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ABSTRACT

A new approach to the synthesis of poly (vinyl chloride) (PVC) graft 
copolymers is described. It involves the abstraction of chlorine atoms from PVC by 
the tributyltin free radical in the presence of monomers that can polymerize by a 
free-radical route. Rate constants for chlorine abstraction relative to those for addition 
of BusSn* to vinyl acetate (VAc) or isobutylene (lb) were determined by using 
2-chlorobutane as a PVC model compound. The values obtained revealed that lb was 
the less reactive monomer and that the addition of BuaSn- to alkene linkages is 
retarded strongly by electron-donating groups. A PVC-g-PVAc copolymer was 
prepared from PVC and VAc by using hexa-ft-butylditin as a photoinitiator and 
then removing the byproduct PVAc by selective extraction with methanol. The 
PVC-g-PVAc was analyzed by GPC, FTIR, and 13C NMR, TGA, and DSC. 
Results obtained showed that this copolymer had a molecular weight which was 
significantly greater than that of the original PVC, as well as a monomodal 
molecular-weight distribution. The copolymer also was demonstrated to contain both 
VC and VAc monomer units. Moreover, its thermal stability was somewhat less than 
that of the starting PVC, and it exhibited a single glass-transition temperature that fell 
between those of PVC and PVAc. A material identified tentatively as PVC-g-PIb was 
prepared in a similar way from PVC and lb and characterized by GPC, TGA, and 
DSC measurements.

XI
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I. Introduction

The chemical combination of two or more incompatible polymers into sequential 

copolymers, i.e., block and graft copolymers, often leads to a unique combination of 

physical properties not originally present in either of the two component polymers or in 

their physical blends. For example, the chemical combination of rubbery and glassy 

polymers may lead to “thermoplastic elastomer” materials that exhibit elastomeric 

behavior in the absence of chemical cross-links.1

Poly(vinyl chloride) (PVC) has been one of the most widely used vinyl polymers 

in the world for more than 70 years. However, some of the public discussion on the 

supposed environmental dangers and hazards of chlorine chemistry has attempted to 

weaken the importance of PVC on our daily life. This problem has aroused the attention 

of scientists and has been responsible, in part, for their efforts to modify the properties of 

PVC. Fortunately, owing to the presence of halogen atoms as reactive sites for branching, 

PVC is a good starting material for the synthesis of graft copolymers.2

Graft copolymers derived from PVC are new materials whose physical properties 

may be improved considerably over those of PVC itself. Since the 1960s, anionic, 

cationic, and free-radical graft copolymerizations of PVC have been studied.

A. Anionic graft copolymers from PVC

Anionic graft copolymers of PVC can generally be obtained from nucleophilic 

substitution reactions of chlorine atoms (Figure 1). As a result, a polymeric anion is
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grafted onto the PVC backbone. Appropriate displacement agents are characterized by a 

strongly nucleophilic character, while their basicity should be low in order to avoid base- 

promoted dehydrochlorination. Also, to avoid undesired termination of activity, air and 

polar species such as moisture must be excluded. Therefore, this kind of approach has 

some limitations. So, as a result, few copolymers of PVC have been prepared by this 

process.

—(-CH2—CH-)—  + jyj© —("CH2—CH-)—  + qP
Cl M

PVC repeating unit Macrocarbanion PVC copolymer

Figure 1. Anionic graft copolymer from PVC 

The functionalization3 of PVC also is an objective pursued by scientists via 

nucleophilic substitution reactions of chlorine atoms. If such a modification reaction is 

performed with a selective bifunctional molecule such that only one functionality reacts 

with the PVC, while the other reacts with another polymer, then the resulting copolymer 

will be provided with new physical properties. Furthermore, if PVC is modified with a 

nucleophilic reagent that also contains a basic nitrogen atom, such as 4-mercaptopyridine 

or 4-mercapto-V,V-dimethylaniline,4 then the resultant PVCs with pendant tertiary amino 

groups can easily be transformed into ionomers. These products have potential 

applications as ion exchange resins which act as dynamic cars that drive the PVC chains 

between the inorganic layers of materials such as montmorillonite clay. As a result, the 

PVC bonds with the inorganic aluminosilicate layers and tends to form a nanocomposite 

whose thermal stability is enhanced.



B. Cationic graft copolymers from PVC

Cationic grafting (Figure 2) involves the formation of a carbocation on the 

polymer backbone via abstraction of a chloride anion by a Lewis acid. Initiation of graft 

copolymerization then takes place from the polymeric cation.

—(—CH2— CH—)— + L  ^  CH2 CH }

Cl

Monomer
PVC repeating unit Lewis acid

PVC copolymer 

Figure 2. Cationic graft copolymer from PVC

1. Cationic catalysts

These catalysts principally include the trialkylaluminums and dialkylaluminum 

monohalides.5 In general, for the synthesis of PVC grafts, techniques using 

alkylaluminums (such as EtsAl) are far superior to earlier methods employing 

conventional Friedel-Crafts halides (such as Et2AlCl), because the former processes are 

more readily controllable, so that gelation and degradation can thus be easily minimized 

or avoided. Hence the products are cleaner and consequently easier to analyze.

2. Monomers

Because of the electrophilic reactivity of polymeric cations, monomers containing 

election-withdrawing groups cannot be used, owing to their failure to polymerize
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cationically. Thame et al.6 have succeeded in grafting butadiene and isobutylene onto 

PVC by using cationic chain transfer.

3. Backbone cation sites

These cations form mainly at “labile-halogen” sites such as allylic and tertiary 

chloride. In this case, it is better to increase the number of these labile sites by a prior 

dehydrochlorination of PVC or by the use of a copolymer of vinyl chloride with a 

monomer such as 2-chloropropene. However, these processes increase production costs 

and also introduce structural defects which, if not removed completely by graft formation, 

will decrease the thermal stability.

