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ABSTRACT

Creating in parallel guaranteed quality large unstructured meshes is a challenging 
problem. Parallel mesh generation procedures decompose the original mesh genera­
tion problem into smaller subproblems that can be solved in parallel. The subprob­
lems can be treated as either completely or partially coupled, or they can be treated 
as completely decoupled. In this thesis we present a parallel guaranteed quality De­
launay method for 2-dimensional domains which is based on the complete decoupling 
of the subproblems. As a result the method eliminates the communication and the 
synchronization during the meshing of the subproblems. Moreover, it achieves 100% 
code re-use of existing, fine-tuned and well tested, sequential mesh generators. The 
approach we describe in this thesis presents for the first time an effective way to cre­
ate in parallel guaranteed quality meshes with billions of elements in few hundreds of 
seconds, and at the same time demonstrates that these meshes can be generated in a 
efficient and scalable way. Our performance data indicate superlinear speedups.
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Chapter 1

Introduction

1.1 Delaunay Triangulation and M esh Generation

Delaunay triangulation was introduced by Delaunay [21] in 1934 and is a triangula­

tion such that the circumcircle (the circumscribed circle) of every triangle is empty, 

that is it does not contain any other vertex of the triangulation (see Figure 1.1). This 

property is referred as the empty circumcircle property. The advantages of the Delau­

nay triangulation is that it demonstrates adaptivity to the geometry and maximizes 

the minimum angle of the triangulation [33].

In the Delaunay mesh generation, points are inserted in the triangulation in order 

to improve the quality of the mesh (see Figure 1.1). A triangle is considered “bad” 

when it contains a small angle, or equivalently when the circumradius to shortest 

edge ratio is large. Typically the circumcenter of a such a bad triangle is inserted 

and new mesh is produced by re-triangulating the vertices. In addition to improving 

the quality of the mesh in terms of the angles this refinement procedure is used to

2



CHAPTER 1. INTRODUCTION 3

Figure 1.1: Delaunay triangulation and mesh generation. Top left, in Delaunay trian­
gulation the circumcircles of the triangles are empty. Top right, in the Delaunay mesh 
generation the circumcenters of the ’bad’ triangles are inserted and down left the mesh is 
re-triangulated. Down right, the mesh generation procedure is unpredictable and memory 
intensive.

decrease the size of the triangles, so that the maximum triangle area is bounded by 

a desirable size.

This procedure is not computational expensive, but is memory intensive and has 

unpredictable computational behavior, which is input dependent. In order to solve 

the problem of the memory intensive access, distributed memory machines can be 

used to create large meshes efficiently.

More information on Delaunay triangulation and mesh generation can be found 

in [23, 25, 45].
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1.2 Parallel Delaunay M esh Generation

Parallel mesh generation methods decompose the original meshing problem into smaller 

subproblems that can be solved (i.e., meshed) in parallel. The requirements for the 

parallel and distributed solution of the subproblems are: (1) stability, distributed 

meshes should retain the same level of quality of elements as the sequentially gener­

ated ones, (2) efficiency, and (3) code re-use, in order to leverage the ever evolving 

basic sequential meshing techniques and software.

In [20, 25] parallel mesh generation methods, for distributed memory computers or 

clusters of workstations (CoWs), are classified in terms of the way and the order the 

artificial boundary surfaces (interfaces) of the subproblems are meshed. Specifically, 

existing parallel methods are classified in three categories: (i) A priori methods, that 

first mesh (either in parallel [35], or sequentially [42]) the interfaces of the subproblems 

and then mesh in parallel the individual subproblems, (ii) A posteriori methods, that 

first solve the meshing problem in each of the subproblems in parallel, and then mesh 

the interfaces [20] so that the global mesh is conforming, (iii) Simultaneous mesh 

generation and partitioning (SMGP) methods, that simultaneously mesh and improve 

the quality of the interfaces1 as they mesh the individual subproblems [19, 13, 17, 38].

In this thesis we present an a priori method that contributes in the state-of-the- 

art parallel mesh generation in the following three ways: (1) it guarantees the same 

level of quality of the mesh with the sequentially generated ones, (2) it eliminates 

xThe improvement of the interfaces is measured in terms of the surface to volume ratio.
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communication and synchronization during the meshing of the subproblems, and 

achieves superlinear speedups with respect to the best (to our knowledge) sequential 

guaranteed quality mesh generator [44], and (3) achieves 100% code re-use, providing 

the ability to use the best sequential Delaunay mesh generators with no modifications. 

This is the first method (to the best of our knowledge) that eliminates communication 

and synchronization, and at the same time is based on a 100% code re-use of sequential 

codes. It is the only, so far, parallel guaranteed quality method that can achieve 

superlinear speedups, when compared to the best sequential mesh generation codes, 

and the first to create over IB elements. The method can be used at the same time 

as sequential mesh generation, in order to create larger meshes in less time using one 

processor.

In [24] J. Galtier and P. L. George present a Parallel Projective Delaunay Mesh­

ing (P 2D M ) method which guarantees the quality of the elements and eliminates 

communication and synchronization, but, depending on the geometry, it might suffer 

from setbacks which affect its efficiency. The setbacks are in the form of discarding 

completely the triangulation because the separators are not always Delaunay admis­

sible as new points are inserted [24]. The problem of computing Delaunay admissible 

separators in the context of parallel Delaunay mesh refinement is solved in this thesis 

successfully for 2-dimensional domains.

A 2-dimensional Divide-and-Conquer Delaunay Triangulation (DCDT) algorithm 

and its parallel implementation are presented in [6]. The DCDT is based on finding
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a Delaunay path, through a projection to a paraboloid, tha t separates the initial 

set in two equal sized subsets. Although this is an elegant and efficient procedure for 

Delaunay triangulation, it cannot be used for parallel mesh generation and refinement, 

which require new point insertion in the mesh, without significant extensions as the 

ones presented in [29], that introduce communication.

SMGP Parallel Guaranteed Quality Delaunay Mesh (PGQDM) generation meth­

ods appeared in [37] and in [18]. The PGQDM is communication intensive, and 

despite the fact that tolerates (masks) up to 90% of communication, its speedup is 

about 6 for 16 processors [18]. The second SMGP method, the Constrained Delaunay 

Mesh (PCDM) generation [13] is based on constrained Delaunay triangulation [10]. It 

reduces substantially the communication and eliminates synchronization, but still the 

speedup is 5.75 for 8 processors [13]. The PCDM implementation, as the PGQDM, 

does not re-use existing sequential Delaunay mesh generators, due to additional care 

for cavities that are constrained by internal boundary.

The method we present here requires high quality domain decompositions that (1) 

satisfy certain geometric constraints [45] regarding the angles, and (2) do not intro­

duce significant constraints that will affect the efficiency of the mesh generator and 

the quality of the final mesh. In this thesis we propose a novel domain decomposition 

method for 2-dimensional geometries based on the medial axis of the domain. This 

method satisfies the above criteria, but it has the disadvantage of being difficult to 

extend to 3 dimensions.
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In the rest of the thesis, we present in chapter 2 the medial axis domain decom­

position method. In chapter 3 we proceed to decouple the mesh generation process of 

the individual subdomains, by defining and preprocessing a zone around the internal 

boundaries of the subdomains. In this chapter, contrary to past work [35, 24], we 

prove that the preprocessing of the zone completely decouples the subdomains. Fi­

nally, in chapter 4 we present the complete parallel mesh generation procedure, and 

in chapter 5 we provide experimental results that demonstrate the efficiency of our 

method.



Chapter 2 

The M edial Axis Dom ain  

D ecom position M ethod

2.1 The Domain D ecom position Problem

Guaranteed quality mesh generation algorithms [11, 12, 41] and software [45, 44] gen­

erate elements with good aspect ratio and good angles. These algorithms require 

that the initial boundary angles are within certain good bounds. For example, Rup- 

pert’s algorithm [41] requires boundary angles (the angles formed by the boundary 

edges) no less than 60°, in order to guarantee the termination. Since the separators 

are treated as external boundary, the domain decomposition should create separators 

that meet the requirements of the mesh generation algorithm. So, the constructed 

separator should form angles no less than a given bound <F0, which is determined by 

the sequential mesh generation procedure that will be used to mesh the individual 

subdomains.
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The domain decomposition can be used in parallel mesh generation to explore 

data-parallelism, as in many other areas of scientific computing. The three fun­

damental issues in data-parallel computations are: communication, synchronization 

and load balancing. The parallel mesh generation method we propose eliminates com­

munication and synchronization, using a proper decoupling (see Section 3.1) of the 

subdomains. However, we achieve the decoupling at the cost of some over-refinement, 

which is analogous to the size of the separators of the subdomains. Therefore, one 

of our objectives in the domain decomposition step is to minimize the size of the 

separators relatively to the area of the subdomains. Then the over-refinement we 

introduce is insignificant (see Section 5.3).

