A Computer-Assisted Instruction Program in Mathematics

William Lindsay Lawrence

College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

Part of the Instructional Media Design Commons, and the Science and Mathematics Education Commons

Recommended Citation
https://dx.doi.org/doi:10.21220/s2-nnhm-aw69

This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.
A COMPUTER-ASSISTED INSTRUCTION PROGRAM

IN MATHEMATICS

A Thesis
Presented to
The Applied Science Program
The College of William and Mary in Virginia

In Partial Fulfillment
Of the Requirements for the Degree of
Master of Science

by
William Lindsay Lawrence
1973
APPROVAL SHEET

This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Science

Williams Lindsay Lawrence

Approved, February 1973

Norman E. Gibbs
William G. Poole
Richard H. Prost
Paul K. Stockmeyer
S. Stuart Managan
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>vi</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>2</td>
</tr>
<tr>
<td>CHAPTER I. DESIGN OBJECTIVES</td>
<td>5</td>
</tr>
<tr>
<td>CHAPTER II. DESCRIPTION OF THE PROGRAM MODULES</td>
<td>8</td>
</tr>
<tr>
<td>CHAPTER III. SOME TECHNIQUES USED IN PROGRAMMING</td>
<td>13</td>
</tr>
<tr>
<td>APPENDIX A. A DESCRIPTION OF THE MODULES</td>
<td>24</td>
</tr>
<tr>
<td>APPENDIX B. A DESCRIPTION OF THE FUNCTIONS</td>
<td>54</td>
</tr>
<tr>
<td>APPENDIX C. A LISTING OF THE MODULES</td>
<td>57</td>
</tr>
<tr>
<td>APPENDIX D. A LISTING OF THE FUNCTIONS</td>
<td>83</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>87</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENTS

The writer wishes to express his appreciation to Dr. Norman E. Gibbs, under whose guidance this work was conducted. The author is also indebted to Dr. Paul Stockmeyer, whose many comments help perfect the programs. The writer is also grateful for the help given him by Dr. Richard Prosl and Dr. William Poole.
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. APL instructions for loading each module into the workspace</td>
<td>8</td>
</tr>
<tr>
<td>2. Grading Scheme</td>
<td>11</td>
</tr>
</tbody>
</table>
ABSTRACT

In recent years computer-assisted instruction (CAI) has been used in various schools for a wide variety of purposes. This thesis consisted of nine program modules being written in APL (A Programming Language) for the purpose of aiding students in their study of mathematics. The programs covered linear equations, quadratic equations, elementary trigonometry, equations of circles, parabolas, ellipses, hyperbolas and conics in general, and the ratios of limits of polynomials.

The language APL proved very useful in its application for CAI. It had some disadvantages, but these were far outnumbered by its advantages.
A COMPUTER-ASSISTED INSTRUCTION PROGRAM

IN MATHEMATICS
INTRODUCTION

Computer-assisted instruction (CAI) has been used in recent years in elementary schools, in junior and senior high schools, in two year community colleges, in universities and in vocational schools to accomplish a wide variety of purposes. These purposes range from limited assistance, such as repetitive drill and practice work, to revision of the normal curriculum, to total replacement of the teacher[1]. Today's modern computers have the capacity to facilitate individualized instruction, and their flexibility permits a wide-variety of instructional strategies. Many believe that these machines have the potential to enhance the productivity of the individual teacher and improve the quality of the teaching-learning process. CAI is providing opportunities for conceptual learning that are not available in the normal curriculum and relieving the teacher from routine but necessary educational chores.

Supporters of CAI, regarded by some as the most significant educational technology since printing, say that it has the advantage of providing individualized instruction and potentially lower cost than conventional methods, features that would be attractive to many hard-pressed administrators. Two major attempts to demonstrate the value of CAI are in progress under grants from the National Science Foundation. One is the Ticcit (time-shared interactive, computer-controlled information television) system being developed by the Mitre Corporation in conjunction
with the University of Texas and Brigham Young University. The other is the Plato (programmed logic for automatic teaching operations) system being developed by the University of Illinois. Neither will be ready for demonstration, however, before the fall of 1973.

Ticcit is a decentralized system built around small computers which are accompanied by a self-contained package of hardware, operating programs, and course materials. Color television is the display medium, and the system is primarily composed of commercially available components. The formalized method of developing CAI "courseware" is achieved through the collaborative efforts of teams of programmers, educational psychologists, and specialists in the subject matter.

In contrast, the Plato system utilizes a large, sophisticated computer (the CDC-6400) in a centralized facility that will serve many schools by way of remote terminals. The terminals consist of a plasma display panel and other hardware specifically designed for CAI. The Plato program uses a more ad hoc approach of allowing teachers to design their own courses with the aid, if necessary, of the Plato staff.

Due to the increasing interest in computer-assisted instruction and because the author would be teaching mathematics at an institution which stresses individualized instruction, a series of interactive APL (A Programming Language) program modules was developed to aid mathematics students in their learning process. The nine modules developed are:

* Rappahannock Community College, Glenns, Virginia
1) linear equations
2) quadratic equations
3) trigonometric functions
4) equations of a circle
5) equations of a parabola
6) equations of an ellipse
7) equations of a hyperbola
8) equations of conics
9) limits of ratios of polynomials

Modules were developed in these areas to coincide with an analytical geometry and calculus course that the author would be teaching. However, each module was developed individually so that its use would fit in with the appropriate material in any math course. The level of content, with the exception of the first three modules, coincides with that of Thomas's Calculus and Analytical Geometry[2] which the author would be using in the classroom. The programming was done with the idea that other modules could be added easily at a later time.

Each module consists of a short description of the material covered by the program, a list of the replies that the student may use, and a series of questions on the material. There are a finite number of problems for each module. After the last question has been answered, the problems are recycled with different parameters. The problems ranged from being difficult to being relatively easy. This was done so that the student would gain confidence by being able to answer some questions. The questions are phrased in such a way that a definite reply has to be given. These questions take the form of fill in the blank, multiple choice, and short answer.
CHAPTER I
DESIGN OBJECTIVES

In planning for the programming of the modules certain ideas were of utmost importance. These were (1) to provide an easy and efficient way for each program to accept all possible replies and (2) to keep repetition of statements to a minimum. The programming structure finally decided upon is shown in the block diagram in Figure 1. In this figure each program module and each function is diagrammed by blocks. Each block is a separate APL function. The arrows between the blocks represent the interaction between the different functions and the modules. The nine different program modules generate only questions and hints, and when the need arises for requesting replies, keeping scores, generating random numbers, and performing other miscellaneous tasks, the appropriate function is called by that module. For example, in generating a question the module LINEQ calls the function RN1 for random coefficients. After the question with these coefficients is printed, LINEQ calls CHECK, which compares the student's reply to the correct answer. A record of this result is kept when CHECK calls SCORE. Control is returned to CHECK and then back to LINEQ.
FIGURE 1

Program Module Functions

Program Modules are:

1) LINEQ 2) QUADEQ 3) TRIG 4) CIRCLE 5) PARABOLA 6) ELLIPSE 7) HYPERBOLA 8) CONICS 9) LIMITS

AHINT CHECK SCORE

DIV REPLY RN1 RN2 RN3
The program modules were designed on the premise that the students know no APL other than an introduction, telling how to turn on the machine, how to sign-on, and how to load the program modules. In using these programs the student does need to know, however, that in APL "÷" is used for division, "*" is used for terms raised to a power, and "[]:" means that the computer is waiting for a reply. The following chapters will include a description of the modules and the techniques used in programming them.
CHAPTER II

DESCRIPTION OF THE PROGRAM MODULES

Table I shows the names of the program modules and how each is loaded into the active workspace of the user.

TABLE I

APL INSTRUCTIONS FOR LOADING EACH MODULE INTO THE WORKSPACE

<table>
<thead>
<tr>
<th>Name of Module</th>
<th>To load into active workspace type:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) LINEQ</td>
<td>)LOAD (public library no.) name of workspace</td>
</tr>
<tr>
<td>2) QUADEQ</td>
<td>containing module</td>
</tr>
<tr>
<td>3) TRIG</td>
<td></td>
</tr>
<tr>
<td>4) CIRCLE</td>
<td></td>
</tr>
<tr>
<td>5) PARABOLA</td>
<td></td>
</tr>
<tr>
<td>6) ELLIPSE</td>
<td></td>
</tr>
<tr>
<td>7) HYPERBOLA</td>
<td></td>
</tr>
<tr>
<td>8) CONICS</td>
<td></td>
</tr>
<tr>
<td>9) LIMITS</td>
<td></td>
</tr>
</tbody>
</table>

A description of each module can be found in Appendix A and a description of each function can be found in Appendix B.

After the module has been loaded into the active workspace, the user starts the program by simply typing in the name of the module. The computer responds by typing:

ANSWER EITHER YES OR NO.
ARE YOU FAMILIAR WITH ...(then the name of the module)?
If the user's reply is NO or anything that does not start with a Y (the program only checks the first letter to see if it is a Y), a short description of the material will be printed. After the description, the computer asks:

ARE YOU FAMILIAR WITH THE REPLIES OF THIS EXERCISE?

If the user's response is anything but a leading Y then the function REPLY is executed. This is the message it prints:

THE COMPUTER WILL ASK YOU QUESTIONS WHOSE ANSWERS ARE NUMBERS. YOU ARE TO TYPE IN THE NUMBER. IF THE NUMBER IS A FRACTION, HOWEVER, YOU ARE TO USE THE DIVIDE(*) SYMBOL AND NOT THE SLASH(/), SO ONE-HALF IS 1*2 AND THREE-AND-ONE-THIRD IS 10*3. IF YOUR REPLY IS INCORRECT THE COMPUTER WILL REPLY TRY AGAIN AND YOU GET ANOTHER CHANCE. IN FACT, YOU GET 3 TRIES AT EACH QUESTION. IF YOU DO NOT KNOW THE ANSWER TO THE QUESTION YOU CAN TYPE HINT AND EITHER (1) A COMMENT WILL BE PRINTED OR (2) A LIST OF FOUR NUMBERS WILL BE PRINTED, WHERE ONE IS THE CORRECT ANSWER. IF YOU DO NOT HAVE THE SLIGHTEST IDEA OF WHAT THE ANSWER IS TYPE HELP AND THE ANSWER WILL BE GIVEN. IF YOU WANT TO KNOW HOW MANY QUESTIONS YOU HAVE BEEN ASKED TYPE QNUMBER IF YOU WANT AN XY-AXIS PRINTED FOR SKETCHING FUNCTIONS THEN TYPE GRAPH WHEN YOU WANT TO STOP THE EXERCISE TYPE STOP AND A TABULATED RESULT OF YOUR REPLIES WILL BE GIVEN AND THEN THE EXERCISE WILL TERMINATE.

If the user enters NO, this message is not printed, and the computer starts with the first question. The student's normal reply will be
a number, but he may use one of the above words. If the user's response is incorrect, the computer will type TRY AGAIN and wait for another reply. If the user's response is correct, however, the computer does one of two things. It either proceeds to the next question or it types VERY GOOD! NOW SEE IF YOU CAN GET THIS ONE. This message is printed at random, but it averages being printed approximately every third correct answer.

When the user wants to terminate the exercise, he types STOP and the following summary is printed out:

YOUR RESULTS ARE THE FOLLOWING:
NUMBER OF QUESTIONS
NUMBER ANSWERED ON FIRST TRY
NUMBER ANSWERED ON SECOND TRY
NUMBER ANSWERED ON THIRD TRY
NUMBER NOT ANSWERED
NUMBER OF HINTS YOU RECEIVED
NUMBER OF HELPS YOU RECEIVED

and one of the following:
YOUR PERFORMANCE WAS EXCELLENT
YOUR PERFORMANCE WAS VERY GOOD
YOUR PERFORMANCE WAS GOOD
YOUR PERFORMANCE WAS POOR
YOUR PERFORMANCE NEEDS IMPROVEMENT

Since the number of hints is not taken into account in measuring the performance of the student, the listing of the number of HINTS can be used as a guide in validating the performance by the student. The number of HELPS gives the number of times that the student asked for an answer.

To determine the performance of the student full credit is given for a correct answer on the first try, half credit for a correct
answer on the second try, and one-third credit for a correct answer on the third try. Table II shows the grading scheme.

TABLE II

GRADING SCHEME

<table>
<thead>
<tr>
<th>Performance</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) excellent</td>
<td>for a 90% or better</td>
</tr>
<tr>
<td>2) very good</td>
<td>for an 80-89%</td>
</tr>
<tr>
<td>3) good</td>
<td>for a 70-79%</td>
</tr>
<tr>
<td>4) poor</td>
<td>for a 60-69%</td>
</tr>
<tr>
<td>5) needs improvement</td>
<td>for below 60%</td>
</tr>
</tbody>
</table>

To help clarify the preceding descriptions a sample run from the module PARABOLA is given.

PARABOLA

REPLY EITHER YES OR NO.
ARE YOU FAMILIAR WITH THE EQUATIONS OF PARABOLAS?
YES

ARE YOU FAMILIAR WITH THE REPLIES OF THIS EXERCISE?
YES

GIVEN THE EQUATION $(x-4)^2 = 24(y-0)$
WHAT IS THE X-COORDINATE OF THE VERTEX?
□ : 4
WHAT IS THE Y-COORDINATE OF THE VERTEX?
□ : 0
WHAT IS THE X-COORDINATE OF THE FOCUS?
□ :
HINT
THE ANSWER IS ONE OF THE FOLLOWING:
6 4 0 6
□ : 6
TRY AGAIN
□ :
HELP
THE ANSWER IS 4
WHAT IS THE Y-COORDINATE OF THE FOCUS?
□:
6

VERY GOOD! NOW SEE IF YOU CAN GET THIS ONE.
THE DIRECTRIX IS THE LINE Y=
WHAT NUMBER GOES IN THE BLANK?
□:
6

VERY GOOD! NOW SEE IF YOU CAN GET THIS ONE.
THE GRAPH OF THIS EQUATION OPENS EITHER
1) UPWARD
2) DOWNWARD
3) TO THE RIGHT
4) TO THE LEFT
IS THE ANSWER 1, 2, 3 OR 4?
□:
HINT
THE CLUE TO THIS IS THE SIGN OF P AND THE QUADRATIC TERM.
□:
1

GIVEN THE VERTEX V(0,3) AND FOCUS F(7,3) OF A PARABOLA
AND THE EQUATION (Y-_)x2 = (X-_)2
WHAT NUMBER GOES IN THE FIRST BLANK?
□:

YOUR RESULTS ARE THE FOLLOWING:
NUMBER OF QUESTIONS 6
NUMBER ANSWERED ON FIRST TRY 3
NUMBER ANSWERED ON SECOND TRY 0
NUMBER ANSWERED ON THIRD TRY 0
NUMBER NOT ANSWERED 0
NUMBER OF HINTS YOU RECEIVED 2
NUMBER OF HELPS YOU RECEIVED 1

YOUR PERFORMANCE WAS VERY GOOD
CHAPTER III
SOME TECHNIQUES USED IN PROGRAMMING

This chapter is intended for the reader with a knowledge of APL. It is meant to give the reader an insight into some of the techniques used in programming the modules.

For example, the idea of letting the student's word replies be a variable, rather than a character string, was borrowed from IBM'S APLCOURSE*. The word replies that are available to the user and which have been explained previously are HINT, HELP, QNUMBER, GRAPH and STOP. These names are global variables whose values were chosen selectively so that they could never be equal to an answer to an answer to a question in any module. These values are stored in the workspace. The student's reply is compared to the above names, as well as the correct answer, to determine what action is to take place. The function CHECK performs this comparison. Since the function CHECK registers and compares each response, it is called after each question. This is done by the APL statement·O×1CHECK=1 where CHECK returns a 1 if the reply was STOP and a 0 for all other cases. If CHECK returns a 1, the program terminates, otherwise CHECK returns a 0 and control of the program continues to the next statement. This one line statement turns out to

* APLCOURSE is an APL program distributed by International Business Machines Corporation (IBM) to teach APL.
be very powerful since it does most of the housekeeping. A call on CHECK determines the student's reply, keeps a record of the reply (CHECK calls SCORE), takes the appropriate action for the respective reply, prints out the summary of the user's responses if appropriate, and determines whether or not the program is to continue to the next question or is to be terminated.

As often as feasible statements were combined to help keep the modules from becoming too lengthy. For example, instead of having three statements to generate three random coefficients (X,Y,Z) for a problem the APL statement $X«\text{RN2}+0\times Y+\text{RN1}+0\times Z+\text{RN2}$ combines the statements. Many statements of this type were used in the modules. RN1 and RN2 are two random number generators. RN1 generates a random number from -9 to +9 by the statement $\text{RN}^+{-10}+?19$. The numbers are restricted to one digit to minimize the computations students must do to work the problem.