C. Free-radical graft copolymers from PVC

For the free-radical graft copolymerization process, it was thought that grafting 

occurred by the transfer of growing or primary radicals to the main chain of PVC via (a) 

an abstraction of a chlorine or tertiary hydrogen atom and (b) subsequent initiation from 

the resultant PVC radicals (Figure 3).7

The free-radical grafting onto PVC is applicable to a larger number of monomers 

than are the anionic and cationic methods. However, the resulting graft copolymers are 

always contaminated by a significant amount of free homopolymer; whereas both anionic 

(by grafting onto)8 and cationic (by grafting from)9 methods afford well-defined graft 

copolymers. This problem occurs because many types of initiator radicals will add 

competitively to the monomer which is to be grafted, thereby initiating its 

homopolymerization during the free-radical grafting process.
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f-C H 2— CH—)—  + R* --------^  — f-CH 2— C C H —  +  RH

Cl

Monomer

PVC repeating unit ▼
PVC copolymer

Figure 3. Free-radical graft copolymer from PVC

Another disadvantage of the conventional radical graft copolymerization lies in 

the special structure of PVC.

If a chloromethylene hydrogen is abstracted, the branch point resulting from 

grafting with any monomer will incorporate tertiary chloride and thus be thermally labile, 

as indicated in Figure 4.

CH3CCH2  + R* CH2CCH2  + RC1

Mi (Monomer)

Chloromethylene hydrogen c h 2c c h 2-

( Ml - n

Tertiary chloride ( labile structure)

Figure 4. Labile structure from chloromethylene hydrogen removal
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Moreover, if a methylene hydrogen is abstracted, the resultant carbon-centered 

radical, instead of adding to the graftable monomer, may simply undergo a thermal loss 

of a chlorine atom in order to give another unstable structure (see Figure 5).

Cl Cl CIj Cl
I I  I

 CHCHCH  +  R* -------- -----------CHCHCH  +  RH

m

▼
 CH— CHCH  + Cl*

Cl

Allylic chloride (labile structure)

Figure 5. Formation of allylic labile structure

In short, the free-radical grafting on PVC will introduce structural defects that 

will decrease the thermal stability if they are not removed completely.

Recently, reinitiation from the structural defects of PVC with metal catalysts has 

been used for living radical graft copolymerization (Figure 6).10 Usually, Cu(0)/bpy, 

CuCl/bpy, CuBr/bpy, Cu20/bpy, Cu2S^py, and Cu2 Se/bpy (where bpy = 2,2 -bipyridine) 

were used as catalysts. The following monomers were investigated in these graft 

copolymerization experiments: methyl methacrylate, butyl methacrylate, tert-butyl 

methacrylate, butyl acrylate, methacrylonitrile, acrylonitrile, styrene, 4-chlorostyrene, 4- 

methylstyrene, and isobomyl methacrylate.

The results demonstrated that the graft copolymerization can indeed be initiated 

directly from the structural defects available in the PVC backbone. Therefore, well-



defined PVC graft copolymers can be designed. However, the copolymers are 

contaminated by the residual metal, and their compositions depend on the number of 

reactive structural defects in the starting PVC.

Cl
^ tt ptjI tt Cu(I) or Cu(0) r'rrr.TT Monomer D .— C H =C H C H —  ----------------- ► — CH— CHCH—  ------------- ► Propagation

Allylic labile structure

CH2  CH2----
I CuX/bpy I Monomer n— CH2CCH2— --- ---------- — CH2CCH2—   ► Propagation
I

Cl

Tertiary chloride structure

Figure 6. Reinitiation from the structural defects of PVC

Thus, three methods11 for the preparation of graft copolymers are available, but all 

of these approaches have disadvantages. So it is desirable to find a new approach that 

does not start from defect sites exclusively and does not produce graft copolymers having 

low thermal stabilities.

D. New approach to the preparation of graft copolymers from PVC

The current project has provided a new grafting method which involves the 

relatively unselective homolytic abstraction of chlorine from PVC by metal-centered 

radical species such as BusSn-. Addition of the resultant C-centered radicals to a graftable
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monomer then produces a graft copolymer (Figure 7). However, there is a competition for 

reaction with monomer between the metal-centered radical and the C-centered radicals 

from PVC. The main processes are shown in Figure 7,

Y
CH Cl IY | •

^  R'3MeX +  R* — +--------► R(CH2CH)nCH2CHY-------- ►Copolymer

R 3Me» > y
C/Y » -  R 3MeCH2CHY >------- t -  R'3Me(CH2CH)nCH2CH Y — ► Homopolymer

Figure 7. General reaction routes for metal-centered radical

where RX is an aliphatic halide such as PVC; R is an alkyl group; Me is a metal atom 

such as tin; the ks are rate constants; and Y represents a variety of groups which will 

allow the monomers that contain them to polymerize in a radical process.

In order for the grafting reaction to be clean, the initiation of homopolymerization 

must be unimportant. Two possible ways of overcoming this difficulty are apparent. One 

is to choose graftable monomers that show relatively low values of k\. Another is to 

increase the concentration of PVC relative to that of the monomer.

Successful implementation of the proposed grafting route would be facilitated by 

the availability of accurate values for the rate constant ratio &2/&i. Such information 

would allow us to select appropriate monomers and PVC:monomer ratios. In order to 

obtain these important values, a model compound for PVC (a seoalkyl monochloride) 

and certain monomers would be allowed to react competitively with a large amount of 

R 3MeH in the presence of the free-radical initiator azobisisobutyronitrile (AIBN) (see
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Figure 8 ).

From the relative yields of R 3MeCl and adduct found by GC/MS analysis using 

an internal standard, it would be possible to obtain the values of k^ki. Graftable 

monomers with electron-donor groups were more attractive as grafting candidates, owing 

to their probable lower values of rate constant k\.

Next, grafting experiments would be carried out with PVC itself. In this case, the 

metal-centered radical would be produced photolytically from an R 3MeMeR 3 compound, 

such as Bu3SnSnBu3 . Any homopolymer formed as a byproduct would be removed from 

the copolymer by selective solvent extraction.

