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ABSTRACT PAGE

Different statistical classification techniques are studied on both clinical and non-clinical 
data sets. Traditional criteria to evaluate a specific methodology such as the 
misclassification error rate are discussed. New performance measures; the classification 
ambiguity and classification instability are introduced to evaluate the risk and the 
consistency of an ensem ble of classifiers generated by cross-validation. Numerical 
experiments indicate that the new definitions are useful for understanding: 1] how the 
classification methodology will behave for future data and 2] the similarity and differences 
among various algorithms on data sets  with different structures.
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Chapter 1

Introduction and background

1.1 Classification: general comments and an ex­

ample

Statistical classification tries to use quantitative measurements to determine a sam­

ple’s group label. For example: D : {xi,?/i}, { ^ 2 ^ 2 }■> •••> ( x n ,yg} is a training data 

set which has N samples from g groups, xi, i= l,2,...,N  are the quantitative mea­

surements, yjj j  = 1, 2,...# is the group label. Each row of D represents a sample, 

and each column is a variable. The samples space is defined as:

D efinition A sample space A is a non-empty linear Euclidean space spanned by 

quantitative measurements (variables) in the data. It is a q dimensional space, where 

q is the largest number of any set of independent variables in data D.

The classification problem can be summarized as the task of building a classifier 

C that maps the subjects from sample space A to a group label set G, G = {1,2,... 

g }. A classifier is defined as:

D efinition A probabilistic classifier or a classification rule is a function which maps 

an object from a q dimensional sample space A into a discrete set of group labels
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G with a certain probability. A deterministic classifier is a special case where the 

probabilities are either zero or one.

Classification is one of the primary tasks in many scientific fields. Here we give 

some examples of common classification problems:

1. given a set of emails, building an accurate and effective statistical model to 

differentiate good emails from spam emails.

2. In early cancer detection research, with data having the relative abundance of 

different proteins, creating a classifier which can accurately predict whether 

an individual whether he has a cancer or not.

3. In conditions when it is difficult to identify whether the fossil belongs to a hu­

man or a chimpanzee, classification models can provide likelihood estimate for 

the fossil belonging to any one group by analyzing quantitative measurements 

such as length, width, etc.

There are many different classification approaches, introductions to Linear Dis­

criminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA) can be 

found in the classic textbooks by Mardia et al, [1] and Trevor et al., [2]; decision 

tree techniques in Classification and Regression Tree by Breiman et al., [3]; K  Nearest 

Neighbor (KNN) , Boosting, Random Forrest (RF), support vector machine (SVM) 

and many other modern classification methods from the machine learning commu­

nity are discussed in the book The Elements of Statistical Learning by Trevor et 

al., [2]. The application of these algorithms using the R programming language can 

be found in THE R FAQ [6], the textbook by Brian Everitt: An R and S-Plus Com­

panion to Multivariate Analysis and the book by Venables et al,: Modern Applied 

Statistics with S  [8].
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1.1.1 Example: detection of early cancer using TOF-M S, 

introduction and m otivation

According to the report Cancer Facts and Figures 2007 [9] released by the Ameri­

can Cancer Society , cancer is one of the most deadly diseases in the US. The most 

effective way of curing a cancer is to detect it and treat it at its early stage. Many 

early cancer detection methods such as Pap smear, Mammography, X-ray imaging, 

Prostate-specific antigen (PSA) and their effectiveness for different types of cancer 

are discussed in [12], [17] and [19]. In this thesis, we focus on the data generated with 

the Matrix-assisted laser-desorption/ionization time-of-flight (MALDI-TOF) tech­

nique. The MALDI-TOF techniques together with the involved data preprocessing 

algorithms is discussed in [10],[11], [13], [14], [15] and [16].

Mass spectra provide the relative abundance of different proteins in body fluids 

or tissues such as blood samples. In our research, blood samples from people with 

and without a cancer are collected and mixed with solutions of assisting matrix. The 

samples are then put into a vacuum space, waiting to be ionized. At the beginning, 

a laser beam shoots the samples and the high energy transferred from the laser 

beam ionizes the different proteins in the complicated mixture of blood samples. 

They leave the surface of the sample and become ionized through a complex charge 

exchange process( most of the resulting ions are singly charged). They then enter 

an electrostatic acceleration field which gives all ions the same energy, implying 

they have a mass-dependent velocity. After this acceleration stage, the ions enter a 

field-free region, which is a long straight flight tube, and drift at constant velocity. 

The ions are finally stopped by striking a detector, with the intensity of the ion 

signal at any given time being proportional to the number of ions at the related 

mass. The time of flight (TOF) is measured, and from it the mass can be inferred 

using Equation (1.1), where V is the energy of the ion (the charge multiplied by the 

acceleration potential), t  is its total flight time in the tube, 1 is the length of the
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flight tube, m is the mass of the ion, and z is the ion’s electric charge. The square 

of the flight time for an ion is proportional to its mass over z ratio. Because most 

of the ions are one single positively charged, their flight time becomes proportional 

to the root square of the mass. We can resolve the mass of an ion using its flight 

time from Equation 1.1.

2 V t2 m
~ r  =  7  (L1)

The data provides information on the intensity of ions during flight time and is 

recorded as the ion intensity versus flight time. Figure 1.1 is an example of peak 

list plotted against the m /z ratio. Peak lists are obtained after the raw data is 

processed in several signal processing steps including background subtraction, noise 

reduction, baseline subtraction, etc. The detailed explanations of peak picking and 

several signal processing methods in mass spectrometry can be found in [10], [11] 

and [17].

By comparing the ion signals of samples from healthy people and people with 

cancer, we hope to find a subset of important proteins that have significantly dif­

ferent intensities using modern statistical classification technique. Based on the 

assumption that the ion intensity is relative to the protein abundance, the impor­

tant ion peaks will help us to find out a set of proteins as potential biomarkers for 

early cancer detection.

The data generally is partitioned into two disjoint subsets: training and test set. 

The training set is used to build the classification model (a classifier) and test set 

helps to evaluate the model using criteria such as specificity (which represents the 

classifier’s ability to correctly classify a healthy people with a healthy group label), 

and sensitivity (which measures the classifier’s ability to correctly classify patients 

into patient groups).

Each sample has the prevalence of different proteins in a blood or tissue sample.

4
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Figure 1.1: This is an example of a mass spectrum peak list, the vertical axis are 
relative intensity of a peak, the horizontal axis is the over charge ratio of a peak.
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A sample has both the quantitative measurements X{ (the mass peaks intensities ) 

and the group label t/i (usually provided by a pathologist using traditional diagnostic 

method). The quantitative measurements Xi is a vector from a p (p is the number 

of peaks) dimensional sample space spanned by the basis of the set of variables, 

yi is from the group labels set G. Because of the so called curse of dimensionality 

problem, usually when the number of variables is large, not only is the computation 

consumption extraordinarily increased, but also new problems get introduced. For 

example: when the number of variables is greater than the number of samples, the 

covariance matrix of the data will be non-invertible. Thus some algorithms requiring 

the inverse of the covariance matrix cannot be used. Hence, before the classification 

procedure, it is wise to choose a smaller set of important variables if the number 

of variables is very large. More important is that when the number of variables 

is larger than the number of samples, one can ALW AYS  create a simple perfect 

classifier with zero misclassification rate. But This does not mean that future data 

will be correctly classified, only that you do not have enough samples.

After the dimension of the data is reduced, different classification techniques 

could then be used to build classification models. These models will finally get 

evaluated. Usually the classification technique that performs the best with a certain 

evaluation criterion is selected for further study.

1.2 Summary of classification algorithms consid­

ered in this thesis

In this thesis, four classification algorithms are discussed: Linear Discriminant Anal­

ysis (LDA), Quadratic Discriminant Analysis (QDA), Recursive Partitioning (rpart) 

and K  Nearest Neighbors (KNN). We will consider both probabilistic and determin­

istic approaches of each algorithm.
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1.2.1 Linear and Quadratic Discrim inant Analysis (LDA,

LDA and QDA both require that the data are normally distributed, LDA also 

requires that the different groups share the same covariance structure, while QDA 

does not have that restriction. For a classification problem with g groups data, the 

posterior probability that sample £ belongs to group i, i =  1,2 g is given by:

Where 7q is the prior probability for group i, fa is the probability density function 

for samples from group i that is normally distributed. And

Where E; and Hi are group z’s covariance matrix and mean, respectively.

In addition to telling which group a sample £ will be assigned to, the probabilistic 

classifier will also tell us how likely this assignment is.

1. Probabilistic version of LDA and QDA: sample x is assigned to a group % with 

probability p{x G group i\x), i = 1,2

2 . Deterministic version of LDA and QDA: the deterministic method tries to find 

a group j, j=l,2,...,g such that the posterior probability p(x  G group fax) is 

the largest, and assigns x into group j  with probability 1, other groups with 

probability zero.

W hen#=2, it becomes a 2-group classification problem. The discriminant function 

for both LDA and QDA is:

QDA)

p(x  G group i\x) (1 .2)

(1.3)

(1.4)
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When we assume that the two groups have the same covariance structures, 8 be­

comes a linear function of x (LDA). And if we don’t have this assumption, 8 is a 

quadratic function of x (QDA). If 8 is larger than zero, deterministic method assigns 

x into group 1 with a probability 1 , otherwise assigns to the second group with a 

probability 1.

1.2.2 Decision tree: recursive partitioning (rpart)

There are many statistical packages based on the idea of decision tree such as Clas­

sification and Regression Tree (CART) (discussed in [3] and [4]), and C4-5 in [20]. 

Recursive Partitioning (rpart) is one of the decision tree algorithms. It builds a 

decision tree to separate data into more and more homogeneous subsets. After a 

decision tree is built, it can be used to predict a future sample’s group label.

Figure 1.2.2 is a decision tree based on a 4-group data set. Each sample a: has two 

quantitative variables: X I  and X2  and one group label g(x). At each split, samples 

satisfying the inequality such as XI < 5.938 go to the left sub node, the rest to the 

right. At each node, rpart searches all the variables exhaustively for variable that 

best decrease a certain splitting criterion such as misclassification rate. The samples 

in that node are then separated into two smaller subsets using that variable. Three 

splitting criteria are available for rpart, which are:

1. Misclassification error:

I m ®  =  N ~ J f )  ^  ( L 5 )

Where Im(t) represents the misclassification rate at node t. It is defined as 

the proportion of points that are misclassified at node t. N m(t) is the number 

of samples at node t. Rpart classifies samples at a node into one group by 

making a vote using the sample’s group labels at that node. The group which



X 1< ^ .9 3 8

X2>= 4.343 d
0/0/0/80

b
6/73/0/0

X1>=1.969

a
63/0/2/0

X2>=3.468

b
5/7/1/0

c
6/0/77/0

Figure 1.2: An example of decision tree using rpart algorithm. Each split in this 
tree diagram represents a cut that is made in the intensity value for a particular 
peak. For example, at the very top, the first cut is taken on the variable x l. If the 
intensity value of the peak is less than 5.938, we move to the left and perform the 
next cut on another variable. If it is greater than 5.938 we move to the right. Here 
we encounter an end of the cuts, known as a ’leaf’. The four numbers labeling each 
leaf show how many peaks would be classified into each of the four groups, using 
that particular sequence of data cuts.

9



has the majority of samples in node t will be the predicted group label for all 

samples and is represented by k(t).

