
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2007

A New Packet Filter: Fast Packet Filtering by Exploiting CISC and A New Packet Filter: Fast Packet Filtering by Exploiting CISC and

SIMD ISA SIMD ISA

Zhenyu Wu
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Wu, Zhenyu, "A New Packet Filter: Fast Packet Filtering by Exploiting CISC and SIMD ISA" (2007).
Dissertations, Theses, and Masters Projects. William & Mary. Paper 1539626864.
https://dx.doi.org/doi:10.21220/s2-sd10-4072

This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539626864&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539626864&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-sd10-4072
mailto:scholarworks@wm.edu

A NEW PACKET FILTER

Fast Packet Filtering by Exploiting CISC and SIMD ISA

Zhenyu Wu

Chengdu, Sichuan, China

Bachelor of Science, Denison Univerisity in Ohio, 2005

A Thesis presented to the Graduate Faculty
of the College of William and Mary in Candidacy for the Degree of

Master of Science

Computer Science Department

The College of William and Mary
May, 2007

ProQuest Num ber: 10631933

All rights reserved

INFORMATION TO ALL USERS
The qua lity o f this rep roduction is d e p e n d e n t upon the qua lity o f the c o p y subm itted.

In the unlikely e ven t th a t th e au thor d id no t send a co m p le te m anuscript
and the re are missing pages, these will be n o ted . Also, if m ateria l had to be rem oved,

a no te will in d ica te the de le tion .

uest,

ProQuest 10631933

Published by ProQuest LLC (2017). C opyrigh t o f the Dissertation is held by th e Author.

All rights reserved.
This work is p ro te c te d aga inst unauthorized co py ing under Title 17, United States C o d e

M icroform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106 - 1346

APPROVAL PAGE

This Thesis is submitted in partial fulfillment of
the requirements for the degree of

Master of Science

. ̂ — L /V / L^
/ Zhenyu Wu

Approved by the Committee, April, 2007

Committee Chair
Assistant Professor Haining Wang, Computer Science

Chair and Associate Professor Phil Kearns, Computer Science

Assistant Professor Xipeng Shen, Computer Science

ABSTRACT PAGE

This thesis presents the New Packet Filter (NPF), a packet filter for high performance
packet capture on commercial off-the-shelf hardware. The key features of NPF include (1)
extremely low filter update latency with a strong security model for dynamic packet filtering;
and (2) Gbps high speed packet processing. NPF achieves the former by employing a
finite-state automata model as the pseudo-machine abstraction; and the latter by adopting
CISC (Complex Instruction Set Computer) and SIMD (Single Instruction, Multiple Data)
Instruction Set Architecture. The userspace library of NPF provides two sets of APIs
(Application Programming Interfaces). One is to exploit the advantages of NPF in speed
and security, while the other is for backward compatibility with existing BPF-based
applications. We implement NPF in the latest 2.6 Linux kernel for both i386 and x86 64
architectures. We extensively evaluate its static and dynamic filtering performance on
multiple machines with various hardware setups, and compare with BPF (the BSD packet
filter), which is the de facto standard for packet filtering in modern operating systems, and
optimized C filters that are used as the ceiling on performance. For static filtering tasks,
NPF can be up to three times as fast as BPF; for dynamic filtering tasks, NPF can capture
many more packets and data sessions than BPF, and is three orders of magnitude faster
than BPF in terms of filter update latency.

TABLE OF CONTENTS

DEDICATION PAGE

Page

ii

ACKNOWLEDGEMENTS iii

LIST OF TABLES iv

LIST OF FIGURES V

CHAPTER 1. INTRODUCTION 1

CHAPTER II. RELATED WORK 5

CHAPTER III. NPF DESIGN 8

i. Motivation 8

ii. Design Approach 9

iii. Detailed ISA 12

iv. Design Tradeoffs 16

v. Analysis 18
a. Analysis of Performance 19

b. Analysis of Security 21
c. Analysis of Computational Power 22

CHAPTER IV. IMPLEMENTATION 24

i. Kernel Implementation 24

ii. Userland Library 25

iii. Optimized Implementation 26

CHAPTER V. EVALUATION 29

i. Testbed Setup 29

ii. Static Filtering Performance 30

iii. Dynamic Filtering Performance 35

CHAPTER VI. CONCLUSION 42

REFERENCES 44

VITA 48

To my Mom and Dad, for their unending love and support.

ii

ACKNOWLEDGEMENTS

I would like to thank Dr. Haining Wang, my research advisor, for his guidance to me

in this thesis study. I would also like to thank Dr. Phil Kearns and Dr. Xipeng Shen for serving

on my thesis committee, and thank the College of William and Mary IT department for

supplying network traffic trace data.
This thesis could not be completed without help from Mengjun Xie, PhD candidate of

Computer Science in College of William and Mary, and a good friend of mine. His
collaboration on this research project is invaluable.

Finally, I would like to thank my parents, for their constant love and support, letting

me to turn my interest in computers to a career in Computer Science.

LIST OF TABLES

Table Page

Table 1: Sample of NPF Instruction Set 14

Table 2: Selection of l i b n p f APIs 25

Table 3: A filtering Criterion and Corresponding LSF and NPF Filter Programs 26

Table 4: Testbed Machine Configurations 29

Table 5: “Static Filters” Specified in p c a p Language and the Corresponding

Compiled LSF and NPF Filters’ Instruction Count 31

Table 6: Captured FTP Packets at Different Traffic Rates 38

iv

LIST OF FIGURES

Figure Page

Figure 1: The NPF Instruction Format 12

Figure 2: NPF Passes Relation Diagram 16

Figure 3: Overhead Comparison between BPF and NPF 19

Figure 4: Testbed Setup 30

Figure 5: Per-packet Processing Time for Each Filtering Criterion 32

Figure 6: Per-packet Processing Time Comparison for All Filtering Criteria 35

Figure 7: Captured FTP Data Connections at Different Traffic Rates 37

Figure 8: Performance Gain of NPF over LSF on the Number of Captured

FTP Data Packets 38

Figure 9: Average Filter Update Latency at Different Traffic Rates on PC2 40

Figure 10: Average Filter Update Latency on Different Machine at 250K pps 41

v

CHAPTER I.

INTRODUCTION

Packet filtering is a kernel facility for classifying network packets according to criteria

specified by user applications, and conveying the captured packets from network interfaces

directly to the designated userspace without traversing normal network stack. Since the birth

of the seminal BSD Packet Filter (BPF) [13] , packet filters have become critical infrastructure

for network monitoring, engineering and security applications. In recent years, packet filters

are facing intensified challenges posed by dramatically increasing network speed and

escalating network application complexity. However, existing packet filter systems have not yet

fully addressed these challenges in an efficient and secure manner.

Being the de facto packet filter on most of UNIX variants nowadays, BPF has shown

insufficiency in handling both static and dynamic filtering tasks, especially the latter in high­

speed networks [4], [6], [10]. A dynamic filtering task refers to the filtering process, in

which some details used for describing the interested packets are not known a priori and can

only be acquired during the monitoring process. As a result, the filtering criteria in dynamic

filtering tasks have to be frequently updated throughout the process. A typical example of

dynamic filtering tasks is to capture FTP passive mode data traffic1. A filter update in BPF

1 The passive FTP file transfer mode is widely used today for its ability to work around the firewall and
NAT on the client side.

1

must undergo a compilation and optimization process, in which the filtering criteria specified

by human-oriented pcap filter language have to be translated into machine-oriented BPF

instructions. This process could take milliseconds, even up to seconds, depending on the

criteria complexity and system workload. For a high-speed network, hundreds or even

thousands of packets may be missed by BPF during a filter update. The re-compilation

process is extremely difficult, if not impossible, to avoid in that the design of the RISC

(Reduced Instruction Set Computer) instructions and control flow optimization prevents

applications from modifying BPF instructions directly. A workaround by collecting more packets

than necessary, such as matching all TCP traffic in order to capture FTP passive data traffic, is

very costly and not always practical for long-duration collection under heavy traffic load.

