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ABSTRACT

In this study, PR500, an epoxy resin, was characterized. The resin’s 

dielectric, thermal and rheometric properties were measured. Calibration curves 

were developed to predict viscosity and degree of cure. Frequency dependent 

electromagnetic sensing was used to monitor the wetout, viscosity, and degree of 

cure during five different RTM experiments. The flow rate, frame style, and port 

of injecting the resin were varied to determine models for different injection 

conditions. The wetout time, viscosity, and degree of cure were then compared 

for all five runs to predict the optimal conditions for the fabrication of the PR500 

composite part using RTM.



CHARACTERIZATION OF PR500 

FOR USE IN RESIN TRANSFER MOLDING



I, Introduction

Composites are composed of two or more different materials. Alone, each of 

these materials may not exhibit durability to pressure, temperature, or time. 

However, when these materials are mixed together, they possess new properties 

that can contribute to greater durability. There are several types of composites 

including the following: fiber composites, flake composites, particulate

composites, filled composites, and laminar composites.1

Composites made by resin transfer molding (RTM) are laminar composites. 

Laminar composites, also called layered composites, are strategically placed with 

the orientation of each layer differing from the one above it. The resulting 

composite then has more strength and an overall balance of properties. Therefore, 

the woven carbon fibers used in the RTM process reinforce the structure of the 

part.

For this study, frequency dependent electromagnetic sensors were placed in 

the bottom RTM plate. The sensors were used to monitor wetout, degree of cure, 

and viscosity during the entire RTM fabrication process. By monitoring dielectric 

behavior, the composite’s properties were characterized in situ, in the mold. The

1



effectiveness of the injection pattern and the flow rate were evaluated from this 

characterization. Using this information it is possible to determine the best method 

for producing the composite. It is also possible to determine physical and 

chemical properties of PR500 in its final composite form.

2
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Chapter II. Theory and Instrumentation

A. Capacitance and Permittivity

Capacitance (C) is the charge (q) on two parallel plates divided by the voltage 

(V0) applied to the plates.

c°

[1]

If there is dielectric material between the plates, polarization of the molecules will 

occur due to the electrical field induced by the potential difference3,7. When the 

material is first put between the plates, the orientation of the dipoles is random. 

Upon application of an external (electric) field, the positive and negative charges 

attempt to aligned themselves with the oppositely charged plate. Thus, the 

molecules become polarized.(Figure 2.1)
f t a n d o r n
dipoUl

0

Q/i«maiio ft 
j t a f t x

Po lan’ ra t io  n

Vi

(Figure 2.1) e

<£z>
£3.
<H3
O

e



The dielectric constant, e, also known as permittivity, can be defined as the 

ratio of the capacitance of a capacitor filled with dielectric material, C, divided by 

the capacitance of a capacitor in a vacuum, C0.

[2]

When an alternating electric field is applied, the direction of the dipolar molecules 

oscillates. At low frequencies, the dipoles are able to align themselves with the 

orientation of the field. At higher frequencies, the current of the electric field is 

faster, therefore one hundred percent alignment is more difficult.

B. Frequency Dependent Electromagnetic Sensing

Frequency dependent electromagnetic sensing (FDEMS) is a convenient 

method for measuring physical and chemical properties of polymeric systems. 

Impedance measurements are taken over the hertz to megahertz range. A Hewlett- 

Packard 4192A LF Impedance Analyzer and a Schlumberger-Solartron 1260 

Impedance Gain-Phase Analyzer are used to take measurements. An illustration 

of the system used is given below.(Figure 2.2) FDEMS is able to measure various 

resin states and properties: solid, liquid, viscoelastic, Tg, etc. The ionic and

dipolar mobility change with a change in state and as the viscoelastic properties 

change within a given state due to polymerization or temperature effects.