The third important issue that affects parallel program performance is the good 

balance of the work-load among the processors. The equidistribution of processors’ 

work-load is achieved by over-decomposing [5] the domain, i.e. N  »  P , where N is 

the number of subdomains and P  is the number of processors. The created subdo­

mains are distributed to the processors using an a priory estimation of the work-load, 

based on the area of the subdomains. This ab initio approach gives good results for 

uniform cluster environments (see Section 4.2). However, a dynamic load balanc­

ing approach can be adopted using general purpose runtime systems, like the ones 

presented in [2, 36], to migrate at runtime subdomains from overloaded processors 

to ones that completed their work. The area criterion for estimating the work load 

appears to be a good measure in the case of our method, for the following reason: the
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decomposition procedure, as we will see, creates “good” angles and small separators, 

and the created subdomains tend to have similar shapes after the over-decomposition 

of the domain; since the geometries are similar, the work of the mesher is approxi­

mately proportional to the area of the subdomains. The above intuition is confirmed 

by the results in Section 4.2.

In summary, the domain decomposition criteria for parallel mesh generation are:

1. Create good angles, that is angles no less than a given tolerance 4>0. The value 

of is determined by the sequential, guaranteed quality, mesh generation 

algorithm.

2. The subdomains should have approximately equal size (area-wise).

3. The size of the separator should be relatively small i.e., minimize the ratio 

m ax{|7/|/|fij|} , where \H\ is the length of the separator and \Di\ is the area of 

the subdomains.

The first condition is essential, since it is the one that guarantees the termination 

of the mesh generation procedure and at the same time prevents the creation of 

new features, that will lower the quality of the final mesh. Criteria 2 and 3 are not 

required, but are desired for the efficiency of the parallel computations.

The domain decomposition that we propose here is independent from the decou­

pling procedure described in Section 3.1, and it can be used in other parallel mesh 

generation methods, like PCDM, that require good quality domain decompositions.
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2.2 Medial A xis Dom ain Decom position M ethod

The Medial Axis Domain Decomposition (MADD) method we propose is based on an 

approximation of the medial axis (MA) of the domain. The MA was introduced by 

Blum [7] as a way to depict the shape of an object, and has been studied extensively 

during the last two decades [9, 8, 14, 34, 43, 49]. In the context of mesh generation 

the medial axis has been used in [1, 23, 26, 40, 46]. The existing domain decompo­

sition methods aim mostly to solve the load balancing problem and to minimize the 

communication [22, 30, 47]. For the first time in the parallel mesh generation the 

medial axis was proposed as a domain decomposition technique in [15].

One of the contributions of this thesis is that, in addition to the load-balancing 

goal, the MA is used to guarantee domain decompositions with separators which 

form good angles between them and the external boundary. Like existing methods 

our decomposition method also aims for separators whose size is small relatively to 

the areas of the subdomains.

In the rest of the thesis we define as a domain D the closure of an open connected 

bounded set in R 2, and the boundary dUt is defined by a planar straight line graph 

(PSLG), which forms a set of (non-intersecting) line segments connecting pairs of 

points. A circle C  C D is said to be maximal in D, if there is no other circle C' C f i  

such that C  C C '. The closure of the locus of the circumcenters of all maximal circles 

in Q is called the medial axis Q and will be denoted by MA(Q). The intersection of 

a boundary of and a maximal circle C  is not empty. The points C D dfl, where a
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maximal circle C  intersect the boundary, are called contact points of c, where c is the 

center of C. Every point c G MA(D) \  dPl has at least two contact points.

The domain decomposition method we propose is based on the following simple 

geometric property:

L em m a 2.1 Let b a contact point of c G MA{Pl). The angles formed by the segment 

cb and the tangent of the boundary of Pi at b are at least tt/2.

P ro o f: We prove the lemma in the general case when Pi has a piecewise C 1 boundary. 

Suppose that the proposition is not true. Then there is a point c € MA(Pl) of the 

medial axis and a contact point b G dPl of c, such that cb forms an angle </> <  t t / 2  with 

the boundary at b. Take c to be the origin of the axes and cb to define the y axis. 

W ithout loss of generality we assume tha t <f> is formed by the tangent from the right. 

Let (x(s),y(s)) be locally the normal parametric representation of the curve, with 

b = (x(0), ?/(0)) =  (0, y(0)) and rc(s) > 0. We have ?/(0) > 0. Since f> < 7r / 2, we have 

y'(o) < 0. Let R(s) = x 2(s) +  y2(s) be the square of the distance between c and the 

points of the curve. Because b is a contact point of c, it must be R(s) > R (0) =  |c6|2. 

We have R '(0) =  2?/(0)?/(0) < 0. This means that locally R(s) < R (0), which is a 

contradiction. ■

The medial axis of Pi can be approximated by Voronoi points of a discretization 

of the domain [9, 8]. Our strategy is to make use of the property of Lemma 2.1, and 

to construct separators that consist of linear segments which connect the Voronoi 

points to the boundary. The approximation of the MA(Pl) is achieved in two steps:
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Figure 2.1: Left: The Delaunay triangulation of the pipe intersection. The circumcenters 
of the triangles approximate the medial axis. Right: The circumcenters are the Voronoi 
points. The separator is formed by selecting a subset of the Voronoi points and connecting 
them with the boundary.

(1) discretization of the boundary, and (2) computation of a boundary conforming 

Delaunay triangulation using the points from step (1). The circumcenters of the 

Delaunay triangles are the Voronoi points of the boundary vertices. The separators 

will be formed by connecting these circumcenters to the vertices of the Delaunay 

triangles. Figure 2.1 depicts the boundary conforming mesh of the cross section of a 

rocket (left), and the media axis approximation and a 2-way separator for the same 

geometry (right).

The level of the discretization of the boundary determines the quality of the 

approximation of the medial axis. However, our goal is not to approximate accurately 

the medial axis, but to obtain good angles from the separator. Therefore our criteria 

for the discretization of the domain will be specified by the quality of the angles. We 

achieve our goal by defining a new set of triangles:
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D efin ition  2.1 L e tV  be a Delaunay triangulation of a discretization D of the bound­

ary dLl. We call a triangle t ET> a junction triangle if:

1. it includes its circumcenter c,

2. at least two of its edges are not in D,

3. at least two of the segments defined by the circumcenter and the vertices of t 

form angles > <L0; both with the boundary and each other.

The first criterion is set only for the simplicity of the MADD algorithm (see 

Section 2.2.1.2), in order to avoid negative weights and guarantee that at least two 

angles between the segments are good. The second prevents a decomposition that 

will create very small subdomains. The third criterion guarantees the quality of the 

angles. Let a ^ a ^  be the vertices of t. Then the third criterion demands the existence 

of at least one pair of segments a^ca^, where c is the circumcenter of a ia2a3, so that all 

the angles formed with these segments are greater or equal to <f>0. Such pairs aicaj are 

called partial separators and they will be the candidates to form a complete separator. 

A complete separator decomposes a domain into two connected subdomains.

Let m  be the number of holes of Q. The level of refinement D  we require for dD 

has to satisfy two conditions:

(i) In the Delaunay triangulation V  of D  there are at least m + 1 junction triangles.

(ii) Every segment on the boundary D  has an empty diametral circle.
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Figure 2.2:

The first condition in Definition 2.1 requires the existence of at least ra+1 junction 

triangles. This ensures, as we will see in Section 2.2.2, that there is at least one 

complete separator formed by partial separators. The second condition guarantees 

that all the segments of D  will appear as edges in V. It also guarantees that all the 

circumcenters of the triangles of V  are contained in D [45]. This in turn guarantees 

the existence of at least one triangle that includes its circumcenter. In order to prove 

it we will use the following Lemma:

L em m a 2.2 Let A i, A 2 be two triangles of a Delaunay triangulation, such that the 

circumcenter C\ of A \ is in the triangle A 2 and they don’t have the same circumcircle. 

Let c2 be the circumcenter of A 2 and r\, r2 be the radii of the circumcircles of A \ and 

A 2 respectively. Then we have r-i < r2.

P roof: Let r be the smaller distance of c\ from the vertices of A 2, see Figure 2.2. 

Then r > r \.  Then we have r2 > r, and consequently r2 > r\. ■
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L em m a 2.3 I f  all segments in D have empty diametral circles, then there is at least 

one triangle in the Delaunay triangulation V  of D that includes its circumcenter.

Proof: We know that, when the boundary segments have empty diametral circles, 

all the circumcenters of the triangles of V  are in V  [45]. We assume that the points 

are in general position, tha t is no four points belong to the same circle. We will prove 

the lemma by contradiction.

Suppose that the lemma is not true. Then for every triangle Ai there is another 

triangle Ai+i ^  Ai, such tha t the circumcenter c* of Ai is included in Ai+i. Let r* be 

the radius of the circumcircle of Ai. Since we assumed that no triangle includes its 

circumcenter, the sequence < Ai > is infinite. On the other hand the set {£*} of all 

triangles in D  is finite, so the sequence < Ai > includes an element tk twice. Then 

Ai =  A m = tk , for some I < k. From the previous lemma we have ri < rj+i < ... < rm, 

which contradicts to the fact that rt and rm are the radii of the same circle, and thus 

equal. So the lemma must hold. ■

The discretization of the boundary is determined by the number of the junction 

triangles that are created. As we increase the refinement, the Voronoi points ap­

proximate the points of the medial axis and the formed angles with the boundary 

tend be close to 7t / 2 . If we construct more junction triangles, and thus more partial 

separators, we have more choices to form a better separator, in terms of the quality of 

the angles, the size of the separator and the balance of the areas of the subdomains. 

