purchases in his ledger.
Finally Peachy appears to acquire all of his veal from butchers, and in specific cuts. These appear in his book as breast, shoulder, rack, loin, leg, head, harslet (the innards), and feet.

The Galt Family Papers

The Galt Family Papers are an indexed collection of letters, family papers, accounts, lectures, and other ephemera. The papers examined here are associated with Dr. Alexander Dickie Galt and his wife and family. Galt, a wealthy and well respected physician, was born in Williamsburg, attended medical school in London, and was part of the Williamsburg medical and social infrastructure for over forty years (Pickell 1982:1-2; Stephenson 1990: 17). In the collection are receipts for 16 accounts, dating from 1800 to 1840, that Galt carried for various meats from a number of sources. They presumably do not represent total meat acquisitions for this time period, as they are widely spaced in time, but they do give a second view of the types of and sources for meats in Williamsburg during the inter-bellum period.

The sixteen accounts are with fourteen different sources. Mildred Bowden and William Durfey each have two separate receipts with Galt. Nine of the receipts are for pork products: pork, bacon, hams, and “pork hogs” in quantities ranging from 20 pounds of pork (Galt Family Papers 1833-7 October 1838: account of Martin [?] Jan. 23, 1837) to 1951 pounds of the stuff (Galt Family Papers 1814-1832: account of William Whitaker, Jan. 1, 1814). Of the people selling pork products, none but Allen Jones sells any other animal products, who
in addition to the pork provides Galt with 76 pounds of beef and three lamb quarters (Galt Family Papers 1814-1832: account of Allen Jones, 18 June - 9 Dec. 1819).

Beef is sold almost exclusively by the pound in quantities undifferentiated except by price. William Bowden and Mildred Bowden (husband and wife), and William Durfey sold beef in small quantities, up to 35 1/2 pounds (Galt Family Papers 1814-1832: account of William Bowden, Dec. 16, 1817). Jones sold beef by the pound, but in large quantities (76 pounds). Galt also obtained beef by the quarter from Margaret Page (Galt Family Papers 1814-1832: account of Margaret Page, Sept. 1, 1818).

Mutton was sold in four of the accounts, generally by the quarter, but also sold in undifferentiated pieces like beef, simply listed in the accounts as “mutton.” Mildred Bowden though, sold it by the pound, not the piece (Galt Family Papers 1833-7 October 1838: account of Mildred Bowden Nov. 4, 1835). Lamb, too is sold by the quarter.

Veal is the only one of the meats listed in the Galt accounts that appears to be commonly sold in specific pieces. Margaret Page sells Galt a veal loin and a leg, while Mildred Bowden sells veal in shoulder, rack, breast, and leg sections. William Bowden sold Galt a veal loin, and an unquantified amount as well.

To summarize: out of the fourteen people providing Galt with meat, only five sold him meats other than pork. The Bowdens consistently sold meats in small quantities, although William sold some meats, mutton and lamb, by the quarter. Durfey sold beef by the pound in small quantities, but sold smaller
mutton and lamb by the quarter. Jones sold beef in large quantities, and the smaller animals by the quarter, while Margaret Page sold her beef, mutton, and lamb by the quarter and her veal by the (named) piece. There is no notation of anyone slaughtering animals for Galt for a fee. No person is listed specifically as a butcher, although given the sales of small amounts of meat conducted by the Bowdens and Durfey, they may likely be professional butchers. William Bowden's account with Galt may indicate that Bowden worked out of the market, as he receives a payment from Galt on October 17, 1817 noted "to balance due as stated on your market book".

As the Galt accounts are obviously tabs for meat accrued for sometimes years at a time, Galt was not paying immediately and in cash for the products and services of butchers and other meat providers. He appears to pay his accounts in cash when billed, as there are no notations on the papers indicating otherwise. He may have "paid" some in credit, though. One provider, Margaret Page, specifically asks to be given credit to him in exchange for her produce, presumably for future medical needs.

A clearer picture?

Peachy's memorandum book shows us that well-to-do Williamsburgers in the early nineteenth century with farm resources of their own patronized butchers. In this manner they could eat greater quantities of preferred parts of animals, parts that were limited on their farms by the quantity natural to each animal. They also brought in foods, as expected, from their own farms, but
whether on-the-hoof or in-the-cart is unknown. Galt appears not to have raised meat foods for himself, and only bought from in-town resources.

Both men dealt with butchers; the butchers appear to have dealt in only certain animal products. Both Peachy and Galt obtain beef, veal, and mutton from the butchers, and Galt buys lamb. Pork does not seem to be handled by butchers, except for Peachy’s purchases of shoats. The quantities that were available, or rather, that each man chose to buy, varied by animal species. Peachy and Galt both bought beef by the quarter and in smaller amounts sold by the pound. Peachy notes the parts he bought: brisket, shin, and shank (in his book by 1801); and flank and rack (noted by 1809). Galt’s receipts do not differentiate beef cuts. Galt acquired mutton and lamb by the quarter, and both men bought mutton in small amounts by the pound. Veal, bought by both men, is the only meat uniformly sold in specific cuts. All parts of the veal seem available, as the men buy breasts, shoulders, legs, loins, racks, heads, feet and innards. Peachy’s transactions as early as 1800 list veal cut in this manner (breast, leg, loin, and rack), and Galt’s account with Mildred Bowden shows these same cuts for sale in 1835. The calf heads and feet were still available for sale at the butchers’ for Peachy to buy them in 1808.

Two of the meat providers appear in both Peachy’s and Galt’s accounts: William Durfey (who is given no first name in Peachy’s book, and may not be the same Durfey) and Allen Jones. Peachy buys of Allen Jones pork “to lay in” (Peachy n. d.: 36), as Galt does. Unlike Galt, Peachy buys from Durfey a large quantity of beef -- 291 pounds (Peachy n. d.:18). Peachy lists as butchers in his
memorandum book William Cole and Richard Lively. Two other men, Richard Coke and James Taylor, sell Peachy meats in what appear to be similar in quantities and cuts to that sold by the men designated as “butcher”, and these may well have been butchers, too. None of the people with whom Galt held accounts list themselves as “butcher” in the receipts in the Galt Family Papers. However, the types and quantities of meat sold by William and Mildred Bowden and by William Durfey differ from those of the others in Galt’s accounts, and are similar to those sold by the men Peachy calls “butcher”. If this is so, seven butchers are tentatively identified for the first four decades of the nineteenth century in Williamsburg.

An intriguing pattern emerges with the discovery of William Bowden selling meats in Galt’s accounts, that of associations of butchers with Williamsburg’s Block 15, the location of the Movie Theater site. Benjamin Hanson (at the Firehouse site) apparently processed his meats there in the 1740s and 50s. Butcher William Cole from Peachy’s ledger, acquired Lot O, on the extreme southeastern corner of Block 15 in 1785. Excavations on the property returned a butcher’s cleaver from a pit which likely dates to Cole’s occupation of the property. William Bowden, from whom Dr. Galt purchased meats, and whose widow Mildred also sold meats to Galt, purchased Cole’s lot from his estate in 1810 (Harwood 2001: 7). If Bowden was the butcher he appears to be in Galt’s accounts, this pushes an occupational residence/workspace pattern well into the nineteenth century, as William died in 1828, and Mildred looks to have carried on the trade at least through 1835. A
similar pattern for butcher residential clustering is described in Lisa Kennedy’s report “Baltimore’s Butchers’ Hill” (cited in Tangires 1999:84-5): “Occupational mapping of early nineteenth century cities shows that butchers tended to cluster in neighborhoods one or two miles from the market house.”

Very little additional information can be squeezed from the Peachy and Galt documents about butchers and provisioning in inter-bellum Williamsburg. We know how early some meat cuts appear, and how late others remain available, information that could greatly aid interpretations of faunal remains. We see that whole animals are apparently still being brought to town from farms. We now know the identity of some of the butchers practicing during this period. There is much still that we do not know, and that we will not be able to glean from the scanty information available for Williamsburg. So, we must go further afield for information and look at butchers and the practice of butchery in general as documented in widely ranging sources. In the course of this activity it should be feasible to learn possibilities for the practice of butchery in Williamsburg, and their ramifications for faunal analysis, through examples seen from the practice elsewhere. The next chapter attempts to do just that.
CHAPTER V:
BUTCHERS AND THE DOCUMENTARY RECORD

Since we now have gathered some information about butchers in inter-bellum Williamsburg, a better interpretation of the results from Chapter 2 can be undertaken. Nevertheless, the information gathered so far is very scanty. We now know that professional butchers were in town in the inter-bellum period, and that there was a population sufficient to support them. We have seen how two families provisioned themselves with meat foods, making use of butchers and a number of other sources. This information can aid in interpreting the faunal remains from their properties, and may be of use in re-evaluating the results from other domestic sites in town. But, we still have very little to help re-interpret the Movie Theater assemblage. For this we will have to leave the realm of the specific and move into that of the general. Information must now be collected from wide-ranging sources that can shed light on such topics as where butchers elsewhere in the U.S. and in some of its source nations in the eighteenth through the nineteenth centuries have worked and lived; how they acquired the animals that they processed; what they did with the waste products generated by their trade; and who their competition was.

Unfortunately, historians’ studies of the production of meat for human consumption have for the most part focused on the industrial end of the process such as large-scale slaughtering operations and meatpacking concerns (Skaggs 83
1986; Clemen 1923). Few have looked at the more prosaic world of the retail butcher. The following information is culled from a variety of sources, some primary, some secondary, in order to fill the gaps left open by the scanty evidence of butchers from Williamsburg, and so create a fuller context for the interpretation of the faunal remains from the Movie Theater site. From this world of possibilities, some probabilities about the activities of butchers in inter-bellum Williamsburg can be generated, when the general pieces of information gathered in this chapter are combined with the specifics that we have already assembled in previous chapters.

Who were the butchers?

Butchers were members of an important profession that was regulated in France and England by a guild (Watts 1999:304; Anon. 1816: 16) that in England was incorporated in the early 1600s. To qualify for master butcher status within this guild, young men served an apprenticeship to learn the trade. Aspects of this guild system seem to have crossed the Atlantic with its practitioners, as butchers in many places in the U. S. were licensed. Butchers in New York were not normally granted licenses before their twenty-first birthday and “they were not only required to serve a regular apprenticeship, but their conduct and morals were also particularly considered” (Devoe 1862:401-402). Not all butchers may have been so carefully trained and authorized to practice. Clarke’s memoir of his childhood in early twentieth-century Barbados tells of men who became butchers by
"killing animals; and through trial and error, and by his persistence in this adventure, came to gain respectability with his knife and sharpening stone...Although he had no training in the anatomy of animals, he continued in this killing and hacking up and became skilled at it, and turned it into an occupation and a profession..." (2000:25-26).

This seemingly haphazard entry into the business may have been a common alternative to formal training, especially in smaller towns.

Butchers were usually men, although widows of butchers could and did request to continue following their dead husband’s profession. Watts found this to be common practice among Parisian butcher households (1999:531), and Devoe notes a number of cases in the New York markets following a yellow fever epidemic (1862:209-210). Spruill observes this pattern to be widespread in the southern colonies for many trades, and unearths advertisements for Margaret Oliver and her mother, both butchers in 1765 South Carolina (Spruill 1972: 288-289). Sons of butchers often went into the profession, as the apprenticeship was waived in their case, or they were given special considerations (Devoe ibid.; Watts 1999:309). In the American slave-holding south, slaves and servants were also trained as butchers (Walsh et al. 1997: 97).

