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ABSTRACT

The immunocompetence handicap hypothesis (ICHH) provides an explanation 
for the display of honest secondary sex characters as influenced by androgen 
levels, the immune system and its response, and parasite infection and 
burden. According to this hypothesis, these three variables, along with the 
secondary sex character, are involved in a feedback loop in which their 
interactions produce an honest signal of genetic resistance to parasites. The 
ICHH has received a lot of attention since its introduction, with many studies 
focusing on single variables of the hypothesis. I performed a novel test of the 
ICHH, in which all variables were examined, by exposing a model songbird, 
the zebra finch (Taeniopygia guttata), to low levels of a known toxin, 
methylmercury, to manipulate phenotypic quality. I factorially manipulated 
parasitic infection in both treatment groups by experimentally infecting one 
group with a parasite known as the coccidian. I assessed the expression of bill 
color in male zebra finches, a sexually selected trait. According to the ICHH, 
males that had the dual challenge of parasitic infection and immune 
suppression due to methylmercury would have the least red bills, 
demonstrating their lower quality. I did not find a difference between 
immunosuppressed males infected with coccidians and all other birds. This 
does not provide support for the ICHH, however it lays important groundwork 
for the thorough study of the ICHH in future research.



TABLE OF CONTENTS

Acknowledgements ii

Dedications iii

List of Tables iv

List of Figures V

Chapter 1. Introduction 1

Chapter 2. Methods 24

Chapter 3. Results 34

Chapter 4. Discussion 37

Appendix 44

Bibliography 62



ACKNOWLEDGEMENTS

This writer wishes to express her appreciation to Professors Daniel Cristol and 
John Swaddle, under whose guidance this investigation was conducted, for their 
patience, guidance and critique throughout the investigation. The author is also 
indebted to Professor Matthias Leu for his careful reading and critique of the 
manuscript.

This writer also wishes to express her appreciation to Dr. Claire Ramos, whose 
additional guidance has been essential throughout the investigation.



This Master’s is dedicated to Joseph Smith and my family who have helped
countless times along the way...



LIST OF TABLES

1. Mean H:L Ratios of Uninfected Control and Mercury 44

2. Mean H:L Ratios of Infected Control and Mercury 45

3. Mean H:L Ratios of Control, Uninfected and Infected 46

4. Mean H:L Ratios of Control, Uninfected and Infected
During Heavy Infection 47

5. Marginal Means of Parasite Load Between Control
And Mercury 48

6. Marginal Means of Parasite Load Between Control
And Mercury During Heavy Infection 49

7. Marginal Means of Parasite Load Between Control
And Mercury Days 7 to 21 50

8. Principal Component 1 Loadings for Males 51

9. Principal Component 1 Loadings for Females 52

iv



LIST OF FIGURES

1. Average H:L Ratios of Uninfected Control and Mercury 53

2. Average H:L Ratios of Infected Control and Mercury 54

3. Average H:L Ratios of Control Uninfected and Infected 55

4. Average H:L Ratios of Control Uninfected and Infected
During Heavy Infection 56

5. General Course of Coccidian Infection 57

6. Average Oocyst Count During Heavy Infection 58

7. Average Oocyst Count Days 7 to 21 59

8. Average PC1 Values of Males Before and After Infection 60

9. Average PC1 Values of Females Before and After Infection 61

v



Introduction

Charles Darwin introduced the theory of sexual selection in 1871, after 

observing that some members of a species appeared to be chosen as mates 

while others were not. He hypothesized that exaggerated secondary sex 

characters evolved as a result of certain individuals having an advantage over 

others in gaining access to mates. Darwin concluded that female mate choice 

could be a selective force for these exaggerated characters or behaviors, but had 

no explanation for why they had evolved. Since its introduction, sexual selection 

has been a major focus in research, spawning many hypotheses that provide 

explanations for the evolution of exaggerated characteristics including the 

handicap hypothesis (Zahavi 1975), parasite-mediated sexual selection 

(Hamilton and Zuk 1982), and the immunocompetence handicap hypothesis 

(Folstad and Karter 1992).

Handicap Hypothesis

The handicap hypothesis proposes an explanation for the evolution of 

exaggerated secondary sex characters. According to this hypothesis, 

exaggerated secondary sex characters signal specific information about an 

individual’s quality to potential mates - the more extravagant the display, the 

better quality the male (Zahavi 1975). These extravagant displays are 

considered handicaps because they are costly to maintain. Males have to take 

risks and invest time and energy to produce quality displays. Females, therefore, 

should prefer males who can bear the costs of higher handicaps because they
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demonstrate the male’s ability to survive despite the presence of the handicap. 

The cost of the handicap serves as an honest signal of the quality of the 

individual. Only a higher quality individual would be able to develop the greater 

expression of the handicap. In turn, this can also imply high quality in other 

areas, such as the ability to provide food and avoid predators (Krebs and Davies 

1993).

For a signal to be reliable and honest, “cheating” should not occur. The 

handicaps result in the signaler (the individual expressing the characteristic) 

having to invest more in the signal than it would gain by conveying unreliable 

information. As a result, cheating is prevented because faking the signal would 

be unprofitable to the cheater, and females are ensured a quality mate (Zahavi 

and Zahavi 1997). Examples of handicaps can be seen in a variety of displays 

and behaviors. For example, male songbirds that invest most of their days in 

singing rather than foraging demonstrate their superior quality and ability to 

properly feed themselves while still producing an impressive repertoire of songs 

(Zahavi and Zahavi 1997). Male barn swallows with experimentally elongated 

tails had decreased foraging and survival, demonstrating the cost of long tails 

(Moller and Delope 1994). The results could be interpreted, however, as 

demonstrating the cost of cheating, rather than the cost of the handicap. Bright, 

colorful plumage has also been suggested to serve as a handicap because of its 

potential to attract rivals or predators and only a high-quality male would be able 

to take that risk (Zahavi and Zahavi 1997).
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While some studies have provided examples of secondary sex characters 

as handicaps, the hypothesis has its limitations. It is important to consider the 

signal the handicap is sending. An assumption of this hypothesis is that the 

signal is consistent across signalers and that each individual receiving the signal 

perceives it in the same way. This may not always be the case. Signals from 

individuals can vary in size, intensity, and frequency (Bullock 2012) and may not 

be perceived the same by each individual, thus reducing the validity of the honest 

signal. In addition, the exaggerated trait serving as the handicap must in fact be 

preferred by females in order for selection to act, regardless of its representation 

of quality. The handicap hypothesis and its general ideas prompted the further 

development of sexual selection hypotheses, some an expansion of the original 

hypothesis.

Parasite-Mediated Sexuai Selection

Parasite-mediated sexual selection expands the handicap hypothesis by 

stating that the degree of development of secondary sex characters indicated an 

individual’s health and quality, but more specifically their ability to resist parasites 

and pass on this resistance (Hamilton and Zuk 1982). According to this 

hypothesis, good health and freedom from parasites are demonstrated by bright 

plumage and pelage, or vigor conveyed in fighting or athletic performances. 

Females are able to distinguish healthy males by greater development of these 

ornaments or behaviors, and in turn prefer these males (Zuk et al. 1990). 

According to this hypothesis, exaggerated secondary sex characters are still
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considered honest signals because an unhealthy male may be prone to even 

more disease later if it expends too much energy on ornament development, 

rather than using those resources to combat infection (John 1997). Based on 

their observations of North American passerines and their blood parasites, 

Hamilton and Zuk (1982) went so far as to propose that on an interspecific level, 

the brighter, more showy bird species are most subject to parasitic infection, 

have a higher diversity of parasites, and thus undergo stronger selection for 

resistance. However the surveys used to develop this prediction were limited in 

their locality and may not be widely applicable (John 1997). In addition these 

surveys examined the variety of blood parasites present, and did not examine 

parasites in other parts of the body. Blood parasites may be pathogenically 

different from other parasite species, thus affecting the host and the host’s 

immune system differently. Therefore, it is important to consider parasite ecology 

in edition to host ecology (Clayton and Moore 1997).

