BI(III) Initiated Cyclization Reactions and Iodonium Fragmentation Kinetics

Yajing Lian
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

Part of the Inorganic Chemistry Commons

Recommended Citation
https://dx.doi.org/doi:10.21220/s2-zj7g-fp23

This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.
BI(III) INITIATED CYCLIZATION REACTIONS AND IODONIUM FRAGMENTATION KINETICS

A Thesis

Presented to
The Faculty of the Department of Chemistry
The College of William and Mary in Virginia

In Partial Fulfillment
Of the Requirements for the Degree of
Master of Science

by
Yajing Lian
2005
APPROVAL SHEET

This thesis is submitted in partial fulfillment of

The requirements for the degree of

Master of Science

Yajing Lian

Approved by the Committee, December 20, 2005

Robert J. Hinkle, Chair

Christopher J. Abelt

Robert D. Pike
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgements</td>
<td>vi</td>
</tr>
<tr>
<td>List of Tables</td>
<td>vii</td>
</tr>
<tr>
<td>List of Schemes</td>
<td>viii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>ix</td>
</tr>
<tr>
<td>Abstract</td>
<td>xi</td>
</tr>
<tr>
<td>Introduction</td>
<td>2</td>
</tr>
<tr>
<td>Chapter I Secondary Isotope Effects and Mechanism(s) of Fragmentation of Alkenyl Iodonium Salts</td>
<td>3</td>
</tr>
<tr>
<td>Background for iodonium salts</td>
<td>3</td>
</tr>
<tr>
<td>Background for isotope effects</td>
<td>9</td>
</tr>
<tr>
<td>Solvolysis of (Z)-2-methylbuten-1-yl(aryl)iodonium triflates</td>
<td>13</td>
</tr>
<tr>
<td>Special salt effect</td>
<td>14</td>
</tr>
<tr>
<td>Isotope effects</td>
<td>16</td>
</tr>
<tr>
<td>Product distribution</td>
<td>22</td>
</tr>
<tr>
<td>Primary vinyl cations</td>
<td>25</td>
</tr>
<tr>
<td>Conclusions</td>
<td>27</td>
</tr>
<tr>
<td>Experimental Section</td>
<td>28</td>
</tr>
<tr>
<td>References</td>
<td>34</td>
</tr>
</tbody>
</table>
Supporting information for Chapter II 112

Supporting information for Chapter III 143

Vita 209
ACKNOWLEDGEMENTS

The author would like to express his appreciation to Professor Robert J. Hinkle for his guidance and support during the period of thesis research. This thesis is written under his patient guidance and suggestions. The author is also indebted to Professors Abelt and Pike for their careful reading and criticism of this manuscript.

The writer would also like to thank his co-workers in Hinkle’s laboratory, Nichole D. Litvinas, Alex T. Jenkins, Daniel C. Burnette, Ann M. Mikowski, Michael P. Brochu and Robert Knowles to provide some helpful data.
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Salt effects in solvolysis of (Z)-2-methylbuten-1-yl(4-trifluoro-methyl phenyl)iodonium triflate (2a) in CDCl$_3$ at 55 °C</td>
</tr>
<tr>
<td>1.2</td>
<td>Rates and isotope effects in solvolysis of (Z)-2-methylbuten-1-yl-(aryl) iodonium triflates and their deuterium compounds in CDCl$_3$ at different temperatures</td>
</tr>
<tr>
<td>1.3</td>
<td>Activation parameters for salts used in this study</td>
</tr>
<tr>
<td>1.4</td>
<td>Relative percentages of fragmentation products of (Z)-2-methylbuten-1-yl(aryl) iodonium triflate salts in CDCl$_3$ treated with basic alumina at 60 °C</td>
</tr>
<tr>
<td>1.5</td>
<td>Diastereoselectivity of cyclization-addition reactions of π-nucleophiles and aldehyde, 4</td>
</tr>
<tr>
<td>1.6</td>
<td>Effects of Bu$_4$NOTf and Me$_4$NCIO$_4$ additives on diastereoselectivities in the tandem cyclization-addition reaction involving aldehyde, 4 and the silyl ketene acetal derived from methyl acetate</td>
</tr>
<tr>
<td>1.7</td>
<td>Optimization for the synthesis of dihydropyran, 7</td>
</tr>
<tr>
<td>1.8</td>
<td>Synthesis of disubstituted dihydropyrans</td>
</tr>
<tr>
<td>1.9</td>
<td>Two step tandem reactions for dihydropyran synthesis</td>
</tr>
</tbody>
</table>
LIST OF SCHEMES

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>S_N1 departure of the arylidionio moiety in solvolysis of vinyliodonium salts</td>
<td>5</td>
</tr>
<tr>
<td>1.2</td>
<td>In-plane S_N2 in solvolysis of vinyliodonium salts</td>
<td>6</td>
</tr>
<tr>
<td>1.3</td>
<td>Ligand coupling in solvolysis of vinyliodonium salts</td>
<td>6</td>
</tr>
<tr>
<td>1.4</td>
<td>Concerted mechanism in solvolysis of vinyliodonium salts</td>
<td>7</td>
</tr>
<tr>
<td>1.5</td>
<td>Solvolysis of (Z)-2-methylbuten-1-yl(aryl)iodonium triflates in CDCl$_3$</td>
<td>13</td>
</tr>
<tr>
<td>2.1</td>
<td>Keck’s pyran annulation process</td>
<td>41</td>
</tr>
<tr>
<td>2.2</td>
<td>Synthesis of leucasandrolide A fragment</td>
<td>43</td>
</tr>
<tr>
<td>2.3</td>
<td>Proposed catalytic cycle for BiBr$_3$-induced tandem reaction</td>
<td>44</td>
</tr>
<tr>
<td>2.4</td>
<td>Synthesis of aldehyde intermediates in the construction of an acid component of Civet Cat secretion</td>
<td>46</td>
</tr>
<tr>
<td>2.5</td>
<td>Conversion of aldehyde 4 to intermediates to (trans-6-methyltetrahydropyran-2-yl)acetic acid</td>
<td>47</td>
</tr>
<tr>
<td>2.6</td>
<td>Possible trans- to cis- equilibration pathway</td>
<td>47</td>
</tr>
<tr>
<td>2.7</td>
<td>Strategies for synthesis of cis-1</td>
<td>49</td>
</tr>
<tr>
<td>2.8</td>
<td>Stereoselective conversion of aldehyde 4 to cis-(S,S)-1</td>
<td>50</td>
</tr>
<tr>
<td>3.1</td>
<td>Approach to spiro[4,5]decadienones</td>
<td>71</td>
</tr>
<tr>
<td>3.2</td>
<td>Synthesis of key intermediate, 5 in the construction of dihydropyrans</td>
<td>80</td>
</tr>
<tr>
<td>3.3</td>
<td>Synthetic steps for three component one-pot reaction</td>
<td>87</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figures</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Substitution reactions with alkenyl(aryl)iodonium salts</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>Three kinds of ion pairs in solution</td>
<td>15</td>
</tr>
<tr>
<td>1.3</td>
<td>Possible correlation between the magnitude of α isotope effects and degree of bonding in the transition state</td>
<td>17</td>
</tr>
<tr>
<td>1.4</td>
<td>Concerted process in the solvolysis of (Z)-2-methylbuten-1-yl(aryl) iodonium triflates</td>
<td>18</td>
</tr>
<tr>
<td>1.5</td>
<td>Energy surface and reaction coordinate for a hypothetical concerted process for solvolysis of iodonium salts in which energy has been raised along the back edge to simulate the effect of changing to a better leaving aryliodonio group. The shape of the transition state is nearer to the left edge</td>
<td>19</td>
</tr>
<tr>
<td>1.6</td>
<td>Projection on the horizontal plane of the reaction coordinate for the energy surface. The new transition state coordinates correspond to a structure in which aryliodonio group is still in the process of departure</td>
<td>20</td>
</tr>
<tr>
<td>1.7</td>
<td>The total mechanism of solvolysis of (Z)-2-methylbuten-1-yl (aryl) iodonium triflates</td>
<td>24</td>
</tr>
<tr>
<td>2.1</td>
<td>Natural products containing cis- and trans- cyclic ethers</td>
<td>40</td>
</tr>
<tr>
<td>2.2</td>
<td>Kishi's proposed conformation for attack of nucleophiles</td>
<td>42</td>
</tr>
<tr>
<td>2.3</td>
<td>The stereoselectivity for oxocarbenium ion intermediate reaction with nucleophiles</td>
<td>45</td>
</tr>
<tr>
<td>3.1</td>
<td>Two distinct cyclization models for vinylsilanes</td>
<td>70</td>
</tr>
<tr>
<td>3.2</td>
<td>Four possible oxonium ion vinylsilane cyclization models</td>
<td>72</td>
</tr>
<tr>
<td>3.3</td>
<td>Possible transition state in Prins cyclizations</td>
<td>82</td>
</tr>
</tbody>
</table>
3.4 The correlation between reaction time and diastereoselectivity (trans-/cis-) for entry, 4

3.5 Possible transition state for reaction with anisaldehyde

3.6 Possible trans- to cis- equilibration pathway

3.7 Possible products of the reaction between phthaldehyde and (Z)-4-(triethylsilyloxy)-1-(trimethylsilyl)non-1-ene
ABSTRACT

Chapter I: Generation of vinyl cations is facile by fragmentation of vinyl iodonium salts. We used 1H NMR spectroscopy to examine reaction rates for fragmentation reactions of (Z)-2-methyl-buten-1-yl(aryl)iodonium triflates (aryl=C_6H_5, 4-(CF$_3$)C$_6$H$_4$, 3,5-(CF$_3$)$_2$C$_6$H$_3$-) and their deuterium analogs in CDC$_3$. A special salt effect and α-d$_1$ and β-methyl-d$_3$ isotope effects were verified to exist. The mechanism involving concerted aryliodonio departure and trans-methyl shift leading to the secondary rather primary vinyl cations was supported and the product distribution was also explained. The high α-d$_1$ isotope effect and the inverse β-methyl-d$_3$ isotope effect for solvolysis of (Z)-2-methyl-1-butenyl (3,5-bis(trifluoromethyl) phenyl)iodonium triflate indicate that solvolysis of this particular compound may occur via a primary vinyl cation.

Chapter II: The title acid was isolated in 1979 and has been a popular synthetic target from then on. We recently finished a novel synthetic approach to the title acid catalyzed by BiBr$_3$. Bismuth(III) compounds can initiate tandem cyclization-addition reactions of γsilyloxy aldehydes and ketones. For the silyl ketene acetal reactions with γsilyloxy aldehydes, the diastereoselectivities range from 5:1 to 6:1 for tetrahydropyran products and trans-isomers are preferred. For reductive etherification reactions of β-keto esters containing a pendant triethylsilyl ether group, the cis-isomers are the major products and the diastereoselectivities are greater than 30:1. The diastereoselectivities appear to be related to the nucleophilicity of silane nucleophiles. The greater the nucleophilicity, the lower the stereoelectronic preference for axial attack.

Chapter III: BiBr$_3$ initiated reactions of various aldehydes and vinylsilanes showed that the reactions generally provided cis-dihydropyranis in good yields and excellent stereoselectivities. The low cis-selectivities were observed only with electron rich anisaldehyde as the electrophile. On the other hand, electron poor aromatic aldehydes gave excellent yields and stereoselectivities. When vinyltrimethylsilanes are reacted with phthaldehyde, only one carbonyl group reacted. Another useful reaction related to this Prins cyclization is a reaction involving a two-step sequence catalyzed by BiBr$_3$. Addition of enol ethers or ketene silyl acetals to (Z)-4-(trimethylsilyl)but-3-enal, followed by addition of a second aldehyde results in 2,6-disubstituted dihydropyranis in good yields and excellent diastereoselectivities.
Bi(III) Initiated Cyclization Reactions and Iodonium Fragmentation Kinetics
INTRODUCTION

Many carbon species are present in chemical reactions, such as carbanions and carbonion ions (i.e., carbocations). In Hinkle’s lab, we were focused on the vinyl cations, which could be generated by fragmentation of alkenyl iodonium salts. Vinyl cations were not generally accessible until the triflate leaving group was introduced. The leaving abilities of aryliodonio groups are much greater than triflate and make the generation of vinyl cations from iodonium salts more practical than from triflates. We and other groups have reported several solvolytic reactions that involve vinyl cations as intermediates using iodonium salts as precursors. An important question in vinyl cation chemistry is whether primary vinyl cations can be generated under thermal conditions, because the bridging participation of neighboring groups and the rearrangements from primary vinyl cations to more stable secondary vinyl cations can occur easily. Many tools are used as probes to detect these unstable intermediates.

Oxocarbenium ions are another type of cationic intermediates and critical for the stereoselective synthesis of cyclic ethers. These oxocarbenium ions are generated by Lewis acids initiated conditions, follow by nucleophilic attack to obtain the cyclic ethers. The conformations of oxocarbenium ions are presented as pseudoaxial chair-like intermediates and these conformations control the reaction selectivities. The anomeric effect should be accounted for in determining the geometries of products. The following thesis investigates both vinyl cationic and oxocarbenium intermediates.
CHAPTER I
SECONDARY ISOTOPE EFFECTS AND MECHANISM(S) OF
FRAGMENTATION OF ALKENYL IODONIUM SALTS

Background for Iodonium Salts:

The organic chemistry of polyvalent iodine compounds has experienced explosive
development during the last 10-15 years. This interest in iodine compounds is mainly
due to the very useful oxidizing properties of polyvalent organic iodine reagents and their
environmental-friendly character as well as commercial availability. Several areas of
organic polyvalent iodine chemistry have attracted significant interest and research
activity. These areas include the synthetic applications of the Dess-Martin periodinane
and similar oxidizing reagents based on iodine(V), the use of iodosylbenzene in the
transition-metal-catalyzed biomimetic oxygenations, catalytic imidations with iodonium
imides, azidations with azidoiodanes, the chemistry of benziodoxoles and benziodazoles,
and synthetic and mechanistic studies as well as synthetic applications of alkynyl and
alkenyl iodonium salts.

Several types of iodonium salts exist: diaryl, alkyl, dialkyl, alkyl(aryl),
alkynyl(aryl), and alkenyl(aryl). In this thesis, I focus on the alkenyl(aryl) iodonium salts.
Ochiai and co-workers have reported a number of the many reactions that these salts
undergo in which retention of configuration at the double bond is common (Figure 1.1)2.

Figure 1.1: Substitution reactions with alkenyl(aryl)iodonium salts

Carbocation chemistry has been explored largely through studies of solvolysis reactions of appropriate precursors. This also involves vinyl cation chemistry, and the development was greatly accelerated by the introduction of a “super” leaving group, triflate, in this field in the 1970s. However, the leaving nucleofugality of aryliodonio group is even 106 greater than triflate 3. Therefore, The enormously enhanced nucleofugality of the iodonio group allowed studies of simpler, more labile vinyl cations. We focus on whether the primary vinyl cation is generated in the solvolysis of β,β-disubstituted vinyliodonium salts.
Four mechanisms have been discussed with regard to fragmentation mechanisms leading to the six enol-triflate isomers: (a) S_N1 departure of the aryliodonio moiety; (b) in-plane S_N2 reaction; (c) out-of-plane S_N2 reaction also termed “ligand coupling”; and (d) concerted alkyl migration and aryliodonio- nucleofuge departure. These mechanisms are shown, respectively in Schemes 1.1-1.4.

The Hinkle and Okuyama groups had reported rearrangement products that could have occurred by S_N1 fragmentation of various iodonium salts. If a true S_N1 process were occurring, it would lead to a primary vinyl cation (A, Scheme 1.1). Migration of a β-alkyl group would then provide a more stable secondary vinyl cation.

Scheme 1.1: S_N1 departure of the aryliodonio moiety in solvolysis of vinyliodonium salts

An in-plane S_N2 mechanism has been reported to proceed with weakly basic nucleophiles such as bromide ion. This process leads to complete inversion at the α-carbon and is supported by computational studies using MP2 calculations with polarized double-zeta basis sets.
A third mechanism has been studied computationally, is possible for iodonium salts and is sometimes referred to as ligand coupling (LC).\(^6\)\(^7\) The nucleophile (the triflate counter ion in the solvolysis) attacks the π\(^a\) orbital at the α-carbon perpendicular to the plane defined by the alkene; this leads to displacement of the aryliodonio- moiety and net retention of configuration in the unrearranged product (e.g., product 2). As was found for acetate, the triflate counter-ion likely is involved in partial coordination with the iodine, forming a λ\(^3\)-iodane complex\(^6\)\(^8\) and reductive elimination occurs to form the retained, unrearranged enol triflate, 2, as well as the aryl iodide byproduct.

The fourth mechanism related to the S\(_N\)1 process involves departure of the aryliodonio- moiety in which there is concerted migration of the trans-alkyl group\(^9\). The concerted migration results in the formation of a linear secondary vinyl cation (B or C in
Scheme 1.4), that is attacked by the triflate counter ion; this results in two of the four “rearranged” triflate isomers ((E)- and (Z)-3). The secondary vinyl cation can also undergo a rapid [1,2] hydride shift, which provides another secondary vinyl cation; this linear cation is also attacked from both sides by triflate, resulting in two additional “rearranged” isomers.

Scheme 1.4: Concerted mechanism in solvolysis of vinyliodonium salts

Under different conditions, several mechanisms are also proposed to explain the data. Among these mechanisms, the generation of alkylidene carbene under basic condition is an important one. With moderate bases, such as pyridine, α-monosubstituted alkenyl iodonium salts generate carbenes, which can be trapped by cyclohexene(9) (eq 1.1) or rearrange to form the alkyne(10) (eq 1.2).

![Scheme 1.4](image-url)
Another important intermediate in the solvolysis of alkenyl iodonium salts is the formation of cycloalkyne intermediate, which is generated by β-eliminated from the cycloalkenyl iodonium salts under basic conditions. The cycloalkyne is unstable and can be trapped by TCP(tertaphenylcyclopentadienone),¹¹ (eq 1.3) or in the presence of Pt(PPh₃)₃ in THF at 0 °C (eq 1.4).
Background for isotope effects:

Secondary deuterium isotope effects have been used extensively in the study of solvolytic reactions. Isotope effects are classified into primary isotope effect and secondary isotope effects. Here, we will discuss the α-isotope effect and β-isotope effect, which are the two major components of the secondary isotope effect.

Recently, with the development of model setting technical methodology and computer applications in the quantum calculation, the field of kinetic isotope effects (KIEs) have recently reappeared and attracted much attention. Several points are important in the model calculations, which are listed below (Below are listed modified descriptions of isotope effect details taken from the book written by Collins and Bowman):

1) Expected at the extremes of the temperature, all factors in the equation $\ln(HRR) = MMI \times EXC \times ZPE$ contribute to the effect significantly in the general condition. Here, MMI (mass, moment of inertia) term includes the products of molecular weights and moments of inertia to appropriate powers above; the EXC (excitation factor term) includes the product over that part of the harmonic oscillator partitions function which accounts for the population statistics of the upper levels; and the ZPE (zero point energy term) accounts for the difference in vibrational zero point energy between the reactants and the transition state.

2) If a substantial difference in the properties between reactant and transition state,
complicated temperature dependencies are expected14.

3) Isotope effect studies do not appear to be appropriate for the determining the geometric structure of the transition state, especially for three dimensions.

4) Isotope effects are essentially caused by changes in the force constants related to motions at the position of isotopic substitution during the process from reactant to transition state.

5) For isotope effect calculations on large molecular systems, it is possible to omit those parts of the molecule which are far away from the position of isotopic substitution without significantly changing the calculated value of the effect.

The size of kinetic effects is directly related to the isotope mass ratio. Therefore hydrogen isotopes show the largest effects, the magnitude of α- or β- isotope effects expressed as the ratio k_H/k_D ranges from approximately 0.95 to 1.25 per deuterium atom. All cases in which this ratio is greater than 1, which means that the deuterated substrate reacts slower than the proteated one, are called “normal” effects. Effects showing rate ratio k_H/k_D of less than 1 are called “inverse” effects. Several major points should be pointed out for the application of secondary isotope effects.

1) Since the “leaving degree” of the departing group has an effect on differences between the solvolytic and direct displacement mechanisms, secondary α-deuterium isotope effects are believed to be a qualitative tool for distinguishing between these two mechanisms. Different leaving groups reach different degrees of bond breaking
in the transition states and give rise to different magnitudes of the effect. The better leaving groups, the bigger value of α-isotope effect.

2) Secondary β-isotope effects are associated with hyperconjugation involving the interaction of the empty p-orbital at the cationic ion center and the adjacent carbon-hydrogen (deuterium) σ-bond. Usually, β-effects range from 10 to 20 % per deuterium atom, but are not exactly cumulative. Another aspect is the inductive effect, which is very small and opposite direction compared to the hyperconjugation.

