
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2003

A Parallel Two Dimensional Delaunay Decoupling Method A Parallel Two Dimensional Delaunay Decoupling Method

Leonidas Linardakis
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Linardakis, Leonidas, "A Parallel Two Dimensional Delaunay Decoupling Method" (2003). Dissertations,
Theses, and Masters Projects. William & Mary. Paper 1539626828.
https://dx.doi.org/doi:10.21220/s2-m58d-n221

This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539626828&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539626828&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-m58d-n221
mailto:scholarworks@wm.edu

A P a r a l l e l T w o D im e n s io n a l D e l a u n a y

D e c o u p l i n g M e t h o d

A Thesis

Presented to

The Faculty of the Department of Computer Science

The College of William and Mary in Virginia

In Partial Fulfillment

Of the Requirements for the Degree of

Master of Science

by

Leonidas Linardakis

2003

APPROVAL SHEET

This thesis is submitted in partial fulfillment of

the requirements for the degree of

Master of Science

Leonidas Linardakis

Approved by the Committee, December 2003

Nikos Cfixjg^Ghoides, Chair

<

Gianfranco Ciardo

yklL^y /H m T

Weizhen Mao

To E fi...

iii

Table of C ontents

A cknow ledgm ents vii

A b s tra c t viii

1 In tro d u c tio n 2

1.1 Delaunay Triangulation and Mesh G e n e ra tio n .. 2

1.2 Parallel Delaunay Mesh Generation 4

2 T h e M edia l A xis D om ain D eco m p o sitio n M e th o d 8

2.1 The Domain Decomposition P ro b le m ... 8

2.2 Medial Axis Domain Decomposition M e th o d .. 11

2.2.1 The MADD A lg o rith m 17

2.2.1.1 Construction of the Graph Gv 18

2.2.1.2 Graph C o n trac tio n .. 20

E x a m p le .. 21

2.2.1.3 The Construction of the S e p a ra to r 24

iv

2.2.2 Proof of C o rre c tn e ss .. 26

2.2.3 N-way Decomposition ... 28

3 T h e D ecoup ling M e th o d 31

3.1 The Decoupling Z o n e .. 31

3.2 Ruppert’s algorithm .. 34

3.3 The construction of the decoupling p a t h .. 36

3.3.1 Case I: The ratio c r i te r io n .. 38

3.3.2 Case II: The ratio and max area c r i t e r i a 39

4 P a ra lle l G u a ra n tee d Q u ality M esh G e n e ra tio n 42

4.1 The Parallel Delaunay Decoupling P rocedure... 42

4.2 Load B a lan c in g ... 46

5 E x p e rim e n ta l R esu lts 50

5.1 Performance Evaluation ... 50

5.2 Experimental S e tu p ... 51

5.3 Sequential Experim ents.............. 52

5.4 Parallel E x p e rim en ts ... 55

5.4.1 Fixed Size Mesh E x p e rim e n ts ... 56

5.4.2 Scaled Size Mesh E xperim ents... 58

6 C onclusions an d F u tu re W ork 63

v

B ib liog raphy

V ITA

ACKNOWLEDGMENTS

I’m deeply grateful to my advisor Nikos Chrisochoides for introducing and guiding
me to the exciting field of the parallel mesh generation. Through the intricate discus­
sions we had I’ve become a richer person. I would also like to thank the members of
the committee Gianfranco Ciardo and Weizhen Mao for their help and their advice.

I was fortunate to have good friends and exceptional teachers. Whatever knowl­
edge I have I owe it to them. I would like to thank especially Apostolos Thoma, as
well as Theodoros Vidalis, who provided me the scientific and ethical foundations,
while I was a student in the University of Ioannina. All the faculty members of the CS
department in the College of William and Mary have instructed me in wisdom to var­
ious areas of Computer Science. Paul Stockmeyer revealed to me the playful nature
of Mathematics, while Weizhen Mao showed to me the simplicity of the Complexity.

The administrative director of the department, Vanessa Godwin, was an invaluable
guide to the mysterious vicinity of applications, forms and various deadlines.

Finally, I’d like to thank my colleagues, Kevin Barker, for his help in the parallel
implementation of the MADD and for his insight of the parallel world, and Aaron
Hawkins, for our explorations of the infinite book. Although we will never be able to
finish it, just glancing through the pages is a pleasant and rewarding activity.

This work was partially supported by NSF ACI-0085969 and NSF NGS-0203974.

ABSTRACT

Creating in parallel guaranteed quality large unstructured meshes is a challenging
problem. Parallel mesh generation procedures decompose the original mesh genera­
tion problem into smaller subproblems that can be solved in parallel. The subprob­
lems can be treated as either completely or partially coupled, or they can be treated
as completely decoupled. In this thesis we present a parallel guaranteed quality De­
launay method for 2-dimensional domains which is based on the complete decoupling
of the subproblems. As a result the method eliminates the communication and the
synchronization during the meshing of the subproblems. Moreover, it achieves 100%
code re-use of existing, fine-tuned and well tested, sequential mesh generators. The
approach we describe in this thesis presents for the first time an effective way to cre­
ate in parallel guaranteed quality meshes with billions of elements in few hundreds of
seconds, and at the same time demonstrates that these meshes can be generated in a
efficient and scalable way. Our performance data indicate superlinear speedups.

A Parallel Two Dimensional Delaunay Decoupling Method

Chapter 1

Introduction

1.1 Delaunay Triangulation and M esh Generation

Delaunay triangulation was introduced by Delaunay [21] in 1934 and is a triangula­

tion such that the circumcircle (the circumscribed circle) of every triangle is empty,

that is it does not contain any other vertex of the triangulation (see Figure 1.1). This

property is referred as the empty circumcircle property. The advantages of the Delau­

nay triangulation is that it demonstrates adaptivity to the geometry and maximizes

the minimum angle of the triangulation [33].

In the Delaunay mesh generation, points are inserted in the triangulation in order

to improve the quality of the mesh (see Figure 1.1). A triangle is considered “bad”

when it contains a small angle, or equivalently when the circumradius to shortest

edge ratio is large. Typically the circumcenter of a such a bad triangle is inserted

and new mesh is produced by re-triangulating the vertices. In addition to improving

the quality of the mesh in terms of the angles this refinement procedure is used to

2

CHAPTER 1. INTRODUCTION 3

Figure 1.1: Delaunay triangulation and mesh generation. Top left, in Delaunay trian­
gulation the circumcircles of the triangles are empty. Top right, in the Delaunay mesh
generation the circumcenters of the ’bad’ triangles are inserted and down left the mesh is
re-triangulated. Down right, the mesh generation procedure is unpredictable and memory
intensive.

decrease the size of the triangles, so that the maximum triangle area is bounded by

a desirable size.

This procedure is not computational expensive, but is memory intensive and has

unpredictable computational behavior, which is input dependent. In order to solve

the problem of the memory intensive access, distributed memory machines can be

used to create large meshes efficiently.

More information on Delaunay triangulation and mesh generation can be found

in [23, 25, 45].

CHAPTER 1. INTRODUCTION 4

1.2 Parallel Delaunay M esh Generation

Parallel mesh generation methods decompose the original meshing problem into smaller

subproblems that can be solved (i.e., meshed) in parallel. The requirements for the

parallel and distributed solution of the subproblems are: (1) stability, distributed

meshes should retain the same level of quality of elements as the sequentially gener­

ated ones, (2) efficiency, and (3) code re-use, in order to leverage the ever evolving

basic sequential meshing techniques and software.

In [20, 25] parallel mesh generation methods, for distributed memory computers or

clusters of workstations (CoWs), are classified in terms of the way and the order the

artificial boundary surfaces (interfaces) of the subproblems are meshed. Specifically,

existing parallel methods are classified in three categories: (i) A priori methods, that

first mesh (either in parallel [35], or sequentially [42]) the interfaces of the subproblems

and then mesh in parallel the individual subproblems, (ii) A posteriori methods, that

first solve the meshing problem in each of the subproblems in parallel, and then mesh

the interfaces [20] so that the global mesh is conforming, (iii) Simultaneous mesh

generation and partitioning (SMGP) methods, that simultaneously mesh and improve

the quality of the interfaces1 as they mesh the individual subproblems [19, 13, 17, 38].

In this thesis we present an a priori method that contributes in the state-of-the-

art parallel mesh generation in the following three ways: (1) it guarantees the same

level of quality of the mesh with the sequentially generated ones, (2) it eliminates

xThe improvement of the interfaces is measured in terms of the surface to volume ratio.

CHAPTER 1. INTRODUCTION. 5

communication and synchronization during the meshing of the subproblems, and

achieves superlinear speedups with respect to the best (to our knowledge) sequential

guaranteed quality mesh generator [44], and (3) achieves 100% code re-use, providing

the ability to use the best sequential Delaunay mesh generators with no modifications.

This is the first method (to the best of our knowledge) that eliminates communication

and synchronization, and at the same time is based on a 100% code re-use of sequential

codes. It is the only, so far, parallel guaranteed quality method that can achieve

superlinear speedups, when compared to the best sequential mesh generation codes,

and the first to create over IB elements. The method can be used at the same time

as sequential mesh generation, in order to create larger meshes in less time using one

processor.

In [24] J. Galtier and P. L. George present a Parallel Projective Delaunay Mesh­

ing (P 2D M) method which guarantees the quality of the elements and eliminates

communication and synchronization, but, depending on the geometry, it might suffer

from setbacks which affect its efficiency. The setbacks are in the form of discarding

completely the triangulation because the separators are not always Delaunay admis­

sible as new points are inserted [24]. The problem of computing Delaunay admissible

separators in the context of parallel Delaunay mesh refinement is solved in this thesis

successfully for 2-dimensional domains.

A 2-dimensional Divide-and-Conquer Delaunay Triangulation (DCDT) algorithm

and its parallel implementation are presented in [6]. The DCDT is based on finding

CHAPTER 1. INTRODUCTION 6

a Delaunay path, through a projection to a paraboloid, tha t separates the initial

set in two equal sized subsets. Although this is an elegant and efficient procedure for

Delaunay triangulation, it cannot be used for parallel mesh generation and refinement,

which require new point insertion in the mesh, without significant extensions as the

ones presented in [29], that introduce communication.

SMGP Parallel Guaranteed Quality Delaunay Mesh (PGQDM) generation meth­

ods appeared in [37] and in [18]. The PGQDM is communication intensive, and

despite the fact that tolerates (masks) up to 90% of communication, its speedup is

about 6 for 16 processors [18]. The second SMGP method, the Constrained Delaunay

Mesh (PCDM) generation [13] is based on constrained Delaunay triangulation [10]. It

reduces substantially the communication and eliminates synchronization, but still the

speedup is 5.75 for 8 processors [13]. The PCDM implementation, as the PGQDM,

does not re-use existing sequential Delaunay mesh generators, due to additional care

for cavities that are constrained by internal boundary.

The method we present here requires high quality domain decompositions that (1)

satisfy certain geometric constraints [45] regarding the angles, and (2) do not intro­

duce significant constraints that will affect the efficiency of the mesh generator and

the quality of the final mesh. In this thesis we propose a novel domain decomposition

method for 2-dimensional geometries based on the medial axis of the domain. This

method satisfies the above criteria, but it has the disadvantage of being difficult to

extend to 3 dimensions.

CHAPTER 1. INTRODUCTION 7

In the rest of the thesis, we present in chapter 2 the medial axis domain decom­

position method. In chapter 3 we proceed to decouple the mesh generation process of

the individual subdomains, by defining and preprocessing a zone around the internal

boundaries of the subdomains. In this chapter, contrary to past work [35, 24], we

prove that the preprocessing of the zone completely decouples the subdomains. Fi­

nally, in chapter 4 we present the complete parallel mesh generation procedure, and

in chapter 5 we provide experimental results that demonstrate the efficiency of our

method.