This hypothesis makes three assumptions: 1) the development of the 

secondary sex characters is related to the intensity of parasitic infection; 2) 

females base their mate choice on the secondary sex character that is related to 

parasitism; and 3) resistance to the parasite is heritable (Brawner et al. 2000). By 

mating with less-parasitized males, females gain direct and indirect benefits -  the 

indirect benefit of passing parasite resistance genes onto their offspring and the 

direct benefit of avoiding contamination during mating (John 1997, Fedorka and 

Mousseau 2007).
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Studies involving parasite-mediated sexual selection have provided mixed 

support for the hypothesis. A review by Zuk (1992) indicated that the best 

support for this hypothesis occurred in systems where the ornament is carotenoid 

derived or mediated by testosterone. When red jungle fowl (Gallus gallus) were 

experimentally infected with roundworms, parasitized males had shorter tail 

feathers and combs, and duller feather and comb colors (Zuk et al. 1990). Non- 

sexually selected characters, such as tarsus length and bill length and width, 

however, did not differ between parasitized and unparasitized males. When mate 

choice trials were performed, females preferred the unparasitized males to the 

parasitized males. Horn size of male African buffalo (Syncerus caffer) is a 

positive predictor of body condition and infection with both coccidian and 

nematode parasites. More specifically, males with larger horns are less likely to 

be infected with both parasites (Ezenwa and Jolles 2008). In two species of Lake 

Victoria cichlid fish (genus Pundamilia), brighter blue males and males with more 

red (sexually selected characters) were infected with fewer species of parasites 

(Maan et al. 2006, 2008). Further support for parasite-mediated sexual selection 

has been observed in house finches (Haemorhous mexicanus, Brawner et al. 

2000), black grouse (Tetrao tetrix, Hoglund et al. 1992), and ring-necked 

pheasants (Phasianus colchicus, Hillgarth 1990). It should be noted, however, 

that many of these studies did not include mate choice trials, and therefore lack 

in evidence for one of the main assumptions of the hypothesis. In addition, the 

use of a controlled experimental infection is not commonly used and instead, 

unaltered, naturally occurring parasite loads are examined. This opens the
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possibility that other variables such as the environment, different parasite 

species, and previous parasite infections may be influencing both the secondary 

sex characters and the parasite load.

Immunocompetence Handicap Hypothesis

The immunocompetence handicap hypothesis (ICHH: Folstad and Karter 

1992) is an application of the handicap principle to parasite-mediated sexual 

selection in which the development of exaggerated secondary sex characters are 

influenced not only by parasite burden, but also its interaction with several 

additional physiological variables, or hidden costs. There are three variables that 

are responsible for the expression of an honest signal in the form of a secondary 

sex character: androgen levels, the immune system and its response, and 

parasite infection and burden. These three variables, along with the secondary 

sex character, are involved in a feedback loop in which the variables interact with 

one another to produce an honest signal of genetic resistance to parasite 

infection. Folstad and Karter (1992) based this prediction on the observation that 

these variables have been shown to interact with one another individually. It is 

generally accepted that testosterone levels positively influence secondary sex 

characters; specifically, an increase in testosterone leads to an increase in the 

expression of many secondary sex characters (Fusani 2008). In contrast, 

testosterone can negatively affect the immune system by suppressing cell 

production and proliferation (Folstad et al. 1989, Zuk et al. 1995, Evans et al. 

2000, Roberts et al. 2004, Deviche and Cortez 2005, Kurtz et al. 2007, Gil and
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Culver 2011, Kindt et al. 2007 but see Fuxjager et al. 2011, Martinez-Padilla et 

al. 2010, Roberts et al. 2007, and Hasselquist et al. 1999). In addition, reduced 

immune performance has been observed during the mating season in 

vertebrates, presumably when secondary sex characters are at their greatest 

expression. This indicates that males may face a trade-off between high 

expression of secondary sex characters or a strong immune response to 

potential disease and infection, and that testosterone levels may serve as a 

handicap in secondary sex character expression. Parasites will elicit an immune 

response from the host, but in addition they have been shown to negatively 

influence the development of secondary sex characters and behaviors (Zuk et al. 

1990, Bucholz 1995, Enzenwa and Jolles 2008).

The aforementioned variables and their interactions create a negative- 

feedback connection between signal intensity of the secondary sex characteristic 

and the interactions of parasitic infection with the immune system and 

testosterone (Figure 1). A parasitic infection may become more severe in 

response to an increase in testosterone (Arrow F), which elicits an immune 

response from the host (Arrow D). The increase in testosterone may result in an 

increase in expression of secondary sex characters (Arrow A) but will also 

suppress the immune system and presumably the response to the parasitic 

infection (Arrow B and C). Finally, this increase in parasitic infection may be 

simultaneously suppressing secondary sex character expression (Arrow E). The 

expression of the secondary sex characters is a plastic response that is adjusted 

according to the cost of infection and immunosuppression compared to the
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benefit of increased reproductive success, which is mediated by the degree of 

expression of the secondary sex characters (Folstad and Karter 1992). In 

addition, the immunocompetence handicap allows for honest signaling by 

suggesting that only an individual with “good genes” for parasite resistance would 

be able to allot less energy into fighting a parasitic infection, resulting in a lower 

cost, relative to an individual with low genetic resistance, for a high-quality signal. 

Ultimately, males with showy and highly developed secondary sex characters are 

demonstrating their ability to resist the effects of a parasitic infection even with a 

compromised immune system (Zuk 1992).

Parasite InfectionTestosterone

Secondary Sex 
Characters

Immune System

Figure 1: Diagram describing the variables of the immuncompetence handicap hypothesis and 

the interaction of each variable with one another.

In mammals, birds, lizards, and fish, the expression of many secondary 

sex characters - including aggressive and display behavior, vocalizations, 

pheromones, social status, and even fertility -  are dependent on androgen levels

and are often sensitive to variation in testosterone levels in particular (Zuk 1992,
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Kurtz et al. 2007). Male vertebrates have demonstrated a rise in testosterone 

during mating season and prior to sexual activity (Roberts et al. 2004, Kurtz et al. 

2007, Fusani 2008, Fuxjager et al. 2011), indicating that, though there may be 

exaggerated expression of secondary sex characters, male immune systems 

may simultaneously be suppressed, exposing males to higher risk of infection. 

While a rise in testosterone tends to have a positive effect on the expression of 

secondary sex characters, experimental manipulation of testosterone levels has 

shown that a high level of testosterone has a negative effect on the immune 

system, increasing parasite load and decreasing cell-mediated and humoral 

immunity (Folstad et al. 1989, Zuk et al. 1995, Evans et al. 2000, Roberts et al. 

2004, Deviche and Cortez 2005, Kurtz et al. 2007, Kindt et al. 2007, Gil and 

Culver 2011). It should be noted however, that other research has challenged 

this idea by showing that males with artificially high levels of testosterone had 

similar immune responses to males with normal or reduced levels of testosterone 

(Fuxjager et al. 2011, Martinez-Padilla et al. 2010, Roberts et al. 2007, 

Hasselquist et al. 1999). Parasitic infections elicit an immune response in an 

infected individual, but they can also influence the development of secondary sex 

characters (Zuk et al. 1990, Mougeot et al. 2007), for example by decreasing 

plumage coloration (Brawner et al. 2000, Costa and Macedo 2005, Horak et al. 

2004, McGraw and Hill 2000). Some studies have shown that parasite 

development, behavior, and reproduction are often correlated with the host’s 

reproductive events - while high testosterone levels may be decreasing immunity,
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parasite fecundity could be increasing (Folstad and Karter 1992, Poiani et al. 

2000, Fuxjager et al. 2011).

