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List of Abbreviations and Symbols

In this list I provide the abbreviations and symbols used 

throughout the text:

Algorithms

MD: Molecular Dynamics

GA: Genetic Algorithm

GNM: Gaussian Network Model

Abbreviations 

RMS: root mean square

PE: potential energy

KE: kinetic energy

kbig: large force constant

ksman: small force constant

kf: friction force constant

Ccs: correlation factor of catalytic amino acid

(0 and substrate (5).

C: catalytic amino acid



• S: substrate

• rmsx:

• rmsy:

• EqRx:

• EqRy;

• Td:

• Ta:

root mean square deviation in x direction

root mean square deviation in y direction

equilibrium position in x direction

equilibrium position in y direction

desired temperature

actual temperature

V:

K:

r:

v:

a:

M:

N:

A:

F:

Symbols

potential energy

kinetic energy

position

velocity

acceleration

the number of time steps

the number of atoms

dynamical variable

force

m: mass



• Nf: degrees of freedom

• kB: Boltzmann’ s constant

• piytx)' probability density for velocity vL

• g : uniform random variable

• g : Gaussian-distributed random number

P : reciprocal temperature

x i i



ABSTRACT

A Dynamical Perspective on Enzymatic Catalysis

Shiying Shang

This thesis consists of two major parts. In the first part, 
molecular dynamic simulations are applied to study enzymatic 
conformational fluctuations. We define a simplified lattice model with 
each lattice site occupied by an amino acid. This lattice consists of 
both stiff and loose interactions between neighboring sites. Two 
neighboring lattice sites are identified as the substrate and catalytic 
amino acid. Then we integrate Newton’ s equations of motion for all 
sites in the system. Lastly, we calculate the correlation function for 
fluctuations of the substrate and catalytic amino acid, which defines 
the catalytic efficiency of this enzyme. In the second part, we use 
Genetic Algorithms and intersect them with molecular dynamics. This 
procedure will drive the evolution of stiff and flexible interactions 
between enzymatic domains such that the enzyme’ s fluctuation dynamics 
are maximally efficient.
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Chapter 1 
General Introduct ion

• Purpose

The development of computational methods for biophysical 

chemistry calculations is a complex and active research area. 

Much work is directed towards understanding how enzymes are so 

much smarter than theorists, who cannot even reliably predict 

what the final folded states of proteins will be. Our research 

focuses on developing computational tools to address the role of 

dynamic fluctuation patterns in maximizing the rate of enzymatic 

catalysis. We propose that an enzyme has evolved for catalysis 

on two levels. The first level is a static level for substrate 

recognition and transition-state stabilization. The second level 

is a dynamic level of complex conformational fluctuation 

patterns. Our goal will be accomplished via the applications of 

molecular dynamics simulations and genetic algorithms.
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• A General Picture and Previous Work

More than 50 years ago, Pauling introduced transition 

state stabilization theory to explain enzyme functions (Pauling 

1948). He hypothesized that enzymes stabilize the transition 

state by lowering the activation energy thereby maximizing the 

rate of catalysis. More recently, a ground state destabilization 

theory whereby enzyme molecules destabilize the substrate rather 

than stabilize the transition state was proposed by Jencks 

(Jencks 1975).

Both of these conclusions are based on a static analysis 

of enzymes. But a real enzyme molecule is dynamic, flexible, and 

fluctuating. We propose that large-scale complex fluctuation 

patterns affect the catalytic efficiency to a large extent. A 

theoretical review of the role of conformational and dynamical 

changes in ligand binding by Karplus and Petsko showed that 

molecular dynamics simulations would help understand and predict 

such biological phenomena (Karplus and Petsko 1990). This 

conformational flexibility induced by ligand binding has been 

examined in several experimental studies (Wang et al. 1998;

3



Greenwald et al. 1999; Hadfield and Mulholland 1999; Loh 1999; 

Kohen et al. 1999; Zajicek et al. 2000).

Recent literature has demonstrated that small scale 

dynamic motions have a direct role in catalysis: The coupling 

between substrate and catalyst may be controlled by amino acid 

residues far from the active site (Cameron and Benkovic 1997; 

Miller and Benkovic 1998; and Balabin and Onuchic 2000): 

Alternate conformations of the enzyme lead to completely 

different motions, which are essential for catalysis.

Computational evidence and experimental results suggest 

that fluctuation patterns strongly depend on correlated motions. 

Radkiewicz and Brooks demonstrate, using molecular dynamics 

simulations, that strongly-coupled motions of dihydrofolate 

reductase are linked to catalytic ability (Radkiewicz and Brooks 

2000). Ota and Agard, also using MD simulations, revealed that 

the substrate specificity of an a - lytic protease is 

dynamically-controlled (Ota and Agard 2001). Gaussian network 

models (GNM) of tryptophan synthase show that structural

4



elements control the cooperative transmission of conformational 

motions (Bahar and Jerignan 1999).

We believe that we can design highly efficient catalysis 

by optimizing enzymatic fluctuation patterns that develop right 

after substrate binding. We first model motions of enzymatic 

amino acids on a computer through molecular dynamics algorithms. 

Then we apply a genetic algorithm to drive this enzyme to its 

maximal efficiency.

5



• Model and Molecular Dynamics Simulations

In this work we employ a two-dimensional lattice model of 

an enzyme, which consists of both conformationally stiff and 

loose regions. This kind of model is widely used to understand 

protein-folding problems (Klimov and Thirumalai 1998; Hoang and 

Cieplak 1998; Socci et al. 1999; Wang et al. 2000; and Williams 

et al. 2001). Then a molecular dynamics (MD) simulation is 

applied to this model. The problem with MD is that the scope of 

the simulations is strictly limited by time. These simulations, 

with current computational power, typically can run for about a 

nanosecond (10~9 second) for an enzymatic system. But chemical

reactions are usually on the time-scale of a millisecond. This 

problem hinders applicability of this method even at the level

of moderately sized systems. However, we simplify an enzyme to

its “toy” structure and ignore molecular details of the Van 

der Waals, electrostatic, torsion, etc. interactions in our 

small system. Thus our simulations can run for much longer times.

Our model consists of 8 x 8 amino acids on a square

lattice, with each amino acid located at one lattice site. We

6



define one of these lattice sites, which is located at the 

center of the matrix, as the substrate (S), and its neighbor as 

the catalytic amino acid (C).

Catalytic 
amino acid

Substrate

Rigid
boundaries

Figure 1. 8 x 8 model of MD simulations

Then two force constants, kbig and kSDiau, are defined to represent 

stiff and loose regions, respectively. Now the model is ready 

for MD simulations.

The MD algorithm simulates the motions of a system of 

particles. This method integrates Newton’ s equations of motion 

to advance the atomic motion. This numeric integration is 

typically done by using Finite Difference methods, such as the 

Verlet integrator. The central part of this thesis reports the 

development of the molecular dynamics simulations. The

7



methodology involved is reported in detail in the first part of 

the thesis.

Atoms are initially assigned random positions, Gaussian 

distributed velocities, and randomly distributed force constants 

for a desired temperature, and a simulation is performed for a 

few nanoseconds. Strong harmonic interactions prevent each atom 

from straying too far from its equilibrium position, which leads 

to protein unfolding. Now, we want to determine the right 

distribution of small and large force constants that will 

determine the catalytic efficiency.

During the MD simulations, the more numerous the enzyme- 

substrate encounters, the higher the probability of the chemical 

event. The enzyme-substrate encounters, in our simulations can 

be measured by a correlation factor:

where Axc and Axs represent the deviations of the catalytic 

residue and the substrate from their equilibrium positions. The 

brackets indicate averages over equilibrated trajectories. We

C
(Axc - A*,)

8



want to get a correlation factor that is as negative as possible. 

That means the catalytic residue and substrate are always moving 

to the opposite directions, which leads to efficient chemical 

events.

9



• Genetic Algorithms

To evolve the enzyme to maximal efficiency, a genetic 

algorithm (GA), based on Natural (Darwinian) Selection, is 

applied. Genetic algorithms have been widely studied with 

applications in many fields in the engineering world. They were 

introduced as a computational analogy of adaptive systems. These 

methods are modeled loosely on the principles of evolution via 

natural selection, employing a population of individuals that 

undergo selection in the presence of variation inducing 

operators such as mutation and crossover of force constants. 