2. Gini index

h t t )  = Pk(t)Pk'(t) (1.6)
k^k1

In the formula above, Ig(t) is the Gini index at node t, pk,t is the proportion 

of samples from group k. The Gini index reaches its maximum value of ^  

when the proportions of all the groups are the same. When g =2, it means 

that at node t. In this case, the number of samples from group 1 equals the 

numbers of samples from group 2.It also means that the classification at node 

t is very poor.

3. Information entropy

K

!e(t) =  -  ^2pkit)logPk{t) ( 1-7)
k=1

Similar to the Gini index, the information entropy reaches its maximum when the 

proportions of all the groups are the same.

For two class problem, if p(l,t)  is the proportion of group 1, we have:

Im(t) =  1 -  m ax(p(l,t) ,  (1 - p ( l , t ) ) )  (1.8)

Ig(t) = 2 p ( l , t ) ( l - p { l 1t)) (1.9)

Ie(t) = -p {  1, t)log(p{ 1, t)) -  (1 -  p( 1, t))log( 1 -  p{ 1, t)). (1.10)

Figure 1.3 shows the three splitting criteria for a 2-group classification problem.

10



Information Entropy, Gini index and Misclassification error

o Entropy

CO
o

CM
o

Misclassification error

o

o
o

1.00.2 0.60.0 0.4 0.8

Proportion of samples from group 1 at node t: p(1 ,t)

Figure 1.3: Three splitting criteria for rpart: Gini index, misclassification error and 
information entropy. Information entropy is scaled so that its maximum value is the 
same as the other two criteria. Their relationships are: information entropy >  Gini 
index > misclassification error.
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The horizontal axis is the proportion of samples from group 1 at node t  p(l,t). Values 

from the three criteria are plotted on the vertical axis. The relationship between 

the three measurements can be summarized as:

Im{t)  <  h i t )  <  Im (t) (1.11)

The decrease of the criterion using variable Vt at node t  is defined as:

A ( I (Vi , t ) )  =  I { t )  -  p{ t i ef t ) I {Vi , t i eft) -  p(tright)I(Vi,tright)  (1-12)

I  can be any of the above splitting criteria, for example, if I  is the misclassification 

rate, I( t )  will represents the misclassification rate at node t. tief t and t right stand 

for the left and right subnodes after the split using variable V*. The variable which 

best decreases A is chosen to separate the samples at node t.

By default, rpart uses the Gini index as its splitting criterion. The size of the 

tree can be determined by the following equation:

R*(T) = R(T) + a\T\ (1.13)

Where R(T)  is a loss measurement such as the misclassification rate of the tree 

T. \T\ represents its size which equals to the total number of decision blocks (leaves). 

\T\ also measures the complexity of the tree, a  is a nonnegative value called com­

plexity parameter (CP), a  must be fixed before running rpart. Equation 1.13 is an 

optimal problem in which our goal is to minimize R a (T ). For a fixed value of control 

parameter a , the problem becomes to determining a tree that minimizes R a(T). If 

we choose misclassification rate as our splitting criterion, Equation 1.13 will repre­

sent a tradeoff between misclassification rate and the complexity of the tree. If a  is 

small, we can grow a large tree T to minimize the optimal problem. When a  is very 

small, for example, (say, it equals to zero), the optimum tree is a complete tree in

12



which each sample has its own decision block. The size of this complete tree is the 

total number of samples from the data. On the other hand, if a  is very large, the 

optimum tree must have a small value of |T|.

We can also set up some other control parameters in rpart so that the tree 

growing process is stopped when:

i] The minimum number of samples in a decision block has been reached, the control 

parameter in rpart to achieve this is minbucket; ii] The maximum number of nodes 

has been created. This is controlled by parameter maxdepth in rpart.

While rpart is often used as a deterministic classifier, it can be used in a proba­

bilistic fashion, too.

1. Probabilistic version of rpart: given a sample x, if it finally falls into leaf £, its 

posterior probability to be in group i is defined as:

7-) / .i . -1 KiP{x G t , x  m leaf t) ^i(nit/ni) ( .
P (x  G i\x m leaf t) = ------ .  «  —-g------ ----- 7-^- (1.14)

P (x  m leaf t) £?=i 7q(niT/ra*)

7Ti is the prior probability for samples from group i\ n* is the total number of 

samples from group i in the training set; nu is the number of samples from 

group % in leaf t.

2. Deterministic version: similarly with LDA and QDA, in equation 1.14, we find 

the maximum P(pc G group i\x in leaf t), assign a;into group i with probability 

1, probability zero to other groups.

1.2.3 K -Nearest Neighbors (K N N )

For a sample x, KNN uses a distance metric such as Euclidean distance to find K 

samples that are closest to x. The likelihood is calculated as the proportion of the

13



group labels from the K samples. We define the posterior probability for x using 

KNN as:

P(x  E group i\x) =  C'Ki
# o f samples in the K nearest neighbors from group %

K
(1.15)

where C is a normalizer.

1. Probabilistic version: sample a; is assigned into group i with probability defined 

in equation 1.15.

2. Deterministic version: similarly the deterministic version assigns x into group 

% with probability one if P{x  E group i\x) is the largest, zeros to other groups. 

If we assume that the prior probabilities for all the groups are the same, the 

deterministic method equals to making a vote using the group labels in the k 

nearest neighborhoods.

There is no general way to find a best value for K, when K =  1, it is called 1-nearest 

neighbor classifier. K is usually selected as an odd number to avoid the cases that 

the vote comes to a draw, and K=7 or K=5 are widely used.

1.3 Classifier evaluation

A common criterion to evaluate a classifier’s performance is the misclassification (or 

error) rate. After a classifier C is trained, C is applied to a test set whose group is 

known and the test samples are assigned group labels. The number of misclassified 

samples divided by the total number of samples of the test set is used to estimate 

the misclassification rate.

Error rate =
# o f misclassified samples

(1.16)
# of total samples in the test set

14



To obtain an unbiased estimate of the misclassification rate, we have to make sure 

that the training set and the test set are independent of each other but drawn from 

same populations. Generally there are three methods used to choose the training 

set and test set:

1.3.1 W hen the training set and the test set are the same

In this case, the whole data set is used to train a classifier (7, before being tested 

against all of the samples. The error rate is estimated as the proportion of the 

misclassified samples, and is usually referred to as it the nominal or resubstitution 

error rate. The drawback of this estimate is that the test set and the training set 

are the same thus not independent, and thus the estimate is biased.

1.3.2 W hen the data set is divided into two disjoint subsets

In this method, the data set is separated into two disjoint subsets: X \  and X 2 at 

first. Only X \  is used to train a classifier, while the samples from X 2 are used 

to estimate the error rate. Usually X \  is comprised of 2/3 of randomly selected 

samples, the rest 1/3 becomes X 2. This method will give us an unbiased estimate 

of the error rate. Although it eliminates the correlation between training and test 

sets, it also reduces the number of useful samples when we are training the classifier. 

This can sometimes be a concern, given the limited size of the sample. And because 

we only used 2/3 of the samples to build the classifier, this method may decrease the 

training set’s ability in representing the whole population. Another concern about 

this method is that in some real problems, data are gathered expensively, in which 

case we may not get a large number of samples. For example, obtaining a mass 

spectrum sample in cancer research is very expensive, and the fact that 1/3 of the 

samples are not used in training tells us we should consider a method which could 

be more economic and use the data more efficiently.
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1.3.3 V-fold cross-validation

Cross-validation is a widely used evaluation technique in estimating a classification 

technique’s performance. The basic idea of cross-validation is to randomly partition 

the whole data set into several disjoint subsets, iteratively pick one of them as the 

test set, the rest as training set until each sample is tested exactly once. By repeat­

ing this procedure many times, we can decrease the variance from the randomly 

partitioning. V represents the number of subsets, it is usually selected as an integer 

between 5 and 10. And if the total number of samples is n, we have a limited number 

of different partitions for a 5-fold cross-validation:

H;)(4;XXt)=w
Where n is the number of samples and thus usually a large number. Thus total 

number of different partitions N from the above equation will be a very large number. 

Let R ^ \  R ^ \  be the V different training sets at kth cross-validation proce­

dure, from equation 1.17 we know that the total number of possible training sets is 

a limited number N. Using the same classification technique we build an ensemble 

of classifiers C^k\  k=T,2,...N based on the N different training sets. The posterior 

probability vector of a point x from the sample space given by classifier C ^  is: 

p{ic)(x ) _  j p(k)^x  ^  group l \ x ) , p ^ ( x  G group 2\x), . . . ,p ^ ( x  G group g\x) ].

1.4 Decision boundaries

D efinition Decision boundaries are a set of points from a sample space X  which 

are assigned equal probabilities for to at least two groups. The points need not to 

be from the data, they can be any points in the sample space.

For example: in a two class classification problem, subject x has been assigned
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50% probability to group 1 and 50 % to group 2. Thus x cannot be classified into 

either group, as it is on the decision boundary. Decision boundaries draw special 

attention as they are composed of particular points in the sample space. The four 

classification algorithms may have quite different decision boundaries according to 

Figure 1.4.

Figure 1.4 shows different decision boundaries for the four algorithms using the same 

training set. It indicates us that some of the local decision boundaries for KNN 

algorithm are discrete instead of continuous. The simulated decision boundaries 

heatmap algorithm is summarized in algorithm 1 in section 5.

The data used in Figure 1.5 and Figure 1.6 are the same data which has four 

groups of samples, each group has 100 subjects, and is independently normally 

distributed in a 2-d Euclidean space. 5-fold cross-validation randomly choose 80% 

of the samples each time (320 totally, 80 from each group) and a classifier is built 

on the 320 samples, decision boundaries are then plotted using that classifier. 

Figure 1.5 reveals the unstable nature of rpart for the specific pattern of data. 

We see that When 20% of the samples are replaced, the rpart decision boundaries 

change dramatically in a 5-fold cross-validation procedure. The discussion in the 

introduction section about the rpart algorithm together with Figure 1.5 clearly shows 

that rpart is very sensitive to the variation of samples. The default splitting criterion 

for rpart is the Gini index, it concerns more about how to separate the samples 

into more and more homogeneous subsets instead of maintaining the consistency 

of making a cut. Figure 1.5 also implies that sometimes there are more cuts using 

horizontal variable X\.  Sometimes the vertical variable X 2 is used more than X\.  

In the future, if a sample is drawn from the highly unstable region, which we will 

give a strict mathematical definition later, it can be very difficult to assign a reliable 

group label to that sample using rpart, as classifiers from different training sets can 

be contradicting with each other.
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D ecision  boundary by rpart D ecision  boundary by KNN

D ecision  boundary by LDA

o _

D ecision  boundary by QDA

-5  0 5 10 15 20 -5  0 5 10 15 20

X1 X1

Figure 1.4: This figure shows the decision boundaries for four classification algo­
rithms. From the top left to the right bottom are decision boundaries for: rpart, 
KNN, LDA and QDA. The training data set has four groups of samples. Each group 
is drawn from a normal distribution in a 2-dimensional Euclidean space. One group 
of samples is made far away from the other three groups, the other three groups has 
some overlapping.
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Figure 1.5: Decision boundaries during a 5-fold cross-validation procedure using 
rpart algorithm. Each small plot represents a different classifier based on a randomly 
selected 320 points from the original data. The original data has four groups of 
samples, each group has 100 subjects, and is independently normally distributed 
in a 2-d Euclidean space. This figure reveals the unstable nature of rpart for this 
specific pattern of data. We see that When 20% of the samples are replaced, the 
rpart decision boundaries change dramatically in a 5-fold cross-validation procedure.
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X1 X1

X1

Figure 1.6: Decision boundaries during a 5-fold cross-validation procedure using 
LDA. Each small plot represents a different classifier based on a randomly selected 
320 points from the original data. The original data has four groups of samples, 
each group has 100 subjects, and is independently normally distributed in a 2-d 
Euclidean space. Different with the dramatic variations of the decision boundaries 
in a cross-validation procedure in rpart, LDA’s decision boundaries are very stable.
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However, in Figure 1.6, the decision boundaries of LDA in a cross-validation 

training procedure are very stable, future samples will be classified into the same 

group consistently except points that are on or very close to the decision boundaries. 

