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ABSTRACT

The successful development of a functional nervous system hinges on the 
embryonic capacity to execute genetic programs in the face of developmental 
disturbance. Here we investigate the mechanisms of cell type recovery following 
the disturbance of a major juxtacrine signaling pathway in Xenopus laevis. During 
neurogenesis, neuronal differentiation is limited through lateral fate inhibition 
enacted by the Notch signaling pathway. We observed that early misregulation of 
Notch signaling leads to neural patterning defects that appear to correct over 
time. We hypothesized that apoptosis and cell cycle regulation are mechanisms 
to restore balance in neural cell populations as development progresses. The 
numbers of proliferating and dying neural cells as well as the expression of 
apoptosis pathway genes were compared over time between the control and 
perturbed sides of embryos with unilaterally hyperactivated or suppressed Notch 
signaling. Results indicate that altered cell type distribution resulting from early 
Notch perturbation is reflected in the total number of cells within the central 
nervous system, and that cell number is significantly restored by late tadpole 
stages. Altered levels of proliferation and apoptosis within injected neural tissue 
appear to contribute to this normalization in embryos with upregulated Notch 
signaling. We hypothesize that the death and proliferation of neural progenitor 
cells are differentially regulated in this condition, while the regulation of neuronal 
differentiation rate is involved in the recovery from signal attenuation.
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Chapter 1: Overview of the Problem

The development of functional organ systems during embryogenesis is 

indisputably a delicate process susceptible to a wide array of disruptions. Environmental 

and genetic perturbations can profoundly influence developmental pathways and alter 

the expression of lifelong traits. With many pathways being vulnerable to exogenous 

and endogenous disruptions, it is not surprising that organisms have evolved the 

capacity for plasticity in development. The ability to generate functional organs under a 

wide range of environmental and genetic conditions confers a fitness advantage to the 

growing organism (Gluckman et al., 2011).

One of the most widely studied systems known to be vulnerable to perturbation 

in vertebrate development is the central nervous system (CNS). A functional CNS is 

critical not only for the survival of a mature organism, but also for ensuring the 

appropriate development of other organ systems. In early embryogenesis, neural 

development entails the establishment of axis specification, regional identity, cell type 

identity and synapse formation, all of which involve an intricate array of signaling and 

transcriptional networks (reviewed by Martynoga et al., 2012). With successful 

development relying on the careful orchestration of events carried out by complex 

molecular machinery, the genetic factors involved in the formation of neurons and the 

prim itive CNS must include programs allowing for adaptive responses to environmental 

disruption and inappropriate signaling. While there has been considerable progress in 

identifying the genetic pathways governing normal vertebrate neural development, the 

mechanisms of embryonic response to various perturbations are poorly understood.
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The creation and maintenance of balanced neuron and neural progenitor cell 

populations is a tightly regulated process in development. An adequate supply of neural 

progenitors is crucial for use in future waves of neurogenesis and brain remodeling and 

studies of brain development have shown that when this balance is disrupted, severe 

brain malformations result (Bingham et al., 2003). For example, the generation of a 

nervous system with an overabundance of neurons has been linked to severe 

pathologies such as autism (Fang et al., 2014; Courchesne et al., 2007).

Many studies have induced these disturbances through manipulation of Notch 

juxtacrine signaling, a system responsible for controlling neural progenitor proliferation 

and the eventual differentiation of neurons. Perturbation of the Notch pathway has 

been a key method for studying the molecular mechanisms of neurogenesis, due to the 

role of Notch signaling as a fate switch between progenitor proliferation and neuronal 

differentiation, as well as ease of pathway manipulation. Previous studies in the Saha 

lab have shown that, following Notch signaling perturbation, Xenopus laevis embryos 

seem to recover from the well-characterized neurogenic and neural-deficient 

phenotypes (McDonough, unpublished thesis). The focus of the current study is to 

elucidate the cellular mechanisms by which the developing Xenopus embryo recovers 

from the imbalance of neural progenitors to mature neurons.

One possible mechanism of restoring population balance is through controlled 

cell birth and death. Considering the ir powerful roles throughout development,

2



apoptosis and ceil cycle regulation are likely to serve as the driving forces behind the 

compensatory response.

3



Chapter 2: Review of the Literature

2.1 Neural Ectoderm Induction

The earliest stages of Xenopus nervous system development begin with the 

formation of the dorsoventral axis. After egg fertilization, cortical rotation translocates 

maternal Disheveled protein to the site of the future organizer where it acts to locally 

stabilize ubiquitous (3-catenin. Accumulated (3-catenin translocates into the nucleus 

where it can complex with TCF3 in order to activate expression of dorsalizing genes such 

as siomois. The Siamois protein with Lim-1 subsequently activates expression of the 

goosecoid transcription factor, leading to the formation of the organizer in the future 

dorsal region of the embryo (Aruga & Mikoshiba, 2011).

Induction of the neuroectoderm then begins during gastrulation. All the cells of 

the blastula-stage embryo undergo a massive concerted rearrangement, starting from 

the dorsal lip of the blastopore w ithin the region of the organizer. The cells of the 

organizer produce neural inducers including Chordin and Noggin, which diffuse into the 

ectoderm as the organizer tissue involutes and forms the underlying notochord. These 

neural inducers inhibit the pro-epidermal bone morphogenetic proteins (BMPs) in the 

dorsal ectoderm and allow specification towards a neural fate (del Corral & Storey,

2001). It has also been proposed that some amount of fibroblast growth factor 4 (FGF4) 

is required for neural induction along with BMP inhibition. There is additionally a 

growing body of evidence pointing to calcium as a facilitator of neural induction. Local 

fluxes in calcium concentration have been observed in gastrulating Xenopus embryos 

(Leclerc et al., 2000) and it has been shown that Noggin elicits a 15% increase in
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intracellular calcium concentration within unspecified ectoderm (Moreau et al., 2008; 

Moreau et al., 1994; Batut et al., 2005). Furthermore, induced intracellular influxes of 

calcium through calcium channel agonists lead to induction of neural ectoderm (Moreau 

et al., 1994).

The proneural transcription factors Zicl, Zic3 and SoxD are upregulated in the 

absence of BMP signals and Z icl and Zic3 factors are proposed downstream effectors of 

calcium and FGF4 signaling as well (Leclerc et al., 2003; Marchal et al., 2009). These 

initial transcription factors activate basic helix-loop-helix (bHLH) transcription factors 

including neurogenin, which are intermediates in a transcription factor activation 

cascade leading to the ultimate expression of terminal neural differentiation genes.

2.2 Primary Neurogenesis

Anamniote vertebrate embryos undergo neural development in two stages. The 

primary nervous system in X. laevis serves as a system for basic sensation and 

movement during the larval stage (Roberts, 2000). Although most primary neurons are 

replaced during secondary neurogenesis just prior to metamorphosis, primary 

neurogenesis serves as an excellent model system to study the molecular aspects of 

neurogenesis due to the simple layout and accessibility of the open neural plate 

(Wulliman et al., 2005). Many of the genetic players involved in primary neurogenesis 

are expressed during secondary neurogenesis as well, and are posited to perform similar 

roles in the secondary system.
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Primary neurogenesis begins in Xenopus embryos just after gastrulation. Neural 

stem cells arrange in a bilayered epithelium to form the neural plate (Chalmers et al.,

2002). As neural stem cells proliferate, the neural plate expands in preparation for 

folding into the neural tube. Progenitor cells specified for a neuronal fate are 

instructively patterned by the spatial distribution of d ifferent transcription factors to 

become specified for a particular neuronal subtype (Guillemot, 2007). Self-renewing 

specified neural progenitor cells w ithin the neuroectoderm give rise to differentiated 

neurons. These neurons arise in discrete stripes of X-ngnr-1 (Xenopus homolog of 

neurogenin) expression promoted by G lil at the midline as well as Gli2/3 throughout 

the neural plate and repressed by stripes of Zic2 expression (del Corral & Storey, 2001). 

W ithin these specified zones of neuronal differentiation, neurons appear in a "salt and 

pepper" pattern exhibiting limited density. This finely tuned spatial pattern of 

differentiation is achieved through Notch juxtacrine signaling.

2.3 Notch Signaling

The Notch pathway is an ancient and highly conserved mechanism of 

communication between contacting cells (reviewed by Andersson et al., 2011). Notch 

signaling between neighboring cells is heavily used throughout development and within 

many different tissue types. Tissue specificity is likely conferred through the existence of 

several paralogs, of which there are three in X. loevis. The first of these three to be used 

in development is Notchl, whose expression is restricted to the neural tissue through 

neurula stages. During Xenopus primary neurogenesis, N otch l signaling provides lateral
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fate inhibition by suppressing differentiation in cells contacting differentiating neurons. 

This functions to prevent both neuronal overcrowding and the depletion of the 

progenitor pool. The neural determining transcription factor Neurogenin induces the 

expression of the transmembrane Notch ligand Delta in neural precursors just prior to 

that of neural differentiation genes. Delta is expressed at low levels across precursor 

cells, and it is proposed that minute differences in expression among neighbor cells are 

amplified through a feedback loop wherein pathway activation represses Delta 

expression and increases Notch expression (Johnston & Desplan, 2010). Delta binds to 

the extracellular binding site of the transmembrane Notch receptor on a neighbor cell 

through matching EGF-like repeats. Ligand binding triggers a y-secretase mediated 

cleavage of the Notch intracellular domain (ICD) (Schroeter et al., 1998). The ICD 

translocates to the nucleus where it complexes w ith Suppressor of Hairless (Su(H)) and 

Mastermind to activate target genes including Hes genes (Iso et al., 2003; Bray &

Furriols, 2001). While the mechanism of transcriptional regulation by this complex is still 

being investigated, the reigning hypothesis proposes that ICD binding inhibits Su(H) 

activity as a transcriptional repressor (Lubman et al., 2004). The transcription factors 

encoded by Hes target genes act as transcriptional repressors themselves and inhibit the 

expression of differentiation markers (Artavanis-Tsakonas et al. 1995; Davis et al.,

2001; Castro et al. 2005). The signal-receiving cell is thus maintained in the progenitor 

state. Notch signaling is also a mechanism to instruct neural over epithelial cell fates in 

Drosophila (Kunisch et al., 1994) and has been shown to play a role in glial 

differentiation later in development as well (Taylor et al., 2007).
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The conserved role of Notch signaling as a fate switch in neurogenesis is 

underscored by studies showing the generation of severe phenotypes from pathway 

perturbation in Xenopus, Drosophila and mice. Early experiments seeking to elucidate 

Notch pathway mechanics in Drosophila reported "antineurogenic" phenotypes of 

neuronal underdevelopment in transgenic flies overexpressing the Notch intracellular 

domain. Notch-null mutants conversely displayed a neurogenic phenotype in which 

neuronal markers were expressed beyond the normal bounds of the CNS (Lieber at al., 

1993). Chitnis et al. (1995) then investigated the effects of Notch perturbation in 

Xenopus neural development using microinjected RNA transcripts encoding the 

constitutively active Notch ICD to upregulate Notch signaling. Following perturbation at 

the two-cell stage, neural plate and early neurula stage embryos (stage 12-17, 

Nieuwkoop & Faber, 1994) assayed for expression of the pan-neuronal marker neural 

tubulin exhibited a gross depletion of differentiated neurons, indicating that Notchl 

hyperactivation inhibits neurogenesis in Xenopus embryos as in Drosophila. The same 

study also generated a neurogenic phenotype, detected with whole-mount staining for 

n-tubulin, through injection of RNA encoding a form of xD elta l with a truncated 

intracellular domain posited to downregulate N otch l signaling (Chitnis et al., 1995).