There were different types of butchers. Some, those whom Watts calls “merchant butchers”, held a market stall, but bought and grazed cattle, and sold the carcasses to other butchers and to primary customers (1999:89). Another type was the small-meat butcher, who killed, processed, and sold only calves, sheep, and lambs (Devoe 1862:503). Perrin differentiates between the English “carcase butchers,” who slaughter animals and sell wholesale to other butchers and large establishments, and the retail butchers selling to the public and to
small-scale food producers such as sausage and meat-pie retailers (1978:25, 37). Others, the country butchers (farmers, actually), processed their own animals and sold them out of carts at market, and were not professionals (Devoe 1862:503; Watts 1999:92).

The Setting

Butchers usually plied their trade in “villages, large towns, and cities” slaughtering and/or selling pieces of cattle, sheep, and pigs (Hazan 1846:56-57). In cities and larger towns with market houses, a majority of butchers set up business in spaces called stalls rented or bought from the market authority (Hazan 1846:57). Newcomers were noted, in the “olden time,” to have used benches or tables (one man even made use of his dinner table, removed from his house) as meat preparation and selling surfaces (Devoe 1862:324). More established butchers built stands, upended box-like structures with wooden posts and crossbars erected at the rear and furnished with protruding nails or hooks for hanging meat and dressed carcasses, a layout seen as well in the stalls of Parisian butchers (Watts 1999:277). Butchers took their meat to market very early in the day, in a cart if the butcher owned one, in a wheelbarrow if not. Apprentices unloaded the meats and brought breakfast for the butcher. At least one wife is noted doing this work, minding the stall while her husband ate, and returning home with the wheelbarrow, breakfast dishes, and “something for dinner” (Devoe 1862:345). This implies that the animals were slaughtered elsewhere, and that very likely, the stereotypical “butcher’s waste” of heads, feet,
and offal would not be found at the butcher’s market stall. It also shows, not surprisingly, meats from the butcher’s own supply ending up on his dinner table.

Devoe relates the method of meat sales about the year 1820 in New York’s Catharine Market: “Then the butchers calculated to bring to market just about what could be profitably sold for the day, and have it all cut up, sometimes hours before daybreak, ready for customers and others, who made it a practice to go early to market to procure the choice pieces, as at that time there was no reservation, and those who came late had to take such as was left; by ten o’clock the market was considered through…” (Devoe 1862:346). Hot weather enticed butchers to lower their prices to off-load meat before it could spoil; even so, an 1802 article extolling a new refrigeration machine [ice in an insulated container – an inter-bellum cooler] notes that butchers lost a great deal of meat in summer to heat-induced spoilage (Devoe 1862:347).

Not all butchers worked out of the market place. Hazan remarks “in villages, where there is no market house, the butcher carries his meats from door to door in some kind of vehicle” (Hazan 1846:57-58). Butchers in Harper’s Ferry, W. V., in fact, “sold from meat wagons and butcher stands as late as 1919” (Bowen and Manning 1994: 9.22). Some butchers, often as a reaction to high stall rents, set up “meat-shops,” a practice which was eventually legalized in New York in 1843 (Devoe 1862:382). In Paris, Watts finds butchers and their families working and living in a combined dwelling and shop, outside the market (1999:279), an arrangement that was not, however the practice of the majority of butchers.
Supply

Sources of fresh meat were generally local until late in the nineteenth century, when refrigeration allowed for the shipping of already processed, but unpreserved meat (Skaggs 1986:43). Until that time, while preserved meat and live animals were traded as part of regional and national systems, unpreserved carcasses and fresh meat remained locally produced. Clemen (1966:225-226) gives five sources from which American butchers obtained their meat until the 1870s. Some butchers practicing in the vicinity of the large slaughterhouses would buy carcasses from these establishments, and did no slaughtering of their own. Others bought animals at the farms, killed and dressed them there, leaving the offal for the farm hogs, and returned to town with carcasses. Some bought animals and rented space in another’s slaughterhouse. Still others bought dressed carcasses from farmers who processed the animals on their own land, and brought the meat into town to sell. Finally, most small town butchers had their own place for slaughter, just outside the town boundaries, “frame structures, generally of one room, built directly on the ground or raised several feet and surrounded by a small yard.” These were on their own property, or on farmland rented in exchange for the offal to feed the farmer’s hogs. Again, these meat sources were for most butchers the only ways to obtain meat until practical and widespread applications of refrigeration technology combined with improved methods of transportation in the early 1870s to allow the shipping of dead meat to the entire nation.
Butchers in London in the mid-nineteenth century sometimes bought live animals from farmers at the markets and slaughtered for themselves. More often they purchased from cattle salesmen, who bought animals from the farmers, saving them the day's labor lost in taking their own animals to market. Or they bought carcasses already dressed by "carcase butchers," who bought animals, killed and dressed them, then sold the carcasses to other butchers, hotels, and eating establishments (Perrin 1978:37). Hazan describes the same sources for American butchers (1846:57). Parisian butchers had similar methods. They bought their animals weekly at the cattle markets, drove them or had them driven into the city for slaughtering "in courtyards or small barns behind their shops"; excess animals purchased were grazed on the city edges until needed (Watts 1999:216). Some of the wealthier butchers kept a residence outside the city where they kept animals in reserve for future use. Others employed their family connections to gain access to country produce (Watts 1999:217).

The tools and accouterments of the trade

The basic tools of the butcher are quite simple: knives, cleavers, axes, and saws. Devoe relates the scene of butchers participating in the parade at the 1825 Canal Celebration, in which all of these implements are in evidence. In addition to floats portraying pastoral scenes complete with farmers and live sheep, calves and oxen, and a phalanx of "fifty of the profession in white aprons and check sleeves, mounted on gray horses", boys held aloft a banner
“exhibiting on one side the emblem of the profession -- a knife and steel crossed; above, the poll-axe; below, on one side the saw, on the other the chopper; in the circle an ox and sheep: inscription, ‘We preserve by destroying’” (Devoe 1862:507) [an interesting parallel to the archaeological profession].

Knives, cleavers, and axes were the earliest tools, as documentary sources from the seventeenth and eighteenth centuries do not record saws as items in the butchers’ toolkit (Bowen and Manning 1994:9.26). By 1806 London butchers were using saws (ibid.), and Hazan in New York (1846:57) relates that butcher’s tools consisted of “a saw, knife, and a broad iron cleaver.” All of these implements were still in use as late as 1900. Saws were not the fastest way of portioning a carcass, but they did make “the neatest job in the hands of an inexperienced butcher” (Bowen and Manning 1994:9.27). They were none too easy to use, either, as one modern rookie found out. Steingarten (2001: 717) while assessing beef aging techniques, discovered that sawing through beef rib bones was a slippery, time-consuming business; he ended up just chunking out a boneless piece of beef to use in his test.

The remaining tools at a butcher’s disposal would vary depending upon whether he slaughtered as well as cut up carcasses. If slaughtering was performed, the butcher would require a hammer for knocking the animals out for killing, and gambrels for holding the gutted carcass open (Clemen 1966: 121). Basins and buckets would have been used for collecting blood and innards, while kettles, pots, and other boiling equipment would be employed for scalding hair off of animals, for cleaning hides and offal, and melting tallow (Watts
1999:309, 330; Clarke 2000:138). Other “tools” such as “dressers, hooks, scales, steelyards, block, tray, instruments, skewers” were part of the butchers equipage as well (Anon. 1816:160). A “fly-flap” and fly-bottles were also recommended (Anon. 1816:163).

Meat cuts

Nineteenth-century butchers sold meat in large quantities as sides or quarters (last chapter), but they also sold it in the smaller cuts that in French cuisine as well as in English and American foods illustrates the late eighteenth century trend toward “refinement”, compartmentalization, and individual portions which manifested itself in new preparations and these smaller cuts (Watts 1999:120, 136; Bowen and Manning 1994: 9.28; Deetz 1970).

Cookbooks from the late eighteenth century and later often had (and have) diagrams inside showing the major cuts in which meats were sold (see Brandau 1983:20 for comparisons of pork cuts from three early nineteenth-century cookbooks). These books instructed readers on butchering techniques, and educated them about meat cuts, so that households buying meat by the side or quarter could approximate the cuts showcased in the new cuisine (Watts 1999:150), and so that cooks buying by the piece would know which cuts to purchase. They also give indications within the text about how butchers cut up their meats. Child (1971[1833]:44) notes that bones were marketed and sold as entities of their own, without meat, indicating that butchers frequently sold boneless cuts: “Bones from which roasting pieces have been cut may be bought
in the market for ten or twelve cents, from which a very rich soup may be made, besides skimming off fat for shortening. If the bones left from the rump be bought, they will be found full of marrow, and will give more than a pint of good shortening, without injuring the richness of the soup." However, she also gives instructions on how to fillet meat at home, indicating that one could buy the same portion with bones in (1971[1833]:123).

The cuts shown in cookbooks, however, were not universally employed; butchers cut meat in response to regional demand, cooking preferences, and economic considerations. Meats cuts in England varied regionally in the early nineteenth-century, a practice which may have obtained as well in the United States. Perrin explores the fact that butchers prepared animals differently in different regions of Great Britain in the 1830s and 40s (1978:25-27). He notes that butchers in different towns cut meat according to the local requirements, and with an eye to the getting the highest prices for those cuts. In cities such as London, which possessed a large concentration of political, noble, and merchant clients with high-end tastes, butchers responded to demand for luxury roasting pieces by cutting the carcasses to make the desired pieces the largest and heaviest possible, which pieces (by price) for beef in circa late 1830s London, were the rump, loin, and fore-ribs. The other pieces of the carcass were priced much lower than the prime meats, two to six cents a pound versus eight cents for the most expensive, to encourage their purchase by the greater mass of the population with smaller incomes. Lower-quality pieces that were not sold to the
public were sold to “makers of sausages, pies, and cooked meats” (1978:25) from whom people bought those comestibles.

Perrin also notes that in places in which demand for the luxury pieces was not so high, prices were not so sharply disparate, and butchers were not as inclined to trim the carcasses so carefully. Indeed he relates that in places where there was little differential demand, “butchers paid little attention to how they divided up a carcase as there was little price incentive to separate the best from the inferior parts” (Perrin 1978:26). This pattern of butchery held too, in places where the general methods of cookery didn’t require special cuts of meat:

“In England, and in particular London, there was a strong preference for the taste of roasted meat, but in Edinburgh and in the rest of Scotland people were very much in the habit of living on broth and boiled meat. As the subtle differences of taste that are apparent between different joints of meat when they are roasted disappear when it is stewed, there was no strong consumer preference for particular joints in Scotland. Therefore, the butcher was not induced to cut the best joints so large, or to exercise the nice division of quality which characterized the London manner of cutting up a carcase of beef” (ibid.).

Perrin observes that this method of regional cutting differences occurred with mutton, as well (1978:27).