This gives us an idea that the variance of the decision boundaries may also need to 

be considered when we are evaluating several classification methods.
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Chapter 2

The A m biguity and the Instability

In order to characterize the performance of classifiers, we have found it useful to 

introduce the new performance metrics in addition to the error rate: the ambiguity 

and instability.

2.1 The ambiguity

Ambiguity for a sample x gives us an idea of how difficult it is to assign a group 

label. For example, a point x has 0.6 vs. 0.4 probability to be classified into group 

a and group b. Since p(x G group a\x) > p{x G group b\x), it will be classified 

into group a following a deterministic approach, but p(x G group a\x) and p(x G 

group b\x) are very close to each other, hence this classification is ambiguous. The 

ambiguity measures the uncertainty to classify a point into any groups. The usual 

misclassification rate does not contain any information about how uncertain is the 

classification. To rectify this, we introduce the definition of ambiguity.

Suppose t  is a point from a p-dimensional Euclidean sample space X. The data 

set D is a subset of X. For a classification algorithm, we construct an ensemble of 

classifiers C^k\  k=l,2,...N , we require that the number of classifiers N the number 

of groups g. Each classifier maps points from the sample space X  into the group
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label set G with probability p, where p is a g dimensional real vector with positive 

entries that sum to one.

The posterior probability for point x from group % by classifier is defined as:

p^k\ x  G group i\x), i =  1 , p, k — 1, 2 , N. (2.1)

and

9
0 < p^k\ x  G group i\x) < 1, and ^2p^k\ x  G group i\x) =  1. (2.2)

i= i

To decrease the variance in the ensemble of classifiers due to the random par­

titioning, we use the average of the posterior probability vectors to calculate the 

ambiguity. To measure how difficult or how uncertain point x is classified, the 

ambiguity function F  should have the following properties:

1. It should be a nonnegative continuous real function in the sample space X ;

2 . F (p i(x),p2(x), ...,p9(x)) reaches its peak when all p,(x) are equal to i  Pi(x) 

= p ( x  G group i\x)\

3. F  reaches its minimum when one of P i ( x )  is 1, and all the others are zeros.

4. F  is symmetric under exchange:

F  (jpi(x),p2(x), . . . )pg{x) )  =  F  (pa i ( x ) , p a2( x ) , . . . , p ag(x) )

One choice of F  is the Shannon Entropy:

H (x ) = ~  1 ] ln(pi(x))pi(x),i = 1, 2, (2.3)
i = 1

There are many choices of ambiguity function, here we use the following definition
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such that when the misclassification rate is small, the two measurements are very 

close to each other. It is also called the Tsallis entropy.

1 9
Q(x) = Q(p(x)) = -  y p i ( x ) ( !  - P i ( x ))  =  -

i = l 2 =  1

(2.4)

Q(T)’reaches its maximum value when the posterior probability for each 

group is the same. Note that each point in the sample space X  has an ambiguity 

value, it does not need to be a sample from data D. Cl[x) is a function that is 

smooth everywhere in the sample space X. And we can measure a classification 

methodology’s performance by integrating the ambiguity over the whole space to 

give us a global view of the ambiguity of that methodology. Using an appropriate 

prior probability 7r(x), the global value of ambiguity can be measured as:

Qtt =  /  Q(x)ii(x)dx (2-5)
Jx

This global value gives us a way to compare different classification algorithms. 

Examples are given in later sections.

2.2 The instability

The posterior probabilities for sample x, p^k\ x )  from the ensemble of classifiers

CG) is stable if the N posterior probability vectors p^k\ x ) ,  k=l,2,...,N  are close to 

each other. The closeness of two posterior probability vectors p ^ ( x )  and p ^ \ : r)is 

characterized by a normalized distance metric d. Like the usual distance metric, d 

satisfies the following rules:

1. Positivity: d{p^l\ x ) , p ^ \ x ) )  > 0;

2. Symmetry: d ( p ^ ( x ) ,p ^ ( x ) )  = d ( p ^ ( x ) , p ^ ( x ) ) ;

3. Triangular inequality: d(p<yl\ x ) ,p ^ { x ) )  < d ( p ^ ( x ) ,p ^ ( x ) )  +  d{p<yk\ x ) , p ^ \ x ) ) ]
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4. Uniqueness: if d ( p ^ ( x ) , p ^ ( x ) )  =  0, => p ^ ( x )  = p ^ ( x ) ) .

In our definition, we want this measurement reach its maximum when the en­

semble of probability vectors p ^ \ x ) ,  p ^ ( x ) ,  ... ,p̂ N\ x )  are as much different as 

possible, such as one of the entries is 1, all the others are zeros. For example: 

suppose we have 2 groups of samples, and we have two classifiers which generates 

two posterior probability vectors for sample x: p ^ \ x )  = (1,0), p ^ ( x )  = (0,1). In 

this case the two classification results completely disagree with each other and we 

consider the results unstable. We normalize the distance so that it reaches unity in 

such cases.

We can use the da distance as our distance metric:

1 9
A lj(x) = da{p<yt\ x ) , p ^ \ x ) )  =  ( y )  \ p ^ (x  G group n\x )—p ^ ( x  G group n\x)\a)l^a

(2 a) n=i
(2 .6)

Note that when a  is 2, d is the normalized Euclidean distance. And the instability 

for a point x  given an ensemble of classifiers is defined as:

-r N
J (U =  A<y)( U  (2.7)

i , j = 1

The maximum value of I(x) is 4 ^ ,  which equals the maximum value of fi(x). And 

the instability reaches its minimum value of zero when all the posterior probability 

vectors are the same, even if the sample is classified incorrectly.

Again, I(x) is defined on the whole sample space, and it is smooth everywhere. 

The integral of I(x) using an appropriate prior probability tt(x ) could give us a global 

view of the stability of a classification methodology.

A  =  f  I(x)7r(x)dx (2-8)
Jx
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2.3 The Error Rate

In deterministic methods, if p(x  G group i\x) is the largest posterior probability for 

sample x , it will be classified into group i with probability one, and probability zero 

for all the other groups.

D efinition The traditional definition of an error rate for a data set is computed 

as: the proportion of points that are misclassified using deterministic methods.

It is calculated as the number of samples misclassified divided by the total num­

ber of samples.

For example: the following is a confusion matrix from a classification study,

a b 

a 80 20

b 10 90

the confusion matrix tells us that totally there are 200 samples, 20 samples from 

group a are misclassified into group 6, 10 from group b are misclassified into group 

a. And the misclassification rate for this data is: (20+ 10) /  200 =  15 %, to obtain 

this error rate, we require that all the samples’ group labels are known.

D efinition Error rate for a single point: the error rate for a sample xfrom group i in 

an ensemble of classifier C^k\  k =1,2,...N, using the same classification methodology 

is defined as:

1 N
E ( x  G group i\x) =  — ( l  ~  G group i|x)) =  1 — p(x  G group i\x) (2.9)

k— 1

p(k\ i \ x n) is either 0 or 1, p(i\x)  is the averaged posterior probability for p(k\ i \ x ) ,  

k =  1, 2,...,N;  ̂=1,2
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As distinct from the traditional definition of error rate for a data set, our defi­

nition of the error rate for the entire data set is :

D efinition Error rate for a data set:

1 9
E  =  1 -  — p(x e SrouP i\xn) (2-10)

i = l  x n £ i

The error rate for a point x whose true group label is i is defined as:

E(x)  =  1 — p(x  E group i\x),i=l,2,...,g (2.11)

The Bayes error or Bayes risk can also be adopted. This estimate of the error 

rate can be used for any x in the sample space A, not just data points. Bayes rules 

use the maximum posterior probability to determine a sample’s group assignment. 

The Bayes error for x is:

EBayes(t)  =  1 -  maxp(x  E group i \x),i  =1,2,...,0 . (2.12)
i

Bayes error is a nonnegative value with maximum of 0.5 which measures the risk 

to classify a sample. It helps to find the risky points and remove them before the 

classification. The idea of using ambiguity is very similar: points that are highly 

ambiguous should be removed from being classified. Figure 2.1 gives us an idea of 

the relationship between Bayes error and ambiguity.

Two groups of normally distributed samples are drawn from one dimensional 

Euclidean space, one follows normal distribution N (0,0.1), one from distribution 

N (l, 0.2). The curve that has a large peak on the left represents the population 

distribution for the first group, the second group’s population distribution is plotted 

on the right with a smaller peak. In the middle of the figure there are two curves, 

the one with higher peak is the Bayes error, it is not differentiable at its peak,

but is everywhere else. Below it is the ambiguity. Note that both Bayes error and
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ambiguity reach their maximum value at the same point in this figure, where Bayes 

error equals 0.5 and the ambiguity equals 0.25. That point x can be derived from 

the following equation:

p(x G group l|rr) =  p(x G group 2\x) (2.13)

We have assumed that the prior probabilities for both groups are equal, thus

X h i a \

We already know pi =0, p.2 — 1? ci=0.1, <j2 =0.2,=>- x ~  0.35.

The global Bayes error measure is given by the integral of all the non-risky points 

over the sample space X.

E s a y e s  =  /  t t ( x )  E Bayes(x)dx = 1 -  /  7i ( x)  max p ( x  G group i\x)dx.
^  E B a y e s  < A o  J  E B a y e s < ^  0 1

(2.15)

Where A0 is a threshold. We define risky points as those who have Bayes error larger 

than A0 and remove them in the integral because they are too risky to be classified. 