Sometimes it was necessary to generate nonzero coefficients. One example comes from QUAD. Equations of the form $AX^2 +BX +C = 0$ are generated. To insure that the equation is 2nd degree, A cannot be equal to zero. The function RN1 was modified to RN2 and looks like:

```
VRN RN2
[1] \text{RN}^+{-10}+?19
[2] -1\times i \text{RN}=0
```

The roll operator(?) in the above function is APL's random number generator. The statement $?X$ returns a random integer from 1 to X inclusive. Each time an APL user signs-on the terminal, he will get
the same sequence of random numbers if the same upper limit is specified. To keep from having the coefficients repeated for each problem every time a student reuses a module, a method was needed to alter the seed for the roll operator to a unique starting point every time a program module is loaded and executed. The following two statements which are used in every module have worked well.

[1] N←I+−1+(60 60 60 60×120)
[2] N←0×1+(Nρ19)

In [1] the I-beam 20 function returns a number corresponding to the internal clock of the CPU. It represents the time of day, but to transform it into hours, minutes, seconds and sixtieths of a second requires (60 60 60 60×120). The addition of −1+ before this statement retrieves the number corresponding to sixtieths of a second. Adding 1 to this number insures that the upper limit for the roll operator will always be greater than 0. The random number is then stored in N. In [2] the statement (Nρ19) generates a vector of length N with each element equal to 19. This vector becomes the upper limit for the roll operator and the result is that the roll operator is used N times with the same upper limit of 19. These two statements have, in effect, supplied a new starting point for APL's random number generator. The remaining part of statement [2] results in storing a 0 in N, since N is used elsewhere.

One unforeseen problem of the modules occurs when the answer to a question is a quotient of two integers. For example one question from LINEQ is:
GIVEN \(-4X + 6Y + 6 = 0\)
WHAT IS THE SLOPE?

The answer is \(\frac{4}{6}\) which is \(0.666667\). If the student typed HELP the number \(0.666667\) would be printed. Obviously this is not as helpful as \(\frac{4}{6}\). For cases like this two variables are needed. One is called ANS and the other ANSA. ANS is the variable which contains the correct numeric answer and its value is compared to the user's response. In the example, ANS is \(0.666667\). On the other hand, ANSA is the variable that is printed when the user types HELP. In this example ANSA would be the character string '\(\frac{4}{6}\)'.

The problems are generated so that the denominator is never zero. In some cases, however, it may be 1. In generating the questions, if the answer is an integer then ANSA will be the same as ANS. In this case the assignment of the answer to ANS and ANSA (ANS=\(\text{ANS}+X\)) is combined with the statement \(\text{CHECK}=1\) (which has already been explained) to keep the number of APL statements to a minimum. The APL statement is:

\[-0\times \text{CHECK}=1+0\times \text{ANS}+\text{ANSA}+X\] (where \(X\) is the correct answer)

If the answer is a nonintegral quotient, then ANSA uses one of two functions, either DIV or AHINT. The function that is used depends on whether the hint for the question is in the form of a comment or a choice of one of four numbers. If the hint is a comment then the APL statement for ANSA is \(\text{ANS}+X\ \text{DIV} \ Y\). In the above example from LINEQ, the hint for that question is "THE CLUE TO THIS ONE IS TO PUT THE EQUATION IN THE FORM OF \(Y=MX+B\)." In this case ANSA uses the DIV function. The function changes these two integers, \(X\) and \(Y\), to the string '\(X:Y\)' and stores this
string in the global variable ANSA. The function DIV involves several
techniques. The first uses the encode operator to change the absolute
value of the (numeric) numbers X and Y to three single digit numbers—
each digit corresponding to the respective 1's, 10's or 100's places of
X and Y --by the statements (10 10 10TZ|X). The statements below did
this satisfactorily:

[1] NA-*'0123456789'*
[2] NA[1+(10 10 10T|X)]
[3] NA[1+(10 10 10T|Y)]

X and Y are three or fewer digits so only three places are necessary
in the encode. Unfortunately a problem results if X or Y is negative.
Therefore, the statement (X<0)p'-' is concatenated to statements [2] and
[3]. It concatenates a negative sign if one is needed. Thus the DIV
function looks like

\[
\text{VX}=X \text{ DIV } Y
\]

[1] NA-*'0123456789'*
[2] D+((X<0)p'-''),NA[1+(10 10 10T|X)],'=',((Y<0)p'-'',
 NA[1+(10 10 10T|Y)]

This works for all cases except for the one in which the two integers
are less than three digits in length. Then the leading zeros are un-
fortunately carried along. For example, '255' would look like '002505'.
To eliminate this problem each leading 0 is dropped. This is done by
the statement T+((1T)= '0')+T where T is the string '002' or '005'.
This statement is executed twice for each string and before the minus
sign is concatenated (if necessary), so the final string '255' does in-
deed look like '255'. The listing of the function DIV can be found in
Appendix D.
If the hint for a question involves a choice of one of four numbers and the answer is a nonintegral quotient, then the function AHINT rather than DIV is used. The dyadic function AHINT takes two arguments, X and Y, and like DIV produces the string 'X^Y' which is stored in ANSA. It also produces one of the following strings which is printed to the user as the hint for the question:

'X\times Y \quad Y\times X \quad -X\times Y \quad -Y\times X'
or
'Y\times X \quad -X\times Y \quad -Y\times X \quad X\times Y'
The second string is a permutation of the first. This permutation was picked so the user could not recognize a pattern in the hint. The techniques in programming AHINT are similar to those used in DIV. The programming is a little easier because the arguments passed to AHINT are always one digit in length.

If the hint for a question does involve a choice of four integers, but the answer is not a quotient, then the other three integers of the hint are picked either at random or in some way related to the problem or both. An example from ELLIPSE shows this:

GIVEN AN ELLIPSE WHICH PASSES THROUGH THE ORIGIN, HAS
FOCI AT (-6,-4) AND (6,-4) AND THE EQUATION
(X-_)*2 \div +(Y-_)*2 \div = 1
WHAT NUMBER GOES IN THE FIRST BLANK?

HINT
THE ANSWER IS ONE OF THE FOLLOWING:

0 \quad 6 \quad 16 \quad 4

0 is the correct answer, 6 is the value of one of the X-coordinates in the problem, 16 is the value of the Y-coordinate squared, and 4 is a random number.
To keep the answer from being in the same position relative to the other integers every time, a random number is used with the dyadic rotation operator(ϕ) to rotate the four numbers. The following APL statement is used in QUADQ:

\[H+(?4)ϕH+(-X+Y),-|RN2,(-Y),ANS+ANSA+X \]
(X and Y are two parameters used in the problem)

The statement \(H+=(-X+Y),-|RN2,(-Y),ANS+ANSA+X \) creates a vector of length four which is stored in H. A random number generated by (?4) is used with the dyadic rotation operator(ϕ) to rotate the above vector. This final result is stored in H and is printed when a hint is called.

The module LINEQ prints the graph of a straight line as part of two problems. The method of printing the graph originated with Gilman and Rose[3], but was modified to suit these problems. The four statements below are used to generate the graph where the slope of the line and the Y-intercept are variable.

1. \[X+\neg5+\neg9 \]
2. \[M+\neg(?2)×\negRN2 \]
3. \[G+(ϕX)⊙.=(M×X)+Y\neg4+\neg?7 \]
4. \[(18p1 0)\neg'⊙+0'[G\neg+\neg2×\neg0=(ϕX)⊙.X] \]

The first statement is used to set up the X-axis, ranging from -4 to +4 for a total of 9 print positions. The second statement generates a slope which is either ±1 or ±2. Several other slopes were tried but were found to be unsuitable. A slope of 3 or greater creates only 3 or less points to be printed which was not very representative of a straight line. The right part of statement [3], namely \(Y\neg4+\neg?7 \), determines the Y-intercept of the line. Statement [3] itself, which
involves the use of the outer product, produces a 9×9 matrix of zeros except where the straight line would intersect an element of the matrix.

In this case the element becomes a 1. A typical example looks like:

```
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
```

In the right part of statement [4] the matrix G is added to the matrix produced by $1+2x0=(\phi X)0.X$ giving the matrix:

```
1 1 1 1 3 1 1 1 1
1 1 1 1 3 1 1 1 2
1 1 1 1 3 1 1 2 1
1 1 1 1 3 1 2 1 1
3 3 3 3 3 4 3 3 3
1 1 1 1 4 1 1 1 1
1 1 1 2 3 1 1 1 1
1 2 1 1 3 1 1 1 1
1 2 1 1 3 1 1 1 1
```

It can be seen now that the 3's are centered and form a set of axes. The 2's and 4's lie on the line and the 1's are the other elements of the matrix. Using this matrix as an index on the string ' o+o' causes the 1's to be replaced by blanks, the 2's and 4's by 'o', and the 3's by '+' . The addition of $(18\phi 1 0)\backslash$ operating on this character matrix of blanks, '+'s and 'o's spreads the matrix out so it looks like the following:

```
+
+ o
+ o
+ o
++++++ o +++
  o
  o +
  o +
  o +
```
This graph has a slope of \(-1\) and a Y-intercept of \(-1\).

For the module CONICS a technique is used to order the questions which is different from the other modules. This is due to the fact that the nine questions of CONICS are multiple choice type where each question always requires the same answer regardless of what coefficients are used. For example, question number one reads:

\[
\text{GIVEN THE EQUATION } 0x^2 + 0y^2 + 1x + -4x +6 = 0. \text{ THE EQUATION IS EITHER}
\]

1) A STRAIGHT LINE
2) A CIRCLE
3) A PARABOLA
4) AN ELLIPSE
5) A HYPERBOLA
6) NONE OF THESE

IS THE ANSWER 1,2,3,4,5 OR 6?

The answer to this question is always 1 even though coefficients for the X, Y and constant terms change. Therefore, changing the order of the questions is necessary to help keep the user from recognizing the pattern of the answers. The permuting of the order of the questions involves the dyadic deal operator(?). The deal operator, like the roll operator, has the same seed every time a new workspace is loaded, so the statement \(I+(|RN2)?9\) is used to reinitialize the seed to a new starting point every time CONICS is used. Next, the statement \(I+9?9\) gives a permutation of the integers 1 through 9—a number corresponding to each question. Thus I becomes an index to nine different labels—one for each question. The following statements show precisely how the questions are selected:

\[
[1] \text{L10: J} \leftarrow 0
[2] \text{I} \leftarrow 9?9
[3] \text{I} \leftarrow I,10
[4] \text{L0:} \leftarrow (L1,L2,L3,L4,L5,L6,L7,L8,L9,L10)[I[J+J+1]]
\]
Statement [1] initializes J to 0 and [2] gives the permutation of the digits 1 through 9. In [3] the number 10 is catenated to this permutation. Since control is returned to L0 after each question has been answered, the right part of statement [4], J+J+1, becomes an index for the next question. This happens by I[J+J+1] returning one of the permuted integers. This integer selects one of the labels L1 through L10. Execution of the corresponding labeled statement follows. After nine questions have been asked J will be incremented by one producing I[10] which corresponds to the label L10. On execution of L10, J becomes reinitialized to 0, a new permutation is produced, and the cycle is repeated.

The module TRIG is unique in that the figure of a triangle is printed for most of the problems. The triangle was made by storing an 8 by 9 matrix of blanks in a variable called TRI and then filling in the correct points with other characters. The figure is shown below:

```
 /\  
/  \ 
/\  
 /\ Z 
/  \ 
/\ Y 
 /\  
/\  
/\ X
```

The triangle is stored in the workspace as a global variable and is used by TRIG when necessary.

The various programming techniques discussed previously are unique to the author. However, the remaining programming was approached in a manner typical of any programmer. The programming language APL was
selected because it was the only interactive language available. Fortunately, it turned out to be suitable for this application. The language lends itself to compact programming, thus eliminating many programming errors that would occur in other languages. Debugging of the programs was surprisingly easy. This was due to APL's capability of handling independent functions easily. The major disadvantage of APL came from having to use "*" for terms raised to a power. The use of the "*" instead of superscripts made the reading of equations awkward and in some cases difficult.

The advantages of using APL for this application far outnumber any disadvantages. While some of the notation may be awkward in mathematics, the use of APL for CAI could be easily adopted for other areas. For instance, using only the functions CHECK and SCORE a history instructor could easily program a set of lessons on some topic without having to learn much APL. Thus APL is certainly conductive to computer-assisted instruction applications.
APPENDIX A

A DESCRIPTION OF THE MODULES

I. LINEQ

The description of linear equations that is printed out to the user is the following:

LINEAR EQUATIONS
THE GRAPH OF A FIRST DEGREE EQUATION OF THE FORM
\[DX+EY+F=0 \]
WHERE \(D, E \) AND \(F \) ARE REAL NUMBERS AND WHERE EITHER \(D \) OR \(E \) IS NOT EQUAL TO ZERO, IS CALLED A STRAIGHT LINE. SUCH AN EQUATION IS CALLED A LINEAR EQUATION.
THE EQUATION IS USUALLY WRITTEN IN THE FORM
\[Y=\frac{-D}{E}X+\frac{-F}{E} \] OR
\[Y=MX+B \] WHERE
\[M=\frac{-D}{E} \] IS EQUAL TO THE SLOPE AND
\[B=\frac{-F}{E} \] IS EQUAL TO THE \(Y \)-INTERCEPT.

THIS EQUATION IS SOMETIMES WRITTEN AS
\[X=\frac{-E}{D}Y+\frac{-F}{D} \] WHERE
\[\frac{-F}{D} \] IS EQUAL TO THE \(X \)-INTERCEPT.

THE SLOPE IS DEFINED TO BE THE RATIO
\[M=\frac{Y_2-Y_1}{X_2-X_1} \]
WHERE \((X_2,Y_2)\) AND \((X_1,Y_1)\) ARE TWO POINTS. IF \((X_2-X_1)\) EQUALS ZERO THEN THE SLOPE IS SAID TO BE UNDEFINED.

The level of the questions for LINEQ is similar to that of Davis's Real Numbers and Elementary Algebra[4] and Munem's, Tschirhart's, and Yzcze's Study Guide to Functional Approach to Precalculus[5], which is that of a second year high school algebra course or a first year freshmen elementary math course. There are seven basic problems from which sixteen different questions are generated for each pass through the
seven problems. The problems are recycled after each pass with new coefficients giving sixteen new questions. This cycle continues until the user types STOP. A listing of LINEQ is given in Appendix C.

The hints for each question, unless otherwise stated, are a choice of one of four numbers. The problems and questions for LINEQ are listed below:

I) GIVEN 2 POINTS \((X_2,Y_2) = (A,B)\) AND \((X_1,Y_1) = (C,D)\) (A, B, C and D are random integers, but \(A \neq C\))

1) WHAT IS THE SLOPE?

2) WHAT IS THE Y-INTERCEPT? (This question is skipped the first time the module is used. The intent is to let the user gain confidence by starting with a simple question)

II) GIVEN \(Y = AX + B\) (A and B are random integers, \(A \neq 0\))

3) WHAT IS THE SLOPE?

4) WHAT IS THE Y-INTERCEPT?

III) BELOW IS THE GRAPH OF A LINE

```
 +
 + o
 + o
 + o
 + o
 + ++ ++ o ++
 o
 o o
 o o
 o o
```

WHICH INTERSECTS THE X-AXIS AT A AND HAS A SLOPE = B (A is an integer from -3 to +3 and B is \(\pm 1\) or \(\pm 2\)).

IF THE EQUATION IS OF THE FORM

\[Y = X + _ _ \]
5) WHAT NUMBER GOES IN THE FIRST BLANK?
6) WHAT NUMBER GOES IN THE SECOND BLANK?

IV) GIVEN THE POINT (X,Y) = (A,B), A SLOPE OF C AND
Y = _ (X - _) (A, B and C are random integers, C ≠ 0)
7) WHAT NUMBER GOES IN THE FIRST BLANK?
8) WHAT NUMBER GOES IN THE THIRD BLANK?
9) WHAT NUMBER GOES IN THE SECOND BLANK?

V) GIVEN A Y-INTERCEPT OF A, A SLOPE OF B AND
Y = X + _ (A and B are random integers, A ≠ 0)
10) WHAT NUMBER GOES IN THE FIRST BLANK?
11) WHAT NUMBER GOES IN THE SECOND BLANK?

VI) GIVEN AX + BY + C = 0 (A, B and C are random integers, A ≠ 0 and B ≠ 0)
12) WHAT IS THE SLOPE?
13) WHAT IS THE Y-INTERCEPT?
14) WHAT IS THE X-INTERCEPT?