Waste disposal and other regulations

Regulations on the butchering profession are as old as the business itself, with laws known from at least the days of Henry VII (Anon. 1810: n. p.) although laws were enacted at different times in different places. Some laws prohibited the presence of live animals in town. While many places had regulations about loose animals enacted in the eighteenth century, Williamsburg apparently had no
law, or one that was flagrantly violated. As one College professor upon his arrival to town in 1827 noted, the streets of the town were overgrown with grass and

"several cows, pigs, horses, mules and goats are to be seen pasturing among them. I thought I was transported to Noah's Ark, when I first came into this town, so prodigious was the quantity of animals I met with, without seeing a single person till I reached the post office which stands in the center of Main St." (cited in Carson 1965: 102).

Other laws dealt with the presence of dead animal-parts within city-limits, such as a 1745 Boston law that required that "all small meat, before brought in, must have the feet cut off and quartered and cleaned from brains" (Clemen 1923:27). Still more directed locations for slaughtering as does a 1749 Norfolk, Virginia ordinance that ordered butchers to "Slaughter their Meat in proper places" (cited in Brown 1988: 8).

Other laws ordered clean-ups of the market areas. Ordinances in New York (Devoe neglects to provide the year) required that the bottoms of the stalls be raised at least eight inches above the ground surface to aid in cleaning out the "filth [which] collected under and behind them" (Devoe 1862:325). An 1821 rule of Boston's markets required that stall holders wash down their stands daily in the hot-weather months, and that they remove "heads, feet, or offals of dead animals," among other produce, from their stands at night (Bowen 1992:278). A 1794 Norfolk law prohibited the disposal of "filth" into the streets (Brown 1988: 12). Eighteenth-century Parisian butchers, though, slaughtered in the city, and like most eighteenth-century people "deposited their refuse outside their houses
and stalls,” although ordinances from the first quarter of the eighteenth century regulated carcass disposal to special areas on the edge of the city (Watts 1999:182, 184).

Of course, one way around waste, clean-up, and disposal restrictions was for the butcher to sell as much of the animal as possible. As Watts notes (1999:132), “It was in the interest of all butchers to sell off all of the animal: meat, skins, organs, bones, and tallow (rendered fat) at the highest price.” This could result in a butcher producing essentially no waste products. Boston area slaughterhouses sold the “bones to fertilizer manufacturers, hides to leather works, entrails, heads, hooves, and tallow to soap- and candle-makers, and the blood to sugar refiners” (Smith and Bridges 1982:6), a practice which left the slaughterers with no waste, and more money. Gill and Powers list candle and soapmakers in late eighteenth-century Williamsburg (1981:3), and two tan yards were in business in the town at that time (Brandau 1984:14), giving Williamsburg butchers these same advantages.

Other meat vendors in the marketplace

Butchers had a great deal of competition at the market for their customers, from people selling both fresh and cooked, prepared meat foods. Paris had numerous retail vendors, regratiers and regrattieres, who ranged about the city selling meats in small quantities (Watts 1999:92). Peddlers and hucksters, too, sold retail meats and some cooked meats (Watts 1999:286). Brown observes the presence of these salespeople in American markets, too,
along with farmers selling their own produce (Brown 1988). Devoe relates a report from the New York market committee dated 1810, describing the presence of food sellers in houses all around the market area, who are “well provided with every description of viands, and can satisfactorily administer to the wants not only of the most fatigued countryman, but even to the dainty appetite of the most squeamish” (Devoe 1862:325). Philadelphia had its marketplace pepper-pot vendors, African-American women who sold a spicy stew made from cheap cuts of meat (Tangires 1999:61) and a traveler to Baltimore in 1826 found sales of veal cutlet, sausages, bread and butter, and coffee, likely for the market vendors (Walsh et al. 1997: 93)

Butchers’ account books

Watts examined at 93 account books from eighteenth century Parisian butchers. She found that the butchers extended credit to clients at all social levels, from nobility to artisans and working class city dwellers. The books also tallied, in pounds, the amount of meat customers bought (1999:93-96). However, they rarely listed the type of meat bought (i.e., veal or mutton) or the cut of meat (Watts 1999:99). One butcher did, however, leave an account book noting sales of such cuts as the upper loin, thigh, leg, rack, brisket or flank, roast, rump, and sinew or hamstring (Watts 1999:130). Like the Colonial-period Williamsburg tavern keepers (Walsh et al. 1997:112-114), the accounts indicate that Parisian butchers loaned meats to each other when necessary (Watts 1999:95). But because records are so sketchy on detail of the specific meats
and parts bought and sold, one can only guess as to how much meat left the butcher stalls and shops as cuts and not as large pieces to be finished at home (Watts 1999:277).

These books contain some similarities with the Dinges Meat Shop daybook, a ledger kept by a butcher in the Shenandoah Valley in 1826-27. As with the Parisian accounts, most of the accounts in the ledger are credit accounts. Payments are made in lump sums at different times, mostly in cash although at least one entry, that of John F. Hanes, is paid off in work. And again, like the Parisian accounts, meats are listed primarily in undifferentiated pieces by the pound in entries such as “to veal 15 at 5” or “to lamb 13 at 5”. Very few specific cuts are mentioned: haslet, tongue, an “s. of mutton” [side? saddle?], shank, “stake”, liver, suet and tallow, and sausages. The majority of transactions are for beef and veal, mutton and lamb. Pork is next to non-existent. One intriguing set of entries that Dinges does enumerate are charges for butchering animals for others: “to butchring [sic] 3 hogs & beef & calf – 2”. This activity does not appear to be conducted for future credit on the part of the animal owner; money is paid at the time for the butcher’s services or – like meat transactions – carried as credit and paid for later.

The social relations of butchery

Butchers, selling desirable but highly perishable products, needed to create a connection with their clients, a relationship that would ensure repeat business and a sure market for their meats (Watts 1999:92). They needed to
convince their clients that they received the best meats, and that the type of meat and cut that they asked for was what they got - no substitutes (Watts 1999:100). That butchers in the Tidewater are to a large extent known not by their business accounts but by their court appearances as delinquent debtors (Harwood 2001:35) speaks to the difficulty of creating and maintaining these relationships. Watts finds a similar story in her study of Parisian butchers, whom she documents mostly from the records of failed businesses (Watts 1999:93).

In the course of their businesses, Watts relates that “butchers built exchange relationships upon systems of trust that followed and forged social relations... Beyond the directives of self-interest, butchers held to an urban-rural exchange network deeply embedded in traditional merchant culture” (Watts 1999:215). So too did she find that “In addition to the trade links Parisian butchers maintained with the countryside, many had agricultural origins; others held extensive lands outside the city; their sons and daughters married wealthy farmers; in essence, their links to rural agricultural [sic] remained a constitutive part of their everyday lives” (Watts 1999:217). In addition, “For the majority of cattle merchants and butchers who operated as middlemen in the provisioning trajectory, commercial transactions had to allow for a certain elasticity as the great chain of credit extended from rural producer to urban consumer ... Building a business meant building relationships upon which to found a system of exchange” (Watts 1999:245) that took into account time, distance, and bad fortune.
Watts (1999:503) found that butchers were likely to marry into the families of other butchers, or of trades related to butchery, such as farmers, cattle traders, or tanners, making “forward and backward linkages to meat production. By doing so, master butchers exploited their position as middlemen in the meat trade, building a nexus of relationships with suppliers and merchant clients.” These practices appear to be commercial versions of the community exchange networks that Bowen finds in eighteenth-century Connecticut (Bowen 1990; Landon 1996: 13-15), especially since so many of these relationships involved family and friends and were based upon the extension of credit from one to another.

Back to Williamsburg

The information above provides a wealth of detail that helps fill out a picture of butchers and the business of butchery: who plied the trade, how they acquired meats, and where they put the waste parts. When fit together with the images already created of Williamsburg (Chapter 3) and the butchers known to work there (Chapter 4), this data will aid greatly the generation of scenarios that could have resulted in the assemblage found at the Movie Theater site, and give insight into the activities surrounding the creation of the other early nineteenth-century sites looked at in this paper as well. The next (and final) chapter of this paper takes on that task, attempting to weave together the strands of information gathered in the last three chapters. This data will be used to interpret the results
of the analyses conducted earlier, in hopes of better, fuller explanations for the patterns of bones found at the sites studied here.
CHAPTER VI.
BUTCHERS AND BONES: INTERPRETATIONS AND CONCLUSIONS

In this chapter, the results of the analyses described in Chapter 2 are revisited, and interpreted in light of the mass of information gathered in the previous chapters in the hope that more meaningful explanations for the patterns seen (or missing) can be generated than before. Next, the results are discussed and some conclusions ventured. Finally, during the course of researching and writing this paper, a number of avenues for future research came to light; they will be addressed here.

Interpretations

Species diversity

The findings of the species diversity analysis are generally corroborated by the documentary evidence (see figure 2). The account books suggest that butchers only handled the domestic mammal species (cattle, sheep, and pigs) that made up the entirety of the assemblage seen at the Movie Theater site. The Firehouse site had a varied range of species present; however, this may be a factor of the time at which the assemblage was laid down (1740s-60s), a period when Williamsburg’s provisioning system was only just becoming more systematic and commercial.
Basic element distributions

The assumptions underlying this analysis are that an urban consumer site that participates in the market economy and buys, not raises, its meat foods will in general have a higher percentage of body parts than head or foot parts, which in a regulated economy would be less likely to be available for purchase. A rural producer/consumer site would have a near normal element distribution as a result of raising, eating, and discarding an animal on the premises. The extension of this hypothesis to include butcher, or processor/distributor sites, states that a butcher site would have the heads and feet left over from slaughtering, but not the body parts, which would have gone home with the butcher’s customers.

Adult cattle

To recap the results, the Firehouse butcher assemblage fit the model. So did the urban consumer sites. However, the Movie Theater “butcher” site and the rural producer/consumer did not. Both looked much like the urban domestic sites (see Figure 3). An explanation for the pattern seen at the rural site (it looks “urban”) is beyond the scope of this paper (did they sell the feet and heads?!). On the other hand, some possibilities for explaining the Movie Theater site are now at hand.

We have seen from documentary sources that butchers sold boneless meats at their stands, and that the meat was often prepared before bringing it to market. This set of activities alone, given a strong customer demand for boned cuts of meat, could produce the bone profile encountered -- meats prepared at a
home or workshop on the edge of town, taken elsewhere to be sold. This practice would leave many meaty bones (now meatless) at the butcher’s workspace. The anecdotal evidence of a butcher’s wife helping herself to a piece of meat for dinner is also illuminating -- while it would be more economically sound for a butcher’s family to eat parts that that butcher could not sell, or which would only sell for small amount, family members would likely prefer the meaty cuts that the urban consumers were also assumed to value. Hazen (1846: 58) does in fact point out that butchers were often fat and did not live long, a result of partaking too much of their own products.

Immature cattle

In the case of veal, the Firehouse butcher assemblage again fit the model. The Movie Theater “butcher” site again did not, although this time it came closer to the expected pattern with a just-shy-of-normal body element distribution, and a slightly greater proportion of head parts. The urban consumer sites were not as uniform as they were with the adult cattle profile: they showed a wide range of results from near normal to mostly heads. The rural site had almost the same profile as the Firehouse (see Figure 4). Calf heads, in this case, threw off the results: while veal body parts were valued, so too was the head a coveted part of the veal, not a waste part (Walsh et al. 1997:79). Peachy bought calf heads (and feet) from the butcher. The Early Peachy veal assemblage is in fact almost all heads.