Finally, the copolymer would be analyzed by gel permeation chromatography 

(GPC), infrared spectroscopy (IR), and both and 13C NMR spectroscopy, in order to 

verify its structure. Then differential scanning calorimetry (DSC) and thermogravimetric 

analysis (TGA) would be used to study its thermal properties.

R 3MeCl + R* R3MeI>  RH + R'3Me*

• R3MeH
R 3MeCH2CHY — ----- ► R 3MeCH2CH2Y + R 3Me*

Adduct

Figure 8. Reaction of the metal-centered radical with 

model compound and monomer

. , t t AIBN Ayr ^  to RsMeH >-R3Me*

RC1: model compound 

R 3MeH: Bu3SnH
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II. Experimental

A. Instrumentation

1. Gas chromatography / mass spectroscopy (GC/MS)

A Hewlett-Packard 6890 Series GC instrument equipped with a cross-linked 

methylsiloxane capillary column (30 m X 0.25 mm X0.25 Pm) was used in conjunction 

with a Hewlett-Packard 5973N Mass Selective Detector. Sample data were analyzed by 

using Hewlett-Packard 21CFR11 software for the MS ChemStation. The carrier gas was 

helium.

2. Infrared spectroscopy (IR)

The products were made into films by casting from dilute THF solutions and 

examined with a Perkin-Elmer 1600 Series FTIR instrument.

3. Melting point determination

Melting points were determined by using a UniMelt (Thomas Hoover) capillary 

melting point apparatus.

4. Nuclear magnetic resonance (NMR)

The NMR spectra were acquired at ambient temperature with a Varian 400-MHz 

instrument. Data processing was performed by using Tecmag MacNMR 5.4 software. 

Chemical shifts are reported in ppm (8) with TMS (Me4Si) as internal reference
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(8 -  0. 00 ppm); chloroform-<7 and tetrahydrofuran-<78 were used as solvents.

5. Thermogravimetric analysis (TGA)

All experiments were conducted with a' Seiko SSC 5040 Thermal 

Analysis System. This system included a TG/DTA 200 simultaneous 

thermogravimetric/differential thermal analyzer with Version 2.0 system software. 

Sample masses were about 10 mg. The flow rate for nitrogen was 30 mL/min.

6. Differential scanning calorimetry (DSC)

A differential scanning calorimeter consisting of a Perkin-Elmer 7 Series Thermal 

Analysis System (DSC7) and a TAC7 instrument controller was used to obtain Tg and 

other characteristics of the polymers.

7. Gel permeation chromatography (GPC)

The data were obtained from the GPC Test 2002 system at the University of 

Virginia. The system parameters are listed in Table 2-1.

8. Extraction apparatus

A Kontes Soxhlet apparatus equipped with an Allihn condenser and 19 mm X 90 

mm extraction thimbles was used.

9. Solv-Tek Solvent System

Tetrahydrofuran (THF) was purified by passage through the column in a Solv-Tek
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Solvent System.

10. UV reactor

The photochemical reactor (Cat. No. RPR-100) was manufactured by the 

Southern New England Ultraviolet Company. The Rayonet photochemical reactor lamps 

(Cat. No. RPR-2537A) came from the same supplier.

Table 2-1. System parameters of GPC

System Parameters

Solvent: THF

A/D device: Viscotek T60 A 60Hz

Columns: Plgel 5 um Mixed

RI name: Viscotek Model LR40

UV name: HP VW Detector

Viscometer: Viscotek Model T60A

Light scattering: Viscotek Model T60A

B. Materials

2,2 - Azobisisobutyronitrile (AIBN, Fisher, 97%) 

Tributyltin chloride (Bu3SnCl, Aldrich, 96%) 

Tributyltin hydride (BusSnH, Aldrich, 97%) 

2-Chlorobutane (CH3CH(C1)CH2CH3, Aldnch, 99%)
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Vinyl acetate (CH2=CH0C(0)CH3, Aldrich, 99%)

Tetrabutyltin (BmSn, Aldrich, 93%)

Hexa-ft-butylditin (Bu3SnSnBu3, Aldrich, 98%)

Chloroform-d (CDCI3, Aldrich, 99.8 atom % D)

Tetrahydrofiiran-dg (C4D80 , Aldrich, 99.5 atom % D) 

ft-Tridecane (h-Ci3H28, Aldrich, 99%)

Tetrahydrofuran (C4H 8O, Aldrich, 99.9%)

Poly(vinyl acetate) ([-CH2CH(0C(0)CH3)-]n, Mw = 167,000 (from GPC), 7g = 30 °C, 

Aldrich)

Methanol (CH3OH, Aldrich, 99.9%)

Poly(vinyl chloride) (PVC, [-CH2CH(Cl)-]n, Aldrich, Mw = 38,817, M n = 19,621, M JM n 

= 1.98)

rc-Pentane (CH3(CH2)3CH3, Fisher, 98%)

Polyisobutylene (PIb,Mw = 4,200,000, M n = 3,100,000, Aldrich)

Isobutylene (CH2=C(CH3)2, Aldrich, 99%)

C. Purification of materials

1. Recrystallization of AIBN

Ten grams of AIBN was dissolved with stirring in 120 mL of boiling methanol. 

The hot solution was filtered by gravity though a fluted Whatman #4 filter paper and 

refrigerated overnight. The resulting crystals were separated by suction filtration, washed 

on the filter with several fresh portions of cold methanol, and dried under vacuum at 

room temperature for 24 h to give a product melting at 103-105 °C, which is the melting
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point reported for the pure substance by Aldrich. This material was stored in the 

refrigerator prior to use.

2. Purification of THF

Immediately before its use, the THF was purified by passing it through the 

column in the Solv-Tek Solvent System.