Chapter 2

The M edial Axis Dom ain

D ecom position M ethod

2.1 The Domain D ecom position Problem

Guaranteed quality mesh generation algorithms [11, 12, 41] and software [45, 44] gen­

erate elements with good aspect ratio and good angles. These algorithms require

that the initial boundary angles are within certain good bounds. For example, Rup-

pert’s algorithm [41] requires boundary angles (the angles formed by the boundary

edges) no less than 60°, in order to guarantee the termination. Since the separators

are treated as external boundary, the domain decomposition should create separators

that meet the requirements of the mesh generation algorithm. So, the constructed

separator should form angles no less than a given bound <F0, which is determined by

the sequential mesh generation procedure that will be used to mesh the individual

subdomains.

CHAPTER 2. THE MEDIAL AXIS DOMAIN DECOMPOSITION METHOD 9

The domain decomposition can be used in parallel mesh generation to explore

data-parallelism, as in many other areas of scientific computing. The three fun­

damental issues in data-parallel computations are: communication, synchronization

and load balancing. The parallel mesh generation method we propose eliminates com­

munication and synchronization, using a proper decoupling (see Section 3.1) of the

subdomains. However, we achieve the decoupling at the cost of some over-refinement,

which is analogous to the size of the separators of the subdomains. Therefore, one

of our objectives in the domain decomposition step is to minimize the size of the

separators relatively to the area of the subdomains. Then the over-refinement we

introduce is insignificant (see Section 5.3).

The third important issue that affects parallel program performance is the good

balance of the work-load among the processors. The equidistribution of processors’

work-load is achieved by over-decomposing [5] the domain, i.e. N » P , where N is

the number of subdomains and P is the number of processors. The created subdo­

mains are distributed to the processors using an a priory estimation of the work-load,

based on the area of the subdomains. This ab initio approach gives good results for

uniform cluster environments (see Section 4.2). However, a dynamic load balanc­

ing approach can be adopted using general purpose runtime systems, like the ones

presented in [2, 36], to migrate at runtime subdomains from overloaded processors

to ones that completed their work. The area criterion for estimating the work load

appears to be a good measure in the case of our method, for the following reason: the

CHAPTER 2. THE MEDIAL AXIS DOMAIN DECOMPOSITION METHOD 10

decomposition procedure, as we will see, creates “good” angles and small separators,

and the created subdomains tend to have similar shapes after the over-decomposition

of the domain; since the geometries are similar, the work of the mesher is approxi­

mately proportional to the area of the subdomains. The above intuition is confirmed

by the results in Section 4.2.

In summary, the domain decomposition criteria for parallel mesh generation are:

1. Create good angles, that is angles no less than a given tolerance 4>0. The value

of is determined by the sequential, guaranteed quality, mesh generation

algorithm.

2. The subdomains should have approximately equal size (area-wise).

3. The size of the separator should be relatively small i.e., minimize the ratio

m ax{|7/|/|fij|} , where \H\ is the length of the separator and \Di\ is the area of

the subdomains.

The first condition is essential, since it is the one that guarantees the termination

of the mesh generation procedure and at the same time prevents the creation of

new features, that will lower the quality of the final mesh. Criteria 2 and 3 are not

required, but are desired for the efficiency of the parallel computations.

The domain decomposition that we propose here is independent from the decou­

pling procedure described in Section 3.1, and it can be used in other parallel mesh

generation methods, like PCDM, that require good quality domain decompositions.

CHAPTER 2. THE MEDIAL A X IS DOMAIN DECOMPOSITION METHOD 11

2.2 Medial A xis Dom ain Decom position M ethod

The Medial Axis Domain Decomposition (MADD) method we propose is based on an

approximation of the medial axis (MA) of the domain. The MA was introduced by

Blum [7] as a way to depict the shape of an object, and has been studied extensively

during the last two decades [9, 8, 14, 34, 43, 49]. In the context of mesh generation

the medial axis has been used in [1, 23, 26, 40, 46]. The existing domain decompo­

sition methods aim mostly to solve the load balancing problem and to minimize the

communication [22, 30, 47]. For the first time in the parallel mesh generation the

medial axis was proposed as a domain decomposition technique in [15].

One of the contributions of this thesis is that, in addition to the load-balancing

goal, the MA is used to guarantee domain decompositions with separators which

form good angles between them and the external boundary. Like existing methods

our decomposition method also aims for separators whose size is small relatively to

the areas of the subdomains.

In the rest of the thesis we define as a domain D the closure of an open connected

bounded set in R 2, and the boundary dUt is defined by a planar straight line graph

(PSLG), which forms a set of (non-intersecting) line segments connecting pairs of

points. A circle C C D is said to be maximal in D, if there is no other circle C' C f i

such that C C C '. The closure of the locus of the circumcenters of all maximal circles

in Q is called the medial axis Q and will be denoted by MA(Q). The intersection of

a boundary of and a maximal circle C is not empty. The points C D dfl, where a

CHAPTER 2. THE MEDIAL AX IS DOMAIN DECOMPOSITION METHOD 12

maximal circle C intersect the boundary, are called contact points of c, where c is the

center of C. Every point c G MA(D) \ dPl has at least two contact points.

The domain decomposition method we propose is based on the following simple

geometric property:

L em m a 2.1 Let b a contact point of c G MA{Pl). The angles formed by the segment

cb and the tangent of the boundary of Pi at b are at least tt/2.

P ro o f: We prove the lemma in the general case when Pi has a piecewise C 1 boundary.

Suppose that the proposition is not true. Then there is a point c € MA(Pl) of the

medial axis and a contact point b G dPl of c, such that cb forms an angle </> < t t / 2 with

the boundary at b. Take c to be the origin of the axes and cb to define the y axis.

W ithout loss of generality we assume tha t <f> is formed by the tangent from the right.

Let (x(s),y(s)) be locally the normal parametric representation of the curve, with

b = (x(0), ?/(0)) = (0, y(0)) and rc(s) > 0. We have ?/(0) > 0. Since f> < 7r / 2, we have

y'(o) < 0. Let R(s) = x 2(s) + y2(s) be the square of the distance between c and the

points of the curve. Because b is a contact point of c, it must be R(s) > R (0) = |c6|2.

We have R '(0) = 2?/(0)?/(0) < 0. This means that locally R(s) < R (0), which is a

contradiction. ■

The medial axis of Pi can be approximated by Voronoi points of a discretization

of the domain [9, 8]. Our strategy is to make use of the property of Lemma 2.1, and

to construct separators that consist of linear segments which connect the Voronoi

points to the boundary. The approximation of the MA(Pl) is achieved in two steps:

CHAPTER 2. THE MEDIAL AXIS DOMAIN DECOMPOSITION METHOD 13

Figure 2.1: Left: The Delaunay triangulation of the pipe intersection. The circumcenters
of the triangles approximate the medial axis. Right: The circumcenters are the Voronoi
points. The separator is formed by selecting a subset of the Voronoi points and connecting
them with the boundary.

(1) discretization of the boundary, and (2) computation of a boundary conforming

Delaunay triangulation using the points from step (1). The circumcenters of the

Delaunay triangles are the Voronoi points of the boundary vertices. The separators

will be formed by connecting these circumcenters to the vertices of the Delaunay

triangles. Figure 2.1 depicts the boundary conforming mesh of the cross section of a

rocket (left), and the media axis approximation and a 2-way separator for the same

geometry (right).

The level of the discretization of the boundary determines the quality of the

approximation of the medial axis. However, our goal is not to approximate accurately

the medial axis, but to obtain good angles from the separator. Therefore our criteria

for the discretization of the domain will be specified by the quality of the angles. We

achieve our goal by defining a new set of triangles:

CHAPTER 2. THE MEDIAL AXIS DOMAIN DECOMPOSITION METHOD 14

D efin ition 2.1 L e tV be a Delaunay triangulation of a discretization D of the bound­

ary dLl. We call a triangle t ET> a junction triangle if:

1. it includes its circumcenter c,

2. at least two of its edges are not in D,

3. at least two of the segments defined by the circumcenter and the vertices of t

form angles > <L0; both with the boundary and each other.

The first criterion is set only for the simplicity of the MADD algorithm (see

Section 2.2.1.2), in order to avoid negative weights and guarantee that at least two

angles between the segments are good. The second prevents a decomposition that

will create very small subdomains. The third criterion guarantees the quality of the

angles. Let a ^ a ^ be the vertices of t. Then the third criterion demands the existence

of at least one pair of segments a^ca^, where c is the circumcenter of a ia2a3, so that all

the angles formed with these segments are greater or equal to <f>0. Such pairs aicaj are

called partial separators and they will be the candidates to form a complete separator.

A complete separator decomposes a domain into two connected subdomains.

Let m be the number of holes of Q. The level of refinement D we require for dD

has to satisfy two conditions:

(i) In the Delaunay triangulation V of D there are at least m + 1 junction triangles.

(ii) Every segment on the boundary D has an empty diametral circle.

CHAPTER 2. THE MEDIAL AXIS DOMAIN DECOMPOSITION METHOD 15

Figure 2.2:

The first condition in Definition 2.1 requires the existence of at least ra+1 junction

triangles. This ensures, as we will see in Section 2.2.2, that there is at least one

complete separator formed by partial separators. The second condition guarantees

that all the segments of D will appear as edges in V. It also guarantees that all the

circumcenters of the triangles of V are contained in D [45]. This in turn guarantees

the existence of at least one triangle that includes its circumcenter. In order to prove

it we will use the following Lemma:

L em m a 2.2 Let A i, A 2 be two triangles of a Delaunay triangulation, such that the

circumcenter C\ of A \ is in the triangle A 2 and they don’t have the same circumcircle.

Let c2 be the circumcenter of A 2 and r\, r2 be the radii of the circumcircles of A \ and

A 2 respectively. Then we have r-i < r2.

P roof: Let r be the smaller distance of c\ from the vertices of A 2, see Figure 2.2.

Then r > r \. Then we have r2 > r, and consequently r2 > r\. ■

CHAPTER 2. THE MEDIAL AXIS DOMAIN DECOMPOSITION METHOD 16

L em m a 2.3 I f all segments in D have empty diametral circles, then there is at least

one triangle in the Delaunay triangulation V of D that includes its circumcenter.

Proof: We know that, when the boundary segments have empty diametral circles,

all the circumcenters of the triangles of V are in V [45]. We assume that the points

are in general position, tha t is no four points belong to the same circle. We will prove

the lemma by contradiction.

Suppose that the lemma is not true. Then for every triangle Ai there is another

triangle Ai+i ^ Ai, such tha t the circumcenter c* of Ai is included in Ai+i. Let r* be

the radius of the circumcircle of Ai. Since we assumed that no triangle includes its

circumcenter, the sequence < Ai > is infinite. On the other hand the set {£*} of all

triangles in D is finite, so the sequence < Ai > includes an element tk twice. Then

Ai = A m = tk , for some I < k. From the previous lemma we have ri < rj+i < ... < rm,

which contradicts to the fact that rt and rm are the radii of the same circle, and thus

equal. So the lemma must hold. ■

The discretization of the boundary is determined by the number of the junction

triangles that are created. As we increase the refinement, the Voronoi points ap­

proximate the points of the medial axis and the formed angles with the boundary

tend be close to 7t / 2 . If we construct more junction triangles, and thus more partial

separators, we have more choices to form a better separator, in terms of the quality of

the angles, the size of the separator and the balance of the areas of the subdomains.

