
W&M ScholarWorks W&M ScholarWorks 

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 

2008 

Automatically Generating Random Test Data for Relevant and Automatically Generating Random Test Data for Relevant and 

Implicitly Defined Subdomains Implicitly Defined Subdomains 

John Alexander Murphy 
College of William & Mary - Arts & Sciences 

Follow this and additional works at: https://scholarworks.wm.edu/etd 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Murphy, John Alexander, "Automatically Generating Random Test Data for Relevant and Implicitly Defined 
Subdomains" (2008). Dissertations, Theses, and Masters Projects. William & Mary. Paper 1539626878. 
https://dx.doi.org/doi:10.21220/s2-g2ft-x568 

This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M 
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized 
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu. 

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539626878&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539626878&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-g2ft-x568
mailto:scholarworks@wm.edu


AUTOMATICALLY GENERATING RANDOM TEST DATA FOR RELEVANT 
AND IMPLICITLY DEFINED SUBDOMAINS

John Alexander Murphy 

Oakton, VA

Bachelor of Science, College of William and Mary 2005

A Thesis presented to the Graduate Faculty 
of the College of William and Mary in Candidacy for the Degree of

Master of Science

Department of Computer Science

The College of William and Mary 
January 2008



APPROVAL PAGE

This Thesis is submitted in partial fulfillment of 
the requirements for the degree of

Approved by the Committee, January 2008

CWT/i
Committee CHair 

Assistant Prof. David Coppit, Computer Science

College of William and Mary

/Is/fa r- fj/-0-
Associate Prof. Peter Kemper,Computer Science 

College of William and Mary

c

Prof. Robert Noonan, Computer Science 

College of William and Mary



ABSTRACT PAGE

Many methods have been proposed to evaluate the correctness of software. One such 
strategy is random testing, in which inputs are randomly selected or generated from the entire 
input space of a method. In many cases, random testing is desirable because it is a highly 
automatable process, relieving the tester of the tedious task of generating test cases by hand. 
However, in the case where the input space is sufficiently complex or left undefined prior to 
testing, three difficulties arise: One: It may become prohibitively difficult to ensure that all 
inputs generated are in fact valid inputs to the software under test. Two: Within the valid input 
space of the software under test, not all tests are potentially error-revealing. Restricting the 
search for errors to the relevant subdomain of valid and potentially error-revealing inputs 
further complicates the test generation strategy. And three: It may become prohibitively 
difficult to ensure that the test case generation is truly random; that is, a uniformly distributed 
selection among all inputs in the relevant subdomain with no bias towards specific regions of 
the input space.

To that end, this work presents a method which expands the scope of scenarios in which 
random testing is feasible. First, a novel algorithm is presented for the random selection of 
relevant test cases in n-dimensional real space in which the relevant subdomain is orders of 
magnitude smaller than the valid input space and potentially involves arbitrarily complex 
interactions between constraints involving multiple variables. A testing framework integrating 
this algorithm with more traditional automated test generation strategies is also presented and 
is used in a case study to evaluate the correctness of an implementation of the KB3D aircraft 
collision avoidance algorithm. The objectives of this strategy include ensuring an 
approximately uniform distribution of test cases across the valid and relevant subdomain of the 
input space as well as minimizing the amount of time spent examining irrelevant test cases. 
The case study will be evaluated with these criteria along with the ability to discover faults in 
the software itself.



To my family.



Table o f Contents

Acknowledgments vii

List of Tables viii

List of Figures ix

1 Introduction 2

1.1 Software V erification........................................................................................  2

1.2 Difficulties of Random Testing .....................................................................  4

2 M otivation 7

3 Related Work 14

3.1 The Random Testing Controversy......................................................................... 14

3.2 Attempts to Improve Automated Test G eneration.............................................. 16

3.3 Black-box Sampling Strategies ............................................................................ 19

4 The Im plicit Subdomain Exploration Algorithm  21

4.1 O bjectives..................................................................................................................  21

iv



4.2 Assumptions ...........................................................................................................  22

4.3 M echanics..................................................................................................................  24

4.3.1 Selecting Low-density Regions ...............................................................  25

4.3.2 Test Sampling ............................................................................................ 30

4.3.3 User-defined P aram eters ............................................................................ 32

5 The A utom ated Testing Framework 37

5.1 Automated Testing S tra teg ies...............................................................................  38

5.2 Supported T y p e s .....................................................................................................  41

5.3 Test Configuration and Execution........................................................................  43

6 Evaluation 46

6.1 Performance on Synthetic Input Spaces ............................................................  46

6.1.1 A c c u ra c y .....................................................................................................  48

6.1.2 Running Time & Wasted E ffo rt...............................................................  51

6.2 Case S t u d y .....................................................   53

6.2.1 A c c u ra c y .........................................  55

6.2.2 Running Time & Wasted E ffo rt...............................................................  56

6.2.3 Discovered B u g s ........................................................................................  57

7 Conclusion 59

A Extending the Autom ated Testing Framework 62

B Defining Test Suites in the A utom ated Testing Framework 66

v



Bibliography

V ita



ACKNOWLEDGMENTS

This work would not be what it is today without the help and guidance of many people. 
First I would like to express my appreciation for my advisor, Dr. David Coppit, for both 
his high-level guidance in finding a problem needing solving, helping with algorithm design, 
and participating in the gruntwork of implementation and debugging. I would like to thank 
Cesar Munoz for serving as my domain expert in the KB3D case study and explaining its 
secrets. I would also like to thank my committee including Dr. Robert Noonan and Dr. 
Peter Kemper, whose comments and criticisms made this work better and more complete. 
My fellow research group consisting of Meghan Revelle and Brian Meckstroth were integral 
in listening to ideas of varying quality and providing moral support. I would also like to 
thank all who attended my practice talks for being a great audience and confidence booster. 
Finally, I would like to thank my father for his valuable comments on my thesis and for 
explaining the Metropolis-Hastings algorithm over the phone the night before my thesis 
defense.



List o f Tables

5.1 Sample execution of mixed-strategy testing with A T F ....................................  39

6.1 Deviation metric comparing unbiased Monte Carlo generation, ISE, and bi

ased random generation strategies when generating in the circle input space 

(Standard deviation across 10 trials in parenthesis)...........................................  51

6.2 Deviation metric comparing unbiased Monte Carlo generation and ISE gen

eration strategies when generating in the figure-eight input space (Standard 

deviation across 10 trials in parenthesis)..............................................................  51

6.3 Deviation metric comparing unbiased Monte Carlo generation and ISE gen

eration strategies when generating in the barbell input space (Standard de

viation across 10 trials in parenthesis)..................................................................  52

6.4 Time (seconds) to execute ISE algorithm on several regions for increasing

amounts of generated points.................................................................................... 52

6.5 Hit rates for ISE and Monte Carlo generation strategies on several input spaces. 53

viii



List o f Figures

2.1 10,000 tests generated using a Monte Carlo test selection strategy..................  9

2.2 10,000 tests generated using a biased test selection s tr a te g y ..........................  10

2.3 10,000 tests generated using an unbiased test selection s tra te g y ...................  11

4.1 Binning behavior on complicated, 2-dimensional s p a c e ................................... 28

6.1 20,000 tests generated in the circle input s p a c e ................................................  47

6.2 20,000 tests generated in the figure-eight input sp a c e ....................................... 48

6.3 20,000 tests generated in the barbell input space ............................................. 49

IX



AUTOMATICALLY GENERATING RANDOM TEST DATA FOR 

RELEVANT AND IMPLICITLY DEFINED SUBDOMAINS



Chapter 1

In trod u ction

1.1 Softw are V erification

One of the hurdles to producing quality software is establishing confidence in the correctness 

of the implementation. There are several methods of establishing such confidence. For 

critical systems in which lives or other valuables are at stake a mathematical proof of 

correctness may be required to be sufficiently confident in the system. In practice, very few 

developers actually prove their software to be correct and instead choose to follow the less 

rigorous route of testing software on a representative set of inputs. Proponents of software 

proofs such as Edsger Dijkstra warn tha t “Program testing can be used to find the presence 

of bugs, but never to show their absence!” [12]. Indeed, if one is to treat the software 

under test as a black box, short of exhaustively executing all possible inputs (an infeasible 

task for all but the smallest of input spaces) it is impossible to be supremely confident 

in the correctness of the software through testing alone. Instead, a tester will make some 

generalizing assumptions tha t the tests selected are indeed representative of the entire input

2



3

space. The tester simplifies the problem of establishing confidence at the expense of rigor.

There are several angles of attack one may follow to establish confidence via software 

testing. One angle involves examining the structure of the software under test and fabricat

ing inputs which thoroughly exercise the software. W hite box testing such as this may have 

multiple objectives in its test selection criteria. One objective may be to test as much of 

the software under test as possible by one of several metrics such as statement, condition, 

or path coverage. Another objective may be to determine “likely” errors and craft inputs 

to test for them. Boundary conditions, off by one errors, null pointers, etc. are all common 

programming errors which a white box testing strategy may identify and test.

Rather than using the structure of the software as a guide for testing, one may also use 

the usage patterns of users of the software to construct a test suite and establish confidence 

in the software. By examining the typical usage patterns of users of the software, one may 

determine the distribution of inputs presented to the software as modeled by a random 

variable. By generating inputs according to this random variable, one may establish a 

statistical confidence in the correctness of the software under typical use over a period of 

time. However, in practice it is unlikely to have an accurate usage profile of software— 

especially software currently under development—so a common assumption is made by 

assuming all inputs are equally likely to occur. This work builds upon this testing strategy 

of uniform selections from an input space and expands upon it by expanding the set of 

spaces from which one may sample from a uniform distribution.



4

1.2 D ifficu lties o f  R an d om  T esting

As useful as random testing can be, there are some difficulties. While the generation of 

pure random “fuzz” data is trivial, generating structured random inputs can be much more 

difficult. There may exist dependencies between variables in an input tha t one must take 

into account. While there exists some work in generating tests with dependent variables, 

some (like Java Pathfinder [48]) depend on linear equation solvers to generate inputs and 

fail when the dependencies are nonlinear. Others (like Directed Automated Random Test

ing [15]) degrade more elegantly on nonlinear constraints by regressing from symbolic to 

concrete execution when such a constraint is encountered.

However, in many cases the structure of the input is ill-defined, or perhaps the tester 

wishes to test some subdomain of which he or she has only some vague concept. Perhaps 

the tester knows which type of behavior he or she wants to elicit, but cannot determine a 

strategy to generate such inputs (or maybe the tester simply wishes to visualize the space 

of all inputs eliciting such a behavior). In such a case, it is impossible to create a uniformly 

distributed test selection strategy since the tester does not know the distribution from which 

he or she is selecting. This work presents a method for the simultaneous modeling and 

uniformly distributed sampling of a space which is largely unknown prior to sampling, and 

a testing framework combining this novel algorithm with more traditional random testing 

strategies.

In testing, we make a distinction between the domain and the relevant subdomain. 

We consider the domain to be the set of all possible syntactically valid inputs (typically 

the type-complete cross product of all input parameters) since even nonsensical or poorly



5

structured inputs are still possible inputs and must be properly accounted for. We consider 

the relevant subdomain to describe a class of inputs eliciting similar behavior (typically 

passing some set of preconditions). A relevant subdomain is always a subset of the domain; 

however, one unit under test may have multiple relevant stibdomains depending on what 

behavior the tester wishes to test. In addition, two relevant subdomains of a domain need 

not be disjoint sets.

This work also uses the term  implicitly defined subdomain to describe any class of inputs 

which elicits a specific behavior when used as inputs to a program but are not formally 

defined in any documentation. The implicitly defined subdomain is (as its name would 

suggest) defined implicitly by the behavior of the software itself. If an input elicits the 

behavior, it is by definition within the implicitly defined subdomain. Executing an input to 

observe its behavior is the only way to determine if an input is within the subdomain. While 

the logic behind the implicitly defined subdomain is indeed circular, it is also useful in that 

it is often much simpler to verify a solution rather than to generate one. This work leverages 

this disparity to elevate the importance of recognizing valid inputs rather than solving for 

new inputs from scratch by permuting already known valid inputs to other probable valid 

inputs. The novel algorithm presented in this work is the Implicit Subdomain Exploration 

(ISE) algorithm, which is designed to sample from an approximately uniform distribution 

from an arbitrary space whose shape and dimensions may be unknown prior to testing. 

This algorithm is used in a new framework combining the ISE algorithm with other more 

traditional automated test generation strategies and is used to evaluate the correctness of 

real-world software.

The remainder of this work is organized as follows: Chapter 2 provides some examples



in which random testing may be improved. Chapter 3 discusses other attem pts to improve 

the effectiveness and feasibility of random testing. Chapter 4 discusses the ISE algorithm in 

detail. Chapter 5 describes the architecture of the testing framework built around the ISE 

algorithm. Chapter 6 evaluates the ISE algorithm in several synthetic but representative 

examples as well as presents a case study where the ISE algorithm was used to test real-world 

software. Chapter 7 concludes.