Several studies have also targeted Su(H) and its homologs to successfully 

suppress Notch signaling in Drosophila and cultured mammalian cells (Li & Baker, 2001; 

Nakagawa et al., 2000). In the first demonstrated neurogenic phenotype resulting from 

Notch inactivation in mice, loss of function mutations of the mammalian Su(H) homolog 

RBP-Jk and N o tch l both led to increased neurogenesis evidenced by expanded



expression of neuronal differentiation markers into neural tissue outside their normal 

domains at embryonic day 9 (E9) (de la Pompa et al., 1997). Wettstein et al. (1997) 

similarly downregulated Notch signaling in X. loevis using a DNA binding mutant version 

of xSu(H) that sequesters Notch ICD w ithout affecting transcriptional targets. Following 

unilateral construct injection at the two-cell stage, the investigators observed a 

neurogenic phenotype at neural plate stages in which cells expressing N-tubulin were 

overly abundant.

Brain malformation phenotypes in later stages of Xenopus were confirmed in the 

work of Pai et al. (2015), who induced deformities by injecting an unspecified dose of 

xNotchl ICD RNA into the two dorsal blastomeres at the four-cell stage. This resulted in 

malformed midbrain and nearly absent forebrain observed in whole embryos at stage 

45. This study found that endogenous transmembrane voltage patterns are involved in 

the formation and patterning of neural tissue, and that ICD misexpression leads to 

depolarization of the characteristically hyperpolarized neural plate. It remains unknown, 

however, whether this is a direct effect o f Notch misregulation or a consequence of 

overabundant depolarizing progenitor cells.

Although several of these studies on Notch-induced phenotypes describe neural 

hypertrophy as expanded expression of neuronal markers, few have quantified the 

effects on cell number w ithin the neural tissue. A study by Coffman et al. (1993) noted 

that overactivation of Notch signaling in Xenopus results in the expansion of 

neuroepithelial tissue domains, detected with the expression of a neuroepithelial 

marker, N-CAM, though cells were not counted. Few instances of hypertrophy of CNS
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tissue have been observed in Drosophila and mice with suppression of Notch signaling. 

Loss-of-function Drosophila mutants displayed tumor-like overgrowth of cells expressing 

serotonergic markers within the CNS; however, the sanpodo (spdo) mutant used has 

been shown to mimic Notch loss-of-function while the spdo protein is not involved in 

Notch-meditated lateral inhibition (Lundell et al., 2003). Neural tissue hypertrophy was 

also reported upon conditional knockout of the mammalian homolog of Su(H), RBP-Jk, in 

the hypothalamus of mice. In this study, the region of presumptive arcuate nucleus was 

visually determined to be enlarged in eosin and hemotoxylin-stained histological 

sections (Aujla et al., 2013).

Finally, Notch signaling has been implicated as a regulator of programmed cell 

death in brain development, though inconsistent support for its role as an activator or 

suppressor of apoptosis w ithin the literature indicates a highly context-dependent 

function. Yang et al. (2004) used cell type specific conditional transgenic constructs to 

show that N o tch l ICD expression in neural progenitors of transgenic mice led to p53- 

dependent apoptosis of progenitors, while N otch l knockout reduced progenitor 

apoptosis at E9.5 and E10. Another study by Mason et al. (2005) eliminating Notch 

signaling through conditional knockout showed resultant apoptosis of both neurons and 

neural progenitors in the brains of mice at E12.5 and E14.5.

2.4 Apoptosis in Neural Development

Programmed death is a universally common fate of cells in development, and is a 

crucial tool in the elimination of unnecessary, malformed, or transiently functional cells.
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In development apoptosis most commonly occurs w ithin the nervous system, where it 

is integral to the successful completion of many developmental programs. Apoptosis 

also appears to be the predominant mode of cell death in neural development over 

necrosis and autophagy (Arya & White, 2015).

The molecular pathways for enacting programmed cell death are highly 

conserved in different tissue and developmental contexts; however, the many methods 

of apoptosis regulation remain an area of active study. Generally, apoptosis may be 

broken down into intrinsic and extrinsic categories, depending on the source of the 

triggering signal. Both groupings overlap in their use o f certain apoptotic machinery, 

including caspases and mitochondrial outer membrane permeabilization, but differ in 

the upstream activation of common cascades.

The functions of apoptosis in neural development vary widely as well. A well- 

known function of apoptosis is synaptic pruning, which pares down an overabundance 

of neurons to only those connecting the ir proper targets (Hamburger et al., 1975). One 

of the proposed reasons fo r this strategy is that the structural and synaptic complexity 

of the vertebrate brain cannot be achieved through genetic programs alone and must 

employ the use of plastic processes to form a sophisticated and precise network from an 

initial roughly formed system (Morgensen, 2011). It is hypothesized that the finer 

mechanisms of this pruning involve the dependence of neurons on target-derived 

growth factors, neurotrophins, and on synaptic activity to prevent an apoptotic 

"default" fate (reviewed by Park et al., 2013).
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Apoptosis as a means of elim inating transient structures or signaling centers can 

also have a significant impact in the development of brain morphology. For instance, 

normal forebrain development has been shown to be dependent on the programmed 

death of a regionalized subgroup of FGF8-producing cells. The death must occur as part 

o f a spatiotemporal patterning program and when these cells do not die, aberrant FGF8 

signaling disrupts gene expression in the developing forebrain and results in structural 

malformation (Nonomura et al., 2013). The general importance of apoptosis in 

structuring the brain has been emphasized by other studies showing that mice deficient 

in apoptosis genes exhibit grossly malformed brain structures (Kuida et al., 1998) and 

that apoptosis inhibition leads to neural tube closure defects (Yamaguchi et al., 2011).

Should mutations or signaling aberrations affect individual cells or regions of 

tissue, apoptosis is an essential tool fo r neutralizing errors in neural development. 

Ectopic neurons and those w ith aberrant axon migration or improperly formed 

connections are destroyed during development. In a more general context, apoptosis 

has been shown to mitigate the effects of overproliferation in development as well. 

Hypertrophy of Drosophila eye tissue prompted by misexpression of cell cycle regulators 

E2F and DP triggers an apoptotic response, and excessive proliferation in the syncytial 

phase of Drosophila development is shown to be remedied by apoptosis (Du et al.,

1996; Li et al., 1999).

2.5 Cell Cycle Regulation in Neural Development
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Differentiated neurons are largely considered to be postmitotic, and while their 

ability to reenter the cell cycle remains an active area of study, it is generally agreed 

upon that neurons are nonproliferative, unlike their neural progenitors. New neurons 

are born, not from the divisions of differentiated neurons, but from the differentiation 

o f neural progenitor cells. This occurs both in neurogenesis during development and in 

certain regions of the adult brain that harbor adult neural stem cells. Recent findings 

have shown that neurons do not lack the ability to divide, but instead exercise constant 

regulation of their cell cycle (Herrup & Yang, 2007). The tim ing of differentiation and 

exit of precursors from the cell cycle is highly controlled and has many implications from 

cell fate to brain size. Cell cycle regulatory genes are therefore common targets of 

regulation in nervous system development.

Movement through the cell cycle is propelled by the cyclical expression of cyclin 

and cyclin-dependent kinase (cdk) complexes that enable unidirectional progression 

through the phases of the cycle and themselves may be regulated by cdk inhibitors. Exit 

from  the cell cycle upon differentiation is mediated through inhibition of the complexes 

that allow passage through the first gap phase (Gl) and commitment to cell division, 

namely CyclinD/cdk4,6 (Hardwick et al., 2014). Overexpression of complexes allowing 

progression through G l such as the G l/S  phase cyclinA2/cdk2 complex by unilateral 

RNA injection in two-cell embryos has been shown to inhibit neuronal differentiation at 

neural plate stages in Xenopus. Interestingly, this study showed that while RNA-injected 

epidermal tissue displays increased proliferation at tailbud stage, the neural tube in 

embryos overexpressing cyclinA2/cdk2 shows no difference in proliferation between
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control and injected sides, suggesting that endogenous cell cycle cues are capable of 

overriding exogenous cell cycle influence within neural tissue (Riachard-Parpaillon et al., 

2004).

Certain aspects of the cell cycle itself may even play a role in the process of 

neurogenesis. For example, lengthening of the first gap phase (G l) of the cell cycle is 

proposed to control the switch from neural progenitor proliferation to differentiation by 

allowing the accumulation and activity of neurogenic proteins (Hardwick et al., 2014). 

Inhibition of G l lengthening through overexpression of the cdk4/cycinDl complex in the 

cortex at E13.5 inhibits neurogenesis while expanding the progenitor population after 

24 hours in mice. Lengthening G l through cdk4/cycinDl knockdown conversely 

stimulates neuronal differentiation (Lange et al., 2009). Research on the link between 

G l lengthening and neurogenesis has established that many G l regulators also impact 

neurogenesis (Hindley & Philpott, 2012). Cell cycle inhibitors have been shown to 

regulate differentiation independent of their roles in the cell cycle as well. For instance, 

overexpression of the cdk inhib itor p27Xicl in Xenopus stimulates neuronal 

differentiation, while loss of the protein inhibits differentiation. It is thought that 

p27Xicl promotes neurogenesis through stabilization of neurogenin (Vernon et al.,

2003). Cell cycle manipulation in the context of sequential specification can also affect 

the composition of neural tissue later in development. In the cortex, where distinct 

neuronal layers share a "birth date", early exit from the cell cycle results in reduced 

populations of later-born neuronal subtypes (Hatakeyama et al., 2004).
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Another consequence of cell cycle regulation in neural development is the 

control of tissue and brain structure size. Precise regulation of the number and tim ing of 

progenitor divisions has a large influence on regional or even global tissue expansion. 

One study showed that increased neural precursor proliferation in the CNS of (3-catenin 

transgenic mice resulted in enlarged brains at E15.5 to such an extent that extra folding 

of the cerebral cortex was observed (Chenn & Walsh, 2002). The spatial regulation of 

cell division can also influence the generation of neuronal subtypes. Studies targeting 

cell cycle regulator cyclin D2 expressed in the cerebellum displayed a lack of 

differentiated granule cells and stellate interneurons upon gene knockout (Huard et al., 

1999).

Neural progenitor cells may even be limited in their capacity to respond to fate- 

inducing signals depending on their position in the cell cycle. For example, it has been 

demonstrated that human embryonic stem cells in culture differ in their susceptibility to 

differentiation cues depending on their cell cycle phase (Pauklin & Vallier, 2013). Peco et 

al. (2012) suggest that a shortened G2 phase in differentiation-comm itted cells in chick 

embryos may lim it the Notch-responsive time frame to evade differentiation inhibition.