VII) BELOW IS THE GRAPH OF A LINE
o + o + o + + + o + + + + o + o + + o + o + o +

WHICH INTERSECTS THE X-AXIS AT A AND THE Y-AXIS AT B (A is a random number from -3 to +3 including half-intervals and B is a random integer from -3 to 3)

IF Y = _ X + _
15) WHAT NUMBER GOES IN THE FIRST BLANK?
16) WHAT NUMBER GOES IN THE SECOND BLANK?
II. QUADEQ

The description of quadratic equations that is printed out to the user is the following:

QUADRATIC EQUATIONS

THE QUADRATIC EQUATION

\[AX^2 + BX + C = 0, \quad A \neq 0 \]

WHERE A, B, AND C ARE REAL NUMBERS, AND WHERE X IS EITHER A REAL OR A COMPLEX NUMBER, HAS TWO SOLUTIONS, NAMELY:

\[X = \frac{-B + (B^2 - 4AC)^{1/2}}{2A} \quad \text{AND} \]

\[X = \frac{-B - (B^2 - 4AC)^{1/2}}{2A} \]

THE QUANTITY \((B^2 - 4AC)^{1/2}\) IS KNOWN AS THE DISCRIMINANT AND IT DETERMINES THE KINDS OF ROOTS OF THE EQUATION. IF THE DISCRIMINANT IS:

1) POSITIVE, THE TWO SOLUTIONS ARE REAL AND UNEQUAL.
2) ZERO, THE TWO SOLUTIONS ARE REAL AND EQUAL.
3) NEGATIVE, THE TWO SOLUTIONS ARE UNEQUAL AND COMPLEX.

The level of the questions for QUADEQ is the same as that for LINEQ. There are five basic problems from which eight different questions are generated for each pass. The problems are recycled, each time with new coefficients, until the user types STOP. A listing of QUADEQ is given in Appendix C.

The problems and questions for QUADEQ are the following:

I) GIVEN TWO ROOTS \(X = A, B\) AND \(AX^2 + X + _- = 0\) (A and B are random integers)

1) WHAT NUMBER GOES IN THE FIRST BLANK?

The HINT for this question is: THE QUADRATIC EQUATION, GIVEN TWO ROOTS, IS FOUND BY MULTIPLYING \((X - \text{ROOT1}) \times (X - \text{ROOT2})\).

2) WHAT NUMBER GOES IN THE SECOND BLANK?

The HINT is the same as that above.
II) GIVEN \(x^2 + ax + b = 0\)
(A and B are the sum and product of two random integers)

3) WHAT IS THE SMALLER ROOT OF THE EQUATION?

The HINT is: THE SMALLER ROOT IS THE ONE WHICH IS FARTHER TO THE LEFT ON THE REAL NUMBER LINE (-\(\infty\) 0 +\(\infty\)).

4) WHAT IS THE LARGER ROOT OF THE EQUATION?

The HINT is: THE LARGER ROOT IS THE ONE WHICH IS FARTHER TO THE RIGHT ON THE REAL NUMBER LINE (-\(\infty\) 0 +\(\infty\)).

III) THE GRAPH OF \(ax^2 + bx + c = 0\)
(A, B and C are random integers)

5) OPENS EITHER

1) UPWARD OR

2) DOWNWARD

IS THE ANSWER 1 OR 2?

The HINT is: IF THE COEFFICIENT OF THE X-SQUARED TERM IS >0 THE CURVE OPENS UPWARD. IF IT IS <0 IT OPENS DOWNWARD.

IV) GIVEN \(ax^2 + bx + c = 0\)
(A, B and C are random integers, A\(\neq 0\))

6) THE SOLUTIONS ARE EITHER

1) UNEQUAL AND COMPLEX

2) REAL AND EQUAL

3) REAL AND UNEQUAL

IS THE ANSWER 1, 2 OR 3?

The HINT is: THE VALUE OF THE DISCRIMINATE GIVES THE ANSWER TO THIS QUESTION.

V) GIVEN \(x^2 + ax + b = 0\)
(A and B are the sum and product of two random integers—one positive and one negative)

7) IF YOU WERE TO GRAPH THIS EQUATION WHERE WOULD IT CROSS THE POSITIVE X-AXIS?

8) WHERE WOULD IT CROSS THE NEGATIVE X-AXIS?

The HINT for questions 7 and 8 is a choice of one of four numbers.
III. TRIG

The description of trigonometric functions that is printed out to the user is:

\[
\text{TRIGONOMETRY}
\]

GIVEN A RIGHT TRIANGLE IN ITS STANDARD POSITION IN THE FIRST QUADRANT WITH THE ANGLE \(\alpha \) AT THE ORIGIN.

\[
\begin{align*}
&\text{PYTHAGORAS'S THEOREM STATES THAT} \\
&Z^2 = X^2 + Y^2 \\
&\text{AND FROM THE DEFINITIONS OF TRIGONOMETRY}
\end{align*}
\]

\[
\begin{align*}
\sin \alpha &= \text{SIDE OPPOSITE} \div \text{HYPOTENUSE} = \frac{Y}{Z} \\
\cos \alpha &= \text{SIDE ADJACENT} \div \text{HYPOTENUSE} = \frac{X}{Z} \\
\tan \alpha &= \text{SIDE OPPOSITE} \div \text{SIDE ADJ.} = \frac{Y}{X} \\
\csc \alpha &= \text{HYPOTENUSE} \div \text{SIDE OPP.} = \frac{Z}{Y} = \frac{1}{\sin \alpha} \\
\sec \alpha &= \text{HYPOTENUSE} \div \text{SIDE ADJ.} = \frac{Z}{X} = \frac{1}{\cos \alpha} \\
\cot \alpha &= \text{SIDE ADJACENT} \div \text{SIDE OPP.} = \frac{X}{Y} = \frac{1}{\tan \alpha}
\end{align*}
\]

THE SIGNS OF THE TRIG TERMS WOULD CHANGE IF THE TRIANGLE WAS IN ANOTHER QUADRANT AND WOULD CHANGE ACCORDING TO THE CORRESPONDING VALUES OF X, AND Y IN THAT QUADRANT. THE TRIG TERMS, THEN, ARE CYCLIC AS \(\alpha \) IS ROTATED FROM 0 TO 360 DEGREES.

The level of TRIG is similar to that of LINEQ. There are seven different problems which ask twenty-eight questions for each pass. Most of the problems involve a right triangle where only two sides are given. These problems have been arranged so that every right triangle is a perfect integer right triangle. This involves the use of the function RN3
which gives six different right triangles. A listing of TRIG can be found in Appendix C.

Unless otherwise stated the HINT for each question is: REFER BACK TO THE CORRESPONDING DEFINITION OF THE TRIG TERM. The problems and questions follow:

I) GIVEN THE RIGHT TRIANGLE

\[\begin{array}{c}
\text{X} \\
\text{Z} \\
\text{Y} \\
\text{a} \\
\end{array} \]

WHERE X=A AND Y=B (A and B are positive integers)

The above triangle is printed for each problem where appropriate, but to prevent redundancy it will be omitted from here on and will be replaced by

1) WHAT IS THE VALUE OF Z?

The HINT for this question is: THE CLUE TO THIS ONE IS PYTHAGORAS'S THEOREM.

2) WHAT IS THE VALUE OF TAN a?

3) WHAT IS THE VALUE OF SIN a?

4) WHAT IS THE VALUE OF COS \(\omega \)?

5) WHAT IS THE VALUE OF COS a?

6) WHAT IS THE VALUE OF SIN \(\omega \)?

7) WHAT IS THE VALUE OF TAN \(\omega \)?

8) WHAT IS THE VALUE OF COT a?

9) WHAT IS THE VALUE OF CSC a?

10) WHAT IS THE VALUE OF SEC a?
II) GIVEN THE RIGHT TRIANGLE
AND SIN α=A/B AND Y=A (A and B are two positive integers)
11) WHAT IS THE SIDE OPPOSITE α EQUAL TO?
12) WHAT IS THE HYPOTENUSE EQUAL TO?

The HINT for this one is the same as that for question number 1.
13) WHAT IS THE SIDE ADJACENT α EQUAL TO?
14) WHAT IS THE VALUE OF THE COS α?
15) WHAT IS THE VALUE OF THE TAN α?

III) GIVEN THE RIGHT TRIANGLE
AND TAN α=A/B AND X=B (A and B are positive integers)
16) WHAT IS THE SIDE OPPOSITE α EQUAL TO?
17) WHAT IS THE HYPOTENUSE EQUAL TO?

The HINT is the same as question 1.
18) WHAT IS THE SIDE ADJACENT α EQUAL TO?
19) WHAT IS THE VALUE OF COS α?
20) WHAT IS THE VALUE OF SIN α?

IV) GIVEN THE RIGHT TRIANGLE
AND COS α=A/B AND Z=B (A and B are positive integers)
21) WHAT IS THE SIDE OPPOSITE α EQUAL TO?
22) WHAT IS THE HYPOTENUSE EQUAL TO?

The HINT for this one is the same as that of question 1.
23) WHAT IS THE SIDE ADJACENT α EQUAL TO?
24) WHAT IS THE VALUE OF TAN α?
25) WHAT IS THE VALUE OF SIN α?
26) WHAT IS THE VALUE OF COS(A x PI)? (A is a positive random integer)

The HINT is: REMEMBER THAT TRIG FUNCTIONS ARE CYCLIC SO YOU NEED TO FIND OUT WHAT QUADRANT THIS WOULD BE IN.

VI)

27) WHAT IS THE VALUE OF SIN(A x PI)? (A is a positive random integer)

The HINT is the same as that above.

VII GIVEN A RIGHT TRIANGLE

WITH THE ANGLE α=B DEGREES (B is a number equal to 9 times a positive random integer less than or equal to nine)

28) WHAT IS THE ANGLE ω EQUAL TO?

The HINT for this question is: THE CLUE IS THAT THE SUM OF THE INNER ANGLES OF A TRIANGLE=180 DEGREES.
IV. CIRCLE

The description of the equations of a circle that is printed out to the user is:

THE CIRCLE
\[(X-H)^2 + (Y-K) = R^2\]

AN EQUATION OF THE FORM
\[AX^2 + AY^2 + DX + EY + F = 0,\ A \neq 0\]
CAN OFTEN BE REDUCED TO THE EQUATION OF A CIRCLE BY THE METHOD OF COMPLETING THE SQUARES. IN THE ABOVE FORM IT WOULD LOOK LIKE
\[(X+D/2A)^2 + (Y+E/2A)^2 = (D^2 + E^2 - 4AF) / 4A^2\]
REMEMBER, HOWEVER, THAT THE RIGHT HAND SIDE MUST BE POSITIVE FOR THE EQUATION OF A CIRCLE.

The level of the questions for CIRCLE is along that of Thomas[2]. There are six basic problems from which sixteen different questions are generated for the first pass; however, the first problem is skipped on each recycle because of its simplicity. Hence there are only thirteen questions for each subsequent pass. New coefficients are generated for each different pass. Unless otherwise stated all hints are just a choice of one of four numbers. A listing of CIRCLE is given in Appendix C.

The problems and questions for CIRCLE are the following:

I) GIVEN A CIRCLE OF RADIUS A WITH ITS CENTER AT THE ORIGIN AND THE EQUATION _X^2 + _Y^2 = _ (A is a random integer not equal to zero)

1)WHAT NUMBER GOES IN THE FIRST BLANK?

2)WHAT NUMBER GOES IN THE SECOND BLANK?
3) WHAT NUMBER GOES IN THE THIRD BLANK?

II) GIVEN \((x-a)^2 + (y-b)^2 = c\) (A and B are random integers and
C is the square of a random integer which is greater than zero)

4) WHAT IS THE X-COORDINATE OF THE CENTER OF THE CIRCLE?

5) WHAT IS THE Y-COORDINATE OF THE CENTER OF THE CIRCLE?

6) WHAT IS THE RADIUS EQUAL TO?

III) GIVEN THE CENTER OF A CIRCLE AS \((a,b)\), A RADIUS OF C AND THE
equation \((x-__)^2 + (y-__)^2 = 0\) (A, B and C are random integers
and C\(\neq0\))

7) WHAT NUMBER GOES IN THE FIRST BLANK?

8) WHAT NUMBER GOES IN THE SECOND BLANK?

9) WHAT NUMBER GOES IN THE THIRD BLANK?

IV) GIVEN A CIRCLE WHICH PASSES THROUGH THE ORIGIN, HAS A CENTER
at \((a,b)\) AND THE EQUATION \((x-__)^2 + (y-__)^2 = 0\) (A and B are
random numbers but B\(\neq0\))

10) WHAT NUMBER GOES IN THE FIRST BLANK?

11) WHAT NUMBER GOES IN THE SECOND BLANK?

12) WHAT NUMBER GOES IN THE THIRD BLANK?

V) GIVEN THE EQUATION \((x-a)^2 + (y-b)^2 = c\). THE POINT \((d,e)\) IS
EITHER

1) INSIDE THE CIRCLE
2) ON THE CIRCLE OR
3) OUTSIDE THE CIRCLE (A, B, D and E are random integers
and C is the square of a random integer which is greater than zero)

13) IS THE ANSWER 1, 2 OR 3?

The HINT is: SUBSTITUTE THE VALUES OF X AND Y OF THE POINT INTO THE
EQUATION AND MAKE A COMPARISON WITH THE RIGHT HAND SIDE.

VI) GIVEN THE EQUATION \(x^2 + y^2 + ax + by + c = 0\) (A, B and C are
random integers and B\(\neq0\))
14) WHAT IS THE X-COORDINATE OF THE CENTER OF THE CIRCLE?

The HINT is: THE CLUE TO THIS ONE IS THE METHOD OF COMPLETING THE SQUARES.

15) WHAT IS THE Y-COORDINATE OF THE CENTER OF THE CIRCLE?

The HINT is the same as that above.

16) WHAT IS THE RADIUS-SQUARED TERM EQUAL TO?

The HINT is: THE CLUE TO THIS ONE IS THE RIGHT HAND SIDE OF THE EQUATION AFTER THE METHOD OF COMPLETING THE SQUARES HAS BEEN APPLIED.
V. PARABOLA

The description of the equations of parabolas printed out to the user is:

THE PARABOLA
A PARABOLA IS THE LOCUS OF POINTS IN A PLANE EQUIDISTANT FROM A POINT (CALLED THE FOCUS) AND A GIVEN LINE (CALLED THE DIRECTRIX). THE FOCUS IS ON THE AXIS OF SYMMETRY, P UNITS FROM THE VERTEX WHILE THE DIRECTRIX IS -P UNITS FROM THE VERTEX AND PERPENDICULAR TO THE AXIS OF SYMMETRY.

IF V(H,K) IS THE VERTEX THEN THE EQUATION OF A PARABOLA IS ONE OF THE FOLLOWING:

1) \((X-H)^2 = 4P(Y-K)\) WHICH OPENS UPWARD
2) \((X-H)^2 = -4P(Y-K)\) WHICH OPENS DOWNWARD
3) \((Y-K)^2 = 4P(X-H)\) WHICH OPENS TO THE RIGHT
4) \((Y-K)^2 = -4P(X-H)\) WHICH OPENS TO THE LEFT

THE CLUE TO AN EQUATION OF A PARABOLA IS THAT IT IS QUADRATIC IN ONE OF THE COORDINATES AND LINEAR IN THE OTHER. WHENEVER THERE IS THIS TYPE OF EQUATION IT CAN BE REDUCED TO ONE OF THE ABOVE STANDARD FORMS BY COMPLETING THE SQUARE IN THE COORDINATE WHICH APPEARS QUADRATICALLY.

The level of the questions for PARABOLA is the same as that for CIRCLE. There are three basic problems from which fifteen different questions are generated for each pass through the problems. Unless otherwise stated all hints are the choice of one of four numbers. A listing of PARABOLA is given in Appendix C.

The problems and questions for PARABOLA are the following:

I) GIVEN THE EQUATION \((X-A)^2 = B(Y-C)\) (A and C are random numbers and B is four times a random number which is not equal to C)

1) WHAT IS THE X-COORDINATE OF THE VERTEX?
2) WHAT IS THE Y-COORDINATE OF THE VERTEX?
3) WHAT IS THE X-COORDINATE OF THE FOCUS?
4) WHAT IS THE Y-COORDINATE OF THE FOCUS?

5) THE DIRECTRIX IS THE LINE Y = _
 WHAT NUMBER GOES IN THE BLANK?

6) THE GRAPH OF THIS EQUATION OPENS EITHER
 1) UPWARD
 2) DOWNWARD
 3) TO THE RIGHT
 4) TO THE LEFT
 IS THE ANSWER 1, 2, 3, OR 4?

 The HINT for this question is: THE CLUE TO THIS IS THE SIGN OF P AND
 THE QUADRATIC TERM.

II) GIVEN THE VERTEX V(A, B) AND FOCUS (C, B) OF A PARABOLA AND THE
 EQUATION (Y - _)^2 = _ (X - _) (A, B and C are random integers, A≠C)

7) WHAT NUMBER GOES IN THE FIRST BLANK?

8) WHAT NUMBER GOES IN THE SECOND BLANK?

9) WHAT NUMBER GOES IN THE THIRD BLANK?

10) THE DIRECTRIX IS THE LINE X = _
 WHAT NUMBER GOES IN THE BLANK?

11) THE GRAPH OF THIS EQUATION OPENS EITHER
 1) UPWARD
 2) DOWNWARD
 3) TO THE RIGHT OR
 4) TO THE LEFT
 IS THE ANSWER 1, 2, 3 OR 4?

 The HINT for this question is the same as that of question 6.