After each cycle of GA, the best distributions of force 

constants are chosen to generate new conformations until the 

most efficient enzyme fluctuation pattern is found. Genetic 

algorithms are very helpful and efficient when the search space 

is large, complex, or poorly understood.

10



• Long-Term Goals

By combining molecular dynamics and genetic algorithms, we 

are able to optimize the structure of stiff and loose regions in

the body of the enzyme. The work will be a novel synthesis of

ideas and techniques derived from chemistry, physics, biology 

and the computer sciences.

Our simulations can also address some biological phenomena 

such as why the respective enzymes of a thermophilic and a

thermophobic organism amazingly perform with the same efficiency 

at two very different temperatures. The answer is that the

enzymatic conformational fluctuation patterns are the same at 

the respective optimal temperatures.

Since MD simulations can be run at different temperatures, 

we are able to take advantage of this to establish and compare 

relations between different enzymes in different thermal 

conditions.

• Note

The reader may find the list of abbreviations and symbols 

included above helpful.

11



Part I 

Molecular Dynamics
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Chapter 2 

Molecular Dynamics Simulations 

2. 1 Introduction to Molecular Dynamics Simulations

Molecular dynamics simulation is a powerful method for exploring 

the dynamic properties of many - particle systems. The method was 

originally devised in the 1950s by Alder and Wainwright (Alder and 

Wainwright 1957, 1959). The essence is simple: calculate the forces

acting on the atoms in a molecular system and analyze their motion. MD 

simulations can provide detailed information on the fluctuations and 

conformational changes of proteins and nucleic acids. It is a valuable 

bridge between experiment and theory. Section II of this chapter will 

focus on the discussion of statistical mechanics. In section III, the 

integration algorithm, temperature scaling, and some related topics 

will be presented. Section IV will discuss some practical aspects of 

our molecular dynamics simulation and some basic analysis.

13



2.2 Statistical Mechanics

In a molecular dynamics simulation, statistical mechanics 

connects microscopic simulations and macroscopic properties through 

mathematical expressions. It helps us to deduce the bulk properties, 

as opposed to individual atomic properties, of the material (e. g. 

temperature, potential energy, kinetic energy, etc.). In this section,

we provide an overview of three important concepts --- time average,

fluctuations, and correlation functions.

• Time Average:

A time average is an average taken over a large number of 

configurations of the system. Features of all individual 

configurations are supposed to be scattered about this mean 

value. It helps us to properly calculate the averages.

• Fluctuations:

Fluctuations describe how much properties of individual 

configurations can vary from the average values. Fluctuations,

14



with no doubts, are very important to all physical processes in 

the whole system.

• Correlation Functions:

Correlation functions measure how fluctuations in the 

catalytic amino acid residue are correlated with those of the 

substrate. It reveals the chemical efficiency of the dynamical 

processes that occur.

15



2.2.1 Time Average

The time average of some configurational property A is given by

where M  stands for the number of time steps, t is the simulation time. 

r —> go means this measurement is performed over a essentially infinite 

time duration.

To be more specific:

Average position: A - R

Average potential energy: A - V

Average kinetic energy: A - K

where M (j): the number of time steps

N (i): the number of atoms

R(x,y)i\ the position of atom i

16



V: potential energy 

K: kinetic energy 

mf: the mass of atom i 

V/i the velocity of atom i

17



2.2.2 Fluctuations

• Fluctuations in potential energy:

Fluctuations in potential energy in the system provide 

information such as when the system is equilibrated and when we 

should start sampling for calculations.

• Fluctuations in position:

Calculation of the fluctuations in position helps us to 

prevent the atoms of interest from straying too far from their 

equilibrium sites. This information can be obtained from root

mean square (RMS) deviation calculations: 7?(x) = 2)

where EqRx and EqR mean the equilibrium positions of Rx and Ry

rmsx

M r ,
Y\Ry{x,y)- EqRy(x,y)f

rmsy(x,y)
M

18



2.2. 3 Correlation Functions

Correlationed motions between the substrate and catalytic amino 

acid are measured by the correlation factor. It reveals how the 

positions of substrate Xs may be related to the positions of the 

catalytic amino acid Xc. The explicit form of the correlation function 

is

where Ccs'. the correlation factor of the catalytic amino acid and 

substrate

Xs: position of substrate

Xc: position of catalytic amino acid

M\ configurations (trajectories)

The correlation factor varies in the range - 1 < C C5<+1. If this factor

is positive, our substrate and catalytic amino acid move in the same 

direction under most circumstances. On the contrary, an opposite- 

direction motion, which is in favor of successful chemical events, is 

related to a negative value of Ccs. Therefore, this correlation factor

f,[{xx- x j x , - x c)
c i=1

19



can be used to measure the probability of collision (i.e., the 

probability of the chemical event). The more negative the correlation 

factor, the higher the chance of successful enzyme-substrate 

encounters.

0 < Ccs < 1 correlated
— 1 < Ccs < 0 anti — correlated
C =0 uncorrelated

20



2. 3 Molecular Dynamics Simulations

Molecular dynamics simulations provide detailed information on 

the conformational fluctuations of the enzyme. They are based on 

Newton’ s equations of motion. We used velocity Verlet as our 

integration algorithm. In this section, we discuss integration 

algorithms, boundary conditions, temperature scaling, and initial 

conditions of our model.

• Newton’ s Equations of Motion:

These help us to calculate the increments in positions, 

velocities, and acceleration of the whole system from the 

initial conditions a time step earlier via the laws of classical 

mechanics.

• Integration Algorithms:

Numeric integration of Newton’ s equations of motion is 

typically done by using finite difference methods. Here, we will 

introduce the most common and most basic integration algorithm 

- the Verlet integrator.

21



• Boundary Conditions

Since periodic boundaries are hard to deal with and are 

more useful for solid states of matter, we decided to use rigid 

boundary conditions in our simulation.

• Temperature Scaling

To keep the desired temperature of system, we change the 

current actual temperature Ta to the desired temperature Td by

• Initial Conditions

We chose the size of the time - step by testing the 

stability of the numerical integrations. To save computation 

time, our initial velocities are a set of Gaussian-distributed 

numbers scaled to the desired temperature.

scaling all the velocities by the factor

22



2.3.1 Newton' s Equations of Motion

The motion of an individual atom is usually approximated by

Newton* s equations of motion:

F = ma ®

where F: is the total force on a particle

m: is the mass

a: is the acceleration

Here, F can be given as the derivative of potential energy V, and a

can be given as the second derivative of position r.

dV ^i.e., F = -
dr 

d2r
a =

dt

Combining equations ®, ®, (3), we have

dV d2r
 =  m — —

dr dt

There is one very important property of Newton* s equations of 

motion: conservation of energy. Since we fix the temperature to its 

desired value, the kinetic energy is stable. Consequently, the 

conservation of potential energy is used to test whether the molecular 

dynamics simulation is stable and reliable.

23



2. 3. 2 Integration Algorithms

A finite difference technique is the standard method for solving

dV d2ran ordinary differential equation such a s  = m — — . The general
dr dt

ideas is: given the initial positions, velocities, and other dynamic 

information at time t, we can calculate the positions and velocities 

at time t + dt. At the new positions, the procedure is repeated and 

another step is made.

Many numerical algorithms have been developed for integrating 

Newton' s equations of motion. The most basic and most common group of 

integration algorithms is the class of Verlet algorithms, such as the 

Verlet integrator, Verlet Leapfrog integrator, and Velocity Verlet 

integrator. Our molecular dynamics program is based on the Velocity 

Verlet algorithm.

24



Verlet Integrator

The Verlet integrator is the simplest integration algorithm. 

This method is based on a Taylor expansion about r(t)\

r{t + dt) = r(f)+ dt • v(t)+^-dt2a(t)+ • • •

r ( t - d t ) =  r ( t ) -d t  -v(t)+-^dt2a{t)--

Then, we add these two equations to give the equation for calculating 

the positions:

r(t + dt) = 2r(t) — r(t -  dt) + dt2 • a(t)

The velocities can be obtained from the equation:

vfr1) r(t+d‘h r(t~
y> 2 dt

Using these equations, the new positions and velocities are 

ready for the next time step.