5



Therefore, changes in the state or properties of the resin may be studied from a 

oligomeric liquid to a crosslinked, insoluble, high temperature solid.1

C o m p u t e r

• • 'Autoc lave ,  p r e s s ,  pul t r u d e r

Figure 2.2

A flat DekDyne sensor is used to measure the capacitance and conductance 

from the dielectric impedance. This geometry independent microsensor consists 

of a fine array of two interdigitated comb electrodes. The sensor is inert and able 

to withstand temperatures exceeding 400°C, and pressures up to 1000 psi.6(Figure 

2.3) The impedance with relation to capacitance and conductance is as follows:

• Sarroe maicrnl •’v

Figure 2.3
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Z~1=G+i( j iC

[3]

where

o)=2nf

[4]

Z is the electrode impedance induced by the ions, G is conductance, C is 

capacitance, and f is frequency.

The intensive geometry independent complex permittivity, e* = e’-i€” , can be 

determined from both capacitance and conductance which are sample geometry 

dependent.

co/ — ma te r ia le -------------
c 0

G [51ell  -  m a te r i a l
CQ 0)

[6]

where C0 is the air replaceable capacitance value.

The real and imaginary parts of e* have dipolar and ionic components.

7



The dipolar component arises from rotational diffusion of bound charge of 

molecular dipole moments. This term is most prevalent at high frequencies and 

in highly viscous media.1,2 The Cole-Davidson function is used to represent the 

frequency dependance of the polar component

e*_ (er - €u)
(l-i2 rc  f x ) B+eu

[9]

where er and eu are the limiting low and high frequency values of ed, r  is the 

dipolar relaxation time and is the relaxation time distribution (0<(3< 1) which 

is the Cole-Davidson parameter. The parameter is one if there is only one 

variable. If there are a variety of constants such as a multiplicity of rate constants 

and rate controlling mechanisms, the parameter will be less than one.

The ionic component e *, which results from translational diffusion of charge, 

dominates at lower frequencies, low viscosities, and high temperatures.2 Johnson 

and Cole derived equations for the ionic contribution to e*



2

V 8.85x10-14

[10]

(nn) u - ln+n
2a -C0Z0 cos o

8 . 8 5x10“14 a) 8 . 85x10~14

[ in

where a is the conductivity (ohm 1 cm"1). The first term in equation 11 expresses 

the conductance of ions translating through the medium. The second term is due 

to the charge polarization effects. The second term makes frequency 

measurements increasingly difficult to use and interpret at lower frequencies.2

An illustration of a dielectric run is given in Figure 2.4. The region where all 

of the frequency bands converge is dominated by ionic translational diffusion. The 

region where the bands diverge represents dipolar rotational diffusion. When the 

frequencies begin to separate, the crosslinking network of the epoxy-amine resin 

increases along with the viscosity and degree of cure.

9
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C. DSC

The differential scanning calorimeter is used to investigate first and second 

order phase transitions in amorphous, and semi-crystalline polymers. First order 

transition is Tm, melting temperature, and second order transitions refer to Tg, 

glass transition temperatures. A Perkin-Elmer DSC-7 is used to take DSC 

measurements. The DSC measures the heat required to maintain the same 

temperature in the sample and the appropriate reference material as both are 

heated. The reference material undergoes no thermal transitions in the selected 

temperature range. An empty pan is the reference material. Aluminum pans are 

used both as reference and to hold approximately six milligrams of the epoxy 

resin.

Electric resistance heating is applied independently to the sample and reference 

material in two calorimetric cells.(Figure 2.5)

Figure 2.5

The difference in electrical power required to keep both pans at the same 

temperature is recorded and plotted as a function of temperature. Endothermic and

Temperature
sensors

Individual heaters
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exothermic peaks may be seen depending on the amount of energy the sample may 

need to be maintained at the same temperature as the reference pan.

The area under the exothermic curve is the total heat used to give 100% cure.

Hr is the heat of reaction and dQ/dt is the rate of heat generation. Degree of cure, 

a c, is expressed as

H is the enthalpy of the sample.