What is clear is that all of the sites differentially acquired veal; it was likely a matter of household preference whether heads or body parts were the items
purchased more often. Grissell Hay has a near normal profile, with a slight overabundance of body part elements; this household may have been provisioning itself with veal, and augmenting its diet with purchased parts. The rural Steptoe site appears to be a producer, not a consumer of veal; perhaps the owner was slaughtering on the farm and sending headless, footless carcasses to market, a factor of distance which may have made the calf’s head unpalatable. Unfortunately, very little of the information gathered about butchers and the butcher trade helps to explain the Movie Theater assemblage. Perhaps again, the explanation lies in a combination of butchering waste and household consumption, for again it looks similar to that of a domestic site.

Pigs

The results of the pig element distributions were more uniform than the frequencies for the calf parts. All the sites except the Movie Theater site display a similar profile (see Figure 5). The Theater site possesses the smallest ratio of pig heads to other parts of the animal, and is the only site to have a greater number of body parts than head elements. As was evident from the three Virginia meat accounts from Peachy, Galt, and Dinges, pork was apparently not generally sold by butchers. All of the occupants of the sites in the sample, the butchers included, would likely have been purchasing whole animals as Peachy and Galt did, from producers of the animals, or perhaps raising the animals themselves. The odd element ratio at the Theater site suggests a possible explanation: butchers seemed not to deal in pork, but Dinges sold one product which is most often made from pork -- sausage. It is possible that this meat was
being made at the Movie Theater site, and that the high proportion of body parts represents the waste from sausage production.

Caprines

The caprine element distributions seem to support the hypotheses, except for the Movie Theater site and the Grissell Hay site (see Figure 6). The Firehouse inhabitant is clearly butchering mostly footless creatures and selling the body elements (an interesting profile, since Hanson advertised for live mutton [Harwood 2001: 35] -- where did the feet go?). The majority of the urban domestic sites fall into the proposed consumer pattern: mostly body parts. So does the Movie Theater site. The rural site has a close to normal distribution, which is shared by the Grissell Hay site, except that this site possesses a majority of foot bones. Again, the documentary information amassed above helps little in explaining the patterns seen here in terms of a butcher’s site, except again for the possibilities of filleting meats for sale and of a butcher’s family eating and discarding cuts that consumers prefer as well.

Summary

The results from the basic body part distributions suggest that the Movie Theater site could be butcher’s refuse, if that butcher was much given to selling boned meats and producing prepared meat foods such as sausage that required de-boning. The remains of the butcher’s family’s meals could also be part of this assemblage, since there is evidence that butchers worked and lived in the same space, and prepared the meats that they took to market before removing them to that venue.
The results also show that the urban domestic consumer sites were for the most part buying some portion of their meat diet from sources such as butchers, since the element ratios do show a skewed profile. Generally this tilt was toward the meatier pieces, as expected, but sometimes, as in the case of non-meaty, yet still desirable parts such as calf heads, was not.

The patterns seen for the rural site in the sample were odd, making it look at times like a processor/distributor site with a preponderance of heads and feet, and at other times like a consumer site. It is probable that, as was noted above, the proprietors were dressing and selling animals at market, leaving a “butcher”-like pattern of bones at the site for the species for which this practice was conducted. The consumer pattern seen, though, is inexplicable at this time.

Fore-/hindquarter ratios

In light of the documentary evidence assembled, a fore-/hindquarter comparison for pigs is shown as an invalid tool for assessing a butcher’s establishment. The documentary sources all indicate that butchers dealt very little in pork, and that the pork that was handled was a specialty product: suckling roasting pigs to be sold whole; and processed pork products like sausage.

The caprine forequarter and hindquarter ratios may be a better instrument for establishing differences between a processor/distributor site and those of consumers, since it is known that butchers sold mutton and lamb, frequently in quarters, and that the hindquarter was generally the preferred piece for purchase. And overall, the analysis supports the hypothesis: the profiles from sites occupied by butchers look the way they were hypothesized to look, with a
greater percentage of forequarter elements than hindquarter pieces (see Figure 8). The urban consumer sites on the whole exhibit either the expected preponderance of hindquarter elements, or an equal percentage of both fore- and hindquarter parts. One site shows more frequent acquisition of forequarters than hindquarter elements; this may be a reminder that Williamsburg’s economy was viable but not thriving during most of the period covered by this study. This household may have been following the cookbook authors’ advice (above) and buying the more inexpensive portions. Or perhaps the pattern of two sites with more hindquarter elements, two with an equal proportion, and one with more forequarters is the result of a local non-preferential purchasing pattern, as was shown for areas of Great Britain. It could also be the result of a small sample size. The numbers of caprine bones available for use in this analysis were low, ranging from two to 38, a circumstance that cannot be ignored.

Ranked meat cut percentages

The results from the ranked meat cut analysis were that absolutely no trend was to be seen for any of the sites (see Table 1). This suggests that for any of a number of reasons hinted at within the documentary data, this test may be inappropriate for distinguishing a “butcher” from domestic consumer sites. It is possible that household preference for specific cuts is too variable to set them apart as a block. It is also possible that since regional preferences affected butchery practices, Young’s cut specifications for London were not the prescriptions followed by Williamsburg butchers or expected by Williamsburg consumers. And in light of Williamsburg’s economic situation in the first half of
the nineteenth century, possibly meat cuts were not so widely spaced in price, making Young’s breakdowns unusable here.

Hacked vs. sawn bones

The hacked vs. sawn bone analysis results appear to relate more closely to time period than to site type (except for the rural site). The earlier sites have the lowest percentages of sawn bone, the later ones the highest. Two urban domestic sites in the sample have no sawn bone, although other sites dating to the same period do yield sawn bone - perhaps different meat vendors within Williamsburg took up the tool at different times. A quick review of the butchery data does show that the Movie Theater had the highest percentage of all types of butchered bone of all the sites in the sample; perhaps this comparison, not one looking at different butchering types, is more fruitful if one is attempting to differentiate a butcher from other sites.

Discussion and conclusions

In the final analysis, the Movie Theater site could be just another urban domestic site, that of a family that liked no other meats than those provided by cattle, pigs, and caprines, and that burrowed out trash pits in which to dispose of the bones from only those animals. However, the species diversity results are too unusual to be taken lightly, as is the absence of artifacts mixed in with the bone material placed in the pits. And, though the element distribution results were inconclusive, the documentary data provided possible explanations for the patterns seen that do not exclude the presence of a butcher at the site. This
combination of findings, when taken with the long span of time that butchering activities have been associated with the block on which the site is located, and the observations from Baltimore and other cities that butchers tend to cluster together, adds weight to an identification of this site with a butcher.

What complicates this inference, however, is the lack of cohesion in the sample of domestic sites that were employed to contrast with the “butcher” site. All of the domestic sites, urban and rural, support the species diversity hypothesis, but matters are not so simple for the element distribution analyses. Some urban sites sustain the consumer model for some species, some for others, although all look to have been participating to some degree in market provisioning. In addition, the rural site, included here as a foil to the consumer sites in order to show the range of distribution differences, appears to be not so remote and self-sufficient after all. It too seems to be participating in the market economy, but from the producer side of the equation, a situation similar to that which Smale discovered in her study of a transitional rural farm on the edge of New York City (2000). At the same time however, certain of the rural site’s element distributions appear to be that of an urban consumer site, an occurrence that was not expected and cannot now be explained.

What appears to link all these sites is a provisioning system that this simple study, focusing on butchers, cannot begin to unravel. Though rural, interbellum Williamsburg had a concentrated population with a large proportion of specialists, numerous enough at all times to have had farmers raising foodstuffs for the residents of the town, especially with its high percentage of landless
tenants - over 50% in 1815. All of these people required the same food provisioning services that those in larger cities did. However, though urban, Williamsburg had aspects of rural existence that larger cities may no longer have had.

Williamsburg functioned as an urban place in all ways but one: its population was relatively small. But perhaps because of its small population size, Williamsburg and small towns like it may not have put into place the regulations and restrictions on slaughtering, waste disposal, and the presence of certain animal parts that zooarchaeologists see in large urban areas (see Chapter 1). It is also possible these restrictions may have taken on different, heretofore unconsidered natures in small towns than those found in larger places have. This observation highlights a common practice, the obscuration of the characteristics of towns by their habitual definition in relation to what they are not. Small towns are alternately defined as both urban and rural, depending on the point an author is making: rural when he or she is comparing them to such unquestionably urban places as New York or London, Philadelphia or Boston; urban when talking about them in relation to their surrounding hinterlands (Tolbert 1999: 5). This study is no different, primarily as a result of a lack of clear definitions or appropriate vocabulary.

The continued designation of these places as “neither-nor” has influenced zooarchaeological modeling and interpretation. Zooarchaeologists often name small towns as “rural” because they rarely have all the characteristics deemed “urban”. This neat binary system overlooks certain untidy realities. Small towns
in the nineteenth century did have close links to the rural producers; they also had butchers and increasingly modern economies. And conversely, the “urban” models at times do not hold in full for clearly urban sites such as Boston (see Landon 1996:119-120).

A country connection still exists in many small towns today (and, with the growth of farmers’ markets, in places not-so-small). A stroll through the meat section of a local grocery store in a small Virginia town in the spring of 2002, for example, found ears and feet, tails and tongues on sale, all parts of animals that the accepted models of urbanization say should not be found in a modern, fully industrialized, commercial economy. In a similar jaunt through a grocery store in the nation’s Capitol -- under no circumstances a small town -- these parts and some others were in evidence as well, and would allow for the creation of a modern faunal assemblage that would leave zooarchaeologists scratching their heads.

It may be that the measures of urbanization, particularly those relating to element distributions, which assume an either/or status of rural/urban for all places, are inadequate for the rainbow of possibilities in between those extremes, especially those places which are not in a transitional state, developing along a continuum between a rural place and an urban one, but which are what they are -- small towns. Tolbert argues that many small towns developed as such “not because they were socially or economically stagnant but because they served distinctive roles as small towns” (1999: 6). This engenders the idea of small towns as distinct entities, still not urban nor rural, but requiring a
critical study of their unique characteristics, especially in terms of the factors that would affect the creation of faunal assemblages. Tolbert suggests a “cultural interpretation of small towns that takes account of the distinctive experience of town life” (ibid.). I suggest an extension of this injunction to include the butchers, bones, and other aspects of the provisioning systems that grew up in small towns like Williamsburg.

And now where...?

One of the most difficult things about researching and writing a paper such as this is the sheer number of questions that turn up, begging answers while one is focusing on a single aspect of a problem. Of course, a study like this almost by definition leaves a lot of ground uncharted, and often generates more directions for complementary research than it satisfies. The most pressing research to be conducted in the future is obvious: without doubt, the ambiguous results regarding the final status of the Movie Theater site require that a call for more faunal studies of both possible and definite processor/distributor sites from the eighteenth, nineteenth, and twentieth centuries go out, along with detailed contextual studies. It appears that a trajectory of characteristics may be displayed in these assemblages, and that one needs to look at these types of sites in contrast to others in order to interpret the activities represented by the bones found at each site.