In our experiments a rather small refinement (less than 700 additional points) gives

CHAPTER 2. THE MEDIAL A X IS DOMAIN DECOMPOSITION METHOD 17

satisfying results. This of course depends on the geometry, and a way to predefine

the refinement level of the boundary of the domain is a subject of further research.

2.2.1 The MADD Algorithm

The MADD algorithm uses as a starting point the approximation of the medial axis

by the Delaunay triangulation V , as described in the previous section. The complete

separator is formed by partial separators i.e., segments inserted in junction triangles

of V; these segments connect the circumcenter of the triangles to two of their vertices.

Figure 2.1 (right) depicts a complete separator for a 2-way decomposition of the pipe.

The partial separators connect two points of the boundary, since V is a boundary

conforming triangulation. The properties of junction triangles permit the construc­

tion of good angles between the partial separators and the external boundary of the

geometry. The MADD algorithm will select to insert a set of partial separators that

will guarantee the decomposition of the domain into two subdomains. The selection

of the partial separators is based on the minimization of the ratio of the size of the

separators to the areas of the subdomains.

The MADD algorithm transforms the Delaunay triangulation V into a graph Gv

which encapsulates the required information about the candidate partial separators.

This information includes: (1) the topology of V , which is used to guarantee that

the inserted partial separators form a complete separator, and (2) the length of the

partial separators and the area of the subdomains that will be created, which is used

CHAPTER 2. THE MEDIAL AXIS DOMAIN DECOMPOSITION METHOD 18

to optimize the ratio of the length of separators to the subdomains area. After Gp

is constructed, the graph is contracted, so that only the junction triangles of V are

represented. Then the contracted graph is partitioned; the graph partitioning can

be obtained by using any of the well known algorithms [32, 4, 27, 28, 30, 48], that

decompose a connected graph into two connected subgraphs and minimize the ratio of

the cut cost to the weights of the subgraphs. Finally the graph partition is translated

into insertions of partial separators, which result into a 2-way decomposition. In

summary the key steps of the algorithm are:

1. Create a graph Gp from the Delaunay triangulation V.

2. Contract Gp into the graph G 'v , so that only the partial separators in the

junction triangles are represented as edges of G'v .

3. Partition the graph G 'v , optimizing the cut-cost to subgraph weight ratio.

4. Translate the cuts of the previous partition into partial separators.

2.2.1.1 C o n s tru c tio n of th e G ra p h Gp

In this step the Delaunay triangulation T> is represented as a weighted graph, the

dual graph of the edges of the triangles. Two nodes of the graph are adjacent if their

corresponding edges belong in the same triangle. The length of the radius of the

circumcircle of this triangle will be the weight of the graph edge. The weights of the

CHAPTER 2. THE MEDIAL AXIS DOMAIN DECOMPOSITION METHOD 19

nodes are set to zero in this step, and they will be computed in the graph construction

step (see Section 2.2.1.2).

Figure 2.3 (left) depicts the step for constructing the graph Gp. One graph node

is created for each edge of the triangulation, and two nodes are connected if they

belong to the same triangle. Let dy be the node corresponding to the edge didj. The

weight of the edge connecting dy , djfc is the length \cidj\, where q is the circumcenter

of the triangle. For example, the edge that connects d \2 and d25 has weight the length

\cia2\. The above procedure is described by the following algorithm:

Algorithm 1 ().

1. for all the edges didj in V do

2. Add node dy to the graph G p , with zero weight

3. end fo r

4. for all triangles t G V do

5. for the three pairs (didj,djdk) of edges of t do

6. Create a graph edge between the corresponding nodes dij,djk,

7. with weight the length of the circumradius of t

8. end fo r

9. endfo r

CHAPTER 2. THE MEDIAL AXIS DOMAIN DECOMPOSITION METHOD 20

b

a 6 a 6

Figure 2.3: An example of creating the MADD graph. Left is a part of the Delaunay tri­
angulation and the creation of the corresponding initial graph G v• Middle, the procedure
of contracting the graph by combining the nodes of G v ■ The nodes connected by dashed
lines are combined. Right is the final graph G'v that corresponds to this part.

2.2.1.2 G ra p h C o n trac tio n

In this step the graph G v produced from the previous step is contracted to a graph

G'V: so that only the edges of junction triangles are represented as nodes in G'v . The

nodes of Gv tha t correspond to edges of non junction triangles of V are contracted

in G'v .

In order to contract the graph G v , first we iterate through all the triangles that

are not junction triangles. The nodes of Gv that correspond to the three edges of a

non-junction triangle are combined into a single node and the new node replaces the

initial nodes in the external graph edges, while edges between the three initial nodes

are deleted. The weight of the new node is the sum of the weights of the initial ones,

plus the area of the triangle.

The remaining nodes correspond to the edges of junction triangles. Junction

CHAPTER 2. THE MEDIAL AXIS DOMAIN DECOMPOSITION METHOD 21

triangles contain candidate partial separators, whose number may vary from one

to three. From the three possible partial separators we keep the one that forms

the greater minimum angle. Since in junction triangles there is at least one partial

separator that forms angles no less than <F0, the selected partial separator forms

angles > <F0. We establish this partial separator by combining the two of the three

nodes that correspond to edges of the triangle. Let a ^ d s be a junction triangle

and c its circumcenter. Let dij be the corresponding node to the edge didj, then the

weight of the node is updated by adding the weight of the area included by the

triangle cdidj. Let djCdk be the partial separator that forms the greater minimum

angle. Then the nodes dji and dki are contracted into a single node, where di is the

remaining vertex. The procedure is illustrated with the following example.

E xam p le . Figure 2.3 (center) illustrates the procedure of contracting the graph.

The bold lines indicate the external boundary. The triangles are part of the boundary

conforming Delaunay triangulation of the domain. As above, we denote by d^ the

graph node that corresponds to the segment didj. We demonstrate four different

cases.

Case I: The triangle did^d^ has two edges on the boundary, so it is not a junction

triangle, and the three corresponding nodes are combined to one. The edges connect­

ing the new node d'15 are the external ones i.e., the edges that connect d\ 5 to du and

di5 to c?25- The weight of d[5 is equal to the area of the triangle a ia5a6-

Case II: The triangle does not include its circumcenter and so it is not a

CHAPTER 2. THE MEDIAL AX IS DOMAIN DECOMPOSITION METHOD 22

junction triangle. We follow the same procedure as above. The nodes d25 , c?24, 4̂5 are

contracted into a new node d'25. The new node has weight the area of the triangle

a2a4a5 and is connected to the nodes d12, d'15, d23, d34.

Case III: The triangle aia2 a5 is a junction triangle. The areas of the triangles

formed by its circumcenter C\ and its corners are added to the weight of the corre­

sponding nodes. For example, the area \a2c\ai \ is added to the node d\2, similarly the

areas |a2Ci5Ci|, and l a i c a l are added to the nodes d'25 d[5, respectively. Suppose that

the partial separator aiCia2 is the one that that forms the greater minimum angle.

Then the nodes d[b and d2b are contracted into a new node d2b with its weight to

be equal to the sum weights of the two previous nodes. The graph edge connecting

the nodes d'lb and d'2b is deleted, while the two other graph edges are contracted into

one edge connecting d2b to d12; the new edged weight is equal to the sum of the two

previous edge weights, which is equal to the length of the partial separator aiCio^.

Case IV: The triangle a2a3a4 is also a junction triangle. As for the previous

triangle, first we add the areas of the triangles formed by the circumcenter C2 and

the vertices. The areas |a2c2a4|, |a2c2a3|, and |a3c2a4| are added to the weight of

the nodes d25, d23, and d'34, respectively. However, suppose in this case the angle 9,

formed by the segment c2as and the external boundary segment a36, is less than <L0.

Then the two partial separators that include this segment are rejected and we keep

the separator a2C2a4, which is the one that forms the greater minimum angle. The

nodes d2% and d34 are be combined to the node d'M. The new node is connected to

CHAPTER 2. THE MEDIAL A X IS DOMAIN DECOMPOSITION METHOD

an edge with weight equal to the sum of the two previous edge weights, which is

length of the partial separator 0,2 0 2 0 ,4 . Figure 2.3 (right) shows the final graph.

The above procedure is described by the following algorithm:

Algorithm 2 ().

1. for all non junction triangles t G V do

2. Combine the three nodes that correspond to the edges

3. of £, generating a new node d!

4. Add the area of t to the weight of d'

5. endfo r

6. for all junction triangles t G V do

7. Let c be circumcenter of t

8. for all edges a^Oj of t do

9. Add the area of the triangle OiCOj to the weight

10. the corresponding node dij

11. endfo r

12. Find the partial separator OiCOj in t forming a max min angle

13. Combine the nodes dik and d j where a*, is the remaining vertex

14. endfo r

CH APTER 2. THE MEDIAL A X IS DOM AIN DECOMPOSITION METHOD 24

2.2.1.3 T h e C o n s tru c tio n o f th e S e p a ra to r

After contracting the graph, the constructed graph G'v is partitioned. The number of

the edges of the graph is less or equal to the number of junction triangles, thus the size

of the graph partitioning problem is significantly smaller than the element-wise dual

graph of the boundary conforming Delaunay triangulation V. Graph partitioning can

be very expensive and has been an active area for several years [32, 4, 27, 28, 30, 48].

Any of the algorithms that give a partition of the graph into two connected subgraphs,

with good cut cost to subgraph weight ratio, can be used as the graph partitioner for

G'v . For algorithms that give non-connected subgraphs a check step must take place

(see Section 5.2).

After partitioning G 'v , the final step of the MADD is to construct the separator

of the geometry. From the previous step we have a partition of the graph G'v in

two connected subgraphs. This partition will give a corresponding separator for the

geometry. Each edge of the graph corresponds to a partial separator of the form OiCOj,

where c is a circumcenter of a junction triangle and Oi, Oj are two of its vertices. For

every graph edge that is cut by the partition we will insert the related partial separator

in the geometry. In our example above (see Figure 2.4) the partial separator 0 2 0 2 0 4

is created in the case that the graph partitioner chooses to cut the edge e2-

The construction of the separator is described in the following algorithm.

Algorithm 3 ().

CHAPTER 2. THE MEDIAL AXIS DOMAIN DECOMPOSITION METHOD 25

aA

«6

Figure 2.4: A partition of the graph and the corresponding separator, on the right, depicted
with dashed lines.

1. for all triangles t G V do

2. if one of the edges a*aj of t belong to a different

3. subgraph from the other two edges th e n

4. Insert the partial separator a^ca^,

5. where c is the circumcenter of t

6. en d if

7. endfor

The algorithm scans all the triangles and identifies those triangles whose edges

correspond to nodes disconnected after the graph partition. In these triangles the

partial separators are inserted, separating the edges that don’t belong to the same

subgraph. In Figure 2.4 the partial separator 0 2 0 2 0 4 separates the edge a2a4 from

the edges a2a3 and a3a4. The set of all these inserted partial separators establishes a

(complete) separator for the domain, as we will see in Section 2.2.2.

CHAPTER 2. THE MEDIAL AXIS DOMAIN DECOMPOSITION METHOD 26

The ratio of the cost of the cut to the weight of the subgraphs is translated to

the ratio of the total length of the separator to the area of the subdomains. Provided

that the graph partitioner gives a good cut cost to subgraph weight ratio, the ratio of

length of the separator to the area of the subdomains is also good. This way we obtain

separators of relatively small size, and the areas of the subdomains are balanced.

Moreover, since all the partial separators, by the construction of G 'v , form good

angles, the constructed separator forms good angles. In summary, the constructed

separator meets the quality properties 1-3 we had required in the beginning of the

section.