In our experiments a rather small refinement (less than 700 additional points) gives
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satisfying results. This of course depends on the geometry, and a way to predefine 

the refinement level of the boundary of the domain is a subject of further research.

2.2.1 The MADD Algorithm

The MADD algorithm uses as a starting point the approximation of the medial axis 

by the Delaunay triangulation V , as described in the previous section. The complete 

separator is formed by partial separators i.e., segments inserted in junction triangles 

of V; these segments connect the circumcenter of the triangles to two of their vertices. 

Figure 2.1 (right) depicts a complete separator for a 2-way decomposition of the pipe.

The partial separators connect two points of the boundary, since V  is a boundary 

conforming triangulation. The properties of junction triangles permit the construc­

tion of good angles between the partial separators and the external boundary of the 

geometry. The MADD algorithm will select to insert a set of partial separators that 

will guarantee the decomposition of the domain into two subdomains. The selection 

of the partial separators is based on the minimization of the ratio of the size of the 

separators to the areas of the subdomains.

The MADD algorithm transforms the Delaunay triangulation V  into a graph Gv 

which encapsulates the required information about the candidate partial separators. 

This information includes: (1) the topology of V , which is used to guarantee that 

the inserted partial separators form a complete separator, and (2) the length of the 

partial separators and the area of the subdomains that will be created, which is used
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to optimize the ratio of the length of separators to the subdomains area. After Gp 

is constructed, the graph is contracted, so that only the junction triangles of V  are 

represented. Then the contracted graph is partitioned; the graph partitioning can 

be obtained by using any of the well known algorithms [32, 4, 27, 28, 30, 48], that 

decompose a connected graph into two connected subgraphs and minimize the ratio of 

the cut cost to the weights of the subgraphs. Finally the graph partition is translated 

into insertions of partial separators, which result into a 2-way decomposition. In 

summary the key steps of the algorithm are:

1. Create a graph Gp from the Delaunay triangulation V.

2. Contract Gp into the graph G 'v , so that only the partial separators in the 

junction triangles are represented as edges of G'v .

3. Partition the graph G 'v , optimizing the cut-cost to subgraph weight ratio.

4. Translate the cuts of the previous partition into partial separators.

2.2.1.1 C o n s tru c tio n  of th e  G ra p h  Gp

In this step the Delaunay triangulation T> is represented as a weighted graph, the 

dual graph of the edges of the triangles. Two nodes of the graph are adjacent if their 

corresponding edges belong in the same triangle. The length of the radius of the 

circumcircle of this triangle will be the weight of the graph edge. The weights of the
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nodes are set to zero in this step, and they will be computed in the graph construction 

step (see Section 2.2.1.2).

Figure 2.3 (left) depicts the step for constructing the graph Gp. One graph node 

is created for each edge of the triangulation, and two nodes are connected if they 

belong to the same triangle. Let dy be the node corresponding to the edge didj. The 

weight of the edge connecting dy , djfc is the length \cidj\, where q  is the circumcenter 

of the triangle. For example, the edge that connects d \2  and d25 has weight the length 

\cia2\. The above procedure is described by the following algorithm:

Algorithm 1 ().

1. for all the edges didj in V  do

2. Add node dy to the graph G p , with zero weight

3. end fo r

4. for all triangles t G V  do

5. for the three pairs (didj,djdk) of edges of t do

6. Create a graph edge between the corresponding nodes dij,djk,

7. with weight the length of the circumradius of t

8. end fo r

9. endfo r
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b

a 6 a 6

Figure 2.3: An example of creating the MADD graph. Left is a part of the Delaunay tri­
angulation and the creation of the corresponding initial graph G v• Middle, the procedure 
of contracting the graph by combining the nodes of G v ■ The nodes connected by dashed 
lines are combined. Right is the final graph G'v  that corresponds to this part.

2.2.1.2 G ra p h  C o n trac tio n

In this step the graph G v produced from the previous step is contracted to a graph 

G'V: so that only the edges of junction triangles are represented as nodes in G'v . The 

nodes of Gv tha t correspond to edges of non junction triangles of V  are contracted 

in G'v  .

In order to contract the graph G v , first we iterate through all the triangles that 

are not junction triangles. The nodes of Gv that correspond to the three edges of a 

non-junction triangle are combined into a single node and the new node replaces the 

initial nodes in the external graph edges, while edges between the three initial nodes 

are deleted. The weight of the new node is the sum of the weights of the initial ones, 

plus the area of the triangle.

The remaining nodes correspond to the edges of junction triangles. Junction
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triangles contain candidate partial separators, whose number may vary from one 

to three. From the three possible partial separators we keep the one that forms 

the greater minimum angle. Since in junction triangles there is at least one partial 

separator that forms angles no less than <F0, the selected partial separator forms 

angles > <F0. We establish this partial separator by combining the two of the three 

nodes that correspond to edges of the triangle. Let a ^ d s  be a junction triangle 

and c its circumcenter. Let dij be the corresponding node to the edge didj, then the 

weight of the node is updated by adding the weight of the area included by the 

triangle cdidj. Let djCdk be the partial separator that forms the greater minimum 

angle. Then the nodes dji and dki are contracted into a single node, where di is the 

remaining vertex. The procedure is illustrated with the following example.

E xam p le . Figure 2.3 (center) illustrates the procedure of contracting the graph. 

The bold lines indicate the external boundary. The triangles are part of the boundary 

conforming Delaunay triangulation of the domain. As above, we denote by d^ the 

graph node that corresponds to the segment didj. We demonstrate four different 

cases.

Case I: The triangle did^d^ has two edges on the boundary, so it is not a junction 

triangle, and the three corresponding nodes are combined to one. The edges connect­

ing the new node d'15 are the external ones i.e., the edges that connect d\ 5 to du  and 

di5 to c?25- The weight of d[ 5 is equal to the area of the triangle a ia5a6-

Case II: The triangle does not include its circumcenter and so it is not a
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junction triangle. We follow the same procedure as above. The nodes d25 , c?24, 4̂5 are 

contracted into a new node d'25. The new node has weight the area of the triangle 

a2a4a5 and is connected to the nodes d12, d'15, d23, d34.

Case III: The triangle aia2 a5 is a junction triangle. The areas of the triangles 

formed by its circumcenter C\ and its corners are added to the weight of the corre­

sponding nodes. For example, the area \a2c\ai \ is added to the node d\2, similarly the 

areas |a2Ci5Ci|, and l a i c a l  are added to the nodes d'25 d[5, respectively. Suppose that 

the partial separator aiCia2 is the one that that forms the greater minimum angle. 

Then the nodes d[b and d2b are contracted into a new node d2b with its weight to 

be equal to the sum weights of the two previous nodes. The graph edge connecting 

the nodes d'lb and d'2b is deleted, while the two other graph edges are contracted into 

one edge connecting d2b to d12; the new edged weight is equal to the sum of the two 

previous edge weights, which is equal to the length of the partial separator aiCio^.

Case IV: The triangle a2a3a4 is also a junction triangle. As for the previous 

triangle, first we add the areas of the triangles formed by the circumcenter C2 and 

the vertices. The areas |a2c2a4|, |a2c2a3|, and |a3c2a4| are added to the weight of 

the nodes d25, d23, and d'34, respectively. However, suppose in this case the angle 9, 

formed by the segment c2as and the external boundary segment a36, is less than <L0. 

Then the two partial separators that include this segment are rejected and we keep 

the separator a2C2a4, which is the one that forms the greater minimum angle. The 

nodes d2% and d34 are be combined to the node d'M. The new node is connected to
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an edge with weight equal to the sum of the two previous edge weights, which is 

length of the partial separator 0,2 0 2 0 ,4 . Figure 2.3 (right) shows the final graph.

The above procedure is described by the following algorithm:

Algorithm 2 ().

1. for all non junction triangles t G V  do

2. Combine the three nodes that correspond to the edges

3. of £, generating a new node d!

4. Add the area of t to the weight of d'

5. endfo r

6. for all junction triangles t G V  do

7. Let c be circumcenter of t

8. for all edges a^Oj of t do

9. Add the area of the triangle OiCOj to the weight

10. the corresponding node dij

11. endfo r

12. Find the partial separator OiCOj in t forming a max min angle

13. Combine the nodes dik and d j where a*, is the remaining vertex

14. endfo r
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2.2.1.3 T h e  C o n s tru c tio n  o f th e  S e p a ra to r

After contracting the graph, the constructed graph G'v  is partitioned. The number of 

the edges of the graph is less or equal to the number of junction triangles, thus the size 

of the graph partitioning problem is significantly smaller than the element-wise dual 

graph of the boundary conforming Delaunay triangulation V. Graph partitioning can 

be very expensive and has been an active area for several years [32, 4, 27, 28, 30, 48]. 