Since its introduction, the ICHH and its components have received a lot of 

attention, with much research focusing on the mechanisms and assumptions of 

the ICHH. In domestic fowl (Gallus domestlcus) artificially selected for either low 

antibody or high antibody response to sheep red blood cell antigen, male fowl 

from the low antibody line had significantly higher levels of testosterone in their 

blood, and larger combs (a sexually selected character) than those from the high 

antibody line (Verhulst et al. 1999). These results demonstrate a trade-off 

between testosterone and immune suppression, indicating that males with 

suppressed immune systems were expressing higher levels of testosterone; 

however, this study failed to provide a parasitic infection to demonstrate immune 

suppression in response to an antigen. Male red grouse (Lagopus lagopus 

scotica) with testosterone implants had reduced immunocompetence and 

condition, and higher prevalence of coccidian infection (Mougeot et al. 2004). In 

addition, in a separate experiment, male red grouse that were experimentally 

infected with a nematode parasite had reduced carotenoid-based coloration of 

their combs, while males with experimentally increased levels of testosterone 

increased the red coloration of their combs (Mougeot et al. 2007). However, the 

nematode infection and testosterone manipulation experiments were performed 

separately from one another and thus do not demonstrate an interaction between 

parasitic infection and testosterone levels. Barn swallows (Hirundo rustica) with 

higher testosterone levels had higher ectoparasite loads, providing some support
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for the suppression of the immune system by the testosterone mechanism of the 

ICHH (Saino et al. 1995). In contrast to the ICHH, however, barn swallows that 

had elevated testosterone levels also possessed an increase in eosinophil white 

blood cells, which could indicate that the males were not paying an immune cost 

for high testosterone levels. Tail length in barn swallows is a sexually selected 

character influenced, at least in part, by testosterone, and barn swallows that had 

their tails experimentally elongated had a suppressed response to sheep red 

blood cells. Barn swallows whose tails were not experimentally manipulated did 

not show a suppressed response to sheep red blood cells (Saino and Moller 

1996). These findings indicate that tail length is a costly secondary sex character 

to maintain and males may dedicate more resources to maintenance of this 

character than other areas, such as immune response.

While the studies listed above provide partial support for the ICHH, many 

other studies have failed to find evidence for the ICHH, with some providing 

evidence against key mechanisms in the hypothesis. In red grouse that were 

experimentally manipulated with testosterone and parasitic infection, no 

interaction between testosterone and parasitic infection on ornament size or 

coloration was observed (Martinez-Padilla et al. 2010). This result provides 

evidence against testosterone acting as an immunosuppressant, but it is possible 

that comb coloration may not be heavily influenced by the specific parasitic 

infection. In a study that looked at the genetic component of the ICHH in 

scorpionflies (Panorpa vulgaris), half-sibling families were bred with males that 

had high expression of a condition-dependent ornament trait (saliva secretion)
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and males that had low expression of the trait (Kurtz and Sauer 1999). There 

was no difference in immune traits between the male half-siblings, which fails to 

support the “good genes” effect on offspring as predicted by the ICHH. Mountain 

spiny lizards (Sceloporus jarrovi) with experimentally increased testosterone 

levels had a decrease in the number of gut-dwelling parasites, which is contrary 

to the predications of the ICHH in which an increase in testosterone would 

suppress the immune system and result in an increase in parasite number 

(Fuxjager et al. 2011). This experiment, however, examined natural parasite 

presence and number, with no manipulation of infection, and thus could have 

been influenced by random factors such as previous infection and immunity to 

certain parasites. Similarly, in red-winged blackbirds (Agelaius phoeniceus) with 

experimentally increased levels of testosterone, antibody response levels to an 

injected antigen were not related to levels of testosterone, indicating no 

relationship between testosterone levels and the immune system (Hasselquist et 

al. 1999).

The studies to date have provided mixed results regarding the ICHH, and 

earlier studies that have provided support should be treated with caution, 

particularly because of the more recent evidence against the suppression of the 

immune system by testosterone (Roberts et al. 2004). Many studies, including 

those listed above, have examined specific components of the ICHH (i.e. 

immune suppression due to testosterone, secondary sex character expression 

due to testosterone, parasitic influence on expression of secondary sex 

characters), and not the hypothesis as a whole, providing, at best, partial
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support. While most studies have focused on manipulation of testosterone, few 

have manipulated parasite infection, and even fewer have experimentally 

infected organisms with a known number of parasites.

In this experiment I examined all components of the ICHH except 

testosterone using a model songbird, the zebra finch (Taeniopygia guttata). 

Because there is increasing evidence that testosterone is not a consistent 

immunosuppressant, I used methylmercury, an ecotoxin that has been shown to 

suppress the immune system (Kenow et al. 2007, Fallacara, et al. 2010, Lewis et 

al. 2013), to compromise the immune system. I also challenged the birds with a 

standardized parasitic infection using a coccidian parasite, resulting in four 

treatment groups: (i) immunocompetent and uninfected, (ii) immunocompromised 

and uninfected, (iii) immunocompetent and infected, and (iv) 

immunocompromised and infected (Figure 2). I measured an important sexually 

selected and heritable trait of the zebra finch, the bill color (Zann 1996, Blount et 

al. 2003, Simons and Verhulst 2011), to determine if a change in the production 

of this secondary sex character occurred in response to the immune suppression 

and parasite challenge, as predicted by the ICHH. The following paragraphs 

further describe the four components used in my novel test of the ICHH (Figure 

2).
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V

Methylmercury

Bill Color of Male 
Zebra Finch

Heterophil to 
Lymphocyte Ratio

Coccidian Infection

Figure 2: Diagram describing the variables in my experimental test of the ICHH and their known 

(in black) and predicted (in red) interactions with one another.

The Avian Immune System

The ICHH describes many variables contributing to the feedback loop

responsible for secondary sex character expression. An important component is

the immune system and its function, which I measured using heterophil to

lymphocyte ratios (Figure 2, arrows B, C, D). The immune system is an

organism’s primary defense against invading foreign substances, such as

pathogens, parasites, foreign proteins, and anything considered “nonself’. The

immune system has the ability to communicate throughout the body, remember

previous encounters, and react to an invasion of foreign pathogens (Fairbrother

et al. 2004, Kindt et al. 2007). All types of immune function require resources that

the host might have otherwise used for another function. The use and allocation

of these resources may influence the immune system directly or indirectly. For
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example, the energetic cost of an immune response, like a fever, may be 

substantial and thus a direct influence on the immune system. If an organism has 

poor nutrition or condition, the immune response may be indirectly influenced 

due to the necessity to allocate resources elsewhere (Sheldon and Verhulst 

1996, Norris and Evans 2000).

The immune system is comprised of two parts: innate (nonspecific) 

immunity and acquired (specific) immunity. Innate immunity is the first line of 

defense against invading pathogens, and involves the use of phagocytic 

macrophages and the inflammatory response (Kindt et al. 2007). Acquired 

immunity is specific to particular antigens and has the ability to recognize, 

eliminate, and remember pathogens (Kindt et al. 2007). Acquired immunity is 

further divided into two parts: humoral immunity, which involves the production of 

antibodies by B cells, and cell-mediated immunity, which involves the 

development and proliferation of T cells (Kindt et al. 2007). In birds, the main 

immune organs in which many immune cells are produced are the thymus and 

the bursa of Fabricius, which are the sites of T cell and B cell maturation, 

respectively (Grasman 2002, Fairbrother et al. 2004). T cells produce cytokines, 

chemicals that act as intercellular messengers and can enhance the immune 

response of other T cells, B cells, or macrophages (Fairbrother et al. 2004).

Avian B cells produce three classes of antibodies, immunoglobulin M (primary 

antibody), immunoglobulin G (secondary response) and immunoglobulin A 

(mucosal). Antibodies will neutralize viruses, coat bacteria for phagocytosis, bind 

to T cells, and activate the complement system of the innate immunity
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(Fairbrother et al. 2004). In general, acquired immunity is crucial in controlling 

pathogens such as viruses, intra- and extra-cellular parasites and ectoparasites, 

while innate immunity plays a role in the control of many infections at the initial 

stages, and is the primary means of controlling bacterial infections (Norris and 

Evans 2000).

There are two main techniques for measuring immunocompetence: 

monitoring or challenge (Norris and Evans 2000). Monitoring techniques provide 

a measure of an individual’s health status at the time they were sampled. 

Monitoring techniques include counting leukocytes, calculating heterophil to 

lymphocyte (H:L) ratios, or measuring plasma and serum proteins and immune 

organs (Norris and Evans 2000, Grasman 2002). Challenge techniques involve 

exposing a component of the immune system to a novel antigen and quantifying 

the immune response. Challenge techniques are useful because the pathogen 

challenge is standardized, so any variation between individuals’ strength of 

response is a measure of their immunocompetence (Norris and Evans 2000). 

Examples of challenge techniques include the use of phytohemagglutinin (PHA) 

to stimulate T cell proliferation and differentiation, or immunizing an organism 

with sheep red blood cells (SRBC) to measure antibody titers in response to the 

antigen (Grasman 2002).

In this experiment, I used monitoring techniques to determine the status of 

the immune system. Specifically, I determined the H:L ratio (heterophils to 

lymphocytes) prior to parasitic infection and again after infection with the 

parasite. Heterophils are granulated phagocytic cells from the innate immune
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system (Norris and Evans 2000) that are early modulators of the inflammatory 

response and are known to increase in response to physiological perturbations. 

