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ABSTRACT

Biologists must find ways to maximize biodiversity while minimizing impacts on human 
social and economic needs. Tools such as Geographic Information Systems (GIS) and 
satellite imagery allow researchers to identify and delineate land cover types most 
important for conservation. Important land cover types can be identified by developing 
species distribution models (SDMs), which relate species occurrence against land cover 
and environmental variables. SDMs can be spatially applied to create a predictive map 
that land managers can then use to delineate habitat best suitable for long-term 
conservation. An occupancy model is a type of SDM that is commonly used to estimate 
probability of occupancy of bird species across large-scales. However, to my 
knowledge, no study has directly examined whether probability of occupancy correlates 
with breeding success. The objectives of this study were to 1) create single-season 
occupancy model for a Neotropical migrant species, the Wood Thrush (Hylocichla 
mustelina) and 2) correlate probability of occupancy with breeding success for Wood 
Thrushes breeding on the Virginia Peninsula, an area consisting of urban-rural and 
agricultural areas. I selected a priori seven site-specific covariates that were predicted 
to be important for Wood Thrush occupancy and reproductive success. Although Wood 
Thrushes are an extremely well-studied species, my findings indicate that Wood Thrush 
habitat use differs in this study area compared with previous literature. Wood Thrush 
occupancy related positively to anthropogenic variables such as road density and edge 
density of forest-to-low urban development, which contradicts previous literature that 
claimed Wood Thrushes are an interior forest species. However, all site-specific 
covariates had confidence intervals that overlapped with zero, indicating that the 
occupancy model had low predictive power. Additionally, no relationship was found 
between Wood Thrush probability of occupancy and breeding success. It is possible 
that the Wood Thrush in this area may have a large turn-over within season, which 
violates the closure assumption of occupancy models. Although this study found no 
relationship between Wood Thrush occupancy and breeding success, it did 
demonstrate the need to evaluate which variables are important for a species’ habitat 
use, even a well-studied species such as the Wood Thrush, when studying a species in 
a new landscape.
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INTRODUCTION

One of the most prominent and rapidly expanding anthropogenic land uses influencing 

habitat loss in the United States is urbanization (Czech 2005, Robinson et al. 2005). As the 

human population continues to grow, urban areas will become the dominant land cover type in 

many landscapes. Urbanization of wild land (i.e. land cover types not overlapping with human 

development [Marzluff et al. 2001]), has direct implications on avian fitness and population 

dynamics (Borgmann et al. 2004).

Because urbanization results in habitat loss (Robinson et al. 2005) and because continued 

land development by humans is inevitable, conservationists and land managers must find ways to 

maximize biodiversity while having the least impact on human social and economic needs. Tools 

such as Geographic Information Systems (GIS) and satellite imagery allow researchers to 

delineate areas of high conservation priority by identifying land cover types most important for 

long-term conservation of birds. Habitat important for conservation can be identified by 

developing species distribution models (SDMs). SDMs are statistical models relating species 

occurrence against environmental variables and human stressors (MacKenzie et al. 2006, 

Franklin 2009).

Bird species distribution modeling has become a readily implemented conservation tool 

because field data needed to develop these models are inexpensive to collect and allow 

researchers to identify factors that determine distribution patterns for a species within a larger 

geographical range. A critical assumption of SDMs is that areas overlapping with high- 

occupancy probabilities or densities equate with areas of high quality habitat. When investigating 

density as a surrogate for habitat quality, Van Horne (1983) was first to point out that species 

density cannot necessarily be equated with habitat quality, and proposed that habitat quality be
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defined as “the product of density, mean individual survival probability, and mean expectation of 

future offspring” (Van Horne 1983:896). Other studies have examined the relationship between 

habitat quality and density (Vickery et al. 1992, Bock & Jones 2004, Perot & Villard 2009) and 

have found mixed results, indicating that although a positive density-productivity relationship is 

typically found among bird species, additional factors, such as reproductive success and survival 

data, are needed to determine habitat quality for some species. To my knowledge, no study has 

evaluated whether probability of occupancy relates positively to reproductive success.

An occupancy model is a type of species distribution model that accounts for imperfect 

detection to derive unbiased estimates of occupancy (MacKenzie et al. 2002). Occupancy models 

are based on logistic regressions to estimate both occupancy (\|/) and detection (p) probabilities 

simultaneously (MacKenzie et al. 2006). Covariates can be included to assess heterogeneity in \]/ 

and p. Final models can then be spatially applied to create a predictive map showing where a 

species is more or less likely to occur. Land managers can use this predictive map to delineate 

habitat most suitable for long-term species conservation based on areas where occupancy is 

predicted to be highest.

It is important to examine whether probability of occupancy correlates positively with 

breeding success in birds. Presence/absence data used in occupancy modeling are typically 

determined via aural detections (Bibby et al. 2000). However, because most male songbirds tend 

to sing for a longer duration when they are attempting to attract a mate or defend a territory 

(Beckett & Ritchison 2010, Hennin et al. 2009, Watson 1987), it is possible that lower quality, 

unpaired males, may be detected more often than paired males who sing less frequently. Thus, 

occupancy models may predict higher probabilities of occupancy in habitat where pairing 

success is low. This potential shortfall could result in misguided long-term conservation efforts.
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The objective of this study was to evaluate whether breeding success correlated with 

probability of occupancy. Specifically, I had the following two objectives: 1) develop a spatially 

explicit single-season occupancy model for a Neotropical migrant and 2) correlate probability of 

occupancy with breeding success. I selected a Neotropical migrant species because many 

Neotropical migrants are species of concern (Sherry & Holmes 1996, Norris et al. 2004, Holmes 

2007) and occupancy modeling can be used to study their habitat associations. I chose the Wood 

Thrush (Hylocichla mustelina) because it commonly breeds in eastern deciduous forests in 

Virginia. Wood Thrushes nest in mid-successional hardwood forests and use early-successional 

hardwood forests during the post-fledgling period (Anders et al. 1998, Vega Rivera et al. 1998). 

Although these land-cover types are abundant in Virginia (Monette et al. 1983, Westervelt et al. 