Any of the algorithms that give a partition of the graph into two connected subgraphs, 

with good cut cost to subgraph weight ratio, can be used as the graph partitioner for 

G'v . For algorithms that give non-connected subgraphs a check step must take place 

(see Section 5.2).

After partitioning G 'v , the final step of the MADD is to construct the separator 

of the geometry. From the previous step we have a partition of the graph G'v  in 

two connected subgraphs. This partition will give a corresponding separator for the 

geometry. Each edge of the graph corresponds to a partial separator of the form OiCOj, 

where c is a circumcenter of a junction triangle and Oi, Oj are two of its vertices. For 

every graph edge that is cut by the partition we will insert the related partial separator 

in the geometry. In our example above (see Figure 2.4) the partial separator 0 2 0 2 0 4  

is created in the case that the graph partitioner chooses to cut the edge e2-

The construction of the separator is described in the following algorithm.

Algorithm 3 ().
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aA

«6

Figure 2.4: A partition of the graph and the corresponding separator, on the right, depicted 
with dashed lines.

1. for all triangles t G V  do

2. if  one of the edges a*aj of t belong to a different

3. subgraph from the other two edges th e n

4. Insert the partial separator a^ca^,

5. where c is the circumcenter of t

6. en d if

7. endfor

The algorithm scans all the triangles and identifies those triangles whose edges 

correspond to nodes disconnected after the graph partition. In these triangles the 

partial separators are inserted, separating the edges that don’t belong to the same 

subgraph. In Figure 2.4 the partial separator 0 2 0 2 0 4  separates the edge a2a4 from 

the edges a2a3 and a3a4. The set of all these inserted partial separators establishes a 

(complete) separator for the domain, as we will see in Section 2.2.2.
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The ratio of the cost of the cut to the weight of the subgraphs is translated to 

the ratio of the total length of the separator to the area of the subdomains. Provided 

that the graph partitioner gives a good cut cost to subgraph weight ratio, the ratio of 

length of the separator to the area of the subdomains is also good. This way we obtain 

separators of relatively small size, and the areas of the subdomains are balanced. 

Moreover, since all the partial separators, by the construction of G 'v , form good 

angles, the constructed separator forms good angles. In summary, the constructed 

separator meets the quality properties 1-3 we had required in the beginning of the 

section.

2.2.2 Proof of Correctness

In this section we prove that the MADD algorithm decomposes the domain Pi in 

two connected subdomains. We remind that the domain Pi is the closure of an open 

connected bounded set and the boundary dPl is a PSLG that formed a set of linear 

segments which do not intersect. A separator % C PI is a finite set of simple paths (a 

continuous 1-1 map h : [0,1] —» PI) tha t do not intersect and define a decomposition 

A \, A 2 of Pi in the following way: A \ and A2 are connected sets, with A\ U A2 =  Q, 

and for every path U C Pi that connects a point of A\ to a point of A 2, we have

Unn^0.

L em m a 2.4 Let m  be the number of holes in Pi and n the number of junction trian­

gles. I f  n > m, then there is a separator for Q formed by partial separators.
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P roof: We will prove the lemma by induction on m. If m  = 0 then n > 1 and there 

is at least one partial separator. In this case, every partial separator is a separator 

for Pi, since every simple path /  : [a, b] —> Pi, with f(a ), f(b) G dPl and f(a , b) C 

is a separator for PI.

Suppose the lemma is true for m = q, we will prove it is true for m —  q +  1. We 

have that n > q + 1. If for a partial separator acb, where a, b G dPl, we have that both 

a, b don’t belong to the boundary of a hole, then acb forms a separator, as in the case 

m = 0. In the case that one of the points a, b belong to the boundary of a hole O, then 

by inserting the partial separator acb we eliminate O. The new domain has q holes 

and n — 1 > q junction triangles, and can be decomposed by partial separators by the 

inductive hypothesis. Therefore there is a separator formed by partial separators. ■

T h eo rem  2.2 Let m  be the number of holes in and n the number of junction 

triangles. I f  n > m, then the MADD decomposes Pi in two subdomains.

P roof: Let e*, i = 1,..., n be the edges of the contracted graph G'v  created by MADD. 

Each of these edges corresponds to a partial separator h i,i =  1, ...,n. We will show 

that every decomposition of the graph G'v  corresponds to a decomposition of PI formed 

by partial separators, and vice versa.

Let E  =  {ei,i G 1} be the set of edges that the graph partitioner cuts, creating 

two subgraphs G \,G 2 - Let 7i = {h i,i G 1} be the set of partial separators that are 

correspond to these edges. Finally, let A \ ,A 2 C Pi be the two corresponding areas 

to the subgraphs G i,G 2. Obviously A\ U A 2 = PI. From the construction of the
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Figure 2.5: AT-way partitions, where N  = 2,4,8,16, by the MADD divide and conquer 
method. Metis [31] was used as the graph partitioner and Triangle [44] produced the 
Delaunay triangulation.

graph we have that the connected subgraphs correspond to path connected areas of 

Assuming that the graph partitioner decomposes G'v  in two connected subgraphs, 

then Gij G2 are connected, and so A x ,A 2 are also connected. Every path U C 0  from 

a point of A\ to a point of A 2 corresponds to a path U' in G'v  form a node of G\ to 

a node of G2. Since the edges E  decompose G\ from G2 , we have U' f t  E  ^  0. Let 

ej E U' n  E. Then we have U D hj ^  0, and the path U intersects PL. Thus PL is 

a separator for Q. Working backwards we see that a separator for D corresponds to 

a partition of the graph. The existence of such a separator is proved in Lemma 2.4, 

and this completes the proof. ■

2.2.3 N-way Decomposition

So far we have described the MADD procedure for a 2-way decomposition. In the fol­

lowing section we will describe a decoupling procedure which is applied on multiple
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subdomains and decouples the mesh generation procedure for all the given subdo­

mains. In order to create more than two subdomains we can apply the MADD in a 

divide and conquer way (see Figure 2.5). When a 2-way separator is created, it is 

discretized and then every subdomain is decomposed independently. The resulting 

decomposition shows good adaptivity to the geometry. This approach requires to 

recalculate the Delaunay triangulation of the subdomains. We can do that by just 

inserting the segments of the separator in the existing triangulation. These segments 

should be refined, and possibly the edges of the boundary, so that the empty diametral 

circle property of the boundary, including the separators, is maintained.

Since every subdomain is decomposed independently, the discretization of the 

separators, which form the internal boundary, should be permanent. In practice, the 

size of the segments created by the discretization of the domain is much larger than 

the ones created by the mesh generation procedure. Here we should take into account 

that the level of decomposition is proportional to the size of the mesh we want to 

create. Thus, in the general case, the discretization does not create actual artificial 

constraints to the mesh. Figure 2.5 depicts that no new artifacts are introduced, 

given that segments like ab will be refined further.

In our method we refine even further the internal boundaries in order to decouple 

the subdomains, and our results show tha t the size and the quality of the mesh is not 

affected. For a more detailed experimental analysis see Section 5.3.

An advantage of the divide a conquer approach is that it is easy to be implemented
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in parallel. In our implementation we have followed a parallel MADD divide and 

conquer strategy to create multiple subdomains. The method is described in detail 

in Section 4.1.



Chapter 3

The D ecoupling M ethod

3.1 The Decoupling Zone

The separators and the subdomains created by the MADD procedure have good qual­

ity in terms of the shape and size. Our goal though is to be able to create Delaunay 

meshes independently for each subdomain, and the previous procedure cannot guar­

antee this. In order to create the mesh independently in each subdomain we have to 

ensure that the final mesh will be Delaunay conforming. Delaunay conformity, in the 

context of Delaunay triangulation, can be explored using a projective method [6]. A 

study of conditions for a priory conformity for constrained Delaunay triangulations 

is presented in [39]. A method for independent mesh generation in each subdomain 

using a projective separator is presented in [24], but it does not always guarantee a 

priory Delaunay conformity.

In order to ensure the Delaunay conformity in the mesh generation context we will 

refine the separators using conditions derived from the mesh refining algorithm. A

31
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Figure 3.1: A fraction of the pipe intersection. Left: Part of the separators H  inserted 
by MADD. Middle: Refining H gives a decoupling path V\ the decoupling zone Zj> is 
depicted. Right: R uppert’s algorithm was applied on the subdomains with an element 
area restriction; Z p  is empty and V  is invariant. The final mesh is Delaunay conforming.

special “zone” around the segments of the separators (see Figure 3.1) will guarantee 

that the mesh generation procedure can be applied independently on each subdomain, 

giving a Delaunay conforming mesh for the whole domain, formed by the union of all 

the submeshes.

Let A4 be a Delaunay mesh generation procedure. Let D = dQ be a PSLG, where 

D is a domain as described in the previous section. Let V  be a set of piecewise linear 

separators that decompose the domain 0  in n subdomains D* and let Di = dDi be 

the boundaries of the subdomains.

D efin ition  3.1 The set of the open diametral circles of all the segments that form V  

is be called the decoupling zone of V  and is denoted by Zp.