D. Kinetics

In order to relate dielectric measurements and degree of cure, an appropriate 

kinetic model must be chosen. The rate of the chemical reaction depends on the 

reaction rate of the epoxide and amine groups.3 Because these groups can react 

in more than one way, the model is an approximation. Once a theoretical fit is 

generated from laboratory data, these curves are used to predict degree of cure in 

large samples during a RTM experiment.

[12]

[13]
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E. Rheologv

The rheometer is used to study the flow and deformation of an epoxy resin. 

A Rheometrics Dynamic Analyzer 700 is used in this study. Both stress and strain 

are measured as a function of time or temperature. From these measurements, 

other mechanical properties, such as G’ and G", can be determined. G’ is the 

measurement of the amount of energy that is stored in a material while being 

placed under strain. G" is the stress 90° out of phase with the strain divided by 

the strain.

Gel point occurs when G’ and G" are equivalent. Gel point, which normally 

occurs around 1000 poise, is important because it reflects the time at which either 

the molecular weight or the crosslinked network is infinite.1

F. Resin Transfer Molding

Composite fabrication by resin transfer molding (RTM) is accomplished by 

injecting resin into an enclosed fiber preform. Some advantages of RTM are 

higher production rates, more consistent parts, little or no worker exposure to 

toxic materials, and cost efficiency9.

The RTM process begins by degassing the resin to remove any entrapped air. 

Several layers of woven carbon fiber are then placed inside a mold cavity. The 

bottom plate contains strategically placed plugs with holes enabling the resin to

13



flow onto the sensors. The mold is heated. Pressure and vacuum are then applied 

to the mold. The degassed resin is injected into the enclosed preform. The mold 

is then heated to a higher temperature. At higher temperatures, the resin is 

advanced until it reaches full cure. Once the mold cools, it is opened, and the part 

can be removed.

14
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Chapter III - Introduction to epoxy synthesis

An epoxy is a compound that has an oxygen atom bonded to two carbon atoms 

in a ring structure. An epoxy resin is any molecule that contains two or more 

alpha epoxy groups which can react to form a thermoset system. ̂ Figure 3.1) A 

polymer is classified as a thermoset if it does not flow upon heating. A thermoset 

is the result of crosslinking the polymeric chains together to form a network.2

Properties

Epoxy resins have many useful properties. Liquid epoxy resins have low 

viscosity, quick and easy cure at a wide range of temperatures, and low shrinkage 

during the cure process. Epoxy resins also exhibit high adhesive strength which

O 
/  \

CH2—CHR te r tia ry  am ines
— “O— CH2 — CHj-n

R

Figure 3.1
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during the cure process. Epoxy resins also exhibit high adhesive strength which 

helps to minimize the weakening of the resin. Furthermore, fully cured solid 

epoxy resins have good adhesion, thermal stability, and mechanical strength.3

Epoxy resins have many uses including adhesives, caulking, and aerospace 

technology.3 PR500 has been proposed for use in aerospace technology.

The exact structure of PR500 can not be disclosed because of its proprietary 

nature. The structure is based on diglycidyl ether of fluorene bisphenol.(Figure 

3.2)7 It uses an amine of a similar structure plus a linear diamine. This study 

shows that PR500 reaches full cure after being held at 180°C for at least 90 

minutes. Under these conditions, it is a thermoset.

o> <o
Figure 3.2

Synthesis

Epoxide polymerizations may occur by anionic or cationic catalysts.