2006), this species is declining by 2.2% annually (Sauer et al. 2008). One potential mechanism 

of population decline has been attributed to edge effects, most often caused by nest predation 

(Robinson et al. 1995) in fragmented landscapes (Hoover et al. 1995). Thus, I predicted that 

Wood Thrush probability of occupancy would be higher in larger patches of deciduous forest and 

lower in developed and fragmented areas. Although the Wood Thrush is a well-studied species, 

they have mostly been studied in large-contiguous Eastern Deciduous Forests. My research is 

unique because I studied Wood Thrush habitat use along an urban-to-rural gradient and across a 

fragmented forest system.

METHODS

Study Area:

The study area was within the portion of the Chesapeake Bay Lowlands Ecoregion (TNC 

2000) between the Rappahannock and the James River and was bounded to the west by the fault 

line (Fig. 1). Point count surveys and breeding data were collected within Charles City County,
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City of Williamsburg, James City County, Gloucester County, New Kent County and York 

County. Much of the study area overlapped with the coastal deciduous forest ecological system 

and included additional land-cover types such as agriculture, residential, commercial and urban 

areas.

In the coastal deciduous forest, depending on the successional stage, the canopy consists 

of Pinus taeda (loblolly pine), Fagus grandifolia (American beech), Quercus alba (white oak), 

Liriodendron tulipifera (tuliptree) and Liquidambar styraciflua (sweetgum). The understory is 

typically dominated by Acer rubrum (red maple), Ilex opaca (holly) and Comus florida 

(dogwood), whereas the shrub layer consisted of Smilax rotundifolia (roundleaf greenbrier), 

Toxicodendron radicans (eastern poison-ivy), Parthenocissus quinquefolia (Virginia creeper), 

Leersia oryzoides (rice cutgrass), Peltandra virginica (green arrow-arum), Myrica cerifera (wax 

myrtle) andMitchella repens (patridge berry) (Monette et al. 1983,Westervelt et al. 2006). 

Breeding success data:

During May through July of 2011 and 2012,1 visited 18 (2011=8; 2012 = 10) breeding 

study sites within the study area that were large enough to accommodate at least 10 Wood 

Thrush territories (average territory -2 .1  ha, Evans et al. 2008). In 2011, study sites were chosen 

through an opportunistic sampling where Wood Thrushes were known to occur based on point 

counts surveyed in 2010. In 2012, study site locations were randomly selected from a 500m grid 

overlapping with coniferous, mesic and upland deciduous forest on public land. Prior to the field 

season in 2012,1 visited each breeding study site to determine if it was suitable for collecting 

breeding data. I had to adjust five sites by either moving or altering the size due to 

inaccessibility. Study sites were considered inaccessible if I was unable to park in biking
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distance of the site or if large marshy areas or deep ravines prevented me from walking around 

the entire study site.

I visited each site every three to six days to delineate male territories. The average 

sampling effort was greater in 2011 (average days per site = 16.75, range = 7-28, sd = 7.04) then 

in 2012 (average days per site = 10.4, range = 5-15, sd = 3.53). This was most likely due to 

observing a greater number of males in 2011 (n = 73) compared to 2012 (n = 26). If I did not 

detect males within a study site, I continued to survey those study sites throughout the season. 

During each visit, I observed males for approximately three hours and geo-referenced (UTM 

coordinates) locations of males exhibiting singing, foraging, or warning behavior using a Garmin 

GPS unit (Garmin GPS map 60Cx). To delineate territories, I followed each male while 

maintaining a distance of at least 20m to avoid flushing. I observed the location where a male 

was perched, singing, warning, calling, or foraging in the leaf litter and geo-referenced locations 

once the male vacated the area. During each visit, I attempted to obtain at least five locations for 

each male; however, this was not always possible because I did not detect each male during each 

visit. I obtained on average 3.78 observations per territory in 201 l(range =1-12, 2.83) and 10.35 

observations per territory in 2012 (range = 2-25, sd = 7.67).

Visiting territories every three to six days enabled me to assign pairing status and/or 

fledgling success to each territory. I assigned a modified Reproductive Index (Vickery et al. 

1992a, Christoferson & Morrison 2001, Bonifait et al. 2006) to each territory: 1= territorial male 

present for < 4 weeks, 2 = territorial male present > 4 weeks, 3 = territorial male and female 

present > 4 weeks, 4 = evidence of fledgling success. Pairing success was determined if I found 

a nest or observed a female on the same territory. Males tended to sing less frequently when 

paired. Females were typically seen foraging near the ground or flying near singing males.
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Additionally, when I followed an individual male, I was able to successfully find nests because 

they generally remained in proximity to their nest. Fledgling success was determined by male 

behavior and by carefully searching territories for the presence of fledglings. I observed that 

adult males sang less frequently when their nestlings fledged and instead began to produce 

warning calls. When this occurred, I followed and observed both parents until I found the 

fledglings, which were typically begging for food. In order to make sure I did not fail to detect 

the presence of fledglings, I searched all territories for evidence of fledglings for 5 days once a 

male stopped singing. If I was unable to find any fledglings and the adults were absent, I 

concluded that the nest had been depredated and that the pair had abandoned their territory. To 

calculate an overall reproductive success for each study site, I averaged the Reproductive Index 

across territories.

Presence/Absence Surveys and Survey-specific Covariates:

In June 2011 and 2012, a total of 140 point count surveys were conducted (2011 = 70; 

2012 = 70) (Fig. 1). Point count locations were randomly placed in forest patches along an 

urban-rural gradient and stratified by public access. Using ArcGIS 10 (ESRI2011), I reclassified 

the Southeast Gap (SEGAP) land-cover data set (http://www.basic.ncsu.edu/segap/) to extract 

coniferous forest, mesic and upland deciduous forest, as well as urban land covers. I then clipped 

all forest patches to a delineated layer of accessible public land. I placed random point count 

locations within clipped forest patches ensuring equal sampling of forest types. I then inspected 

the urban gradient by extracting the proportion of urban area within a 1-km buffer surrounding 

each point count location.