Chapter 2

M otivation

While one of the biggest obstacles to random test generation is the creation of an oracle 

to verify the correctness of the software for an arbitrary input, an often ignored difficulty 

is in the generation of inputs, especially if one wishes for the inputs to have specific qual

ities. Pure fuzz testing has been shown to be surprisingly effective in discovering faults in

software [37], however to be confident in the correctness of software one must also test on
0

inputs likely to be presented in actual use of the software. This work has previously dis

cussed the difficulties in generating inputs which lie within the 2-dimensional unit circle, an 

input space with a very basic structure. As complexity of the structure of the input space 

increases, so does the difficulty in crafting an unbiased test generation strategy. Often, the 

structure of the input is not explicitly defined, compounding the difficulty in creating a 

test strategy. Or perhaps the tester has identified a subdomain of the input space which 

requires more extensive testing. For example, one implementation of a square root method 

may read as follows:

7



double sqrt(double x)
{

if (x < 0) 
return NaN;

else

sqrtOfX = ... 
return sqrtOfX;

}
>

The domain of this method is the set of all doubles. However, the tester will probably 

identify all values of x  less than zero as trivial, perhaps only requiring a single test case 

to ensure th a t the method correctly identifies negative inputs. The vast majority of the 

logic is only exercised for nonnegative inputs, therefore the tester will most likely focus the 

majority of his or her efforts on the relevant subdomain of nonnegative doubles.

In the previous scenario, once the tester identified the relevant subdomain devising 

a generation strategy was a relatively simple m atter. Generating a single value selected 

uniformly from a range is exactly what random number generators do best. M atters get 

more complicated when tests use multiple dependent input values. For example, consider 

a piece of software whose relevant subdomain is the set of all two-dimensional points lying 

within the unit circle centered on the origin. This is a relatively simple space to explore, 

but one must take into account that a value chosen for the x  component affects the possible 

y component (and vice versa) which requires a more complicated generation strategy.

When testing this software, one has two goals to achieve: (1) only test inputs within 

the domain, as any other test would be a wasted effort, and (2) uniformly sample from the 

domain, as with no prior knowledge of the usage profile of the software, one must assume



9

Figure 2.1: 10,000 tests generated using a Monte Carlo test selection strategy

all valid inputs are equally likely to occur in practice.

The first problem the tester may encounter is tha t of selecting a region too large, encom

passing both relevant and irrelevant inputs. Testing an irrelevant input is wasted testing 

effort. For example, one’s first attem pt at sampling the unit circle space might be a simple 

Monte Carlo [35] rejection sampling method. All points within the unit circle will lie within 

the bounding box defined by the points (—1, —1) and (1,1), so sampling will consist of two 

selections from a uniformly distributed random variable on the interval [—1,1] with one 

selection determining the x  coordinate and the other determining the y coordinate. This 

will guarantee a uniform distribution across the input space. However, as can be seen in 

Figure 2.1, the bounding box has a larger area than the domain of the software under test. 

This means tha t some of the generated test cases will lie outside the domain and testing 

effort is wasted. In this case, the amount of wasted effort is 1 — or approximately 21% of



10

Figure 2.2: 10,000 tests generated using a biased test selection strategy

all tests are irrelevant. Depending on the shape of the input space, the portion of irrelevant 

inputs may become arbitrarily high and defining a bounding box and sampling from within 

th a t space becomes infeasible.

Further refinements may rectify this by using a more appropriate selection strategy. 

However, the tester faces a second problem: ensuring tests are sampled from a uniform 

distribution. This is im portant for two reasons. One, the tester may wish to make statis

tical arguments as to the reliability of the software, which requires an intelligently selected 

distribution. Two, an unintentionally biased sampling method may waste testing effort in 

one region by overtesting, to the detriment of other, relatively undertested regions.

In the case of the unit circle, one may instead choose an angle 6 from the interval 

[0, 2-7t) and a distance from the origin r  from the interval [0,1]. This will define a point 

(0, r) in polar coordinates within the unit circle. In this strategy, one is guaranteed that



11

:- „ * ./d
j t j  %? k Z * ' t 4 - • Z t X ~ ' ! a * 'v  t  ^  J  ’i .. • J

Figure 2.3: 10,000 tests generated using an unbiased test selection strategy-

all generated tests will indeed lie within the domain of the space, and all valid tests are 

possible to generate. However, Figure 2.2 shows tha t this selection strategy is biased to 

generate inputs near the origin. This goes against one’s original assumption tha t with no 

prior knowledge of the software under test, one assumes a uniform usage profile and tha t all 

inputs are equally likely to reveal a fault. By biasing the testing towards the origin at the 

expense of the boundaries of the space, any confidence metrics used with the assumption 

of a uniform usage profile must immediately be called into question.

One final refinement of the selection strategy allows one to have an unbiased selection 

without wasting any effort testing outside the domain of the software under test. As in the 

previous example, an angle 6 is chosen from the interval [0, 2 t t ) and a distance from the 

origin r is selected from the interval [0,1]. However, the polar coordinates defining the test 

are taken to be (6, y/r) rather than (0, r). This removes the bias introduced due to the fact



12

tha t the circumference of a circle grows at the square of the radius. The previous solution 

would over time place the same number of tests “near” the origin as “far” from the origin 

without accounting for the quadratic growth in area the further one travels from the origin, 

which skewed test selection. An example of tests generated with this proper strategy can 

be seen in Figure 2.3.

Even in the seemingly trivial input space of the unit circle, determining a test selection 

strategy which wastes little testing effort while still selecting tests from a uniform distribu

tion is a nontrivial task. Indeed, in this case the tester has complete knowledge of the input 

space of the software under test. In general, one cannot assume tha t the tester has such 

knowledge. W hether due to poor or no specifications, the tester may find the input space 

is only implicitly defined by the behavior of the software itself. In cases such as this, it is 

exceedingly difficult to obtain confidence metrics for the software under test as the tester 

does not even know the set of all of the possible inputs.

In Chapter 6, this work will evaluate testing strategies on the highly complex input space 

of the KB3D [39] software. KB3D is an aircraft conflict detection and resolution algorithm 

developed at the National Institute of Aerospace. The algorithm takes a pair of aircraft 

as input and determines if the two are on a “near collision” course. If it determines the 

aircraft will indeed violate the minimum separation required by the aircraft, the algorithm 

will also provide a set of new headings for the aircraft to follow to resolve the conflict. 

In this instance, the domain of the software is the set of all pairs of aircraft (where each 

aircraft is defined by a three dimensional location along with a three dimensional velocity 

vector). However, to thoroughly exercise the portion of the algorithm which generates 

resolution headings, one must look at the relevant subdomain of all pairs of aircraft on a



13

near-collision course. This subdomain is orders of magnitude smaller than the true domain, 

however it is also much more difficult to devise a testing strategy which only generates pairs 

of aircraft meeting the required precondition. One could generate pairs of aircraft within a 

certain distance of each other, but this is not ideal as this distance would be an arbitrary 

decision. Depending on the velocity and heading of the aircraft, the radius might be too 

large and capture too many pairs of aircraft not on a collision course, or too small and 

not capture the entire subdomain. There is simply no obvious strategy for the generation 

of inputs in this subdomain. This relevant subdomain and others like it are the primary 

motivation behind the development of the Implicit Subdomain Exploration algorithm.



Chapter 3

R ela ted  W ork

3.1 T h e R an d om  T estin g  C ontroversy

Random testing has often been criticized as a poor testing tool in comparison to nearly all 

other testing strategies. Ince states th a t random testing “is the default case by which other 

methods should be judged” and th a t “random testing seems to be the worst possible way 

of testing software” [24].

The crux of the argument against random testing stems from the fact tha t without 

using any information about the software under test, the testing is by definition unguided 

towards the detection of faults. Another issue with automated random testing includes the 

requirement of an oracle to verify the results of an arbitrary test. The confidence gained 

through testing hinges entirely on one’s confidence in the oracle. While these criticisms 

are entirely valid, random testing has several very desirable qualities as well. Richard 

Hamlet notes the two primary reasons random testing is still pursued: (1)“...there are 

efficient methods of selecting random points algorithmically...thus a vast number of tests

14



15

can be easily defined” and (2) “statistical independence among test points allows statistical 

prediction of significance in the observed results.” [19]

Several studies have been performed analyzing the effectiveness of random testing to that 

of “partition testing,” or the subdivision of the input space into subdomains defined “whose 

points are somehow ‘the same,’ ” [17] where ‘sameness’ can be based on “requirements or 

specifications,...features of the code,...the process by which the software was developed, or 

on the suspicions and fears of the programmer.” Since all points in a partition are considered 

equivalent, only one representative test must be executed from each partition. The quality 

of partition testing therefore depends entirely on the quality of the partitions defined by 

the tester. Weyuker and Jeng performed a theoretical analysis and came to the somewhat 

surprising conclusion tha t partition testing can be either more or less effective than random 

testing depending on the distribution of faults within a subdomain [50]. Ideally, a subdomain 

would be homogeneous, that is, if one test selected from that subdomain is fault-revealing, all 

tests from tha t subdomain are guaranteed to reveal the same fault. In practice, subdomains 

are not necessarily homogeneous nor are partitions disjoint, which affects the efficiency of 

partition testing. Theoretical studies such as those of Duran and Ntafos [14] and Hamlet 

and Taylor [17] came to similar conclusions.

In fact, an entire area of testing called “fuzz testing” has risen which takes unstructured 

random testing to its extreme by presenting completely unstructured random data to a 

program with the intent of discovering defects. The first study of Fuzz testing was performed 

by Miller et al. [37] and tested various UNIX utilities when presented with unstructured 

random inputs. The study came to a very optimistic conclusion as to the effectiveness of fuzz 

testing (or a very pessimistic conclusion as to the quality of software in general, depending



16

on one’s outlook). In this study, roughly a quarter of tested UNIX utilities were forced 

into either a hang or a crash when presented with random inputs. Fuzz testing requires 

no structured input generation and even may not require an oracle (as in this study, in 

which only crashes and hangs were detected). While fuzz testing is far from a complete 

evaluation of the correctness of software, the ease of random testing combined with its 

ability to capture “low hanging fruit” which apparently persists even in m ature software is 

encouraging for random testing’s utility as a useful testing strategy.

Bird and Munoz performed another early study on the utility of random testing [3]. 

Where fuzz testing is the application of completely unstructured inputs to a piece of soft

ware, Bird and Munoz created custom generators to create inputs to software. Bird and 

Munoz discuss the use random testing to generate tests for a compiler (using a grammar 

syntax generator, a concept first used by K. V. Hanford to generate tests for the P L /I pro

gramming language [20]), a graphical display manager, and a sorting algorithm. While the 

authors found many benefits to automated random testing—namely, its time-saving aspects 

when compared to manual test creation and its effectiveness in practice—it still required 

the design and implementation of a new input generator for each application. A general 

input generator for use on arbitrary software would be a significant boon to the automated 

testing cause.

3.2 A tte m p ts  to  Im prove A u to m a ted  T est G en eration

While random testing alone has shown mixed success, random generation in concert with 

a directed search has been an area of much recent research. One such approach has been



17

named hybrid concolic testing [30] after its combination of random, concrete testing along

side a symbolic execution of the same code. This hybrid approach allows the deep cover

age one can get with symbolic execution of software while still being able to fall back on 

a concrete execution when symbolic execution becomes impossible, whether due to path 

conditions too complex to be automatically solved, or if the source code to some library 

functions is unavailable making symbolic execution impossible. Hybrid concolic testing has 

been implemented in the form of Directed Automated Random Testing (DART) by Gode- 

froid, Klarlund, and Sen [15]. In tha t work, DART was used to test an implementation of 

the Needham-Schroder public key authentication protocol as well as an implementation of 

the Session Initiation Protocol (SIP), with encouraging results.

Korat is a similar tool for the generation of objects of complex structure for testing 

purposes [36, 4]. Korat uses the Java Modeling Language (JML) [28] to specify the structure 

of an object and systematically iterate through valid objects. This systematic iteration is 

sometimes referred to as Bounded Exhaustive Testing, or BET [46], or the testing of all 

possible inputs up to some bound on size. Studies have shown tha t exhaustively testing 

all inputs up to a small bound on size can be an effective method of detecting faults in 

software [46, 32]. Korat utilizes some novel heuristics to prune the search space to ensure 

tha t only valid objects are created as well as to ensure tha t all created objects are non

isomorphic; tha t is, an unordered tree consisting of a root node, a left leaf, and a right leaf 

is isomorphic to a tree with the same root but the two leaves transposed, and therefore 

only one of the two would be used for testing purposes. TestEra is a similar tool [33], but 

uses Alloy [25] rather than JML as its modeling language. Abdurazik and Offutt propose 

a method to automatically generate tests based on Unified Modeling Language (UML)



18

[1]. Windbladh et al. autom ate test generation using GoalML [51]. While the variety of 

specification languages in use can be both a hindrance and a curse, automated specification- 

based testing (creating tests based solely on the specification of the software rather than 

testing for a specific implementation) has been an area of much research.