3) The inverse β-isotope effect may be ascribed to the effectively shorter length of the carbon-deuterium bond relative to the carbon-hydrogen bond. This indicates that secondary effects might be due to the steric effect in origin. In another aspect, that deuterium is more electropositive than hydrogen, leading to a view that some isotope effects may be due to an inductive effect. Finally, that CD₃ is less delocalized than CH₃, leading to a view in terms of hyperconjugative effects.

4) The fact that electronic factors play an important role is shown by methyl substitution in the α- and β- position. The driving force for participation is greatly decreased by α-methyl substitution, but increased by β-substituent. In other words, the β-substituent can participate in the transition state in the case that there is no α-substituent at the carbon with leaving group.

5) If in an anchimerically assisted reaction, the participating group G changes to a group G1 which has the property of increasing the stability of the intermediate, the partial bond formation in the transition state between G1 and the reacting carbon will occur
at a greater distance than will be the case with G. The corresponding activated complex will be more reactant-like (Hammond), but G1 will not therefore bear less charge than G. In other words, charge delocalization can occur simultaneously or closely follow the ionization step, but bridging might lag behind.

6) Bridging can reduce the usual magnitude of both α- and β- secondary (the β- secondary effect of the no bridging group attached to the β- carbon) deuterium isotope effect, and both α- and β- effects will disappear if bridging is very advanced in the reaction transition state. However, if the participation group is the β- secondary deuterium isotope effect (the β- secondary effect of the bridging group attached to the β- carbon) accounted for, the β- effect will increase.

If the distance between the leaving group and the reacting center in the transition state is larger than a critical value, the α- effects are practically the same for all compounds having the same leaving group, regardless of the structure and nucleophilicity of solvent. In the case of neighboring group participation, a reversal of this phenomenon should be observed. Thus, if neighboring factors cause a reduction of the α- effect, the participation must be advanced enough so that the distance between the neighboring group and the reacting center is less than a critical value.
Solvolysis of (Z)-2-methylbuten-1-yl(aryl)iodonium triflates:

Secondary deuterium isotope effects have been used as an effective tool in organic mechanistic analysis.12 Our interest was in the study of solvolysis of iodonium salts. If this solvolysis generates vinyl cations in the solution then α/β deuterium isotope effects should be observed. In previous work,20 the solvolysis of (Z)-2-methylbuten-1-yl(aryl) iodonium triflates(aryl= C$_6$H$_5$-, 4-(CF$_3$)C$_6$H$_4$-, 3,5-(CF$_3$)$_2$C$_6$H$_3$-) in CDCl$_3$ produced six enol triflate isomers and the fragmentation reaction was found to be the first order substrate in solvolysis. Several details of this reaction were still uncertain, however. Based on isotope effects, we now propose a more reasonable mechanism to explain the solvolysis of these iodonium salts. In addition, α-d$_1$ and β-methyl-d$_3$ compounds were synthesized through the same method.21

The fragmentation products of (Z)-2-methylbuten-1-yl(aryl)iodonium triflates included aryl iodide and six enol triflate isomers (Scheme 1.5).

Scheme 1.5: Solvolysis of (Z)-2-methylbuten-1-yl(aryl)iodonium triflates in CDCl$_3$
As previously shown, four mechanisms have been discussed with regard to fragmentation mechanisms leading to the six enol triflate isomers20: (a) S_N1 departure of the aryliodonio moiety; (b) in-plane S_N2 reaction; (c) out-of-plane S_N2 reaction also termed “ligand coupling”; and (d) concerted alkyl migration and aryliodonio-nucleofuge departure. Only products resulting from unarrangement could be explained by mechanisms (b) and (c), so mechanisms (a) and (d) were more plausible. Departure of the aryliodonio moiety would produce a primary vinyl cation. Due to the high energy of primary vinyl cation, the mechanism was deemed to be unlikely. Okuyama and co-workers used chiral cyclohexylidenemethyliodonium salts to argue that primary vinyl cations were not involved as an intermediate.22 Their results supported mechanism (d) involving β-alkyl migration. This concerted mechanism (d) was also supported by our secondary isotope effect.

Special salt effect:

Three kinds of ion-pairs are common in solution (Figure 1.2): (a) tight ion-pair; (b) solvent-separated ion-pair; and (c) free ions.23 From Table 1.1, it is apparent that adding salts increase the solvolytic rate. Generally, the reaction rate of tight ion pair is not affected by presence of additional salts, so the tight ion-pair seemed impossible as an intermediate in solution. Since addition of tetrabutylammonium trifluoromethane sulfonate which participated in the reaction increases the reaction rate, it can be concluded that common ion effect did not occur, otherwise, the equilibrium would shift to
left and inhibit the dissociation into free ions and the subsequent fragmentation. Now, it seems clear that solvent-separated ion-pair was the main species in CDCl₃. This salt effect of increasing reaction rate was actually called “special salt effect”. Different salts affected the reaction rate differently, possibly due to their different abilities to solvate the iodonium salts.

Table 1.1: Salt effects in solvolysis of (Z)-2-methylbuten-1-yl(4-trifluoromethyl-phenyl)iodonium triflate, 1b in CDCl₃ at 55 °C

<table>
<thead>
<tr>
<th>additional salts</th>
<th>Bu₄NOTf</th>
<th>Bu₄NBF₄</th>
<th>Bu₄NPF₆</th>
</tr>
</thead>
<tbody>
<tr>
<td>rate constants(x10⁵)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kₛᵇ</td>
<td>8.06 ± 0.39</td>
<td>12.5 ± 0.79</td>
<td>10.3 ± 1.1</td>
</tr>
<tr>
<td>(kₛ/kₛ)ᶜ</td>
<td>1.22 ± 0.10</td>
<td>1.89 ± 0.17</td>
<td>1.56 ± 0.19</td>
</tr>
</tbody>
</table>

ᵃ additional salt is 1.0 equivalent to iodonium salts.
ᵇ rate constants determined in presence of salt listed
ᶜ ratio of rate constant in presence of salt vs. rate constant in absence of salt

Figure 1.2: Three kinds of ion pairs in solution
Isotope effects:

Table 1.2: Rates and isotope effects in solvolysis of (Z)-2-methylbuten-1-yl(aryl) iodonium triflates and their deuterium compounds in CDCl$_3$ at different temperatures.

<table>
<thead>
<tr>
<th>Reagents</th>
<th>Temp. (°C)</th>
<th>60 °C</th>
<th>55 °C</th>
<th>50 °C</th>
<th>40 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>2.79±0.24 (\times 10^5) Sec$^{-1}$</td>
<td>12.7±0.77</td>
<td>6.61±0.45</td>
<td>2.95±0.27</td>
<td>(\text{H/D})</td>
</tr>
<tr>
<td>D</td>
<td>2.12±0.14</td>
<td>8.94±0.87</td>
<td>4.78±0.27</td>
<td>2.35±0.21</td>
<td>(\text{H/D})</td>
</tr>
<tr>
<td>$K_{\text{H/D}}$</td>
<td>1.32±0.14</td>
<td>1.42±0.16</td>
<td>1.38±0.12</td>
<td>1.26±0.16</td>
<td>(\text{H/D})</td>
</tr>
<tr>
<td>H</td>
<td>2.79±0.24</td>
<td>12.7±0.77</td>
<td>6.61±0.45</td>
<td>2.95±0.27</td>
<td>(\text{H/D})</td>
</tr>
<tr>
<td>D</td>
<td>2.29±0.19</td>
<td>11.0±0.36</td>
<td>6.31±0.51</td>
<td>2.74±0.05</td>
<td>(\text{H/D})</td>
</tr>
<tr>
<td>$K_{\text{H/D}}$</td>
<td>1.42±0.16</td>
<td>1.15±0.08</td>
<td>1.07±0.11</td>
<td>1.08±0.10</td>
<td>(\text{H/D})</td>
</tr>
</tbody>
</table>

The kinetic order for this reaction is first order.

All experiments were performed at least three times. The rate constants listed are average numbers.
A number of different iodonium triflates and their deuterated analogs were thermally fragmented in CDCl$_3$ and kinetic rates were measured by 1H NMR spectroscopy. The data are listed in Table 1.2. Due to the largely different solvolysis rates among these compounds and the limited boiling point of CDCl$_3$, the fragmentation temperatures are not consistent.

From Table 1.2, the β-methyl-d$_3$ isotope effect decreased from 1.22 to 0.97 with addition of an additional CF$_3$ group in aromatic ring; it could then be concluded that β-methyl group participated in the transition state, and mechanism d is supported. The fact20 that (E) iodonium triflate isomers solvolyzed in CDCl$_3$ more quickly than the (Z)-stereoisomers also supported this conclusion. Since the migratory aptitude of ethyl group is greater than that of methyl group and the participation of the larger ethyl group in the departure of leaving group would increase the fragmentation rate.

Figure 1.3: Possible correlation between the magnitude of α isotope effects and degree of bonding in the transition state24

\[\frac{K_H}{K_D} \]

- K_H presents the distance between leaving group and the reaction center
- K_D presents the distance between neighbor participating group and the reaction center
- Estimated maximum value for secondary isotope effect is 1.74.
The y-axis represents the α-deuterium isotope effect (K_H/K_D) as it reaches a maximum value of 1.74. This value is attained when the distance between the leaving group and carbon to which it is bonded is large. At the same time, the distance between the migrating group and cationic carbon is also large. Therefore, no anhimeric assistance is involved. For the data obtained from fragmentations, only the bis(trifluoromethyl)phenyl iodonium salt, 1c, approaches this maximum value and neighboring group participation is likely small, or even absent. For the other two salts with phenyl and 4-trifluoromethylphenyl groups (1a and 1b, respectively), more anhimeric assistance is indicated by their lower k_H/k_D values. Figure 1.4 shows the progress to the transition state.

Figure 1.4: Concerted process in the solvolysis of (Z)-2-methylbuten-1-yl(aryl) iodonium triflates

We had earlier reported that increasing the electron withdrawing nature of the aromatic ring (i.e., additional CF$_3$ groups) would significantly increase the rates of fragmentation.20 For this experiment, the α isotope effect increases from 1.32 to 1.51 at 60°C with the increasing leaving ability of the aryliodonio group. However, the β-methyl-d$_3$ isotope effect is opposite, and decreases from 1.22 to 0.95 with increasing
nucleofugality of the aryliodonio group. This phenomenon can be explained by transition state theory.

According to transition state theory, making the aryliodonio group a better leaving group should raise the energy along the back edge of aryliodonio group leaving coordinate (Figure 1.5). As leaving group ability increases, the transition state structure moves toward the front and toward the left of the energy surface, and the reaction coordinate projection onto the horizontal plane becomes a curved line. A better leaving group would bend this curve more strongly (Figure 1.6).

Figure 1.5: Energy surface and reaction coordinate for a hypothetical concerted process for solvolysis of iodonium salts in which energy has been raised along the back edge to simulate the effect of changing to a better leaving aryliodonio group. The shape of the transition state is nearer to the left edge.
Figure 1.6: Projection on the horizontal plane of the reaction coordinate for the energy surface. The new transition state coordinates correspond to a structure in which aryliodonio group is still in the process of departure.

Curve (a) represents synchronous process, the degree of aryliodonio group departure is the same as the degree of methyl group participation in the transition state. Curve (b) represents the reaction coordinate of salt 1a, Curve (c) represents the reaction coordinate of salt 1b, Curve (d) represents the reaction coordinate of salt 1c.

As the aryliodonio group is departing, the degree of the methyl group participation decreases with the increasing leaving ability of aryliodonio group. Because bridging can reduce the usual magnitude of the α deuterium isotope effect, the smaller α isotope effect can be explained by a greater degree of methyl migration in the transition state. That was the reason why the α isotope effect would increase from 1.32 to 1.51, as CF$_3$ groups are added to the aryliodonio moiety. For the neighboring methyl group, the effect is opposite. The greater degree of methyl group participation in the transition state will lead to the higher β-d$_3$ isotope effect, so the isotope effect decreases from 1.22 to
1.15 and to 0.95 in this solvolysis for CD₃ analogs of 1a-1c respectively. The inverse isotope effect for compound C might be due to the more electron-donating ability for CD₃ group than CH₃ group. This electron effect could help stabilize the vinyl cations by hyperconjugation and enhance the reaction rate.

Table 1.3: Activation parameters for salts used in this study.

<table>
<thead>
<tr>
<th></th>
<th>E_a (Kcal/mol)</th>
<th>ΔG^i (Kcal/mol)</th>
<th>ΔH^i (Kcal/mol)</th>
<th>ΔS^i (Cal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MeH</td>
<td>31.2</td>
<td>25.6</td>
<td>30.6</td>
<td>13.5</td>
</tr>
<tr>
<td>MeD</td>
<td>28.6</td>
<td>25.8</td>
<td>27.9</td>
<td>6.3</td>
</tr>
<tr>
<td>D₃C</td>
<td>29.8</td>
<td>26.3</td>
<td>29.2</td>
<td>8.9</td>
</tr>
<tr>
<td>MeH</td>
<td>34.6</td>
<td>24.7</td>
<td>34.0</td>
<td>28.9</td>
</tr>
<tr>
<td>MeD</td>
<td>35.7</td>
<td>25.0</td>
<td>35.1</td>
<td>31.3</td>
</tr>
<tr>
<td>D₃C</td>
<td>34.1</td>
<td>25.3</td>
<td>33.5</td>
<td>25.5</td>
</tr>
</tbody>
</table>

The temperature used in calculation was the vague temperature.

Calculations show that primary vinyl cations are significantly less stable than their secondary isomers. Participation of the neighboring methyl group in the transition state can help stabilize the intermediate vinyl cations. The efficiency of stabilization is dependent on the degree of *trans*-methyl bridging. Therefore, the activation energy for
compound 1b should be smaller than compound 1c. However, the participating effect for activation entropy change in transition state is inverse, the methyl participation would decrease the number of degree of rotation and vibration freedom. As a result, the more the methyl group migration contributions in the transition state, the fewer the degrees of freedom, and the ΔS^\ddagger of compound 1b would be smaller. These conclusions are supported by the results (Table 1.3).

Products distribution

Table 1.4: Relative percentages of fragmentation products of (Z)-2-methylbuten-1-yl (aryl)iodonium triflate salts in CDCl$_3$ treated with basic alumina at 60 °C

<table>
<thead>
<tr>
<th>Iodonium salts</th>
<th>Yield (%)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>enol-triflates</td>
<td>1a</td>
<td>1b</td>
</tr>
<tr>
<td>unrearranged</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(E)-2</td>
<td>34.0</td>
<td>21.2</td>
<td>9.4</td>
</tr>
<tr>
<td>(Z)-2</td>
<td>7.2</td>
<td>4.6</td>
<td>3.3</td>
</tr>
<tr>
<td>(E)-2+(Z)-2</td>
<td>41.2</td>
<td>25.8</td>
<td>12.7</td>
</tr>
<tr>
<td>(E)-2/(Z)-2</td>
<td>4.7</td>
<td>4.6</td>
<td>2.9</td>
</tr>
<tr>
<td>Methyl migration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Z)-3</td>
<td>31.5</td>
<td>38.7</td>
<td>42.1</td>
</tr>
<tr>
<td>(E)-3</td>
<td>5.2</td>
<td>9.8</td>
<td>12.1</td>
</tr>
<tr>
<td>(Z)-3+(E)-3</td>
<td>36.7</td>
<td>48.6</td>
<td>54.2</td>
</tr>
<tr>
<td>(Z)-3/(E)-3</td>
<td>6.1</td>
<td>4.0</td>
<td>3.5</td>
</tr>
<tr>
<td>Ethyl migration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Z)-4</td>
<td>17.1</td>
<td>17.7</td>
<td>23.7</td>
</tr>
<tr>
<td>(E)-4</td>
<td>5.1</td>
<td>8.3</td>
<td>9.4</td>
</tr>
<tr>
<td>(Z)-4+(E)-4</td>
<td>22.2</td>
<td>26.0</td>
<td>33.1</td>
</tr>
<tr>
<td>(Z)-4/(E)-4</td>
<td>3.3</td>
<td>2.1</td>
<td>2.5</td>
</tr>
</tbody>
</table>
If the triflate anion and vinyl cations were totally free in solution, the yield of same geometrical isomers of regiochemically identical enol-triflate isomers should be the same. For example, the ratio of $(E)-2/(Z)-2$, $(Z)-3/(E)-3$, $(Z)-4/(E)-4$, should be around 2.5, 2.4, 2.7 (accounting for the electronic and steric effects, the ratios come from the enol triflate generations in which triflate group has no interaction with vinyl groups). But in fact, only the ratio of ethyl migration products is similar as Table 1.4. The ratio of unrearranged and methyl migration isomers were significantly different. The isomers, such as $(E)-2$ and $(Z)-3$ in which triflate groups were opposite to the original aryliodonio groups were produced in higher yield than the ones $(Z)-2$ and $(E)-3$ in the unrearranged and methyl migration products.

Therefore, we proposed that the triflate anion and the vinyl cations should form an ion pair. They were at the same side of the double bond. The resonance theory would help to illustrate the results (Figure 1.7).
Figure 1.7: The total mechanism of solvolysis of (Z)-2-methylbuten-1-yl(aryl)iodonium triflates

According to the resonance theory, the transition state could be expressed in two resonance structures, II and III as Figure 1.7 shows. Then, the two structures lead to two different vinyl cations, IV and V independently. The triflate anion has some weak interaction with the cation and is on the other side of the double bond, opposite to the original aryliodonio group. Obviously, process a is easier than process b and caused the yield of product (E)-2 or (Z)-3 higher than their isomeric products (Z)-2 or (E)-3. However, the products designated as those arising from ethyl migration involve two possible rearrangement processes subsequent to the rate-determined step. The anion can attack the linear secondary vinyl cations from two directions without selectivity (Table 1.4).
Primary vinyl cations:

In a previous report,20 the calculated gas phase energies of several vinyl cations were described, including some primary vinyl cations. The primary vinyl cations had much higher energies than secondary vinyl cations, so it seemed that the generation of primary vinyl cations was extremely unlikely. It was very interesting that calculations showed that β,β-dimethyl-substituted primary vinyl cation provided a remarkable 24 Kcal/mol methyl stabilization energy over the monosubstituted β-methyl primary vinyl cation, so β,β-disubstituted primary cations seemed possible. Loddar and co-workers have reported that primary vinyl cations could be generated through photochemical process,28 but no firm evidence exits for the intermediacy of primary vinyl cations under thermal conditions. In current work, the α isotope effect of compound, 1c was found to be 1.51 at 60 °C. More interesting, the effect increased to 1.78 at 50 °C. The calculated maximum secondary isotope effect is 1.74 at 25 °C, and it may be that solvolysis of compound 1c involves a primary vinyl cation without the participation of the methyl group in the transition state. The fact that β methyl-d$_3$ isotope effect was inverse supports this possibility. In order to bolster this mechanism as a possibility, we plan to calculate the transition state for 1c by using Gaussian 98w and calculate the angular value of methyl-double bond to make sure that whether methyl group could participate in the transition state.

If present in solution, resonance theory indicates that it should be possible to
capture the primary vinyl cation under thermal conditions. Unfortunately, the trapping reagent must be poorly nucleophilic to avoid promotion of the in-plane vinylic S_n2 reaction and the trapping agent must react with vinyl cations quickly enough, otherwise the primary vinyl cation would rearrange to form the more stable secondary vinyl cation. Thus far, we have attempted to trap the cation with many reagents and none was successful.
Conclusions:

We examined the fragmentation of (Z)-2-methylbuten-1-yl(aryl)iodonium triflates and analogous deuterated compounds in CDCl$_3$ and determined that vinyl cations were formed in solution. We used 1H NMR spectroscopy to examine the reaction rate, establish the special salt effect, and measure α-d$_1$ and β-methyl-d$_3$ isotope effects. The concerted trans-alkyl migration and aryliodonio- nucleofuge departure mechanism was verified by the result. First, CDCl$_3$ solvent molecules penetrated into iodonium salts to form the solvent-separated ion pairs. Then, the aryliodonio group departed. At the same time, the methyl group would participate in the transition state and triflate anion would transfer to the other side to interact with positively charged carbenium ion as an ion pair. In addition, the degree of trans-methyl group participation is dependent on the leaving ability of the aryliodonio group According to resonance theory, the transition state structure we propose can explain the different product yields. The activation energy and entropy changes in the transition state also support the structure.