Following Mitchell and Donovan (2008), each point count location was surveyed for 

Wood Thrushes for four 8-minute surveys during a single visit between 15 minutes after sunrise

6

http://www.basic.ncsu.edu/segap/


and 10:15 a.m. Each survey was separated by a two minute break. For each observation, I 

estimated the distance to each individual using a laser range finder (Insight 400XL, Opti-Logic) 

and noted whether individuals were visually or aurally detected. I recorded Wood Thrush 

presence/absence when individuals were detected within a 130-m threshold distance. For each 

survey, I also recorded covariates that may have influenced detection probability: Julian Date, 

start time of the survey, average wind speed (m/s) and temperature (0 ), which I measured with a 

pocket weather meter (Model 2000, Kestrel Meters).

Site-specific Covariates:

I created a priori nine GIS layers that represented both environmental factors and human 

stressors that could impact Wood Thrush occupancy: proportion of dry-mesic forest, proportion 

of flooded forest, proportion of low-development, road density, distance to forest edge, distance 

to open water, density of forest-low urban edges, stream density and deer hunting intensity. I first 

reclassified Southwest Gap Analysis Project (SEGAP) land cover data set 

(http://www.basic.ncsu.edu/segap/) to include: open water (SEGAP Value = 1,2) ,  developed 

open space (SEGAP Value = 4, 17, 18), low development (SEGAP Value = 5), medium-to-high- 

development (SEGAP Value = 6, 7), unconsolidated shore (SEGAP Value = 35, 125, 127, 145, 

146), dry-mesic hardwood forest (SEGAP Value = 39, 40, 66, 86, 108), pine forest (SEGAP 

Value = 71), flooded forest (SEGAP Value = 73, 151, 153, 164, 165, 174, 204), pasture (SEGAP 

Value = 148), row crop (SEGAP Value = 149) and tidal marsh (SEGAP Value = 215, 248). 

Because Wood Thrush occupancy may be affected by processes occurring at multiple scales 

(scale is variably defined as extent and resolution [Turner 1989]; in this study scale equates with 

extent), I chose to evaluate the effect of each habitat variable on Wood Thrush occupancy at 120- 

m, 300-m, 1-km, 2-km and 3-km scales. The 120-m scale was based on an average Wood Thrush
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territory of 45 ha (Evans et al. 2008). I based the 300-m scale on the post-natal territory size. 

Anders et al. (1998) showed that the Wood Thrush natal home-range can vary between 2.6 to 

24.8 ha, thus a 300m extent was selected to represent the larger natal home-range. I used a 1-km 

scale following Schwenk and Donovan (2011) who found that Wood Thrush occupancy was 

positively affected by intermediate forest patches within this scale. I chose a 2-km scale because 

Wood Thrush juveniles have been shown to disperse an average distance of 2.08 ± 1.48 km from 

their natal home-range to their post-dispersal home-range (Anders et al. 1998). Finally, I chose a 

3-km scale in order to explore any landscape-level effects that may impact Wood Thrush 

occupancy.

Because Wood Thrush reproductive success has been shown to be higher in large 

deciduous forest patches (Hoover et al. 1995), I evaluated the relationship of proportion of DRY- 

MESIC FOREST and Wood Thrush occupancy (Anders et al. 1998, Vega Rivera et al. 1998). I 

first created binary (0, 1) layers for dry-mesic hardwood forest and then performed moving- 

window analyses using the neighborhood function in Spatial Analyst (ESRI2011) to estimate 

proportion of DRY-MESIC FOREST within each of the five scales. Many studies have shown 

that Wood Thrush reproductive success is negatively impacted by fragmentation (Hoover et al. 

1995, Robinson et al. 1995). Because forests in my study area are fragmented by agricultural, 

residential and urban areas, and because forest cover highly correlated with road density, I used 

ROAD DENSTIY to investigate how Wood Thrush occupancy is influenced by forest 

fragmentation. To calculate ROAD DENSITY, I used the TIGER road dataset (U.S. Census 

2010) and created a binary layer (0, 1) for roads associated with low-to-medium traffic volume 

(categorized as local and other in the TIGER road dataset). I calculated ROAD DENSITY within 

the five scales using the Line Density tool in Spatial Analyst in ArcGIS 10 (ESRI 2011).
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I included two predictor variables representing DISTANCE TO WATER and 

DISTANCE TO FOREST EDGE. Based on field observations, distance to open water 

(brackish/salt water) seemed to negatively influence Wood Thrush occurrence. Thus, I created a 

binary layer (l=open water, NoData = all other land cover) and calculated the Euclidean distance 

of each point count location to the nearest cell of open water using the Euclidean Distance 

function in Spatial Analyst (ESRI 2011). Previous literature has shown that Wood Thrushes 

respond negatively to decreasing forest patch size and to increasing edge effects (Hoover et 

al.1995, Robinson et al. 1992, Robinson et al. 1995b). DISTANCE TO FOREST EDGE was 

used as a surrogate for forest patch size and edge effects. I calculated DISTANCE TO FOREST 

EDGE by creating a binary layer (0 = non-forest land covers, 1= all forest land cover) for all 

forest land cover: dry-hardwood forest, mesic forest, flooded forest and pine forest. I calculated 

the Euclidean distance to the edge of forest using the Euclidean distance tool in Spatial Analyst 

in ArcGIS 10 (ESRI 2011). Because Wood Thrushes response to open water and edge of forest 

may be nonlinear, I expressed the Euclidean DISTANCE TO OPEN WATER and FOREST 

EDGE as an exponential decay value using the following equation (Nielsen et al. 2005): decay 

value = exp (Euclidean Distance / -scalar). I used the Raster Calculator in ArcGIS 10 to calculate 

the decay value for scalars of 90 m, 180 m and 300 m. These scalars were chosen to parallel the 

scales chosen for evaluating the effects of habitat variables on Wood Thrush occupancy. I then 

obtained the Decay Distance for each point count for each scalar calculated for both the 

DISTANCE TO OPEN WATER and FOREST EDGE.