This can be illustrate in the following figure:

25



t-dt t t+dt

r
% ^  

O  ' / /h
V

a
'// O s "  

s V

1 r

t t+dtt-dt t-dt t t+dt
% + 's

O 'J

+ $ 
V

s\"

O' '/

Figure 2. Verlet Integrator

Figure 2: The figure shows successive steps in the
implementation of the algorithm. The stored variables are in crossed 
boxes. The simulations follow the arrows to calculate the advance of 
features (r, v, or a). The third graph shows the variables at time t + 
dt, while the first graph is for time t. (from M. P. Allen and D. J. 
Tildesley, 1987. Computer Simulation of Liquids)
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Verlet Leapfrog Integrator

The Verlet Leapfrog integrator is an improved algorithm based on 

Verlet algorithm. The definition of this algorithm is as follows:

d t

2
d t ) f

t H--- =  V t
2 ) V

r(t + dt) = r { t ) + ^ t  + y • d t .

The velocities can be calculated from:

v t  +
d t

f)=
+ V d t

t ----
2 j

The process is shown as follows,

s''. S' v.

t-d t t t+ d t t-d t t t+ d t t-d t t t+ d t t-d t t t+ d t

-- 7,

%
s r. "

% s
<sv

•O' 's 1a—
<5̂ —

>
<oN

0 -v

VA'/,O'

Figure 3. Verlet Leapfrog Intergrator

(from M. P. Allen and D. J. Tildesley, 1987. Computer Simulation of 
Liquids)
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This algorithm is a little more computationally expensive than 

the Verlet algorithm, but it needs less storage space and improves the 

evaluation of velocities.

28



Velocity Verlet Integrator

The Velocity Verlet integrator, the most improved integrator, is 

used in our simulation. This algorithm stores positions, velocities, 

and accelerations at the same instant of time. The basic steps are as 

follows:

The algorithm involves the following steps:

• We start with r(t) and v(t) and calculate the acceleration at 

this time a(t).

• Then we repeat a loop:

1. Calculate r(t+dt) by using equation ®

2. Calcute velocities at mid - step by using

r(t + dt) = r(t) + dt • v(^) + * aif)

CD

3. Calculate a (t+dt)

4. Calculate v(t+dt) by

( 2 ) 2

29



t-dt

r

v

a

t-dt t t+dt t-dt

X /
K

V

%  •S'

oo0-
1

t t+dt
---V,-- : t-dt t t+dt

&  ^

v vV 00 V, oo
V '
\ < +

Figure 4. Velocity Verlet Integrator

Figure 4: This figure vividly shows the loop above. Note that 
this method makes progress via a mid-step calculation, (from M. P. 
Allen and D. J. Tildesley, 1987. Computer Simulation of Liquids)

This algorithm provides the best evaluation of velocities and

requires less computer memory.
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2.3.3 Boundary Conditions

Our problem of surface conditions can be addressed by 

implementing rigid boundary conditions. The two dimensional system may 

be embedded in a phantom of atoms, i.e., atoms at the boundaries are 

fixed to their equilibrium positions. When an atom hits the boundary 

it is bounced back. Rigid boundaries are much easier to code and are 

more favored in most liquid simulations than are periodic boundary 

conditions. But in some cases, rigid boundaries introduce artifacts 

into the system. However the effects will decrease as the system size 

increase.

31



2.3.4 Temperature Scaling

To attain the desired temperature, we scale velocities of all

atoms:

\Tdv = v .new old 1 1 rr,V Ta

Here Td is the desired temperature in Kelvins, Ta is the actual 

temperature computed from the following equation using the old 

velocities:

M

Ta = /=1
N  / • kB

where Nf is the number of degrees of freedom.

From this equation, we can see that temperature is related to 

the average kinetic energy of the system, i. e.,

N A dT
<*> =

1 NIn general, the kinetic energy K is: K = — ^ m ivi2.
2 i=i

In our program, Nr is 2N - 1 because each atom has two velocity 

components (i.e., vx and vy). And one degree of freedom is subtracted 

because the translation motion is ignored.

32



This is the simplest form of temperature scaling. We apply this 

scaling if the actual temperature is higher or lower than the desired 

temperature by 5K. It is adequate for driving the simulation 

consistently towards the desired temperature.
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2. 3. 5 Initial Conditions

Time Step:

To decrease computational time, a large time step should 

be used. However, too long a time step causes instability and 

inaccuracy in the integration. The velocity Verlet method 

usually uses 1 femtosecond (1 fs or 10"15 s) or smaller, in order 

to satisfy fast bond vibrations. We tested the stability of 

integration process and choose 2 x 10"1' s as our time step. This 

time step limits our simulations to the order of 1 ns (109 s) 

duration.

Initial Velocities:

A Gaussian distribution of velocities is a good 

approximation for a given temperature. They help the models to 

equilibrate in relatively short time. And most importantly, 

Gaussian random number distributions are very easy to work with. 

In an atomic system,



where ^(v^) is the probability density for velocity component vix, 

and similar equation apply for the y component.

The Gaussian-distributed numbers can be obtained from the 

following steps:

1. Generate 12 uniform random variables, f19£2,--*9£12 in the range 

(0, 1) ;

12

2. Calculate R = — ----- ;
4

3. £ = ((((agR2 +a7)R2 +a5)R2 +a3)R2+ ai)R 

where ai = 3.949846138

a3 = 0.252408784 

a5 = 0. 076542912 

a7 = 0. 008355968 

ag = 0. 029899776

This method yields numbers £ which are sampled from a 

Gaussian distribution.

35



2.4 Results and Discussion

The molecular dynamics simulation was tested on several systems 

of different size and dimension: a 2 x 2 x 2 simple cubic system, a 

two dimensional 4 x 4  system, an 8 x 8 x 8 complex cubic system, and 

an 8 x 8 two dimensional complex system.

• Figure 5 shows the plot of potential energy vs. time steps of 

the 2 x 2 x 2  model. This system is driven to the equilibration 

state after 480,000 time steps. The calculated average positions 

of all atoms in the whole system are the equilibrium positions.

PE-t plot(38) 
07/01/2001

7.00E-19

6.00E-19

3  5.00E-19 
>. enk_
® 4.00E-19 
111
§  3.00E-19 
c5
P  2.00E-19 Ql

1.00E-19

0.0OE+00 s n tj) io
x t  OvJ

co cn in t- (D N N m ® r̂
CD

time (10000* 1e-17s)

Figure 5.

Figure 5: Fluctuations of three-dimensional small system 
potential energy during a molecular dynamics simulation,
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implying that this model is equilibrated after 480,000 time 
steps.

• For the two dimensional 4 x 4  model, we calculated root mean 

square (RMS) deviations for the amino acid positions for 

different desired temperatures and force (Hook) constants. We 

found that the results perfectly agree with the theoretical 

expectation: the root mean square deviation increases as desired 

temperature increases and as Hook constant decreases. This is 

illustrated by Figure 6 - 9 .
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RMS - atom plot
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Figure 6: Calculated root mean square deviation of 4 x 4 model 
with 3 different desired temperatures. Backbone averages are shown as 
a function of residue number, a, yellow line, RMS deviation of the 
system at 198 K; b, blue line, the desired temperature is raised to 
298 K; c, pink line, the desired temperature is even higher, 598 K.
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RMS - T plot
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Figure 7: average RMS deviation versus desired temperature,
indicating that the higher the desired temperature, the larger the 
root mean square deviation. This result agrees with a theoretical 
derivation: since the desired temperature is higher, the Brownian
motion is more violent. Consequently, the RMS deviation for each 
atom’ s position is larger.
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RMS - atom plot

3 .00E-11

2.50E-11 |

P  2.00E-11 I-------------Icd

CG 1 .50E-11

1 11 21 31 41 51 61

Residue number

Figure 8

Figure 8: Calculated root mean square deviation of 4 x 4 model 
with three different force constants, a, Yellow line, kbig = ksraan = 31. 7 
kcal mol 1 A 1; b, blue line: kbig = ksmaii - 317 kcal mol"1 A ”1; c, pink line: 
k b i g  k sm al l  3170 kcal mol1 A 1. kbig and ksmaU are the representations of
force constants of stiff and loose interactions, respectively.
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k - RMS plot
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Figure 9: Average root mean square deviation versus force
constant. The RMS deviation decreases as force constant increases. 
Since the force constant is larger, the model is relatively tighter, 
implying that the RMS deviation is smaller than the initial RMS 
deviation.