Equally as important would be the collection of information about small towns, not transitional ones, but towns whose role is that of population center,
not of growing into a bigger city, and the creation of substantial anthropological
and historical studies of them from their founding to the present. This would help
to draw a picture of the characteristics of small towns in and of themselves, not
as entities that are defined as “not”: not-rural, not-urban. The case studies would
be of great value in exploring questions about the enacting (or not) of regulations
that restrict body parts, slaughtering, and waste disposal and other issues
affecting the creation of archaeological sites.

Less wide-ranging would be a number of smaller studies that suggested
themselves during the course of this research. One such study would involve
going through all the newspapers serving the peninsula to see if Williamsburg’s
nineteenth-century butchers advertised, and to look for other sources of meat to
see how and at what pace meat marketing was changing. Another would work
with cookbooks and other documents examining meat cut diagrams. These
would begin with the modern era and work backwards, using the widest range of
sources possible temporally and geographically to get a better sense of the
temporal changes and of the regional differences in American meat-cutting. A
third would explore the appearance of sawn bone in urban and rural contexts for
a possible correlation with initial appearance at elite sites. One wonders whether
sawn bone shows up first at high status sites before lower, in a manner akin to
the appearance of other manifestations of individualizing, compartmentalizing,
segmenting behaviors, such as plates, and chairs, and rooms, characteristic of
the Georgian mindset (Deetz 1970), but with the food shift showing up later.
The above suggestions would all be complementary to the current study and serve perhaps to widen its lens on the subject of provisioning. A look at bones and butchers is just a beginning -- the topic of small towns in the nineteenth century and their provisioning strategies is a relatively uncharted, but potentially meatful -- er, fruitful -- one that would fill a large gap in the knowledge base of foods and foodways in small towns in the Tidewater south and beyond.
APPENDIX A

TABULAR DATA FOR FIGURE 4 – SPECIES DIVERSITY

Dietary diversity comparisons, based on MNIs

<table>
<thead>
<tr>
<th>Site</th>
<th>Domestic mammal</th>
<th>Domestic bird</th>
<th>Wild mammal</th>
<th>Wild bird</th>
<th>Turtle</th>
<th>Fish</th>
<th>Commensals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firehouse</td>
<td>71 77.2%</td>
<td>7 7.6%</td>
<td>3 3.3%</td>
<td>6 6.5%</td>
<td>1 1.1%</td>
<td>4 4.3%</td>
<td>0 0.0%</td>
</tr>
<tr>
<td>Williamsburg Theater</td>
<td>34 97.1%</td>
<td>0 0.0%</td>
<td>0 0.0%</td>
<td>0 0.0%</td>
<td>0 0.0%</td>
<td>0 0.0%</td>
<td>1 2.9%</td>
</tr>
<tr>
<td>Grissell Hay</td>
<td>17 68.0%</td>
<td>2 8.0%</td>
<td>0 0.0%</td>
<td>1 4.0%</td>
<td>1 4.0%</td>
<td>2 8.0%</td>
<td>2 8.0%</td>
</tr>
<tr>
<td>Late Burdett's</td>
<td>12 50.0%</td>
<td>2 8.3%</td>
<td>2 8.3%</td>
<td>4 16.7%</td>
<td>2 8.3%</td>
<td>1 4.2%</td>
<td>1 4.2%</td>
</tr>
<tr>
<td>Morrison</td>
<td>20 58.9%</td>
<td>1 2.9%</td>
<td>1 2.9%</td>
<td>7 20.6%</td>
<td>0 0.0%</td>
<td>3 8.8%</td>
<td>2 5.9%</td>
</tr>
<tr>
<td>Early Peachy</td>
<td>17 51.5%</td>
<td>2 6.0%</td>
<td>2 6.1%</td>
<td>2 6.1%</td>
<td>1 3.0%</td>
<td>5 15.2%</td>
<td>4 12.1%</td>
</tr>
<tr>
<td>Late Peachy</td>
<td>7 43.7%</td>
<td>1 6.3%</td>
<td>1 6.3%</td>
<td>2 12.5%</td>
<td>1 6.3%</td>
<td>3 18.7%</td>
<td>1 6.3%</td>
</tr>
<tr>
<td>Steptoe</td>
<td>19 29.7%</td>
<td>7 10.9%</td>
<td>2 3.1%</td>
<td>5 7.8%</td>
<td>6 9.4%</td>
<td>22 34.4%</td>
<td>3 4.6%</td>
</tr>
<tr>
<td></td>
<td>Normal</td>
<td>Firehouse</td>
<td>Williamsburg</td>
<td>Theater</td>
<td>Grisell Hay</td>
<td>Late Burdett</td>
<td>Morrison</td>
</tr>
<tr>
<td>------------------</td>
<td>--------</td>
<td>-----------</td>
<td>--------------</td>
<td>----------</td>
<td>-------------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>Sus scrofa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>head</td>
<td>28.2</td>
<td>240 63.8%</td>
<td>38</td>
<td>55</td>
<td>87.3%</td>
<td>86</td>
<td>69.9%</td>
</tr>
<tr>
<td>body</td>
<td>34.5</td>
<td>81 21.5%</td>
<td>45</td>
<td>8</td>
<td>12.7%</td>
<td>24</td>
<td>19.5%</td>
</tr>
<tr>
<td>feet</td>
<td>37.3</td>
<td>55 14.6%</td>
<td>0</td>
<td>0</td>
<td>0.0%</td>
<td>13</td>
<td>10.6%</td>
</tr>
<tr>
<td>NISP</td>
<td>376</td>
<td>99.9%</td>
<td>83</td>
<td>63</td>
<td>100.0%</td>
<td>123</td>
<td>100.0%</td>
</tr>
<tr>
<td>Bos taurus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>adult</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>head</td>
<td>29.7</td>
<td>191 40.4%</td>
<td>93</td>
<td>11</td>
<td>10.8%</td>
<td>12</td>
<td>29.3%</td>
</tr>
<tr>
<td>body</td>
<td>42.2</td>
<td>88 18.6%</td>
<td>362</td>
<td>78</td>
<td>75.0%</td>
<td>27</td>
<td>65.6%</td>
</tr>
<tr>
<td>feet</td>
<td>28.1</td>
<td>194 41.0%</td>
<td>15</td>
<td>15</td>
<td>14.4%</td>
<td>2</td>
<td>4.9%</td>
</tr>
<tr>
<td>NISP</td>
<td>473</td>
<td>100.0%</td>
<td>490</td>
<td>104</td>
<td>100.0%</td>
<td>41</td>
<td>100.0%</td>
</tr>
<tr>
<td>immature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>head</td>
<td>29.7</td>
<td>31 62.0%</td>
<td>8</td>
<td>1</td>
<td>25.0%</td>
<td>4</td>
<td>40.0%</td>
</tr>
<tr>
<td>body</td>
<td>42.2</td>
<td>5 10.0%</td>
<td>7</td>
<td>2</td>
<td>50.0%</td>
<td>5</td>
<td>50.0%</td>
</tr>
<tr>
<td>feet</td>
<td>28.1</td>
<td>14 28.0%</td>
<td>3</td>
<td>1</td>
<td>25.0%</td>
<td>1</td>
<td>10.0%</td>
</tr>
<tr>
<td>NISP</td>
<td>50</td>
<td>100.0%</td>
<td>18</td>
<td>4</td>
<td>100.0%</td>
<td>10</td>
<td>100.0%</td>
</tr>
<tr>
<td>Caprine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>head</td>
<td>29.7</td>
<td>816 92.7%</td>
<td>4</td>
<td>2</td>
<td>22.2%</td>
<td>1</td>
<td>6.7%</td>
</tr>
<tr>
<td>body</td>
<td>42.2</td>
<td>49 5.6%</td>
<td>11</td>
<td>3</td>
<td>33.3%</td>
<td>14</td>
<td>93.3%</td>
</tr>
<tr>
<td>feet</td>
<td>28.1</td>
<td>15 17.1%</td>
<td>1</td>
<td>4</td>
<td>44.6%</td>
<td>0</td>
<td>0.0%</td>
</tr>
<tr>
<td>NISP</td>
<td>880</td>
<td>100.0%</td>
<td>16</td>
<td>9</td>
<td>100.0%</td>
<td>15</td>
<td>100.0%</td>
</tr>
</tbody>
</table>
Comparisons of relative percentages of fore and hindquarter elements, Sus scrofa and caprines

<table>
<thead>
<tr>
<th></th>
<th>Sus scrofa</th>
<th>Caprines</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fire house</td>
<td>Williamsburg Theater</td>
<td>Grissell Hay</td>
<td>Late Burdette</td>
<td>Morrison</td>
<td>Early Peachy</td>
<td>Late Peachy</td>
</tr>
<tr>
<td>Forequarter</td>
<td>42</td>
<td>60.0%</td>
<td>33</td>
<td>75.0%</td>
<td>4</td>
<td>50.0%</td>
<td>12</td>
</tr>
<tr>
<td>Hindquarter</td>
<td>28</td>
<td>40.0%</td>
<td>11</td>
<td>25.0%</td>
<td>4</td>
<td>50.0%</td>
<td>11</td>
</tr>
<tr>
<td>Total NISP</td>
<td>70</td>
<td>44.0%</td>
<td>8</td>
<td>23.0%</td>
<td>23</td>
<td>48.0%</td>
<td>27</td>
</tr>
<tr>
<td>Forequarter</td>
<td>23</td>
<td>60.5%</td>
<td>4</td>
<td>57.1%</td>
<td>1</td>
<td>50.0%</td>
<td>4</td>
</tr>
<tr>
<td>Hindquarter</td>
<td>15</td>
<td>39.5%</td>
<td>3</td>
<td>42.9%</td>
<td>1</td>
<td>50.0%</td>
<td>7</td>
</tr>
<tr>
<td>Total NISP</td>
<td>38</td>
<td>7.9%</td>
<td>2</td>
<td>11.1%</td>
<td>33</td>
<td>42.4%</td>
<td>11</td>
</tr>
</tbody>
</table>
Comparison of butchery types

<table>
<thead>
<tr>
<th>Butcher</th>
<th>Movie Theater (post 1830)</th>
<th>Grissell Hay (post 1820)</th>
<th>Late Burdett's (post 1830)</th>
<th>Morrison (1804-30)</th>
<th>Early Peachy (post 1820)</th>
<th>Late Peachy (post 1845-50)</th>
<th>Steptoe (1811-30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NISP</td>
<td>NISP %</td>
</tr>
<tr>
<td>Butcher</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hacked</td>
<td>213 54.8%</td>
<td>61 32.1%</td>
<td>27 14.3%</td>
<td>45 21.2%</td>
<td>55 26.7%</td>
<td>19 10.0%</td>
<td>22.6% 71% 18%</td>
</tr>
<tr>
<td>Sawn</td>
<td>163 67.6%</td>
<td>44 72.1%</td>
<td>27 100%</td>
<td>48 100%</td>
<td>50 90.9%</td>
<td>13 68.4%</td>
<td>71 100%</td>
</tr>
<tr>
<td>Sawn</td>
<td>50 23.5%</td>
<td>17 27.9%</td>
<td>0 0%</td>
<td>0 0%</td>
<td>5 9.1%</td>
<td>6 31.6%</td>
<td>0 0%</td>
</tr>
</tbody>
</table>
SUMMARY OF FAUNAL REMAINS