Lymphocytes are the circulating T and B cells of the acquired immune system 

(Norris and Evans 2000) and will increase in response to an infection. H:L ratios 

are often used to assess stress levels in organisms because they have been 

shown to increase in response to stress (Grasman 2002). These ratios have also 

been shown to increase in response to infections (Davis et al. 2004). Rose et al. 

(1979) examined white blood cell changes in response to a coccidian infection in 

rats and chickens and found an increase in lymphocytes in infected individuals.

Methylmercury

The ICHH emphasizes the suppressive effect that testosterone has on the 

immune system, however, in this study, I suppressed the immune system with an 

ecotoxin, methylmercury (Figure 2, arrows A, B, F). Mercury is a globally 

distributed and persistent environmental contaminant that poses a health risk to a 

wide variety of taxa, including wildlife, domesticated animals, and humans 

(Weiner et al. 2002). Methylated mercury has the ability to biomagnify up the 

food web, increasing in concentration with each trophic level (Weiner et al. 2002). 

Exposure to low levels of methylmercury can have substantial biological effects. 

Traditionally, mercury has been considered a threat mainly to aquatic wildlife and 

piscivorous birds; however, recent research by our lab and collaborators has 

shown that methylmercury poses a substantial risk to terrestrial organisms as 

well, including small songbirds (Cristol et al. 2008).

17



In birds, methylmercury can suppress the immune system, which, as 

described above, plays a pivotal role in defense against pathogens and 

parasites. Specifically, exposure to environmentally relevant levels of 

methylmercury delayed the proliferation of B-lymphocytes in zebra finches (Lewis 

et al. 2013) presumably resulting in compromised immune functioning. Additional 

research has indicated immunosuppression by methylmercury in free-living wild 

birds (Fallacara et al. 2010, Kenow et al. 2007, Hawley et al. 2009).

Coccidians

Coccidian parasites are intestinal parasites that infect the epithelial cells of 

the intestine in birds, mammals, reptiles, amphibians, and fish (Roberts and 

Janovy 2005, Figure 2, arrows D, E, F). Coccidia are found in a wide variety of 

avian species, with the genus Eimeria infecting primarily poultry and game 

species and the genus Isospora common in songbirds (Horak et al. 2004). 

Organisms become infected with coccidians when they ingest sporulated 

oocysts. Once the oocysts are ingested, the oocyst releases sporozoites into the 

epithelial cells of the intestine. Here, the sporozoites begin to reproduce 

asexually and enlarge, forming meronts (Roberts and Janovy 2005). Eventually, 

the meronts separate into merozoites, which break out of the cells into the cecum 

lumen, destroying the host cells, and invading new epithelial cells. The asexual 

reproduction described above is repeated, but some of the merozoites form 

gametocytes. The gametocytes transform into gametes, fuse, and form a cyst 

(oocyst) around the zygote. The oocyst is released from the host’s cells and is
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passed out of the body in the feces (Roberts and Janovy 2005). The asexual 

cycle is genetically programmed to only occur a specific number of times (3, 4, 5, 

etc.). Once these cycles no longer occur, only gamonts are produced (Duszynski 

pers. comm.). In general, oocysts appear in the feces within six days of infection 

(Roberts and Janovy 2005), but have been observed in passerine species within 

three days or with a delay of up to nine days after infection (Filipiak et al. 2009). 

Generally, infection lasts about a month, but can range from two weeks to three 

months (Hill and Brawner 1998, Filipiak et al. 2009).

Coccidian parasites have been shown to inhibit the uptake of essential 

dietary components, such as carotenoids, and to reduce carotenoid-based 

pigmentation in both poultry and passerines (Tyczkowski et al. 1991, Brawner et 

al. 2000, McGraw and Hill 2000, Horak et al. 2004). Carotenoids are molecules 

that play an important and diverse role in integument and plumage coloration 

(reds, yellows, and oranges) and can serve as antioxidants, protecting the body 

from free radicals by accepting unpaired electrons from singlet oxygen and other 

free radicals (Hill and McGraw 2006). Carotenoids cannot be manufactured in the 

body and therefore must be obtained through diet. Once an animal has digested 

carotenoids, it can metabolize these molecules into different forms and for 

different uses (Hill and McGraw 2006). Once the carotenoids are retrieved from 

the food they are absorbed and incorporated into lipoproteins and circulated in 

the blood. It is believed that coccidia disrupt the absorption and transport of 

carotenoids throughout the body. When the coccidian encyst in the lining of the 

intestine it causes a thickening of the epithelium, which can inhibit the absorption
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of carotenoids. The encysting of coccidians also disrupts the production of the 

lipoproteins that transport the carotenoids throughout the body, thus preventing 

deposition of carotenoids in the integument and potentially affecting secondary 

sex character displays (Hill and McGraw 2006).

In addition to affecting carotenoids, coccidians have also been shown to 

cause significant changes in the physiology of infected birds, including a 

decrease in serum albumin, triglyceride, and vitamin E, and in the mass and size 

of secondary sex characters in infected individuals (Bucholz 1995, Horak et al. 

2004, Costa and Macedo 2005). Male blue-black grassquits (Volatinia jacarina) 

that are heavily infected with coccidian parasites tend to leap, a sexually selected 

display behavior, less frequently than less infected males (Costa and Macedo 

2005). In addition, coccidian infections have been shown to negatively affect 

feather growth during molt in house sparrows (Passer domesticus, Pap et al.

2011). Coccidians are excellent parasites for testing the ICHH due to their 

abundance in many passerine species, and their ability to affect carotenoid- 

based secondary sex characteristics, as well as some behaviors and the size of 

some secondary sex characters.

Immune Response to Parasites

The ability of a host to regulate parasite infection depends on the ability of 

a host to generate immune responses that can detrimentally affect parasite 

growth, reproduction, or survival (Figure 2, arrow D). The type of immune 

response can depend on the type of parasite involved (Clayton and Moore 1997).
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Protozoans, for example, are small and can be taken up by phagocytic cells. The 

most successful protozoan parasites, however, tend to “hide” in host cells, where 

they can evade immune cells and recognition is difficult (Clayton and Moore 

1997). With coccidians, the sporozoites are engulfed by macrophages and 

carried to the epithelial lining of the intestine. Once in the epithelial lining, they 

are able to escape the macrophages and enter the epithelial cells (Roberts and 

Janovy 2005). Some host cells, when invaded, will produce novel antigens on 

their surface, which will recruit T cells or natural killer cells (Clayton and Moore 

1997). Parasites living in tissues can also be subjected to antibodies, such as 

immunoglobulin A, which are resilient in the environment of the gut (Clayton and 

Moore 1997). In coccidian infections, once the sporozoites have multiplied into 

meronts and merozoites, macrophages begin to engulf and digest the 

merozoites. In addition, T cells residing in the gut associated lymphoid tissues 

(GALT) begin fighting the infection (Allen and Fetterer 2002, Roberts and Janovy 

2005).

The immune response to coccidians has been studied intensely in poultry, 

but little is known about the immune response of wild birds to coccidians. In 

poultry, the GALT is the first line of defense against coccidian infections, using 

gastric secretions, peristalsis, and competition by normal flora to combat cell 

invasion. In addition, the GALT contains more than half the lymphocyte pool of 

the whole mucosal immune system (Lillehoj and Lillehoj 2000). Research in 

poultry has shown that cell-mediated immunity (T cells) is primarily responsible 

for fighting a coccidian infection. When poultry are experimentally depleted of T
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cells prior to an infection with coccidians, they are more susceptible to infections 

(Lillehoj 1998). In wild birds, experimentally infected greenfinches (Carduelis 

chloris) had an increase in cell-mediated immunity response compared to non

infected birds (Saks et al. 2006). The same was found in Eurasian kestrels (Falco 

tinnunculus, Lemus et al. 2010). Experimentally infected house sparrows had a 

decrease in antibody response compared to control birds, but an overall increase 

of white blood cells (Pap et al. 2009, Pap et al. 2011).

