
W&M ScholarWorks W&M ScholarWorks 

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 

2011 

An Investigation of the Polymorphic arsS Gene of Helicobacter An Investigation of the Polymorphic arsS Gene of Helicobacter 

pylori pylori 

Daniel Ross Hallinger 
College of William & Mary - Arts & Sciences 

Follow this and additional works at: https://scholarworks.wm.edu/etd 

 Part of the Microbiology Commons, and the Molecular Biology Commons 

Recommended Citation Recommended Citation 
Hallinger, Daniel Ross, "An Investigation of the Polymorphic arsS Gene of Helicobacter pylori" (2011). 
Dissertations, Theses, and Masters Projects. William & Mary. Paper 1539626912. 
https://dx.doi.org/doi:10.21220/s2-qacc-1410 

This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M 
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized 
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu. 

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539626912&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/48?utm_source=scholarworks.wm.edu%2Fetd%2F1539626912&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/5?utm_source=scholarworks.wm.edu%2Fetd%2F1539626912&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-qacc-1410
mailto:scholarworks@wm.edu


An Investigation of the Polymorphic arsS Gene of Helicobacter pylori

Daniel Ross Hallinger 

Poquoson, Virginia

Bachelor of Science, Virginia Polytechnic Institute and State University, 2008

A Thesis presented to the Graduate Faculty 
of the College of William and Mary in Candidacy for the Degree of

Master of Science

Department of Biology

The College of William and Mary 
January, 2011



APPROVAL PAGE

This Thesis is submitted in partial fulfillment of 
the requirements for the degree of 

Master of Science

Approved by the ConfmitteeTV\ugust 2C

Committee Chi
Associate Professor Mark H. Forsyth, Biology 

The College of William and Mary

ProressoM -izabeth A. Allison. Biology 
The College of William and Mary

A ssistant Professor Oliver Kerscher, Biology
The College of William and Mary



COMPLIANCE PAGE

Research approved by

W&M Institutional Biosafety Committee

Protocol number(s): IBC-5724-mhfors

IBC-6016-mhfors

Date(s) of approval: 2009-12-18

2009-05-19



ABSTRACT PAGE

Two-com ponent signal transduction system s are  vital for the survival of m ost 
bacterial spec ies when exposed to variable environmental conditions. T hese system s are 
characteristically com posed  of a histidine kinase and a cogna te  re sp o n se  regulator. 
Histidine k in ases  perceive environm ental ch an g es  to ac tivate  a sso c ia ted  re sp o n se  
regulators through phosphorylation events. The ArsRS two-component signal transduction 
system  of the hum an gastric pathogen Helicobacter pylori is critical for its adaptation to 
acidic conditions. Specifically, ArsS will autophosphorylate in response to an acidic stimulus 
and subsequently phosphorylate ArsR. Non-phosphorylated and phosphorylated ArsR may 
regulate gene expression differentially to allow for the survival of the organism.
The arsS  gene, encoding the histidine kinase ArsS, is subject to frequent mutation due to a 
homopolymeric cytosine tract in its 3’ terminus. Together, the differences in cytosine tract 
length and the existence of a stop codon for each arsS  open reading fram e allow for the 
generation of various, functional ArsS isoforms. Here, we hypothesize that H. pylori 
populations consist of cells that en co d e  for a num ber of a rsS  alleles with variant 
homopolymeric cytosine tract lengths that allow for the propagation of different ArsS 
isoforms.

In order to determ ine w hether different arsS  alleles existed in populations of H. 
pylori, amplified fragm ent length polymorphism polym erase chain reactions (AFLP-PCR) 
w ere utilized to amplify a  genom ic region of arsS  that en co d es roughly 300 b ase  pairs 
including the cytosine tract. The size and relative frequency of resulting AFLP-PCR 
amplicons were quantified via amplified fragment length polymorphism (AFLP) analyses. To 
verify that the am plicons differed in length due to differences in cytosine tract lengths, 
sequencing w as perform ed on plasm id-cloned am plicons produced from the sam e arsS  
region. As a control, a non-polymorphic region of arsS  w as utilized for similar AFLP and 
sequencing analyses.

AFLP and sequencing data suggest that different arsS  alleles exist within H. pylori 
populations and, in som e instances, within single strains derived from three gastric regions 
of individual patients. Additionally, the relative frequencies of a rsS  alleles and, thus, arsS  
open reading fram es w ere able to be determ ined. Data suggest that a predominant arsS  
open reading frame can vary among H. pylori populations from different patients and among 
populations within a  single patient. Interestingly, H. pylori populations from two of twelve 
patients significantly (p<0.05) encoded different predominant arsS  open reading fram es in 
various anatomical regions of their stom achs.

Sequencing analyses also allowed for ArsS isoforms to be identified via in silico 
translations of the vector-cloned amplicons. Here, data suggest that the arsS  open reading 
fram es could be translated into ArsS isoforms with variable C-terminal regions. T hese data 
also identified another ArsS isoform that had not been previously recognized in the literature. 
Additionally, sequencing data  allowed for the determination that many of our populations 
consisted  of multiple strains, while som e w ere monoclonal. Interestingly, each  patient 
appeared  to be infected with their own predominant strain in a t least two of their gastric 
regions. Collectively, our data  enhance the limited knowledge b ase  concerning the arsS  
gene and the ArsS protein of the carcinogenic bacterium, Helicobacter pylori.
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Chapter 1 

Introduction

History of Helicobacter pylori

Prior to 1983, the human stomach was believed to be a nearly sterile environment 

as gastric acid was thought to act as a protective barrier against microbial infection (44). 

Additionally, the underlying causes for the development of gastric disorders, such as 

peptic ulcers, were linked to diet, tobacco, alcohol, stress, and hyperchlorhydria 

(hyperacidity) (34, 44). In fact, acid suppression therapies, such as prescribed H2 

receptor antagonists, were found to effectively control symptoms of gastritis and help 

heal peptic ulcers (34, 44). Thus, the idea that gastric disorders arose because of 

personality type, dietary habits, or genetic predisposition seemed likely because lowering 

stomach acid secretion seemed effective against ulcers (34). As a result, the clinical 

adage “no acid, no ulcer” was becoming increasingly established in the minds of 

gastrointestinal specialists (44).

Contrary to excess hydrochloric acid being the sole cause of gastric disorders, 

there were several reports describing observations of spiral organisms in the stomach 

linings of patients diagnosed with peptic ulcers or gastric cancer (34). However, this 

“spirochaete” organism was deemed a postmortem contaminant by a leading United 

States gastroenterologist who was unable to observe any bacteria while examining over 

1,000 gastric biopsies (34). A major breakthrough for the proponents of bacterial- 

influenced stomach disorders occurred in 1982 when Helicobacter pylori, originally 

termed Campylobacter pylori, was cultured from the gastric biopsies of patients suffering
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from chronic gastritis and peptic ulcers (34, 44). This discovery sparked an immense 

interest in linking ulceration to bacterial infection (44).

Despite isolating bacteria from stomach biopsies of infected patients, a majority 

of scientists and physicians still did not accept that H. pylori might play a causative role 

in gastric disease progression (34). Many argued that Koch’s postulates, frequently used 

to identify microbes as etiologic agents of specific diseases, could not be fulfilled because 

purified bacterial culture was not shown to reproduce disease in piglets (34). However, 

as there was no suitable animal model at the time, Dr. Barry Marshall ingested a pure 

culture of the bacteria and subsequently developed gastritis, which was confirmed 

endoscopically and histologically (34, 44). In light of confirming a microbial cause for 

peptic ulcers, antibiotics were shown to effectively eradicate H. pylori from patients with 

the disease, which also greatly reduced reoccurrence of ulceration (44). Accordingly, a 

1994 National Institutes of Health (NIH) consensus conference agreed that H. pylori- 

induced ulcers should be treated with antimicrobial agents, which helped to widely 

establish a bacterial cause for peptic ulcer disease (44). Also in 1994, the World Health 

Organization (WHO) and the International Agency for Research on Cancer recognized 

the carcinogenic capabilities of H. pylori by designating it as the first class I bacterial 

carcinogen (67). Today, H. pylori is an acknowledged widespread human pathogen that 

infects nearly 50% of the world’s population and it is linked to a variety of gastric 

disorders, including peptic ulcer disease and gastric cancers (22, 44, 48, 49, 67).

General Helicobacter pylori Biology

H. pylori is a gram-negative bacterium that is physically distinguishable by its 

spiraled cell shape and lophotrichous flagella (44, 53). Considering that the organism
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requires oxygen, but at lower concentrations than those relative to the atmosphere, it is 

considered a microaerophile (44, 53). Being that H. pylori thrives in environments where 

pH is near neutrality, the organism has also been deemed neutralophilic (47, 71). This 

microbe is an etiologic agent of peptic ulcer disease, chronic active-type B gastritis, and 

non-ulcer dyspepsia (44, 46, 53). If untreated, infection persists for decades, increasing 

the risk of developing gastric malignancies such as mucosa-associated lymphoid tissue 

(MALT) lymphoma and adenocarcinoma (43, 46, 48). There is also some speculation 

that H. pylori may play a factor in the development of asthma, coronary artery disease, 

colonic adenomas, childhood growth retardation, diabetes mellitus, rosacea, and sudden 

infant death syndrome (SIDS), but these associations remain controversial (8 , 44, 62). At 

least one positive association exists as epidemiological reports suggest H. pylori infection 

may be linked to decreased incidence of esophageal diseases, such as Barrett’s esophagus 

and esophageal adenocarcinoma (8 ). Interestingly, there are two subsets of H. pylori 

strains based upon the presence or absence of a 40-kilobase genetic element known as the 

cytotoxin-associated gene pathogenicity island, cag PAI (5, 10, 12, 48). Type I strains, 

which carry the cag PAI, show increased virulence in patients and are typically 

associated with more severe gastric diseases than type II strains, which lack the cag PAI 

(5, 10, 12, 48). Accordingly, patients infected with type II strains of the bacterium tend 

to be asymptomatic carriers as a clear correlation between the cag PAI and severity of 

disease has been observed (5, 12).

Acid Acclimation of Helicobacter pylori

H. pylori is unique in that it exclusively colonizes the mucin layer of the gastric 

epithelium (44, 47, 71). Other bacterial neutrophiles, such as Salmonella typhimurium,
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Vibrio cholera, Yersinia enterocolitica, and pathogenic Escherichia coli strains are able 

to survive transit through the human stomach, but fail to colonize this environment (36, 

50). Interestingly, other Helicobacter species have also been found to colonize stomachs 

of other animals, such as several large wild feline species, domestic cats, and domestic 

dogs to name only a few (16, 60). Not surprisingly, H. pylori faces considerable pH 

changes during its colonization and establishment within the gastric mucosa, as luminal 

pH levels can vary from -5.0 during digestion to -1.0 during fasting (48, 49). Fittingly, 

many studies show that H. pylori has unique acid acclimation mechanisms that keep 

periplasmic and cytoplasmic pH levels near neutrality (48, 50, 56, 57, 71). These 

buffering mechanisms allow H. pylori to withstand severe acid shock and to grow at 

moderately low pH levels (47, 48). Furthermore, acid acclimation is reliant upon gene 

regulation, as several studies have shown that the transcription of 1 0 1  to 280 genes may 

be affected in response to low pH levels (47, 48, 70).

Central to the acid acclimation of H. pylori are the genes of the urease operon 

whose pH-induced transcription has been supported by transcriptome studies (2, 37, 48). 

Two subunits, UreA and UreB, compose the urease apoenzyme, which requires nickel for 

enzymatic activity (2, 48). This metal-containing enzyme hydrolyzes urea into carbon 

dioxide (CO2 ) and ammonia (NH3). CO2 is subsequently converted to bicarbonate 

(HCO3 ) by a periplasmic a-carbonic anhydrase (33, 48). Both HCCV and NH3 play 

important roles in buffering the cytoplasm and periplasm of the cell (33). H. pylori can 

also control the influx of urea via a pH-gated inner membrane channel, Urel (48, 54, 55). 

This channel protein has two important functions in that it regulates the amount of urea 

entering the cell in response to acidic pH and that it inhibits the alkalization of the cell
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under neutral conditions, as urease is still substantially expressed in such circumstances 

(33, 48). The necessity of urease and Urel for colonization of several infection models, 

such as piglets and gerbils, indicates the importance of this system (29, 38, 48). Aside 

from the urease system, the expression of ammonia-producing aliphatic amidases, AmiE 

and AmiF, have also been linked to the exposure of H. pylori to acidic pH (48, 70).

Compared to other bacterial species, H. pylori has relatively few transcriptional 

regulators, perhaps due to its exclusive association with the human stomach as persisting 

in such a restricted niche may reduce the number of required regulators (9, 48, 52, 6 6 ). 

Related to acid adaptation, this organism has at least three transcriptional regulators that 

respond to different primary signals (48). Two of which are metal-dependent 

transcriptional regulators NikR and Fur (47). NikR of H. pylori is an othrolog of an E. 

coli nickel (Ni2+) responsive regulator, yet these orthologs have different functions in 

their respective organisms (48). In H. pylori, NikR is a regulator protein that can activate 

or repress transcription in response to the availability of Ni2+ (48). This regulator has 

been shown to control genes encoding the urease apoenzyme as well as genes involved 

with Ni2+ uptake and storage, iron III (Fe3+) uptake and storage, stress response, motility, 

and outer membrane proteins (48). The other metal-dependent regulator, Fur, is 

important for regulating iron uptake and storage proteins (48). Even though both 

regulators are involved in the acid acclimation of H. pylori, neither is absolutely essential 

for the colonization of a gerbil model (11, 48). Aside from NikR and Fur, two- 

component signal transduction (TCST) also plays a substantial role in the acid 

acclimation abilities of H. pylori (47, 56, 71).
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Two-component Signal Transduction Systems

Bacterial species live in a multitude of different environments and therefore need 

the means to sense variable surroundings and adapt accordingly. One of the ways this is 

achieved is through the utilization of two-component signal transduction systems. These 

environmental sensing systems are widespread in prokaryotes and can regulate cellular 

functions in response to specific conditions (5, 53, 56). Typically, these systems consist 

of a sensor protein that can recognize a signal and transduce it to an intracellular response 

regulator protein (17, 48, 53). The sensor proteins, known as histidine kinases (HKs), 

can recognize environmental stimuli through their variable N-terminal input domains that 

may be located extracellularly or periplasmically (Figure 1.1) (17, 48, 53). In the 

presence of the appropriate stimulus, an autophosphorylation may occur at a conserved 

histidine residue in the cytoplasmic, C-terminal transmitter domain of the HK (Figure

1.1) (17, 48, 53). Autophosphorylation of the FIK is actually a bimolecular reaction that 

involves two HK molecules to form a homodimer, as one HK monomer catalyzes the 

phosphorylation of the second HK monomer (61).

N-terminal C-terminal
Input Domain Transmitter Domain

Stimulus C O H

ATP ADP

Flistidine Kinase

N-terminal C-terminal
Input Domain Transmitter Domain

c >

Phosphorylated 
Histidine Kinase

Figure 1.1: Generic model for histidine kinase autophosphorylation. When the N- 
terminal input domain o f a histidine kinase (HK) senses a stimulus, an 
autophosphorylation event occurs at a conserved histidine residue in its C-terminal 
transmitter domain. In reality, this is a bimolecular reaction in which two HK monomers 
form a homodimer. Here, one HK monomer would catalyze the phosphorylation o f  
another HK monomer.
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Phosphorylated HK allows for the phosphorylation of a cognate response 

regulator (RR) (Figure 1.2) (17, 53). The RR catalyzes the transfer of the phosphoryl 

group from the HK as it becomes stoichiometrically favorable (61). Phosphorylation of 

the RR occurs at an aspartic acid residue located in a conserved N-terminal receiver 

domain of this protein (Figure 1.2) (17, 53, 61). Once phosphorylated, the variable C- 

terminal effector domain of the RR becomes active, which results in a particular response 

(Figure 1.2) (17, 53, 61). Typically, the C-terminal domain of the RR can bind to DNA, 

which allows for the regulation of transcription (17, 53). However, not all RR C-terminal 

domains can bind to DNA, as some have enzymatic function and some lack a C-terminal 

domain entirely (61).

N-terminal C-terminal N-terminal C-terminal
Input Dom ain Transmitter Dom ain R eceiver Domain Effector Dom ain

Phosphorylated Response Regulator

:£ >  Response

Histidine Kinase
Figure 1.2: Generic model fo r  response regulator phosphorylation. Phosphorylation o f  
a response regulator (RR) occurs at a conserved aspartic acid residue within its fil­
ter mina I receiver domain. The RR catalyzes the transfer o f  a phosphoryl group from a 
phosphorylated histidine kinase (HK). Once the RR is phosphorylated, its C-terminal 
effector domain becomes active and a particular response may occur.

In terms of TCST systems, not all bacteria are created equally, but rather 

proportionally. For instance, E. coli, which is found in a number of different 

environments, encodes for 62 two-component proteins that are involved in complex and 

diverse tasks such as metabolism and motility (73, 74). However, Streptococcus 

pneumoniae, which is mainly a human pathogen, has only 27 two-component proteins 

(65, 6 8 , 73). Conversely, H. pylori has a very limited repertoire of TCSTs compared to



these and other bacterial species, likely due to the fact that it is ecologically restricted to 

the human stomach and because it lacks competition with other microbes in this 

environment (5). In fact, H. pylori has only four HK and RR pairs as well as two orphan 

RRs, which do not seem to have an associated HK (5, 57). One of the two-component 

systems, CheA-CheY, appears to be dedicated to the regulation of chemotaxis, which 

ultimately affects the movement of the bacterium based on attractants or repellents in the 

surrounding environment (57). Interestingly, an additional system seems to be devoted to 

motility as genes for flagellar synthesis and several hypothetical proteins are regulated by 

a TCST system deemed FlgRS (39, 57). The final two H. pylori TCST systems appear to 

regulate genes in response to specific environmental factors. One of these has been 

implicated in the regulation of genes when environmental concentrations of copper ions 

are increased, and therefore has been designated as the copper resistance determinant 

system, CrdRS (6 8 ). The other has been shown to regulate genes in response to acid, and 

thus called the acid responsive signaling system, ArsRS (5).

Characterization of ArsRS

The two-component acid responsive signaling system of H. pylori is composed of 

the HK, ArsS, and cognate RR, ArsR (5, 47, 48). ArsS has been described as an 

orthodox HK composed of 414 amino acids (5, 47). This HK is considered orthodox 

because it functions as a periplasmic membrane receptor; as most, but not all, orthodox 

HKs operate similarly (5, 61). Appropriately, two short transmembrane segments, amino 

acids 8  to 22 and amino acids 134 to 153, of the ArsS N-terminal region suggest that it 

spans the cytoplasmic membrane, which locates the acid-responsive input domain of 1 1 1  

amino acids in the periplasm of H. pylori cells (5, 45, 47, 48). Furthermore, ArsS
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belongs to the IIIA class of sensor proteins, which generally means that this HK pairs 

with a RR that is related to OmpR of E. coli (5, 17). The RR, ArsR is composed of 225 

amino acids and is OmpR-like in that it is a transcription factor that can function as a 

repressor or an activator to differentially regulate the expression of genes (5, 47, 61).