17



Epichlorohydrin, an epoxide, and bisphenol A, a poiyhydroxy compound, are the 

most common reactants in an epoxide synthesis.(Figure 3.3) The product formed 

is diglycidyl ether of bisphenol A (DGEBA).4”5(Figure 3.4)

0 CH

2CICH,CH—CFU HO—/  )—C—( \ —OH

CH3
E p i c h l o r o h y d r i n  3 i s p h c n o l  A

Figure 3.3

Me

Me

DGEBA

Figure 3.4

First, the chlorohydrin intermediate is formed in the presence of NaOH. 

intermediate is dehydrohalogenated to DGEBA.(Figure 3.5)

Then the
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C.M orohydrin in<«rmediat«

C h l o r o h yd r i n  i n t erme di a t e  4- N a O H - ~ D G E B A  +  salt  and  water

Figure 3.5

In order to have a high purity of DGEBA, there must be an excess of 

epichlorohydrin. Without the excess of epichlorohydrin, the bisphenol A 

compound will attack DGEBA instead of the epichlorohydrin resulting in the 

incorrect product.3
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Chapter IV. Characterizing the Kinetics and Viscosity of PR500

PR500 is a one-part epoxy resin developed by 3M to be manufactured for use 

in aerospace technology. The pre-mixed solid state of the epoxy allows the resin 

to be analyzed without the possibility of error due to mixing. The catalyst in 

PR500 melts at 145°C. In order to characterize PR500, the resin’s dielectric, 

thermal, and rheometric properties were measured using Frequency Dependent 

Electromagnetic Sensing (FDEMS), differential scanning calorimetry (DSC), and 

rheometry, respectively. Calibration curves were developed for degree of cure and 

viscosity. Dielectric data was obtained during RTMs using Dekdyne sensors. 

Once data was obtained, degree of cure and viscosity were predicted.

Kinetic Analysis

Because of alpha’s time and temperature dependency, several models were 

used to find theoretical values for degree of cure. First, experimental values of 

alpha and da/dt were determined at isotherms of 160°C, 170°C, 180°C, 190°C, and 

200°C, using the differential scanning calorimeter. (Figures 4.1a-4.1e) The 

autocatalytic equation dor/dt = k * a m(l-a )n was selected. Using a program
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created for SYSTAT®, values of k, M, and N were calculated at all five 

temperatures. A wide range of temperatures must be used because M and N are 

temperature dependant. A least square fit was used to generate these parameters. 

Optimal fits were generated for all five temperatures. The Arhenius equation, 

k =  Ae_E/RT, or ln(k) = (-E/R) * 1/T 4- ln(A), was used to backcalculate k where 

R is the ideal gas constant (1.987 cal/K-mol), A is a pre-exponential factor, and 

E is the activation energy constant. The natural log of the rate constants and 1/T 

were plotted to find the slope and the y-intercept.(Figure 4.2) A is the y-intercept 

and (-E/R) or B, is the slope. K was backcalculated using the average of A and 

B at all temperatures. The final equation used to calculate the desired parameters 

was da/dt =  (k*e'B/T) * a** * ( l-a )N.(Figure 4.3a-4.3e) The parameters of the 

equation are as follows: B =501204; M =0.33; N = 1.07 (Since M and N did 

not vary much over all temperatures, averaged values of M and N were used.)

The equation, da/dt =  (kl +  k 2 * a M* (l-a )N), which was also used by 

Dr. Maussy at Georgia Tech, was then used, kl yields the initial reaction rate 

assuming a  equals zero when time equals zero. Again SYSTAT® and the

temperature(°C) k fkJ/kmol)
160
170
180
190
200

.042

.055

.070

.089

.110
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Arhenius equation were used to calculate the parameters k l, k2, M, and N.(Figure 

4.4a-4.4c) M =  0.70 and N =  1.10

temperaturef°C) kl k2
160 3.07E-3 0.0464
180 7.80E-3 0.0870
200 0.0183 0.154

Finally A. C. Loos from Virginia Polytechnical Institute who independently 

characterized the resin suggests the following parameters be used to generate kl 

and k2:

A1 =3.122 x 106; -E l/R =  -8.6016 x 103 1/K;

A2=2.286 x 104; -E2/R= -5.6005 x 106 1/K;

M =.9993 N =1.352

Loos’ model was used to create our small sample calibration curve in addition to

Maussy’s model. (Figure 4.5a-4.5e) The curve was necessary because of variations 

from small and large samples.