41



We also studied the relations between potential energy and 

temperature & force. The results are compared in Table 1 - 3 .

Temperature Scaling Each Step ± 5  K
Force Constant 

kbig — ksmai|
220 2.20 220 2.20

Desired Temperature 598 K 598 K 598 K 598 K

Potential Energy 
(PE)

5.0e-19 to 
2.5e-18 J

0 to 
3.2e-18 J

1.2e-18 to 
1.3e-18 J

1.0e-19 to 
2.9e-18 J

Fluctuation o f PE 2.0e-18 J 
small

3.2e-18 J 
big

0.1e-18 J 
small*

2.8e-18 J 
big*

Table 1 - A

Temperature Scaling Eac i  Step ± 5  K
Desired Temperature 298 K 598 K 298 K 598 K

Force Constant
kbig — ksmaii

220 220 220 220

Potential Energy 
(PE)

0 to 
2e-18 J

5e-19 to 
2.5e-18 J

5.9e-19 to 
6.4e-19 J

1.2e-18 to 
1.3e-18 J

Fluctuation o f  PE
2e-18 J 2e-18 J 0.5e-19 J le-19 J

Same almost same compared 
to * data in Table 1 - A

Table 1 - B

Desired Temperature 298 K 598 K
Temperature Scaling Each Step ± 5 K Each Step ± 5  K

Force Constant
kbig ksmai|

220 220 220 220

Potential Energy 
(PE)

0 to 
2e-18 J

5.9e-19 to 
6.4e-19 J

5.0e-19 to 
2.5e-18 J

1.2e-18 to 
1.3e-18 J

Fluctuation o f  PE 20e-19 J 
big

0.5e-19 J 
small

20e-19 J 
big

le-19 J 
small

Table 2
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Temperature Scaling Each Step ± 5 K
Desired Temperature 298 K 598 K 298 K 598 K

Force Constant 
kbig — ksmall

220 220 220 220

Potential Energy 
(PE)

0 to 
2e-18 J

5.0e-19 to 
2.5e-18 J

5.9e-19 to 
6.4e-19 J

1.2e-18 to 
1.3e-18 J

Average PE le-18 J 
small

1.5e-18 J 
big

0.6e-18 J 
small

1.25e-18 J 
big

Table 3

In Table 1, the fluctuations of potential energy (PE) are 

dominated by the value of force constant (kbiff and ksman). While 

different desired temperatures do not change PE fluctuations 

much. Table 2 shows that bigger temperature (or kinetic energy) 

fluctuations make the fluctuations of PE smaller, but do not 

affect the value of potential energy. Table 3 tested the theory 

that the value of potential energy is proportional to 

temperature. The potential energy function is calculated by 

equation (I).



  I'u2e ̂  du
V = — ---   let z = SB u => z1 — pu1 =̂> dz = Spdu

je-* du

rz2 _ 7 2 dz. <r #
_,2 dz

e ' 4 p

• Another simulation system is an 8 x 8 x 8 lattice. Again RMS 

deviations increase as temperature increases and force constant 

drop. Table 4 lists the average RMS deviation found for two 

different temperatures and k values (kbig and ksman).

Desired Temperature 298 K 598 K 298 K
Force Constant 
kbig — ksmall

220 220 2.20

Average RMS 
deviation

0.95e-l 1 
small

1.03e-l 1 
bigger

13.5e-l 1 
huge

Table 4

We calculated RMS deviations in x, y, and z directions and 

found that the RMS deviations for symmetric positions of symmetric 

atoms have exactly the same values, e. g.

rmsx[l][1][1] = rmsx[8][1][1]; 

rmsy[1][1][1] = rmsy[l][8][1];

fz1e z dz
= k T ^ — 2--- T

\e z dz
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and rmsz[1][1] [1] = rmsy[1][1] [8], etc.

We are now working on the 8 x 8  model. Figure 9 shows PE vs time

step. This system is not equilibrated until 4 x 108 time steps

simulations have been completed.

PE-t plot 
02/19/2002

1.2E-18

IE-18 #■

D-

2E-19 -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

0   .  '   '--- —■-1—  ' 1 1 1
0 100000000 200000000 300000000 400000000 500000000 600000000 700000000 800000000 900000000 1000000000

Time (2e-17s)

Figure 10

Figure 10: Fluctuation of two-dimensional 8 x 8  system 
potential energy during a molecular dynamics simulation, 
indicating that this system is equilibrated after 400,000,000 
time steps.

The following results are concluded from some data

collected from unequilibrated systems. They may as yet be



meaningless. But I write them down as a reference for other 

students in our group.

1. The correlation factor is affected by the values of 

large and small force constants, and the force constant between 

the boundary and the enzyme system. The large force constant 

varies in the range of \<khig<200 ; while the small force

constant is in the range of 0.04 < ksmall < 40 ; and phantom 

(boundary) force constant in the range of 0.1 <10. The value

of the correlation factor fluctuates, due to the values of force

constants, between - 0. 98 and +0. 98.

2. A friction factor, which is proportional to the inverse 

of distance, was added on the catalytic residue to simulate the 

energy barrier. Consequently, chemical events when the friction 

factors are high are much less likely than those with low

frictional forces. Again, this evidence proves that our program

is behaving correctly.
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Figure 11: value of correlation factor versus -logA:̂  ,
indicating that the chance of chemical events increases as kf 
decreases.

3. Most importantly, the correlation factor depends on the 

distribution of large and small force constants to a large 

extend. The range varies from 0.121 to 0.871 for only 5 random

generated distributions.

Next, we should address the question of the optimal Hook 

constant, temperature, and friction factor (kf). Other students
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in our group will achieve further progress in investigating this 

program and intersect it with genetic algorithms.
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Conclusion

An MD simulation method to calculate chemical efficiency of a 

simplified enzyme model has been tested and is ready to be optimized. 

This method is based on using the velocity Verlet algorithm, as an 

integrator for Newton* s equations of motion. The reliability of the 

method is mainly attributed to our calculations of RMS deviations, 

potential energy fluctuations, and correlation facotors. This is 

demonstrated by the success of 4 different size and dimension models. 

The accuracy of this MD program, for the 8 x 8  model, is now ready for 

optimization.

Work to extend the method and to intersect it with the genetic 

algorithms in order to treat our cases is underway. Most importantly, 

we need to find an efficient way to use the simulations, due to CPU 

time limitations.
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Part II

Genetic Algorithms
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Chapter 3

Genetic Algorithms

Genetic algorithms (GAs) were invented by John Holland in 1975 

(Holland 1975). They work very well in finding the global optimal 

solution in complex search problems. Genetic algorithms are based on 

the Natural (Darwinian) Selection. The basic idea of genetic 

algorithms is to give preference to fitter species and allowing them 

to pass on their genes to the next generation. Many real world 

problems involve search and optimization and are ideal for genetic 

algorithms. But these algorithms are computationally expensive 

compared to other methods.

At the start of our optimization, an initial group parents each 

with a different number and distribution of large and small force 

constants is generated randomly (Initialization). Then we compute and 

save the correlation factor for each individual in the current group. 