D efin ition  3.2 V  is a decoupling path with respect to A4, if after applying A4 in­

dependently on the subdomains Di, i = 1,..., n, the decoupling zone Zp is empty.
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P ro p o s itio n  3.3 Let Mi the mesh produced by A4 on the subdomain Qi. I f  V  is a 

decoupling path with respect to A4; then the union UMi is a conforming Delaunay 

triangulation.

P roof: Let M  be the Delaunay triangulation of the vertices Vm — UVm{ of UMj. We 

will prove that M  = UM*, by showing that the set of edges S  of M  are identical to 

the set of edges USi of UMj, thus the two triangulations are the same and UM* is a 

conforming Delaunay triangulation.

First we observe that V  is a subset of both S  and LtS*, because its decoupling zone 

is empty. For any edge ab G S  there are two cases: (i) Both end points a, b belong to 

the same subdomain Mj, a, b G V^.. (ii) a G Mi and b G Mj \  Mi.

Case (i). Suppose a, b G Lm, • From the local Delaunay property, there is an empty 

circumcircle C  of ab which does not include any points in Vm- Because Vmj Q Vm, C 

must be empty in the set V^.. Thus ab G Sj and ab G U5*.

Case (ii). We will show that this case cannot occur, there is no edge ab G S  such 

that a E Mi and b G Mj \  Mi. Suppose we have such an edge ab. Then ab C D  and, 

since the subdomains Mi and Mj are separated by V, a and b are separated by V. 

So ab D V  7̂  0. On the other hand we have V C  S, which means that two edges of 

the triangulation M  intersect. This contradicts the definition of a triangulation [23].

Since case (ii) cannot occur, we conclude from case (i) that S  C USi. The two 

triangulations M  and UMi must have the same number of edges, so we have S  =  USj, 

and thus M  =  UM*. This proves the proposition. ■
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P ro p o s itio n  3.4 I f  the algorithm M. is a mesh refinement algorithm, then the de­

coupling path V  is invariant during the steps of A4, in which the Delaunay property 

is maintained.

P roof: Suppose that during the procedure M. an edge s £ V  is destroyed. That 

means that the diametral circle Cs of s includes some point. Since M. does not 

remove points, Cs will not be empty after the termination of A4. This contradicts 

the definition of the decoupling path. ■

Proposition 3.3 proves that, provided that we have constructed a decoupling path, 

the subdomains can be meshed independently and the final mesh will be Delaunay 

conforming. Our next step will be to construct a decoupling path from the separators 

created by MADD.

The decoupling path is defined with respect to a mesh generation procedure and, 

in many cases [11, 41], the stopping conditions of the mesh generation algorithm 

allow us to compute the length of the edges of the separators, so that these edges will 

form a decoupling path. Then we only have to refine the segments of the separators, 

acquiring this predefined length.

3.2 R uppert’s algorithm

For the mesh procedure we will consider Ruppert’s algorithm [41]. This is a mesh 

refinement algorithm for 2 dimensions that guarantees the quality of the elements. 

It creates an initial triangulation and follows an incremental approach to refine the
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mesh. Triangles which have circumradius to shortest edge ratio greater than \/2  are 

split, by inserting points in their circumcenters and constructing a new Delaunay 

triangulation. If a point to be inserted encroaches the diametral circle of a boundary 

edge, then, instead of inserting this point, the boundary edge is split in half. The 

algorithm maintains the Delaunay property after the insertion of each point. In order 

to guarantee the termination of this procedure the boundary angles should be at least 

60°.

Let D  be a PSLG, as defined above. An entity is either a vertex or a segment 

of the boundary; two entities are incident when they share a common point. The 

least feature size of D  is defined as the minimum distance between two non incident 

entities [45]; it will be denoted by lfsmin(D). The following proposition holds [45]:

P ro p o s itio n  3.5 Suppose that any any two incident segments of D are forming an 

angle no less than 60°. Ruppert’s algorithm terminates when applied on D, giving a 

mesh of triangles with circumradius to shortest edge ratio at most y/2 and with no 

triangulation edge shorter than lfsmin(D).

The only requirement for Ruppert’s algorithm is that the boundary angles must 

be at least 60°. Provided that our initial boundary D  satisfies this criterion, we 

can apply MADD to decompose G using an angle bound 4>0 =  60°. So, both the 

constructed separators and the external boundaries form angles > 60°. Consequently 

the created subdomains are acceptable for this mesh generation algorithm.
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3.3 The construction o f the decoupling path

Let D  =  dCl be the boundary of the domain Cl, and Li the set of separators in Cl 

created by the MADD method using an angle bound of <F0 =  60°. Let Di = dCli be 

the boundaries of the created subdomains and D^  =  D  U Li.

In order to construct a decoupling path V  from the separators Li we will refine Li 

by inserting points along its edges, obtaining a desirable segment length. The calcula­

tion of this length is based on a parameter k. Let L = m in{|s|/ s is a segment of Li}. 

Let A; be a real constant parameter, such that

0 < k < min(lfsmin(£>^), L/4). (3.1)

The parameter k will be calculated from the conditions of the algorithm, so that it 

can be guaranteed that no edge will be created with length less than k.

The following lemma describes the refining procedure of Li.

L em m a 3.1 Let s be a segment of Li. Then there is v £ N  such that, after inserting 

v — 1 points bi on s, we have k < |&A+i| < for any two consequent points

bi 5 ^Z+l •

P roof: Let I be the length of the segment s and v such that 2(v — 1 )k < I < 2vk. 

Then, by dividing the s into v equal subsegments, we have for the length I' of the 

subsegments: 2̂ ~ 1'-/c < V < 2 k .  For v > 3, we have > ^=, and this proves the

lemma. B
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Let V  be the separators % after we have inserted the points bi, as described in 

the previous lemma, and let Dj> = D  U V.  The following Lemmas hold.

L em m a 3.2 Let bi,bi+1 two consequent points inserted on a segment s of TL. Then 

the diametral circle of 6A+i is empty.

P roof: The diametral circle C  of &*&»+1 is contained in the diametral circle of s , 

which by the MADD construction does not include any of the points of Du-

The remaining points to be examined are the inserted points bj. We have that 

all the angles are greater than 60° and, from Lemma 3.1, no created segment is less 

than half of any other created segment. Consequently, C  cannot contain a point bj 

created by the refining procedure. ■

L em m a 3.3 The following inequality holds: lfsm[n(Du) > k.

P roof: We have from the relation 3.1 that lfsmin(D^) > k. We will examine the 

distances created by the inserted points.

Let bi be a point inserted in a segment s of TL. For the distance d of bi from a non 

incident to s segment we have d > lfSmin(T>^) > k. The same holds for the distance 

d' from points that are not incident to s, because we have d' > d > k.

For the distance d between bi and an incident segment we have d > sin 60° • - ^ k  = 

k. Finally, the distance between bi and a point that belongs to an incident segment 

is greater than the distance d of the previous relation, and this completes the proof.
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The previous lemma demonstrates the property that will be used to prove that V  

is a decoupling path. Our next step will be to calculate the parameter k.

Ruppert’s algorithm can be applied using either the quality criterion for the cir­

cumradius to shortest edge ratio, or by adding a criterion for the maximum area of 

the created elements. We will calculate k for this two cases separately. We will prove 

that V  is a decoupling path for the two cases: (I) When Ruppert’s algorithm is ap­

plied with only the quality criterion of the circumradius to shortest edge ratio. (II) 

When it is applied with an additional criterion for the maximum triangle area.

3.3.1 Case I: The ratio criterion

In this case we are only interested for the circumradius to shortest edge ratio. Since 

k gives a bound for the size of the created segments, we would like k to be as big as 

possible and at the same time satisfy the relation 3.1. Proposition 3.5 and Lemma

3.3 indicate that we can define k = min{lfsmin(Z>^), L /4}.

P ro p o s itio n  3.6 Define k =  min{lfsmin(D'H): L /4} and let V  be the piecewise linear 

separators as constructed in Lemma 3.1. Then V  is a decoupling path with respect to 

Ruppert’s algorithm.

P ro o f: According to Proposition 3.5, Ruppert’s algorithm when applied to a subdo­

main D i, will not create segments less than lfsmin(A )- We will show ad absurdo that 

the decoupling zone Z-p is empty after the termination of the algorithm.
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Suppose that Z-p is not empty after the mesh procedure and some points have been 

inserted in it. That means tha t some boundary segments of V  have been encroached 

and thus have been split in half. From Lemma 3.1 the length of the segments of

V  is less than 2 k and by splitting them the created segments will have length less 

than k. This contradicts to Proposition 3.5 because, from Lemma 3.3, we have 

l f S m i n ( A )  > I f S m in (DV) > k.

Thus the decoupling zone Zp  is empty after applying Ruppert’s algorithm, and

V  is a decoupling path with respect to this algorithm. ■

C o ro lla ry  3.7 V  remains invariant during Ruppert’s algorithm execution.

P roof: Ruppert’s algorithm does not remove points and maintains the Delaunay 

property after inserting a point. The corollary is a direct consequence of the previous 

proposition and of Proposition 3.4. ■

Proposition 3.6 states that we can process the subdomains independently, using 

Ruppert’s algorithm, and the final mesh will be Delaunay conforming and of guaran­

teed quality. Next we will examine the case where we have an additional condition 

for the area of the triangles.