For example: if a sample x has posterior probability 0.49 for group 1, 0.51 for group 

2, it will have 49% chance to be misclassified, so it is reasonable for us to remove 

such samples when estimating the overall Bayes error rate using equation (2.15).
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Comparisons of Bayes error and Ambiguity measurements

red— Bayes  error, blue— ambgLsd1 = 0 .087 s d 2 =  0.202

o

°Qo

o

cj
o

o
o

2.01.50.0 0.5 1. 0- 0 . 5

N = 2 0 0  Bandwidth = 0.166

Figure 2.1: This example shows the similarity and differences of Bayes error and 
the ambiguity. Two groups of normally distributed samples are drawn from a one 
dimensional Euclidean space. The ambiguity and the Bayes error are very close 
to each other except for highly ambiguous (risky) points. The Bayes error is not 
smooth at its peak point because it contains a max function, while ambiguity is 
smooth everywhere.
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2.4 Relationships of the error rate, ambiguity and 

instability

When we are choosing the definitions and the normalizations of the ambiguity, 

Q(rc), and the instability, I(x), we have made them satisfy certain relationships. For 

deterministic methods, we have:

Q(x) = I(x) ,Vx E X  (2.16)

P r o o f  of (2.16)

Suppose we have g groups and an ensemble of classifiers C^k\  k =  1,2,...,N. We 

require that N g. Each classifier assigns a sample a g dimensional posterior 

probability vector p^k\ x )  =  (p^k\ x  E group l \ x ) , p ^ ( x  E group 2|x), ...,p^fĉ (x E 

group g\x)). Among the N posterior probability vectors, rq of them have maxi­

mum posterior probabilities for group i, Ya=i rii = N ,0  < rii < N.  If we use a 

deterministic method, we will have n* posterior probability vectors in the form of

(0,0,...,0,1,0,...0), where the ith entry is 1 and all the others are zeros. Our ambigu­

ity measure for x using a deterministic method is based on the averaged posterior 

probability vector p(x) which is:

p(x ) =  ( U .q 2  Ik )  (2.17)
N N N

According to onr ambiguity definition,

=  f i l  -  B | ) 2) (2-18)
i—1

Instability I(x) is the normalized sum of the distances among those probability 

vectors. For a vector p^  whose maximum posterior probability is p\k\ x ) ,  there 

are 7q( including itself ) vectors that have zero distances with p^k\ x ) ,  and N  — n*
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vectors that have of unity distances with pW  (x). The sum of distances for the ith is 

rii(N — rii). Then the total instability /  is:

=  (2 -1 9 )

» i (N -  »i) +  n2(N -  n2) +  ... +  ng{N -  ng)
2 N 2 ’  ̂ ’

=  5 ( ! - E ^ 2) =  n(x) (2.21)

Hereby we have proved that for deterministic methods. The instability and 

ambiguity measurements have the same value.

Next we prove a very important relationship between the Bayes error rate and the 

ambiguity measurement.

Q(x) < E Bayes(x):\/x e  X  (2.22)

P r o o f  Under the same assumptions in the last two proofs, we have:

to(P(x )) = \ C1 “  E f t W 2) (2-23)
i=1

\ (1 - P i  -  E f t W 2) (2-24)
Z i=2

=  h 1 +Z>l(z))( l  - P l Z )  -  (2-25)
Z Z i=2

Because 0 <  Pi(x) < 1,



=> +  Pi(^)) ( l  -Pioc)  -  l ^ 2 P i ( x ) 2 <  1 - P i { x )  -  \  Y , P ^ X)2 (2-27)
A A 1 = 2  1  1 = 2

And,

\ ^ 2 p i { x )2 >  0 = >  Q{ p ( x ) )  < 1 - p i ( x )  = E Bayes(x) .  (2.28)
^ i = 2

We summarize the relationships of ambiguity, instability and error rate here as: 

Idet(x) =  Qdet{x) < E Bayes(x),Vx G A. (2.29)

Qprob(x) < E Bayes( x ) , \ / x  G X.  (2.30)

Because equation 2.29 and 2.30 are true for all the points in the sample space, 

and if we integrate the above 2.29 over all the points in the space, we have:

^det ^det A E Bayes (2.31)

And

ttPr o b < E Bayeay x e X .  (2.32)

This reflects the relationships of the three criteria in the global point of view. And 

we must mention that there is no fixed relationship for instability using probabilis­

tic method with its deterministic version. Also there is no fixed relation between 

probabilistic ambiguity and deterministic ambiguity.

Figure 2.2 and Figure 2.3 are two heatmaps showing the ambiguous areas using the 

same data. Figure 2.2 uses probabilistic LDA method, and Figure 2.3 uses deter­

ministic LDA method. The data has four different groups of samples. Each group

has 100 subjects which are drawn from a 2-dimensional normal distribution. The
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Am biguous region in the sam ple sp ace by LDA

X1

Figure 2.2: This is the heatmap that shows the ambiguous regions using LDA with 
probabilistic method. The data has four different groups of samples. Each group 
has 100 subjects which are drawn from a 2-dimensional normal distribution. 5-fold 
cross-validation is repeated 10 times and 5 classifiers are generated. The ambiguity 
are calculated based on the averaged posterior probability vector.
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Figure 2.3: This is the heatmap that shows the ambiguous regions using LDA with 
deterministic method. The data has four different groups of samples. Each group 
has 100 subjects which are drawn from a 2-dimensional normal distribution. 5-fold 
cross-validation is repeated 10 times and 5 classifiers are generated. The ambiguity 
are calculated based on the averaged posterior probability vector. The ambiguous 
regions in this plot are much sharper than the probabilistic method.
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ambiguous regions with deterministic method are much sharper than the probabilis­

tic method. The volume of ambiguity areas using deterministic LDA seems to be 

less than probabilistic method, except in some extreme cases (such as the data is 

well separated that each sample is unambiguously assigned a group label), in which 

the two measurements are very close or even share the same values. Please also 

note that the fact that deterministic method has smaller ambiguous regions does 

not mean it is better than probabilistic method. For example, points that are am­

biguous in Figure 2.2 are highly possible to be classified incorrectly. We claim that 

those points should be removed because they are too risky to be classified. And if 

we only remove the ambiguous points using deterministic method, the ambiguous 

points we found with probabilistic method may increase the misclassification rate a 

lot.
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Chapter 3

Num erical experim ents

To better illustrate the idea that the ambiguity and instability are useful classifier 

evaluation criteria, we have done a series of experiments using three different data 

sets. For visualization convenience, all the data sets are drawn from two dimen­

sional Euclidean spaces. Four classification techniques: rpart, LDA, QDA and KNN 

are used, each generates an ensemble of classifiers after repeating cross-validation 

procedure several times.

3.1 Introduction to the three data sets

Figure 3.1 shows the fist data which we call it data.2g. It is comprised of two groups 

of 2-dimensional normally distributed samples, each group has 1000 points. The two 

groups of samples share the same covariance matrix. The small overlapping of the 

two groups helps us to study the three properties: the ambiguity , the instability 

and the error rate. Figure 3.2 is the scatterplot of the second data set data.ng that 

has four normally distributed groups of samples, each group has 100 points, one 

group is made far away from the other three, while the other three groups have 

some overlapping. The last data set data.ng is plotted on Figure 3.3. data.ng has 

two groups of samples, the first group has 200 normally distributed samples, and
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Figure 3.1: data.2g has 2 groups of samples, and we use letter a and letter b to 
represent samples from the first and the second group. They both have 1000 samples 
that are drawn from a normal distribution in a 2-dimensional Euclidean space and 
share the same covariance structure. They have a small overlapping in the middle 
of this figure.

second group has 200 samples that are not from a normal distribution but has a 

special structure. This specific pattern helps us to better understand the different 

behaviors of linear classification algorithm such as LDA and nonlinear methods such 

as QDA.
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00

CO
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Figure 3.2: data.ng has four normally distributed groups of samples. Each group 
has 100 samples drawn from a 2-dimensional Euclidean space. They are represented 
by a, &, c and d. Group d is made far away from the other three groups, and the 
other three groups have a small overlapping.
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Figure 3.3: data.ng has two groups of samples, each of them has 200 subjects. The 
two groups are represented by letter a and letter b in the scatterplot. The group b 
follows a normal distribution, group a has a special structure that could help us to 
better understand the different behaviors of linear and nonlinear algorithms.

39



3.2 Results

We compute the error rate, ambiguity and instability based on the ensemble of 

classifiers generated by a 5-fold cross-validation, each cross-validation procedure is 

repeated 10 times such that for each classification algorithm we create 50 classifiers. 

Algorithms LDA, QDA, rpart and KNN are evaluated. The estimated numerical 

results of them are recorded in Table 3.1 and Table 3.2.

S u m m ary  of global resu lts
Classification method data.2g data.ng data.ng

LDA (det) Cl =  0.001 
E  =  0.0382

ci =  o.oo4 
E  =0.052

Cl =  0.008 
E  =0.103

LDA (prob) Cl =  0.028 
I  =0.001

Cl =  0.060 
I  =0.004

Cl =  0.070 
I  =0.009

QDA (det) ci =  o . o o i
E  =0.040

ci =  o .o o 3  
E  =0.050

Cl =  0.0 
E  = 0 .0

QDA (prob) Cl =  0.028 
I  =0.001

Cl =  0.038 
I  =0.004

Cl =  0.008 
I  =0.001

rpart (det) Cl =  0.011 
E  =  0.046

Cl =  0.036 
E  =0.106

Cl =  0.001 
E  =0.013

rpart (prob)
ci =  o . o 4 i  
I  =0.015

Cl =  0.069 
I  =0.036

Cl =  0.011 
I  =0.002

KNN (det) ci =  0.006
E  =  0.040

Cl =  0.007 
E  =0.060

Cl =  0.001 
E  =  0.002

KNN (prob) Cl =  0.022 
I  =0.006

Cl =  0.037 
I  = 0.010

Cl =  0.001 
I  =0 . 0

Table 3.1: A summary of the results in the numerical experiments. Four classifi­
cation methods: LDA, QDA, rpart and KNN are applied on data.2g, data.ng and 
data.ng. Global views of the Cl(x), I(x)  and E(x)  for a classification technique are 
summarized in the table while the unstable and ambiguous regions are shown in the 
figures.

Table 3.1 is the summary of the three measurements: ambiguity, instability 

and error rate. The ambiguity Cl and instability I  are calculated as the global 

averages over the sample space. The error rate E  is calculated as the proportion 

of misclassified test samples using deterministic methods. As we mentioned in the
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Sum m ary o f figures
Deterministic methods 
ambiguity =  instability Fig. (3.4) Fig. (3.7) Fig. (3.10)

Probabilistic methods 
Ambiguities 
Instabilities

Fig. (3.5) 
Fig. (3.6)

Fig. (3.8) 
Fig. (3.9)

Fig. (3.11) 
Fig. (3.12)

Table 3.2: Summary of the figures and the measurements they represent.

Summ ary of am biguity vs. Bayes error
Classification method data.2g data.4g data.ng

LDA EBayes =  0.016
Pi' =  0.015

EBayes — 0.034 
Pi =  0.031

EBayes =  0.061
Pi' =  0.055

QDA EBayes = 0.016
D' =  0.015

EBayes =  0.019 
PL = 0.017

EBayes =  0.006
Pi' =  0.006

rpart EBayes =  0.035 
Pt =  0.034

EBayes =  0.059 
Pi = 0.054

EBayes =  0.010
Pi = 0.010

KNN EBayes =  0.011
Pi' = 0.010

EBayes =  0.012
Pi' = 0.011

EBayes =  0.000
Pi' = 0.000

Table 3.3: The Bayes error and ambiguity after highly ambiguous points are re­
moved, in this case the averaged ambiguity and averaged Bayes error are nearly 
equal, which means ambiguity measure can be used as a substitute for Bayes error.

section 1, the error rate is the traditional way of evaluating a classification technique. 

Table 3.1 reveals the fact that although the four algorithms may have compara­

ble misclassification rates, their ambiguity and instability may be quite different. 

For example, the error rates on data.2g for all four are very close, their ambiguity 

measurements are quite different. Rpart has much larger instability than the other 

three methods. This fact is also supported on Figure 3.6, where the heatmap suggest 

that algorithm LDA, QDA and KNN have smaller unstable regions on the sample 

space than rpart. When there are future samples drawn from the unstable regions, 

rpart will be the one that most likely to generate a lot of unstable classification 

results. For example, a sample’s classified group labels change dramatically during 

a cross-validation process. With the help of ambiguity measures on Table 3.1 and
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the heatmaps of ambiguous regions showing on Figure 3.4 and 3.5, we have found 

out that it is also unwise to use rpart as the classification technique to predict future 

samples for data that have similar structure with data.2g, but we can not find much 

difference if we only use error rate.