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Mammalia (Mammal)</td>
<td>1075</td>
<td>60.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>5.719</td>
<td>4.5</td>
</tr>
<tr>
<td>Class Mammalia I (Large Mammal)</td>
<td>354</td>
<td>19.8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>11.729</td>
<td>9.3</td>
</tr>
<tr>
<td>Class Mammalia II (Medium Mammal)</td>
<td>16</td>
<td>0.9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.319</td>
<td>0.2</td>
</tr>
<tr>
<td>Order Artiodactyla I (Sheep, Goat, Deer, or Pig)</td>
<td>5</td>
<td>0.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.194</td>
<td>0.1</td>
</tr>
<tr>
<td>Sus scrofa (Domestic Pig)</td>
<td>49</td>
<td>2.7</td>
<td>7</td>
<td>0</td>
<td>7</td>
<td>43.7</td>
<td>700.0</td>
<td>19.5</td>
<td>10.776</td>
<td>8.6</td>
</tr>
<tr>
<td>Bos taurus (Domestic Cow)</td>
<td>274</td>
<td>13.3</td>
<td>7</td>
<td>0</td>
<td>7</td>
<td>43.7</td>
<td>2800.0</td>
<td>78.1</td>
<td>92.358</td>
<td>73.8</td>
</tr>
<tr>
<td>Bos taurus (Calf) (Domestic Cow (Calf))</td>
<td>5</td>
<td>0.2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>6.2</td>
<td>50.0</td>
<td>1.3</td>
<td>2.987</td>
<td>2.3</td>
</tr>
<tr>
<td>Ovis aries/Capra hircus (Domestic Sheep or Goat)</td>
<td>8</td>
<td>0.4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>6.2</td>
<td>35.0</td>
<td>0.9</td>
<td>0.963</td>
<td>0.7</td>
</tr>
<tr>
<td>Totals</td>
<td>1786</td>
<td>100.0</td>
<td>15</td>
<td>1</td>
<td>16</td>
<td>100.0</td>
<td>3585.0</td>
<td>100.0</td>
<td>125.045</td>
<td>100.0</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>------</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>------</td>
<td>-------------</td>
<td>------</td>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td>Class Mammalia (Mammal)</td>
<td>542</td>
<td>39.6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>3.089</td>
<td>2.8</td>
</tr>
<tr>
<td>Class Mammalia I (Large Mammal)</td>
<td>516</td>
<td>37.7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>13.459</td>
<td>12.4</td>
</tr>
<tr>
<td>Class Mammalia II (Medium Mammal)</td>
<td>28</td>
<td>2.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.528</td>
<td>0.4</td>
</tr>
<tr>
<td>Canis familiaris (Dog)</td>
<td>8</td>
<td>0.5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>5.2</td>
<td>15.0</td>
<td>0.3</td>
<td>0.685</td>
<td>0.6</td>
</tr>
<tr>
<td>cf. Canis familiaris (Dog)</td>
<td>1</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.124</td>
<td>0.1</td>
</tr>
<tr>
<td>Sus scrofa (Domestic Pig)</td>
<td>32</td>
<td>2.3</td>
<td>5</td>
<td>1</td>
<td>6</td>
<td>31.5</td>
<td>550.0</td>
<td>12.8</td>
<td>5.991</td>
<td>5.5</td>
</tr>
<tr>
<td>cf. Sus scrofa (Domestic Pig)</td>
<td>2</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.222</td>
<td>0.2</td>
</tr>
<tr>
<td>Bos taurus (Domestic Cow)</td>
<td>216</td>
<td>15.8</td>
<td>9</td>
<td>0</td>
<td>9</td>
<td>47.3</td>
<td>3600.0</td>
<td>84.0</td>
<td>80.203</td>
<td>73.9</td>
</tr>
<tr>
<td>Bos taurus (Calf) (Domestic Cow (Calf))</td>
<td>13</td>
<td>0.9</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>5.2</td>
<td>50.0</td>
<td>1.1</td>
<td>1.010</td>
<td>2.7</td>
</tr>
<tr>
<td>Ovis aries/Capra hircus (Domestic Sheep or Goat)</td>
<td>8</td>
<td>0.5</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>10.5</td>
<td>70.0</td>
<td>1.6</td>
<td>1.204</td>
<td>1.1</td>
</tr>
<tr>
<td>Totals</td>
<td>1366</td>
<td>100.0</td>
<td>17</td>
<td>2</td>
<td>19</td>
<td>100.0</td>
<td>4285.0</td>
<td>100.0</td>
<td>108.515</td>
<td>100.0</td>
</tr>
</tbody>
</table>
FAUNAL DATA FOR GRISSELL HAY, 19th-CENTURY COMPONENT

APPENDIX G

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acipenser spp. (Sturgeon)</td>
<td>1</td>
<td>0.2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3.8</td>
<td>100.0</td>
<td>2.2</td>
<td>0.294</td>
<td>0.1</td>
</tr>
<tr>
<td>cf. Archosargus spp. (Sheepshead or Sea Bream)</td>
<td>1</td>
<td>0.2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.007</td>
<td>0.0</td>
</tr>
<tr>
<td>Order Testudines (Turtle)</td>
<td>1</td>
<td>0.2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3.8</td>
<td>1.0</td>
<td>0.0</td>
<td>0.027</td>
<td>0.0</td>
</tr>
<tr>
<td>Chrysemys spp. (Slider or Cooter)</td>
<td>2</td>
<td>0.4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3.8</td>
<td>3.0</td>
<td>0.0</td>
<td>0.358</td>
<td>0.2</td>
</tr>
<tr>
<td>Class Aves/Mammalia III (Bird/Small Mammal)</td>
<td>6</td>
<td>1.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.008</td>
<td>0.0</td>
</tr>
<tr>
<td>Anas platyrhynchos (Domestic Duck or Mallard)</td>
<td>1</td>
<td>0.2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3.8</td>
<td>2.0</td>
<td>0.0</td>
<td>0.015</td>
<td>0.0</td>
</tr>
<tr>
<td>cf. Anas platyrhynchos (Domestic Duck or Mallard)</td>
<td>1</td>
<td>0.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.003</td>
<td>0.0</td>
</tr>
<tr>
<td>Meleagris gallopavo (Turkey)</td>
<td>3</td>
<td>0.6</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3.8</td>
<td>7.5</td>
<td>0.1</td>
<td>0.178</td>
<td>0.1</td>
</tr>
<tr>
<td>Gallus gallus (Chicken)</td>
<td>2</td>
<td>0.4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3.8</td>
<td>2.5</td>
<td>0.0</td>
<td>0.011</td>
<td>0.0</td>
</tr>
<tr>
<td>Class Mammalia (Mammal)</td>
<td>159</td>
<td>32.7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.515</td>
<td>1.0</td>
</tr>
<tr>
<td>Class Mammalia I (Large Mammal)</td>
<td>117</td>
<td>24.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>6.073</td>
<td>4.1</td>
</tr>
<tr>
<td>Equus spp. (Horse or Ass)</td>
<td>6</td>
<td>1.2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>7.6</td>
<td>800.0</td>
<td>17.5</td>
<td>9.557</td>
<td>6.4</td>
</tr>
<tr>
<td>Sus scrofa (Domestic Pig)</td>
<td>60</td>
<td>12.3</td>
<td>7</td>
<td>1</td>
<td>8</td>
<td>30.7</td>
<td>750.0</td>
<td>16.4</td>
<td>13.338</td>
<td>9.0</td>
</tr>
<tr>
<td>cf. Sus scrofa (Domestic Pig)</td>
<td>3</td>
<td>0.6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.079</td>
<td>0.0</td>
</tr>
<tr>
<td>Bos taurus (Domestic Cow)</td>
<td>102</td>
<td>21.0</td>
<td>7</td>
<td>0</td>
<td>7</td>
<td>26.9</td>
<td>2800.0</td>
<td>61.5</td>
<td>112.069</td>
<td>75.6</td>
</tr>
<tr>
<td>cf. Bos taurus (Domestic Cow)</td>
<td>2</td>
<td>0.4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.926</td>
<td>0.6</td>
</tr>
<tr>
<td>Bos taurus (Calf) (Domestic Cow (Calf))</td>
<td>4</td>
<td>0.8</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3.8</td>
<td>50.0</td>
<td>1.1</td>
<td>1.579</td>
<td>1.0</td>
</tr>
<tr>
<td>Ovis aries/Capra hircus (Domestic Sheep or Goat)</td>
<td>8</td>
<td>1.6</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3.8</td>
<td>35.0</td>
<td>0.7</td>
<td>1.103</td>
<td>0.7</td>
</tr>
<tr>
<td>cf. Ovis aries/Capra hircus (Domestic Sheep or Goat)</td>
<td>1</td>
<td>0.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.033</td>
<td>0.0</td>
</tr>
<tr>
<td>Bos taurus/Equus sp. (Domestic Cow, Horse, or Ass)</td>
<td>4</td>
<td>0.8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.896</td>
<td>0.6</td>
</tr>
<tr>
<td>Subphylum Vertebrata (Other Vertebrate)</td>
<td>1</td>
<td>0.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.000</td>
<td>0.0</td>
</tr>
</tbody>
</table>
FAUNAL DATA FOR THE LATE BURDETT'S ASSEMBLAGE