Each member of this initial group is evaluated by their correlation 

factors (Evaluation). To form the next generation, we reproduce more
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copies of individuals whose correlation factors are more negative 

(Selection). Lastly, we introduce new individuals by "Mutation” and 

"Crossover” : in the "Mutation” procedure, we swap large force

constants with small force constants at random with some low 

probability. This step helps us prevent premature convergence and 

induce a random walk through the search space. "Crossovers” are used 

to create two new "offspring” by recombining parts of promising 

"parents” as follow.

parents:

offsprings:

A A -A A -T L A /V A , 1111111III 1111II11111

AyN-A-AWA/V; xxxxxxxxxx

********** xxxxxxxxxx

* * * * * * * * * * 1 1 1 1 1 1 1 1 1 1 1  I I I I  I I I I  I I I

Figure 12: Crossover Operator

This operator produces two individuals that replace the old 

parents. During this procedure, a random walk is generated through the 

whole system. The flowchart and pseudo code are as follow:
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Jnitializatioi Selection Mutation( Evaluation

Loop

Figure 13: Genetic Algorithms

Pseudo Code:

Begin GA

g = 0; // generation counter

Initialization P(g) ;

Evaluation P(g); // i.e., compute fitness values

while (Idone)

{

g++;

Selection ( P(g) from P(g-l) );

Mutation P(g);

Crossover P(g);

Evaluation P(g);

};

end of GA
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Appendix A 

How to Use?
Compile command:

g++ -g -Wall main, cc initialize, cc scale, cc -o main

Then, run main and wait ...

We can check out the initial conditions such as initial 

positions from "InitR. out” ; initial velocities from "InitV. out” ; 

and force constant from “InitKx. out” and "InitKy. out” . After your 

finishing the simulation, you can get the information such as 

potential energies for each "print” steps from "PE. out” ; final 

positions from “R. out” ; final velocities, average positions, 

correlation factors from "V. out” ; and positions of C, 5, F for each 

"print” steps from "RxC. out” , "RyC. out” , "RxS. out” , 

"RyS. out” , "RxF. out” , and "RyF. out” .
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Appendix B

Verlet. h

I J *J* fc|f» «-!■» ̂,1* «.1> t-lj v|/ »|̂ fcU sJ/» vl> «1« v|/ <sL*si*̂L* vL» vl*sii* ̂  si* sL* s[* si* si* *1* sj* si* si* sU *1* sl*sl* si* si* sj* si* si* si* ̂  sl**l* sj* ̂1* s{*0*/ / /{s *]> *js *[S *]S *|s *|\ *js *Js *JX *js *]s *JS *js *]S *J\ *|S. *]S *JS *f» *f» *|s *p« *Js *Js *JS *JS *f« *p *Js *J> *Js ̂s *̂s *Js *f» *p *p» *]S *Js •'f's *Js *{s *Js *J\ *js *Js *Js *Js *Js *̂s

// verlet. h

// Purpose: header file 

// Arthor: Shiying Shang

// Advisor: Carey K. Bagdassarian

const int nl = 10; // 10 atoms on x direction

const int n2 = 10; // 10 atoms on y direction

const int nAtom = nl*n2; // 10 by 10 atoms totally

const long double m = 12. 01/(6. 02214e26) ;

// the weight of particle i (Kg/atom) 

const long double c = 1.523e-10;

// the expected distance between atoms (m/atom) 

const long double dt = 2e~17;

// time step: dt = 10~2 (fs) = 1 0 1' 

const double A_Large_Number = 4e8;

// the time steps using in the Verlet algorithm

const int N = (nl-2)*(n2-2); // 8 by 8 atoms actually

const double Td = 298; // desired temperature
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const long double KB = 1.38066e-23; //(J/K)

const long double ksmall =0.4;

const long double kbig = 20.0;

const double print = 4e5; // collect data every 4e5 steps

const double rmsstep = 1;

const double cutoff =0; // 6000000;

const int Cx = 4;

const int Cy = 4;

//const int Cz = 1; 

const int Sx = 5; 

const int Sy = 4;

//const int Sz = 1; 

const int Fx = 4; 

const int Fy = 5;

//const int Fz = 1;

//const int Nx = 2;

//const int Ny = 2;

const long double kf = 1.4e~23; 

typedef long double Positional] [n2]; 

typedef long double Velocity[nl][n2]; 

typedef long double K[nl][n2];

#include <cmath>

^include <fstream. h> // for file 1/0

ttinclude <iomanip. h> // for reporting data
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void InitializeData(Position, Position, Position, Position,

Position, Position, Position, Position,

Velocity, Velocity, Velocity, Velocity,

K, K);

void RandPosition(Position, Position, Position, Position,

Position, Position);

void RandVelocity(Velocity, Velocity, long double&);

void ReadK(K, K) ;

void SumSq(Position, Position, Position, Position, Position, 

Position, Position);

void Verlet(Position, Position, Position, Position, Position, 

Position, Position, Position, Velocity, Velocity, 

Velocity, Velocity, K, K, long double&, long double, 

Position, Position, double&, double&, doublefe, long 

doubled, long doubled);

void Temp(Velocity, Velocity, double);

void Report(ofstream&, ofstream&, ofstream&, ofstream&,

ofstreamfe, ofstream&, ofstream&, Position, Position,
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long double)



Appendix C

main, cc

// main, cc

// Purpose: main function

// Author: Shiying Shang

// Advisor: Carey Bagdassarian
/ / «U \l« «U vL« sL> vU vl* si/ sL» si/sl/*i» J/sL>sl/«l**l*«i/sl/ si/ si« vL*«T/ «!/ vL* s|/̂ sl*ŝ  vL» ̂  Ŝ  sL» si/ sj/ «J// sj/ sj/ sj/ si/ st* sj» sj» sj/sJ/sl/sl/sl/Sil/sJ/sL/sl/sl/vt/sl/ sb sL// / /|s/|^<{s/|^/^/|s^\/|s / | s / p ^ } s P J x ^ J v ^ / | s ✓ J s ^  qs/fs/p /p^s/p /p /jv /js/p /p  / p * T *  'T*

#include "verlet. h" 

int main(void)

{
Position Rx; //

Position Ry; //

// Position Rz; //

Position RxO; //

Position RyO; //

// Position RzO; //

Position AvgRx; //

Position AvgRy; //

// Position AvgRz;/,

Position RxNew; //

Position RyNew; //

// Position RzNew;/,

Position rmsx;

positions on x direction 

positions on y direction 

positions on z direction (3D only) 

initial positions on x 

initial positions on y 

initial positions on z (3D) 

average positions on x 

average positions on y 

' average positions on z (3D) 

new positions on x 

new positions on y 

' new positions on z (3D)

// root mean squares on x
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Position rmsy; // root mean squares on y

// Position rmsz;// root mean squares on z (3D)

Velocity Vx; // velocities on x

Velocity Vy; // velocities on y

// Velocity Vz; // velocities on z (3D)

Velocity VxMid; // mid-step velocities on x

Velocity VyMid; // mid-step velocities on y

// Velocity VzMid;// mid-step velocities on z (3D)

K Kx; // hook constant on x

K Ky; // hook constant on y

// K Kz; // hook constant on z (3D)

long double SumVsq = 0.0; // summation of v2

long double PE = 0.0; // potential energy

long double KE = 0.0; // kinetic energy

// long double TOT =0.0; // total energy PE + KE

// long double counter =0.0;

// counter of chemical events 

// long double dcs = 2.0 * c;

// desired distance between catalytic amino acid (C) and 

// substrate (S)

/ /  long double dcsNew =0.0;

// actual distance between C and S

double Cijl = 0.0; // ]T[(x s -^7)1
*=1

double Cij2 = 0.0; //
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double Cij3 =0.0; //

ofstream outFile;

double Ta; // actual temperature 

// output file

ofstream outFilel; 

ofstream outFile2; 

ofstream outFile3; 

ofstream outFile4;

// ofstream outFile5;

ofstream outFile6; 

ofstream outFile7;

// ofstream outFile8;

ofstream outFile9; 

ofstream outFilelO;

// ofstream outFilell;

outFile. open ( "V. out" );// output velocities of final step

outFile. precision(3); // preci sion is 3

outFilel. open ("R. out"); // output positions of final step

outFilel. precision(2) ;

outFile2. open ( "PE. out" );

// output potential energies every “ print” steps 

outFile2. precision® ; 

outFile3. open ("RxC. out");

// output positions of C on x every “ print” steps 

outFile3. precision® ;
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outFile4. open ("RyC. out") ;

// output positions of C on y every “ print 

outFile4. precision® ; 

outFile6. open ("RxF. out");

// output positions of F on x every “ print 

outFile6. precision® ; 

outFile7. open ("RyF. out");

// output positions of Fon y every “ print 

outFile7. precision(3) ; 

outFile9. open ("RxS. out");

