
W&M ScholarWorks W&M ScholarWorks 

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 

1999 

Artificial Societies: A Computational Approach to Studying Artificial Societies: A Computational Approach to Studying 

Combat Combat 

Rachel J. Moore 
College of William & Mary - Arts & Sciences 

Follow this and additional works at: https://scholarworks.wm.edu/etd 

 Part of the Computer Sciences Commons, and the Military and Veterans Studies Commons 

Recommended Citation Recommended Citation 
Moore, Rachel J., "Artificial Societies: A Computational Approach to Studying Combat" (1999). 
Dissertations, Theses, and Masters Projects. William & Mary. Paper 1539626824. 
https://dx.doi.org/doi:10.21220/s2-69vv-xz96 

This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M 
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized 
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu. 

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539626824&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539626824&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/396?utm_source=scholarworks.wm.edu%2Fetd%2F1539626824&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-69vv-xz96
mailto:scholarworks@wm.edu


ARTIFICIAL SOCIETIES : 

A Computational Approach to Studying Combat

A Masters Thesis 

Presented to

The Faculty of the Department of Computer Science 

The College of William & Mary in Virginia

In Partial Fulfillment 

Of the Requirements for the Degree of 

Master of Science

by

Rachel I. Moore 

1999



APPROVAL SHEET

This thesis is submitted in partial fulfillment of 

the requirements for the degree of

Master of Science 

Rachel I. Moore

Approved, July 1999

Steve Park
Thesis Advisor

Gianfranco Ciardo

Rex Kincaid
Department of Mathematics



Table of C ontents

Acknowledgments vi

List of Tables vii

List of Figures ix

Abstract x

1 Introduction 2

2 Model 5

2.1 Conceptual L e v e l..................................................................................................   5

2.2 Specification L e v e l .......................................................................................................  8

2.2.1 Discreteness of T im e ....................................................................................... 8

2.2.2 The L an d sca p e ................................................................................................. 8

2.2.3 Agent V is io n .................................................................................................... 9

2.2.4 C o m b a t .............................................................................................................. 10

2.2.5 Agent M ovem en t.............................................................................................  11

2.2.6 Landscape and Agent U p d a te s ...........................    12

iii



2.2.7 Agent Mating and R e p ro d u c tio n ...............................................................  13

2.2.8 End of Time P e r i o d ......................................................................................  14

2.3 Computational L e v e l..................................................................................................  14

2.3.1 Landscape In itia liz a tio n ................................................................................ 14

2.3.2 Agent In itialization .......................................................................................... 15

2.3.3 Agent M ovem ent............................................................................................. 18

2.3.3.1 Gatherer M ov em en t......................................................................  19

2.3.3.2 Hunter M o v em en t.......................................................................... 20

2.3.4 M etab o liza tio n ................................................................................................  22

2.3.5 Hunter I n je c t io n .............................................................................................  22

2.3.6 Updates to Landscape and A g e n ts ............................................................  24

2.3.7 Agent R ep ro d u c tio n ......................................................................................  24

2.3.8 End of Time Period  ...................................................................................  26

3 Visualization 27

4 Experiments 29

4.1 Setup ............................................................................................................................. 32

4.2 Experiment Set 1 — “Weak” G a th e r e r s .......................... ; ................................. 34

4.3 Experiment Set 2 — “Strong” G a th e re rs .........................   43

4.4 Interface R e s u l t s ..............................................................  52

4.5 Simulation V erification...............................................................................................  53

5 Conclusion 57

iv



A Stochastic Functions 

Bibliography



ACKNOWLEDGMENTS

Special thanks to my advisor Steve Park for his time and very constructive criticism 

throughout the development and documentation of this simulation model. Thank you to 

Doctors Gianfranco Ciardo, Rex Kincaid and Steve Park for sitting on my thesis committee 

and providing helpful comments and direction. Thanks to Barry Lawson for generously 

allowing me to use some of his Tel software for the simulation interface discussed in Chapters 

three and four.

vi



List o f Tables

4.1 Parameters for Initial Hunter S t a t e s ..................................................................... 33

4.2 Parameters for Hunter A ttr ib u te s ............................................................................ 33

4.3 Parameters for “Weak” Gatherer Initial States .................................................  34

4.4 Parameters for “Weak” Gatherer A ttr ib u te s ........................................................ 34

4.5 Summary of Results for “Weak” Gatherers ...............   37

4.6 Parameters for “Strong” Gatherer Initial S ta te s .................................................  43

4.7 Parameters for “Strong” Gatherer A t t r ib u te s ....................................................  43

4.8 Summary of Results for “Strong” G a th e re rs ....................................................... 46

A .l Stochastic Function D esc rip tio n s ..........................................................................  63

vii



List o f Figures

2.1 The L a n d sc a p e ............................................................................................................  9

2.2 Agent Field of View (v = 4 ) .....................................................................................  9

2.3 Effect of Param eter n  and Wealth Ratios on Combat O u tc o m e ...................  10

2.4 Moore N eighborhood..................................................................................................  13

2.5 Landscape and Cell O b je c ts .....................................................................................  15

2.6 Derivation of Hunter and Gatherer O b je c t s .......................................................  16

2.7 Agent Managing O b jec ts ...........................................................................................  17

2.8 Gatherer Move List Object D e riv a tio n .................................................................  20

2.9 Hunter Move List Object D e r iv a tio n ....................................................................  21

3.1 Interface S n a p s h o t .....................................................................................................  28

4.1 Extinction of Both P o p u la tio n s ..............................................................................  30

4.2 Gatherers W ithstand Hunter A t t a c k ....................................................................  31

4.3 “Weak” Gatherers with No Hunters .....................................................................  35

4.4 Steady-State “Weak” Gatherer P opu lation ........................................................... 36

4.5 Probability of “Weak” Gatherer Extinction by t  = 2000 ................................  38

viii



4.6 Probability of “Weak” Gatherer Extinction by t = 10000 ................................  39

4.7 Steady State “Weak” Gatherer Populations and Extinction T i m e s ..............  40

4.8 “Weak” Gatherer Time History — fi = 2 .0 ............................................................  41

4.9 “Weak” Gatherer Time History — fi =  5 .0 ............................................................  42

4.10 “Weak” Gatherer Time History —  /j , =  9 .0 .............................................................................................................................................................  42

4.11 “Strong” Gatherers with no H u n te r s ....................................................................  44

4.12 Steady State “Strong” Gatherer P o p u la t io n .......................................................  45

4.13 Probability of “Strong” Gatherer Extinction by t  = 2000 ................................  47

4.14 Steady State “Strong” Gatherer Populations and Extinction T im e s ............  48

4.15 “Strong” Gatherer Time History — fi =  8 . 0 0 ..................................................... 49

4.16 “Strong” Gatherer Time History — /i = 11 .75..................................................... 50

4.17 “Strong” Gatherer Time History — (i =  15 .00..................................................... 51

4.18 “Strong” Gatherer Time History — fi = 32.00 ....................................................  51

4.19 Evolution of “Strong” Gatherers — fi = 15 .00 ...................................................  55

4.20 Agent Reproduction Levels — fj, = 1 5 .0 0 .............................................................  56

ix



ABSTRACT

Although the modeling of social processes via computer simulation is a growing trend 
among social scientists, there is a lack of computational explanation of these models in 
the literature. In an attem pt to rectify this situation, this computer science dissertation 
is based on a complex “artificial society” model developed at three levels — conceptual, 
specification, and computational — with special attention to the object-oriented approach 
used at the computational level. In this society there are two groups of “agents” — hunters 
and gatherers — which move across a “landscape,” reproduce, and interact via combat. 
This dissertation focuses on the population dynamics tha t results from combat between 
these two social groups.



ARTIFICIAL SOCIETIES :

A Computational Approach to Studying Combat



Chapter 1

Introduction

Simulation models were first used in the 1970s to study social dynamics [8]. In recent years, 

these social simulation models have become increasingly more complex as computational 

resources have become more accessible to researchers [5, 8]. The useful applications of social 

modeling via computer simulation are now numerous. These applications include, but are 

not limited to, the study of extinct societies, proposed Social Security reforms, economic 

trading systems, and the transmission of disease [3, 4, 5, 6].

A compelling reason to simulate social processes is tha t a computational environment 

can be used to execute “experiments” tha t would be impossible for social scientists to study 

otherwise. For example, these experiments might span many generations of a population in a 

town; this long period of time would be difficult to study otherwise. Social simulation models 

can also be used to study the emergence of societal behavior resulting from individuals 

following certain rules [4].1

1It should be noted that some skeptics claim social modeling is a “fad with limited potential” [13]. 
Contrary to my opinion, they believe complex human behaviors cannot be accurately simulated or predicted 
by a simulation model.

2



CHAPTER 1. INTRODUCTION  3

The behavior and characteristics of individuals within a group or society can have a 

profound impact upon the behavior and characteristics of the group as a whole. Micro

simulation is the common process of using a micro-scale “bottom -up” approach to study 

macro-scale behavior. Individuals follow specific social rules and, as time evolves, group 

behaviors and characteristics appear. For example, a study of disease transmission between 

individuals over many generations might demonstrate the development of a group immunity 

to particular diseases. Another example would be movement rules implemented on an 

individual level creating group migration over time.

A cellular autom ata (CA) approach to modeling began in 1970 with John Conway who 

used the now popular Game of Life to model interactions between cells in a 2-dimensional 

grid [6]. Another early example of a CA approach is Thomas Schelling’s 1971 model of 

ethnic segregation [6, 7]. CA-based models have been used to explore the abstract properties 

of interacting agents via micro-simulation [6]. CA-based models exhibit characteristics of 

1) cells arranged in a regular grid, 2) a finite set of cell states, 3) discrete time evolution, 

4) cells changing their state according to local rules, 5) the same rules applying to all cells, 

and 6) simultaneous or sequential cell updates each time step.

The term  “artificial societies” originated with Builder and Bankes in 1991 [1]. An arti

ficial society is a micro-simulation of mobile agents interacting with a CA-based landscape. 

Though some life science researchers have recently begun to study artificial societies, the 

majority of interest in this type of simulation comes from social scientists. Epstein and Ax- 

tell have used an artificial society model to produce interesting results tha t emulate many 

areas of human social behavior [4].

Epstein and Axtell’s study demonstrated tha t different emerging combat patterns can be



CHAPTER 1. INTRODUCTION  4

produced by changing agent attributes and behavior rules [4]. Unfortunately, they did not 

discuss which attributes were changed to produce these different combat patterns. In fact, 

I was unable to find any well-documented combat models in the artificial society literature. 

Since this is a computer science dissertation, I will carefully document the simulation model 

I developed at three levels — conceptual, specification and computational — paying close 

attention to the algorithms and data structures I used.

Epstein and Axtell allude to several extensions of their artificial society combat model, 

one of which is tribal conflict. Although the authors do not discuss tribal conflict in any 

depth, I found it an interesting scenario to simulate and study. Accordingly, the combat 

model in this dissertation incorporates two distinct groups of agents, hunters and gatherers, 

each group with different rules and characteristic attributes.