The N-terminal input domain of the HK ArsS senses periplasmic pH (45, 47, 49). 

In response to acidic conditions, an autophosphorylation at a conserved histidine residue 

within the ArsS C-terminal transmitter domain will occur through the dimerization of two 

ArsS proteins (Figure 1.1) (47, 61). Phosphorylated ArsS can subsequently 

phosphorylate the cognate RR, ArsR (Figure 1.2) (5, 47). ArsR likely regulates genes 

differentially in phosphorylated and non-phosphorylated states (5, 14). These two 

phosphorylation states of ArsR have been hypothesized to regulate genes differentially 

because gene knockouts of arsR are not viable in vitro, yet knockouts of arsS are (5). 

Furthermore, an arsR mutant strain of H. pylori that was incapable of phosphorylation, 

due to a substitution of the aspartic acid residue, was found to be viable in vitro (53). 

However, arsS knockouts inhibit the ability of H. pylori to colonize a mouse model (42). 

Together, these findings suggest that viability of the organism and differential gene 

regulation are linked to the two phosphorylation states of ArsR (5, 42, 53). Thus, non- 

phosphorylated and phosphorylated forms of ArsR are likely necessary in vivo.

There have been many attempts to characterize the genes under the control of 

ArsRS, also known as the ArsRS regulon (20, 31, 32, 46, 47, 48, 71, 72). One of the first 

studies found that phosphorylated ArsR negatively autoregulates itself, meaning that it 

binds at or near the arsR promoter to block RNA polymerase from initiating transcription 

(14). In this study, ArsR was also found to act as a transcriptional activator of several
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genes with unknown function (14). Additionally, it was determined that arsR, arsS, and 

two other downstream genes were organized in an operon, or a series of genes that are 

co-transcribed on a single mRNA transcript (14). Two other studies, by the same group, 

subsequently demonstrated that the expression of both urease operons are under control 

of phosphorylated ArsR due to changes in pH (45, 46). This was determined by 

examining changes in gene regulation when H. pylori was exposed to neutral and acidic 

environmental pH. The study ultimately supported the hypothesis that ArsS undergoes 

autophosphorylation in response to acidic pH (45). Thus, the findings from these studies 

suggest that a functional ArsS sensory histidine kinase is necessary for at least one of the 

major acid acclimation mechanisms of H. pylori. ArsR has since been found to regulate 

the expression of genes that directly or indirectly play a part in other acid acclimation 

mechanisms as well, including genes for the periplasmic a-carbonic anhydrase (hpl 186), 

aliphatic amidases (amiE and amiF), arginase (rocF), iron transportation (hp0889 and 

tonBI), and a nickel-binding accessory protein (hyp A ) (6 , 20, 47, 71, 72). Interestingly, 

variant ArsRS regulons have been identified and may diverge due to differences in 

individual strains of H. pylori. This assertion has been supported by several comparative 

transcriptional profiling studies for the ArsRS regulon of different H. pylori strains (20, 

31, 32, 47, 71). Thus, the possibility exists that these differences in ArsRS regulons were 

observed merely because different strains of H. pylori were utilized in each of these 

transcriptional studies (20, 31, 32, 47, 71).

Genome Plasticity

Helicobacter pylori strain-specific ArsRS regulons would not be surprising as H. 

pylori strains have remarkable genetic variation, especially among the coding sequences
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of particular genes (1, 24). Multiple techniques and methods, including whole genome 

sequencing, have been utilized in an attempt to characterize the population structure of 

specific H  pylori isolates and their differences in physiology (30). In fact, several 

studies have suggested that this organism is one of the most genetically diverse bacteria 

known. This is due in part to a more rapid rate of mutation and recombination compared 

to other microbes (63, 69). For instance, Salmonella enterica Typhimurium and 

Salmonella enterica Typhi, the causal agent of typhoid fever in mice and humans 

respectively, show about a 98-99% sequence similarity among these serological variants 

(serovars) (69). On the other hand, bacterial species from two separate genera, S. 

enterica Typhimurium and E. coli, show roughly an 85% sequence similarity (69). 

However, H. pylori typically exhibits a 5% difference among unrelated strains at the 

nucleotide level (69).

In fact, a comparison of the first two H. pylori strains whose genomes were 

sequenced in total, 26695 and J99, showed that there are 95 potential protein encoding 

open reading frames present in strain 26695 that are absent in strain J99 (3). Together, 

these sequencing projects have also recognized that H. pylori strains contain mobile 

genetic elements, such as plasmids and transposons, which may also lead to genomic 

differences among these strains (3, 6 6 ). Thus, genomic disparities among H. pylori 

isolates have been suggested to be at least partly due to horizontal transfer.

Horizontal transfers may occur readily as H. pylori strains appear to lack two 

essential double-strand break repair proteins involved in strand exchange during DNA 

recombination events (6 6 ). Thus, the horizontal transfer of DNA among H. pylori strains 

has been hypothesized to readily occur when patients are infected with multiple strains of



the bacterium (69). Multiple strain infection potentially sets up a scenario allowing for 

the transfer of DNA from strain-to-strain followed by genetic recombination within 

individual strains to subsequently alter their genomes (69). Thus, such recombination 

events could lead to a highly polymorphic population of H. pylori within an individual 

stomach (69).

Recombination alone is not likely to be the sole source of such variation in H. 

pylori genomes, especially since the mutation rates of this organism are predicted to be 

very high (69). Mutations can accumulate in H. pylori strains, as this organism appears 

to lack proteins necessary for the SOS response and proteins involved in mismatch repair 

(6 6 , 69). These findings were mainly achieved through comparative analyses with the 

genome of E. coli. Compared to E. coli, H. pylori appears to lack three major 

components of the SOS response, which may repair nucleotide and recombination errors 

caused by physical or chemical mutagens (6 6 , 69). Furthermore when compared to E. 

coli, H. pylori seems to lack two essential proteins involved in mismatch repair, which is 

involved in recognizing and repairing insertions, deletions, and the erroneous 

incorporation of nucleotides during DNA replication and recombination (6 6 , 69).

The lack of functionality regarding these major DNA repair pathways coupled 

with the oxidative and acidic environment of the human stomach may assist in the 

frequent mutation rates of H. pylori (7, 30, 69). In fact, some have determined that the H. 

pylori mutation rate is so high that it may be close to being harmful for the bacterium (16, 

30). However, H. pylori cells are naturally competent, or able to transport naked DNA 

from adjacent H. pylori cells and integrate it into their genomes (30). Therefore, the 

natural competence of H. pylori cells has been hypothesized to allow individual cells to
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offset lethal mutations and furthermore add to diversification of the species (30). Thus, 

mutations and recombination events, along with natural selection, likely play key roles in 

allowing H. pylori to adapt to individual human stomachs.

Not surprisingly, there is much variation among the species of the Helicobacter 

genus. Interestingly, the closest relative of H. pylori appears to be Helicobacter 

acinonychis, which is found in large felines, such as tigers, cheetahs, and lions (16). 

There are large parts of the H. pylori and H  acinonychis genomes that are homologous, 

but their sequence differences are what led one group to hypothesize that H. pylori made 

a host jump due to a tragic event involving a big cat and an early human leading to a 

unique speciation scenario (16). If such an event did occur, current sequence data would 

indicate that the rate of genetic rearrangements and host-specific adaptations within H. 

acinonychis were 4-times greater than the rate of H. pylori in humans (30).

A specific means in which mutations may arise in the genomes of Helicobacter 

species is through long stretches of repeated nucleotides or polymeric tracts (15, 23). 

These sorts of repeated sequences may serve to increase antigenic variation, especially 

when disparities arise in the nucleotide sequence of genes encoding for proteins that can 

be recognized by the host (15, 23). For instance, a host-recognizable protein may be 

altered in its amino acid sequence by mutations originating in the polymeric tracts of its 

protein encoding sequence. Thus, a mutation occurring in the coding sequence of the 

gene may alter the amino acid sequence of the protein and render it undetectable by the 

host. Polymeric tracts may also act as transcriptional and translational regulatory 

mechanisms when present within the promoters regions or coding sequences of 

functional genes (15). Thus, variations occurring in these repeated regions may allow for
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the evasion of host responses and/or adaptation to specific niches as long as these repeats 

are encoded by genes that can be expressed into proteins associated with such tasks (15). 

Accordingly, these sorts of variations involving polymeric tracts within the promoter and 

coding regions of genes are commonly exhibited in the genomes of H. pylori, H. 

hepaticus, and H. canadensis (15, 59).

Phase Variation

Phase variation has been typically defined as a rapid means by which 

microorganisms can regulate gene expression in an “on or o ff’ manner (25, 41). This 

gene “switch” is usually reversible and random, but arises relatively more frequently than 

normal mutations (25). One of the most common means of phase variation occurs by 

genetic recombination events. Phase variation occurring via genetic recombination is 

typically site-specific, meaning that the event takes place in a particular region of the 

genome, but it can also arise due to homologous recombination events (25, 41). A DNA 

inversion in a genomic region that encompasses a promoter is one example of a reversible 

genetic recombination event resulting in phase variation. Two of the best-characterized 

examples of such an inversion have been documented in the upstream regions of genes 

encoding for type 1 fimbriae of pathogenic Escherichia coli and flagella of Salmonella 

species (25, 58).

In Salmonella, phase variation causes two distinct phenotypes by variably 

switching expression of the flagellar protein from HI flagellin to H2 flagellin and vice 

versa (Figure 1.3) (58). This “switch” in protein appeared unusual in that the rate of this 

mutation was much higher than the normal mutation rates of Salmonella and that it was 

entirely reversible (58). The key to the phase variation was that an invertible sequence
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encoded an invertase, which is an enzyme that promotes the inversion of sequences, and a 

promoter of two other genes (58). The genes under the control of this invertible promoter 

encoded for the H2 flagellin protein and HI flagellin repressor protein (58). Thus, when 

the invertible sequence was in one orientation, H2 flagellin protein and HI flagellin 

repressor protein could be expressed such that HI flagellin was not expressed (Figure

1.3A). In the other orientation, the promoter on the invertible element could neither 

promote the expression of the H2 flagellin protein nor HI flagellin repressor protein 

(Figure 1.3B). Thus, this sequence orientation allowed for the expression of HI flagellin

(58).

A

, , r± , .
Invertase Promoter H2 flagellin HI flagellin repressor

B

*1
Promoter Invertase H2 flagellin HI flagellin repressor

Figure 1.3: A model for Salmonella phase variation. Different phenotypes o f  
Salmonella arise due to an invertible sequence consisting o f a promoter and an invertase, 
which is an enzyme that promotes the inversion these particular genetic elements. This 
specific example ofphase variation renders the flagellar phenotype o f  Salmonella to be 
either o f  the HI or H2 type. (A) When the invertible sequence is in one orientation, the 
promoter can regulate the expression o f  H2 flagellin and the HI flagellin repressor.
Thus, in this orientation the cell produces H2 flagellin protein and represses the 
expression o f  HI flagellin, which ultimately allows for the H2 phenotype. (B) In the 
opposite orientation, the expression o f H2 flagellin and HI flagellin repressor cannot be 
promoted. Thus, in this orientation the cell produces HI flagellin because it cannot be 
repressed, which allows for the HI phenotype.

Phase variation may also occur via slipped-strand mispairing due to repetitive 

DNA sequences in the genome. Slipped-strand mispairing occurs when template and 

nascent DNA strands do not align correctly during DNA replication, allowing for the

15



insertion or deletion of bases (Figure 1.4). These hypermutable repetitions may be 

homopolymeric tracts of single nucleotides or heteropoly meric tracts that contain two or 

more repeated nucleotides. Short sequence repeats (SSRs), as they are also known, have 

been considered as a mechanism of phase variation when they are located in the upstream 

regions of genes or within a gene itself, as frameshift mutations in these regions could 

regulate transcription or translation respectively (25). For example, repeats in a promoter 

region could modulate the binding affinity of RNA polymerase, whereas repeats 

embedded in the 5’ end of a gene could lead to frameshifts and truncated proteins. 

Interestingly, phase variation due to slipped-strand mispairing events caused by repetitive 

nucleotides sequences have been observed in a number of bacterial species, including 

Helicobacter pylori (41).

A

5’... G A T G G G G G >...3’ ___^  5’... G A T G G G G G G G C

3’... C T A C C C C C C G
I

...5’ 3’... C T A C C C C C C C G

B

5’...

3’...

G A T G G G G G >
C T A C C C C C / c G

C

...3’

...5’
=>

5’..

3’..

G A T G G G G G G - c
C T A C C C C C C C G

...3’

...5’

...3’

...5’

5’...

3’..

G N
G A T G G G G >
C T A C C C C C c G

...3’

...5’
i>

5’...

3’...

G A T G G G G G G G G C

C T A C C C C C C C - G
...3’

...5’
Figure 1.4: Generic model for slipped-strand mispairing. Slipped-strand mispairing 
occurs when template and nascent DNA strands do not align correctly during DNA 
replication. Mutations resulting from slipped-strand mispairing events cause deletions 
or insertions in the nascent strand. I f  located within gene encoding sequences, these 
slippages may cause frameshift mutations to occur. Here, three scenarios are depicted 
involving normal replication (A), a slippage in the template strand (B), and a slippage in
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the nascent strand (C). Colored blocks represent different nucleotides and white blocks 
represent gaps, which are just an indication o f a deletion or an insertion. (A) The correct 
alignment o f template and nascent strands allows for normal replication to occur. (B) A 
slipped-strand mispairing event in the template strand causes for a deletion in the 
nascent strand, which is indicated by a gap. (C) A slipped-strand mispairing event in the 
nascent strand causes for an insertion in this strand, which is indicated by an extra 
guanine.

H. pylori encodes for a number of genes that may be phase variable due to slip- 

strand mispairing events, including genes encoding for enzymes that are involved in the 

biosynthesis of outer membrane structures such as lipopolysaccharides (30). The coding 

sequences of outer membrane proteins, such as porins and adhesins, have also been 

shown to be phase variable in H. pylori strains (22, 30, 51, 75). The phase variability of 

these genes due to repeated nucleotide sequences, or SSRs, likely give H. pylori an 

advantage in the selection or evolution of particular phenotypes when environmental 

conditions or host-bacterial interactions change (30). Interestingly, the lengths of SSRs 

among H. pylori strains 26695 and J99 have been found to be different, suggesting that 

gene expression in these strains may deviate due to strain-specific phase variation (3, 66).

For instance, the H. pylori adhesin gene sab A may be under transcriptional and 

translational regulation by phase variation involving repeated nucleotide tracts. Near the 

promoter region of sabA there is a homopolymeric thymine repeat and within the coding 

region of this gene there is a heteropolymeric cytosine-thymine repeat (22, 75). For 

transcriptional control, the length of the homopolymeric thymine repeat is hypothesized 

to influence the binding affinity of RNA polymerase, changing the rate and/or efficiency 

of transcription initiation for sab A (Forsyth, unpublished). For translational control, the 

number of heteropolymeric cytosine-thymine repeats influences the reading frame of the 

transcript and can thus regulate the expression of full length SabA (22). Given the level
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of divergence at the nucleotide level for individual strains of H. pylori, sabA is likely 

expressed differently among strains (69).

Polymeric tracts are found in other species of Helicobacter as well (15, 59). Most 

studies to date appear to have focused upon polymeric tracts near or within promoter 

regions and within the 5’ regions of protein encoding genes because of their potential to 

affect gene regulation through phase variation. However, a recent study with 

Helicobacter canadensis reflected upon homopolymeric tracts near the 3’ region of genes 

(59). In this study, they found eight coding regions that had polyguanine tracts near the 

end of the predicted genes (59). As a side note, most of the genes that were strongly 

considered to be phase variable, because of the proximity of the homopolymeric tract in 

their 5’ region, were also due to poly guanine repeat sequences (59). This study suggested 

that the C-terminal region of particular proteins may have been altered due to frameshift 

mutations caused by poly guanine repeats in the 3’ terminus of their coding sequences

(59). Based on data from the NCBI Conserved Domain Database (CDD), these authors 

concluded that frameshifts due to such mutations may lead to structural differences in the 

resulting proteins (59). For instance, polyguanine-induced frameshifts, truncating the 

amino acid sequence of a particular enzyme of H. canadensis, were hypothesized to 

ultimately affect the structure of the protein because of the possible loss of an a-helix at 

its C-terminus (59). Another poly guanine-induced frameshift was hypothesized to affect 

the structure of a flagellar protein as changes in amino acid sequence length would 

possibly affect a (3-sheet in its C-terminus (59). Thus, the authors suggested that 

polymeric repeats in the 3’ regions of coding sequences likely have effects on protein
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structure (59). Thus, these allegations should prompt similar investigations in other 

Helicobacter species, especially the human gastric pathogen H. pylori.

This Study

In H. pylori, the gene that encodes for the sensory histidine kinase ArsS exhibits 

sequence variation due to a 3’ homopolymeric cytosine repeat that differs in length 

among distinct strains (3, 5, 66). In fact, potentially different lengths of the arsS 

homopolymeric cytosine tract were previously observed in strain J99 when whole 

genome shotgun sequencing was initially performed, but this research group stated that 

these mutations may have occurred while culturing the bacteria in vitro (3). Frameshifts 

corresponding to variation in polymeric repeats have previously been shown to be a cause 

of phase variation in bacteria, especially when located in or near promoter regions or 

within the 5’ regions of coding sequences. However, homopolymeric repeats located in 

the 3 ’ region of H. canadensis coding sequences have been hypothesized to have 

potential effects on protein structure (59). In arsS of H. pylori, different alleles, 

attributed to cytosine repeat length, have been shown to be capable of expressing 

alternate functional ArsS isoforms in vitro (5). These investigators determined that each 

ArsS isoform was able to autophosphorylate and subsequently donate phosphoryl groups 

to the cognate response regulator protein, ArsR (5). Thus, this group has suggested that 

the C-terminal protein sequence of ArsS does not interfere with its kinase activity or with 

its phosphotransfer reaction to ArsR (5).

In spite of these contentions, this thesis research examined the 3’ region of the 

arsS histidine kinase gene to determine whether different polycytosine tract lengths could 

be detected within and among H. pylori populations. Additionally, we aimed to
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determine whether single strains of H. pylori could potentially express individual ArsS 

isoforms due to various arsS polycytosine tract lengths. Here, we utilized thirty-six 

clinical populations of H. pylori from three anatomically distinct gastric regions of twelve 

patients. Genomic DNA extracted from these H. pylori populations was used to screen a 

region of arsS with amplified fragment length polymorphism (AFLP) analyses to 

determine if differences in cytosine repeat lengths existed within and among the clinical 

populations. Our results suggested that variable lengths of arsS could be amplified and 

detected among and within these H. pylori populations. AFLP data also indicated the 

relative frequency for each of the variable arsS lengths within each clinical population.

To verify that the differing lengths detected via AFLP were due to differences in the 

polycytosine tract length of arsS, we sequenced clones encoding for the same arsS region 

investigated in these AFLP analyses.

Together, AFLP and sequencing analyses conferred that various arsS alleles, due 

to differences in the length of a 3’ poly cytosine tract, existed within and among each 

clinical H. pylori population. Thus, AFLP data indicative of variant arsS alleles were 

utilized for the extrapolation of allele frequencies into open reading frame frequencies, 

which were representative of ArsS isoforms. In addition to confirming that differences in 

polycytosine tract lengths existed, sequencing data were also used to estimate the 

predominant polycytosine length of each population, the number of strains present in 

each population, and if predominant strains existed within polyclonal populations. 