I calculated edge density of FOREST-TO-LOW URBAN DEVELOPMENT as a proxy 

for forest fragmentation. I first created a binary layer (1 = all forest land cover, 2 = low urban 

land cover) and then delineated all edges of forest-to-low urban development in Geospatial

9



Modeling Environment (GME) (Beyer 2011) using the tool Edge. I then calculated edge density 

within the five scales using the Line Density tool in Spatial Analyst in ArcGIS 10 (ESRI 2011).

Although topographic variables such as elevation and slope have been found to be 

important in explaining suitable Wood Thrush habitat (Lichstein et al. 2002, Rittenhouse et al. 

2007, Simons et al. 2000), the topography of this study area is mostly flat and I therefore did not 

include any topographic variables. However, I observed that Wood Thrushes seem to use habitat 

in ravines near small streams. Thus, I developed a STREAM DENSITY layer. I first clipped the 

TIGER stream dataset (U.S. Census 2010) to the study area. Because Wood Thrushes seemed to 

prefer small streams exclusively, I eliminated all major streams from the TIGER stream dataset 

(U.S. Census 2010) by erasing all streams that overlapped with flooded forest. I then calculated 

STREAM DENSITY within the five scales using the Line Density tool in Spatial Analyst in 

ArcGIS 10 (ESRI 2011).

Deer Browsing Layer:

I observed that Wood Thrush occupancy seems to be higher in areas with sparse 

understory. This is most likely due to Wood Thrushes being an understory species foraging 

through leaf litter (Holmes & Robinson 1988). Unfortunately, forest understory heterogeneity 

throughout the study area cannot be captured from satellite or aerial imagery. However, 

colleagues and I have observed that areas where deer hunting is prohibited had sparse understory 

whereas areas exposed to intensive deer hunting had extremely dense understory. Thus, I 

developed a categorical DEER HUNTING intensity layer: 0 = no deer hunting, 1 = deer hunting. 

I first created a raster layer for all areas that prohibited deer hunting by performing the following 

steps in ArcGIS 10 (ESRI 2011): First, I reclassified the Wildlife-Urban Index (WUI) so that 

areas categorized as non-vegetated or agriculture with medium to high housing = 1 (Radeloff et
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al. 2005). Second, I clipped the Protected Area Dataset (PAD-US) (USGS 2011) to the study 

area (PAD-VA) and reclassified all Protected Areas =1 with the exception of land owned by the 

Virginia Department of Conservation and Recreation (VDCR) (www.dcr.virginia.gov), the 

Virginia Department of Forestry (VDOF) (www.dof.virginia.gov), the Virginia Department of 

Game and Inland Fisheries (VDGIF) (http://www.dgif.virginia.gov/) and public parks that allow 

seasonal hunting, determined via a survey of each public park. Third, I created a developed land 

cover layer by creating a binary layer where development (all roads and low-high development) 

= 1 and all other land cover = NoData. Fourth, I created a layer for the cities of Hampton, 

Newport News and Richmond because they prohibit deer hunting year round. Last, I combined 

the WUI layer, the PAD-VA layer, the developed land cover layer and the cities layer into one 

raster = 0 and all other land cover = NoData.

I then created a raster for all areas that had limited seasonal hunting using ArcGIS 10 

(ESRI 2011) by performing the following steps: First, I reclassified the WUI layer to have 

interface, intermix, non-vegetated or agriculture with low to very low density housing, and non- 

WUI vegetated with no housing = 2 (Radeloff et al. 2005). Second, land owned by VDCR 

(www.dcr.virginia.gov), VDF (www.dof.virginia.gov), VDGIF(http://www.dgif.virginia.gov/) 

and public parks that allow seasonal hunting were reclassified = 1. Third, to account for potential 

effects of deer hunting on PAD-VA land, I added a -100m buffer with the exception of all land 

owned by the Department of Defense (DOD). This was due to previous knowledge that property 

of DOD is heavily fenced which prevents it from being accessible to deer. The 100-m buffer was 

then reclassified = 1. Lastly, I merged the WUI layer, the layer with VDCR, VDF, VDGIF and 

public parks, with the 100-m buffer into one raster = 1 and all other land cover = NoData.
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Next, I created a raster for intensive seasonal hunting by reclassifying the WUI layer to 

have the non-WUI vegetated with very low density housing = 2 (Radeloff et al. 2005). Finally, I 

merged the rasters for no hunting (0), limited seasonal hunting (1) and intensive seasonal hunting 

(2) using Spatial Analyst in ArcGIS 10 (ESRI 2011) and reclassified intensive seasonal hunting 

to value =1 to create a final binary deer HUNTING INTENSITY layer. I performed a focal 

majority in the Neighborhood function in Spatial Analyst (ESRI 2011) for each of the five scales.

STATISTICAL ANALYSIS

Presence/Absence Surveys:

Because surveys were conducted on the same day, I employed a “capture matrix” to 

account for potential lack of independence among surveys as a survey-specific variable. The 

capture matrix adjusts detection probabilities based on when an individual bird is first detected 

during the four surveys (McKenzie et al. 2006) If a Wood Thrush is detected during survey 1, the 

capture matrix vector = 0111, for an individual detected during survey 2, the vector = 0011, and 

so on.

Single-Season Occupancy Modeling:

In addition to modeling linear relationships of the survey- and site-specific covariates, I 

explored quadratic and/or pseudo-threshold log relationships (Scherer et al. 2012). Quadratic 

relationships predict maximum effects of the parameter at intermediate levels or at extreme 

values. The quadratic form is written as:

logit (0) = p0+Pi(*i)+ Pi(*i2)+ %(xn)+ Pn(xn2) 

where 0 represents the real parameter (p or W), and xn represents the covariate of interest.
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The pseudothreshold relationship predicts that effects of the covariate change at some constant 

rate and then approach but do not reach an asymptote (Franklin et al. 2000). The pseudothreshold 

form is written as:

logit (0) = p0 + Piloge(xi + 0.005) + pnlogeCx„ + 0.005) 

where 0 represents the real parameter (p or ¥), and xn represents the covariate of interest.