3.3.2 Case II: The ratio and max area criteria

In this case, besides the circumradius to shortest edge ratio condition, we have an 

additional criterion for the maximum triangle area. In many cases we want to con­

struct Delaunay meshes, not only with good quality of angles, but also of a desired
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maximum size. Let A  be a bound to the maximum triangle area, then all the triangles 

of the final mesh will have an area at most A. To achieve this, the mesh generation 

algorithm will split the triangles in two cases: (a) Because of the bad circumradius 

to shortest edge ratio, (b) Because the area of the triangle is greater than A.

We will calculate k so that the previous results will remain valid.

L em m a 3.4 Let I be the smallest edge of a triangle with area greater than A  and 

circumradius to shortest edge ratio at most \/2. Then I >

P ro o f: Let r be the circumradius of the triangle. Then j  < y/2 and A < r • I. So, 

A < r - l < ± ^ l > f f 2. M

We want to define k in such a way that the mesh generation procedure will not 

create edges smaller than k. The previous lemma indicates that we should have 

k < \ W e  will take k =  min{lfsmin(D^), L/4, Then Lemma 3.3 holds,

and we have the following theorem:

T h eo rem  3.8 Let k = mm{lfsmin(D p), L/4, be the parameter for the point

insertion procedure in Lemma 3.1, and V  the produced set of separators. Then V  is 

a decoupling path with respect to Ruppert’s algorithm with the criteria of maximum 

circumradius to shortest edge ratio y/2 and maximum triangle area A.

P ro o f: There are two cases for splitting a triangle: a) because of its circumradius to 

shortest edge ratio, or b) because of its area.
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When Ruppert’s algorithm splits a triangle because of its circumradius to shortest 

edge ratio it does not create edges smaller than lfsmin(Z>p) > k. If a triangle is split 

because of its size, then from Lemma 3.4 we have that the smaller created edge will 

be no less t h a n > k. In both cases no edge smaller than k will be created.

It is easy to see now that the decoupling zone Zp  will be empty, after Ruppert’s 

algorithm has been applied on the subdomains Di with the additional condition of 

a maximum triangle area A. If this was not so, then some edge of V  would be 

encroached and split. From Lemma 3.1 the new edges will be smaller the k : which is 

a contradiction. ■

In summary, the procedure of preprocessing the separators created by MADD, as 

described in Lemma 3.1, creates a decoupling path with respect to Ruppert’s algo­

rithm in both cases of the quality and the size criteria. This will allow us to generate 

Delaunay meshes, independently for each subdomain, with good quality and of desired 

size. The final mesh, formed by the union of the submeshes, is Delaunay conforming. 

As a result, this procedure decouples the domain and allows us to parallelize the mesh 

generation procedure, while eliminating the communication between the processors.



Chapter 4

Parallel Guaranteed Quality M esh  

G eneration

4.1 The Parallel Delaunay Decoupling Procedure

The procedure for the parallel mesh generation consists of two steps:

1. The parallel MADD (PMADD) phase. In this step the domain is decomposed 

using the divide and conquer MADD method.

2. The mesh generation phase. This step is performed independently for each 

subdomain and includes two sub-steps:

(a) The decoupling of the subdomains by refining the interfaces, as described 

in Section 3.3.

(b) The mesh generation on the subdomains. In this step the sequential mesh 

generator is used as a library and is applied independently on each subdo­

main.

42
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During the PM ADD phase the domain is over-decomposed (i.e. we create N  »  P  

subdomains, where P  is the number of processors), in order to achieve good load bal­

ancing (see Section 4.2). The PMADD method is implemented using a master/worker 

model. Processor 0 is used as the master processor, while all the processors, including 

processor 0, are used as worker processors. The master processor maintains a sorted 

list of the areas assigned to each processor. In each iteration of the PMADD pro­

cedure a decomposition request is sent from the master processor to the processors 

assigned with larger total areas. The processors that receive such requests decom­

pose their larger subdomain in two subdomains using MADD. One of the two new 

subdomains is sent to a processor with small total assigned area. The procedure is 

repeated until all N  subdomains are created.

The area of the subdomains is used to estimate the work-load for the mesh proce­

dure (see Section 4.2). The goals of the PMADD is to minimize the larger area and 

to distribute the subdomains uniformly to the processors. Once the PMADD phase 

is finished no data movement takes place. This is an approximate criterion for the 

load balance, other means [2] for dynamic load balancing can be used.

After the requested number of subdomains have been created, the master processor 

sends requests to all processors to mesh the subdomains assigned to them. Each 

processor iterates through its subdomains and performs two steps:

(a) Meshing the interfaces, where the separators created by the MADD are refined 

using the decoupling procedure described in Section 3.3, according to the given mesh



CHAPTER 4. PARALLEL GUARANTEED Q U A LITY  MESH GENERATION  44

quality criteria. The parameter k , that determines the refinement of the separators, is 

computed before the mesh generation phase begins, and is used to refine the internal 

boundaries of all the subdomains. The same orientation and the same procedure is 

used for each of the segments of the separators, establishing the conformity of the 

inserted points.

(b) The mesh generation procedure is applied on the subdomains independently. 

The sequential mesh generator is used as is, in the form of a library. As proved in 

Section 3.1, the created meshes are Delaunay conforming.

The procedure terminates when all the meshes for subdomains have been created. 

The parallel procedure is described next:

Algorithm 4 ().

1. M a s te r  P ro cesso r:

2. Read the definition of the domain D

3. Initialize and maintain a sorted list of the areas of the subdomains

4. w hile the current number of subdomains is less than N  do

5. send  decouple requests to processors that are assigned

6. large area of subdomains

7. receive  replies about decoupling and area information

8. endw hile

9. send  requests to processors to mesh their subdomains

10. receive  replies u n til  all processors completed meshing
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11. send requests for termination

12 .

13. W orker P ro cesso rs :

14. w hile not terminate do

15. receive request from Master and/or other workers

16. if  request is to decouple th e n

17. Apply MADD on the largest subdomain

18. send  reply to Master

19. send  a new subdomain to other processor

20. en d if

21. if request is to receive a subdomain th e n

22. Add the new subdomain to this worker’s mesh-queue

23. send  reply to Master

24. en d if

25. if request is to start meshing th e n

26. for each assigned subdomain do

27. Refine the separators according to the decouple procedure

28. Apply the sequential mesh generator on the subdomain

29. endfor

30. send  completion message to master

31. en d if
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32. endw hile

During the PMADD phase, the first P  subdomains are created in lg(-P) iterations. 

The total number of iterations for the parallel MADD phase is +  lg(P) =  2(M —

1) +  lg(-P), where M  is the average number of the final subdomains per processor. 

Typical values for M  in our experiments vary between 12 and 20. The procedure is 

using in average 2(M^ / +1lg(P) =  2(M-i)+ig(p) processors per iteration.

This divide and conquer approach is not optimal, but the cost is very small (see 

Section 5.4), with respect to the cost for the mesh generation. On the other hand it 

achieves a good load balance among the processors, which is a more significant factor 

for the total performance of the parallel mesh generation (see Section 5.4.2). In the 

next section we present in detail the load balance attained using the parallel MADD.

4.2 Load Balancing

Our experiments show that more than 99% of the total time is spent in the meshing 

phase (see Section 5.4), which does not suffer from communication or synchronization 

cost. Thus, the work-load balance among the processors is the main parameter that 

affects the performance of the method. The load balancing problem for mesh refine­

ment is a difficult problem, because of the unpredictable computational behavior of 

the meshing procedure. The problem becomes more approachable by the use of the 

PMADD for over-decomposing the domain. The resulting subdomains have similar
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geometric shapes, and their area is proved to be a good measure for estimating the 

work load for the mesh generator.

Our experimental data show, for the geometries we tested so far, that the parallel 

MADD procedure creates subdomains with similar ’’good” shape (see Figure 5.1), 

when the number N  of subdomains is large. Figure 4.1 shows that, as we increase 

iV , and thus decrease the area of the subdomains, the meshing time converges, with 

very small differences between subdomains of similar size. This result demonstrates 

that the area of the subdomain can be used to estimate the work-load of the mesher 

for this subdomain. Of course this depends on the geometry of the original domain, 

which is one of the parameters that determine the level of required decomposition. 

An adaptive to the geometry approach for the PMADD would optimize the results, 

and this is a subject of future work.

The load balance among the processors is achieved by balancing the total area
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of the subdomains assigned to each processor. The first effort to create subdomains 

with similar sizes takes place during the graph partition. This result though is not 

guaranteed, and the obtained subdomains can have differences in size. By over­

decomposing we have the ability to distribute the subdomains, so that each processor 

is assigned approximately the same total size. Moreover, the random distribution of 

the subdomains gives a more uniform assignment of subdomains that differ from the 

average in terms of size and geometry. The results of this simple approach are good. 