Interestingly, sequencing data also shed light on another way arsS is genetically variable, 

as a new isoform of ArsS was recognized.
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Chapter 2 

Materials and Methods 

Bacterial Strains and Growth Conditions

Clinical populations of H. pylori (Table 2.1) used in this thesis research were 

collected via gastric biopsy from the antrum, cardia, and corpus of twelve patients that 

visited gastrointestinal clinics at the Veterans Administration Hospital or the Vanderbilt 

University Medical Center, both located in Nashville, Tennessee. These populations 

were cultured and frozen stocks were given to Dr. Mark H. Forsyth as gifts from Dr. 

Richard M. Peek, Jr. and Judith Romero-Gallo. At William and Mary, these H. pylori 

populations were cultured on Trypticase Soy Agar II plates supplemented with 5% sheep 

blood (BBL). These bacterial cultures were incubated in a humidified environment at 

37°C and 5% CO2 . The H. pylori populations were then passed onto fresh blood agar 

plates every 24 to 48 hours to ensure adequate cellular growth for the production of an 

additional frozen stock and the extraction of genomic DNA (gDNA).

Table 2.1: Clinical populations of Helicobacter pylori
Patient Number Gastric Geography Description" Source

B215 Antrum, Cardia, Corpus 3 Populations R.M. Peek
B221 Antrum, Cardia, Corpus 3 Populations R.M. Peek
B253 Antrum, Cardia, Corpus 3 Populations R.M. Peek
B256 Antrum, Cardia, Corpus 3 Populations R.M. Peek
B266 Antrum, Cardia, Corpus 3 Populations R.M. Peek
B268 Antrum, Cardia, Corpus 3 Populations R.M. Peek
B284 Antrum, Cardia, Corpus 3 Populations R.M. Peek
B292 Antrum, Cardia, Corpus 3 Populations R.M. Peek
B294 Antrum, Cardia, Corpus 3 Populations R.M. Peek
B295 Antrum, Cardia, Corpus 3 Populations R.M. Peek
B300 Antrum, Cardia, Corpus 3 Populations R.M. Peek
B301 Antrum, Cardia, Corpus 3 Populations R.M. Peek

a Collected via gastric biopsy at the Veterans Administration Hospital (Nashville, TN) or
the Vanderbilt University Medical Center (Nashville, TN).
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General Techniques

Production o f Bacterial Frozen Stocks

The clinical H. pylori populations that had been passed either once or twice from 

original frozen stocks were grown overnight for the production of additional frozen 

stocks. The following day, the cultures were harvested and suspended in sulfite-free 

brucella broth (SFBB) supplemented with 15% (v/v) glycerol. These suspensions were 

kept in cryogenic vials at -80°C for long-term preservation.

Preparation o f Helicobacter pylori genomic DNA (gDNA)

Preparation of H. pylori gDNA was adapted from a cetyltrimethylammononium 

bromide (CTAB) extraction protocol that the Forsyth laboratory uses regularly (35, 41). 

A 48-hour H. pylori culture that had been typically passed once, but no more than five 

times from original frozen stock, was harvested from blood agar and suspended into 

sterile 0.9% NaCl solution. These cells were centrifuged at 6,000 revolutions per minute 

(rpm) for 10 minutes, resuspended in elution buffer (EB; lOmM Tris, pH 8.0), and 

subsequently lysed with 0.5% sodium dodecyl sulfate (10% SDS stock) at 37°C for 30 

minutes. gDNA was extracted by the addition of 0.7M NaCl (5M NaCl stock) and 0.125 

volume CTAB-NaCl (10% CTAB-0.7M NaCl stock) at 65°C for 10 minutes. gDNA was 

purified from bacterial lysates with a series of sequential 1:1 volume extractions with 

chloroform:isoamyl alcohol (24:1) (CHCI3 ), phenol:chloroform:isoamyl alcohol 

(25:24:1) (P:C:I), and again CHCI3 . gDNA was precipitated with 0.86 volume of 

isopropanol (99% v/v) and the gDNA pellet was air dried to be resuspended in 1 OOpL 

EB. gDNA concentration was measured with a NanoDrop 1000 (Thermo Scientific).
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These gDNA extractions were performed three times for each clinical population. As a 

general note, each of these extractions is referred to as gDNA template 1, 2, or 3.

DNA Amplification

Genomic regions were amplified via Expand High Fidelity PCR System (Roche).

In general, each 50pE reaction was prepared as follows: IX Expand High Fidelity buffer

with 1.5mM MgCfi (Roche), 0.8mM deoxynucleotide triphosphates (0.2mM dATP,

0.2mM dCTP, 0.2mM dGTP, and 0.2mM dTTP), 2.6 U of Expand High Fidelity enzyme

mix (Roche), lOpM of forward and reverse primers, 200ng of gDNA, and the appropriate

volume of sterile deionized water (sdHiO). Amplification was performed with an ABI

2720 Thermal Cycler (Applied Biosystems) or a MultiGene Thermal Cycler (LabNet

International) and conditions are listed where necessary. Amplicons generated via PCR

were always verified with agarose gel electrophoresis.

Agarose Gel Electrophoresis

All agarose gels were prepared by dissolving agarose (1.0% w/v or 1.2% w/v) in

0.5X TAE buffer. Gels were supplemented with ethidium bromide (0.05% v/v) to allow

visualization under ultraviolet light with the Gel Logic 100 Imaging System (Kodak) and

Molecular Imaging Software version 4.5 (Kodak). Electrophoresis voltage and running

time were dependent upon desired resolution and degree of DNA separation.

Amplified Fragment Length Polymorphism (AFLP) Analyses of arsS Regions

Amplified Fragment Length Polymorphism Polymerase Chain Reactions (AFLP-PCR)

Three separate gDNA templates from each clinical H. pylori population (Table

2.1) were utilized to amplify a genomic region of roughly 300 base pairs encoding

portions of the 3’ arsS terminus and the 5’ terminus of a downstream gene, hemB. This
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region also encoded for the suspected polymorphic cytosine tract of arsS, thus we refer to 

it as the poly C region. In general, the Expand High Fidelity PCR system was utilized as 

previously described with a 5’ fluorescently labeled forward primer, arsS F-l FAM, and 

an unlabeled reverse primer, hemB R-l (Table 2.2). Amplification conditions consisted 

of a 2-minute hot start at 94°C, 30 cycles of 94°C for 30 seconds, 60°C for 30 seconds, 

and 72°C for 30 seconds, followed by a final extension at 72°C for 7 minutes. AFLP- 

PCR was performed three times for each gDNA template for a total of nine trials for each 

clinical population.

As a control, one set of gDNA templates for H  pylori populations from patients 

B284 and B294 (Table 2.1) were utilized to amplify a genomic region of 248 base pairs 

that encoded an upstream region of arsS relative to the suspected polymorphic cytosine 

tract. Considering this genomic region is not polymorphic in length, we refer to it as the 

control region. To control for various gDNA templates, gDNA templates 2, 3, and 1 

were used from the antrum, cardia, and corpus H. pylori populations of patient B284, 

respectively. Only template 1 gDNA was used for the antrum, cardia, and corpus H. 

pylori populations of patient B294. In general, the Expand High Fidelity PCR system 

was utilized as previously described with a fluorescently labeled forward primer,

HK0165 Fwd FAM, and an unlabeled reverse primer, HP0165 Rev (Table 2.2). Control 

region amplicons were achieved with identical amplification conditions as used for the 

poly C region AFLP-PCR. Here, three AFLP-PCR trials were executed for each gDNA 

template utilized.
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Table 2.2: Oligonucleotide primers
Oligonucleotide Name Sequence Modification

arsS F-l 5’-CTTCTAACCCCAGCCAAGCCCATGG-3’
arsS F-l-FAM 5 ’-CTTCTA ACCCC AGCC AAGCCC ATGG-3 ’ 5’ 6-FAM

hemB R-l 55 -CGCTGCTTCGT A ATCTTCTC A ATCG-3 ’
HK0165 Fwd 5 ’ -CGC ACCCCT ATC ACTA AGGGC AAG-3 ’

HK0165 Fwd-FAM 5’-CGCACCCCTATCACTAAGGGCAAG-3’ 5’ 6-FAM
HK0165 Rev 5’-GAAGAGGATACATGGATAGGGC-3’

Amplified Fragment Length Polymorphism (AFLP) Analyses

AFLP-PCR product was diluted 1:100 in sdH20 (3pL AFLP-PCR product into 

297pL sdFLO). lpL of 1:100 diluted AFLP-PCR sample was added to 12pL Hi-Di 

Formamide (Applied Biosystems) with 0.25 pL GeneScan ROX500 Size Standard 

(Applied Biosystems) in a 96-well plate. By loading the entire sample plate into a 

thermal cycler, the samples were then denatured at 95°C for 3 minutes. All samples were 

processed at the College of William and Mary.

Differing AFLP-PCR amplicon sizes were detected with an ABI 3130 Genetic 

Analyzer (Applied Biosystems) and the resulting AFLP data were interpreted with 

GeneMapper version 4.0 (Applied Biosystems). An example of raw AFLP data is shown 

in Figure 2.1. Here, differences in amplicon lengths are measured in base pairs, which 

are indicated on the x-axis (Figure 2.1). Due to these amplicons being tagged with 

fluorescent primers, their quantities were measured with relative fluorescence units 

(RFU), which are indicated on the y-axis (Figure 2.1). Thus, using data from the x-axis 

(fragment length in base pairs) and the y-axis (fluorescence intensity in RFU), 

GeneMapper generated an area under the curve for each fragment length (Figure 2.1).

All of the AFLP data indicative of various fragment lengths and their respective areas 

were utilized in this project.

25



Fragment length (measured in base pairs)

a  295 297 299 301 303 305
16001 —  1 1 1 1 1 . 1 1 1 » -

<D&
Figure 2.1: Example o f AFLP raw data. AFLP-PCR amplicons were detected with an 
A B I3130 Genetic Analyzer and the resulting AFLP data were interpreted with 
GeneMapper software. Here, amplicon lengths, measured in base pairs, are represented 
on the x-axis. The quantity o f  each particular amplicon was indicated with relative 
fluorescence units on the y-axis. Together, GeneMapper generated an area under the 
curve by utilizing amplicon lengths and their relative fluorescent units. These areas 
allowed for the relative frequency o f  each amplicon to be calculated. For instance, 
fragment length 303 was the most common amplicon generated from this particular 
AFLP-PCR trial.

AFLP Data Analysis

AFLP data produced with GeneMapper software were analyzed with Microsoft

Excel X for Mac (Microsoft). Within each AFLP-PCR trial, the total area for each

fragment length was summed (Table 2.3) to ultimately determine their relative

frequencies. Thus, fragment length frequencies were calculated by dividing individual

fragment length area by the total area of all fragment lengths. Frequencies were then

multiplied by one hundred to find frequency percentages. These analyses were

performed for each of the nine poly C region AFLP-PCR trials generated from the gDNA

of each clinical H. pylori population. These were also performed for the three control

region AFLP-PCR trials generated from the gDNA of clinical populations from patients

B284 and B294.
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Table 2.3: Calculating AFLP fragment len gth frequencies
Fragment Length (bp)fl Area Under the Curve* Frequency (%)c

300 387 1.70
301 2011 8.85
302 6276 27.61
303 9164 40.32
304 4598 20.23
305 293 1.29

Total 22729 100
a Fragment lengths, measured in base pairs, were generated with AFLP-PCR from the 
gDNA o f clinical H. pylori populations. These amplicons were detected with an ABI 
3130 Genetic Analyzer and interpreted with GeneMapper software. 
b GeneMapper produced an area under the curve for each amplicon by utilizing AFLP 
data representative o f fragment lengths and their relative fluorescence units. These 
areas were summed to calculate the relative frequency o f  each fragment length. 
c The relative frequency o f  each amplicon length was calculated by dividing individual 
fragment length area by the total area o f all fragment lengths. These figures were then 
multiplied by one hundred to determine final frequency percentage.

To integrate the AFLP data from AFLP-PCR trials performed for each H. pylori 

population, the frequencies of corresponding fragment lengths were averaged to find 

overall fragment frequencies. Standard deviations for overall fragment frequencies were 

also calculated by using the frequencies of corresponding fragment lengths from each of 

the AFLP trials.

Furthermore, each poly C region fragment length was considered to be an 

individual allele of arsS. Thus, fragment lengths that varied by three base pairs, could be 

considered alleles that encoded for the same open reading frame (ORF). For instance, 

fragment lengths 300 and 303, 301 and 304, and 302 and 305 would encode for the same 

ORFs, respectively. Thus, overall poly C region fragment length data were extrapolated 

into potential ORFs by summing the frequencies of fragment lengths that were divergent 

by three or six base pairs. The standard deviation of each arsS ORF was calculated by 

summing the variances for each fragment used in the determination of ORF frequency
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followed by taking the square root of this figure (crx + y... + n=Vr(ox2+ay2. . .an2). To 

determine if particular arsS ORFs were significant within gastric populations, a Student’s 

T-test was performed to test the three ORFs amongst one another.

Sequencing Analyses of arsS Regions

Generation o f  arsS Poly C and Control Region Amplicons for Cloning and Sequencing 

gDNA from clinical H. pylori populations (Table 2.1) was utilized to amplify a 

genomic region of arsS that encodes the suspected polymorphic cytosine tract as 

explained in the protocol for AFLP-PCR. As a control, one set of gDNA templates for 

gastric populations from patient B284 and B294 (Table 2.1) were utilized to amplify a 

genomic region that encodes an arsS region upstream of the suspected polymorphic 

cytosine tract, as previously described in the protocol for AFLP-PCR as well. Poly C 

region amplicons were amplified with unlabeled forward, arsS F-l, and reverse, hemB R- 

1, primers (Table 2.2). Control region amplicons were also produced with unlabeled 

forward, HK0165 Fwd, and reverse, HP0165 Rev, primers (Table 2.2). The PCR system 

and amplification conditions were identical to those described in the protocol for AFLP- 

PCR.

Cloning o f arsS Poly C and Control Region Amplicons

arsS poly C and control region amplicons were cloned with pCR-Blunt II-TOPO 

(Invitrogen) vector by the sequential addition of 2pL of fresh ( 0 - 2  days) PCR product, 

0.2M NaCl with 0.01M MgCL salt solution, lOng of pCR-Blunt II-TOPO, and sdtfyO in 

6\\L reactions. Cloning reactions were incubated at 22°C (ambient room temperature) for 

10 minutes. Alternatively, amplicons were similarly cloned with pCR2.1-TOPO 

(Invitrogen) vector.
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Transformation o f arsS Poly C and Control Region Plasmids into Escherichia coli DH5a 

Transformation of the arsS poly C and control region plasmids into OneShot 

Chemically Competent E. coli DH5a (Invitrogen) was initiated by gently stirring 2pL of 

the cloning reactions into a lOOpL culture of E. coli DH5a. This cell and plasmid 

mixture was incubated on ice for at least 30 minutes, as increasing this incubation time 

tended to increase overall transformation efficiency. To induce the cellular uptake of 

plasmid DNA, the culture was heat shocked at 42°C for 30 seconds and immediately 

allowed to recover on ice for at least 1 minute. To allow for plasmid generation, 

outgrowth was initiated with the addition of 250pL of super optimal broth with catabolite 

repression (SOC). The cultures were then incubated at 37°C with horizontal shaking of 

at least 200 rpm in an Innova 43 shaker (New Brunswick) for 1.25 hours. Successful 

transformants were selected by spread plating 25 pL of outgrowth onto Luria-Bertani 

(LB) agar complemented with kanamycin (50 pg/mL) followed by an overnight 

incubation at 37°C.

arsS Poly C and Control Region Plasmid Preparations

An E. coli DH5a colony grown on selective media was aseptically inoculated into 

5mL LB broth with kanamycin (50 pg/mL). This culture was incubated overnight at 

37°C in a rotator at 70% power (Glas-col). The following day, the culture was 

centrifuged at 4,000 rpm for 10 minutes. Plasmids were then purified via the QIAprep 

Spin Miniprep Kit (Qiagen) or the IBI High-Speed Plasmid Mini Kit (MidSci). Purified 

plasmid DNA was stored at -20°C until sequencing reactions were performed. In total, 

ten poly C region clones from each gastric population, or 30 per patient, were prepared in
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this manner. As a control, ten control region clones from the populations of patient B284 

and B294 were also prepared in this manner.

Screening for Successful Poly C and Control Region Plasmids

To verify the successful cloning and transformation of poly C and control region 

plasmids, 5pL of purified plasmid was digested with 15U EcoRI (Promega) in IX Buffer 

H (Promega) and sdEEO in 12.5pL reactions. Restriction digests were incubated in a 

37°C water bath for at least 1.5 hours. The entire digest was subjected to agarose gel 

electrophoresis in order to determine successful cloning of the desired fragment into the 

vector.

Poly C and Control Region Plasmids Sequencing Reactions

Forward and reverse sequences for each poly C or control region plasmid were 

generated with BigDye Terminator version 3.1 (Applied Biosystems). In general, each 

20pL sequencing reaction was prepared as follows: IX Big Dye Terminator vl.l/v3.1 

Sequencing Buffer, 0.25X Big Dye Terminator v3.1 Sequencing Reaction Mix, lOpM of 

T7 (20mer; Promega) or Sp6 (19mer; Promega) promoter primer, lOpL of purified 

plasmid DNA, and the appropriate volume of sdlfyO. Sequencing reactions were 

performed in a thermal cycler and conditions consisted of a hot start at 94°C for 5 

minutes followed by 26 cycles of 94°C for 45 seconds, 50°C for 30 seconds, and 60°C 

for 4 minutes.

DTR Gel Purification o f  BigDye v3.1 Sequencing Reactions

Excess dye was removed via Performa Dye Terminator Removal (DTR) Gel

Filtration Cartridges (Edge Biosystems). Each cartridge was centrifuged at 3,000 rpm for

2 minutes to dry the filter and subsequently transferred to a fresh centrifuge tube, in
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which the 20p,L sequencing reaction was added. The DTR column with sequencing 

reaction was centrifuged again at 3,000 rpm for 2 minutes and resulting filtrate was 

vacuum dried for 1.25 hours.

Analysis o f Sequencing Reactions

Dried, purified sequencing reactions were resuspended in 12p,L Hi-Di Formamide 

and transferred to a 96-well plate. Sample plates were placed in a thermal cycler for 3 

minutes at 95°C to allow for sample denaturation. Sequencing samples were processed at 

the College of William and Mary with an ABI 3130 Genetic Analyzer. Base calling was 

accomplished with Sequencing Analysis version 5.2 (Applied Biosystems) software. 

Sequencing analyses were performed with MacVector version 9.0 (Accelrys, Inc.),

4Peaks version 1.7.2 (Mek&Tosj.com), and WebLogo version 3.0 (Threeplusone.com). 