2.2.2 Proof of Correctness

In this section we prove that the MADD algorithm decomposes the domain Pi in

two connected subdomains. We remind that the domain Pi is the closure of an open

connected bounded set and the boundary dPl is a PSLG that formed a set of linear

segments which do not intersect. A separator % C PI is a finite set of simple paths (a

continuous 1-1 map h : [0,1] —» PI) tha t do not intersect and define a decomposition

A \, A 2 of Pi in the following way: A \ and A2 are connected sets, with A\ U A2 = Q,

and for every path U C Pi that connects a point of A\ to a point of A 2, we have

Unn^0.

L em m a 2.4 Let m be the number of holes in Pi and n the number of junction trian­

gles. I f n > m, then there is a separator for Q formed by partial separators.

CHAPTER 2. THE MEDIAL AXIS DOMAIN DECOMPOSITION METHOD 27

P roof: We will prove the lemma by induction on m. If m = 0 then n > 1 and there

is at least one partial separator. In this case, every partial separator is a separator

for Pi, since every simple path / : [a, b] —> Pi, with f(a), f(b) G dPl and f(a , b) C

is a separator for PI.

Suppose the lemma is true for m = q, we will prove it is true for m — q + 1. We

have that n > q + 1. If for a partial separator acb, where a, b G dPl, we have that both

a, b don’t belong to the boundary of a hole, then acb forms a separator, as in the case

m = 0. In the case that one of the points a, b belong to the boundary of a hole O, then

by inserting the partial separator acb we eliminate O. The new domain has q holes

and n — 1 > q junction triangles, and can be decomposed by partial separators by the

inductive hypothesis. Therefore there is a separator formed by partial separators. ■

T h eo rem 2.2 Let m be the number of holes in and n the number of junction

triangles. I f n > m, then the MADD decomposes Pi in two subdomains.

P roof: Let e*, i = 1,..., n be the edges of the contracted graph G'v created by MADD.

Each of these edges corresponds to a partial separator h i,i = 1, ...,n. We will show

that every decomposition of the graph G'v corresponds to a decomposition of PI formed

by partial separators, and vice versa.

Let E = {ei,i G 1} be the set of edges that the graph partitioner cuts, creating

two subgraphs G \,G 2 - Let 7i = {h i,i G 1} be the set of partial separators that are

correspond to these edges. Finally, let A \ ,A 2 C Pi be the two corresponding areas

to the subgraphs G i,G 2. Obviously A\ U A 2 = PI. From the construction of the

CHAPTER 2. THE MEDIAL A X IS DOMAIN DECOMPOSITION METHOD 28

Figure 2.5: AT-way partitions, where N = 2,4,8,16, by the MADD divide and conquer
method. Metis [31] was used as the graph partitioner and Triangle [44] produced the
Delaunay triangulation.

graph we have that the connected subgraphs correspond to path connected areas of

Assuming that the graph partitioner decomposes G'v in two connected subgraphs,

then Gij G2 are connected, and so A x ,A 2 are also connected. Every path U C 0 from

a point of A\ to a point of A 2 corresponds to a path U' in G'v form a node of G\ to

a node of G2. Since the edges E decompose G\ from G2 , we have U' f t E ^ 0. Let

ej E U' n E. Then we have U D hj ^ 0, and the path U intersects PL. Thus PL is

a separator for Q. Working backwards we see that a separator for D corresponds to

a partition of the graph. The existence of such a separator is proved in Lemma 2.4,

and this completes the proof. ■

2.2.3 N-way Decomposition

So far we have described the MADD procedure for a 2-way decomposition. In the fol­

lowing section we will describe a decoupling procedure which is applied on multiple

CHAPTER 2. THE MEDIAL A X IS DOMAIN DECOMPOSITION METHOD 29

subdomains and decouples the mesh generation procedure for all the given subdo­

mains. In order to create more than two subdomains we can apply the MADD in a

divide and conquer way (see Figure 2.5). When a 2-way separator is created, it is

discretized and then every subdomain is decomposed independently. The resulting

decomposition shows good adaptivity to the geometry. This approach requires to

recalculate the Delaunay triangulation of the subdomains. We can do that by just

inserting the segments of the separator in the existing triangulation. These segments

should be refined, and possibly the edges of the boundary, so that the empty diametral

circle property of the boundary, including the separators, is maintained.

Since every subdomain is decomposed independently, the discretization of the

separators, which form the internal boundary, should be permanent. In practice, the

size of the segments created by the discretization of the domain is much larger than

the ones created by the mesh generation procedure. Here we should take into account

that the level of decomposition is proportional to the size of the mesh we want to

create. Thus, in the general case, the discretization does not create actual artificial

constraints to the mesh. Figure 2.5 depicts that no new artifacts are introduced,

given that segments like ab will be refined further.

In our method we refine even further the internal boundaries in order to decouple

the subdomains, and our results show tha t the size and the quality of the mesh is not

affected. For a more detailed experimental analysis see Section 5.3.

An advantage of the divide a conquer approach is that it is easy to be implemented

CHAPTER 2. THE MEDIAL A X IS DOMAIN DECOMPOSITION METHOD 30

in parallel. In our implementation we have followed a parallel MADD divide and

conquer strategy to create multiple subdomains. The method is described in detail

in Section 4.1.

Chapter 3

The D ecoupling M ethod

3.1 The Decoupling Zone

The separators and the subdomains created by the MADD procedure have good qual­

ity in terms of the shape and size. Our goal though is to be able to create Delaunay

meshes independently for each subdomain, and the previous procedure cannot guar­

antee this. In order to create the mesh independently in each subdomain we have to

ensure that the final mesh will be Delaunay conforming. Delaunay conformity, in the

context of Delaunay triangulation, can be explored using a projective method [6]. A

study of conditions for a priory conformity for constrained Delaunay triangulations

is presented in [39]. A method for independent mesh generation in each subdomain

using a projective separator is presented in [24], but it does not always guarantee a

priory Delaunay conformity.

In order to ensure the Delaunay conformity in the mesh generation context we will

refine the separators using conditions derived from the mesh refining algorithm. A

31

CHAPTER 3. THE DECOUPLING METHOD 32

Figure 3.1: A fraction of the pipe intersection. Left: Part of the separators H inserted
by MADD. Middle: Refining H gives a decoupling path V\ the decoupling zone Zj> is
depicted. Right: R uppert’s algorithm was applied on the subdomains with an element
area restriction; Z p is empty and V is invariant. The final mesh is Delaunay conforming.

special “zone” around the segments of the separators (see Figure 3.1) will guarantee

that the mesh generation procedure can be applied independently on each subdomain,

giving a Delaunay conforming mesh for the whole domain, formed by the union of all

the submeshes.

Let A4 be a Delaunay mesh generation procedure. Let D = dQ be a PSLG, where

D is a domain as described in the previous section. Let V be a set of piecewise linear

separators that decompose the domain 0 in n subdomains D* and let Di = dDi be

the boundaries of the subdomains.

D efin ition 3.1 The set of the open diametral circles of all the segments that form V

is be called the decoupling zone of V and is denoted by Zp.

D efin ition 3.2 V is a decoupling path with respect to A4, if after applying A4 in­

dependently on the subdomains Di, i = 1,..., n, the decoupling zone Zp is empty.

CHAPTER 3. THE DECOUPLING METHOD 33

P ro p o s itio n 3.3 Let Mi the mesh produced by A4 on the subdomain Qi. I f V is a

decoupling path with respect to A4; then the union UMi is a conforming Delaunay

triangulation.

P roof: Let M be the Delaunay triangulation of the vertices Vm — UVm{ of UMj. We

will prove that M = UM*, by showing that the set of edges S of M are identical to

the set of edges USi of UMj, thus the two triangulations are the same and UM* is a

conforming Delaunay triangulation.

First we observe that V is a subset of both S and LtS*, because its decoupling zone

is empty. For any edge ab G S there are two cases: (i) Both end points a, b belong to

the same subdomain Mj, a, b G V^.. (ii) a G Mi and b G Mj \ Mi.

Case (i). Suppose a, b G Lm, • From the local Delaunay property, there is an empty

circumcircle C of ab which does not include any points in Vm- Because Vmj Q Vm, C

must be empty in the set V^.. Thus ab G Sj and ab G U5*.

Case (ii). We will show that this case cannot occur, there is no edge ab G S such

that a E Mi and b G Mj \ Mi. Suppose we have such an edge ab. Then ab C D and,

since the subdomains Mi and Mj are separated by V, a and b are separated by V.

So ab D V 7̂ 0. On the other hand we have V C S, which means that two edges of

the triangulation M intersect. This contradicts the definition of a triangulation [23].

Since case (ii) cannot occur, we conclude from case (i) that S C USi. The two

triangulations M and UMi must have the same number of edges, so we have S = USj,

and thus M = UM*. This proves the proposition. ■

CHAPTER 3. THE DECOUPLING METHOD 34

P ro p o s itio n 3.4 I f the algorithm M. is a mesh refinement algorithm, then the de­

coupling path V is invariant during the steps of A4, in which the Delaunay property

is maintained.

P roof: Suppose that during the procedure M. an edge s £ V is destroyed. That

means that the diametral circle Cs of s includes some point. Since M. does not

remove points, Cs will not be empty after the termination of A4. This contradicts

the definition of the decoupling path. ■

Proposition 3.3 proves that, provided that we have constructed a decoupling path,

the subdomains can be meshed independently and the final mesh will be Delaunay

conforming. Our next step will be to construct a decoupling path from the separators

created by MADD.

The decoupling path is defined with respect to a mesh generation procedure and,

in many cases [11, 41], the stopping conditions of the mesh generation algorithm

allow us to compute the length of the edges of the separators, so that these edges will

form a decoupling path. Then we only have to refine the segments of the separators,

acquiring this predefined length.

3.2 R uppert’s algorithm

For the mesh procedure we will consider Ruppert’s algorithm [41]. This is a mesh

refinement algorithm for 2 dimensions that guarantees the quality of the elements.

It creates an initial triangulation and follows an incremental approach to refine the

CHAPTER 3. THE DECOUPLING METHOD 35

mesh. Triangles which have circumradius to shortest edge ratio greater than \/2 are

split, by inserting points in their circumcenters and constructing a new Delaunay

triangulation. If a point to be inserted encroaches the diametral circle of a boundary

edge, then, instead of inserting this point, the boundary edge is split in half. The

algorithm maintains the Delaunay property after the insertion of each point. In order

to guarantee the termination of this procedure the boundary angles should be at least

60°.

Let D be a PSLG, as defined above. An entity is either a vertex or a segment

of the boundary; two entities are incident when they share a common point. The

least feature size of D is defined as the minimum distance between two non incident

entities [45]; it will be denoted by lfsmin(D). The following proposition holds [45]:

P ro p o s itio n 3.5 Suppose that any any two incident segments of D are forming an

angle no less than 60°. Ruppert’s algorithm terminates when applied on D, giving a

mesh of triangles with circumradius to shortest edge ratio at most y/2 and with no

triangulation edge shorter than lfsmin(D).

The only requirement for Ruppert’s algorithm is that the boundary angles must

be at least 60°. Provided that our initial boundary D satisfies this criterion, we

can apply MADD to decompose G using an angle bound 4>0 = 60°. So, both the

constructed separators and the external boundaries form angles > 60°. Consequently

the created subdomains are acceptable for this mesh generation algorithm.

CHAPTER 3. THE DECOUPLING METHOD 36

3.3 The construction o f the decoupling path

Let D = dCl be the boundary of the domain Cl, and Li the set of separators in Cl

created by the MADD method using an angle bound of <F0 = 60°. Let Di = dCli be

the boundaries of the created subdomains and D^ = D U Li.