Inspired by the observation that the limited computing power of BPF2 forces frequent

context switches between kernel and userspace, recent packet filters such as xPF [1 0] and

FFPF [4] move more packet processing capabilities from userspace into kernel to reduce

context switches and improve overall performance. However, there is no good solution yet for

reducing high filter update latency. Since xPF uses the BPF based filtering engine, it does not

offer any improvement on filter update. FFPF attempts to solve this problem by using kernel

space library functions, namely external functions, which on one hand avoid prolonged

compilation, but on the other hand introduce security risks as well as programming

complications. More specifically, external functions merge responsibilities of kernel filtering

2 Such as not allowing loops within filter programs.

2

programs and userspace applications by loading pieces of pre-compiled binaries from

userspace and executing them inside kernel. Such external functions are exposed to potential

security risks because they are typically written in “unsafe” languages (such as C and

assembly). In addition, coding an external function is essentially kernel programming.

Comparing to userspace programming, kernel programming has higher restrictions on

resource management, lower access protection, fewer library support, and no powerful

debugging tools, making it more difficult to complete and prone to error.

In this thesis, we propose the New Packet Filter (NPF) to achieve superior

performance on both static and dynamic packet filtering, while retaining the simplicity and

elegance in BPF. Based on the pseudo-machine abstraction and filtering language primitives

of BPF, NPF renovates the filtering engine design by employing CISC (Complex Instruction

Set Computer) and SIMD (Single Instruction, Multiple Data) instruction set architecture. With

carefully re-designed Instruction Set Architecture (ISA) and employment of Deterministic Finite

Automata (DFA) computation model, NPF eliminates the necessity of compilation and security

checking during filter update, resulting in significantly reduced filter update latency and

increased packet filter execution efficiency.

We implement NPF in the latest Linux 2.6 kernel on both i386 and x86 64 platforms.

The kernel implementation of NPF is fully compatible and can coexist with BPF. The

corresponding NPF user-level library not only provides a BPF-primitive-based filter

programming interface, but also includes a BPF compatible compiler, making transition from

3

BPF fast and easy. To validate the efficacy of NPF, we conduct extensive experiments on four

machines with different hardware setups and computing power. For static filtering tasks, NPF

runs as fast as BPF on simple filtering criteria, but is up to three times as fast as BPF on

complex filtering criteria. In comparison to optimized C filters, which are used as the

performance ceiling, NPF performs much closer to the optimized C filters than BPF. For

dynamic filtering tasks, NPF can lower the filter update latency by three orders of magnitude

and capture up to 288% more packets than BPF under high traffic rates.

The remainder of this thesis is structured as follows. Chapter II surveys related work

on packet filtering. Chapter III details the design of NPF. Chapter IV describes the

implementation of NPF. Chapter V evaluates the performance of NPF. Chapter VI concludes

this thesis.

4

CHAPTER II.

RELATED WORK

The novel concept of Packet Filter is first introduced in [15], where the CMU/Stanford

Packet Filter (CSPF) is proposed as a kernel-resident network packet demultiplexer. In

essence, CSPF provides network packets a fast path for reaching their destined userspace

applications, in comparison to the normal layered/stacked path in the kernel. Thus, the literal

meaning of filtering in CSPF is de-layered demultiplexing [22]. The original motivation behind

CSPF is the necessity of providing a mechanism to facilitate the implementation of network

protocols such as TCP/IP at userspace. Although the purposes and techniques vary in

subsequent packet filters, the CSPF model of residing in the kernel and being protocol-

independent is inherited by all its descendants.

Different from CSPF, the BSD Packet Filter (BPF) [13] aims to support high-speed

network monitoring applications such as tcpdump [11] . Under the architecture of BPF,

userspace applications inform the in-kernel filtering machine their interested packets by means

of predicate based filtering language [14] and then receive from BPF the packets that

conform to the filtering criteria. To achieve high-performance packet filtering, BPF employs the

following novel techniques: (1) in-place packet filtering to reduce unnecessary cross-domain

copies, (2) the register-based filter machine to fix the mismatch between the filtering program

and its underlying architecture, and (3) the Control Flow Graph (CFG) model to avoid

5

unnecessary computations in the Expression Tree model. BPF+ [3] further enhances the

performance of BPF by exploiting global data-flow optimization to eliminate redundant

predicates across filter criteria and employing just-in-time compilation to convert a filtering

criterion to native machine code. xPF [10] increases the computation power of BPF by

introducing persistent memory and allowing backward jumps.

Following the avenue of packet demultiplexing for assisting user-level network

protocol coding, MPF (Mach Packet Filter) [23], PathFinder [2], and DPF (Dynamic Packet

Filter) [7] have been proposed successively. To efficiently demultiplex packets for multiple

user-level applications and to dispatch fragmented packets, Yuhara, et al. developed MPF

[23] by extending the instruction set of BPF with an associative match function. With the

same goal of achieving high filter scalability as MPF, PathFinder [2] , however, abstracts the

filtering process as a pattern matching process and adopts a special data structure for the

abstraction. The abstraction makes PathFinder amenable to implementation in both software

and hardware and capable of handling Gbps network traffic. Sharing the same abstraction with

PathFinder but focusing particularly on high performance, DPF [7] utilizes the dynamic code

generation technology, instead of a traditional interpreter-based filter engine, to compile packet

filtering criteria into native machine code.

Due to the inefficiency of handling dynamic ports by tcpdump, a special monitoring

tool mmdump [21] has been developed to capture Internet multimedia traffic, in which

dynamic ports are widely used. Being an extension of tcpdump, mmdump does not provide a

6

generic and efficient solution to dynamic filtering tasks. Complementary to software-based

packet capture solutions, multiple hardware-based solutions such as [5], [17] have been

proposed to meet the challenge posed by extremely high speed networks. Moreover, other

than the packet filter based network monitoring architecture, there exist many specialized-

architecture monitoring systems such as OC3MAN [1] , Windmill [12] , NProbe [16] , and

SCAMPI [19] . Even with these hardware or specialized system solutions, packet filters will

still play a major role in network monitoring and measurement, due to its simplicity, universal

installation, high cost-effectiveness, and rich applications.

The Fairly Fast Packet Filter (FFPF) [4] is the most recent research on packet

filtering. FFPF greatly expands the filter capacity by using external functions which essentially

are native code running in kernel space. It invents the concept of flow group, in which several

monitoring programs share the same packet buffer, thus eliminating redundant packet copying.

In addition, it features language neutral design, provides compatibility to BPF, and offloads

filter processing to network interface cards with a Network Processing Unit. As the most visible

packet filter research since BPF, FFPF achieves significant performance improvement.

However, FFPF and NPF resolve quite different problems. FFPF focuses on the packet

filtering framework and its main contribution lies in the improvement of scalability for multiple

simultaneous monitoring programs; while NPF aims at the packet filtering engine and provides

a fast, flexible, and safe filtering mechanism for the applications. Since FFPF’s framework is

language neutral, NPF and FFPF are complementary to each other.

7

CHAPTER III.

NPF DESIGN

In this chapter we first state the motivation of NPF, describe our design approach and

tradeoffs, and then present the detailed ISA. Finally, we analyze the characteristics of NPF in

terms of performance, security, and computational power,

i. Motivation

The inefficiency of BPF observed in our past experiences directly motivates the design

of NPF. The most observable performance degradation of BPF, as mentioned before, emerges

in dynamic filtering tasks. This degradation is attributed to the compilation process in filter

update, which has been pointed out in previous research such as [6] and [21] .

The filter re-compilation process could be unduly long when the BPF filter is capturing

traffic on high-speed networks. Frequent filter updates, often required by the filtering task,

exacerbates the performance degradation. The duration of filter update in BPF would be

significantly reduced if the re-compilation phase were skipped. This trick is possible for

applications with very limited purpose such as mmdump [21]. However, for general purpose

network monitoring applications, such as NIDS, filter re-compilation is inevitable, due mainly to

the following two reasons. First, with a RISC-like pseudo-machine filtering engine, each pcap

language primitive is implemented as a variable number of simple BPF RISC instructions.

Changing one of the primitives without recompiling often mandates updating instructions, such

as branch target address, throughout the entire compiled filter, which could be more costly

than re-compiling. Second, BPF employs control flow optimization in order to speed up filter

execution; however, this technique also renders direct instruction-level filter update impossible.

Control flow optimization merges several identical groups of instructions into one, reduces

both filter program size and execution time. However, if subsequent changes in one control

flow require updating a group of instructions shared by other control flows, direct instruction

modification will incur errors in the filter. The correct updating, which requires control flow

analysis, instruction generation and patching, is almost certainly much more costly than

recompiling.