Helicobacter pylori Strain Designation from Sequencing Data

From the nine H. pylori genome sequences recognized by the National Center for 

Biotechnology Information (NCBI), we found that no two strains were identical in the 

variable poly C region of roughly 300 base pairs or the control region of 248 base pairs 

(3, 4, 19, 26, 27, 28, 40, 64, 66). The most closely related H. pylori strains regarding the 

poly C region were 26695 and HPAG1, which differed by two nucleotides outside of the 

poly cytosine tract (40, 66). For the control region, the most closely related H. pylori 

strains were 51 and Shi470, which exhibited a single nucleotide polymorphism in this 

region (26, 27). Thus, one base pair differences, when disregarding poly cytosine tract 

length polymorphisms, were our metric for the denotation of individual H. pylori strains 

within specific gastric populations. However, if deletions were present in the primer
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binding regions of the poly C or control region cloned sequences, these polymorphisms 

were not considered evidence for a difference in H. pylori strain.
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Chapter 3 

Results

arsS Poly C Region AFLP-PCR Amplicons Vary in Length Among and Within 

Clinical Helicobacter pylori Populations

Amplified fragment length polymorphism polymerase chain reactions (AFLP- 

PCR) were utilized to determine whether homopolymeric cytosine tracts of arsS differed 

in length among and within populations of H. pylori. An experimental and a control 

region of arsS were amplified in these reactions and analyzed via AFLP. The 

experimental poly C region encoded portions of the 3’ arsS terminus and the 5’ terminus 

of an essential downstream gene, hemB, (Forsyth, unpublished) as well as the cytosine 

tract of arsS. Our data suggest that different fragment lengths of the arsS poly C region 

could be amplified via AFLP-PCR from each of the clinical H. pylori populations 

investigated and detected via AFLP analyses.

By averaging corresponding AFLP data generated from the nine AFLP-PCR trials

performed, bar graphs representing arsS poly C region amplicon lengths and relative

frequencies were produced. For example, AFLP data generated from the population

infecting the antrum of patient B256 are shown in Figure 3.1. Differences in arsS poly C

region fragment lengths, measured in base pairs, are represented on the x-axis. The

relative frequency of each fragment length, measured in percentage, is represented on the

y-axis. Thus, the arsS poly C region fragment length of 303 base pairs is amplified most

readily from the gDNA of this particular H. pylori population, as this amplicon is

representative of 38.34% of all fragments produced (Figure 3.1). Furthermore, fragment

lengths of 302 and 304 base pairs are the next two most prevalent fragments generated as
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they represent 29.13% and 18.16% of all amplicons, respectively (Figure 3.1). Standard 

deviations calculated from the relative fragment frequencies of all AFLP trials are 

represented by error bars (Figure 3.1). Standard deviations represent relative fragment 

length frequency variations among the nine AFLP trials. Similar bar graphs representing 

the arsS poly C region AFLP data from all clinical H. pylori populations are located in 

Appendix 2A, AFLP Data from Poly C Regions of H. pylori Populations.

arsS Poly C Region AFLP Data from the Antrum Population of
Patient B256
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Figure 3.1: arsS poly C region AFLP data from the antrum H. pylori population o f  
patient B256. This bar graph was developed with AFLP data generated from the H. 
pylori population derived from the antrum ofpatient B256. The x-axis represents various 
arsS fragment lengths, measured in base pairs, which were produced via AFLP-PCR.
The y-axis represents the relative frequency o f  each fragment length produced from this 
particular population. Error bars indicate the standard deviations o f the various 
fragment lengths, which are representative o f relative fragment length frequency 
variations among the nine AFLP trials.
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Predominant arsS Poly C Region AFLP-PCR Amplicons Vary in Length Among 

Clinical Helicobacter pylori Populations

AFLP results indicated that the presence of multiple arsS poly C region amplicons 

was a characteristic of all H. pylori populations, but the most predominant fragment 

length was not always similar among populations (Table 3.1). The total number of 

different poly C region fragments detected via AFLP ranged from six to nine indicating 

that multiple amplicons could be generated from the gDNA of each clinical H. pylori 

population. Among all thirty-six H. pylori populations, fragment length 302 was the 

most predominant in thirteen populations (36.1%) and fragment length 301 was the most 

predominant in nine populations (25.0%). Furthermore, populations among the different 

gastric regions of five patients exhibited the same predominant poly C region fragment 

length (Table 3.1). However, the populations among the different gastric regions of the 

other seven patients had variable predominant poly C region fragment lengths (Table

3.1).

Table 3.1: Summary of poly C region AFLP data from H. pylori populations
Patient 

Number and 
Gastric 

Region of 
H. pylori 

Population"

Number of 
arsS Poly C 

Region 
Fragments 
Detected6

Predominant 
arsS Poly C 

Region 
Fragment 

Length (bp) 
Detected^

Predominant 
arsS Frame 

Derived from 
Fragment 

Data*

Frequency 
of arsS 

Frame (% /

Significance 
of arsS 
Frame 

(p-V alue/

B215 Antrum 7 301 1 44.88 <0.001
B215 Cardia 7 301 1 44.7 <0.001
B215 Corpus 6 301 1 45.38 <0.001

B221 Antrum 6 302 2 45.79 <0.001
B221 Cardia 6 302 2 44.46 <0.001
B221 Corpus 6 302 2 44.17 <0.001
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B253 Antrum 7 301 1 45.02 <0.001
B253 Cardia 7 301 1 45.48 <0.001
B253 Corpus 6 301 1 45.93 <0.001

B256 Antrum 7 303 3 40.17 <0.001
B256 Cardia 7 303 3 42.22 <0.001
B256 Corpus 7 302 2 37.96 <0.070

B266 Antrum 6 300 3 43.12 <0.005
B266 Cardia 6 300 3 43.82 <0.001
B266 Corpus 8 301 1 37.44 <0.250

B268 Antrum 6 302 2 45.79 <0.001
B268 Cardia 7 303 3 41.41 <0.001
B268 Corpus 6 302 2 47.1 <0.001

B284 Antrum 8 304 1 36.85 <0.001
B284 Cardia 9 303 2 34.06 <0.300
B284 Corpus 9 304 1 37.23 <0.001

B292 Antrum 7 302 2 40.85 <0.001
B292 Cardia 8 302 2 40.86 <0.001
B292 Corpus 7 302 2 40.91 <0.001

B294 Antrum 7 299 2 39.04 <0.010
B294 Cardia 6 300 3 43.38 <0.001
B294 Corpus 6 300 3 43.14 <0.001

B295 Antrum 9 302 2 36.76 <0.500
B295 Cardia 7 304 1 37.84 <0.010
B295 Corpus 6 301 1 44.05 <0.001

B300 Antrum 6 300 3 42.89 <0.001
B300 Cardia 7 301 1 37.19 <0.250
B300 Corpus 6 300 3 43.63 <0.001

B301 Antrum 6 302 2 45.47 <0.001
B301 Cardia 6 302 2 43.51 <0.001
B301 Corpus 7 302 2 43.33 <0.001
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a The patient number and their gastric region from which the H. pylori population was 
derived. Populations were collectedfrom the gastric antrum, cardia, and corpus o f  
twelve patients.
b The total number o f  arsS poly C region fragment lengths generated from any o f  the nine 
AFLP-PCR trials and detected via AFLP.
c The predominant poly C region fragment length determined from fragment length 
frequency averages calculated with data from all AFLP trials.
d The predominant arsS open reading frame as determined with the extrapolation ofpoly 
C region fragment length data. Poly C region fragment lengths that varied by three or 
six base pairs were summed to determine arsS open reading frame frequencies. 
e The predominant arsS open reading frame frequency.
f  The largest p-value o f the predominant arsS open reading frame when tested against the 
other two open reading frames. This statistic was determined with a Student’s T-test.
Blue and purple rows indicate gastric populations from individual patients that encoded 
different predominant arsS open reading frames among each other. This was significant 
(p<0.05) in the populations o f two patients (purple rows). White rows indicate gastric 
populations from individual patients that encoded the same predominant arsS open 
reading frame among each other.

Variant arsS Open Reading Frames are Encoded Within Clinical Helicobacter pylori 

Populations

As we determined that various arsS poly C region fragment lengths could be 

amplified from all H. pylori populations, we hypothesized that these fragment lengths 

could represent different open reading frames of arsS. Considering that the genetic code 

is translated into protein via codons, or three adjacent nucleotides, fragment lengths that 

varied by three and six base pairs could be considered to be of the same arsS open 

reading frame. On the contrary, fragments that varied in size by one or two and four or 

five base pairs could be considered to be of different arsS open reading frames. Thus, 

arsS open reading frame frequencies were calculated by summing the frequencies of 

fragment lengths that varied by three and six base pairs. In Figure 3.2, the extrapolation 

of arsS open reading frame frequency from poly C region fragment length frequency is 

color-coded. Therefore, fragment lengths corresponding to a particular open reading
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frame are of the same color. For example, when poly C region AFLP data are converted 

into arsS open reading frame data, frame 3 predominates in the H  pylori population from 

the antrum of patient B256 (Figure 3.2B). However, arsS open reading frames 1 and 2 

are present, albeit at lower relative frequencies. In fact, similar data analyses from all 

populations indicated that each potential open reading frame of arsS was always present. 

The graphical representations of arsS open reading frame frequencies from all clinical H. 

pylori populations are located in Appendix 2A, AFLP Data from Poly C Regions of H. 

pylori Populations.
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arsS Poly C Region AFLP Data from the Antrum Population of
Patient B256
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region fragment length data were converted into arsS open reading frame data by 
summing the frequency o f fragment lengths that varied by three or six base pairs. Data 
representative o f fragment frequency (A) were summed according to color for their 
conversion into data representative o f open reading frame frequency (B). Poly C region 
fragment lengths (A) and arsS open reading frames (B) are indicated on the x-axes. The 
frequency o f fragment lengths (A) and open reading frames (B) are located on the y-axes. 
Error bars indicate their standard deviations.

Predominant arsS Open Reading Frames are Encoded Among Clinical Helicobacter 

pylori Populations

As different predominant poly C region fragment lengths were detected among 

the H. pylori populations, variant predominant arsS open reading frames were determined 

as well (Table 3.1). Thus, if the predominant fragment length varied among populations 

in a particular patient, then the associated open reading frame differed as well. The 

predominant arsS open reading frame remained the same for populations from all gastric 

regions of five of the twelve patients in this study. These patients are represented by 

white rows in Table 3.1. However, in seven patients, predominant open reading frames 

differed among the populations of their gastric regions. These patients are represented by 

blue or purple rows in Table 3.1. In five of these seven patients, the arsS open reading 

frame variation was not significant (p<0.05) among their populations, which is signified 

by blue rows in Table 3.1. Conversely, variations in predominant arsS open reading 

frame among the gastric regions of an individual patient were significant (p<0.05) in two 

cases, which are represented by purple rows in Table 3.1. For instance, the antrum and 

corpus H. pylori populations of patient B268 had more cells that encoded the second 

open reading frame of arsS than did the population from the cardia. On the contrary, the 

cardia population had more cells that encoded for the third frame of arsS. While not 

always significant (p<0.05), 58.3% of the patients exhibited populations that encoded
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different predominant arsS open reading frames among their gastric regions. However, 

populations from 41.7% of the patients significantly (p<0.05) encoded for the same arsS 

open reading frame among their gastric regions.

arsS Control Region AFLP-PCR Amplicons Vary in Length Among and Within 

Clinical Helicobacter pylori Populations

As a control, an arsS region of 248 base pairs and upstream of the cytosine tract 

was amplified via AFLP-PCR for AFLP analysis. H  pylori populations from patients 

B284 and B294 were used for the generation of control region AFLP-PCR. This region 

was not expected to be polymorphic in nucleotide length based on NCBI sequence data 

for H. pylori strains. However, our data indicate that amplicons of different length could 

be generated from this region of arsS with our current methods. For example, three 

fragment lengths were detected from the antrum H. pylori population of patient B284 

(Figure 3.3). Even though multiple fragment lengths were detected, the frequencies of 

control region fragments were much different than those of the poly C region (Figure

3.1). Shown in Figure 3.3, fragment length of 249 base pairs represents 76.89% of all 

amplicons generated. The fragment lengths of 248 and 247 base pairs represent 20.74% 

and 2.37% of all amplicons, respectively (Figure 3.3). Similar bar graphs representing 

the remaining control region AFLP data from patients B284 and B294 are located in 

Appendix 2B, AFLP Data from Control Regions of H. pylori Populations.
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arsS Control Region AFLP Data from the Antrum Population of
Patient B284
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Figure 3.3: arsS control region AFLP data front the antrum H. pylori population of 
patient B284. This bar graph was developed with AFLP data generated from the H. 
pylori population derived from the antrum ofpatient B284. The x-axis represents various 
arsS fragment lengths, measured in base pairs, which were produced via AFLP-PCR.
The y-axis represents the relative frequency o f  each fragment length producedfrom this 
particular population. Error bars indicate the standard deviations o f  the various 
fragment lengths, which are representative o f  relative fragment length frequency 
variations among the nine AFLP trials.

Predominant arsS Control Region AFLP-PCR Amplicons Vary in Length Among 

Clinical Helicobacter pylori Populations

The number of control region amplicons detected from any of the investigated

populations ranged from three to four (Table 3.2). All gastric populations of patient

B284 and the antrum population of patient B294 exhibited three control region

amplicons. However, four fragments could be detected with AFLP data from the cardia

and corpus populations of patient B294 (Table 3.2). Even though the control region was

not suspected of being polymorphic in length, different predominant control region
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amplicon lengths were detected among populations from different gastric regions of both 

patients. A fragment length of 249 base pairs was determined to predominant in the 

antrum and corpus populations of patient B284 as well as the antrum population of B294. 

However, a predominant fragment length of 250 base pairs was detected from the other 

three populations (Table 3.2)

Table 3.2: Summary of control region AFLP data from H. pylori populations
Patient Number and 

Gastric Region of 
H. pylori Population"

Number of arsS Control 
Region Fragments 

Detected*

Predominant arsS Control 
Region Fragment Length 

(bp) Detected0

B284 Antrum 3 249
B284 Cardia 3 250
B284 Corpus 3 249

B294 Antrum 3 249
B294 Cardia 4 250
B294 Corpus 4 250

a The patient number and their gastric region from which the H. pylori population was 
derived. Populations were collected from the gastric antrum, cardia, and corpus o f these 
patients.
b The total number o f  arsS control region fragment lengths generated from any o f the 
three AFLP-PCR trials and detected via AFLP.
c The predominant control region fragment length determined from fragment length 
frequency averages calculated with data from all AFLP trials.

Cloned arsS Poly C Region Sequences Encode Variable Poly cytosine Tract Lengths 

Among and Within Clinical Helicobacter pylori Populations

Plasmid clones encoding the poly C region were generated to verify that differing

AFLP-PCR amplicons were due to polymorphic cytosine tract lengths encoded in the 3’

terminus of arsS. Ten poly C region plasmid clones using gDNA templates from each

population were produced and both strands were sequenced. Poly C region sequences

confirmed that cytosine tract lengths of arsS varied among and within the clinical H.

pylori populations (Figure 3.4). Among all populations, the length of the polycytosine
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tracts ranged from eight to seventeen consecutive cytosines. Differently colored bars 

represent the variable tract lengths in Figure 3.4. Within each population, the number of 

plasmid clones with specific cytosine tract lengths also varied, which are represented by 

stacked columns (Figure 3.4).

Poly C region sequence data indicate that at least two cytosine tract lengths are 

present among H. pylori cells within each population (Figure 3.4). Furthermore, up to six 

different polycytosine tract lengths were observed from the cardia H. pylori population of 

patient B284 and the antrum population of patient B295 (Figure 3.4B). Of the thirty-six 

H. pylori populations in this study, twelve (33.3%) had H. pylori possessing three 

different poly cytosine tract lengths, eleven (30.6%) had cells with four variant lengths, 

and seven (19.4%) populations exhibited five different tract lengths (Figure 3.4). We 

detected only two variable poly cytosine tract lengths in just four H. pylori populations 

(11.1%) (Figure 3.4).
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Figure 3.4: Differences in polycytosine tract lengths among all H. pylori populations.
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This stacked bar graph represents the number o f clones (stacked columns) within each H. 
pylori population that exhibited differences in polycytosine tract length (different bar 
colors). For A and B, the x-axes represent the patient number and gastric regions from  
which the H. pylori populations were derived. The y-axes represent the differing number 
o f clones with variable tract lengths. Among populations, polycytosine tracts were 
observed to deviate in length by eight to seventeen consecutive cytosines. Within each 
population, sequence data indicate that at least two and as many as six distinct 
polycytosine tract lengths could be detected. (A) Polycytosine tract lengths o f  arsS poly 
C region clones generated from the gastric populations ofpatients B215, B221, B253, 
B256, B266, and B268. (B) Polycytosine tract lengths o f  arsS poly C region clones 
generated from the gastric populations o f patients B284, B292, B294, B295, B300, and 
B301.

Cloned arsS Poly C Region Sequences Reveal Predominant Poly cytosine Tract 

Lengths Among Clinical Helicobacter pylori Populations

Poly C region clones varied in their polycytosine tract lengths among H. pylori 

populations as well as their predominant tract lengths. Examination of the data presented 

in Figure 3.4 shows that cytosine tract lengths of twelve, thirteen, and fourteen are clearly 

the most frequently represented among the populations. Of 360 poly C region clones, a 

cytosine tract length of thirteen was identified in 144, or 40% of all plasmid clones. 

Furthermore, a cytosine tract length of twelve was recognized in 89 cloned arsS poly C 

region sequences, or 24.7% of all clones. Sequence data also indicated that 57 clones had 

cytosine tract lengths of fourteen, which represents 15.8% of all clones. Thus, 80.5% of 

all cloned sequences possessed one of these three predominant polycytosine tract lengths, 

whereas all other tract lengths contributed to 20.4% of all clones.

Cloned arsS Poly C and Control Region Sequences Vary in Length Among Clinical 

Helicobacter pylori Populations Due to Deletions in Primer Binding Regions

Sequencing data indicated that single nucleotide deletions could be detected in the 

primer binding regions of the amplicons utilized to generate clones encoding the poly C
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and control regions of arsS. Though rare, these deletions were present in five (1.4%) of 

the 360 cloned poly C region sequences and in two (3.3%) of the 60 cloned control 

region sequences. These deletions likely affected AFLP sizing data, but were not 

considered evidence for divergent strains in sequencing analyses. Instead, these 

differences were speculated to be due to primer synthesis errors.

Cloned arsS Poly C Region Sequences Indicate Different Helicobacter pylori Strains 

Within Populations

When ClustalW alignments were performed to compare cloned poly C region 

sequences within single populations, our data indicate that different strains of H. pylori 

were present. Given that one nucleotide polymorphisms, disregarding variant 

polycytosine tract lengths, were our metric for strain determination; nucleotide sequences 

that were identical within a gastric population were considered to be of the same strain 

and sequences that encoded nucleotide substitutions were considered to be of distinct 

strains. In fact, we frequently observed clones that encoded no sequence polymorphisms, 

as at least five to as many as ten clones were homologous within individual populations. 