In order to construct a decoupling path V from the separators Li we will refine Li

by inserting points along its edges, obtaining a desirable segment length. The calcula­

tion of this length is based on a parameter k. Let L = m in{|s|/ s is a segment of Li}.

Let A; be a real constant parameter, such that

0 < k < min(lfsmin(£>^), L/4). (3.1)

The parameter k will be calculated from the conditions of the algorithm, so that it

can be guaranteed that no edge will be created with length less than k.

The following lemma describes the refining procedure of Li.

L em m a 3.1 Let s be a segment of Li. Then there is v £ N such that, after inserting

v — 1 points bi on s, we have k < |&A+i| < for any two consequent points

bi 5 ^Z+l •

P roof: Let I be the length of the segment s and v such that 2(v — 1)k < I < 2vk.

Then, by dividing the s into v equal subsegments, we have for the length I' of the

subsegments: 2̂ ~ 1'-/c < V < 2 k . For v > 3, we have > ^=, and this proves the

lemma. B

CHAPTER 3. THE DECOUPLING METHOD 37

Let V be the separators % after we have inserted the points bi, as described in

the previous lemma, and let Dj> = D U V. The following Lemmas hold.

L em m a 3.2 Let bi,bi+1 two consequent points inserted on a segment s of TL. Then

the diametral circle of 6A+i is empty.

P roof: The diametral circle C of &*&»+1 is contained in the diametral circle of s ,

which by the MADD construction does not include any of the points of Du-

The remaining points to be examined are the inserted points bj. We have that

all the angles are greater than 60° and, from Lemma 3.1, no created segment is less

than half of any other created segment. Consequently, C cannot contain a point bj

created by the refining procedure. ■

L em m a 3.3 The following inequality holds: lfsm[n(Du) > k.

P roof: We have from the relation 3.1 that lfsmin(D^) > k. We will examine the

distances created by the inserted points.

Let bi be a point inserted in a segment s of TL. For the distance d of bi from a non

incident to s segment we have d > lfSmin(T>^) > k. The same holds for the distance

d' from points that are not incident to s, because we have d' > d > k.

For the distance d between bi and an incident segment we have d > sin 60° • - ^ k =

k. Finally, the distance between bi and a point that belongs to an incident segment

is greater than the distance d of the previous relation, and this completes the proof.

CHAPTER 3. THE DECOUPLING METHOD 38

The previous lemma demonstrates the property that will be used to prove that V

is a decoupling path. Our next step will be to calculate the parameter k.

Ruppert’s algorithm can be applied using either the quality criterion for the cir­

cumradius to shortest edge ratio, or by adding a criterion for the maximum area of

the created elements. We will calculate k for this two cases separately. We will prove

that V is a decoupling path for the two cases: (I) When Ruppert’s algorithm is ap­

plied with only the quality criterion of the circumradius to shortest edge ratio. (II)

When it is applied with an additional criterion for the maximum triangle area.

3.3.1 Case I: The ratio criterion

In this case we are only interested for the circumradius to shortest edge ratio. Since

k gives a bound for the size of the created segments, we would like k to be as big as

possible and at the same time satisfy the relation 3.1. Proposition 3.5 and Lemma

3.3 indicate that we can define k = min{lfsmin(Z>^), L /4}.

P ro p o s itio n 3.6 Define k = min{lfsmin(D'H): L /4} and let V be the piecewise linear

separators as constructed in Lemma 3.1. Then V is a decoupling path with respect to

Ruppert’s algorithm.

P ro o f: According to Proposition 3.5, Ruppert’s algorithm when applied to a subdo­

main D i, will not create segments less than lfsmin(A)- We will show ad absurdo that

the decoupling zone Z-p is empty after the termination of the algorithm.

CHAPTER 3. THE DECOUPLING METHOD 39

Suppose that Z-p is not empty after the mesh procedure and some points have been

inserted in it. That means tha t some boundary segments of V have been encroached

and thus have been split in half. From Lemma 3.1 the length of the segments of

V is less than 2 k and by splitting them the created segments will have length less

than k. This contradicts to Proposition 3.5 because, from Lemma 3.3, we have

l f S m i n (A) > I f S m in (DV) > k.

Thus the decoupling zone Zp is empty after applying Ruppert’s algorithm, and

V is a decoupling path with respect to this algorithm. ■

C o ro lla ry 3.7 V remains invariant during Ruppert’s algorithm execution.

P roof: Ruppert’s algorithm does not remove points and maintains the Delaunay

property after inserting a point. The corollary is a direct consequence of the previous

proposition and of Proposition 3.4. ■

Proposition 3.6 states that we can process the subdomains independently, using

Ruppert’s algorithm, and the final mesh will be Delaunay conforming and of guaran­

teed quality. Next we will examine the case where we have an additional condition

for the area of the triangles.

3.3.2 Case II: The ratio and max area criteria

In this case, besides the circumradius to shortest edge ratio condition, we have an

additional criterion for the maximum triangle area. In many cases we want to con­

struct Delaunay meshes, not only with good quality of angles, but also of a desired

CHAPTER 3. THE DECOUPLING METHOD 40

maximum size. Let A be a bound to the maximum triangle area, then all the triangles

of the final mesh will have an area at most A. To achieve this, the mesh generation

algorithm will split the triangles in two cases: (a) Because of the bad circumradius

to shortest edge ratio, (b) Because the area of the triangle is greater than A.

We will calculate k so that the previous results will remain valid.

L em m a 3.4 Let I be the smallest edge of a triangle with area greater than A and

circumradius to shortest edge ratio at most \/2. Then I >

P ro o f: Let r be the circumradius of the triangle. Then j < y/2 and A < r • I. So,

A < r - l < ± ^ l > f f 2. M

We want to define k in such a way that the mesh generation procedure will not

create edges smaller than k. The previous lemma indicates that we should have

k < \ W e will take k = min{lfsmin(D^), L/4, Then Lemma 3.3 holds,

and we have the following theorem:

T h eo rem 3.8 Let k = mm{lfsmin(D p), L/4, be the parameter for the point

insertion procedure in Lemma 3.1, and V the produced set of separators. Then V is

a decoupling path with respect to Ruppert’s algorithm with the criteria of maximum

circumradius to shortest edge ratio y/2 and maximum triangle area A.

P ro o f: There are two cases for splitting a triangle: a) because of its circumradius to

shortest edge ratio, or b) because of its area.

CHAPTER 3. THE DECOUPLING METHOD 41

When Ruppert’s algorithm splits a triangle because of its circumradius to shortest

edge ratio it does not create edges smaller than lfsmin(Z>p) > k. If a triangle is split

because of its size, then from Lemma 3.4 we have that the smaller created edge will

be no less t h a n > k. In both cases no edge smaller than k will be created.

It is easy to see now that the decoupling zone Zp will be empty, after Ruppert’s

algorithm has been applied on the subdomains Di with the additional condition of

a maximum triangle area A. If this was not so, then some edge of V would be

encroached and split. From Lemma 3.1 the new edges will be smaller the k : which is

a contradiction. ■

In summary, the procedure of preprocessing the separators created by MADD, as

described in Lemma 3.1, creates a decoupling path with respect to Ruppert’s algo­

rithm in both cases of the quality and the size criteria. This will allow us to generate

Delaunay meshes, independently for each subdomain, with good quality and of desired

size. The final mesh, formed by the union of the submeshes, is Delaunay conforming.

As a result, this procedure decouples the domain and allows us to parallelize the mesh

generation procedure, while eliminating the communication between the processors.

Chapter 4

Parallel Guaranteed Quality M esh

G eneration

4.1 The Parallel Delaunay Decoupling Procedure

The procedure for the parallel mesh generation consists of two steps:

1. The parallel MADD (PMADD) phase. In this step the domain is decomposed

using the divide and conquer MADD method.

2. The mesh generation phase. This step is performed independently for each

subdomain and includes two sub-steps:

(a) The decoupling of the subdomains by refining the interfaces, as described

in Section 3.3.

(b) The mesh generation on the subdomains. In this step the sequential mesh

generator is used as a library and is applied independently on each subdo­

main.

42

CHAPTER 4. PARALLEL GUARANTEED Q U ALITY MESH GENERATION 43

During the PM ADD phase the domain is over-decomposed (i.e. we create N » P

subdomains, where P is the number of processors), in order to achieve good load bal­

ancing (see Section 4.2). The PMADD method is implemented using a master/worker

model. Processor 0 is used as the master processor, while all the processors, including

processor 0, are used as worker processors. The master processor maintains a sorted

list of the areas assigned to each processor. In each iteration of the PMADD pro­

cedure a decomposition request is sent from the master processor to the processors

assigned with larger total areas. The processors that receive such requests decom­

pose their larger subdomain in two subdomains using MADD. One of the two new

subdomains is sent to a processor with small total assigned area. The procedure is

repeated until all N subdomains are created.

The area of the subdomains is used to estimate the work-load for the mesh proce­

dure (see Section 4.2). The goals of the PMADD is to minimize the larger area and

to distribute the subdomains uniformly to the processors. Once the PMADD phase

is finished no data movement takes place. This is an approximate criterion for the

load balance, other means [2] for dynamic load balancing can be used.

After the requested number of subdomains have been created, the master processor

sends requests to all processors to mesh the subdomains assigned to them. Each

processor iterates through its subdomains and performs two steps:

(a) Meshing the interfaces, where the separators created by the MADD are refined

using the decoupling procedure described in Section 3.3, according to the given mesh

CHAPTER 4. PARALLEL GUARANTEED Q U A LITY MESH GENERATION 44

quality criteria. The parameter k , that determines the refinement of the separators, is

computed before the mesh generation phase begins, and is used to refine the internal

boundaries of all the subdomains. The same orientation and the same procedure is

used for each of the segments of the separators, establishing the conformity of the

inserted points.

(b) The mesh generation procedure is applied on the subdomains independently.

The sequential mesh generator is used as is, in the form of a library. As proved in

Section 3.1, the created meshes are Delaunay conforming.

The procedure terminates when all the meshes for subdomains have been created.

The parallel procedure is described next:

Algorithm 4 ().

1. M a s te r P ro cesso r:

2. Read the definition of the domain D

3. Initialize and maintain a sorted list of the areas of the subdomains

4. w hile the current number of subdomains is less than N do

5. send decouple requests to processors that are assigned

6. large area of subdomains

7. receive replies about decoupling and area information

8. endw hile

9. send requests to processors to mesh their subdomains

10. receive replies u n til all processors completed meshing

CHAPTER 4. PARALLEL GUARANTEED Q U ALITY MESH GENERATION 45

11. send requests for termination

12 .

13. W orker P ro cesso rs :

14. w hile not terminate do

15. receive request from Master and/or other workers

16. if request is to decouple th e n

17. Apply MADD on the largest subdomain

18. send reply to Master

19. send a new subdomain to other processor

20. en d if

21. if request is to receive a subdomain th e n

22. Add the new subdomain to this worker’s mesh-queue

23. send reply to Master

24. en d if

25. if request is to start meshing th e n

26. for each assigned subdomain do

27. Refine the separators according to the decouple procedure

28. Apply the sequential mesh generator on the subdomain

29. endfor

30. send completion message to master

31. en d if

CH APTER 4. PARALLEL G U ARANTEED Q U ALITY MESH GENERATION 46

32. endw hile

During the PMADD phase, the first P subdomains are created in lg(-P) iterations.

The total number of iterations for the parallel MADD phase is + lg(P) = 2(M —

1) + lg(-P), where M is the average number of the final subdomains per processor.

Typical values for M in our experiments vary between 12 and 20. The procedure is

using in average 2(M^ / +1lg(P) = 2(M-i)+ig(p) processors per iteration.