Upon further inspection of BPF, we discover that on one hand the RISC ISA gives BPF

flexible programming and easy analysis; on the other hand, it makes the filter execution very

inefficient. Each BPF instruction accomplishes a very simple task, such as loading, arithmetics,

or conditional branching. However, in order to execute an instruction, the pseudo-machine

engine has to complete an execution cycle, which includes at least one load, one or more

arithmetic operations, and one or more conditional branches. Therefore, the useful processor

cycles spent in evaluating the actual packet filtering criteria only make up a small fraction of

the total; most of the time the processor spins “uselessly” inside the BPF filtering engine,

ii. Design Approach

Despite the observed performance inefficiency, BPF is still the most widely used

packet filter. Its great success is mainly attributed to (1) the generic pseudo-machine

9

abstraction, which guarantees cross-platform compatibility; and (2) its natural language like

primitive based filter language, which ensures the ease of use to network administrators.

Therefore, we decide to inherit the pseudo-machine abstraction and the filter language

primitives from BPF, while developing our own filtering model that resolves the problems

mentioned above.

The primary objective of NPF is to achieve low filter update latency. Our approach to

reaching this goal is by eliminating filter re-compilation and security checking - the two most

time-consuming stages in filter update.

The process of compilation is essentially a translation from a high level program

description to a low level instruction collection, which the underlying hardware can understand

and execute. We avoid compilation in NPF by abstracting and specializing our pseudo­

machine instructions, establishing a CISC-like architecture that maps the high level descriptive

filter language elements (primitives) directly to low level machine operations. In other words,

each filter primitive has a corresponding pseudo-machine instruction; if the description of

filtering criteria is given in compliance of the NPF ISA, the description itself is directly

executable by the filtering engine without any translation (compilation). The design rationale

behind creating a CISC-like ISA lies in the observation that packet filtering is a very specific

system tool with limited operations. The PathFinder [2] research shows that all operations

in packet filtering can be generalized as pattern matching, and our study further reveals that a

limited set of pattern matching operations can cover all common packet filter operations. As a

10

result, although NPF has a very specialized instruction set, which includes only 22 different

type of instructions, it is able to perform the equivalent operations to any pcap language

primitives (except arbitrary arithmetic) used in BPF.

The simplicity-driven principle also leads to the simplified computational model,

Deterministic Finite Automata, which enables NPF to maintain security without filter program

security checking. Because of the highly specialized ISA, each NPF instruction is able to

perform data loads, (predefined) arithmetic calculations, and comparisons. The execution path

of the filter program is determined by the Boolean evaluation result of each instruction: either

continue (“true”) or abort (“false”). Thus, we simply do not provide the filter program with

any storage, nor do we allow the program to control its execution path with branch instructions.

With the fixed set of instructions, acyclic execution path and zero data storage, any NPF filter

program is safe to run in kernel. To further optimize filter update, we define all NPF instructions

with fixed length, so that any instruction can be quickly located and modified.

The secondary objective of NPF is to increase filter execution efficiency. The use of

CISC-like ISA already opens a door for NPF performance optimization. To further boost the

speedup, we introduce SIMD3 processing for nearly all NPF instructions. SIMD allows the

processor to perform a single instruction interpretation and apply the same operation on many

sets of data, thereby significantly reducing the instruction interpretation cost.

3 SIMD has been widely used in contemporary high performance processors, such as Intel Pentium
series and IBM Power series processors.

11

n _____________________o
Command

Argument 1

Argument 7

Figure 1: The NPF Instruction Format

iii. Detailed ISA

Like BPF, the basic building block of NPF is instruction. Figure 1 illustrates the format

of an NPF instruction. As mentioned above, for the purpose of fast instruction address during

filter update, all NPF instructions have the same size: one 32-bit command field and seven 32-

bit parameter fields.

We formulate our instruction set based on BPF primitives. We first classify BPF

primitives into two categories according to their address modes. “Direct addressing” primitives,

such as “ether proto” and “ip src host”, fetch data from an absolute offset in a packet.

“Layer 1 indirect addressing” primitives, such as “top dst port”, address data by

calculating variable header length of a protocol layer and adding a relative offset to it. We then

generalize the manipulation and comparison operations used in each layer. There are three

basic operations: (1) test if equal, (2) mask and test if equal, and (3) test if in range. There also

exist some variations in each layer, such as the operand width. Finally, we design the complex

instructions to accomplish the corresponding operations. We come up with 14 different

operations that, alone or by combination, are able to perform equivalent operations of any

BPF primitives (except “expr” which involves arbitrary arithmetic).

12

To further exploit CISC architecture and enhance performance, we introduce a new

addressing mode, “Layer 2 indirect addressing", with 4 additional instructions. In the new

addressing mode, filtering operations address data by first performing “Layer 1 indirect

addressing" to retrieve the related information, which is used to calculate variable header

length of the higher layer, and then adding a relative offset. Note that BPF does not provide

such primitives, but there are real demands, such as filtering based on TCP payload.

Moreover, we add 4 more “power instructions” that performs equivalent operations of several

frequently used BPF primitive combinations, such as “ip src and dst host”, “top src

or dst port”. Therefore, in total the NPF ISA consists of 22 different types of instructions.

Table 1 is a sample of the NPF instruction set, which captures the characteristics of

NPF CISC-like ISA. The first (the leftmost) column shows three addressing modes; the second

column shows different types of instructions; the third column explains their functionality, and

the fourth column shows the equivalent operations in BPF. Although the NPF instructions are

considered to be “specialized”, they are still fairly generic in that given different parameters;

one NPF instruction can function as several different pcap language primitives, as listed in

some cells of the fourth column. Based on the NPF instruction set, we can derive alternative

faster implementations for some BPF primitives. For example, the “ip tcp port” primitive in

BPF requires examining whether a packet is IP, non-fragment, and TCP in three separate

steps with six instructions. In NPF, we can take advantage of the “continuous masked

comparison” instruction (d_leq_m), performing the same examinations in a single instruction.

13

"0T303

O
O

o wo CO
o £
2 to
CL CC

o 0303 O
Q . SZ
CD 03
CO CO a. cl
E E o o
O O

<13TJ

O
o

Ql
Q

. ^
£ cl

o

CL

03 CO
■a
■a
c03
CD <S>
O ~
O
O oW CO CD Cl
CO CO C. m—
E =
o a) O I—

CL

t
O

o
O L J
O Z)
o
Q . CL

U
H

CD 03
CO CO
Cl Cl

E E
o o
O O

CL

CL
O

CL
O

CO•a
"D
c03
CD

COCL
Eo

O

acoCL
CL
Q

03o
CL
o

T3CO
o
>->03CL

CLa

_Q

om ~Z
CO

o> 2 .CD CO
h- CL

co
CO
co

i !

CO
~o03
O
■U y)
C CO O -CO
> I

.C l ^ CO 03

CO c
COa. — o co
03 E
e ~
03 E

T3CO
"5. 03 CL T3 03 C
C/3 2
03 g-
a) o
c.irr d)

eo §
w w
3 g o £
c fi
c
O 5 o

CO
c r

CD 03
03 c/3
t=£ C/3
S I

§ ■ 2
s_ CO 03

-c 2
CO ro r~ CL
> CO> 03
to -C03
I - ^

O
s z

£ £
<U
T_ CO
co to
*= E
to 2 03 03 I— Cl

03
a
co

TJ
CO

O
- I
co
co 52 > 03
o -cJQ £
CO CO
C E

2 °
03
Q- It:
° 03 03 zs
E -i=
CO C

o -e
^ o co x:

Cl co

03 03
C/3 = £ <~ O 03
C 03

03
CO

•- £
o ^

s z -QC/3 -Q
tt 2 £ 'tz CD O -r- 03

CO03
CO

03 £
CO 03
CL E
£ 2 P CO O CL

SZ T3 ±t 03
^ £.
03 9- 03it: -3<c O C/3

CO

> JO
£
ro

co >
03 ’
E o
it CO
1_ CO-
03 03
03 03
£ 03

£ "£ 9
CM §
CO
o
£

o c
CO o
CO 03

CL - CL
Q i_ E
CD 03 o

® £ m£- E 2
£ 2 £ o CO to O Q_ -Q

a
LU

a
LU

a
o
LU
2
0

Ia
a
LU

I
a

aLU
CO

a e>LU zCO CLCO| 05
_J _1

aLU a_l LUICsl u_l CMu
■a
® ra * ^
-I ? 2?