In recent years, the concept of Search Based Software Engineering (SBSE) has been 

presented by some as a useful paradigm for software engineering in general and software 

testing in particular [21, 22]. SBSE is based on the realization tha t many problems in the 

field of software engineering (from estimating costs and timelines [2] to minimizing coupling 

between modules in a system [31]) can be formed as search or optimization problems—a 

class of problems with a preexisting body of m ature algorithms from the field of operations 

research.

Perhaps nowhere else in the field of software engineering is the analogy to search prob

lems more clear than in software testing, which can be classified as the search for faults in 

software. Harman clarifies the reformulation from testing to searching as follows: a...[T]he 

set of all possible inputs to the program forms a search space and the test adequacy criterion 

is coded as a fitness function.” [21] This is a versatile and useful definition of testing as no 

m atter what test adequacy criterion is used (whether it be achieving high code coverage, 

closely matching a usage profile distribution, etc.), if it can be translated into a fitness 

function it might be beneficial to view the test generation as a search problem. Examples 

of search based software testing include the use of genetic algorithms to generate inputs 

for an autonomous automobile parking system [49]. Genetic and hill-climbing algorithms 

have been used to prioritize regression tests and minimize test suites [10] (useful for when 

automated test generation is likely to produce many isomorphically equivalent inputs).



19

3 .3  B lack -b ox  S am p lin g  S tra teg ies

Where tools like DART, Korat, and TestEra require either wholly or in part the use of a 

constraint solver with access to the source code to define and explore a space, there also 

exist other, more lightweight approaches which—while not using as much knowledge about 

the software under test—can still show improvements when compared to random testing. 

Pacheco et al. [43] use a black box strategy in their work to create the tool RANDOOP  

(RANDom. tester for Object-Oriented Programs). RANDOOP allows for the random cre

ation of objects of complex structure by using feedback from previously generated tests. 

Starting with the simplest object possible, RANDOOP randomly calls allowable methods 

on the object to “grow” it. After each successful method call, the post-call object is added 

to a pool of valid objects, all of which can be selected for further alteration. Unsuccessful 

method calls (for example, calling pop() on an empty stack) are discarded, helping to prune 

the search space. This can be considered a sort of local search in tha t atomic changes are 

applied to known objects to expand the set of known, valid objects. A similar approach is 

used in this work to search and discover a region of connected and valid inputs to software. 

While Pacheco’s work focuses mainly on object-oriented testing, the work presented here 

is based on functional testing with inputs of simple structure but with complex semantics 

applied to them.

Another blackbox testing approach is called Adaptive Random Testing (ART, not to 

be confused with the previously mentioned DART) [8, 6]. ART is a refinement of random 

testing to achieve wide coverage of the input space faster than a pure random approach. 

Chan et al. discuss several distinct subtypes of ART, including Restricted Random Testing



20

in which a zone of restriction is placed around previously generated inputs in an attem pt to 

spread out future test inputs and Mirrored Random Testing, in which the domain is broken 

into disjoint subdomains from which analogous tests in each subdomain are selected. While 

ART showed promise in simulation, as far as the author is aware these methods of ART 

have not been applied in any actual case studies. Instead, simulations were performed on 

2-dimensional and 3-dimensional rectangular spaces, where detecting faults were simulated 

by determining relatively small circular (or spherical, depending on the dimensionality) 

regions of failure. Generating an input from this error region indicated a successful error 

detection. One might criticize these simulations as being non-representative of real-world 

software input domains and error distributions.

The work presented here and in a previous publication [40] is designed similarly to 

improve upon random testing by examining previously generated inputs to explore an entire 

space quickly and uniformly, but also will attem pt to discover and model input spaces of 

unknown size and shape. By defining the “search” as a search for both faults in the software 

as well as a search for the input space itself, the methods presented in this work can be (and 

have been) applied to real-world software of nontrivial complexity impossible with previous 

blackbox testing strategies such as ART.



Chapter 4

T h e Im plicit Subdom ain  

E xploration  A lgorith m

4.1  O b jectiv es

The overarching goal of this work is to present a method for the sampling from a uniform 

distribution of an unknown space. To do so, the Implicit Subdomain Exploration (ISE) 

algorithm must build an internal model of the space and refine the model over time as more 

details about the space are learned. One of the primary goals of the algorithm is to develop 

an accurate model of the space in as few experimental tests as possible, since the sample 

cannot be considered uniform if portions of the space are left undiscovered. Second, once an 

accurate model has been built, the algorithm should bias the sampling towards relatively 

unsampled regions until the global distribution is approximately uniform, at which point 

future samples should maintain the uniform distribution until the user-defined number of 

tests has been generated. Third, minimal testing effort must be wasted on exploratory

21



22

sampling outside of the space under test. Finally, running time must be “reasonable,” to 

the point where the time required to generate a test is no longer than the time required 

to execute a test. This also means tha t the running time of the algorithm must be 0{n) 

with regard to the number of tests generated; tha t is, the marginal cost of generating one 

additional test can not increase as more and more tests are generated.

4.2  A ssu m p tio n s

The ISE algorithm must make several assumptions as to the nature of the space under test. 

The first assumption is that the ISE algorithm requires the tester to provide some method 

of determining if an executed test case lies in the relevant subdomain. However, the ISE 

algorithm allows much leeway in how this determination is implemented. If the software 

is properly annotated in a modeling language such as JML, the tester can use the already 

defined preconditions to determine relevance. If the software is not modeled in this manner 

(or if the tester wishes to test some emergent behavior not defined in the specifications) 

the tester may implement any method of his or her choice to determine relevance taking an 

input vector as its parameter and returning a boolean value of true for relevant inputs and 

false for irrelevant inputs.

Second, the ISE algorithm requires the tester to provide one valid test input as a “seed” 

to start the search. Initial samples will be biased towards tests geometrically “close” to 

this input, however, as the model of the relevant subdomain is refined the ISE algorithm 

will compensate and over time the distribution will approximate a uniform sampling of the 

entire region.



23

Third, the algorithm requires the input space to consist of one connected region; tha t is, 

to get from one relevant input vector v to any other relevant input vector v' in the relevant 

subdomain D , there must exist some list of vectors V  of arbitrarily small (but nonzero) 

magnitude for which the following holds true:

\v\
+ E ^ (4.1)

*=i

and

c

Vc : 1 <  c <  |F | : v +  v [i\ e  D  (4.2)
i=1

That is, the list of vectors V  must have the property tha t when elements of V  are added 

in succession to the original vector v, each intermediate vector must also lie within the 

relevant subdomain. While it is possible for the algorithm to jum p across narrow “walls” 

of irrelevancy to land in a disconnected region due to the discontinuous sampling of a 

continuous space, this is not a design feature of the algorithm and should never be relied 

upon in practice.

For example, the set of all points lying within the unit circle is a connected subdomain. 

The set of all prime numbers is not a connected subdomain since there is not a series of 

arbitrarily small additions one can make to get from one prime number to any other without 

visiting a nonprime integer and would therefore not be a candidate input space for the ISE 

algorithm. Note tha t allowances are made for the type of the variable under test. The



24

set of integers from zero to one hundred is connected, but is not connected in the floating 

point space. While the ISE algorithm operates only in the floating-point space, Chapter 5 

discusses how the ISE algorithm can be generalized to other spaces. Also, if the tester can 

identify ahead of time tha t there exist multiple connected regions in the subdomain, the 

tester may run the ISE algorithm separately on each of the regions. The tester may not 

always be able to determine this, however, so it is im portant to be aware tha t the ISE 

algorithm is unlikely to discover unconnected regions.

Also note tha t this method relies heavily on the concept of geometrical “nearness” and 

therefore works best with numerical inputs. It is difficult to define a way to m utate— 

for example—a string to a “similar” input since the string type is heavily dependent on 

the semantics applied to the string. If the relevant subdomain is the set of all strings 

representing valid C programs, there is no readily apparent set of mutations which can be 

applied to traverse from any valid C program to any other via a series of transformations 

which themselves only yield valid C programs. If the goal, however, is to only generate 

strings up to a length of n  characters with no additional semantics applied, it is more 

apparent how to define “similar” strings. For the purposes of this thesis, strings will largely 

be left as an area for future work to be performed.

4 .3  M ech anics

In brief, the ISE algorithm resembles a random sampling along vectors weighted towards 

areas of relatively low sample density, and with the ability to restart the sampling from 

any previously visited point when a “wall” in the space is reached. The algorithm can be



25

broken into two main phases: (1) choosing a relatively low-density region of the space, and

(2) sampling along a random vector originating in tha t area. Once the vector completes 

(discovers a boundary in the space), the algorithm repeats by choosing a new low-density 

region and continues until the requested number of tests have been generated. The two 

phases will now be described in more detail. Pseudocode of the main program loop and the 

bin merge methods are presented in Algorithms 1 and 2, respectively.

More generally, the ISE algorithm can be classified as a “rejection sampling algorithm.” 

In a rejection sampling algorithm, rather than sampling from an unknown or complex 

distribution, one samples from a known, simple distribution and decides if a given selection 

also matches the target distribution. If not, the sample is rejected and a new sample is 

taken. Rejection sampling methods work best when the candidate and target distributions 

closely match each other, as fewer samples are rejected. The ISE algorithm in particular 

resemblance to the Metropolis-Hastings rejection sampling algorithm [23, 34] as the most 

recently sampled input strongly advises the next sample to be taken, however the ISE 

algorithm is not a pure Markov chain Monte Carlo simulation as all previously generated 

points also have a bearing on the next sample, while in Metropolis- Hastings the previously 

sampled value completely defines the state of the simulation.

4.3 .1  S electin g  L ow -density  R egion s

A naive implementation of the ISE algorithm would model the input space as the set of all 

previously generated and verified valid inputs, treating each valid input as a potential origin 

of a new exploratory search vector origin. Such a naive implementation would examine the 

“local density” of test inputs within some radius of each candidate point. Unfortunately,



26

such a strategy requires an all-pairs comparison between all previously generated points 

to calculate each point’s local density, meaning that the marginal cost of generating one 

additional test case is 0 ( n 2) with regard to the number of previously generated tests. If the 

marginal cost of generating one input is 0 ( n 2), then the total cost of generating all n inputs 

will be 0 ( n 3), resulting in a cubic slowdown of test generation. Early implementations of 

the ISE algorithm used just such a strategy and and were found to be insufficient to generate 

large sets of inputs (on the order of tens of thousands of inputs or higher) requiring the 

model to be abstracted to scale to increasing test suite sizes.

Previous work by Chan et al. [7] demonstrates tha t “forgetting” previously generated 

tests can reduce overhead for a generation algorithm while still maintaining an adequate 

model for future input generation. The work presents three types of “forgetting”: random 

forgetting, consecutive retention, and restarting, in which test cases are forgotten randomly, 

in a first-in, first-out manner, or all at once, respectively. Using the generation algorithm 

presented in Chan’s work, all three forgetting strategies showed similar results, and depend

ing on the parameters chosen were comparable in quality to the generation strategy with 

perfect memory. However, the evaluation in the work was performed on a 2-dimensional 

rectangular region whose dimensions were known prior to testing, a space for which a true 

uniform distribution can be generated trivially. It is unclear how Chan’s generation strategy 

(or its forgetting properties) would perform in more realistic or complex scenarios.

The ISE algorithm takes a different tack. Rather than using a temporal memory as used 

in the consecutive retention strategy, ISE uses a spatial memory, lumping geometrically 

nearby tests into an abstract grouping called a bin. A bin is an n-dimensional rectangular 

region modeling a portion of the input space. A bin maintains a single representative known



27

valid input within its boundaries along with its current density, defined as the number of 

tests generated within the bin divided by its volume (uniform density is assumed within a 

single bin). This greatly reduces the amount of work incurred when selecting a low density 

region, as rather than doing an all-pairs comparison between all previously generated inputs, 

the algorithm need only select the bin with the lowest test density.

However, the ISE algorithm must contend with input spaces of unknown size and shape. 

If a bin is defined as having constant dimensions, as the known input space grows so too does 

the number of bins. In this case, the bin concept has only delayed the inevitable: a nonlinear 

running time for the generation algorithm. To combat this, the ISE algorithm allows for 

flexible bin resizing and merging, allowing a constant number of bins to be maintained as 

information is learned about the input space. However, to maintain consistency in the bin 

model, there are some restrictions on how to modify a bin’s dimensions. First, there is a 

user-defined atomic bin, for which all bins in the input space must be exactly equal to or 

have dimensions of a power of two of the atomic bin. Second, all bins must be placed on 

a power of two of the relative origin of the input space (defined as the point containing 

the lowest value reached for each of the dimensions under test, not necessarily the actual 

origin). This greatly simplifies bin merging as no bin can ever partially overlap any other 

bin.

In the ISE algorithm, when an input is generated which does not lie within a preexisting 

bin, a new bin is created to accommodate it. If there already exist the maximum allowable 

number of bins, the algorithm applies a heuristic to determine which two (or more) bins 

should be merged to accommodate without sacrificing accuracy of the model. Figure 4.1 

demonstrates the binning behavior on a relatively complex input space when allowed only



Figure 4.1: Binning behavior on complicated, 2-dimensional space

one hundred bins to model the space.