Zebra Finch Sexual Selection

The final component of the ICHH involves the expression of secondary 

sex characters (Figure 2, arrows A, C, E). Zebra finches are sexually dimorphic 

finches in the family/subfamily Estrildidae. Males have deep-red bills while 

females tend to have paler orange bills. The bill color of male zebra finches is a 

sexually selected character and females prefer males with redder and darker bills 

(Zann 1996, Blount et al. 2003, Simons and Verhulst 2011). Bill color in zebra 

finches is carotenoid-based and an indicator of the quality of the bird. Bill color is 

affected by physical condition and environmental influences, such as breeding 

state, but it also has a heritable component (Zann 1996).

Based on the research mentioned above and represented in Figure 2, I 

predict that birds exposed to methylmercury will demonstrate a suppressed or 

lower immune response, as represented by the heterophil to lymphocyte ratio 

(Grasman 2002). In addition, infection with coccidians will elicit an immune 

response from the host, as well as challenge a host by preventing the uptake of
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essential vitamins and nutrients (Tyczkowski et al. 1991, Lillehoj 1998, Horak et 

al. 2004), therefore I predict that birds infected with coccidian parasites will 

demonstrate an increase in H:L ratios compared to birds that are not infected 

with the parasite. Based on the predictions of the ICHH, I predict that birds with a 

suppressed immune system will have lower expression of the secondary sex 

character, or duller red bills. In addition, I predict that birds infected with the 

coccidian parasite will have duller red bills than uninfected birds. Finally, I predict 

that birds that are infected with coccidians and have additional immune 

suppression due to the methylmercury will have the dullest beaks due to the dual 

challenge they are experiencing.
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Methods

I investigated the interaction of mercury-induced immunosuppression and 

experimental coccidial infection on bill color expression, using a factorial design 

with captive-bred zebra finches.

Animal Husbandry

All finches were housed individually indoors in small (12” I X 9” w x 16” h) 

cages on a 14:10-hour light:dark cycle at 20°C. Birds were provided with ad 

libitum pelletized food daily, which contained the carotenoid canthaxanthin. In 

addition, birds received vitamin supplements and a limited amount (1 0 % of a full 

dietary amount) of lutein carotenoid (FloraGLO Lutein, Kemin Industries Inc.) 

supplement in their water, plus limited oyster shell grit for digestion. The 

experimental room was divided in half with a sheet of plastic extending from the 

ceiling to the floor to separate the uninfected and infected treatment groups. 

Separate doors were constructed at the entrance to the room allowing for 

separate entrance into the uninfected side and infected sides. I changed gloves, 

lab coats, and foot coverings while entering each side to minimize contamination 

risk. On any one day, I performed all feeding, cleaning, and sampling on the 

uninfected side first, to reduce further the chance of infection with coccidians 

from the other treatment. Both sides of the room had separate trashcans, food 

and water dishes, water sources, and stored food.
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Mercury Treatment

The four treatment groups were (i) immunocompetent (O.Oppm MeHg) 

plus uninfected; (ii) immunocompromised (1.2ppm MeHg) plus uninfected; (iii) 

immunocompetent plus infected; and (iv) immunocompromised plus infected.

To produce immunocompromised individuals, I exposed 31 adult zebra 

finches to methylmercury (MeHg) by mixing aqueous MeHgCysteine into their 

artificial complete pelletized (Zupreem) diet to a concentration of 1.2 pig/g. The 

control group (immunocompetent, N=30) received the same pelletized diet with 

water and cysteine added. The mercury (Hg) concentration used is an 

environmentally relevant sublethal level of exposure that birds could experience 

at a highly contaminated site (Cristol 2008) and has been shown to delay B-cell 

proliferation in captive zebra finches (Lewis et al. 2013). All Hg-dosed birds were 

developmentally exposed to MeHg, from egg through adulthood by dosing their 

parents prior to and through breeding and then continuing offspring on the same 

dose after they reached independence. Before and after experimentally infecting 

the birds with coccidians (see below), I collected a blood sample to determine the 

average blood mercury level (pig/g) for each bird. I analyzed the blood samples 

using a Direct Mercury Analyzer (DMA-80, Milestone, Inc.).

Parasite Treatment

Coccidian oocysts were collected from a naturally infected zebra finch in

our outdoor zebra finch colony and identified using a compound microscope

based on presence of outer oocyst wall and the presence of two or four
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sporocysts inside the oocyst wall (Duszynski and Wilber 1997). All oocysts were 

maintained in 2% potassium dichromate (see below) at room temperature for 7 - 

10 days to allow for sporulation and at 4°C thereafter. By placing the fecal 

samples in the 2 % potassium dichromate, I very likely killed any additional 

pathogens that may have been found in the feces (Duszynski, pers. comm.). To 

prepare the inoculation solution, I washed oocysts in distilled water. I placed 1 - 2  

ml of the fecal-dichromate solution in test tubes and filled the remaining space 

with 8  - 9 ml of distilled water. The test tubes were centrifuged at 3000 rpm for 10 

minutes and then the supernatant was removed until 1 ml of water and the pellet 

remained. I then added 8 - 9 ml of fresh distilled water and centrifuged the test 

tubes at 3000 rpm for 10 minutes. This process was repeated five times until all 

potassium dichromate had been removed from the solution.

Prior to inoculating each bird, I orally medicated them with 0.375 

milligrams per 100 pi sulfadimethoxine (Albon) for 10 days to clear any 

preexisting coccidian infection. After 7 days I took fecal samples to confirm that 

all birds were clear of a coccidian infection prior to the experimental infection, 

following the procedure below. Any birds (N = 12) that were not free of infection 

after 10 days of medication were removed from the experiment. For the 

remaining birds (N=32), I waited a further week after the successful course of 

medication and then orally inoculated half of the birds in each treatment (N = 16 

in O.Oppm group and N = 16 in 1.2ppm MeHg group) with a constant solution of 

sporulated Isospora oocysts. A 20-gauge metal animal-feeding needle attached 

to a 1 ml syringe was used to administer approximately 1 0 0  oocysts in 1 0 0  pi of
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distilled water directly into the crop of the bird. I cleaned the feeding needle and 

syringe in warm, soapy water and rinsed with clean water between each 

inoculation. I inoculated birds in the uninfected treatment group with 1 0 0  pi of 

distilled water at the same time as the infected treatment group.

Quantifying Infection

To determine the start of the infection and the parasite load throughout the 

infection, I collected fecal samples from each bird for the first five days after 

inoculation, and then weekly for the next six weeks. Fecal samples were 

collected between 1800 and 2 0 0 0  hours, when the majority of coccidian oocysts 

are shed (pers. obs., Brawner and Hill 1999, Brown et al. 2001, Misof 2004, 

Filipiak et al. 2009). I placed aluminum foil at the bottom of the cages to allow for 

easy collection of feces. At 2000 hours I removed the aluminum foil from the 

cage and collected any feces using a P1000 pipetteman and vials containing 5 

ml of potassium dichromate. A layer of air was left between the top of the vial and 

the feces-dichromate mixture to allow the oocysts atmospheric oxygen to aid in 

sporulation. The fecal-dichromate mixture was maintained as described above.

To determine the presence and number of oocysts in a fecal sample I 

aliquoted 1 ml of homogenized fecal-dichromate mixture into a 15 ml glass 

centrifuge tube. I filled the remainder of the centrifuge tube with 14 ml of 

Sheather’s sugar flotation solution (500 grams sucrose, 350 ml tap water, 5 ml 

phenol) until a reverse meniscus formed at the top. I placed a number one, 18 

mm2 cover slip on top of the centrifuge tube and centrifuged the tube at 3,000
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rpm for 10 minutes. After centrifugation, I removed the centrifuge tube and 

placed the cover slip, onto which the oocysts should have adhered, onto a glass 

microscope slide where it was allowed to dry for 5 -10 minutes before counting.

To count the total number of oocysts per slide, I used a compound 

microscope at 100X magnification. I systematically scanned each slide and used 

a hand counter to tally each oocyst (a method with 7.31% mean percent error, 

Duszynski and Wilber 1997). To count the number of oocysts per gram of feces, I 

determined the dry weight of the feces using a centrifugal evaporator (Savant 

Speed Vac, Thermo Scientific). I pre-weighed a 1.5 ml eppendorf tube, and then 

placed 1 ml of homogenized fecal-dichromate solution in the tube. The samples 

were spun in the vacuum for three hours at high heat until all liquid had 

evaporated. I divided the oocyst number by the mass of the dried fecal sample to 

determine the number of oocysts per gram of feces. In some cases, oocysts 

were too numerous to count. To accommodate such cases, I made new slides, 

following the procedure above, with smaller aliquots, which ranged from 2 0  pi to 

500 pi, and then I corrected for the smaller quantity of feces when calculating 

oocysts per gram.