03

w CO
to ~
CO '•J
it:
O

_ £Z
£ >
<? o 0

i_ "O
CO X3

o O c_03 £ ©
to 2 ~ "Q
W > , co ro

£ --> x:

2 03

CO "O
£ <

O O

o
t o '£ CO s z

03 £ 03
C c
> £

£

o s z
C/3 CO CD

2
"O

CO CO
> CO

-Q JC

a)
CO
a
o
o=3
toc

o
£
a.
E
CO
CO

£
_Q,ro

14

We also add the SIMD feature into our instructions set by packing additional operands

into unused parameter list. For example, the “Direct addressing load, test if

equal” instruction (d_e q) uses only one 32-bit operand; while the SIMD version of this

instruction can carry up to 6 additional operands, and the corresponding operation becomes

“Direct addressing load, and test if equal on op[0], or op[1], or

op [2] , ... op [6] ”.

A series of instructions connected by logical “AND” form a Pass. In essence, a Pass is

a single complete control flow. As the name “Pass" denotes, one can think of it as a passage

from the network into the application. When a packet arrives at a Pass, instructions are

evaluated one-by-one. If all evaluation results are “true”, the packet is accepted and copied

to the userspace; otherwise, if any evaluation result is “false”, the packet fails the current

Pass, and will be tested by remaining Passes or simply dropped. For fast addressing, each

Pass includes 30 instructions. With the support of complex SIMD instructions, the 30

instructions can express a very large and complex control flow. For example, in Chapter IV the

static filtering criteria No. 6 can be expressed using only 10 distinct NPF instructions4.

Multiple control flows are supported in NPF by a collection of Passes called a PassSet.

At maximum, a PassSet can include 127 Passes. The relationship between Passes is

exemplified in Figure 2. A new Pass can be created from scratch or incrementally by the

4 Two Passes are used to express the filtering criteria completely, each containing 8 instructions, but
sharing 6 common instructions.

15

Top-level
Parent-child
Siblings

Figure 2: NPF Passes Relation Diagram

“duplication” procedure. Normally, the top-level Passes are coined afresh while all lower level

Passes are formed by duplication. The Pass being duplicated is the “parent’ and the

duplication product is the “child”] those Passes that share the same parent pass are “siblings”.

The Passes are evaluated in a depth first manner, and a packet either succeeds in one Pass

or fails all Passes.

iv. Design Tradeoffs

There are two design tradeoffs in NPF. First, by eliminating the compilation stage,

NPF also forfeits possible instruction-level optimization. The compilation and optimization in

BPF build an acyclic CFG (Control Flow Graph) of all given filtering criteria, and merge the

common criteria across control flows to achieve optimal performance. Without such a stage,

the NPF filter program instead is simply a “Control Flow Collection”, in which the Boolean

expressions of filter criteria are in disjunctive normal form. To avoid the potential performance

pitfall, NPF employs a different optimization method called “passive incremental optimization”.

It originates from our observation that throughout a dynamic filtering task, the set of criteria

newly-added to the filter program are very likely related to existing criteria. For example, the

newly added set of criteria often monitors the same host but on different ports or the same

protocol but on different hosts. NPF utilizes this “incremental” relationship between criteria to

remove redundant instruction evaluations. Flowever, due to latency constraints, this

optimization cannot be done automatically on every filter update. Instead, it relies on the

application to call a special “duplication” function to signify the incremental relationship. When

duplicating a set of criteria (the parent), NPF creates a copy of the criteria (the child) but

leaves a special flag on each individual criterion indicating whether it has been modified. If any

subsequent changes to the child occur, “unchanged” flags are cleared accordingly. NPF

always evaluates the children after the evaluation of their parent. When evaluating a child, the

filtering engine only evaluates the criteria that are either modified, or have not been evaluated

in the parent.

The second design tradeoff is redundant computation in the sub-instruction level.

Because NPF does not provide any storage to the filter program, no information can be

explicitly exchanged even between instructions. As a result, instructions must maintain a

certain computation redundancy. For example, NPF filter programs cannot compute and store

the protocol header length, such as IP header length. Thus, each instruction that handles

packet payload must perform a header length calculation. On one hand, this feature is desired

17

since NPF instructions are designed to be independent of each other and thus can be

modified in arbitrary fashion without affecting the operations of instructions executed

afterwards. On the other hand, when handling a large number of instructions, the redundant

computation is a waste of CPU cycles. We resolve this problem by introducing a computation

cache, an implicit mechanism to share information across instructions. It functions as a hint to

the pseudo-machine. Upon the arrival of a new packet, the computation cache is reset; and

before calculating the protocol header, the filtering engine first checks whether the

corresponding computation cache holds a valid value. If so, that value is returned directly from

the cache without performing the actual calculation. Otherwise, calculation is performed and

the result is recorded in the cache. Thanks to the computation cache, the protocol header

length calculation is performed at most once per packet,

v. Analysis

Before giving detailed analysis of NPF in terms of performance, security, and

computational power, we first summarize the shared design principles of NPF with other

packet filters, especially BPF, as well as its unique design features that distinguish NPF from

other packet filters. The shared and unique design features are listed as follows, in which the

shared are marked with “+” and the unique are marked with

• Runs as a kernel module, filtering packets “in place”. (+)

• Follows the “Acyclic Control Flow” model, avoiding unnecessary computation. (+)

• Uses architecture-independent pseudo-machine instructions, making filter codes

18

Filter rules by
pcap language ^ ^ ^ TPF

e z :

Machine instructions
after interpretation

Machine instructions
after interpretation

p cap p n ma ti ve

p -7--— ̂ Interpretation
overhead

vvorklo ad

Figure 3: Overhead Comparison between
BPF and NPF

cross-platform. (+)

• Utilizes CISC and SIMD instruction set architecture, eliminating the compilation

stage. (*)

Supports in-place and incremental filter modification. (*)

Simplifies the computational model, ensuring security without security checking. (*]

a. Analysis of Performance

The performance superiority of NPF mainly comes from three aspects: its ISA, SIMD

instructions, and low filter update latency.

The CISC-like ISA dramatically speeds up filter execution time by reducing the high

cost of pseudo-machine instruction interpretation. As shown in Figure 3, the execution of a

19

pcap language primitive requires several (say N), RISC-like instructions in BPF, while it only

takes one CISC-like instruction in NPF. Thus, the ratio between the interpretation overhead of

BPF and NPF is N to 1. As described before, the number N is normally larger than 3, and

sometimes can be as large as 7 to 10.

Because of the pseudo-machine software execution overlay, the CISC-like

architecture not only no longer suffers from hardware obstacles5, but also introduces more

opportunity for implementation and run-time optimizations, which are not possible for RISC-

like pseudo-machines. Reduced instructions only perform minimum operations. Their

implementations are essentially discrete instructions scattered across the pseudo-machine

code body, so it is hard for human or compilers to optimize. While the underlying hardware is

often optimized to execute a “continuous logic flow” by utilizing the spatial and temporal

program localities, the execution of RISC pseudo-machine is two logic flows scrambled

together. The logic continuance of the filter program operations is brutally interrupted by the

pseudo-machine state maintenance code throughout the execution. Therefore, the run-time

optimization provided by the hardware cannot be well utilized by RISC architecture.

The NPF complex instructions are implemented as a set of closely-related operations

integrated together: load data from memory, manipulate, compare, and branch. The integrated

operations can be easily optimized by hand or compilers. For example, in NPF the x86

5 The key advantages of RISC architecture, such as simpler hardware implementation, more registers,
and better pipeline performance, does not apply here any more.

20

processor’s general registers can be utilized to speed up the filter program execution, which is

not possible in BPF. The execution of CISC-like pseudo-machine is friendly towards the

underlying hardware. Although there are still two logic flows, they interleave “naturally”, in

other words, the filter program executes continuously until reaching a branch point, then the

pseudo-machine state maintenance code kicks in, starting the execution of the next block of

filter program, and so on.

SIMD instructions further boost NPF’s performance by amortizing the interpretation

cost of an instruction over multiple operands. As an example, when comparing the source port

of a TCP packet against multiple values, BPF requires one instruction per port value; however,

NPF can pack as many as 12 port values into the SIMD version of the li seq instruction.

For a dynamic filtering task, NPF provides a set of system calls for adding, removing

or modifying criteria. Instead of updating filter descriptions in userspace, recompiling, and

performing kernel security checks, NPF simply pin-points the Pass and Instructions to be

updated. Even during the process of modification, only the target Pass is affected while all

other Passes continue to function as usual, allowing the matched packets to be accepted.

b. Analysis of Security

Security has always been a concern in the design of a packet filter. More specifically,

the security here refers to the correctness of filtering codes, since modern packet filters are

executed in kernel address space. Without proper security checks, a faulty filter program

containing dead loop, wild jump, array index out of bound, etc. could lead to unpredictable

21

results. A maliciously crafted filter program can bypass any user level access protection and

become a serious security hole.