This divide and conquer approach is not optimal, but the cost is very small (see

Section 5.4), with respect to the cost for the mesh generation. On the other hand it

achieves a good load balance among the processors, which is a more significant factor

for the total performance of the parallel mesh generation (see Section 5.4.2). In the

next section we present in detail the load balance attained using the parallel MADD.

4.2 Load Balancing

Our experiments show that more than 99% of the total time is spent in the meshing

phase (see Section 5.4), which does not suffer from communication or synchronization

cost. Thus, the work-load balance among the processors is the main parameter that

affects the performance of the method. The load balancing problem for mesh refine­

ment is a difficult problem, because of the unpredictable computational behavior of

the meshing procedure. The problem becomes more approachable by the use of the

PMADD for over-decomposing the domain. The resulting subdomains have similar

CHAPTER 4. PARALLEL GUARANTEED Q U ALITY MESH GENERATION 47

5

Pipe
Key

4

3

P
I 2

1

0
0.070 0.02 0.04

Area
0.05 0.080.01 0.03 0.06

i | n v m | m i i m | i i r r n 11 i u i i | . v r , , , , ,

Pipe, 50M elem ., 1024 subdomains
I MADD

M ADD idle, communication
if meshing

Processor Number

Figure 4.1: Mesh time for different sizes Figure 4.2: The work balance for 64
of subdomains of the key and the pipe ge- procs, 50M elem.
ometry.

geometric shapes, and their area is proved to be a good measure for estimating the

work load for the mesh generator.

Our experimental data show, for the geometries we tested so far, that the parallel

MADD procedure creates subdomains with similar ’’good” shape (see Figure 5.1),

when the number N of subdomains is large. Figure 4.1 shows that, as we increase

iV , and thus decrease the area of the subdomains, the meshing time converges, with

very small differences between subdomains of similar size. This result demonstrates

that the area of the subdomain can be used to estimate the work-load of the mesher

for this subdomain. Of course this depends on the geometry of the original domain,

which is one of the parameters that determine the level of required decomposition.

An adaptive to the geometry approach for the PMADD would optimize the results,

and this is a subject of future work.

The load balance among the processors is achieved by balancing the total area

CHAPTER 4. PARALLEL GUARANTEED Q U ALITY MESH GENERATION 48

Pipe, 2B elem., 1024 subdomains
I MADD
£< MADD idle, communication
g meshing

Pipe, 2B elem., 1280 subdomains
I MADD

MADD idle, communication
j§ meshing

Figure 4.3: The work balance for 64 Figure 4.4: The work balance for 64
procs. 2B elem., 1024 subdomains for the procs. 2B elem. 1280 subdomains for the
pipe. pipe.

of the subdomains assigned to each processor. The first effort to create subdomains

with similar sizes takes place during the graph partition. This result though is not

guaranteed, and the obtained subdomains can have differences in size. By over­

decomposing we have the ability to distribute the subdomains, so that each processor

is assigned approximately the same total size. Moreover, the random distribution of

the subdomains gives a more uniform assignment of subdomains that differ from the

average in terms of size and geometry. The results of this simple approach are good.

Figure 4.2 depicts the load balance among 64 processors for the pipe geometry, for

1024 subdomains and 50M mesh size. This picture is typical in most cases. However,

we have observed that the load balance does not depend only on the geometry and

the size of the subdomain, but also on size of the created mesh.

Figure 4.3 shows the load balance for the same decomposition of the pipe, as in

Fig. 4.2, this time for a mesh size of 2 billion elements. We see that the good load

CHAPTER 4. PARALLEL GUARANTEED Q U A LITY MESH GENERATION 49

balance of the Figure 4.2 is destroyed. The reason for this is that the time for creating

larger meshes is much more sensitive to area and geometry differences. The answer

to this problem is to increase N . In this way we improve two parameters: i) the

size of the mesh for each subdomain is decreased, and thus the time to create it is

less sensitive to the differences, and ii) a more uniform assignment of the subdomains

can be accomplished. Figure 4.4 shows the balance for the same mesh size, 2 billion

elements, by decomposing it into 1280 subdomains. This small increase of the number

of subdomains gives an impressive improvement, the load balance is satisfactory and

the total time is decreased in less than half, the reasons are described in Sections 5.3,

5.4.1.

The previous example shows that the load balance is sensitive to the size of the

final mesh. The level of the required decomposition depends not only on the geometry

and the number of the processors, but mainly on the size of the final mesh. Let E

be an estimation for the final size of the mesh in millions of elements. From our

experiments we found that, for our setup, the number of subdomains should be at

least N = This means tha t in average 1.6M elements will be created for each

subdomain. A higher decomposition has, of course, higher time cost, but this cost is

insignificant against the gain, Figures 4.3 and 4.4, as well as the results in the next

section demonstrate it.

Chapter 5

Experim ental R esults

5.1 Performance Evaluation

We evaluate the Parallel Delaunay Decoupling (PDD) method with respect to three

requirements listed in the Introduction: (1) stability, (2) parallel efficiency, and (3)

code re-use. Our experimental data indicate that the PDD method is stable i.e.,

the elements of the distributed mesh retain the same good quality of angles as the

elements generated by the Triangle (see Figures 5.3 and 5.8 (right)); at the same

time it is very efficient as our fixed and scaled speedup data (see Figures 5.7, and

5.8 (left)) indicate. Finally it is based on 100% code re-use i.e., existing sequential

libraries like Metis and Triangle are used without any modifications for the parallel

mesh generation.

50

CHAPTER 5. EXPERIMENTAL RESULTS 51

F ig u re 5.1: L eft: The Pipe domain divided in 1200 subdomains. R ig h t: The Key domain
divided in 768 subdomains.

5.2 Experim ental Setup

We have used two model domains (see Figure 5.1): The Pipe, a cross section of rocket

from a NASA model problem where the peripheral pipes are used to cool the main

cylinder in the center that contains combustion gases, and the Key, a domain provided

with Triangle. We ran three sets of experiments: (1) to observe the the behavior of

the MADD and Decoupling method in sequential execution for small meshes, 4-5

million (M) elements, (2) to calculate the fixed speedup for fixed size meshes of the

order of 40-50M elements, and (3) to compute the scaled speedup for meshes whose

size range from 12M to 2 billion (B) elements.

The programming language for our implementation was C + + and DMCS [3] was

used as the communication substrate. The Triangle [44] library was used for the mesh

generation procedure as well as for the creation of the Delaunay triangulation during

the MADD procedure. The parameters passed to Triangle for the mesh generation

CHAPTER 5. EXPERIMENTAL RESULTS 52

were two: (a) for the quality the elements (Ruppert’s algorithm is used to achieve

circumradius to shortest edge ration less then \/2), and (b) for the maximum area

of the generated elements. Also, Metis [31] was used for the graph partitioning step

in the MADD procedure. The cases that Metis returned non-connected subgraphs

were recognized and discarded. All the libraries where used without modifications,

minimizing the cost for the parallel implementation and achieving 100% code-reuse.

All the experiments ran on SciClone, a high-performance computing environment

in the College of William and Mary. SciClone is a heterogeneous cluster of Sun

workstations which use Solaris 7 operating system. For our experiments we have

used a subcluster of 32 dual-cpu Sun Ultra 60 workstations 360 MHz, with 512 MB

memory and 18.2 GB local disk. Networking was provided by a 36-port 3Com Fast

Ethernet switch (lOOMb/sec).

5.3 Sequential Experim ents

We ran a set of sequential experiments in order to compare the sequential Delaunay

decoupling method, where we over-decompose the domain, with Triangle, the best

known publicly available sequential guaranteed quality Delaunay mesh generation

code for two dimensional domains. In these experiments we examine the affects of

the decoupling procedure with respect to the performance of the mesh procedure,

the size of the final mesh, which indicates that the over-refinement we introduce is

insignificant, and the quality of the elements in terms of the angle distribution. The

CHAPTER 5. EXPERIMENTAL RESULTS 53

size of the meshes we created is limited by the size (5.5M) we were able to generate

with Triangle due to memory limitations. However, using the Delaunay decoupling

method we were able to generate more than 30M on a single processor.

0.06

Key, 5M elem.

0.05
subdomains

0.04

0.03

0.02

0.01

. i ■
80 100

Angle (degrees)

0
140 18020 120 1600 40 60

1.02
 Key, 3M elem
 Key, 5M elem
— Pipe, 3M e lem
— Pipe, 5M e lem

1.015

i8 1.01uI
1.005

£
1

0.995

20 40
of Subdomains

7010 30
Number >

50 60

F ig u re 5.2: The increase of number of el- F ig u re 5.3: The angle distribution for
ements for decoupling into different num- different number of subdomains,
ber of subdomains.

Figure 5.2 shows the ratio of the size of the decoupled meshes over the size of the

non-decoupled mesh, which is a measure of the over-refinement we introduce when

we decouple the domains.

Subdomains 1 8 16 32 48 64
Key elements 5,193,719 5,197,066 5,200,395 5,203,023 5,208,215 5,210,857
Total time 46.146 38.414 38.204 37.590 37.322 37.333
Pipe elements 5,598,983 5,602,668 5,605,819 5,607,055 5,609,404 5,613,624

Total time 59.263 41.342 41.046 40.370 40.352 40.147

T ab le 5.1: The number of elements and the total time (in seconds) for the same mesh
generation param eters and for different levels of decoupling. The times do not include the
mesh merging procedure.

Similarly, Table 5.1 presents the number of elements for different levels of decou-

CHAPTER 5. EXPERIM ENTAL RESULTS 54

- e Key
-o Pipe0.6

0.5

0.4

0.3

0.1

0
60 7010 20 30 40 50

70

►—d Key, 3M elem.
► • o Key, 5M elem.
<•--& Pipe, 3M elem.
- -v Pipe, 5M elem.

60

50

40

30

20,
20 50 60 700 10 30 40

Figure 5.4: The time for the sequential
MADD.

Figure 5.5: The time for sequential
meshing after decoupling into subdo­
mains. The times do not include the mesh
merging procedure.

pling. The over-refinement is insignificant, it is less than 0.4%, despite the intense

over-decompostion (less than 90K elements per subdomain).

The overhead of the sequential MADD method is approximately linear with re­

spect to the number of subdomains, see Figure 5.4. This overhead is small compared

to the mesh generation time. The total execution time using the sequential decou­

pling procedure is decreased up to 68% of the time it takes for Triangle to generate

a mesh with the same quality. As the size of the mesh increases the performance of

the decoupling procedure compared to Triangle is improving even further, because

the size of the working set for each subdomain is smaller and the Delaunay mesh

algorithm used in Triangle has a non-linear time complexity [44].

The quality of the elements produced after the decoupling of the domain into

subdomains is evaluated by comparing the distribution of angles. We compare the

angles of the elements from both the non-decoupled mesh generated by Triangle and

CHAPTER 5. EXPERIMENTAL RESULTS 55

the decoupled ones generated by our method. Figure 5.3 shows that the distribution is

the same. The above results hold as we scale the mesh size in our parallel experiments.

In summary, the decoupling method demonstrates merits even for sequential mesh

generation. The gains in the performance from the better memory utilization cover

the small overheads due to decoupling and over-refinement, while the element quality

is independent of the decoupling, which shows that our method is stable regarding

the quality of the mesh.

5.4 Parallel Experim ents

We performed two sets of experiments in order to calculate the fixed and scaled

speedup using 8, 16, 32, and 64 processors. W ith 64 processors we were able to

generate 2.1 billion (B) high quality elements for the Pipe in less than 3.5 minutes,

while using Triangle [44] on a single workstation we were able to generate 5.5 million

(M) elements in about one minute (see Tables 5.1 and 5.3).