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Osteichthyes (Bony Fish)</td>
<td>42</td>
<td>3.7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.255</td>
<td>0.6</td>
</tr>
<tr>
<td>Acipenser spp. (Sturgeon)</td>
<td>9</td>
<td>0.7</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>4.0</td>
<td>100.0</td>
<td>0.375</td>
<td>0.9</td>
</tr>
<tr>
<td>Family Sciaenidae (Croaker or Drum)</td>
<td>1</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.015</td>
<td>0.0</td>
</tr>
<tr>
<td>Pogonias cromis (Black Drum)</td>
<td>2</td>
<td>0.1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>4.0</td>
<td>25.0</td>
<td>0.120</td>
<td>0.3</td>
</tr>
<tr>
<td>Order Testudines (Turtle)</td>
<td>13</td>
<td>1.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.120</td>
<td>0.3</td>
</tr>
<tr>
<td>Chelydra serpentina (Snapping Turtle)</td>
<td>4</td>
<td>0.3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>4.0</td>
<td>10.0</td>
<td>0.119</td>
<td>0.3</td>
</tr>
<tr>
<td>Chrysemys spp. (Slider or Cooter)</td>
<td>1</td>
<td>0.0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>4.0</td>
<td>1.0</td>
<td>0.032</td>
<td>0.0</td>
</tr>
<tr>
<td>Class Aves (Bird)</td>
<td>15</td>
<td>1.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4.0</td>
<td>0.0</td>
<td>0.074</td>
<td>0.1</td>
</tr>
<tr>
<td>Class Aves/Mammalia III (Bird/Small Mammal)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duck spp. (Duck)</td>
<td>6</td>
<td>0.5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>4.0</td>
<td>2.0</td>
<td>0.024</td>
<td>0.0</td>
</tr>
<tr>
<td>Goose spp. (Goose)</td>
<td>4</td>
<td>0.3</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>8.0</td>
<td>14.0</td>
<td>0.181</td>
<td>0.4</td>
</tr>
<tr>
<td>Gallus gallus (Chicken)</td>
<td>12</td>
<td>1.0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>8.0</td>
<td>5.0</td>
<td>0.161</td>
<td>0.4</td>
</tr>
<tr>
<td>Colinus virginianus (Bobwhite)</td>
<td>1</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.006</td>
<td>0.0</td>
</tr>
<tr>
<td>cf. Family Corvidae (Ravens and Crows)</td>
<td>1</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.009</td>
<td>0.0</td>
</tr>
<tr>
<td>Corvus brachyrhynchos (Crow)</td>
<td>1</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.005</td>
<td>0.0</td>
</tr>
<tr>
<td>Class Mammalia (Mammal)</td>
<td>74</td>
<td>6.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.163</td>
<td>0.4</td>
</tr>
<tr>
<td>Class Mammalia I (Large Mammal)</td>
<td>210</td>
<td>18.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>8.751</td>
<td>22.0</td>
</tr>
<tr>
<td>Class Mammalia II (Medium Mammal)</td>
<td>475</td>
<td>41.9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>6.242</td>
<td>15.7</td>
</tr>
<tr>
<td>Sylvilagus floridanus (Eastern Cottontail)</td>
<td>3</td>
<td>0.2</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4.0</td>
<td>2.0</td>
<td>0.029</td>
<td>0.0</td>
</tr>
<tr>
<td>Rattus spp. (Old World Rat)</td>
<td>1</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.009</td>
<td>0.0</td>
</tr>
<tr>
<td>Order Carnivora (Carnivore)</td>
<td>2</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.009</td>
<td>0.0</td>
</tr>
<tr>
<td>Procyon lotor (Raccoon)</td>
<td>6</td>
<td>0.5</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>1.0</td>
<td>15.0</td>
<td>0.066</td>
<td>0.1</td>
</tr>
<tr>
<td>Order Artiodactyla I (Sheep, Goat, Deer, or Pig)</td>
<td>3</td>
<td>0.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.182</td>
<td>0.4</td>
</tr>
<tr>
<td>Sus scrofa (Domestic Pig)</td>
<td>123</td>
<td>10.8</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>20.0</td>
<td>450.0</td>
<td>6.306</td>
<td>15.9</td>
</tr>
<tr>
<td>Bos taurus (Domestic Cow)</td>
<td>41</td>
<td>3.6</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>8.0</td>
<td>800.0</td>
<td>12.046</td>
<td>30.3</td>
</tr>
<tr>
<td>Bos taurus (Calf) (Domestic Cow (Calf))</td>
<td>10</td>
<td>0.8</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>12.0</td>
<td>150.0</td>
<td>2.294</td>
<td>5.7</td>
</tr>
</tbody>
</table>
17KC-A EARLY 19 C., LATE BURDETT
SUMMARY OF FAUNAL REMAINS

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ovis aries/Capra hircus (Domestic Sheep or Goat)</td>
<td>13</td>
<td>1.1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>8.0</td>
<td>70.0</td>
<td>4.2</td>
<td>1.582</td>
<td>3.9</td>
</tr>
<tr>
<td>cf. Ovis aries/Capra hircus (Domestic Sheep or Goat)</td>
<td>2</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.203</td>
<td>0.5</td>
</tr>
<tr>
<td>Totals</td>
<td>1133</td>
<td>100.0</td>
<td>21</td>
<td>4</td>
<td>25</td>
<td>100.0</td>
<td>1647.5</td>
<td>100.0</td>
<td>39.650</td>
<td>100.0</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>------</td>
<td>----</td>
<td>----</td>
<td>------</td>
<td>-----</td>
<td>-------------</td>
<td>--------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Class Osteichthyes (Bony Fish)</td>
<td>2</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0.0</td>
<td>0.043</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Acipenser spp. (Sturgeon)</td>
<td>8</td>
<td>0.3</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>3.3</td>
<td>7.5</td>
<td>0.194</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Archohercules probatocephalus (Sheephead)</td>
<td>2</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>3.3</td>
<td>7.5</td>
<td>0.048</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Family Sciaenidae (Croaker or Drum)</td>
<td>1</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>3.3</td>
<td>21.5</td>
<td>0.047</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Class Aves (Bird)</td>
<td>26</td>
<td>1.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.103</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Class Aves/Hammalab III (Bird/Small Hammal)</td>
<td>29</td>
<td>1.1</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.132</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Duck spp. (Duck)</td>
<td>6</td>
<td>0.2</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>3.3</td>
<td>6.0</td>
<td>0.064</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Goose spp. (Goose)</td>
<td>1</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>3.3</td>
<td>7.0</td>
<td>0.050</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Meleagris gallopavo (Turkey)</td>
<td>8</td>
<td>0.3</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>3.3</td>
<td>22.5</td>
<td>0.343</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>Gallus gallus (Chicken)</td>
<td>2</td>
<td>0.0</td>
<td>1</td>
<td>0</td>
<td>1.0</td>
<td>3.3</td>
<td>2.5</td>
<td>0.050</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Class Hammalab (Hammalab)</td>
<td>368</td>
<td>15.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>3.3</td>
<td>21.5</td>
<td>2.183</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>Class Hammalab I (Large Hammalab)</td>
<td>248</td>
<td>10.1</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>3.3</td>
<td>22.5</td>
<td>12.757</td>
<td>15.4</td>
<td></td>
</tr>
<tr>
<td>Class Hammalab II (Medium Hammalab)</td>
<td>1288</td>
<td>52.7</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>3.3</td>
<td>22.5</td>
<td>13.987</td>
<td>16.9</td>
<td></td>
</tr>
<tr>
<td>Class Hammalab III (Small Hammalab)</td>
<td>17</td>
<td>0.7</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>3.3</td>
<td>2.0</td>
<td>0.104</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Ondatra zibethica (Muskrat)</td>
<td>2</td>
<td>0.0</td>
<td>1</td>
<td>0</td>
<td>1.0</td>
<td>3.3</td>
<td>2.0</td>
<td>0.032</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Family Felidae (Cat)</td>
<td>9</td>
<td>0.3</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>3.3</td>
<td>2.0</td>
<td>0.032</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Felis domesticus (Domestic Cat)</td>
<td>9</td>
<td>0.3</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>3.3</td>
<td>2.0</td>
<td>0.056</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Order Artiodactyla I (Sheep, Goat, Deer, or Pig)</td>
<td>15</td>
<td>0.6</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>3.3</td>
<td>2.0</td>
<td>0.430</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Order Artiodactyla II (Sheep, Goat, or Deer)</td>
<td>1</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>3.3</td>
<td>2.0</td>
<td>0.126</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Sus scrofa (Domestic Pig)</td>
<td>189</td>
<td>7.7</td>
<td>6</td>
<td>2</td>
<td>8.0</td>
<td>26.6</td>
<td>700.0</td>
<td>12.995</td>
<td>15.7</td>
<td></td>
</tr>
<tr>
<td>Bos taurus (Domestic Cow)</td>
<td>141</td>
<td>5.7</td>
<td>3</td>
<td>0</td>
<td>3.0</td>
<td>10.0</td>
<td>1200.0</td>
<td>29.397</td>
<td>35.7</td>
<td></td>
</tr>
<tr>
<td>Ovis aries (Domestic Sheep)</td>
<td>3</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>2.0</td>
<td>70.0</td>
<td>1.367</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>Bos taurus (Calf) (Domestic Cow)</td>
<td>24</td>
<td>0.9</td>
<td>0</td>
<td>3</td>
<td>3.0</td>
<td>10.0</td>
<td>150.0</td>
<td>4.010</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td>(Calf)</td>
<td>1</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>3.3</td>
<td>2.0</td>
<td>0.126</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Ovis aries/Capra hircus (Domestic Sheep or Goat)</td>
<td>49</td>
<td>2.0</td>
<td>3</td>
<td>1</td>
<td>4.0</td>
<td>13.3</td>
<td>120.0</td>
<td>3.648</td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>------</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>------</td>
<td>-------------</td>
<td>------</td>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td>Bos taurus/Equus sp. (Domestic Cow, Horse, or Ass)</td>
<td>1</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.094</td>
<td>0.1</td>
</tr>
<tr>
<td>Homo sapiens (Human)</td>
<td>1</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.000</td>
<td>0.0</td>
</tr>
<tr>
<td>Totals</td>
<td>2443</td>
<td>100.0</td>
<td>24</td>
<td>6</td>
<td>30</td>
<td>106.6</td>
<td>2409.0</td>
<td>102.9</td>
<td>82.321</td>
<td>100.0</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>------</td>
<td>------</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-------------</td>
<td>-----</td>
<td>-------------</td>
<td>-----</td>
</tr>
<tr>
<td>Callinectes sapidus (Blue Crab)</td>
<td>4</td>
<td>0.2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3.5</td>
<td>0.2</td>
<td>0.0</td>
<td>0.000</td>
<td>0.0</td>
</tr>
<tr>
<td>Order Lamniformes (Typical Shark)</td>
<td>1</td>
<td>0.0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3.5</td>
<td>160.0</td>
<td>6.2</td>
<td>0.000</td>
<td>0.0</td>
</tr>
<tr>
<td>Class Osteichthyes (Bony Fish)</td>
<td>19</td>
<td>1.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.066</td>
<td>0.1</td>
</tr>
<tr>
<td>Acipter spp. (Sturgeon)</td>
<td>10</td>
<td>0.6</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3.5</td>
<td>100.0</td>
<td>3.9</td>
<td>0.470</td>
<td>0.8</td>
</tr>
<tr>
<td>Family Ictaluridae (Freshwater Catfish)</td>
<td>2</td>
<td>0.1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3.5</td>
<td>2.0</td>
<td>0.0</td>
<td>0.055</td>
<td>0.0</td>
</tr>
<tr>
<td>Pogonias cronis (Black Drum)</td>
<td>1</td>
<td>0.0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3.5</td>
<td>25.0</td>
<td>0.9</td>
<td>0.028</td>
<td>0.0</td>
</tr>
<tr>
<td>Rana spp. (Frog)</td>
<td>1</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.000</td>
<td>0.0</td>
</tr>
<tr>
<td>Chrysemys spp. (Slider or Cooter)</td>
<td>1</td>
<td>0.0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3.5</td>
<td>3.0</td>
<td>0.1</td>
<td>0.049</td>
<td>0.0</td>
</tr>
<tr>
<td>Class Aves (Bird)</td>
<td>32</td>
<td>2.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.104</td>
<td>0.1</td>
</tr>
<tr>
<td>Class Aves/Mammalia III (Bird/Small Mammal)</td>
<td>19</td>
<td>1.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.123</td>
<td>0.2</td>
</tr>
<tr>
<td>Goose spp. (Goose)</td>
<td>2</td>
<td>0.1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3.5</td>
<td>7.0</td>
<td>0.2</td>
<td>0.045</td>
<td>0.0</td>
</tr>
<tr>
<td>Family Phasianidae (Grouse, Partridge, or Pheasant)</td>
<td>1</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.003</td>
<td>0.0</td>
</tr>
<tr>
<td>Meleagris gallopavo (Turkey)</td>
<td>13</td>
<td>0.8</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3.5</td>
<td>7.5</td>
<td>0.2</td>
<td>0.330</td>
<td>0.5</td>
</tr>
<tr>
<td>Gallus gallus (Chicken)</td>
<td>6</td>
<td>0.4</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>7.1</td>
<td>5.0</td>
<td>0.2</td>
<td>0.069</td>
<td>0.1</td>
</tr>
<tr>
<td>Order Passeriformes (Perching Bird)</td>
<td>1</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.003</td>
<td>0.0</td>
</tr>
<tr>
<td>Class Mammalia (Mammal)</td>
<td>140</td>
<td>9.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.043</td>
<td>0.9</td>
</tr>
<tr>
<td>Class Mammalia I (Large Mammal)</td>
<td>239</td>
<td>15.8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>10.578</td>
<td>18.3</td>
</tr>
<tr>
<td>Class Mammalia II (Medium Mammal)</td>
<td>779</td>
<td>51.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>7.480</td>
<td>13.0</td>
</tr>
<tr>
<td>Class Mammalia III (Small Mammal)</td>
<td>8</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.017</td>
<td>0.0</td>
</tr>
<tr>
<td>Sciurus carolinensis (Eastern Gray Squirrel)</td>
<td>1</td>
<td>0.0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3.5</td>
<td>1.0</td>
<td>0.0</td>
<td>0.009</td>
<td>0.0</td>
</tr>
<tr>
<td>Rattus norvegicus (Norway Rat)</td>
<td>1</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.003</td>
<td>0.0</td>
</tr>
<tr>
<td>Mus musculus (House Mouse)</td>
<td>1</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.003</td>
<td>0.0</td>
</tr>
<tr>
<td>Rat spp. (Rats)</td>
<td>6</td>
<td>0.4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.017</td>
<td>0.0</td>
</tr>
<tr>
<td>Felis domesticus (Domestic Cat)</td>
<td>8</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.108</td>
<td>0.1</td>
</tr>
<tr>
<td>Equus spp. (Horse or Ass)</td>
<td>3</td>
<td>0.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.576</td>
<td>2.7</td>
</tr>
<tr>
<td>Order Artiodactyla I (Sheep, Goat)</td>
<td>3</td>
<td>0.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.094</td>
<td>0.1</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>------</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>------</td>
<td>-------------</td>
<td>--------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Sus scrofa (Domestic Pig)</td>
<td>102</td>
<td>6.7</td>
<td>7</td>
<td>1</td>
<td>8</td>
<td>28.5</td>
<td>750.0</td>
<td>9.294</td>
<td>16.1</td>
<td></td>
</tr>
<tr>
<td>cf. Sus scrofa (Domestic Pig)</td>
<td>2</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.233</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>Odocoileus virginianus (White-Tailed Deer)</td>
<td>1</td>
<td>0.0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3.5</td>
<td>100.0</td>
<td>0.132</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Bos taurus (Domestic Cow)</td>
<td>69</td>
<td>4.5</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>10.7</td>
<td>1200.0</td>
<td>22.592</td>
<td>39.2</td>
<td></td>
</tr>
<tr>
<td>cf. Bos taurus (Domestic Cow)</td>
<td>2</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.203</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Ovis aries (Domestic Sheep)</td>
<td>2</td>
<td>0.1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3.5</td>
<td>35.0</td>
<td>0.487</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>Bos taurus (Calf) (Domestic Cow)</td>
<td>12</td>
<td>0.7</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>7.1</td>
<td>100.0</td>
<td>1.402</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>Ovis aries/Capra hircus (Domestic Sheep or Goat)</td>
<td>16</td>
<td>1.0</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>10.7</td>
<td>85.0</td>
<td>1.270</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>cf. Ovis aries/Capra hircus (Domestic Sheep or Goat)</td>
<td>1</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.110</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Subphylum Vertebrata (Other Vertebrate)</td>
<td>1</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.000</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>1510</td>
<td>100.0</td>
<td>24</td>
<td>4</td>
<td>28</td>
<td>103.5</td>
<td>2580.7</td>
<td>57.496</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>------</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>------</td>
<td>-------------</td>
<td>--------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Class Osteichthyes (Bony Fish)</td>
<td>6</td>
<td>1.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.022</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Acipenser spp. (Sturgeon)</td>
<td>2</td>
<td>0.3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>6.6</td>
<td>100.0</td>
<td>0.162</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>Lepisosteus spp. (Gar)</td>
<td>1</td>
<td>0.1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>6.6</td>
<td>5.0</td>
<td>0.027</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>cf. Morone americana (White Perch)</td>
<td>1</td>
<td>0.1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>6.6</td>
<td>1.0</td>
<td>0.002</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Order Testudines (Turtle)</td>
<td>1</td>
<td>0.1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>6.6</td>
<td>1.0</td>
<td>0.017</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Class Aves (Bird)</td>
<td>16</td>
<td>2.7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.067</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Class Aves/Mammalia III (Bird/Small Mammal)</td>
<td>10</td>
<td>1.7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.062</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Duck (Duck)</td>
<td>1</td>
<td>0.1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>6.6</td>
<td>2.0</td>
<td>0.011</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Meleagris gallopavo (Turkey)</td>
<td>1</td>
<td>0.1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>6.6</td>
<td>7.5</td>
<td>0.037</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Gallus gallus (Chicken)</td>
<td>3</td>
<td>0.5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>6.6</td>
<td>2.5</td>
<td>0.017</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Class Mammalia (Mammal)</td>
<td>102</td>
<td>17.7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.440</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>Class Mammalia I (Large Mammal)</td>
<td>90</td>
<td>15.6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>3.041</td>
<td>16.7</td>
<td></td>
</tr>
<tr>
<td>Class Mammalia II (Medium Mammal)</td>
<td>250</td>
<td>43.4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.926</td>
<td>16.0</td>
<td></td>
</tr>
<tr>
<td>Sylvilagus floridanus (Eastern Cottontail)</td>
<td>1</td>
<td>0.1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>6.6</td>
<td>2.0</td>
<td>0.014</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Rat spp. (Rats)</td>
<td>2</td>
<td>0.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.014</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Order Artiodactyla I (Sheep, Goat, Deer, or Pig)</td>
<td>5</td>
<td>0.8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.150</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>Sus scrofa (Domestic Pig)</td>
<td>43</td>
<td>7.4</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>20.0</td>
<td>250.0</td>
<td>3.340</td>
<td>18.3</td>
<td></td>
</tr>
<tr>
<td>cf. Sus scrofa (Domestic Pig)</td>
<td>3</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.342</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>Bos taurus (Domestic Cow)</td>
<td>23</td>
<td>3.9</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>6.6</td>
<td>400.0</td>
<td>5.944</td>
<td>32.6</td>
<td></td>
</tr>
<tr>
<td>Bos taurus (Calf) (Domestic Cow) (Calf)</td>
<td>7</td>
<td>1.2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>6.6</td>
<td>50.0</td>
<td>0.814</td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td>cf. Bos taurus (Calf) (Domestic Cow) (Calf)</td>
<td>1</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.169</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Ovis aries/Capra hircus (Domestic Sheep or Goat)</td>
<td>7</td>
<td>1.2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>13.3</td>
<td>70.0</td>
<td>0.582</td>
<td>3.1</td>
<td></td>
</tr>
</tbody>
</table>