Depending on the design model, different packet filters have different mechanisms to

enforce the security of the filtering programs. For example, thanks to its pseudo-machine

abstraction, BPF performs a security check in the kernel just before the filter program is

attached, and rejects any program having backward jump instructions. The FFPF filter

languages allow memory allocation; therefore FFPF has compile-time checks to control

resource consumption and run-time checks to detect array bound violations.

General security principles suggest that any program should not have more privileges

than its functional needs. Essentially, the security checks in BPF and FFPF are the efforts to

limit certain privileges (computational powers) that the filter program does not need. Therefore,

we attempt to completely remove the extra computational powers from the basic model and

design in NPF.

As a result, NPF uses the Deterministic Finite Automata (DFA) computational model

as its pseudo-machine abstraction, instead of Random Access Machine model in BPF and

FFPF. The benefit of using DFA computational model is that during the execution of an

arbitrary program, the state of the machine will always be within a predetermined set. In other

words, no program will be able to perform any unspecified operation. With this computational

model, an NPF program is “well-behaved” and security checks are deemed unnecessary,

c. Analysis of Computational Power

22

Compared to RAM, DFA has reduced computational power as a tradeoff for stronger

security. However, we would like to argue that this reduction is harmless in the context of

packet filtering. The complete implementation of all (except arbitrary arithmetic) pcap

language primitives in NPF, successfully proves that DFA has sufficient computational power

for a network packet filter to perform well defined tasks. In addition, the loss of ability to

perform arbitrary arithmetic has negligible impact on NPF’s usage or performance for the

following two reasons.

Firstly, existing NPF instructions can cover all aspects of general purpose packet

filtering. For instance, the masked integer comparison instructions are applicable to a large

range of operations, from protocol identification to packet content matching. Although currently

only used for a limited number of protocols (IP and TCP), the layered packet header resolution

instructions can easily be generalized to apply to other protocols.

Secondly, NPF’s complex instructions are, in fact, very good at handling arithmetics,

as long as the operations are well defined. If needed, an NPF instruction can perform more

complex arithmetics than any pcap language primitives, with orders of magnitude faster

speed. Since most of commonly used packet filtering criteria are very well defined, existing

NPF instructions are fully capable of handling the corresponding sequences of arithmetics. For

emerging filtering criteria that require new arithmetic operations, we could easily add new

instructions and implementations if necessary.

23

CHAPTER IV.

IMPLEMENTATION

We have implemented the NPF kernel filtering module for the latest Linux 2.6 kernel

as well as the supporting userspace libraries. Currently we provide implementations for both

i386 and x86_64 architectures, and we plan to port NPF to other open-source UNIX variants

such as FreeBSD in the future,

i. Kernel Implementation

The Linux Socket Filter (LSF) in Linux kernel is the module equivalent to BPF for BSD

UNIX systems. The core filtering engine is implemented in file filter.c in the “net/core/ ’ directory.

It provides a function call interface sk run f ilter (), through which the filter program is

executed and a decision whether or not a packet is accepted is made. A special Linux socket

called af pa ck et is used for communication between userland applications and LSF module.

Userland applications make use of LSF by first creating an af packet socket, and then

attaching LSF filter program to the socket through system call setsockopt (). Normally,

these basic application-kernel interactions are handled by the userland supporting library

libpcap. Refer [8], [9] for the details of LSF internals.

To maximize the compatibility with the existing framework, we also implement the core

filtering engine of NPF in a single file npf.c in the “net/core/' directory, providing the identical

function call interface sk_run_npf () in parallel with LSF. We also add the NPF user-kernel

24

Routine Functiona lity
NPF.Open
NPF_ New Pass
NPFJdelPass
NPF_DupPass
NPF_SelectOp

NPF_AddParam
NPFJDelParam
NPF_PokeInst

Create and attach an NPF PassSet to a socket
Get a new Pass from the PassSet
Remove a Pass from the Pass Set
Perforin a duplication o f a given Pass
Select a pre-detined operation (equivalent to a pcap language prim itive)
in to an instruction o f a given Pass
Add an additional (S IM D) parameter to an instruction in the given Pass
Remove a given parameter from an instruction in the given Pass
Change an arbitrary part o f an instruction in the given Pass

Table 2: Selection of libnpf APIs

communication mechanism in the setsockopt () system call. Similarly, NPF filter programs

are attached to the same structure sk filter as the LSF filter programs, with a flag set to

tell two kinds of programs apart. Once in action, packets share the same delivery path no

matter which packet filter is being used, and only differ in the call to different filtering engines.

As a result, our implementation requires minimum modifications to existing kernel codes. It

can coexist with the LSF packet filter, and is compatible with the widely used libpcap user

library.

ii. Userland Library

Being the LSF userland supporting library, libpcap provides a well-designed set of

powerful routines to control and communicate with the kernel portion of LSF as well as utility

functions for tracing and manipulating captured packets. The kernel portion of NPF is

compatible to libpcap. The user applications of NPF only need a separate mechanism to

communicate with the NPF kernel portion, and can continue using the existing libpcap

routines to receive captured packets. Therefore, instead of hacking libpcap to incorporate

NPF, we decide to leave it intact and develop a set of complementary libraries.

25

F ilte ring criterion
ip sre inM 192.168.254.0/24 and tcp (1st port 23

NPF filte r
Pass.lnsl (0)— Ft lierIP_TCP_NonFragi i
Pass. Ins (1)— Ethe rJ PSrc(OxFFFFFFOO. OxCOA8FE 00)
Pass. Ins .2) ... Ethe r IP _T C U DPDst (23)

LSF filte r
(00) Kill [12]
(01) jeq #0x800 jt 2 j f 13
(02) Id [26]
(03) and #O xlflliiO O
(04)
(05)

jeq
ldb

#0xc0a8fe00 jl 5 j f 13
[23]

(06) ieq #0x6 jt 7 j f 13
(07) Id li [20]
(08)
(09)

jseq
Idxb

#0x1 I f f j l 13 j f 9
4*(\ 1 4]& 0x f)

(10) ldh [x + 16]
(11) jeq #0x17 jt 12 j f 13
(12) ret #96
(13) ret #0

Table 3: A filtering Criterion and Corresponding

LSF and NPF Filter Programs

As shown in Table 2, the C library libnpf provides a set of API functions for the

convenient manipulation of NPF filter programs. The compatibility functions to existing LSF

filters are also included, making transitions from LSF to NPF effortless. In addition, we also

implement a C++ library oonpf, providing object oriented filter program control and

manipulation, as well as better debugging support. Table 3 shows a common filtering criterion

expressed in pcap primitives, the NPF filter program using oonpf library, and the compiled

LSF code as reference. It illustrates the clear logical connection and easy transformation

between the NPF filter program and the pcap language primitive,

iii. Optimized Implementation

In addition to the NPF architecture, the optimization techniques used in NPF

implementation are also essential to the performance improvement of packet filtering. We

have made several revisions of our code and gained up to 50% performance speedup in

comparison to the initial implementation. Note that these optimizations are only effective in the

CISC-like architecture. The major optimizations we employ are listed as follows.

The first optimization is to use bit, instead of byte, operations. For example, in

programming the filtering engine program counter, while the natural response is to use an

integer, a much faster method of tracking the execution point is to use bit mask.

The second optimization is to hybridize the SIMD indicator with the instruction

identifier. It is undesirable to use loops in evaluating SIMD instructions, because (1) the

number of loops demanded by the usage context is often very small, which leads to a large

percentage of branch miss predictions, and (2) loop counter takes a precious general purpose

register, which may otherwise be used for computation acceleration. Our optimization

technique greatly speeds up the SIMD instruction execution, because it unrolls the evaluation

loop and completely avoids the related performance complications; as well as reduces the

SIMD instruction decode time by eliminating extra operations to check the SIMD indicator.

The third optimization handles the duplicated Pass evaluation. As shown in Figure 2,

NPF supports hierarchical relationship between Passes to allow for “passive incremental

optimization”. Therefore, the filtering engine needs to perform evaluation in a tree structure.