The goals of this dissertation are to design an artificial society simulation model of 

combat between hunters and gatherers, explain it well, conduct several experiments, and 

explore the “emergence” of macro-level phenomena from micro-level activity. In particu

lar, the experiments presented in this dissertation will study how well a stable gatherer 

population can w ithstand the injection of predatory hunters.

The simulation model is presented in Chapter two, followed by a brief explanation of the 

visual interface for the simulation software in Chapter three. The simulation experiments 

and results are described and discussed in Chapter four. Some conclusions and suggestions 

for future research are provided in Chapter five.



Chapter 2

M odel

Three levels of a simulation model are prescribed by Park and Leemis [10]. First is the 

conceptual level. The artificial society model developed in this dissertation is discussed 

at the conceptual level in Section 2.1 in terms of state variables and high-level interactions 

between the agents and the landscape. Second is the specification level. Section 2.2 describes 

the rules and algorithms of the model at this level. Third is the computational level — a 

computer program tha t is developed to be consistent with the model at the conceptual 

and specification levels. Section 2.3 describes the object-oriented hierarchy used in this 

dissertation at the computational level.

2.1 Conceptual Level

The simulation model upon which all results in this paper are based is an “artificial society” 

— a landscape and agents tha t jointly evolve over time according to simple rules of evolution 

and interaction. The landscape represents a “world” and the agents represent the “people”

5



CHAPTER 2. MODEL 6

in this world [4]. Agents are divided into two groups — hunters and gatherers — each with 

distinct behavioral characteristics. Time evolves in a discrete manner with agent events 

and landscape events synchronized at each step.

The landscape is a two-dimensional grid with varying amounts of a resource called 

“sugar” [4]. Each landscape location is defined by two static attributes and two dynamic 

states. The attributes are resource capacity and resource growback rate; the states are 

the current level of resource and agent occupancy status. As time evolves, the resource is 

removed from the landscape locations visited by the gatherers. The resource then grows 

back over time according to the growback rate at these locations until it is again gathered 

by an agent or the resource capacity is reached.

Gatherers travel the landscape, searching for and gathering resource from the landscape. 

Hunters travel the landscape in search of gatherers from which they steal resource. The 

defining characteristics of hunters and gatherers are their static attributes — field of view 

(FOV), rate of resource metabolism, gender, lifetime (life expectancy), the start and end 

of their fertile period, and the group to which they belong — and their dynamic states — 

wealth (current resource level), landscape position, age, and pregnancy status. Hunters are 

also characterized by an initial wealth attribute.

A gatherer interacts with the landscape by moving to a landscape location within its 

FOV, collecting all the resource there, then moving to another landscape location, etc. A 

gatherer accumulates wealth by collecting more resource than it metabolizes. A hunter also 

moves about the landscape, but does not collect the resource directly from the landscape. 

Instead, hunters interact with gatherers through combat. For a hunter to accumulate wealth, 

it must defeat gatherers in combat and collect more resource than it metabolizes.



CHAPTER 2. MODEL 7

High wealth is an advantage when combat occurs because, although combat outcomes 

are stochastic, the wealthy are favored. Only hunters will initiate combat; gatherers will 

fight to retain their wealth. Both gatherers and hunters can die of starvation. The onset of 

starvation is determined by a low wealth. If an agent’s wealth drops to zero, death occurs 

immediately. Unless it is starving, a hunter will only fight a gatherer with less wealth. 

However, if it is starving, a hunter will risk fighting a wealthier gatherer. When combat 

occurs, the losing agent relinquishes all of its wealth to the winner and then necessarily dies 

of starvation.

When an agent dies of starvation or old age, it is removed from the landscape. The only 

way for the dead agent’s group to “replace” it is by reproduction. An agent will mate with 

another nearby agent if both agents are fertile, of the opposite sex, of the same group, and 

if there is a nearby landscape location for the baby to occupy when it is born. Aggressive 

male hunters will also attem pt to mate with nearby female gatherers if there are no fertile 

female hunters nearby. Multiple pregnancies during one time step are not possible. The 

baby will always belong to the same group as its father.

For all the experiments discussed in this dissertation, the artificial society model begins 

with a stable population of gatherers and no hunters. As time evolves, a stochastic number of 

hunters are “injected” into the landscape each time step. The time evolution of the society is 

simulated for a long period of time and statistics about the hunter and gatherer populations 

are accumulated. The experimental details and results are provided in Chapter four.



CHAPTER 2. MODEL 8

2.2 Specification Level

2.2.1 D iscreteness o f T im e

In this simulation model, time is discrete and denoted t = 0 ,1 ,2 , . . .  ,T  where T  is the 

stopping time. Each time step represents one “year” in the artificial society. As described 

in more detail later, agent movement, agent reproduction and landscape replenishment are 

synchronized each time step.

2.2.2 The Landscape

The landscape is a X  x Y  grid, with wraparound. T hat is, opposite edges of the landscape 

are “pasted” together to form a torus. A torus shape is used because it prevents congestion 

at landscape boundaries where agent movement would otherwise be limited. A landscape 

cell at location (x , y ) is shown in Figure 2.1; x  and y are the respective row and column 

coordinates.

Each landscape cell (x, y) has a real-valued maximum resource capacity c(x , y) defined

as

c(x,y)  = 5e-((* -0-5* ) /^ ) 2-((y-°-5y)/^ )2

with ox =  0.54AT, ay =  0.54y and x = 0 ,1 ,2 , . . .  , X  — 1, y = 0 ,1 ,2 , . . .  , Y  — 1. This 

capacity function produces a resource “peak” at the center of the landscape. Cells near 

the center of the landscape have high resource capacity (approximately 5 units) and those 

further from the center have low resource capacity (nearly zero). At each landscape cell 

(x, y) the resource grows back at a real-valued rate of a ( x , y) >  0 units per time step, up 

to the resource capacity of tha t cell.



CHAPTER 2. MODEL 9

Y -l

X -l

2.2.3 A gent V ision

Figure 2.1: The Landscape

The field of view (FOV) of each agent spans four directions on the landscape: north, south, 

east, and west. An agent with FOV param eter v can look in each of these four directions, 

but can only see landscape cells tha t are 1, 2, . . .  ,v  cells away from its current (x,y)  cell 

position. For example, the FOV of an agent at landscape cell {x,y),  with FOV parameter 

4, is illustrated in Figure 2.2.

Figure 2.2: Agent Field of View (v = 4)



CHAPTER 2. MODEL 10

2.2.4 Com bat

Given a hunter h with wealth (resource level) Wh and initial wealth Wh0 and a gatherer g 

with wealth wg, the probability tha t the hunter will defeat the gatherer in combat is

Pr (h defeats g) =  0.15 +  0.30p(wh/wg) +  0.55p(wh/wh0)

where

p(z) = z  > 0.
z n + 1

The first term  in the probability equation represents the probability tha t a starving hunter 

will defeat a wealthy gatherer in combat. If the hunter has wealth much greater than the 

gatherer, the second term  will be close to 0.30. The third term will be close to 0.55 if the 

hunter’s current wealth is significantly higher than its initial wealth.

p(z)

1 .0  -I 2.0
1.0

0.5

0 . 6 -

n =  0.0
0 .4 -

0.2 -

10 1000.01 0.1 1

Figure 2.3: Effect of Parameter n and Wealth Ratios on Combat Outcome

As Figure 2.3 illustrates, n  >  0 is a param eter in the p(z)  equation used to “shape” the 

likelihood of a hunter defeating a gatherer in combat. A hunter with greater wealth than 

a gatherer (Wh/wg > 1) and with greater wealth than its initial wealth (Wh/wh0 > 1) will



CHAPTER 2. MODEL 11

defeat a gatherer with probability close to 1.0. A hunter with low wealth relative to its 

initial wealth (Wh/wh0 < 1) and relative to the gatherer’s wealth (Wh/wg <  1) will defeat a 

gatherer with probability close to 0.15. 1

2.2.5 A gent M ovem ent

Gatherers forage for large amounts of nearby resource, rather than search for resource at 

distant cells. A gatherer will always move to the unoccupied cell within its FOV with 

maximum resource. If there is more than  one cell with this (local) maximum amount in the 

gatherer’s FOV, the gatherer will chose the cell closest to its current landscape location. In 

the uncommon case that two or more cells having this (local) maximum amount of resource 

are equidistant from the agent’s current cell location, the tie is broken stochastically. Each 

time step, each gatherer moves about the landscape according to the following rules.

1. The gatherer examines its FOV.

• All occupied cells within the FOV are not feasible.
• All unoccupied cells remaining within the FOV are feasible.

2. The gatherer moves to the closest feasible cell with maximum resource and gathers 
the resource present. If there are no feasible cells, the gatherer does not move.

Hunters are active, roaming the landscape and relying on their ability to prey on gath

erers in order to survive. Hunters who are starving move differently than those who are 

not. Each hunter determines whether or not it is starving by comparing its current wealth 

to a wealth threshold parameter 7 . Each time step, each hunter moves according to the 

following rules.

xAs n —> 0, the ratios Wh/wg and Wh/wh0 become irrelevant. The probability that h will defeat g 
approaches 0.575, independent of the two ratios. Conversely, as n —> 00 the two ratios become more 
significant in calculating the probability of a hunter defeating a gatherer.



CHAPTER 2. MODEL 12

1. The hunter examines its FOV.

• All unoccupied cells within the FOV are not feasible.

• All cells within the FOV occupied by other hunters are not feasible.
• If the hunter is not starving, all cells within the FOV occupied by wealthier 

gatherers are not feasible. If the hunter is starving, all cells within the FOV 
occupied by gatherers are feasible, independent of the gatherer’s wealth.

2. If there are no feasible cells, the hunter moves as far as possible within its FOV in a 
random direction to an unoccupied cell. If there is at least one feasible cell then the 
starving hunter moves to the furthest feasible cell occupied by the most vulnerable 
(least wealthy) gatherer. A hunter that is not starving moves to the furthest feasible 
cell occupied by the wealthiest gatherer. If there are no feasible or unoccupied cells 
within its FOV, the hunter does not move.

3. If the hunter moved to a feasible cell, combat occurs with the gatherer there and the 
winner is determined consistent with the probability function defined in Section 2.2.4. 
The winning agent gathers all of the losing agent’s wealth. The losing agent then dies 
of starvation and is removed from the landscape.

Each time step, all gatherers move about the landscape. Then all the hunters move in 

search of the gatherers. Because agents that move first within a group have an advantage, 

the order of agent movement for both groups is randomized (shuffled) each time step. At 

the end of each time step, each agent’s wealth is decreased by its metabolism rate. (The 

amount subtracted from its wealth per time period is the metabolism rate of the agent.)

2.2.6 Landscape and A gent U pdates

Each time step, the resource level of each landscape cell (x , y) is increased by the growback 

rate a(x ,y )  up to its resource capacity c(x,y).  This growback occurs regardless of a cell’s 

occupancy status. Before mating occurs, agents with wealth less than or equal to zero and 

those who have died of old age are removed from the landscape.



CHAPTER 2. MODEL 13

2.2.7 A gent M ating and R eproduction

An agent is fertile if its age is between the start and end of its fertile period and its wealth is 

greater than  the reproduction threshold for its group (Oh for hunters and 6g for gatherers). 