In the rest of the section we present performance data for both the parallel medial

axis domain decomposition (PMADD) method and the parallel mesh generation. The

PMADD procedure is evaluated in terms of its total parallel execution time which

includes some communication and idle time and the maximum computation time

spend on a single processor. The parallel mesh generation phase does not require

communication and its performance is measured in terms of maximum and average

computation time of processors. The ratio of these two numbers is used to measure

CHAPTER 5. EXPERIM ENTAL RESULTS 56

the load imbalance of the parallel meshing phase.

Finally, we evaluate the scalability of the method in terms of two performance

criteria: (1) the average tim e that it takes for one element to be created on a single

processor, over all the processors and elements that are created, and (2) the overhead

cost (due to decomposition and parallelism) for each processor we use. Both criteria

indicate that the parallel mesh generation method we present here is scalable and

that we can generate billions of elements with insignificant overheads (see Table 5.3).

450

a Pipe SOM, total time
i— o Pipe 50M, meshing time
—-a Key 40M, total time

Key 40M, meshing time

400

350

300

250

.§ 200 H
150

100

50

0,0 16 32
Number of

8 24 40
Processors

48 56

64 o - o Pipe 50M
A- '-a Key 40M
 linear speed-up56

48

40

32

24

16

8

0,
8 640 16 32

Number i
I 40
o f Processors

48 5624

F ig u re 5.6: The performance for fixed F ig u re 5.7: The speedup for fixed size
size mesh. mesh.

5.4.1 Fixed Size Mesh Experiments

In the fixed size set of parallel experiments we used a mesh of 40M elements for the

Key domain and 50M for the cross section of the Pipe. For the key domain we created

12 subdomains for each processor while for the pipe 16 subdomains. The maximum

triangle area is fixed throughout the experiments for each domain.

CHAPTER 5. EXPERIM ENTAL RESULTS 57

No of processors 1 8 16 32 48 64
The Domain
No of subdomains 12 96 192 384 576 768
Mesh size (M) 43.32 43.34 43.37 43.41 43.43 43.45
PMADD time 0.20 0.37 0.44 0.60 0.83 1.05
Meshing time 386.32 42.35 20.72 10.12 6.79 4.96
Total time 386.52 42.72 21.16 10.72 7.62 6.01
The Pipe Domain
No of subdomains 16 128 256 512 768 1024
Mesh size (M) 50.93 50.97 51.00 51.05 51.08 51.11
PMADD time 0.27 0.51 0.60 0.89 1.07 1.47
Meshing time 374.15 48.80 24.03 11.80 7.93 5.74
Total time 374.42 49.29 24.63 12.69 9.00 7.21

Table 5.2: Performance data for the key and the pipe geometry for a fixed maximum
element area. All times are in seconds and mesh sizes are in millions (M).

The results are presented in Table 5.2. The data again indicate an unimportant

increase in the number of elements for the different levels of over-decomposition, which

shows that the over-refinement we introduce is insignificant. The total execution time

and the computation time for the actual mesh generation are depicted in Figure 5.6.

These times are very close, because the PMADD overhead cost is very small. This

cost is neutralized by the effect of over-decomposition, which along with the good load

balancing and zero communication during the parallel meshing, lead to superlinear

speedup, see Figure 5.7. The speedup is calculated against the total time it takes to

create the mesh on one processor, as it is presented in Table 5.2.

CHAPTER 5. EXPERIMENTAL RESULTS 58

5.4.2 Scaled Size Mesh Experiments

A more practical way to evaluate the scalability and true performance of a paral­

lel algorithm and software is to scale the size of the problem in proportion to the

number of processors used. In the following experimental data we use the same

level of decomposition for every configuration of processors, i.e., we keep the average

number of subdomains per processor constant, and thus we eliminate the effect of

over-decomposition in the resulting performance data. Theoretically we should be

able to achieve the same creation time per element per processor for all the par­

allel configurations independently of the number of processors used. However, this

is not feasible for the following two reasons: (1) the decomposition overhead, which

increases very slowly but nevertheless there is an increase in the overhead as the num­

ber of processors increases and (2) load imbalances due to unpredictable and variable

computation of the mesh generation kernel.

Table 5.3 shows some performance indicators for the two model problems we use,

the key and the pipe geometry. In the experiments for the key model we created 12

subdomainns per processor and generated on average 1.6M elements per subdomain

i.e., total 20M per processor. For the pipe model we created 20 subdomainns per

processor and generated on average 1.6M elements per subdomain i.e., total 32M per

processor. Small differences exist in the size of the mesh because our stopping criteria

are based on the quality and size of elements, and thus the mesh size cannot be exactly

predefined. It is clear from the Table 5.3 that for larger processor configurations, like

CHAPTER 5. EXPERIMENTAL RESULTS 59

64 processors, the 99.5% of the total execution time is spent in the meshing phase

by the Triangle. This suggests that for realistic problems the PMADD overhead is

about 0.5% of the total execution time.

No of processors 1 8 16 32 48 64
The Key Domain
No of subdomains 12 96 192 384 576 768
Mesh Size 20M 160M 320M 650M 860M 1.3B
Total time 152.43 177.31 192.41 213.91 166.10 205.26
Max meshing Time 152.23 176.92 191.93 213.26 165.25 204.19
Aver, meshing Time 152.23 165.75 168.04 170.31 137.70 163.14
Imbalance 1 1.067 1.142 1.252 1.200 1.252
MADD Phase time 0.20 0.38 0.44 0.63 0.84 1.05
Max MADD time 0.20 0.14 0.13 0.13 0.12 0.13
Tot. tim e/ (elem. / procs) 7.33 8.73 9.47 10.54 9.20 10.11
Additional Cost /procs 0% 2.4% 1.8% 1.4% 0.5% 0.6%
The Pipe Domain
No of subdomains 20 160 320 640 960 1280
Mesh size 32M 240M 500M IB 1.4B 2.IB
Total time 236.00 247.10 245.32 279.59 246.59 294.39
Max meshing time 235.71 246.53 244.65 278.56 245.09 292.71
Aver, meshing time 235.71 226.78 231.15 253.59 218.56 255.87
Imbalance 1 1.087 1.058 1.098 1.121 1.144
MADD phase time 0.29 0.55 0.67 1.01 1.48 1.66
Max MADD time 0.29 0.19 0.17 0.17 0.16 0.18
Tot. time/(elem./procs) 7.30 8.23 7.94 8.51 8.45 8.96
Additional Cost /procs 0% 1.6% 0.6% 0.5% 0.3% 0.4%

Table 5.3: Performance data for the key and the pipe geometry. The meshing time in­
cludes the time of the decoupling procedure (MADD). The MADD phase includes the load
balance estimation procedure and the distribution of the subdomains to the processors. The
imbalance is measured as ratio of the max meshing processor time over the average. All
times are in seconds except for the tim e/(elem ./procs) which is in microsecs.

We observe that, while the max PMADD time on one processor remains almost

constant, the time for PMADD phase increases as the number of processors increases.

CHAPTER 5. EXPERIMENTAL RESULTS 60

This is in agreement with the analysis in Section 4.1. As the number of processors

increases, the number of PMADD iterations increases, although the number of the

subdomains per processor is constant. In each PMADD iteration all the processors

finish the decomposition, before the next iteration begins. This synchronization im­

poses an additional cost in the PMADD time. Moreover, the communication during

this phase increases, as the number of processors increases. Fortunately, the commu­

nication and synchronization cost is less than 0.02 secs per processor. In comparison

with the total execution time this cost is very small.

The load imbalance is measured by the ratio of the maximum meshing time on

one processor and the average meshing time for all the processors. In Table 5.3 we

observe that the load balance for the pipe is very good, 1.14 for 64 procs, while for the

key is satisfactory, 1.25. The load-balance is based on over-decomposing the domain

and equi-distributing the areas, and although it depends on the size of the mesh as we

saw in Section 4.2, it also depends on the geometry and the number of the processors.

Further improvement in the load-balance can be achieved by using parallel runtime

software systems that address load-balancing problems, as the one presented in [2].

An important measure for evaluating the efficiency of a parallel meshing method is

the (total) time spent for creating one element on one processor. Let T ^ be the total

time running on P processors in order to create a mesh of size S^p\ Then, the time

per element, per processor is TeP ̂ This measure eliminates the differences

in the mesh size, providing a more objective view of the scaled performance. We

CHAPTER 5. EXPERIMENTAL RESULTS m

1.4

i
*3 1.21

1
80

—c Pipe, 32M/pic
—a Key, 20M/prc
— linear speed-up

72

64

56

48

40

32

24

16

8

00 24 32
Number of Processors

40 48 56 648 16

I 1 1 1 I 1 1 1 I 1 1 1 I

Pipe angle distribution
30 M. elem.
500 M. elem.
1 B. elem.
2 B. elem.

/

v.
"Y

60 80 100 120 140 160 180
A ngle (degrees)

Figure 5.8: Left: Top is presented the imbalance and down the speedup for the scaled
experiments. The speedup is measured against the sequential creation of 5M elements and
is based on the overall time it takes for one element to be created. Observe the direct
impact of the imbalance to the speedup. Right: The angle distribution for scaled mesh
sizes of the pipe.

see in Table 5.3 that this time is almost constant, and thus the method is scalable.

The slight increase of this time is mainly due to the imbalance increase, while the

contribution of the overhead time cost is very small. This is evident in Figure 5.8,

where the imbalance is depicted on the top and the scaled speedup down. The scaled

T s p

speedup for P processors is measured as Up = where Tes is the time to create

sequentially one element for a non-decomposed mesh of size 5M. We again observe

the superlinear speedup for the same reasons as in the fixed size experiments. It is

obvious in this figure the direct impact of the imbalance to the speedup.

Another measure for evaluating the scalability is the additional cost time cost for

each processor that we use, relatively to the total time when running on one processor.

The additional cost Cp per processor, when using P processors, is computed as Cp =

}. Taking into account that the mesh size is approximately proportional
TP(1)-P

to the number of processors P , we have Cp ~ T(̂ ()1) ^(1). We can consider the quantity

CHAPTER 5. EXPERIMENTAL RESULTS 62

T as the ideal time for creating on P processors a mesh of size S ^ ~ P •

since the effect of over-decomposition is eliminated. In this way the additional cost Cp

measures the distance from the ideal speedup, distributed to the number of processors

used.

(p)The time Te is increasing as P increases, the reasons were explained above.

This increase though is small for the key and even smaller for the pipe domain. It is

interesting to observe that the additional cost Cp tends to decrease, as P increases.

Although we have to pay a (small) cost in the performance for each additional proces­

sor we use, this cost tends to decrease, when measured in scale. This result underlines

the scalability of the method.

Finally we should compare the quality of the elements of scaled meshes that the

decoupling procedure produces. In Figure 5.8 right is depicted the distribution of the

angles of the elements, for meshes varying from 30M triangles to 2.IB. The quality is

obviously the same.

Chapter 6

Conclusions and Future Work

We presented a decoupling procedure for parallel Delaunay guaranteed quality mesh

generation on distributed memory machines for 2-dimensional domains. The method

eliminates the communication during the mesh generation and demonstrates good sta­

bility in terms of the size and the quality of the final mesh. It also shows good speedup

and scalability, making it suitable for creating very large meshes on distributed mem­

ory machines. A major advantage of the our method is that a sequential mesher

(Triangle [44]) is used as a library, without any modification, achieving 100% code

re-use. The method can be used at the same time as sequential mesh generation, in

order to create larger meshes in less time using one processor. Because of the zero

communication and the scalability for large meshes, this method seems to be suitable

for Grid computing applications [16].