Because the recursive evaluations are impractical for in-kernel programs, the only alternative

is the iterative approach, which requires simple local storage (a stack or queue). Using

27

indexed array is too slow in that every storage access involves too many operations:

accessing, modifying, storing array index, loading array base address, dereferencing and

loading element. NPF obtains the fastest storage by utilizing the stack in hardware, with which

accessing an element is as fast as executing a “p u s h ” or “p o p ” instruction. By keeping the

frame-pointer for the evaluation engine function, NPF can safely utilize the local stack without

interfering with local variable accesses

28

CHAPTER V.

EVALUATION

In this chapter, we evaluate the performance of NPF in comparison with that of LSF.

We also attempt to compare NPF to FFPF [4] , the latest packet filter in the literature.

However, due to FFPF code maintenance problem, as of now we have not been able to use

FPL-3, the latest version of the filter language developed for FFPF.

We compare NPF with LSF on both static and dynamic filtering tasks. The evaluations

on static filtering tasks aim at revealing the performance of the filter engine, while the

evaluations on dynamic filtering tasks focus on uncovering the overhead of the filter update.

We conduct the experiments on four different platforms with different computing architectures.

The configurations of these machines (PC1-4) are listed in Table 4 alone with the traffic

generator (PCS),

i. Testbed Setup

To evaluate the filtering performance of NPF in a realistic but controllable environment,

we set up a test-bed, as shown in Figure 4. A Gbps SMC managed switch is used to provide

connections between machines. The switch emulates the gateway through which a local area

Machine CPU E2 Cache Memory 1 'SB
PC I I Intel Pentium 4 2.8GHz (32-bin I MB 768MB 333MHz
PC 2 2 Intel Xeon 2.8(i l l / (32-bit \\7 HvperThreadinC) 5 12KB IGB 800MHz
PC 3 I Intel Pentium 4 2.6GHz (EM 64T w/ HvperThreadine) 2 MB IGB 800MHz
I ’d 2 Intel Xeon 2.0GHz (EM64T DualCore) 4M B 4GB 1 333MHz
PCS 2 * Intel Xeon 3.06GH i (32-bit w / HyperThreadineI 312KB 2GB 333MHz

Table 4: Testbed Machine Configurations
29

SMC TigerSwitch 8606T

m m a * * * * m

PCS PC [1-4]

Intel 82545F.M
64-bit-PC1-X

Figure 4: Testbed Setup

network such as an enterprise or campus network connects to the Internet by directing traffic

from the specified source port to the mirror port. We use the packet generator machine (PCS),

which is connected to the source port, for replaying traces, while one of the four machines

(PC1-4) connected to the mirror port receives all the replayed traffic and plays the role of a

monitoring device deployed in a real environment,

ii. Static Filtering Performance

Because NPF differs from LSF only in the filtering engine design and implementation,

the number of CPU cycles spent inside the filtering engine becomes a natural choice of the

performance metric in this study. This metric is gathered by taking the difference of the x86

Time-Stamp Counter (TSC) just before and right after the filtering engine call. Due to the fact

that the software interrupt NET RX runs on only one processor and is non-preempted, we can

safely use the TSC difference as a speed metric without considering the SMP related

complications, such as the fact that TSC is not always synchronized across processors.

30

Filter Description LSF Inst.# NPF Inst.#
I
■>

' (Accept all packets)
P”
p src or cist net 192 .168.2.0/24’'

1
3
10

0
I

3 -
4 p src net 192.168.2.0/24 and dst net 10.0.0.0/8” 10 ~>

5 p and tcp port (ssh or http or imap or smtp or pop3 or ftp)” 23
6

f
p and (not tcp port (80 or 25 or 143) and not ip host (...)”
die ellipsis mark stands for 38 IP addresses ORed together.)

95 10

Table 5: “Static Filters” Specified in pcap Language

and the Corresponding Compiled LSF and NPF Filters’ Instruction Count

As shown in Table 5, six different filtering criteria with increasing complexity are used

for evaluation. Their instruction numbers in LSF and NPF are also listed for comparison. To

show the performance margin that may be exploited, we implement a set of hand-coded

optimized C filters, which perform the same filtering functions and serve as the performance

ceiling for comparison. We compile these C filters using gcc “Os” (optimize for size) flag.

To obtain consistent and reproducible results, we collect a 1.1GB trace containing

14,260,556 packet headers (75 bytes snap length) at the gateway of a local area network. We

playback the trace file at the fixed rate of 250,000 (i.e., 250K) packet-per-second (pps) by

using tcpreplay [20]. Assuming an average of 500 bytes per packet, the playback rate

represents a fully utilized 1Gbps link bandwidth. The per-packet CPU cycles consumed by

NPF and LSF filtering engines are measured by a short piece of kernel code, which

accumulates the CPU cycles (measured by TSC) used for each call to the filtering engine, and

averages the value over a given number of packets (say 100,000). We measure the average

cycles spent in accepting and rejecting packets separately, and select the larger value of the

two as the filter performance data. We prefer the larger number to other measures such as the

weighted average, because we find that the worst average is much less affected by network

31

El LSF ® NPF DO pt-C

F ilter 4

El LSF $8 NPF DO pt-C

El LSF M NPF DOpt-C

PC-1 PC 2 PC3 PC4

270
El LSF IS NPF DOpt-C240

210

180

150

120

90

60

30

0
PC1 PC2 PC 3 PC4

Filter 5ns
300

13LSF M NPF DOpt-C
250

200

150

100

50

0

Filter 6ns
900

£3LSF M NPF DOpt-C800

700

600

500

400

300

200

100

0
PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4 PC1 PC2 PC 3 PC4

Figure 5: Per-packet Processing Time for Each Filtering Criterion

traffic than any other measures.

Given that processors with different frequencies spend different numbers of clock

cycles in executing the same sequence of instructions, we cannot directly compare clock

cycles across different machines. Instead, we convert the raw CPU cycles into the actual

processing time by dividing the corresponding machine’s processor frequency. The converted

actual processing times are presented in Figure 5 and Figure 6.

Figure 5 shows the per-packet processing time of LSF and NPF on four machines for

each filtering criterion (called “filter” for short in the following), respectively.

Filters 1 and 2 are the simplest criteria. They are designed to show the minimum

overhead induced by the filtering engine. The corresponding results show that NPF and LSF

run approximately at the same processing speed. Both NPF and LSF have comparable

performance to the optimized C filters. These results are expected since NPF inherits the

32

pseudo-machine abstraction as well as the control flow model from LSF.

Filters 3 and 4 are light load criteria designed to demonstrate the filtering engine’s

capability for basic packet classification. The corresponding results indicate that NPF has a

moderate performance advantage over LSF on all machines. In filter 3, speedups are from

1.3% to 46.8% with an average of 31.0%. In filter 4, NPF outperforms LSF on all the four

machines; speedups are from 16.0% to 47.5% with an average of 25.8%. Compared to the

optimized C filters, LSF on average runs 88.9% slower for filter 3 and 110.9% slower for filter 4;

while NPF on average runs 45.2% slower for filter 3 and 68.5% slower for filter 4. The major

performance gain of NPF is attributed to its CISC-like instruction set. With much smaller

number of instructions in the filtering program, NPF reduces instruction interpretation time and

achieves higher performance than LSF.

Filter 5 is a moderate load criterion designed to test the filtering engine’s capability of

handling a highly specific filter criterion. The corresponding results show that NPF outperforms

LSF by a significant amount on all machines. Numeric data reveals that NPF’s speedup

ranges from 34.2% to 126.0%, with an average of 87.6%. Compared to the optimized C filter,

LSF on average runs 210.9% slower, while NPF on average runs 67.3% slower. Again, the

significant speedup of NPF is due to its architectural advantages, specifically, SIMD

instructions. The ability to pack many operands (12 for TCP/UDP ports) in one instruction and

batch the execution of comparison operations within a single filter engine “cycle” enables

many-fold reduction in the cost of instruction interpretation, and brings the performance of

33

NPF close to that of the optimized C filter.

Filter 6 is a heavy load, “real life” criterion, transformed from a pcap filter supplied by

our system administrator. In order to express this filtering criterion, the construction of the NPF

filter program uses the optimization features we implemented, including SIMD instructions for

reducing instruction interpretation cost, and Pass duplication for eliminating redundant

instruction evaluations. This filter is used as an ultimate performance test of NPF in a

realistically heavily loaded environment. The corresponding results show even higher

performance speedup of NPF against LSF. Numeric data shows that NPF’s speedup ranges

from 104.7% to 176.5%, with an average of 134.3%. The over 100% speedup clearly

demonstrates that utilizing both CISC-like ISA and SIMD with proper optimization, NPF can

significantly increase the filtering efficiency by better unleashing the power of the underlying

hardware. Comparing to optimized C filter, LSF on average runs 602.2% slower, while NPF on

average runs 201.9% slower: NPF performs much closer to the optimized C filter than LSF.