In addition to being fertile, the following criteria must be met in order for an agent to mate 

on the landscape.

1. A fertile, potential mate must be within the agent’s Moore neighborhood on the 
landscape. The Moore neighborhood of an agent occupying the darkened cell (x , y) 
in Figure 2.4 consists of the surrounding eight gray cells.

y

X

Figure 2.4: Moore Neighborhood

2. The potential mate must be of the opposite sex.

3. The potential mate must not already be pregnant.

4. A male potential mate must be of the same group as the female agent searching for a 
mate. A male hunter tha t initiates mating can “rape” a female gatherer; however, a 
male gatherer may not mate with a female hunter.

5. A cell must be vacant in either m ate’s Moore neighborhood for the baby to occupy 
when it is born.

W hen a baby is born, each parent contributes half of its wealth to the child. The baby’s 

metabolism, vision, and lifetime are inherited from its parents. A coin flip for each attribute 

determines which parent will pass its attribute to the baby agent.



CHAPTER 2. MODEL 14

2.2.8 End of T im e Period

After all mating and reproduction is complete, all agents are aged one year.

2.3 Com putational Level

W ith t as the current time index and T  as the stopping time index, the following pseudo-code 

summarizes the model at the computational level.

Landscape world;
AgentMgr agents(&world); 
world.buildLandscapeO ; 
agents.initializeAgents(); 
t = 0;
while (t < T && agents .numGatherersO) {

agents.moveAgents(); /* shuffling and moving */
agents .metabolizeResourceO
world.growbackResource();
agent s.flushAgent s();
agents.reproduceAgents();
agent s.ageAgent s();
t++;

>

(All constants used in Section 2.3 correspond to parameters used in some or all experi

ments in Chapter four. The stochastic functions used are summarized and implemented in 

Appendix A.)

2.3.1 Landscape Initialization

The landscape is encapsulated by a Landscape object, instantiated in the pseudo-code above 

as world, which builds and replenishes the landscape. The Landscape object maintains an 

1 x 7  array of Cell objects (see Figure 2.5). The attributes of each Cell are capacity 

and growback. The states of each Cell are resource and occupant.



CHAPTER 2. MODEL 15

cells : Cell[X][Y]

buildLandscape(): void
getCell( x : int, y : in t):  Cell*
growbackResource(): void
agentArrive( x : int, y : int, agent: Agent* ):  void
agentLeave( x : int, y : in t):  void
growback( x : int, y : in t): float 
capacity( x : int, y : in t):  float

Landscape

resource: float 
capacity : float 
growback: float 
occupant: Agent’

buildCell( cap : float, grow : float):  void 
agentArrive( agent: Agent* ):  void 
agentLeave(): void 
growbackResource(): void 
getResource(): float 
isOccupiedO : int 
getOccupant(): Agent*

Cell

Figure 2.5: Landscape and Cell Objects

The attributes and the states of the landscape cells are initialized in the function 

bu ild L an d scap e(). This function initializes the attributes c a p a c ity  and growback of 

each C e ll by calling the Landscape functions tha t correspond to c(x, y) and a(x ,y )  — 

c a p a c ity (x ,y )  and grow back(x,y) . The states of each C e ll are initialized within the 

function C e l l : :b u i ld C e ll( )  by setting its re so u rce  level to its resource c a p a c ity  and its 

occupant to NULL.

2.3.2 A gent Initialization

The hunters are represented by a linked list of H unter objects; gatherers by a linked list 

of G ath ere r objects. These objects are derived from the Agent object, as illustrated in 

Figure 2.6. Initially, there are A  agents. At starting time t  = 0, the hunter list has no 

H unter objects, and the gatherer list has A  G a there r objects.

The attributes of each H unter are v is io n , m etabolism , gender, group, l i f e t im e , 

b e g in _ f e r t i l i ty ,  e n d _ f e r t i l i ty ,  and in i t .w e a lth .  The states of each H unter are x, 

y, w ealth , age, and pregnancy (status). The attributes of each G athere r are v is io n ,



CHAPTER 2. MODEL 16

Gatherer

m oves: GMoveList*

Gatherer()
checkCell( checkx : int, cheeky : int, scape : Landscape* ) : float
findMove( scape : Landscape* ) :  void
getGroupO: agent_type
addWealth( value : double ) :  void
isStarvingO: int

Hunter

m oves: HMoveList* 
init w ealth: float

Hunter()
initAgent( with : float, mtblsm : float, vsn : int, newx : int, newy : int, fert_start: int, 

fert_end : int, lifetime : int, gender : gender_type, agent_age : in t) :  void 
checkCell( checkx : int, cheeky : int, scape : Landscape* ) :  float 
find Move( scape : Landscape *) : void 
getGroupO: agent_type 
isStarvingO: int

fightGatherer( gath : Gatherer* ) :  intz
Agent

metabolism: float begin_fertility: int
wealth : float end_fertility: int
v ision: int lifetim e: int
x : int pregnant: int
y : int a g e : int
g roup: agent_type 
gender: gender_type

n ex t: Agent *

Agent() getNext(): Agent* isAliveO: int
metabolizeO: void putNext( agen t: Agent* ) : void isD ead(): int
moveTo( x : int, y : in t) : void isPregnantO: int getX ( ) :  int
remove () : void ageAgent(): void getY () : int
getW ealth(): float getLifetime(): int isFertileO: int
getGroupO: agent_type madeBabyO: void
getGender<): gender_type drawAgent(): void
initAgent( with : float, mtblsm : float, vsn : int, newx : int, newy : int, grp : agent_type, fertility_start: int,

fertility_end: int, lifetime : int, sex : gender_type, agent_age : in t) :  void

Figure 2.6: Derivation of Hunter and Gatherer Objects

m etabolism , gender, group, l i f e t im e ,  b e g in _ fe r t i l i ty ,  and e n d _ f e r t i l i ty .  The states 

of each G athere r are x, y, w ealth , age, and pregnancy (status).

The hunter list is maintained by a HunterMgr object and the gatherer list is maintained 

by a GathererM gr object (Figure 2.7). Both of these list-managing objects are controlled 

by a AgentMgr object named ag en ts  in the pseudo-code at the beginning of Section 2.3.

The attributes and states of all A  agents are initialized at the start of the simulation in 

the AgentMgr function in i t ia l iz e A g e n ts O  which makes calls to in i t ia l iz e H u n te r s O  

and in i t i a l i z e G a th e r e r s O  via its HunterMgr and GathererM gr objects.

The function HunterMgr: : in i t ia l iz e H u n te r s O  creates no hunters. It keeps a pointer



CHAPTER 2. MODEL 17

GathererMgr HunterMgr

gathererList: Gatherer* 
numGatherers: int 
scape: Landscape*

hunterList: Hunter* 
numHunters: int 
scape: Landscape*

GathererMgrO
~GathererMgr()
initializeGatherers( number : int, landscape : Landscape* ) :  void
moveGatherers(): void
reproduceGatherers(): void
flushGatherersO: void
getNumGatherers(): int
ageGatherers(): void
drawGatherersO: void

HunterMgr()
-HunterMgrO
initializeHunters( landscape : Landscape* ) :  void
moveHunters(): void
reproduceHunters(): void
flushHunters(): void
getNumHunters(): int
ageHunters(): void
addHunters( num : in t) :  void
drawHuntersO : void

metabolizeResource(): void 
shuffleGatherers(): void 
createGatherer(): Gatherer*
createBaby( x : int, y : int, parentl : Gatherer*, parent2 : Gatherer* ) :  Gatherer* 
findMaleNeighbor( x : int, y : int, x l : int&, y l : in t& ) :  void 
findFemaleNeighbor( x : int, y : int, x l : int&, y l : in t& ) :  void 
findSpotForBaby( x : int&, y : int&, x l : int, y l : int, x2 : int, y2 : in t) : void

metabolizeResource(): void 
shuffleHuntersO: void 
createHunter<): Hunter*
createBaby( x : int, y : int, parentl : Hunter*, parent2 : Hunter* ) :  Hunter* 
findMaleNeighbor( x : int, y : int, x l : int&, y l : int& ) :  void 
findFemaleNeighbor( x : int, y : int, x l : int&, y l : int& ) : void 
fmdSpotForBaby( x : int&, y : int&, x l : int, y l : int, x2 : int, y2 : in t) :  voidz

AgentMgr

hunters: HunterMgr 
gatherers: GathererMgr

AgentMgr( agentNum : int, scape : Landscape* )
moveAgents(): void
metabolizeResource(): void
flushAgents(): void
reproduceAgents(): void
ageAgents(): void
getNumHunters(): int
getNumGatherers(): int
drawAgentsQ: void

Figure 2.7: Agent Managing Objects

to the landscape and initializes numHunters to zero and h u n te rL is t  to NULL.

The function GathererM gr: : in i t ia l iz e G a th e r e r s O  is shown in the pseudo-code be

low. A total of A  gatherers are created in this function, as follows.

g a th e re rL is t  = NULL; 
num _gatherers = 0 ;
G ath ere r *gath ;
f o r  ( i  = 0; i  < A; i++) {

g a th  = c re a te G a th e re r ( ) ;
g a th -> n ex t = g a th e re rL is t ;  
g a th e re rL is t  = g a th ; 
num _gatherers++;

>



CHAPTER 2. MODEL 18

Each new gatherer is created within the function c re a te G a th e re r  () where its attributes 

and initial states are generated. (See Appendix A for stochastic function implementation.) 

The function c re a te G a th e re r  () initializes the states x and y of the new gatherer using 

functions E q u ilik e ly (0 ,X - l)  and E q u i l ik e ly ( 0 ,Y -l). These two calls are made until an 

unoccupied (x , y) cell position is generated. The continuous state w ealth  is initialized by 

a call to U niform (20,50). The continuous attribute m etabolism  is generated by a call to 

U nifo rm (3 ,7). The FOV param eter v is io n  is a discrete attribute generated by a call to 

E q u i l ik e ly (1 ,4 ) . The gender is generated by a call to B e rn o u l l i(0 .5 )  which returns 

0 (female) and 1 (male) with equal probability. The l i f e t im e  attribute is discrete and is 

generated by a call to E q u i l ik e ly (8 0 ,100) for male and female gatherers. The start and 

end of a gatherer’s fertility period is determined by making calls to E q u ilik e ly  (12 ,15) and 

E q u ilik e ly (5 0 ,7 0 )  if female and E q u i l ik e ly (15,19) and E q u i l ik e ly (50 ,70) if male. 

The age of the gatherer is initialized by a call to E q u ilik e ly  (0 , 60). The GathererM gr 

then calls the function Agent: : in i tA g e n t() for each created G atherer.

The function Agent: : in i tA g e n t() completes the agent initialization. The pregnancy 

status of the agent is initialized to zero (false) and the agent parameters are copied into the 

corresponding Agent class member variables.

A pointer to the new G athere r is returned to function in i t ia l iz e G a th e r e r s O .  The 

new G athere r is then inserted into the gatherer list (g a th e re rL is t) .

2.3.3 A gent M ovem ent

At the beginning of each time step, the agents are perm itted to move. The function 

AgentMgr: :moveAgents() makes two calls to move the agents, as follows.