III) GIVEN X^2 + AX + BY + C = 0 (B and C are random integers, C≠0
 and A is the product of 2 and a random integer)

12) WHAT IS THE X-COORDINATE OF THE VERTEX?

13) WHAT IS THE Y-COORDINATE OF THE VERTEX?

 The HINT is: THIS IS A HARD ONE. TRY PLOTTING THIS ONE AND THEN SEE IF
 YOU CAN FIGURE IT OUT.

14) WHAT IS THE DISTANCE FROM THE VERTEX TO THE FOCUS?
15) THE GRAPH OF THIS EQUATION OPENS EITHER
 1) UPWARD
 2) DOWNWARD
 3) TO THE RIGHT
 4) TO THE LEFT
 IS THE ANSWER 1, 2, 3 OR 4?

The HINT is the same as that of question 6.
VI. ELLIPSE

The description of equations of ellipses printed out to the user is the following:

THE ELLIPSE

An ellipse is the locus of points \(P(x, y) \) the sum of whose distances from two fixed points (called foci) is constant. The foci are always on the major axis. If we use the letters \(A, B \) and \(C \) to represent the lengths of semimajor axis, semiminor axis and half-distance between foci, respectively, then the following equality holds:

\[
A^2 - B^2 + C^2
\]

If \(P(h, k) \) is the center, defined as the point of intersection of its axes of symmetry, of an ellipse then the equation of the ellipse is given by

\[
(X-h)^2 / A^2 + (Y-k)^2 / B^2 = 1 \quad \text{or} \quad (X-h)^2 / B^2 + (Y-k)^2 / A^2 = 1
\]

depending on the direction of the major axis.

The eccentricity of an ellipse is the ratio

\[
E = C/A
\]

and indicates the degree of departure from circularity. Keeping a fixed and varying \(C \) from 0 to 1, the resulting ellipse will vary in shape, being circular when \(C=0 \) and becoming flatter as \(C \) increases, until at \(C=A \) the ellipse reduces to a line segment joining the two foci.

The level for ELLIPSE is the same as that of CIRCLE. There are five basic problems which generate eighteen different questions for the first pass. Only one question is skipped for each subsequent pass and that is the third question to problem 1. It was skipped on each recycle because of the simplicity of the question. Being asked one time was felt sufficient to get its point across to the student. A listing of ELLIPSE is given in Appendix C.

Unless otherwise stated all hints are just a choice of one of four numbers. The problems and questions for ELLIPSE are the following:
I) GIVEN AN ELLIPSE WITH ITS CENTER AT THE ORIGIN, INTERSECTS THE
POSITIVE X-AXIS AT A AND THE POSITIVE Y-AXIS AT B AND THE STANDARD
EQUATION X^2 + Y^2 = 1 (A and B are random integers, both
positive and unequal)

1) WHAT NUMBER GOES IN THE FIRST BLANK?

2) WHAT NUMBER GOES IN THE SECOND BLANK?

II) GIVEN AN ELLIPSE WITH ITS CENTER AT C(A,B), A FOCUS AT F(C,B)
AND SEMIMAJOR AXIS AT A=D AND THE EQUATION
(X-C)^2 + (Y-B)^2 = 1 (A and B are random integers, but C is the sum of A and another random integer greater than zero. D is the sum of this integer and another random integer which is also greater than zero

3) WHAT NUMBER GOES IN THE FIRST BLANK?

The HINT given is: THIS ONE IS SO EASY THAT YOU REALLY DON'T NEED A HINT, BUT THE CLUE IS THAT YOU ARE JUST TRANSLATING THE AXIS TO THE CENTER OF THE ELLIPSE.

4) WHAT NUMBER GOES IN THE SECOND BLANK?

5) WHAT NUMBER GOES IN THE THIRD BLANK?

The HINT for this one is the same as question 4.

6) WHAT NUMBER GOES IN THE FOURTH BLANK?

The HINT is: THE CLUE IS THAT A^2 = B^2 + C^2, AND YOU SHOULD KNOW A AND C.

7) WHAT IS THE ECCENTRICITY OF THIS ELLIPSE?

The HINT is: YOU HAVE TO RECALL THAT E=C/A.

III) GIVEN THE EQUATION AX^2 + BX^2 + CX + DY + E = 0 (A and B are the squares of two unequal random integers greater than zero and C, D and E are combinations of these two random integers and two others. This insures that the above equation can always be broken down to a standard
form by the method of completing the square)

8) WHAT IS THE X-COORDINATE OF THE CENTER OF THE ELLIPSE?

The HINT for this one is: THIS EQUATION CAN BE CONVERTED TO THE STANDARD FORM BY THE METHOD OF COMPLETING THE SQUARE.

9) WHAT IS THE Y-COORDINATE OF THE CENTER OF THE ELLIPSE?

The HINT is the same as that above.

10) WHAT IS THE LENGTH OF THE MAJOR AXIS?

The HINT is: THE MAJOR AXIS IS JUST TWICE THE LENGTH OF THE SEMI-MAJOR AXIS A.

11) WHAT IS THE LENGTH OF THE MINOR AXIS?

The HINT is: THE MINOR AXIS IS JUST TWICE THE LENGTH OF THE SEMI-MINOR AXIS B.

IV) GIVEN THE EQUATION \((X-A)^2 \div B + (Y-C)^2 \div D = 1\) (A and C are random integers and B and D are the square of two unequal random integers)

12) WHAT IS THE LENGTH OF THE MAJOR AXIS?

The HINT is the same as that of question 10.

13) WHAT IS THE LENGTH OF THE MINOR AXIS?

The HINT is the same as that of question 11.

14) WHAT IS THE SQUARE OF THE DISTANCE FROM THE CENTER OF THE ELLIPSE TO A FOCUS?

The HINT is: REMEMBER THAT \(A^2 = B^2 + C^2\) AND YOU SHOULD KNOW A AND B.

V) GIVEN AN ELLIPSE WHICH PASSES THROUGH THE ORIGIN, HAS FOCI AT \((-A,B)\) AND \((A,B)\) AND THE EQUATION \((X-_)^2 \div _ + (Y-_)^2 \div _ = 1\)

15) WHAT NUMBER GOES IN THE FIRST BLANK?
16) WHAT NUMBER GOES IN THE SECOND BLANK?
17) WHAT NUMBER GOES IN THE THIRD BLANK?
18) WHAT NUMBER GOES IN THE FOURTH BLANK?
VII. HYPERBOLA

The description of equations of hyperbolas printed out to the user is the following:

THE HYPERBOLA

\[C^2 - A^2 = B^2 \] OR
\[C^2 = A^2 + B^2 \]

IF P(H,K) IS THE CENTER, DEFINED AS THE POINT OF INTERSECTION OF ITS AXES OF SYMMETRY, OF A HYPERBOLA THEN THE EQUATION OF THE HYPERBOLA IS GIVEN BY

\[(X-H)^2/A^2 - (Y-K)^2/B^2 = 1 \] OR
\[(Y-K)^2/A^2 - (X-H)^2/B^2 = 1 \]

DEPENDING ON WHETHER THE FOCI ARE LOCATED ON THE X-AXIS OR Y-AXIS, RESPECTIVELY. LIKEWISE, THE STRAIGHT LINES

\[(Y-K) = (B/A)(X-H) \] AND \[(Y-K) = (-B/A)(X-H) \] OR
\[(Y-K) = (A/B)(X-H) \] AND \[(Y-K) = (-A/B)(X-H) \]

ARE CALLED THE ASYMPTOTES OF THE HYPERBOLA, DEPENDING ON WHICH RESPECTIVE AXIS THE FOCI ARE LOCATED.

The level for HYPERBOLA is the same as that of CIRCLE. There are five basic problems which generate twenty different questions for the first pass through the problems. On subsequent passes the first problem and questions number 2, 4 and 6 of problem number 2 are skipped because of their relative simplicity. A listing of HYPERBOLA is given in Appendix C.

Unless otherwise stated the hint for each question is a choice of one of four numbers. The problems and questions are below:
I) THE GRAPH OF THE EQUATION \(x^2 - A - y^2 - B = 1 \) (A and B are random integers not equal to zero)

1) OPENS EITHER

1) UPWARD AND DOWNWARD OR
2) TO THE RIGHT AND TO THE LEFT

IS THE ANSWER 1 OR 2?

The HINT to this question is: IF THE NEGATIVE SIGN IS BEFORE THE X-SQUARED TERM THEN THE CURVE OPENS UPWARD AND DOWNWARD AND IF THE NEGATIVE SIGN IS BEFORE THE Y-SQUARED TERM THEN THE CURVE OPENS TO THE RIGHT AND TO THE LEFT.

II) GIVEN A HYPERBOLA WITH ITS CENTER AT THE ORIGIN, FOCI AT \((A,0)\) AND \((-A,0)\), VERTICES AT \((B,0)\) AND \((-B,0)\) AND THE EQUATION

\[(x-_)^2 - (y-_)^2 = _ = _ (B \text{ is a positive random integer and } A \text{ is the sum of } B \text{ and another positive random integer})\]

2) WHAT NUMBER GOES IN THE FIRST BLANK?

3) WHAT NUMBER GOES IN THE SECOND BLANK?

The HINT is: REMEMBER THAT A IS THE HALF-DISTANCE BETWEEN THE VERTICES.

4) WHAT NUMBER GOES IN THE THIRD BLANK?

5) WHAT NUMBER GOES IN THE FOURTH BLANK?

The HINT is: REMEMBER THAT \(C^2 = A^2 + B^2 \) AND YOU SHOULD KNOW A AND C.

6) WHAT NUMBER GOES IN THE LAST BLANK?

The HINT for this one is: THE EQUATION OF A HYPERBOLA IN ITS STANDARD FORM IS ALWAYS EQUAL TO 1.

7) WHAT IS THE ECCENTRICITY OF THE HYPERBOLA?

The HINT is: THE ECCENTRICITY IS EQUAL TO \(C - A \).
III) GIVEN THE EQUATION $A(X-B)^2 - C(Y-D)^2 = F$ (A and C are the squares of two positive random integers, B and D are two random integers and F is the product of A and C)

8) WHAT IS THE LENGTH BETWEEN THE TWO VERTICES?
The HINT for this question is: REMEMBER THAT A IS THE HALF-DISTANCE BETWEEN THE VERTICES.

9) WHAT IS THE LENGTH BETWEEN THE FOCI SQUARED EQUAL TO?
The HINT is: REMEMBER THAT $C^2 = A^2 + B^2$ AND YOU SHOULD KNOW A AND B.

10) WHAT IS THE POSITIVE SLOPE OF THE ASYMPTOTES?
The HINT is: THE POSITIVE SLOPE IS B/A IF THE FOCI ARE ON THE X-AXIS AND A^2/B IF THE FOCI ARE ON THE Y-AXIS.

11) WHAT IS THE X-COORDINATE OF THE INTERSECTION OF THE TWO ASYMPTOTES?
The HINT for this question is: THE CLUE IS THAT THE ASYMPTOTES INTERSECT AT THE CENTER OF THE HYPERBOLA.

12) WHAT IS THE Y-COORDINATE OF THE INTERSECTION OF THE TWO ASYMPTOTES?
The HINT for this question is the same as that of the question above.

IV) GIVEN A HYPERBOLA WITH FOCI AT (A,B) AND $(A,-B)$ AND VERTICES AT (A,C) AND $(A,-C)$ AND THE EQUATION $(X-_)^2 -(Y-_)^2 = 1$ (A and C are random integers greater than zero and B is the sum of C and another random integer greater than zero)

13) WHAT NUMBER GOES IN THE FIRST BLANK?

14) WHAT NUMBER GOES IN THE SECOND BLANK?
The HINT is the same as that of question 3.

15) WHAT NUMBER GOES IN THE THIRD BLANK?
16) WHAT NUMBER GOES IN THE FOURTH BLANK?
The HINT for this one is the same as number 5.

17) WHAT IS THE ECCENTRICITY OF THE HYPERBOLA?
The HINT is the same as question number 7.

V) GIVEN THE EQUATION \(AX^2 - BY^2 + CX + DY + E = 0 \) (A and B are the square of two random integers greater than zero and C, D and E are combinations of these two numbers and two others so that the above equation can always be converted to a standard form by the method of completing the square)

18) WHAT IS THE X-COORDINATE OF THE CENTER OF THE HYPERBOLA?
The HINT is: THIS EQUATION CAN BE CONVERTED TO THE STANDARD FORM BY THE METHOD OF COMPLETING THE SQUARE.

19) WHAT IS THE Y-COORDINATE OF THE CENTER OF THE HYPERBOLA?
The HINT is the same as that above.

20) WHAT IS THE POSITIVE SLOPE OF THE ASYMPTOTES?
The HINT is: THE POSITIVE SLOPE IS \(B:A \) IF THE FOCI ARE ON THE X-AXIS AND \(A:B \) IF THE FOCI ARE ON THE Y-AXIS.
The description of equations of conics printed out to the user is the following:

CONICS

1) PARABOLA IF $E=1$, OR AN
2) ELLIPSE IF $E<1$, AND A
3) HYPERBOLA IF $E>1$

THE CIRCLE, PARABOLA, ELLIPSE AND HYPERBOLA ARE ALL SPECIAL CASES OF THE FOLLOWING GENERAL EQUATION OF THE SECOND DEGREE:

$$AX^2 + CY^2 + DX + EY + D = 0$$

THIS EQUATION, THEN, REPRESENTS

1) A STRAIGHT LINE IF $A=C=0$, AND NOT BOTH D AND E VANISH.
2) A CIRCLE IF $A=C\neq0$. (IN SPECIAL CASES THE LOCUS MAY REDUCE TO A SINGLE POINT OR NO REAL LOCUS)
3) A PARABOLA IF THE EQUATION IS QUADRATIC IN ONE VARIABLE AND LINEAR IN THE OTHER.
4) AN ELLIPSE IF A AND C ARE BOTH POSITIVE OR BOTH NEGATIVE. (AGAIN IN SPECIAL CASES THE LOCUS MAY REDUCE TO A SINGLE POINT OR NO REAL LOCUS)
5) A HYPERBOLA IF A AND C ARE OF OPPOSITE SIGNS, BOTH DIFFERENT FROM ZERO. (IN SPECIAL CASES THE LOCUS MAY REDUCE TO A PAIR OF INTERSECTING STRAIGHT LINES)

The level for CONICS is the same as CIRCLE. There are nine different problems which ask nine different questions. The uniqueness of this module is that the questions are not asked in the same order each time the module is used. The trick used in doing this was the APL deal operator(?). In this case it gave in random order the numbers 1 through 9. These numbers were then used to go to the corresponding question.
After each pass the questions would be recycled in different order and with different coefficients. A listing of CONICS is given in Appendix G.

The problems and questions are below (the corresponding correct answer for questions 1 through 8 are underlined):

I) GIVEN THE EQUATION $Ox^2 + Oy^2 + Dx + Ey + F = 0$. (D, E and F are random integers not equal to zero)

1) THE EQUATION IS EITHER
 1) A STRAIGHT LINE
 2) A CIRCLE
 3) A PARABOLA
 4) AN ELLIPSE
 5) A HYPERBOLA
 6) NONE OF THESE

IS THE ANSWER 1, 2, 3, 4, 5 OR 6?

The HINT for this question is: THE CLUE TO THIS ONE IS THE COEFFICIENTS A AND C. The above six choices are printed out to the user for questions 1 through 8. In order to prevent redundancy they will not be printed but will be indicated by

II) GIVEN THE EQUATION $Ax^2 + Cy^2 + Dx + Ey + F = 0$ (A and C are equal random integers greater than zero, D and E are random integers greater than or equal to zero and F is a negative random integer not equal to zero)

2) THE EQUATION IS EITHER

IS THE ANSWER 1, 2, 3, 4, 5 OR 6?

The HINT is the same as that of question number 1.

III) GIVEN THE EQUATION $Ox^2 + Cy^2 + Dx + Cy + F = 0$ (C, D and F are random integers not equal to zero)

3) THE EQUATION IS EITHER

IS THE ANSWER 1, 2, 3, 4, 5 OR 6?
The HINT is: THE CLUE TO THIS ONE IS THE COEFFICIENTS A AND E.

IV) GIVEN THE EQUATION \(Ax^2 + Cy^2 + Ox + Oy + F = 0 \) (A and C are unequal random integers greater than zero and F is a negative random integer not equal to zero)

4) THE EQUATION IS EITHER

IS THE ANSWER 1,2,3,4,5 OR 6?

The HINT is the same as number 1.

V) GIVEN THE EQUATION \(Ax^2 + Cy^2 + Dx + Ey + F = 0 \) (A is the square of a random integer not equal to zero, C is the negative of the square of a random integer not equal to zero and D, E and F are combinations of these two and two other random integers so that the equation can always be converted to a standard form by the method of completing the square)

5) THE EQUATION IS EITHER

IS THE ANSWER 1,2,3,4,5 OR 6?