The third and fourth columns on Table 3.1 are the measurements for the other 

two data sets, data.ng and data.ng. Rpart still has the largest ambiguous and 

unstable areas for data.ng which are shown on Figure 3.7, 3.8 and 3.9. The error rate 

and ambiguity of those four algorithms are comparable but rpart has the largest. 

Rpart has much larger instability than the other three algorithms: about 10 times 

of LDA and QDA, and about 4 times of KNN.

The last column on Table 3.1 are the numerical results from data.ng. Nonlinear 

classification algorithms QDA and KNN are almost perfect for classifying such data. 

All the three measurements of QDA and KNN are very small. Linear classification 

algorithms LDA and rpart have much larger error rates than QDA and KNN. LDA 

becomes the most ambiguous and most unstable algorithm. It also has very large 

ambiguity and instability measures than the other three, which means for data 

having similar pattern with data.ng, we should not use LDA.

Table 3.2 is the summary of the figures and the specific measurements they 

represent.

Table 3.3 summarizes the Bayes error and the ambiguity after ambiguous points 

are removed. The threshold A is set to be 0.1, and points that are more ambiguous 

than 0.1 are not included in the classification and calculation. The maximum am­

biguity for any point is 4 ^ .  In a two group classification problem, point with a 0.1 

ambiguity has about 70% posterior probability in one group and 30% probability to 

be from the other group. We can see the two measures are very close, which means 

ambiguity can be used as a substitute for Bayes error. But analytically, the smooth 

feature of ambiguity makes it better than Bayes error.
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From Figure 3.4 to Figure 3.12, probabilistic ambiguity, deterministic ambiguity 

and probabilistic instability heatmaps are plotted sequentially for each of the three 

data sets. As we discussed in section 2.4, it is true that the deterministic instability 

for any point in the sample space has the same value with its deterministic ambiguity, 

so we ignored the deterministic instability heatmaps. The four statistical algorithms 

are also in a fixed order: from left to right, top to bottom are: LDA( top left), QDA( 

top right), rpart( bottom left) and KNN( bottom right). They are plotted for all 

the points (not only the data points ) on the 2-dimensional sample space, the dark 

regions represent the ambiguous points or the unstable points, the darker, the more 

ambiguous or more unstable they are.

From Figure 3.4 to Figure 3.9, we can find that LDA, QDA, and KNN algorithms 

seem to share the same topological structure of the ambiguity and instability areas, 

the rp art’s ambiguous and instability regions are much larger than the other three, 

and its decision boundaries seem to be the most unstable.

Figure 3.6 shows where the unstable areas are for data.2g. Future points drawn 

from there can be classified by different group labels: sometimes from group a, 

sometimes from group b. Rpart has the largest unstable area, from the instability 

point of view, we should choose the other three algorithms instead of rpart for this 

kind of data. Comparing Figure 3.5 to Figure 3.6 we can find that in the overlapping 

areas, points are very ambiguous, but they are very stable, which means that the 

group label assignments of those points are consistent among the 50 classifiers.

Figure 3.7, Figure 3.8 are ambiguity and instability heatmaps with the data 

comprised of four groups of normally distributed samples, data.ng. This data cre­

ates very similar pattern of ambiguous and unstable regions as data.2g. And from 

Table 3.1, the two data sets’ results both agree on the fact that: although the four 

classification techniques have comparable cross-validated error rates, rpart’s insta­

bility and ambiguity measurements are much larger than the other three. In fact,
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from Table 3.1 we find that for probabilistic method, rpart has about 4 times the 

instability of KNN and 10 times that of LDA and QDA in data.ng-

The dark regions represent the unstable points in Figure 3.6, 3.9 and 3.12. It 

give us an approximate idea of how the decision boundaries are changing of the four 

algorithms using the same data sets.

Figure 3.5 shows us that rpart is splitting the data either vertically or horizontally 

so that the probabilities for the points in the dark regions may have quite different 

group assignments during the 10 repeated cross-validation procedures. If we are 

given a sample which is in the ambiguous regions on the left bottom, rpart will 

classify it with a highly ambiguous probability. And rpart may not be appropriate 

to be used for predicting new samples.

Comparing Figure3.6 to the ambiguity heatmap from Figure 3.5, it seems that 

the unstable regions are smaller than ambiguous region for all the three data sets, 

the more data points the more stable also seems true for LDA, QDA and KNN, but 

not for rpart.

Figure 3.10, 3.11 and 3.12 are the results on the data.ng, which has two groups of 

samples, 200 each, one is from a normal distribution, one is not. QDA’s ambiguous 

and unstable regions are the smallest among the four algorithms, LDA behaves poor 

as it has the largest ambiguous areas as well as the largest unstable areas, which is 

probably because one group is not following Gaussian distribution which assumed 

by LDA. And it is impossible for any single cut to separate the two groups in any 

directions for LDA. Roughly speaking, the rpart decision boundaries are still the 

most unstable among the four as the Table 3.1 tells us, and KNN performs well, if 

not as well as QDA.

Two gaussians: Ambiguity plots for four different classifiers using probability 

methods.
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Figure 3.4: The data is composed of two groups, we used a and b to represent them 
in the plot. Each group has 1000 normally distributed samples that are drawn from 
a 2-dimensional Euclidean space. The four classification algorithms from left to 
right, top to bottom are: LDA (top left), QDA (top right), rpart (bottom left) and 
KNN (bottom right). They are plotted for all the points (not only the data points) 
on the 2-dimensional sample space, the dark regions represent the ambiguous points, 
the darker, the more ambiguous they are. Probabilistic method helps us finding out 
the ambiguous areas on the sample space.
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Figure 3.5: The data is composed of two groups: a and 6, each with 100 samples 
drawn from a 2-dimensional Euclidean space. This figure shows the ambiguous 
regions with deterministic methods. The four classification algorithms from left to 
right, top to bottom are: LDA (top left), QDA (top right), rpart (bottom left) and 
KNN (bottom right). They are plotted for all the points (not only the data points) 
on the 2-dimensional sample space, the dark regions represent the ambiguous points, 
the darker, the more ambiguous they are.
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Figure 3.6: The data is composed of two groups, a and b, each with 100 samples 
drawn from a 2-dimensional Euclidean space. This plot shows the unstable areas 
which are discovered by probabilistic methods. The four classification algorithms 
from left to right, top to bottom are: LDA (top left), QDA (top right), rpart (bottom 
left) and KNN (bottom right). They are plotted for all the points (not only the data 
points) on the 2-dimensional sample space, the dark regions represent the unstable 
points, the darker, the more unstable they are.
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Figure 3.7: The data in this figure is comprised of four groups of normally distributed 
2-dimensional samples. They are represented by letters a, b, c and d. Group d is 
made far away from the other three groups, and the other three groups have a small 
overlapping. Each group has 100 samples and their group labels are already known. 
The classification algorithms are shown as: LDA on the top left, QDA on the top 
right, rpart on the bottom left and KNN on the bottom right. The ambiguous areas 
of four algorithms are calculated using deterministic methods.
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Figure 3.8: The data in this figure is comprised of four groups of normally distributed 
2-dimensional samples. They are represented by letters a, b, c and d. Group d is 
made far away from the other three groups, and the other three groups have a 
small overlapping. Each group has 100 samples and their group labels are already 
known. The classification algorithms are shown as: LDA on the top left, QDA on 
the top right, rpart on the bottom left and KNN on the bottom right. Ambiguous 
points are highlighted with dark colors, their ambiguity measures are computed by 
probabilistic methods.
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Figure 3.9: The data in this figure is comprised of four groups of normally distributed 
2-dimensional samples. They are represented by letters a, b, c and d. Group d is 
made far away from the other three groups, and the other three groups have a small 
overlapping. Each group has 100 samples and their group labels are already known. 
The classification algorithms are shown as: LDA on the top left, QDA on the top 
right, rpart on the bottom left and KNN on the bottom right. Four algorithms’ 
unstable areas are plotted with different grayscales which are proportional to their 
instability values. Comparing to other three algorithms, rpart has a wide unstable 
areas, which means for this pattern of data, if we cross-validate rpart to predict 
future samples, the group assignments could be very unstable. And we should be 
very careful using rpart on this kind of data, although the misclassification rate are 
very similar with the other three algorithms.
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Figure 3.10: The data in this figure is data.ng, which has two groups of samples, 
each of them has 200 subjects. The first group is represented by letter a in the 
figure, second by letter b. Group a follows a normal distribution, group b has a 
special structure that could help us to better understand the different behaviors of 
linear and nonlinear algorithms. The classification algorithms are shown as: LDA 
on the top left, QDA on the top right, rpart on the bottom left and KNN on the 
bottom right. This figure highlight the ambiguous areas by deterministic methods, 
the size of the most ambiguous areas is much smaller (sharper) than probabilistic 
method but they have very similar topological pattern.
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Figure 3.11: The data in this figure is data.ng, which has two groups of samples, each 
of them has 200 subjects. The first group is represented by letter a in the figure, 
second by letter b. Group a follows a normal distribution, group b has a special 
structure that could help us to better understand the different behaviors of linear 
and nonlinear algorithms. The classification algorithms are shown as: LDA on the 
top left, QDA on the top right, rpart on the bottom left and KNN on the bottom 
right. The ambiguous areas are highlighted by dark colors and their ambiguity 
measures are computed by probabilistic methods.
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Figure 3.12: The data in this figure is data.ng, which has two groups of samples, each 
of them has 200 subjects. The first group is represented by letter a in the figure, 
second by letter b. Group a follows a normal distribution, group b has a special 
structure that could help us to better understand the different behaviors of linear 
and nonlinear algorithms. The classification algorithms are shown as: LDA on the 
top left, QDA on the top right, rpart on the bottom left and KNN on the bottom 
right. This figure reveals an important fact: some highly ambiguous regions can be 
very stable. Those points are classified with same group labels in the ensemble of 
classifiers consistently, but they are very difficult to classify as they are very close 
to the decision boundaries of different groups.
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Chapter 4

Variable ranking and variable 

selection

Variable selection, sometimes called feature selection, is a common task in machine 

learning, classification, dimension reduction and linear regression studies. As we 

discussed in the introduction section of this thesis, when the number of variables is 

very large, we will have the so called curse of dimensionality problem. The com­

putation time for a classification problem can be tremendous. Variable selection 

tries to find out a way to restrict or project the data to a low dimensional space 

that best represents the original high dimensional data. After the variable selection 

procedure, a da ta’s dimension is reduced but, hopefully its structure is retained. It 

benefits researchers that:

1. The computation time can be dramatically decreased. Sometimes when the 

number of variables is extremely large, we may even not be able to solve the 

classification problem in a limited time. Variable selection makes solving such 

problems possible;

2. It helps researchers to better understand the underlying data structure. Ideally
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when we are projecting the original data into low dimensional space, we have 

retained the important data structure information. For example, after we have 

found the most important 2 or 3 variables using their discriminating power, 

we can make a scatterplot in the 2 or 3 dimensional space, and visually see 

the da ta ’s distribution in those important dimensions. This job is almost 

impossible for data with higher than 3 dimensions.