The generation of primary vinyl cations was highly doubtful in solution, due to their high energy. The only example in which such an ion might exist is during the fragmentation of salt, 1c. This is under continuing investigation.
Experimental Section

General methods: Reactions were carried out under nitrogen atmosphere unless otherwise indicated. 1H and 13C NMR spectra were recorded on a Varian Mercury 400 spectrometer, and chemical shifts are reported in ppm downfield from internal TMS or residual protons in the CDCl$_3$. IR spectra were obtained on a Perkin-Elmer 1600 FTIR, neat on NaCl plates purchased from International Crystal Laboratories. Melting points were obtained on a MelTemp apparatus and are uncorrected. Gas chromatography separation were achieved using a GOW-MAC Series 580 gas chromatography with 12’x 0.25” OD column (60/80 Chromosorb W, 15 % SF-19).

Materials: Dichloromethane was distilled from CaH$_2$, and Fisher hexanes and ethyl ether were used as received. All reagents were used as received unless otherwise noted. 1-Butyne, tributyl tin chloride, 1,2-dibromoethane, 1-iodo-3, 5-bistrifluoromethyl benzene and tetrabutylammonium trifluoromethanesulfonate were purchased from Aldrich Chemical Co. Iodobenzene diacetate, aluminum oxide (basic, 150 mesh), 4-iodobenzotrifluoride, trimethylsilyl cyanide, tetrabutylammonium tetrafluoroborate and tetrabutylammonium hexafluorophosphate were purchased from Acros division of Fisher Scientific. 2-Methyl-d3-1-butyne was bought from CDN Isotopes INC

Kinetic Procedures: Chloroform-d was filtered through a short plug of basic aluminum
oxide to remove any acidic impurities and then placed in a NMR tube. 1,2-dibromoethane (2 \text{ uL}) was added as an internal standard. The variable temperature probe on the 400MHz NMR was set to the appropriate temperature and the chloroform-d was allowed to equilibrate to the probe temperature. Then the alkenyl(aryl)iodonium triflate (ca. 15 mg) was added into the NMR tube and the timing begun. Spectra were obtained at timed intervals through at least one half-life. Integration was used to determine the concentrations of each species at time \(t \).

The rate constants \((k) \) were determined from the slope of the first-order rate law point: \(\ln[A]_t \) vs time. The concentration at time \(t \) \(([A]_t) \) was determined by the relative integration of the leaving iodonium salts to that of the internal standard. The time was considered to be the halfway through the pulse sequence for each spectrum. Any rate constants taken from plots with \(R^2 \) value exceeding 0.9500 and a rate constant within 10\% of the other values were used in determining the average rate constant at each temperature.

General Procedure for the Preparation of Alkenyl(aryl)-iodonium Triflates:

Cyano(aryl)iodonium triflate (0.23 g) was weighed into a 25 mL round-bottom flask equipped with a stir bar. Dichloromethane (2 mL) was injected via syringe and the suspension was cooled to \(-43 \, ^\circ\text{C}\). Butenyl-tri-n-butylstannane was added via syringe slowly until the solid dissolved completely. After 30 min, Et\(_2\)O (1.0 ml) was injected and stirred for additional 5 min, and then 10.0 mL pre-cooled hexane was injected. The white
precipitate was collected by filtration and washed with 5.0 mL Et₂O under nitrogen until it reached rt to provide a white powder.

Synthesis of (Z)-2-Methyl-1-deuterio-1-Butenyl(phenyl)iodonium Triflate.

According to the general procedure, cyano(phenyl)-iodonium triflate (0.23 g, 0.60 mmol) was reacted with (Z)-2-methyl-1-deuterio-1-butenyl-tri-n-butylstannane to provide 0.215 g (85%) white powder. mp 90-92 °C.; IR (neat): 3083, 3064, 2979, 2947, 2882, 1467, 1443, 1254, 1165, 1029, 992, 900, 740, 637 cm⁻¹;

\[\text{IR} \]

\[\text{H NMR (CDCl}_3, 400MHz) \] δ: 7.95 (d, \(J = 8.4 \) Hz, 2H), 7.61 (t, \(J = 7.2 \) Hz, 1H), 7.49 (t, \(J = 7.2 \) Hz, 2H), 2.51 (q, \(J = 7.2 \) Hz, 2H), 2.18 (s, 3H), 1.01 (t, \(J = 7.2 \) Hz, 3H);

\[\text{13C (CDCl}_3, 100MHz) \] δ: 162.1, 134.7, 132.21, 132.28, 119.8 (q, \(J = 317 \) Hz), 111.9, 94.6 (t, \(J = 31 \) Hz), 33.5, 23.1, 12.5.

Preparation of (Z)-2-Methyl-1-deuterio-1-Butenyl(4-trifluoromethylphenyl)-iodonium Triflate.

According to the general procedures, cyano(4-trifluoromethylphenyl) iodonium triflate (0.22 g, 0.5 mmol) was reacted with (Z)-2-methyl—deuterio-1-butenyl-tri-n-butylstannane to provide 0.183 g (74%) white powder. mp 80-82 °C; IR (neat): 3102, 3057, 2994, 2957, 2922, 1593, 1437, 1399, 1322, 1259, 1171, 1067, 1030, 1001, 897, 824, 758, 721, 637 cm⁻¹;

\[\text{H NMR} \]
Preparation of (Z)-2-Methyl-1-deuterio-1-Butenyl(3,5-bis(trifluoromethyl)phenyl)iodonium Triflate.

According to the general procedure, cyano(3,5-bis(trifluoromethyl)phenyl)iodonium triflate, (0.22 g, 0.5 mmol) was treated with (Z)-2-methyl-deuterio-1-butenyltri-n-butylstannane to provide 0.185 g (66%) white powder, mp 69-71 °C; IR (neat): 3088, 3042, 2979, 2950, 2888, 1464, 1436, 1344, 1276, 1143, 1109, 1084, 1030, 890, 841, 759, 687 cm⁻¹; ¹H NMR (CDCl₃, 400MHz) δ: 8.47 (s, 2H), 8.04 (s, 1H), 2.51(q, J = 7.6 Hz, 2H), 2.18 (s, 3H), 1.02 (t, J = 7.6 Hz, 3H); ¹³C (CDCl₃, 100MHz) δ: 163.0, 135.0, 133.9 (q, J = 33.4 Hz), 128.70 (d, J = 4 Hz), 124.6 (q, J = 271 Hz), 120.2 (q, J = 317 Hz), 115.7, 94.9 (t, J = 31 Hz), 33.5, 23.1, 12.4.

(DCD₃, 400MHz) δ: 8.21 (d, J = 8.4 Hz, 2H), 7.69 (d, J = 8.4 Hz, 2H), 2.48 (q, J = 7.6 Hz, 2H), 2.19 (s, 3H), 1.02 (t, J = 7.6 Hz, 3H); ¹³C (CDCl₃, 100MHz) δ: 163.0, 135.0, 133.9 (q, J = 33.4 Hz), 128.70 (d, J = 4 Hz), 124.6 (q, J = 271 Hz), 120.2 (q, J = 317 Hz), 115.7, 94.9 (t, J = 31 Hz), 33.5, 23.1, 12.4.
Preparation of (Z)-2-trideuteriomethyl-1-Butenyl(phenyl)iodonium Triflate.

According to the general procedure, cyano(phenyl)-iodonium triflate (0.22 g, 0.5 mmol) was reacted with (Z)-2-trideuteriomethyl-1-butyltri-n-butylstannane to provide 0.191 g (87%) white powder. IR (neat): 3068, 2976, 2941, 2880, 1567, 1472, 1444, 1258, 1169, 1029, 991, 834, 739,679 cm⁻¹; ¹H NMR (CDCl₃, 400MHz) δ: 7.95 (d, J = 8.4 Hz, 2H), 7.62 (t, J = 7.2 Hz, 1H), 7.48 (t, J = 7.2 Hz, 2H), 6.70 (s, 1H), 2.50 (q, J = 7.2 Hz, 2H), 1.02 (t, J = 7.2 Hz,3 H); ¹³C (CDCl₃, 100MHz) δ: 161.8, 134.5, 132.13, 132.10, 110.2 (q, J = 317 Hz), 111.7, 94.8, 33.3, 12.3.

Preparation of (Z)-2-trideuteriomethyl-1-Butenyl(4-trifluoromethylphenyl)iodonium Triflate

According to the general procedure, cyano-(4-trifluoromethylphenyl)iodonium triflate (0.22 g, 0.5 mmol) was reacted with (Z)-2-trideuteriomethyl-1-butyltri-n-butylstannane to provide 0.165 g (65%) white powder. IR (neat): 3082, 2989, 2953, 1399, 1323, 1260, 1226, 1170, 1142, 1067, 1029, 1001, 910, 831, 720, 668, 637 cm⁻¹; ¹H NMR (CDCl₃, 400MHz) δ: 8.09 (d, J = 8.4 Hz, 2H), 7.67 (d, J = 8.4 Hz, 2H), 6.73 (s, 1H), 2.46 (q, J = 7.6 Hz, 2H), 1.00 (t, J = 7.6 Hz, 3H); ¹³C (CDCl₃, 100MHz) δ: 162.7 134.8, 133.7 (q, J = 33.4 Hz), 128.5 (d, J = 3.8 Hz), 123.0 (q, J = 271 Hz), 120.0 (q, J = 318 Hz), 115.5, 95.3, 33.4, 12.2.
Preparation of (Z)-2-trideuteriomethyl-1-Butenyl(3,5-bis(trifluoromethyl)phenyl)iodonium Triflate.

According to the general procedure, cyano(3,5-bis(trifluoromethyl)phenyl)iodonium triflate (0.22 g, 0.5 mmol) was treated with (Z)-2-trideuteriomethyl-butenyl-tri-n-butylstannane to provide 0.110 g (38%) white powder. IR (neat): 3076, 2981, 2944, 1340, 1273, 1180, 1084, 1030, 891, 841, 732, 687, 637 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\), 400MHz) \(\delta\): 8.46 (s, 2H), 8.04 (s, 1H), 6.89 (s, 1H), 2.51 (q, \(J = 7.6\) Hz, 2H), 1.03 (t, \(J = 7.6\) Hz, 3H); \(^{13}\)C (CDCl\(_3\), 100MHz) \(\delta\): 163.1, 134.9, 134.0 (q, \(J = 34.1\) Hz), 125.6, 121.9 (q, \(J = 271\) Hz), 129.8 (q, \(J = 316\) Hz), 112.7, 96.31, 33.4, 12.2.
REFERENCES

1 Stang, P. J.; Zhdankin, V. V. Chem. Rev. 2002, 102, 2523-2584

13 Wolfsberg, M.; Stern, M. J. Pure Appl. Chem. 1964, 8, 225.

CHAPTER II

BiBr₃ INITIATED CYCLIZATION-ADDITION REACTIONS: EFFECT OF Π-NUCLEOPHILE ON OXOCARBENIUM ION ADDITION AND TOTAL SYNTHESES OF (+)-(S,S)-(cis-6-METHYLtetraHYDROPYRAN-2-YL)ACETIC ACID AND ITS trans-DIASTEREOMER

Background of Bismuth(III):

Bismuth is the 83rd element in the periodic table and is the heaviest stable element. Although bismuth is a relatively rare element, many bismuth(III) compounds are commercially available and are relatively inexpensive. In contrast to other heavy metal counterparts, bismuth is non-toxic and non-carcinogenic. Other advantages of bismuth compounds include their ability to tolerate small amounts of moisture and consequently their ease of handling. Furthermore, compared to other strong Lewis acids used at low temperature, bismuth(III) catalyzed reactions are run at room temperature. Therefore, bismuth(III) compounds have recently become intensively used in organic synthesis¹, especially in industry. In the presence of Cu(OAc)₂, Bi(NO₃)₃ is a powerful oxidant and can be used to convert secondary alcohols into ketones² (eq 2.1).

\[
\begin{align*}
\text{Ar}^+\text{OH} & \xrightarrow{\text{4 mol } \% \text{ Cu(OAc)}_2} \text{Ar}^-\text{Ar}' \quad \text{(2.1)} \\
\text{CH}_3\text{COOH-H}_2\text{O} & \quad \text{Bi(NO}_3)_3
\end{align*}
\]
Bismuth(III) compounds have also been studied as effective catalysts or initiators in organic synthesis\(^3\), and several important applications have been developed. Bi(III) salts can also be used for removal of common protecting groups, such as \(S,S\)-acetals\(^4\) (eq 2.2). Most common methods for this deprotection require other toxic heavy metals, such as mercury(II) and an oxidizing reagent. Therefore, the use of air-stable and non-toxic bismuth salts offers significant improvements.

\[
\begin{align*}
\text{R}_1 \text{SR}_3 & \underset{\text{Bi(NO}_3\text{)}_3 (2-10 \text{ mol %})}{\xrightarrow{\text{H}_2\text{O, benzene, rt}}} \text{R}_1 \text{O} \\
\text{R}_2 \text{SR}_3 & \text{Br}
\end{align*}
\]

Another example is selective cleavage of alkyl TBDMS groups in the presence of aryl TBDMS groups in wet CH\(_3\)CN using BiBr\(_3\) as a catalyst\(^5\) (eq 2.3). It should be mentioned that TBDMS groups are not affected by BiCl\(_3\) or Bi(CF\(_3\)COO)\(_3\) in methanol. Thus, it is clear that solvent plays an important part in determining selectivity.

\[
\begin{align*}
\text{OTBDMS} & \underset{\text{BiBr}_3 (3 \text{ mol %})}{\xrightarrow{\text{wet CH}_3\text{CN}}} \text{OTBDMS} \\
\text{Br} & \text{OH}
\end{align*}
\]

Bismuth triflate has recently been reported to be an efficient catalyst for Friedel-Crafts acylation of a variety of substituted benzenes\(^6\). Bi(III) salts also have important applications in additions of allyl groups to carbonyl groups\(^7\) (eq 2.4) and aldol condensations\(^8\). The allylation of aldehydes initiated by Bi(III) and active metals proceeds under mild conditions to afford the corresponding homoallylic alcohols in good yields. This reaction is specific for aldehydes and does not occur with carboxylic acids, nitriles and esters.
Diels-Alder and the aza-Diels-Alder reactions can be catalyzed by catalytic amounts of Bi(III) salts to form cyclohexenes as well as heterocycles. The reactions have many applications in natural product synthesis. For instance, reactions of N-aryl aldmines with nucleophilic olefins afford the quinoline derivatives in high yields (eq 2.5).

Carbon-heteroatom bond forming reactions occur efficiently with Bi(III) catalyst. The types of C-X bonds formed include bonds between carbon and nitrogen, carbon and oxygen, carbon and sulfonate, as well as carbon and halogen. For example, BiCl$_3$ has been found to be an attractive catalyst for the Biginelli reaction (eq 2.6). Dihydropyrimidiones have attracted recent attention due to their interesting biological properties. The classic method for their synthesis is Biginelli condensation reaction which usually results in poor to low yield. However, using BiCl$_3$ as a catalyst, the yield increases to 80-95 %.

\[
R_1\text{C}_\equiv R_2 + H_2N\text{C}_\equiv\text{NH}_2 + \text{R}_2\text{CHO} + \text{BiCl}_3 \rightarrow \text{R}_1\text{O}\text{R}_2\text{C}_\equiv\text{NH}_2
\]
Background for tetrahydropyrans:

In 1979, Bruno Maurer, Alfred Grieder, and Walter Thommen successfully isolated and synthesized a small cyclic carboxylic acid, \((+)-(S,S)-(cis-6\text{-methyltetrahydro}\
\text{pyran-2-yl})\text{acetic acid, from the glandular secretion of the civet cat}^{11} (\text{Viverra civetta}).\) This natural product is a disubstituted, six-membered cyclic ether with stereocenters at the 2- and 6- positions and has been used as a model compound for developing methodology towards 2,6-disubstituted tetrahydropyrans. Cyclic ethers containing tetrahydropyran ring are prevalent in many natural and pharmacological products. For instance, several recently discovered antitumor, antifungal, and antimitotic compounds contain either or both tetrahydropyran and tetrahydrofuran rings. For example, Phorboxazole\(^{12}\) has three tetrahydropyran rings and Leucascandrolide A\(^{13}\) contains two tetrahydropyran rings (Figure 2.1). Therefore, it is worthy goal to develop new synthetic methodology toward tetrahydropyran rings.

Figure 2.1: Natural products containing *cis*- and *trans*- cyclic ethers

Phorboxazole A: \(R^1 = H, R^2 = OH\)
Phorboxazole B: \(R^1 = OH, R^2 = H\)
Leucascandrolide A
Many methods have been developed towards cyclic ethers. For example, a hetero Diels-Alder reaction followed by reduction of the resulting alkene was employed to give the required 2,6-disubstituted tetrahydropyran ring (eq 2.7).

\[
\begin{align*}
\text{eq 2.7:} & \quad \text{Diels-Alder reaction} \\
\end{align*}
\]

Keck showed that 2,6-cis-disubstituted-4-methylenetetrahydropyrans could be synthesized in three steps from commercially available starting materials (Scheme 2.1). The greater reactivity of the stannane affords an allylsilane after initial Lewis acid activated allylation of the aldehydes. Subsequent addition of a second aldehyde produces an oxocarbenium ion intermediate that undergoes intramolecular allylation to generate the observed products with high diastereoselectivity. The BITIP, a BINOL titanium tetraisopropoxide catalyst, is the most suitable for the reaction of stannane with aldehydes and results in high enantioselectivity (ee > 90 %).

Scheme 2.1: Keck’s pyran annulation process

As a third example, Prins cyclizations in silyl additives with suppression of epimerization were reported by Loh (eq 2.8). The oxocarbenium ion for Prins cyclization is generated by the nucleophilic attack of alcohol to aldehyde under Lewis
acid initiated condition. The intermediate carbocation is then trapped by halide using a trimethylsilyl halide additive.

\[
\begin{align*}
\text{Ph} & \text{-OH} + \text{R}_1\text{CHO} \quad \text{In(OTf)}_3, \text{TMSX} \quad \text{CH}_2\text{Cl}_2, 0^\circ\text{C} \\
\text{PhH}_2\text{CH}_2\text{C} & \quad \text{O} \quad \text{R}_1
\end{align*}
\]

Generally, approaching the synthesis of a disubstituted THP through nucleophilic attack of an oxocarbenium ion is desirable because it typically gives good diastereoselectivity. The Kishi group theorized that the nucleophile would preferentially attack the oxocarbenium ion from the axial direction\(^{17}\) (Figure 2.2). The oxocarbenium ion in which the \(R_1\) group is pseudoequatorial is more stable than when the \(R_1\) group is pseudoaxial. Therefore, the transition state shown in Figure 2.2 is the more stable one of the two possible structures. The nucleophile then attacks from the axial direction, or trans to the \(R_1\) group. Due to the axial approach of various nucleophiles, they were able to synthesize several C-glycopyranosides with greater than 10:1 diastereoselectivity in favor of trans-diastereomers.

Figure 2.2 Kishi’s proposed conformation for attack of nucleophiles.

![Figure 2.2](image)

Probably the most common strategy towards the synthesis of trans-2,6-disubstituted THP systems is used by Kopecky and Rychnovsky. This approach
involves three steps from δ-substituted lactone18 (Scheme 2.2): (a) generation of lactone; (b) partial reduction and acylation of the lactol; and (c) addition of nucleophile to the oxocarbenium ion formed by Lewis acid initiated allylation.

Scheme 2.2: Synthesis of leucasandrolide A fragment
Reaction mechanism:

The mechanism of tandem cyclization/addition reaction was proposed by Evans et al.19 (Scheme 2.3 and Figure 2.3). Bismuth bromide in the presence of water will generate two equivalents of hydrogen bromide, which promotes the intramolecular nucleophilic attack on the aldehyde carbonyl. The lone pair on the oxygen of the trialkylsiloxo moiety will attack the electrophilic carbonyl carbon; the acidic hydrogen from the Brönnsted acid will assist the formation of II. This intermediate is then proposed to undergo in situ desilylation to afford the lactol III. At this point, acid-catalyzed dehydroxylation of the lactol leads to the oxocarbenium ion. The oxocarbenium ion is then subject to nucleophilic attack to furnish the cyclic ether.

Scheme 2.3: Proposed Catalytic cycle for BiBr$_3$-Induced Tandem Reaction.
The nucleophiles would attack the oxocarbenium ion from axial direction, as discussed in the Kishi theory above. Due to the interaction between the attacking nucleophile and pseudoequatorial methyl group (Figure 2.3), transition state VI is favored over transition state VII. Therefore, the trans-isomers are the major products for these tandem cyclization addition reactions. Trans/cis ratios of ≥ 99:1 were consistently obtained in this report for the THP allylation reaction19.