2.6 Preliminary Studies of Embryonic Response to Notch Perturbation

Prior to this study, preliminary experiments were conducted to determine if the 

Notch signaling pathway was involved in the establishment of neurotransm itter fate 

specification (McDonough & Rabe, unpublished). RNA constructs encoding either 

xN o tch l ICD or xSu(H) DBM were unilaterally injected into a two-cell X. laevis embryo,
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with the other cell left unperturbed as an internal control. The perturbed embryos were 

assayed for expression of the panneural marker neural beta-tubulin (NBT) in the control 

and injected sides using whole mount in situ hybridization. In agreement with the 

literature previously described (Chitnis et al., 1995; W ettstein et al., 1997), these 

prelim inary studies showed that embryos injected with the ICD construct exhibited 

diminished NBT expression on the injected side at neural plate stage. Likewise, DBM- 

injected sides showed more prominent NBT expression at neural plate stages. Gene 

expression was also examined at the swimming tadpole stage of development. While 

there was little  effect on gene expression fo r neurotransm itter phenotype markers at 

these later stages, surprisingly, the difference in NBT expression between the injected 

and non-injected side of the embryo appeared to at least partially resolve (Figs. 1 and 

2). A compensatory response resulted in the injected and non-injected sides of the 

embryo becoming increasingly similar in NBT expression fo r both experimental groups, 

as detected by whole mount in situ hybridization. To assess the levels of persisting 

transcripts in the embryos w ith time, Taqman quantitative real time polymerase chain 

reaction (qRT-PCR) was used. Analysis of qRT-PCR results showed that ICD and DBM 

RNA construct levels in tailbud stage embryos were still present at 10% of the levels at 

neural plate stage and persisted at low but still detectable levels into swimming tadpole 

stages. Thus the apparent compensatory response occurred even with the expression 

constructs still present w ithin the embryo, albeit at far lower levels per cell. This 

observation of a compensatory response led to the overarching question of our study: 

why do certain perturbations result in an amplification of the initial perturbation over

16



developmental time while others trigger a compensatory response? The specific goal of 

this study was to determine the molecular mechanisms governing the compensatory 

response to perturbations in Notch signaling, specifically the role of cell proliferation 

and programmed cell death.
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Chapter 3: Experimental Overview and Hypotheses

As this literature review indicates, proper formation of a functional nervous 

system relies heavily on the execution of genetically programmed sequences but also on 

the embryo's ability to be responsive during development, should something go awry.

As previously discussed, both apoptosis and cell cycle regulation are major contributors 

in central nervous system development. We therefore hypothesized that they are 

mechanisms of compensatory remodeling in response to early Notch perturbation. This 

project aimed to investigate the roles of apoptosis and cell cycle regulation in the 

normalization o f cell type distribution during early CNS development. This was first 

achieved by examining whether the responsive process involved changes in cell number. 

We predicted that, in response to hyperactive or suppressed Notch, disparities in neural 

cell number would equalize over time between injected and control tissues of the same 

embryo. To investigate whether recovery from Notch perturbation in the early CNS 

involved changes in cell number, embryos were first unilaterally injected with RNA 

constructs encoding either the Notch intracellular domain (ICD) or a DNA-binding 

mutant of Suppressor of Hairless (DBM) at the two-cell stage. Transverse sections of 

perturbed embryos' neural tissue were stained with DAPI to label the DNA within nuclei 

of individual cells, and cell totals were counted and compared between injected and 

control halves of each embryo.

To investigate the role of apoptosis and cell cycle regulation, construct-injected 

embryos were assayed for expression of the proliferation marker proliferating cell 

nuclear antigen (PCNA) and for the presence of apoptosis-induced nicked DNA through
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terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Cells positive for 

PCNA and TUNEL were counted from transverse sections and totals were compared 

between injected and control conditions. Assays and cell counts were performed on 

embryos at stages w ithin the time course of the preliminary study, w ith two 

intermediate late stages added to observe the tim ing of compensation on a finer scale. 

We predicted that where there were differences in neural cell number there would be a 

compensatory pruning or expansion of cell populations in the injected tissue (Table 1).

In order to examine the role of specific apoptotic pathways in the compensation 

process, various genes involved in both intrinsic and extrinsic pathways were selected 

for study. Candidate genes (Table 2) were cloned and antisense RNA probes were 

synthesized for each. The developmental and functional expression of each was profiled 

with whole mount in situ hybridization of control and construct-injected embryos. 

Localized expression and differential regulation were assessed through histological 

analysis of the nervous tissue. It was hypothesized that apoptotic factors employed in 

the compensation program would exhibit differential expression between control and 

perturbed halves of brain and spinal cord tissue. All studies of construct-injected 

embryos also included vehicle-injected controls to control for the effects of 

microinjection.
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Construct Predicted Phenotype Predicted Response

Notch ICD
Decreased neuron population Increased neuronal differentiation

Increased progenitor 

population

Increased progenitor apoptosis 

Decreased progenitor division

Su(H) DBM
Increased neuron population

Increased neuron apoptosis 

Decreased neuronal differentiation

Decreased progenitor 

population
Increased progenitor division

Table 1. Predicted Notch perturbation phenotypes and compensatory responses.
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Chapter 4: Materials and Methods 

Animal Care

All animal care and embryo collection procedures are in accordance with and 

approved by the William & Mary Institutional Animal Care and Use Committee (IACUC). 

Adult Xenopus laevis were housed in Nalgene plastic tanks containing well water with 

uniodized NaCI added to a final concentration of 20mM and kept in temperature- 

controlled rooms w ith a programmed 14:10 light-dark cycle. Males and females were 

housed separately at a maximum density of 12 and 8 frogs per tank, respectively, and 

were fed ad libitum Nasco Adult Frog Pellets three times per week. Tanks were cleaned 

by flushing with fresh well water for a minimum of three hours, one hour after adults 

were fed.

Embryo Production and Collection

Embryos were obtained through natural matings w ith isolated adult pairs 

induced with human chorionic gonadotropin (hCG). Approximately 12 hours before 

anticipated embryo collection, X. laevis males and females were injected 

subcutaneously w ith 400 and 600 units of hCG, respectively (Sive et al. 2007). Either one 

or two induced pairs were placed in a mesh-bottom container suspended over 

removable plastic trays in an isolated glass tank for convenient embryo retrieval. 

Embryos were collected in trays and embryo jelly coats were removed using the 

following procedure. Tank water was decanted off the embryo tray and replaced with 

100 ml solution of 2% L-cysteine in 0.1X Marc's Modified Ringer's (MMR) brought to pH
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8 w ith NaOH. After a maximum of 5 minutes in cysteine solution with gentle agitation, 

embryos were rinsed three times in 0.1X MMR containing gentamicin and aliquotted 

into 100mm glass petri dishes containing 0.1X MMR + 50 mg/ml gentamicin at a 

maximum density of 100 embryos per plate. Embryo plates were sorted to remove 

unfertilized or necrotic embryos 1.5 hours after collection and stored in incubators 

ranging from 14°C to 23°C w ith daily solution changes. Embryos needing to be discarded 

prior to neurula stages were isolated and treated with 70% ethanol for 5-10 minutes 

before disposal. After neurula stage, embryos to be discarded were anesthetized with 

0.5 mg/ml tricaine methanesulfonate (MS222, Sigma-Aldrich) prior to ethanol 

treatment.

Notch Perturbation Constructs

Constructs were kind gifts of C. Kintner (Wettstein et al., 1997). Plasmid DNA 

was transformed into DH5a hosts and, following growth in liquid culture, DNA was 

recovered using either the Promega PureYield Plasmid Midiprep kit or the Macherey- 

Nagel NucleoBond Xtra Midi kit following the manufacturers' instructions. DNA purity 

and concentration was assessed using a Nanodrop spectrophotometer. A diagnostic 

restriction digest was performed using restriction endonucleases targeting sites flanking 

the clone insert. Samples of digested products and uncut plasmid DNA were 

electrophoresed on a 1.5% agarose gel to confirm clone identity and DNA quality. 

M idiprep DNA was stored at 4°C.
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Synthesis of Capped RNA for Microinjections

Capped sense RNA was synthesized from the sources listed in Table 2 using the 

mMessage mMachine kit (Ambion). Following the manufacturer's instructions, reaction 

mixtures consisted of 1 pg linearized template DNA, 10 pi 2X NTP/CAP mix, 2 pi 10X 

Reaction Buffer, 2 pi of enzyme mix containing appropriate RNA polymerase (Table 2), 

and nuclease free water (NFW) to a total volume of 20 pi. Reactions were incubated at 

37°C for 2 hours followed by a 15 minute incubation with 1 U TURBO DNase at 37°C. 

Synthesized RNA was purified using the RNeasy MinElute Cleanup kit (Qiagen) according 

to the manufacturer's protocol.

Sample volume was brought to 100 pi with nuclease-free water and 350 pi of 

Buffer RLT was added. Following addition of 250 pi of 100% EtOH, the mixture was 

placed in an RNeasy spin column and centrifuged for 15 seconds at 16,100 x g. The 

column was placed in a fresh 2 ml collection tube and 500 pi of Buffer RPE was added to 

the column. After an identical centrifugation step, flowthrough was discarded and 500 

pi of 80% EtOH was added to the column before centrifuging for 2 min at 16,100 x g. The 

spin column was then transferred to a fresh 2 ml collection tube and centrifuged for 5 

minutes with the cap open to rid the column membrane of additional ethanol. Once 

transferred to a 1.5 ml collection tube, the sample was eluted with 14 pi RNase-free 

water, allowed to sit for one minute, and centrifuged for 1 minute at 16,100 x g. The 

eluate was passed through the membrane once more in an identical manner and the 

final sample was placed on ice during quality assessment. RNA yield was assessed using 

a Nanodrop spectrophotometer and quality was checked w ith gel electrophoresis on a
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1.5% agarose gel as previously described. Capped RNA was divided into single-use 1 pi 

aliquots and stored at -20°C.

Microinjections

Glass needles for microinjections were made from 7 inch glass capillary tubes 

(Drummond) pulled twice in a Narishige PB-7 needle puller. Needle tips were poked 

gently through a taut sheet o f single-ply bath tissue to produce a beveled tip 10-30 pm 

in diameter. Dejellied embryos were placed in a 30 mm clay-lined plastic petri dish with 

indented rows for spacing embryos. Injection dishes were filled w ith 0.33X MMR with 

4% ficoll (GE Healthcare) [for added viscosity]. Glass needles filled w ith mineral oil were 

mounted on a Nanoject II m icroinjector (Drummond) and loaded w ith injectable RNA 

synthesized in vitro as previously described. Embryos were unilaterally injected at the 

two-cell stage into the animal cap w ith 4.6 nl of nuclease-free water (NFW) containing

1.5 ng o f RNA encoding either Notch intracellular domain (ICD) or a DNA-binding mutant 

of Suppressor of Hairless (DBM) along with 0.5 ng of RNA encoding either green 

fluorescent protein (GFP) or beta galactosidase ((3-gal) for use as injection tracers. 

Vehicle-injected control embryos were administered 4.6 nl injections o f NFW containing 

0.5 ng of GFP or P-gal RNA in NFW.

Following injection, embryos were transferred to a plastic 100 mm petri dish and 

allowed to recover for a minimum of 2 hours in 0.33X MMR + 4% ficoll. Injected 

embryos were then transferred to fresh dishes containing 0.1X MMR + 4% ficoll and
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kept in incubators ranging 14°C to 23°C. Following gastrulation, injected embryos were 

kept in 0.1X MMR + 50 mg/ml gentamicin.