One of the goals for early cancer detection study, as well as the mass-spectrometry 

research group in the College of William and Mary, is to find a few of the most 

important proteins that have significantly different relative intensities for people 

with cancer and people without cancer. A variable selection technique can help 

us to achieve this goal. In this thesis, we will discuss two different approaches to 

select the most important variables, we call them variable ranking and optimal subset 

selection, respectively.

4.1 Variable ranking

Variables ranking focuses more on searching the each individual variable’s discrimi­

nant power. It can be measured in rpart as the decrease of Gini index for a variable 

to make a best split in a node on a decision tree.

4.1.1 Example: variable ranking using rpart

For rpart, we use the variable ranking criterion which was suggested by Leo Breiman 

et al,  in their book Classification and Regression Trees. The idea is that, at each 

node, decision tree tries all the variables exhaustively to find out which variable 

can best decrease a certain splitting rule (such as the misclassification rate or Gini 

index) by separating the samples in the original node into left and right sub nodes.

Let’s call the Gini index at node t as I(t), after the splitting, node t is separated
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into two disjoint smaller nodes, left node tiej t and right node tright■ The decrease of 

the Gini index using variable Vi is defined in equation (4.1:)

A { I ( V i , t ) )  =  I { t )  -  p ( t i e f t ) I ( Vi^lef t )  ~  P l i g h t ) I tright) (4.1)

where p(tieft) is the proportion of samples which have been separated into the left 

node, if the number of samples at node t before splitting is nt and after splitting left 

node has ntleft samples, p{tieft) ~  Similarly for p{tright) which ps

And the importance for a variable V  can be calculated as the sum of the maxi­

mum decrease of a certain criteria such as Gini index for that variable through all 

of the nodes:

N
M ( V , )  =  £  AI  (Vi, t ) , N  is the total number of nodes. (4-2)

t=1

By default rpart retains the top 5 variables instead of all variables’ A (/(G G )) 

at each node, this can be changed by resetting the surrogate parameter in the rpart 

function. Note that according to this particular variable ranking method, some of 

the variables that even may not show up in the decision tree plot can be ranked 

among the top few most important variables. T ha t’s because they may be the 

second most important variables but the tree always select the best variable. For 

example, in Figure 1.2.2, X5929.9 does not appear on the tree, but after summing 

up its decrease of Gini index power all through the tree, it ranks number two, which 

we can find from Figure 4.2.

The data used in Figure 4.1 and Figure 4.2 is the same. The data has two patients 

groups: Adult T-cell Leukemia (ATL) and HTLV-l-associated-myelopathy/tropical 

spastic paresis (HAM/TSP), and one healthy group marked as control. The three 

groups have 42, 49, 38 subjects, respectively. Each subject has 60 variables that 

represent the relative abundance of various proteins from the subject’s blood sam-
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Figure 4.1: In this decision tree, 2002 Leukemia data is classified. The data contains 
two patients’ groups samples: ATL (Adult T-cell Leukemia) and HTLV-l-associated- 
myelopathy/ tropical spastic paresis (H AM /TSP), and one group from healthy peo­
ple marked as control. The three groups have 42,49,38 subjects, respectively. Each 
subject has 60 variables that represent the relative abundance of various proteins 
from people’s blood sample. At the root node, rpart uses peak X4667.3 and try to 
separate the three groups using threshold 3.937. Samples whose intensity at peak 
XJf.667.3 less than 3.937 go to the left node, else go to the right node. The sam­
ples separated to the left are then checked by their intensities at peak X I 1950 to 
determine whether they are larger or equal than 0.3476. Then samples satisfy the 
inequality again go to the left and they are 23 ATL patients and 2 from HAM. The 
tree stopped there at the left decision block which we call a leaf. Totally there are 
21 out of 129 samples misclassified. About 16 % nominal error rate. (The compute 
of nominal error rate is introduced in the introduction section of this thesis.)
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Figure 4.2: This is a dot plot which shows the top 10 most important variables 
using the ranking method with rpart. The names of the top 10 most important 
variables are plotted vertically, and their total decrease of the Gini index on all of 
the nodes is normalized and plotted in the horizontal axis in percentage. The most 
important variable is X I 1950, its discriminant power is about 13.5% from the top 
10 most important variables, followed by variable X5929.9, about 12%
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pie. The goal of this analysis is to find which variables have significantly different 

intensities in the three different groups.

Figure 4.1 shows that if we use the variables in the tree, we can separate the 

129 samples into 7 more homogeneous decision blocks with about 84% accuracy, 

but what about the variables do not appear in the tree, are those variables not 

important?

Figure 4.2 is a dot plot showing the variables importance using the method 

discussed above, the names of the top 10 most important variables are plotted 

vertically, and their total decrease of the Gini index on all of the nodes is normalized 

and plotted in the horizontal axis in percentage. The most important variable is 

X I 1950, its discriminant power is about 13.5% from the top 10 most important 

variables, followed by variable X5929.9, about 12%.

The horizontal axis in the top 10 most important variables selected are plotted 

against their importance which is calculated by each variable’s individual importance 

divided by the sum of their importance. The horizontal axis is the measure of their 

importance in percentage which sum up to 100% .

Figure 4.3 is the scatterplot using the two most important variables, X I 1950 

and X5929.9. In the plot, triangles are samples from HAM, circles are from healthy 

people, and the squares are from ATL. We can see that using the two variables can 

separate the groups of Leukemia {ATL, blue squares) and Healthy people (control, 

blue circles) well but the HAM/TSP group has lots of overlapping with the two 

groups and thus is very hard to separate.

The drawback of variable ranking is that this method is based on the discriminant 

power from a single variable, we have not considered the correlation between the 

important variables extracted. For example, X I 1950 is the most important variable, 

and if we add a new variable which has the same value of X 11950, the rankings of 

variables will be X I1950, the new variable, and the rest of the variables. We have
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Figure 4.3: This is the scatterplot using the two most important variables, X I 1950 
and X5929.9 which are chosen by rpart. In the plot, triangles are samples from 
H A M /TSP , circles are from healthy people, and the squares are from ATL. The two 
variables are good enough if we want to separate the ATL group from the control 
group well. The H A M /TSP  group has lots of overlapping with the rest two groups. 
Samples from H A M /TSP  are very hard to be isolated. We need other variables to 
separate HAM/TSP group.
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not reduced the redundancy of important variables, so that if we classify the samples 

using the top 5 most important ranked variables, we may get very close results with 

using only 2 or 3 among the five. This problem urges us to consider the second 

approach, the optimal subset selection.

4.2 Optimum subset selection

Generally speaking, subset selection is a method which aims at finding out the best 

combination of variables for a certain criteria such as Wilks Lambda statistic. For 

example, we have a data set that includes two classes of samples, each of the samples 

has 100 variables. We want to choose five variables that have the best capacity of 

differentiating the two groups. The exhaustive way is to define a criteria such as the 

ratio of the between-group sum of square (B) with the sum of the between-group 

sum of squares and the within-group sum of squares (W). We can try all of the 

possible different combination of five variables and calculate the ratio respectively, 

then we find out which combination of 5 variables has the minimum value of A.

k = \ W \ / \ W  + B\ (4.3)

When the number of variables is high, we can not calculate all the combinations 

exhaustively because the computation time required makes this job impossible. In­

stead, we use a heuristic method which can not promise always finding the best 

subset, but most of the time it can find out the most important variables which can 

discriminate the samples into different group with a small misclassification rate.

For a fixed number of variables, say, 10, an exhaustive way of finding the best 

subset of 10 variables is to try all of the combination of 10 different variables, 

computing their A, and find the ones with the minimum A. The computation time 

increases exponentially with the number of variables so that when the total number
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of variables becomes very large, it is almost impossible for us to find out the best 

combination of 10 variables. Thus we need to find a heuristic method to choose 10 

variables which has a Wilks A value comparable to the best answer.

4.2.1 Example: subset selection with M cH enry’s heuristic 

m ethod

One way to find a heuristic computation method was introduced by McHenry in 

his paper Computation of a Best Subset in Multivariate Analysis [18]. According 

to McHenry, his method, ’’usually, but not invariably, finds the best solution”. His 

strategy is to first select a subset of variables and then iteratively replace a single 

variable to a variable outside of the preselected set. And try to compare the two sub­

sets’ Wilks A value. If after change, the Wilks A becomes smaller, the new variable 

will replace the old one. The procedure does not stop until there is no improve­

ment of the Wilks A. Using this method, we can largely decrease the computation 

time if we exhaustively search all the combinations of variables for the best answer. 

The data Leukemia 2002 contains 60 quantitative variables and it takes only a few 

seconds to return the best 10 variables combination. The algorithm almost imme­

diately outputs the answer when we are trying to find three best variables, which 

are: X4490.7, X8471.0 and X I 1768. The experiments are done on a computer with 

a 2G RAM and 2 Intel(R) Core(TM) 1.8 GHz CPUs.

Scatterplot in Figure 4.4 uses two variables X I 1768 and X8471.9. The squares 

represent samples from the ATL group, circles and triangles are samples from are 

samples from the control and HAM/TSP groups. Similar to the scatterplot in Figure 

4.3, we can use a classifier to differentiate samples from ATL and control well, as 

they are well separated. HAM/TSP group has a big overlapping with ATL and 

control, which makes it almost impossible to differentiate it from the other two 

groups.
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Figure 4.4: This is the scatterplot using the two most important variables, X I 1768 
and X8471.9 which are chosen by McHenry’s Wilks A heuristic method. In the plot, 
triangles are samples from HAM, circles are from healthy people, and the squares 
are from ATL. Again, the two variables are good enough if we want to separate the 
ATL group from the control group well. But HAM/TSP group is very hard to be 
isolated.
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Chapter 5

V isualization tool and VIBE-M S

5.1 Visualization of the decision boundaries

Decision boundaries for a classification problem draw special interest as they are 

comprised of special points with equal probability to be classified into different 

groups. Some of the methodologies for example: LDA and QDA are such that one 

can compute their decision boundaries analytically. But for algorithms like KNN, 

it is very hard or impossible to find the solutions for their decision boundaries 

analytically. The boundaries for KNN are quite irregular and non-smooth as we 

can see from Figure 5.1 and Figure 5.2, with two different data sets: data.2g and 

data.ng- Its decision boundaries are quite complicated in both figures, thus a method 

for visualization is useful.

5.1.1 Visualization algorithm

We suggest a decision boundary visualization algorithm in here:

we have not specified which particular classification technique in this algorithm. 

So it is applicable for any classification algorithms. We already showed some ex-
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Figure 5.1: Some of the local decision boundaries of KNN classifier are quite ir­
regular, non-smooth as we can see from this Figure. The data has two groups of 
sample. One has 200 samples represented by letter a, samples from this group to­
gether has a shape as a letter V. Second group is normally distributed which also 
has 200 samples.
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Figure 5.2: This figure again tells us that the decision Boundary of a KNN classifier 
can be very irregular and non smooth. The data we used to train the KNN classifier 
has two group of normally distributed samples, each group with 1000 samples.
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A lg o rith m  1 Generate heatmap for decision boundaries

1. Build up a classifier C with the given training set X ;

2. Select n\ by n 2 points on a grid in the sample space. The grid should cover 
all the points from the training set. For example: we find two points: yi 
and yn whose projections on Y-axis( vertical axis) are the minimum and the 
maximum among all the points in the data set. Similarly we find X\ and 
x m which are the minimum and the maximum in the horizontal direction. 
Then we restrict our grid to be within this square region: {x\ — #i, x m +  52 ) 
by (2/1 — £3, yn +  ^4)5 where Si is a small positive real number, i= l, 2, 3, 4;

3. Classify those points on the grid using the classifier C with deterministic 
method;

4. Represent the points on the grid using a symbol with different colors ac­
cording to their predicted group labels. The symbol’s size should be large 
enough to cover the spaces among those points;

5. Make a scatterplot of the training set against the plot using a different color, 
and we can see how the classifier separates the training set.

amples in section 1.4 when we are introducing the definition of decision boundaries 

using the four methods: recursive partitioning (rpart), K Nearest Neighbor (KNN), 

Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA).