If triethylsilane (Et3SiH) is used as a nucleophile with a ketone substrate, it can be considered as a hydrogen anion and prefers to attack from the opposite direction of methyl group leading to cis-isomer (path VIII), and this is also consistent with Kishi’s model for axial addition.

Figure 2.3: The stereoselectivity for oxocarbenium ion intermediate reaction with nucleophile
Synthetic strategy toward “Civet acid”

Synthesis of δ-silyloxy aldehyde, 4

We began our synthesis toward the common intermediate, 4 by Grignard addition to propylene oxide using CuI as a catalyst, which afforded the known alcohol, 220 with high regioselectivity (Scheme 2.4). The hydroxyl moiety was protected as the triethylsilyl ether, 3, and was ozonolyzed subsequently to provide the desired key compound, δ-silyloxy aldehyde, 4 in good yield.

Scheme 2.4. Synthesis of aldehyde intermediates in the construction of an acid component of Civet Cat secretion.

We were first concerned with the synthesis of the trans-diastereomer via three different BiBr\textsubscript{3} initiated tandem cyclization/addition reactions (Scheme 2.5). The first approach involved addition of CH\textsubscript{2}=C(OTMS)OMe to an intermediate oxocarbenium ion. This extension of the allylation methodology19 to include a ketene silyl acetal as a nucleophile resulted in the desired cyclization/addition product, trans-5, with \textit{dr} = 5-6/1. The selectivity was low, compared to the high diastereoselectivity for allylation. We first hypothesized that the low selectivity was due to the equilibration of the product from
trans- isomer to more stable cis- isomer under weak Lewis acid condition (Scheme 2.6).

Therefore, two attempts were made to confirm our hypothesis. Conducting the reaction

Scheme 2.5. Conversion of aldehyde 4 to intermediates to (trans-6-methyltetrahydropyran-2-yl)acetic acid.

\[
\begin{align*}
\text{Me} & \quad \text{O} \\
\text{TES} & \quad \text{(±)-4} \\
\end{align*}
\]

\[
\begin{align*}
\text{Me} & \quad \text{O} \\
\text{trans-5} & \quad \text{dr} \geq 5:1 \\
\text{Me} & \quad \text{O} \\
\end{align*}
\]

\[
\begin{align*}
\text{Me} & \quad \text{O} \\
\text{trans-6} & \quad \text{dr} \geq 19:1 \\
\end{align*}
\]

\[
\begin{align*}
\text{Me} & \quad \text{O} \\
\text{trans-7} & \quad \text{dr} = 32:1 \\
\end{align*}
\]

(a) 15% BiBr₃, CH₂=C(OTMS)OMe, CH₃CN. (b) NaOH, MeOH, H₂O. (c) BiBr₃, H₂C=CHCH₂-TMS, CH₃CN. (d) O₃, NaOCH₃, CH₃OH; Me₂S. (e) BiBr₃, CH₂=C(OTMS)CH₃, CH₃CN. (f) NaOBr, dioxane/H₂O.

Scheme 2.6. Possible trans- to cis- equilibration pathway.

in NMR tubes under the same conditions as the reported procedure, but using CD₃CN as solvent instead of CH₃CN showed that the trans/cis ratio remained constant even after 16 h at rt. Furthermore, addition of imidazole up to three times amount of BiBr₃ immediately before work-up did not improved the selectivity. These experiments indicated that the elimination-addition pathway was not the reason for lower selectivity. Thus, we believe
that the reduced diastereoselectivity is due to a kinetic effect rather than a thermodynamic equilibration effect. Finally, basic hydrolysis (NaOH) of the disubstituted THP, trans-5, directly gave trans-1 in high isolated yield by the method of Nussbaumer and Frater21.

Due to the low selectivity for ketene silyl acetal nucleophile with oxocarbenium ion, we then turned our attention toward another approach to the trans-isomer involving conversion of the allylated THP (trans-6) to trans-1 (Scheme 2.5). Allylation of 4 under standard conditions (10\% BiBr\textsubscript{3}, 3.0 equiv CH\textsubscript{2}=CH-CH\textsubscript{2}-TMS, CH\textsubscript{3}CN, RT) did provide trans-6 in high selectivity, but the volatility of this product made isolation difficult. Although we did carry this intermediate to trans-1, the modest isolated yield after basic ozonolysis (35\% for two steps) urged us to try a third route toward the unnatural trans-diastereomer. Addition of the commercially available silyl enol ether of acetone (CH\textsubscript{2}=C(OTMS)CH\textsubscript{3}) to 4 directly afforded trans-7 with \(dr = 32:1\) and in reasonable yield. However, we failed to convert the methyl ketone to the corresponding acid under bromoform conditions described by Ley et al22, because this reaction led to mixtures of trans-1 and cis-1. Due to the difficult separation of the two diastereomeric acids, we returned to the addition of silyl ketene acetal to afford trans-5 directly. After chromatographic separation of the isomers, basic hydrolysis of the methyl ester afforded trans-1 in quantitative yield. Thus, we synthesized trans-1 in as few as four steps from alcohol, 2.

Our initial efforts toward the natural (S,S)-cis-diastereomer (cis-1), were directed toward two alternative sequences (Scheme 2.7): a) equilibration from trans-5 to
cis-5 with t-BuOK/THF followed by basic hydrolysis of the ester to provide acid cis-1; and b) direct addition of the lithium enolate of methyl acetate to aldehyde, 4, followed by PCC oxidation of the resulting crude alcohol to afford the desired β-keto methyl ester required for reductive etherification.

Scheme 2.7. Strategies for synthesis of cis-1.

Unfortunately, the equilibration with t-BuOK from trans- to cis- isomers resulted in moderate yield, and possibly due to some hydrolysis. This second route with lithium enolate only provided low yields for the enolate addition step, possibly because the TES protecting alcohol reacted with the lithium enolate. Therefore, without any further optimization for this route, we turned our synthesis to the final approach via Bi(III) catalyzed reductive etherification. We converted (S)-4 to β-keto ester (S)-8, using Roskamp’s protocol23. This mild reaction provided the β-keto ester in excellent yield as a mixture of keto- and enol- forms. Reductive etherification initiated by BiBr\textsubscript{3} with
triethylsilane provided the desired cyclic ester, cis-\((S,S)\)-9 in high yield and excellent selectivity. Finally, basic hydrolysis gave the title compound cis-\((S,S)\)-1 in excellent overall yield (Scheme 2.8).

Scheme 2.8. Stereoselective conversion of aldehyde 4 to cis-\((S,S)\)-1.

(a) 1.2 equiv. \(\text{N}_2\text{CHCO}_2\text{Et}\), 15% SnCl\(_2\), CH\(_2\)Cl\(_2\).
(b) 2.0 equiv. HSiEt\(_3\), 15% BiBr\(_3\), CH\(_3\)CN.
(c) NaOH/MeOH/H\(_2\)O
Diastereoselectivity discussion:

Compared the lower diastereoselectivity for addition of the silyl ketene acetal nucleophile to the intermediate oxocarbenium ion, high trans-selectivity was generally observed when using allyltrimethylsilane and triethylsilane (>99:1). It is interesting to find that these reaction selectivities appear to be inversely proportional to the nucleophilicity parameters described by Mayr and co-workers. The \(\pi \)-nucleophilicity parameter decreases from approximately 8.51 to 5.41 and to 1.79, for \(\text{CH}_2=\text{C(OTMS)}\text{OMe}, \text{CH}_2=\text{C(OTMS)}\text{Me}, \text{CH}_2=\text{CHCH}_2\text{-TMS}, \) respectively. The diastereoselectivity in this series, however, increases from 5–6:1 to 32:1 and to ≥ 99:1. Our data show that the greater the nucleophilicity, the lower the stereoelectronic preference for axial attack. The observed trend between \(\pi \)-nucleophilicity and the observed diastereoselectivity is displayed in Table 2.1 and strongly indicates that the selectivity is likely a kinetic effect of nucleophilic addition.

Table 2.1: Diastereoselectivity of cyclization-addition reactions of \(\pi \)-nucleophiles and aldehyde, 4

<table>
<thead>
<tr>
<th>Nucleophile</th>
<th>Product</th>
<th>(\text{trans/cis}^a)</th>
<th>(\pi)-Nucleophilicity parameter, (N^\Pi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{CH}_2=\text{C(OTMS)}\text{OMe})</td>
<td>(\text{Me} \text{-O} \text{-Me} \text{-CH=CH}_2)</td>
<td>99:1</td>
<td>1.79</td>
</tr>
<tr>
<td>(\text{CH}_2=\text{C(OTMS)}\text{Me})</td>
<td>(\text{Me} \text{-O} \text{-CH=CH}_2 \text{-Me})</td>
<td>32:1</td>
<td>5.41</td>
</tr>
<tr>
<td>(\text{CH}_2=\text{CHCH}_2\text{-TMS})</td>
<td>(\text{Me} \text{-O} \text{-CH=CH}_2 \text{-OMe})</td>
<td>5–6:1</td>
<td>(-8.5^c)</td>
</tr>
</tbody>
</table>

\(^a\) The ratio was determined by capillary GC of crude reaction mixtures before chromatography.

\(^b\) Nucleophilicity parameters obtained from Ref. 22 and therein.

\(^c\) This parameter is an estimate.
Although increases in the nucleophilicity of substrates decreased the diastereoselectivities, added Bu$_4$NOTf reversed this effect slightly (Table 2.2). To ensure that the increased selectivities were not merely due to increases in ionic strength of the solvent, 5-100 % of Me$_4$NCIO$_4$ was added in a separate series. As Table 2.2 shows, the effect appears to be due to the triflate anion rather than just ionic strength. We do not yet know the reason for this salt effect.

Table 2.2: Effects of Bu$_4$NOTf and Me$_4$NCIO$_4$ additives on diastereoselectivities in the tandem cyclization-addition reaction involving aldehyde 4 and the silyl ketene acetal derived from methyl acetate.a

<table>
<thead>
<tr>
<th>entry</th>
<th>additive</th>
<th>mol %</th>
<th>ratio of (trans/cis)b</th>
<th>yield(%)c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bu$_4$NOTf</td>
<td>0</td>
<td>5.8:1</td>
<td>63</td>
</tr>
<tr>
<td>2</td>
<td>-----</td>
<td>5</td>
<td>6.3:1</td>
<td>65</td>
</tr>
<tr>
<td>3</td>
<td>-----</td>
<td>15</td>
<td>6.7:1</td>
<td>61</td>
</tr>
<tr>
<td>4</td>
<td>-----</td>
<td>100</td>
<td>7.8:1</td>
<td>56</td>
</tr>
<tr>
<td>5</td>
<td>Me$_4$NCIO$_4$</td>
<td>5</td>
<td>5.5:1</td>
<td>58</td>
</tr>
<tr>
<td>6</td>
<td>-----</td>
<td>15</td>
<td>5.2:1</td>
<td>60</td>
</tr>
<tr>
<td>7</td>
<td>-----</td>
<td>50</td>
<td>5.3:1</td>
<td>61</td>
</tr>
<tr>
<td>8</td>
<td>-----</td>
<td>100</td>
<td>5.5:1</td>
<td>53</td>
</tr>
</tbody>
</table>

aAll the tandem reactions were carried on 0.5 mmol scale in CH$_3$CN at room temperature using 3.0 equiv of CH$_2$=C(OTMS)OMe and initiated 15% BiBr$_3$. bThe ratio of diastereomers was determined by GLC analysis of crude reaction mixtures. c Isolated yield of combined trans- and cis- isomers.

In conclusion, we established routes from chiral aldehyde, (S)-4 to 2,6-disubstituted tetrahydropyran compounds in good yields and moderate to high diastereoselectivities. The key step of each route is initiated by BiBr$_3$ and the resulting
stereochemistry is consistent with axial addition to a cyclic oxocarbenium ion. However, compared to both allyl trimethysilane or triethyl silane (Et₃SiH), the more reactive silyl ketene acetal nucleophile results in lower diastereoselectivity. The nucleophilicity parameters described by Mayr et al.²⁴ for CH₂=CHCH₂-TMS, CH₂=C(OTMS)Me and CH₂=C(OTMS)OMe indicate that the axial approach of a nucleophile is dictated by the relative nucleophilicity of the silanes: the greater the nucleophilicity, the more rapid the addition and less discriminating the approach to the oxocarbenium ion.

The applications of Bi(III) methodology to trans-1 and cis-1 show the flexibility afforded by tandem cyclization-addition reactions of δ-silyloxy carbonyl compounds. The generally low toxicity of most Bi(III) compounds and their ease of use are noteworthy and their applications toward oxocarbenium ion intermediates affords a convenient alternative to typical Lewis acids such as TMSOTf.
EXPERIMENTAL SECTION

General Information. All reagents were used as received unless otherwise noted. Dichloromethane was distilled from CaH₂ and tetrahydrofuran was purified via a SolvTec® solvent purification system. Chloroform-d, copper cyanide, (S)- and racemic propylene oxide, phenylacetaldehyde, 1-butenylmagnesium bromide (1.0 M in THF), 4-pentenylmagnesium bromide, triphenylphosphine, bismuth(III) bromide, methyl trimethylsilyl dimethylketene acetal, PCC and Me₂S were purchased from Aldrich Chemical Company, Inc. Imidazole and 2,6-lutidine were purchased from Acros Organics and both triethylsilyl chloride (TES-Cl) and triethylsilyl triflate (TES-OTf) were purchased from GFS Chemicals. Methanol, acetonitrile, hexanes, ethyl acetate, sodium hydroxide, sodium bicarbonate, and hydrochloric acid were purchased from Fischer and used as received. All NMR spectroscopic data were obtained using a Varian Mercury 400 MHz nuclear magnetic resonance spectrometer and chemical shifts are reported in ppm downfield from TMS and referenced to either internal TMS or residual protons from the NMR solvent (d = 7.26 and 77.23 for ¹H and ¹³C, respectively in CDCl₃). ¹³C NMR spectra were recorded with the aid of an APT sequence in which methylene and quaternary carbons = e (even) and methyl and methine carbons = o (odd). IR spectra were obtained on a Digilab FTS7000 FT-IR spectrometer using NaCl plates purchased from International Crystal Laboratories. GC-MS traces were recorded on a
Hewlett-Packard 5890 Series II Gas Chromatograph with an Ultra-1 crosslinked (methyl silicone gum; 12 m x 0.2 mm x 0.33 mm) column, equipped with a 70 eV HP 5971A mass selective detector. Thin layer chromatography was performed on Sigma-Aldrich general-purpose silica gel on glass and for flash chromatography was performed using Sorbent Technologies chromatographic silica gel (200-475 MESH). Melting point was recorded by a Mel-Temp® apparatus and were uncorrected.

Preparation of racemic or (S)-6-Hepten-2-ol ((±)-2 or (S)-2):

![Chemical Structure](attachment:image.png)

A mixture of propylene oxide (0.60 mL, 8.6 mmol, 1.0 equiv.) and CuCN (0.038 g, 0.42 mmol) in THF (16 mL) was added to a flame-dried 100 mL round bottom flask under argon. The solution was cooled to -78 °C using a dry ice/acetone bath and 3-butenylmagnesium bromide (0.5 M in THF, 26.0 mL, 12.8 mmol, 1.5 equiv) was added slowly. The solution was allowed to stir and warm to rt over 12 h. Aqueous NH₄Cl was added, and the solution was extracted with Et₂O (3 x 50 mL). The combined organics were washed with brine, dried (MgSO₄), and concentrated in vacuo. The product was purified by column chromatography (8:2 hexanes-EtOAc, Rf = 0.67; 9:1 hexanes-EtOAc, Rf = 0.34) to afford 0.982 g, (86%) as a colorless liquid: IR (neat): 3349 (br), 3078(w), 2969 (s), 2932 (s), 2861 (s), 1416(w), 1122 (m), 910 (s) cm⁻¹;

¹H-NMR (400 MHz, CDCl₃): δ 5.81 (ddt, J = 27.1, 10.6, 6.6 Hz, 1H), 4.98 (dq, J = 17.2, 1.8 Hz; J = 9.5, 1.1 Hz , 2H), 3.80 (m, 1H), 2.06 (m, 2H), 1.45 (m, 4H), 1.19 (d, J = 6.0
Hz, 3H); 13C NMR (100 MHz, CDCl$_3$, ppm): δ 138.3(o), 114.4(e), 67.4(o), 38.5(e), 33.6(e), 24.9(e), 23.2(o). For (S)-2: $[\alpha]_D^{25}$ +12.15 (c 2.91, CHCl$_3$).

Preparation of (±)-triethyl(hept-6-en-2-yloxy)silane ((±)-3 or (S)-3):

A solution of 6-hepten-2-ol (2) (0.610 g, 5.34 mmol) in freshly distilled CH$_2$Cl$_2$ (11 mL) was placed in a flame-dried round bottom flask under argon. Imidazole (0.52 g, 7.64 mmol) was added to the solution and the solution was cooled to 0 °C using an ice water bath. TESOTf (1.45 mL, 6.41 mmol) was added to the cooled solution and the mixture was allowed to warm to rt and stir. When starting material was consumed (~1 h, TLC), aqueous NaHCO$_3$ (ca. 10 mL) was added, the product was then extracted with CH$_2$Cl$_2$, washed with brine, dried (MgSO$_4$), and concentrated in vacuo. The resulting silanol was purified by column chromatography (95:5 hexanes:ethyl acetate, R_f = 0.64) to provide 1.102 g (90%) of (S)-3 as a colorless liquid; IR (neat): 3078(w), 2956(s), 2817(s), 1416(w), 1239(w), 1135(m), 1011(m), 910(m) cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ: 5.81 (dddd, $J = 16.8, 10.2, 6.6, 6.6$ Hz, 1H), 5.00 (dm, $J = 17.2$ Hz, 1H), 4.94 (dm, $J = 10.2$ Hz, 1H), 3.74-3.83 (m, 1H), 2.01-2.07 (m, 2H), 1.25-1.45 (m, 4H), 1.13 (d, $J = 5.9$ Hz, 3H), 0.96 (t, $J = 8.1$ Hz, 9H), 0.59 (q, $J = 7.7$ Hz, 6H); 13C NMR (100 MHz, CDCl$_3$) δ: 139.0(o), 114.4(e), 68.6(o), 39.5(e), 34.1(e), 25.5(e), 24.2(o), 7.2(o) 5.3(e); For (S)-3: $[\alpha]_D^{25}$ + 9.53 (c 1.29, CHCl$_3$).
Preparation of (±)-5-(triethylsilyloxy)hexanal ((±)-4 or (S)-4):

Alkene 3 (0.415 g, 1.82 mmol, 1.0 equiv), CH$_2$Cl$_2$ (25 mL), and methanol (5 mL) were added to an oven-dried round bottom flask equipped with a stir bar. The solution was cooled to −70 °C using a dry ice/acetone bath. NaHCO$_3$ (−0.1 g) was added and O$_3$ was bubbled through the solution for approximately 15 minutes. O$_2$ was then bubbled through the solution for 15 minutes followed by argon. Me$_2$S (excess, 0.8 mL) was added and the mixture warmed to rt and stirred for 48 h. The mixture was filtered through Celite and concentrated. The product was purified by column chromatography (9:1 hexanes:ethyl acetate, R$_f$ = 0.30) to afford 0.308 g (74 %) of (±)-4 as a colorless oil; IR (neat): 2957(s), 2878(s), 2814(m), 2716(m), 1728(s), 1140(m), 739(s) cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ: 9.77 (t, J = 2.0 Hz, 1H), 3.77-3.86 (m, 1H), 2.44 (dt, J = 7.3, 1.8 Hz, 2H), 1.68-1.78 (m, 1H), 1.58-1.62 (m, 1H), 1.40-1.50 (m, 2H), 1.15 (d, J = 6.2 Hz, 3H), 0.96 (t, J = 8.1 Hz, 9H), 0.60 (q, J = 7.7 Hz, 6H); 13C NMR (100 MHz, CDCl$_3$) δ: 202.6(o), 68.3(o), 44.2(e), 39.3(e), 24.1(o), 18.7(e), 7.3(o), 5.3(e). For (S)-4: $[\alpha]_D^{25}$ + 12.76 (c 1.05, CHCl$_3$).