Embryo Fixation

Embryos were raised to the desired stages identified using the Nieuwkoop and 

Faber (NF) staging guide (1994) and fixed using one of the following procedures specific 

for either GFP or p-gal traced embryos. Embryos injected with GFP RNA were viewed 

under a fluorescent stereoscope and fluorescing embryos were sorted into left- or right- 

injected groups. Embryos were removed from their vitelline sheath using fine forceps 

and prior to NF stage 20 the archenteron was pierced w ith a glass needle. GFP-traced 

embryos were then fixed for 90 minutes in IX  MEMFA solution 

(MOPS/EGTA/Magnesium sulfate/Formaldehyde buffer) at room temperature, rinsed 

twice in 100% EtOH and stored in fresh 100% EtOH at -20°C. Embryos injected w ith p-gal 

were fixed for 30 minutes at room temperature in IX MEMFA, rinsed for 5 minutes in IX 

PTw, and incubated in 500 pi of color developing solution containing 25 pi 0.1M 

ferricyanide, 25 pi 0.1M ferrocyanide, 10 pi 0.1M magnesium chloride, and 5 pi of 100 

pg/m l Red-Gal in IX  PTw until red staining developed. Stained embryos were fixed for 

an additional 90 minutes in IX MEMFA at room temperature, washed twice w ith 100% 

EtOH and stored at -20°C in fresh 100% EtOH. All embryos to be fixed after neurulation 

were anesthetized w ith MS222 prior to fixing.

TUNEL Apoptosis Assay
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In order to identify cells undergoing apoptosis, whole mount TUNEL assays were 

conducted on RNA-injected embryos fixed at various developmental stages. Embryos 

were first rehydrated in successive 5 minute washes of 75% EtOH in sterile double 

distilled water (sdd water), 50% EtOH in sterile distilled water, 25% EtOH in PBT, and 

100% PBT followed by three 20 minute washes in 100% PBT. Embryos were then 

incubated for 2 hours in 100 pi TdT buffer composed of 80 pi PBS and 20 pi 5X TdT 

buffer (Invitrogen). TdT buffer was replaced with TdT reaction mix composed of 100 pi 

IX  TdT Buffer, 0.2 pi Dig-dUTP, and 2 pi TdT enzyme (Invitrogen). Following a 12 hour 

incubation at room temperature, the reaction was stopped with two 1 hour incubations 

in Im M  EDTA in PBS at 65°C. Embryos were then washed 5 times for 10 minutes each in 

IX PBT and blocked for 1 hour in 500 ml of 2% BMB blocking reagent (Roche) in maleic 

acid buffer (MAB). The embryos were incubated at 4°C overnight in a solution of 0.25 pi 

anti-digoxigenin alkaline phosphatase-coupled antibody (Roche) in 500 pi of 2% BMB in 

MAB. After incubation, embryos underwent five 1 hour washes in MAB followed by two 

5 minute washes in alkaline phosphatase (AP) buffer made of 2.5 ml 1M Tris buffer, 1.25 

ml 1M magnesium chloride, 0.5 ml sodium chloride, 25 pi Tween-20, 0.012 g levamisole, 

and sdd water to a final volume of 25 ml. Color was developed by incubating embryos 

for 30 minutes in 1 ml of AP buffer containing 4.5 pi nitro-blue tetrazolium and 3.5 pi 5- 

bromo-4-chloro-3-indolyl phosphate (Promega). Reactions were fixed at 4°C for at least 

12 hours in IX  MEMFA, washed for 5 minutes in IX  PBS and stored at 4°C in fresh IX 

PBS.
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Whole Mount in situ Hybridization

Whole mount in situ hybridization was performed to analyze spatial gene 

expression in whole embryos as described. Fixed embryos were rehydrated by 

successive 5 minute washes in 100% ethanol, 75% ethanol in sdd water, 50% ethanol in 

sdd water, 25% ethanol in PTw, and 100% PTw. Following three 5 minute washes in 

100% PTw, embryos were permeabilized in 1 ml of 10 pg/m l proteinase K for 30 minutes 

w ith nutation. Following two 5 minute rinses in 0.1M triethanolamine, acetic anhydride 

was added to neutralize positive charges within the tissue and prevent nonspecific RNA 

probe binding in subsequent steps. Following two 5 minute washes in PTw, 

permeabilized embryos were refixed with 4% paraformaldehyde in 2X PTw. Excess 

paraformaldehyde was removed with three 5 minute washes in 100% PTw and embryos 

were prehybridized in in situ hybridization buffer (ISH buffer) for a minimum of 6 hours 

at 60°C w ith agitation. ISH buffer was replaced w ith 1 ng/pil RNA probe, synthesized as 

previously described, and embryos were left to hybridize at 60°C for 8-15 hours. RNA 

probes were recovered and stored (for reuse no more than 3 times) and replaced with 

ISH buffer for a 10 minute incubation at 60°C. Hybridized embryos were washed in 2X 

SSC at 60°C three times for 20 minutes. Embryos were treated fo r 30 minutes with 20 

pg/ml RNase A in 2X SSC at 37°C to degrade unbound probe, then washed twice in 2X 

SSC for 10 minutes at room temperature and twice in 0.2X SSC for 30 minutes at 60°C. 

Embryos were then washed twice in MAB for 15 minutes and incubated in 2% BMB in 

MAB for 1 hour at room temperature to prevent nonspecific antibody binding in 

subsequent steps. Following this blocking step, embryos were incubated w ith a 1:2000
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dilution of AP coupled anti-digoxigenin antibody in 2% BMB in MAB for 8-15 hours at 

4°C with nutation. Excess antibody was washed away with four 1 hour MAB washes and 

one overnight MAB wash at 4°C w ith nutation. Embryos were washed twice for 5 

minutes with AP buffer and then incubated in 1 ml of AP buffer containing 4.5 pi nitro- 

blue tetrazolium and 3.5 pi 5-bromo-4-chloro-3-indolyl phosphate (Promega) until 

sufficient staining developed. Color reactions were stopped by fixing in IX  MEMFA for 

12 hours at 4°C and subsequently washed in IX PBS for 5 minutes before storing at 4°C 

in fresh IX  PBS. Each in situ hybridization experiment was performed with a positive 

control using a previously tested probe.

Whole Mount Photography

Brightfield photographs documenting the results of TUNEL or in situ 

hybridization assays on whole embryos were taken with an Olympus DP71 camera 

mounted on an Olympus SZH10 stereoscope using DP Controller software (Olympus). 

Group and representative single-embryo images were photographed in a paraffin-lined 

glass petri dish filled with IX  PBS. Embryos were then cleared for improved signal 

visualization in benzyl benzoate; benzyl alcohol (2:1) following dehydration by three 10 

minute washes in 100% methanol; embryos were then re-photographed.

Cryosectioning

Histological analysis of assayed embryos was performed through cryosectioning 

on a Cryostar NX70 instrument. Embryos were first fixed in 1.6M sucrose for a minimum
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of 12 hours and placed in Tissue Freezing Medium (TFM, Triangle Biomedical Sciences) 

for at least 1 hour prior to sectioning transverse 18 |Jm sections along the anterior- 

posterior body axis. Individual sections were placed on glass slides that had been dipped 

three times in a 50 ml solution containing 0.15 g KNOX gelatin and 0.025 g chromium 

potassium sulfate. Slides were left to dry fo r at least 12 hours before coverslipping.

Sections that were used for cell counts were stained with the fluorescent DNA 

dye DAPI and coverslipped with minimal light exposure. To do so, TFM was removed 

from the sections with a 10 minute wash in IX PBS followed by staining for 15 minutes 

in DAPI solution (Sigma Aldrich). Excess DAPI was washed away in another 10 minute IX 

PBS wash and slides were rinsed for 5 minutes in sdd water. Slides were dried and glass 

coverslips were affixed with Fluoromount G mounting medium (Southern Biotech).

An alternative protocol was used to remove TFM, dehydrate and fix tissue to 

slides for sections not requiring DAPI staining. Slides were taken through the following 

series of washes: 1 minute in IX  PBS, 3 minutes in 4% PFA in PBS, 3 minutes in IX  PBS, 1 

minute in deionized water, 1 minute in 95% ethanol, 1 minute in 100% ethanol, and 5 

minutes in Citrisolv (Fisher). Dried slides were coverslipped with Permount (Fisher).

Slides were brightfield imaged w ith either an Olympus QColor 5 or AmScope 

camera on a BX60 microscope (Olympus) using QCapture Pro or AmScope software. 

Sections used in cell counting were photographed using a UV burner to produce 

fluorescent DAPI images.
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Cell Counting

Left and right halves of neural tissue were manually outlined as regions of 

interest (ROIs) on brightfield or fluorescent DAPI images using ImageJ and saved as .roi 

files (Helmy & Azim, 2012). A second group of ROIs corresponding to regions with in situ 

hybridization signal within neural tissue were generated. Each group of ROIs was 

overlaid onto their respective DAPI images and cells were identified and counted using 

an image-based tool for counting nuclei (ITCN). TUNEL-positive cells were counted using 

brightfield images.

Notch Perturbation Microarray Analysis

Following preliminary studies on the effects o f perturbation of the Notch 

signaling pathway, microarray analysis was used to identify genes involved in the 

embryonic response (Vasiliu et al., 2015). Perturbed embryos were obtained as 

previously described and an Affymetrix GeneChip was used to evaluate differential gene 

expression between ICD- and DBM-injected embryos at NF stage 28. Initial candidate 

genes were selected from the results of this microarray. Microarray results containing 

the probe sequence, p value, and fold change in expression were ranked by p value and 

the two thousand entries w ith greatest statistical significance were annotated with 

function using information from Genbank. Nucleotide sequence alignments were 

generated for each Affymetrix probe using the basic local alignment search tool (BLAST, 

NLM) and a matching gene name, accession number, and alignment E value were
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recorded. Gene name abbreviation, function, and functional category (e.g. apoptosis, 

cell division cycle) were also recorded.

RNA Extraction

Total RNA was extracted from whole embryos flash frozen at the developmental 

stage of interest using the following method. Frozen embryos were homogenized in 350 

pi TriReagent (MRC) using a plastic pestle. The homogenate was then combined with

17.5 pi of phase separation reagent BAN (MRC) and shaken vigorously fo r 15 seconds. 

The sample was incubated at room temperature for 5 minutes and centrifuged at 4°C 

for 15 minutes at 21,000x g. The aqueous phase containing extracted RNA was 

transferred to a fresh microcentrifuge tube and combined with an equal volume of 70% 

ethanol. Extracted RNA was then purified using the Qiagen RNeasy mini kit. The sample 

was transferred to an RNeasy mini spin column and centrifuged at 16,100 x g at room 

temperature for 15 seconds. Column flowthrough was discarded and 700 pi of RW1 was 

added to the column. After centrifugation for 15 seconds at 16,100 x g at room 

temperature, flowthrough was discarded and 500 pi RPE was added to the column. 

Following another such centrifugation, an additional 500 pi RPE was added. After a final 

centrifugation, the column was transferred to a fresh 2mL collection tube and 

centrifuged for 1 minute at 16,100 x g at room temperature. The column was placed in a 

fresh 1.5ml microcentrifuge tube and RNA was eluted with 30 pi nuclease-free water. 

The eluate was passed through the column a second time following a one minute 

incubation to increase yield.
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RNA yield and purity was assessed with the Nanodrop spectrophotometer using 

ND-1000 software. Extracted RNA quality was assessed with gel electrophoresis on 1% 

agarose gels containing 3 pi of 10 mg/ml ethidium bromide intercalating dye. 12 pi 

samples containing 1 pg of nucleic acid in IX  DNA dye were loaded into lanes alongside 

10 pi o f the 1 Kb Plus DNA Ladder size standard (Life Technologies). Gels were placed in 

an electrophoresis chamber, submerged in IX TAE, and run for 30 minutes at 170V. 

Bands were transilluminated in a FluorChem HD2 ultraviolet light cabinet (Alpha 

Innotech) and imaged using FluorChem software. Following quality assessment, 

extracted RNA was stored at -80°C.