W hen a bin merge is necessary, several factors are considered. For one, the algorithm 

only tries to  merge geometrically nearby bins, where nearby is defined as a user-set per

centage of all pairwise comparisons of the midpoints of bins. If, for example, the user sets 

the nearby bin threshold to 10%, only the top ten percent of bin pairings will be consid

ered as candidates when sorted by distance between the two bins. Second, the algorithm 

attem pts to find the pair (or pairs) of candidates with minimal error when merged. Since 

bins are rectangular in nature and input spaces can be of arbitrary shape, along the bound

aries of the space error can accumulate as portions of a bin may contain irrelevant inputs. 

The algorithm compensates for this by approximating the portion of each bin containing 

irrelevant inputs using an approximation strategy in the course of testing. When a “wall” 

is hit in the space, the ISE algorithm notes the remaining area to be covered within the



29

bin, and approximates the area of the bin which is invalid by computing the ratio of the 

line segment sampled containing valid inputs within the bin to the line segment had the 

sampling continued to the other side of the bin (if the samples stop halfway through a bin, 

it will be assumed tha t half of the bin is relevant). Over the course of many such samples, 

a better approximation of the relevant area is discovered. Finally, all other things being 

equal, the algorithm will choose to merge bin pairs which will encapsulate the most number 

of preexisting bins, reducing the number of bins in use the most and delaying the next bin 

merging operation. Bin merges are the most expensive operation in the ISE algorithm, and 

minimizing the number of bin merges required can expedite generation greatly. A bin merge 

requires 0 ( n 2) time to execute (required by an all-pairs comparison between midpoints of 

bins), where n is the number of bins in existence. However, in our experience intelligent 

parameter tweaking can give bin merging a very low constant multiplier with little impact 

on model accuracy. Further, once the input space has been discovered in its entirety bin 

merges are no longer required and test generation can continue at a more rapid rate.

The overall impact of the bin merge heuristic maintains high resolution near the bound

aries of the space at the expense of interior regions. This is a healthy compromise as interior 

regions are regions tha t are already well understood by the ISE algorithm and are unin

teresting in structure. Border regions can either indicate a true border of the input space 

or can signify a new frontier for which further testing should concentrate. Maintaining a 

high resolution near the boundaries allows for more accurate test density information to be 

gleaned in the areas where it is needed most. Note that in Figure 4.1 fewer bins are used to 

model the lower left circle. Most are used to model the more complex upper right region of 

the space. The algorithm automatically determined the lower left region to be simpler in



30

nature and require fewer bins to model with relatively high accuracy. Also note tha t fewer 

bins are used to model large interior regions, while border regions have smaller bins with a 

higher model resolution.

4.3 .2  T est Sam pling

Once a low-density bin has been selected, a random, n-dimensional unit vector is created 

originating from the representative input of tha t bin. New tests will be sampled along this 

vector, but first a scaling operation is applied if necessary to accommodate for the atomic 

bin size. The scaled vector is computed such tha t rather than projecting onto the (n- 

dimensional) unit circle, it projects onto the n-dimensional ellipsoid whose axes are defined 

by the atomic bin dimensions (i.e., the largest ellipsoid tha t can fit entirely within an atomic 

bin). By default, the atomic bin size is square, requiring no scaling operation. However, a 

vector biased to fit the atomic bin size will be more likely to generate inputs lying within the 

relevant subdomain (assuming the atomic bin size has been selected appropriately). The 

the next section will describe circumstances in which non-square atomic bins are desirable.

Next, samples are taken at exponentially increasing intervals along said vector until 

either a maximum number of points for the vector are created or an irrelevant input is 

discovered (by executing the method under test using the candidate input vector). There are 

two motivations for exponentially increasing sample intervals. First, less density information 

is known the further one travels from the representative input of the bin. The bin was chosen 

because it had a relatively low test density, so intuitively the majority of tests generated 

due to tha t bin’s selection should lie in or near tha t bin. Second, the exponential speedup 

is used to quickly locate the boundaries of the space. Especially in input spaces which are



31

partially unbounded (in one or more directions), it is im portant to determine this quickly so 

tha t the entire space can be discovered as quickly as possible. The distribution generated by 

the ISE algorithm cannot be considered uniform until the entire space has been discovered. 

This means tha t up until some threshold of tests have been generated, the tests generated 

by the ISE algorithm are biased. Lowering this threshold as much as possible is one of the 

primary design goals of the ISE algorithm1.

A lgorithm  1 ISE Main Loop
generatedPoints <= 0 
put in itia lP o in t in appropriate bin 
w hile generatedPoints < requestedPoints  do 

bin <= getB inW ithLow estA djustedD ensityQ  
v <= chooseRandomV ector () 
currentTest In p u t <= bin. start P o in t +  v
w hile num berO f PointsO nV ector < M axP oin tsP erV ector  do 

if  curren tT estlnpu t +  v is relevant th en  
put curren tT estlnpu t in appropriate bin 
w hile binCount >  M ax Allow edB ins  do 

mergeBins() 
end w hile
number O f  P  ointsO nVector  +  +
curren tT estlnpu t <= cu rren tT estlnpu t +  (v * BoundaryScaleFactor) 

else
if  curren tT estlnpu t lies in a preexisting bin b th en

b.increm entM issC ountQ  by the number of times tests would have been 
executed in tha t bin had sampling continued 

end if  
end if  

end w hile  
end w hile

xNote th a t discovery of the entire region is a necessary b u t not a sufficient condition for a uniform 
distribution. Once an entire region is discovered, the  ISE algorithm  may have to  “fill in the holes” left over 
by the algorithm, making the  region discovery threshold less useful as a uniform ity metric



32

A lgorithm  2 Bin Merge Operation 
for all Bins b l, b2 in InputSpace do

candidateBinP air s <= candidateB in Pairs  U (61, b2) 
end for
Sort candidateBinP airs  in increasing distance between midpoints of 61 and 62 
candidateB inPairs  <= candidateBinP airs, truncate At (MergeC andidacy C uto f  f )  
candidateBinP airs <= candidateBinP airs with minimal estimated error 
candidateBinP airs <= candidateB inPairs  with maximal enclosing bin count 
mergedBin <= random selection from remaining candidateBinPairs 
for all Bins 6 in InputSpace do  

if  6 overlaps mergedBin  th en
mergedBin.hitCount+ =  b.hitCount 
mergedBin.missCountP  =  b.missCount 
mergedBin.startPoint =  b.startPoint 
InputSpace <= InputSpace/b 

end if  
end for
For any area in mergedBin  unaccounted for by preexisting bins, 
assume area is irrelevant. To compensate, we adjust
mergedBin.missCount <= mergedBin.missCount * (adjustedVolume/TrueVolume) 
InputSpace <= InputSpace U mergedBin

4 .3 .3  U ser-d efin ed  P aram eters

There are several parameters to the ISE algorithm tha t can be manipulated by the tester. 

For most of these parameters, there exist defaults reasonable for most input spaces.

First is the atomic bin size parameter. This is an n-dimensional array describing the 

dimensions of the atomic bin size for the input space. By default, the atomic bin size has 

dimensions of 1 along each axis, and for most cases this is sufficient. However, if the tester 

is aware of the rough size of the input space, tweaking the atomic bin size can expedite 

bin merging and help achieve region discovery more quickly. For example, if the input is 

a two dimensional vector describing an automobile where the x  axis is the weight of the 

car in kilograms and the y axis is the maximum velocity of the car in kilometers per hour, 

intuition states tha t the weight of the car can range in the thousands of kilograms, while



33

the maximum velocity of any car will most likely be in the hundreds of kilometers per hour. 

W ith this knowledge, the tester will know that the space will most likely appear “wider” 

than  it does “tall.” Choosing a similarly shaped atomic bin size will both simplify bin 

merges and will also expedite the input space discovery, as the search will be biased to take 

larger strides in the x  direction than the y direction knowing tha t the space is wider than 

it is tall. This is the reasoning behind the scaling operation performed on the randomly 

selected uniform vector previously discussed in this chapter. As a rule of thumb, an optimal 

atomic bin size should be between one and two orders of magnitude smaller than the largest 

conceivable valid and relevant value in each dimension, but depending on the input space, 

the tester should use his or her discretion.

Second is the maximum number of bins. This param eter tells the algorithm how many 

bins are allowed to model the input space. More bins means a higher resolution model and 

a more accurate approximate uniform distribution of test cases, at the expense of running 

time. The cost of a bin merge operation increases at the square of this parameter. In the 

worst case, for an input space requiring a bin merge after every generated test, the running 

time to generate n tests would be 0 ( n 3). However, in all spaces tested in this work, bin 

merges happen much less frequently. Still, the ISE algorithm spends the majority of its 

time computing bin merges, so a change in the maximum number of bins will be evident 

in the running time of the algorithm. For the purposes of this work, the default maximum 

number of bins is one hundred. This is an arbitrary value, chosen because it resulted in 

adequate running times while still accurately modeling the evaluated input spaces.

Third is the number of tests to be generated. This value has no default as it is completely 

dependent on the space under test and the requirements of the tester. While the value can



34

be set arbitrarily small, the tester should be aware tha t the ISE algorithm only generates 

approximately uniform distributions in the limit. Setting the value too low will result in a 

biased distribution which may not be useful in evaluating the quality of the software.

Next is the boundary search scale factor. This parameter tells the ISE algorithm how 

quickly to increase the exponentially growing step size when sampling along a vector. The 

reasoning behind the exponentially growing step size was explained in the previous subsec

tion. This parameter allows the user to modify the priorities of the algorithm; a larger scale 

factor will locate boundaries of the algorithm faster, but require more frequent low-density 

region selections and will potentially leave more “gaps” which must be filled in after all 

boundaries have been discovered. A lower value will keep the distribution more uniform 

within the known region, requiring less “filling in” after the region has been discovered. 

However, it will also take more iterations to discover the region. The default is value is 1.1, 

meaning tha t each step size is 10% larger than the previous step size. Again, this value is 

relatively arbitrary, but performed well in evaluations.

The maximum points per vector parameter places a cap on the number of points laid 

down by an exploratory vector, regardless of whether or not a boundary of the input space 

has been reached. This allows a similar tradeoff to the boundary search scale factor, pri

oritizing either finding boundaries or frequently placing new vectors, filling in previously 

discovered space.

The bin merge candidacy cutoff describes how many bin pairs to consider as candidates 

when a bin merge operation occurs. Next to the maximum number of bins, this parameter 

has the largest impact on running time of the ISE algorithm. The cutoff is expressed as a 

fraction of all pairs of bins when sorted in order of increasing distance, i.e., only consider the



35

n% closest bins as candidates. The default value for this parameter is 0.05 (5%). This value 

has been calculated to be sufficient for most two-dimensional spaces. As a rationale for this 

value, consider a two-dimensional space containing n bins. In two dimensions, each bin 

can have a maximum of four equidistant closest neighbors (one in each cardinal direction). 

To consider all neighboring pairs of bins as candidates, this requires at least 2n  candidate 

pairs (4y since neighboring is a commutative property; a neighbors b implies b neighbors 

a) . Considering the set of all pairs of bins is n n̂~ 1̂ ; We use the equation

n(n  — 1) , „
c—-——— - > 2 n (4.3)

and find tha t a c value of 0.05 is sufficient to contain all neighboring bin pairs for all 

two dimensional input spaces containing more than 80 bins (100 being the default number 

used by the ISE algorithm). Higher dimensionality of the space may require one to increase 

the value of c as the number of neighbors increases with the square of the dimensionality. 

However, one should note tha t the c value chosen is very conservative and does not take 

into account bins with fewer than four neighbors, nor does it consider the fact tha t many 

bin merges are equally “good,” which does not require the set of all bin neighbors to 

be considered. Further, it assumes tha t all bins are equally sized. Since bin distances 

are measured from their midpoints, larger bins are going to be more distant from their 

neighbors and may not be considered prime candidates for merging. In practice, values as 

low as 0.01 have been used with no impact on the quality of the distribution on a bounded 

two dimensional space.

Finally, the tester must provide a single relevant input as a seed for starting the input



36

space search. This is the only required param eter to be set by the tester and does not have 

a default value, as it is completely dependent on the input space under test. This will be 

the origin of the first search vector, and will be contained in the first bin created by the 

search. After the search has started, the seed is treated the same as any other previously 

generated input. However, since it is the starting point of the search, until the entire region 

is discovered there will be an inherent bias to select inputs near the starting point. Ideally, 

the starting point will be centrally located within the space, but this is not necessary to 

achieve total coverage.



Chapter 5

T he A u tom ated  T esting  

Fram ew ork

The Automated Testing Framework (ATF) is w ritten as a proof-of-concept regarding the 

feasibility and effectiveness of the ISE algorithm and allows for the hybrid integration of 

several test generation strategies. The ATF contains a Java implementation of the ISE 

algorithm (along with two other automated input generation strategies) accompanied with 

tools to simplify test definition and execution. The ATF requires a JRE version 1.5 or higher, 

the ant Java build tool, and optionally an installation of the Java Modeling Language (JML) 

to utilize the JML functionality.