Totals | 576 | 100.0| 13 | 2 | 15 | 100.0| 891.0 | 18.200 | 100.0|
REFERENCES CITED

Anderson, Jay

Andrews, Susan Trevarthen

[Anon.]

[Anon.]
1816 The Experienced butcher: shewing the respectability and usefulness of his calling, ... the laws relating to it, ... London, Darton (etc.). Special Collections, John D. Rockefeller, Jr. Library, Colonial Williamsburg Foundation, Williamsburg, Virginia.

Beeton, Isabella.

Binford, Lewis

Bowen, Joanne

Bowen, Joanne and Elise Manning
Brandau, Rosemary.

Brown, Gregory J.

Brown, Marley R., III, and Joanne Bowen

Calhoun, Jeanne A, Elizabeth J. Reitz, Michael B. Trinkley, and Martha A. Zeirden.

Carson, Jane.

Child, Lydia

Clarke, Austin

Clemen, Rudolph Alexander
Crabtree, Pam J.

Crader, Diana C.

Cruz-Uribe, Kathryn

Davis, Elaine S.

Dean, Susannah

Dinges' Meat Shop Day Book
1826-1827 Manuscripts and Rare Books Department, Swem Library, College of William and Mary.

Edwards, Andrew C., Linda K. Derry and Roy A. Jackson

Fischer, Lisa.
2001 Personal communication. Project Archaeologist, Department of Archaeological Research, Colonial Williamsburg Foundation, Williamsburg, Virginia.

Fogg, Mary M. R.

Galt Family Papers.
1833 - 7 October 1838 *Personal Papers*. Microfilm on file (M-1131.3), Rockefeller Library, Colonial Williamsburg Foundation, Williamsburg, Virginia.

Garden, Mary-Cate, Margaret Cooper, Elizabeth Gryzmala, Joanne Bowen, Lisa Kealhofer, and David Muraca.

Gibbs, Patricia A.

Gifford, Diane

Grayson, D. K.

Harwood, Jameson M.

2002 Personal communication. Project Archaeologist, Department of Archaeological Research, Colonial Williamsburg Foundation, Williamsburg, Virginia.

Hazen, Edward.
Hume, Ivor Noël

Jones, K.T. and D. Metcalfe

Landon, David
1996 *Feeding Colonial Boston: A Zooarchaeological Study.* *Historical Archaeology* 30(1).

Langenwalter, Paul E., II

Lounsbury, Carl.

Lyman, R. Lee

Maltby, J.M.

Mayer, Oscar G.

O'Connell, James, Kristen Hawkes, and Nicholas Jones
Peachy, Thomas Griffin

Perkins, D. and P. Daly

Perrin, Richard

Pickell, Stuart C.

Powers, Emma L.

Reitz, Elizabeth J.

Rothschild, Nan

Samford, Patricia and Joanne Bowen

Schulz, Peter D. and Sherri M. Gust

Shackel, Paul A.
Skaggs, Jimmy M.

Smale, Maura A.

Smart, Ann Morgan
1986 *The urban/rural dichotomy of status consumption: tidewater Virginia, 1815.* M. A. thesis, American Studies Department, College of William and Mary, Williamsburg, VA.

Smith, David C., and Anne E. Bridges

Spruill, Julia Cherry

Stein, Gil J.
1987 *Regional Economic Integration in Early State Societies: Third Millennium B.C. Pastoral Production at Gritille, Southeast Turkey.* *Paleorient* 13(2): 101-111.

Steingarten, Jeffrey

Stephenson, Mary A.

Tangiyes, Helen

Tolbert, Lisa C.

Walsh, Lorena, Ann Smart Martin, and Joanne Bowen

Watts, Sydney Evelyn

White, Theodore

Young, Arthur

Yellen, John E.

Yentsch, Anne Elizabeth
Zeder, Melinda
VITA

Carrie Beth Alblinger