Studying the decision boundaries by highlighting them in a plot gives us a lot 

of help in better understanding the behaviors of different classification algorithms. 

We have illustrated this point in Figure 1.4. Four algorithms’ decision boundaries 

are highlighted with the same data set data.4g, which has four groups of normally 

distributed samples, and one group samples are well separated from the others.

It also helps us to realize the fact that even using the same classification method, 

the decision boundaries can change dramatically within an ensemble of classifiers. 

As we have shown in Figure 1.5: rp art’s decision boundaries change a lot in a 5-fold 

cross-validation procedure. It gives us an idea of why the instability measure is 

important. Comparing Figure 1.5 to Figure 1.6,it is highly possible that when new 

samples are drawn from the unstable areas, their group assignments may be quite
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different by rpart algorithm.

By looking at Figure 5.1 and Figure 5.2, we also find out that some of KNN’s 

local decision boundaries are very unstable, and can be highly influenced by noise 

and outliers.

In summary, decision boundaries contain very important information: as it en­

ables us to find out some of the basic nature of a classification technique. Building 

an ensemble of classifiers using the same classification technique, we can measure 

the decision boundaries’ variance by ambiguity and instability and capture those 

unstable and ambiguous areas in the sample space.

5.2 VIBE-M S

As we discussed in the first section, cancer is one of the most deadly diseases in the 

US. Currently the best way to cure a cancer is to detect it in its early stage. Re­

cent advances in proteomics have brought us opportunity to understand the possible 

solutions of cancer biomarkers in molecular levels, conventional life science knowl­

edge alone is not enough. And knowledge from different approaches such as mass- 

spectrometry, signal processing, clinical research, computational science, physics, 

and statistics should be incorporated to achieve the goal of finding biomarkers and 

treat cancer in its early stages, which will enable us to detect a cancer efficiently 

and minimize the pain for the patients for testing.

Based on this motivation, Visual Integrated Bioinformatics System Mass Spec­

trometry (VIBE-MS) is created and developed cooperatively by Incogen,Inc., the 

William and Mary Mass Spectrometry group and Eastern Virginia Medical School.

The VIBE-MS workflow gives researchers an easy-to-control, integrated modular 

environment. The drag-and-drop interface allows researchers from different back­

grounds to easily select what the data sets they want to analyze, in which way they



want the data to be preprocessed, and how to statistically analyze the data. VIBE- 

MS has provided a set of parameters that allows the researchers to choose their own. 

For examples, in the cross-validation module, user can select how many subsets they 

want to use in a cross-validation procedure; in KNN classification module, they can 

choose a value for K.

The goal of VIBE-MS is to integrate new and existing methods into a whole 

pipeline that makes a complete process from raw data preprocessing to the classifier 

evaluation. Signal processing and statistical analysis workflows are integrated into 

a whole pipeline. First the raw data (in the form of a mass-spectrum) is selected 

using a spectrum selector module and then the optimization modules starts to work, 

then the processed data sets are sent to statistical classification modules to build 

classifiers, finally those classifiers are evaluated by the cross-validation module.

5.2.1 Classification tools in VIBE-M S

In cooperation with computer scientists at Incogen, this thesis’ author has incorpo­

rated several classification modules and evaluation tools into VIBE-MS. Each clas­

sification module has a cross-validation mode and non-cross-validation mode. The 

non-cross-validation mode uses all of the data in training and testing the classifier 

on all of the data, whose pros and cons have been discussed in the first section. In 

the cross-validation mode, two types of the most popular cross-validation algorithms 

are available, and they are:

1. V-fold cross-validation. The original data set is partitioned into V disjoint 

subsets, each time V-l subsets are randomly selected as training data, the 

classification model is built on it, then the remaining single subset is used for 

testing. This process is repeated V times until all of the samples are tested 

exactly once. To minimize the variation of the partitioning, the whole V-fold 

cross-validation should be repeated N times.
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2. Leave-one-out cross-validation. In a leave-one-out cross-validation procedure, 

a single sample is extracted as a test set, the other samples are used as training, 

to make sure the independence of training sets and test sets, if a test sample has 

more than one replicates, the training set does not contain its other replicates.

Four classification algorithms: LDA, QDA, rpart and KNN are integrated into 

these cross-validation packages. After the cross-validation procedure, the poste­

rior probabilities for each sample will be reported. Visualization tools such as the 

heatmap can also be used on posterior probabilities to show important information 

such as the group assignments of those samples.

After each run, classifiers (statistical models) and important variables and certain 

criterion such as misclassification rate are output to help researchers to understand 

and evaluate the whole process. The flexibility of VIBE-MS pipeline enables users 

to change the parameters and finally achieve the optimum results.

W hat’s more important, the R code for calculating and visualizing ambiguity, 

instability and decision boundaries can be integrated into VIBE-MS’s workflow. By 

simply copying and pasting the codes into a Generic R module, researchers will be 

able evaluate a classification technique’s performance using the two new metrics: 

ambiguity and instability we introduced in this thesis. Some of the R codes are 

attached in the appendix section.

Figure 5.3 shows a VIBE-MS mass-spectra pipeline. It includes a data selection 

module (the Spectra square on the top left of the workspace) to obtain data, then 

the data is preprocessed using background subtraction and several other signal pro­

cessing methods, then most important variables are selected using variable selection 

module, finally the data is passed to a generic R module on the right bottom of the 

workspace to build classifiers and have them evaluated. Two text view modules are 

used to record important information such as the misclassification rate of different 

classification algorithms.
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Figure 5.3: This figure shows a VIBE-MS mass-spectra pipeline, it contains a data 
selection module (the Spectra square on the top left of the workspace) to obtain 
data, then the data is preprocessed using background subtraction and several other 
signal processing methods, then most important variables are selected using variable 
selection module, finally the data is passed to a generic R module on the right 
bottom of the workspace to build classifiers and have them evaluated, two textview 
modules are used to record important information such as the misclassification rate 
of different classification algorithms.
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Chapter 6

Conclusions

From section 1 to section 3 we have discussed the motivations of using ambiguity 

and instability as two evaluation criteria together with error rate. The numerical 

experiments in section 3 suggest that both of the new definitions: ambiguity and 

instability can help us in evaluating a classification technique. They give deeper 

information which helps us better judge a classifier than conventional methods such 

as error rate. They benefit us in:

1. Better understand how the decision boundaries change within an ensemble 

of classifiers, unstable and ambiguous regions can be found in a straightfor­

ward manner where the classifier’s outputs are generated by different cross- 

validation random partitioning.

2. Classifiers with comparable error rates can be quite different in instability 

measurement. When we have future samples need to be classified, we should 

choose the classification technique with smaller instability measurement, and 

error rate should not be the only criterion when we are selecting a classification 

technique. This conclusion is supported by Table 3.1 and Figure 3.6, 3.9 and 

3.12.

3. Figure 3.4, 3.5, 3.7, 3.8, 3.10 and 3.11 suggest that some regions in the sample
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space maybe very ambiguous, which means points from a probabilistic dis­

tribution in there are very hard to differentiate from other distributions thus 

they should be removed from classifying. But they can be very stable in the 

cross-validation process.

4. Table 3.3 indicates that ambiguity can help us finding risky points which 

are not appropriate to be classified, as the information Bayes error contains. 

Ambiguity can be used as a substitute of Bayes error. And w hat’s more 

important, analytically ambiguity measurement has better properties than 

Bayes error. Ambiguity function is a smooth function in the sample space, 

while Bayes error is not smooth in the local maximum points.
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Chapter 7

Appendix: R code

Part of the R code used in this thesis are shown below.

To use these R code, the data must have such strict structure:

1. The first column is the subject identifier, such as 1,2,..., N (N is the total 

number of different subjects)

2. The second column must be the replicate identifier, which differentiates the 

same subject.

3. The third column is the group identifier, to differentiate subjects from different 

groups.

4. From the fourth column to the last column are the numeric variables.

7.1 R code to plot the decision boundaries

The following codes are written in R(a statistical computing language) and are used

to generate the decision boundaries for : KNN and LDA.

library(MASS)
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library(class)

################################

# This function plots the decision boundaries using KNN algorithm 

f.knn.db<- function(Train,Test,Labels,K=5)

{

#First column is the subject id,

#Second column is the replication id,

#Third column is the group id

group.id<-as.character(Train[,3])

X<-as.numeric(Train[,4]) # XI 

Y<-as.numeric(Train[,5]) # X2

Xlim<-c(min(c(X,Test[,4]))-2, max(c(X,Test[,4]))+2)

Ylim<-c(min(c(Y,Test[,5]))-2, max(c(Y,Test[,5]))+2)

x .plot<-seq(Xlim[1],Xlim[2],length=100)

y .plot<-seq(Ylim[1],Ylim[2],length=100)

x.plot<-sort(rep(x.plot,100))

xy.data<-data.frame(Xl=x.plot,X2=y.plot)

Labels<-knn(train=Train[,-c(1:3)], test=xy.data, cl=group.id,k=K) 

plot(as.numeric(xy.data[,1]),as.numeric(xy.data[,2]), 

col=as.numeric(as.factor(Labels)), 

pch=rep(15,nrow (xy.data)),xlab=;XI’,ylab=’X2; ) 

points(as.numeric(Train[,4]),as.numeric(Train[,5]), 

pch=as.character(group.id),col=5 white1)
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###############################

# This function plots a decision boundary using Ida algorithm 

f .lda.db<- function(Train,Test}Labels,K=5)

{

group.id<-as.character(Train[,3])

X<-as.numeric(Train[,4]) # XI 

Y<-as.numeric(Train[,5]) # X2

Xlim<-c(min(c(X,Test[,4]))-2, max(c(X,Test[,4]))+2)

Ylim<-c(min(c(Y,Test[,5]))-2, max(c(Y,Test[,5]))+2) 

x.plot<-seq(Xlim[l],Xlim[2],length=100) 

y.plot<-seq(Ylim[l],Ylim[2],length=100) 

x .plot<-sort(rep(x.plot,100)) 

xy.data<-data.frame(Xl=x.plot,X2=y.plot)

Fit <- lda(as.factor(group.id)~.,Train[,4:5])

Labels<-predict(Fit,xy.data)$class

plot(as.numeric(xy.data[,1]),as.numeric(xy.data[,2]), 

col=as.numeric(as.factor(Labels)), 

pch=rep(15,nrow (xy.data))Jxlab=,Xl53ylab=,X2, ) 

points(as.numeric(Train[,4]),as.numeric(Train[,5]), 

pch=as.character(group.id),col=}white’)

}
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7.2 R code to plot the heatmaps of the ambiguous 

and unstable regions

Below are the R code used to draw ambiguity and instability areas using rpart 

algorithm. The parameter method specifies whether it is a probabilistic model or a 

deterministic model, the measure can be either ambi or instab, which determines it 

is a ambiguity plot or instability plot.