D. Determination of abstraction/addition rate constant ratio for model 

compound and vinyl acetate

1. Reaction

The reaction was carried out in an airtight system. To a 50-mL one-neck round- 

bottom flask containing a magnetic stirring bar were added 0.020 g (0.12 mmol) of AIBN, 

2.523 g (8.67 mmol) of tributyltin hydride, 1.052 g (12.22 mmol) of vinyl acetate, and

0.581 g (6.28 mmol) of 2-chlorobutane. After three freeze-vacuum-thaw cycles using 

liquid nitrogen, the flask was heated with stirring for 3 h in a silicone oil bath at 50±3 °C 

and then cooled to room temperature. Tetrahydrofuran (16.5 mL) and 0.123 g of an 

internal standard, ft-tridecane, were added, and after an additional 20 min of stirring at 

ice-water temperature, the mixture was analyzed by GC/MS.

The experiment was repeated several times with different BusSnH:vinyl acetate:2- 

chlorobutane ratios.

2. NMR analysis

Prior to THF addition, product mixtures were analyzed by *H and proton-
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decoupled 13C NMR spectroscopy in chloroform-^ solutions.

3. GC/MS analysis

The GC parameters are shown in Table 2-2.

Table 2-2. GC parameters

GC Parameters

Injector temp.: 160 °C

Detector temp.: 200 °C

Initial temp.: 50 °C

Rate 1: 20 °C /min From 50 °C to 180 °C

Rate 2: 10°C/min From 180 °C to 210 °C

Rate 3: 20 °C /min From 210 °C to 240 °C

Final temp.: 240 °C

Solvent delay: 5 min

E. Preparation of PVC-g-PVAc

To a quartz flask containing a magnetic stirring bar were added 2.01 g (32.2 mmol 

monomer units) of PVC, 10.00 g (116.2 mmol) of vinyl acetate, 0.40 g (0.69 mmol) of 

hexa-/7-butylditin, and 105 mL of THF. The flask was stoppered, and the contents were 

stirred until the PVC dissolved completely. Then the flask was cooled in Dry Ice and the 

solution was degassed for 25 min with flowing argon, allowed to warm to room
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temperature, and irradiated in the UV reactor for 24 h. Following the addition of 50 mL 

of fresh THF and filtering through paper to remove degraded polymer, the solution was 

poured into a large excess of methanol, with stirring, and the polymeric product was 

isolated by suction filtration. It was then redissolved in THF, precipitated again into 

methanol, recovered by suction filtration, subjected to Soxhlet extraction with methanol 

for 36 h, and dried under vacuum at 50 °C. The yield was 1.80 g.

F. Characterization of PVC-g-PVAc

1. NMR analysis

The copolymer (0.06 g) was dissolved in tetrahydrofiiran-dg (0.54 g) containing 

TMS (Me4Si) as an internal reference. Spectra were recorded at room temperature using 

16 scans for the *H spectrum and 20,000 scans for the 13C spectrum. For the 13C spectrum, 

the pulse interval was 3 s, and the pulse angle was 45°.

2. GPC analysis

The operating parameters for the GPC analysis are shown in Table 2-3. The RI 

traces were obtained from THF solutions on an LR40 laser refractometer. Polymer Labs 

5-mm mixed-C columns along with Hewlett-Packard instrumentation (Series 1100 HPLC) 

and Viscotek software (TriSEC GPC Version 3.0, Viscotek Corp.) were used.

3. FTIR analysis

The samples were made into film by casting from dilute THF solutions. In a 

typical preparation, 2 mL of THF and 80 mg of graft copolymer or PVC were converted
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into a solution by hand swirling, and the solution was allowed to evaporate at room 

temperature. The resulting film was dried under vacuum at 25 °C and examined at 2 cm'1 

resolution, using 128 scans.

Table 2-3. Operating parameters for GPC

Operating Parameters

Injection volume (mL): 0.1 Wavelength: 0

Flow rate (mL/min): 1 LS instrument const.: 0

Delay time (min): 0 Incident intensity: 0

Stop time (min): 26 Scattering angle: 0

Inlet pressure (KPa): 44.71 Flory const.: 0

2nd virial coeff.: 0 Refractive index: 0

Polymer dn/dc: 0

G. Thermal properties of PVC-g-PVAc

1. DSC analysis

The following procedure was followed in order to conduct a DSC run. First, the 

four-component system of the instrument was allowed to warm up while the sample pans 

were prepared. Sample masses were usually less than 10 mg. When the instrument was 

ready, values of the operating parameters were entered into the computer. The 

temperature of the sample was raised from 20 to 100 °C at the rate of 10.0 °C /min, 

lowered to 20 °C at 10.0 °C /min, and then raised to 100 °C at 10.0 °C /min under a



19

nitrogen atmosphere. The graphing mode of the computer allowed the run to be observed 

while in progress.

2. TGA analysis

Polymer samples were weighed on the balance pan of the instrument, and the 

weights were entered automatically into the computer. Operating parameters were those 

shown in Table 2-4.

Table 2-4. TGA parameters

Temp, rate (°C /min) Hold temp. (°C) Hold time (min)

2 0 160 0

1 0 600 5

- 2 0 25 0

At the end of each run, the raw data were converted into ASCII code and then 

analyzed by Excel.

H. Preparation of PVC-g-PIb

To a quartz flask containing a magnetic stirring bar were added 2.01 g (32.2 mmol 

monomer units) o f PVC, 1.00 g (1.73 mmol) of hexa-^-butylditin, and 101 mL of THF. 

The flask was stoppered, and die contents were stirred until the PVC dissolved 

completely. Then the flask was cooled in Dry Ice, and the solution was degassed for 25 

min with flowing argon. Subsequently, isobutylene (9.47 g, 169 mmol) was introduced at
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Dry Ice temperature, and after being allowed to warm to room temperature, the flask was 

irradiated in the UV reactor for 24 h. Following the addition of 50 mL of fresh THF and 

filtering through paper to remove degraded polymer, the solution was poured into a large 

excess of methanol, with stirring, and the polymeric product was isolated by suction 

filtration. It was then redissolved in a very large amount of THF, precipitated again into 

methanol, recovered by suction filtration, subjected to Soxhlet extraction with w-pentane 

for 36 h, and dried under vacuum at 50 °C. The yield was 1.40 g.