Prior to modeling, I centered all quadratic site-specific variables to avoid 

multicollinearity. I also standardized all continuous survey- and site-specific variables in order to 

be able to interpret magnitude of slopes across all covariates. All covariates were tested for 

multicollinearity using Spearman’s rank correlation coefficient (Quinn and Keough 2009). 

Covariates with a correlation coefficient rs > 10.7 | were not included within the same model.

I used Akaike’s information criterion (AIC) to select models (Burnham and Anderson 

2002) and performed all occupancy analyses of the Wood Thrush using the R package Unmarked 

(Fiske and Chandler 2011, R Core Development Team 2008). I created a single-season 

occupancy model for the Wood Thrush using 140 point count surveys (2011 = 70, 2012 = 70). I 

determine the best model for detection probability, by creating multivariate models with all 

possible combinations of the six survey-specific covariates while keeping the W model [W(.)] 

constant (Appendix l.a). I determined the best detection model using the top AIC value. I kept 

the top detection model constant to calculate all occupancy models.

I first used univariate models for each site-specific covariate to determine the best scale 

based on the top AIC value. Using the best scale for each site-specific covariate, I created 

multivariate models with all possible combinations of the site-specific covariates. To model 

average the occupancy probability, I spatially applied the top models whose AIC weights (wO 

summed 95% (Burnham and Anderson 2002). I then multiplied each spatially applied occupancy
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model by its AIC weight (Wi) and summed all models to produce a final spatially applied 

occupancy model. To look at individual site-specific covariate effects on occupancy, I calculated 

the cumulative AIC weight (wi):

CUMwj = (X Wi)

for each covariate. Values ranged between 0-1; covariates with a CUM Wj closer to 1 indicated a 

strong association with occupancy probability whereas values close to 0 indicated a weak 

association.

Final model performance evaluation:

I evaluated internal model performance, that is sensitivity (true presence) and specificity 

(true absence) of final models, using the receiver operating characteristic (ROC) estimating the 

area under the curve (AUC; Metz 1978) using statistical software R “pROC” package (Xavier et 

al. 2011; R Core Development Team 2008). Additionally, I evaluated model performance by 

performing a logistic regression with 31 independent point counts (2011=15; 2012 =16) 

collected in 2011 and 2012.

Correlating occupancy estimates with breeding success data:

I performed a Spearman rank correlation tests on the average occupancy probability and 

the average reproductive index. Using zonal statistics in ArcGIS (ESRI 2011), I extracted the 

average occupancy probability within each of the 18 Wood Thrush study sites. I averaged 

Reproductive Indices across territories within a study site. I assumed Spearman rank correlations 

to be significant at the p = 0.05

RESULTS

Demography Data:
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I collected breeding data from 19 May-22 July, 2011, and 21 April-22 July, 2012.1 found 

on average 9.13 males per study site (range=6-17; sd = 3.68) in 201 land 2.6 males per site 

(range = 0-6; sd = 2.5) in 2012 (Table 1). I found on average of 4.5 paired males per site 

(range=0-14; sd = 4.31) and 2.63 fledglings (range=0-10; sd = 4.1) in 2011 and an average of 1.5 

paired males per site (range = 0-4; sd =1.51) and 0.7 fledglings (range = 0-3; sd = 0.95) in 2012 

(Table 1). The reproductive index varied across sites with an average of 2.02 per site (range = 0- 

3.29; sd =1.1) (Table 1). The average reproductive index in 2011 was 2.21 (range =1.0-1.39; sd = 

0.74) and 1.87 (range =0-3.17; sd =1.35) in 2012.

Survey-specific Covariates:

Multicollinearity was not present among the survey-specific covariates (rs < 0.7). Linear 

relationships of all survey-specific covariates out-performed quadratic and pseudothreshold 

relationships (Appendix l.a). The most important survey-specific candidate model for the Wood 

Thrush included Julian Date and a CAPTURE MATRIX, and was better than the constant p 

model [p(.)J (Appendix l.a). The overall (average) survey-specific detection probability was 0.64 

(range=0.46-0.85; sd=0.02).

Site-specific Covariates:

For the covariates STREAM DENSITY and FLOODED FOREST quadratic relationships 

out-performed the linear form. The covariates ROAD DENSITY, proportion of LOW URBAN 

DEVELOPMENT and edge density of FOREST/LOW URBAN DEVELOPMENT all 

performed better when included as a pseudo-threshold variable. Edge density of FOREST/LOW 

URBAN DEVELOPMENT, PROPORTION OF LOW URBAN DEVELOPMENT and ROAD 

DENSITY were all highly correlated (rs = 0.83-0.98) and were modeled independently of one 

another. Smaller scales (120m and/or 300m) were not evaluated for proportion of FLOODED
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FOREST, STREAM DENSITY, edge density of FOREST/LOW URBAN DEVELOPMENT, 

proportion of DRY-MESIC FOREST, proportion of LOW DEVELOPMENT and ROAD 

DENSITY due to an over-saturation of 0 values ( > 20 zeros), which could result in lack of 

model convergence. Both covariates distance to OPEN WATER and distance to FOREST EDGE 

were poor predictors of Wood Thrush occupancy, with AIC values below null occupancy model 

[y(.)] and were excluded from modeling (Appendices l.i and l.j).

Proportion of FLOODED FOREST at 1km (CUM wj = 0.79), STREAM DENSITY at 

3km (CUM Wj = 0.77), proportion of DRY-MESIC FOREST at 3km (CUM Wj = 0.70) and edge 

density of FOREST/LOW URBAN DEVELOPMENT at 1km (CUM wj = 0.64) all had a 

relatively high importance in predicting Wood Thrush occupancy. Deer HUNTING INTENSITY 

at 1km (CUM Wj = 0.33), proportion of LOW URBAN DEVELOPMENT at 1km (CUM Wj = 

0.22), and ROAD DENSITY at 1km (CUM Wj = 0.15) were not strong predictors of Wood 

Thrush occupancy (Fig. 2). The final averaged 95% AIC-weighted model was comprised of 33 

candidate models (Table 2) producing the equation:

\\f = -3.07 + 0.66 * (proportion of dry-mesic forest) - 0.78 * (proportion of flooded forest)+ 0.42 * 

(proportion of flooded forest2) + 0.99 * (road density) + 0.26 * (edge density of forest/low urban 

development) + 0.16 * (proportion of low development) + 0.34(stream density) -  0.08(stream

density2) -  0.13 * (deer hunting intensity)

Wood Thrush occupancy varied greatly across the Virginia peninsula (Fig. 3). High 

occupancy areas were predicted west of the fault line and confined to areas with high stream 

densities and large proportions of upland forests. Wood Thrush occupancy was highest in 

residential areas, particular throughout the City of Williamsburg. Low-to-mid occupancy 

predictions occurred closer to open water and large patches of rural land cover.
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Model Performance:

Seven out of the 30 independent presence/absence surveys detected Wood Thrush 

presence. Model performance was not consisted among internal and external validation methods. 