The parameters used are the following:

temperature(°C) kl k2
160 .012316 .038418
170 .016192 .067298
180 .021031 .115010
190 .027010 .192040
200 .034240 .313800
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Calibrations

In order to create the calibration curves, dielectric experiments on PR500 were 

performed at isotherms of 160°C, 170°C, and 180°C.(Figures 4.6a-4.6c) To 

predict degree of cure, experiments were also done on the DSC at the same 

temperatures.(Figures 4.1a-4.1c) Time zero was determined when the various 

isothermal dielectric experiments were within 4°C of desired temperature. Time 

zero was then subtracted from the rest of the times. The new times were matched 

with alphas (degree of cure) from Loos’ model and Maussy’s model. This data 

was used to model the calibration curves.(Figures 4.7a-4.7b)

At high temperatures, such as 180°C, the dielectric measurements at different 

frequencies begin to separate; therefore, the general ionic calibration curves can 

not be used to calculate alpha. Consequently, alpha was determined by the slope 

formula (de"/dt)/e" at 5kHz.(Figure 4.8) The slope formula (de’/dt)/e’ was also 

used to calculate alpha for 500 Hz and 5 kHz. (Figures 4.9a-4.9b).

To predict viscosity, runs were done at 160°C, 170°C, 180°C on the 

rheometer. (Figures 4.10a-4.10c) Time zero was determined when temperature 

is within 4°C of desired temperature. Eta, 77, (viscosity) was calibrated in the 

same manner as degree of cure. The dielectric data and the rheometer data 

corresponding to eta were used to calibrate the viscosity curves. Eta was 

measured from zero to 1000 poise.(Figures 4.7a-4.7c) Any information over 1000 

poise was not relevant to the monitoring of viscosity. PR500 gels at about 1000
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poise (units of eta). Gel point is when the viscous liquid transforms to a rubbery

gel. The gel point is determined as the point when G’ and G" cross. Once

gelation occurs, viscosity data is not a useful concept. The gelation times of the 

rheometric runs are as follows:

Temperature_________Time of Gelation fmin)
160 66
170 50
180 37

Once the viscosity calibration curves were generated, all temperatures were plotted 

on one graph yielding a slope of approximately -1. (Figure 4.11) This slope 

suggests an inverse linear relationship between the decreasing dielectric ionic 

mobility and increasing viscosity.
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V, Monitoring of Resin Transfer Molding Experiments

Correlations

The cure processing properties of PR500 resin were analyzed using the 

calibration curves described. For the experiments DH071394, DH012795, 

DH032495, and DH032995, six kapton sensors in aluminum plugs and two 

thermocouples were placed in the bottom plate of a mold. For the experiment 

DH033195, three kapton sensors in aluminum plugs and two thermocouples were 

placed in the bottom plate of a mold. The mold cavity was filled with sixteen 

plies of carbon fiber. The enclosed mold was then placed into a temperature 

controlled hydraulic press. The mold has an inlet and exit line. The exit line was 

connected to a vacuum pump, which degassed the mold to eliminate entrapped air. 

The inlet was connected to a Radius Floware RTM 2100 injector gun which 

injected the resin into the mold. The sensors were monitored to determine degree 

of cure, viscosity, and wetout time. Wetout is the time when the resin reaches the 

sensor.

In this study, five experiments were analyzed. The objective of this study was 

to determine how different variables would effect the wetout time, viscosity, and
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cure of the composite. This variation of conditions was necessary to verify 

models for different injection conditions. The conformation of injection, flow rate, 

and frame type were varied in the experiments. The resin was either injected in 

the front port of the plate or the exit port of the plate. There were two different 

frame types used. Frame II has a grove around the top. The resin first fills the 

grove and then flows into the preform. Frame I does not have this grove. 