Immunocompetence

To assess the state of the immune system I measured the ratio of 

heterophils to lymphocytes and the leukocyte profile (eosinophil and monocyte 

counts) from blood smears. To make blood smears I collected a small amount of 

blood from each bird, on the same days that I collected fecal samples, by

28



pricking the brachial vein of the wing with a 30-gauge needle. Using a capillary 

tube I transferred a drop of blood from the bird to a microscope slide and 

smeared the blood across the slide with a second microscope slide. After drying 

for 10 -15 minutes, I fixed and stained the blood cells using DipQuick stain 

(Jorgensen Laboratories, Inc). Once the stained slide had dried I observed the 

cells using oil immersion on a compound microscope (Houwen 2000). I identified 

heterophil, eosinophil, monocyte, and lymphocyte white blood cells and counted 

the number of each in the first 100 cells (a method with 27.9% mean error 

overall, 11.9% mean error for heterophils, 4.47% mean error for lymphocytes). 

From this information I determined the heterophil to lymphocyte ratio.

Bill Color

Because coccidians have been shown to influence coloration of 

carotenoid-based sexually selected traits in birds (McGraw and Hill 2000, 

Brawner et al. 2000, Horak et al. 2004), I measured the bill color of each bird 

prior to and after the infection. Carotenoids play an important and diverse role in 

integument and plumage coloration but can also serve as antioxidants, protecting 

the body from free radicals (Hill and McGraw 2006). Bill color in zebra finches is 

influenced by carotenoid concentration and has been indicated as a signal for 

female mate choice with females preferring males with redder bills (Simon and 

Verhulst 2011). I measured the bills using a USB2000 UV-VIS Miniature Fiber 

Optic Spectrometer with OOIbase32 software (Ocean Optics, Inc.) and the color 

program CLR 1.05 (Montgomerie 2008). I recorded measurements of brightness,
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red saturation, and red hue (Hill and McGraw 2006). Hue indicates the 

wavelength that is contributing most to the color we perceive on the visible 

spectrum. Saturation measures the degree to which a color appears to be pure, 

or is composed of a single wavelength. Brightness refers to the total amount of 

light that is coming from a unit area of a surface at a particular angle (Hill and 

McGraw 2006). Colors that are higher on the brightness scale tend to appear 

more washed out.

Statistical Analysis

To determine the effect of immunosuppression due to methylmercury and 

parasite challenge on bill color expression, I used the following statistics. To 

determine if mercury had suppressed the immune system, I averaged the values 

of all time points into an average H:L ratio for each uninfected bird. I used a one

way ANOVA to compare immunocompetent and immunocompromised 

treatments in the absence of a parasite infection. Because mercury has been 

shown to suppress the response of the immune system, I also collapsed all time 

points into an average H:L ratio for each infected bird. I used a one-way ANOVA 

to compare immune response in the infected birds across the 

immunocompromised and immunocompetent treatments. To determine if the 

coccidians elicited an immune response, I collapsed all time points into an 

average H:L ratio for all birds on control diets. I used a one-way ANOVA to 

compare uninfected to infected immunocompetent birds.
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To examine the effect of mercury on parasite infection, I first normalized 

the response variable using a box-cox transformation (y(t)=(((yAlambda)- 

1)/lambda)) where lambda = 0.020 (Swaddle et al. 1994). To account for the 

presence of zeros in the data (days when infected birds were not releasing 

oocysts in their feces), I added 0.001 to all values. To analyze the data, I used a 

linear mixed model with time as a continuous variable, dose as a fixed effect, and 

family and date as random effects. Coccidian parasites have a genetically limited 

number of asexual reproductive cycles, which most likely occur early on in the 

infection. During this time, newly formed merozoites are destroying old epithelial 

cells and invading new cells and the immune system is most active.

Macrophages are engulfing freed merozoites while T cells are being recruited to 

the invaded cells. I was interested in the immune response to coccidians in the 

presence of mercury; thus it is useful to examine the parasite load during the 

time that the highest level of immune activity is most likely occurring. Therefore, 

as an alternate analysis, I shortened the time window for analysis of the 

parasitism data to 2 1  days to focus on the early part of infection where parasite 

load was the greatest. I used a linear mixed model to analyze the shortened time 

points with the same fixed and random effects as described above. I performed a 

new box cox transformation on the shortened window values and calculated new 

transformed values where lambda = 0.061. I focused only on the part of the 

infection after the initial asexual reproductive cycle, from 7 to 21 days, where 

immune response is most likely at its highest.
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To help describe the bill color, I reduced three of the five color variables 

(hue of red, saturation of red, and brightness) into a single, composite redness 

color score using Principal Component Analysis separately for males and 

females. The principal component analysis of male zebra finches resulted in a 

single principal component (PC1) that explained 70.0% of the variance (Table 8 ). 

All three variables loaded strongly, with red saturation (S1R) and red hue (H1R) 

increasing as the PC1 value increased and brightness (B1) decreasing as the 

PC1 value increased. This indicates that males with higher PC1 values had 

redder and less bright bills. The principal component analysis of female zebra 

finches resulted in a single principal component (PC1) that explained 58.5% of 

the variance (Table 9). Just as with the males, red saturation (S1R) and red hue 

(H1R) increased as the PC1 value increased and brightness (B1) decreased as 

the PC1 value increased. This indicates that females with higher PC1 values had 

redder and less bright bills.

I then compared the slopes of the birds that were both infected and dosed 

with mercury (immunocompromised/infected) to all other treatment groups. I 

added an additional variable, setting immunocompromised/infected birds equal to 

2 and all other birds equal to 1. I ran a repeated measures ANOVA with the PC 

scores before and after infection as within-subjects variables and the new 

“treatment” variable as a between-subject variable. I repeated this process to 

compare immunocompetent/uninfected to immunocompromised treatments and 

to compare the immunocompetent/uninfected treatment to all infected birds. To 

check for floor and ceiling effects I ran a univariate linear model comparing the
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PC1 values after the infection of the immunocompromised/infected treatment to 

all other treatment groups.

All analyses were performed using SPSS Statistical Software and R 

Version 2.13.2 (R Core Team 2013).
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Results

The average blood mercury level for the immunocompetent (O.Oppm 

Hg)/uninfected treatment was 0.006 pg/g (SEM = 0.001). The average blood 

mercury level for the immunocompromised (1.2ppm Hg)/uninfected birds was 

20.4 pg/g (SEM = 0.55). The average blood mercury level for the 

immunocompetent/infected birds was 0.006 pg/g (SEM = 0.001). The average 

blood mercury level for the immunocompromised/infected birds was 2 2 . 2  pg/g 

(SEM = 1.4). Hence, the mercury dosing was highly effective in creating the 

intended blood mercury differences.

The average H:L ratios of mercury-dosed (immunocompromised) and non 

mercury dosed (immunocompetent) birds were not statistically different (Fii 2 3  = 

0.372, p = 0.547) however the mercury-dosed birds had a higher mean H:L ratio, 

which is in the predicted direction (Table 1, Figure 1). The average H:L ratios of 

immunocompromised/infected and all immunocompetent birds were also not 

statistically different (F1)30 = 0.493, p = 0.488) however the 

immunocompromised/infected treatment birds had a higher mean H:L ratio, 

which was also in the predicted direction (Table 2, Figure 2). The average H:L 

ratios of uninfected and infected birds were not statistically different (Fi)26 = 1-26, 

p = 0.298) however the infected birds had a higher mean H:L ratio, which is in 

the predicted direction (Table 3, Figure 3). The average H:L ratios of uninfected 

and infected birds during the heaviest part of the infection were not statistically 

different (Fii 25 = 2.128, p = 0.156) however there was a trend in the predicted 

direction of infected birds having higher H:L ratios (Table 4, Figure 4).
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All birds orally inoculated with oocysts became infected with coccidians.

All but two birds started releasing oocysts in their feces three days after 

inoculation. The remaining two birds began releasing oocysts earlier, one to two 

days after inoculation. The infection lasted six weeks, with only six birds still 

releasing oocysts at the end of the six weeks (Figure 5).