The HINT to this question is: THIS EQUATION CAN BE CONVERTED TO A STANDARD FORM BY THE METHOD OF COMPLETING THE SQUARE.

VI) GIVEN THE EQUATION \(Ax^2 + Cy^2 + Ox + Oy + O = 0 \) (A is a random integer greater than zero and C is a random integer less than zero)

6) THE EQUATION IS EITHER

IS THE ANSWER 1,2,3,4,5 OR 6?

The HINT is: THE CLUE TO THIS ONE IS THE COEFFICIENTS D, E AND F.

VII) GIVEN THE EQUATION \(Ax^2 + Cy^2 + Dx + Ey + F = 0 \) (A and C are the squares of two unequal random integers greater than zero and D, E and F are combinations of these two integers and two other random inte-
gers so that the above equation can always be converted to a standard form by the method of completing the square)

7) THE EQUATION IS EITHER

IS THE ANSWER 1, 2, 3, 4, 5 OR 6?

The HINT is the same as that of question number 5.

VIII) GIVEN THE EQUATION \(x^2 + y^2 + dx + ey + f = 0 \) (\(d \) and \(e \) are two positive random integers and \(f \) is twice the product of these two integers)

8) THE EQUATION IS EITHER

IS THE ANSWER 1, 2, 3, 4, 5 OR 6?

The HINT is: THE CLUE TO THIS ONE IS THE COEFFICIENT \(f \).

IX) IF A POINT \(P(x, y) \) IS SUCH THAT ITS DISTANCE \(PF \) FROM A FIXED POINT (THE FOCUS) IS PROPORTIONAL TO ITS DISTANCE \(PD \) FROM A FIXED LINE (THE DIRECTRIX), THAT IS, SO THAT \(PS = A \times PF \) WHERE \(A \) IS A CONSTANT, THEN THE LOCUS OF \(P \) IS

1) AN ELLIPSE
2) A PARABOLA
3) A HYPERBOLA OR
4) NONE OF THESE

(A is either a number less than 1, but greater than 0, or 1, or an integer greater than 1)

9) IS THE ANSWER 1, 2, 3 OR 4?

The HINT for this question is: REMEMBER WHAT THE DEFINITION OF ECCENTRICITY IS.
IX. LIMITS

The description of LIMITS that is printed out to the user is below:

LIMITS
THIS SECTION IS CONCERNED WITH THE BEHAVIOR OF THE RATIO OF ALGEBRAIC EXPRESSIONS LIKE \((x^2 - 2x + 4)/(2x - 5)\) AS \(x\) APPROACHES SOME NUMBER OR AS \(x\) APPROACHES PLUS OR MINUS INFINITY. IN SOME CASES THE BEHAVIOR OF THE RATIO CAN BE FOUND BY LOOKING AT THE BEHAVIOR OF THE NUMERATOR AND THE DENOMINATOR INDEPENDENTLY. THESE CASES OCCUR WHEN THE DENOMINATOR APPROACHES SOME REAL NONZERO NUMBER. IN THESE CASES THE LIMIT OF THE RATIO OF THE NUMERATOR, \(a\), TO THE DENOMINATOR, \(b\), IS \(a/b\). OTHER CASES OCCUR WHEN THE DENOMINATOR APPROACHES ZERO OR WHEN THE DENOMINATOR IS UNBOUNDED (APPROACHES PLUS OR MINUS INFINITY). FOR THESE CASES WE HAVE THE FOLLOWING:

1) \(n \rightarrow a; d \rightarrow 0; f \rightarrow \pm\) INFINITY depending on whether \(a\) IS POSITIVE OR NEGATIVE.

2) \(n \rightarrow 0; d \rightarrow 0; f \rightarrow 0\) IF THE DEGREE OF THE NUMERATOR IS GREATER THAN THE DEGREE OF THE DENOMINATOR.
\(f \rightarrow\) SOME NUMBER IF THE FACTORS APPROACHING ZERO IN THE NUMERATOR AND DENOMINATOR DIVIDE OUT.
\(f \rightarrow\) INFINITY IF THE DEGREE OF THE DENOMINATOR IS GREATER THAN THE DEGREE OF THE NUMERATOR.

3) \(n \rightarrow -\) INFINITY; \(d \rightarrow -\) INFINITY;
\(f \rightarrow 0\) IF THE DEGREE OF THE DENOMINATOR IS GREATER THAN THE DEGREE OF THE NUMERATOR.
\(f \rightarrow\) SOME NUMBER IF THE NUMERATOR AND DENOMINATOR HAVE THE SAME DEGREE.
\(f \rightarrow\) INFINITY IF THE DEGREE OF THE NUMERATOR IS GREATER THAN THE DEGREE OF THE DENOMINATOR.

4) \(n \rightarrow a; d \rightarrow -\) INFINITY; \(f \rightarrow 0\)

THE DESIGNATION OF \(x \rightarrow 0\) FROM THE LEFT OR THROUGH NEGATIVE NUMBERS WILL BE \(x \rightarrow 0^-\) AND \(x \rightarrow 0^+\) WHEN IT APPROACHES 0 FROM THE RIGHT OR THROUGH POSITIVE NUMBERS.

The level of LIMITS is similar to that of CIRCLE, but the reference used was a calculus text by Fobes and Smythe[6] rather than Thomas[2].
There are six different problems which generate eighteen questions for each pass through the problems. On each recycle new coefficients are generated for each problem. A listing of LIMITS is given in Appendix C.

The problems and questions are listed below:

I) GIVEN THE EXPRESSION \((x^2 + ax + b)/(x^2 + cx + d)\) (A and B are the sum and product of two random integers, J and K, both not equal to zero and C and D, likewise, are the sum and product of two random integers, L and M, both not equal to zero and also not equal to J or K)

1) WHAT IS THE LIMIT AS \(x \to 0^+\)?

The HINT for this question is: THE CLUE TO THIS ONE IS TO JUST EVALUATE THE EXPRESSION.

2) WHAT IS THE LIMIT AS \(x \to -J\)? (J is the above random integer)

3) WHAT IS THE LIMIT AS \(x \to -M^+\)? (M is the above random integer)

The HINT is: IF THE DENOMINATOR OF AN EXPRESSION GOES TO ZERO AND THE NUMERATOR DOES NOT, THEN THE EXPRESSION GROWS WITHOUT BOUND OR TENDS TO INFINITY.

4) WHAT IS THE LIMIT AS \(x \to 1\)?

The HINT is the same as that of question 1.

5) WHAT IS THE LIMIT AS \(x \to +\infty\)?

The HINT is: THE CLUE TO THIS ONE IS TO DIVIDE NUMERATOR AND DENOMINATOR BY \(x^2\).

II) GIVEN THE EXPRESSION \((x^2 + ax + b)/(x^2 + cx + d)\) (A and B are the sum and product of two unequal random integers, J and K, both not equal to zero, and C and D are the sum and product of K and another random integer, L, not equal to zero and also not equal to J or K)

6) WHAT IS THE LIMIT AS \(x \to -K\)? (K is the above random integer)
The hint for this one is: the clue is to factor the numerator and denominator and see if a term divides out.

7) What is the limit as x → 0 ?

The hint is the same as question 1.

8) What is the limit as x → -L ? (L is the above random integer)

The hint for this question is the same as that of question 3.

III) Given the expression \((AX^2 + BX + C)/(DX^2 + EX + F)\) (A, C, D and F are random integers not equal to zero, and B and E are random integers greater than zero)

9) What is the limit as x → -∞?

The hint is the same as question number 5.

10) What is the limit as x → 0 ?

The hint is the same as question 1.

IV) Given the expression \((AX-1)/(X^2 + BX + C)\) (A is a random integer greater than one, and B and C are the sum of two random integers, J and K)

11) What is the limit as x → -J+ ?

The hint for this question is the same as that of question 3.

12) What is the limit as x → +∞?

The hint is the same as question number 5.

V) Given the expression \((2X^2 + 9X + A)/(X + B)\) (A is a positive random integer, and B is a random integer not equal to zero)

13) What is the limit as x → -B+ ?

The hint for this question is the same as that of question 3.

14) What is the limit as x → +∞?

The hint is the same as that of question 3.

15) What is the limit as x → 0 ?
VI) GIVEN THE EXPRESSION \(\frac{1}{(x-a)^3} \), \(a \) is a positive random integer.

16) WHAT IS THE LIMIT AS \(x \to -a^+ \) ?

The HINT is the same as question 1.

17) WHAT IS THE LIMIT AS \(x \to a^+ \) ?

The HINT for this question is the same as question number 3.

18) WHAT IS THE LIMIT AS \(x \to a^- \) ?

The HINT is the same as question 3.
APPENDIX B

A DESCRIPTION OF THE FUNCTIONS

The following are the names of the functions and a short description of what they do. A listing of each function is found in Appendix B.

I. AHINT

This function is dyadic. It is used when the hint for a question is a choice of one of four numbers but the numbers themselves are quotients. This function takes its two arguments, A and B, and produces one of the following strings:

'A*B B*A -A*B -B*A*

or

'B*A -A*B -B*A A*B'

Which string it produces is determined by a random number generator.

II. CHECK

This is the function called by all modules after each question is asked. It reads the user's reply, compares it against the predetermined replies and generates the appropriate response. It also calls the function SCORE when necessary.
III. DIV

This function is dyadic. It is used when the answer to a question involves a quotient, but the hint for the question is in the form of a comment. The function changes the two numbers, A and B, to the string 'A:B', and if the user's reply is HELP this string is printed out as the answer.

IV. REPLY

This function prints out the following message:

THE COMPUTER WILL ASK YOU QUESTIONS WHOSE ANSWERS ARE NUMBERS. YOU ARE TO TYPE IN THE NUMBER. IF THE NUMBER IS A FRACTION, HOWEVER, YOU ARE TO USE THE DIVIDE(÷) SYMBOL AND NOT THE SLASH(/), SO ONE-HALF IS 1÷2 AND THREE-AND-ONE-THIRD IS 10÷3.

IF YOUR REPLY IS INCORRECT THE COMPUTER WILL REPLY TRY AGAIN AND YOU GET ANOTHER CHANCE. IN FACT, YOU GET 3 TRIES AT EACH QUESTION.

IF YOU DO NOT KNOW THE ANSWER TO THE QUESTION YOU CAN TYPE HINT AND EITHER (1) A COMMENT WILL BE PRINTED OR (2) A LIST OF FOUR NUMBERS WILL BE PRINTED, WHERE ONE IS THE CORRECT ANSWER.

IF YOU DO NOT HAVE THE SLIGHTEST IDEA OF WHAT THE ANSWER IS TYPE HELP AND THE ANSWER WILL BE GIVEN.

IF YOU WANT TO KNOW HOW MANY QUESTIONS YOU HAVE BEEN ASKED TYPE QNUMBER

IF YOU WANT AN XY-AXIS PRINTED FOR SKETCHING FUNCTIONS THEN TYPE GRAPH

WHEN YOU WANT TO STOP THE EXERCISE TYPE GRAPH

AND A TABULATED RESULT OF YOUR REPLIES WILL BE GIVEN AND THEN THE EXERCISE WILL TERMINATE.

V. RN1

This function generates a random integer from -9 to +9.
VI. RN2

This function generates a random integer from -9 to +9 exclusive of zero.

VII. RN3

This function is called only the module TRIG. It generates integer lengths of two sides of a right triangle. Six different combinations are possible thus giving six different triangles.

VIII. SCORE

This function is called by the function CHECK and tallies the different response's given by the user.
APPENDIX C

A LISTING OF THE MODULES

\PY
LINEQ
\PY
[1] S+6s0
[2] N+?1+1+(60 60 60 60 120)
[3] N+0×1+(Np19)
[4] 'REPLY EITHER YES OR NO.'
[5] 'ARE YOU FAMILIAR WITH LINEAR EQUATIONS?'
[6] R+1
[7] L9×i(1+R)='Y'
[8] '

LINEAR EQUATIONS'
 \text{DX+ELY+F=0 ,}'
[10] 'WHERE D, E AND F ARE REAL NUMBERS AND WHERE EITHER D
 OR E IS
[11] 'NOT EQUAL TO ZERO, IS CALLED A STRAIGHT LINE. SUCH
 AN
[12] 'EQUATION IS CALLED A LINEAR EQUATION.'
[13] 'THE EQUATION IS USUALLY WRITTEN IN THE FORM
 \text{Y=(-D+E)X+(-F+E) OR}
 \text{Y=MX+B WHERE'}
[14] 'M=-D+E IS EQUAL TO THE SLOPE AND
 \text{B=-F+E IS EQUAL TO THE Y-INTERCEPT.'}
[15] 'THIS EQUATION IS SOMETIMES WRITTEN AS
 \text{X=(-E+D)Y+(-F+D) WHERE}
 \text{-F+D IS EQUAL TO THE X-INTERCEPT.'}
[16] 'THE SLOPE IS DEFINED TO BE THE RATIO
 \text{M=(Y2-Y1):(X2-X1)}'
[17] 'WHERE (X2,Y2) AND (X1,Y1) ARE TWO POINTS. IF'
[18] '(X2-X1) EQUALS ZERO THEN THE SLOPE IS SAID TO BE UND
 EFINED.'
[19] L9:

ARE YOU FAMILIAR WITH THE REPLIES OF THIS EXERCISE?
[20] R+1
[21] L0×i(1+R)='Y'
[22] REPLY
[23] L0:Y+RN2×X+(X×(M×X+RN2)),M+RN2+1
[24] 'GIVEN 2 POINTS (X2,Y2)=(';1+X;',';1+Y;') AND (X1,Y
 1)=(';1+X;',';1+Y;')'
[25] 'WHAT IS THE SLOPE?'
ANS+(-/Y)i-/X
H+"THE CLUE TO THIS ONE IS TO KNOW THE DEFINITION OF THE SLOPE."
→0\times\text{CHECK}=1
→L1×iN=1
"WHAT IS THE Y-INTERCEPT?"
ANS+ANS+(1+Y)-ANS×(1+X)
H+(?4)\phiH+(X-Y),(-ANS),ANS
→0\times\text{CHECK}=1
L1:X+RN2+0\times Y+RN1
"GIVEN Y=';X;'X+';Y"
"WHAT IS THE SLOPE?"
H+(?4)\phiH+(-X),Y,(-Y),ANS+ANSA+X
→0\times\text{CHECK}=1
"WHAT IS THE Y-INTERCEPT?"
ANS+ANS+Y
→0\times\text{CHECK}=1
X+"5+19
M+(?2)\times\timesRN2
G+(\phi X)\times=(M\times X)+Y+-4+7
"BELOW IS THE GRAPH OF A LINE"
(18;p 1 0),';+o'[(G+1+2\times0=(\phi X)\times,X]
"WHICH INTERSECTS THE X-AXIS AT ';-Y+M;,' AND HAS A SLOPE ';M;"
"IF THE EQUATION IS OF THE FORM
Y=_X+_
WHAT NUMBER GOES IN THE FIRST BLANK?"
H+(?4)\phiH+Y,(-Y+M),(-Y),ANS+ANSA+M
→0\times\text{CHECK}=1
"WHAT NUMBER GOES IN THE SECOND BLANK?"
ANS+ANSA+Y
→0\times\text{CHECK}=1
X+RN1+0\times Y+RN1+0\times M+RN2
"GIVEN THE POINT(X,Y)=(';X;',';Y;'), A SLOPE OF ';M;'
AND'
"WHAT NUMBER GOES IN THE FIRST BLANK?"
H+(?4)\phiH+M,X,(X-Y),ANS+ANSA+Y
→0\times\text{CHECK}=1
"WHAT NUMBER GOES IN THE THIRD BLANK?"
ANS+ANSA+X
→0\times\text{CHECK}=1
"WHAT NUMBER GOES IN THE SECOND BLANK?"
ANS+ANSA+M
→0\times\text{CHECK}=1
M+RN2+0\times X+RN1
"GIVEN A Y-INTERCEPT OF ';X;,' A SLOPE OF ';M;,' AND'
"WHAT NUMBER GOES IN THE FIRST BLANK?"
WHAT NUMBER GOES IN THE SECOND BLANK?

ANS+ANSA+X

WHAT IS THE SLOPE?

H+THE CLUE TO THIS ONE IS TO PUT THE EQUATION IN THE FORM OF Y=MX+B.

ANS+(-X) DIV Y

WHAT IS THE Y-INTERCEPT?

ANS+(-M) DIV Y

WHAT IS THE X-INTERCEPT?

ANS+(-M) DIV X

*THE CLUE TO THIS ONE IS TO PUT THE EQUATION IN THE FORM X=\(y+\).

ANS+(-M) DIV X

BELOW IS THE GRAPH OF A LINE

WHICH INTERSECTS THE X-AXIS AT \(y=M;\) AND THE Y-AXIS AT \(y;\)

IF \(y=-x+_\)_ WHAT NUMBER GOES IN THE FIRST BLANK?

H+(-?)+Y,(-Y+M),(-Y),ANS+ANSA+M

WHAT NUMBER GOES IN THE SECOND BLANK?