CHAPTER 2. MODEL 19

gatherers .moveGatherersO ; 
hunters.moveHunters();

Before the agents actually move, each agent list is shuffled. Shuffling prevents agents 

from remaining near the head of the list where they would have an early-move advantage. 

Gatherers are randomized by a call to shuffleGatherersO made within the function 

GathererMgr: :moveGatherersO. Hunters are randomized using the same shuffling algo

rithm  by a function call to shuffleHuntersO from within HunterMgr: imoveHuntersO.

2.3.3.1 Gatherer Movement

The gatherers forage first. After each gatherer has been given the chance to move and has 

gathered the resource in the cell it occupies, the hunters pursue the gatherers.

The function Gatherer: : f indMove () is used to support the calling GathererMgr func

tion, moveGatherers 0 ,  and is called for each gatherer in the list. A pointer to a GMoveList 

object is kept for each gatherer while it searches for a new landscape cell. This GMoveList 

object is derived from MoveList, a linked list of moveNode structures. (See Figure 2.8.) 

GMoveList sorts the moveNode list from highest to lowest resource return and secondly 

from closest to furthest landscape position in the gatherer’s FOV.

struct moveNode {
int x; /* target column */
int y; /* target row */
float resource; /* total reward for moving to this cell */
moveNode* next; /* pointer to next feasible move */

>;

A gatherer examines all unoccupied cells in its FOV and passes the feasible moves to 

the GMoveList for sorted insertion into the moveNode list. The gatherer moves to the cell



CHAPTER 2. MODEL 20

GMoveListO
~GMoveList()
addMove( x : int, y : int, sugar : float): void

GMoveList

MoveList() 
-MoveListO 
getBest(): moveNode*

list: moveNode*

MoveList

Figure 2.8: Gatherer Move List Object Derivation

with maximum resource return closest to its current cell location and gathers the resource. 

If there are no unoccupied cells within the gatherer’s FOV, the gatherer does not move.

The function G athere rM gr::m oveG atherersO  shuffles the gatherers and iterates over 

all the gatherers moving them one by one, as follows.

s h u ff le G a th e re rsO  ;
G atherer*  p t r  = g a th e r e rL is t ;  
w hile  ( p t r  != NULL) {

p tr-> fin d M o v eO ; /*  Each g a th e re r  moves i t s e l f .  * /
p t r  = p tr - > n e x t( ) ;  /*  R e tr ie v e s  nex t g a th e re r  in  l i s t .  * /

>

2.3.3.2 Hunter Movement

The function H u n te r: :findM oveO is used to support the calling HunterMgr function, 

moveHuntersO . A pointer to a HMoveList object is kept for each hunter while it searches 

for a new landscape cell. This HMoveList object is derived from MoveList (Figure 2.9) and 

maintains two linked lists for cells in the hunter’s FOV — one comprised of unoccupied cells 

sorted from furthest to closest with re so u rce  level always zero, and the other comprised of 

cells occupied by gatherers sorted from highest resource level to lowest and furthest to clos

est. The structures in both lists are moveNode structures which hold the landscape position 

and resource level of each feasible move.



CHAPTER 2. MODEL 21

HMoveList MoveList

unoccupied: moveNode* lis t : moveNode*

HMoveList() MoveList()
-HMoveList() ~MoveList()
addMove( x : int, y : int, sugar : floa t) : void 
addMove( x : int, y : in t) :  void 
getFurthestUnoccupied(): moveNode* 
getMostVulnerable(): moveNode*

getBest(): moveNode*

Figure 2.9: Hunter Move List Object Derivation

A hunter examines all cells within its FOV which are occupied by gatherers and passes 

the feasible cells to the HMoveList to insert into the occupied HMoveList: :list inherited 

from MoveList. All unoccupied cells within its FOV are added to the second member 

list, HMoveList: :unoccupied. As described in Section 2.2.5, if the hunter is not starv

ing, it ignores cells with wealthier gatherers and moves to the furthest cell with maxi

mum resource level — the location returned by a call to list->getBest(). (Recall that 

a hunter’s resource consumption as a result of combat is the wealth of the gatherer it de

feats.) A starving hunter, instead, does not ignore wealthier gatherers and moves to the 

cell within its FOV occupied by the weakest gatherer — the location returned by a call 

to list->getMostVulnerable(). If no cells occupied by gatherers remain in the hunter’s 

FOV, the hunter (starving or not) moves as far as possible within its FOV in a random 

direction to an unoccupied cell retrieved from the MoveList of unoccupied, visible cells. 

This location is returned by a call to unoccupied->getFurthestUnoccupied(). If both 

lists are empty, the hunter does not move.

If combat occurs, the losing agent surrenders all of its wealth to the winning agent and 

then dies of starvation. The winner’s wealth is then increased by the loser’s wealth.

The function, HunterMgr: :moveHunters() , shuffles the hunters and iterates over all the



CHAPTER 2. MODEL 22

hunters moving them one by one, as follows.

sh u ff  le H u n te rsO  ;
Hunter* p t r  = h u n te rL is t ; 
w hile  ( p t r  != NULL)
■C

ptr-> fin d M o v eO ; /*  Each h u n te r  moves i t s e l f .  * /
p t r  = p t r -> n e x t( ) ;  /*  R e tr ie v e s  nex t h u n te r  in  l i s t .  * /

>

2.3.4 M etabolization

The AgentMgr next makes function calls to G athererM gr: : m etabo lizeR esourceO  and 

HunterMgr: : m e tab o lizeR eso u rceO . W ithin the function m etabo lizeR esourceO  below, 

the GathererM gr object traverses the gatherer list and calls A gent: : m e tabo lize  () for each 

G atherer. This function call updates the gatherer’s w ealth  by subtracting its m etabolism.

G atherer*  p t r  = g a th e re rL is t ;  
w hile ( p t r )  {

p tr-> m e ta b o liz e R e so u rc e () ; 
p t r  = (G a th e re r* )p tr-> g e tN e x t( ) ;

>

The HunterMgr: :m etabo lizeR esourceO  function similarly traverses the h u n te rL is t,  

forcing each H unter to metabolize its resource.

2.3.5 H unter Injection

After agents metabolize their resource, the AgentMgr object injects hunters into the land

scape according to the following pseudo-code in AgentMgr :moveAgents 0 .  The value of p is 

discussed in detail in Chapter four. The function HunterM gr: : addH unters (num) makes num 

calls to c rea teH u n te rQ  and inserts each returned H unter pointer into the h u n te rL is t.



CHAPTER 2. MODEL 23

i f  (p) {
in t  num = G eo m etric (p ); 
h u n te r s . addH unters(num );

>

The function c rea teH u n te r () instantiates each new H unter object by several stochastic 

function calls. The states x and y are initialized to be on the landscape periphery by the 

following pseudo-code, 

do {
x = E q u i l ik e ly (0 ,3 9 ); 
y = E q u i l ik e ly (0 ,3 9 ); 
i f  (x > 19) 

x += X -  40; 
i f  (y > 19) 

y += Y -  40;
> w hile ( s c a p e -> g e tC e ll(x ,y )-> isO c c u p ie d ()) ;

The loop term inates when an unoccupied (x , y) cell position is generated, w ealth  is a 

continuous state initialized by a call to U niform (50,70). The continuous hunter attribute 

m etabolism  is generated by a call to U niform (2,7). The FOV parameter, v is io n , is a 

discrete attribute generated by a call to U niform (50,70). The hunter’s gender is gener

ated by a call to B e rn o u lli (0 .5 ) , returning 0 (female) and 1 (male) with equal probability. 

The l i f e t im e  attribute is discrete and is generated by a call to E q u i l ik e ly (90,100) for 

females and E q u i l ik e ly (100,110) for males. The start and end of the hunter’s fertility 

period are generated by two calls — E q u ilik e ly  (5 ,7 ) and E q u ilik e ly  (60,80) if female or 

E q u i l ik e ly (7 ,9 )  and E q u ilik e ly (7 0 ,8 0 )  if male. The age of the hunter is initialized by 

a call to E q u i l ik e ly (0 ,6 0 ). The HunterMgr object calls each new hunter’s in itA g e n tO  

function with the initialized states and generated attributes as parameters. In this func

tion, each H unter sets its in i t .w e a l th  attribute to w ealth  and then calls parent function 

A g e n t:: in itA g e n tO  to complete the initialization. (See Section 2.3.2.)



CHAPTER 2. MODEL 24

2.3.6 U pdates to  Landscape and A gents

During each time step, the landscape cells are replenished in the Landscape function 

grow backR esourceO . If a C e ll has resource level less than its c a p a c ity , growback re

source units are added to re so u rce , not exceeding cap ac ity .

Inside function AgentMgr: :f lu sh A g e n ts () , two function calls are made to flush dead 

agents. Functions G athererM gr: :f lu sh G a th e re rs ()  and HunterM gr: :f lu sh H u n te rsO  

remove agents with no remaining wealth and agents which have met their life expectancy 

(age == l i f e t im e ) .

2.3.7 A gent R eproduction

W ithin rep roduceA gen tsO , the AgentMgr calls G athererM gr: :rep ro d u ceG a th e re rs()  

and HunterMgr: :reproduceH unters. These functions permit living agents with ample 

wealth to attem pt reproduction.

The process of hunter reproduction will be described in detail, followed by a short 

explanation of the differences between gatherer and hunter reproduction. Each function 

in the HunterMgr class related to reproduction is also in the GathererM gr class. (See 

Figure 2.7.)

In the function HunterM gr:: reproduceH unters 0 ,  the HunterMgr object iterates through 

the list of hunters. The fertility of the hunter is first established. If the hunter is not fertile, 

reproduction cannot take place. Second, the hunter’s wealth is compared to Oh- The hunter 

is prohibited from reproduction if its wealth is not above Oh- Third, the HunterMgr object 

determines whether the hunter is already pregnant (if female). If not, the HunterMgr calls 

f  indM aleNeighbor () if the hunter is female or f  indFem aleNeighbor () if the hunter is



CHAPTER 2. MODEL 25

male.

These functions check the Moore neighborhood (Figure 2.4) of the hunter’s location to 

find a feasible mate for the hunter. If the hunter is male and no feasible female hunter 

is found, f indFemaleNeighbor () searches the same neighborhood for a feasible female 

gatherer. This is the allowance made in the conceptual and specification levels of the model 

for a male hunter to “rape” a female gatherer.

If a feasible mate is found, the HunterMgr object searches to determine whether there 

is a cell on the landscape for a baby. W ithin the function reproduceHuntersO, a call to 

function f indSpotForBaby () is made to search the Moore neighborhoods of both parent 

agents for an empty cell.

A baby hunter is created by a call to createBabyO if an empty cell was returned by 

findSpotForBaby(). In function createBabyO, the baby hunter’s gender is determined 

by a call to Bernoulli(0.5). The baby receives half of each parent’s wealth. The wealth 

of each parent is consequently halved by calling Agent: :madeBaby() for each parent. The 

baby’s metabolism, vision, and lifetime are inherited directly from its parents. A call to 

Bernoulli(0.5) is made for each remaining attribute. If the result is zero, the baby 

assumes its m other’s attribute; if the result is one, the baby assumes its father’s attribute. 