The Wood Thrush occupancy model performed well (AUC = 0.79) when validated internally. 

However, the observed data (independent occurrence data not use for model building) did not 

correlate (p = 0.98) with expected \|/ values.

Probability o f Occupancy vs. Breeding Success:

Average probability of occupancy (\|/) varied across sites with an average \)/ = 0.26 (range 

= 0.1-0.59; sd = 0.19) (Table 1). Average \|/ and the average reproductive index did not 

significantly correlate (rs = 0.30, p = 0.27) (Fig. 4).

DISCUSSION

To my knowledge, this study was the first to attempt to evaluate whether occupancy

probabilities correlate positively with reproductive success. I found no relationship between

Wood Thrush occupancy and breeding success. My findings were not surprising because the

Wood Thrush population within this study area seemed to respond differently across the

landscape compared to previous studies. Additionally, although the Wood Thrush occupancy

model had an AUC value of 0.79, the model predicted poorly when evaluated with independent

presence/absence data not used for model building. This was not unexpected because only seven

out of the 30 independent presence/absence surveys detected Wood Thrushes. One possible

explanation for the poor predictive power of the occupancy model is that there may be a high

turnover among habitat with a high proportion of urban and rural land cover. On several

occasions, I observed breeding study sites where Wood Thrushes appeared to be absent during

the early part of the breeding season, but then males would end up establishing territories during

June/July. This turnover indicates that Wood Thrushes may be responding to the landscape in an
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unpredictable way, causing this population to be difficult to evaluate with occupancy modeling 

because of the violation of the closure assumption (MacKenzie et al. 2006).

Wood Thrush occupancy related negatively and nonlinearly with FLOODED FOREST at 

the 1-km scale with use being restricted to intermediate levels of this land cover. Occupancy 

related linearly and positively to proportion of DRY-MESIC FOREST at a 3-km scale, which is 

supported by previous studies that have shown Wood Thrush reliance on large patches of mid- 

successional hardwood forests during the breeding season (Hoover et al. 1995). Occupancy also 

related quadratically and positively to intermediate STREAM DENSITY at the 3-km scale. This 

was expected because Wood Thrushes were observed to consistently breed in deep ravines near 

small streams but avoided either extreme, such as dry or flooded forests. This is supported by 

studies that have shown that slope (Rittenhouse et al. 2007) and moisture (Bertin 1977, 

Rittenhouse et al. 2007) are important variables explaining breeding Wood Thrush habitat use. 

Although Kaiser and Lindell (2007) showed little-to-no impact of edge effects on Wood Thrush 

reproductive success and occurrence, the need for core habitat at large scales for Wood Thrush to 

breed successfully is well supported (Hoover et al. 1995, Driscoll et al. 2005). However, in this 

study, Wood Thrush occupancy was positively associated with edge density of FOREST-TO- 

LOW URBAN DEVELOPMENT, ROAD DENSITY and proportion of LOW URBAN 

DEVELOPMENT. In this study, Wood Thrush occupancy was high in the greater Williamsburg 

area, specifically in smaller patches of forest near forest edges, where I also found the highest 

breeding success based on the reproductive index.

To my knowledge, this study area is unique when evaluating Wood Thrush occupancy 

and breeding success because forest land cover is intermixed with low urban/residential land 

cover throughout the majority of the area, whereas past studies have been conducted in large,
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1995, Simons et al. 2000, Lichstein et al. 2002). Wood Thrushes may use forest patches near 

low-density urban areas because deer hunting is prohibited, which results in much sparser 

understory compared with forest patches located in rural landscapes where deer hunting is 

permitted. Wood Thrushes rely on sparse understory for foraging through leaf litter (Holmes and 

Robinson 1988), thus, the benefits of breeding in more fragmented forest patches with sparse 

understory may out weight any negative impact caused from edge effects, such as nest predation 

and parasitism (Hoover et al. 1995, Robinson et al. 1995).

DEER HUNTING INTENSITY was most important at the 1-km scale, indicating the 

impacts of deer hunting may extend beyond the local scale. However, DEER HUNTING 

intensity was not a very strong predictor of Wood Thrush occupancy. This was potentially due 

because the DEER HUNTING INTENSITY spatial layer did not capture the spatial 

heterogeneity of deer browsing because as hunting intensity is spatially heterogeneous on private 

lands and cannot be mapped. It would be ideal to know exactly where and for how long deer 

hunting is permitted during each season, especially on private lands. The results of my research 

suggests that deer browsing is a potential mechanism affecting Wood Thrush occupancy and 

breeding success and further investigation using a more detailed deer browsing layer is 

warranted.

Although all site-specific covariates were selected a priori based off of findings from 

previous literature and through my own personal experience, all covariates explaining 

heterogeneity in occupancy had confidence intervals overlapping with zero, indicating that all 

site-specific covariates had weak predictive power of Wood Thrush occupancy. In hindsight, this 

was not surprising because Wood Thrush occupancy across the study area was not consistent 

during the three years of presence/absence data collected in a parallel study (M. Leu pers.
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comm.) causing Wood Thrush occupancy to be difficult to measure. There are several possible 

reasons for the observed unpredictability among this local Wood Thrush population. First, I 

personally observed a constant turnover during a single season. This violates the critical closure 

assumption of occupancy models (MacKenzie et al. 2006). Secondly, there may be mechanisms 

that impact Wood Thrush occupancy in this study area that I did not model. It was surprising that 

not one site-specific covariate had predictive power because they were all chosen based off of 

previous studies. This is important to address for future studies that develop models using 

covariates shown to be important based on previous findings in the literature. My study 

demonstrates that when modeling even a well-studied species, such as the Wood Thrush, habitat 

use may differ across geographic regions.