One of the primary design goals of the ISE algorithm is to allow several test input 

generation strategies to act in concert in the creation of a single input. By delegating 

portions of input vector generation to different generators, the tester gains parameter-level 

control over how input generation criteria is defined.

37



38

5.1 A u to m a ted  T estin g  S tra teg ies

The ATF is designed to accommodate several typical automated testing strategies to be 

used independently or in tandem. First is the ISE generation strategy presented in this 

work. The ISE strategy is designed to explore input spaces to methods whose parameters 

are interdependent or if any dependencies between parameters are unclear with limited or 

no documentation. Second is pure random testing, for which a true distribution for a pa

rameter to a method can be easily solved. Random testing is fast and simple when there 

exist no dependencies between parameters and the param eter list can be easily decomposed 

into selections from several independent distributions. A tester which delegates independent 

parameters to pure random testing can accelerate ISE generation by reducing the dimen

sionality of the ISE problem. This also has the benefit of allowing the ISE algorithm to 

maintain a higher model resolution by simplifying the space for the bin model. Finally, the 

ATF supports Bounded Exhaustive Testing (BET), a strategy first proposed by Marinov 

et al. [33] and coined as a term  in Sullivan et al.’s work [46]. Bounded exhaustive testing is 

the testing of all possible inputs up to a specified size (or within a specified range).

The ATF allows one to decompose the input space of a method such tha t different 

parameters may be generated using different strategies and then reconstituted as a test 

input for the method under test. For example, two dependent parameters may be generated 

using the ISE algorithm to leverage its ability to explore dependencies between parameters 

while a third, independent parameter may be tested with a random generation strategy. 

As the ATF tests at the method level where each test consists of an inpu t/ou tpu t tuple 

associated with the method, each execution of the method is treated as an independent



39

test with no interplay between previously executed tests on tha t method (or tests on other 

methods in the same test suite).

It is im portant for the tester to understand the interplay between the testing strategies 

to get the most out of a testing run. The input for a single execution is generated in two 

passes. The first pass “fills in” all parameters marked to be tested with the ISE algorithm 

and the pure random method. The second pass fills in the remaining parameters marked to 

be tested exhaustively. After the test is executed, the ISE and random parameters are held 

while all combinations of all exhaustive parameters are generated and executed in turn. 

Only after all exhaustively generated parameters are tested does the next set of ISE and 

random parameters get generated, and are then tested again with the same set of defined 

exhaustively generated parameters. Table 5.1 shows a portion of the tests executed in a 

mixed-strategy test suite.

Random ISE Exhaustive (Boolean) Exhaustive (Boolean)
ai h True True
C L \ b i True False
C L l b i False True
a i b i False False
d 2 b 2 True True

Table 5.1: Sample execution of mixed-strategy testing with ATF

Note tha t with this ordering, it is not advisable to request both a large number ISE/random  

tests and exhaustively generated tests, as the total number of executed tests is the multiple 

of the two numbers.

One other interplay between the generation strategies tha t a tester must be aware of is 

how the concept of “relevance” is handled in the ISE algorithm. By itself, the ISE algorithm



40

will generate an input, execute the test, and then determine the relevance of the input 

based on the behavior of the test execution. However, in a mixed-strategy environment 

it becomes less clear where to lay the blame for relevance. It is possible tha t the same 

parameters generated by the ISE algorithm would have resulted in a relevant whole input 

had the pure random strategy chosen different values for its parameters. However, the way 

the ATF has been defined and constructed allows the ISE algorithm to neatly sidestep this 

issue. All random and exhaustively tested parameters are assumed to be independent. All 

dependent parameters should be placed under the purview of the ISE algorithm to manage 

these dependencies. Therefore, any generated input tha t fails the relevancy check must 

involve ISE-managed variables. All other parameters are assumed to be independent of any 

relevancy check. Therefore, it is wise for a tester to include any param eter whose dependency 

is in question to err on the side of caution and include it within the ISE generation strategy.

However, this definition might not always be convenient, so the ATF relaxes this as

sumption somewhat. In the case where the ISE algorithm is used in tandem with exhaustive 

testing such tha t one set of ISE-controlled parameters is tested against multiple exhaustively 

generated parameters, if any one of the inputs is found to be relevant, the ISE algorithm 

will consider the parameters under its control to be relevant as there exists at least one 

known relevant input containing those parameters. This allows the tester to place “mostly” 

independent parameters (those which might possibly contribute to relevancy, but when it

erated over several values are extremely unlikely to only result in irrelevant inputs) under 

the control of the pure random generation strategy. This is to encourage the tester to place 

as many parameters as possible outside of the ISE algorithm, as each additional parameter 

controlled by ISE increases the dimensionality of the explored space and as a result increases



41

the time complexity of test generation.

5.2 S u p p o rted  T y p es

In an unmodified state, the ATF has full support for all Java primitives. This means that 

a method containing only Java primitives can be tested using any three of the generation 

strategies with no additional effort. It also provides an ordering of primitives such that 

ranges within a type may also be defined so exhaustive testing on a subset of a type or 

random testing within a range are also possible.

The ATF also provides an interface to add new classes to its library of known types. 

All tha t is required of the tester is to write a wrapper class conforming to the Instantiat- 

edParameter interface (described in detail in Appendix A). In brief, this interface requires 

the tester to define three things regarding the class. First, the tester must define a strict 

ordering of all possible instantiated objects of the class, including an absolute minimum, 

an absolute maximum, and a method to increment from one object to another such that if 

one starts with the absolute minimum, repeated increments will pass through all possible 

objects of the class term inating with the object defined as the absolute maximum. This 

ordering is used to define the bounded exhaustive testing strategy.

Next, the tester needs to provide a method to generate a random object within the 

class. The randomly generated object must lie within the range set by the maximum and 

minimum configuration (either the absolute maximum and minimum or the user-defined 

maximum and minimum if configured, which may be some connected subset of the true 

range). This is used for the pure random generation strategy.



42

Finally, the tester must provide a method to serialize and unserialize an object to an 

array of floating point numbers. This is required for the ISE algorithm to work since it uses 

an underlying floating point model regardless of the types under test. The serialization may 

be defined any way the tester wishes, but best results will occur when “similar” serialized 

floating point vectors will translate to “similar” objects within the class under test so tha t 

relevant inputs are likely to lie in connected regions. Also, one additional caveat tha t must 

be placed on the tester is tha t the serialized array must be of a known, fixed length. This 

means tha t variable-sized classes (such as linked lists, queues, etc.) will not translate well 

to use in the ISE algorithm without a fair amount of abstraction.

The ATF also provides rudim entary support for arbitrary objects which have not been 

registered. W ithout any way to order elements in an arbitrary class, the ATF cannot define 

ranges for random testing nor can it know how to permute one object into a “similar” object 

of the same type. However, when an unknown object is used as a parameter to a method, 

the ATF will gracefully degrade and rely on the object’s default constructor to create a 

new object of tha t type for testing purposes. Any attem pts to generate a “random” object 

or to iterate to the next object in the exhaustive testing strategy will simply return the 

object created by the default constructor. While this means that this parameter effectively 

goes untested, it is still possible to run tests on methods containing non-primitive types 

as parameters. If the parameter list is a mix of primitive and non-primitive types, it may 

still be possible to glean useful testing information by only thoroughly testing the primitive 

input types.



43

5.3  T est C onfigu ration  and  E x ecu tio n

Once the tester is ready to begin testing, the tester must create an XML definition of the 

testing plan. The format of the configuration file is explained in detail in Appendix B, but 

the syntax is quite simple. A sample definition for the test suite generated in Table 5.1 

would look like this:

<?xml version^1.0* encoding=’utf-8;?>
<!D0CTYPE Configuration SYSTEM "TestGenConfig.dtd">
<Configuration>

<ClassUnderTest>TestedClass</ClassUnderTest>
<MethodSignatureSuite>

<MethodSignature>
<Name>testedMethod</Name>
<Parameter type="int" strategy="random" count="5"/> 
<Parameter type="int" strategy="ise" count="5"/> 
<Parameter type="boolean" strategy="exhaustive"/> 
<Parameter type="boolean" strategy="exhaustive"/> 

</MethodSignature>
</MethodSignatureSuite>

</Configuration>

The above configuration file would execute TestedClass.testecLMethod(int, int, boolean, 

boolean) twenty times with five different pairs of randomly/ISE generated integer inputs 

(each tested with all four combinations of possible boolean value pairs). In general, a 

configuration is defined as a set of methods within a class which the tester wishes to test. 

In this case, only one method was configured for testing. A fully configured method in 

turn  contains a param eter list of all expected parameters of the method combined with 

information regarding the generation strategies to use.

W hen the test suite has been configured, execution begins. There are two pieces of 

information tha t must be gleaned from each executed test: (1) Was the test input relevant?



44

and (2) Was the test output correct? In its default configuration, the ATF treats any- 

generated input as relevant and treats any unhandled exception as a detected failure of 

the system. However, if the software under test has been modeled using JML [28], the 

ATF gains all modeled design by contract knowledge and can more accurately determine 

deviations from specification. Specifically, JML allows preconditions and postconditions 

to be described in a formal, machine-readable language resembling Java syntax. The ISE 

algorithm will also use any defined preconditions of methods to automatically create an 

oracle to determine the relevancy of a given input; a violation of any precondition to a 

method will automatically flag the input as irrelevant. A violation of any postcondition, in 

turn, will be flagged as deviation from the specification and will be marked as an error. In 

this way, the tester can more accurately model the space under test and detect less obvious 

errors in the software. As an example, consider the following simple implementation and 

modeling of a setter method which sets the age of a Person object:

//@ re q u ire s  newAge >= 0;
//@ en su res  t h i s .a g e  == newAge; 
p u b lic  vo id  se tA g e (in t newAge)

if(newAge == 42)
/ /  d e v ia n t behav io r 
th i s .a g e  = -newAge; 

e ls e
th i s .a g e  = newAge;

>

In this example, the precondition of the method requires only positive integers be pro

vided as inputs. Therefore, any negative integer will be disregarded as input and considered 

irrelevant by the ISE algorithm. The JML annotations also state a postcondition of the



45

method, requiring the age member of the Person object to be equal to the provided param 

eter by the end of execution of the method. In this implementation, this postcondition is 

violated when the number 42 is provided as input to the method. In this case, the ATF 

(running in the JML runtime environment) will catch this deviation from the specification 

and notify the tester.



Chapter 6

E valuation

6.1 P erform an ce on  S y n th e tic  In pu t S paces

To evaluate the performance of the ISE algorithm, several synthetic input spaces of varying 

complexity were created. The first (and simplest) space is a circle with radius five. An 

example of this space can be seen in Figure 6.1. The second space is referred to as figure- 

eight and consists of two circles of radius five, one centered at the origin and one centered 

at (0,9). There also exists a void circular region of radius 2 also centered at (0,9). This 

region demonstrates the performance of the ISE algorithm in concave regions and regions 

containing “obstacles” which must be navigated to discover the entire region. An example 

of this space can be seen in Figure 6.2. Finally, the space named barbell consists of two 

circles of radius 5, one centered at-the origin, and the other at (9,9). The circle at (9,9) 

again has a void circular region of radius 2 centered within it. The two major circular 

regions of the space are connected by a diagonal strip along the line y — x  of width 0.5. 

This region is crafted to dem onstrate the utility of the ISE algorithm when large regions of

46



47

'-5: ' - 4  -3. . - 1 .  q 1. .2 . 3 4 5

Figure 6.1: 20,000 tests generated in the circle input space

relevancy are loosely connected by narrow passages. An example exploration of this space 

can be seen in Figure 6.3.

There are three metrics by which the ISE algorithm is evaluated. First is accuracy. 

The ISE algorithm is designed as a replacement for random testing when selecting from a 

true uniform distribution is difficult. Therefore, it is im portant to evaluate how closely the 

ISE algorithm approximates a uniform distribution. Second is running time. One of the 

benefits of random testing is tha t it can generate many tests much more quickly than a 

human can. It is im portant tha t the ISE algorithm also generates tests in a timely fashion, 

and also generates tests at a constant rate (i.e., generation does not slow down over time). 

Finally, one of the benefits of the ISE algorithm over Monte Carlo random selection is 

tha t the ISE algorithm makes an effort to only generate tests within the defined relevant 

subdomain. While it must make exploratory steps outside the subdomain to refine the



48

, #  -4 -2-. 0 2. 4 B , .3 . 10 12 14

Figure 6.2: 20,000 tests generated in the figure-eight input space

model, minimizing the amount of irrelevant executed tests is an im portant feature of the 

algorithm. Therefore, the ability to “stay inside the lines” is also evaluated.

In this evaluation, the ISE algorithm generated from 20,000 to 100,000 tests a t ,20,000 

test intervals, executing ten times at each interval to obtain an average. All data presented 

here is averaged over all executions. Unless otherwise noted, all tests were performed using 

the default ISE user-definable settings as described in Chapter 4.