Synthesis of cDNA

cDNA for use in polymerase chain reactions (PCR ) was synthesized using the 

BioRad iScript Advanced cDNA Synthesis kit following the manufacturer's instructions. 

One microgram of X. laevis total RNA from a single developmental stage was combined 

w ith 4 pi of 5X iScript reaction mix and 1 pi of iScript reverse transcriptase and brought 

to 20 pi w ith nuclease-free water. The reaction was then cycled in a thermocycler 

according to the kit manufacturer's protocol as follows: 5 minutes at 25°C; 60 minutes 

at 42°C; 5 minutes at 85°C; hold at 4°C. Synthesized cDNA was stored in single-use 1 pi 

aliquots at -80°C.
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Cloning of Candidate Genes

In order to clone genes of interest identified from the microarray experiment 

and other potentially relevant genes, primers for each candidate gene targeted 500- 

1420 bp regions of the known cDNA. Forward and reverse primers were designed with 

Primer3 using default settings with an optimal length o f 20 bp, Tm of 60°C and GC 

content of 50%. Whenever possible, primers were designed to span an exon-exon 

boundary to control for genomic DNA contamination. Annotated sequences for each 

gene were obtained from Xenbase.org. Primers were ordered as oligonucleotides from 

IDT and brought up in IX TE to a stock concentration of 1 mM to be stored at -80°C; 

primers to be used in PCR were brought to a working dilution of 10 pM with nuclease- 

free water.

PCR was performed using cDNA synthesized from the extracted RNA of X. laevis 

embryos at a single developmental stage as previously described. Reactions consisted of 

1 pi forward primer, 1 pi reverse primer, 1 pi cDNA and 22 pi Platinum PCR Supermix 

(Life Technologies). Reactions were incubated in a thermocycler using the 

manufacturer's suggested protocol, with an additional 1 minute during elongation at 

72°C per Kb of target product. PCR product size and quality were assessed using gel 

electrophoresis with a 1-1.5% agarose gel. PCR products were stored at 4°C for a 

maximum of 24 hours before use in vector ligation to avoid degradation.

Successfully amplified fragments were ligated into the pSC-A-amp/kan vector 

using the StrataClone PCR Cloning Kit. Briefly, 2 pi of a 1:10 dilution of PCR product was 

combined with lp l of StrataClone vector mix and 3pl StrataClone cloning buffer and
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incubated for 5 minutes at room temperature to allow ligation by topoisomerase I. 

Ligated vector was either stored at -20°C or used immediately for transformation into E. 

coli.

Ligated vector was then transformed into thawed StrataClone SoloPack 

competent cells using the manufacturer's protocol. Following at least a one hour 

recovery period in Luria broth (LB), transformed cells were plated on LB-ampicillin plates 

spread w ith 2% X-gal for color-screening. Plates were inverted and incubated at 37°C for 

at least 12 hours to allow colony growth. White transformed colonies were selected for 

overnight growth in liquid culture media.

Plasmid Isolation

Miniprep cultures were incubated in 4 ml of LB containing 50 pg/pl ampicillin for 

at least 12 hours at 37°C w ith agitation and 50% glycerol stocks were made by 

combining 500 pi sterile glycerol w ith 500 pi culture and stored at -20°C. Plasmids were 

recovered using the Promega Wizard Plus Miniprep kit following the manufacturer's 

instructions. Isolated plasmid was subjected to preliminary restriction endonuclease 

digests to confirm insert identity by cleaving the plasmid at two specific restriction sites 

flanking the clone insert (see Table 1). Restriction digest products were run on a 1% 

agarose gel to validate the presence of predicted fragment size. Clone identity was 

confirmed via Big Dye sequencing using M13 forward and reverse sequencing primers.

Liquid cultures were then grown as previously mentioned from  selected 

miniprep glycerol stocks for midiprep plasmid isolation. Turbid cultures were used to
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make 15% and 50% glycerol stocks which were stored at -80°C and -20°C, respectively. 

M idiprep plasmid DNA was isolated using either the Promega PureYield Plasmid 

Midiprep kit or the Macherey-Nagel NucleoBond Xtra Midi kit following manufacturers' 

instructions and assessed for quality and concentration as previously described. 

Diagnostic digestion w ith restriction endonucleases was used to confirm clone identity 

as described above.
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Gene Name Vector
Flanking Restiction 

Sites

Restriction
Endonuclease

for
Linearization

RNA 
Polymerase for 
Transcription

perp pSC-A-amp/kan EcoRI Hindi 1 T7

tp53 pSC-A-amp/kan EcoRI BamHI T3

bcl2 pSC-A-amp/kan Sacl Notl T3

box pSC-A-amp/kan EcoRI Xbal T3

caspase3 pSC-A-amp/kan Ncol Notl T3

caspase6 pSC-A-amp/kan Hpal, Clal Clal T7

caspase9 pSC-A-amp/kan Ncol Notl T3

caspose7 pSC-A-amp/kan EcoRI Xbal T3

aifm2 pCMV-SP0RT6.ccdb Notl, Kpnl Kpnl T7

endog pCMV-SP0RT6.ccdb EcoRI, Xhol EcoRI T7

nuc6-gal pCS2+ Notl, BamHI Notl SP6

gfp pCS2+MT EcoRI, Notl Notl SP6

Notchl ICD pCS2+MT EcoRI, Xbal Notl SP6

xSu(H) DBM pCS2+ BamHI, Xhol Notl SP6

Table 2. Constructs for capped RNA and RNA probe synthesis.
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Chapter 5: Results

5.1 Effects of Notch Perturbation on Cell Number

To probe for a possible role of apoptosis and cell cycle regulation in the 

compensatory response observed in preliminary xNBTin situ hybridization experiments, 

(McDonough, unpublished), we first investigated the effects of Notch perturbation on 

neural cell number. We hypothesized that Notch perturbation would result in 

imbalanced neural cell numbers between perturbed and unperturbed tissue that would 

equalize through varied levels of apoptosis and proliferation over time. As with the 

initial NBT experiments, we began by unilaterally injecting in vitro synthesized RNA 

constructs into embryos at the two-cell stage to overexpress key components of the 

Notch signaling pathway. We upregulated Notch signaling with the administration of 

sense transcripts for xNotchl ICD, which encodes the intracellular portion of the Notch 

receptor that undergoes nuclear im port to ultimately affect target gene transcription 

(Chitnis et al., 1995). To attenuate Notch signaling we introduced sense RNA transcripts 

encoding a DNA binding mutant (DBM) Suppressor o f Hairless, a key protein in the 

transcriptional activation complex formed with Notch ICD (Wettstein et al., 1997). The 

DBM protein complexes w ith ICD but does not bind DNA, acting to sequester the signal. 

Each transcript was co-injected w ith RNA for green fluorescent protein (GFP) or |3- 

galactosidase O-gal) to track injection sidedness. This unilateral injection method 

provided a convenient internal control for comparison at every stage of analysis.

Injected embryos were fixed at neural plate (15), tailbud (25), late tailbud (30), 

swimming tadpole (35), and late tadpole (40) stages and transversely sectioned along
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the anterior-posterior axis. Sections stained with DAPI were imaged and used to count 

the total number of cells w ithin the neural tissue of experimental and control sides of 

each embryo. Cell totals fo r each side were normalized by the number of sections for 

that embryo to control for differences in embryo size and slight developmental variance.

Vehicle-injected control embryos, administered RNA encoding a tracer protein 

only, displayed no significant difference in neural cell number at any stage (Table 3). 

Embryos injected with the xSu(H) DBM construct also showed no significant difference 

in neural cell number at any stage (Fig. 5). Embryos injected w ith xNotch ICD, however, 

had significantly more neural cells on the injected side compared to the internal control 

from  neural plate stage 15 through swimming tailbud stage 35 stages (Table 4, Fig. 4).
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Figure 3. Neural Cell Counts for GFP-injected embryos.
Embryos were unilaterally injected at the two-cell stage with 0.5 ng of either GFP 
or (3-galactosidase RNA as an injection control. Embryos were fixed at the stages 

on the x-axis and transverse 18 pm sections were taken along the anterior- 

posterior axis. Tissue was stained with DAPI and individual cells were counted in 

the injected and control halves of the neural tissue. Bars represent the average 

tota l number of neural cells in each side normalized to the number of sections 

for the corresponding embryo. Error bars represent one standard deviation.

Table 3. Neural Cell Counts for GFP-injected embryos.

Stage
Total cell average- 

injected Side
standard
deviation

Total cell average- 
Uninjected Side

standard
deviation

p value (n=10)
i....... .... ....................................................j

1st. 15 56.8 25.6 53.6 29.2 0.540... ________ |
:St. 25 51.7 7.75 51.6 8.01 0.987

St. 30 71.2 15.4 74.8 14.8 0.092

St. 35 42.0 13.6 43.7 12.7 0.206
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xNotchl ICD Total Cells Per Section
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Figure 4. Neural Cell Counts for ICD-injected embryos.
Embryos were unilaterally injected at the two-cell stage with 1.5 ng 
xN otch l ICD RNA and 0.5 ng of either GFP or |3-galactosidase RNA as an 

injection tracer. Embryos were fixed at the stages on the x-axis and 

transverse 18 jum sections were taken along the anterior-posterior axis. 

Tissue was stained with DAPI and individual cells were counted in the 

injected and control halves of the neural tissue. Bars represent the average 

tota l number of neural cells in each side normalized to the number of 

sections for the corresponding embryo. Error bars represent one standard 

deviation. Asterisk indicates statistical significance (p<0.05).

Table 4. Neural Cell Counts for ICD-injected embryos.

1
Stage

Total cell average- 
injected Side

r  m innirr n|
standard
deviation

Total cell average- 
Uninjected Side

standard
deviation

p value (n=10)i

St. 15 85.9 24.1 60.9 16.3 0.000

St. 25 ............. 64,2.............. 33.3 43.6 13.8 0.011

St. 30 109.0 32.2 83.3 22.1 0.001

St. 35 57.6 24.1 48.4 16.9 0.021

St. 40 83.1 26.3 71.9 21.5 0.068
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xSu(H) DBM Total Cells
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Figure 5. Neural Cell Counts for DBM-injected embryos.
Embryos were unilaterally injected at the two-cell stage with 1.5 ng xSu(H) DBM 

RNA and 0.5 ng of either GFP or (3-galactosidase RNA as an injection tracer. 

Embryos were fixed at the stages on the x-axis and transverse 18 )Lim sections 

were taken along the anterior-posterior axis. Tissue was stained with DAPI and 

individual cells were counted in the injected and control halves of the neural 

tissue. Bars represent the average total number of neural cells in each side 

normalized to the number of sections fo r the corresponding embryo. Error bars 

represent one standard deviation.

Table 5. Neural Cell Counts for DBM-injected embryos.

Stage
Total cell average- 

injected Side
standard
deviation

Total cell average- standard 
Uninjected Side deviation

p value (n=10)

St. 15? 50.8 24.3 59.9 23.1 0.182

St. 25 50.6 12.1 48.9 10.6 0.264

St. 3 0 1 79.3 24.8 77.1 20.3 0.476

St. 35_[ 48.2 7.24 50.9 8.36 0.132

St. 40 83.5 20.4 88.9 21.3 0.078
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5.2 Effects of Notch Perturbation on Cell Proliferation

In order to assess the involvement of cell cycle regulation in the compensatory 

response, we first examined whether the proportion of proliferating cells differed 

between injected and control sides of Notch-perturbed embryos. Embryos were 

unilaterally injected as before w ith either xNotchl ICD or xSu(H) DBM and an injection 

tracer at the two-cell stage. Vehicle-injected controls were administered tracer RNA 

only to control for the effects of injection. Embryos fixed at neural plate, tailbud, late 

tailbud, swimming tadpole, and late tadpole stages were assayed for expression of 

proliferating cell nuclear antigen (PCNA), a DNA clamp required in DNA replication, 

through whole mount in situ hybridization (Wulliman et al., 2005). Embryos transversely 

sectioned along the anterior-posterior axis were stained with DAPI and PCNA-positive 

cells w ithin the neural tissue on each side were counted. Total positive cells for each 

side were normalized by the total number of neural cells for that side of the embryo to 

control for tissue size.