Occupancy modeling is a method that shows great promises in guiding long-term 

conservation efforts. The ability of land managers to have tools such as occupancy models to 

delineate habitat most needed for long-term conservation is crucial as the world becomes 

increasingly dominated by urban land cover. Although my findings suggest that Wood Thrush 

occupancy modeling is not a reliable method to use in lieu of collecting breeding data, my 

findings indicate that researchers and land-managers cannot solely rely on previous literature to 

inform management and conservation planning, especially when modeling habitat use or 

occupancy in a new geographical area. Additionally, I recommend evaluating Wood Thrush 

habitat use instead of occupancy within this study area and further exploring what mechanisms 

are important for the Wood Thrush population in the Coastal Plains of Virginia and whether or 

not this population is inhabiting an ecological trap. This is necessary for future long-term land 

management decisions with conserving the declining Wood Thrush population in Virginia. I
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suggest radio-tracking Wood Thrush males as they move among territories within a breeding 

season.
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Table 1 Wood Thrush breeding success data from 18 study sites that were visited in 2011 and 
2012. Territories were ranked based on a Reproductive Index (RI). The average RI was 
calculated across sites. The average probability of occupancy (Psi) was extracted from the final 
spatially applied Wood Thrush occupancy model.

Year Site # o f
males

% Pairing 
Success

%
Fledgling
Success

RI Psi

2011 New Quarter Park 11 54.55 72.73 2.85 0.46

2011 WAM_Compton 6 66.67 0.00 2.33 0.57
2011 W AM_ J amesto wn 10 30.00 30.00 2.22 0.37

2011 WAM_Millneck 17 82.35 58.82 3.29 0.51
2011 NNP_Campsite 7 71.43 0.00 2.25 0.18
2011 NNP_Crawford 6 50.00 0.00 2.40 0.35

2011 Wallermill Park 9 11.11 0.00 1.33 0.29
2011 York River State 

Park
7 0.00 0.00 1.00 0.11

2012 Newport News 
Park

1 100.00 0.00 3.00 0.12

2012 Harrison Lake 0 0.00 0.00 0.00 0.13
National Fish 

H atch ery
2012 VCU Rice Center 1 0.00 0.00 2.00 0.07

2012 Chickahominy
WMA

0 0.00 0.00 0.00 0.11

2012 Noland Park 0 0.00 0.00 0.00 0.08

2012 Richmond 4 50.00 25.00 2.67 0.24
National

Battlefield
2012 Beaverdam Park 6 50.00 16.67 2.50 0.09

2012 Freedom Park 5 60.00 20.00 2.33 0.10

2012 Colonial N a tio n a l  
Park S y stem

6 66.67 50.00 3.17 0.44

2012 Fords C olon y 3 66.67 33.33 3.00 0.32
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Figure 1 Map of the study area in the Coastal Plains of Virginia
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Probability of Occupancy
■ ■ ■ r  0.82

5 10 20 30 40
i Kilometers

Figure 3 Spatially applied Wood Thrush occupancy model. Areas in red indicate a high 
probability of occupancy whereas areas with blue indicate a lower probability of occupancy. 
Probability of occupancy ranged from 0.00 - 0.82 throughout the study area.
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Appendix 1 Wood Thrush AIC model selection results for the survey-specific multivariate models and 
the site-specific univariate models. All candidate models, as well as the “null” model without covariates 
are shown for the survey-specific multivariate models and the site-specific univariate models. T  is the 
occupancy probability and p is the detection probability. Covariate names followed by a numerical value 
indicate the covariates scale; a LN indicates a pseudo-threshold relationship. Survey-specific covariate 
names are: Capture Index = Capture, Julian Date = Julian, Start Time = Stime, Windspeed = 
Windspeed, Temperature = Temp. Site-specific covariate names are: Proportion of Flooded Forest = flf, 
Proportion of Dry-Mesic Forest = drymes, Stream Density = sden, Local Road Density = rd, Proportion 
of Low Development = ldev, Edge Density of Forest-to-Low Urban Development = edge, Deer Hunting 
Intensity = deer, Distance to Open Water = distw, Distance to Forest Edge = distf.

Appendix l.a Wood Thrush Survey-Specific Multivariate Models AIC Table_____________________________________________
Model

AIC A,- w, K -2L
TOpCCapture, Julian)

T(.)p(Julian. Stime)

¥(.)p(Julian)

T(.)p(Capture, Julian, stime)

T(.)p(Capture, Julian, Windspeed) 

T(.)p(Capture, Julian, Stime, Windspeed) 

T(.)p(Julian, Stime, Windspeed)

T(.)p(Stime)

T(.)p(Capture, Stime)

T(.)p(Julian, Windspeed)

TOpCCapture, Julian, Temp, Windspeed) 

T(.)p(Capture, Julian, Temp)

T(.)p(Julian, Temp)

T(.)p(Capture, Julian, Stime, Temp, Windspeed) 

T(.)p(Julian, Stime, Temp)

T(.)p(Julian, Julian2)

T(.)p(Capture)

T(.)p(Capture, Stime, Windspeed)

T(.)p(Julian, Temp, Windspeed)

T(.)p(Capture, Julian, Stime, Temp)

T(.)p(Stime, Windspeed)

T(.)p(Julian, Stime, Temp, Windspeed) 

T(.)p(Stime, Temp)

T(.)p(Stime, Stime2)

T(.)p(Capture, Temp)

T(.)p(Capture, Stime, Temp)

T(.)p(Temp)

T(.)p(Capture, Stime, Temp, Windspeed) 

T(.)p(Capture, Windspeed)

T(.)p(Stime, Temp, Windspeed)