This polymer was analyzed by GPC, DSC, and TGA as described in Sections IIF 

and IIG for PVC-g-PVAc.
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m. Results and discussion for PVC-g-PVAc

A. Reference compound

1. Adduct from tributyltin hydride and vinyl acetate (Figure 9)

0
0 II

AIBN CH2=CH— 0 — C— CH3
II OCCH

Bu3SnH ^  BmSn* Bu3 SnCH2CH*

Bu3SnH
T

Bu3 Sn#

II
Bu3 SnCH2 CH2 OCCH3

1

Figure 9. Reaction of tributyltin hydride with vinyl acetate

The GC/MS results for this reaction are shown in Figure 13. In this figure, the 

peak with a retention time of 6.87 min is tributyltin hydride, because this retention time is 

the same as that of the pure material in Figure 14. The peak with a retention time of 10.37 

min was conclusively identified as adduct 1 with the help of 13C NMR. First we obtained 

the 13C chemical shift values of ̂ -butane from p. 183 of a well-known reference book.12

CH3  CH2  CH2  CH3

5=  13.1 24.9 24.9 13.1 (ppm)
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Second, the 13C and LH NMR spectra of pure tetrabutyltin were recorded as Figures 15 

and 16, respectively. With information from p. 298 of reference 12, we could identify the 

13C chemical shift values of tetrabutyltin.

Bu3Sn CH2 CH2  CH2 CH3

5=  9.04 29.58 27.73 14.06 (ppm)

So, the Bu3Sn- group changed the 13C shifts as follows:

A 8 i = 9.04-13.1 = -4 .1  (ppm) (3-1)

A 5 2 = 29.58-24.9 = +4.7 (ppm) (3-2)

A 5 3 = 27.73-24.9 = +2.8 (ppm) (3-3)

A 8 4= 14.06—13.1 = +1.0 (ppm) (3-4)

Next, the 13C shifts of adduct 1 were predicted from the calculated values. From p. 228 of 

reference 1 2 , the 13C shifts of ethyl acetate are:

O
II

c h 3— c h 2------ 0 — c — c h 3

1 2  3 4

5 = 14.2 60.3 170.6 21.0 (ppm)

As a result, the 8 i and S2 values for 1 could be calculated:
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51 = 14.2 + A 81 = 14.2 + ( -4 .1 )  = 1 0 . 1  (ppm)

52 = 60.3 + A  52 = 60.3 + 4.7 = 65.0 (ppm)

So, the chemical shifts of adduct 1 could be predicted as:

0
II

Bu3Sn--CH2 CH2------------------ 0 — C— CH3

1 2  3 4

Predicted values: 5 = 10.1 65.0 170.6 21.0 (ppm)

The product of the reaction of tributyltin hydride with vinyl acetate has the 13C

NMR spectrum shown in Figure 17. Also, the 13C and !H NMR spectra of pure tributyltin

hydride are provided in Figures 18 and 19, respectively.

O
II

Bu3Sn CH2 CH2------O— C— CH3

1 2  3 4

Actual values: 8 = 9.6 65.1 171.3 2 1 . 6  (ppm)

Because the predicted and actual 13C shift values are in close agreement, we can 

draw the firm conclusion that the adduct 1 was indeed formed and that it has a retention 

time of 10.37 min.

2. Determination of ratio kilk \ in Figure 10
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Cl

Bu3 Sn»

h

Bii3 Sn<

>  Bu3SnCl + H 3CCH* 
2 f

BusSnH

c h 2 c h 3

H3 CCH2CH2 CH3 I

(gas)

Bu3 SnSnBu3

—------------>  Bu3 SnCH2(jTi* Bu3SnH>  Bu3 SnCH2£H 2

c h 2= c h - o c c h 3
II 0 -C C H 3 0 -C C H 3
o  II , 1 1

O 1  0

Figure 10. Reaction routes of tributyltin free radical 

In this system, the tributyltin free radical will create three products, as shown in 

Figures 20, 21, and 22. One is adduct 1, which has the retention time of 10.37 min. The 

second product is tributyltin chloride, 2, whose mass spectrum and retention time of 8.67 

min are the same as those of pure tributyltin chloride, as depicted in Figure 23. The third 

product is the dimer 3, for which the retention time of 11.34 min and the mass spectrum 

are identical to the results obtained for pure hexa-^-butylditin and provided in Figure 24. 

Because butane is a gas, its yield is difficult to measure accurately. However, tributyltin 

chloride will remain in the system, and because of the one-to-one stoichiometry, its yield 

can be used instead for the calculation of k2lki. The equation used to determine this ratio 

was derived as follows.

Suppose
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V = Concentration of vinyl acetate = [vinyl acetate] = [VAc]

R = Concentration of 2-chlorobutane = [2-chlorobutane] = [RC1]

A = Concentration of adduct 1 = [adduct 1]

B = Concentration of product 2 = [Bu3SnCl]

So,

-d V /d t = £iV[Bu3Sn-] (3-5)

-d R /d t = £2R[Bu3Sn-] (3-6)

Dividing Eq (3-5) by Eq (3-6) and then rearranging gives

dV/dR = kiN/k^K 

dV/V = (ki/k2) dR/R

Integrating Eq (3-8) from time = 0 to time t produces

ln(V/V0) = ( k M H W K o )

Figure 10 shows that

Vt = Vo — A (3-10)

Rt = R o - B  (3-11)

Owing to the volatility of the small molecules vinyl acetate and 2-chlorobutane, 

some of these species may be lost after the reaction. Therefore, it is difficult to measure 

Vt and Rt but easy to determine Vo, Ro, A, and B.