Vehicle-injected control embryos exhibited no significant difference in PCNA 

expression between experimental and control sides at any stage investigated (Fig. 8). 

Embryos injected w ith xSu(H) DBM RNA showed significantly more cells expressing 

PCNA on the uninjected control side at neural plate stage 15 (p=0.006, n=5), stage 30 

late tailbud (p=0.014, n=5), and stage 35 swimming tadpole (p=0.038, n=5) (Fig. 10,

Table 8). Embryos injected with xN otchl ICD exhibited a higher proportion of cells with 

PCNA expression on the uninjected control side at late tailbud stage 30 (p=0.009, n=5)
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(Fig. 9, Table 7). Representative histological images o f DBM and ICD embryos at each 

developmental stage assayed are shown in Figures 6 and 7.
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GFP PCNA Expression

a>

Injected Side 

m Uninjected Side

Figure 8. PCNA Cell Counts for GFP-injected embryos.
Embryos were unilaterally injected at the two-cell stage with 0.5 ng of either GFP or [3- 

galactosidase RNA as an injection control. Embryos were assayed for expression of 
proliferating cell nuclear antigen (PCNA) by in situ hybridization and fixed at the stages 

on the x-axis. Transverse 18 pm sections were taken along the anterior-posterior axis. 

Tissue was stained with DAPI and PCNA-positive cells were counted in the injected and 

control halves of the neural tissue. Bars represent the total number of positive cells in 

each side normalized to the total number of neural cells for that side of the embryo. 

Error bars represent one standard deviation.

Table 6. PCNA Cell Counts for Vehicle-Injected Controls
f-" i—  --------------------1— --------1 -----------------

Stage
PCNA positive cell 
average- Injected 

Side

standard
deviation

PCNA positive cell 
average- 

Uninjected Side

standard
deviation

p value (n=5) ;

St. 15 0.583 0.084 0.585 0.0583 0.967

St. 25 0.523 0.086 0.547 0.092 0.409

St. 30 0.589................. 0.036 0.611 0.067 0.207

St. 35 0.429 0.093 0.425 0.082 0.713
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Figure 9. PCNA Cell Counts for ICD-injected embryos.
Embryos were unilaterally injected at the two-cell stage with 1.5 ng xN otch l ICD 
RNA and 0.5 ng of either GFP or (3-galactosidase RNA as an injection tracer. Embryos 
were assayed for expression of proliferating cell nuclear antigen (PCNA) by in situ 
hybridization and fixed at the stages on the x-axis. Transverse 18 pm sections were 
taken along the anterior-posterior axis. Tissue was stained with DAPI and PCNA- 
positive cells were counted in the injected and control halves of the neural tissue. 
Bars represent the total number of positive cells in each side normalized to the total 
number of neural cells for that side of the embryo. Error bars represent one 
standard deviation. Asterisk indicates statistical significance (p<0.05).

Table 7. PCNA Cell Counts for ICD-injected embryos.

Stage
PCNA positive cell 
average- Injected 

Side

standard
deviation

PCNA positive cell 
average- Uninjected 

Side

standard
deviation

...................""l

p value (n=5)
1

St. 15 0.669 0.091 0.678 0.101 0.652

St. 25 0.707 0.073 0.663 0.099 0.300

St. 30 0.290 0.153 0.389 0.136 0.009

St. 35 0.468 0.114 0.461 0.108 0.486

St. 40 0.205 0.077 0.238 0.075 0.115

Injected Side 

l  Uninjected Side
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xSu(H) DBM PCNA Expression

Injected Side 

■ Uninjected Side

Figure 10. PCNA Cell Counts for DBM-injected embryos.
Embryos were unilaterally injected at the two-cell stage with 1.5 ng xSu(H) DBM RNA 

and 0.5 ng of either GFP or |3-galactosidase RNA as an injection tracer. Embryos were 

assayed for expression of proliferating cell nuclear antigen (PCNA) by in situ 

hybridization and fixed at the stages on the x-axis. Transverse 18 pm sections were 

taken along the anterior-posterior axis. Tissue was stained with DAPI and PCNA- 

positive cells were counted in the injected and control halves of the neural tissue. Bars 

represent the total number of positive cells in each side normalized to the total 

number of neural cells for that side of the embryo. Error bars represent one standard 

deviation. Asterisk indicates statistical significance (p<0.05).

Table 8. PCNA Cell Counts for DBM-injected embryos.

PCNA positive cell 
Stage average- Injected 

Side

standard
deviation

............................ .
PCNA positive cell

standard 
average- . . . 

. . .  , , deviation 
Uninjected Side

|

p value (n=5)

St. 151 0.580 0.121 0.675 I 0.097 0.006

St. 25 0.476 0.233 0.572 0.187 0.309

St. 30 0.161 0.074 0.303 ] 0.087 0.014

St. 35 0.399 0.146 0.454 0.129 0.038

St. 40 j 0.149 0.057 0.164 | 0.044 0.090
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5.3 Effects of Notch Perturbation on Apoptosis

To investigate the possible role of apoptosis in the recovery from Notch 

perturbation, we compared the degree of apoptosis between control and perturbed 

sides of construct-injected embryos. The TUNEL assay allowed for the labeling of cells 

with nicked DNA, a characteristic sign of apoptosis. Embryos unilaterally injected w ith 

either xNotchl ICD or xSu(H) DBM and an injection tracer were fixed at the desired 

stages and subjected to terminal deoxynucleotidyl transferase dUTP nicked end labeling 

(TUNEL) which stained positive cells dark blue. Transverse 18 |am sections taken along 

the anterior-posterior axis of each injected embryo were imaged and used to count 

individual labeled cells in the neural tissue of each side. TUNEL-positive totals were 

normalized to the total number of neural cells in that side to account for differences in 

cell population.

While there was a clear increase in apoptosis with developmental age, vehicle- 

injected control embryos exhibited no significant difference in the amount o f apoptosis 

between perturbed and control sides (Fig. 11). However, embryos injected with 

xNotchl ICD RNA displayed significantly higher levels of apoptosis on the injected side 

when compared to the internal control at late tailbud stage 35 (p=0.023) (Fig.12, Table 

11). Representative images for ICD embryos labeled with TUNEL are shown in Figure 10. 

Embryos injected with xSu(H) DBM RNA did not demonstrate a significant difference in 

apoptosis between control and injected sides at any stage examined (Table 12); 

however, DBM embryos exhibited a downward trend in apoptosis rates as development
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progresses (Fig. 13). Representative images o f D8/W-injected embryos labeled with 

TUNEL are shown at each stage in Figure 9.
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GFP TUNEL Cell Counts
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Figure 13. TUNEL Cell Counts for GFP-injected embryos.
Embryos were unilaterally injected at the two-cell stage with 0.5 ng of either GFP 

or (3-galactosidase RNA as an injection control. Embryos were assayed for 

apoptotic cells using TUNEL and fixed at the stages on the x-axis. Transverse 18 

pm sections were taken along the anterior-posterior axis. Tissue was stained 

w ith DAPI and TUNEL-positive cells were counted in the injected and control 

halves of the neural tissue. Bars represent the total number of positive cells in 

each side normalized to the tota l number of neural cells for that side of the 

embryo. Error bars represent one standard deviation.

Table 9. TUNEL Cell Counts for GFP-injected embryos.

Stage
TUNEL positive cell 
average- Injected 

Side

' : 
standard 
deviation

TUNEL positive cell 
average-injected 

Side

standard
deviation

i
p value (n=5)
i ;i....................... i

St. 15 6.5E-05 0.000 0.000 0.000 0.622

|st. 25 0.013 0.008 0.011 0.009 0.693...... -...........
St. 30: 0.010 0.007 0.013 0.008 0.375

1st. 35 0.049 0.040 0.046 0.044 0.416
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Figure 14. TUNEL Cell Counts for ICD-injected embryos.
Embryos were unilaterally injected at the two-cell stage with 1.5 ng xN otch l ICD RNA 
and 0.5 ng of either GFP or (3-galactosidase RNA as an injection tracer. Embryos were 
assayed for apoptotic cells using TUNEL and fixed at the stages on the x-axis. 
Transverse 18 pm sections were taken along the anterior-posterior axis. Tissue was 
stained with DAPI and TUNEL-positive cells were counted in the injected and control 
halves of the neural tissue. Bars represent the total number of positive cells in each 
side normalized to the total number of neural cells for that side of the embryo. Error 
bars represent one standard deviation. Asterisk indicates statistical significance 
(p<0.05).

&------------------------------------  Injected Side

m Uninjected Side

St. 15 St. 25 St. 30 St. 35 St. 40

Table 10. TUNEL Cell Counts for ICD-injected embryos.

Stage
TUNEL positive cell 
average- Injected 

Side

standard
deviation

TUNEL positive cell 
average-injected 

Side

standard
deviation

p value (n=5)

St. 15 0.005 0.008 0.000 0.000 0.253

St. 25 0.016 0.022 0.005 0.003 0.231

St. 30 0.031 0.036 0.029 0.041 0.796

St. 35 0.032 0.013 0.018 0.008 0.023

St. 40 0.031 0.016 0.023 0.017 0.236
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Injected Side 
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St. 15 St. 25 St. 30 St. 35 St. 40 

Figure 15. TUNEL Cell Counts for DBM-injected embryos.
Embryos were unilaterally injected at the two-cell stage with 1.5 ng xSu(H) DBM RNA 
and 0.5 ng of either GFP or (3-galactosidase RNA as an injection tracer. Embryos were 
assayed for apoptotic cells using TUNEL and fixed at the stages on the x-axis. Transverse 
18 pm sections were taken along the anterior-posterior axis. Tissue was stained with 
DAPI and TUNEL-positive cells were counted in the injected and control halves of the 
neural tissue. Bars represent the total number of positive cells in each side normalized 
to the total number of neural cells for that side of the embryo. Error bars represent one 
standard deviation.

Table 11. TUNEL Cell Counts for DBM-injected embryos.
TUNEL positive cell 

Stage average- Injected 
Side

standard
deviation

TUNEL positive cell ::
average-injected

Side

standard
deviation

p value (n=5)

St. 15 j 0.001 0.001 0.002 0.005 0.666
St. 25 0.025 0.019 0.031 0.026 0.186

St. 30! 0.027 0.009 0.027 0.012 0.948

St. 35 0.017........ 1.................................. 0.010 0.022 0.015 0.129

St. 40! 0.011 0.005 0.011 0.005 0.904
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5.4 Expression Profiles of Apoptosis Candidate Genes

To explore the mechanisms of apoptosis regulation involved in the 

compensation process, genes from several apoptosis pathways, both intrinsic and 

extrinsic, were chosen for study. Candidate gene expression in normal development was 

first profiled using whole mount in situ hybridization at developmental stages from 

neural plate (stage 15) through swimming tadpole (stage 35). Whole mount expression 

was analyzed and results are summarized in Table 12. Embryos assayed for candidate 

genes that exhibited localized expression were also transversely sectioned along the 

anterior-posterior axis for histological analysis of expression. Representative histological 

images are shown in Figures 16 -17.
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5.5 Expression of Candidate Genes Following Notch Perturbation

In order to evaluate the involvement of selected apoptosis pathways in the 

compensatory response, candidate gene spatiotemporal expression was evaluated at a 

range of developmental stages in unilaterally perturbed embryos. Embryos were 

unilaterally injected as previously mentioned and fixed at neural plate (stage 15), tailbud 

(stage 25), and swimming tadpole (stage 35) stages. Fixed embryos were probed for 

candidate gene expression using whole mount in situ hybridization. Transverse 

histological sections were taken and used to evaluate differential candidate gene 

expression in the central nervous system over the compensatory time course.