6.1.1 A ccu racy

To evaluate how closely the ISE algorithm approximates a uniform distribution, we define 

the local density and the deviation metric. The local density is defined as the number of 

generated tests within some distance (0.25 units in this evaluation) of a selected point. The 

deviation metric measures how closely two sets of samples resemble each other. One data



49

-& -4 -2 :0 2 •••4- .5 -3 10;: .':12:

Figure 6.3: 20,000 tests generated in the barbell input space

set is treated as the canonical distribution (in this evaluation, the canonical distribution is 

always a sampling from a Monte Carlo random input generation strategy) and the other is 

the candidate distribution. Samples of the local density are taken at regular intervals from 

both regions (every 0.5 units in both the x  and y dimensions in this evaluation) and the 

percent error between the canonical and the candidate distribution is computed. After all 

local density errors are computed, the deviation metric is defined as the average of all density 

errors across the entire input space. A deviation metric of zero indicates that the canonical 

and candidate data sets are identical, while, for example, a deviation metric of one indicates 

tha t the local density varies on average one hundred percent from the canonical distribution. 

The combination of local density and the deviation metric allows one to both discover local 

regions where testing was weak as well as have a single, global value to evaluate the overall 

quality of the ISE algorithm.



50

To perform this evaluation, tests generated by the ISE algorithm serve as the candidate 

data set. For each of the synthetic regions evaluated, selections from a true uniform dis

tribution is possible by creating a bounding box around the defined region and sampling 

from within the bounding box, discarding any generated point within the bounding box but 

lying outside the defined region. The canonical data  set is represented by a sampling of an 

equal number of tests from such a distribution.

Table 6.1 shows how accurate the ISE algorithm performs on the circle input space. 

For comparison’s sake, the deviation metric comparing the biased distribution shown in 

Figure 2.2 with an accurate uniform distribution is also shown. Also, the deviation metric 

when comparing two unbiased random distributions is shown as a baseline. One should 

note tha t as the number of tests generated grows, the unbiased random and ISE algorithm’s 

deviation metric do not converge. However, the ISE algorithm is far more accurate than the 

previously discussed biased distribution in Chapter 2. While the ISE algorithm does perform 

a best-effort attem pt to approximate a uniform distribution, it is still an approximation and 

a tester should be aware tha t the distribution is not perfectly uniform. Most of this bias is 

due to a slight propensity of the algorithm to select points near the border of a space due 

to the fact th a t the space is modeled as a set of rectangular regions. Near the borders, the 

rectangular model breaks down. The algorithm compensates for this by both attem pting 

to maintain higher resolution near the border of the algorithm as well as approximating the 

area of the bordering rectangle occupied by irrelevant space, but the model is not perfect. 

One possible way around this issue is to use the ISE algorithm to discover an unknown 

region and use the bin model generated by the ISE algorithm to perform true random 

selections using a Monte Carlo strategy from the resulting set of rectangular bins.



51

Strategy Generated Points
20000 40000 60000 80000 100000

MC 0.194 (0.010) 0.142 (0.008) 0.116 (0.007) 0.107 (0.009) 0.092 (0.007)
ISE 0.215 (0.013) 0.182 (0.011) 0.179 (0.015) 0.161 (0.014) 0.154 (0.010)

Biased 0.528 (0.015) 0.515 (0.008) 0.509 (0.010) 0.508 (0.009) 0.509 (0.007)

Table 6.1: Deviation metric comparing unbiased Monte Carlo generation, ISE, and biased random 
generation strategies when generating in the circle input space (Standard deviation across 10 trials 
in parenthesis).

Tables 6.2 and 6.3 show similar results for the figure-eight and barbell regions, re

spectively. Again, while the two distributions start being nearly indistinguishable, as the 

number of tests grows, the disparity between the two distributions becomes more apparent. 

While the ISE algorithm does an excellent job of discovering regions of high complexity 

and covering reasonably well across the region, it is not a suitable replacement when a true 

uniform distribution is required to make statistical inferences on the quality of software. 

When a true uniform distribution is not available, the ISE algorithm can serve as a useful 

approximation as long as the tester is aware of its fallibility.

Strategy Generated Points
20000 40000 60000 80000 100000

MC 0.258 (0.014) 0.188 (0.006) 0.169 (0.009) 0.145 (0.006) 0.132 (0.008)
ISE 0.308 (0.015) 0.257 (0.012) 0.254 (0.014) 0.242 (0.012) 0.241 (0.014)

Table 6.2: Deviation metric comparing unbiased Monte Carlo generation and ISE generation strate
gies when generating in the figure-eight input space (Standard deviation across 10 trials in paren
thesis).

6 .1 .2  R un n in g  T im e &; W asted  Effort

Next, the running time of the algorithm is evaluated for generating inputs in all three 

input spaces, shown in Table 6.4. Even for the worst-case region, generating one hundred



52

Strategy Generated Points
20000 40000 60000 80000 100000

MC 0.281 (0.015) 0.199 (0.009) 0.169 (0.009) 0.145 (0.007) 0.132 (0.008)
ISE 0.335 (0.018) 0.310 (0.015) 0.308 (0.017) 0.308 (0.024) 0.336 (0.033)

Table 6.3: Deviation metric comparing unbiased Monte Carlo generation and ISE generation strate
gies when generating in the barbell input space (Standard deviation across 10 trials in parenthesis).

thousand inputs takes less than a minute, well within the bounds of practicality. Also note 

tha t test generation also appears to perform in sub-linear time. This is most apparent in the 

barbell region, where generating the first twenty thousand inputs takes about forty seconds, 

while generating an additional eighty thousand inputs only takes another ten seconds. This 

is due to the fact th a t the majority of the effort in the ISE algorithm occurs when merging 

bins, which only occurs while the region is still being discovered. Once the region has been 

discovered in its entirety, no more bin merge operations are necessary and test generation 

speeds up dramatically. While all of these example scenarios are bounded and finite, an 

evaluation of the running time in an infinite space in which bin merges occur constantly is 

discussed in the case study later in this chapter.

Region Generated Points
20000 40000 60000 80000 100000

Circle 16.379 19.800 23.305 25.886 28.182
Figure-eight 37.403 41.505 43.559 42.411 49.597

Barbell 39.362 41.874 45.235 48.108 50.482

Table 6.4: Time (seconds) to execute ISE algorithm on several regions for increasing amounts of 
generated points.

Finally, the wasted testing effort of the ISE algorithm is analyzed. In the course of 

testing from an unknown space, it is inevitable tha t some tests will lie outside the space.



53

One of the primary design goals of the ISE algorithm was to minimize the amount of wasted 

testing effort when sampling from a space. Table 6.5 demonstrates the efficiency of the ISE 

algorithm in this respect when compared to sampling from a Monte Carlo distribution 

defined by the smallest bounding box containing the entire input space.

Region ISE Hitrate Monte Carlo H itrate
Circle 0.84310 0.78551

Figure-eight 0.83780 0.70867
Barbell 0.81664 0.37788

Table 6.5: Hit rates for ISE and Monte Carlo generation strategies on several input spaces.

Regardless of the space under test, approximately 80% of all generated tests lie within 

the relevant subdomain and will serve as useful tests. The efficiency of Monte Carlo gener

ation on the other hand is very sensitive to the space under test. Monte Carlo generation 

simply becomes infeasible when the bounding box is very large but contains very few rele

vant tests to the point where it is unlikely to generate any valid inputs. In other words, the 

biggest gains in efficiency ISE algorithm can be seen in spaces where the relevant volume 

is dwarfed by than the type-complete volume of the space.

6.2 C ase S tu d y

The ISE algorithm was used to test the KB3D software written at the National Institute of 

Aerospace by Cesar Munoz [39] in both C + +  and Java. KB3D is an algorithm for aircraft 

collision detection and avoidance. The input to KB3D consists of two aircraft where an 

aircraft is defined by a three-dimensional position vector and a three-dimensional velocity 

vector. KB3D determines if the aircraft will violate each other’s airspace within a set



54

amount of time following their current courses. If KB3D determines the aircraft will violate 

minimum separation, KB3D also provides a set of resolution vectors for the aircraft to follow 

to avoid the conflict while also minimizing deviation from their current courses. KB3D has 

been formally verified in the Prototype Verification System [42] and contains runtime sanity 

checking of its results. One of the ancillary goals of testing this software was to evaluate 

how much faith can be placed in formal verification over software testing.

While KB3D accepts any floating-point vectors as input, to properly test the course 

correction component of the software, one must generate pairs of aircraft on a near collision 

course, otherwise there is no correction for the aircraft to follow. This relevant subdomain 

is orders of magnitude smaller than the set of all pairs of aircraft in general, and creating 

a custom solver to generate only such pairs of aircraft is a difficult and time consuming 

task. Testing in this region is a prime candidate for the ISE algorithm. To test this region, 

the KB3D software was slightly modified to throw exceptions when runtime errors were 

detected rather than write to standard output. While this was not necessary (it is also 

possible to run a regular expression on the output to determine if an error was detected), 

it simplified m atters greatly. No additional changes were required.

The evaluation consisted of ten trials generating and executing ten thousand inputs 

each followed by another ten trials generating and executing twenty thousand inputs each. 

All ISE configuration defaults were used except for the bin merge candidacy cutoff, which 

was set at 0.01 rather than 0.05 to accelerate test generation at the expense of model 

accuracy. This was deemed appropriate due to the infinite nature of the input space, 

making strict model accuracy impossible. The practical benefits of generating many useful 

tests outweighed the need for modeling uniformly across the input space. One sample pair



55

of aircraft from the relevant subdomain provided in the KB3D documentation was used as 

a seed for the ISE algorithm.

The effectiveness of the hybrid input generation functionality of the Automated Test 

Framework was evaluated by running an additional ten test executions generating ten thou

sand tests each on the KB3D software with the addition of one additional param eter— 

lookahead time. By default, KB3D looks five minutes into the future to predict a conflict. 

In the ATF evaluation, each aircraft pair generated by the ISE algorithm was exhaustively 

tested with a 5, 6, 7, 8, 9, and 10 minute lookahead. Additional logic was inserted to assert 

tha t if a conflict was detected with some lookahead time, all larger lookahead times with 

the same pair of aircraft must also detect the conflict.

6.2 .1  A ccu racy

In this case, there exists no canonical distribution for comparison. However, no such distri

bution is necessary; one can state unequivocally tha t the ISE algorithm does not generate 

anything resembling a uniform distribution. Since the input space is infinite (translate a 

pair of aircraft one hundred miles to the north and you get another pair within the relevant 

subdomain, for example), the ISE algorithm is constantly pushing the boundary of the 

known space. Because the search begins at the seed input provided at the start of testing, 

the known space expands around tha t point but never discovers the entire space.1

1 Technically, the space is bounded trivially by the maximum and minimum floating point values allowed 
by the language, bu t  in practice these bounds will not be reached.



56

6 .2 .2  R u n n in g  T im e & W asted  Effort

Over ten trials, the ISE algorithm was able to generate ten thousand tests in an average 

of 7.08 minutes. The algorithm was able to generate twenty thousand inputs in an average 

of 13.90 minutes. Here we see the linear growth which was not apparent in the synthetic 

input spaces. Where the synthetic input spaces were bounded and thus discovered in their 

entirety quickly, the ISE algorithm is constantly refining the input space model in the KB3D 

algorithm. This is the running time one would expect in a scenario with a complex and 

infinite input space.

The biggest benefit of the ISE algorithm is the efficiency of test generation. Over 

all executions, on average 89.1% of tests generated by the ISE algorithm were within the 

relevant subdomain and served as useful tests. In a case like this, the Monte Carlo generation 

of a dozen floating point numbers which happen to define two aircraft on a collision course 

is infinitesimal.

In the hybrid ISE/exhaustive test generation scenario, running time was largely un

changed, executing all fifty thousand tests in 7.37 minutes on average. Even though the 

number of tests executed is sextupled, the running time increases by less than five percent. 

This is due to the fact tha t both test execution and exhaustive generation are relatively 

trivial operations in this case, while the ISE algorithm is responsible for the m ajority of 

the running time. There is very little overhead when combining test generation strategies, 

and in fact testers are encouraged to offload “known quantities” from the ISE algorithm to 

more efficient generators to improve the performance of test generation in general.



57

6.2 .3  D iscovered  B u gs

Over the course of testing, two errors were detected. First, there existed a memory leak 

in the C + +  implementation of the KB3D algorithm which became apparent after repeated 

testing without restarting KB3D. This error could be a result of the simultaneous devel

opment of the Java version which need not worry about freeing unneeded data structures 

or could be a conscious decision based on the fact tha t KB3D is meant to be restarted for 

each pair of input vectors. Regardless, any stress testing whatsoever (including testing the 

same input many times) would have revealed this error, so attributing its discovery to the 

ISE algorithm itself is a bit presumptuous.

More interestingly, there exists a case where the runtime assertion checking will falsely 

flag an execution as failing. Specifically, in cases of steep ascent or descent, the runtime 

assertion checker will sometimes deem the resolution maneuvers as too “extreme,” thinking 

there exists a solution which allows the aircraft to deviate less from their current course. 