f.plot.rpart <-

function(Data, V=5, no.cv=10,no.p=100, measure^ ambi5,method=,probJ)

{
#######################################################################

# Data has such structure:

# 1st column as subject id, 2nd column rep id, 3rd column group id,

# 4th column is the first variable, 5th column the second variable,

# only two dim data sets are applicable for this function.

# ’no.p’ is the number of points selected # horizontally or

# vertically in the grid, by default,

# 10,000 points are selected.

########################################

# Create the points on the grid

X<-as.numeric(Data[,4])

Y<-as.numeric(Data[,5])

Xlim<-c(min(X)-l, max(X)+l)

Ylim<-c(min(Y)-1, max(Y)+l)
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x.plot<-seq(Xlim[l],Xlim[2],length=no.p)

# x values on the grid, used in drawing the heatmap 

X.grid <- x.plot

y.plot<-seq(Ylim[l],Ylim[2],length=no.p)

Y.grid <- y.plot # same as X.grid

x .plot<-sort(rep(x.plot,no.p))

xy.data<-data.frame(Xl=x.plot,X2=y.plot)

########################################  

library(rpart)

Nrow <- nrow(xy.data) 

group.id <- Data[,3]

no.group <- length(levels(as.factor(group.id))) 

all.groups <- levels(as.factor(group.id)) 

sub.id <- as.character(Data[,1])

#####################################  

f .binary<- 

function(x)

{

Max<-which.max(x) 

x[Max]<-1 

x [-Max]<-0 

return(x)}

######################################  

f .geo.sub<-
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function(sub.p){

return(sum(sub.p*(1-sub.p))/2) }

####################################  

f .liang.edist<- 

function(x,Y,no.group)

{

X<-matrix(rep(x,length(Y)/no.group),byrow=TRUE, 

nrow=length(Y)/no.group)

Xl<-apply((X-Y)~(2),1,sum)

Edist<-sum(sqrt(XI)) 

return(Edist)

>

####################################  

f .liang.edist.2 <-

function (Data,no.group=2,V=V,Const=Const)

{

Dist<-numeric()

for(i in 1:(nrow(Data)-l)){

X<-Data[i,]

Y<-Data[-c(l:i),]

Dist [i]<-f.liang.edist(X,Y,no.group)

}

return(sum(Dist)/Const)
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###################################

f.plot.rpart.2<-function(Data,V=5,xy.data=xy.data,no.p=no.p)

{

cv.part <- numeric()

Prob.matrix <- array(0, dim=c(Nrow, no.group, V)) 

for(i in 1: no.group)

{

reps <- which( is.element( group.id,all.groups[i] ) )

# the subject name 

subjects <- levels (as.factor(sub.id[reps] ) )

# number of different subjects 

no.sub <- length(subjects) 

r <- round(no.sub/V)

Res<- r*V- no.sub

r.interval <- c(rep(r, V-abs(Res)), rep(r-sign(Res), abs(Res)) ) 

r<-rep(0, ( length(r.interval)+1 ) )

r [1]<-0

for d  in 2: (length(r. interval) +1))

{

r[ i ] <- r[i—1]+r.interval[i—1]

>

perm <- sampled :no. sub) 

for ( j in 1: V)

{

subj.j <- perm [(r [j]+1) : r[j+l] ]

reps <- whic h d s . element (sub. id, subjects [subj . j]))
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cv.part [reps] <- j 

}

}

for (i in 1:V) {

data.test <- xy.data

data.train <- Data[cv.part!=i, ]

fit.full <- rpart(as.factor(data.train[,3])~.,

data.train[,-c(l:3)] )

# Check whether it is a root tree,

# otherwise prune it back using 1 se rule, 

fit.cptable <- fit.full$cptable

if(ncol(fit.cptable)>=5){

min.error.index<- which.min( fit.cptable [,4] ) 

one.se <- sum (fit.cptable[min.error.index, 4: 5] ) 

cp.index <-as.numeric( names(fit.cptable[,4][ fit.cptable [,4] <

one.se] [1] ) ) 

fit.prune <- prune(fit.full, cp = fit.cptable[cp.index])

} else {

fit.prune<-fit.full

}

Prob.matrix[,,i] <-predict(fit.prune,data.test,type=> probJ)

}

return(Prob.matrix)

}

########################################################

# Main function
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#Convert character into position of the group id 

index.group.id<-as.numeric(as.factor(group.id))

Const<-(no.cv)~(2)*sqrt(2)

X<-array(0,dim=c(no.p*no.p ,no.group,no.cv*V)) 

for(i in l:no.cv){

X[,,( (i-l)*V+l):(i*V) ]<-f.plot.rpart.2(Data=Data,V=V,

no.p=no.p ,xy.data=xy.data)

}

if (measure=="ambi") { 

ajnbi<-numeric ( ) 

for( i in 1: (no.p*no.p)){

Y<-t(matrix(as.numeric(X[i,1:no.group, ]),nrow=no.group))

# calculate the average of the posterior probability for

# sample >i }

if (method==,det5)

{ Y<-t(apply(Y,l,f.binary)) }

# f.binary is another function which round a number

# between (0,1) to the 0 or 1 according to which

# is closer.

ProbBar<-apply( Y, 2 ,mean)

ambi[i]<- f.geo.sub(ProbBar)

}

Measure <- ambi

>

if(measure=="instab"){ 

instab<-numeric()
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fo r d  in 1: ( no.p*no.p) ){

Y<-t(matrix(as.numeric(X[i, 1:no.group,]),nrou=no.group)) 

instab[i]<-f.liang.edist.2(Y,no.group=no.group,V=V,Const=Const)

# f .liang.edist.2 is a function calculate the euclidean distance 

}

Measure <- instab

}

image(X.grid, Y.grid, matrix(Measure,nrow=no.p ,byrow=TRUE), 

xlab=,Xl;,ylab=5X25,col=gray(256:1/256)) 

points(Data[ , 4 : 5 ] , col=(2+as.numeric(as.factor(Data[,3]))), 

pch=(2+as.numeric(as.factor(Data[,3]))))

7.3 R code to compute the global ambiguity, in­

stability and error rate

The following R code calculates the global ambiguity, instability or error rate for 

QDA algorithm.

f.comp.qda <- function(Data,V=5,no.cv=10,method=’prob’)

{

#####################################  

f .binary<-
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function(x)

{

Max<-which.max(x) 

x[Max]<-1 

x[-Max]<-0 

return(x)}

######################################  

f .geo.sub<-

function(sub.p){

return(sum(sub.p*(1-sub.p))/2) } 
#################################### 

f .liang.edistc- 

function(x,Y,no.group)

{

X<-matrix(rep(x,length(Y)/no.group), 

byrow=TRUE,nrow=length(Y)/no.group) 

Xl<-apply((X-Y)~(2),1,sum)

Edist<-sum(sqrt(XI)) 

return(Edist)

}

####################################  

f.liang.edist.2 <-

function (Data,no.group=2,V=V,Const=Const)

{

Dist<-numeric()
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f o r d  in 1: (nrow(Data)-1)){

X<-Data[i,]

Y<-Data[—c(1:i),]

Dist [i] <-f . liang. edist (X, Y,no. group)

>

return(sum(Dist)/Const)

}

#####################################  

f .comp.qda.2<- 

function(Data,V)

{

library(MASS)

Nrow <- nrow(Data)

Data<- data.frame(Index=(1:Nrow),Data)

Data[,4]<-as.character(Data[,4]) 

group.id <- Data[,4]

no.class <- length(levels(as.factor(group.id)))

all.groups <- levels(as.factor(group.id))

sub.id <- as.character(Data[,2])

no.group<-length(levels(as.factor(group.id)))

cv.part <- numeric()

for(i in 1: no.class)

{

reps <- which( is.element( group.id,all.groups [i] ) ) 

# the subject name

subjects <- levels (as.factor(sub.id[reps] ) )
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# number of different subjects 

no.sub <- length(subjects) 

r <- round(no.sub/V)

Res<- r*V- no.sub 

r.interval <- c(rep(r, V-abs(Res)), 

rep(r-sign(Res), abs(Res)) ) 

r<-rep(0, ( length(r.interval)+1 ) )

r [1]<-0

for(i in 2: (length(r.interval)+l))

{

r[ i ] <- r[i—1]+r.interval [i—1]

}

perm <- sampled :no. sub) 

for ( j in 1: V)

{

subj.j <- perm[(rCj]+1) : r[j+l] ] 

reps <- which(is.element(sub.id, 

subjects[subj.j])) 

cv.part [reps] <- j

}

}

phase2.qda.prob <- rep(0, no.group+1) 

for (i in 1:V)

{

data.test <- Data[cv.part==i, ]

data.train <- Data[cv.part!=i, ]

fit.qda <- qda(as.factor(data.train[,4])~



d a t a . t r a i n [ , - c (1:4)]  )

X<-predict(fit.qda,data.test[,-c(l:4)])$posterior 

phase2.qda.prob <- rbind(phase2.qda.prob,

cbind(data.test[,1] ,X))

}

phase2.qda.prob <- phase2.qda.prob[-1,] 

phase2.qda.prob <- phase2.qda.prob[order(

as.numeric(phase2.qda.prob[,1])),] [,-1] 

return(phase2.qda.prob)

}

###################################

#Main function 

Nrow<-nrow(Data)

group.id<-as.character(Data[,3])

no.group<-length(levels(as.factor(group.id)))

#Convert character into position of the group id 

index.group.id<-as.numeric(as.factor(group.id))

Const<- (no . cv) ~ (2) *sqrt (2)

X<-array(0,dim=c(Nrow,no.group,no.cv)) 

f o r d  in l:no.cv) {

X [,,i] <-f.comp.qda.2(Data=Data,V=V)

}

#############

#Calculate the Bayes error 

Y<-apply(X,1:2,mean)
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B .err<-numeri c()

index.group.id.2<-apply(Y,1,which.max) 

for(i in l:Nrow) {

B.err[i] <- 1- Y[i,][index.group.id.2 [i]]

>

B .err<-sum(B.err/Nrow)

################

# Calculate the instability, the instability under

# deterministic method has the same value of ambiguity,

# so we only compute the ambiguity for simplicity. 

instab<-numeric 0

for(i in 1: Nrow){

Y<-t(matrix(as.numeric(X[i,1:no.group,]),nrow=no.group)) 

instab[i]<-f.liang.edist.2(Y,no.group=no.group,

V=V,Const=Const)

>

instab<-sum(instab)/Nrow

ambi<-numeric() 

ambi.det<-numeric() 

err<-numeric()

for( i in 1: Nrow){

Y<-t(matrix(as.numeric(X [i,1:no.group,]),

nrow=no.group))

ProbBar<-apply( Y, 2 ,mean)



err [i]<- 1-ProbBar[index.group.id[i]] 

ambi[i]<- f.geo.sub(ProbBar)

Yl<-t(apply(Y,1,f.binary)) 

ProbBarl<-apply( Yl, 2 ,mean) 

ambi.det[i]<-f.geo.sub(ProbBar1)

}

err<-sum(err)/Nrow

ambi<-sum(ambi)/Nrow

ambi.det<-sum(ambi.det)/Nrow

return( list ( B.err=B.err, err=err,

instab=instab, ambi=ambi, 

ambi.det=ambi.det ) )

}
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