Figure 6 presents a cross comparison of filter execution time for LSF, NPF, and

optimized C filters among all machines categorized by six filtering criteria. It provides a good

overview of the static filtering performance. When the filtering criteria are simple and light load,

LSF, NPF and optimized C filters have nearly indistinguishable performances. As the criteria

become more complex and heavy load, the differences of filter execution time among the

three filtering engines grow. Although both NPF and LSF run slower than the optimized C

filters, the filter execution time of NPF grows at a much slower rate than that of LSF, and thus

34

ns
900

LSF-PC1 ■ LSF-PC2

"fi— NPF-PC2

- O - 0pt-C-PC1 - C - 0pt-C-PC2

LSF-PC3 LSF-PC4
800

NPF-PC3 — NPF-PC4

Opt-C-PC3 - O - Opt-C-PC4700

600

500

400

300

200

100

Filter 1 Filter 2 Filter 3 Filter 4 Filter 5 Filter 6

Figure 6: Per-packet Processing Time Comparison for All Filtering Criteria

NPF achieves much closer performances to the optimized C filters than LSF.

iii. Dynamic Filtering Performance

Since capturing FTP passive mode traffic is a typical dynamic filtering task, we apply

NPF and LSF to filter FTP traffic in passive mode and compare their performance, in terms of

the total number of captured connections/packets and the filter update latency. We use a

generated FTP traffic trace for the evaluation of dynamic filtering. The trace consists of up to

25 concurrent FTP sessions for passive mode data transfers, all with different source and

destination IP addresses and port numbers. The number of concurrent sessions increases

gradually from 0 to 25 at the beginning and then decreases back to 0 at the end. We replay

the trace at the rates of 100K, 250K, 333K and 555K pps (the highest sending rate PCS can

sustain), respectively, using tcpreplay on PCS and perform filtering tasks through NPF and

LSF separately on PC1 to PC4.

For experiments using LSF, we employ “(ip and tcp port ftp)” as the initial

35

filtering criteria to capture FTP control packets. When the set-up of each FTP data connection

is detected (by analyzing the captured FTP control packets for new data connection

information), we append the filtering criterion “or (ip xx and tcp port yy)” to the

existing ones. The “ip xx” and “tcp port yy” refer to the FTP server’s IP address and data

port number, respectively. When the teardown of a data connection is found (by looking for a

TCP FIN control packet), we remove the corresponding filtering criterion. For experiments

using NPF, we initialize the first Pass corresponding to the filtering criterion “(ip and tcp

port ftp) ”, in order to capture FTP control packets. As concurrent FTP data connection set­

up and tear-down events are detected, we create and remove Passes corresponding to the

filtering criteria “ (ip xx and tcp port yy) ”, respectively. We apply “passive incremental

optimization” by using function NPF NewPass () only for the first data session and function

NPF DupPass () for the rest of data sessions.

We collect two types of performance metrics, the total number of captured

connections/packets and the filter update latency. The former is measured using a simple

counter, and the latter is derived from the values of the CPU Time-Stamp Counter before and

after invoking function calls for filter update. Each experiment is repeated 10 times, and the

mean and standard deviation are calculated. As mentioned before, NPF and LSF share the

same Linux packet filter framework, including packet sniffing mechanism, traversal path in

kernel, and user-kernel interface. Except for the filter engine, all other conditions such as the

in-kernel NAPI [1 8] mmap ring size are the same. Thus, fairness is ensured in our

36

PC1 PC2

 LSF
„ „ „ N p F20

o
o
Z

555100 250 333
Sending rate (Kpps)

22
 LSF
 NPF20

100 250 333 555

PC3
Sending rate (Kpps)

PC4 '
22

— LSF
- -N P F20

C/3
Co
C/3
C/>03C/3
TO

X5
O
o

Z

100 250 333 555

22
— LSF
- - NPF20

"O

100 250 333 555
Sending rate (Kpps) Sending rate (Kpps)

Figure 7: Captured FTP Data Connections at Different Traffic Rates

experiments for performance comparison between NPF and LSF.

Figure 7 illustrates the comparison between LSF and NPF on the number of captured

FTP data connections. The blue solid curves are for LSF and the red dotted curves are for

NPF. The vertical bars represent the standard deviations. Neither LSF nor NPF can capture all

data session at any rate, i.e., both have packet drops. It is clear that NPF has higher capability

of capturing data sessions than LSF. The trend of curves in all figures suggests that the higher

traffic rates are, the larger difference in captured data sessions between LSF and NPF will be.

Although both LSF and NPF see almost the same amount of data sessions at the lowest rate,

37

I00K pps 25OK pps 333K pps 555K pps
LSF NPF LSF NPF LSF NPF LSF NPF

PCI
PC2
PC3
PC4

924 + 256K
946 + 267K
9IS + 258K
946 + 269K

948 + 270K
933 + 262K
956 + 269K
940 + 270K

642 + 153K
636 + I4 IK
704 + 167K
690 + 170K

848 + 231K
829 + 233K
820 + 229K
829 + 226K

519 + 95K
520 + 88K

560 + 133K
574 + 99K

727 + 204K
719+ 190 K
758 + I99K
754 + 202K

364 + 39K
.>82 + 45K
418 + 56K
370 + 42K

649 + 15IK
584 + I13K
611 + 145K
665 + 153K

Table 6: Captured FTP Packets at Different Traffic Rates

NPF catches 60% to 90% more sessions than LSF at the highest rate. Note that the capture of

a data session can be initiated only when the corresponding set-up control packet is detected.

Table 6 lists the average numbers of the FTP packets captured by LSF and NPF at

different traffic rates. The format is “control packet number + data packet number”. The data

manifest that in general the performance gap between NPF and LSF on packet capture

matches that on session capture, but to a larger degree. Particularly, the gain of NPF over LSF

on data packet capture exceeds that on control packet capture, although both grow with

increasing rates. This is attributed to the fact that the criterion for capturing FTP control

packets is placed in the foremost of the filter, which results in the constant comparison cost for

capturing control packets. In contrast, comparisons for data packets need to traverse half of

300

250

200

150

100

50

0

-50

Figure 8: Performance Gain of NPF over LSF

on the Number of Captured FTP Data Packets

38

TOO 250 333 555
Sending rate (Kpps)

the whole filter on average. Due to LSF’s higher interpretation cost, the performance of LSF in

capturing FTP data packets degrades much faster than that of NPF, with increasing length of

filtering criteria. Figure 8 shows the performance gain of NPF against LSF on the number of

captured FTP packets. At 100K pps, NPF performs equally well as LSF. At 555K pps, however,

NPF captures 148% to 288% more packets than LSF.

The filter update latencies for LSF and NPF on PC2 are shown in Figure 9 (a) and (b),

respectively, in which the most significant difference lies in the order of magnitude of the y-axis

unit. While updating an LSF filter takes *107 ns, updating an NPF filter takes only x104 ns. By

eliminating filter compilation and security checking, NPF gains three orders of magnitude

speedup against LSF. Another noticeable feature here is the growing latency in LSF filter

updates against “saw tooth” latency in NPF filter updates, under the context of increasing

concurrent sessions.

As shown in Figure 9 (a), both concurrent session number and traffic rate affect the

filter update latency of LSF. When the number of concurrent sessions increases, the filtering

criteria expressed in pcap language become longer. Accordingly, the compilation procedure

consumes more CPU cycles. The cost of security checking also increases as the filter

program size grows. With the increase of traffic rates, more CPU cycles are taken by the

filtering engine and less can be spared for filter replacement compilation, resulting in longer

filter update latency. In contrast, the filter update latency of NPF is overall insusceptible to the

change of traffic rates and concurrent sessions. Since we measure latency at the application

39

NPFx 10"
—O— 100K pps
- + - 250K pps
—-D—333K pps
-A-555K ppsCOc

&c
Si«5

Session Number

LSF
2.5

-O — 100K pps
- + - 250K pps
—O— 333K pps
- A - S55K pps|

_i
co■o
C L

ZD

.+ - ¥

0.5,
20

Session Number

(a) (b>

Figure 9: Average Filter Update Latency at Different Traffic Rates on PC2

level and the overall update latency of NPF is very small, the overhead caused by

indeterministic factors such as context switch and process scheduling is not constant and

produces the spikes in Figure 9 (b). Without filter compilation and security checking, NPF

performs filter update in an incremental manner. Adding or removing a concurrent session

takes almost constant time. Moreover, because the procedure of updating an NPF filter is

quite simple and the overhead of update is mainly caused by system calls, increasing traffic

filtering load has very limited (almost negligible) impact on its latency. This further explains

why NPF achieves much higher performance than LSF at high traffic rates.