Parasite load (oocyst/gram of feces) was not significantly different 

throughout the infection (3-42 days) between immunocompetent and 

immunocompromised birds (Fii57= 0.631,p = 0.430, Table 5, Figure 5). The box- 

cox transformed parasite load in the shortened time window (3-21 days) was not 

significantly different throughout the infection between control and mercury dosed 

birds (Fi 3 5 = 0.490, p = 0.489, Table 6 , Figure 6 ). Between 7 days and 21 days, a 

separation appeared between immunocompromised and immunocompetent 

birds, which although non-significant, suggests the possibility that mercury-dosed 

birds were maintaining higher parasite loads (Fii33= 2.325, p = 0.137, Table 7, 

Figure 7).

For males, all four treatment groups had PC1 values that decreased after 

the date of the coccidian infection. The immunocompromised/infected birds’ bill 

color was not significantly different than the other three treatment groups 

combined (Fii32 = 2.44, p = 0.128). However, there is a trend that indicates that 

overall, the bill color of birds in the immunocompromised/infected treatment was 

the least red when compared to the other three treatments. The slope of the 

immunocompromised/infected treatment was not significantly different than the
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other three treatment groups (Fii 32 = 1.50, p = 0.230, Figure 8 ), indicating the 

change in bill color did not differ among treatment groups.

The bill color of the immunocompromised/uninfected birds was not 

different than the bill color of the immunocompetent/uninfected birds (F1 1 5  = 

0.626, p = 0.441). The bill color of the immuncompetent/infected birds was not 

different than the bill color of the immunocomptent/uninfected birds (F1 1 7  = 0.015, 

p = 0.905, Figure 8 ). When I compared the post-incoulation PC1 values, there 

was no difference between the immunocompetent (mercury-dosed) and infected 

birds and all other treatment groups (Fi)33 = 1.42, p = 0.242).

For females, all four treatment groups had PC1 values that decreased 

after the date of the coccidian infection. The immunocompromised/infected birds’ 

bill color was not significantly different than the bill color of the other three 

treatment groups (Fi)25 = 0.005, p = 0.529). The slope of the 

immunocompromised (mercury-dosed) and infected birds was not significantly 

different than the other three treatment groups (F1 2 5  = 0.409, p = 0.230). 

However, the immunocompromised/uninfected birds had the least red mean bill 

color (Figure 9).

Immunocompromised (mercury-dosed) birds had less red bills than control 

birds (F1 1 0  = 4.24, p = 0.066). The bill color of the immunocompetent/infected 

birds was not different than the bill color of the immunocompetent/uninfected 

birds (Fi g = 0.014, p = 0.908). When I compared the post-inoculation values, 

there was no difference between the immuncompromised/infected birds and all 

other treatment groups (Fi,2 6 = 0 .1 1 0 , p = 0.743).
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Discussion

Previous studies of the ICHH have provided mixed results, and support for 

the hypothesis should be treated with caution. I performed the first test of the 

ICHH in which all components of the hypothesis were examined, while previous 

studies observed one or two of the components at a time. In addition, recent 

research has indicated that high levels of testosterone may not be causing 

immunosuppression, further weakening previous support for the ICHH. To 

account for this new research, I used the ecotoxin, methylmercury, to suppress 

the immune system. I measured bill color of the zebra finch, a sexually selected 

character, to determine if a change in the production of this secondary sex 

character occurred in response to immune suppression and a parasitic 

challenge.

The analyses of the color data indicated that the bill color of all of the 

zebra finches became more orange and brighter after the date of the coccidian 

infection. The pelletized food I used to dose the birds with mercury does not 

contain all of the nutrients found in the natural diet of zebra finches. To account 

for this, I provided additional vitamins and carotenoids in the water. However, in 

the middle of the experiment, the proprietary commercial formula of the pelletized 

food was changed with a reduction in the amount of the carotenoid 

canthaxanthin, which is one of four carotenoids primarily found in the bills of 

zebra finches (McGraw and Toomey 2010). The lack of canthaxanthin in the new 

food formula may have contributed to the decrease in redness observed in all of 

the zebra finches.

37



For my first prediction, I expected birds with a compromised immune 

system (mercury-dosed) to have a lower expression of the secondary sex 

character, or duller red bills. In both males and females, there was no difference 

in bill color between immunocompetent (control-dosed) birds and 

immunocompromised (mercury-dosed) birds. This is contrary to what was 

predicted. Carotenoids have been shown to be immunomodulators, and an 

organism may face a trade off between allocating carotenoids towards coloration 

versus immune system function. The results of this study indicate that perhaps 

carotenoids are not serving as immunomodulators in zebra finches, and those 

with suppressed immune systems are not experiencing a trade off. The lack of 

significance could also be due to the small sample size.

For my second prediction, I expected birds infected with the coccidian 

parasite to have duller red bills than uninfected birds. In both males and females, 

there was no difference in bill color between infected and uninfected birds (Figure 

2 of introduction, arrow E). This is contrary to what was predicted. Coccidia 

infections have consistently been shown to block the uptake of carotenoid 

molecules in the digestive system, presumably lowering the amount of 

carotenoids circulating in the blood that is available for deposition throughout the 

body. The results of this experiment demonstrate that, in zebra finches, 

coccidians may not block the uptake of carotenoids in the gut. It is also possible 

that, because the zebra finches had access to food ad libitum, the coccidians did 

not entirely block the absorption of the carotenoids. It should be noted, however,
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that the food provided to the zebra finches is low in carotenoids and may not 

have been providing sufficient carotenoids in the first place.

Another explanation for these findings could be due to the timing of the bill 

color measurement. The bill color was measured six weeks after the start of the 

infection, with the heaviest part of the coccidian infection in the first few weeks. I 

did not measure the bill color halfway through the infection. By the end of six 

weeks, almost all birds had completely cleared the infection; therefore it is 

possible that the infected birds were able to begin depositing more carotenoids 

into the bill before I took the final measurement. It should be noted, however, that 

previous research has demonstrated that bill color change in zebra finches tends 

to be gradual (taking up to four weeks) (Birkhead et al. 1998, Bloundt et al.

2003).

The final prediction of my research, centered on the ICHH, predicted that 

the birds with the dual challenge of coccidian infection and immune suppression 

due to methylmercury would have the dullest beaks. The infected and 

immunocompromised (mercury-dosed) male zebra finches’ bill color was not 

statistically different than the other three treatment groups, however their bills 

were the least red bills out of all four treatment groups, which is in the predicted 

direction. Interestingly, the bills of the infected and mercury-dosed female birds 

were not the least red of the four treatment groups. These findings do not provide 

support for the ICHH, which predicts that a sexually selected character will 

honestly display the quality of the individual. The birds with the least red bills had 

suppressed immune systems due to methylmercury and were being challenged

39



with a parasitic infection; but the lack of significance prevents the conclusion that 

they were in fact of lowest quality. The lack of a significant result may be due to 

the small sample size. It is also possible that the true indication of the quality of 

the male can be seen during the peak of the infection, and measuring the bill 

color throughout the coccidian infection would provide a better indicator of male 

quality.

Before testing the predictions of the ICHH, I examined some assumptions 

of the experiment. The first assumption was that methylmercury would suppress 

the immune system. Recent research from our lab has indicated that 

methylmercury delays the proliferation of B cells in zebra finches, presumably 

suppressing the immune system (Lewis et al. 2013). In addition, studies from the 

field have demonstrated a suppressed response of cell mediated immunity and T 

cell proliferation (Fallacara, et al. 2011, Jorissen et al. 2013, and Frouin et al.

2012). To determine if methylmercury had suppressed the immune system 

(Figure 2 of introduction, arrow B) of the zebra finches I compared the heterophil 

to lymphocyte ratios of control (immunocompetent) and mercury-dosed 

(immunocompromised) birds that were not infected with a coccidian, and control 

and mercury-dosed birds that were infected with a coccidian. Heterophil to 

lymphocyte ratios are used to examine the state of the immune system at the 

time it was sampled, providing information about the number and presence of 

white blood cells circulating in the blood. I did not find a significant difference in 

H:L ratios between control and mercury dosed birds, however mercury dosed 

birds consistently maintained higher H:L ratios than control birds. It is generally
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accepted that H:L ratios increase in response to stress (Cirule et al. 2012, Vleck 

et al. 2000) with heterophil counts increasing and lymphocyte counts decreasing. 