Of the candidate genes analyzed, only caspase9 and perp exhibited neural 

expression in injected embryos. Notably, caspase9 appears to be downregulated in the 

injected neural tissue of xN otchl ICD-injected embryos (Fig. 20, a-d; Table 13) and of 

xSu(H) DBM-injected embryos (Fig. 20, e-h) at swimming tadpole stage (stage 35). The 

p53-dependent apoptosis effector Perp displayed mild expression in the notochord and 

floor plate of hindbrain and anterior spinal cord at tailbud (stage 25) and swimming 

tadpole (stage 35) stages, though differential expression was indistinguishable.
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Injection

Construct

Differential Expression Pattern

xNotchl ICD Downregulated on injected side (n=3 of 5 embryos)

xSu(H) DBM Downregulated on injected side (n=2 of 3 embryos)

Injection Control Equal expression on both sides (n=2 of 2 embryos)

Table 14. Differential expression of caspase9 in Notch-perturbed embryos (ISH 
n=2 for each injection condition)
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Chapter 6: Discussion

The purpose of this study was to investigate the role of cellular proliferation and 

apoptosis in the compensatory response from early Notch signaling perturbation in 

neural development. We found that early unilateral Notch signaling upregulation results 

in increased cell number w ithin perturbed neural tissue relative to internal controls that, 

rather than amplifying over time, equalizes over the course of primary neurogenesis.

Cell death and proliferation appear to play key roles in this normalization, as the rates of 

both processes differ between sides at key points in the response process. These results 

implicate the regulation of cell death and division as major strategies for developmental 

plasticity in the nervous system.

6.1 Cell Counting Experiments

The first step in investigating apoptosis and the cell cycle as mechanisms of 

compensatory regulation was to examine whether the response process involved 

changes in cell number. Embryos with upregulated Notch signaling displayed a 

consistently significant increase in the average number o f neural cells (normalized to the 

number of histological sections) from neural plate (stage 15) through swimming tadpole 

(stage 35) stages compared to the internal control. Cell numbers in the injected tissue of 

ICD-injected embryos were also significantly increased when compared to the injected 

tissue of injection control embryos at stages 15 and 30. These results are consistent with 

our prediction that ICD overexpression would increase neural cell number through the 

expansion of a proliferative progenitor population. It has been established that Notch
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pathway activation results in the inhibition of neuronal differentiation genes and the 

maintenance of the proliferative progenitor state (Kageyama et al., 2009). It can be 

expected that embryos w ith increased Notch signaling will maintain a larger pool of self- 

renewing progenitor cells (Aujla et al., 2013) and thus exhibit increased cell numbers 

w ith in the neural tube, resulting in more cells per section.

Embryos with attenuated Notch signaling display no significant difference in 

neural cells per section between control and injected sides at any stage. Although 

increased neuronal differentiation is expected with reduced Notch signaling, this may 

not necessarily result in an increase in gross cell number w ithin the boundaries of neural 

tissue. The study by Chitnis et al. (1995) induced a neurogenic phenotype similar to 

those observed in xSuh(H) DBM embryos with a truncated form of xD elta l which was 

repeatable in the presence of cell cycle inhibitors hydroxyurea and aphidicolin (HUA). 

This emphasizes that an increase in commitment to the neuronal fate is not dependent 

on or accompanied by a concomitant increase in cell division. Moreover, a study in 

mammalian neurogenesis showed that Notch signaling inhibition in the hypothalamus of 

transgenic mice results in a reduced progenitor cell population along w ith the expected 

increase in neuronal number. In this investigation, conditional knockout of the 

mammalian Su(H) homolog, Rbpjx, in the proliferative region giving rise to the 

hypothalamus arcuate nucleus resulted in fewer progenitors marked by Sox2 expression 

compared to control embryos (Aujla et al., 2013). We therefore propose that, while 

there is no change in total cells per section between injected and control sides, there is
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a reduced proportion of progenitors in DB/W-injected tissue as a result of increased rates 

of progenitor differentiation into neurons.

Though our results seem contrary to reports of neural tissue expansion upon 

inhibition of Notch signaling in Drosophila and mice (Lieber et al., 1993; Aujla et al.,

2013) these studies have not counted neural cell number and may reflect other 

changing qualities of perturbed neural tissue. During our cell number quantification we 

noted loose, disorganized brain tissue in DBM embryos (See Appendix Fig. 1). A study by 

Hatakeyama et al. (2004) showed that loss of the Notch target genes Hesl and Hes5 in 

mice resulted in severely disorganized neural tissue E10.5 similar to our observations. In 

these mice, scanning electron micrographs showed that radial glia endfeet normally 

form  the smooth boundary of the neural tube inner wall. The loss of radial glia in Hesl,5 

double mutants resulted in boundary disruption and cell spillage into the neural tube 

lumen. It may be possible that the effects of Notch signaling inhibition adversely affects 

cellular compaction, thus generating the hypertrophic phenotype observed by others 

w ithout actually increasing cell number.

Furthermore, uninjected neural tissue in ICD and DBM embryos did not 

significantly differ in cell number from the control tissue of injection controls at any 

stage. This indicates that initial unilateral Notch perturbation does not affect tissue 

across the midline and that the control tissue does not regulate cell number as part of 

the response process.

Our next objective was to determine the involvement of apoptosis and cell 

division in the responsive change in neural cell population size. Following a consistent
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overabundance of cells, ICD embryos show a significant decrease in proliferation at 

stage 30 followed by an increase in apoptosis at stage 35 in the injected side when 

compared to the internal control. This is consistent with our hypothesis that both a 

decreased rate of progenitor proliferation and an increase in progenitor death could be 

plausible mechanisms for reducing an overabundance of neural progenitors induced by 

Notch upregulation. Indeed, the subsequent equilibration of total cells per section 

between sides at stage 40 suggests that increased rates of apoptosis and decreased 

rates o f proliferation in the preceding stages were effective in restoring population 

balance to an extent.

The outcomes of the apoptosis and proliferation studies in DBM embryos do not 

support our initial predictions of neuronal apoptosis and progenitor division; 

nonetheless, they provide insight into the embryonic mechanisms of response to 

disrupted population balance. Decreased levels of proliferation in DBM-injected 

embryos possibly reflect a lack of proliferative progenitor cells, an established 

consequence of increased differentiation induced by suppressed lateral inhibition (Aujla 

et a., 2013). The absence of compelling data in support of neuronal death in neurogenic 

DBM embryos suggests that altered rates of post-primary neuronal differentiation may 

be a mechanism behind thexN B Texpression normalization seen in McDonough's 

preliminary findings.

Previous research has described a second wave of neuronal differentiation 

occurring after a quiescent phase that follows primary neurogenesis. Although there is 

no clear consensus on the tim ing of secondary neurogenesis in the literature, it is
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loosely described as occurring during larval stages (Schlosser et al., 2002). Although the 

role of Notch signaling as a fate switch in this system is not well defined, a similar 

mechanism of lateral fate inhibition is presumed to govern later differentiation patterns, 

especially considering the persistent expression of Notch pathway elements observed 

during secondary neurogenesis (Wulliman et al., 2005). We propose that altered rates of 

neuronal differentiation in a second wave of neurogenesis may compensate for the 

overabundance of neurons induced by Notch signaling attenuation. If Notch signaling 

promotes lateral fate inhibition in later waves of neurogenesis as in the primary system, 

newly differentiated neurons may be intrinsically limited in their maximum cell density. 

Considering the effects of differentiation tim ing on neuronal phenotype it may be 

especially interesting to investigate the effects of compensation on the proportion of 

later-born neuronal subtypes (Guillemot, 2007).

6.2 Candidate Gene Expression Study

While the results of the TUNEL assays clearly suggest a role o f apoptosis in 

m itigating the effects of early Notch perturbation, the candidate gene expression 

patterns are not consistent with this analysis. Decreased expression exhibited by 

caspase9 in the injected sides of both ICD and DBM embryos does not support intrinsic 

cell death as a mechanism of the increased apoptosis seen in ICD embryos at stage 35. 

This effector caspase is continuously expressed and present as a zymogen in healthy 

cells and is activated through proteolytic cleavage in response to intrinsic apoptosis 

activation pathways (Twiddy & Cain, 2007). Furthermore, caspase9 is a target of
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transcriptional regulation of intrinsic apoptosis (Tsujimoto et al., 2005) and 

transcriptional upregulation has been shown to precede the initiation of cell death 

(Huang, 2005). Our expression results do not show evidence for the responsive 

initiation of intrinsic apoptosis in Notch-perturbed tissue; however, some intrinsic 

pathway repression is indicated. This may be a protective mechanism to prevent the 

death of neurons in the face of perturbation. A higher sample size is needed to confirm 

this phenotype. It may also be informative to investigate the expression of caspase8, an 

in itiator caspase of extrinsic cell death pathways, in Notch-perturbed embryos.

Though transcription of certain core components such as cospase9 is shown to 

be upregulated prior to apoptosis, many of the proteins involved in apoptotic cascades 

are regulated significantly by post-translational modifications and protein-protein 

interactions. While many of the apoptotic effector candidate genes did not show 

evidence of differential regulation in response to Notch perturbation, this could indicate 

either a post-transcriptional regulation or a lack of apoptotic activation pathway 

involvement (See Table 13). Finer variances in transcriptional activation may also be 

beyond the sensitivity of analysis by in situ hybridization; an ongoing RNAseq study may 

prove to be more revealing in this aspect.
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6.3 Future Directions

The results of the proliferation and apoptosis studies in ICD-injected embryos 

suggest that neural progenitors are the target population for compensatory regulation. 

While our analysis implicates progenitor cell death as a compensatory mechanism in 

Notch-upregulated embryos, an im portant future direction is to confirm the identity of 

the cells undergoing apoptosis. A cell counting experiment similar to those performed in 

this study could be utilized to determine the predominant population undergoing 

significantly differential cell death. Embryos assayed by in situ hybridization for xNBT or 

Sox2 to mark neurons and neural progenitors, respectively, w ill be subjected to TUNEL, 

allowing for the determination of apoptotic cell identity.

Our results also indicate that progenitor proliferation rates are decreased in 

Notch-upregulated embryos. Given the established correlation between progenitor 

subtype and position along anterior-posterior and dorsal-ventral axes (reviewed by 

Guillemot, 2007) it would be interesting to identify the specific progenitor 

subpopulations under regulation. This could be done though analysis of PCNA-positive 

cells in embryos assayed for expression of brain regional markers including Otx-2 

(forebrain), En-2 (midbrain), Krox-20 (hindbrain), and XIHbox-6 (spinal cord).