We also clearly observed cloned sequences that differed in nucleotide sequence by one 

base pair to as many as eleven base pairs. Thus, we found that twenty-nine (80.6%) of 

the thirty-six populations contained multiple strains of H. pylori. These are represented 

by stacked columns of various colors (Figure 3.5). On the contrary, sequence data 

indicate that the remaining seven (19.4%) H. pylori populations consisted of only one 

strain, which are indicated by columns of the same color in Figure 3.5.
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Figure 3.5: Number o f sequence polymorphisms outside o f the polycytosine tract
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among poly C region plasmid clones from  H. pylori populations. This stacked bar 
graph represents the number o f  clones (stacked columns) within each H. pylori 
population that exhibited differences in nucleotide sequence. Here, differently colored 
bars indicate the number o f sequence polymorphisms relative to the sequence observed 
most often. For A and B, the x-axes represent the patient number and gastric regions 
from which the H. pylori populations were derived. The y-axes represent the differing 
number o f  clones with variable nucleotide polymorphisms. Within each population, data 
indicate that there are poly C region sequences that exist with and without 
polymorphisms when disregarding the polycytosine tract length. For example, five 
clones generated from the corpus population ofpatient B266 were identical. In 
comparison, two o f the other five clones had a single nucleotide polymorphism and the 
remaining three cloned sequences possessed two polymorphisms. (A) Number o f  
sequence differences among arsS poly C region clones generated from the gastric 
populations o f  patients B215, B221, B253, B256, B266, and B268. (B) Number o f  
sequence differences among arsS poly C region clones generated from the gastric 
populations o f  patients B284, B292, B294, B295, B300, andB301.

Cloned arsS Poly C Region Sequences Indicate Predominant Helicobacter pylori 

Strains Within Populations

Among poly C regions clones generated from the same H. pylori population, data 

clearly indicate that there are a large number of cloned arsS poly C region sequences that 

do not possess polymorphisms when disregarding polycytosine tract lengths (Figure 3.5). 

Thus, we interpret this vast quantity of identical clones as evidence that indicates each 

clinical population appears to have a predominant strain, even when multiple strains are 

present.

Less obvious in Figure 3.5 are the estimated number of strains within each 

population. This is due to the observation that none of the deviant poly C region 

sequences matched one another within a single population. For instance, the corpus 

population of patient B266 is estimated to have six different strains of H. pylori. This 

number of strains was contrived by considering the five clones without polymorphisms as 

one strain and the five clones with polymorphisms as five separate strains (Figure 3.5).
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An alternative representation of the total number of strains detected within each H. pylori 

population is shown in, Figure 3.6.

Figure 3.6 indicates that one primary strain and as many as six secondary strains 

could be detected among clones generated from the same H. pylori populations. In seven 

of the populations, the H. pylori infection appears to be monoclonal, or consisting of a 

single strain. However, populations with a multiple number of strains were detected 

more frequently. This sort of strain variation was observed in twenty-nine of the thirty- 

six populations in the current study (Figure 3.6). Interestingly, none of the patients 

appear to have a monoclonal infection in all three of their gastric regions sampled. For 

example, patient B292 appears to have two monoclonal populations located in their 

gastric cardia and corpus, but possesses a polyclonal population in the gastric antrum. 

Furthermore, seven patients lack monoclonal populations altogether, whereas the five 

other patients have at least one monoclonal population (Figure 3.6). Whether the 

infection was monoclonal or polyclonal, predominant strains were still obviously 

apparent within all clinical populations.
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Figure 3.6: Estimated number o f strains within H. pylori populations via poly C region
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clones. This stacked bar graph represents the number o f clones (stacked columns) within 
each H. pylori population that were considered to be o f  different strains. Variously 
colored bars indicate the primary strain (purple) and secondary strains (assorted colors). 
Interestingly, none o f the secondary strains were detected twice within or among H. 
pylori populations. For A and B, the x-axes represent the patient number and gastric 
regions from which the H. pylori populations were derived. The y-axes represent the 
differing number o f clones representing different strains. Within each population, 
sequence data indicate that there are predominant strains (primary strain), which are 
represented more frequently than the others (secondary strains). Thus, data suggest that 
seven o f the populations consist o f  only the primary strain. However, data also suggest 
that secondary strains are observed in twenty-nine populations. (A) Estimated number o f  
strains contrived with data from arsS poly C region clones generated from the gastric 
populations o f patients B215, B221, B253, B256, B266, and B268. (B) Estimated number 
o f strains contrived with data from arsS poly C region clones generatedfrom the gastric 
populations o f patients B284, B292, B294, B295, B300, and B301.

Cloned arsS Poly C Region Sequences Indicate Predominant Helicobacter pylori 

Strains Amons Populations of an Individual Patient

Now that we had established that predominant strains were evident within each of 

the clinical populations, we set out to determine if there were similar predominant strains 

among the gastric regions of all patients. Thus, we performed ClustalW alignments with 

the cloned poly C region sequences that were previously shown to be predominant within 

single populations (Figure 3.6). Interestingly, we found that if a predominant H. pylori 

strain was detected in one patient that strain would not be found in another patient, no 

matter the gastric location of the strain. For instance, if an H. pylori strain was detected 

in a population from patient B301, the same strain could not be detected in any of the 

other eleven patients. However, we did find that the same predominant strains could be 

detected among the gastric regions of an individual patient.

Each patient was infected with H. pylori populations that had an identical 

predominant strain observed in at least two of their gastric regions. As an example, data 

from populations of patient B253 indicate that the predominant strain of the corpus was
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also the same predominant strain of the antrum and cardia. Keeping in mind that only 

strains within a patient were identical, predominance of the same strain among all gastric 

regions was observed in nine (75%) of the twelve patients in this study.

In each of the three remaining patients, we found that two of their gastric regions 

contained the same predominant strain, but their third gastric region had a dissimilar 

predominant strain. For example, patient B221 had the same predominant H. pylori 

strain in their antrum and cardia populations, but had a dissimilar predominant strain in 

their corpus population. The correlations concerning predominant strains and dissimilar 

predominant strains are shown in Figure 3.7. This stacked bar graph is only 

representative of clones that were previously determined to be from predominant strains; 

secondary strains have been removed for easier interpretation. Here, purple bars 

represent the number of cloned sequences that were of the same predominant strain from 

at least two gastric regions within an individual patient, which are denoted as the primary 

predominant strain. Furthermore, green bars indicate the number of clones that were of a 

dissimilar predominant strain in a particular gastric region of an individual patient, which 

we have indicated as the secondary predominant strain (Figure 3.7).
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Figure 3.7: Primary and secondary predominant strains o f  H. pylori populations
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determined with poly C region clones. This bar graph represents the number o f clones 
within each H. pylori population that originated from predominant strains. Here, 
differently colored bars indicate whether the predominance was primary or secondary, in 
respect to populations from particular patients. For A and B, the x-axes represent the 
patient number and gastric regions from which the H. pylori populations were derived. 
The y-axes represent the differing number o f clones representing predominant strains. 
Among the populations o f an individual patient, sequence data indicate that there is a 
primary predominant strain (purple), which is represented in at least two o f  their gastric 
locations. Furthermore, secondary predominant strains (green) arise in one gastric 
region population ofparticular patients. Thus, data suggest that nine o f the patients have 
only primary predominant strains among their gastric populations. However, data also 
suggest that secondary predominant strains are present in one gastric population o f three 
patients. (A) Primary and secondary predominant strains determined with data from arsS 
poly C region clones generated from the gastric populations ofpatients B215, B221,
B253, B256, B266, and B268. (B) Primary and secondary predominant strains 
determined with data from arsS poly C region clones generated from the gastric 
populations o f patients B284, B292, B294, B295, B300, andB301.

Cloned arsS Control Region Sequences Indicate Different Helicobacter pylori Strains 

Within Populations

Similar to data from poly C region clones, we observed the existence of different 

strains in our arsS control region cloned sequences as well. Again, polymorphisms in the 

cloned control region sequences allowed us to detect different strains within specific 

populations. Figure 3.8 shows the number of sequence differences in control region 

clones with respect to the cloned sequence observed most often. More frequently, we 

noticed that sequences from particular populations were without polymorphisms, which 

were indicative of one strain. On the contrary, one to as many as twenty-one nucleotide 

polymorphisms could be detected from the clones of the six populations. Thus, data 

suggest that four of these populations consist of multiple H. pylori strains, which are 

indicated by stacked columns of various colors (Figure 3.8). Furthermore, data suggest 

that only one strain could be detected in two of the populations, which are represented by 

columns of one color (Figure 3.8).

55



Number of Sequence Differences Among Control Region Clones

□  N o  Polym orphism s □  1 nt Polym orphism  □  2 nt Polym orphism s

□  4 nt Polym orphism s □  19 nt Polym orphism s □  20  nt Polym orphism s

□  21 nt Polym orphism s

1 1 1 1

1 1 1

1

1

9
10 2 10

8

4

B284 Antrum B284 Cardia B284 Corpus B294 Antrum B294 Cardia B294 Corpus

Patient Number and Gastric Region of H. pylori Population

Figure 3.8: Number o f sequence differences among control region clones within 11. 
pylori populations. This stacked bar graph represents the number o f  clones (stacked 
columns) within each H. pylori population that exhibited differences in nucleotide 
sequence. Here, differently colored bars indicate the number o f  sequence polymorphisms 
relative to the sequence observed most often. The x-axis represents the patient number 
and gastric regions from which the H. pylori populations were derived. The y-axis 
represents the differing number o f  clones with variable nucleotide polymorphisms. Within 
each population, data indicate that there are sequences that exist with and without 
polymorphisms. Specifically, this graph shows the number o f  sequence differences 
among arsS control region clones generated from the gastric populations ofpatients 
B284 and B294.

Cloned arsS Control Region Sequences Indicate Predominant Helicobacter pylori 

Strains Within Populations

Since cloned control region sequences suggested that four populations consisted 

of multiple strains, we set out to estimate how many strains were present within each 

population as we did for cloned poly C region sequencing data. ClustalW alignments 

suggested that one primary strain to as many as six secondary strains could be detected
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from control region clones (Figure 3.9). Monoclonal populations were observed in the 

corpus populations from patient B284 and B294 (Figure 3.9). Interestingly, a 

monoclonal corpus population of patient B294 was also suggested by cloned poly C 

region sequence data (Figure 3.6). However, cloned poly C region sequence data 

suggested that the corpus B284 population was not monoclonal (Figure 3.6).

One primary strain and five secondary strains were detected in the antrum 

population of patient B294 (Figure 3.9). Interestingly, two clones from the antrum 

population of patient B294 were representative of the same secondary strain. This was a 

characteristic that had not been previously observed in cloned poly C region data (Figure 

3.7).
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Figure 3.9: Estimated number o f strains within H. pylori populations via control 
region clones. This stacked bar graph represents the number o f clones (stacked 
columns) within each H. pylori population that were considered to be o f  different strains. 
Here, differently colored bars indicate the primary strain (purple) and secondary strains
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(various colors). The x-axis represents the patient number and gastric regions from  
which the H. pylori populations were derived. The y-axis represents the differing number 
o f clones representing different strains. Within each population, sequence data indicate 
that there are predominant strains (primary strain), which are represented more 
frequently than the others (secondary strains). Thus, data suggest that two o f  the 
populations consist o f  only the primary strain. However, data also suggest that 
secondary strains are observed in four populations. Specifically, this graph shows the 
estimated number o f strains contrived with data from arsS control region clones 
generated from the gastric populations ofpatients B292 and B294.

Cloned arsS Control Region Sequences Indicate Predominant Helicobacter pylori 

Strains Among Populations of an Individual Patient

Predominant strains were apparent from the graph representing the estimated 

number of strains within each control region population (Figure 3.9). Thus, we set out to 

determine the relatedness of control region clones amongst populations as we did for poly 

C region clones. Again we found that primary predominant strains existed in at least two 

gastric regions of the patients. However, one gastric region of both patients was 

colonized with secondary predominant strains (Figure 3.9). For instance, the cardia 

population of patient B284 consisted of a secondary predominant strain that was different 

than the primary predominant strain of the antrum and corpus (Figure 3.10). Cloned 

control region sequence data suggesting a secondary predominant strain in the cardia of 

patient B284 was congruent with cloned poly C region sequence data (Figure 3.7)

A primary predominant strain was also detected in the cardia and corpus 

populations of patient B294. Interestingly, this primary predominant strain and a 

secondary predominant strain were found in the antrum population of patient B294.

Here, clones generated from the secondary predominant strain actually outnumbered the 

clones produced from the primary strain (Figure 3.10). Poly C region data did not 

previously indicate a secondary predominant strain in any of the populations of patient
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B294 (Figure 3.7). Thus, cloned poly C region sequences for predominant strains of the 

antrum of patient B294 population were always identical, yet cloned control region 

primary and secondary predominant sequences were not (Figure 3.10).

Primary and Secondary Predominant Control Region Sequences 
Among H. pylori Populations of Individual Patients
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Figure 3.10: Primary and secondary predominant strains o f H. pylori populations 
determined with control region clones. This bar graph represents the number o f clones 
within each H. pylori population that originated from predominant strains. Here, 
differently colored bars indicate whether the predominance was primary or secondary, in 
respect to populations from the particular patients. The x-axis represents the patient 
number and gastric regions from which the H. pylori populations were derived. The y- 
axis represents the differing number o f clones representing predominant strains. Among 
the populations o f an individual patient, sequence data indicate that there is a primary 
predominant strain (purple), which is represented in at least two o f their gastric 
locations. Furthermore, secondary predominant strains (green) arise in one gastric 
region population in both o f  these patients. Thus, data suggest that each o f  these patients 
has a primary and a secondary predominant strain among their gastric regions. 
Furthermore, a primary and a secondary predominant strain were detected in the antrum 
o f patient B294. This specific graph represents primary and secondary predominant 
strains determined with data from arsS control region clones generated from the gastric 
populations o f patients B284 and B294.
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The arsS Poly C Region is Variable Outside of the Poly cytosine Tract Among 

Helicobacter pylori Populations

When ClustalW alignments were executed with each of the 360 cloned poly C 

region sequences, another polymorphism in this region was detected. This difference in 

sequence was due to a thymine deletion downstream of the poly cytosine tract in 241 

(66.9%) of the arsS poly C region cloned sequences from all H. pylori populations. This 

polymorphism tended to be specific to clones generated from populations of particular 

patients. In fact, each of the thirty clones generated from eight of the patients possessed 

this single nucleotide deletion (Figure 3.11). Virtually none of the cloned sequences 

from any of the other four patients possessed the thymine deletion (Figure 3.11). 

However, one (0.28%) clone from the cardia population of patient B221 did possess this 

deletion, whereas the remaining twenty-nine clones of B221 did not. Thus, arsS was 

determined to possess a length polymorphism outside of the polycytosine tract. We 

hypothesize that this deletion adds to the arsS variation in H. pylori strains and may add 

to the functional complexity of the encoded sensory histidine kinase ArsS.
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Presence of a Deletion in arsS among Cloned Poly C Region 
Sequences from Gastric Populations of 12 Patients
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Figure 3.11: Presence o f a deletion amons arsS poly C region clones front each gastric 
population o f twelve patients. This pie chart is to reference the patients from which 
clones were generated that had a polymorphic deletion (purple) or did not (green). A 
clone that was generated from patient B221 (blue) had a deletion when the remaining 29 
clones from this patient did not.

Different arsS Open Reading Frames Arise Due to Changes in Poly cytosine Tract 

Length and the Polymorphic Deletion

With H. pylori arsS polycytosine tract length polymorphisms now well

documented among and within H. pylori populations, in silico translation of the cloned

poly C regions demonstrated that three different open reading frames arise. Thus,

differences in polycytosine tract lengths allow for the generation of three ArsS histidine

kinase isoforms. For simplicity, these isoforms are denoted by the last three amino acids

of their peptide sequence prior to their respective stop codons (*). For example, the 0

open reading frame of arsS gave rise to the PKI* ArsS isoform while the -1 open reading

frame of arsS allowed for the generation of the LWG* isoform (Figure 3.12). However,

alternative isoforms were translated from the +1 frame of arsS among the clinical

populations. These variations in +1 arsS open reading frame were due to the previously
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discussed polymorphic thymine deletion downstream of the polycytosine tract, which 

specifically occurs in one of the ArsS stop codons (Figure 3.12). Thus, if arsS possesses 

this functional stop codon and was transcribed in the +1 open reading frame, then the 

EKQ* ArsS isoform could be expressed (Figure 3.12). However, if the thymine deletion 

in that stop codon was present and arsS was transcribed in the +1 open reading frame, 

then the SND* isoform could be achieved (Figure 3.12). Interestingly, the stop codon for 

the SND* isoform is past the start codon of hemB (Figure 3.12).

arsR ^ arsS hemB ^ hp0162h
>  ,   ; • 7 .

5,...CTACCCCCCCCCCnGAAAATTTGAGAGAAGTGAGCGGAATGAAGGGGATAGAAAAAGCCAATTGTGGGGTTAAAGAAAAACAATAAAGAGAGAACATGTTCAAACGATTGA...3'f I f f 1 I
Polycytosine PKI* LWG* EKQ* hemB SND*

Tract Isoform Isoform Isoform Start Codon Isoform
(0 Frame) (-1 Frame) (+1 Frame) (+1 Frame)

Figure 3.12: Schematic o f the arsRS operon. The arsRS operon consists o f arsR. arsS, 
hemB. and a gene encoding for a hypothetical protein. Specifically, this diagram focuses 
on the 3 ’ terminus o f  arsS. Here, the arsS homopolymeric cytosine tract (blue) and 
associated stop codons o f the different arsS open reading frames (red) are shown. As the 
poly C  tract (blue) varies in length (Cn), different isoforms o f  ArsS arise because o f  
changes in the open reading frame. Interestingly, most o f  the clinical H. pylori 
populations were found to have a deletion o f the thymine located in the third stop codon, 
which allows for an alternate +1 open reading frame and isoform.

Different arsS Open Reading Frames are Present Within and Among Helicobacter 

pylori Populations Allowing for Different ArsS Isoforms

Cloned arsS poly C region sequences indicate different arsS reading frames and 

therefore different ArsS isoforms can be predicted within and among the clinical H. 

pylori populations. The 0 frame of arsS, encoding for the PKI* isoform (Figure 3.12), 

was observed in thirty-one (86.1 %) of the thirty-six H. pylori populations when arsS poly 

C region clones were translated in silico (Figure 3.13). Thus, a poly C region sequence
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capable of translating the PKI* isoform was not observed in five (13.9%) of the clinical 

populations (Figure 3.13). Conversely, the -1 frame of arsS, encoding the LWG* 

isoform (Figure 3.12), was detected in all thirty-eight of the clinical populations of H. 

pylori (Figure 3.13). The alternative +1 frames of arsS, encoding for the EKQ* and the 

SND* isoforms (Figure 3.12), were present in eleven (30.6%) and twenty-four (66.7%) 

populations, respectively (Figure 3.13). These low percentage values can be attributed to 

the observation that EKQ* or SND* isoforms were typically specific to populations 

infecting particular patients. Thus, the EKQ* isoform was present in eleven (91.6%) of 

the twelve populations that appeared to consist of strains that could encode the arsS 

alleles to produce this isoform. Furthermore, arsS alleles predicted to express the SND* 

isoform were detected in all of the H. pylori populations that had the thymine deletion in 

the third stop codon of arsS and thus had the ability to generate this isoform.

Interestingly, the ArsS LWG* isoform was predicted to be expressed by 158 

(43.9%) of the total 360 poly C region cloned sequences (Figure 3.13). The PKI* 

isoform was predicted to be expressed by 93 (25.8%) of the clones (Figure 3.13). 