Therefore, the resin flows into the channel and then the preform. The advantage 

of frame II is that there should be an even flow of resin. Wetout would then take 

longer than in frame I. Table 5.1 lists flow rates, conformation of injection, and 

frame type.

Experiment Flow Rate 
(cc/min)

Injection
Pattern

Fram e Type

DH071394 20 Front II

DH012795 20 Front I

DH032495 20 Front I

DH032995 10 Exit I

DH033195 10 Exit I

Table 5.1
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First RTM  Run - DH071394
The wetout times for DH071394 are listed in Table 5.2.

Sensor # Wetout Time 
(min)

1 16

2 29

3 32

4 18

5 29

6 17

Table 5.2

The flow rate for this experiment was 20 cc/min. The resin was injected at 

the front of the plate. Dielectric measurements of the sensors were started 

approximately five minutes before injection. The part fabrication was monitored 

for approximately 120 minutes. (Figures 5. la-5.If) The data was correlated using 

log e"*o>. This was calculated by multiplying e" by 2pi*f, f is frequency in 

Hertz. For the correlations, a frequency of 5 kHz was used for degree of cure and 

125 Hz was used for viscosity. For this experiment, the Maussy model was used 

to correlate degree of cure. Degree of cure and viscosity were predicted by using 

the calibration curves described earlier. All probes in the experiment reach near 

full cure (alpha approximately .99) by 100 minutes. The viscosity curves of all
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six probes show an exponential relation to time.(Figures 5.2a-5.21) A diagram of 

the RTM plate used is shown in Figure 5.3.

gc LC W

Figure 5.3
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Second RTM  Run - DHQ12795

The wetout times for DHO12795 are listed in Table 5.3.

Sensor # Wetout Time 
(min)

1 16.1

2 —

3 45.0

4 25.8

5 39.3

6 16.3

Table 5.3

The resin was injected at the front of the plate at a rate of 20 cc/min. Dielectric 

measurements of the sensors were started at injection. The part fabrication was 

monitored for approximately 120 minutes.(Figures 5.4a-5.4f) The data was 

correlated in the same manner as DH071395.(Figures 5.5a-5.5f) Both Maussey 

and Loos models were used to predict degree of cure. A diagram of the RTM 

plate is shown below in Figure 5.6.
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Third RTM  Run - DH032495

The wetout times for DH032495 are listed in Table 5.4.

Sensor # Wetout Time 
(min)

1 13.5

2 14.9

3 18.9

4 25.6

5 26.9

6 33.7

Table 5.4

The resin was injected at the front of the plate at a rate of 20 cc/min. Dielectric 

measurements of the sensors were started at injection. The part fabrication was 

monitored for approximately 120 minutes.(Figures 5.7a-5.7d) The data was 

correlated the same as DH071395.(Figures 5.8a-5.8h) Both Maussey and Loos 

models were used to predict degree of cure. The leads on the bridge used to take 

the dielectric measurements has the capacity to measure only four sensors at a 

time. Therefore, sensor one shows the wetout for both sensors one and five. 

Sensor two shows wetout for sensors two and six. Since measurements on sensors 

one and two are stopped after wetout, degree of cure and viscosity can not be 

determined. A diagram of the RTM plate used is shown below.(Figure 5.9)
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Fourth RTM Run - DH032995

The wetout times for DH032995 are listed in Table 5.5.

Sensor ft Wetout Time 
(min)

1 18.9

2 32.4

3 33.8

4 53.2

5 46.2

6 36.5

Table 5.5

The resin was injected at a rate of 10 cc/min through the exit port of the plate. 

Dielectric measurements of the sensors were started at injection. The PR500 resin 

was injected at a different port during this experiment than in the previous runs. 

The part fabrication was monitored for approximately 120 minutes.(Figures 5 .10a- 

5.10d) The data was correlated the same as DH071395.(Figures 5.1 la -5 .11 h) 

Both Maussey and Loos models were used to predict degree of cure. The bridge 

used to take the dielectric measurements has the capacity to measure four sensors 

at a time. Therefore, sensor one shows the wetout for both sensors one and five. 