Combination of Eqs (3-9), (3-10), and (3-11) yields

k2/ki =  in (1 -  B/Ro)/ In (1 -  A/V0) (3-12)

(3-7)

(3-8)

(3-9)
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If the total volume does not change significantly during the reaction, then Ro, B, 

Vo, and A can be expressed in terms of their weights. The following deductions assume 

that the total volume remains the same:

If

Awo = Initial weight of vinyl acetate 

Bwo = Initial weight of 2-chlorobutane 

Aw = Weight of adduct 1 after the reaction 

Bw = Weight of product 2 after the reaction 

Mw (tributyltin chloride) 325.49 (g/mol)

Mw (2-chlorobutane) 92.57 (g/mol)

Mw (adduct 1) = 377.14 (g/mol)

Mw (vinyl acetate) ~ 86.09 (g/mol)

Then

B/Ro — (Bw/Mw (tributyltin chloride))/(Bwo/Mw (2-chlorobutane))

= (Bw/B wo)(Mw (2-chlorobutane)/ATW (tributyltin chloride))

= 0.2844 (Bw/Bwo) (3-13)

A/Vo — (Aw/Mw (adduct 1))/(Awo/Mw (vinyl acetate))

— (Aw/Awo)( Mw (vinyl acetate)/ Mw (adduct 1))

= 0.2283 (Aw/Awo) (3-14)

If the internal standard n-tridecane (GC/MS results shown in Figure 25; the

retention time is 6.14 min) or tetrabutyltin (GC/MS results shown in Figure 26; the

retention time is 8.74 min) is added into the system after the reaction, then Aw and Bw can
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be found from the known weight (Wis) of the internal standard.

For the GC/MS analyses, let us suppose that

PA = Weight percent of adduct 1

Pb = Weight percent of tributyltin chloride

Pis = Weight percent of tetrabutyltin or 77-tridecane

Then,

Aw = (P a /P is) W is (3 -1 5 )

B w= ( P b /P is) W is (3 -1 6 )

Equation (3-12) can now be rewritten as follows:

k2 Ih  = In [1 — 0.2844(PbWis)/(PisBWo)]/In [1 —0.2283(PaWis)/(PisAwo)] (3 -1 7 )

The internal standard was tetrabutyltin for the runs in Table 3-1, where 

Mole ratio = tributyltin hydride:vinyl acetate:2-chlorobutane.

Table 3-1. Values of k2lk\ for different mole ratios of reactants

Mole ratio Awo Bwo Wis P a (% ) P b (% ) Pis (%) k2/k\

1 :1 : 1 (Figure 27) 0.51 0.56 0 . 2 0 5.40 19.64 47.99 4.19

2 :1 :1 (Figure 28) 0.62 0 . 6 8 0 . 2 0 1.58 5.90 13.60 4.31

3:1:1 (Figure 29) 0.52 0.57 0 . 2 0 4.74 20.41 16.18 5.17

1.5:1:1 (Figure 30) 0.52 0.57 0 . 2 0 3.33 8.94 22.03 3.09

The second set of runs (Table 3-2) used ft-tridecane as the internal standard.
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Table 3-2. Values of k2lk\ for different mole ratios of reactants

Mole ratio Awo Bwo Wis P a (% ) P b (% ) Pis (%) k2/ki

3:1:1 (Figure 31) 0.50 0.53 0.113 7.45 18.14 3.51 3.24

3:1.6:1 (Figure 32) 0.81 0.58 0.118 11.28 19.54 3.86 3.39

1.5:1:1 (Figure 33) 0.53 0.57 0.135 6 . 8 6 24.70 7.83 4.57

1.5:2:1 (Figure 34) 1.05 0.58 0.123 5.48 8.60 5.67 3.66

As can be seen from the data in the two tables above, the mean value of the rate 

constant ratio is 3.95 +  0.61, where the variance is the average deviation. Thus, the 

conclusion that the tributyltin free radical is more reactive toward the model compound 

obviously can be reached. As a result, if the amounts of PVC and vinyl acetate are 

carefully controlled, then the preparation of PVC-g-PVAc in similar reactions should be 

successful.

B. Characterization of PVC-g-PVAc

1. 13C and XH NMR characterization

The and 13C NMR spectra of pure PVC in tetrahydrofuran-<7g are provided in 

Figures 35 and 36. In Figure 35, the peaks between 1.9 and 2.5 ppm come from the 

—CH2—, and the —CH(C1)— multiplet appears at about 4 .2~4.7  ppm. In Figure 36, 

8 ci = 46.2~47.5 ppm, and 5 c 2 = 56.4~58.5 ppm.

From Figures 37 and 38, the chemical shifts of poly(vinyl acetate) could be 

obtained and are given in Table 3-3. (The solvent was chloroform-d.)
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1 2  

- ^ C H 2 C H ^

0 C (0 )— CH3 

3 4

Table 3-3. Chemical shifts of PVAc

1 (ppm) 2 (ppm) 3 (ppm) 4 (ppm) 

^ sp ec tru m  1.5 — 1.85 4.7—4.9 no H 1.9—2.0

13C spectrum 38.8—40.0 66.1—68.0 170.3 21.1

For the graft copolymer PVC-g-PVAc, obtained as described in Section HE, the 

and 13C NMR spectra shown in Figures 39 and 40, respectively, were recorded. The 

solvent used here was tetrahydrofuran-ds, and some of the chemical shift data are 

summarized in Table 3-4.

Table 3-4. Chemical shifts of PVC-g-PVAc

1 (ppm) 2  (ppm) 3 (ppm) 4 (ppm)

spectra 1.5— 1.9 4.8—5.2 noH 1.9—2.0

13 C spectra 39.5—40.5 6 6 .8 —6 8 . 6 170.2 20.9

From Tables 3-3 and 3-4, it is apparent that the shifts of the PVAc blocks match 

well with those of the pure PVAc homopolymer. Hence, the supposed copolymer does 

indeed contain blocks of PVC and PVAc. Next, calculation of number average molecular 

weight from the *H spectrum will be considered, using A/w pvc as the molecular weight of
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the original PVC. In Figure 39, the peaks at 5pvc = 4.3~4.8 ppm (H) are ascribed to the 

—CH(C1)—, while that at 8  = 4.8 ~ 5 .2 ppm (also only one H) arises from—CH(O)—. 