Preparation of (±) methyl trans-2-(6-methyl-tetrahydro-2H-pyran-2-yl)acetate (trans-5):

Aldehyde 4 (0.040 g, 0.17 mmol, 1.0 equiv) was added to an oven-dried test tube equipped with a micro stir bar via preweighed syringe. Acetonitrile (2.0 mL) was
added under an argon atmosphere followed by a solution of BiBr$_3$ (0.10 mL, 0.176 mmol, 10.2 %) in acetonitrile (prepared by dissolution of 0.079 g, 0.18 mmol BiBr$_3$ in 1.0 mL acetonitrile). Silyl ketene acetal (0.031 g, 0.211 mmol, 1.2 equiv) was then added via syringe in two equal portions. After the reaction stirred for ~2 h, the solvent was evaporated and the reaction mixture filtered through a plug of silica gel using CH$_2$Cl$_2$ as eluant. After removal of the solvent in vacuo, the diastereomers were separated by column chromatography (9:1 hexanes-ethyl acetate, R$_f$ = 0.34 for trans-isomer and 0.44 for cis-isomer) to afford 0.020 g (68%) of trans-5 as a colorless oil: IR (neat): 2936(s), 2869(m), 1741 (s), 1288(m), 1168(m), 1049(m), cm$^{-1}$; 1H-NMR (400 MHz, CDCl$_3$): δ 4.18 (tdd, J= 8.8, 6.2, 3.7 Hz, 1H), 3.87 (dqd, J = 12.8, 6.2, 3.7 Hz, 1H), 3.62 (s, 3H), 2.61 (dd, J = 14.7, 8.1 Hz, 1H), 2.37 (dd, J = 14.6, 5.9 Hz, 1H), 1.61 (m, 2H), 1.26 (m, 4H), 1.11 (d, J = 6.6 Hz, 3H); 13C-NMR (100 MHz, CDCl$_3$) δ 171.9(e), 68.2(o), 67.7(o), 51.9(o), 39.2(e), 31.5(e), 29.9(e), 19.8(o), 18.5(e).

Preparation of (+)-methyl cis-2-(6-methyltetra-hydro-2H-pyran-2-yl)acetate (cis-5):

Ester trans-5 (0.077 g, 0.45 mmol, 1.0 equiv) was added via a pre-weighed 1.0 mL syringe to a flame dried round bottom flask equipped with a stir bar and under an argon atmosphere. THF (2.1 mL) was added to the flask and the solution was cooled to 0 °C
with an ice/salt water bath. Solid tert-BuOK (0.014 g, 0.13 mmol, 28 %) was added to the flask and the solution turned dark orange. The reaction stirred for 1.5 h and was quenched with aqueous NH₄Cl (~10 mL). The product was extracted with EtOAc (3 x 10 mL), dried (MgSO₄), and concentrated in vacuo to afford 0.051 g (67 %) of cis-5 (dr ≥ 19:1) as a colorless oil: IR (neat): 2935(s), 2858(m), 1744(s), 1287(m), 1172(m), 1044(m), cm⁻¹;

^1H-NMR (400 MHz, CDCl₃) δ 3.75 (tdd, J = 9.5, 5.9, 1.8 Hz, 1H), 3.68 (s, 3H), 3.46 (dqd, J = 14.3, 3.7, 1.8 Hz, 1H), 2.58 (dd, J = 15.0, 7.3 Hz, 1H), 2.39 (dd, J = 15.2, 6.0 Hz, 1H), 1.82 (m, 2H), 1.58 (m, 2H), 1.20 (m, 2H), 1.15 (d, J = 6.2 Hz, 3H); ^13C-NMR (100 MHz, CDCl₃) δ 172.0(e), 74.5(o), 74.3(o), 51.9(o), 41.9(e), 33.3(e), 31.3(e), 23.8(o), 22.5(e).

Preparation of (±) allyl trans-2-6-methyl-tetrahydro-2H-pyran, trans-6:

An oven-dried test tube equipped with a micro stir bar was prepared under argon. Aldehyde 4 (0.115 g, 0.50 mmol, 1.0 equiv) was added by preweighed syringe followed by CH₃CN (4.0 mL). A solution (0.35 mL) of BiBr₃ (100 mg/mL BiBr₃ in CH₃CN) was added to the reaction mixture, then allyltrimethylsilane (0.16 mL, 1.0 mmol, 2.0 equiv) was added via syringe. The reaction was stirred for 2h, then water (30 mL) was added and the mixture was extracted with Et₂O (2 x 20 mL). The combined ether layers were dried (MgSO₄) and concentrated in vacuo. The product was purified by column chromatography (9:1 petroleum ether:Et₂O, Rf = 0.62) to afford 0.049g (70%) of (±)-trans-8 as a colorless oil; IR (neat): 3076(w),
Preparation of cis-2-(6-methyl-tetrahydro-2H- pyran-2-yl)acetic acid, (±)-cis-1
and/or(+)-(S,S)-cis-1: Ester 9 (0.128 g, 0.68 mmol) was weighed into a 5 mL round bottom flask, Methanol (1.0 mL) and 10% aqueous NaOH (2.0 mL) solutions were added, the reaction refluxed for 4 h, then washed with ethyl ether to remove neutral impurities. The aqueous layer was acidified with conc. HCl, extracted with Et₂O (3 x 5 mL) and the organic layers combined. The solution was dried (MgSO₄) and concentrated in vacuo, leaving 0.101 g (94%) of (±)-cis-1 as a white solid: m.p. 51–53 °C; For (+)-(S,S)-cis-1 as a colorless, viscous oil: IR (neat) 3079(br, s), 2974(m), 2938(s), 2864(m), 1375(m), 1204(m), 1043(m) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ: 5.81(dddd, J = 16.8, 9.9, 7.0, 7.0 Hz, 1H), 5.07 (overlapping dm, J = 17.2 Hz, 1H), 5.04 (overlapping dm, J = 10.3 Hz, 1H), 3.93(dqd, J = 13.2, 6.6, 3.7 Hz, 1H), 3.81 (tdd, J = 9.2, 6.6, 3.7 Hz, 1H), 2.42 (dddd, J = 14.3, 7.0, 7.0, 3.5, 3.5 Hz, 1H), 2.21 (dddd, J = 14.1, 7.0, 7.0, 3.5, 3.5 Hz, 1H), 1.60-1.73 (m, 4H), 1.24-1.40 (m, 2H), 1.08 (d, J = 6.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 135.6(o), 116.5(e), 70.8(o), 67.2(o), 38.2(e), 31.8(e), 29.5(e), 20.0(o), 18.6(e).
41.6(e), 33.1(e), 31.1(e), 23.6(e), 22.4(o); Anal. cal. For C₈H₁₄O₃ (158.19): C60.81, H9.01; Found: C60.74, H8.92. For (+)-(S,S)-cis-1: [α] Đ₂₅⁺19.35 (c = 5.78, CHCl₃), Lit: [α] Đ₂₅⁺18.6 (c 2.77, CHCl₃), ref [α] Đ₃₁⁺20.5 (c 1.23, CHCl₃).

Preparation of (±)trans-2-(6-methyl-tetrahydro-2H-pyran-2-yl)acetic acid, (±)

trans-1: *trans*-ester 5 (0.086 g, 0.50 mmol) was weighed into a 5 mL round bottom flask. Methanol (0.70 mL) and 10% aqueous NaOH (1.50 mL) solution were then added, the solution refluxed for 3 hours, then washed with ethyl ether to remove neutral impurities. The aqueous layer was then acidified with concentration HCl, extracted with ethyl ether (3 x 20 mL), the combined ether layers dried (MgSO₄) and concentrated in vacuo, leaving 0.079 g (99%) of trans-1 as a colorless, viscous oil: IR (neat, NaCl): 3051(br, s), 2937(s), 2873(s), 2657(br, m), 1712(s), 1209(m), 1047(m) cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 11.45(br, s, 1H), 4.26(tdd, J= 8.8, 6.6, 4.0 Hz, 1H), 4.01(dq, J=12.5, 6.2, 2.9 Hz, 1H), 2.71 (dd, J = 15.0, 8.4 Hz, 1H), 2.48 (dd, J = 15.4, 5.5 Hz, 1H), 1.71 (m, 2H), 1.64 (m, 2H), 1.37 (m, 2H), 1.21 (d, J = 6.2 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 176.6(e), 68.1(o), 67.9(o), 39.1(e), 31.2(e), 29.9(e), 19.5(o), 18.3(e).
Preparation of (±) trans-2-(6-methyl-tetrahydro-2H-pyran-2-yl)propan-2-one, 7:

An oven-dried test tube equipped with a micro stir bar was cooled under argon. Aldehyde 4 (0.089 g, 0.50 mmol, 1.0 equiv) was added via pre-weighed syringe followed by acetonitrile (4.0 mL). A solution (0.35mL) of BiBr₃ in acetonitrile (100mg/mL BiBr₃ in acetonitrile) was added to the reaction mixture. Silyl enol ether of acetone (0.20 mL, 1.0 mmol, 2.0 equiv) was then added. After the reaction stirred overnight, the solvent was evaporated, and the reaction mixture filtered through a plug of SiO₂ with CH₂Cl₂ as eluant. The crude material was concentrated in vacuo and the product was purified by column chromatography (9:1 hexanes-ethyl acetate, Rf = 0.28) to afford 0.045g (57%) of (±)-trans-7 as a colorless oil: IR (neat) 2935(s), 2869(m), 1715(s), 1358(m), 1264(m), 1053(m) , cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 4.27 (tdd, J= 8.8, 6.2, 3.7 Hz, 1H), 3.92 (dqd, J = 12.5, 6.2, 3.7 Hz,1H), 2.79 (dd, J = 15.4, 8.5 Hz, 1H), 2.37 (dd, J = 15.0, 5.5 Hz, 1H), 2.12(s, 3H), 1.68 (m, 4H), 1.33 (m, 2H), 1.18 (d, J=6.2 Hz, 3H) ; ¹³C-NMR (100 MHz, CDCl₃) δ 207.2(e), 67.6(o), 67.5(o), 48.1(e), 31.2(e), 30.5(o), 30.1(e), 19.4(o), 18.3(e).
Preparation of Ethyl 3-oxo-7-(triethylsilyloxy)octanoate: (±)-8 or (S)-8

SnCl₂ (14.2 mg, 0.075 mmol, 0.15 equiv) was weighed into a 5 mL round bottom flask. CH₂Cl₂ (2.0 mL) and ethyl diazoacetate (63 μL, 0.60 mmol, 1.2 equiv) were then added by syringe. Hexanal 4 (0.115 g, 0.50 mmol, 1.0 equiv) was dissolved in 1.0 mL CH₂Cl₂ and added slowly by syringe. After 1.5 h, the solution was quenched with brine and extracted with Et₂O (3 x 10 mL). The combined organics were dried (MgSO₄), concentrated in vacuo and the residue purified by column chromatography (7:3 pentanes:ethyl ether, Rf = 0.77) to provide 0.139 g (88%) of (±)-5 as a colorless liquid which contained ~ 15% of the enol form; IR (neat): 2959(s), 2878(s), 1748(s), 1721(s), 1644(m), 1239(s), 1138(m), 1036(m) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ: 4.19 (q, J = 7.2 Hz, 2H), 3.75-3.84 (m, 1H), 3.43 (s, 2H), 2.55 (t, J = 7.3 Hz, 2H), 1.57-1.72 (m, 2H), 1.37-1.47 (m, 2H), 1.28 (t, J = 7.2 Hz, 3H), 1.13 (d, J = 6.0 Hz, 3H), 0.95 (t, J = 7.8 Hz, 9H), 0.59 (q, J = 7.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ: 202.7(e), 167.2(e), 68.4(o), 61.6(e), 49.6(e), 43.4(e), 39.2(e), 24.1(o), 20.1(e), 14.5(o), 7.3(o), 5.3(e); For the enol form; ¹H-NMR (400 MHz, CDCl₃) δ: 12.1 (s, 1H), 4.98 (s, 1H), 4.19 (q, J = 7.2 Hz, 2H), 3.75-3.84 (m, 1H), 2.19 (t, J = 7.3 Hz, 2H), 1.57-1.72 (m, 2H), 1.37-1.44 (m, 2H), 1.29 (t, J = 7.2 Hz, 3H), 1.13 (d, J = 6.0 Hz, 3H), 0.95 (t, J = 7.8 Hz, 9H), 0.59 (q, J = 7.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ: 178.6(e), 94.5(e), 89.3(o), 68.3(o), 60.2(e), 39.3(e), 35.3(e), 24.1(o), 22.8(e), 14.6(o), 7.3(o), 5.3(e); Anal. cal. For C₁₆H₃₂O₄Si (316.51): C 60.72, H 10.19; Found: C 60.85, H
10.43; For (S)-5: $[\alpha]_D^{25} + 11.44$ (c 2.71, CHCl$_3$).

Preparation of ethyl cis-2-(6-methyl-tetrahydro-2H-pyran-2-yl)acetate, (±)-cis-9

and/or (+)-(S,S)-cis-9:

Octanoate 8 (0.137 g, 0.50 mmol, 1.0 equiv) was weighed into a 15 mL round bottom flask and CH$_3$CN (4.0 mL) added by syringe. BiBr$_3$ solution (100 mg/1mL in CH$_3$CN) (0.35 mL, 0.075 mmol, 0.15 equiv) and HSiEt$_3$ (0.16 mL, 1.0 mmol, 2.0 equiv) were added simultaneously. After 1h, solution was concentrated in vacuo, filtered through a small SiO$_2$ pipette column and concentrated in vacuo again. The product was purified by column chromatography (9:1 hexanes-ethyl acetate, $R_f = 0.46$) to provide 0.086 g (92%) as a colorless liquid: IR (neat) 2974(s), 2934(s), 2860(m), 1738(s), 1286(s), 1173(s), 1040(s), cm$^{-1}$; 1H-NMR (400 MHz, CDCl$_3$) δ 4.15 (q, $J = 7.2$ Hz, 2H), 3.77 (tdd, $J = 9.4, 4.6, 2.1$ Hz, 1H), 3.47 (dqd, $J = 12.1, 4.3, 1.6$ Hz, 1H), 2.55 (dd, $J = 15.0, 7.4$ Hz, 1H), 2.37 (dd, $J = 14.8, 5.8$ Hz, 1H), 1.82 (m, 2H), 1.58 (m, 2H), 1.26 (t, $J = 7.2$ Hz, 3H), 1.20 (m, 2H), 1.15 (d, $J = 6.2$ Hz, 3H). 13C-NMR (100 MHz, CDCl$_3$) δ 171.5(e), 74.6(o), 74.3(o), 60.9(e), 41.1(e), 33.2(e), 31.3(e), 23.8(e), 22.4(o), 14.6(o). Anal. cal. for C$_{10}$H$_{18}$O$_3$(186.25): C 64.59, H 9.74; found: C 63.97, H 9.80.

For (+)-(S,S)-cis-5: $[\alpha]_D^{25} + 16.43$ (c 2.13, CHCl$_3$).
Preparation of ethyl trans-2-(6-methyl-tetrahydro-2H-pyran-2-yl)acetate,

(±)-trans-9:

Cycloether trans-6 (0.070 g, 0.50 mmol, 1.0 equiv) was weighed into a 100 mL round bottom flask and CH₂Cl₂ (30.0 mL) added by syringe. NaOH solution (2.0 mol/L in EtOH) (5.0 mL, 10.0 mmol, 20.0 equiv) was added. Cooled the solution to -78°C and ozone gas was passed through the solution for 1.5 h. Water and Et₂O was added to the solution and warmed to rt, and then extracted with Et₂O (3 x 20 mL), the combined ether layers dried (MgSO₄) and concentrated in vacuo. The product was purified by column chromatography (9:1 hexane-ethyl acetate, Rf = 0.36) to afford 0.057g (61%) of (±)-trans-6 as a colorless liquid: IR (neat) 2974(s), 2934(s), 2860(m), 1738(s), 1286(s), 1173(s), 1040(s), cm⁻¹;

¹H-NMR (400 MHz, CDCl₃) δ 4.26 (tdd, J = 9.9, 6.2, 3.7 Hz, 1H), 4.15 (q, J = 7.3 Hz, 2H), 3.94 (dqd, J = 12.8, 6.6, 3.3 Hz, 1H), 2.67 (dd, J = 14.6, 7.4 Hz, 1H), 2.37 (dd, J = 14.6, 6.2 Hz, 1H), 1.68 (m, 4H), 1.34 (m, 2H), 1.26 (t, J = 7.1 Hz, 3H), 1.18 (d, J = 6.6 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 171.5(e), 68.3(o), 67.6(o), 60.6(e), 39.4(e), 31.5(e), 29.9(e), 19.9(o), 18.6(e), 14.6(o).
REFERENCES

CHAPTER III

BiBr$_3$-INITIATED TANDEM ADDITION/SILYL-PRINS REACTIONS TO 2,6-DISUBSTITUTED DIHYDROPYRANS

Background for vinylsilane:

Recently, organosilicon reagents such as allyl- and vinylsilanes have become powerful substrates in the construction of natural products. In our approach, vinyltrimethylsilanes were used as nucleophiles. Two important factors are concerned regarding the reaction of vinylsilanes. First, the regiochemistry in electrophilic substituted reactions always takes place at α-carbon1. More important, although a rotation around the carbon-carbon single bond may happen when β-silyl cation forms, the lowest energy conformation is where the carbon-silicon σ-bond is coplanar and conjugated with the adjacent vacant p-orbital of the carbon cation. Therefore, the α-carbon and β-carbon single bond cannot rotate freely and the configuration at the double bond remains the same as in the starting material2. In addition, the stability of reagents in the synthesis of a wide range of natural products makes vinylsilanes particularly important in organic synthesis. The nucleophilicity of vinylsilanes is comparable to that of a corresponding alkene and significantly less than that of allylsilanes. Simple frontier M.O. arguments would suggest that vinylsilanes should be somewhat poorer electron-donors than alkenes3 as a result of delocalization. This calculation indicates that there is slightly more negative
ionization potential of vinyltrimethylsilane versus 3-methyl-1-butene. As a result of the low reactivity of vinylsilanes toward electrophiles and nucleophiles, oxidizing and reducing agents, many chemical reactions can be carried out in the presence of vinylsilanes.

Two distinct modes of cyclization are possible with this particular terminator of vinylsilane: cyclization can occur in an exocyclic or endocyclic mode with respect to the geometry of vinylsilane terminators. In all cyclizations, the silyl group controls the regiochemistry of the double bond in products (Figure 3.1).

Figure 3.1: Two distinct cyclization models for vinylsilanes

![Diagram of cyclization models](image)

Vinylsilanes have many applications in organic synthesis, either for the synthesis of cyclic or acyclic products. Here, we focus on the cyclic products. For example, the first intramolecular variant of an acylium ion initiated cyclization reaction was reported by Burke for the preparation of spiro[4,5]decadienones (Scheme 3.1). Dimedone methyl ether was treated with [β-(trimethylsilyl)vinyl] lithium, followed by aqueous HCl solution to give dienone containing a vinylsilane moiety with high E stereoselectivity.
Reduction of the ketone to the allylic alcohol, followed by Claisen rearrangement to generate the intermediate aldehyde, which was oxidized by Jones' reagent to subsequently provide the carboxylic acid. Treatment of the acid with oxalyl chloride in benzene solvent gave an acid chloride which was directly treated with TiCl₄. The resulting acylium ion underwent cyclization to give enone in excellent yield.

Scheme 3.1: Approach to spiro[4,5]decadienones

2) **Vinylsilane terminated cyclization with aldehydes and acetals**. Iminium ions can also react with vinylsilanes to give the cyclization products. Compared to the relatively harsh conditions for iminium ion cyclizations with arenes, the iminium ion-vinylsilane cyclization can be accomplished under mild and near-neutral conditions. These cyclizations have been utilized to prepare five-, six- and seven-membered nitrogen heterocycles. For example, in the total synthesis of (+)-Pumiliotoxin 251 D, a vinyl silane cyclization was used to close the six-membered ring under CSA initiated conditions⁶ (eq 3.1).
Related cyclizations in which vinylsilanes nucleophilically attack oxocarbenium ion also lead to cyclic ether products. Four models\(^7\) of oxonium ion initiated cyclizations are thereby possible, depending on the orientation of initiating and terminating functions (Figure 3.2). All of these reaction modes have been explored, and examples of successful cyclizations have been reported except the last one, the Declerco mode.

Figure 3.2: Four possible oxonium ion vinylsilane cyclization models

Acyliminium ions are powerful cyclization initiators and have been used in a wide range of cationic cyclizations. Several methods have been developed to generate acyliminium ions. Among these methods, the most common way is generation from
hydroxylactams. Use of trifluoroacetic acid as solvent initiated rapid cyclization of hydroxylactams to bicyclic lactams in excellent yields (eq 3.2). This reaction provided a nice example of the acid stability of vinylsilanes, due to the strongly acidic condition used.

\[
\begin{align*}
\text{N} & \quad \text{TMS} \\
\text{OH} & \quad \text{CF}_3\text{COOH}
\end{align*}
\]

25°C 15 min

(3.2)
Background for dihydropyrans:

Functionalized pyran systems are important subunits in biologically active compounds. Among these pyran moieties, 2,6-disubstituted dihydropyran systems are important targets in organic synthesis, because they are not only common in many natural products, such as scytophycin C⁹, but also synthetically useful intermediates for polysubstituted tetrahydropyran moieties. Therefore, many methods have been reported to develop the dihydropyrans.