The start and end of its fertility period are generated by calls to Equilikely(5,7) and 

Equilikely(60,80) if it is female or Equilikely(7,9) and Equilikely(70,80) if it is 

male. The discrete age state of the baby is set to zero. The function init Agent () , described 

in Section 2.3.2, is then called by the HunterMgr object for this new baby Hunter. The 

landscape is updated by a call to agentArriveO with the baby’s x and y states as function 

parameters. The HunterMgr object adds this new hunter to the beginning of the hunter



CHAPTER 2. MODEL 26

list.

The reproduction process for gatherers is identical to the hunter algorithm described 

above, with three exceptions. The parameters for establishing the fertility period of a female 

baby are (12,15) and (50,70); a male baby’s are (15,19) and (50,70). Gatherers may not 

initiate mating with hunters, and the reproduction threshold Oh is replaced by 0g.

2.3.8 End of T im e Period

W ithin ageAgentsO, the AgentMgr calls functions GathererMgr: :ageGatherers() and 

HunterMgr: :ageHunters(). These aging functions simply iterate over the corresponding 

agent list and call function Agent: :ageAgent() for each agent. The function ageAgentO 

forces the age of each agent to increase by one. Finally, the time step t is incremented by 

one.



Chapter 3

V isualization

A graphical interface is an im portant tool for analyzing agent movement patterns in this 

simulation. An interface is also useful for verifying correctness of mating procedures and 

providing hints into some population dynamics. The interface used in this dissertation 

was written in Tel. As shown in Figure 3.1, the interface displays the landscape and its 

occupying agents at specified time steps during the simulation.

Pressing on the plot button at the top right of the interface generates a graph of hunter 

and gatherer populations from the beginning of the simulation to the current time. When 

pressed, the step buttons advance time a corresponding number of years and update the 

agents on the landscape after the advance. Agents on the landscape appear as colored cells, 

allowing distinction between hunters and gatherers. Baby agents are also distinguishable 

by color. Black cells are unoccupied. The current time of the simulation is displayed above 

the landscape, after the interface is updated.

27



CHAPTER 3. VISUALIZATION

Main Hunter Mate GaUhurer
Ipniajp Hunter
Rally Hunter Rahy Gnthoror

Figure 3.1: Interface Snapshot



Chapter 4

Experim ents

This chapter describes the simulation experiments performed using the model in Chapter 

two. Representative time histories of population dynamics are shown and some interface 

snapshots are included to demonstrate movement patterns. Discussion of these experimental 

results is interleaved throughout the chapter.

Epstein and Axtell discuss a landscape “carrying capacity” of agents in their artificial 

society model [4]. They use this term  to describe the steady-state (long-term) number of 

agents on the landscape. For example, if the simulation begins with more agents than 

the landscape’s carrying capacity, as time evolves the agent population will be reduced by 

starvation. Conversely, if the simulation begins with less agents than the carrying capacity, 

as time evolves the process of agent reproduction will increase the population level to the 

carrying capacity.

In artificial society models with death and reproduction, as time evolves the agent 

populations will typically exhibit oscillatory behavior. This behavior makes it difficult to 

draw conclusions about the carrying capacity from just one realization (replication) of the

29



CHAPTER 4. EXPERIMENTS 30

simulation. In my discussion, a carrying capacity is a steady-state mean population size. 

The simulation is replicated many times and these individual means are averaged to form 

the steady-state carrying capacity .

Based on a large amount of experimentation, I concluded that if the simulation is ini

tialized with a large population of hunters and gatherers, one of the two outcomes below 

will always occur.

1. The hunters wipe out the entire gatherer population through combat and then the 

hunters slowly die of starvation. A typical example is illustrated in Figure 4.1, where

the

800

700

600

N 500
aOS

400
Jo3aO 300
Oh

200

100

0 "T"
20

• Gatherer Population 
o Hunter Population

°0_
°°0C

J°o 0l
’000 ,OOo,

40 60 80 100

Figure 4.1: Extinction of Both Populations

2. The gatherers avoid extinction through combat because of their high and increasing 

wealth. Accordingly, the hunters die out and the gatherers flourish “forever” . Figure

4.2 is a typical illustration. Note that the vertical axis is extended in Figure 4.2



CHAPTER 4. EXPERIMENTS 31

relative to Figure 4.1 to show the dramatic increase in the gatherer population.

6000

5000
• •

■§ 3000a

£ 2000

3
a

1000

0
2°°ooo<

60

• Gatherer Population 
o Hunter Population

9^ t 
1000 20 40 80

F ig u re  4.2: Gatherers W ithstand Hunter Attack

Although I attem pted to find agent and landscape attributes tha t would produce a 

steady-state interdependence of hunters and gatherers, I was not able to do so. Con

sequently, I altered the simulation model to begin with gatherers only and then “inject”

in the interesting population dynamics discussed in Section 4.2 and Section 4.3.

Two sets of experiments are described in this chapter. In each set, as time evolves, a 

population of gatherers (initial size A) is subjected to a stochastic “injection” of hunters. 

The hunters are injected (created) randomly on the periphery of the landscape (no more 

than 20 cells from the “edge” in each direction). At each time step, a call to Geometric (p) 

(0 < p < 1) is made which determines the number of hunters to inject onto the landscape. 

(See Appendix A for stochastic function implementation.) The mean number of hunters 

injected per time step is n =  p / ( l  — p). The following discussions will be in terms of the

hunters near the “edges” of the (2-D) landscape at each time step. This change has resulted



CHAPTER 4. EXPERIMENTS  32

injection rate y  rather than the corresponding probability parameter p.

The first set of experiments studies the effects of injecting hunters into a population of 

“weak” gatherers. In the second set, a “strong” population of gatherers is simulated. The 

characteristics of the hunters and the landscape are the same in both sets of experiments.

4.1 Setup

For all experiments, the dimensions of the landscape are ( X , Y )  = (100,100) and the stop 

time T  is 2000.1 The growback rate a{x,y)  is a constant 2.4 for all (x,y).  I chose this 

constant to be less than the average gatherer metabolism. If the growback rate were high 

relative to the gatherers’ metabolism and cell capacities, starvation would be infrequent. 

If the growback rate were much smaller than the gatherers’ metabolism and landscape cell 

capacities, gatherer starvation would be very frequent. As described in Section 2.2, the 

capacity function for cell (x, y) is

c(x,y)  =  5e- ((x_0-5X)/a:c)2~((2/-0-5̂ )/CT!/)2

with ax =  0.54X ,<ry =  0.54y and x — 0 ,1 ,2 , . . .  , X  — 1 ,y  =  0 ,1 ,2 , . . .  , Y  — 1. For all 

experiments, the combat parameter n, used to shape the likelihood of a hunter defeating a 

gatherer in combat, is 1.0. (See Figure 2.3.)

All hunters in both experiment sets are characterized by the following tables of parame

ters. These parameter values determine the attributes and the initial states of the hunters.2

^ or statistical purposes, if a gatherer population does not reach extinction by time T, it is assumed to 
survive “forever” with extinction time oo.

2Not included in Table 4.2 are attributes group = hntr and gender = B ernoulli(0 .5).



CHAPTER 4. EXPERIMENTS  33

The two deterministic attributes have no “Range” in Table 4.2; their values are listed in 

the corresponding “Expected Value” column. Stochastic parameters have a range (a, b) in 

both tables. These values are used in function calls to E q u ilik e ly  (a ,b )  if integer-valued 

or to U niform (a,b) if real-valued. The real-valued parameters are noted by an *.

Parameter Variable N a m e Range (a, b) Expected Value
Initial Age age 0 - 6 0 30
Initial Wealth* wealth and init_wealth 50 -  70 60

T ab le 4.1: Parameters for Initial Hunter States

Parameter Variable N a m e Range (a, b) Expected Value
Starvation Threshold (7 ) GAMMA 15.0
Reproduction Threshold (6/l) THETA_H 21
Vision (FOV) vision 4 - 9 6.5
Metabolism* metabolism 2 - 7 4.5
Female Fertility Begin beginjfertility 5 - 7 6
Female Fertility End end_f ertility 60 -  80 70
Male Fertility Begin begin_fertility 7 - 9 8
Male Fertility End end_fertility 70 -  80 75
Female Lifetime lifetime 90 -  100 95
Male Lifetime lifetime 100 -  110 105

T ab le 4.2: Parameters for Hunter Attributes



CHAPTER 4. EXPERIMENTS  34

4.2 Experim ent Set 1 —  “Weak” Gatherers

This set of experiments is based on “weak” gatherers, described by the parameter values in 

Tables 4.3 and 4.4.3 The deterministic parameters do not have “Range” entries; their values 

are in the “Expected Value” column. The “Range” entries for stochastic parameters are 

used in calls to function E q u ilik e ly  (a ,b )  if integer-valued or to function U niform (a,b) if 

real-valued. The two real-valued parameters are designated with an *.

P a ra m e te r V ariab le  N am e R an g e  (a , b) E x p e c te d  V alue
Initial Number of Agents (A) NUM .AGENTS 2500
Initial Age age 0 — 60 30
Initial Wealth* w ealth 20 — 50 35

Table 4.3: Parameters for “Weak” Gatherer Initial States

P a ra m e te r V ariab le  N am e R an g e  (a, b) E x p e c te d  V alue
Reproduction Threshold (9g) THETA.G 15
Vision v is io n 1 — 4 2.5
Metabolism* m etabolism 3 — 7 5
Female Fertility Begin b eg in  J e r t i l i t y 12 — 15 13.5
Female Fertility End end_f e r t i l i t y 50 — 70 60
Male Fertility Begin b e g in _ f e r t i l i ty 15 — 19 17
Male Fertility End end_f e r t i l i t y 50 — 70 60
Female Lifetime li f e t im e 80 — 100 90
Male Lifetime li f e t im e 80 — 100 90

Table 4.4: Parameters for “Weak” Gatherer Attributes

I experimented to determine an appropriate initial number of gatherers A  for the simula

tion experiments in this set. When no hunters are injected into the landscape, the gatherer

3Not included in Table 4.4 are attributes group = gthrr and gender = Bernoulli (0.5).



CHAPTER 4. EXPERIMENTS  35

population size oscillates “forever” about a steady-state mean value — the carrying capac

ity. A typical realization of an initial gatherer population of A = 2500 with /jl =  0.0 is shown 

in Figure 4.3. (The dashed line illustrates the steady-state mean gatherer population based 

on one hundred replications. It is not the mean of this particular realization.)

3500

Gatherer Population3000

2500
0)
2co

2000s = i
.2v=>c5
3  1500fto
ft

1000

500

400 8000 1200 1600 2000

F ig u re  4.3: “Weak” Gatherers with No Hunters

For each point in Figure 4.4, the simulation was replicated one hundred times with 

stopping condition T  =  2000.4 For each replication, to avoid the effects of the initial 

transient, the sample mean of the gatherer population was computed between times t =  300 

and t =  2000. A • point, with an associated vertical bar, corresponds to the 95% confidence 

interval calculated from one hundred mean gatherer populations. (The dashed lines are the 

mean population sizes.) As illustrated, as the initial gatherer population size increases, the

4 Each replication used a different random number generator seed. See Appendix A for rngs library 
implementation.



CHAPTER 4. EXPERIMENTS 36

steady-state gatherer population also increases, albeit slowly. This demonstrates that there 

is not a well-defined carrying capacity in this case, independent of A.