This error occurs due to the use of an epsilon value which is not small enough to capture all 

information about the headings when aircraft are not in level flight. While it is im portant 

to note tha t the error is in the runtime checking and the solutions presented by KB3D are 

in fact correct, it is interesting to find any deviations from expected behavior in software 

tha t has been formally verified. In practice, this error occurred in approximately 1.8% of 

all generated tests.

The hybrid generation strategy discovered no further errors and had a similar error 

detection rate for the previously mentioned error of approximately 2.1% of all tests. While 

there is no compelling evidence in this evaluation tha t a hybrid ISE approach is more likely



58

to detect an error than an ISE-only approach, the minimal running time overhead accrued 

with a hybrid approach suggests tha t hybrid test generation is feasible and warrants further 

study.



Chapter 7

C onclusion

There are three primary contributions this work has made to the state of the art of random 

testing. First and foremost, it acknowledges tha t random testing from a space is impossible if 

the space is not explicitly defined prior to testing. In practice, the space may be an emergent 

property of the software only implicitly defined by the behavior of the software itself. In 

cases such as these, uniform random testing becomes impossible. Even the manual creation 

of test inputs may not instill confidence in the tester as without an explicit definition of the 

space, the tester may not capture all aspects of the software under test in his or her test suite. 

In software with such implicitly defined subdomains, both automated test generation as well 

as a visualization of the space under test to understand undefined emergent properties of 

the software would be beneficial to the software tester.

Second, this work presents a set of heuristics for the exploration of such an implicitly 

defined subdomain in the Implicit Subdomain Exploration algorithm. This algorithm al

lows for the approximate uniform sampling from an arbitrary connected space even if the 

boundaries of the space are not known before sampling begins. While the ISE algorithm

59



60

was designed primarily with software testing in mind, it may have applications in other 

areas such as simulations in which unbiased samplings from spaces of unknown structure 

may be necessary. The ISE’s potential as an input space visualization tool has also been 

largely unexamined and may have some useful applications in th a t area. It is also impor

tan t to note tha t the ISE algorithm is only a set of heuristics and there is nothing inherent 

in its design to be the best method of exploration of implicitly defined subdomains. It is 

entirely possible tha t other methods may be designed which may discover spaces faster or 

more accurately approximate uniform distribution sampling. Future work in both improv

ing the ISE algorithm as well as the development of entirely different means of sampling 

from unknown spaces are promising areas of research.

Finally, this work presents a framework built around the ISE algorithm coupled with 

other automated testing strategies like bounded exhaustive testing and naive random test

ing. This framework both allows for the practical use of the ISE algorithm in real-world 

software and also allows for the tester to factor test parameter generation, delegating dif

ferent parameters to a generator to which the parameter is most suited. To the author’s 

knowledge, this delegation of test input generation to multiple generators to be later re

constituted into a single test unit has also never been performed. The Automated Testing 

Framework with the use of the ISE algorithm presented here was used in the evaluation 

of real-world aircraft collision avoidance software to which naive test input generation was 

infeasible. The testing required no custom generation software w ritten for the input space 

under test and required only minor modifications to the software under test. Testing re

vealed two deviations from expected behavior, including one relatively rare error occurring 

in only a small fraction of generated tests. It is unlikely th a t such an error would have



61

been detected in a test suite designed by a human as it involved the confluence of several 

factors resulting in a floating-point error unlikely to be predicted beforehand. However, the 

case study served mainly as an evaluation of the ISE algorithm; the utility of delegating 

generation to several generation strategies remains largely untested and remains an open 

question of this work. Further evaluation of multiple-generator generation strategies in 

software more suited to such a method (i.e., software taking parameters of multiple types, 

some of which are independent and some of which are dependent parameters) is another 

avenue of future work.

In brief, this work identifies the problems surrounding implicitly defined subdomains, 

offers one possible method of addressing these problems in the ISE algorithm, and evalu

ates the effectiveness of the solution in using the ISE algorithm and the Automated Testing 

Framework to test aircraft collision detection and avoidance software. The evaluation pre

sented here shows limited but promising success in the use of the ISE algorithm as a test 

input generation tool and opens the door for future refinements to the ISE algorithm and 

improvements to random test data generation in general.



A ppendix A

E xten d in g  th e  A u tom ated  T esting  

Fram ework

By default, the Automated Testing Framework (ATF) only has support for testing meth

ods whose parameters consist only of Java primitives. Non-primitives are treated as Java 

Objects, of which the ATF has no knowledge. Instead, the ATF falls back and will always 

instantiate the object using its default constructor, no m atter which testing strategy is 

indicated for tha t parameter.

To extend the ATF to support other types, one must extend the InstantiatedPammeter 

abstract class in the edu.wm.test package. An InstantiatedParameter consists of a payload 

indicating the param eter’s current value and several methods of iterating through possible 

values for the parameter. Typically, derived classes of InstantiatedParameters follow the 

naming convention of InstantiatedTypeParameter, like InstantiatedDoubleParameter or In 

stantiated!! ooleanP arameter. While not implemented yet, future versions of the ATF might 

use reflection combined with this standard naming convention to allow a user of the ATF

62



63

to plug in new supported types without a recompile of the ATF package itself. Currently, 

adding a new supported type involves both creating the proper InstantiatedP arameter de

rived class, registering it in the ATF source code, and recompiling the ATF libraries in 

full.

The InstantiatedP arameter abstract class requires implementors to implement eight 

methods, described here:

public b oo lean  a tM ax im u m ()

This method must determine if the payload is equal to the configured maximum allowable 

value for the InstantiatedP arameter.

public  O bject get P ayload  ()

This method must return the payload held in the InstantiatedP arameter. The actual object 

returned must be of type Type as indicated by the derived class name InstantiatedTypePa- 

rameter, where Type is the type for which the implementor wishes to add support to the 

ATF.

public O bject increm ent Payload  () th row s In crem en tP astM axim u m E xcep -  

tion

This method must increment and return the newly incremented payload. The only require

ment tha t the increment method must follow is tha t if the payload initially is the minimum 

configured allowable value for the type under test, successive calls to IncrementPayload() 

will return unique objects as defined by the .equals() method until the maximum allowable



64

value is reached, in which case an exception will be thrown. Some types are more conducive 

to ordering than others; as long as a unique ordering is defined, the testing will execute 

properly. Again, though IncrementPayload returns an Object, the object must be of the 

proper type for the parameter.

incrementPayload() is used exclusively by the bounded exhaustive testing strategy of 

the ATF.

public  O bject reset P ayload  ()

The payload must be reset to the configured minimum allowable value. Along with incre

mentP ayload(), this method is only used in the bounded exhaustive testing strategy of the 

ATF.

public  O bject ran d om izeP ay load()

This method must return a randomly selected object from the range defined by the con

figured minimum and maximum allowable value for the type. While the ATF assumes a 

uniform distribution of the random selection, it is not enforced by any means and a properly 

documented nonuniform distribution is acceptable. This method is used only in using the 

random test generation strategy of the ATF.

public  void  set P ayload  (O bject obj) throw s Incom p atib leP aram eterE xcep -  

tion

This method is used to set the payload of the parameter to an arbitrary object. An ex

ception must be thrown when the obj parameter is not of the appropriate type for the



65

InstantiatedException.This method is used in bounded exhaustive testing when the starting 

payload is configured to anything other than the minimum allowable value for the type.

p ro tected  d o u b le [] ser ia lizeT oD ou b le(O b ject ob j) th row s Incom patib leP a- 

ram eterE xcep tion

This method must convert obj to an array of doubles such tha t obj may later be reconsti

tuted unambiguously. This method is used in the translation of Objects understood by the 

software under test to the n-dimensional floating point model used by the ISE input gener

ation strategy. Because of this, not only must the translation be unambiguous, but for best 

results it must also be created such th a t geometrically “near” points in the created floating 

point vector must translate to “near” objects by some definition of “near” understood by 

the tester of the software. The ISE algorithm also assumes tha t all objects of some type 

will translate to a fixed-length floating point array, so storing a linked list of doubles as a 

variable-length array of doubles will in fact cause the ISE algorithm to fail. In cases where 

the type under test is of variable size, the tester must abstract away portions of the data 

structure until it can be defined in a fixed-length array.

p ro tected  O bject u n ser ia lizeF rom D ou b le(d ou b le[] serO bj) throw s Incom - 

p a tib leP aram eterE xcep tion

This method is the companion to serializeToDouble() used by the ISE generation strategy. 

It must reconstitute a serialized object back into its appropriate instantiated object as 

defined by the .equalsQ method. If the input floating point array is of an incorrect length 

for the type under test, the method must throw an IncompatibleParameterException.



A ppendix B

D efin ing T est S u ites in th e  

A u tom ated  T esting  Fram ework

A test suite in the Automated Testing Framework is defined using an XML configuration 

file. The DTD of a correctly formed configuration file is as follows:

< !  —

DTD for TestGenerator Configuration file 
— >

<!ELEMENT Configuration (ClassUnderTest, MethodSignatureSuite)>

<!ELEMENT ClassUnderTest (#PCDATA)>

<!ELEMENT MethodSignatureSuite (MethodSignature+)>

<!ELEMENT MethodSignature (Name, Parameter*)>

<!ELEMENT Name (#PCDATA)>

<!ELEMENT Parameter EMPTY>
<!ATTLIST Parameter type CDATA #REQUIRED>
<!ATTLIST Parameter strategy (ise I exhaustive | random) #REQUIRED> 
<!ATTLIST Parameter initialvalue CDATA #IMPLIED>

66



67

<!ATTLIST Parameter min CDATA #IMPLIED>
<!ATTLIST Parameter max CDATA #IMPLIED>
<!ATTLIST Parameter count CDATA #IMPLIED>

The root element of any configuration file is a Configuration element which contains one 

element naming the class under test along with a MethodSignatureSuite containing one or 

more MethodSignatures. One method signature defines one method in ClassUnderTest to 

be tested. A method signature contains the name of the method to be tested along with a 

set zero or more Parameters which are the inputs to the method under test. The parameter 

list must be ordered the same way param eters are ordered in the method as defined by the 

source code of the method under test. A parameter contains several attributes including 

the type (int,boolean, etc.) and the generation strategy to be applied to tha t parameter. 

Optionally, the tester may define minimum and maximum values for the parameter, the 

starting value for the parameter, and the number of tests to generate for tha t parameter. 

This final attribute, however, has some unintuitive properties which an understanding of the 

way the ATF generates tests alleviates. The ATF generates inputs in two phases; in the first 

phase, all ISE and randomly generated parameters are generated. These values are then held 

constant while any exhaustive input generation is performed. If two exhaustive parameters 

exist, the number of tests generated will be the product of the two count attributes. If an 

ISE param eter is used in conjunction with an exhaustive parameter, the total number of 

tests will also be the product of the two count attributes. However, if an ISE parameter 

is used in conjunction with a random parameter, only the maximum of the two count 

attributes will be generated, not the product (a proper test suite would define identical 

counts for all ISE and randomly generated parameters).



68

For demonstration, the following configuration file will be used to explain this DTD:

<?xml version^1.O ’ encoding=,utf-8,?>
<!D0CTYPE Configuration SYSTEM "TestGenConfig.dtd">
<Configuration>

<ClassUnderTest>Test</ClassUnderTest>
<MethodSignatureSuite>

<MethodSignature><Name>testMethod</Name>
<Parameter type="boolean" strategy="exhaustive"/>
<Parameter type="byte" strategy="random" count="5" min="0"/> 
<Parameter type="char" strategy="random" count="5"/>
<Parameter type="java.lang.String" strategy="random" count="l"/> 

</MethodSignature>
<MethodSignature><Name>otherMethod</Name>
<Parameter type="boolean" strategy="exhaustive"/>
<Parameter type="boolean" strategy="exhaustive" /> 
</MethodSignature>
<MethodSignature><Name>intISEtest</Name>
<Parameter type="int" strategy="ise" 

count="10000" initialvalue="0" />
<Parameter type="int" strategy="ise" 

count="10000" initialvalue="0" />
</MethodSignature>

</MethodSignatureSuite>
</Configuration>

In this test suite, three methods will be tested, Test.testMethod(byte, char, String), 

Test, other Method (boolean, boolean), and Test.intISETest(int, int).

A total of ten tests will be generated for TestMethod, including five randomly selected 

bytes and chars, five empty Strings (String is not a fully supported type of the ATF), all 

tested against both possible boolean values totaling ten tests.

Four tests will be generated for otherMethod, paring all combinations of booleans.

Finally, a total of ten thousand tests (max(10000,10000))will be generated for intlSEtest 

with a seeded relevant input of intISEtest(0,0).



B ibliography

[1] A y n u r  A b d u r a z i k  a n d  J e  O u t t . Generating test cases from UML specifications. 
Technical report, George Mason University, March 02 1999.

[2] J e s u s  S. A g u i l a r - R u i z ,  I s a b e l  R a m o s ,  J o s e  C r i s t o b a l  R i q u e l m e  S a n t o s ,  
a n d  M i g u e l  T o r o .  An evolutionary approach to estimating software development 
projects. Information & Software Technology, 43(14):875-882, 2001.