// output positions of S on x every “ print 

outFile9. precision® ; 

outFilelO. open ("RyS.out");

// output positions of S on y every “ print 

outFilelO. precision® ;

InitializeData(Rx, Ry, RxO, RyO, AvgRx, AvgRy, 

Vx, Vy, VxMid, VyMid, Kx, Ky) ;

RandPosition(Rx, Ry, RxO, RyO, RxNew, RyNew);

RandVelocity(Vx, Vy, SumVsq); 

ReadK(Kx, Ky) ;

for(int j = n2-2; j > 0; j— )

steps

steps

steps

steps

steps

rmsx, rmsy,
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f o r ( i n t  i  = 1; i  < n l- 1 ;  i++)

{
PE = PE + 0. 5 * Kx[i][j] * pow((Rx[i+l] [j] - Rx[i][j]- 

c), 2) + 0. 5 * Kx[i—1] [j] * pow((Rx[i] [j] - 

RxCi-1] [j] - c), 2) + 0.5 * Ky [i] [j] * 

pow((Ry[i] [j+1] - Ry[i][j] - c), 2) + 0. 5 * Ky[i][j- 

1] * pow( (Ry[i] [j] - Ry[i][j-1] - c), 2);

1 1 1 1 
)OU-nt ial energy: K = 2 j - f o - x Mf  + - ( x , - x Mf  + -(y ,- y Hf  + - ( y - y M)+ - [ X - X M )  +-\y,-yi-t) +-\y-y,J

i = \  L

// KE = KE + 0. 5 * m * Vx[i][j][k] * Vx[i][j][k];

// TOT = PE + KE;

Report(outFile2, outFile3, outFile4, outFile6, outFile7, 

outFile9, outFilelO, Rx, Ry, PE) ;

double i = 1;

while (i < A_Large_Number+l)

{
Verlet(Rx, Ry, RxO, RyO, RxNew, RyNew, AvgRx, AvgRy, Vx, 

Vy, VxMid, VyMid, Kx, Ky, SumVsq, i, rmsx, rmsy, 

Cijl, Cij2, Cij3, PE, KE);

// if ( (Vx[Cx][Cy][Cz] > 0) && (Vx[Sx][Sy][Sz] < 0) )

// {
// dcsNew = fabs(Rx[Sx][Sy][Sz]-Rx[Cx][Cy][Cz]) ;

// if ( dcsNew < dcs )
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// dcs = dcsNew;

// else

// {
// counter = counter + 1;

// outFile «  " " «  Vx[Cx][Cy][Cz]

// «  " " «  Vx[Sx][Sy][Sz]

// << " " «  dcs/c «endl;

// dcs = 2*c;

// }
// }

M
w

Ta = SumVsq*m / ((2*N-1)*KB); // Ta = -&----
N  f ' & b

if (i/print == int(i/print) && i >= cutoff)

Report(outFile2, outFile3, outFile4, outFile6, outFile7, 

outFile9, outFilelO, Rx, Ry, PE) ; 

if ((Ta-Td) >5.0 || (Ta~Td) < -5.0)//temperature scaling 

{
Temp(Vx, Vy, Ta) ;

}
if (i == A_Large_Number)// print out final step condition 

{
outFile «  " V (final): " «  endl;

outFilel «  " R (final): " << endl;

for (int b = n2-l; b > -1; b— )

{
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f o r  ( in t  a = 0; a < n l ;  a++)

{
outFile «  " (" «  Vx[a][b] << ",

«  Vy [a] [b] «  ")";

outFilel << " (" «  Rx[a][b] << ",

«  Ry[a][b] «  ")";

}
outFile «  endl; 

outFilel << endl;

}
}

i = i + 1;

}

outFile «  endl «  " Average Position: " << endl;

// print out average positions for all atoms

for (int j = n2-l; j > -1; j--)

{
for (int i = 0; i < nl; i++)

// for (int k = 1; k < n-1; k++)

{
AvgRx[i][j] = AvgRx[i][j]/(A_Large_Number-cutoff + 1); 

AvgRy[i][j] = AvgRy[i][j]/(A_Large_Number-cutoff + 1); 
// AvgRz[i][j] = AvgRz[i] [j]/(A_Large_Niimber -

// cutoff + 1) ;

outFile << " (" << AvgRx[i][j] << ",
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«  AvgRy[i][j] «

}

outFile «  endl;

}

outFile «  endl;

outFile «  " " «  "Cij = "

«  (Cijl/(sqrt(Cij2)*sqrt(Cij3))) << endl;

// outFile «  " Root Mean Square: " «  endl;

// for (int i = 1; i < n-1; i++)

// for (int j = 1; j < n-1; j++)

// for (int k = 1; k < n-1; k++)

// outFile <<

//<< sqrt(rmsx[i][j][k]/((A_Large_Number-cutoff+l)/rmsstep)) 

// «  "
//<< sqrt(rmsy[i][j][k]/((A_Large_Number-cutoff+l)/rmsstep)) 

/ /  «  "

//<< sqrt(rmsz[i][j][k]/((A_Large_Number-cutoff+l) /rmsstep)) 

// << endl;

// outFile << " * «  "Counter = " << counter;

outFile. close() ; 

outFilel. closeO ; 

outFile2. close() ; 

outFile3. close() ;
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outFile4. close(); 

outFile6. close() ; 

outFile7. close() ; 

outFile9. close() ; 

outFilelO. closeO ;

return 0;

} // end of mainQ
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Appendix D

Initialize, cc
y/ y/ |̂c ?{c jjc ?Jc ?}£ 5]̂ jjc ?|c 5̂  5jc ?]c ̂|c ̂{c 5jc ?{̂ s|c 5^ 5]̂ ?J% ?|c ?jc ^c 5|c Ĵc ?{c ̂c |̂c ?|c s|c ^c sjc ?|c ijc 5}c

// Initialize. cc

// Purpose: includes all functions related to the initial

// conditions

// Author: Shiying Shang

// Advisor: Carey K. Bagdassarian
J  y/ 2jc 2}̂  {̂c *jc 2̂  2|c ĵc ̂ jc ̂ jc ̂ [c 2]c {̂c 2jc 2]̂  2|c ĵc ̂ jc |̂c f̂c 2}c 2|c

^include "verlet. h"

// void InitializeData(Position Rx, Position Ry, Position Rz, 

// Velocity Vx, Velocity Vy, Velocity Vz,

// K Kx, K Ky, K Kz)

// Purpose: Initialize all data to 0.

void InitializeData(Position Rx, Position Ry,

Position RxO, Position RyO,

Position AvgRx, Position AvgRy,

Position rmsx, Position rmsy,

Velocity Vx, Velocity Vy,

Velocity VxMid, Velocity VyMid,
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K Kx, K Ky)

{

for (int j = n2-l; j > -1; j--) 

for(int i = 0; i < nl; i++)

{

Rx[i][j] = 0.0; // ! nl in 1 i zo ;

Ry[i] [j] = 0.0;

// Rz[i] [j] [k] = 0. 0;

Rx0[i] [j] =0.0;

Ry0[i] [j] = 0.0;

// Rz0[i] [j] [k] = 0. 0;

AvgRx [i] [j] = 0. 0;

AvgRy [i] [j] = 0. 0;

// AvgRz[i] [j] [k] = 0.0;

Vx[i] [j] =0.0;

Vy[i] [j] = 0.0;

// Vzti] [j] [k] = 0.0;

Kx[i][j] = 10.0;

KyCi] [j] = 10.0;

// Kz[i][j][k] = ksmall;

VxMid[i] [j] = 0. 0;
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VyMid[i][j] = 0.0;

// VzMid[i] [j] [k] =0.0;

rmsx[i] [j] = 0. 0; 

rmsy[i] [j] = 0. 0;

// rmsz[i][j][k] = 0. 0;

}
return;

} // end of InitializeData

// void RandPosition(Position Rx, Position Ry, Position Rz)

// Purpose: initializes positions of atoms to the vicinity

// of equilirium position

void RandPosition(Position Rx, Position Ry,

Position RxO, Position RyO,

Position RxNew, Position RyNew)

{
// long double Rand[n][n];

ifstream inFile; 

ofstream outFile;