Palladium mediated reactions to synthesis of C-arylglycosides¹⁰ (eq 3.3). Transmetalation of the phenylboronic acid with Pd(OAc)₂ gives PhPd(OAc), which then undergoes syn addition the glycal double bond to generate the R-Pd(OAc) intermediate. The intermediate was unstable and anti elimination of Pd(OAc)₂ quickly occurred to give C-arylglycosides. The reaction utilized the easy addition of the Ar-Pd complex with an alkene.

\[
\begin{align*}
\text{ArB(OH)₂} & \quad 10 \text{ mol} \% \text{ Pd(OAc)}₂ \quad \text{CH₃CN} \\
\rightarrow & \quad \text{Ar} \\
\end{align*}
\] (3.3)

Ring closing metathesis. Grubbs' catalyst was used for ring closing metathesis of allylic-homoallylic ethers into dihydropyran¹¹ (eq 3.4). The problem for this methodology is no diastereomeric center can be introduced during the reaction and both the stereochemical centers must be built into the substrate.
Asymmetric Hetero-Diels-Alder reaction. During the total synthesis of Phorboxazoles, a Jacobsen hetero Diels-Alder reaction was used as a key step in the synthesis of an advanced C4-C32 subunit12 (eq 3.5). Although the selectivity was good, about one half starting material was recovered even after two days.

Prins cyclization methodology. Among these methods discussed above, the most simple and direct methodology towards the dihydropyran synthesis involves Prins cyclization reactions. Several examples are related to this issue. For example, synthesis of dihydropyrans using a novel carbonyl allylation-Prins cyclization by utilizing 3-trimethylsilylallyltributylstannane leads to high cis- diastereoselectivities13 (eq 3.6). The greater reactivity of allyl tributylstannane affords allyl silanes after InCl\textsubscript{3} initiated allylation of one equivalent aldehyde. Subsequent addition of a second equivalent aldehyde generates oxocarbenium ion intermediate that undergoes intramolecular allylation to produce the expected products with high cis- selectivity.

\[
2 \text{RCHO} + \text{TMS} \stackrel{\text{SnBu}_3}{\text{CH}_2\text{Cl}_2} \xrightarrow{\text{InCl}_3} \text{R-O-R} \text{(3.6)}
\]
Another method involves stereocontrolled [4+2]-annulation access to dihydropyran, starting from crotyl silanes and corresponding aldehydes14 (eq 3.7). This method is important in the synthesis of fully substituted tetrahydropyrans. An oxocarbenium ion intermediate was generated by nucleophilic attack of trimethylsilyloxy group with electrophilic aldehyde, followed by intramolecular cyclization during which two new stereocenters are formed with high diastereoselectivities.

![Chemical equation](3.7)

The third construction of 2,6-disubstituted dihydropyrans involves vinylsilane terminated cyclization of ester-substituted oxycarbenium ion intermediates15 (eq 3.8). It should be noted that the configuration of vinylsilanes has important effect in the diastereomeric ratio of products. The Z- configurations generally led to high cis-selectivity, however, the E-conformation afforded the trans isomer with moderate selectivity.

![Chemical equation](3.8)

Yet another method is the intramolecular silyl-modified Sakurai reaction (ISMS). β-Trimethylsilyloxy vinyltrimethylsilanes were reacted with several aldehydes in TMSOTf catalyst16 (eq 3.9). TMSOTf is a strong Lewis acid, thus, this reaction is
usually carried out at \(-78\, ^\circ\text{C}\). Dobbs and co-workers recently described a variation of this reaction in which they used (Z)-4-trimethylsilyl-3-buten-1-ol, an unprotected homoallylic alcohol, and aldehydes were under \(\text{InCl}_3\) initiated condition.\(^\text{17}\)

\[
\begin{array}{c}
\text{TMS} \\
\text{R} \\
\text{OTMS}
\end{array}
\quad + \quad
\begin{array}{c}
\text{R}_2\text{CHO}
\end{array}
\xrightarrow{T\text{MSOTf}}
\begin{array}{c}
\text{R} \\
\text{O} \\
\text{R}_2
\end{array}
\quad \text{(-78\, ^\circ\text{C})} \quad \text{CH}_2\text{Cl}_2
\]
Synthetic strategy for dihydropyrans

2,6-Disubstituted dihydropyran systems are important targets in organic synthesis. These ring systems are not only present in many natural products, such as scytophyacin C1,9 but are also synthetically useful intermediates for polysubstituted tetrahydropyran ring systems. As previously outlined, many approaches18 have been reported for dihydropyran synthesis, such as annulating reaction with trimethylsilylallyltributylstannane18f and the intramolecular silyl-modified Sakurai reaction (ISMS)18b,18d using TMSOTf as catalyst. Dobbs and co-workers17,18a utilized the 4-trimethylsilyl-3-buten-1-ols and aldehydes under InCl₃ conditions to obtain the dihydropyran units in good yield with high diastereoselectivities. However, the toxicity of tin compounds in the annulation reaction and the chromatographic overlap of products with the tin derivatives limited its application. TMSOTf as a strong Lewis acid requires strictly anhydrous conditions at low temperature conditions. Indium is also toxic and using 1.0 equiv. makes it expensive as an initiator and causes some environmental problems. In addition, few examples of InCl₃ initiated reactions with aromatic rings have been reported.

Recently, bismuth compounds, which are convenient, inexpensive, and environmentally friendly sources of Lewis acid, have become studied as effective catalysts in organic synthesis.19 Many of the reactions that bismuth initiates are simple silyl-protection and deprotection during the reactions. Several groups have described the
synthesis of tetrahydropyran derivatives by using the silyl-protected alcohol and aldehydes and/or ketones. Based on the chemistry involving vinyltrimethylsilane as a nucleophile to attack oxocarbenium ions, it is now possible to synthesize 2,6-disubstituted dihydropyrans using BiBr₃ as an initiator for cyclization reactions.

We initially used the simple (Z)-1-trimethylsilyl-4-triethylsilyloxy-butene, 5a with benzaldehyde, to establish this approach to dihydropyran moiety (eq 3.10). Fortunately, the cyclization proceeded in excellent yield. We also investigated the use of TBDMS protected alcohol and obtained the desired product in 84 % yield, but extended reaction time under refluxing conditions were required. Therefore, we turned our attention to triethylsilyl protected vinyltrimethylsilanes to react with several aldehydes.

\[
\text{OTES} \quad \text{CH}_2\text{Cl}_2, \quad \text{RT, 12 h} \quad 74 \%
\]

The required β-triethylsilyloxy vinyltrimethylsilane substrates, 5a-c, (Scheme 3.2) were synthesized by a six steps process: Propargyl bromide was added to aldehydes under the ultrasonic conditions reported by Lee etc. to obtain the homoprogargylic alcohols, 1a-c. The hydroxyl moiety was subsequently protected as DHP (or TBDMS) ether, 2a-c, and the alkyne silylated to generate alkytrimethylsilanes, 3a-c. DIBAL-H reduction of the silylated alkyne and cleavage of protecting group provided (Z)-β-hydroxy-vinyltrimethylsilanes, 4a-c, in good yields and selectivities. The alcohols were then simply reprotected as β-triethylsilyloxy derivatives, 5a-c.
Scheme 3.2: Synthesis of key intermediate, 5 in the construction of dihydropyran

![Scheme 3.2](image)

Several Lewis acids were examined to optimize this silyl-Prins reaction (Table 3.1). Considering that one mole BiBr₃ might generate 2 moles HBr (the same reasoning for TiCl₄), the amount of other Lewis acids used as initiators were doubled. Of the Lewis acids screened, BiBr₃ in CH₂Cl₂ afforded the best yields of desired product, 7.

Table 3.1: Optimization for the synthesis of dihydropyran, 7

<table>
<thead>
<tr>
<th>entry</th>
<th>Lewis acid</th>
<th>Conditions</th>
<th>YIELD</th>
<th>dr (GC, cis/trans)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5% BiBr₃</td>
<td>Rt</td>
<td></td>
<td>>99:1</td>
</tr>
<tr>
<td>2</td>
<td>5% BiBr₃</td>
<td>Rt</td>
<td></td>
<td>>99:1</td>
</tr>
<tr>
<td>3</td>
<td>10% HCl</td>
<td>Rt</td>
<td></td>
<td>>99:1</td>
</tr>
<tr>
<td>4</td>
<td>5% TiCl₄</td>
<td>-78 °C to Rt</td>
<td></td>
<td>>99:1</td>
</tr>
<tr>
<td>5</td>
<td>10% BF₃</td>
<td>-78 °C to Rt</td>
<td></td>
<td>>99:1</td>
</tr>
<tr>
<td>6</td>
<td>10% TMSOTf</td>
<td>-78 °C to Rt</td>
<td></td>
<td>>99:1</td>
</tr>
</tbody>
</table>

*a All reactions were carried on 0.5 mmol scale in 5.0 mL CH₂Cl₂ at room temperature using 2.0 equiv. benzaldehydes.
*¹ Diasteroeromic ratios were determined by capillary GC analysis of crude reaction mixtures.
*² Isolated yield of pure cis-isomers only, after column flash chromatography.
*³ The reaction was carried in 5.0 mL CH₃CN instead of CH₂Cl₂.
Encouraged by the bismuth results, we turned our attention to the effects of different substituents on both the vinylsilanes and aromatic aldehyde. Both aliphatic and aromatic aldehydes were effective substrates, reacting smoothly with the vinylsilanes to provide the expected dihydropyrans in good to excellent yields. Our data from Table 3.2 indicate that most reactions provided the cis- isomers with high stereoselectivity. In general, the major stereoisomer arises by the cyclization of an E-oxocarbenium ion (I, Figure 3.3) in a chairlike conformation. The electrophilic cyclization is concerted with the addition of the electrophile and nucleophile to the alkene taking place with an synclinal geometry. Precedent23,18c,18d indicates that the oxa-Cope rearrangement of I to II occurs prior to cyclization as shown in Figure 3.3. Although the Cope rearrangement is believed to be fast compared to the cyclization process, there should be some distribution between the intermediates I and II, because different groups would stabilize the oxocarbenium ion energy by different amounts. If phenyl rings are conjugated with the oxocarbonium ion to distribute the positive charge, this would stabilize the oxocarbenium ion by resonance. The TMS group in the axial position would also stabilize the β-cation much more effectively than a TMS in equatorial position are shown in intermediate III (Figure 3.3), so the conversion from transition state structure III to trans-isomer is expected to be slow relative to Silyl-Prins from intermediate II. This stereoelectronic effect probably explains why the cis products were the dominant isomers.
Table 3.2. Synthesis of disubstituted dihydropyrans

\[
\begin{array}{cccc}
\text{entry}^a & \text{silane } R^1 & \text{Aldehyde } R^2 & \text{dr (GC, cis/trans)}^b & \text{Products (Yield, %)}^c \\
1 & H & Ph- & ----- & 6(74) \\
2 & n-C_5H_{11}^- & Ph- & >99:1 & 7(70) \\
3 & Ph & p-CF_3Ph- & >99:1 & 8(82) \\
4 & Ph & p-MeOC_6H_4^- & 2-3:1^d & 9(47) \\
5 & Ph & PhCH_2^- & 35:1 & 10(94) \\
6 & Ph & Ph- & 4-5:1 & 11(55) \\
7 & n-C_5H_{11}^- & p-CF_3Ph- & 73:1 & 12(74) \\
8 & n-C_5H_{11}^- & p-MeOC_6H_4^- & 2-3:1^d & 13(58) \\
9 & n-C_5H_{11}^- & PhCH_2^- & 45:1 & 14(97) \\
10 & n-C_5H_{11}^- & i-Pr- & >99:1 & 15(88) \\
11 & n-C_5H_{11}^- & o-CHOPh- & >99:1 & 16(98) \\
\end{array}
\]

^a All the reactions were carried on 0.5 mmol scale in 5.0 mL CH_2Cl_2 at room temperature using 2.0 equiv. aldehydes.
^b Diastereomeric ratios were determined by capillary GC analysis of crude reaction mixtures.
^c Isolated yield of pure cis-isomers only, after column flash chromatography.
^d Diastereomeric ratios were determined by ^1H NMR spectroscopic analysis of crude reaction mixtures.

Figure 3.3: Possible transition state in Prins cyclizations

The moderate diastereoselectivity of 2,6-diphenyl-3,6-dihydro-2H-pyran (entry 6, Table 3.2) was significantly different from other highly selective reactions in Table 3.2. This product is, however, different from other entries. When either structure I or II was
the dominant transition state structure, the positive charge of oxocarbenium ion would
distribute in either phenyl ring equally. When two phenyl rings were \textit{trans}, it was more
effective to distribute the positive charge and the transition state energy was lowered.
Therefore, energy difference between \textit{trans}- and \textit{cis}- oxocarbenium ions should be
smaller than other entries, and lowered the selectivity.

Compared to aliphatic aldehydes, the use of aromatic aldehydes resulted in
somewhat lower yields. It was interesting that introduction of an electron withdrawing
group in aromatic rings would increase the yields and electron donating group would
decrease the yields (Entries 2-4, 6-8, Table 3.2). To our knowledge, no one has reported
anisaldehyde as a carbonyl moiety in this ISMS reaction before, possibly because of the
low yield. The yield was reasonably good, however, under BiBr$_3$-initiated reaction
conditions. Surprisingly, the diastereoselectivities for the anisole-derived products
(entries 4 and 8, Table 3.2) were much lower than those of other reactions and during
observation of the reaction by 1H NMR spectroscopy, it appeared that the \textit{trans}-isomers
slowly isomerized to the more stable \textit{cis}- isomer. Therefore, we conducted the reaction
between anisaldehyde and (Z)-1-(1-(triethylsilyloxy)-4-(trimethylsilyl)but-3-enyl)
benzene in an NMR tube using CDCl$_3$ as solvent and determined the correlation between
initial ratio of \textit{trans}/\textit{cis}- dihydropyran and reaction time (Figure 3.4).
Figure 3.4: The correlation between reaction time and diastereoselectivity (trans-/cis-) for entry 4

![Graph showing the correlation between reaction time and diastereoselectivity](chart.png)

The reaction was carried in 0.1 mmol scale in 1.0 mL CDCl₃, using 5% BiBr₃ as catalyst and 2.0 equiv. anisaldehyde. The CDCl₃ was passed through MgSO₄ and basic Al₂O₃ to eliminate trace water and acid. The reaction was completed in Ca. 110 min, according to the consumption of vinyltrimethylsilane.

According to Figure 3.4, the diastereoselectivity of trans-/cis- dihydropyran decreased with prolonged reaction time and the trans isomer was initially the major product. We propose that the trans- isomer is kinetic preferred and it isomerizes to more thermodynamically stable cis-isomer. This inverse result is possibly due to the different stabilities of oxocarbenium ion intermediates shown in Figure 3.5. The methyloxy group at the para position of aromatic ring would stabilize the oxocarbenium ion IV as V and/or VI. Due to the steric and/or electrostatic interactions, structure VI is more stable than V, so the trans isomer is dominant in product distribution. It also supports that the initial
control of ISMS reactions is a kinetic effect rather than a thermodynamic factor. Under the weakly acidic (Lewis or Bronsted) reaction condition, the trans-isomers then equilibrate to the more stable cis-isomers (Figure 3.6). The intermediate benzylic cation is electronically stabilized so that even under trace acid conditions, such as normal CDCl₃, the isomerization proceeds readily.

Figure 3.5: Possible transition state for reaction with anisaldehyde

Figure 3.6. Possible trans- and cis-equilibration pathway
Figure 3.7: Possible products of the reaction between phthaldehyde and (Z)-4-(triethylsilyloxy)-1-(trimethylsilyl)non-1-ene

The final example in Table 3.2 using phthaldehyde as an electrophile afforded only 2-(6-pentyl-5,6-dihydro-2H-pyran-2-yl)benzaldehyde, 16 (Table 3.2, entry 11). This is surprising since the rapid intramolecular cyclizations occur when phthaldehyde reacts with other nucleophiles such as allyltrimethylsilane. In this case, isobenzofurans are usually produced (Figure 3.7, Path b). However, under BiBr₃ and vinyltrimethylsilane conditions, only one carbonyl group participated in the reaction (Figure 3.7, Path a). This type of selectivity is powerful in organic synthesis, because the remaining carbonyl group can be converted to other functional groups to provide many useful products. This aspect of vinylsilane chemistry is now under further investigation. This result also supports the fact that the ISMS reaction prefers a six-member ring transition state, otherwise, isobenzofurans involving eight-member ring should be detected.

In other work on the addition of silyl ketene acetals with several aldehydes, TMS protected β-alkyloxy esters were the major products under BiBr₃ conditions using CH₂Cl₂ as solvent. Therefore, we developed a two step reaction that utilized the reaction
between enol ethers or ketene silyl acetals with (Z)-4-(trimethylsilyl)but-3-enal, 17, to form the \(\beta \)-trimethylsilyloxy vinyltrimethylsilanes, followed by addition of a second aldehyde results in 2,6-disubstituted dihydropyran in good yields and excellent diastereoselectivities (Scheme 3.3 and Table 3.3). This approach can introduce two different substitutions at the 2- and 6- positions in dihydropyran in a single reaction vessel.

Scheme 3.3: Synthetic steps for three component one pot reaction

The synthesis of (Z)-4-(trimethylsilyl)but-3-enal, 17, was somewhat challenging, because it was relatively unstable under basic, or strongly acid conditions as well as upon exposure to silica gel. The \(\beta, \gamma \)-unsaturated aldehyde could easily rearrange to the \(\alpha, \beta \)-unsaturated aldehyde. Therefore, PCC as well as PDC oxidation failed to provide the product. At last, we turned our attention to utilizing the Dess-Martin periodinane oxidation using NaHCO\(_3\) as additive. The product was obtained in good yield with moderate purity and was used without any further purification.
Table 3.3: Two step tandem reactions for dihydropyran synthesis

![Chemical Structure Image]

<table>
<thead>
<tr>
<th>entry</th>
<th>nucleophiles</th>
<th>Aldehyde R₂</th>
<th>dr (GC, cis/trans)ᵃ</th>
<th>Products (Yield, %)ᵇ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R=Me, R₁=OMe</td>
<td>PhCH₂⁻</td>
<td>>99:1</td>
<td>18(64)</td>
</tr>
<tr>
<td>2</td>
<td>R=Me, R₁=OMe</td>
<td>i-Pr⁻</td>
<td>>99:1</td>
<td>19(53)</td>
</tr>
<tr>
<td>3</td>
<td>R=Me, R₁=OMe</td>
<td>O-CHOPh⁻</td>
<td>>99:1</td>
<td>20(55)</td>
</tr>
<tr>
<td>4</td>
<td>R=H, R₁=Ph</td>
<td>n-C₃H₁₁⁻</td>
<td>>99:1</td>
<td>21(76)</td>
</tr>
</tbody>
</table>

ᵃ Diastereomeric ratios were determined by capillary GC analysis of crude reaction mixtures.
ᵇ Isolated yield of pure cis-isomers only, after column flash chromatography.

In summary, we have demonstrated a rapid synthesis to 2, 6-disubstituted dihydropyrans in high yield and good selectivity by using a catalytic amount of BiBr₃, as a mild Lewis acid with extremely low toxicity. When reacted with phthalaldehyde, a useful product, 2-(6-pentyl-5,6-dihydro-2H-pyran-2-yl)benzaldehyde is obtained. Different substituents affect the transition state structures and change the distribution of the products differently. Finally, the bismuth(III) initiated three component, one pot tandem addition/cyclization reactions between ketene silyl acetals, silyl enol ether, vinylsilanes and aldehydes afforded a extremely mild and convenient alternatives to other Lewis acids such as BF₃·H₂O or TMSOTf.
EXPERIMENTAL SECTION

All reagents were used as received unless otherwise noted. Dichloromethane was distilled from CaH₂ and THF was purified via a Solv-Tek® solvent purification system. Propargyl bromide, benzyl aldehyde, chlorotrimethylsilane, imidazole, p-anisaldehyde as well as 3,4-dihydro-2H-pyran were purchased from Acros. Hexanal, diiodoethane, n-butyllithium and phenylacetaldehyde were purchased from Aldrich Chemical Company, Inc. ¹³C NMR spectra were recorded with the aid of an APT sequence in which methylene and quaternary carbons = e (even) and methyl and methine carbons = o (odd). Coupling constants were determined by the method of Hoye, and relative stereochemistry was established by qualitative n.O.e. experiments. Thin layer chromatography was performed on Sigma-Aldrich general-purpose silica gel on glass and flash chromatography was performed using Sorbent Technologies chromatographic silica gel (200-475 MESH). Melting points were recorded by a Mel-Temp® apparatus and are uncorrected.