Future work for 2-dimensional geometries includes the theoretical analysis about

over-refinement by using the local lfs (i.e., an adaptive way) to determine the local

refinement of the decoupling zone. It is also interesting to see how this approach can

63

CHAPTER 6. CONCLUSIONS AND FUTURE W ORK 64

be applied in three dimensions for surface and volume parallel guaranteed quality

mesh generation. The main issue in 3-dimensional domains is the creation of suit­

able domain decompositions, similar to the one we are able to create for the two

dimensions.

Bibliography

[1] C. A r m s t r o n g , D . R o b i n s o n , R. M c K e a g , T . L i , S. B r i d g e t t , R. D o n -

AGHY, AND C. M c G l e e n a n . Medials for meshing and more. In Proceedings of
4th International Meshing Roundtable, pages 277-288. Sandia National Labora­
tories, 1995.

[2] K. B a r k e r , N. C h r i s o c h o i d e s , A. C h e r n i k o v , a n d K. P i n g a l i . A frame­
work for load balancing of adaptive and asynchronous applications. IEEE Trans.
Parallel and Distributed Systems, 14(12), 2003.

[3] K. B a r k e r , N. C h r i s o c h o i d e s , J. D o b b e l a e r e , D. N a v e , a n d K. P i n ­

g a l i . Data movement and control substrate for parallel adaptive applications.
Concurrency and Computation Practice and Experience, 14:77-101, 2002.

[4] S. T . B a r n a r d a n d H. D . S i m o n . A fast multilevel implementation of re­
cursive spectral bisection for partitioning unstructured problems. Concurrency:
Practice and Experience, 6:101-107, 1994.

[5] A. B e g u e l i n , J. D o n g a r r a , A. G e i s t , R . M a n c h e k , K . M o o r e , a n d

V. S u n d e r a m . PVM and HeNCE: Tools for heterogeneous network computing.
In Software for Parallel Computation, J. S. Kowalik and L. Grandinetti, editors,
volume 106. Springer-Verlag, 1993.

[6] G. E. B l e l l o c h , G. L . M i l l e r , J. C. H a r d w i c k , a n d D. T a l m o r . Design
and implementation of a practical parallel Delaunay algorithm. Algorithmica,
24(3/4):243-269, 1999.

[7] H. B l u m . A transformation for extracting new descriptors of shape. In Models
for the Perception of speech and Visual Form, pages 3 6 2 - 3 8 0 . MIT Press, 1 9 6 7 .

[8] J. W . B r a n d t . Convergence and continuity criteria for discrete approximations
of the continuous planar skeleton. CVGIP:Image Understanding, 59:116-124,
1994.

[9] J. W . B r a n d t a n d V. R. A l g a z i . Continuous skeleton computation by
Voronoi diagram. Comput. Vision, Graphics, Image Process., 55:329-338, 1992.

65

BIBLIOGRAPHY 66

10] L. P . C h e w . Constrained Delaunay triangulations. Algorithmica, 4:97-108,
1989.

11] L. P . C h e w . Guaranteed quality triangular meshes. Technical Report TR-89-
983, Department of Computer Science, Cornell University, 1989.

12] L. P . C h e w . Guaranteed-quality mesh generation for curved surfaces. In 9th
Annual Symposium on Computational Geometry, pages 274-280. ACM, 1993.

1 3] L . P . C h e w , N . C h r i s o c h o i d e s , a n d F . S u k u p . Parallel constrained De­
launay triangulation. In A SM E /A SC E /SE S Special Symposium on Trends in
Unstructured Mesh Generation, pages 8 9 - 9 6 , 1 9 9 7 .

14] H. C h o i , S. C h o i , a n d H. M o o n . Mathematical theory of medial axis trans­
form. Pacific Journal of Mathematics, 181:57-88, 1997.

15] N. C h r is o c h o id e s . An alternative to data mapping for parallel PDE solvers:
parallel grid generation. In Scalable Parallel Libraries Conference, 1993.

1 6] N . C h r i s o c h o i d e s , A . F e d o r o v , B. B. L o w e k a m p , M . Z a n g r i l l i , a n d

C . L e e . A case study of optimistic computing on the Grid: Parallel mesh
generation. In Next Generation Systems Program Workshop, IPD PS’03, 2003.

17] N. C h r i s o c h o i d e s a n d D. N a v e . Simultaneous mesh generation and parti­
tioning. Mathematics and Computers in Simulation, 54(4-5):321-339, 2000.

1 8] N . C h r i s o c h o i d e s a n d D. N a v e . Parallel Delaunay mesh generation ker­
nel. International Journal for Numerical Methods in Engineering, 5 8 (2) : 1 6 1 —1 7 6 ,

2 0 0 3 .

19] N. C h r i s o c h o i d e s a n d F. S u k u p . Task parallel implementation of the
BOWYER-WATSON algorithm. In Proceedings of Fifth International Confer­
ence on Numerical Grid Generation in Computational Fluid Dynamics and Re­
lated Fields, 1996.

2 0] H. D E C o u g n y A N D M . S h e p h a r d . Parallel volume meshing using face re­
movals and hierarchical repartitioning. Comp. Meth. Appl. Mech. Engng., 1999.

21] B. N. D e l a u n a y . Sur la Sphere Vide. Izvestia Akademia Nauk SSSR, VII
Seria, Otdelenie Matematicheski i Estestvennyka Nauk, 7:793-800, 1934.

22] R. D i e k m a n n , D. M e y e r , a n d B. M o n i e n . Parallel decomposition of un­
structured FEM-meshes. Concurrency: Practice and Experience, 10(1):53—72,
1998.

2 3] P . J . F r e y a n d P . L . G e o r g e . Mesh Generation. Hermes Science Publishing,
2000 .

BIBLIOGRAPHY 67

[24] J. G a l t ie r a n d P. L. G e o r g e . Prepartitioning as a way to mesh subdomains
in parallel. In 5th International Meshing Roundtable, pages 107-122, 1996.

[25] P. L. G e o r g e a n d H. B o r o u c h a k i . Delaunay Triangulation and Meshing:
Applications to Finite Element. Hermis, Paris, 1998.

[26] H. N. G u r s o y a n d N . M . P a t r i k a l a k i s . An automatic coarse and fine sur­
face mesh generation scheme based on medial axis transform: Part i algorithms.
Engineering With Computers, 8:121-137, 1992.

[27] B. H e n d r ic k s o n a n d R. L e l a n d . An improved spectral graph partition­
ing algorithm for mapping parallel computations. SIAM Journal on Scientific
Computing, 16(2):452-469, 1995.

[28] B. H e n d r ic k s o n a n d R. W . L e l a n d . A multi-level algorithm for partitioning
graphs. In Supercomputing, 1995.

[2 9] C. K a d o w a n d N. W a l k i n g t o n . Design of a projection-based parallel De­
launay mesh generation and refinement algorithm. In 4th Symposium on Trends
in Unstructured Mesh Generation, 2 0 0 3 .

[30] G. K a r y p is a n d V. K u m a r . A fast and high quality multilevel scheme for
partitioning irregular graphs. Technical Report TR 95-035, 1995.

[31] G. K a r y p is a n d V. K u m a r . MeTis: Unstractured Graph Partitioning and
Sparse Matrix Ordering System, Version 2.0 , 1995.

[32] B. W . K e r n ig h a n a n d S. L i n . An efficient heuristic procedure for partitioning
graphs. Bell Systems Technical Journal, 49(2):291-307, Feb. 1970.

[33] C. L. L a w s o n . Software for C 1 surface interpolation. In Mathematical Software
III , John R. Rice, editor, pages 161-194. Academic Press, New York, 1977.

[34] D. T . L e e . Medial axis transformation of a planar shape. IEEE Transactions
on Pattern Analysis and Machine Intelligence, PAMI 4(4):363-369, July 1982.

[35] R. L o h n e r a n d J. C e b r a l . Parallel advancing front grid generation. In
International Meshing Roundtable. Sandia National Labs, 1999.

[36] B. M a e r t e n , D. R o o s e , A. B a s e r m a n n , J. F in g b e r g , a n d G. L o n s ­
d a l e . DRAMA: A library for parallel dynamic load balancing of finite element
applications. In European Conference on Parallel Processing, pages 313-316,
1999.

BIBLIOGRAPHY 68

[3 7] D. N a v e , N . C h r i s o c h o i d e s , a n d L . P. C h e w . Guaranteed-quality parallel
Delaunay refinement for restricted polyhedral domains. In Proceedings of the
18th ACM Symposium on Computational Geometry, pages 1 3 5 - 1 4 4 . ACM Press,
2002 .

[38] D. N a v e , N. C h r is o c h o id e s , a n d L . P. C h e w . Guaranteed-quality parallel
Delaunay refinement for restricted polyhedral domains. Computational Geome­
try: Theory and Applications, 2003.

[39] P . P . P e b a y a n d P . J. F r e y . A-priori Delaunay-conformity. In 7th Interna­
tional Meshing Roundtable, pages 321-333, 1998.

[40] M. P r ic e , C. St o p s , a n d G. B u t l i n . A medial object toolkit for meshing
and other applications. In Proceedings of 4th International Meshing Roundtable,
pages 219-229, 1995.

[41] J. R u p p e r t . A Delaunay refinement algorithm for quality 2-dimensional mesh
generation. J. Algorithms, 18(3):548-585, 1995.

[42] R. S a i d , N. W e a t h e r il l , K. M o r g a n , a n d N. V e r h o e v e n . Distributed
parallel Delaunay mesh generation. Comp. Methods Appl. Mech. Engrg., 177:109-
125, 1999.

[43] E. C. S h e r b r o o k e , N. M. P a t r i k a l a k i s , a n d F .-E . W o l t e r . Differential
and topological properties of medial axis transforms. Graphical Models and Image
Processing, 55(l):574-592, 1996.

[44] J. R. S h e w c h u k . Triangle: Engineering a 2D quality mesh generator and
Delaunay triangulator. In Applied Computational Geometry: Towards Geometric
Engineering, Ming C. Lin and Dinesh Manocha, editors, volume 1148 of Lecture
Notes in Computer Science, pages 203-222. Springer-Verlag, May 1996. From
the First ACM Workshop on Applied Computational Geometry.

[45] J. R. Sh e w c h u k . Delaunay Refinement Mesh Generation. PhD thesis, School of
Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, May
1997. Available as Technical Report CMU-CS-97-137.

[46] T. K. H. T a m a n d C .G A r m s t r o n g . 2D finite element mesh generation
by medial axis subdivision. Advances in Engineering Software, 56(13):313-324,
1991.

[47] C. W a l s h a w a n d M. C r o s s . Mesh partitioning: A multilevel balancing and
refinement algorithm. SIAM Journal on Scientific Computing, 22(l):63-80, 2000.

[48] C. W a l s h a w , M. C r o s s , a n d M. G. E v e r e t t . Parallel dynamic graph par­
titioning for adaptive unstructured meshes. Journal of Parallel and Distributed
Computing, 47(2): 102-108, 1997.

BIBLIOGRAPHY 69

[49] F .-E . W o l t e r . Cut locus and medial axis in global shape interrogation and
represenation. Technical report, MIT, Department of Ocean Engeneering, Design
Laboratory, 1993.

VITA

Leonidas Linardakis

Leonidas Linardakis was born in Athens, Greece on November 1965. He received his

B.S. at the University of Ioannina, Greece, in 1997 with a degree in Mathematics. He

received his M.S. at the University of Ioannina in Mathematics in 1999.

In June 2001 the author entered the College of William and Mary as a graduate

assistant in the Department of Computer Science. Leonidas Linardakis is currently a

Ph.D. candidate and a Teaching Fellow in the Computer Science Department in the

College of William and Mary.

	A Parallel Two Dimensional Delaunay Decoupling Method
	Recommended Citation

	tmp.1539892610.pdf.WyaZH