Figure 4.2 depicts the load balance among 64 processors for the pipe geometry, for 

1024 subdomains and 50M mesh size. This picture is typical in most cases. However, 

we have observed that the load balance does not depend only on the geometry and 

the size of the subdomain, but also on size of the created mesh.

Figure 4.3 shows the load balance for the same decomposition of the pipe, as in 

Fig. 4.2, this time for a mesh size of 2 billion elements. We see that the good load
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balance of the Figure 4.2 is destroyed. The reason for this is that the time for creating 

larger meshes is much more sensitive to area and geometry differences. The answer 

to this problem is to increase N . In this way we improve two parameters: i) the 

size of the mesh for each subdomain is decreased, and thus the time to create it is 

less sensitive to the differences, and ii) a more uniform assignment of the subdomains 

can be accomplished. Figure 4.4 shows the balance for the same mesh size, 2 billion 

elements, by decomposing it into 1280 subdomains. This small increase of the number 

of subdomains gives an impressive improvement, the load balance is satisfactory and 

the total time is decreased in less than half, the reasons are described in Sections 5.3, 

5.4.1.

The previous example shows that the load balance is sensitive to the size of the 

final mesh. The level of the required decomposition depends not only on the geometry 

and the number of the processors, but mainly on the size of the final mesh. Let E  

be an estimation for the final size of the mesh in millions of elements. From our 

experiments we found that, for our setup, the number of subdomains should be at 

least N  = This means tha t in average 1.6M elements will be created for each 

subdomain. A higher decomposition has, of course, higher time cost, but this cost is 

insignificant against the gain, Figures 4.3 and 4.4, as well as the results in the next 

section demonstrate it.



Chapter 5

Experim ental R esults

5.1 Performance Evaluation

We evaluate the Parallel Delaunay Decoupling (PDD) method with respect to three 

requirements listed in the Introduction: (1) stability, (2) parallel efficiency, and (3) 

code re-use. Our experimental data indicate that the PDD method is stable i.e., 

the elements of the distributed mesh retain the same good quality of angles as the 

elements generated by the Triangle (see Figures 5.3 and 5.8 (right)); at the same 

time it is very efficient as our fixed and scaled speedup data (see Figures 5.7, and 

5.8 (left)) indicate. Finally it is based on 100% code re-use i.e., existing sequential 

libraries like Metis and Triangle are used without any modifications for the parallel 

mesh generation.

50
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F ig u re  5.1: L eft: The Pipe domain divided in 1200 subdomains. R ig h t: The Key domain 
divided in 768 subdomains.

5.2 Experim ental Setup

We have used two model domains (see Figure 5.1): The Pipe, a cross section of rocket 

from a NASA model problem where the peripheral pipes are used to cool the main 

cylinder in the center that contains combustion gases, and the Key, a domain provided 

with Triangle. We ran three sets of experiments: (1) to observe the the behavior of 

the MADD and Decoupling method in sequential execution for small meshes, 4-5 

million (M) elements, (2) to calculate the fixed speedup for fixed size meshes of the 

order of 40-50M elements, and (3) to compute the scaled speedup for meshes whose 

size range from 12M to 2 billion (B) elements.

The programming language for our implementation was C + +  and DMCS [3] was 

used as the communication substrate. The Triangle [44] library was used for the mesh 

generation procedure as well as for the creation of the Delaunay triangulation during 

the MADD procedure. The parameters passed to Triangle for the mesh generation
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were two: (a) for the quality the elements (Ruppert’s algorithm is used to achieve 

circumradius to shortest edge ration less then \/2), and (b) for the maximum area 

of the generated elements. Also, Metis [31] was used for the graph partitioning step 

in the MADD procedure. The cases that Metis returned non-connected subgraphs 

were recognized and discarded. All the libraries where used without modifications, 

minimizing the cost for the parallel implementation and achieving 100% code-reuse.

All the experiments ran on SciClone, a high-performance computing environment 

in the College of William and Mary. SciClone is a heterogeneous cluster of Sun 

workstations which use Solaris 7 operating system. For our experiments we have 

used a subcluster of 32 dual-cpu Sun Ultra 60 workstations 360 MHz, with 512 MB 

memory and 18.2 GB local disk. Networking was provided by a 36-port 3Com Fast 

Ethernet switch (lOOMb/sec).

5.3 Sequential Experim ents

We ran a set of sequential experiments in order to compare the sequential Delaunay 

decoupling method, where we over-decompose the domain, with Triangle, the best 

known publicly available sequential guaranteed quality Delaunay mesh generation 

code for two dimensional domains. In these experiments we examine the affects of 

the decoupling procedure with respect to the performance of the mesh procedure, 

the size of the final mesh, which indicates that the over-refinement we introduce is 

insignificant, and the quality of the elements in terms of the angle distribution. The
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size of the meshes we created is limited by the size (5.5M) we were able to generate 

with Triangle due to memory limitations. However, using the Delaunay decoupling 

method we were able to generate more than 30M on a single processor.
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Figure 5.2 shows the ratio of the size of the decoupled meshes over the size of the 

non-decoupled mesh, which is a measure of the over-refinement we introduce when 

we decouple the domains.

Subdomains 1 8 16 32 48 64
Key elements 5,193,719 5,197,066 5,200,395 5,203,023 5,208,215 5,210,857
Total time 46.146 38.414 38.204 37.590 37.322 37.333
Pipe elements 5,598,983 5,602,668 5,605,819 5,607,055 5,609,404 5,613,624

Total time 59.263 41.342 41.046 40.370 40.352 40.147

T ab le  5.1: The number of elements and the total time (in seconds) for the same mesh 
generation param eters and for different levels of decoupling. The times do not include the 
mesh merging procedure.

Similarly, Table 5.1 presents the number of elements for different levels of decou-
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pling. The over-refinement is insignificant, it is less than 0.4%, despite the intense 

over-decompostion (less than 90K elements per subdomain).

The overhead of the sequential MADD method is approximately linear with re­

spect to the number of subdomains, see Figure 5.4. This overhead is small compared 

to the mesh generation time. The total execution time using the sequential decou­

pling procedure is decreased up to 68% of the time it takes for Triangle to generate 

a mesh with the same quality. As the size of the mesh increases the performance of 

the decoupling procedure compared to Triangle is improving even further, because 

the size of the working set for each subdomain is smaller and the Delaunay mesh 

algorithm used in Triangle has a non-linear time complexity [44].

The quality of the elements produced after the decoupling of the domain into 

subdomains is evaluated by comparing the distribution of angles. We compare the 

angles of the elements from both the non-decoupled mesh generated by Triangle and
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the decoupled ones generated by our method. Figure 5.3 shows that the distribution is 

the same. The above results hold as we scale the mesh size in our parallel experiments.

In summary, the decoupling method demonstrates merits even for sequential mesh 

generation. The gains in the performance from the better memory utilization cover 

the small overheads due to decoupling and over-refinement, while the element quality 

is independent of the decoupling, which shows that our method is stable regarding 

the quality of the mesh.

5.4 Parallel Experim ents

We performed two sets of experiments in order to calculate the fixed and scaled 

speedup using 8, 16, 32, and 64 processors. W ith 64 processors we were able to 

generate 2.1 billion (B) high quality elements for the Pipe in less than 3.5 minutes, 

while using Triangle [44] on a single workstation we were able to generate 5.5 million 

(M) elements in about one minute (see Tables 5.1 and 5.3).

In the rest of the section we present performance data for both the parallel medial 

axis domain decomposition (PMADD) method and the parallel mesh generation. The 

PMADD procedure is evaluated in terms of its total parallel execution time which 

includes some communication and idle time and the maximum computation time 

spend on a single processor. The parallel mesh generation phase does not require 

communication and its performance is measured in terms of maximum and average 

computation time of processors. The ratio of these two numbers is used to measure
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the load imbalance of the parallel meshing phase.

Finally, we evaluate the scalability of the method in terms of two performance 

criteria: (1) the average tim e  that it takes for one element to be created on a single 

processor, over all the processors and elements that are created, and (2) the overhead  

cost (due to decomposition and parallelism) for each processor we use. Both criteria 

indicate that the parallel mesh generation method we present here is scalable and 

that we can generate billions of elements with insignificant overheads (see Table 5.3).
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5.4.1 Fixed Size Mesh Experiments

In the fixed size set of parallel experiments we used a mesh of 40M elements for the 

Key domain and 50M for the cross section of the Pipe. For the key domain we created 

12 subdomains for each processor while for the pipe 16 subdomains. The maximum 

triangle area is fixed throughout the experiments for each domain.
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No of processors 1 8 16 32 48 64
The Domain
No of subdomains 12 96 192 384 576 768
Mesh size (M) 43.32 43.34 43.37 43.41 43.43 43.45
PMADD time 0.20 0.37 0.44 0.60 0.83 1.05
Meshing time 386.32 42.35 20.72 10.12 6.79 4.96
Total time 386.52 42.72 21.16 10.72 7.62 6.01
The Pipe Domain
No of subdomains 16 128 256 512 768 1024
Mesh size (M) 50.93 50.97 51.00 51.05 51.08 51.11
PMADD time 0.27 0.51 0.60 0.89 1.07 1.47
Meshing time 374.15 48.80 24.03 11.80 7.93 5.74
Total time 374.42 49.29 24.63 12.69 9.00 7.21

Table 5.2: Performance data for the key and the pipe geometry for a fixed maximum 
element area. All times are in seconds and mesh sizes are in millions (M).