Collectively, the alternative +1 frame isoforms represented 106 (29.4%) of the cloned 

arsS poly C region sequences. Separately, the EKQ* and SND* isoforms comprised 30 

(8.3%) and 76 (21.1%) of all clones. Three (0.8%) poly C region cloned sequences 

possessed deletions within the coding sequence that appeared to either truncate the 

predicted ArsS protein prior to the polycytosine tract or generate a variable C-terminal 

region (data not shown). Therefore, our data suggest that a number of arsS open reading 

frames are present among most of the clinical populations.
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In fact, the seven projected monoclonal H. pylori populations yielded arsS poly C 

region cloned sequences that were predicted to encode three of the four major ArsS 

isoforms (PKI*, LWG*, and EKQ* or SND*) (Figures 3.6 and 3.13). In all, thirty 

populations had at least one strain that could produce three of the main ArsS isoforms. 

However, cloned poly C region sequence data suggest that only two primary ArsS 

isoforms are translated within six of the H  pylori populations (Figure 3.13).

64



A

ArsS Isoforms Translated from arsS Poly C Region Clones 

□ PKI* □ LWG* □ EKQ* □ SND* □ Other
10

B

^  0^0° ^ 0 ^ 0 °  G / c ' . O 0 / / /  / V  c*«^VV «p»  ^V v  ^VV ^bW  ^VV
Patient Number and Gastric Region of H. pylori Population

ArsS Isoforms Translated from arsS Poly C Region Clones

□ PKI* □ LWG* □ EKQ* □ SND* □ Other
10

^  ^  #  <# S  &  f t  &  <<f ^  <<f/ c / /  / / /  / >  G / / /

Patient Num ber and G astric Region o f  H. pylori Population

Figure 3.13: Differences in ArsS isoform distribution among all H. pylori populations.
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This stacked bar graph represents the number o f clones (stacked columns) within each H. 
pylori population that exhibited differences in open reading frame to allow for the 
generation o f  different ArsS isoforms (different bar colors). For A and B, the x-axes 
represent the patient number and gastric regions from which the H. pylori populations 
were derived. The y-axes represent the differing number o f  clones capable o f  translating 
different ArsS isoforms. Among populations, four main ArsS isoforms were observed and 
these are denoted by the last three amino acids o f the peptide sequence. Within each 
population, sequence data indicate that at least two ArsS isoforms were present. (A) 
Distribution o f ArsS isoforms when translated in silico with cloned arsS poly C region 
sequences generatedfrom the gastric populations o f patients B215, B221, B253, B256, 
B266, and B268. (B) Distribution o f  ArsS isoforms when translated in silico with cloned 
arsS poly C region sequences generated from the gastric populations ofpatients B284, 
B292, B294, B295, B300, and B301.

The C-terminal Peptide Sequence of ArsS Isoforms is Variable

Changes in arsS open reading frame allow for the production of different ArsS 

isoforms with C-terminal regions of varying lengths and amino acid sequences (Figure 

3.12). The peptide sequences of the four main ArsS isoforms (Figure 3.13) can vary in 

length by two to as many as thirty-one amino acids past the final proline (P) encoded by 

the polycytosine tract (Figure 3.14). Thus, the shortest ArsS isoform, PKI*, only has two 

amino acids past this proline. Furthermore, the longest ArsS isoform, SND*, has thirty- 

one amino acids past the final proline. Obviously, changes in open reading frame 

dramatically alter the amino acid sequence among the different ArsS isoforms (Figure 

3.14). Interestingly, the EKQ* and SND* isoforms are very similar until the sequences 

diverge due to a deletion in the stop codon observed in the arsS encoding sequence of 

particular strains (Figures 3.12 and 3.14). Furthermore, there appears to be conservation 

within the peptide sequence for each of these isoforms, as their amino acid residues do 

not appear to vary greatly (Figure 3.14).

Figure 3.14 shows the probability (y-axes) of particular amino acid residues (x- 

axes) in the C-terminal region of the ArsS isoforms. These sequence logos indicate the
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hydrophobicity of the amino acid residues with green (neutral), black (hydrophobic), and 

blue (hydrophilic). Interestingly, hydrophobic and hydrophilic residues occur in 

relatively similar regions among the C-terminus of the ArsS isoforms (Figure 3.14).
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Figure 3.14: Variable C-terminal amino acid sequence o f the ArsS isoforms. These 
sequence logos show the C-terminal amino acid sequences past the polycytosine tract for  
PKI* LWG*, EKQ* and SND* ArsS isoforms. These were intended to show peptide 
sequence differences and conservation among and within the isoforms. The x-axes 
represent the amino acid sequences past the final proline (P) encoded by the polycytosine 
tract. The y-axes represent the probability o f an amino acid occurring at a specific site. 
Amino acids are also colored due to their hydropathy index values, where hydrophobic 
amino acids are black, hydrophilic are blue, and neutral are green. (A) Sequence logo 
for the PKI* isoform, which was generated with 93 cloned poly C region sequences from  
31 clinical populations. (B) Sequence logo for the LWG* isoform derived from 158 
cloned sequences from 36 clinical populations. (C) Sequence logo for the EKQ* isoform,
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which was generated with 30 cloned sequences from 11 populations. (D) Sequence logo 
for the SND* isoform derivedfrom 76 cloned poly C region sequences from 24 
populations. (A -  D) Variation is prevalent amongst isoforms, however it appears that 
peptide sequence differences are relatively similar when regarding the EKQ* and SND* 
isoforms. Within the C-terminal region o f these ArsS isoforms, sequence conservation 
exists in positions that vary in amino acid composition as all locations do not vary by 
more than a few amino acids.

68



Chapter 4 

Discussion

The published genome sequences of Helicobacter pylori clinical isolates 

demonstrate that each strain may possess a poly cytosine tract of specific length in the 3’ 

terminus of arsS (3, 4, 19, 26, 27, 28, 40, 64, 66). Furthermore, one study claimed that 

these different cytosine tract lengths cause frameshifts allowing for individual strains to 

encode for single arsS alleles, which are subsequently translated into particular ArsS 

isoforms (5). However, AFLP and sequencing data presented in this thesis research 

suggest that a single H. pylori strain is capable of encoding for multiple arsS alleles and 

therefore various ArsS isoforms. In concordance with this finding, the research group 

that sequenced H. pylori strain J99 observed that different arsS polycytosine tract lengths 

were present among sequencing reads (3). However, they suggested that these multiple 

tract lengths may have been generated while the organism was cultured in vitro. While 

we have no evidence that disputes this assertion, we do have data suggesting that from six 

to nine different arsS poly cytosine tract lengths could be detected within each of the 

thirty-six populations investigated.

The study describing the whole genome sequence of strain J99 states that only

three different polycytosine tract lengths could be detected with their methods, which

included minimal subculturing of the organism (3). We also used minimal subculturing

with our H. pylori populations, but were still able to frequently detect a larger number of

polycytosine tract lengths through AFLP and sequencing analyses. However, one may

argue that the larger quantity of tract lengths identified in this study may be due to the

fact that we investigated entire H. pylori populations and not individual isolates as
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previous studies have (3, 4, 19, 26, 27, 28, 40, 64, 66). This would be a valid argument, 

but considering we identified seven monoclonal H. pylori populations that appeared to 

possess arsS alleles with various polycytosine tract lengths, arsS of individual H. pylori 

strains ought to be considered polymorphic in polycytosine tract length.

The study describing the genome of H. pylori strain J99 indicated that there were 

nucleotide substitutions among the sequences they utilized to generate the entire genomic 

sequence (3). In the current study, we also detected nucleotide substitutions within 

regions of arsS, but considered each substitution outside of the polycytosine tract to be 

evidence of distinct strains. Thus, if we had considered such substitutions to be artifacts 

of the cloning or sequencing processes, as other researchers seemed to (3), more of our 

populations would likely have been considered to be monoclonal and still capable of 

generating a number of arsS alleles and ArsS isoforms. However, our approach did not 

ignore nucleotide substitutions, as NCBI-recognized sequenced strains indicate that at 

least one nucleotide difference can be detected when comparative genomic analyses are 

performed with the arsS regions pertinent to this project (3, 4, 19, 26, 27, 28, 40, 64, 66).

The finding that multiple fragment lengths could be detected from our control 

arsS region via AFLP is another way the validity of our claims could be disputed. Here, 

we contend that multiple fragment lengths of this region could also be detected through 

sequencing analyses due to deletions in the primer binding regions of the arsS poly C and 

control region amplicons. With a single nucleotide deletion in these regions, fragment 

length sizing data would obviously be affected by one base pair. Thus, we acknowledge 

that some poly C region and control fragment lengths may have been generated due to the 

misconstruction of oligonucleotide primers. Errors occurring in the primer synthesis
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process are likely inevitable, but the quantity of flawed primers used in this research were 

likely minimal as only seven (1.7%) out of four-hundred and twenty clones encoded 

deletions in such regions. Yet, these data still lead us to believe that these errors may 

have at least partially affected AFLP fragment length data.

Another way erroneous fragment sizes may have been generated is through the 

nonspecific binding of oligonucleotide primers due to the genomes of H. pylori being so 

remarkably plastic (1, 24). The primers used to amplify poly C and control region 

sequences in this research were developed using consensus sequences of strains 26695 

and J99 (3, 66). However, not all of the NCBI-recognized strains were always 

homologous in any of these short regions (3, 4, 19, 26, 27, 28, 40, 64, 66). Thus, not all 

of the strains within the populations utilized in this research were likely homologous in 

these regions either. Mismatches between oligonucleotide primers and the primer 

binding regions of the genomes may have promoted the mutagenesis of amplicons 

causing the insertion, deletion, or substitution of bases. If insertions or deletions were to 

occur, then AFLP fragment length data would be affected. However, the fact that 

sequencing analyses suggested that two-hundred and ninety (80.5%) of the total three- 

hundred and sixty clones encoded for three different, yet consecutive polycytosine tract 

lengths leads us to believe that at least three of the AFLP fragments detected within each 

population were real. Thus, arsS alleles encoding for three open reading frames of ArsS 

would also be existent within each population or, in some cases, each strain.

Conversely, an allegation such as this is disputed by the claim that individual H. 

pylori strains encode for a particular arsS allele and ArsS isoform (5). Beier et al. also 

claim that they have isolated the transmitter domain of individual ArsS isoforms and
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subsequently determined that these isoforms are not hindered in their kinase activities (5). 

They acknowledge that previous studies have shown that if the transmitter domain of a 

histidine kinase, such as ArsS, is expressed in vitro, then it will typically be constitutively 

“on” or able to autophosphorylate at all times (5). Therefore, these researchers expressed 

a “single” isoform of ArsS from three strains and demonstrate that these transmitter 

domains are able to autophosphorylate in the presence of radiolabeled ATP (5).

However, our data indicate that they may have expressed any of the ArsS isoforms from 

individual strains unless careful considerations were taken. This group states that each 

expression vector was sequenced to verify polycytosine tract length and thus the ArsS 

isoform expressed (5). However, they did not perform AFLP analyses on their plasmid 

preparations to confirm that only vectors encoding for one polycytosine tract length were 

present (5). Therefore, the ArsS protein that was able to autophosphorylate in each assay 

may have always been the same isoform. We make this claim because a control AFLP 

study was not utilized to authenticate that only one isoform was actually being utilized in 

their phosphorylation assays.

In spite of this, we do not hypothesize that only one isoform of ArsS is functional. 

Again, considering the plasticity of H. pylori genomes, we typically observed little 

variation within the C-terminal peptide sequences of particular ArsS isoforms among 

different bacterial populations (1, 24). For instance, the LWG* isoform, encoded by one- 

hundred and fifty-eight clones from all thirty-six populations, exhibited conservation in 

twelve (63.2%) of nineteen amino acid residues following the final proline encoded by 

the polycytosine tract. Furthermore, the remaining seven (36.8%) amino acids that were 

not conserved only varied by two amino acids at any of these locations. Similar

72



conservation is also observed among the remaining isoforms, most notably the PKI* 

isoform. The two amino acids between the final proline and the terminal end of this 

protein were always conserved in ninety-three clones from thirty-one different 

populations. Interestingly, the C-terminal peptide sequence of the EKQ* and SND* 

isoforms are similarly conserved until they diverge in length due to a previously 

unrecognized polymorphic deletion in the arsS encoding sequence.

When Beier et al. performed ArsS phosphorylation assays, the group only 

expressed the PKI*, LWG*, and EKQ* isoforms of the protein (5). However, they did 

not even recognize the SND* isoform as being existent, which could be due to two 

possibilities. One, they may have not utilized strains that possessed the thymine deletion 

in the third arsS stop codon and therefore only had strains capable of expressing EKQ*. 

The second possibility is they may have had strains with the deletion, but their 

sequencing analyses showed that the polycytosine tract was not of correct length to 

encode the necessary arsS open reading frame for SND* translation. In fact, this deletion 

is only observed in two (22.2%) of the nine NCBI-recognized H. pylori sequenced strains 

(3, 4, 19, 26, 27, 28, 40, 64, 66). However, the polycytosine tract lengths of these 

particular strains, J99 and B38, do not suggest that their 3’ terminal regions of arsS are in 

frame to allow for the generation of the SND* isoform (3, 64). Thus, the possibility 

exists that the ArsS histidine kinase SND* isoform has not been recognized until 

described in this current study.

Our data indicate that a large number of the populations investigated here have 

strains that encode for the polymorphic deletion. In fact, the presence of the deletion 

tended to be patient specific, rather than population or even strain specific. Thus, we
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detected the deletion in each of the thirty clones from the gastric populations of eight 

patients. Furthermore, we also observed the deletion in only a single cloned arsS poly C 

region amplicon derived from an H. pylori population that seemed to mostly consist of 

strains that did not possess this stop codon deletion. In total, we observed that 241 

(66.9%) of 360 cloned arsS poly C region sequences possessed the thymine deletion. Of 

these, seventy-six (31.5%) encoded poly cytosine tracts of specific lengths allowing for 

SND* translation.

The fact that we have observed eight (66.7%) of our twelve patients to be infected 

with strains that only seem to encode for the thymine deletion, may be due to a bias with 

patient locality as all patients were treated in Nashville, Tennessee. Interestingly, H. 

pylori J99, which encodes the deletion, was also isolated from a patient in the middle 

Tennessee region (3). However, to counteract the notion that the deletion may be 

restricted to strains observed in the United States, strain B38 was isolated from a French 

patient (64). Regardless, both NCBI-recognized strains and the clinical populations 

investigated here, have the collective ability to encode for open reading frames allowing 

for the generation of PKI*, LWG*, EKQ* and SND* ArsS isoforms and these isoforms 

differ not only in amino acid sequence, but in overall length of the primary structures (3, 

4, 19, 26, 27, 28, 40, 64, 66). Thus, these findings should prompt future research with 

these isoforms of ArsS.

Conclusion

Here, we conclude that entire H. pylori populations harvested from the gastric 

antrum, cardia, and corpus of twelve patients were observed to be polymorphic in regards 

to the 3’ terminus of the arsS gene, which encodes for the histidine kinase ArsS. We
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determined that polymorphic differences were due to variable arsS polycytosine tract 

lengths that promoted the generation of multiple alleles and reading frames of arsS. A 

number of arsS alleles could be detected from each population as well as a number of 

arsS open reading frames. Thus, each H. pylori population appears to be capable of 

expressing multiple isoforms of the ArsS protein as well, including an isoform that had 

not been previously described. The ability of this isoform to be expressed was due to 

another polymorphism observed in populations mainly from specific patients in mostly 

an “all or none” fashion, as virtually all (99.7%) cloned sequences from the gastric 

populations of patients either possessed the thymine deletion or encoded a functional stop 

codon.

Interestingly, the clinical H. pylori populations seemed to possess predominant 

arsS alleles and thus are predicted to express predominant ArsS isoforms. While we still 

need to elucidate the advantage of this variation in the histidine kinase C-terminal 

domain, we did find that arsS and ArsS predominance was variable among all 

populations and, in some cases, within populations from a single patient. We speculate 

that this observation could be due to a number of factors, but we hypothesize that these 

alleles or isoforms may confer adaptive advantages on H. pylori and contribute to its 

ability to persist in the human host for decades (48). However, a great deal of future 

research must be performed to answer questions such as how various isoforms of ArsS 

differ in function.

The findings presented in this thesis research are important because they 

challenge the assertions of previous studies that indicated arsS is only polymorphic 

among H. pylori strains and not within them (3, 5). This research is also significant
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because we have acknowledged a previously unmentioned isoform of ArsS due to yet 

another polymorphism in the coding sequence of arsS. Our data also indicate that 

similarities and differences among and within the C-terminal regions of various ArsS 

isoforms may be important. Thus, in totality, this research adds to the limited knowledge 

concerning the ArsRS two-component signal transduction system of the carcinogenic 

human pathogen, Helicobacter pylori.

Future Directions

Generating More Accurate AFLP Data

We previously mentioned that fragment length polymorphisms for our control and 

poly C region amplicons were detected. We contended that the differences in control 

region amplicons and some of the variations in poly C region amplicons lengths may 

have been partially due to oligonucleotide synthesis errors. Thus, future research should 

consider performing AFLP analyses with primers that have been purified through high- 

pressure liquid chromatography (HPLC), as this process should eliminate primers that are 

polymorphic in length. If possible, primers should also be developed to be strain specific 

because H. pylori genomes are recognized to be very plastic among unrelated strains (1, 

24). This consideration is important because nonspecific binding could be attributing to 

different amplicons lengths detected via AFLP.

Another way AFLP analyses can be improved is with the use of a better sizing 

standard and fluorescent label. Most of our data indicate that fractions of base pairs were 

detected, but we know that these are not real and must be artifacts of the AFLP process. 

Thus, utilizing a sizing standard and fluorescent label that could assist the AFLP
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machinery and software more accurately recognize distinct amplicon sizes would be 

beneficial to the entire process.

Even though we observed differences in control region amplicon lengths, we do 

not consider our AFLP data to be invalid. This is because the frequency distributions at 

which the control region amplicons were detected were much different than those of the 

poly C region. Thus, we do acknowledge that some peaks were generated as artifacts of 

the entire process, but most of these lengths are likely not. In any case, making all of the 

listed changes to the AFLP process would likely strengthen future data because the 

accuracy and precision of the results should be considerably improved.

Selection o f ArsS Isoforms

AFLP and sequencing data did not only indicate the mere presence of arsS alleles 

and ArsS isoforms, as these data also revealed their relative frequencies and 

predominance within each population. Here, we hypothesize that the relative frequency 

and predominance of alleles and, therefore, isoforms within the populations may be due 

to the adaptive advantages that each isoform may confer. Considering that ArsS is a 

recognized sensor of acidity, one may speculate that different ArsS isoforms may deviate 

in their response to different pH levels (47, 61). Furthermore, since the high mutation 

rates of H. pylori have been attributed to oxidative stress and acidity, possibility exists 

that either of these stressors, or their combined efforts, could allow for the propagation of 

strains encoding for particular isoforms (7, 30, 69). Our laboratory tried to develop 

methods to select for strains encoding specific arsS alleles in the presence of variable pH, 

but controlling the acidity of the media proved to be an arduous task as problems 

frequently arose. However, future studies should focus on developing better methods to
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ascertain the influence of environmental stressors on the selection of H. pylori strains 

expressing particular ArsS isoforms.