// inFile. openC'R. dat^) ; // read data from “ R. dat v

outFile. open("InitR. out"); // write data to “ InitR.out
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outFile. precision(4) ;

for (int j = n2-l; j > -1; j— ) 

for(int i = 0; i < nl; i++)

{
Rx[i] [j] = (i + 0. 5)*c;

Ry[i] [j] = (j + 0. 5)*c;
// Rz[i][j][k] = (k + 0. 5)*c;

}

// Rx[Cx] [Cy] = (Cx+0. 25) *c;

// Rx[Sx][Sy] = (Sx+0. 75)*c;

// activate if you want initial positions are 25% off* center

// for(int i = 1; i < n-1; i++)

// for(int j = 1; j < n-1; j++)

// for(int k = 1; k < 2; k++)

// inFile »  Rx[i][j] »  Ry[i] [j] ;
// activate it you want to read initial positions from a file

for (int j = n2-l; j > -1; j— )

{
for (int i = 0; i < nl; i++)

{
outFile «  " (" << Rx[i][j] << ",

«  Ry[i] [j] «
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RxO[i] [j] = (i + 0. 5) *c ;

Ry0[i] [j] = (j  + 0.5)*c;
// initial positions are all at the center of their boxes 

RxNew[i][j] = Rx0[i][j];

RyNew[i][j] = RyO[i] [j] ;

} // for j 

outFile «  endl;

} // for i

// inFile. close () ; 

outFile. close() ; 

return;
} // end of RandPosition

/  J  +1* *1* «Ji» *1̂  *1* +1* +1* ml* +1* +3* >1* *-1̂/ / |̂s Ĵs ✓Jx Ĵs vjs ✓jx ŝ%

// void RandVelocity(Velocity Vx, Velocity Vy, Velocity Vz)

// Purpose: Initalize Guassian distributed velocities

void RandVelocity(Velocity Vx, Velocity Vy,

long double& SumVsq)

{
long double RealSumVsq;

long double q; // temperature scale factor
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ifstream inFile; 

ofstream outFile;

inFile. open("Guassian. dat/r) ; // read from “Guassian.dat”

outFile. open ("InitV. out") ; //write to “InitV. out”

for(int j = n2-2; j > 0; j— ) 

for(int i = 1; i < nl-1; i++)

{
inFile »  Vx[i][j] »  Vy[i] [j];

SumVsq = SumVsq + pow(Vx[i][j], 2)

+ pow(Vy[i] [j], 2) ;

} // for

RealSumVsq = Td*(2*N-l)*KB/m; 

q = sqrt(RealSumVsq/SumVsq);

outFile. precision(3);

for (int j = n2-l; j > -1; j— )

{
for(int i = 0 ; i < nl; i++)

{

Vx[i][j] = q*Vx[i][j];
Vy[i] [j] = q*Vy[i] [j] ; // velocities after scaling 

// Vz[i][j][k] = q*Vz[i][j][k];

outFile «  " C  «  Vx[i][j] <<
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«  Vy[i] [j] «

} // for j 

outFile «  endl;

} // for i

SumVsq = RealSumVsq; // summation of mv'

inFile. close () ; 

outFile. close () ; 

return;

} // end of RandVelocity

// void RcadK(K Kx, K Ky, K Kz)
//Purpose: Initialize the hook contant according to the aa. dat

void ReadK(K Kx, K Ky)

{
int aa[nl][n2]; 

ifstream inFile; 

ofstream outFile; 

ofstream outFilel;
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inFile. open ("aa. dat") ; // read aa seq. from “ aa. dal”
outFile. open ("InitKx. out^) ; // write Kx to Ini 1 Kx. out” 
outFilel. open("InitKy.out"); // write Ky to “ InitKy. out”

for ( int j = n2-l; j > -1; j— ) 

for ( int i = 0; i < nl; i++ )

aa[i][j] =0; // initialize ail aa to 0

for ( int j = n2-2; j > 0; j—  )

for ( int i = 1; i < nl-1; i++ )
inFile >> aa[i][j]; // all aa are in form of 1 or 0

for ( int j = n2~2; j > 0; j—  )

for ( int i = 1; i < nl-2; i++ )

{
if ( aa[i] [j] != aa[i+l][j] )
Kx[i] [j] = kbig;

// hook constant is kbig if it’ s between different type of aa 
else

Kx[i][j] = ksmall;

// hook constant is ksmall if it? s between same type of aa 
}

for ( int i = 1; i < nl-1; i++ )
for ( int j = 1; j < n2-2; j++ )

{
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if ( aa[i][j] != aa[i][j+l] )

Ky [i][j] = kbig; 

else

Ky[i][j] = ksmall;

}

outFile. setf(ios::fixed, ios:ifloatfield);

// Set up double pt. 
outFile. precision(l) ;

outFilel. setf(ios::fixed, ios::floatfield);
outFilel. precision(l);

for (int j = n2-l; j > -1; j--)

{
for(int i = 0; i < nl-1; i++)

outFile << " " << Kx[i][j];

outFile << endl;

}

for (int j = n2-2; j > -1; j— )

{
for(int i = 0; i < nl; i++)

outFilel «  " " << Ky[i][j];

outFilel «  endl;

}

inFile. close() ;

77



} // end

outFile. close() ; 

return; 

of ReadK
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Appendix E 

scale, cc

/  /  «!• si/ st/sI/s]/s]/sl/sl/\U 4/ st/ vt> sl« yj/ si/ sl« si/ si** sU s|/ 4 / sU sl/sl/sl/sl/sl/sj/sl// / /f* /Js ✓JS. /fs /Js ̂ s /[s /J\ •'p* /|s  /J> ./p. /Js /J\ ✓Ĵ /]\ /fi /JS /Js /Js /js ✓ps. »|s /js /Js /Js *p> »JS /fs /p  /fs /fs /Js »pi /Js /Js ✓Js /f* /|s /JS. /[% /|s  «/f>» »̂S /f» /fS /Js «̂ s •'J‘% /p* »/p» •'J'* «̂N.

// scale, cc

// Purpose: includes all function related to the velocity

// scaling

// Author: Shiying Shang

// Advisor: Carey K. Bagdassarian
 ̂J ?}c 2|c 5}̂ s|c {̂c 5jc 5fc i|c ?jc sjc sjc jJc jjs ?Jc 5fc 5jc j(c 5jc ?fc ?jc 5|c ̂Jc sjc ?|c j|c 5{c j|c ijc ?̂c ?{c ?|c ?|c ?Jc sjc 5jc

#include "verlet. h"

 ̂̂ 5}̂ sjcsjc ?Jn 5ĵ 5|c jjc ?jc s|n 5ĵ 5jc*|c5|̂ j|c5jc?|c5̂ĉ̂ 5jc jjc

// void verlet(Position Rx, Position Ry, Position Rz,

// Velocity Vx, Velocity Vy, Velocity Vz,

// K Kx, K Ky, K Kz)

// Purpose: This program allows the user to compute the //

new positions and velocities of particles by 

// using the Velocity Verlet Algorithm.
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void Verlet(Position Rx, Position Ry,

Position RxO, Position RyO,

Position RxNew, Position RyNew,

Position AvgRx, Position AvgRy,

Velocity Vx, Velocity Vy,

Velocity VxMid, Velocity VyMid,

K Kx, K Ky, long double& SumVsq, long double step, 

Position rmsx, Position rmsy, double& Cijl, 

double& Cij2, double& Cij3, long double& PE, 

long double& KE)

{
long double Ax = 0.0, Ay = 0.0;

.// accelerations at time t: a(t) 
long double AxNew = 0.0, AyNew = 0.0;

// accelerations at time t+dt: a(t+dt) 
long double VxNew = 0.0, VyNew = 0.0;

// velocities at time t+dt: v(t+dt.) 

long double SumVxsq = 0.0, SumVysq = 0.0;

// summat ion of mvc’ and m vf 

long double EqR; // equilibration position of C
long double EqRS; // equilibration position of S
long double dcf = 0.0; //distance between F and C
SumVsq = 0.0; // initialize sum of vJ to 0
PE = 0.0; //initialize potential energy to 0
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for (int j = n2-2; j > 0; j— )
{
for (int i = 1; i < nl-1; i++)