The results are presented in Table 5.2. The data again indicate an unimportant 

increase in the number of elements for the different levels of over-decomposition, which 

shows that the over-refinement we introduce is insignificant. The total execution time 

and the computation time for the actual mesh generation are depicted in Figure 5.6. 

These times are very close, because the PMADD overhead cost is very small. This 

cost is neutralized by the effect of over-decomposition, which along with the good load 

balancing and zero communication during the parallel meshing, lead to superlinear 

speedup, see Figure 5.7. The speedup is calculated against the total time it takes to 

create the mesh on one processor, as it is presented in Table 5.2.
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5.4.2 Scaled Size Mesh Experiments

A more practical way to evaluate the scalability and true performance of a paral­

lel algorithm and software is to scale the size of the problem in proportion to the 

number of processors used. In the following experimental data we use the same 

level of decomposition for every configuration of processors, i.e., we keep the average 

number of subdomains per processor constant, and thus we eliminate the effect of 

over-decomposition in the resulting performance data. Theoretically we should be 

able to achieve the same creation time per element per processor for all the par­

allel configurations independently of the number of processors used. However, this 

is not feasible for the following two reasons: (1) the decomposition overhead, which 

increases very slowly but nevertheless there is an increase in the overhead as the num­

ber of processors increases and (2) load imbalances due to unpredictable and variable 

computation of the mesh generation kernel.

Table 5.3 shows some performance indicators for the two model problems we use, 

the key and the pipe geometry. In the experiments for the key model we created 12 

subdomainns per processor and generated on average 1.6M elements per subdomain 

i.e., total 20M per processor. For the pipe model we created 20 subdomainns per 

processor and generated on average 1.6M elements per subdomain i.e., total 32M per 

processor. Small differences exist in the size of the mesh because our stopping criteria 

are based on the quality and size of elements, and thus the mesh size cannot be exactly 

predefined. It is clear from the Table 5.3 that for larger processor configurations, like
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64 processors, the 99.5% of the total execution time is spent in the meshing phase 

by the Triangle. This suggests that for realistic problems the PMADD overhead is 

about 0.5% of the total execution time.

No of processors 1 8 16 32 48 64
The Key Domain
No of subdomains 12 96 192 384 576 768
Mesh Size 20M 160M 320M 650M 860M 1.3B
Total time 152.43 177.31 192.41 213.91 166.10 205.26
Max meshing Time 152.23 176.92 191.93 213.26 165.25 204.19
Aver, meshing Time 152.23 165.75 168.04 170.31 137.70 163.14
Imbalance 1 1.067 1.142 1.252 1.200 1.252
MADD Phase time 0.20 0.38 0.44 0.63 0.84 1.05
Max MADD time 0.20 0.14 0.13 0.13 0.12 0.13
Tot. tim e/  (elem. / procs) 7.33 8.73 9.47 10.54 9.20 10.11
Additional Cost /procs 0% 2.4% 1.8% 1.4% 0.5% 0.6%
The Pipe Domain
No of subdomains 20 160 320 640 960 1280
Mesh size 32M 240M 500M IB 1.4B 2.IB
Total time 236.00 247.10 245.32 279.59 246.59 294.39
Max meshing time 235.71 246.53 244.65 278.56 245.09 292.71
Aver, meshing time 235.71 226.78 231.15 253.59 218.56 255.87
Imbalance 1 1.087 1.058 1.098 1.121 1.144
MADD phase time 0.29 0.55 0.67 1.01 1.48 1.66
Max MADD time 0.29 0.19 0.17 0.17 0.16 0.18
Tot. time/(elem./procs) 7.30 8.23 7.94 8.51 8.45 8.96
Additional Cost /procs 0% 1.6% 0.6% 0.5% 0.3% 0.4%

Table 5.3: Performance data for the key and the pipe geometry. The meshing time in­
cludes the time of the decoupling procedure (MADD). The MADD phase includes the load 
balance estimation procedure and the distribution of the subdomains to the processors. The 
imbalance is measured as ratio of the max meshing processor time over the average. All 
times are in seconds except for the tim e/(elem ./procs) which is in microsecs.

We observe that, while the max PMADD time on one processor remains almost 

constant, the time for PMADD phase increases as the number of processors increases.
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This is in agreement with the analysis in Section 4.1. As the number of processors 

increases, the number of PMADD iterations increases, although the number of the 

subdomains per processor is constant. In each PMADD iteration all the processors 

finish the decomposition, before the next iteration begins. This synchronization im­

poses an additional cost in the PMADD time. Moreover, the communication during 

this phase increases, as the number of processors increases. Fortunately, the commu­

nication and synchronization cost is less than 0.02 secs per processor. In comparison 

with the total execution time this cost is very small.

The load imbalance is measured by the ratio of the maximum meshing time on 

one processor and the average meshing time for all the processors. In Table 5.3 we 

observe that the load balance for the pipe is very good, 1.14 for 64 procs, while for the 

key is satisfactory, 1.25. The load-balance is based on over-decomposing the domain 

and equi-distributing the areas, and although it depends on the size of the mesh as we 

saw in Section 4.2, it also depends on the geometry and the number of the processors. 

Further improvement in the load-balance can be achieved by using parallel runtime 

software systems that address load-balancing problems, as the one presented in [2].

An important measure for evaluating the efficiency of a parallel meshing method is 

the (total) time spent for creating one element on one processor. Let T ^  be the total 

time running on P  processors in order to create a mesh of size S^p\  Then, the time 

per element, per processor is TeP  ̂ This measure eliminates the differences

in the mesh size, providing a more objective view of the scaled performance. We
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Figure 5.8: Left: Top is presented the imbalance and down the speedup for the scaled 
experiments. The speedup is measured against the sequential creation of 5M elements and 
is based on the overall time it takes for one element to be created. Observe the direct 
impact of the imbalance to the speedup. Right: The angle distribution for scaled mesh
sizes of the pipe.

see in Table 5.3 that this time is almost constant, and thus the method is scalable. 

The slight increase of this time is mainly due to the imbalance increase, while the 

contribution of the overhead time cost is very small. This is evident in Figure 5.8, 

where the imbalance is depicted on the top and the scaled speedup down. The scaled

T s  p

speedup for P  processors is measured as Up = where Tes is the time to create 

sequentially one element for a non-decomposed mesh of size 5M. We again observe 

the superlinear speedup for the same reasons as in the fixed size experiments. It is 

obvious in this figure the direct impact of the imbalance to the speedup.

Another measure for evaluating the scalability is the additional cost time cost for 

each processor that we use, relatively to the total time when running on one processor. 

The additional cost Cp per processor, when using P  processors, is computed as Cp =  

}. Taking into account that the mesh size is approximately proportional
TP(1)-P

to the number of processors P , we have Cp ~  T(̂ ()1) ^(1). We can consider the quantity
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T as the ideal time for creating on P  processors a mesh of size S ^  ~  P  • 

since the effect of over-decomposition is eliminated. In this way the additional cost Cp 

measures the distance from the ideal speedup, distributed to the number of processors 

used.

(p)The time Te is increasing as P  increases, the reasons were explained above. 

This increase though is small for the key and even smaller for the pipe domain. It is 

interesting to observe that the additional cost Cp tends to decrease, as P  increases. 

Although we have to pay a (small) cost in the performance for each additional proces­

sor we use, this cost tends to decrease, when measured in scale. This result underlines 

the scalability of the method.

Finally we should compare the quality of the elements of scaled meshes that the 

decoupling procedure produces. In Figure 5.8 right is depicted the distribution of the 

angles of the elements, for meshes varying from 30M triangles to 2.IB. The quality is 

obviously the same.



Chapter 6

Conclusions and Future Work

We presented a decoupling procedure for parallel Delaunay guaranteed quality mesh 

generation on distributed memory machines for 2-dimensional domains. The method 

eliminates the communication during the mesh generation and demonstrates good sta­

bility in terms of the size and the quality of the final mesh. It also shows good speedup 

and scalability, making it suitable for creating very large meshes on distributed mem­

ory machines. A major advantage of the our method is that a sequential mesher 

(Triangle [44]) is used as a library, without any modification, achieving 100% code 

re-use. The method can be used at the same time as sequential mesh generation, in 

order to create larger meshes in less time using one processor. Because of the zero 

communication and the scalability for large meshes, this method seems to be suitable 

for Grid computing applications [16].

Future work for 2-dimensional geometries includes the theoretical analysis about 

over-refinement by using the local lfs (i.e., an adaptive way) to determine the local 

refinement of the decoupling zone. It is also interesting to see how this approach can

63
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be applied in three dimensions for surface and volume parallel guaranteed quality 

mesh generation. The main issue in 3-dimensional domains is the creation of suit­

able domain decompositions, similar to the one we are able to create for the two 

dimensions.
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