If there were a well-defined carrying capacity, the steady-state gatherer population would 

be the same regardless of initial population size and I would choose the initial number of 

gatherers to be this steady-state population value. All experiments in this set use an initial 

gatherer population of A — 2500, with a corresponding steady-state gatherer population of 

2480.82 ±  2.41. If, in Figure 4.4, I were to construct the curve intersecting the midpoint of 

the generated interval estimates, the point of intersection between it and the diagonal line 

shown would be a justification for choosing A  close to 2500.

_o

3ao
Oh

! - i0)
S-lQJ
c3

o
a?

m
>>
o3cu

m

3000

2500

2000

1500

1000

500
30002000 25001500500 1000

Initial Number of Gatherers, A  

Figure 4.4: Steady-State “Weak” Gatherer Population

The only parameter varied in the following experiments is /i, the rate at which hunters 

are injected into the landscape. Recall that p, = p / ( l  — p) where p is the parameter in



CHAPTER 4. EXPERIMENTS  37

stochastic function Geometric (p ) . The value of n ranges from 0 to 10 in this experiment 

set.

Table 4.5 summarizes the results of these experiments. These results suggest there are 

two threshold values for fi. A value of fi less than the low threshold indicates that, with 

probability approaching 1.0, a “weak” gatherer population will not reach extinction. A 

value of /i higher than the upper threshold indicates that, with probability approaching 1.0, 

a “weak” gatherer population will reach extinction. Because of time constraints I have not 

attem pted to find precise values for these two thresholds.

I1 Gatherer Carrying Capacity Average Extermination Time
0.00 2480.82 ±  2.41 oc
1.00 2377.51 ±  1.85 oc
2.00 2227.72 ±  2.40 oo
3.00 2018.41 ±  2.49 oo
4.00 1709.18 ±  5.12 oo
4.25 1546.94 ±  64.66 oo
4.50 1220.17 ±  90.03 oo
4.75 956.56 ±  117.25 oo
5.00 688.71 ±  119.54 oo
5.25 378.22 ±  101.05 oo
5.50 216.33 ±  89.10 oo
5.75 58.28 ±  50.84 oo
6.00 7.51 ±  14.91 oo
6.50 0 313.30 ±  40.93
7.00 0 220.49 ±  17.42
8.00 0 157.12 ±  7.21
9.00 0 134.58 ±  6.19

10.00 0 116.54 ±  4.14

T able 4.5: Summary of Results for “Weak” Gatherers

Figure 4.5 illustrates the probability of a gatherer population reaching extinction (as 

95% confidence interval estimates) for the values of // used in these experiments. The S-



CHAPTER 4. EXPERIMENTS  38

shaped curve in Figure 4.5 indicates that the lower threshold is between — 4.00 and

Li =  4.25 and that the higher threshold is between /i =  6.00 and [i =  6.50.

a_o
CJ
.5
"-+J

w

<D
a

o
IhO
>>

a
Os-i

Oh

1.0 n

0.8 -

0 . 6 -

0 .4 -

0.2

0.0 J
70 1 2 3 4 5 6 8 9 10

Figure 4.5: Probability of “Weak” Gatherer Extinction by t — 2000

As expected, I found the same behavior when I increased the stop time of the simulation 

to T  =  10000. Figure 4.6 illustrates that some of the populations which were still alive at 

time T  =  2000 did reach extinction by T  =  10000. Based on the results in Figure 4.6, as T  is 

increased to infinity, I expect there will still be two extinction probability thresholds which 

generate a similar S-shaped curve. This curve will be shifted to the left when compared 

with results using a finite value for T. Because infinity cannot be computationally modeled, 

I did not increase the stop time beyond T =  10000. All results in Sections 4.2 and 4.3, with 

the exception of Figure 4.6, are based on a stop time of T  =  2000.

Figure 4.7 shows the steady-state gatherer populations and mean extinction times based 

on one hundred replications. The • points and corresponding vertical bars on the left-hand



CHAPTER 4. EXPERIMENTS 39

T  =  10000co
o

£  0.6  -<u

*S 0 .4 -
T  =  2000

'rB
0.2  -

o
S-l

On

0.0 J
4 5 63

Figure 4.6: Probability of “Weak” Gatherer Extinction by t = 10000

curve are 95% confidence interval estimates for steady-state gatherer populations. For values 

of /i where all replications produced gatherer extinction, the corresponding • point for the 

steady-state gatherer population is zero. In Figure 4.7, the • points and corresponding 

vertical bars on the right-hand curve are 95% confidence interval estimates for the mean 

gatherer extinction times. For values of /i when at least one replication did not produce 

extinction (in T  =  2000 time steps), there is no • point for an extinction time.

Before I began these experiments, I expected that a high rate of hunter injection into the 

landscape would extinguish the gatherer population quickly. I also expected the probability 

of this extinction to increase as the injection rate /i increased. However, I had no idea for 

what range of /Ps this probability increase would occur or what the slopes of the curves in 

Figure 4.5 and Figure 4.7 would be. Consistent with the results in Figure 4.7 and Table 4.5, 

as fi increases, the mean gatherer population and extinction times decrease. In addition,



CHAPTER 4. EXPERIMENTS 40

2500 -i

a 
.2
2  2000 H
3
O ho 

Oh

fc 1500 H(-Ha;03
aj

a
<u
a3

CO

a305
H-S
CO

1000  -

500 -

0 J

Gatherer Population

Extinction Time

4 5 6 7 80 1 2 3 9 10

500

-  400 £

-300

-2 0 0

a
.2’-+jo
.2
- |J

w

CD03
3

100 o

Figure 4.7: Steady State “Weak” Gatherer Populations and Extinction Times

the probability of “weak” gatherer extinction increases rapidly if /i is larger than the lower 

threshold value of fi.

Figures 4.8 through 4.10 illustrate representative time histories for fi = 2.0,5.0 and 9.0. 

All three vertical axes have the same scale, but the horizontal axes have been shortened in 

the two cases where the gatherer population became extinct.

Figure 4.8 confirms that an average injection of (i =  2.0 hunters per time period de

creases the gatherer population, but does not cause extinction. The gatherer population size 

oscillates dramatically, when compared to the gatherer carrying capacity in Figure 4.3 with 

no hunter injection. This is an example of gatherers withstanding a modest rate of hunter 

injection and the resulting combat that occurs. Note that there is a small hunter population 

sustained over time by new hunter injections and reproduction. If hunter injections were



CHAPTER 4. EXPERIMENTS 41

terminated, this hunter population would drop to zero.

3500

Gatherer Population 
Hunter Population

3000

2500
N

2000ao

I  1500
O hOOh

1000

500

400 800 1200 1600 20000

Figure 4.8: “Weak” Gatherer Time History — fj, = 2.0

As n increases, the gatherer population is more adversely affected. In Figure 4.9, with 

^ =  5.0 the gatherer population reaches extinction at time t = 476. This is one of forty- 

three replications in a set of one hundred where injections of five hunters (on average) per 

time step drove the gatherer population to extinction. (See Figure 4.5.)

W ith a higher value of /i, the gatherer population dies out rapidly, as illustrated in 

Figure 4.10 with fi — 9.0. The first few time steps show significant gatherer reproduction, 

but the hunters then quickly begin to defeat the gatherers in combat. Notice that as the 

gatherers die, the hunter population increases. The wealth accumulated by the hunters 

from the defeated gatherers and the higher injection rate allows the hunters to live longer 

and mate more often. If hunter injection is terminated, the hunter population will soon 

become extinct.



Po
pu

la
tio

n 
Siz

e 
Po

pu
la

tio
n 

Si
ze

CHAPTER 4. EXPERIMENTS 42

3500 n

Gatherer Population 
Hunter Population

3000 -

2500 -

2000  -

1500 -

1000 -

500 -

0
240 320 400 48080 1600

Figure 4.9: “Weak” Gatherer Time History — = 5.0

3500 n 

3000 -  

2500 -  

2000  -  

1500 -  

1000 -  

500 -  

0 -

• Gatherer Population 
o Hunter Population

0 50 7525 100 125

Figure 4.10: “Weak” Gatherer Time History — fi = 9.0



CHAPTER 4. EXPERIMENTS  43

4.3 Experim ent Set 2 —  “Strong” Gatherers

This set of experiments is on “strong” gatherers. On average, strong gatherers have larger 

FOVs and higher initial wealth than the “weak” gatherers. Also, their average metabolism 

rate is lower and both the male and female gatherers begin their fertility period earlier than 

the weak gatherers. The initial states and attributes of the gatherers are listed below in 

Tables 4.6 and 4.7.5 The values of the two deterministic parameters are shown in their 

corresponding “Expected Value” entry. Real-valued variables are marked with an *. The 

same characteristics are used for hunters and the landscape as were discussed in section 4.1.

Parameter Variable N a m e Range Expected Value
Initial Number of Agents (A) NUM .AGENTS 5000
Initial Age age 0 - 6 0 30
Initial Wealth* wealth 30 -  50 40

Table 4.6: Parameters for “Strong” Gatherer Initial States

Parameter Variable N a m e Range Expected Value
Reproduction Threshold (0g) THETA.G 20
Vision (FOV) vision 2 - 5 3.5
Metabolism* metabolism 2 - 4 3
Female Fertility Begin begin_fertility 5 - 7 6
Female Fertility End end_f ertility 50 -  70 60
Male Fertility Begin beginjfertility 5 - 7 6
Male Fertility End end_f ertility 50 -  70 60
Female Lifetime lifetime 80 -  100 90
Male Lifetime lifetime 80 -  100 90

Table 4.7: Parameters for “Strong” Gatherer Attributes

5Not included in Table 4.7 are attributes group = gthrr and gender = Bernoulli (0.5).



CHAPTER 4. EXPERIMENTS  44

I experimented to determine an appropriate initial number of strong gatherers A  for 

the simulation experiments in this set. When no hunters are injected into the landscape, 

the gatherer population will oscillate “forever” around a steady-state mean value. Figure 

4.11 is a typical example where A — 5000. (The dashed line is the steady-state mean 

gatherer population based on one hundred replications. It is not the mean of this particular 

realization.) If the size of the left axis were magnified, population oscillations would be 

more noticeable.

8100

7200 Gatherer Population

6300

5400
m

4500.2
C$2 3600
a

2700

1800

900

0 400 800 1200 1600 2000

Figure 4.11: “Strong” Gatherers with no Hunters

For each point in Figure 4.12, the simulation was replicated one hundred times with 

stopping condition T  =  2000. For each replication, to avoid the effects of the initial tran

sient, the sample mean of the gatherer population was computed between times t — 300 

and t =  2000. A • point with an associated vertical bar corresponds to the 95% confi



CHAPTER 4. EXPERIMENTS 45

dence interval calculated from one hundred gatherer population means. As in the first set 

of experiments, the initial number of gatherers does have an impact on the mean steady- 

state gatherer population. I chose the initial gatherer population size A — 5000 for all 

experiments in this set because it is closest multiple of 1000 to the intersection of the diag

onal line shown and the curve connecting the interval estimates. The corresponding mean 

steady-state gatherer population is 5422.32 ±  1.01.

a
.2
o3

3cxo
cu
S-i<D
Sh<l>

o
a>

m

0)
CO

6000

5000

3000

2000

2000 3000 5000 6000

Initial Number of Gatherers 

Figure 4.12: Steady State “Strong” Gatherer Population

The only parameter varied in this set of experiments is /i, the rate at which hunters 

are injected. The value of fj, ranges from 0 to 32. Table 4.8 shows the results of these 

experiments. The interval estimates in Table 4.8, Figure 4.13, and Figure 4.14 are all based 

on one hundred replications.