{
dcf = fabs(Ry[Fx][Fy]-Ry[Cx][Cy]) ; 

if (i == Cx && j == Cy && dcf < c && Vx[Cx][Cy] > 0 

&& Yx[Sx] [Sy] < 0)

{
Ax = (Kx[i] [j] * (Rx[i+1] [j] - Rx[i][j] - c)

- Kx[i-l][j] * (Rx[i] [j] - Rx[i-l][j] - c) -

kf/dcf)/m;

}
else if (i == Fx && j == Fy && dcf < c && Vx[Cx][Cy] 

> 0 && Vx[Sx][Sy] < 0)

{
Ax = (Kx[i] [j] * (Rx[i+1] [j] - Rx[i][j] - c)

- Kx[i—1] [j] * (Rx[i] [j] - Rx[i—1][j] - c)

+ kf/dcf)/m;

}
else

Ax = (Kx[i][j] * (Rx[i+1][j] - Rx[i][j] - c)

- Kx[i-l][j] * (Rx[i][j] - Rx[i-1] [j] - c))/m; 

RxNew[i][j] = Rx[i] [j] + dt * Vx[i] [j]

+ 0. 5 * dt * dt * Ax;

Rx[i][j] = RxNew[i] [j];
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if (step >= cutoff)

AvgRx[i][j] = AvgRx[i][j] + Rx[i][j]; 

VxMidti] [j] = Vx[i] [j] + 0. 5 * dt * Ax;

}
for (int i = 1; i < nl-1; i++)

{
if (step >= cutoff &&

(step/rmsstep) =  int(step/rmsstep))

if ( i == nl-2 && j == 1 )

{
EqR = (0. 5 + Cx) * c;

EqRS = (0. 5 + Sx) * c;

Cijl = Ci j1 +

( (Rx[Cx] [Cy]-EqR)*(Rx[Sx] [Sy]-EqRS) ); 

Cij2 = Cij2 + pow((Rx[Cx][Cy] - EqR), 2);

Cij3 = Cij3 + pow((Rx[Sx][Sy] - EqRS), 2);

}

if (step >= cutoff &&

(step/print) == int(step/print))

PE = PE + 0. 5 * Kx[i][j] * pow((Rx[i+l] [j]

//

//
//

EqR = (0. 5 + i) * c; 

rmsx[i] [j] [k] = rmsx[i] [j] [k] + 

pow((Rx[i] [j] [k] - EqR), 2);
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- Rx[i] [j] - c), 2) + 0.5 * KxCi-1] [j] * 

pow((Rx[i] [j] - Rx[i-l][j] - c), 2);

dcf = fabs(Ry[Fx][Fy]-Ry[Cx][Cy]) ; 

if (i == Cx && j == Cy && 

dcf < c && VxMid[Cx][Cy] > 0 && VxMid[Sx][Sy] < 0)

{
AxNew = (Kx[i][j] * (RxNew[i+l] [j]

- RxNew[i] [j] - c) - Kx[i-1] [j] * (RxNew[i] [j]

- RxNew[i-l][j] - c) - kf/dcf)/m;

}
else if (i == Fx && j == Fy && dcf < c &&

VxMid[Cx][Cy] > 0 && VxMid[Sx][Sy] < 0)

{
AxNew = (Kx[i][j] * (RxNew[i+l][j] -

RxNew[i][j] - c) - Kx[i-1][j] * (RxNew[i][j] - 

RxNew[i~l] [j] - c) + kf/dcf)/m;

}
else

AxNew = (Kx[i] [j] * (RxNew[i+l][j] - RxNew[i] [j]

- c) - Kx[i-1][j] *

(RxNew[i][j] ~ RxNew[i-l][j] - c))/m;

VxNew = VxMid[i][j] + 0. 5 * dt * AxNew;

Vx[i][j] = VxNew;

SumVxsq = SumVxsq + pow(VxNew, 2);

}
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for( int i = 1; i < nl-1; i++)

// for( int k = 1; k < 2; k++) // (3D)

{
for (int j = 1; j < n2-l; j++)

{
Ay = (Ky[i] [j] * (Ry[i] [j+1] - Ry[i][j] - c)
- Ky[i][j—1] * (Ry[i][j] - Ry[i][j—1] - c))/m; 

RyNew[i] [j] = Ry[i][j] + dt * Vy[i][j] +

0. 5 * dt * dt * Ay;

Ry[i][j] = RyNew[i][j]; 
if (step >= cutoff)

AvgRy[i][j] = AvgRy[i][j] + Ry[i]Cj]; 
VyMid[i][j] = Vy[i][j] + 0. 5 * dt * Ay;

}
for (int j = 1; j < n2-l; j++)

//
//

// if (step >= cutoff &&

(step/rmsstep) == int(step/rmsstep))

//
//
// EqR = (0. 5 + j) * c ;

rmsy[i] [j] [k] = rmsy[i] [j] [k]

+ pow((Ry[i] [j] [k] - EqR), 2);

// } 
if (step >= cutoff &&

(step/print) == int(step/print))
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PE = PE + 0. 5 * Ky[i][j] * pow((Ry[i][j+1]

- Ry[i][j] - c), 2) + 0. 5 * Ky[i] [j-1] * 

pow((Ry[i] [j] - Ry[i][j-1] - c), 2);

AyNew = (Ky[i][j] * (RyNew[i][j+1] -

RyNew[i][j] - c) - Ky[i][j-1] * (RyNew[i][j] - 

RyNew[i][j-1] - c))/m;

VyNew = VyMid[i][j] + 0. 5 * dt * AyNew;

Vy[i][j] = VyNew;
SumVysq = SumVysq + pow(VyNew, 2);

}

}

// caculate the kinetic energy if necessary 
SumVsq = SumVxsq + SumVysq;

// KE = 0.5 * m * SumVsq;

return;

} // end of verlet

/ J1 >[<>(< >fc>fc>{c>Jc jf: ifc if:

// Temp, cc

// Purpose: This program allows the user to scale the
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//  v e l o c i t i e s  by u s i n g  the d e s i r e d  temperature.

void Temp( Velocity Vx, Velocity Vy, double Ta )

{
double r = sqrt(Td/Ta); 

for(int i = 1; i < nl-1; i++) 

for(int j= 1; j < n2-l; j++)
// for(int k = 1; k < 2; k++) // (3D)

{
Vx[i] [j] = r * Vx[i] [j] ;

Vy[i] [j] = r * Vy[i] [j] ;

}

return;

} // end of Temp

V  void Report(Position Rx, Position Ry, Position Rz,
' / Velocity Vx, Velocity Vy, Velocity Vz, int Num)
V  Purpose: reports the new positions and velocities at a
V  certain interval.
y  Output: (to Report.out) the new positions & velocities

86



/ / vl> sp *4̂  vp si?* sP sP *>P vP vp vp vp vp vp vp vp vp vP vp vp vp vp vp vp vp vp vp vp vP vp vp vp vp vp vp vp vp vp vp vp vp vP vp vp vp vp vp vp vp vp vp vp vp vp vp vp vp vp vp vp vpf I ' j ' ,r*'T'«Tfc«T**T*^il^'I'^jv^|>^p^Jv/p^|v^|v^jv^jv^Jv^jv^jv/|s^p^Jv^/p/p^jv^p^p^s^p^p^^/p^|v.^|s^<^|v^«j»^^

void Report(ofstream& outFile2, ofstream& outFile3, 

ofstreamfe outFile4, ofstream& outFile6, 

ofstream& outFile7, ofstream& outFile9, 

ofstreamfe outFilelO, Position Rx,

Position Ry, long double PE)

{
outFile2 «  " " «  PE «  endl;

outFile3 «  ” " «  Rx[Cx][Cy] << endl;

outFile4 << " " «  Ry[Cy][Cy] << endl;

outFile6 «  

outFile7 «

outFile9 << 

outFilelO << 

return;

} // end of Report

«  Rx[Fx][Fy] << endl; 

«  Ry[Fx][Fy] << endl;

«  Rx[Sx][Sy] «  endl; 

<< Ry[Sx][Sy] << endl;
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