Therefore, the molecular weight of the PVAc block in the PVC-g-PVAc can be calculated 

from Eq (3-18), where Ia and lb are peak areas,

Mw pvac (86/62.5)(Ia/Ib)Mwpvc (3-18)

and the molecular weight of the PVC-g-PVAc is given by Eq (3-19).

-Mw copolymer A/w pvc AAv pvac (3-19)

2. Gel permeation chromatography (GPC) analysis

The PVC-g-PVAc copolymer was analyzed by GPC in THF solution. The GPC 

traces showed a monomodal molecular weight distribution and a significant shift of the 

peak value toward higher molecular weight. This result strongly suggests that graft 

copolymerization occurred without the retention of detectable free PVAc homopolymer 

after extraction. Examples of GPC traces are presented in Figure 41. The Mw of PVC is 

68,800, and the PVC polydispersity (Pd) is 2.77 according to Figure 41. By using 

Eq (3-19) and Figure 39, we obtain a copolymer molecular weight of 115,500. However, 

the GPC result is 104,100. The difference between the calculated and GPC results is 

probably due, in part, to the nonlinear structure of the graft copolymer.

3. FTIR analysis

Evidence for the PVC-g-PVAc composition also was obtained by FH R analysis. 

The IR spectra of PVC, PVAc, and PVC-g-PVAc are shown in Figures 42, 43, and 44, 

respectively. All of these spectra were obtained from solution-cast films. The copolymer
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spectrum shows a band at 1747 cm' 1 that is characteristic for the ester C=0 stretch. This 

result indicates that some of the chloro substituents on the PVC chain were replaced by 

vinyl acetate groups.

All the results obtained from the NMR, GPC, and FTIR analyses imply that the 

PVC-g-PVAc copolymer was, in fact, prepared by the new method discussed in the 

Introduction.

C. Thermal properties of PVC-g-PVAc

1. Differential scanning calorimetry (DSC) analysis

The differential scanning calorimetry (DSC) analysis of copolymer PVC-g-PVAc 

(in Figure 45) revealed only one glass-transition temperature (Tg) at 46.1 °C, whereas the 

Tg of the original PVC was 73.3 °C (in Figure 46), and that of PVAc is well-known to be 

about 30 °C from Aldrich. A single new Tg indicates the absence of PVC and PVAc 

microphases from the copolymer. This is an expected result, because it is 

well-documented that PVC is miscible with PVAc.

2. Thermogravimetric analysis ( TGA)

The TGA thermograms of PVC, PVC-g-PVAc, and PVAc are given in Figure 47. 

In the case of PVC, the weight loss starts at 245 °C. Between 245 and 350 °C, a 

rapid weight loss occurs, and PVC loses 61% of its weight. This loss can be attributed to 

“zipper” dehydrochlorination. The dehydrochlorination ends at around 420 °C, and the 

weight loss above that temperature can be attributed to the decomposition of the residual
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cross-linked polymer.

In the case of the PVC-g-PVAc, the onset of thermal degradation occurs at about 

206 °C, owing to the presence of the grafted polymer branch. For the same reason, the 

weight loss differs from that of the pure PVC between 230 and 320 °C.

In summary, because of the grafted polymer branch, the copolymer became 

somewhat less stable than the original PVC.
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IV. Results and discussion for PVC-g-PIb

A. Reference compound

1. Adduct from tributyltin hydride and isobutylene (Figure 11)

/ C H 3

CH2- < \  / C H 3
BujSnH AIBN > Bu3 Sn. ----------------------------- ^  Bu3 SnCH2 C .

b r i 3

Bu3SnH

▼

Bu3 Sn«

+  /C H 3 
Bu3 SnCH2CH

X CH3

2

Figure 11. Reaction of tributyltin hydride and isobutylene

As discussed above, the adduct 2  will form in the reaction of tributyltin hydride 

with isobutylene. The GC/MS results for a product mixture obtained in this way are 

shown in Figure 48. One of the two peaks is the excess tributyltin hydride (compare 

Figure 14); the other, with a retention time of 8.48 min, is adduct 2, as shown by 13C 

NMR (see Figure 49).

As discussed in Section IIIA, the BusSn- group would change the 13C shifts of an 

alkyl group as follows:

A5i = 9.04—13.1 = -4 .1  (ppm)
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A52 = 29.58 -  24.9 = +4.7 (ppm) 

A83 = 27.73 — 24.9 = +2.8 (ppm) 

A54 = 14.06-13.1 = +1.0 (ppm)

The 13C chemical shifts of isobutane, shown below, appear on p. 183 of reference 1 2 .

CH3-

1

5= 24.6

3
CH3

-CH CH3

2 3

23.3 24.6 (ppm)

So the predicted and actual 13C chemical shifts of adduct 2  are those listed here:

3
c h 3

Bu3 SnCH2— —CH—- c h 3

1 2 3

Predicted values: 5=  20.5 28.0 27.4

Actual values: 5=  2 1 . 2 2 28.18 27.20

(Actual values are from Figure 49.)