In addition to mercury dosed birds maintaining higher H:L ratios than control 

birds, they also consistently had slightly higher heterophil counts and slightly 

lower lymphocyte counts. Though the differences were not significant, this is 

indicative of a stressed immune system in the mercury-dosed birds. In addition, 

the lower lymphocyte counts are consistent with previous work from our lab that 

demonstrated a suppressed proliferation of B cells (Lewis et al. 2013).

Previous research on mercury and the immune system has indicated that 

the response of the immune system is suppressed due to the presence of 

mercury (i.e. less proliferation and recruitment of white blood cells) (Lewis et al. 

2013, Fallacara et al. 2010, Kenow et al. 2007, Hawley et al. 2009). Because H:L 

ratios provide a snapshot of the immune system at the time it was sampled, I 

also compared the H:L ratios of control and mercury-dosed birds that were 

infected with coccidians. The infection with coccidian parasites is a controlled 

challenge to the zebra finch immune system and therefore can provide 

information on how mercury can affect the immune response. The H:L ratios of 

the infected mercury-dosed birds were not different than the infected control 

birds. However, the mercury-dosed birds infected with the coccidian parasites 

maintained higher average H:L ratios than the birds that were not dosed with 

mercury but infected with the coccidian. In addition, infected plus mercury-dosed 

birds had lower lymphocyte counts throughout the experiment compared to 

infected control birds.
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The lack of significant difference in H:L ratios between the control and 

mercury dosed birds could be explained in several ways. First, the sample sizes 

were small (N = 14 and N = 15), which could explain the lack of significance in 

the face of a consistent trend. It is also possible that the monitoring technique of 

heterophil to lymphocyte ratios is not the best technique for measuring the 

immune system. Heterophil to lymphocyte ratios are generally used when 

examining the effects of stress on the immune system (Grasman 2002, 

Johnstone et al. 2012) and may not be the best indicator of the effects of 

pollutants or mercury in particular. While heterophil to lymphocyte ratios provide 

information about the immune system at the time the sample is taken, it is often 

suggested that additional tests of immune function should be used as a follow up 

to better characterize potential immunological effects (Grasman 2002).

A second assumption of the ICHH involves the presence of a parasitic 

infection and its ability to challenge the immune system (Figure 2 of introduction, 

arrow D). Coccidian parasites infect the epithelial cells of the intestine of 

passerines and will elicit both a cell-mediated and macrophage immune 

response (Clayton and Moore 1997, Allen and Fetterer 2002). The oral 

inoculation I performed on the zebra finches was successful in establishing a 

coccidian infection in all birds. There was no significant difference in H:L ratios 

between uninfected and infected birds, however the infected birds consistently 

maintained higher H:L ratios than the uninfected birds. Heterophil to lymphocyte 

ratios will increase in response to infection (Davis et al. 2004) and the results 

suggest that the coccidian infection did in fact elicit an immune response.
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I found no significant difference in parasite load between control and 

mercury dosed birds (Figure 2 in introduction, arrow F). However, when I looked 

specifically at the time during the infection when immune response is presumably 

at its highest (7-21 days), a non-significant trend suggests that mercury dosed 

birds were maintaining higher parasite loads. This finding cannot be confirmed, 

however, due to the lack of significant results.

The results of this study did not provide support for the ICHH, however it is 

still successful as a novel experiment. The factorial design of this experiment 

provided a unique and practical set up for the testing of the ICHH. By controlling 

two of the mechanisms predicted by the ICHH to influence secondary sex 

characters, I was able to examine their individual and interacting influences on 

the secondary characters. Previous studies focused on specific mechanisms 

involved in the ICHH, but fell short in testing the interaction between the variables 

of the ICHH. The factorial design allows for all mechanisms and interactions to 

be tested. In addition, in this experiment I was able to control the parasitic 

infection, where previous experiments would examine natural or existing 

infections. Not only did I provide a standardized inoculation of parasites, but also 

performed the experiment in an aviary setting and thus provided additional 

control over other environmental factors that may have influenced the outcome of 

this experiment, such as additional parasitic infections. The design of this 

experiment provides the groundwork for future studies involving the ICHH. 

Overall, however, the results of the study do not provide support for the ICHH.
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Appendix

N Mean Std.
Deviation

Std.
Error

95% Confidence 
Interval for Mean

Min Max

Lower
Bound

Upper
Bound

0.0 14 .374 .152 .041 .287 .461 .168 .691
1.2 15 .421 .245 .063 .285 .557 .206 1.24
Total 29 .398 .203 .038 .321 .476 .168 1.24

Table 1: IVean H:L ratios of uninfected control (O.Oppm) and mercury (1.2ppm) dosed birds.
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N Mean Std.
Deviation

Std.
Error

95% Co 
Interval

nfidence 
for Mean

Min Max

Lower
Bound

Upper
Bound

0.0 16 .449 .225 .056 .329 .569 .142 .934
1.2 16 .548 .517 .129 .273 .823 .078 1.99
Total 32 .498 .395 .070 .356 .641 .078 1.99

Table 2: Mean I- L ratios of infected control (O.Oppm) and mercury (1.2ppm) dosed birds.
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N Mean Std.
Deviation

Std.
Error

95% Co 
Interval

nfidence 
for Mean

Min Max

Lower
Bound

Upper
Bound

u 14 .375 .142 .038 .293 .457 .158 .624
1 16 .449 .225 .056 .329 .569 .142 .934
Total 30 .414 .191 .035 .343 .486 .142 .934

Table 3: Mean H:L ratios of control, uninfected (U) and control, infected (I) birds.
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N Mean Std.
Deviation

Std.
Error

95% Co 
Interval

nfidence 
for Mean

Min Max

Lower
Bound

Upper
Bound

u 14 .419 .197 .0523 .305 .533 .186 .892
I 16 .566 .330 .082 .390 .742 .187 1.14
Total 30 .497 .282 .051 .392 .603 .186 1.14

Table 4: Mean H:L ratios of control, uninfected (U) and infected (I) birds during the heaviest part 
of the infection (7-21 days).
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Dose Mean Std. Error df 95% Confidence Interval
Lower Bound Upper Bound

Control 9.37 1.26 57.0 6.84 11.9
Mercury 10.8 1.26 57.0 8.26 13.3

Table 5: Estimated Marginal Means of the average parasite load (oocyst/gram of feces) between 
control and mercury dosed birds throughout the course of coccidian infection.
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Dose Mean Std. Error df 95% Confidence Interval
Lower Bound Upper Bound

Control 10.6 2.00 32.5 6.56 14.7
Mercury 12.6 2.00 32.5 8.54 16.7

Table 6: Estimated Marginal Means of the average parasite load (oocyst/gram of feces) between 
control and mercury dosed birds from 3 to 21 days, the heaviest part of the infection.
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Dose Mean Std. Error df 95% Confidence Interval
Lower Bound Upper Bound

Control 2.62 1.52 33.97 -.479 5.71
Mercury 5.90 1.52 33.97 2.81 8.998

Table 7: Estimated Margina Means of the average parasite load (oocyst/gram of feces) between 
control and mercury dosed birds from 7 to 21 days.
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Component
1

S1R .918
B1 -.832
H1R .730

Table 8: Principal Component 1 loadings for red saturation, red hue, and brightness of male bill 
color.
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Component
1

B1 -.677
S1R .885
H1R .717

Table 9: Principal component 1 loadings for red saturation, red hue, and brightness of female bill 
color.
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Figure 1: Average H:L ratios of uninfected control and mercury dosed birds.
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Figure 2: Average H:L ratios of infected mercury and control birds.
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Figure 3: Average H:L ratios of control uninfected and infected birds.
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Figure 4: Average H:L ratios of control uninfected and infected birds during the heaviest part of 
the infection (7-21 days)
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Figure 5: General course of coccidian infection over 42 days. This represents the box-cox 
transformed data, where the equation results in negative numbers.

57



-5 -
Days

Figure 6: Average oocyst/gram of feces for control and mercury dosed birds over the heaviest part of 
the infection. This represents the box-cox transformed data, where the equation results in negative 
numbers.
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Figure 7: Average oocyst/gram of feces for control and mercury dosed birds from day 7 to day 21 
This represents the box-cox transformed data, where the equation results in negative numbers.
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Figure 8: Average PC1 values of male bill color before coccidian infection (pre) and after 
coccidian infection (post) for all four treatment groups.
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Figure 9: Average PC1 values of female bill color before coccidian infection (pre) and after 
coccidian infection (post) for all four treatment groups.
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