In line with this hypothesis, regional evaluation of existing cell count data may 

reveal regions of the CNS that are differentially involved in the plastic response. During 

the course of our cell count studies we noted differences in PCNA and TUNEL signal 

abundance in varying regions of the brain along the anterior-posterior axis. As we 

subdivide the counts for each embryo into macroscopic neural regions (forebrain,
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midbrain, hindbrain, and spinal cord) we may be able to discern regional differences in 

responsive regulation.

A possible step to further evaluate the relationship between early Notch 

misregulation and the effects on gross neural tissue size is to investigate changing 

proportions o f progenitor, glial, and neuronal cells. Obtaining cell counts for neuronal, 

glial, and progenitor populations over tim e will reveal the dynamic response of each 

population and provide insight into the targets of compensation as well as supplement 

the earlier findings of Notch perturbation in Xenopus neurodevelopment. Although it 

has been demonstrated that Notch attentuation increases neuron cell number and 

density, the corresponding effects on the progenitor population have not been 

quantified in Xenopus. Additionally, while it is known that gliogenesis normally follows 

neurogenesis in the Xenopus retina, the onset of glial production in the CNS is not well 

defined and may explain the disorganization of neural tissue in later stage DBM embryos 

(Mochizuki et al., 2009; Hatakeyama et al., 2004). Analysis of cell type population 

dynamics may be achieved using the same experimental design as previously described 

to concurrently compare cell counts in histological sections of embryos assayed for 

xNBT, Sox2, and the glial marker vimentin (Kiyota et al., 2007).

Additionally, we may pursue the alternative hypothesis that the response from 

Notch perturbation involves changing rates of progenitor differentiation in addition to 

influencing cell death and birth rates. Double in situ hybridization assays probing for 

expression o f xNBT and Sox2 will reveal cells in the process o f differentiation. Altered 

rates of differentiation in later stages of neurogenesis may account for the recovery
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from neuronal deficit and overabundance seen in preliminary studies (Mcdonough, 

unpublished). We predict that if differentiation is employed as a mechanism of 

plasticity, we will observe higher levels of xNBT and Sox2 coexpression over time in ICD 

injected tissue compared to vehicle-injected controls. Conversely, we predict that DBM- 

injected embryos will display lower levels o f coexpression at later stages in the injected 

tissue compared to controls.

Finally, analysis o f cell cycle regulatory gene expression may help elucidate the 

molecular targets of proliferation regulation in the response from early Notch 

perturbation. Following a similar candidate gene approach, the involvement of cell 

cycle genes implicated in RNAseq results will be confirmed through in situ hybridization. 

Considering that many apoptosis and cell cycle factors are post-translationally regulated 

(Mcllwain et al., 2013; Kruse & Gu, 2009; van Delft et al., 2006; Lamb & Hardwick, 2013; 

Sevrioukova, 2011; Ola et al, 2011; Reidl & Shi, 2004), immunohistochemical analysis of 

relative activated protein levels fo r both cell cycle and apoptosis candidates in 

unilaterally perturbed embryos w ill be an important step in understanding the pathways 

involved in compensation. Functional studies will also help to establish the role of each 

candidate gene in the response process. Analysis of the degree and duration of 

compensation following temporally controlled knockdown or overexpression of 

candidates after the start of neurogenesis in unilaterally Notch-perturbed embryos will 

indicate the degree of involvement of each factor. From these results we may elaborate 

on involved mechanisms by investigating related pathway components for functionally 

implicated candidates.
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Supplem ental Figure 1. Injected tissue m orphology o f DBM and ICD 
in jected embryos.(a-c) H istological 18 um sections o f stage 40 embryos 
un ila te ra lly  in jected w ith  DBM  RNA and (B-gal RNA as tracer at the tw o-ce ll 
stage. Note d isorganized/loose cells in the le ft h a lf o f the neural tube, (d-f) 
H istological 18 um sections o f stage 40 embryos un ila te ra lly  in jected w ith  
ICD RNA and B-gal RNA as tracer at the tw o-ce ll stage. Note expanded tissue 
in  the le ft ha lf o f the neural tube. Sections stained w ith  DAPI (b lue] to 
visualize ind iv idua l cells. Sections oriented dorsal to the top. A ll embryos 
in jected on the le ft side.
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Stage ICD Cells per Section GFP Cells per Section p value
st 15 60.9 53.5 0.498
st 25 43.6 51.6 0.133
st 30 83.3 74.8 0.329
st 35 48.4 43.7 0.491
Supplem ental Table 1. Uninjected tissue comparison o f Neural cells per section in 
ICD and vehicle-in jected embryos.

Stage DBM Cells per Section GFP Cells per Section p value
st 15 59.9 53.5 0.598
st 25 48.9 51.6 0.532
st 30 77.1 74.8 0.775
st 35 50.9 43.7 0.152
Supplem ental Table 2. Uninjected tissue comparison o f Neural cells per section in 
DBM and vehicle-in jected embryos.

Stage ICD Proportion PCNA Cells GFP Proportion PCNA 
Cells

p value

st 15 0.677 0.584 0.122
st 25 0.662 0.546 0.093
st 30 0.389 0.611 0.017
st 35 0.461 0.425 0.568
Supplem ental Table 3. Uninjected tissue comparison o f Neural PCNA-positive cell 
p ropo rtion  in ICD and vehicle-in jected embryos.

Stage DBM Proportion PCNA Cells GFP Proportion PCNA 
Cells

p value

st 15 0.675 0.584 0.120
st 25 0.571 0.546 0.796
st 30 0.302 0.611 0.0
st 35 0.453 0.425 0.689
Supplem ental Table 4. Uninjected tissue comparison o f Neural PCNA-positive cell 
p ropo rtion  in DBM and vehicle-in jected embryos.

Stage ICD Proportion TUNEL Cells GFP Proportion TUNEL 
Cells

p value

st 15 0.0 0.0 0.477
st 25 0.004 0.011 0.241
st 30 0.029 0.013 0.442
st 35 0.018 0.046 0.233
Supplem ental Table 5. Uninjected tissue comparison o f Neural TUNEL-positive cell 
p ropo rtion  in ICD and vehicle-in jected embryos.
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Stage DBM Proportion TUNEL Cells GFP Proportion 
TUNEL Cells

p value

st 15 0.002 0.0 0.377
st 25 0.031 0.011 0.164
st 30 0.027 0.013 0.066
st 35 0.022 0.046 0.309
Supplem ental Table 6. Uninjected tissue comparison o f Neural TUNEL-positive cell 
p ropo rtion  in  DBM and vehicle-in jected embryos.

Stage ICD Cells per Section GFP Cells per Section p value
st 15 85.9 56.8 0.017
st 25 64.2 51.6 0.274
st 30 109.0 71.2 0.005
st 35 57.6 42.0 0.094
Supplem ental Table 7. Injected tissue comparison o f Neural cells per section in 
ICD and vehicle-in jected embryos.

Stage GFP Cells per Section GFP Cells per Section p value
st 15 50.8 56.8 0.597
st 25 50.6 51.6 0.817
st 30 79.3 71.2 0.392
st 35 48.1 42.0 0.229
Supplem ental Table 8. Injected tissue comparison o f Neural ce Is per section in
DBM and vehicle-in jected embryos.

Stage ICD Proportion PCNA Cells GFP Proportion PCNA 
Cells

p value

st 15 0.669 0.582 0.159
st 25 0.706 0.522 0.006
st 30 0.290 0.588 0.0104
st 35 0.467 0.429 0.579
Supplem ental Table 9. Injected tissue com parison o f Neural PCNA-positive cell 
p ropo rtion  in ICD and vehicle-in jected embryos.

Stage DBM Proportion PCNA 
Cells

GFP Proportion PCNA 
Cells

p value

st 15 0.580 0.582 0.229
st 25 0.475 0.522 0.689
st 30 0.160 0.588 3.08E-05
st 35 0.398 0.429 0.704

Supplem ental Table 10. Injected tissue comparison o f Neural PCNA-positive cell 
p ropo rtion  in DBM and vehicle-injected embryos.
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Stage ICD Proportion TUNEL Cells GFP Proportion TUNEL 
Cells

p value

st 15 0.0049 6.49E-05 0.245
st 25 0.0163 0.0127 0.740
st 30 0.0305 0.0102 0.274
st 35 0.0320 0.0487 0.418
Supplem ental Table 11. Injected tissue comparison o f Neural TUNEL-positive cell 
p ropo rtion  in ICD and vehicle-in jected embryos.

Stage DBM Proportion TUNEL Cells GFP Proportion TUNEL 
Cells

p value

st 15 0.0013 6.49E-05 0.043
st 25 0.0249 0.0127 0.255
st 30 0.0268 0.0102 0.011
st 35 0.0170 0.0487 0.155
Supplem ental Table 12. Injected tissue comparison o f Neural TUNEL-positive cell 
p ropo rtion  in DBM and vehicle-in jected embryos.

Neural Cells per 
Section

p value Tukey HSD Test

ICD Injected 0.0018 25 vs 30 P<.01; 30 vs 35 P<.01
ICD Uninjected <.0001 25 vs 30 P<.01; 25 vs 40 P<.05; 30 vs 35 P<.01; 35 vs 

40 P<.05
DBM Injected <.0001 15 vs 30 P<.05; 15 vs 40 P<.01; 25 vs 30 P<.05; 25 vs 

40 P<.01; 30 vs 35 P<.01; 35 vs 40 P<.01
DBM Uninjected <.0001 15 vs 40 P<.01; 25 vs 30 P<.01; 25 vs 40 P<.01; 30 vs 

35 P<.05; 35 vs 40 P<.01
GFP Injected 0.0043 30 vs 35 P<.01
GFP Uninjected 0.0035 St 25 vs St 35 p<0.05; St 30 vs St 35 p<0.01
Supplem ental Table 13. Comparison o f average neural cells per section across all 
stages

Proportion of 
PCNA (+lCells

p value Tukey HSD Test

ICD Injected <.0001 15 vs 30 P<.01; 15 vs 35 p<.05; 15 vs 40 p<.01; 25 vs 30 
p<.01; 25 vs 35 p<.05; 25 vs 40 p<.01; 35 vs 40 p<.01

ICD Uninjected <.0001 15 vs 30 P<.01; 15 vs 35 p<.05; 15 vs 40 p<.01; 25 vs 30 
p<.01; 25 vs 35 p<.05; 25 vs 40 p<.01; 35 vs 40 p<.05

DBM Injected 0.0002 15 vs 30 P<.01; 15 vs 40 P<.01; 25 vs 30 P<.05; 25 vs 40 
P<.05

DBM Uninjected <.0001 15 vs 30 P<.01; 15 vs 40 P<.01; 25 vs 30 P<.05; 25 vs 40 
P<.01; 35 vs 40 P<.01

GFP Injected 0.0188 15 vs 35 P<.05; 30 vs 35 P<.05
GFP Uninjected 0.0069 15 vs 35 P<.05; 30 vs 35 P<.01
Supplem ental Table 14. Comparison o f average p ropo rtion  o f PCNA-positive cells 
across all stages
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Proportion of TUNEL (+) 
Cells

p value Tukey HSD Test

ICD Injected 0.2107 N/A
ICD Uninjected 0.1627 N/A
DBM Injected 0.0088 15 vs 25 P<.05; 15 vs 30 P<.05
DBM Uninjected 0.0330 No comparison significant
GFP Injected 0.0106 15 vs 35 P<.05
GFP Uninjected 0.0339 15 vs 35 P<.05
Supplem ental Table 15. Comparison o f average p ropo rtion  o f TUNEL-positive cells 
across all stages
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