ANS+ANSA+Y

WHAT NUMBER GOES IN THE SECOND BLANK?
\[VQUADEQ[\text{?}]V \]
\[VQUADEQ \]
[1] \(S+6\times0 \)
[2] \(N+?1+1+(60 \times 60 \times 60 \times 1) \)
[3] \(N+0 \times 1+19 \)
[4] 'REPLY EITHER YES OR NO.'
[5] 'ARE YOU FAMILIAR WITH QUADRATIC EQUATIONS?'
[6] R+\[\text{?}\]
[7] \(+L9 \times \text{(1+R)}='Y' \)
[8] '\

QUADRATIC EQUATIONS

THE QUADRATIC EQUATION

\[AX^2+BX+C=0 \]

WHERE \(A, B, \) AND \(C \) ARE REAL NUMBERS, AND WHERE \(X \) IS EITHER A REAL OR A COMPLEX NUMBER, HAS TWO SOLUTIONS, NAMELY:'

\[X=(-B+(B^2-4AC)^{.5})/2A \]

\[X=(-B-(B^2-4AC)^{.5})/2A \]

'THE QUANTITY \((B^2-4AC)^{.5}\) IS KNOWN AS THE DISCRIMINANT AND IT DETERMINES THE KINDS OF ROOTS OF THE EQUATION. IF THE DISCRIMINANT IS:'

1) POSITIVE, THE TWO SOLUTIONS ARE REAL AND UNEQUAL.

2) ZERO, THE TWO SOLUTIONS ARE REAL AND EQUAL.'

3) NEGATIVE, THE TWO SOLUTIONS ARE UNEQUAL AND COMPLEX.'

L9:'

ARE YOU FAMILIAR WITH THE REPLIES OF THIS EXERCISE?'

R+\[\text{?}\]

\[+L0 \times 1(1+R)= 'Y' \]

REPLY

\[L0: X+RN1+0 \times Y+RN1 \]

'GIVEN TWO ROOTS, \(X= ?X; ?Y; \) AND \(X^2+_X+_=0 \)

WHAT NUMBER GOES IN THE FIRST BLANK?'

H+'THE QUADRATIC EQUATION, GIVEN TWO ROOTS IS FOUND BY MULTIPLYING \((X-\text{ROOT 1})(X-\text{ROOT 2})\).'

\[+O \times \text{CHECK}=1+0 \times \text{ANS+ANSA}+(-X)=-Y \]

'WHAT NUMBER GOES IN THE SECOND BLANK?'

\[\text{ANS+ANSA}+(-X) \times -Y \]

\[+O \times \text{CHECK}=1 \]

\[X+RN1+0 \times Y+RN1 \]

\[N\times/L/X+Y \]

\[G+?/X,Y \]

'GIVEN \(X^2+\);(-X)\times-Y; ?X+\);(-X)\times-Y;=0 \)

WHAT IS THE SMALLER ROOT OF THE EQUATION?'
H+"THE SMALLER ROOT IS THE ONE WHICH IS FARTHER TO THE LEFT ON THE REAL NUMBER LINE(-INFINITY 0 +INFINITY)."

WHAT IS THE LARGER ROOT OF THE EQUATION?

H+"THE LARGER ROOT IS THE ONE WHICH IS FARTHER TO THE RIGHT ON THE REAL NUMBER LINE(-INFINITY 0 +INFINITY)."

WHAT IS THE LARGER ROOT OF THE EQUATION?

H+"THE LARGER ROOT IS THE ONE WHICH IS FARTHER TO THE RIGHT ON THE REAL NUMBER LINE(-INFINITY 0 +INFINITY)."

WHAT IS THE LARGER ROOT OF THE EQUATION?

H+"THE LARGER ROOT IS THE ONE WHICH IS FARTHER TO THE RIGHT ON THE REAL NUMBER LINE(-INFINITY 0 +INFINITY)."

WHAT IS THE LARGER ROOT OF THE EQUATION?

H+"THE LARGER ROOT IS THE ONE WHICH IS FARTHER TO THE RIGHT ON THE REAL NUMBER LINE(-INFINITY 0 +INFINITY)."

WHAT IS THE LARGER ROOT OF THE EQUATION?

H+"THE LARGER ROOT IS THE ONE WHICH IS FARTHER TO THE RIGHT ON THE REAL NUMBER LINE(-INFINITY 0 +INFINITY)."

WHAT IS THE LARGER ROOT OF THE EQUATION?

H+"THE LARGER ROOT IS THE ONE WHICH IS FARTHER TO THE RIGHT ON THE REAL NUMBER LINE(-INFINITY 0 +INFINITY)."

WHAT IS THE LARGER ROOT OF THE EQUATION?

H+"THE LARGER ROOT IS THE ONE WHICH IS FARTHER TO THE RIGHT ON THE REAL NUMBER LINE(-INFINITY 0 +INFINITY)."
ARE YOU FAMILIAR WITH THE DEFINITIONS OF TRIGONOMETRY?

REPLY EITHER YES OR NO.

ARE YOU FAMILIAR WITH THE DEFINITIONS OF TRIGONOMETRY?

TRIGONOMETRY

GIVEN A RIGHT TRIANGLE IN ITS STANDARD POSITION IN THE FIRST QUADRANT WITH THE ANGLE α AT THE ORIGIN.

'PYTHAGORAS' S THEOREM STATES THAT

$Z^2 = X^2 + Y^2$

AND FROM THE DEFINITIONS OF TRIGONOMETRY

$\sin \alpha = \text{SIDE OPPOSITE} \div \text{HYPOTENUSE} = Y^2$
$\cos \alpha = \text{SIDE ADJACENT} \div \text{HYPOTENUSE} = X^2$
$\tan \alpha = \text{SIDE OPPOSITE} \div \text{SIDE ADJ.} = Y^2$
$\csc \alpha = \text{HYPOTENUSE} \div \text{SIDE OPP.} = Z^2$
$\sec \alpha = \text{HYPOTENUSE} \div \text{SIDE ADJ.} = Z^2$
$\cot \alpha = \text{SIDE ADJACENT} \div \text{SIDE OPP.} = X^2$

THE SIGNS OF THE TRIG TERMS WOULD CHANGE IF THE TRIANGLE WAS IN ANOTHER QUADRANT AND WOULD CHANGE ACCORDING TO THE CORRESPONDING VALUES OF X AND Y IN THAT QUADRANT. THE TRIG TERMS, THEN, ARE CYCLIC AS α IS ROTATED FROM 0 TO 360 DEGREES.

ARE YOU FAMILIAR WITH THE REPLIES OF THIS EXERCISE?
WHAT IS THE VALUE OF $\sin \alpha$?

\[\text{ANS} + Y \div Z \]

WHAT IS THE VALUE OF $\cos \alpha$?

\[\text{ANS} + X \div Z \]

WHAT IS THE VALUE OF $\sin \omega$?

\[\text{ANS} + Y \]

WHAT IS THE VALUE OF $\cos \omega$?

\[\text{ANS} + X \div Z \]

WHAT IS THE VALUE OF $\tan \omega$?

\[\text{ANS} + X \div Y \]

WHAT IS THE VALUE OF $\cot \alpha$?

\[\text{ANS} - X \div Y \]

WHAT IS THE VALUE OF $\csc \alpha$?

\[\text{ANS} + Z \div Y \]

WHAT IS THE VALUE OF $\sec \alpha$?

\[\text{ANS} + Z \div X \]

WHAT IS THE VALUE OF $\tan \alpha$?

\[\text{ANS} + Y \div X \]

WHAT IS THE VALUE OF $\cos \alpha$?

\[\text{ANS} + X \div Z \]

WHAT IS THE VALUE OF $\sin \alpha$?

\[\text{ANS} + Y \div Z \]

WHAT IS THE SIDE OPPOSITE α EQUAL TO?

\[\text{ANS} - X \div \text{ANS} + Z \]

WHAT IS THE HYPOTENUSE EQUAL TO?

\[\text{ANS} + Z \]

WHAT IS THE SIDE ADJACENT α EQUAL TO?

\[\text{ANS} + Z \]

WHAT IS THE VALUE OF THE $\cos \alpha$?

\[\text{ANS} + Y \div Z \]

WHAT IS THE VALUE OF THE $\sin \alpha$?

\[\text{ANS} + Y \div Z \]

WHAT IS THE RIGHT TRIANGLE; TRI

WHERE $\sin \alpha = Y$; $\cos \alpha = Z$ AND $Y = Y$

I+1

L2: WHAT IS THE SIDE OPPOSITE α EQUAL TO?

\[\text{ANS} + Y \]

WHAT IS THE HYPOTENUSE EQUAL TO?

\[\text{ANS} + Z \]

WHAT IS THE SIDE ADJACENT α EQUAL TO?

\[\text{ANS} + Z \]

WHAT IS THE VALUE OF THE $\cos \alpha$?

\[\text{ANS} + Y \]

WHAT IS THE VALUE OF THE $\sin \alpha$?

\[\text{ANS} + Y \]

WHAT IS THE RIGHT TRIANGLE; TRI
WHERE TAN \(\alpha = \frac{Y}{X} \) AND \(X = X \)

\(I+2 \)

\(\rightarrow L2 \)

\(L5:I+3 \)

\(Z \rightarrow RN3 \)

'GIVEN THE RIGHT TRIANGLE'; TRI

'WHERE COS \(\alpha = \frac{X}{Z} \) AND Z = Z'

\(\rightarrow L2 \)

\(L7:Z+|RN2 \)

'WHAT IS THE VALUE OF COS(\(\frac{Z}{\pi} \))?'

H+ 'REMEMBER THAT TRIG FUNCTIONS ARE CYCLIC SO YOU NEED TO FIND OUT WHAT QUADRANT THIS WOULD BE IN.'

\(\rightarrow 0 \times \checkmark = 1 + 0 \times \text{ANS} + \text{ANS}^{-1}(1, -1)(1 + 1 + (2, 2, 2, 2)) \)

\(Z+RN2 \)

'WHAT IS THE VALUE OF SIN(\(\frac{Z}{\pi} \))?'

\(\rightarrow 0 \times \checkmark = 1 + 0 \times \text{ANS} + \text{ANS}^{-1} \)

\(Z+9 \times |RN2 \)

'GIVEN A RIGHT TRIANGLE'; TRI

'WITH THE ANGLE \(\alpha = \frac{Z}{\pi} \) DEGREES WHAT IS ANGLE \(\omega \) EQUAL TO?'

H+ 'THE CLUE IS THAT THE SUM OF THE INNER ANGLES OF A TRIANGLE = 180 DEGREES.'

\(\rightarrow 0 \times \checkmark = 1 + 0 \times \text{ANS} + \text{ANS} + 90 - Z \)

\(\rightarrow L0 \)

\[\text{CIRCLE} \]

\[\text{1. } S=60 \]

\[\text{2. } N=1+1(60 60 60 60 1120) \]

\[\text{3. } N=0x1+? (Np19) \]

\[\text{4. 'REPLY EITHER YES OR NO.'} \]

\[\text{5. 'ARE YOU FAMILIAR WITH THE EQUATIONS OF A CIRCLE?'} \]

\[\text{6. } R+1 \]

\[\text{7. } +L9x1(1+R)='Y' \]

\[\text{8. 'THE CIRCLE'} \]

\[\text{9. 'THE CIRCLE IS THE LOCUS OF POINTS IN A PLANE AT A GIVEN DISTANCE(CALLED THE RADIUS) FROM A GIVEN POINT(CALLED THE CENTER).'} \]

\[\text{10. 'IF C(H,K) IS THE CENTER OF THE CIRCLE AND R THE RADIUS THEN THE EQUATION OF THE CIRCLE IS'} \]

\[(X-H)^2 + (Y-K)^2 = R^2 \]

\[\text{11. 'AN EQUATION OF THE FORM'} \]

\[AX^2 + AY^2 + DX + EY + F = 0 \text{, } A=0' \]

\[\text{12. 'CAN OFTEN BE REDUCED TO THE EQUATION OF A CIRCLE BY THE METHOD OF COMPLETING THE SQUARES.'} \]

\[\text{13. 'IN THE ABOVE FORM IT WOULD LOOK LIKE'} \]

\[(X+D/2A)^2 + (Y+E/2A)^2 = (D^2 + E^2 - 4AF) / 4A \]

\[\text{14. 'REMEMBER, HOWEVER, THAT THE RIGHT HAND SIDE MUST BE POSITIVE FOR THE EQUATION OF A CIRCLE.'} \]

\[\text{15. L9:}' \]

\[\text{ARE YOU FAMILIAR WITH THE REPLIES OF THIS EXERCISE?'} \]

\[\text{16. } R+1 \]

\[\text{17. } +L9x1(1+R)='Y' \]

\[\text{18. } \text{REPLY} \]

\[\text{19. } L0:x+|RN2 \]

\[\text{20. 'GIVEN A CIRCLE OF RADIUS ';} ;X; '\text{ WITH ITS CENTER AT THE ORIGIN AND THE EQUATION }_X^2 +_Y^2 = _I' \]

\[\text{21. 'WHAT NUMBER GOES IN THE FIRST BLANK?'} \]

\[H+(?4)\phi x, (X*2), (-X), ANS+ANSA+1 \]

\[\text{22. } +0\times\text{CHECK}=1 \]

\[\text{23. 'WHAT NUMBER GOES IN THE SECOND BLANK?'} \]

\[+0\times\text{CHECK}=1+0\times\text{ANS+ANSA+X*2} \]

\[\text{24. 'WHAT NUMBER GOES IN THE SECOND BLANK?'} \]

\[L1:x+RN1+0\times Y+RN1+0\times M+|RN2 \]

\[\text{25. 'GIVEN (X-';X; ');Y')*2+(Y-';Y; ');M*2} \]

\[\text{26. 'WHAT IS THE X-COORDINATE OF THE CENTER OF THE CIRCLE ?'} \]

\[H+(?4)\phi y, M, (M*2), ANS+ANSA+X \]
WHAT IS THE Y-COORDINATE OF THE CENTER OF THE CIRCLE?

WHAT IS THE RADIUS EQUAL TO?

GIVEN THE CENTER OF A CIRCLE AS (X; Y), A RADIUS OF R, THE EQUATION (x - X)² + (y - Y)² = R² IS THE ANSWER.

WHAT NUMBER GOES IN THE FIRST BLANK?

WHAT NUMBER GOES IN THE SECOND BLANK?

WHAT NUMBER GOES IN THE THIRD BLANK?

GIVEN A CIRCLE WHICH PASSES THROUGH THE ORIGIN, HAS A CENTER AT (X; Y) AND THE EQUATION (x - X)² + (y - Y)² = R² IS THE ANSWER.

WHAT NUMBER GOES IN THE FIRST BLANK?

WHAT NUMBER GOES IN THE SECOND BLANK?

WHAT NUMBER GOES IN THE THIRD BLANK?

THE POINT (X; Y) IS EITHER INSIDE THE CIRCLE, ON THE CIRCLE, OR OUTSIDE THE CIRCLE.

WHAT IS THE X-COORDINATE OF THE CENTER OF THE CIRCLE?
'What is the y-coordinate of the center of the circle?'

\[0 \times \text{CHECK} = 1 + 0 \times \text{ANS} + \text{ANS} = -y^2 \]

'What is the radius-squared term equal to?'

\[\text{ANS} + \text{ANS} = (x^2 + y^2 - 4 \times 0) \times 4 \]

The clue to this one is the right hand side of the equation after the method of completing the squares has been applied.'

\[0 \times \text{CHECK} = 1 \]

\[+ \text{L1} \]

\[\text{V} \]
THE PARABOLA

A parabola is the locus of points in a plane equidistant from a point (called the focus) and a given line (called the directrix).

The focus is on the axis of symmetry, \(p \) units from the vertex while the directrix is \(-p\) units from the vertex and perpendicular to the axis of symmetry.

If \(V(h, k) \) is the vertex then the equation of a parabola is one of the following:

1) \((x-h)^2 = 4p(y-k)\) which opens upward
2) \((x-h)^2 = -4p(y-k)\) which opens downward
3) \((y-k)^2 = 4p(x-h)\) which opens to the right
4) \((y-k)^2 = -4p(x-h)\) which opens to the left

The clue to an equation of a parabola is that it is quadratic in one of the coordinates and linear in the other. Whenever there is this type of equation it can be reduced to one of the above standard forms by completing the square in the coordinate which appears quadratically.

Are you familiar with the replies of this exercise?
WHAT IS THE X-COORDINATE OF THE FOCUS?

WHAT IS THE Y-COORDINATE OF THE FOCUS?

THE DIRECTRIX IS THE LINE Y =

WHAT NUMBER GOES IN THE BLANK?

H + (?x) ? ANS + ANSA + X + M

THE GRAPH OF THIS EQUATION OPENS EITHER

1) UPWARD
2) DOWNWARD
3) TO THE RIGHT
4) TO THE LEFT

IS THE ANSWER 1, 2, 3 OR 4?

THE CLUE TO THIS IS THE SIGN OF P AND THE QUADRATIC TERM.