ArsS C-terminal Protein Structure

Given that the different isoforms of ArsS varied in peptide length past the final 

proline, translated from the polycytosine tract, by two to as many as thirty-one different 

amino acids, a study should be conducted to determine if these variations in sequence 

affect the protein structure of ArsS. Recently, a group determined that the C-terminal 

peptide sequences of particular proteins in H. canadensis were affected by frameshifts 

due to differences in polymeric tract lengths of their 3’ gene encoding sequences (59). 

Furthermore, the group analyzed the variable protein structures with the NCBI Conserved 

Domain Database (CDD) and found that these structures were likely affected (59). While 

the CDD does not infer any major structural differences for our ArsS isoforms, possibility 

exists that the isoforms may fold differently. We hypothesize that ArsS isoforms may 

have alternate folding patterns because of their variable C-terminal peptide sequences. 

Interestingly, the C-terminal sequence within each ArsS isoform appears to be conserved, 

suggesting that this region of ArsS may be important. Considering that hydrophobic and 

hydrophilic amino acids appeared to be similarly located among the different ArsS 

isoforms, we believe that this region may be involved in protein folding. Thus, 

approaches could be taken to isolate each isoform of ArsS and determine if their protein 

structures vary.

Phosphorylation Abilities o f ArsS

Even if we determined that strains expressing particular isoforms of ArsS can be 

selected or if different ArsS isoforms have alternate folding patterns, we would still want
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to perceive the functional differences among the isoforms, if any. Beier et al. suggested

that they had individually expressed the PKI*, LWG*, and EKQ* ArsS isoforms and

determined that none of these were defunct in their phosphorylation or phosphotransfer

capabilities (5). Due to discrepancies with their methods, possibility exists that they did

not successfully develop individual expression plasmid preparations that were void of

alternate arsS open reading frames. Thus, we suggest that when such expression vectors

are produced, sequencing and AFLP analyses be performed to verify that each

preparation is only able to express one ArsS isoform. Once these expression vector

preparations are achieved, similar phosphorylation assays can be performed as described

by Beier et al. (5). We would also want to include the SND* isoform in our investigation

as this group did not recognize the existence of this particular ArsS isoform (5).

Furthermore, the assay should be executed to determine if differences exist regarding the

phosphorylation rates and efficiencies for each isoform.

Differences in ArsRS Operons

Previous transcriptome analyses have shown that there are differences in the

number of genes that the ArsRS TCST is able to regulate (20, 31, 32, 47, 71). If different

ArsS isoforms are involved in the generation of variant transcriptomes, then our data

suggest that this may be due to predominant ArsS isoforms. We observed differences in

predominant arsS alleles and ArsS isoforms among and within the clinical populations.

If the predominance of particular isoforms is linked to bestowing adaptive advantages,

then the transcriptome of the organism could be affected. Thus, we hypothesize that

predominant isoforms are affecting the transcriptome of the clinical populations. In order

to determine variations among transcriptomes, we would prefer to develop strains that are
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individually capable of expressing one ArsS isoform. Once we generate and verify these 

mutant strains, we could perform analyses with the transcriptomes to determine if ArsS 

isoform type is playing a role in the variations previously observed (20, 31, 32, 47, 71). 

Strain-specific ArsS Predominance

We have acknowledged that different predominant strains can be observed among 

the gastric populations of four (33.3%) patients. In three of these cases, predominant 

ArsS isoform also varied accordingly. Thus, we must recognize that ArsS isoform 

predominance could be a strain specific phenomenon, especially considering that prior 

studies have concluded that individual H. pylori strains have single 3 ’ terminus arsS 

poly cytosine tract lengths (3, 5). We do not mean to contradict our data here because we 

certainly have evidence that counteract these claims, but considering all routes is 

necessary to accurately determine the answer to the question at hand. Given that Aim et 

al stated that the generation of various polycytosine tract lengths is an artifact of the 

subculturing process, future studies need to isolate H. pylori cells promptly for AFLP 

analyses. We know that one cell of H. pylori encodes for a single arsS polycytosine tract 

length, but do not know if this tract length mutates explicitly as the cell replicates in the 

absence of a selective pressure. Thus, we would want to isolate single colonies from the 

populations to perform our AFLP analyses. Theoretically, our data suggest that we 

should be able to detect single colonies that are of the same strain, but encode for variable 

polycytosine tract lengths and thus express different ArsS isoforms. This analysis would 

be essential in debunking the previous claims that particular strains of H. pylori encode 

for specific polycytosine tract lengths (3, 5). Furthermore, we would be able to
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accurately determine if arsS allele and ArsS isoform predominance is linked to specific 

strains or an unknown factor.
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Appendices 

Appendix 1: General Broth and Agar Media

Luria-Bertani (LB) Broth

LB broth was produced with 1% tryptone, 0.5% yeast extract, and 85mM NaCl dissolved 

in dLLO. Media was autoclaved and allowed to cool to 22°C before the addition of 

antibiotics.

Luria-Bertani (LB) Agar

LB agar was produced with 1% tryptone, 0.5% yeast extract, 85mM NaCl, and 1.5% agar 

dissolved in dLLO. Media was autoclaved and allowed to cool to 55°C before the 

addition of antibiotics and plate pouring.

Sulfite-Free Brucella Broth (SFBB)

SFBB was produced with 1% tryptone, 1% peptone, 0.2% yeast extract, 5.5mM glucose, 

and 85mM NaCl dissolved in dLLO. Media was autoclaved and allowed to cool to 22°C 

before the addition of 5% (v/v) Newborn Calf Serum (NCS) and antibiotics.

Super Optimal Broth with Catabolite Repression (SOC)

SOC broth was produced with 2% tryptone, 0.5% yeast extract, lOmM NaCl, 2.5mM 

KC1, lOmM MgCb, lOmM MgSCL, and 20mM glucose dissolved in dLLO. Media was 

autoclaved and allowed to cool to 22°C before the addition of antibiotics.
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Appendix 2A: AFLP Data from Poly C Regions of H. pylori Populations
Antrum Population o f  Patient B215

arsS Poly C Region AFLP Data from the Antrum Population of 
Patient B215

a 5: *
s s>5

arsS Poly C Region Fragment Lengths (measured in base pairs)

Fragm ent Length (bp) Frequency Standard Deviation
298 0.69 0.33
299 5.07 1.30
300 23.85 3.66
301 44.14 1.92
302 25.08 5.97
303 1.11 0.61
304 0.05 0.11

arsS Open Reading Frame Data from the Antrum Population of 
Patient B215
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arsS Open Reading Frame

Open Reading Frame Frequency Standard Deviation

1 44.88 1.95

2 30.15 6.11

3 24.96 3.71

T-test T-value P-value

ORF1 vs. ORF2 6.90 1.80 x 10'6

ORF2 vs. ORF3 2.18 2.23 x 10'2

ORF1 vs. ORF3 14.27 8.04 x 10‘n
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Cardia Population o f Patient B215
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arsS Poly C Region Fragment Lengths (measured in base pairs)

Fragm ent Length (bp) Frequency Standard Deviation
297 0.02 0.05
298 0.63 0.28
299 4.76 0.95
300 22.90 3.13
301 44.07 1.83
302 26.57 5.21
303 1.06 0.36

arsS Open Reading Frame Data from the Cardia Population of 
Patient B215
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arsS Open Reading Frame

Open Reading Frame Frequency Standard Deviation
1 44.70 1.85
2 31.33 5.30
3 23.97 3.15

T-test T-value P-value
ORF1 vs. ORF2 7.14 1.16 x 10'6
ORF2 vs. ORF3 3.58 1.25 x 10'3
ORF1 vs. ORF3 17.02 5.66 x 1 0 12
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Corpus Population o f  Patient B2J5
arsS Poly C Region AFLP Data from the Corpus Population of 

Patient B215
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arsS Poly C Region Fragment Lengths (measured in base pairs)

Fragm ent Length (bp) Frequency Standard Deviation
298 0.69 0.23
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arsS Open Reading Frame Data from the Corpus Population of 
Patient B215
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arsS Open Reading Frame

Open Reading Fram e Frequency Standard Deviation
1 45.38 2.18
2 30.39 5.60
3 24.23 3.01

T-test T-value P-value
ORF1 vs. ORF2 7.48 6.51 x 10'7

ORF2 vs. ORF3 2.91 5.12 x 10'3
ORF1 vs. ORF3 17.07 5.40 x 10'12
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Antrum Population o f Patient B221
arsS Poly C Region AFLP Data from the Antrum Population of 

Patient B221

J ± L
arsS Poly C Region Fragment Lengths (measured in base pairs)

Fragm ent Length (bp) Frequency Standard Deviation
299 0.63 0.30
300 5.20 1.28
301 24.34 1.82
302 45.17 3.35
303 23.84 3.63
304 0.82 0.42

Open Reading Frame Frequency Standard Deviation

1 25.16 1.87

2 45.79 3.36

3 29.04 3.85

arsS Open Reading Frame Data from the Antrum Population of 
Patient B221
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T-test T-value P-value

ORF1 vs. ORF2 16.10 1.31 x 10 "

ORF2 vs. ORF3 9.83 1.75 xlO"8

ORF1 vs. ORF3 2.72 7.53 x 10'3
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Cardia Population o f Patient B221
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ar&S Poly C Region AFLP Data from the Cardia Population of 
Patient B221
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or&V Poly C Region Fragment Lengths (measured in base pairs)

Fragm ent Length (bp) Frequency Standard Deviation
299 0.44 0.34
300 5.55 1.12
301 24.12 1.25
302 44.02 0.79
303 25.18 2.19
304 0.70 0.27

arsS Open Reading Frame Data from the Cardia Population of 
Patient B221
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a n S  Open Reading Frame

Open Reading Frame Frequency Standard Deviation
1 24.82 1.28
2 44.46 0.86
3 30.72 2.46

T-test T-value P-value
ORF1 vs. ORF2 38.25 1.85 x 1 0 17
ORF2 vs. ORF3 15.82 1.71 x 10'“
ORF1 vs. ORF3 6.39 4.44 x 10'6
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Corpus Population o f  Patient B221
arsS Poly C Region AFLP Data from the Corpus Population of 

Patient B221
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arsS Poly C Region Fragment Lengths (measured in base pairs)

Fragm ent Length (bp) Frequency Standard Deviation
299 0.63 0.07
300 4.74 1.30
301 22.64 3.22
302 43.54 1.26
303 27.45 5.28
304 1.01 0.27

arsS Open Reading Frame Data from the Corpus Population of 
Patient B221
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arsS Open Reading Frame

Open Reading Frame Frequency Standard Deviation
1 23.65 3.23
2 44.17 1.27
3 32.19 5.43

T-test T-value P-value
ORF1 vs. ORF2 17.74 3.02 x 1 0 12

ORF2 vs. ORF3 6.44 4.09 x 10'6

ORF1 vs. ORF3 4.05 4.61 x 10'4



Antrum Population o f  Patient B253
arsS Poly C Region AFLP Data from the Antrum Population of 

Patient B253
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arsS Poly C Region Fragment Lengths (measured in base pairs)

Fragm ent Length (bp) Frequency Standard Deviation
297 0.02 0.06
298 0.58 0.16
299 4.44 1.70
300 21.80 4.07
301 44.43 1.93
302 27.76 6.53
303 0.97 0.34

arsS Open Reading Frame Data from the Antrum Population of 
Patient B253
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arsS Open Reading Frame

Open Reading Fram e Frequency Standard Deviation
1 45.02 1.94

2 32.20 6.74
3 22.79 4.09

T-test T-value P-value

ORF1 vs. ORF2 5.48 2.52 x 10‘5

ORF2 vs. ORF3 3.58 1.25 x 10'3

ORF1 vs. ORF3 14.74 4.97 x 10 "
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Cardia Population o f Patient B253
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arsS Poly C Region AFLP Data from the Cardia Population of 
Patient B253

44.84

arsS Poly C Region Fragment Lengths (measured in base pairs)

Fragm ent Length (bp) Frequency Standard Deviation
297 0.02 0.05
298 0.63 0.27
299 5.01 1.18
300 23.80 2.82
301 44.84 1.92
302 24.73 5.13
303 0.97 0.47

arsS Open Reading Frame Data from the Cardia Population of 
Patient B253
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2

arsS Open Reading Frame

Open Reading Frame Frequency Standard Deviation
1 45.48 1.94

2 29.74 5.27
3 24.79 2.86

T-test T-value P-value

ORF1 vs. ORF2 8.41 1.44 x 10~7

ORF2 vs. ORF3 2.48 1.24 x 1 O'2

ORF1 vs. ORF3 17.94 2.55 x 10'12
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Corpus Population o f  Patient B253
arsS Poly C Region AFLP Data from the Corpus Population of 

Patient B253
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arsS Poly C Region Fragment Lengths (measured in base pairs)

Fragm ent Length (bp) Frequency Standard Deviation
298 0.66 0.15
299 4.85 0.98
300 23.37 2.62
301 45.26 1.92
302 24.91 5.13
303 0.94 0.25

arsS Open Reading Frame Data from the Corpus Population of 
Patient B253
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32

Open Reading Fram e Frequency Standard Deviation
1 45.93 1.92
2 29.76 5.22
3 24.31 2.63

T-test T-value P-value
ORF1 vs. ORF2 8.71 8.97 x 1 O'8
ORF2 vs. ORF3 2.80 6.48 x 1 O'3
ORF1 vs. ORF3 19.89 5.20 x 10‘13
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Antrum Population o f Patient B256
arsS Poly C Region AFLP Data from the Antrum Population of 

Patient B256
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arsS Poly C Region Fragment Lengths (measured in base pairs)

Fragment Length (bp) Frequency Standard Deviation
299 0.05 0.10
300 1.82 0.42
301 10.80 2.58
302 29.13 2.74
303 38.34 1.67
304 18.96 4.10
305 0.89 0.27

arsS Open Reading Frame Data from the Antrum Population of 
Patient B256
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2

Open Reading Frame Frequency Standard Deviation

1 29.76 4.84

2 30.07 2.76

3 40.17 1.72

T-test T-value P-value

ORF1 vs. ORF2 0.17 4.34 x 10'1

ORF2 vs. ORF3 9.32 3.63 x 10'8

ORF1 vs. ORF3 6.07 8.05 x 10'6
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Cardia Population o f Patient B256
arsS Poly C Region AFLP Data from the Cardia Population of 

Patient B256
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arsS Poly C Region Fragment Lengths (measured in base pairs)

Fragm ent Length (bp) Frequency Standard Deviation
299 0.09 0.16
300 1.66 0.40
301 9.68 1.10
302 29.34 1.94
303 40.56 1.67
304 17.79 3.37
305 0.86 0.30

arsS Open Reading Frame Data from the Cardia Population of 
Patient B256

50

45

40

30

25

20

15

10

0
32

Open Reading Fram e Frequency Standard Deviation
1 27.47 3.55

2 30.30 1.97
3 42.22 1.72

T-test T-value P-value

ORF1 vs. ORF2 2.09 2.65 x 10'2
ORF2 vs. ORF3 13.67 1.52 x 10'10

ORF1 vs. ORF3 11.23 2.68 x 10'9
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Corpus Population o f Patient B256
arsS Poly C Region AFLP Data from the Corpus Population of

Patient B256
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arsS Poly C Rcgion Fragment Lengths (measured in base pairs)

Fragm ent Length (bp) Frequency Standard Deviation
299 0.37 0.42
300 3.14 1.36
301 17.43 2.03
302 37.28 1.98
303 32.77 3.07
304 8.70 2.70
305 0.31 0.24

arsS Open Reading Frame Data from the Corpus Population of 
Patient B256
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32

Open Reading Fram e Frequency Standard Deviation
1 26.13 3.37
2 37.96 2.04
3 35.91 3.36

T-test T-value P-value
ORF1 vs. ORF2 9.00 5.78 x 10‘8
ORF2 vs. ORF3 1.56 6.86 x 1 O'2
ORF1 vs. ORF3 6.17 6.79 x 10"6
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Antrum Population o f  Patient B266
arsS Poly C Region AFLP Data from the Antrum Population of 

Patient B266

I±L
arsS Poly C Region Fragment Lengths (measured In base pairs)

Fragm ent Length (bp) Frequency Standard Deviation
297 0.49 0.28
298 3.82 1.24
299 20.64 2.73
300 42.63 1.76
301 31.10 5.13
302 1.32 0.60

arsS Open Reading Frame Data from the Antrum Population of 
Patient B266
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Open Reading Fram e Frequency Standard Deviation
1 34.92 5.27
2 21.96 2.79
3 43.12 1.78

T-test T-value P-value
ORF1 vs. ORF2 6.51 3.57 x 10'6
ORF2 vs. ORF3 19.17 9.18 x 10 u
ORF1 vs. ORF3 4.42 2.14 x 10-4
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Cardia Population o f  Patient B266
arsS PoJy C Region AFLP Data from the Cardia Population of 

Patient B266
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arsS Poly C Region Fragment Lengths (measured in base pairs)

Fragm ent Length (bp) Frequency Standard Deviation
297 0.32 0.36
298 3.66 1.23
299 20.88 2.17
300 43.50 0.96
301 30.69 3.77
302 0.95 0.22

arsS Open Reading Frame Data from the Cardia Population of 
Patient B266
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arsS Open Reading Frame

Open Reading Frame Frequency Standard Deviation
1 34.35 3.97
2 21.83 2.18

3 43.82 1.03

T-test T-value P-value
ORF1 vs. ORF2 8.30 1.72 x 10‘7

ORF2 vs. ORF3 27.38 3.60 x 10'15

ORF1 vs. ORF3 6.93 1.68 x 1 O'6
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Corpus Population o f Patient B266
arsS Poly C Region AFLP Data from the Corpus Population of 

Patient B266

'5 -

J±L

arsS Poly C Region Fragment Lengths (measured in base pairs)

Fragm ent Length (bp) Frequency Standard Deviation
296 0.09 0.18
297 0.26 0.33
298 2.55 1.06
299 14.46 5.86
300 34.12 6.86
301 34.89 5.26
302 12.91 8.43

303 0.72 0.74

arsS Open Reading Frame Data from the Corpus Population of 
Patient B266

arsS Open Reading Frame

Open Reading Frame Frequency Standard Deviation
1 37.44 5.37
2 27.46 10.27
3 35.10 6.90

T-test T-value P-value

ORF1 vs. ORF2 2.58 9.98 x 10'3

ORF2 vs. ORF3 1.85 4.12 xlO"2
ORF1 vs. ORF3 0.80 2.17x10"'
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Antrum Population o f  Patient B268
arsS Poly C Region AFLP Data from the Antrum Population of 

Patient B268

arsS Poly C Region Fragment Lengths (measured in base pairs)

Fragm ent Length (bp) Frequency Standard Deviation
299 0.60 0.24
300 5.03 0.82
301 24.46 2.23
302 45.19 1.89
303 23.70 4.17
304 1.03 0.52

arsS Open Reading Frame Data from the Antrum Population of 
Patient B268
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Open Reading Fram e Frequency Standard Deviation
1 25.49 2.29
2 45.79 1.91
3 28.72 4.25