The predicted and actual values agree closely enough to justify the conclusion that 

the product is indeed adduct 2 .
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2. Determination of ratio k2lki in Figure 12

Cl
BU3S11H

■> Bu3SnCl +  H3 CCH- " >  H3CCH2CH2CH3 \

CH2CH3 (gas)

B ^Sn*
Bu3 S n» ------------------► Bu3 SnSnBu3

CH3

  ------------► Bu3SnCH,C • Bl'3SnH >■ Bu3 SnCH2CH(CH3 ) 2

CH2=C (C H 3 ) 2 I
c h 3

Adduct 2

Figure 12. Reaction routes of tributyltin free radical

In order to be used for the calculation of the ratio k2/k\, Eq (3-14) needs minor 

revision, because the molecular weight Mw (iSObutyiene) =56. Thus,

A/V0 = (A w/Mv (adduct 2))/(Awo/A'/yv (isobutylene))

— (Aw/AwoX (isobutylene)/A/w (adduct 2))

= 0.1614(Aw/Aw0) (4-1)

The final equation used to calculate the ratio k2lk\ is

k2lh  = ln [ l  - 0 .2 8 4 4 ( P BW is)/(P isB w o)]/ln[l - 0 .1 6 1 4 ( P aW is)/(PisAwo)] (4-2)

Here, all the definitions of parameters are analogous to those in Section III A.

By the use of Eq (4-2), the ratio k2lk\ was determined for several sets of reactant 

mole ratios. The internal standard used was rc-tridecane for the runs in Table 4-1, where
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Mole ratio = tributyltin hydride:2-chlorobutane:isobutylene.

Table 4-1. Values of k2/k\ for different mole ratios of reactants

Mole ratio > o Bwo Wis Pa (%) Pb (%) Pis (%) k2/ki

1:1.6:6.7 (Figure 50) 2.19 0 . 8 8 0.119 3.83 46.29 8.53 59.40

1:1.1:8.4 (Figure 51) 2.65 0.58 0.098 0.94 7.60 1.94 71.83

1:1.5:9.1 (Figure 52) 3.01 0.82 0.160 3.85 29.26 12.94 52.39

1:1.4:8.4 (Figure 53) 2.89 0.78 0.093 4.51 44.37 6.28 73.37

1:1.2:8 .5 (Figure 54) 2.75 0.62 0 . 1 1 0 4.46 28.67 10.42 54.04

1:1.4:20.2 (Figure 55) 6.56 0.76 0.095 8.50 33.35 6.18 66.19

From the data in the table above, the mean value of the ratio k2/k\ for isobutylene 

is about 62.9 +  7.6, where the variance is the average deviation. Obviously, the tributyltin 

free radical, which is well-known to be nucleophilic, reacts much more readily with the 

model compound than with the isobutylene. Moreover, isobutylene is more reactive than 

vinyl acetate, because the methyl groups of isobutylene are more strongly electron- 

donating than the acetoxy group of the vinyl ester. Monomers with electron-donor groups 

obviously are more attractive as grafting candidates in the process developed here, owing 

to their relatively slow reaction with the tributyltin free radical.

B. Characterization of PVC-g-PIb by GPC

The crude product was a physical mixture of grafted PVC and PIb homopolymer. 

Isolation of the graft copolymer was achieved by Soxhlet extraction for 36 h with
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?7-pentane, which removed the homopolymer quantitatively. The PVC-g-PIb copolymer 

was analyzed by gel permeation chromatography (GPC), using THF as the solvent. The 

GPC traces (see Figure 56) showed a monomodal molecular weight distribution, which 

confirmed that the free homopolymer had been removed by extraction with pentane, as 

well as a lower retention volume compared to that of the original PVC, thereby indicating 

an increase in the molecular weight. This increase is due to the presence of PIb side 

chains attached to the parent polymer. The Mw of the original PVC was 68,800, and its 

polydispersity was 2.77, while the Mw of the copolymer PVC-g-PIb was 95,200, and its 

polydispersity was 2.28, according to the results in Figure 56.

C. Thermal properties of PVC-g-PIb

1. Differential scanning calorimetry (DSC)

In Figure 57, the DSC curve of the PVC-g-PIb does not exhibit a distinct glass- 

transition temperature (Tg). This result is probably due to the polydispersity of the 

original PVC and the nonlinear structure of the graft copolymer, which is expected to be 

an amorphous material containing randomly entangled chains. Also, the curve suggests 

the presence of a small amount of cross-linking at the higher temperatures and does show 

an inflection between 25 and 65 °C.

2. Thermogravimetric analysis (TGA)

The TGA thermograms of PVC, PVC-g-PIb, and PIb are given in Figure 58.

Above 430 °C, the PIb was decomposed completely. For PVC, the weight loss 

starts at 230°C . Between 230 and 330 °C, a rapid weight loss occurs, and PVC loses
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61% of its weight. This loss can be attributed to dehydrochlorination. In the case of PVC- 

g-PIb, the onset of thermal degradation occurred at about 200 °C, owing to the presence 

of the grafted polymer branch. The initial weight loss of 58% is lower than that of the 

pure PVC.

All of these observations suggest that PVC-g-PIb was prepared, but in the absence 

of NMR information, this is not a strong conclusion. Unfortunately, a good NMR solvent 

for the material could not be identified.
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Figure 13. GC/MS results for the reaction products of

tributyltin hydride and vinyl acetate
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4 JL
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V . Conclusions

By using a model compound for PVC, 2-chlorobutane, the ratio k2lk\ was 

determined. For the vinyl acetate monomer, this ratio is about 3.95. However, for 

isobutylene, its value is ca. 62.9. These data show that monomers with electron-donor 

groups are the most attractive grafting candidates, owing to their slower reaction with the 

metal-centered free radical, BusSn*.

Formation of the graft copolymer PVC-g-PVAc was confirmed by NMR, GPC, 

and FTIR data. This result demonstrated the feasibility of the new grafting method that 

was described in the Introduction. The thermal properties of the graft copolymer were 

studied by DSC and TGA. The DSC curve showed only a single Tg between the Tg of 

PVC and that of PVAc. The TGA results indicated that the graft copolymer was 

somewhat less stable than the original PVC.

In the case of the supposed graft copolymer PVC-g-PIb, a good solvent for NMR 

analysis could not be identified. However, the results from GPC, DSC, and TGA analyses 

strongly suggested that the copolymer had been formed.
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