WHAT NUMBER GOES IN THE FIRST BLANK?

H + (?x) ? ANS + ANSA + Y

WHAT NUMBER GOES IN THE SECOND BLANK?

H + (?x) ? ANS + ANSA + X + M

WHAT NUMBER GOES IN THE THIRD BLANK?

H + (?x) ? ANS + ANSA + X

THE DIRECTRIX IS THE LINE X =

WHAT NUMBER GOES IN THE BLANK?

H + (?x) ? ANS + ANSA + X + (-M)

WHAT IS THE DISTANCE FROM THE VERTEX TO THE FOCUS?

WHAT IS THE Y-COORDINATE OF THE VERTEX?

THIS IS A HARD ONE. TRY PLOTTING THIS ONE AND THE N SEE IF YOU CAN FIGURE IT OUT.'

WHAT IS THE DISTANCE FROM THE VERTEX TO THE FOCUS?

WHAT IS THE X-COORDINATE OF THE VERTEX?
ARE YOU FAMILIAR WITH THE EQUATIONS OF ELLIPSES?

REPLY EITHER YES OR NO.

ARE YOU FAMILIAR WITH THE EQUATIONS OF ELLIPSES?

REPLY EITHER YES OR NO.

ARE YOU FAMILIAR WITH THE EQUATIONS OF ELLIPSES?

REPLY EITHER YES OR NO.

ARE YOU FAMILIAR WITH THE EQUATIONS OF ELLIPSES?

REPLY EITHER YES OR NO.

ARE YOU FAMILIAR WITH THE EQUATIONS OF ELLIPSES?

REPLY EITHER YES OR NO.

ARE YOU FAMILIAR WITH THE EQUATIONS OF ELLIPSES?

REPLY EITHER YES OR NO.

ARE YOU FAMILIAR WITH THE EQUATIONS OF ELLIPSES?

REPLY EITHER YES OR NO.

ARE YOU FAMILIAR WITH THE EQUATIONS OF ELLIPSES?

REPLY EITHER YES OR NO.

ARE YOU FAMILIAR WITH THE EQUATIONS OF ELLIPSES?

REPLY EITHER YES OR NO.

ARE YOU FAMILIAR WITH THE EQUATIONS OF ELLIPSES?

REPLY EITHER YES OR NO.

ARE YOU FAMILIAR WITH THE EQUATIONS OF ELLIPSES?

REPLY EITHER YES OR NO.

ARE YOU FAMILIAR WITH THE EQUATIONS OF ELLIPSES?

REPLY EITHER YES OR NO.

ARE YOU FAMILIAR WITH THE EQUATIONS OF ELLIPSES?

REPLY EITHER YES OR NO.

ARE YOU FAMILIAR WITH THE EQUATIONS OF ELLIPSES?

REPLY EITHER YES OR NO.
AND THE STANDARD EQUATION
\[x^2 + y^2 = 1 \]
WHAT NUMBER GOES IN THE FIRST BLANK?

\[H+{(?4)\phi+((R^2*2),(Y^2),1,ANS+ANSA+X*2} \]
\[\rightarrow 0 \times 1 \text{CHECK}=1 \]

WHAT NUMBER GOES IN THE SECOND BLANK?

\[H+{(?4)\phi+((R^2*2),(R^2+2),1,Y^2} \]
\[\rightarrow 0 \times 1 \text{CHECK}=1+0\times\text{ANS}+\text{ANSA}+Y*2 \]

L2:G+|R^2+0\times M+|R^2+0\times X+R^1+0\times Y+R^1

\[H+H2+'\text{THIS ONE IS SO EASY THAT YOU REALLY DON'T NEED A HINT, BUT THE CLUE IS THAT YOU ARE JUST TRANSLATING THE AXES TO THE CENTER OF THE ELLIPSE.'} \]

\[\rightarrow 0 \times 1 \text{CHECK}=1+0\times\text{ANS}+\text{ANSA}+X \]

\[H+H2+'\text{WHAT NUMBER GOES IN THE THIRD BLANK?'} \]

\[H+H2 \]
\[\rightarrow 0 \times 1 \text{CHECK}=1+0\times\text{ANS}+\text{ANSA}+Y \]

\[H+H3+'\text{WHAT NUMBER GOES IN THE FOURTH BLANK?'} \]

\[H+H3+'\text{THE CLUE IS THAT } A^2=B^2+C^2, \text{ AND YOU SHOULD KNOW } A \text{ AND } C.' \]

\[\rightarrow 0 \times 1 \text{CHECK}=1+0\times\text{ANS}+\text{ANSA}+(M+G)^2-M*2 \]

\[H+H2+'\text{WHAT IS THE ECCENTRICITY OF THIS ELLIPSE?'} \]

\[\rightarrow 0 \times 1 \text{CHECK}=1+0\times\text{ANS}+\text{ANSA}+(M+G) \]

\[M+H+(G^2+M^2)+G^2+1|R^2+0\times X+R^1+0\times Y+R^1 \]

\[H+H2+'\text{YOU HAVE TO RECALL THAT } E=C:A. \]

\[\rightarrow 0 \times 1 \text{CHECK}=1+0\times\text{ANS}+\text{ANSA}+\frac{M}{(M+G)} \]

\[M+H+(G^2+M^2)+G^2+1|R^2+0\times X+R^1+0\times Y+R^1 \]

\[H+H2+'\text{GIVEN THE EQUATION } \text{((M+G)X^2)}+(G^2)X^2+\frac{1}{M^2}:Y^2+\frac{1}{M^2}:G^2X^2 \]
\[\rightarrow 2\times X^2+Y^2+\frac{1}{M^2}:M^2\times X^2\times Y^2+(M^2\times G^2)+(G^2\times X^2) \]
\[\rightarrow 0 \times 1 \text{CHECK}=1+0\times\text{ANS}+\text{ANSA}+2\times\frac{M^2}{M^2} \]

\[H+H2+'\text{WHAT IS THE X-COORDINATE OF THE CENTER OF THE ELLIPSE E?'} \]

\[\rightarrow 0 \times 1 \text{CHECK}=1+0\times\text{ANS}+\text{ANSA}+X \]

\[H+H2+'\text{WHAT IS THE Y-COORDINATE OF THE CENTER OF THE ELLIPSE E?'} \]

\[\rightarrow 0 \times 1 \text{CHECK}=1+0\times\text{ANS}+\text{ANSA}+Y \]

\[H+H1+'\text{WHAT IS THE LENGTH OF THE MAJOR AXIS?'} \]

\[H+H1+'\text{THE MAJOR AXIS IS JUST TWICE THE LENGTH OF THE SEMI-MAJOR AXIS A.'} \]

\[\rightarrow 0 \times 1 \text{CHECK}=1+0\times\text{ANS}+\text{ANSA}+2\times\frac{M}{M+G} \]

\[H+H2+'\text{WHAT IS THE LENGTH OF THE MINOR AXIS?'} \]
THE MINOR AXIS IS JUST TWICE THE LENGTH OF THE SEMI-MINOR AXIS B.

GIVEN THE EQUATION \((x-\; x;\; ')^2 + (y-\; y;\; ')^2 = 1\)

WHAT IS THE LENGTH OF THE MAJOR AXIS?

WHAT IS THE LENGTH OF THE MINOR AXIS?

WHAT IS THE SQUARE OF THE DISTANCE FROM THE CENTER 0 OF THE ELLIPSE TO A FOCUS?

REMEMBER THAT \(a^2 = b^2 + c^2\) AND YOU SHOULD KNOW A AND B.

GIVEN AN ELLIPSE WHICH PASSES THROUGH THE ORIGIN, HAS FOCI AT (\(x;\; y;\; ')\) AND (\(x;\; y;\; ')\) AND THE EQUATION

WHAT NUMBER GOES IN THE FIRST BLANK?

WHAT NUMBER GOES IN THE SECOND BLANK?

WHAT NUMBER GOES IN THE THIRD BLANK?

WHAT NUMBER GOES IN THE FOURTH BLANK?
HYPERBOLA

THE FOLLOWING EQUALITY HOLDS:
\[C^2 - A^2 = B^2 \quad \text{OR} \quad C^2 = A^2 + B^2 \]

IF P(H, K) IS THE CENTER, DEFINED AS THE POINT OF INTERSECTION OF ITS AXES OF SYMMETRY, OF A HYPERBOLA THEN THE EQUATION OF THE HYPERBOLA IS GIVEN BY
\[(X-H)^2 / A^2 - (Y-K)^2 / B^2 = 1 \]

DEPENDING ON WHETHER THE FOCI ARE LOCATED ON THE X-AXIS OR Y-AXIS, RESPECTIVELY. LIKEWISE, THE STRAIGHT LINES
\[(Y-K) = (B+A)(X-H) \quad \text{AND} \quad (Y-K) = (-B+A)(X-H) \]
ARE CALLED THE ASYMPTOTES OF THE HYPERBOLA, DEPENDING ON WHICH RESPECTIVE AXIS THE FOCI ARE LOCATED.

ARE YOU FAMILIAR WITH THE REPLIES OF THIS EXERCISE?

REPLY
THE GRAPH OF THE EQUATION \[X^2 / A^2 - Y^2 / B^2 = 1 \]
OPENS EITHER
1) UPWARD AND DOWNWARD OR
2) TO THE RIGHT AND TO THE LEFT.

IS THE ANSWER 1 OR 2?
H*-'IF THE NEGATIVE SIGN IS BEFORE THE X-SQUARED TERM THEN THE CURVE OPENS UPWARD AND DOWNWARD AND IF THE NEGATIVE SIGN IS BEFORE THE Y-SQUARED TERM THEN THE CURVE OPENS TO THE RIGHT AND TO THE LEFT.'

\[+0 \times \text{CHECK} = 1 + 0 \times \text{ANS} + \text{ANS} \times 2 \]

L1: \[x = |RN2| + y + |RN2| \]

'GIVEN A HYPERBOLA WITH ITS CENTER AT THE ORIGIN, FOCUS AT \((x', 0)\) AND \((-x', 0)\), VERTICES AT \((x', 0)\) AND \((-x', 0)\) AND THE EQUATION \[(x - x')^2 - (y - y')^2 = 1 \]

'WHAT NUMBER GOES IN THE FIRST BLANK?'

H*-(?4)*PH+RN2, X, (Y*2), ANS+ANS=0

\[+0 \times \text{CHECK} = 1 \]

L2: 'WHAT NUMBER GOES IN THE SECOND BLANK?'

H*-(H1)*REMEMBER THAT A IS THE HALF-DISTANCE BETWEEN THE VERTICES.'

\[+0 \times \text{CHECK} = 1 + 0 \times \text{ANS} + \text{ANS} \times X \times Y \]

L3: 'WHAT NUMBER GOES IN THE THIRD BLANK?'

H*-(?4)*PH+RN2, Y, (X*2), ANS+ANS=0

\[+0 \times \text{CHECK} = 1 \]

L4: 'WHAT NUMBER GOES IN THE FOURTH BLANK?'

H*-(H2)*REMEMBER THAT C*2 = A*2 + B*2 AND YOU SHOULD KNOW A AND C.'

\[+0 \times \text{CHECK} = 1 + 0 \times \text{ANS} + \text{ANS} \times (X*2) - Y*2 \]

L4: WHAT IS THE ECCENTRICITY OF THE HYPERBOLA?'

H*-(H3)*THE ECCENTRICITY IS EQUAL TO C*A.'

\[\text{ANS} \times X \div Y \]

\[+0 \times \text{CHECK} = 1 + 0 \times \text{ANS} + \text{ANS} \times X \times Y \]

H*-(RN1*0+X*RN1+0*X+|RN2+0*Y+|RN2)

'GIVEN THE EQUATION \'(x*2-1; m;x*2-1; x*2-1; y*2; (y*2; g; y)'\times 2 = \'(y*x*y简便) \]

'WHAT IS THE LENGTH BETWEEN THE TWO VERTICES?'

\[H*-(H1) \]

\[+0 \times \text{CHECK} = 1 + 0 \times \text{ANS} + \text{ANS} \times X \times 2 \]

'WHAT IS THE LENGTH BETWEEN THE FOCI SQUARED EQUAL TO?'

\[H*-(H3) *REMEMBER THAT C*2 = A*2 + B*2 AND YOU SHOULD KNOW A AND B.'

\[+0 \times \text{CHECK} = 1 + 0 \times \text{ANS} + \text{ANS} \times (X \times X) + Y \times Y \]

'WHAT IS THE POSITIVE SLOPE OF THE ASYMPTOTES?'
HINT: X

THE POSITIVE SLOPE IS B*A IF THE FOCI ARE ON THE X-AXIS AND A*B IF THE FOCI ARE ON THE Y-AXIS.

WHAT IS THE X-COORDINATE OF THE INTERSECTION OF THE TWO ASYMPTOTES?

THE CLUE IS THAT THE ASYMPTOTES INTERSECT AT THE CENTER OF THE HYPERBOLA.

WHAT IS THE Y-COORDINATE OF THE INTERSECTION OF THE TWO ASYMPTOTES?

GIVEN A HYPERBOLA WITH FOCI AT ('i';j';m';i') AND ('i';j';-m';i') AND VERTICES AT ('i';j';i';j';i') AND ('i';j';i';-j';i') AND THE EQUATION

\[(x-_i\dagger)^2 \div (y-_j\dagger)^2 = 1\]

WHAT NUMBER GOES IN THE FIRST BLANK?

WHAT NUMBER GOES IN THE SECOND BLANK?

WHAT NUMBER GOES IN THE THIRD BLANK?

WHAT NUMBER GOES IN THE FOURTH BLANK?

WHAT IS THE ECCENTRICITY OF THE HYPERBOLA?

WHAT IS THE X-COORDINATE OF THE CENTER OF THE HYPERBOLA?

WHAT IS THE Y-COORDINATE OF THE CENTER OF THE HYPERBOLA?

WHAT IS THE POSITIVE SLOPE OF THE ASYMPTOTES?

THIS EQUATION CAN BE CONVERTED TO THE STANDARD FORM BY THE METHOD OF COMPLETING THE SQUARES.

WHAT IS THE Y-COORDINATE OF THE CENTER OF THE HYPERBOLA?
CONICS

\[A \cdot x^2 + B \cdot x \cdot y + C \cdot y^2 + D \cdot x + E \cdot y + F = 0 \]

Since axes may be rotated to eliminate the cross-product term XY, there is no loss in generality in assuming this has been done so the equation looks like

\[A \cdot x^2 + C \cdot y^2 + D \cdot x + E \cdot y + F = 0 \]
THIS EQUATION THEN REPRESENTS
1) A STRAIGHT LINE IF $A=C=0$, AND NOT BOTH D AND E VANISH.
2) A CIRCLE IF $A=C=0$ (IN SPECIAL CASES THE LOCUS MAY REDUCE TO A SINGLE POINT, OR NO REAL LOCUS).
3) A PARABOLA IF THE EQUATION IS QUADRATIC IN ONE VARIABLE AND LINEAR IN THE OTHER
4) AN ELLIPSE IF A AND C ARE BOTH POSITIVE OR BOTH NEGATIVE (AGAIN IN SPECIAL CASES THE LOCUS MAY REDUCE TO A SINGLE POINT OR NO REAL LOCUS).
5) A HYPERBOLA IF A AND C ARE OF OPPOSITE SIGNS, BOTH DIFFERENT FROM ZERO (IN SPECIAL CASES THE LOCUS MAY REDUCE TO A PAIR OF INTERSECTING STRAIGHT LINES).

ARE YOU FAMILIAR WITH THE REPLIES OF THIS EXERCISE?

R+1
L10: J+0
I-9?9
I+I, 10
L0: \(RL1, L2, L3, L4, L5, L6, L7, L8, L9, L10[I(J+J+1)]\)
L1: R1; 0; X2; 0; Y2; RN2; X; RN1; Y; RN1; F; R2
H+H1
\(L0 \times \text{CHECK} = 0 \times \text{ANS} + \text{ANSA} + 1\)
L2: R1; M; X2; M+| RN2; Y2; | RN1; X; | RN1; Y; -| RN2; F; R2
H+H1
\(L0 \times \text{CHECK} = 0 \times \text{ANS} + \text{ANSA} + 2\)
L3: R1; 0; X2; RN2; Y2; RN2; X; 0; Y; RN2; F; R2
H+1
THE CLUE TO THIS ONE IS THE COEFFICIENTS A AND E.\)
\(L0 \times \text{CHECK} = 0 \times \text{ANS} + \text{ANSA} + 3\)
L4: G*G*(M+G+| RN2)+0*H+1+| RN2
R1; G; X2; M; Y2; 0; X; 0; Y; -| RN2; F; R2
H+H1
\(L0 \times \text{CHECK} = 0 \times \text{ANS} + \text{ANSA} + 4\)
L5: H+:| RN2+0+G+| RN2+0+V+RM1+O+Z+RN1
R1; G*2; X2; -M*2; Y2; -2*V*G*2; X; 2*Z*M*2; Y; (G*G*V*V)+(-M* M*Z*2)-G*G*M*2; F; R2
H+H1
THE EQUATION CAN BE CONVERTED TO A STANDARD FORM BY THE METHOD OF COMPLETING THE SQUARES.\)
\(L0 \times \text{CHECK} = 0 \times \text{ANS} + \text{ANSA} + 5\)
L6: R1; | RN2; X2; -| RN2; Y2; 0; X; 0; Y; 0; F; R2
H+H1
THE CLUE TO THIS ONE IS THE COEFFICIENTS D, E AND F.