T-test T-value P-value
ORF1 vs. ORF2 20.44 3.41 x 1 0 13
ORF2 vs. ORF3 10.98 3.67 x 1 O'9
ORF1 vs. ORF3 2.01 3.09 x 1 O'2
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Cardia Population o f Patient B268
arsS Poly C Region AFLP Data from the Cardia Population of 

Patient B268
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arsS Poly C Region Fragment Lengths (measured in base pairs)

Fragm ent Length (bp) Frequency Standard Deviation
299 0.25 0.19
300 2.14 0.47
301 10.12 1.85
302 30.44 3.38
303 39.28 1.28
304 16.88 4.68
305 0.90 0.35

arsS Open Reading Frame Data from the Cardia Population of 
Patient B268
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Open Reading Frame Frequency Standard Deviation
1 27.00 5.03
2 31.59 3.41
3 41.41 1.36

T-test T-value P-value
ORF1 vs. ORF2 2.27 1.88 x 1 O'2
ORF2 vs. ORF3 8.03 2.66 x 10"7
ORF1 vs. ORF3 8.30 1.71 x 10'7
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Corpus Population o f Patient B268
arsS Poly C Region AFLP Data from the Corpus Population of 

Patient B268
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arsS Poly C Region Fragment Lengths (measured in base pairs)

Fragm ent Length (bp) Frequency Standard Deviation
299 0.49 0.33
300 5.77 1.12
301 26.25 2.48
302 46.61 1.61
303 20.17 4.21
304 0.72 0.39

arsS Open Reading Frame Data from the Corpus Population of 
Patient B268
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Open Reading Frame Frequency Standard Deviation
1 26.97 2.51
2 47.10 1.64

3 25.93 4.36

T-test T-value P-value
ORF1 vs. ORF2 20.14 4.30 x 10'13
ORF2 vs. ORF3 13.63 1.59 x 1 O'10
ORF1 vs. ORF3 0.62 2.73 x 10'1
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Antrum Population o f Patient B284
arsS Poly C Region AFLP Data from the Antrum Population of 

Patient B284
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arsS Poly C Region Fragment Lengths (measured in base pairs)

Fragm ent Length (bp) Frequency Standard Deviation
299 0.03 0.08
300 1.25 0.38
301 4.86 1.24
302 15.92 1.38
303 29.91 0.85
304 31.99 1.35
305 14.52 2.16
306 1.53 0.39

arsS Open Reading Frame Data from the Antrum Population of 
Patient B284
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32

Open Reading Frame Frequency Standard Deviation
1 36.85 1.83
2 30.46 2.56
3 32.69 1.01

T-test T-value P-value
ORF1 vs. ORF2 6.09 7.89 x 1 O'6

ORF2 vs. ORF3 2.42 1.38 x 10'2
ORF1 vs. ORF3 5.99 9.48 x 10‘6
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Cardia Population o f Patient B284
arsS Poly C Region AFLP Data from the Cardia Population of 

Patient B284
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arsS Poly C Region Fragment Lengths (measured in base pairs)

Fragm ent Length (bp) Frequency Standard Deviation
298 0.05 0.15
299 0.72 0.34
300 3.71 0.57
301 11.32 0.92
302 25.13 1.19
303 28.09 0.67
304 21.82 1.47
305 8.22 1.23
306 0.95 0.22

arsS Open Reading Frame Data from the Cardia Population of 
Patient B284
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Open Reading Frame Frequency Standard Deviation
1 33.19 1.75
2 34.06 1.75
3 32.76 0.90

T-test T-value P-value
ORF1 vs. ORF2 1.06 0.15

ORF2 vs. ORF3 1.99 0.03

ORF1 vs. ORF3 0.66 0.26
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Corpus Population o f Patient B284
arsS Poly C Region AFLP Data from the Corpus Population of 

Patient B284
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arsS Poly C Region Fragment Lengths (measured in base pairs)

Fragm ent Length (bp) Frequency Standard Deviation
299 0.13 0.19
300 1.16 0.42
301 4.61 1.25
302 15.39 1.81
303 29.75 1.23
304 32.60 1.63
305 14.94 2.59

306 1.40 0.49
307 0.02 0.05

arsS Open Reading Frame Data from the Corpus Population of 
Patient B284
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32

Open Reading Fram e Frequency Standard Deviation
1 37.23 2.06
2 30.46 3.16
3 32.31 1.39

T-test T-value P-value
ORF1 vs. ORF2 5.38 3.07 x 10'5

ORF2 vs. ORF3 1.61 6.37 x 10‘2

ORF1 vs. ORF3 5.94 1.04 x 10‘5
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Antrum Population o f Patient B292
arsS Poly C Region AFLP Data from the Antrum Population of 

Patient B292

1.16 I I 'I
arsS Poly C Region Fragment Lengths (measured in base pairs)

Fragm ent Length (bp) Frequency Standard Deviation
298 0.03 0.10
299 1.16 0.72
300 8.41 1.97
301 26.60 2.93
302 39.69 1.21
303 23.30 4.30
304 0.80 0.49

arsS Open Reading Frame Data from the Antrum Population of 
Patient B292
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Open Reading Frame Frequency Standard Deviation

1 27.44 2.97
2 40.85 1.41

3 31.71 4.73

T-test T-value P-value

ORF1 vs. ORF2 12.22 7.88 x 10'10

ORF2 vs. ORF3 5.56 2.16 x 10'5

ORF1 vs. ORF3 2.29 1.78 x 10'2
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Cardia Population o f Patient B292
arsS Poly C Region AFLP Data from the Cardia Population of 

Patient B292
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arsS Poly C Region Fragment Lengths (measured in base pairs)

Fragm ent Length (bp) Frequency Standard Deviation
298 0.05 0.10
299 1.13 0.61
300 5.97 1.88
301 23.02 3.79
302 39.70 1.32
303 27.40 5.57
304 2.69 1.62
305 0.03 0.08

arsS Open Reading Frame Data from the Cardia Population of 
Patient B292
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21

Open Reading Frame Frequency Standard Deviation

1 25.77 4.13
2 40.86 1.46

3 33.37 5.88

T-test T-value P-value

ORF1 vs. ORF2 10.35 8.52 x 10‘9

ORF2 vs. ORF3 3.71 9.55 x 10-4

ORF1 vs. ORF3 3.17 2.94 x 1 O’3

105



Corpus Population o f Patient B292
arsS Poly C Region AFLP Data from the Corpus Population of 

Patient B292
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arsS Poly C Region Fragment Lengths (measured in base pairs)

Fragm ent Length (bp) Frequency Standard Deviation
298 0.09 0.19
299 1.57 0.57
300 8.46 1.94
301 26.56 2.70
302 39.33 1.03
303 23.01 4.40
304 0.97 0.13

arsS Open Reading Frame Data from the Corpus Population of 
Patient B292
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arsS Open Reading Frame

Open Reading Frame Frequency Standard Deviation
1 27.62 2.71
2 40.91 1.18

3 31.47 4.81

T-test T-value P-value
ORF1 vs. ORF2 13.50 1.84 x 10'10

ORF2 vs. ORF3 5.72 1.59 x 10'5

ORF1 vs. ORF3 2.09 2.63 x 10'2
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Antrum Population o f  Patient B294
arsS Poly C Region AFLP Data from the Antrum Population of 

Patient B294
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arsS Poly C Region Fragment Lengths (measured in base pairs)

Fragment Length (bp) Frequency Standard Deviation
296 0.16 0.20
297 2.16 0.77
298 17.99 3.13
299 38.64 2.79
300 32.72 3.44
301 8.09 3.60
302 0.24 0.23

arsS Open Reading Frame Data from the Antrum Population of 
Patient B294
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arsS Open Reading Frame

Open Reading Frame Frequency Standard Deviation
1 26.08 4.77
2 39.04 2.81
3 34.88 3.52

T-test T-value P-value
ORF1 vs. ORF2 7.02 1.43 x 10‘6
ORF2 vs. ORF3 2.78 6.74 x 10'3

ORF1 vs. ORF3 4.45 2.02 x 1 O'4
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Cardia Population o f Patient B294
arsS Poly C Region AFLP Data from the Cardia Population of 

Patient B294

J ± L
arsS Poly C Region Fragment Lengths (measured in base pairs)

Fragm ent Length (bp) Frequency Standard Deviation
297 0.46 0.33
298 4.38 1.45
299 21.67 3.50
300 42.93 1.87
301 29.34 5.88
302 1.23 0.60

arsS Open Reading Frame Data from the Cardia Population of 
Patient B294
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32

arsS Open Reading Frame

Open Reading Frame Frequency Standard Deviation
1 33.72 6.06
2 22.90 3.56
3 43.38 1.90

T-test T-value P-value
ORF1 vs. ORF2 4.63 1.40 x 10*4

ORF2 vs. ORF3 15.25 2.97 x 10'"
ORF1 vs. ORF3 4.56 1.59 x 10'4
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Corpus Population o f  Patient B294
arsS Poly C Region AFLP Data from the Corpus Population of 

Patient B294
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arsS Poly C Region Fragment Lengths (measured in base pain)

Fragm ent Length (bp) Frequency Standard Deviation
297 0.62 0.32
298 4.45 1.16
299 21.96 2.69
300 42.52 1.43
301 29.18 4.76
302 1.27 0.76

arsS Open Reading Frame Data from the Corpus Population of 
Patient B294
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arsS Open Reading Frame

Open Reading Fram e Frequency Standard Deviation
1 33.62 4.90
2 23.23 2.80
3 43.14 1.47

T-test T-value P-value
ORF1 vs. ORF2 5.53 2.29 x 1 O'5

ORF2 vs. ORF3 18.90 1.14 x 10 12
ORF1 vs. ORF3 5.59 2.05 x 10'5
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Antrum Population o f Patient B295
arsS Poly C Region AFLP Data from the Antrum Population of 

Patient B295
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arsS Poly C Region Fragment Lengths (measured in base pairs)

Fragment Length (bp) Frequency Standard Deviation
298 0.20 0.25
299 2.61 1.22
300 14.26 4.99
301 33.82 6.14
302 32.62 3.76
303 12.36 6.45
304 2.24 1.33
305 1.53 1.04
306 0.36 0.55

arsS Open Reading Frame Data from the Antrum Population of 
Patient B295

arsS Open Reading Frame

Open Reading Frame Frequency Standard Deviation
1 36.26 6.29
2 36.76 4.09
3 26.98 8.17

T-test T-value P-value
ORF1 vs. ORF2 0.20 4.22 x 10'1

ORF2 vs. ORF3 3.21082741 2.73 x 10‘3

ORF1 vs. ORF3 2.69959826 7.89 x 10‘3
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Cardia Population o f Patient B295
arsS Poly C Region AFLP Data from the Cardia Population of 

Patient B295

i f l
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r*n
arsS Poly C Region Fragment Lengths (measured in base pairs)

Fragm ent Length (bp) Frequency Standard Deviation
300 0.65 0.38
301 3.33 1.11
302 12.44 2.58
303 27.10 2.49
304 34.52 1.40
305 20.28 4.32
306 1.68 0.68

arsS Open Reading Frame Data from the Cardia Population of 
Patient B295
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Open Reading Frame Frequency Standard Deviation
1 37.84 1.78

2 32.72 5.03
3 29.43 2.61

T-test T-value P-value

ORF1 vs. ORF2 2.88 5.46 x 1 O'3

ORF2 vs. ORF3 1.74 5.05 x 10'2

ORF1 vs. ORF3 7.98 2.88 x l0 ‘7
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Corpus Population o f  Patient B295
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arsS Poly C Region AFLP Data from the Corpus Population of 
Patient B295

arsS Poly C Region Fragment Lengths (measured in base pairs)

Fragm ent Length (bp) Frequency Standard Deviation
298 0.49 0.36
299 4.02 1.09
300 20.94 2.95
301 43.56 2.45
302 29.76 5.31
303 1.23 0.64

arsS Open Reading Frame Data from the Corpus Population of 
Patient B295
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arsS Open Reading Frame

Open Reading Frame Frequency Standard Deviation
1 44.05 2.47
2 33.78 5.42
3 22.17 3.01

T-test T-value P-value
ORF1 vs. ORF2 5.17 4.61 x 10'5
ORF2 vs. ORF3 5.62 1.93 x 10'5
ORF1 vs. ORF3 16.84 6.68 x 1 0 12
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Antrum Population o f Patient B300
arsS Poly C Region AFLP Data from the Antrum Population of 

Patient B300
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•sS Poly C Region Fragment Lengths (measured in base pairs)

Fragm ent Length (bp) Frequency Standard Deviation
297 0.88 0.24
298 5.84 1.85
299 24.57 3.05
300 42.015 1.14
301 25.25 4.84
302 1.45 0.64

arsS Open Reading Frame Data from the Antrum Population of 
Patient B300
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arsS Open Reading Frame

Open Reading Frame Frequency Standard Deviation
1 31.09 5.18
2 26.02 3.12
3 42.89 1.17

T-test T-value P-value
ORF1 vs. ORF2 2.51 1.15 x 10'2
ORF2 vs. ORF3 15.20 3.18 x 10 "
ORF1 vs. ORF3 6.66 2.73 x 10'6
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Cardia Population o f  Patient B300
arsS Poly C Region AFLP Data from the Cardia Population of 

Patient B300
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J ± L
arsS Poly C Region Fragment Lengths (measured in base pairs)

Fragm ent Length (bp) Frequency Standard Deviation
297 0.30 0.30
298 2.94 0.95
299 15.76 4.80
300 34.75 5.23
301 34.25 4.52
302 11.48 6.50
303 0.52 0.53

arsS Open Reading Frame Data from the Cardia Population of 
Patient B300
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arsS Open Reading Frame

Open Reading Frame Frequency Standard Deviation
1 37.19 4.61
2 27.24 8.08
3 35.57 5.27

T-test T-value P-value
ORF1 vs. ORF2 3.21 2.74 x 10‘3
ORF2 vs. ORF3 2.59 9.87 x 1 O'3
ORF1 vs. ORF3 0.70 2.48 x 1 0 1
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Corpus Population o f Patient B300
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arsS Poly C Region AFLP Data from the Corpus Population of 
Patient B300

arsS Poiy C Region Fragment Lengths (measured in base pairs)

Fragm ent Length (bp) Frequency Standard Deviation
297 0.82 0.12
298 6.04 1.45
299 25.28 2.51
300 42.81 0.70
301 23.85 3.97
302 1.20 0.33

arsS Open Reading Frame Data from the Corpus Population of 
Patient B300
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arsS Open Reading Frame

Open Reading Frame Frequency Standard Deviation
1 29.89 4.23
2 26.48 2.53
3 43.63 0.72

T-test T-value P-value
ORF1 vs. ORF2 2.07 2.75 x 10'2
ORF2 vs. ORF3 19.57 6.69 x 10'13
ORF1 vs. ORF3 9.61 2.37 x 1 O'8
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Antrum Population o f  Patient B301
arsS Poly C Region AFLP Data from the Antrum Population of 

Patient B301

J ± L
arxS Poly C Region Fragment Lengths (measured in base pairs)

Fragm ent Length (bp) Frequency Standard Deviation
299 0.43 0.36
300 3.90 1.84
301 22.12 2.37
302 45.04 4.37
303 27.42 4.65
304 1.09 0.47

arsS Open Reading Frame Data from the Antrum Population of 
Patient B301
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32

Open Reading Fram e Frequency Standard Deviation
1 23.21 2.42
2 45.47 4.39
3 31.32 5.00

T-test T-value P-value
ORF1 vs. ORF2 13.33 2.20 x 10'10
ORF2 vs. ORF3 6.38 4.59 x 10'6

ORF1 vs. ORF3 4.38 2.32 x 10'4
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Cardia Population o f  Patient B301
arsS Poly C Region AFLP Data from the Cardia Population of 

Patient B301
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arsS Poly C Region Fragment Lengths (measured in base pairs)

Fragm ent Length (bp) Frequency Standard Deviation
299 0.59 0.21
300 4.20 1.18
301 21.52 3.34
302 42.92 1.94
303 29.51 5.93
304 1.26 0.70

arsS Open Reading Frame Data from the Cardia Population of 
Patient B301
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arsS Open Reading Frame

Open Reading Frame Frequency Standard Deviation
1 22.77 3.41
2 43.51 1.95
3 33.71 6.05

T-test T-value P-value
ORF1 vs. ORF2 15.83 1.71 x 10'"
ORF2 vs. ORF3 4.63 1.40 x 10"4

ORF1 vs. ORF3 4.72 1.15 x 10'4
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Corpus Population o f Patient B301
arsS Poly C Region AFLP Data from the Corpus Population of 

Patient B301

± L
arsS Poly C Region Fragment Lengths (measured in base pairs)

Fragm ent Length (bp) Frequency Standard Deviation
298 0.01 0.04
299 0.56 0.34
300 4.46 1.47
301 22.00 3.24
302 42.77 1.80
303 28.99 5.89
304 1.21 0.60

arsS Open Reading Frame Data from the Corpus Population of 
Patient B301
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32

arsS Open Reading Frame

Open Reading Frame Frequency Standard Deviation
1 23.22 3.30
2 43.33 1.83
3 33.45 6.07

T-test T-value P-value
ORF1 vs. ORF2 16.01 1.43 x 10 "

ORF2 vs. ORF3 4.68 1.25 x 10'4
ORF1 vs. ORF3 4.45 2.04 x 1 O'4
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Appendix 2B: AFLP Data from Control Regions of H. pylori Populations
Antrum Population o f Patient B284
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arsS Control Region AFLP Data from the Antrum Population of 
Patient B284

76.89

20.74

2.37

247 248 249

arsS Control Region Fragment Lengths (measured in base pairs)

Fragm ent Length (bp) Frequency Standard Deviation
247 2.37 0.36
248 20.74 0.62
249 76.89 0.83
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arsS Control Region AFLP Data from the Cardia Population of 
Patient B284

79.35

18.78

1 87

248 249 250

arsS Control Region Fragment Lengths (measured in base pairs)

Fragm ent Length (bp) Frequency Standard Deviation
248 1.87 0.11
249 18.78 0.52
250 79.35 0.55
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Corpus Population o f  Patient B284
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arsS Control Region AFLP Data from the Corpus Population of 
Patient B284

78.08

19.93

1.99

247 248 249

arsS Control Region Fragment Lengths (measured in base pairs)

Fragm ent Length (bp) Frequency Standard Deviation
247 1.99 0.16
248 19.9316866 0.86
249 78.08 1.02

Antrum Population o f Patient B294
arsS Control Region AFLP Data from the Antrum Population of 

Patient B294
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arsS Control Region Fragment Lengths (measured in base pairs)

Fragm ent Length (bp) Frequency Standard Deviation
247 0.47 0.42
248 14.68 2.47
249 84.85 2.06
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Cardia Population o f Patient B294
arsS Control Region AFLP Data from the Cardia Population of 

Patient B294
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arsS Control Region Fragment Lengths (measured in base pairs)

Fragm ent Length (bp) Frequency Standard Deviation
248 1.84 0.26
249 19.44 1.30
250 78.39 1.10
251 0.32 0.56
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arsS Control Region AFLP Data from the Corpus Population of 
Patient B294
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arsS Control Region Fragment Lengths (measured in base pain)

Fragm ent Length (bp) Frequency Standard Deviation

248 2.08 0.53
249 20.65 0.91
250 77.12 1.17
251 0.15 0.27
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