The results in Table 4.8 indicate that there are two threshold values for “strong” gath-



CHAPTER 4. EXPERIMENTS 46

Gatherer Carrying Capacity Average Extermination Time
0.00 5422.32 ±  1.01 oo
4.00 5072.23 ±  2.95 oo
8.00 4294.22 ±  2.64 oo
9.00 3673.70 ±  3.76 oo

10.00 3084.19 ±  16.47 oo
11.00 2474.33 ±  135.97 oo
11.25 2200.43 ±  169.95 oo
11.50 1826.31 ±  205.01 oo
11.75 1342.43 ±  223.40 oo
12.00 779.47 ±  207.51 oo
12.50 263.15 ±  130.40 oo
13.00 0 935.54 ±  68.95
14.00 0 529.66 ±  41.83
15.00 0 379.50 ±  30.14
16.00 0 285.57 ±  22.57
20.00 0 135.01 ±  7.82
24.00 0 104.30 ±  3.65
28.00 0 86.82 ±  2.88
32.00 0 77.89 ±  2.24

Table 4.8: Summary of Results for “Strong” Gatherers

erers. A value of ji less than the lower threshold indicates tha t any “strong” gatherer 

population, with probability approaching 1.0, will not reach extinction. A value of /i above 

the higher threshold indicates that any “strong” gatherer population, with probability ap

proaching 1.0, will reach extinction. I generated the interval estimates shown in Figure 

4.13 to determine an approximation of the /i threshold values. As in the “weak” gatherer 

experiment set, there is a dramatic rise in the probability of gatherer extinction between 

two estimated thresholds. In this set, the lower threshold is between /j , = 10.0 and / i  =  11.0 

and the upper threshold is between (j, =  12.5 and fi — 13.0.

Although I did not increase the stop time (T) for comparison in this set of experiments,



CHAPTER 4. EXPERIMENTS 47

F ig u re  4.13: Probability of “Strong” Gatherer Extinction by t — 2000

I expect similar results as in the experiment set with “weak” gatherers. That is, I expect 

tha t if T  were increased significantly, the extinction probability curve would be shifted left 

from the curve that is shown in Figure 4.13.

Figure 4.14 shows the steady-state gatherer populations and the extinction times. Each 

• point and corresponding vertical bar on the left-hand curve is an interval estimates of 

the mean steady-state gatherer population for the particular value of fi. Each • point 

and corresponding vertical bar on the right-hand curve is an interval estimate of the mean 

extinction time for the particular value of /i. For values of fi when in at least one replication 

a gatherer population did not reach extinction (by T  = 2000), there is no • point for an 

extinction time. For values of fi where all replications produced gatherer extinction, the 

corresponding • point for the steady-state gatherer population is zero.

Before I began these experiments, I expected a high rate of hunter injection to abolish



CHAPTER 4. EXPERIMENTS

Ch
.2
Jh3QhoCu
Sho>
J—Ia>
a3

o
0)
a

m
T3
a3a>

-t-»m

Gatherer 
Population

Extinction Time

-  600

-  800 PH
Ch
.2
o
.5'■+j
w

-  400 g
CD

o3
o

5500 -|

5000 -| ^  h 1000

4500 

4000 -  

3500 -  

3000 -  

2500 -  

2000 

1500 H

1000 H \ X .  r  200

500 

0

Figure 4.14: Steady State “Strong” Gatherer Populations and Extinction Times

the “strong” gatherer population quickly. I expected this rate to be higher than the rate 

at which “weak” gatherer populations are abolished. I expected the probability of “strong” 

gatherer extinction to increase as the injection rate increases, but I did not know for what 

range of /Ps this would happen or what the “slopes” in Figure 4.13 and Figure 4.14 would 

be. Consistent with the results in Table 4.8, Figure 4.13, and Figure 4.14, higher values of 

fi produce a smaller steady-state gatherer population (if steady-state occurs) and an earlier 

extinction time. The probability of “strong” gatherer extinction increases rapidly if fi is 

between the two threshold values of fi.

The values of fi studied in this experiment set are higher than in the first experiment 

set because the “strong” hunters are less vulnerable to combat with hunters. Regardless, 

the same societal behavior occurs and the curves represented in Figure 4.7 and Figure 4.13 

are similar. The extinction time curve suggests that there is a limiting extinction time —



CHAPTER 4. EXPERIMENTS 49

the hunters can defeat gatherers only so fast.

Figures 4.15 through 4.18 are representative time histories of experiments in this set 

for ii =  8.00, 11.75, 15.00 and 32.00. All four vertical axes have the same scale, but the 

horizontal axes have been shortened in two cases where the gatherer population became 

extinct before t =  2000.

Figure 4.15 shows a typical replication in which the value of /i is less than the low 

threshold discussed above. The gatherer population in this figure does reach a steady-state 

population size. At the rate fi = 8.00, the gatherer population withstands hunter attack 

“forever” . If compared with the gatherer population in Figure 4.11 (/i =  0), the gatherers 

in Figure 4.15 have a lower steady-state population size. Thus, an average of eight hunters 

injected per time step does have a slight, adverse affect on the gatherer population but does 

not drive the gatherers to extinction.

8100 n
I

CD
N

ShO

7200 -  J  

6300 -  |  

5400 -  

4500 -

• Gatherer Population

o
O hO

3600 -

2700

1800 -

900 -

0 f
0

r - T -
1200400 800 1600 2000

Figure 4.15: “Strong” Gatherer Time History — fi = 8.00



CHAPTER 4. EXPERIMENTS 50

The gatherer population in Figure 4.16 oscillates much more dramatically than the pop

ulation in Figure 4.15. Note that /i =  11.75 is between the two extinction probability 

thresholds and so the gatherer population will reach extinction before T  =  2000 with prob

ability greater than zero. For this realization, the gatherer population reaches extinction at 

time t = 1488.

8100
Gatherer Population 
Hunter Population7200

6300
a?N 5400

co
4500

^  3600
a

£  2700

1800

900

300 600 900 1200 15000

Figure 4.16: “Strong” Gatherer Time History — fi = 11.75

Figure 4.17 is a representative time history where fi = 15.00 is higher than the upper 

thresholds and so any “strong” gatherer population will reach extinction with probability 

close to 1.0. Note that the gatherers are extinct at time t = 376 after a somewhat gradual 

decline in population size.

Extremely large values of /i do not allow gatherer populations to oscillate or gradually 

decline as in Figure 4.15 and Figure 4.16 where /i is moderate. Figure 4.18 shows a steep 

decline of gatherers, reaching extinction at time t — 80. As expected, if /i is large the 

resulting extinction occurs much sooner than if ^  is small.



Po
pu

la
tio

n 
Siz

e 
Po

pu
la

tio
n 

Si
ze

CHAPTER 4. EXPERIMENTS 51

Gatherer Population 
Hunter Population7200 -

6300 -

5400 -

4500 -

3600 -

2700 -

1800 -

900 -

0
0 75 150 225 300 375

Figure 4.17: “Strong” Gatherer Time History — fi = 15.00

8100 

7200 -  

6300 -  

5400 -  

4500 

3600 -  

2700 -  

1800 -  

900 

0 J

• Gatherer Population 
o Hunter Population

OOOoOoooo
o o o o o 0 0 0 o o o o o o o o o o o o o 0 o ° o 0 0 0 o o 8 8 » 8 8 °  

^ n n ^ ^ 000o o o 0o o 000000000° 0° 0°°0°°0 ____________________ _________________________

0 10 20 30 40 50 60 70
r
80

Figure 4.18: “Strong” Gatherer Time History — (i = 32.00



CHAPTER 4. EXPERIMENTS  52

4.4 Interface Results

Recall that Chapter three discussed the visualization interface. I used this interface to verify 

several of the time history figures in Sections 4.2 and 4.3. Figure 4.19 depicts “strong” 

gatherers with an average of /i =  15.00 hunters injected per time step. The corresponding 

time history is illustrated in Figure 4.17. The agent movement trends in this example are 

common with “weak” and “strong” gatherers and occur regardless of the value of fi.

Time evolves in Figure 4.19 from left to right and top to bottom. The interface snapshots 

are taken at times t = 10, 50, 100, 200, 300 and 372. Figure 4.19 clearly verifies that 

gatherers move towards the center of the landscape over time. They congregate at the 

center because the highest resource amounts are at the center of the landscape, where 

the cell resource capacity is largest. Recall that hunters are injected onto the landscape 

periphery. Some hunters are able to migrate to the center of the landscape in search of 

vulnerable gatherers to defeat in combat.

In the realization show in Figure 4.17 and Figure 4.19, after t = 15 the number of baby 

agents (both hunters and gatherers) created via reproduction was less than eighty per time 

period (see Figure 4.20). The horizontal axis begins at time t = 15 because the previous 

reproduction levels are large and, if displayed in the same figure with births after t — 15, 

variations in the latter would be hard to resolve. As expected, in Figure 4.20 the number 

of reproductions per time period decreases as the number of living agents decreases.

The gatherers near the center of the landscape are too densely packed for babies to be 

created since an empty cell neighboring one or both parents is required for an agent birth. 

The gatherers on the “edge” of the cluster are those most likely to engage in reproduction,



CHAPTER 4. EXPERIMENTS  53

but they are also the most vulnerable to combat and starvation because they face the in

coming hunters and are located at cells with lower resource capacities. Hunter reproduction 

is limited because of the sparseness of the hunter population. Hunters that do not reach 

the gatherer cluster often do not get a chance to reproduce because they have metabolized 

their wealth to an amount lower than the hunter reproduction threshold. Male hunters that 

do infiltrate the cluster can choose to “rape” the female gatherers, but only if there is an 

empty cell for the baby. Hunters at or inside the gatherer cluster also face the challenge of 

finding a fertile hunter of the opposite sex.

4.5 Simulation Verification

When simulating any system, it is crucial to verify that the model at the computational 

level and simulation results are consistent with the model at the conceptual and specification 

levels [10]. I used many consistency checks to ensure simulation correctness. The following 

are just some of the consistency checks for this complex simulation model.

• Because multiple births are not possible, the total number of births in a time step 

must be less than or equal to of the total number of female agents at the start of that 

time step. The number of baby agents visible on the Tel interface must equal the 

number of births in tha t time step.

• The number of combats in a time step must be no more than the number of hunters.

• The average of the stochastic attributes generated should equal the mean of the 

stochastic distribution used. For example, hunter vision was generated in all experi

ments with a function call to E q u i l ik e ly (4 ,9 ) . At any time step in the population,



CHAPTER 4. EXPERIMENTS  54

the mean of the hunter visions should be close to 6.5 =  (4 +  9)/2. As more hunters 

are included in the average, the mean vision will approach 6.5.