Since all machines exhibit similar behaviors in filter update at different traffic rates, we

present a cross machine comparison on filter update latency only at the traffic rate of 250K

pps in Figure 10. Similar to Figure 9, the filter update latencies of LSF are three orders of

magnitude longer than those of NPF, and (approximately linearly) increase with the addition of

more concurrent sessions. By contrast, the dynamics of NPF filter update latency are

40

Up
da

te

La
te

nc
y

(n
s)

LSFx 10

-O-PC1-250K
- + - PC2-250K
—□— PC3-250K
- A - PC4-250K

0.6

0.4
Session Number

(a)

NPF

—O— PC1-250K
- + - PC2-250K
"HD— PC3-250K
- A - PC4-250K

20
Session Number

(b)

Figure 10: Average Filter Update Latency on Different Machine at 250K pps

independent of the number of concurrent data sessions on any machine.

41

CHAPTER VI.

CONCLUSION

This thesis presents the design and implementation of a New Packet Filter. NPF

provides an elegant, fast, and efficient packet filtering approach to handle the upraising

challenge of high speed network monitoring with dynamic filter updates. The key features of

NPF lie in its low filter update latency and high execution efficiency. NPF attains these

performance advantages by embracing several major design renovations: (1) the highly

specialized CISC-like instruction set eliminates the filter criteria compilation, resulting in high

filter execution efficiency; (2) the DFA computational model removes the necessity of security

checking and significantly reduces the filter update latency; and (3) the SIMD technology

further boosts the filter execution efficiency.

Our extensive experiments have validated the efficacy of NPF and demonstrated the

superiority of NPF against the de facto packet filter, BPF. For static filtering tasks, NPF runs as

fast as BPF on simple filtering criteria, but is up to three times as fast as BPF on complex

filtering criteria. We also used optimized C filters as the performance ceiling, and found that

NPF performs much closer to the optimized C filters than BPF. For dynamic filtering tasks, the

filter update latency of NPF is three orders of magnitude shorter than that of BPF, and NPF

can capture up to 288% more packets than BPF.

There are many avenues we would like to further experiment and exploit in NPF. For

42

instance, we will explore the multi-thread expansion of NPF, and develop a hardware

optimized filter engine. We will make use of the extra registers supplied in the x86 64

processors for further performance improvement. Moreover, we envision that x86 high

performance multimedia instructions (such as MMX and SSE) can also be used to accelerate

the packet processing.

43

REFERENCES

J. Apisdorf, k claffy, K. Thompson, and R. Wilder. OC3MON: Flexible, affordable, high

performance statistics collection. In Proceedings of USENIX LISA’96, pages 97-112,

Chicago, IL, September 1996.

M. L. Bailey, B. Gopal, M. A. Pagels, L. L. Peterson, and P. Sarkar. PathFinder: A

pattern-based packet classifier. In Proceedings of USENIX OSDI’94, pages 115-123,

Monterey, CA, November 1994.

A. Begel, S. McCanne, and S. L. Graham. BPF+: Exploiting global data-flow

optimization in a generalized packet filter architecture. In Proceedings of ACM

SIGCOMM’99, pages 123-134, Cambridge, MA, August 1999.

H. Bos, W. de Bruijn, M. Cristea, T. Nguyen, and G. Portokalidis. FFPF: Fairly fast

packet filters. In Proceedings of USENIX OSDI’04, pages 347-363, San Francisco,

December 2004.

J. Cleary, S. Donnelly, I. Graham, A. McGregor, and M. Pearson. Design principles for

accurate passive measurement. In Proceedings of PAM’00, pages 1-8, Hamilton, New

Zealand, April 2000.

H. Dreger, A. Feldmann, V. Paxson, and R. Sommer. Operational experiences with

high-volume network intrusion detection. In Proceedings of ACM CCS’04, pages 2-11,
44

Washington, DC, October 2004.

[7] D. R. Engler and M. F. Kaashoek. DPF: Fast, flexible message demultiplexing using

dynamic code generation. In Proceedings of ACM SIGCOMM’96, pages 53-59,

Stanford, CA, August 1996.

[8] G. Insolvibile. Inside the linux packet filter, http://www.linuxjournal.com/article/4852.

Linux Journal.

[9] G. Insolvibile. Inside the linux packet filter, part ii.

http://www.linuxjournal.com/article/5617. Linux Journal.

[10] S. loannidis, K. G. Anagnostakis, J. loannidis, and A. D. Keromytis. xPF: Packet

filtering for low-cost network monitoring. In Proceedings of IEEE HPSR’02, pages

121-126, Kobe, Japan, May 2002.

[11] V. Jacobson, C. Leres, and S. McCanne. Tcpdump(1). Unix Manual Page, 1990.

[12] G. R. Malan and F. Jahanian. An extensible probe architecture for network protocol

performance measurement. In Proceedings of ACM SIGCOMM’98, pages 215-227,

Vancouver, Canada, September 1998.

[13] S. McCanne and V. Jacobson. The BSD packet filter: A new architecture for user-level

packet capture. In Proceedings of the 1993 Winter USENIX Technical Conference,

pages 259-269, San Diego, CA, January 1993.

45

http://www.linuxjournal.com/article/4852
http://www.linuxjournal.com/article/5617

[14] S. McCanne, C. Leres, and V. Jacobson. Libpcap. availble at http://www.tcpdump.org/.

Lawrence Berkeley Laboratory, Berkeley, CA.

[15] J. C. Mogul, R. R Rashid, and M. J. Accetta. The packet filter: An efficient mechanism

for user-level network code. In Proceedings o f the 11th ACM SOSP, pages 39-51,

Austin, TX, November 1987.

[16] A. Moore, J. Hall, C. Kreibich, E. Harris, and I. Pratt. Architecture of a network monitor.

In Proceedings of PAM’03, La Jolla, CA, April 2003.

[17] U. of Waikato. The DAG project, available at http://dag.cs.waikato.ac.nz/.

[18] J. H. Salim, R. Olsson, and A. Kuznetsov. Beyond softnet. In Proceedings of USENIX

5th Annual Linux Showcase and Conference, pages 165-172, Oakland, CA,

November 2001.

[19] SCAMPI. A scalable monitoring platform for the internet. Leiden University (in

collaboration), March 2002.

[20] A. Turner. Tcpreplay. http://tcpreplay.synfin.net/trac/.

[21] J. van der Merwe, R. Caceres, Y. hua Chu, and C. Sreenan. mmdump - a tool for

monitoring internet multimedia traffic. ACM Computer Communication Review, 30(4),

October 2000.

[22] G. Varghese. Network algorithmics - an interdisciplinary approach to designing fast

46

http://www.tcpdump.org/
http://dag.cs.waikato.ac.nz/
http://tcpreplay.synfin.net/trac/

networked devices. In Morgan Kaufmann Publishers, 2005.

[23] M. Yuhara, B. N. Bershad, C. Maeda, and J. E. B. Moss. Efficient packet

demultiplexing for multiple endpoints and large messages. In Proceedings o f the 1994

Winter USENIX Technical Conference, pages 153-165, San Francisco, CA, January

1994.

47

VITA

Zhenvu Wu

Zhenyu Wu was born in Chengdu, Sichuan, China on August 03, 1982. He graduated

from High School of Sichuan Normal University in Chengdu, Sichuan, China in June 2000.

Zhenyu Wu received his B.S. at Denison University in May 2005, with double degrees in

Computer Science and Physics.

In August 2005, the author entered the College of William and Mary as a graduate

student in the Computer Science Department. Zhenyu Wu will defend his thesis in April 2007.

He will continue studying in the Computer Science Department for his Ph.D. degree.

48

	A New Packet Filter: Fast Packet Filtering by Exploiting CISC and SIMD ISA
	Recommended Citation

	tmp.1539892610.pdf._q8SE