Preparation of trimethyl(4-phenyl-4-(tetrahydro-2H-pyran-2-yloxy)but-1-ynyl)silane, 3b:

A solution of n-butyllithium (1.6 M in hexanes, 16.2 mL, 25.9 mmol, 1.4 equiv.) was added dropwise over 20 min at -30 °C into a solution of 2-(1-phenyl- but-3-ynylxyloxy)-tetrahydro
-2H-pyran, 2b (4.26 g, 18.5 mmol in 60 mL THF). The solution was stirred for additional 10 min and was cooled to -50 °C. Chlorotrimethyl silane (7.30 mL, 33.3 mmol, 1.80 equiv.) was added over 10 min. After the mixture reached rt, 40 mL water was added slowly and the phases were separated. The aqueous layer was extracted with ether (2 X 30 mL), the organic layer was combined, dried (MgSO₄) and concentrated in vacuo. The product was purified by column chromatography (9:1 hexanes:EtOAc, Rf = 0.62) to afford 5.26 g (94%) as a colorless liquid; IR (neat): 3033(w), 2947(s), 2179(m), 1252(m), 1122(m), 1207(s), 980(m), 847(s) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ: 7.24-7.42 (m, 1H), 5.07, 4.51 (t, J = 3.1 Hz, 1H), 4.85, 4.81 (dd, J = 8.1, 5.9 Hz, 1H), 4.15 (td, J = 11.0, 2.9 Hz, 0.76H), 3.50-3.58 (m, 1H), 3.29-3.35 (m, 0.34H), 2.77, 2.69 (dd, J = 16.9, 8.4 Hz, 1H), 2.55, 2.54 (dd, J = 16.8, 5.1 Hz, 1H), 1.40-1.98 (m, 6H), 0.14, 0.13 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ: 142.2(e), 140.8(e), 128.3(o), 128.2(o), 128.0(o), 127.4(o), 127.0(o), 126.3(o), 104.4(e), 104.1(e), 98.8(o), 94.5(o), 86.6(e), 86.3(e), 77.0(o), 75.2(o), 62.1(e), 61.5(e), 30.7(e), 30.6(e), 29.9(e), 29.6(e), 25.9(e), 25.7(e), 19.3(e), 19.0(e), 0.62(o), 0.35(o).

Preparation of (Z)-1-phenyl-4-(trimethylsilyl)but-3-en-1-ol, 4b. A solution of DIBAL-H (20 % w.t. in toluene, 21.9 mL, 26.5 mmol, 1.70 equiv.) was added dropwise at 0 °C to a solution of trimethyl(4-phenyl-4-(tetrahydro-2H-pyran-2-yloxy)-but-1-ynyl)silane, 3b
(4.72 g, 15.6 mmol) in 60 mL Et₂O. After stirring for 1 h, the mixture was heated to 45 °C for 20 h. The solution was cooled to 0 °C again and saturated aqueous NH₄Cl solution (10 mL) was added very slowly. The mixture was acidified until all precipitate had dissolved. The phases were separated and the aqueous layer was extracted by ether (2 × 30 mL). The combined organic layer was dried (MgSO₄) and concentrated in vacuo leaving some colorless oil. The oil was transferred to 250 mL flask and 100 mL ethanol as well as pyridinium toluene-p-sulfonate (0.463 g, 1.72 mmol) were added. The mixture was stirred for 12 h at rt and 2 h at 55 °C. The solution was concentrated and the residue was purified by flash chromatography (8:2 hexanes:EtOAc, Rf = 0.44) to afford 3.30 g (96%) as a colorless liquid; IR (neat): 3056(br, s), 3024(m), 2957(s), 2899(s), 1607(s), 1411(m), 1251(s), 1042(s), 842(s) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ: 7.30-7.41 (m, 5H), 6.36 (ddd, J = 14.6, 8.1, 7.0 Hz, 1H), 5.75 (dt, J = 13.9, 1.5 Hz, 1H), 2.56-2.69 (m, 2H), 2.03 (d, J = 2.9 Hz, 1H), 0.10 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ: 144.0 (e), 143.9(o), 133.5(o), 128.5(o), 127.7(o), 125.9(o), 74.0(o), 43.5(e), 0.6(o).

Preparation of (Z)-1-(1-(triethylsilyloxy)-4-(trimethylsilyl)but-3-enyl)benzene, 5b.

A solution of (Z)-1-phenyl-4-(trimethylsilyl)but-3-en-1-ol, 4b (1.18 g, 5.34 mmol) in freshly distilled CH₂Cl₂ (11 mL) was placed in a flame-dried round bottom flask under argon. Imidazole (0.52 g, 7.64 mmol) was added to the
solution and the solution was cooled to 0 °C using an ice water bath. TESOTf (1.45 mL, 6.41 mmol) was added to the cooled solution and the mixture was allowed to warm to rt and stir. When starting material was consumed (~1 h, TLC), aqueous NaHCO₃ (ca. 10 mL) was added, the product was then extracted with CH₂Cl₂, washed with brine, dried (MgSO₄), and concentrated in vacuo. The resulting silanol was purified by column chromatography (95:5 hexanes:ethyl acetate, Rf = 0.76) to provide 1.70 g (95%) as a colorless liquid; IR (neat): 2957(s), 2883(s), 1607(m), 1458(s), 1242(s), 1090(s), 1009(s), 840(s) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ: 7.26-7.36 (m, 5H), 6.34 (td, J = 14.3, 7.3 Hz, 1H), 5.60 (d, J = 14.3 Hz, 1H), 4.71 (dd, J = 7.3, 5.5 Hz, 1H), 2.44-2.64 (m, 2H), 0.91 (t, J = 8.0 Hz, 9H), 0.56 (qd, J = 8.7, 3.7 Hz, 6H), 0.11 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ: 145.3(e), 145.0(o), 131.1(o), 128.1(o), 127.1(o), 126.0(o), 75.2(o), 44.9(e), 7.2(o), 5.2(e), 0.6(0); Anal. calcd. For C₃₉H₄₂OSi₂ (334.64): C 68.19, H 10.24; Found: C 68.01, H 10.26.

Preparation of 5-(tert-butyldimethylsilyloxy)-1-(trimethylsilyl)dec-1-yne, 3c. A solution of n-butyllithium (1.6 M in hexanes, 8.8 mL, 14.0 mmol, 1.4 equiv.) was added dropwise over 15 min at -30 °C into a solution of tert-butyl(dec-1-yn-5-yl)dimethylsilane, 2c (2.83 g, 10 mmol in 45 mL THF). The solution was stirred for additional 10 min and was cooled to -50 °C. Chlorotrimethylsilane (4.0 mL, 18.0 mmol,
1.8 equiv.) was added over 10 min. After the mixture reached rt, 40 mL water was added slowly and the phases were separated. The aqueous layer was extracted with ether (3 X 30 mL). The organic layer was combined and dried (MgSO₄) and concentrated in vacuo. The product was purified by column chromatography (95:5 hexanes:EtOAc, Rf = 0.40) to afford 5.26 g (94%) as a colorless liquid; IR (neat): 3745(w), 2931(s), 2857(s), 2176(m), 1458(m), 1251(s), 1096(s), 842(s) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ: 3.75-3.81 (m, 1H), 2.34 (d, J = 6.1 Hz, 2H), 1.22-1.62 (m, 8H), 0.90 (t, J = 6.8 Hz, 3H), 0.89 (s, 9H), 0.14 (s, 9H), 0.08 (d, J = 7.6 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ: 105.1(e), 86.1(e), 71.4(o), 37.2(e), 32.2(e), 29.1(e), 26.2(o), 25.0(e), 22.9(e), 18.5(e), 14.4(o), 0.5(o), -4.0(o), -4.2(o).

Preparation of (Z)-1-(trimethylsilyl)non-1-en-4-ol, 4c. A solution of DIBAL-H (20% w.t. in toluene, 8.4 mL, 10.2 mmol, 1.7 equiv.) was added dropwise at 0 °C to a solution of 5-(tert-butyldimethylsilyloxy)-1-(trimethylsilyl)dec-1-yne, 3c (2.05 g, 6.0 mmol) in 35 mL Et₂O. After stirring for 1 h, the mixture was heated to 45 °C for 20 h. The solution was cooled to 0 °C again and saturated aqueous NH₄Cl solution (5 mL) was added slowly. The mixture was acidified until all precipitate had dissolved. The phases were separated and the aqueous layer was extracted by ether (2 X 20 mL). The combined organic layers were dried (MgSO₄) and concentrated in vacuo.
leaving a colorless oil. The oil was transferred to 100 mL flask and 50 mL ethanol as well as tetrabutylammonium fluoride (2.35 g, 9.0 mmol) were added. The mixture was stirred for 12 h. The solution was concentrated and the residue was purified by flash chromatography (9:1 hexanes:EtOAc, Rf = 0.45) to afford 1.01 g (78%) as a colorless liquid; IR (neat): 3349(s, br), 2955(s), 2947(s), 2864(s), 1607(m), 1450(m), 1250(s), 1043(m), 841(s), 764(m) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ: 6.36 (ddd, J = 14.6, 8.1, 7.0 Hz, 1H), 5.70 (d, J = 14.3 Hz, 1H), 3.65-3.71 (m, 1H), 2.24-2.39 (m, 2H), 1.28-1.62 (m, 8H), 0.91 (t, J = 6.9 Hz, 3H), 0.15 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ: 144.5(o), 132.9(o), 71.5(o), 41.5(e), 37.3(e), 32.2(e), 25.7(e), 23.0(e), 14.4(o), 0.6(o).

Preparation of (Z)-4-(triethylsilyloxy)-1-(trimethylsilyl)non-1-ene, 5c. A solution of (Z)-1-(trimethylsilyl)non-1-en-4-ol, 4c (0.69 g, 3.2 mmol) in freshly distilled CH₂Cl₂ (10 mL) was placed in a flame-dried round bottom flask under argon. Imidazole (0.33 g, 4.8 mmol) was added to the solution and the solution was cooled to 0°C using an ice water bath. TESOTf (0.87 mL, 3.84 mmol) was added to the cooled solution and the mixture was allowed to warm to rt and stir. When starting material was consumed (~1 h, TLC), aqueous NaHCO₃ (ca. 10 mL) was added, the product was then extracted with CH₂Cl₂, washed with brine, dried (MgSO₄), and concentrated *in vacuo*. The resulting silanol was purified by column chromatography (99:1 hexanes:ethyl acetate, Rf = 0.63) to provide 1.01 g (96%) as a
colorless liquid; IR (neat): 2947(s), 2880(s), 1607(m), 1461(m), 1242(s), 1080(s), 1010(s),
841(s), 737(s) cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)): 6.36 (dt, \(J = 14.3, 7.1\) Hz, 1H), 5.58 (d, \(J = 14.3\) Hz, 1H), 3.73 (dddd, \(J = 5.5\) Hz, 5.5 Hz, 1H), 2.29-2.34 (m, 2H), 1.25-1.50 (m, 8H), 0.98 (t, \(J = 8.0\) Hz, 9H), 0.91 (t, \(J = 7.3\) Hz, 3H), 0.62 (q, \(J = 8.0\) Hz, 6H), 0.14 (s, 3H); \(^1\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\): 145.4(o), 130.6(o), 72.5(o), 41.5(e), 37.6(e),
32.3(e), 25.5(e), 23.0(e), 14.4(o), 7.3(o), 5.5(e), 0.6(o); Anal. calcd. For C\(_{12}\)H\(_{40}\)OSi\(_2\)
(328.68): C 65.78, H 12.27; Found: C 65.63, H 12.25.

General procedure for the synthesis of dihydropyran: BiBr\(_3\) (11.2 mg, 0.025 mmol, 0.05 equiv.) was weighed into 10 mL round bottom flask and 5 mL CH\(_2\)Cl\(_2\) was added via syringe. Aldehyde (1.0 mmol, 2.0 equiv.) and vinylsilane (0.167 g, 0.5 mmol) were added by syringe sequentially. The mixture was stirred for 12 h and was concentrated in vacuo, filtered through a small SiO\(_2\) pipette column with CH\(_2\)Cl\(_2\) as eluent and concentrated in vacuo again. The product was then purified by column chromatography.

Preparation of cis-2-pentyl-6-phenyl-3,6-dihydro-2H-pyran, 7. According to the general procedure, benzyl aldehyde (102 ul, 1.0 mmol, 2.0 equiv.) was treated with (Z)-4-(triethylsilyloxy)-1-(trimethyl- silyl)non-1-ene, 5c (0.164 g, 0.5 mmol) to provide 0.081 g (70%) of cis-isomer as a colorless liquid, after purification by column chromatography (97:3 pentane:ether, \(R_f = 0.39\)); IR (neat):
3032(m), 2926(s), 2857(s), 1450(m), 1180(m), 1074(s) cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\): 7.25-7.39 (m, 5H), 5.88-5.93 (m, 1H), 5.74 (ddq, \(J = 9.9, 2.9, 1.5\) Hz, 1H), 5.15 (m, 1H), 3.69-3.75 (m, 1H), 1.99-2.14 (m, 2H), 1.25-1.70 (m, 8H), 0.88 (t, \(J = 6.8\) Hz, 3H); \(^1\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\): 141.9(e), 130.3(o), 128.5(o), 127.8(o), 127.3(o), 124.9(o), 77.9(o), 74.7(o), 36.4(e), 32.2(e), 31.2(e), 25.5(e), 23.0(e), 14.5(o).

Preparation of cis-2-phenyl-6-(4-(trifluoromethyl)phenyl)-3,6-dihydro-2H-pyran, 8.

According to the general procedure, p-trifluoromethyl benzaldehyde (137 \(\mu\)L, 1.0 mmol, 2.0 equiv.) was treated with (Z)-1-(1-(triethylsilyloxy)-4-(trimethylsilyl)but-3-enyl)benzene, \(5b\) (0.167 g, 0.50 mmol) to provide 0.125 g (82%) of cis-isomer as a colorless oil, after purification by column chromatography (97:3 petroleum ether:ether, \(R_f = 0.42\)); IR (neat): 3037(m), 2902(m), 2834(m), 1612(m), 1495(w), 1412(m), 1326(s), 1166(s), 1124(s), 1067(s), 828(s), 751(s), 700(s) cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\): 7.62 (d, \(J = 8.4\) Hz, 2H), 7.57 (d, \(J = 8.4\) Hz, 2H), 7.41-7.45 (m, 2H), 7.36 (tm, \(J = 7.7\) Hz, 2H), 7.28 (tt, \(J = 7.0, 1.5\) Hz, 1H), 6.03 (ddq, \(J = 10.3, 5.9, 2.2\) Hz, 1H), 5.81 (ddq, \(J = 10.3, 2.6, 1.5\) Hz, 1H), 5.42-5.46 (m, 1H), 4.83 (dd, \(J = 10.6, 3.7\) Hz, 1H), 2.31-2.39 (dddd, \(J = 17.2, 6.6, 3.3, 3.3, 1.1\) Hz, 1H), 2.42-2.51 (m, 1H); \(^1\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\): 145.5(e), 142.3(e), 129.9(e, q, \(J = 32.6\) Hz), 129.6(o), 128.5(o), 127.7(o), 127.3(o), 125.9(o), 124.3(e, q, \(J = 269.2\) Hz), 125.5(o, q, \(J = 3.8\) Hz), 125.4(o), 77.8(o), 76.4(o), 33.2(e).
Preparation of *cis*-6-(4-methoxyphenyl)-2-phenyl-3,6-dihydro-2H-pyran, 9. According to the general procedure, *p*-anisaldehyde (0.136 g, 1.0 mmol, 2.0 equiv.) was treated with (Z)-1-(1-(triethylsilyloxy)-4-(trimethylsilyl)but-3-enyl)-benzene, 5b (0.167 g, 0.50 mmol) to provide 0.063 g (47%) of *cis*-isomer as a white powder, after purification by column chromatography (9:1 pentane:ether, Rf = 0.41); IR (neat): 3034(m), 2911(m), 2834(m), 1604(m), 1504(s), 1457(m), 1246(s), 1175(m), 1061(m), 1036(m), 826(m) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ: 7.23-7.43 (m, 9H), 6.87-6.91 (m, 2H), 5.97-6.02 (m, 1H), 5.81 (ddq, J = 10.3, 2.5, 1.5 Hz, 1H), 5.31-5.34 (m, 1H), 4.81 (dd, J = 10.6, 3.7 Hz, 1H), 3.80 (s, 3H), 2.39-2.48 (m, 1H), 2.28-2.35 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ: 159.2(e), 142.7(e), 133.8(e), 130.6(o), 128.6(o), 128.4(o), 127.5(o), 126.0(o), 124.6(o), 113.9(o), 78.0(o), 76.4(o), 55.6(o), 33.3(e); Anal. calcd. For C₁₈H₁₆O (266.33): C 81.17, H 6.81; Found: C 80.87, H 6.79.

Preparation of *cis*-6-benzyl-2-phenyl-3,6-dihydro-2H-pyran, 10. According to the general procedure, Phenylacetaldehyde (0.12 g, 1.0 mmol, 2.0 equiv.) was treated with (Z)-1-(1-(triethylsilyl oxy)-4-(trimethylsilyl)but-3-enyl)-benzene, 5b (0.167 g, 0.50 mmol) to provide 0.118 g (94%) of *cis*-isomer as a colorless liquid, after purification by column chromatography (9:1 pentane:ether, Rf =
0.57); IR (neat): 3032(s), 2918(m), 2827(m), 1739(m), 1489(m), 1443(m), 1080(s), 747(s) cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\): 7.20-7.40 (m, 10H), 5.86-5.91 (m, 1H), 5.83 (ddq, \(J = 10.3, 2.6, 1.5\) Hz, 1H), 4.62 (dd, \(J = 9.2, 5.1\) Hz, 1H), 5.52-5.58 (m, 1H), 3.08 (dd, \(J = 13.5, 6.6\) Hz, 1H), 2.83 (dd, \(J = 13.5, 6.6\) Hz, 1H), 2.18-2.29 (m, 2H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\): 142.9(e), 138.2(e), 129.8(o), 129.4(o), 128.4(o), 128.2(o), 127.4(o), 126.3(o), 125.8(o), 125.1(o), 76.6(o), 75.9(o), 42.3(e), 33.3(e); Anal. calcd. For \(\text{C}_{18}\text{H}_{18}\text{O}\) (250.33): C 86.36, H 7.25; Found: C 86.32, H 7.44.

Preparation of cis-2,6-diphenyl-3,6-dihydro-2H-pyran, 11. According to the general procedure, benzaldehyde (102 \(\mu\)L, 1.0 mmol, 2.0 equiv.) was treated with (Z)-1-(1-(triethylsilyloxy)-4-(trimethylsilyl)but-3-enyl)benzene, 5b (0.167 g, 0.5 mmol) to provide 0.065 g (55 %) of cis-isomer as a colorless liquid, after purification by column chromatography (97:3 pentane:ether, \(R_f = 0.54\)); IR (neat): 3031(s), 2898(m), 2823(m), 1494(m), 1451(m), 1064(s) cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\): 7.25-7.46 (m, 10H), 5.97-6.02 (m, 1H), 5.83 (ddq, \(J = 10.3, 2.9, 1.5\) Hz, 1H), 5.37-5.40 (m, 1H), 4.83 (dd, \(J = 10.3, 3.3\) Hz, 1H), 2.41-2.50 (m, 1H), 2.30-2.37 (m, 1H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\): 142.7(e), 141.6(e), 130.4(o), 128.5(o), 128.4(o), 127.8(o), 127.5(o), 127.2(o), 126.0(o), 124.6(o), 78.4(o), 76.3(o), 33.3(e).
Preparation of cis-2-pentyl-6-(4-(trifluoromethyl)phenyl)-3,6-dihydro-2H-pyran, 12.