[3] D. L. B i r d  a n d  C. U. M u n o z . Automatic generation of random self-checking test 
cases. IB M  Systems Journal, 23(3):228-245, 1983.

[4] C h a n d r a s e k h a r  B o y a p a t i ,  S a r f r a z  K h u r s h i d ,  a n d  D a r k o  M a r i n o v .  Korat: 
automated testing based on java predicates. In International Symposium on Software 
Testing and Analysis (ISSTA ’02), pages 123-133, July 2002.

[5] L i l i a n  B u r d y ,  Y o o n s i k  C h e o n ,  D a v id  R. C o k ,  M i c h a e l  D . E r n s t ,  J o s e p h  R. 
K in i r y ,  G a r y  T. L e a v e n s ,  K. R u s t a n  M. L e in o ,  a n d  E r i k  P o l l .  An overview of 
JML tools and applications. Int. J. Softw. Tools Technol. Transf., 7(3):212-232, 2005.

[6] K w o k  P i n g  C h a n , T s o n g  Y u e h  C h e n , F e i - C h i n g  K u o , a n d  D a v e  T o w e y . A  
revisit of adaptive random testing by restrictio. In COMPSAC, pages 78-85. IEEE 
Computer Society, 2004.

[7] K w o k  P i n g  C h a n ,  T s o n g  Y u e h  C h e n ,  a n d  D a v e  T o w e y .  Forgetting test cases. 
In COMPSAC, pages 485-494. IEEE Computer Society, 2006.

[8] T s o n g  Y u e h  C h e n  a n d  D e h a o  H u a n g . Adaptive random testing by localization. 
In A P S EC, pages 292-298. IEEE Computer Society, 2004.

[9] T s o n g  Y u e h  C h e n  a n d  Y u e n - T a k  Y u . On the expected number of failures de
tected by subdomain testing and random testing. IEEE Transactions on Software 
Engineering, 22(2): 109-119, February 1996.

[10] B e n ja m in  C o o k .  Search algorithms for regression test suite minimisation. Technical 
report, King’s College London, September 2006.

[11] C h r i s t o p h  C s a l l n e r  a n d  Y a n n i s  S m a r a g d a k i s . JCrasher: an automatic robust
ness tester for java. Softw, Pract. Exper, 34(11):1025-1050, 2004.

[12] E d s g e r  W . D lJK ST R A . Notes on structured programming. In Structured Program
ming. Academic Press, 1969.

69



70

[13] G. D o w e k , C. M u n o z , a n d  V. C a r r e n o . Provably safe coordinated strategy for dis
tributed conflict resolution. In Proceedings of the A IA A  Guidance Navigation, and Con
trol Conference and Exhibit 2005, AIAA-2005-60^7 , San Francisco, California, 2005.

[14] J o e  W . D u r a n  a n d  S i m e o n  C. N t a f o s . A report on random testing. In ICSE, 
pages 179-183, 1981.

[15] P a t r i c e  G o d e f r o i d , N il s  K l a r l u n d , a n d  K o u s h i k  S e n . DART: directed auto
mated random testing. A C M  SIG PLAN Notices, 40(6):213—223, June 2005.

[16] W a l t e r  J. G u t j a h r . Partition testing vs. random testing: The influence of
uncertainty. IEEE Transactions on Software Engineering, 25(5):661-674, Septem
ber/October 1999.

[17] D. H a m l e t  a n d  R. T a y l o r . Partition testing does not inspire confidence. IEEE  
Trans, on Softw. Eng., 16(12): 1402, December 1990.

[18] D i c k  H a m l e t . W hen only random testing will do. In Random Testing, Johannes 
Mayer and Robert G. Merkel, editors, pages 1-9. ACM, 2006.

[19] R. H a m l e t . Random testing. In Encyclopedia of Software Engineering, J.Marciniak, 
editor, pages 970-978. Wiley, 1994.

[20] K. V. H a n f o r d .  Automatic generation of test cases. IB M  Systems Journal, 9(4), 
1970.

[21] M a r k  H a r m a n . The current state and future of search based software engineering. 
In FOSE ’07: 2007 Future of Software Engineering, pages 342-357, Washington, DC, 
USA, 2007. IEEE Computer Society.

[22] M a r k  H a r m a n  a n d  B r y a n  F. J o n e s . Search-based software engineering. Informa
tion & Software Technology, 43(14):833-839, 2001.

[23] W. K. H a s t i n g s . Monte Carlo sampling methods using Markov chains and their 
applications. Biometrika, 57(1):97-109, 1970.

[24] D.C. I n c e . The autom atic generation of test data. The Computer Journal, 30(l):62-9, 
February 1987.

[25] D a n i e l  J a c k s o n . Alloy: a lightweight object modelling notation. ACM  Transactions 
on Software Engineering and Methodology, ll(2):256-290, 2002.

[26] D a n i e l  J a c k s o n  a n d  M a n d a n a  V a z i r i . Finding bugs with a constraint solver. In 
ISSTA, pages 14-25, 2000.

[27] A. Z. J a v e d , P .  A. S t r o o p e r , a n d  G. N .  W a t s o n . Automated generation of 
test cases using model-driven architecture. In A S T  ’07: Proceedings of the Second 
International Workshop on Automation of Software Test, page 3, Washington, DC, 
USA, 2007. IEEE Computer Society.



71

[28] G a r y  T. L e a v e n s  a n d  Y o o n s i k  C h e o n . Design by contract with JML, 2005. Draft, 
available from jmlspecs.org.

[29] R. L i n g e r . Cleanroom process model. IEEE Software, 11 (2):50—58, March 1994.

[30] R u p a k  M a j u m d a r  a n d  K o u s h i k  S e n . Hybrid concolic testing. In ICSE, pages 
416-426. IEEE Computer Society, 2007.

[31] S p i r o s  M a n c o r i d i s  a n d  B r i a n  S .  M i t c h e l l . Using Automatic Clustering to pro
duce High-Level System Organizations of Source Code. In Proceedings of IW P C  ’98 
(International Workshop on Program Comprehension). IEEE Computer Society Press, 
1998.

[32] D a r k o  M a r i n o v , A l e x a n d r  A n d o n i , D u m i t r u  D a n i l i u c , S a r f r a z  K h u r s h i d , 
a n d  M a r t i n  R i n a r d . An evaluation of exhaustive testing for data structures. Tech
nical Report MIT-LCS-TR-921, MIT CSAIL, Cambridge, MA, September 2003.

[33] D a r k o  M a r i n o v  a n d  S a r f r a z  K h u r s h i d . TestEra: A novel framework for au
tom ated testing of Java programs. In Proceedings of the 16th IEEE Conference on 
Automated Software Engineering (ASE  2001), San Diego, CA, 26-29 November 2001. 
IEEE.

[34] N . M e t r o p o l i s ,  A. R o s e n b l u t h ,  M . R o s e n b l u t h ,  A. T e l l e r ,  a n d  E. T e l l e r .  
Equations of state calculations by fast computing machines. J. Chem. Physics, pages 
1087-1092 , 1953.

[35] N. M e t r o p o l i s  a n d  S .  U l a m . The Monte Carlo method. J. Amer. Statist. Assoc., 
44:335-341, 1949.

[36] A l e k s a n d a r  M i l i c e v i c , S a s a  M i s a i l o v i c , D a r k o  M a r i n o v , a n d  S a r f r a z  
K h u r s h i d . Korat: A  tool for generating structurally complex test inputs. In ICSE, 
pages 771-774. IEEE Computer Society, 2007.

[37] B. P. M i l l e r , L. F r e d r i k s o n , a n d  B. S o . An empirical study of the reliability of 
unix utilities. Comm, of the ACM, 33(12):32, December 1990.

[38] B a r t o n  M i l l e r , D a v i d  K o s k i , C j i n  P h e o w  L e e , V i v e k a n a n d a  M a g a n t y , 
R a v i  M u r t h y , A j i t k u m a r  N a t a r a j a n , a n d  J e f f  S t e i d l . F uzz  revisited: A  re
examination of the reliability of UNIX utilities and services. Technical report, Com
puter Science Department, University of Wisconsin, Madison, WI, 1995.

[39] C. M u n o z , R. S i m i n i c e a n u , V. C a r r e n o , a n d  G. D o w e k . KB3D reference manual 
- version l.a. Technical Report NASA/TM-2005-213769, NASA Langley Research 
Center, NASA LaRC, Hampton VA 23681-2199, USA, June 2005.

[40] J o h n  A. M u r p h y  a n d  D a v i d  C o p p i t . Random generation of test inputs for im
plicitly defined subdomains. In A S T  ’07: Proceedings of the Second International 
Workshop on Automation of Software Test, page 13, Washington, DC, USA, 2007. 
IEEE Computer Society.



72

[41] S i m e o n  C. N t a f o s . On comparisons of random, partition, and proportional partition 
testing. IEEE Trans. Software Eng, 27(10) :949—960, 2001.

[42] S. O w r e , J .  M. R u s h b y , a n d  N. S h a n k a r . PVS: A prototype verification system. 
Lecture Notes in Computer Science, 607:748-??, 1992.

[43] C a r l o s  P a c h e c o , S h u v e n d u  K. L a h i r i , M i c h a e l  D. E r n s t , a n d  T h o m a s  B a l l . 
Feedback-directed random test generation. In IC SE ’07, Proceedings of the 29th Inter
national Conference on Software Engineering, Minneapolis, MN, USA, May 23-25, 
2007.

[44] D. R i c h a r d s o n , O. O ’M a l l e y , a n d  C. T i t t l e . Approaches to specification-based 
testing. In TAV3: Proceedings of the A C M  SIG SOFT ’89 third symposium on Software 
testing, analysis, and verification, pages 86-96, 1989.

[45] P e t e r  S c h m i t t , I s a b e l  T o n i n , C l a u s  W o n n e m a n n , E r i c  J e n n , S t e p h a n e  
L e r i c h e , a n d  J a m e s  J .  H u n t . A case study of specification and verification us
ing jml in an avionics application. In JT R E S  ’06: Proceedings of the f th  international 
workshop on Java technologies for real-time and embedded systems, pages 107-116, New 
York, NY, USA, 2006. ACM.

[46] K e v i n  S u l l i v a n , J i n l i n  Y a n g , D a v i d  C o p p i t , S a r f r a z  K h u r s h i d , a n d  D a n i e l  
JACKSON. Software assurance by bounded exhaustive testing. In ISSTA ’04: Pro
ceedings of the 2004 A C M  SIG SO FT international symposium on Software testing and 
analysis, pages 133-142, 2004.

[47] M a r k o s  Z. T s o u k a l a s , J o e  W . D u r a n , a n d  S i m e o n  C. N t a f o s . On some 
reliability estimation problems in random and partition testing. IEEE Transactions on 
Software Engineering, 19(7):687-697, July 1993.

[48] W . V i s s e r ,  C. S. P a s a r e a n u ,  a n d  S. K h u r s h i d .  Test input generation with Java 
PathFinder. Software Engineering Notes, 2 9 (4 ):97—107, 2004.

[49] J o a c h i m  W e g e n e r  a n d  O l i v e r  B u h l e r . Evaluation of different fitness functions for 
the evolutionary testing of an autonomous parking system. In Genetic and Evolution
ary Computation -  GECCO-2004, Part //, Kalyanmoy Deb, Riccardo Poli, Wolfgang 
Banzhaf, Hans-Georg Beyer, Edmund Burke, Paul Darwen, Dipankar Dasgupta, Dario 
Floreano, James Foster, Mark Harman, Owen Holland, Pier Luca Lanzi, Lee Spector, 
Andrea Tettamanzi, Dirk Thierens, and Andy Tyrrell, editors, volume 3103 of Lecture 
Notes in Computer Science, pages 1400-1412, Seattle, WA, USA, 26-30 June 2004. 
Springer-Verlag.

[50] E l a i n e  J. W e y u k e r  a n d  B i n g c h i a n g  J e n g . Analyzing partition testing strategies. 
IEEE Transactions on Software Engineering, 17(7):703-711, July 1991.

[51] K r i s t i n a  W i n b l a d h , T h o m a s  A. A l s p a u g h , H a d a r  Z i v , a n d  D e b r a  J. 
R i c h a r d s o n . An automated approach for goal-driven, specification-based testing. 
In ASE, pages 289-292. IEEE Computer Society, 2006.



73

VITA

John Alexander Murphy

John Alexander Murphy was born in Camp Springs, Maryland on April 10, 1984. He 

graduated as a valedictorian from James Madison High School in 2002 and then went to 

the College of William and Mary where he studied m ath and computer science. In 2005, he 

earned is B.S. in Computer Science from William and Mary, where he continued his studies 

in computer science towards his M aster’s degree. He now works at Zope Corporation as a 

software engineer.


	Automatically Generating Random Test Data for Relevant and Implicitly Defined Subdomains
	Recommended Citation

	tmp.1539892610.pdf.oM1lH