Sensor two shows wetout for sensors two and six. Since measurements on sensors 

one and two were stopped after wetout, degree of cure and viscosity can not be
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determined. A diagram of the RTM plate is shown below.(Figure 5.12)
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Fifth RTM Run - DHQ33195

Experiment DH033195 uses a plate with 3 kapton sensors and 2 

thermocouples.

The we tout times for DH033195 are listed in Table 5.6.

Sensor # Wetout Time 
(min)

1 13.6

2 34.7

3 —

Table 5.6

The resin was injected at rate of 10 cc/min through the exit port of the plate. 

Dielectric measurements of the sensors were started at injection. The part 

fabrication was monitored for approximately 100 minutes.(Figures 5.13a-5.13c) 

The data was correlated the same as DH071395.(Figures 5.14a-5.14f) Both 

Maussey and Loos models were used to predict degree of cure. A diagram of the 

RTM plate used is shown below.(Figure 5.15)
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Figure 5.15
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VI. Conclusions

The different injection conditions of the resin transfer molding experiments 

enable the prediction and verification of many different resin characteristics. 

DH071394, DH012795, and DH032495 were injected at the front of the plate with
i

a flow rate of 20 cc/min. DH071395 and DH032495 exhibited similar wetout 

times, while experiment DHO12795 took a considerably longer time to reach 

wetout. During the experiment DHO12795, the resin was not degassed. There 

may have been air trapped in the resin causing the resin to flow slower despite the 

constant injection rate. This would cause the sensors to take longer to wetout. 

Experiment DH071394 used a different frame style, frame II, than the other two 

experiments. The frame had a grove in which the resin was suppose to fill and 

then flow to the sensors. If this happened, then the sensors would take longer to 

wetout. Instead, the wetout time was close to that of experiment DH032495. 

Therefore, the grove did not prolong wetout. No differences between the groved 

plate and the non-groved plate were observed.

DH032995 and DH033195 both had the resin injected at the exit port of the 

plate. The rate of injection was 10 cc/min for both of these experiments.
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DH032995 took longer to wetout than the experiments that had resin injected at 

the front port. The longer wetout time would require more time to work with the 

part during the fabrication than the previous style of injecting the resin. 

DH033195 did not show the same results. More testing would have to be done 

to assure that injecting the resin from the exit port would require more time to 

work with the part.

All patterns of injection and flow rates are acceptable because viscosity on all 

sensors is below one poise at wetout. If there is viscosity buildup before all parts 

of the plate fully wetout, then that particular flow pattern would be riskier than the 

other patterns attempted. This situation would result in incomplete resin 

infiltration of the mold.

The sensors in experiments DH071394 and DH032495 approached full cure 

at approximately 75 minutes. Experiment DH033195 also showed close to full 

cure in sensor one at approximately 75 minutes. Full cure in experiments 

DHO 12795 and DH032995 was seen at approximately 105 minutes. Despite the 

injection pattern, the late cure in DHO12795 again was probably seen because the 

resin was not degassed. DH033195 used resin that had been heated prior to this 

experiment. This led to the conclusion that the resin had advanced prior to this 

experiment giving an earlier cure time.

The flow of the resin did not seem to have an effect on the wetout of the resin. 

When the rate was doubled, wetout time should decrease by one-half. This pattern
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was not observed. The increase in flow may have led to a resistance, therefore 

not causing a decrease in wetout time.

It was found that for all injection plans the viscosity remained low until 

complete infiltration of the plate and full cure was nearly attained. Experiments 

DH012795 and DH032995 gave the longest wetout times. Therefore, the mold 

required more time to be infiltrated. From this study, the optimal conditions of 

PR500 injection in the RTM are the front port of the plate with a steady flow of 

20 cc/min. Although the resin cured faster under these conditions, the time and 

pattern of curing is more consistent.
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