\(L0 \times \text{CHECK} = 0 \times \text{ANS} + \text{ANSA} + 6\)
L7: H+M*G+H+| RN2)+0*G+1+| RN2+0+V+RM1+0+Z+RN1
R1; G*2; X2; M*2; Y2; -2*V*G*2; X; -2*Z*M*2; Y; -(M*G* 2)+(-G*G*V*2)-M*M*Z*2; F; R2
H+H1
\(L0 \times \text{CHECK} = 0 \times \text{ANS} + \text{ANSA} + 5\)
\(L0 \times \text{CHECK} = 0 \times \text{ANS} + \text{ANSA} + 6\)
\(L0 \times \text{CHECK} = 0 \times \text{ANS} + \text{ANSA} + 5\)
\(L0 \times \text{CHECK} = 0 \times \text{ANS} + \text{ANSA} + 6\)
\(L0 \times \text{CHECK} = 0 \times \text{ANS} + \text{ANSA} + 5\)
\(L0 \times \text{CHECK} = 0 \times \text{ANS} + \text{ANSA} + 6\)
The clue to this one is the coefficient \(F \).

If a point \(P(x, y) \) is such that its distance \(PF \) from a fixed point (the focus) is proportional to its distance \(PD \) from a fixed line (the directrix), that is, so that:

\[PF = \frac{1}{M} \times PD \]

where \(\frac{1}{M} \) is a constant, then the locus of \(P \) is:

1) an ellipse
2) a parabola
3) a hyperbola or
4) none of these.

Is the answer 1, 2, 3 or 4?

Remember what the definition of eccentricity is.
\textbf{LIMITS}\(\text{[\ldots]} \text{\textbullet\textbullet\textbullet]}\)

\textbf{LIMITS; H1; H2; H3; H4}

[1] \(S+6p0\)
[2] \(N+?1+1+(60 \ 60 \ 60 \ 60 \ \text{Ti}20)\)
[3] \(N+0\times 1+?(Np19)\)
[4] \(N+0\times 1+(1RN2)?9\)
[5] 'REPLY EITHER YES OR NO.
ARE YOU FAMILIAR WITH LIMITS OF RATIOS OF POLYNOMIALS?'
[6] R+1
[7] \(\rightarrow 9\times 1(1+R) \text{"\textquoteleft}Y\text{\textquoteleft}"\)
[8] ';

\textbf{LIMITS}

THIS SECTION IS CONCERNED WITH THE BEHAVIOR OF THE RATIO OF ALGEBRAIC EXPRESSIONS LIKE \((x^2 -2x +4)/(2x-5)\) AS \(x\) APPROACHES SOME NUMBER OR AS \(x\) APPROACHES PLUS OR MINUS INFINITY. IN SOME CASES THE BEHAVIOR OF THE RATIO CAN BE FOUND BY LOOKING AT THE BEHAVIOR OF THE NUMERATOR AND THE DENOMINATOR INDEPENDENTLY. THESE CASES OCCUR WHEN THE DENOMINATOR APPROACHES SOME REAL NONZERO NUMBER. IN THESE CASES THE LIMIT OF THE RATIO IS:

[9] 'THE NUMERATOR, \(A\), TO THE DENOMINATOR, \(B\), IS \(A/B\).
OTHER CASES OCCUR WHEN THE DENOMINATOR APPROACHES ZERO OR WHEN THE DENOMINATOR IS UNBOUNDED (APPROACHES PLUS OR MINUS INFINITY). FOR THESE CASES WE HAVE THE FOLLOWING:'

[10] 'NOTE: LET \(N\) REPRESENT THE NUMERATOR, \(D\) THE DENOMINATOR, \(F\) THE RATIO \(N/D\) AND \(A\) AND \(B\) REAL NUMBERS.'

[11] ' 1) \(N\rightarrow A=0; \ D \rightarrow 0; \ F \rightarrow \text{PLUS OR MINUS INFINITY DEPENDING ON WHETHER} \ A \ IS \ POSITIVE \ OR \ NEGATIVE.'

[12] ' 2) \(N\rightarrow 0; \ D \rightarrow 0; \ F \rightarrow \text{IF THE DEGREE OF THE NUMERATOR IS GREATER THAN THE DEGREE OF THE DENOMINATOR.} \ F \rightarrow \text{SOME NUMBER IF THE FACTORS APPROACHING ZERO IN THE NUMERATOR AND DENOMINATOR DIVIDE OUT.} \ F \rightarrow \text{INFINITY IF THE DEGREE OF THE DENOMINATOR IS GREATER THAN THE DEGREE OF THE NUMERATOR.'}
3) \(n \rightarrow \infty \) OR \(-\infty\); \(d \rightarrow \infty \) OR \(-\infty\);
- \(f \rightarrow 0 \) IF THE DEGREE OF THE DENOMINATOR R IS GREATER THAN THE DEGREE OF THE NUMERATOR.
- \(f \rightarrow \) SOME NUMBER IF THE NUMERATOR AND DENOMINATOR HAVE THE SAME DEGREE.
- \(f \rightarrow \infty \) IF THE DEGREE OF THE NUMERATOR IS GREATER THAN THE DEGREE OF THE DENOMINATOR.

4) \(n \rightarrow a \); \(d \rightarrow \infty \) OR \(-\infty\); \(f \rightarrow 0\)

THE DESIGNATION OF \(x \rightarrow 0 \) FROM THE LEFT OR THROUGH NEGATIVE NUMBERS WILL BE \(x \rightarrow 0^- \) AND \(x \rightarrow 0^+ \) WHEN IT APPROACHES 0 FROM THE RIGHT OR THROUGH POSITIVE NUMBERS.

ARE YOU FAMILIAR WITH THE REPLIES OF THIS EXERCISE?

\(R \rightarrow 1 \)

\(\rightarrow L_0 \times i(1+R) = 'Y' \)

REPLY

\(L_0 \):

NOTE: FOR THIS EXERCISE USE INF TO STAND FOR \(+\infty\) AND -INF FOR \(-\infty\).

\(L_1: x+(1(4?5)) \times (xR2,xR2,xR2,xR2) \)

'GIVEN THE EXPRESSION \((X \times 2+';X+Y;'X+1';X \times Y;') \div (X \times 2 +';Z+M';X+1';Z \times M;')'\)

'WHAT IS THE LIMIT AS \(x \rightarrow 0+ \) ?'

'WHAT IS THE LIMIT AS \(x \rightarrow 1+ ?' \)

'H+H1++'THE CLUE TO THIS ONE IS TO JUST EVALUATE THE EXPRESSION.'

\(\text{ANS} \times (X \times Y) \div (Z \times M) \)

\(+0 \times \text{CHECK} = 1+0 \times \text{ANSA}-(X \times Y) \div Z \times M \)

'WHAT IS THE LIMIT AS \(x \rightarrow -X; ?' \)

'H+H2++'IF THE DENOMINATOR OF AN EXPRESSION GOES TO ZERO AND THE NUMERATOR DOES NOT, THEN THE EXPRESSION GROWS WITHOUT BOUND OR TENDS TO INFINITY.'

\(+0 \times \text{CHECK} = 1+0 \times \text{ANSA} \times \text{ANSA}-(x(X-M) \times (Y-M) \div (Z-M)) \times 1 \times 75 \)

'WHAT IS THE LIMIT AS \(x \rightarrow 1 ?' \)

'H+H1 \(\text{ANS} \times ((1+X) \times (1+Y)) \div ((1+Z) \times (1+M)) \)

'H+H2++'WHAT IS THE LIMIT AS \(x \rightarrow \infty ?' \)
H+H3-'THE CLUE TO THIS ONE IS TO DIVIDE NUMERATOR AND
DENOMINATOR BY X*2.'

H+H4-'THE CLUE IS TO FACTOR THE NUMERATOR AND DENOM-
INATOR AND SEE IF A
TERM DIVIDES OUT.'

ANSA+-(X-Y) DIV(Z-Y)

H+H1

ANSA+X DIV Z

H+H1

ANSA+Y DIV M

H+H3

X+RN2+0xY+RN2+0xZ+RN2+0xM+RN2

H+H2

H+H2

H+H3

H+H3

H+H3

H+H3

H+H3

H+H3

H+H3

H+H3
'WHAT IS THE LIMIT AS $X \to 0$?'

$H+H1$

$ANSA \div \text{DIV} X$

$\to0 \times 1 \text{CHECK}=1+0 \times \text{ANSA} \div \text{DIV} X$

'GIVEN THE EXPRESSION 1 \div ($X^{-2}X^{-2}$) $\times 3$

'WHAT IS THE LIMIT AS $X^{-1}X^{-2}X^{-3}X^{-4}$?'

$H+H1$

$\text{ANSA} \div \text{DIV}(X^{-2}X^{-3})$

$\to0 \times 1 \text{CHECK}=1+0 \times \text{ANSA} \div \text{DIV}(X^{-2}X^{-3})$

'WHAT IS THE LIMIT AS $X^{-2}X^{-2}X^{-3}X^{-4}$?'

$H+H1$

$\to0 \times 1 \text{CHECK}=1+0 \times \text{ANSA} \div \text{ANSA} \div 1E75$

'WHAT IS THE LIMIT AS $X^{-2}X^{-2}X^{-3}X^{-4}$?'

$\to0 \times 1 \text{CHECK}=1+0 \times \text{ANSA} \div \text{ANSA} \div -1E75$

$\to L1$

\downarrow
APPENDIX D

A LISTING OF THE FUNCTIONS

\[\text{VAHINT}() \]
\[H \times A \text{HINT } Y; A; B; C; D; BL; NA \]
\[BL = '1' \]
\[NA = '0123456789' \]
\[ANSA = (\text{ANS} < 0 ? ' - ' : NA[1 + |X|], ' \div ', NA[1 + |Y|] \]
\[A + NA[1 + |X|], ' \div ', NA[1 + |Y|] \]
\[B + NA[1 + |Y|], ' \div ', NA[1 + |X|] \]
\[C = ' - ', NA[1 + |X|], ' \div ', NA[1 + |Y|] \]
\[D = ' - ', NA[1 + |Y|], ' \div ', NA[1 + |X|] \]
\[\rightarrow (L1, L2)[?2] \]
\[L1: H + A, BL, B, BL, C, BL, D \]
\[\rightarrow 0 \]
\[L2: H + B, BL, A, BL, D, BL, C \]

\[\text{CHECK}() \]
\[V \text{CHECK; D; I} \]
\[I + 1 \rightarrow V + 0 \]
\[L0: R + [] \]
\[\rightarrow L7 \times \text{GRAPH} = R \]
\[\rightarrow L6 \times \text{QNUMBER} = R \]
\[\rightarrow L1 \times \text{HELP} = R \]
\[\rightarrow L2 \times \text{HINT} = R \]
\[\rightarrow L3 \times \text{ANS} = R \]
\[\rightarrow L4 \times \text{STOP} = R \]
\[\rightarrow L1 \times 4 = I + I + 1 \]
\['\text{TRY AGAIN}' \]
\[\rightarrow L0 \]
\[L7: (18 \rho 1 0)\" + '[(1 + 0 = ((\Phi D) \cdot x D +^-5 + 9))] \]
\[\rightarrow L0 \]
\[L6: 'YOU HAVE BEEN ASKED '\'; N;' QUESTIONS SO FAR.' \]
\[\rightarrow L0 \]
\[L3: 'VERY GOOD! NOW SEE IF YOU CAN GET THIS ONE.'[(1 + 43 \times (?19) \leq 6)] \]
\[\rightarrow(0,0)[\text{SCORE 1}] \]
\[L2: 'THE ANSWER IS ONE OF THE FOLLOWING:' [1 \times (pH < 30) \times 35] \]
\[\rightarrow(0,0)[\text{SCORE 5}] \]
\[L1: 'THE ANSWER IS '; \text{ANS} A \]
\[\rightarrow(0,0)[\text{SCORE 6}] \]
\[L4: V+1 \]
\['YOUR RESULTS ARE THE FOLLOWING:' \]
\['NUMBER OF QUESTIONS ' \]
\['NUMBER ANSWERED ON FIRST TRY ' \]
\['NUMBER ANSWERED ON SECOND TRY ' \]
\['NUMBER ANSWERED ON THIRD TRY ' \]
\['NUMBER NOT ANSWERED ' \]
\['NUMBER OF HINTS YOU RECEIVED ' \]
\['NUMBER OF HELPS YOU RECEIVED ' \]
\[D\left((S[1]+(0.5\times S[2])+0.3\times S[3])\times 100\right) \]
\['YOUR PERFORMANCE WAS EXCELLENT '[(30 \times D \geq 90)] \]
\['YOUR PERFORMANCE WAS VERY GOOD '[(30 \times (D \geq 80) \wedge D < 90)] \]
\['YOUR PERFORMANCE WAS GOOD '[(30 \times D \geq 70) \wedge D < 80)] \]
\['YOUR PERFORMANCE WAS POOR '[(30 \times (D \geq 60) \wedge D < 70)] \]
\['YOUR PERFORMANCE NEEDS IMPROVEMENT '[(30 \times D < 60)] \]
\[\rightarrow 0 \]

\[\n \]

\[\n \]

\[\n \]
\[\text{\texttt{\textbackslash VRN1[\texttt{\textbackslash 1}]\texttt{\textbackslash V}}}\]
\[\text{\texttt{\textbackslash VRN2[\texttt{\textbackslash 1}]\texttt{\textbackslash V}}}\]
\[\text{\texttt{\textbackslash VRN3[\texttt{\textbackslash 1}]\texttt{\textbackslash V}}}\]
\[\text{\texttt{\textbackslash VS\texttt{C\textbackslash O\textbackslash R\texttt{E}}[\texttt{\textbackslash 1}]\texttt{\textbackslash V}}}\]
\(\forall RN1[\square] \forall \)

\(RN+RN1 \)

[1] \(RN+10+?19 \)

\(\forall \)

\(\forall RN2[\square] \forall \)

\(RN+RN2 \)

[1] \(RN+10+?19 \)

[2] \(+1 \times \backslash \times RN=0 \)

\(\forall \)

\(\forall RN3[\square] \forall \)

\(RN+RN3;H;D;R \)

[1] \(H+32\rho 34512912 \)

[2] \(X+(R+?2)\times H[D+?3;1] \)

[3] \(Y+R\times H[D;2] \)

[4] \(RN+((X+2)+(Y+2)) \times 0.5 \)

\(\forall \)

\(\forall SCORE[\square] \forall \)

\(D+SCORE II \)

[1] \(\rightarrow L0\times II=5 \)

[2] \(N+N+1 \)

[4] \(D+1 \)

\(\forall \)
THE COMPUTER WILL ASK YOU QUESTIONS WHOSE ANSWERS ARE NUMBERS.

'YOU ARE TO TYPE IN THE NUMBER. IF THE NUMBER IS A FRACTION, HOWEVER, YOU ARE TO USE THE DIVIDE(\(\div\)) SYMBOL AND NOT THE SLASH(\(/\)),'

'SO ONE-HALF IS \(1\div2\) AND THREE-AND-ONE-THIRD IS \(10\div3\).

'IF YOUR REPLY IS INCORRECT THE COMPUTER WILL REPLY TRY AGAIN'

'AND YOU GET ANOTHER CHANCE. IN FACT, YOU GET 3 TRIES AT EACH QUESTION.'

'IF YOU DO NOT KNOW THE ANSWER TO THE QUESTION YOU CAN TYPE HINT'

'AND EITHER (1) A COMMENT WILL BE PRINTED OR (2) A LIST OF FOUR NUMBERS WILL BE PRINTED, WHERE ONE IS THE CORRECT ANSWER.'

'IF YOU DO NOT HAVE THE SLIGHTEST IDEA OF WHAT THE ANSWER IS TYPE HELP AND THE ANSWER WILL BE GIVEN.'

'IF YOU WANT TO KNOW HOW MANY QUESTIONS YOU HAVE BEEN ASKED TYPE QNUMBER'

'IF YOU WANT AN XY-AXIS PRINTED FOR SKETCHING FUNCTIONS THEN TYPE GRAPH'

'WHEN YOU WANT TO STOP THE EXERCISE TYPE STOP'

'AND A TABULATED RESULT OF YOUR REPLIES WILL BE GIVEN AND THEN THE EXERCISE WILL TERMINATE.'

'YOUR FIRST QUESTION IS:'

'
BIBLIOGRAPHY

VITA

William Lindsay Lawrence

In September 1972 the author began teaching at Rappahannock Community College, Glenns, Virginia.