According to the general procedure, p-trifluoromethylbenzaldehyde (137 μL, 1.0 mmol, 2.0 equiv.) was treated with (Z)-4-(triethylsilyloxy)-1-(trimethylsilyl)non-1-ene, 5c (0.164 g, 0.50 mmol) to provide 0.110 g (74%) of cis-isomer as a colorless liquid, after purification by column chromatography (98:2 petroleum:ether, Rf = 0.57); IR (neat): 3038(m), 2931(s), 2861(s), 1621(m), 1419(s), 1319(s), 1166(s), 1127(s), 1075(s), 894(m), 831(m) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ: 7.59 (d, J = 8.4 Hz, 2H), 7.49 (d, J = 8.4 Hz, 2H), 5.93 (ddt, J = 10.3, 5.1, 2.5 Hz, 1H), 5.70 (dm, J = 10.3 Hz, 1H), 5.19-5.23 (m, 1H), 3.70-3.76 (m, 1H), 2.01-2.16 (m, 2H), 1.25-1.70 (m, 8H), 0.89 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 145.9(e), 129.9(e, q, J = 31.8 Hz), 129.4(o), 127.4(o), 125.6(o), 125.5(o, q, J = 3.8 Hz), 124.3(e, q, J = 269.6 Hz), 77.2(o), 74.7(e), 36.3(e), 32.2(e), 31.1(e), 25.4(e), 23.0(e), 14.4(o).

According to the general procedure, p-anisaldehyde (0.136 g, 1.0 mmol, 2.0 equiv.) was treated with (Z)-4-(triethylsilyloxy)-1-(trimethylsilyl)non-1-ene, 5c (0.164 g, 0.5 mmol) to provide 0.076 g (58%) of cis-isomer as a colorless liquid, after purification by column chromatography (9:1
pentane:ether, $R_f = 0.54$; IR (neat): 3036(m), 2932(s), 2861(s), 1614(m), 1513(s), 1458(m), 1247(s), 1177(m), 1072(s), 1040(s), 818(m) cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ: 7.30 (d, $J = 8.4$, 2H), 6.88 (d, $J = 8.8$ Hz, 2H), 5.90-5.95 (m, 1H), 5.74 (ddq, $J = 9.9$, 2.6, 1.5 Hz, 1H), 5.11 (m, 1H), 3.80 (s, 3H), 3.68-3.75 (m, 1H), 1.99-2.15 (m, 2H), 1.25-1.70 (m, 8H), 0.89 (t, $J = 6.8$ Hz, 3H); 13C NMR (100 MHz, CDCl$_3$) δ: 159.2(e), 134.1(e), 130.4(o), 128.7(o), 125.0(o), 114.0(o), 77.4(o), 74.8(o), 36.4(e), 32.2(e), 31.3(e), 25.5(e), 23.0(e), 14.5(o); Anal. calcd. For C$_{17}$H$_{24}$O (260.37): C 78.42, H 9.29; Found: C 78.16, H 9.49.

Preparation of cis-6-benzyl-2-pentyl-3,6-dihydro-2H-pyran, 14. According to the general procedure, phenylacetaldehyde (0.12 g, 1.0 mmol, 2.0 equiv.) was treated with (Z)-4-(triethyl-silyloxy)-1-(trimethylsilyl) non-1-ene, 5c (0.164 g, 0.5 mmol) to provide 0.119 g (97%) of cis-isomer as a colorless liquid, after purification by column chromatography (97:3 pentane:ether, $R_f = 0.45$); IR (neat): 3032(m), 2929(s), 2859(s), 1450(m), 1183(m), 1080(s) cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ: 7.21-7.33 (m, 5H), 5.79-5.84 (m, 1H), 5.64 (dm, $J = 10.3$ Hz, 1H), 4.34 (m, 1H), 3.51-3.58 (m, 1H), 3.02 (dd, $J = 13.5$, 7.0 Hz, 1H), 2.71 (dd, $J = 13.5$, 7.0 Hz, 1H), 1.96-2.01 (m, 2H), 1.25-1.66 (m, 8H), 0.91 (t, $J = 6.8$ Hz, 3H); 13C NMR (100 MHz, CDCl$_3$) δ: 148.5(e), 129.7(o), 129.5(o), 128.2(o), 126.2(o), 125.2(o), 76.0(o), 74.3(o), 42.3(e), 36.4(e), 32.2(e), 31.6(e), 25.5(e), 23.0(e), 14.4(o).
Preparation of cis-6-isopropyl-2-pentyl-3,6-dihydropyran, 15. According to the general procedure, isobutyl aldehyde (91 μl, 1.0 mmol, 2.0 equiv.) was treated with (Z)-4-(triethylsilyloxy)-1-(trimethylsilyl)non-1-ene, 5c (0.164 g, 0.50 mmol) to provide 0.086 g (88%) of cis-isomer as a colorless liquid, after purification by column chromatography (98:2 petroleum:ether, Rf = 0.68); IR (neat): 3033(m), 2958(s), 2930(s), 2868(s), 1464(m), 1370(m), 1288(w), 1188(m), 1080(s) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ: 5.80-5.85 (m, 1H), 5.74 (dq, J = 10.3, 1.5 Hz, 1H), 3.84-3.88 (m, 1H), 3.45-3.51 (m, 1H), 1.90-1.94 (m, 2H), 1.71-1.79 (ddq, J = 12.1, 7.0, 1.5 Hz, 1H), 1.25-1.60 (m, 8H), 0.89 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 128.6(o), 125.6(o), 79.8(o), 74.0(o), 36.4(e), 33.0(o), 32.2(e), 31.8(e), 25.5(e), 23.0(e), 18.3(o), 14.4(o). Anal. calcd. For C₁₃H₂₄O (196.33): C 79.53, H 12.32; Found: C 79.17, H 12.29.

Preparation of cis-2-(6-pentyl-5,6-dihydropyran-2-yl)benzaldehyde, 16. According to the general procedure, Phthalaldehyde (0.134 g, 1.0 mmol, 2.0 equiv.) was treated with (Z)-4-(triethylsilyloxy)-1-(trimethylsilyl)non-1-ene, 5c (0.164 g, 0.50 mmol) to provide 0.126 g (98%) of cis-isomer as a colorless liquid, after purification by column chromatography (9:1 petroleum:ether, Rf =
0.60); IR (neat): 3037(m), 2928(s), 2859(s), 2737(s), 1696(s), 1459(m), 1191(s), 1072(s),
759(s) cm-1; 1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\): 10.4 (s, 1H), 7.89 (dd, \(J = 7.7, 1.5 \text{ Hz}, 1\text{H}\)), 7.61 (dt, \(J = 7.5, 1.5 \text{ Hz}, 1\text{H}\)), 7.57 (dt, \(J = 7.5, 1.5 \text{ Hz}, 1\text{H}\)), 7.44 (dt, \(J = 7.3, 1.5 \text{ Hz}, 1\text{H}\)),
5.89-5.94 (m, 1H), 5.80-5.84 (m, 1H), 5.77-5.79 (m, 1H), 3.77-3.84 (m, 1H), 2.04-2.18
(m, 2H), 1.24-1.69 (m, 8H), 0.88 (t, \(J = 6.8 \text{ Hz}, 3\text{H}\)); 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta\): 192.7(o), 143.7(e), 134.0(o), 133.8(e), 131.0(o), 129.8(o), 128.2(o), 128.1(o), 125.2(o),
75.1(o), 75.0(o), 36.3(e), 32.2(e), 31.0(e), 25.3(e), 22.9(e), 14.4(o). Anal. calcd. For
C\textsubscript{17}H\textsubscript{22}O\textsubscript{2} (258.36): C 79.03, H 8.58; Found: C 79.02, H 8.80.

Preparation of (Z)-4-(trimethylsilyl)but-3-enal, 17:

![Chemical Structure](image)

1,1,1-Triacetoxy-1,1-dihydro-1,2-benziodoxol-3(1H)-one (0.512 g, 1.2 mmol, 1.2 equiv.) and NaHCO\textsubscript{3}
(0.420 g, 5.0 mmol, 5.0 equiv.) were weighted into 25
mL round bottom flask and 8 mL CH\textsubscript{2}Cl\textsubscript{2} was added \textit{via} syringe.
(Z)-4-(trimethylsilyl)but-3-en-1-ol, 5a (0.144 g, 1.0 mmol, 1.0 equiv.) in 3 mL CH\textsubscript{2}Cl\textsubscript{2}
was injected slowly. When starting material was consumed (~0.5 h, TLC), 10 mL Et\textsubscript{2}O
was poured into the solution and then poured into a mixture consist of saturated NaHCO\textsubscript{3}
(ca. 10 mL), saturated Na\textsubscript{2}S\textsubscript{2}O\textsubscript{3} (ca. 10 mL), H\textsubscript{2}O (ca. 20 mL). The product was then
extracted with Et\textsubscript{2}O (ca. 50 mL), dried (MgSO\textsubscript{4}), and concentrated \textit{in vacuo} to provide
0.129g (91%) as a pale yellow oil. IR (neat): 2957(s), 2725(m), 1682(s), 1412(m),
1250(s), 1119(m), 844(s); 1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\): 9.71 (t, \(J = 1.8 \text{ Hz}, 1\text{H}\)), 6.44
Preparation of \textit{cis}-methyl-2-(6-benzyl-3,6-dihydro-2H-pyran-2-yl)-2-methyl propanoate, 18: BiBr$_3$ (44.8 mg, 0.010 mmol, 0.10 equiv.) was weighted into 25 mL round bottom flask and 10 mL CH$_2$Cl$_2$ was added via syringe. (Z)-4-(trimethylsilyl)but-3-enal, 17 (0.142 g, 1.0 mmol, 1.0 equiv.) and dimethyl silyl ketene acetal (0.192 g, 1.1 mmol, 1.1 equiv.) were added by syringe simultaneously. The mixture was stirred and TLC was used to maintain the reaction until (Z)-4-(trimethylsilyl)but-3-enal, 17 was consumed (3 h). Phenylacetaldehyde (0.24 g, 2.0 mmol, 2.0 equiv.) and additional BiBr$_3$ (44.8 mg, 0.010 mmol, 0.10 equiv) were added and the mixture was stirred for 12 h. The solution was concentrated \textit{in vacuo}, filtered through a small SiO$_2$ pipette column with CH$_2$Cl$_2$ as eluent and concentrated \textit{in vacuo} again. The product was purified by column chromatography (9:1 petroleum ether:Et$_2$O, R$_f$ = 0.34) to provide 0.175 g (64%) of \textit{cis}-isomer as a colorless oil. IR (neat): 3031 (s), 2982 (s), 2940 (s), 2879 (m), 1735 (s), 1451 (m), 1267 (s), 1140 (s), 1086 (s), 751 (m); 1H NMR (400 MHz, CDCl$_3$) δ: 7.17-7.28 (m, 5H), 5.77-5.82 (m, 1H), 5.63 (dm, J = 10.3 Hz, 1H), 4.27 (br, 1H), 3.77 (dd, J = 11.0, 3.3 Hz, 1H), 3.55 (s, 3H), 2.83 (dd, J = 13.9, 8.1 Hz, 1H), 2.70 (dd, J = 13.9, 8.1 Hz, 1H),
2.06-2.15 (m, 1H), 1.77-1.85 (m, 1H), 1.20 (s, 3H), 1.21(s, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\): 177.2(e), 138.7(e), 129.72(o), 129.69(o), 128.0(o), 126.1(o), 125.0(o), 78.4(o), 76.5(o), 52.0(o), 46.6(e), 42.1(e), 25.4(e), 21.3(o), 20.4(o). Anal. calcd. For C\(_{17}\)H\(_{22}\)O\(_3\) (274.35): C 74.42, H 8.08; Found: C 74.53, H 8.30.

Preparation of cis-methyl-2-(6-isopropyl-3,6-dihydro-2H-pyran-2-yl)-2-methyl propanoate, 19: BiBr\(_3\) (44.8 mg, 0.010 mmol, 0.10 equiv.) was weighted into 25 mL round bottom flask and 10 mL CH\(_2\)Cl\(_2\) was added via syringe. (Z)-4-(trimethyl- silyl)but-3-enal, \(\textbf{17}\) (0.142 g, 1.0 mmol, 1.0 equiv.) and dimethyl silyl ketene acetal (0.192 g, 1.1 mmol, 1.1 equiv.) were added by syringe simultaneously. The mixture was stirred and TLC was used to maintain the reaction until (Z)-4-(trimethylsilyl)but-3-enal, \(\textbf{17}\) was consumed (3 h). Isobutylaldehyde (0.182 mL, 2.0 mmol, 2.0 equiv.) and BiBr\(_3\) (44.8 mg, 0.010 mmol, 0.10 equiv.) were added and the mixture was stirred for 12 h. The solution was concentrated \textit{in vacuo}, filtered through a small SiO\(_2\) pipette column with CH\(_2\)Cl\(_2\) as eluent and concentrated \textit{in vacuo} again. The product was purified by column chromatography (9:1 petroleum ether:Et\(_2\)O, \(R_f = 0.52\)) to provide 0.120 g (53%) of cis-isomer as a colorless oil. IR (neat): 2961(s), 1737(s), 1458(w), 1368(w), 1258(m), 1136(m), 1084(m); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\): 5.80-5.85 (m, 1H), 5.63 (dm, \(J = 10.3\) Hz, 1H), 3.86 (br, 1H), 3.75 (dd, \(J = 10.6, 2.9\) Hz, 1H), 3.67 (s, 3H), 2.04-2.12 (m, 1H), 1.76-1.83 (m, 1H), 1.70 (dtt, \(J = 7.0, 7.0, 5.1\) Hz,
1H), 1.22 (s, 3H), 1.14 (s, 3H), 0.90 (d, J = 7.0 Hz, 3H), 0.86 (d, J = 7.0 Hz, 3H); 13C NMR (100 MHz, CDCl$_3$) δ: 177.4(e), 128.9(o), 125.1(o), 80.0(o), 77.9(o), 52.0(o), 46.7(e), 32.9(o), 25.5(e), 21.2(o), 20.4(o), 18.6(o), 17.5(o). Anal. calcd. For C$_{13}$H$_{22}$O$_3$ (226.31): C 68.99, H 9.80; Found: C 68.29, H 9.61.

Preparation of cis-methyl-2-(6-(2-formylphenyl)-3,6-dihydro-2H-pyran-2-yl)-2-methylpropanoate, 20: BiBr$_3$ (22.4 mg, 0.005 mmol, 0.10 equiv.) was weighted into 25 mL round bottom flask and 5 mL CH$_2$Cl$_2$ was added via syringe. (Z)-4-(trimethylsilyl)but-3-enal, 17 (0.071 g, 0.50 mmol, 1.0 equiv.) and dimethyl silyl ketene acetal (0.096 g, 0.55 mmol, 1.1 equiv.) were added by syringe simultaneously. The mixture was stirred and TLC was used to maintain the reaction until (Z)-4-(trimethylsilyl)but-3-enal, 17 was consumed (3 h). Phthaldehyde (0.134 g, 1.0 mmol, 2.0 equiv.) and additional BiBr$_3$ (22.4 mg, 0.005 mmol, 0.10 equiv.) were added and the mixture was stirred for 12 h. The solution was concentrated in vacuo, filtered through a small SiO$_2$ pipette column with CH$_2$Cl$_2$ as eluent and concentrated in vacuo again. The product was purified by column chromatography (8:2 petroleum ether:Et$_2$O, $R_f= 0.22$) to provide 0.079 g (55%) of cis-isomer as a colorless oil. IR (neat): 3743(w), 2980(w), 1733(s), 1698(s), 1558(m), 1464(m), 1266(m), 1195(m), 1139(m), 1077(m),
760(m); 1H NMR (400 MHz, CDCl$_3$) δ: 10.33 (s, 1H), 7.88 (dd, $J = 7.7$, 1.1 Hz, 1H), 7.56-7.63 (m, 2H), 7.47 (t, $J = 7.3$, 1.5 Hz, 1H), 5.90-5.95 (m, 1H), 5.85-5.88 (m, 1H), 5.78-5.82 (dm, $J = 10.3$ Hz, 1H), 4.13 (dd, $J = 11.0$, 3.3 Hz, 1H), 3.70 (s, 3H), 2.27-2.38 (m, 1H), 1.97-2.04 (dm, $J = 17.2$ Hz, 1H), 1.29 (s, 3H), 1.22 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ: 192.7(o), 177.0(e), 143.6(e), 134.0(o), 133.6(e), 131.4(o), 129.7(o), 128.0(o), 127.8(o), 124.7(o), 78.8(o), 75.5(o), 52.2(o), 46.7(e), 25.1(e), 21.4(o), 20.6(o)

Preparation of cis-2-(6-pentyI-3,6-dihydro-2H-pyran-2-yl)-1-phenylethanone, 21:

BiBr$_3$ (22.4 mg, 0.005 mmol, 0.10 equiv.) and NaI (22.5 mg, 0.015 mmol, 0.30 equiv.) were weighted into 15 mL round bottom flask and 5 mL CH$_2$Cl$_2$ was added via syringe. After ultrasonic for 1 h at rt, (Z)-4-(trimethylsilyl)but-3-enal, 17 (0.071 g, 0.50 mmol, 1.0 equiv.) and trimethyl (1-phenylvinylxoxy)silane (0.106 g, 0.55 mmol, 1.1 equiv.) were added by syringe simultaneously. The mixture was stirred and TLC was used to maintain the reaction until (Z)-4-(trimethylsilyl)but-3-enal, 17 was consumed (2 h). Hexanal (0.134 g, 1.0 mmol, 2.0 equiv.) and additional BiBr$_3$ (22.4 mg, 0.005 mmol, 0.10 equiv.) were added and the mixture was stirred for 12 h. The solution was concentrated *in vacuo*, filtered through a small SiO$_2$ pipette column with CH$_2$Cl$_2$ as eluent and concentrated *in vacuo* again. The product was purified by column chromatography (9:1 petroleum ether:Et$_2$O, $R_f = 0.38$) to provide 0.104 g (76%) of *cis*-isomer as a colorless oil. IR (neat): 3743(w), 2929(s), 2861(s),
1686(s), 1452(m), 1371(m), 1336(m), 1281(m), 1217(m), 1181(m), 1075(m), 993(m),
751(m); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\): 7.98-8.01 (m, 2H), 7.56 (tt, \(J = 7.3, 1.5\) Hz, 1H),
7.44-7.48 (m, 2H), 5.77-5.82 (m, 1H), 5.64 (dm, \(J = 10.3\) Hz, 1H), 4.16-4.23 (m, 1H),
4.08-4.14 (m, 1H), 3.40 (dd, \(J = 15.7, 6.6\) Hz, 1H), 2.98 (dd, \(J = 15.7, 6.6\) Hz, 1H),
2.02-2.18 (m, 2H), 1.18-1.50 (m, 8H), 0.85 (t, \(J = 6.7\) Hz, 3H); \(^1\)C NMR (100 MHz,
CDCl\(_3\)) \(\delta\): 198.5(e), 137.5(e), 130.1(o), 130.6(o), 128.6(o), 128.4(o), 124.2(o), 75.2(o),
71.0(o), 45.4(e), 35.8(e), 32.1(e), 31.6(e), 25.1(e), 22.9(e), 14.4(o). Anal. calcd. For
C\(_{18}\)H\(_{24}\)O\(_2\) (272.38): C 79.37, H 8.88; Found: C 79.22, H 9.01.
REFERENCES

APPENDIX

1H NMR and 13C NMR as well as 1H NOE spectroscopies are provided as supporting information for chapter II and Chapter III.
Supporting Information For:

Chapter II: BiBr$_3$ initiated cyclization-addition reactions: effect of π-nucleophile on oxocarbenium ion addition and total syntheses of (+)-(S,S)-(cis-6-methyltetra-hydropyran-2-yl)acetic acid and its trans-diastereomer
\(^1\text{H NOE Spectrum}\)

dec = 3.53 ppm
OTES

1H NMR
1H NMR
1H NOE Spectrum

dep = 3.78 ppm
1H NOE Spectrum

$\delta = 3.46$ ppm

Chemical structure
1H NOE Spectrum
dec= 4.24 ppm
1H NOE Spectrum
dec = 3.86 ppm
Supporting Information For:

Chapter III: BiBr₃-Initiated Tandem Addition/Silyl-Prins
Reactions to 2,6-Disubstituted Dihydropyrans
1H NOE NMR
dec = 4.83 ppm
^{1}H NMR
\(^1\)H NOE NMR

dec = 3.72 ppm
H^1NMR

dec = 5.11 ppm
1H NOE NMR

dec = 4.34 ppm
1H NOE NMR
dec = 5.78 ppm
^{1}H NMR
1H NOE Spectrum

dec = 4.27 ppm
1H NMR
VITA

Yajing Lian

Yajing Lian was born in Xiamen, P. R. China on November 25, 1981. He graduated from Xiamen Science and Technology High School in June 1999. Yajing received his B.S. of chemistry at Xiamen University, which is situated in Xiamen, in June 2003.

In August 2003, the author entered the College of William and Mary as a graduate assistant in the Department of Chemistry. Yajing carried out his research in Hinkle’s Laboratory and he defended his thesis on December 20, 2005 for his master degree. He will go to another graduate school to pursue his Ph. D. degree.