• I used the Tel interface to determine whether hunters are injected on the periphery 

of the landscape. Because there is no way to determine which are the most recently 

injected hunters, this consistency check was helpful only if there were not too many 

hunters to track.

• The Tel interface was also useful in checking reproduction proximities. A baby gath

erer must be next to at least one gatherer, which must be next to its mate. A baby 

hunter must be next to a hunter or a “raped” female gatherer, which must also be 

next to its mate.



CHAPTER 4. EXPERIMENTS 55

Figure 4.19: Evolution of “Strong” Gatherers — n = 15.00



N
um

be
r 

of 
A

ge
nt

 
R

ep
ro

du
ct

io
ns

CHAPTER 4. EXPERIMENTS

100

80 H

60

40 H

20 H

• • • '  i  '  • fjL. • 7  * '  • - • ••• .• .• • • . • • • is# / . /  . • • • V ••• •
• • • •  m • • •  • . , V

• -V
•  •

o J
15 75 135 195 255 315 375

Figure 4.20: Agent Reproduction Levels — fi = 15.00



Chapter 5

Conclusion

There is much more detail and complexity in the artificial society model developed in this 

dissertation than can be discussed here. I focused primarily on population dynamics and 

the natural rise and fall in populations due to agent combat. The following three points 

summarize key results from this simulation study.

• “Stronger” gatherers are better able to withstand hunter attack. They have a higher 

tolerance for hunters and, if the hunter injection rate is zero, their mean population 

size is much higher than tha t of “weaker” gatherers.

• The higher the hunter injection rate /i, the more rapidly the mean gatherer population 

size will diminish. If gatherer extinction occurs, a higher injection rate will force 

gatherer extinction to occur sooner, on average, than lower injection rates.

• The probability of the gatherer population successfully withstanding hunter attack

and the probability of gatherer extinction are determined by the thresholds for /i. If

H is above the higher threshold, gatherer extinction is nearly certain. If fi is below the

57



CHAPTER 5. CONCLUSION 58

lower threshold, gatherer populations are nearly certain to withstand hunter injection 

forever. If fi is between the thresholds the probability of extinction is positive and 

less than 1.0. Stronger gatherers have higher thresholds than weaker gatherers.

An issue for further study with the current model is to determine the earliest possible 

gatherer extinction time using large values of fi. Determining precise threshold values for 

“weak” and “strong” gatherers is another suggested study.

An extension to the current model is to modify the interface such that cell and agent 

states and attributes are accessible by clicking on an occupied landscape cell. Clicking on an 

unoccupied cell would only display the cell states and attributes. This modification would 

allow for easier and more thorough consistency checks.

W ithout changing the focus on population dynamics resulting from combat, there are 

many aspects and assumptions of this model that can be changed. Two significant aspects 

are the landscape’s cell resource capacity function and the method used to “strengthen” 

gatherer populations. A resource capacity function with a different topology may change the 

population dynamics significantly. Strengthening gatherer populations by altering stochas

tic parameters other than those altered in this model could also provide variant combat 

trends and probability thresholds. For example, the “weak” gatherers had a lower average 

vision and initial wealth, higher average metabolism, and later times for the start of their 

fertility periods than “strong” gatherers. Eliminating some of these differences or adding 

others could change the vulnerability of gatherer populations to hunter attack.

Another extension to the model is to inject hunters onto a different region of the land

scape. It may be true that there are waves of hunters (injected on the periphery) that



CHAPTER 5. CONCLUSION 59

migrate towards the center — some successful and others not. Based on this movement 

trend, if the hunters were not injected on the periphery of the landscape but were injected 

close to the center or spread evenly throughout the landscape, the effects of the hunters on 

both “weak” and “strong” gatherers would probably be more severe and rapid.



A ppendix A

Stochastic Functions

The following stochastic functions and excerpt from libraries rngs and rvgs were written 

by Steve Park and David Geyer [10]. The function RandomO uses a Lehmer random number 

generator to produce a floating point value between 0.0 and 1.0. The function PutSeedO is 

used to initialize the generator. Each stochastic component in the computational model is 

allocated one of 256 disjoint random streams. A call to the function SelectStreamO defines 

the active stream for the next random number to be generated. This allows for a unique 

source of randomness for each component [10]. The remaining functions are stochastic 

distributions described in Table A.I.

#define MODULUS 2147483647
#define MULTIPLIER 48271 
#define CHECK 399268537
#define STREAMS 256 /* # of streams */
#define A256 22925 /* jump multiplier */
#define DEFAULT 123456789 /* initial seed */

static long seed[STREAMS] = {DEFAULT}; /* current state of each stream */
static int stream =0; /* stream index, 0 is the default */
static int initialized =0; /* test for stream initialization */

60



APPENDIX A. STOCHASTIC FUNCTIONS 61

double Random(void)
/ *  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

* Random returns a pseudo-random real number uniformly distributed
* between 0.0 and 1.0.
*  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

* /
{

const long Q = MODULUS / MULTIPLIER; 
const long R = MODULUS 7, MULTIPLIER; 

long t;

t = MULTIPLIER * (seed[stream] 7. Q) - R * (seed[stream] / Q) ; 
if (t > 0)

seed[stream] = t; 
else

seed[stream] = t + MODULUS; 
return ((double) seed[stream] / MODULUS);

}

void PutSeed(long x)
/ *  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

* Use this function to set the state of the current random number
* generator stream according to the following conventions:
* if x > 0 then x is the state (unless too large)
* if x < 0 then the state is obtained from the system clock
* if x = 0 then the state is to be supplied interactively
*  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

* /
{

char ok = 0; 

if (x > 0)
x = x 7. MODULUS; /* correct if x is too large */

if (x < 0)
x = ((unsigned long) time((time_t *) NULL)) 7o MODULUS; 

if (x == 0) 
while (!ok) {

printf("\nEnter a positive integer seed (9 digits or less) »  "); 
scanf ("7.1d" , &x) ; 
ok = (0 < x) && (x < MODULUS); 
if (!ok)
printf("\nlnput out of range ... try again\n");

}
seed[stream] = x;

}



APPENDIX A. STOCHASTIC FUNCTIONS 62

void SelectStream(int index)
/ *  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

* Use this function to set the current random number generator
* stream —  that stream from which the next random number will come.
*  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

* /

stream = ((unsigned int) index) */, STREAMS;
if ((initialized == 0) && (stream != 0)) /* protect against */
PlantSeeds(DEFAULT); /* un-initialized streams */

}

long Equilikely(long a, long b)
/ *  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

* Returns an equilikely distributed integer between a and b inclusive.
* NOTE: use a < b
*  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

* /
{
return (a + (long) ((b - a + 1) * RandomO));

}

long Geometric(double p)
/ *  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

* Returns a geometric distributed non-negative integer.
* NOTE: use 0.0 < p < 1.0
*  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

* /
{
return ((long) (log(1.0 - RandomO) / log(p)));

>

long Bernoulli(double p)
/ *  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

* Returns 1 with probability p or 0 with probability 1 - p.
* NOTE: use 0.0 < p < 1.0
*  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

* /
{
return ((RandomO < (1.0 -p)) ? 0  : 1);

}



APPENDIX A. STOCHASTIC FUNCTIONS

double Uniform(double a, double b)
/ *  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

* Returns a uniformly distributed real number between a and b.
* NOTE: use a < b

* /
{
return (a + (b - a) * RandomO);

>

Distribution M e a n Standard Deviation

Equilikely(a,b) cl b /(& — a + l ) 2 — 1
2 V 12

Geometric(p) P
1 - p

V p
1 - p

Bernoulli(p) P V p (  1 ~P)

Uniform(a,b) a + b  

2
b — a
V12

Table A .l: Stochastic Function Descriptions



Bibliography

[1] C. H . B u i l d e r  a n d  S. C. B a n k e s .  Artificial Societies: A Concept for Basic Research 
on the Societal Impacts of Information Technology. RAND  Report P-77f0. RAND 
Corporation, Santa Monica, California, 1991.

[2] F r e d e r i c o  C e c c o n i  a n d  D o m e n i c o  P a r i s i .  Individual versus social survival strate
gies. In Journal of Artificial Societies and Social Simulation, vol. 1, no. 2, 1998.

[3] Jim  D o r a n ,  M ik e  P a l m e r ,  a n d  P a u l  M e l l a r s .  The EOS Project: Modelling 
Upper Paleolithic Change. In Simulating Societies: The Computer Simulation of Social 
Phenomena, edited by Nigel Gilbert and Jim Doran, pp. 195-222. UCL Press, London, 
1994.

[4] J o s h u a  M. E p s t e i n  AND R o b e r t  A x t e l l .  Growing Artificial Societies: Social Sci
ence From the Bottom Up. Brookings Institution Press, Washington, D.C., 1996.

[5] N i g e l  G i l b e r t .  Computer Simulation of Social Processes. In Social Research Update, 
issue 6, 1993.

[6] N i g e l  G i l b e r t .  Simulation: An Emergent Perspective. In Proceedings of the Confer
ence on New Technologies in the Social Sciences, 1995.

[7] R a i n e r  H e g s e l m a n n  a n d  A n d r e a s  F l a c h e .  Understanding complex social dynam
ics: A plea for cellular autom ata based modelling. In Journal of Artificial Societies and 
Social Simulation, vol. 1, no. 3, 1998.

[8] M i c h a e l  I n b a r  a n d  C l a r i c e  S. S t o l l .  Simulation and Gaming in Social Science. 
Free Press, New York, 1972.

[9] M i c h a e l  W. M a c y .  Social order in artificial worlds. In Journal of Artificial Societies 
and Social Simulation, vol. 1, no. 1, 1998.

[10] S t e v e  P a r k  a n d  L a w r e n c e  L e e m is .  Discrete-Event Simulation: A First Course. 
Unpublished.

[11] D w i g h t  W . R e a d .  Kinship based on demographic simulation of societal processes. 
In Journal of Artificial Societies and Social Simulation, vol. 1, no. 1, 1998.

[12] G e r a r d  W e i s b u c h  a n d  G u i l l e m e t t e  D u c h a t e a u - N g u y e n .  Societies, cultures 
and fisheries from a modeling perspective. In Journal of Artificial Societies and Social 
Simulation, vol. 1, no. 2, 1998.

64



BIBLIOGRAPHY 65

[13] J e f f r e y  R .  Y o u n g .  Using Computer Models to Study the Complexities of Human 
Society. In The Chronicle of Higher Education, 1998.



VITA

Rachel Inez Moore was born in Pittsburgh, Pennsylvania, November 15, 1976. She 

graduated from Mary Schenley High School in that city, June 1994. Rachel earned her 

Bachelor of Science degree from the College of William and Mary in 1997. She is currently 

a Master of Science candidate at the College of William and Mary, with a concentration in 

Computer Science. All course requirements have been completed. Remaining work is the 

thesis — Artificial Societies : A Computational Approach to Studying Conflict.


	Artificial Societies: A Computational Approach to Studying Combat
	Recommended Citation

	tmp.1539892610.pdf.Ki3fG