T(.)p(Capture, Temp, Windspeed) 

T(.)p(Windspeed)

T(.)p(Temp, Windspeed)

360.67 0.00 0.07 4 352.67

360.67 0.01 0.07 4 352.68

360.92 0.25 0.06 3 354.92

360.94 0.27 0.06 5 350.94

360.94 0.27 0.06 5 350.94

360.98 0.30 0.06 6 348.98

361.16 0.49 0.05 5 351.16

361.35 0.67 0.04 3 355.35

361.63 0.96 0.04 4 353.63

361.69 1.01 0.04 4 353.69

361.76 1.08 0.04 6 349.76

361.89 1.21 0.04 5 351.89

362.24 1.57 0.03 4 354.24

362.58 1.91 0.03 7 348.58

362.58 1.93 0.03 5 352.58

362.60 1.91 0.03 4 354.60

362.60 1.93 0.03 3 356.60

362.71 2.04 0.02 5 352.71

362.73 2.05 0.02 5 352.73

362.74 2.07 0.02 6 350.74

362.77 2.10 0.02 4 354.77

362.95 2.28 0.02 6 350.95

363.20 2.53 0.02 4 355.20

363.33 2.66 0.02 4 355.33

363.35 2.68 0.02 4 355.35

363.37 2.70 0.02 5 353.37

363.79 3.11 0.01 3 357.79

364.26 3.59 0.01 6 352.26

364.27 3.60 0.01 4 356.27

364.51 3.84 0.01 5 354.51

364.57 3.90 0.01 5 354.76

364.76 4.09 0.01 3 358.76

365.41 4.73 0.01 4 357.41
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T(.)p(Temp, LNTemp)
365.76 5.09 0.01 4 357.76

Appendix 1 .b Wood Thrush Proportion of Flooded Forest AIC Table
Model

AIC A/ w K -2L
T(flflkm  + flflkm 2)

352.64 0.00 0.76 6 340.64
T(flflkm)

356.65 4.00 0.10 5 346.65
T(flf2km)

356.81 4.17 0.09 5 346.81
T(flOkm)

358.89 6.25 0.03 5 348.62
T(.)

360.67 8.03 0.01 4 352.67
T(flf300m)

361.62 8.97 0.01 5 351.62
T(fl fl20m)

362.67 10.03 0.01 5 352.67

Appendix l.c Wood Thrush Proportion of Dry-Mesic Forest AIC Table

Model
AIC A; Wi K -2L

'P(drymes3km)
350.64 0.00 0.59 5 340.64

T(drymes2km)
351.66 1.02 0.33 5 341.66

TCdrymeslkm)
354.15 3.51 0.10 5 344.15

lF(drymes300m)
358.79 8.15 0.01 5 348.79

¥(•) 360.67 10.03 0.01 4 352.67
lP(drymesl20m)

362.31 11.67 0.00 5 352.31

Appendix l.d Wood Thrush Stream Density AIC Table

Model
AIC A,- Wj K -2L

vP(sden3km + sden3km2)
353.38 0.00 0.44 6 341.38

4J(sden3km)
353.60 0.22 0.39 5 343.60

T(sden2km)
357.08 3.71 0.07 5 347.08

TCsdenlkm)
357.67 4.29 0.05 5 347.67

T(sden300m)
358.20 4.83 0.04 5 348.20

T(sdenl20m)
360.59 7.22 0.01 5 350.60

'P(-)
360.67 7.29 0.01 4 352.67

Appendix l.e Wood Thrush Local Road Density AIC Table

Model
AIC A,- w, K -2L

T(LNrdlkm)
351.00 0.00 0.78 5 341.00

T(rdlkm )
354.96 3.86 0.11 5 344.86

'P(rd3km)
355.97 4.97 0.06 5 345.97

T(rd2km)
356.70 5.70 0.05 5 346.70

V(.) 360.67 9.67 0.01 4 352.67

Appendix l.f  Wood Thrush Proportion of Low Urban Development AIC Table
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M odel
AIC A, Wj K -2L

T(LNldevlkm)
353.69 0.00 0.76 5 343.69

TGdevlkm)
356.68 2.99 0.17 5 346.68

T(ldev2km)
359.29 5.60 0.05 5 349.29

4/(ldev3km)
360.39 6.70 0.03 5 350.39

¥(.) 360.67 6.98 0.03 4 352.67

Appendix 1 .g Wood Thrush Edge Density of Forest-Low Urban Development AIC Table

Model
AIC A,- W{ K -2L

T(LNedgelkm)
352.59 0.00 0.47 5 342.59

Tfedgelkm)
353.39 0.78 0.32 5 343.39

xT(edge3km)
355.35 2.76 0.12 5 345.35

T(edge2m)
355.96 3.37 0.09 5 345.96

¥(•) 360.67 8.08 0.01 4 352.67

Appendix 1 .h Wood Thrush Deer Hunting Intensity AIC Table

Model
AIC A,- Wi K -2L

T(deerlkm)
357.68 0.00 0.39 5 347.68

T^deernOm)
357.74 0.06 0.38 5 347.74

T(deer300m)
359.51 1.83 0.16 5 349.51

'F(deer2km)
361.85 4.17 0.05 5 351.85

vF(deer3km)
362.85 4.81 0.03 5 352.49

T(.)
360.67 7.29 0.01 4 352.67

Appendix l.i Wood Thrush Distance to Open Water AIC Table

Model
AIC A i Wi K -2L

¥(■) 360.67 0.00 0.47 4 352.67
T(distw300m)

362.63 1.96 0.18 5 352.63
HGdistwlSOm)

362.63 1.96 0.18 5 352.63
4'(distw90m)

362.64 1.96 0.18 5 353.64

Appendix 1 .j Wood Thrush Distance to Forest Edge AIC Table
Model

AIC A,- Wj K -2L
y(.) 360.67 0.00 0.46 5 352.67
T/(distf90m)

362.55 1.87 0.18 5 352.55
T(distfl 80m)

362.57 1.89 0.18 5 352.57
TldistlTlOOm)

362.63 1.95 0.17 5 351.63
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